

nBS technical note 1156

U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards

The CSA Weatherization Demonstration Data Base: Contents and Descriptions

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers:

> Absolute Physical Quantities ${ }^{2}$ - Radiation Research - Thermodynamics and Molecular Science - Analytical Chemistry - Materials Science.

THE NATIONAL ENGINEERING LABORATORY provides technology and technical services to the public and private sectors to address national needs and to solve national problems; conducts research in engineering and applied science in support of these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers:

> Applied Mathematics - Electronics and Electrical Engineering ${ }^{2}$ - Mechanical Engineering and Process Technology ${ }^{2}$ - Building Technology - Fire Research Consumer Product Technology - Field Methods.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following centers:

Programming Science and Technology - Computer Systems Engineering.

[^0]
The CSA Weatherization Demonstration Data Base: Contents and Descriptions

Roy E. Clark

Center for Building Technology
National Engineering Laboratory
National Bureau of Standards
Washington, DC 20234

Sponsored by:

U.S. Department of Energy

Office of Buildings and Community Systems, Buildings Division 1000 Independence Ave., SW
Washington, DC 20545

[^1]National Bureau of Standards Technical Note 1156
Nat. Bur. Stand. (U.S.), Tech. Note 1156. 159 pages (Feb. 1982) CODEN: NBTNAE

U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1982

Abstract

The Community Services Administration (CSA) National Optimal Weatherization Demonstration was conducted over a $31 / 2$ year period (1977-1981) by the National Bureau of Standards and Community Action agencies in 12 areas around the Nation, principally to determine what reductions in residence space heating energy consumption could be achieved by extensive, economically cost-effective weatherization of dwellings. Because the project was funded by the CSA, it was conducted using houses occupied by low-income households. In addition to recording overall energy consumption (for the $1975-1980$ period), the demonstration collected considerable additional energy-related measurements from approximately 240 houses (including some 40 unweatherized control houses) at the 12 sites. These measurements probably constitute the most extensive and comprehensive data base on real energy usage of real houses extant. The report describes the various measurements that were obtained and how they were obtained. It contains house-by-house inventories of the data actually present in the data base and, as an access aid for further study of the data, it describes the media in which the data exist.

Key Words: Community Services Administration Weatherization Demonstration; costs of weatherization; energy conservation; energy consumption data; energy related data; field measurement of building energy use; Optimal Weatherization Demonstration; residential energy consumption; space heating consumption; weatherization.

DISCLAIMER

The use of trade names or company products in this publication does not constitute endorsement or recommendation by the National Bureau of Standards and does not imply that the products are necessarily the best available for the purpose.

PREFACE

This report is one of a number presenting the findings and results of a national "optimal" weatherization demonstration sponsored by the Community Services Administration. The work represented in this document, consisting of inventorying and documenting the data assembled by the demonstration project, was supported by DoE/NBS Task Order 8 under Interagency Agreement DE-AIO1-76-PRO6010.

ACKNOWLEDGMENTS

Many people made valuable contributions in collecting, reporting, and clarifying the measurements contained in the data base herein described. Especially noteworthy was the care and cooperation with which data were obtained and verified by some of the demonstration site personnel: Larry Dodgen (Atlanta), Debra Hosier (Easton, PA), John Baker (Charleston, SC), Bradley Turk (Colorado) Springs), Kenneth Olsen, Bruce Hilbe and David Sharpe (Fargo, ND), John Zajac (Tacoma, WA), Maurice Hutchins and Melodie Fenwick (Hughesville, MD, the Washington, DC site).

The first version of the "balance point analysis" computer program was written by Dr. Richard A. Grot, while he was associated with Princeton University's Twin Rivers Project on residential energy conservation. Dr. Grot subsequently joined the NBS Center for Building Technology (CBT), where he developed and monitored the field implementation of the mechanical systems tests and the air infiltration tests used in the demonstration. Dr. Grot also conducted the thermographic surveys.

The building thermal performance models, used first to select the options and later to calculate the theretical energy consumption of the houses for comparison with actual measured consumption, were adapted from American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) methods by Richard Crenshaw, Project Manager of the demonstration, and now Manager of the Energy Efficient Buildings Program at the Lawrence Berkeley Laboratory, Berkeley, CA.

Section 5.11 of this report, documenting the options costs data, was prepared by Anne Hillstrom of the CBT Applied Economics Group. The task of obtaining and organizing the cost data was carried out by Dr. Stepnen F. Weber, assisted by Michael J. Boehm and Barbara C. Lippiatt.

The author gratefully acknowledges the above contributions.
Page

1. INTRODUCTION 1
2. OVERVIEW OF THE COMMUNITY SERVICES ADMINISTRATION OPTIMAL WEATHERIZATION DEMONSTRATION 2
3. DATA MEDIA AND LOCATIONS 3
4. SITE AND HOUSE IDENTIFICATION SCHEME 5
5. DESCRIPTIONS AND INVENTORIES OF THE DATA 7
5.1 Key Descriptive Data about the Buildings 7
5.2 Utility Data 26
5.3 Weekly Readings Data 55
5.4 Mechanical Systems Tests Data 73
5.5 Building Dimensions and Descriptions Data, and Photographs 73
5.6 Air Infiltration Measurements and Fan Test Data 75
5.7 Temperature Stratification Data 78
5.8 Min/max Temperatures Data (Attic By-pass Test) 84
5.9 Options Installed Data 84
5.10 Thermography 87
5.11 Options Costs Data 89
5.12 Occupant Questionnaires 99
5.13 Inventory of Miscellaneous Data 101
6. 14 Weather (Daily Temperatures) Data and Derived Degree Days 110
7. THE "BALANCE POINT" ANALYSIS AND ITS RESULTS 113
6.1 Note on Converting Weekly Readings to Consumption Data 126
8. "PROJECTED" YEAR TOTAL FUEL CONSUMPTION DATA 130

TABLE OF CONTENTS (Continued)

Page
8. "STATUS" OF FINAL ANALYSES 133
9. REFERENCES 147

LIST OF TABLES

Page

1. City/site Identification Codes 5
2. Atlanta Key Data 10
3. Charleston Key Data 11
4. Chicago Key Data 13
5. Colorado Springs Key Data 14
6. Easton Key Data 15
7. Fargo Key Data 16
8. Minneapolis/St. Paul Key Data 17
9. Oakland Key Data 19
10. Portland Key Data 20
11. St. Louis Key Data 21
12. Tacoma Key Data 23
13. Washington Key Data 24
14. Codes for Fuel/Utility Data and Associated File Types 26
15. Inventory of Utility Data 30
16. Inventory of Weekly Readings Data 63
17. Inventory of Miscellaneous Data 102
18. Codes Used in HSBPTDTA Files 122
19. Data List for METRCAR.[CTC] Files 127
20. "Status" of Results: Atlanta 135
21. "Status" of Results: Charleston 136
22. "Status" of Results: Chicago 137
23. "Status" of Results: Colorado Springs 138
24. "Status" of Results: Easton 139

LIST OF TABLES (cont.)

Page
25. "Status" of Results: Fargo 140
26. "Status" of Results: Minneapolis/St. Paul 141
27. "Status" of Results: Oakland 142
28. "Status" of Results: Portland 143
29. "Status" of Results: St. Louis 144
30. "Status" of Results: Tacoma 145
31. "Status" of Results: Washington, DC 146

LIST OF EXHIBITS

Page

1. PR2KYD.CSS File 25
2. RPRPRNT.CSS File 29
3. Weekly Readings Recording/Reporting Form 57
4. PRINTWRF.CSS File 58
5. Example Printout of House Weekly Readings Data with Headings 59
6. FINDWRCS.CSS File 60
7. Air Infiltration (by Sample Bag) Data Worksheet 76
8a. Fan Test Data Sheet 77
8b. Example Output of Fan Test Analysis Program 79
8. Instructions for Taking Temperature Stratification Measurements 80
10a. Temperature Stratification Data Recording/Reporting Form 81
10b. Codes for Use on Temperature Stratification Data Sheet 83
9. PR20PDTS.CSS File 86
10. Examples of Raw Thermography Records 88
11. Listing of Cost Data Index File ARCOPT 91
12. Listing of Cost Data Index File MECOPT 92
13. Listing of Cost Data Index File CITIES 92
14. Listing of Cost Data Index File FUELS 93
15. Formats of "City" Data File Names 93
16. Sample Listing from FARARC 94
17. Sample Listing from FARMEC 94
18. Sample Listing from FARHARC 95
19. Sample Listing from FARHMEC 95
20. Sample "House" File of Cost Data 97

LIST OF EXHIBITS (cont.)

Page
23. Sample of Option/City Summary Cost Data File 98
24. Sample Listing from Summary Architectural Options Cost File 100
25. Sample Listing from Summary Mechanical Options Cost File 100
26. Example Output of "Balance Point" Analysis Run 116
27. PR2BPD.CSS File 121
28. PR2BPBTU.CSS File 124
29. FUELCALC.CSS File 131

1. INTRODUCTION

The Community Services Administration (CSA) Optimal Weatherization Demonstration, conducted by the National Bureau of Standards (NBS) from late 1977 to mid-1980, assembled what is probably the most comprehensive collection of measurements related to actual energy use in occupied houses available anywhere. A very large amount of data was collected on some 240 houses located in 12 geographic areas in the United States (excluding Alaska). The content of the data base is described and inventoried in this report.

The data prescribed to be collected by the CSA Demonstration project included, in addition to 5 years of whole-house utility consumption records, many other energy-use and energy use-related measurements: 1) 1 year or more of weekly readings of: furnace or space heater consumption, run times, and cycle counts; water heater energy consumption and hot water usage; utility (gas and electric) meters; (representative) temperatures on each floor; and indoor humidity; 2) 2 years of monthly measurements of natural air infiltration rates and of temperature stratification patterns in the house; 3) "before" and "after" measurements of furnace or heater steady-state efficiency; 4) "before" and "after" fan tests (induced depressurization of the house to measure tightness/leakiness); 5) thermography of all insulated walls; 6) measurements of possible by-pass leakage of heat into unheated attic spaces; 7) comprehensive costs of weatherization options; and 8) information about occupants' behaviors and attitudes that may affect house energy consumption.

As one would expect in a field study of this size, scope, and geographic dispersion, not all of the prescribed measurements were received for all of the houses. Furthermore, some of the data that were obtained contained ambiguities and obvious errors. To the extent possible, in ways described in this report, ambiguous and obviously faulty data have been purged or corrected. This report lists and describes, house-by-house, the information in the data base. The work was sponsored by the Buildings Division, Office of Buildings and Community Systems of the Department of Energy, in the hope that researchers interested in exploiting these data in the future will be able to do so efficiently and effectively. This report should also be of value to understanding and interpreting the data and conclusions reported in the final report of the demonstration [2].*

[^2]
2. OVERVIEW OF THE COMMUNITY SERVICES ADMINISTRATION OPTIMAL WEATHERIZATION DEMONSTRATION

The CSA/NBS National Optimal Weatherization Demonstration was a $31 / 2$-year field study of the effects of weatherization on energy consumption in houses, conducted in 12 site areas around the Nation. The sites were selected to be representative of the range of inhabited climates in the U.S. (except Alaska) where winter space heating is a significant energy user: Atlanta, GA; Charleston, SC; Chicago, IL; Colorado Springs, CO; Easton (Allentown/Bethlehem), PA; Fargo, ND; Minneapolis/St. Paul, MN; Oakland, CA; Portland, ME; St. Louis, MO; Tacoma, WA; and Washington, DC (represented by Hughesville, MD).

The principal goal of the demonstration was to show how much energy savings could be achieved in the various site areas by the installation of an "optimal set" of weatherization retrofits or techniques, "optimal set" being defined as all measures (both to the building shell and to the mechanical--space and water heating--systems) that an economic cost/benefit analysis found to be costeffective: i.e., to pay for themselves within a specified number of years.

The overall approach was: l) analyze 2 years (i.e., 1975-77) of archival fuel consumption readings from the selected houses to establish the "normal" preweatherization rate of energy consumption; 2) apply the prescribed "optimal set" of weatherization retrofits to each house; 3) measure the postweatherization "normal" rate of energy consumption; and 4) compare the results of 3) with those of 1) and with the actual costs of weatherizing the houses, obtained as a part of step 2).

Since local site Community Action Agency (CAA) personnel would be available to make regular visits to the houses to perform tests and read meters, along with their involvement in carrying out the weatherization work, advantage was taken of the opportunity to collect considerable detailed energy-usage and energyrelated data from the houses. Some of these data were directly related to a secondary goal of the demonstration: to try to analyze out the contribution of the several classes of options (e.g., infiltration, conduction, and mechanical systems) to the overall savings achieved in a house, i.e., measuring the mechanical efficiency of heating systems and water heaters before and after weatherization work, and measuring the natural air infiltration rate of a house monthly during the heating seasons. Other data were gathered as checks on the quality and effectiveness of the work performed, i.e., thermography of insulated walls and other possible areas of heat loss, a test for leakage of heated air to unheated spaces in the house, and ratings of the wintertime comfort and temperature impressions of occupants.

For a more complete understanding of how the demonstration was planned and carried out, the reader is referred to CSA Weatherization Demonstration Project Plan [1].

3. DATA MEDIA AND LOCATION

Most of the data discussed herein are in computer disk files. These are located on three 5-Mbyte removable Hawk disk packs and were written using a Perkin-Elmer $7 / 32$ maxi-mini computer in the Computer Facility of the Center for Building Technology (CBT) at the NBS. The specific names of the disk volumes are listed wherever any of the computer data files are discussed in this report.

Disk volumes CSAl and CSA2 each contain a file, called CSA[1 or 2]LIST., which is a list of all 1) data (including summary data, and the three inventory lists -- that are printed in this report) files, 2) CSS (Command Substitution system, for executing programs) files, and 3) FORTRAN program symbolic listing files. By editing the desired tape-writing parameters into these list files, either can be used as a command file to write all of the useful files from a disk volume to a tape. A paragraph at the beginning of these files discusses the record lengths of the data and program files and how to use the list so as to avoid truncating any files. The blocking factor can be prescribed as desired. The files will be written onto the tape in ASCII, and they can presumably be read by any computer capable of reading ASCII tapes.

Additional data, and backup hard copies of most of the data in the computer files, are located in a set of "house" files--one for each house, identified by the site code and the house number. (It is expected that these files will be retained in the custody of Dr . Richard Grot of the Building Physics Division of CBT.) To facilitate finding any particular piece of data in a house file, some effort has been put into organizing the data sheets in the house files as follows:

1 - Utility data:
space heating energy source
electricity
gas
water
2 - Balance point analysis outputs
3 - Fan tests
4 - Air infiltration (from tracer gas) data analysis sheets
5 - Minimum-maximum temperature data (for attic bypass test)
6 - Temperature stratification tests data
7 - Building measurements for thermal analysis (dimensions and descriptions)
8 - Exterior photos
9 - Mechanical systems tests data and photos
10 - Miscellaneous data: CSA Building Weatherization Plan Homeowner's release Electrical system inspection sheets
11 - Occupant questionnaires
12 - Options cost summary sheet
Two sets of data are not in either of the above-described media: 1) files of 7 years of daily high/low temperatures for the sites. (In view of the length of these files, they are maintained on a tape, and a file copied onto a disk
when needed (for calculating degree days at specified balance point(s)--see sections 5.14 and 6.); and 2) thermography data (see section 5.10).

Symbolic listing copies of the FORTRAN program files discussed herein are included on the referenced disk volumes. Rather than risk filiing up the disks by also retaining copies of the .TSK (relocatable, machine-language) versions, it is assumed that it would be more efficient for a future user to re-compile a program if or when its use is needed.
4. SITE AND HOUSE IDENTIFICATION SCHEME

For purposes of identifying and associating all data items throughout the demonstration, each house was identified by l) a three-letter code associated with the site, and 2) a two-digit number. Since some sites submitted threedigit house numbers (existing project numbers out of their weatherization applications register), we had to do some renumbering in order to fit the identifications into our computer file structure. Although some data sheets have erroneous numbers printed thereon (e.g., some early balance point printouts for Tacoma houses), all data have been carefully checked to be sure that they are, in fact, in the correct file and properly identified.

The three-digit codes for the 14 cities* from which some data were received are shown in table 1.

Table 1
 City/site Identification Codes

ABE

ALB
ATL Atlanta (Forest Park), GA
CHA
CHI
CSP
FAR
MSP
NOR
OAK
POR
STL
TAC
WAS Albuquerque*, NM

Charleston, SC
Chicago, IL
Colorado Springs, CO
Fargo, ND New Orleans (Kenner), LA*
Oakland, CA
Portland, ME
St. Louis, MO
Tacoma, WA

Allentown/Bethlehem/Easton, PA (often referred to as "Easton," since the original demonstration project agency for the site was in that city; however, the weather data used came from Allentown)

Minneapolis/St. Paul, MN (CAP Agency is located in St. Paul)

Washington, DC (actually a tri-county area around Hughesville, MD)

The reader will observe later that these three-digit codes are employed as extensions on the file names of summary data files, as file names (with the house number, preceded by some code letter, as extension) for files of data pertaining to a specific house, and as parameters for certain CSS (Command Substitution System) files to evoke data related to a particular site. They

[^3]also provided the basis (with some modification) for naming the weather (i.e., daily high/low temperature) files (see section 5.14). Wherever the use of one of these site codes is discussed in this report, the expression "[CTC]" is used (meaning, "substitute a city code").

5. DESCRIPTIONS AND INVENTORIES OF THE DATA

5.1 KEY DESCRIPTIVE DATA ABOUT THE BUILDINGS

To serve as a reference at various steps of the analysis process, a set of data files--one for each site--containing key descriptive information about the houses was written. This set of files also came to serve as the point of reference for keeping track of the status of a house vis-a-vis the demonstration, i.e., whether a house was in the "sample" (experimental) group, in the control group, or had been participating in the Demonstration but was "lost" for one reason or another.

Since this general descriptive data may be of value in a "ready reference" form, the latest, updated versions of these "house key data" files are included in this report as tables $2-13$.

The code used for data in these tables is fairly extensive, so it is printed on the page before table 2 .

These key data files are all resident on disk volume CSAl, with file names "HSKEYDTA.[CTC]". A CSS file, also on CSAl, will print any of the "house key data" files on the high-speed printer, complete with the heading and the footnotes (see exhibit 1, page ___). This program is invoked by typing in "CSA1:PR2KYD [CTC]".

A few comments are necessary about the data in these files. Column 8, identified by an asterisk (*) in the heading of tables $2-13$, describes the relationship of the house to the demonstration. All houses for which two years of "pre" data were received and a valid "balance point" analysis was obtained (see section 6) are listed in the key data files. (In other words, all houses appearing in the HSBPTDTA files should also appear in the HSKEYDTA files. If a house was selected as part of the sample to be weatherized, an "S" was entered in this column; houses selected as controls (the houses not to be weatherized, but the same tests and data collection to be carried out) were identified with a "C".

For all houses that are blank in column 8 (i.e., that were not selected for the demonstration) the descriptive data in the files comes mainly from CSA BWP (Building Weatherization Plan) forms or other "intake interview" type sources. Such data were not gathered or checked for scientific research purposes and cannot be considered highly reliable. In particular, only "living space" (area) and volume figures not enclosed in parentheses are derived from data specifically obtained for the research project on the Building Measurements for Thermal Analysis forms provided by NBS (see section 5.5). NBS made considerable efforts to verify the data on these forms.

As for all the other descriptive items in the files, for houses that were selected for the Demonstration, all of the data have been cross-checked against all available sources (i.e., construction type against the Building Measurements for Thermal Analysis forms, heating system type against the Mechanical Systems

Tests data sheets, number of occupants and number of occupied floors against the occupant questionnaires and floor plans therein).

By the end of the demonstration in June 1980, some attrition of the sample had occurred. Some homeowners changed their minds about putting up with the hassles of living in "demonstration houses," and declined further participation. One house collapsed and one was taken as part of a freeway right-of-way. In Chicago, some houses were removed from the sample by NBS because the site had insufficient resources to handle the originally selected sample.

When a house was "lost" early in the demonstration, and little useful data on the house had been obtained, the " S " or "C" in column 8 was replaced by a "-".

Some of the attrition that occurred related to specific problems with pre/post fuel consumption comparisons: 1) Insufficient--or insufficiently accurate--post-weatherization fuel data were received to enable us to get a reliable "fix" on post-weatherization consumption. These cases are indicated with an "X" in column 8. Note that, while pre/post energy consumption cannot be compared, other data on the house may be useful. 2) Since earlier dwelling energy consumption research (e.g., the Twin Rivers, New Jersey, study) had documented that a change of occupants could significantly affect the energy usage rate of a given house, it was clear that pre-post consumption comparisons of houses in which a household had moved out and another moved in during the demonstration could not be assumed to reflect only the effect of the weatherization of the house. Such houses were excluded from the "results" data in the report of the demonstration [2] and are indicated in the key data tables in this report by an "*" in column 8. 3) Weatherization work or other energy use-affecting work (such as replacing a furnace or installing storm windows) was done to a few control houses during the measurement period of the demonstration. This rendered the pre/post consumption comparisons of these houses invalid for "control" purposes--and they are identified with a "+" in column 8. Again, other data on these houses may well be of value.
*: S= Sample; C= Control group; $==$ lost from sample. $t=$ "AFTER" data contaminated by alteration of house;
*= Problem with occupancy or data coverage;
$X=$ Problem with (or no) "AFTER" fuel data.
HSE TYP: D= Detached; A=Attached; E= end unit;
t= part of next higher floor used;
-= part of basement (below grade) occupied;
$\mathrm{FL}=$ Only indicated floor occupied. (Floor above not heated).
TYPE: $C=$ Construction; $F=$ Foundation; $R=$ Roof.
FUEL: $\quad G=$ natural gas; $0=$ oil; $P=$ bottled gas (propane of LPG); E= electricity; K =kerosene; W =wood.
I: Observed infiltration condition: $\quad 1=\mathrm{P} ; \quad 2=\mathrm{P}-\mathrm{F} ; 3=\mathrm{F} ; \quad 4=\mathrm{F}-\mathrm{G} ; \quad 5=\mathrm{G}$
HT: Heating System Type: Af =Forced air; Ag =Gravity air; $\mathrm{Wp}=$ Circulated water; Wg =Gravity water; $\mathrm{U}=$ Unvented $\mathrm{SpH} ; \mathrm{V}=$ Vented SpH ; S =Space heater; F =Floor furnace; ST =Steam; BB =Baseboard; SV =Stove; WS =Water or steam (unspecified).
LVSP: Area in square feet. NOTE: Areas \& volumes in parentheses () are from CSA BWP forms, and probably not accurate. Others are from Building Dimensions for Thermal Analysis data, checked by NBS.
AG: Age of the house (when house entered Demonstration--1977 in most cases)
0: Orientation: $2=\mathrm{NE} ; 4=\mathrm{SE} ; 6=\mathrm{SW} ; 8=\mathrm{NW}$
NO. OCC: '/' indicates changes during the Demonstration. \#= Occupancy (overall, or daytime) changed; see Questionnaire data. -= No questionnaire data available for verification.

TABLE 2
ATLANTA KEY DATA
09/28/81
KEY (FIXED) DATA ON HOUSES PROPOSED FOR CSA DEMONSTRATION
(Houses for which at least 2 years of "prior" fuel data was received and run through 'BALPNT' analysis).

CTY HS HSE --TYPE--- FUEL
OLUMES----------- NO.
CDE NO * TYP C F R I SP W HT LVSP TOTAL FL 1 FL 2 FL 3 ATTC AG 0 OCC

ATL 01 S Dl FR C G l G E UV 86969486948
ATL 02 S Dl FR C H l G E UV 13921392813928
ATL 05C+ Dl \quad FR C G 3 G E U4 774 6191 6191
ATL 07 Dl
ATL 08 Dl FR C G 3 P \quad P \quad S (1292)
ATL 10 D1 FR C G 1 P \quad P \quad S (841)
ATL 11 C Dl FR C G 3 G G UV 194717823 ? ?
ATL 12C+ D1 FR 3 C G WG G UV 106385018501
ATL 13 D1
atL $16-\mathrm{X}$ D1
FR C G 3 BG E S (984)
ATL 17 S Dl MV C G l E E BB 101481108110
ATL 19 S Dl MV C G G G Af 13261060810608
ATL 20S* Dl MV C H 3 G G F 97578037803
ATL 21 C Dl FR C G G G F (720)
ATL 22 S D1 FR C G 3 G G F 117093639363
ATL 23 S Dl M C G 3 G G Af $835 \quad 6680 \quad 6680$
ATL 24 D2 FR B G G G S (768)
ATL 25CX D1 M B H 3 P P VU 12951036010360
ATL 27 Dl FR C G G G Af(1060)
ATL 28 Dl FR C G \quad P E S (936)
ATL 29-D1 M C G 5 G G Af 111088788878
ATL 30 S Dl FR C G 3 G G UF 13431074610746
ATL 31 S D1 M C H l P E U2 900 7200 7200
ATL 32SX Dl FRMV C G 5 E E BB 114791769176

65 N 1 -
99 E 2/1
35 S 1
35
27 2-
35 2-
40 W 1
32 8? 3/2
35 -
7 W 4 -
82 -
7 S 6/4
20 W 3
28 S 2 \#
27 W 2
16 E $2 / 6$
22
17
13
16
64 E 2 -
10 W 7/8
23 E 3
10 S 5
$T^{\Delta^{r}}$ LE 3

CHARLESTON KEY DATA

09/28/81
KEY (FIXED) DATA ON HOUSES PROPOSED FOR CSA DEMONSTRATION
(Houses for which at least 2 years of "prior" fuel data was received and run through 'BALPNT' analysis).

TABLE 3 (cont.)
CTY HS HSE --TYPE--- FUEL NO.
CDE NO * TYP C F R I SP W HT LVSP TOTAL FL 1 FL 2 FL 3 ATTC AG O OCC

CHA 39 S DI MV C G \quad P \quad N \quad U 109287368736

46	E?	$2 / 1$	
7		4	-
12	S	3	
6		2	-
12	N	2	
20		1	-
30		1	-
6	$8 ?$	5	
12		1	-
6		5	
7		10	-

TABLE 4
CHICAGO KEY DATA

09/28/81
KEY (FIXED) DATA ON HOUSES PROPOSED FOR CSA DEMONSTRATION
(Houses for which at least 2 years of "prior" fuel data was received and run through 'BALPNT' analysis).

CTY HS HSE --TYPE--- FUEL ---------VOLUMES------------ NO. CDE NO * TYP C F R I SP W HT LVSP TOTAL FL 1 FL 2 FL 3 ATTC AG O OCC

CHI 02 D1 MV B H 5 G G A (800)
CHI 03SX Dl+ FR B G 5 G G AF(1907)
CHI 04-X A MV B F 3 G G? WS?1980)
CHI 05 S Dl+ MV B G 5 G G AF (1714)
CHI 07CX Al+ M B H 5 G G AF (1848)
CHI 08SX Dl FR B H 5 G G WG(1188)
CHI 09 S D2 MV B 4 G G AF (1628)
CHI 10SX Dl+ FR B G 5 G G AF (1901)
CHI 11 S D2 MV B 3 G G WP 1800
CHI 12 S D1 FR B G 2 G G AG 1134
CHI 13-D1 MV B G 3 G G WG(960)
CHI 14 S D1 MV B G 5 G G WG 1984
CHI 15SX D1 FR B G 3 G G WG(1364)
CHI 16SX D1+ FR B H 5 G G AF (1546)
CHI 17CX Dl FR B H 3 G G AF (1383)
CHI 18SX Dl+ MV B G 4 G G WP(2877)
CHI 19 S D2 FR B H 3 G G WP 2488
CHI 20-X Dl+ MV
CHI 22-X D1 MV
CHI 23SX Dl+ FR
CHI 24CX Dl+ M
CHI 25 S D2 MV
CHI 26SX D1+ FR
CHI 28 D2 MV
CHI 29 S D2 FR
CHI 30-X D2 MV
CHI 31-X D2 FR
CHI 32 S D2 FR
CHI 33-X D2 FR
CHI 34-X D2 FR
CHI 35CX D1+2 MV
CHI 36 D1 FR
CHI 37SX D1 FR
CHI 38 S D1+ MV
CHI 39-X Dl+ MV CHI 40 D1+ FR

B G 5 G G? WS? 1683)
B H 3 G G AF (1113)
B G 3 G G WP(1134)
B H 3 G G WP(1344)
B F 3 G G AG 1120
B G 3 G G AF (1392)
B F $3 \quad 0 \quad 0 \quad$ A (1936)
B $\quad 5 \quad$ G G+F ST 1616
C F 1 G G V2(1760)
B G 3 G G AF (2240)
B H 3 G G AF 2580
B G 3 G G VU(816)
B G 3 G G? ST?2219)
B G 3 G G AF(1100)
B G 1 G G A (748)
BC G 5 G G AG(880)
B G 3 G G WP 2136
B H 5 G G? A? (1100)
B G 3 G G A (8400)

27	2	-
50	3	-
71	1	-
15	8	-
35	4	
50 E	4	
60 W	3	
80	2	-

50 S 6/4
99 N 4
85 -
60 W 2
99 W 4/3
65 E 11/9
7 E 7/6
47 S 14
65 W 1/4
85 -
17 -
64 2-
61 E 5 非
25 W 2
85 -
60 N 9 -
99 E 2/1
85 S 5 -
99 S $3-$
60 E 5/6
50 E 1 -
65 W 6 -
8 E 7 -
75 W 1 -
60 N 4
65 E 7
25 S 2 -
60 E 4 -

TABLE 5
COLORADO SPRINGS KEY DATA
09/28/81
KEY (FIXED) DATA ON HOUSES PROPOSED FOR CSA DEMONSTRATION
(Houses for which at least 2 years of "prior" fuel data was received and run through 'BALPNT' analysis).

TABLE 6
EASTON (ALLENTOWN, BETHLEHEM) KEY DATA

KEY (FIXED) DATA ON HOUSES PROPOSED FOR CSA DEMONSTRATION
(Houses for which at least 2 years of "prior" fuel data was received and run through 'BALPNT' analysis).

CTY HS HSE --TYPE--- FUEL ---------VOLUMES------------- NO. CDE NO * TYP C F R I SP W HT LVSP TOTAL FL 1 FL 2 FL 3 ATTC AG O OCC

ABE 01 D2+ FR B H 4 P E S (1190)
ABE 03S* D1 FR B H 3 0 P Af $890 \quad 75647564$
ABE 04 S A2E M B H $4 \quad 0 \quad$ G Af $960 \quad 7680$
ABE 05 A FR B G 4 G G A (696)
ABE 06 D2+ FR B H 4 O F WS (1584)
ABE 09 D2+ FR B G 4 G G A (1852)
ABE 11SX A2 M B M $4 \quad 0 \quad$ F \quad Wp 19511701085058505
ABE 12 S D2+ FR B G 2 G G Wp 155212416 ? ?
ABE 13 D1 FR B H 4 O F W (1102)
ABE $14 \quad \mathrm{~A} \quad \mathrm{M} \quad \mathrm{B} \quad \mathrm{H} 2 \quad 0 \quad \mathrm{~F} \quad \mathrm{~A}$ (2450)
ABE 15 A FR B G 3 G A (768)
ABE 16 D2 M \quad B \quad G 3 G \quad G \quad A (1144)
ABE 17 A FR B G 3 O G A (1296)
ABE 18 D2 FR \quad B G 3 0 \quad G $\quad W$ (1745)
ABE 20 S D2 FR B G 4 E ? A? 1144 9152 45764576
ABE 21 A FR B G 3 O A (1710)
ABE 22 S A2E M B G 5 O F \quad Wp 19931694084708470
ABE 23 S D2 FR B G 3 G G Af 1450 13050 $6525 \quad 6525$
ABE 25 S A2+E M B H 3 O G Ag 9607680 ?
ABE 26 A2 FR B G 3 G E W (1280)
ABE 27 S A2E FR B G 4 G G Af 129011610 5805 5805
ABE 28 S D2 FR B G 4 O G Af 172013760 ? ?
ABE 29 D2 M \quad B G $4 \quad 0 \quad \mathrm{~F} \quad \mathrm{Wp}(2112)$
ABE 30 A FR B H 4 O G A (1316)
ABE 31 S D1 FR B G $4 \quad 0 \quad$ F \quad Wp 121897509750
ABE 32 C Dl+ M \quad B G $4 \quad 0 \quad$ F \quad Wp 14921193674004536
ABE 33 S Dl FR S G 4 O F Wp lll 9216921
ABE 36 D2 M \quad B G 3 O \quad F \quad W (1107)
ABE 37 D2 M \quad B G 4 0 \quad W (1680)
ABE 38 C D2 M B H 5 G G $\operatorname{Wg}(1768$) (7955)(7955)
ABE 39 S A2 M B F $4 \quad 0 \quad$ F \quad Wp 18581647982408240
$\begin{array}{llllllll}\text { ABE } 40 & \text { D2 } & \text { M } & \text { B } & 4 & 0 & \text { E } & \text { A (1764) } \\ \text { ABE } & 41 & \text { A } & \text { M } & \text { B } & \text { F } 4 & 0 & \text { F } \\ \text { W (1380) }\end{array}$
ABE 42 S Dl FR B G 5 E ? A? 768 61446144
ABE 43 A M B F 4 G G W (1950)
ABE 44 S Dl FR B H $3 \quad$ G G Af 12741019510195
ABE 45 D1 FR B G 5 O E A (910)
ABE 46 C D2 M B H 3 O F $\operatorname{Wp}(1408$) (5632)(5632)

99 60		
65	N	4
59		
99		
32		
85	E	1/0
70	S	4
19		
60		
75		
99		
90		
30		
7	W	2
53		
60	S	1
75	2	2/1
99	E	5
70		
60	W	2
70		1
40		
60		
30	W	1/3/1
18	N	4 \#
21	4	1
99	E	
80	W	
50	W	3
99	S	3
80		
45	N	
8	W	1
65	W	-
65		2
25		
50		2/3

TABLE 7
FARGO KEY DATA
09/28/81
KEY (FIXED) DATA ON HOUSES PROPOSED FOR CSA DEMONSTRATION
(Houses for which at least 2 years of "prior" fuel data was received and run through 'BALPNT' analysis).

CTY HS HSE --TYPE--- FUEL ---------VOLUMES------------ NO.
CDE NO * TYP C F R I SP W HT LVSP TOTAL FL 1 FL 2 FL 3 ATTC AG O OCC

FAR 02 S D1 FR B G 4 G G Af 614 4546 4546
50 S 1
FAR 03 D1 FR B H 4 G E A (864)
FAR 04 D2 FR B G 4 0 0 WS (1768)
FAR 05S* D1 FR C G 3 G G Af $654 \quad 52285228$
FAR 06 S D1 FR B G $4 \quad 0 \quad$ E Ag $634 \quad 57095709$
FAR 09 D1 FR B G 3 O E A (840)
FAR 10 S D1 FR B H 4 O E Ag $650 \quad 52025202$
FAR 11 S D1 FR B G $3 \quad 0 \quad$ G Af $1225 \quad 98009800$
FAR 12 D2 FR B G 2 O G A (1440)
FAR 13 C D1 FR B G 3 G G Af $893 \quad 80378037$
FAR 15 S Dl FR B G $4 \quad 0 \quad$ G Af 96977537753
FAR 17 S Dl FR C G 3 G E Af 763 6108 6108
FAR 18 Dl FR B G 4 O E A (785)
FAR 19 D1 FR B G 2 G E A (432)
FAR 20 D1.5 FR C G 1 O E A (1296)
FAR 21 Dl FR B H 3 P P A (720)
FAR 22 C D1 FR C G 2 G G V 49239363936
FAR 23 C D1 FR B N 3 O - Af 1575 11663 11663
FAR 24 D1.5 FR B G 4 G A (1224)
FAR 25 S Dl FR B G 3 O G Af $684 \quad 54725472$
FAR 26 C Dl FR B G 3 G E Af 88470727072
FAR 27 S Dl FR B G 3 O E Af $581 \quad 3698 \quad 3698$
FAR 29 Dl FR B G 3 O G A (800)
FAR 30 S D1 FR B G $4 \quad$ G G Af 747 5979 5979
FAR 32 S D1 FR B G 4 G G Af 94587398739
FAR 33 D1 FR B G 2 O G A (672)
FAR 34 C Dl FR C G O E Af 805 5877 5877
FAR 35 S Di FR C H 5 G G Wp 1225 9798 9798
FAR 36 S D1 FR C G 3 G G Af $517 \quad 4136$
50 S 5
65 S 8
35 E 2
50 E 2
40 E
50 W
40 N
75 S
75 S 1
40 E 1
25 S 1/3
24 N 1
49 W
60 S 8
50 W 1
50 W 1
50 E 2/l
70 E 5
50 S $2 / 1 / 2$
17 E $3 / 2$
50 W 3 非
60 E 3
60 N 1
50 S 1
50 E 5
15 E 1
20 S 3
FAR 37 D2 FR B G G

TABLE 8
MINNEAPOLIS/ST. PAUL KEY DATA

KEY (FIXED) DATA ON HOUSES PROPOSED FOR CSA DEMONSTRATION
(Houses for which at least 2 years of "prior" fuel data was received and run through 'BALPNT' analysis).

TABLE 8 (cont.)

```
CTY HS HSE --TYPE--- FUEL ---------VOLUMES------------- NO.
CDE NO * TYP C F R I SP W HT LVSP TOTAL FL 1 FL 2 FL 3 ATTC AG O OCC
MSP 43 D1+ FR B G 3 0 W (2916)
MSP 44 S D1 FR B H 5 G G AF 1314 10512 10512
MSP 45 S D2 FR B H 3 G G AG 1257 10061 5031 5031
MSP 46 S Dl FR B G 3 G G AG 1004 8032 8032 65 E 4
MSP 47 DI+ FR B G 3 0 AF(2598)
MSP49 D1+ FR B G 3 G G W (1890)
```

30 W 6 -
MSP 44 S D1 FR B H 5 G G AF $13141051210512 \quad 18$ S 6
MSP 45 S D2 FR B H $3 \quad$ G G AG $125710061 \quad 50315031$
MSP 46 S D1 FR B G 3 G G AG 100480328032
MSP 47 DI+ FR B G 3 O AF (2598)
MSP 49 D1+ FR B G 3 G G W (1890)

50 S 4
65 E 4
87 W 1 -
22 E 6 -

TABLE 9
OAKLAND KEY DATA

KEY (FIXED) DATA ON HOUSES PROPOSED FOR CSA DEMONSTRATION
(Houses for which at least 2 years of "prior" fuel data was received and run through 'BALPNT' analysis).

CTY	HS	HSE	--TYPE---				FUEL			---------VOLUMES------------1					AG	$\begin{aligned} & \text { NO. } \\ & \text { OCC } \end{aligned}$		
CDE	NO	* TYP	C	F	R	I	SP	W	HT LVSP	TOTAL	FL 1	FL 2	FL 3	ATTC				
OAK	05	C D2	FR	C	H	3	G	G?	S? (1482)						50		6/7	\#
OAK	06	C Dl-	FR	B	G	3	G	G?	Ag ?1104)						80		5	
OAK	07	D1	M	C	H	5	G	G?	? (1300)						65		1	-
OAK	09	C D1+	FR	B	G	3	G	G?	S? (875)						65		7	\#
OAK	12	D1+	FR	B	G	3	G	G?	S? (1008)						80		1	-
OAK	15	D1	FR			5	G	G?	S? (840)						50			-
OAK	17 S	S D1	FR	C	H	5	G	G?	S? 660						45		3	
OAK	19 S	S Dl	FR		G		G	G?	S? 3300						70		6	-
OAK	20	D2	FR	B	H	3	G	E?	? (705)						78		3	-
OAK	24	D1	FR	B	G	5	G	G?	A? (1248)						62		1	-
OAK	25	D1+	FR		G	5	G	G?	S? (494)						50		3	-
OAK	26 S	S D1	FR	B	H	5	G	G?	S? 1056						50		9	
OAK	28SX	X D1	FR	C	G	3	G	G?	S? (962)						50		5	-
OAK	29	D1	FR	B	H	3	G	G?	A? (1225)						50		5	-
OAK	31 S	S D1	M	C	G	4	G	G?	S? 790						60		2	-
OAK	32	D1+	FR	B	G	3	G	G?	S? (1050)						60		5	-
OAK	33 S	S D1	M	C	G	5	G	G?	S? 1318						60		2/3	
OAK	34 S	S Dl	M	S	G	5	G	G?	A? 1056						40		4	
OAK	35 S	S D1	FR	C	G	4	G	G?	A? 805						40		2/1	
OAK	36S*	* D1+	M	B	G	5	G	G?	S? 1706						80		3	\#
OAK	37 C	C D1	FR	BC	G	5	G	G?	S? (1050)						40		3	-
OAK	38 S	S Dl	FR	B	G	4	G	G?	S? 1512						60		3/2/	
OAK	39	D1	FR	B	G	4	G	G?	S? (999)								5	-
OAK	40	D1	FR	B	H	3	G	G?	S? (1066)						60		2	-
OAK	42	D1	FR	C	G	3	G	G?	A? (985)						70		1	-

TABLE 10
PORTLAND KEY DATA
09/28/81
KEY (FIXED) DATA ON HOUSES PROPOSED FOR CSA DEMONSTRATION

(Houses for which at least 2 years of "prior" fuel data was received and run through 'BALPNT' analysis).

CTY	HS	HSE					FU					-VOL	LUMES					NO.	
CDE	NO *	TYP	C	F	R	I	SP	W		LVSP	TOTAL	FL 1	FL 2	FL 3	ATTC	AG	0	OCC	
POR	02SX	D2	FR	B	G	5	0	F?		1440)						55	W	2	
POR	03 -	D2	FR	B	G	4	OW	F ?		2000)						20	W	2	-
POR	04SX	D1+	FR	B	G	5	0	F?	WP	1620)						99	8	3	-
POR	07 S	D2	FR	B	M	3	0	E?		1380)						75	8	6	-
POR	09 S	D2	FR	B	G	3	0	E?	WG	1716)						99	S	2	-
POR	10 S	D1	FR	C	H	3	G	G?		743	5944?	5944?				75	W	1	-
POR	11 S	D1+	FR	B	G	5	OW	E?		1130	8682?	5248?	3434?			50	8	3	-
POR	12 S	D2	FR	B	H	5	0	F ?		864	7343?	2448?	4895?			70	2	5	-
POR	15 S	D2	FR	B	G	5	0	E?	AF	3256)						75	N	5	-
POR	16 S	D2	FR	B	G	5	0	E?		1774	15372?	9134?	6238?			23	8	2	-
POR	17 S	D1	FR	B	G	1	0	?	AG?	1060)	?	?				55	6	1	-
POR	17 S	D1	FR				0	?	AF?										
POR	18SX	D2	FR	B	G	1	OW	E ?	AG	2160)						80	4	4	-
POR	19SX	D3	FR	B	G	3	OW	F ?	WH?	2178)						55	W	4Y	-
POR	20 S	D1	FR	B	G	5	0	F ?	WP	990	7920?	7920?				40	S	2	-
POR	21 S	D1	FR	B	G	5	OW	E?	AF	468	3276?	3276?				30	S	4	-
POR	23 S	D1+	FR	B	G	5	0	E?		1848	15708?	7854?	7854?			80	W	6	-
POR	25 S	D2	FR		G	5	0	F ?	WP	1738	13468?	6906?	6562?			99	N	3	-
POR	26 S	D1+	FR	B	G	5	0	F ?		1697	12727?	6788?	5939?			99	N	2	-
POR	28 S	D3+1	FR	B	G	4	0	E?		3640)						75	N	5	-
POR	29 C	D2	FR	B	H	3	0	E?	WG	?	?	?	?			60	W	6	-
POR	30 C	D2+1	FR	B	G	4	0	F ?		1948(1	15380)	(8084)	(7300)			50	E	4	-
POR	31 C	D2	FR	C	G	3	0	F?		2540(21	21420(107	10710(107	10710)			99	2	4	-
POR	32CX	D2	FR		G	3	0	F ?		2200(1	18637)					75		3	-
POR	33 C	D2	FR	B	G	5	0	E?		2204(1	18062)	(9031)	(9031)			75		7	-
POR	34	D1	FR	B	G	3	0	?	A?	594)						60		7	-

TABLE 11
ST. LOUIS KEY DATA

KEY (FIXED) DATA ON HOUSES PROPOSED FOR CSA DEMONSTRATION
(Houses for which at least 2 years of "prior" fuel data was received and run through 'BALPNT' analysis).

CTY	HS	HSE	--TYPE---				FUEL			-VOLJMES					NO.			
CDE	NO *	* TYP	C	F	R I	I	SP	W	HT LVSP T	TOTAL	FL 1	FL 2	FL 3	ATTC	AG	0	OCC	
STL	02	D2	FR	B	G 1	1	G	G	S (1122)						80	N	3	-
STL	04C+	+ D3	M	B		2	G	G	AG(3500)	?	?	?	?		80	S	3	
STL	04C+	+ D3					G	G	AF									
STL	05 S	S ${ }^{\text {d }}$	FR	S	G	3	G	G	AF 1039	8104	?	?			7	S	5	
STL	06 S	D2	M	B	F	3	G	G	AF 1477	14922	?	?			55	S	7/6	
STL	07 S	S D1	FR	B	G	1	G	G	AF 689	6690	6690				50		2/3	非
STL	08	D1	FR		G	3	G	G	A (1152)						30	E	5	
STL	09	D2	M	B	H	3	G	G	WS (2430)						70	S	8	
STL	10 C	C D2+	M	B	G 3	3	G	G	AF (1440)	?	?	?	?		55	W	5	
STL	11SX	X D2+	M	B	H	1	G	G	ST(2964)	?	?	?	?		55	S	1	
STL	13	D1	FR		G	3	G	G	S (750)						25	S	1	-
STL	14S*	* D2+	M	B	H	2	G	G	AF (3402)	?	?	?	?		80	S	4	
STL	15SX	X D1	M	B	F	2	G	G	V (1080)	?	?				55	N	4	
STL	17 S	S D1	M	C	F	2	G	G	AF 1938	19347	19347				60	E	4	
STL	18SX	X D1	M	B	F	3	G	G	AF (884)	?	?				50	W	2	
STL	23 C	C 1FL	M	B	F	3	G	G	AF (2117)						90	S	3/2	
STL	28 S	S 2FL	M	B	F	1	G	G	AF 1841	16319		16319			80	E	3	
STL	29 S	S D2+	M	B	H	3	G	G	WP 230020	20935	?	?	?		80	S	2	
STL	34 S	S D1+	FR	B	F	2	G	G	AG 11891	13260	?	?			40	E	7	
STL	34 S	S Dl+	FR				G	G	AF									
STL	37	D2	M	B	G	3	G	G	A (2880)						40	E	6	-
STL	38 S	S D1+	FR	B	H	4	G	G	AF 15681	11961	?	?			99	W	8/7	
STL	39	D2	M	B	F	2	G		A (2280)						40	N	2	-
STL	40 S	S 1FL	M	B	F	1	G	G	AF 1929	18620	18620				57	N	1	
STL	41 S	S Dl	M	B	F	2	G	G	WG 1028	9256	9256				40	W	4/3	
STL	42 S	S D2	FR	B	G	3	G	G	AF 1271	10695	?	?			60	E	1	
STL	43	D2	M	B	F	1	G	G	WS (1840)						60	W	1	-
STL	44-X	X D2	M	B	F	3	G	G	AF (3400)	$?$?	?			50	N	4	
STL	46 S	S D2	M	B	F	4	G	G	AG 2138	20256	?	?			90	W	1	
STL	49 S	S D1+	FR	B		3	G	G	AF 1328	13282	8151	5133			71	N	2	
STL	50	D2	FR	B	G	2	G		S (1968)						50	E	6	-
STL	52	D1	M	B	F	4	G	G	S (816)						55		4	
STL	55 S	S D1	FR	B	G	1	G	G	AG 784	6436	6436				25	N	3	
STL	56 S	S Dl	M	B	M	2	G	G	AF 885	7085	7085				50	E	5/6	非
STL	62	D3	FR	B	H	3	G	G	A (5850)						70	S	5	
STL	69	D1	FR	B	G	1	G	F	A (900)							W	1	
STL	70SX	X D2	M	B	H	3	G	G?	WG(1440)	?	?	?			70	N	5/3	

TABLE 11 (cont.)

```
CTY HS HSE --TYPE--- FUEL ---------VOLUMES------------- NO.
CDE NO * TYP C F R I SP W HT LVSP TOTAL FL 1 FL 2 FL 3 ATTC AG O OCC
STL 71 D3 M B H 3 G G A (3654)
STL 77 S D2 M B G 3 G G AF 1356 11633 ? ?
STL 78 D1 FR B G 3 G G A ( 850)
STL 92 S D1 M B F F 3 G G AF 946 8514 8514
STL 93 S D1 FR B G 2 G G AF 676 5412 5412
STL 94 D1+ FR B H 3 G G A
STL 95 D1 FR B G 2 G G AF(1575)
STL 97 D1 FR B G 1 G S

\section*{ABLE 12}

TACOMA KEY DATA

KEY (FIXED) DATA ON HOUSES PROPOSED FOR CSA DEMONSTRATION

(Houses for which at least 2 years of "prior" fuel data was received and run through 'BALPNT' analysis).


TABLE 13
WASHINGTON (HUGHESVILLE, MD) KEY DATA

KEY (FIXED) DATA ON HOUSES PROPOSED FOR CSA DEMONSTRATION

(Houses for which at least 2 years of "prior" fuel data was received and run through 'BALPNT' analysis).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline CTY & HS & HSE & --TY & PE- & & FUE & & & & --vol & UMES- & -------- & & No. & \\
\hline CDE & NO * & TYP & C & F & R I & SP & & hT LVSP & total & FL 1 & FL 2 & FL 3 ATTC & AG & OCC & \\
\hline WAS & 02 s & D1 & FR & B & G 2 & P & E & V 681 & 5448 & 5448 & & & 29 & 1 & \\
\hline WAS & 03 & & FR & C & 3 & 0 & E & A ( 912) & & & & & 80 & & - \\
\hline WAS & 05SX & D2 & FR & C & G 2 & K & E & V 1176 & 8938 & 4469 & 4469 & & 55 & 2 & \\
\hline WAS & 06 C & D1 & M & C & G 5 & 0 & F & WP(1040) & (8320) & (8320) & & & 12 & 6 & \\
\hline WAS & 07 S & D1 & FR & C & H 3 & 0 & E & AF 1056 & 8448 & 8448 & & & 45 & 1 & \\
\hline WAS & 08SX & D1 & FR & B & G 3 & K & E & V 869 & 6949 & 6949 & & & 45 & 1 & \\
\hline WAS & 09 & D2 & FR & C & 3 & K & & S (2618) & & & & & 99 & & \\
\hline WAS & 11 & & FR & C & 1 & K & & ST(5280) & & & & & 90 & & \\
\hline WAS & 14 & & FR & B & 1 & 0 & E & & & & & & 10 & 9 & - \\
\hline WAS & 19 & & MV & C & & 0 & E & ST & & & & & 17 & & \\
\hline WAS & 21 & & FR & C & 3 & 0 & E & A ( 672) & & & & & 10 & & - \\
\hline WAS & 24SX & D1 & FR & B & G,3 & 0 & F & WP 1320 & 10560 & 10560 & & & 18 & 12/8 & \\
\hline WAS & 27SX & D1 & FR & c & G 2 & K & P & V 680 & 4760 & 4760 & & & 10 & 2/6 & \\
\hline WAS & 30 & & MV & C & 5 & 0 & & WS(1577) & & & & & 19 & 2 & - \\
\hline WAS & 31 & & FR & C & & K & E & & & & & & & & \\
\hline WAS & 40CX & D1 & MV & C & G & P & P? & S? 1000) & (7059) & & & & 24 & 1 & \\
\hline WAS & 41 S & D1 & FR & C & G & K/P & P & V 1152 & 10242 & 10242 & & & 40 & 1 & \\
\hline WAS & 44SX & D2 & FR & B & G 4 & 0 & E & af 1456 & 11648 & 5824 & 5824 & & 60 & 1 & \\
\hline WAS & 47SX & D2- & FR & B & G 3 & K & P & V 1264 & 10118 & ? & ? & & 60 & & \\
\hline WAS & 53 S & D1+ & FR & B & G 2 & 0 & F & WP 772 & 6176 & ? & ? & & 70 & 1 & \\
\hline WAS & 54 & D1 & FR & B & G 3 & 0 & E & A ( 998) & & & & & 5 & & - \\
\hline WAS & 55 & & FR & C & 3 & K & E & ( 868) & & & & & 26 & 1 & - \\
\hline WAS & 56 & & FR & C & 2 & P & P & ( 960) & & & & & 40 & & - \\
\hline WAS & 57 C & D1 & FR & C & G 3 & K & E & V ( 912) & (7296) & & & & 3 & 2 & \# \\
\hline WAS & 58 CX & D1 & FR & B & G 4 & 0 & F & WP(1104) & (8832) & & & & 36 & 6 & 非 \\
\hline WAS & 60 & D1+ & FR & c & G 2 & OW & E & (1262) & & & & & 90 & & - \\
\hline WAS & 62 & D2 & MFR & C & G 3 & 0 & F & WS(1800) & & & & & 32 & 2 & - \\
\hline WAS & 63CX & D1 & FR & C & G 5 & 0 & E & AF (1564) & ? & ? & & & 40 & 1 & \\
\hline WAS & 64 & & MV & B & 3 & 0 & E & A (1247) & & & & & 13 & 3 & - \\
\hline WAS & 65 & & FR & B & 4 & 0 & E & WS(1000) & & & & & 13 & & \\
\hline WAS & 67 & & M & B & 4 & 0 & E & A (2240) & & & & & 7 & 6 & - \\
\hline WAS & 68 & & FR & C & 3 & K & E & S ( 616) & & & & & 25 & 3 & \\
\hline
\end{tabular}

\section*{EXHIBIT 1}
```

* CSS file "PR2KYD"
* To print HSKEYDTA files (with heading) on PR2:
* Use first parameter (@1) to specify site/city.
* Use nonnull second parameter (@2) to evoke Versatec output, also.
*

XDELETE CSAl:TABLEDTE.
AL CSAl:TABLEDTE.,IN,20
D T ,CSAl:TABLEDTE.
XDELETE CSAl:PRNTKYDT
AL CSAl:PRNTKYDT,IN,80
CSAl:COPYA/P CSAl:TABLEDTE,CSAl:PRNTKYDT,,10
CSAl:APPEND/P CSAl:HSKEYDTA.HDG,CSA1:PRNTKYDT
CSAl:APPEND/P CSAl:HSKEYDTA.@1,CSAl:PRNTKYDT
CSAl:APPEND/P CSAl:HSKEYDTA.FNT,CSAl:PRNTKYDT
CSAl:COPYA/S CSAl:PRNTKYDT,PR2:
\$IFNNULL @2
CSA1:UPPR
CSAl:COPYA/P CSA1:PRNTKYDT,PR:
CSAl:UPPR
\$ENDC
DE CSA1:TABLEDTE;DE CSA1:PRNTKYDT
\$EXIT

```

NOTES: "UPPR" is a utility routine that "page-ejects" the Versatec printer (PR:). It is used after a COPYA to that printer to avoid "washout" of final print lines.
"PR:" is a Versatec electrostatic printer in the Center for Building Technology (CBT) computer system. (It will print both upper and lower case letters, while the high-speed printer can print only upper case.)

\subsection*{5.2 UTILITY DATA}

Clearly, the data needs of this demonstration started with a requirement for measurements of the space heating energy consumption of the houses. Specifically, we required 2 years of pre-demonstration space heating consumption readings (July 1975-July 1977, to cover two complete heating seasons) as part of the information to be submitted by local site agencies for proposed demonstration houses. These data came, variously, from utility company records (computer printouts, or hand copies), fuel company delivery and billing records (or delivery invoices), or homeowner-retained records.

Although the regular utility meter was read and reported as part of the weekly readings (see following section), the project staff requested site agencies to provide complete utility or fuel company records through the period of the demonstration--from July 1975 through June 1980, as backup data to the weekly readings. As indicated in the inventory (table 15, beginning page 30), some of the later data were entered into the computer files and some are available only in hard copies. The coding scheme used to identify fuel types, and the utility data computer files, is shown in table 14.

TABLE 14
CODES FOR FUEL/UTILITY AND ASSOCIATED FILE TYPES
\begin{tabular}{ll} 
G & natural gas in therms \\
M & natural gas in \(100 \mathrm{ft}^{3}\) (i.e., "meter" readings) \\
O & oil in gallons \\
E & electricity in kWh \\
B & propane or LPG in gallons \\
P & propane or LPG in \(\mathrm{ft}^{3}\) (from line meters) \\
K & kerosene in gallons \\
D & (see discussion below)
\end{tabular}

All computer disk-based utility data files are located on disk CSA1, and are named as follows:
[CTC].[F][NM]
where:
CTC is the site/city code (discussed above);
F is the one-1etter code for fuel/file type; and
\(N M\) is the two-digit house number.
When we originally began writing space heating consumption data files, a convention was adopted to identify the file containing the measurements of the principal space heating energy source by a ".D" ("dwelling"), regardless of the fuel type. Thus, for a house that originally used two fuel types, such as Charleston no. 33, there is a CHA.D33 file containing the bottled gas consumption data and a CHA.K33 file with the kerosene data.

To most efficiently serve the needs of the "balance point" analysis program, each record in a utility data file contained, in addition to the city code, house number, and fuel type, a beginning date (i.e., last previous reading or delivery date) the current reading or delivery date, and the fuel amount. (Obviously, delivery data were used on the assumption that the tank was filled, thus accurately reflecting consumption since the last "filling" of the tank. Analysis by the "balance point" program showed that, in many cases, this assumption was valid, but for some it was not--at least, in some cases the delivery records vs. degree days displayed a very poor fit to a straight line.)

Thus, the standard record in a utility data file has the following format (dates being printed: month, day, year):

CTC MN F 070175080375001.0 [E] ([ ] = optional)
The optional "E" at the end identifies the record to the Balance Point analysis program as an estimated reading, not to be used as a measurement by itself, but to be cumulated with subsequent reading(s) until no E occurs. Such E's were also sometimes inserted in the files as an editing procedure: if the initial analysis run resulted in an unsatisfactorily low \(\mathrm{R}^{2}\) and examination of the tabular printout (see section 6.0 ) showed one or more pairs of successive data points with high followed by low or low/high residuals, it was assumed that in the first record of the pair, either l) the meter was misread (or misrecorded) or 2) the date was misreported. In such cases, the first record was combined with the one following by inserting "E" in the proper column, and the analysis rerun. The rationale for this procedure is that meters accumulate consumption--thus, an erroneously reported meter reading is corrected by the next (correct) reading. This resulted in one (or more) fewer data points, but often a much improved \(\mathrm{R}^{2}\).

A CSS file on disk CSAl uses the COPY32 utility (loaded from an appropriate source) to print any utility data file (any file, for that matter) with the file name shown as a heading. This CSS \(\overline{\mathrm{fil}} \mathrm{e}\) is invoked by "RPPRPRNT.[CSS] [FILENAME.EXT]" (see exhibit 2).

Having in mind that the operation of electrical or gas devices or appliances contributes to the internal heat gains of a building, we requested that sites provide 1975-1980 records for consumption for all energy sources. As shown by the inventories, these supplementary utility data were received from some, but not all, sites.

Also, since we were measuring 1) hot water consumption and 2) water heating fuel consumption, we requested records of total water consumption as a background. Again, these were received from some, but not all, of these sites.

One note concerning natural gas consumption records: Originally we tended to assume gas consumption records from utilities were in therms, unless clearly stated otherwise, so the "G" fuel code was used. Closer examination of the original submissions in the inventorying process has revealed this assumption to be incorrect in some cases. For example, the data from Colorado Springs is in the form of "meter readings" and "differences"--thus, the consumption is, by
implication, in \(100 \mathrm{ft}^{3}\), not therms. The implications of incorrect use of "G" or "M" are 1) the labels on the "balance point" analysis printout will be incorrect and 2) all Btu conversions of the data will be in error by roughly 3 percent. Every effort was made to check and correct the utility and the summary data files (see section 6.0), but all utility files incorporating the "G" code should be cross checked against the original data before future use.

\section*{EXHIBIT 2}
* CSS file "RPRPRNT"
* To print (on PR:--Versatec printer) any file,
* with file name listed at top, and number of records shown at bottom. *
\$BUILD CSA1:RCOPY.CMD
COPY CSAl:@1,PR:
END
\$ENDB
LO CSA1: COPY32
ST, COMMAND=CSA1:RCOPY.CMD,LIST=C:
CSAl:UPPR
\$EXIT
Water
---------------------
From To No.Medium
TABLE 15 (cont.)

\(\Sigma \quad 0 \quad \Sigma \quad 0\)
00
\(\Sigma\)
ABE 38
ABE 39
ABE 40
ABE 41
ABE 42

\section*{(・ヌuov) ¢T GTGVI}

TABLE 15 (cont.)


B-See Space Heating-n-
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{ATL 20} & \multirow[t]{3}{*}{M} & 03/75-11/77 & 32 & ATL.D20 & 12/74-04/75 & & HC \\
\hline & & 11/77-09/78 & 10 & HC & 04/75-11/77 & 31 & ATL.E20 \\
\hline & & 09/78-06/80 & 21 & ATL.D20 & 11/77-06/80 & & HC \\
\hline \multirow[t]{4}{*}{ATL 21} & \multirow[t]{4}{*}{M} & 03/75-11/77 & 31 & ATL.D21 & 01/75-04/75 & 3 & HC \\
\hline & & 12/77-06/79 & 18 & HC & 04/75-10/77 & 30 & ATL.E2I \\
\hline & & 06/79-12/79 & NO & SVC. & 11/77-07/79 & 20 & HC \\
\hline & & 12/79-06/80 & 6 & HC & 07/79-12/79 & 0 & VACANT \\
\hline \multirow[t]{3}{*}{ATL 22} & \multirow[t]{3}{*}{M} & 05/75-10/77 & 29 & ATL.D22 & 04/75-11/75 & 7 & HC \\
\hline & & 10/77-08/78 & 10 & HC\$ & 11/75-10/77 & 30 & ATL.E22 \\
\hline & & 09/78-06/80 & 20 & HC & 10/77-06/80 & & HC \\
\hline \multirow[t]{3}{*}{ATL 23} & \multirow[t]{3}{*}{M} & 03/75-11/77 & 32 & ATL.D23 & 12/74-04/75 & 4 & HC \\
\hline & & 11/77-06/80 & 31 & HC & 04/75-10/77 & 30 & ATL.E23 \\
\hline & & & & & 10/77-10/79 & & HC \\
\hline \multirow[t]{3}{*}{ATL 25} & \multirow[t]{3}{*}{B} & 04/75-05/80 & 29 & ATL.D25 & 01/75-04/75 & 3 & HC \\
\hline & & & & & 04/75-10/77 & 31 & ATL. E25 \\
\hline & & & & & 10/77-05/80 & 30 & HC \\
\hline \multirow[t]{5}{*}{ATL 29} & \multirow[t]{5}{*}{G} & 12/75-10/77 & 22 & ATL.D29 & 01/75-01/76 & 12 & HC \\
\hline & & 10/77-08/78 & 10 & HC\$ & 01/76-10/77 & 21 & ATL.E29 \\
\hline & & 09/78-09/79 & 11 & ATL.D29 & 10/77-10/79 & 23 & HC \\
\hline & & 09/79-11/79 & 2 & HC & & & \\
\hline & & 11/79- & & NO SVC. & 10/79- & & No SVC. \\
\hline \multirow[t]{3}{*}{ATL 30} & \multirow[t]{3}{*}{M} & 03/75-10/77 & 31 & ATL.D30 & 12/74-03/75 & 3 & HC \\
\hline & & 11/77-08/78 & 10 & HC\$ & 03/75-10/77 & 31 & ATL.E30 \\
\hline & & 09/78-06/80 & 22 & HC & 11/77-06/80 & 32 & HC \\
\hline \multirow[t]{3}{*}{ATL 31} & \multirow[t]{3}{*}{B} & 04/75-10/80 & 23 & ATL.D31 & 01/75-04/75 & 3 & HC \\
\hline & & & & & 04/75-10/77 & 30 & ATL. E31 \\
\hline & & & & & 11/77-03/80 & 29 & HC \\
\hline \multirow[t]{3}{*}{ATL 32} & \multirow[t]{3}{*}{E} & 01/75-04/75 & 3 & HC & --See Space & He & ating---- \\
\hline & & 04/75-10/77 & 30 & ATL.D32 & & & \\
\hline & & 11/77-05/80 & 30 & HC & & & \\
\hline
\end{tabular}
TABLE 15 (cont.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CHA 01 & 0 & \[
\begin{aligned}
& 02 / 74-01 / 75 \\
& 01 / 75-01 / 80
\end{aligned}
\] & \[
\begin{array}{r}
3 \\
22
\end{array}
\] & \[
\begin{aligned}
& \text { HC } \\
& \text { CHA.D01 }
\end{aligned}
\] & 05/75-04/80 & 59 HC \\
\hline CHA 02 & B & \[
\begin{aligned}
& 12 / 74-04 / 75 \\
& 04 / 75-05 / 80
\end{aligned}
\] & 36 & \[
\begin{aligned}
& \mathrm{HC} \\
& \text { CHA.D02 }
\end{aligned}
\] & 04/75-04/80 & 60 HC \\
\hline CHA 03 & B & \[
\begin{aligned}
& 07 / 74-03 / 75 \\
& 03 / 75-04 / 80
\end{aligned}
\] & 36 & HC
CHA.D03 & 04/75-04/80 & 60 HC \\
\hline CHA 05 & B & \[
\begin{aligned}
& 02 / 73-04 / 75 \\
& 04 / 75-03 / 80
\end{aligned}
\] & \[
\begin{aligned}
& 13 \\
& 28
\end{aligned}
\] & \[
\begin{aligned}
& \text { HC } \\
& \text { CHA.D05 }
\end{aligned}
\] & 05/75-04/80 & 59 HC \\
\hline CHA 08 & B & \[
\begin{aligned}
& 10 / 74-04 / 75 \\
& 04 / 75-03 / 80 \\
& 03 / 80-04 / 80
\end{aligned}
\] & 36 & \[
\begin{aligned}
& \text { HC } \\
& \text { CHA.D08 } \\
& \text { HC }
\end{aligned}
\] & 04/75-04/80 & 60 HC \\
\hline CHA 09 & B & \[
\begin{aligned}
& 12 / 74-02 / 75 \\
& 02 / 75-04 / 77 \\
& 01 / 79-03 / 80
\end{aligned}
\] & \[
\begin{array}{r}
1 \\
10
\end{array}
\] & \[
\begin{aligned}
& \text { HC } \\
& \text { CHA.D09 } \\
& \text { HC }
\end{aligned}
\] & 04/75-04/80 & 60 HC \\
\hline CHA 16 & B & 03/75-04/80 & 33 & CHA.D16 & 04/75-04/80 & 60 HC \\
\hline CHA 18 & B & \[
\begin{aligned}
& 04 / 75-03 / 80 \\
& 03 / 80-04 / 80
\end{aligned}
\] & \[
\begin{array}{r}
40 \\
1
\end{array}
\] & \[
\begin{aligned}
& \text { CHA.D18 } \\
& \text { HC }
\end{aligned}
\] & 04/75-04/80 & 60 HC \\
\hline CHA 19 & B & \[
\begin{aligned}
& 10 / 74-03 / 75 \\
& 03 / 75-03 / 80 \\
& 03 / 80-04 / 80
\end{aligned}
\] & 5
31
1 & \[
\begin{aligned}
& \text { HC } \\
& \text { CHA.D19 } \\
& \text { HC }
\end{aligned}
\] & 04/75-04/80 & 60 HC \\
\hline CHA 20 & B & 03/75-02/80 & 30 & CHA.D20 & 01/75-04/80 & 63 HC \\
\hline CHA 21 & B & \[
\begin{aligned}
& 12 / 74-03 / 75 \\
& 03 / 75-02 / 80
\end{aligned}
\] & 4
47 & \[
\begin{aligned}
& \text { HC } \\
& \text { CHA.D21 }
\end{aligned}
\] & 01/75-04/80 & 62 HC \\
\hline CHA 22 & B & \[
\begin{aligned}
& 09 / 74-02 / 75 \\
& 02 / 75-03 / 80
\end{aligned}
\] & \[
\begin{array}{r}
5 \\
35
\end{array}
\] & \[
\begin{aligned}
& \text { HC } \\
& \text { CHA.D22 }
\end{aligned}
\] & 04/75-04/80 & 60 HC \\
\hline
\end{tabular}
TABLE 15 （cont．）



B－See Space Heating－ー－
－See Space Heating－－ －－See Space Heating－－

02／75－03／80 49 CHA．D23 01／75－04／80 62 HC
\(04 / 75-04 / 8060\) нС
\(04 / 75-04 / 80 \quad 60\) нС
04／75－04／80 60
07／77－01／80 30 нС
\＄つН 9 LL／90－SL／ヶ0 07／77－01／80 30 HC
04／75－04／80 60 нС
N
へ。

04／75－03／80
11／74－02／75

03／80－05／80
10／73－03／75
03／75－03／80
\(09 / 73-02 / 7510\) HC
\(02 / 75-03 / 80 \quad 35\) CHA．D28


02／75－11／78 14 CHA．K33 01／75－03／75 3 HC 03／75－02／80 44 CHA．D39 01／75－02／75 1 нC 02／75－03／80 30 CHA．D42 \(\begin{array}{ll}10 / 74-02 / 75 & 3 \\ \text { HC } \\ 02 / 75-02 / 80 & 34\end{array}\) 02／75－02／80 34 CHA．D44 04／75－04／80 60 CHA．D47
 09／75－09／77 24 CHI．D04
\begin{tabular}{lll} 
CHA 23 & B \\
CHA 24 & B \\
CHA 25 & B \\
CHA & 27 & B \\
CHA 28 & B \\
CHA & 33 & B \\
& & K \\
CHA & 39 & B \\
CHA & 42 & B \\
CHA & 44 & B \\
\hline CHA & 47 & E \\
CHA & 49 & B \\
CHI & 03 & M \\
CHI & 04 & M
\end{tabular}
TABLE 15 (cont.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline CHI 05 & M & 09/75-04/80 & 55 & CHI. D05 & \[
\begin{aligned}
& 07 / 76-12 / 77 \\
& 08 / 78-06 / 80
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 17
\end{aligned}
\] & & --See & Space & Heating--- & \\
\hline CHI 07 & M & 09/75-08/77 & 22 & CHI. D07 & 07/75-11/76 & & & --See & Space & Heating- & \\
\hline & & 10/77-05/80 & 31 & CHI. \({ }^{\text {D07 }}\) & 11/78-06/80 & & HC & & & & \\
\hline CHI 08 & M & 10/75-05/80 & 52 & CHI. D08 & 07/75-06/80 & & HC & --See & Space & Heating- & \\
\hline CHI 09 & M & 01/76-05/80 & 52 & CHI.D09 & 01/76-06/80 & 34 & HC & --See & Space & Heating & \\
\hline CHI 10 & M & 09/75-09/77 & 24 & CHI.D10 & & & & --See & Space & Heating- & \\
\hline CHI 11 & M & 09/75-05/80 & 55 & CHI.D11 & 07/75-06/80 & & HC & --See & Space & Heating- & \\
\hline CHI 12 & M & 09/75-05/80 & 57 & CHI. D12 & 08/75-06/80 & & HC & --See & Space & Heating & \\
\hline CHI 13 & M & 09/75-09/77 & 24 & CHI.D13 & & & & --See & Space & Heating- & \\
\hline CHI 14 & M & 09/75-05/80 & 57 & CHI. D14 & \[
\begin{aligned}
& 07 / 75-10 / 77 \\
& 08 / 78-06 / 80
\end{aligned}
\] & \[
\begin{aligned}
& 14 \\
& 20
\end{aligned}
\] & & --See & Space & Heating- & \\
\hline CHI 15 & M & 07/75-05/80 & 54 & CHI. D15 & 07/75-06/80 & 33 & HC & --See & Space & Heating & \\
\hline CHI 16 & M & 08/75-05/80 & 55 & CHI . D16 & 07/75-06/80 & 37 & HC & --See & Space H & Heating- & \\
\hline CHI 17 & M & 08/75-05/80 & 51 & CHI. D17 & 06/75-06/80 & 38 & HC & --See & Space & Heating- & \\
\hline CHI 18 & M & 09/75-05/80 & 50 & CHI. D1 8 & 07/75-06/80 & 38 & HC & --See & Space & Heating- & \\
\hline CHI 19 & M & \[
\begin{aligned}
& 10 / 75-05 / 76 \\
& 08 / 76-05 / 80
\end{aligned}
\] & \[
\begin{aligned}
& 57 \\
& 45
\end{aligned}
\] & \[
\begin{aligned}
& \text { CHI.D19 } \\
& \text { HC }
\end{aligned}
\] & 07/75-06/80 & 36 & HC & --See & Space H & Heating & \\
\hline CHI 20 & M & 09/75-09/77 & 24 & CHI.D20 & & & & --See & Space H & Heating & \\
\hline CHI 22 & M & 09/75-09/77 & 24 & CHI. D22 & & & & --See & Space & Heating & \\
\hline
\end{tabular}

TABLE 15 (cont.)
12/73-06/80 76 HC
\(\begin{array}{llll}12 / 73-06 / 75 & 18 & \text { HC } \\ 06 / 75-07 / 78 & 36 & \text { CSP.D06 } \\ 07 / 78-06 / 80 & 21 & \text { HC } \\ & & \\ 05 / 75-06 / 75 & 1 & \text { HC } \\ 06 / 75-07 / 78 & 37 & \text { CSP.D07 } \\ 07 / 78-06 / 80 & 23 & \text { HC }\end{array}\)



07/78-06/80 23 HC
09/74-06/75 9 HC
06/75-07/78 37 CSP.D11 06/75-07/78 37 CSP.E11
\(07 / 78-06 / 80\)
23 12/73-06/75 18 HC 12/75-07/78 37 CSP.E10 C CS
--See Space Heating--- 12/73-06/80 78 HC
12/73-06/80 77 HC
ЭH 19 08/90-SL/S0 ---8uf7eəн әวedS əəS--
03/75-05/80 59 HC --See Space Heating--- 03/75-05/80 59 HC
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & TABLE & E 15 (con & & & \\
\hline CSP 06 & M & \[
\begin{array}{ll}
12 / 73-06 / 75 & 18 \\
\text { HC } \\
06 / 75-07 / 78 & 36 \\
\text { CSP.D06 } \\
07 / 78-06 / 80 & 21
\end{array}
\] & 12/73-06/80 7 & 76 HC & --See & Space Heating--- & 12/73-06/80 77 HC \\
\hline CSP 07 & M & \[
\begin{array}{lll}
05 / 75-06 / 75 & 1 & \mathrm{HC} \\
06 / 75-07 / 78 & 37 & \mathrm{CSP} . \mathrm{D} 07 \\
07 / 78-06 / 80 & 23 & \mathrm{HC}
\end{array}
\] & 05/75-06/80 6 & 61 HC & --See S & Space Heating--- & 05/75-06/80 61 HC \\
\hline CSP 08 & M & \[
\begin{array}{lll}
03 / 75-06 / 75 & 3 \mathrm{HC} \\
06 / 75-08 / 78 & 35 & \mathrm{CSP} . \mathrm{D} 08 \\
08 / 78-05 / 80 & 21 & \mathrm{HC}
\end{array}
\] & 03/75-05/80 5 & 59 HC & --See S & Space Heating-- & 03/75-05/80 59 HC \\
\hline CSP 10 & M & \[
\begin{array}{ll}
12 / 73-06 / 75 & 18 \\
\mathrm{HC} \\
06 / 75-07 / 78 & 37 \\
\mathrm{CSP} . \mathrm{D} 10 \\
07 / 78-06 / 80 & 23 \\
\mathrm{HC}
\end{array}
\] & \[
\begin{aligned}
& 12 / 73-06 / 75 \\
& 06 / 75-07 / 78 \\
& 07 / 78-06 / 80
\end{aligned}
\] & \[
\begin{aligned}
& 18 \mathrm{HC} \\
& 37 \mathrm{CSP} \cdot \mathrm{E} 10 \\
& 23 \mathrm{HC}
\end{aligned}
\] & --See & Space Heating--- & 12/73-06/80 78 HC \\
\hline CSP 11 & M & \[
\begin{array}{lll}
09 / 74-06 / 75 & 9 & \text { HC } \\
06 / 75-07 / 78 & 37 & \text { CSP.D11 } \\
07 / 78-06 / 80 & 23 & \text { HC }
\end{array}
\] & \[
\begin{aligned}
& 09 / 74-06 / 75 \\
& 06 / 75-07 / 78 \\
& 07 / 78-06 / 80
\end{aligned}
\] & \[
\begin{aligned}
& 9 \mathrm{HC} \\
& 37 \text { CSP.E11 } \\
& 23 \mathrm{HC}
\end{aligned}
\] & --See & Space Heating--- & 09/74-06/80 69 HC \\
\hline CSP 13 & M & \[
\begin{aligned}
& 12 / 73-06 / 75 \\
& 17 \mathrm{HC} \\
& 06 / 75-08 / 78 \\
& 38 \\
& \text { CSP.D13 } \\
& 08 / 78-06 / 80 \\
& 21
\end{aligned}
\] & 12/73-06/80 76 & 76 HC & --See S & Space Heating--- & 12/73-06/80 74 HC \\
\hline CSP 14 & M & \[
\begin{array}{lll}
12 / 73-05 / 75 & 15 & \mathrm{HC} \\
05 / 75-08 / 78 & 39 & \text { CSP.D14 } \\
08 / 78-06 / 80 & 22 & \mathrm{HC}
\end{array}
\] & \[
\begin{aligned}
& 12 / 73-05 / 75 \\
& 05 / 75-08 / 78 \\
& 08 / 78-06 / 80
\end{aligned}
\] & \[
\begin{aligned}
& 15 \mathrm{HC} \\
& 39 \mathrm{CSP} \cdot \mathrm{E} 14 \\
& 22 \mathrm{HC}
\end{aligned}
\] & --See & Space Heating--- & 12/73-06/80 76 HC \\
\hline CSP 17 & M & \[
\begin{aligned}
& 12 / 73-06 / 75 \\
& 17 \\
& \text { HC } \\
& 06 / 75-08 / 78 \\
& 38 \\
& \text { 08/78-06/80 } \\
& 22
\end{aligned} \text { HC }
\] & 12/73-06/80 & 77 HC & --See S & Space Heating--- & 12/73-06/80 77 HC \\
\hline CSP 20 & M & \[
\begin{array}{lll}
01 / 75-06 / 75 & 5 & \mathrm{HC} \\
06 / 75-07 / 78 & 37 & \mathrm{CSP} . \mathrm{D} 20 \\
07 / 78-06 / 80 & 23 & \mathrm{HC}
\end{array}
\] & 01/75-06/80 6 & 65 HC & --See & Space Heating--- & 01/75-06/80 65 HC \\
\hline
\end{tabular}
05/75-06/80 61
正 
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & TABLE & E 15 (con & & & \\
\hline CSP 06 & M & \[
\begin{array}{ll}
12 / 73-06 / 75 & 18 \\
\text { HC } \\
06 / 75-07 / 78 & 36 \\
\text { CSP.D06 } \\
07 / 78-06 / 80 & 21
\end{array}
\] & 12/73-06/80 7 & 76 HC & --See & Space Heating--- & 12/73-06/80 77 HC \\
\hline CSP 07 & M & \[
\begin{array}{lll}
05 / 75-06 / 75 & 1 & \mathrm{HC} \\
06 / 75-07 / 78 & 37 & \mathrm{CSP} . \mathrm{D} 07 \\
07 / 78-06 / 80 & 23 & \mathrm{HC}
\end{array}
\] & 05/75-06/80 6 & 61 HC & --See S & Space Heating--- & 05/75-06/80 61 HC \\
\hline CSP 08 & M & \[
\begin{array}{lll}
03 / 75-06 / 75 & 3 \mathrm{HC} \\
06 / 75-08 / 78 & 35 & \mathrm{CSP} . \mathrm{D} 08 \\
08 / 78-05 / 80 & 21 & \mathrm{HC}
\end{array}
\] & 03/75-05/80 5 & 59 HC & --See S & Space Heating-- & 03/75-05/80 59 HC \\
\hline CSP 10 & M & \[
\begin{array}{ll}
12 / 73-06 / 75 & 18 \\
\mathrm{HC} \\
06 / 75-07 / 78 & 37 \\
\mathrm{CSP} . \mathrm{D} 10 \\
07 / 78-06 / 80 & 23 \\
\mathrm{HC}
\end{array}
\] & \[
\begin{aligned}
& 12 / 73-06 / 75 \\
& 06 / 75-07 / 78 \\
& 07 / 78-06 / 80
\end{aligned}
\] & \[
\begin{aligned}
& 18 \mathrm{HC} \\
& 37 \mathrm{CSP} \cdot \mathrm{E} 10 \\
& 23 \mathrm{HC}
\end{aligned}
\] & --See & Space Heating--- & 12/73-06/80 78 HC \\
\hline CSP 11 & M & \[
\begin{array}{lll}
09 / 74-06 / 75 & 9 & \text { HC } \\
06 / 75-07 / 78 & 37 & \text { CSP.D11 } \\
07 / 78-06 / 80 & 23 & \text { HC }
\end{array}
\] & \[
\begin{aligned}
& 09 / 74-06 / 75 \\
& 06 / 75-07 / 78 \\
& 07 / 78-06 / 80
\end{aligned}
\] & \[
\begin{aligned}
& 9 \mathrm{HC} \\
& 37 \text { CSP.E11 } \\
& 23 \mathrm{HC}
\end{aligned}
\] & --See & Space Heating--- & 09/74-06/80 69 HC \\
\hline CSP 13 & M & \[
\begin{aligned}
& 12 / 73-06 / 75 \\
& 17 \mathrm{HC} \\
& 06 / 75-08 / 78 \\
& 38 \\
& \text { CSP.D13 } \\
& 08 / 78-06 / 80 \\
& 21
\end{aligned}
\] & 12/73-06/80 76 & 76 HC & --See S & Space Heating--- & 12/73-06/80 74 HC \\
\hline CSP 14 & M & \[
\begin{array}{lll}
12 / 73-05 / 75 & 15 & \mathrm{HC} \\
05 / 75-08 / 78 & 39 & \text { CSP.D14 } \\
08 / 78-06 / 80 & 22 & \mathrm{HC}
\end{array}
\] & \[
\begin{aligned}
& 12 / 73-05 / 75 \\
& 05 / 75-08 / 78 \\
& 08 / 78-06 / 80
\end{aligned}
\] & \[
\begin{aligned}
& 15 \mathrm{HC} \\
& 39 \mathrm{CSP} \cdot \mathrm{E} 14 \\
& 22 \mathrm{HC}
\end{aligned}
\] & --See & Space Heating--- & 12/73-06/80 76 HC \\
\hline CSP 17 & M & \[
\begin{aligned}
& 12 / 73-06 / 75 \\
& 17 \\
& \text { HC } \\
& 06 / 75-08 / 78 \\
& 38 \\
& \text { 08/78-06/80 } \\
& 22
\end{aligned} \text { HC }
\] & 12/73-06/80 & 77 HC & --See S & Space Heating--- & 12/73-06/80 77 HC \\
\hline CSP 20 & M & \[
\begin{array}{lll}
01 / 75-06 / 75 & 5 & \mathrm{HC} \\
06 / 75-07 / 78 & 37 & \mathrm{CSP} . \mathrm{D} 20 \\
07 / 78-06 / 80 & 23 & \mathrm{HC}
\end{array}
\] & 01/75-06/80 6 & 65 HC & --See & Space Heating--- & 01/75-06/80 65 HC \\
\hline
\end{tabular}

05/75-08/78 39 CSP.E14
--See Space Heating--- 12/73-06/80 77 HC
--See Space Heating--- 01/75-06/80 65 HC
01/75-06/80 65 HC
(•7U0ग) ST GTGVL
--See Space Heating--- 12/73-06/80 75 HC
\(\begin{array}{lll}12 / 73-05 / 75 & 14 & \mathrm{HC} \\ 05 / 75-08 / 78 & 39 & \text { CSP.E23 } \\ 08 / 78-06 / 80 & 22 \mathrm{HC}\end{array}\)
12/73-06/80 77 HC

12/73-06/75 17 HC
06/75-08/78 36 CSP.D24
08/78-06/80 22 HC
12/73-06/75 18 HC
\(\begin{array}{lll}06 / 75-08 / 78 & 38 & \text { CSP.D26 } \\ 08 / 78-06 / 80 & 22 & \text { HC }\end{array}\)
12/73-06/80 77 HC
--See Space Heating--- 12/73-06/80 77 HC
--See Space Heating--- 12/73-06/80 75 HC
 \(\begin{array}{lll}12 / 73-05 / 75 & 14 & \mathrm{HC} \\ 05 / 75-07 / 78 & 38 & \text { CSP.E31 } \\ 07 / 78-06 / 80 & 23 & \mathrm{HC}\end{array}\) 04/74-06/80 68 HC

\section*{12/73-06/80 78 HC}

--See Space Heating--- 12/73-06/80 78 HC
--See Space Heating--- 12/73-06/80 78 HC

 0
0
\(\infty\)
\(n\)
0
\(\infty\)
0
0
1
\(n\)
\(N\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{CSP} & \multirow[t]{3}{*}{23} & \multirow[t]{3}{*}{M} & 12/73-05/75 & 14 & HC \\
\hline & & & 05/75-08/78 & 39 & CSP.D23 \\
\hline & & & 08/78-06/80 & 22 & HC \\
\hline \multirow[t]{3}{*}{CSP} & \multirow[t]{3}{*}{24} & \multirow[t]{3}{*}{M} & 12/73-06/75 & 17 & HC \\
\hline & & & 06/75-08/78 & 36 & CSP.D24 \\
\hline & & & 08/78-06/80 & 22 & HC \\
\hline \multirow[t]{3}{*}{CSP} & \multirow[t]{3}{*}{26} & \multirow[t]{3}{*}{M} & 12/73-06/75 & 18 & HC \\
\hline & & & 06/75-08/78 & 38 & CSP.D26 \\
\hline & & & 08/78-06/80 & 22 & HC \\
\hline \multirow[t]{3}{*}{CSP} & \multirow[t]{3}{*}{28} & \multirow[t]{3}{*}{M} & 12/73-06/75 & 17 & HC \\
\hline & & & 06/75-09/78 & 39 & CSP.D28 \\
\hline & & & 09/78-06/80 & 21 & HC \\
\hline \multirow[t]{3}{*}{CSP} & \multirow[t]{3}{*}{31} & \multirow[t]{3}{*}{M} & 12/73-05/75 & 14 & HC \\
\hline & & & 05/75-07/78 & 38 & CSP.D31 \\
\hline & & & 07/78-06/80 & 23 & HC \\
\hline \multirow[t]{3}{*}{CSP} & \multirow[t]{3}{*}{34} & \multirow[t]{3}{*}{M} & 04/74-05/75 & 11 & HC \\
\hline & & & 05/75-07/78 & 30 & CSP.D34 \\
\hline & & & 07/78-06/80 & 19 & HC \\
\hline \multirow[t]{3}{*}{CSP} & \multirow[t]{3}{*}{37} & \multirow[t]{3}{*}{M} & 12/73-06/75 & 18 & HC \\
\hline & & & 06/75-07/78 & 34 & CSP.D37 \\
\hline & & & 07/78-06/80 & 23 & HC \\
\hline \multirow[t]{3}{*}{CSP} & \multirow[t]{3}{*}{41} & \multirow[t]{3}{*}{M} & 12/73-05/75 & 17 & HC \\
\hline & & & 05/75-07/78 & 38 & CSP.D41 \\
\hline & & & 07/78-06/80 & 23 & HC \\
\hline \multirow[t]{3}{*}{CSP} & \multirow[t]{3}{*}{43} & \multirow[t]{3}{*}{M} & 12/73-06/75 & 18 & HC \\
\hline & & & 06/75-08/78 & 38 & CSP.D43 \\
\hline & & & 08/78-06/80 & 22 & HC \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{TABLE 15 (cont.)} \\
\hline \multirow[t]{3}{*}{CSP 44} & \multirow[t]{3}{*}{M} & 12/73-05/75 17 HC & \multirow[t]{3}{*}{12/73-06/80} & \multirow[t]{3}{*}{78 HC} & \multirow[t]{3}{*}{--See Space Heating---} & \multirow[t]{3}{*}{12/73-06/80} & \multirow[t]{3}{*}{78 HC} \\
\hline & & 05/75-07/78 37 CSP.D44 & & & & & \\
\hline & & 07/78-06/80 23 HC & & & & & \\
\hline \multirow[t]{3}{*}{CSP 47} & \multirow[t]{3}{*}{M} & 12/75-06/76 6 HC & 12/75-06/76 & 6 HC & \multirow[t]{3}{*}{--See Space Heating---} & \multirow[t]{3}{*}{12/75-06/80} & \multirow[t]{3}{*}{54 HC} \\
\hline & & 06/76-07/78 25 CSP.D47 & 06/76-07/78 & 25 CSP.E47 & & & \\
\hline & & 07/78-06/80 23 HC & 07/78-06/80 & 23 HC & & & \\
\hline \multirow[t]{3}{*}{CSP 49} & \multirow[t]{3}{*}{M} & 07/74-05/75 10 HC & \multirow[t]{3}{*}{07/74-06/80} & \multirow[t]{3}{*}{70 HC} & \multirow[t]{3}{*}{--See Space Heating---} & \multirow[t]{3}{*}{07/74-06/80} & \multirow[t]{3}{*}{68 HC} \\
\hline & & 05/75-07/78 38 CSP.D49 & & & & & \\
\hline & & 07/78-06/80 22 HC & & & & & \\
\hline \multirow[t]{3}{*}{FAR 02} & \multirow[t]{3}{*}{M} & 01/73-06/75 29 HC & \multirow[t]{3}{*}{02/75-06/80} & \multirow[t]{3}{*}{63 HC} & \multirow[t]{3}{*}{--See Space Heating---} & \multirow[t]{3}{*}{03/75-06/80} & \multirow[t]{3}{*}{21 HC} \\
\hline & & 06/75-08/77 26 FAR.D02 & & & & & \\
\hline & & 08/77-06/80 34 HC & & & & & \\
\hline \multirow[t]{3}{*}{FAR 05} & \multirow[t]{3}{*}{M} & 01/73-06/75 29 HC & \multirow[t]{3}{*}{01/75-06/80} & \multirow[t]{3}{*}{64 HC} & \multirow[t]{3}{*}{--See Space Heating---} & \multirow[t]{3}{*}{12/74-03/80} & \multirow[t]{3}{*}{21 HC} \\
\hline & & 06/75-09/77 27 FAR.D05 & & & & & \\
\hline & & 09/77-06/80 33 HC & & & & & \\
\hline \multirow[t]{2}{*}{FAR 06} & \multirow[t]{2}{*}{0} & 01/73-09/75 16 HC & \multirow[t]{2}{*}{01/75-06/80} & \multirow[t]{2}{*}{64 HC} & \multirow[t]{2}{*}{----------------------} & \multirow[t]{2}{*}{03/75-06/80} & \multirow[t]{2}{*}{18 HC} \\
\hline & & 09/75-02/80 28 FAR.D06 & & & & & \\
\hline FAR 10 & 0 & 01/73-07/80 29 FAR.D10 & 01/75-06/80 & 64 HC & & 01/75-04/80 & 21 HC \\
\hline \multirow[t]{2}{*}{FAR 11} & \multirow[t]{2}{*}{0} & 01/73-09/75 14 HC & \multirow[t]{2}{*}{01/75-06/80} & \multirow[t]{2}{*}{64 HC} & \multirow[t]{2}{*}{01/75-06/80 63 HC} & \multirow[t]{2}{*}{01/75-04/80} & \multirow[t]{2}{*}{21 HC} \\
\hline & & 09/75-04/80 23 FAR.D11 & & & & & \\
\hline \multirow[t]{3}{*}{FAR 13} & \multirow[t]{3}{*}{M} & 01/73-06/75 29 HC & \multirow[t]{3}{*}{01/75-09/78} & \multirow[t]{3}{*}{44 HC} & \multirow[t]{3}{*}{--See Space Heating---} & \multirow[t]{3}{*}{01/75-03/80} & \multirow[t]{3}{*}{21 HC} \\
\hline & & 06/75-09/77 27 FAR.D13 & & & & & \\
\hline & & 09/77-06/80 33 HC & & & & & \\
\hline \multirow[t]{2}{*}{FAR 15} & \multirow[t]{2}{*}{0} & 01/73-10/75-15 HC & \multirow[t]{2}{*}{01/75-06/80} & \multirow[t]{2}{*}{64 HC} & \multirow[t]{2}{*}{01/75-06/80 64 HC} & \multirow[t]{2}{*}{02/75-05/80} & \multirow[t]{2}{*}{21 HC} \\
\hline & & 10/75-03/80 24 FAR.D15 & & & & & \\
\hline \multirow[t]{3}{*}{FAR 17} & \multirow[t]{3}{*}{M} & 01/73-06/75 29 HC & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{01/75-06/80 64 HC}} & \multirow[t]{3}{*}{--See Space Heating---} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{12/74-06/80 20 HC}} \\
\hline & & 06/75-09/77 27 FAR.D17 & & & & & \\
\hline & & 09/77-05/80 30 нС & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & TABLE & 15 & (con & & & \\
\hline FAR 22 & M & \[
\begin{array}{ll}
01 / 73-06 / 75 & 2 \\
06 / 75-09 / 77 & 2 \\
09 / 77-06 / 80 & 3
\end{array}
\] & \[
\begin{aligned}
& 29 \\
& 27 \\
& 33
\end{aligned}
\] & \[
\begin{aligned}
& \text { HC } \\
& \text { FAR.D22 } \\
& \text { HC }
\end{aligned}
\] & 01/75-06/80 & 62 & HC & --See Space Heating--- & 12/74-03/80 & 21 HC \\
\hline FAR 23 & 0 & 09/73-06/80 7 & 72 & FAR.D23 & 01/75-06/80 & 64 & HC &  & 10/79-05/80 & \(?\) \\
\hline FAR 25 & 0 & 01/73-04/80 2 & 29 & FAR.D25 & 01/75-06/80 & 64 & HC & 01/75-06/80 64 HC & 01/75-03/80 & 18 HC \\
\hline FAR 26 & M & \[
\begin{array}{ll}
01 / 73-06 / 75 & 2 \\
06 / 75-09 / 77 & 2 \\
09 / 77-06 / 80 & 3
\end{array}
\] & \[
\begin{aligned}
& 29 \\
& 27 \\
& 33
\end{aligned}
\] & \[
\begin{aligned}
& \text { HC } \\
& \text { FAR.D26 } \\
& \text { HC }
\end{aligned}
\] & 01/75-06/80 & 64 & HC & --See Space Heating--- & 12/74-06/80 & 22 HC \\
\hline FAR 27 & 0 & 04/74-09/80 1 & 19 & FAR.D27 & 01/75-06/80 & 64 & HC &  & 02/75-04/80 & 18 HC \\
\hline FAR 30 & M & \[
\begin{array}{ll}
01 / 73-06 / 75 & 2 \\
06 / 75-09 / 77 & 2 \\
09 / 77-05 / 80 & 3
\end{array}
\] & \[
\begin{aligned}
& 29 \\
& 27 \\
& 32
\end{aligned}
\] & \[
\begin{aligned}
& \text { HC } \\
& \text { FAR.D30 } \\
& \text { HC }
\end{aligned}
\] & 01/75-06/80 & 64 & HC & --See Space Heating--- & 12/74-06/80 & 18 HC \\
\hline FAR 32 & M & \[
\begin{array}{ll}
01 / 73-08 / 77 & 5 \\
08 / 77-06 / 80 & 3
\end{array}
\] & \[
\begin{aligned}
& 55 \\
& 34
\end{aligned}
\] & \[
\begin{aligned}
& \text { FAR.D32 } \\
& \text { HC }
\end{aligned}
\] & 01/75-06/80 & & HC & --See Space Heating--- & 03/75-06/80 & 18 HC \\
\hline FAR 34 & 0 & 12/75-03/80 2 & 22 & FAR.D34 & 01/75-06/80 & 64 & HC & --------------- & 03/75-05/80 & 21 HC \\
\hline FAR 35 & M & \[
\begin{aligned}
& 01 / 75-03 / 75 \\
& 03 / 75-08 / 78 \\
& 08 / 78-06 / 80
\end{aligned}
\] & \[
\begin{array}{r}
3 \\
41 \\
22
\end{array}
\] & \[
\begin{aligned}
& \text { HC } \\
& \text { FAR.D35 } \\
& \text { HC }
\end{aligned}
\] & 01/75-06/80 & 64 & HC & --See Space Heating--- & 02/75-05/80 & 21 HC \\
\hline FAR 36 & M & \[
\begin{aligned}
& 01 / 75-03 / 75 \\
& 03 / 75-08 / 78 \\
& 08 / 78-06 / 80
\end{aligned}
\] & \[
\begin{array}{r}
3 \\
41 \\
22
\end{array}
\] & \[
\begin{aligned}
& \text { HC } \\
& \text { FAR.D36 } \\
& \text { HC }
\end{aligned}
\] & 01/75-06/80 & 64 & HC & --See Space Heating--- & 12/74-06/80 & 22 HC \\
\hline MSP 01 & M & \[
\begin{array}{ll}
03 / 75-08 / 77 & 2 \\
08 / 77-07 / 78 & 1 \\
07 / 78-05 / 80 & 2
\end{array}
\] & \[
\begin{aligned}
& 29 \\
& 11 \\
& 22
\end{aligned}
\] & \[
\begin{aligned}
& \text { MSP .D01 } \\
& \text { HC } \\
& \text { MSP .D01 }
\end{aligned}
\] & \[
\begin{aligned}
& 04 / 75-09 / 77 \\
& 01 / 78-05 / 80
\end{aligned}
\] & \[
\begin{aligned}
& 29 \\
& 26
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{HC} \$ \\
& \mathrm{HC}
\end{aligned}
\] & -See Space Heating--- & & \\
\hline
\end{tabular}

(•7u00) SI ヨTgVL

TABLE 15 (cont.)

\(\begin{array}{lrllll}07 / 76-01 / 77 & 6 & \text { HCS } & 07 / 76-01 / 77 & 6 & \text { HCS } \\ 01 / 77-08 / 77 & 5 & \text { MSP.D37 } & 01 / 77-08 / 77 & 7 & \text { MSP.E37 } \\ 08 / 77-11 / 77 & 4 & \text { HCS } & 08 / 77-11 / 77 & 4 & \text { HCS } \\ 11 / 77-12 / 78 & 13 & \text { HC } & 11 / 77-12 / 78 & 13 & \text { HC } \\ 04 / 79-05 / 80 & 11 & \text { MSP.D37 } & 04 / 79-05 / 80 & 13 & \text { HC }\end{array}\)

07/76-02/77 7 HC\$
.E38
HC
HC

--See Space Heating--- \(07 / 78-03 / 806 \mathrm{HC}\)
--See Space Heating--- \(07 / 78-04 / 80 \quad 5 \mathrm{HC}\)
--See Space Heating--- 07/78-04/80 5 HC \(\begin{array}{lrllll}01 / 77-08 / 77 & 6 & \text { MSP.D40 } & 01 / 77-08 / 77 & 7 & \text { MSP.E40 } \\ 08 / 77-11 / 77 & 3 & \text { HCS } & 08 / 77-11 / 77 & 3 & \text { HCS } \\ 11 / 77-12 / 78 & 13 & \text { HC } & 11 / 77-12 / 78 & 13 & \text { HC } \\ 04 / 79-05 / 80 & 12 & \text { MSP.D40 } & 04 / 79-05 / 80 & 13 & \text { HC }\end{array}\) \(\begin{array}{lll}06 / 76-12 / 77 & 18 & \text { HC } \\ 12 / 77-01 / 79 & 13 & \text { HC } \\ 05 / 79-05 / 80 & 13 & \text { HC }\end{array}\) \(\begin{array}{lrl}04 / 75-04 / 77 & 18 & \text { MSP.D39 } \\ 04 / 77-05 / 78 & 9 \text { HC }\end{array}\) \(\begin{array}{lrl}07 / 76-02 / 77 & 7 & \text { HCS } \\ 02 / 77-09 / 77 & 7 & \text { MSP.D38 } \\ 09 / 77-12 / 77 & 3 & \text { HCS } \\ 12 / 77-01 / 79 & 13 & \text { HC }\end{array}\) 13 HC \(09 / 77-12 / 77\)
\(12 / 77-01 / 79\) MSP 390
0


MSP 38 \(\Sigma\)

MSP 40
\(\Sigma\)


нс
13 04/79-05/80

\section*{MSP.D42}

13 H
LL/ T0-9L/ LO 07/76-01/77 08/77-12/77 12/77-01/79 04/79-05/80 06/76-02/77
06/76-02/77 8 HC\$
 \(\Sigma\)

MSP 44
\(\Sigma\)

MSP 45

\section*{ОH \\ \(08 / 78-05 / 806\) \\ --See Space Heating--- 08/78-05/80}
TABLE 15 (cont.)
--See Space Heating--- ------------------------
--See Space Heating--- \(12 / 75-06 / 8028 \mathrm{HC}\)
--See Space Heating--- 05/75-07/80 32 HC
--See Space Heating--- 05/75-07/80 33 HC
--See Space Heating--- 05/75-07/80 33 HC
--See Space Heating--- \(04 / 75-06 / 8033 \mathrm{HC}\)
--See Space Heating--- 05/75-07/80 32 HC
--See Space Heating--- 04/75-06/80 33 HC
--See Space Heating--- \(05 / 75-07 / 8033 \mathrm{HC}\)

TABLE 15 （cont．）
－－See Space Heating－－－05／75－06／80 33 HC
05／75－07／80 33 HC
－－See Space Heating－－－05／75－07／80 33 HC

03／77－09／80 14 HC\＄

05／75－07／80 33 нС －－－8uч̣วеән
－－See Space Heating－－
－－See Space Heating－－
03／76－05／80 51 HC
04／75－06／78 38 0AK．D33 04／75－05／80 62 HC 04／75－06／78 38 OAK．D33 04／75－05／80 62 HC 08／79－05／80 9 OАК．D33
03／75－06／78 39 0AK．D34 03／75－05／80 61 HC 06／78－08／79 14 HC
08／79－05／80 9 OAK．D34
03／76－04／78 25 0AK．D35
05／78－10／79 18 HC
10／79－05／80 6 OAK．D35
03／75－05／80 61 OAK．D36
03／75－05／80 61 0AK．D36 03／75－05／80 50 HC
03／75－05／78 38 0AK．D37 03／75－05／80 62 HC 05／78－06／79 13 HC
06／79－05／80 12 OAK．D37
06／79－05／80 12 OAK．D37
04／75－04／78 37 OAK．D38 04／75－05／80 58 HC 04／78－09／79 17 HC
09／79－05／80 8 OAK．D38
04／75－05／77 28 POR．D02 04／75－01／78 \(33 \mathrm{HC} \mathrm{\$}\)
08／75－01／78 \(29 \mathrm{HC} \$\)
\(\begin{array}{rrr}02 / 75-10 / 75 & 4 & \text { HC } \\ 10 / 75-04 / 77 & 11 & \text { POR．D03 }\end{array}\)
10／75－06／77 17 POR．D04 04／75－06／80 62 HC\＄
11／74－04／75 \(9 \mathrm{HC} \quad 04 / 75-01 / 7833 \mathrm{HCS}\)
04／75－09／77 21 POR．D07
04／75－08／75 \(3 \mathrm{HC} \quad 04 / 75-05 / 7725 \mathrm{HCS}\)
08／75－08／77 28 POR．D09 06／77－08／80 38 HC
\＄うH ऽて LL／ऽO－乌L／†O
06／77－07／80 37 HC
00
OAK 33
E\＆ग्रVO
OAK 34
0
00
00
0
0
0
0
\(\checkmark\)
OAK 38
OAK 36
OAK 37
POR 02
POR 03
POR 04
POR 07
POR 09
POR 10
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{TABLE 15 (cont.)} \\
\hline POR 11 & 0 & 04/75-03/77 & 12 & POR.D11 & 04/75-01/78 & 33 & HC\$ & & & \\
\hline POR 12 & 0 & 07/75-09/77 & 26 & POR.D12 & \[
\begin{aligned}
& 04 / 75-05 / 77 \\
& 06 / 77-07 / 80
\end{aligned}
\] & & \begin{tabular}{l}
HC\$ \\
HC
\end{tabular} & & 03/77-09/80 1 & HC\$ \\
\hline POR 15 & 0 & \[
\begin{aligned}
& 04 / 75-04 / 75 \\
& 04 / 75-05 / 77
\end{aligned}
\] & \[
\begin{array}{r}
1 \\
24
\end{array}
\] & \[
\begin{aligned}
& \text { HC } \\
& \text { POR.D15 }
\end{aligned}
\] & 04/75-01/78 & 33 & HC\$ & & 02/77-08/80 1 & HC\$ \\
\hline POR 16 & 0 & 10/76-12/77 & 7 & POR.D16 & \[
\begin{aligned}
& 04 / 75-05 / 77 \\
& 06 / 77-07 / 80
\end{aligned}
\] & & \begin{tabular}{l}
HC\$ \\
HC
\end{tabular} & & 01/77-04/80 13 & HC\$ \\
\hline POR 17 & 0 & 10/75-04/78 & 14 & POR.D17 & \[
\begin{aligned}
& 04 / 75-05 / 77 \\
& 06 / 77-07 / 80
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 37
\end{aligned}
\] & \begin{tabular}{l}
HC\$ \\
HC
\end{tabular} & & 03/77-06/80 1 & HC\$ \\
\hline POR 18 & 0
\(W\) & \(04 / 75-03 / 76\)
\(10 / 78-03 / 79\) & \[
\begin{aligned}
& 11 \\
& 19
\end{aligned}
\] & \[
\begin{aligned}
& \text { POR.D18 } \\
& \text { HC }
\end{aligned}
\] & \[
\begin{aligned}
& 04 / 76-05 / 77 \\
& 06 / 77-07 / 80
\end{aligned}
\] & \[
\begin{aligned}
& 13 \\
& 37
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{HC} \$ \\
& \mathrm{HC}
\end{aligned}
\] & & 01/77-07/80 1 & HC\$ \\
\hline POR 19 & \[
\begin{aligned}
& 0 \\
& \mathrm{~W}
\end{aligned}
\] & \[
\begin{aligned}
& 04 / 75-05 / 78 \\
& 10 / 78-12 / 78
\end{aligned}
\] & \[
\begin{array}{r}
30 \\
8
\end{array}
\] & \[
\begin{aligned}
& \text { POR.D19 } \\
& \text { HC }
\end{aligned}
\] & & & & & & \\
\hline POR 20 & 0 & 05/75-05/78 & 26 & POR.D20 & \[
\begin{aligned}
& 04 / 75-05 / 77 \\
& 06 / 77-07 / 80
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 37
\end{aligned}
\] & \begin{tabular}{l}
HC\$ \\
HC
\end{tabular} & & 03/77-06/80 1 & HC\$ \\
\hline POR 21 & 0 & 03/75-04/78 & 16 & POR.D21 & \[
\begin{aligned}
& 04 / 75-05 / 77 \\
& 06 / 77-07 / 80
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 37
\end{aligned}
\] & \[
\begin{aligned}
& \text { HC\$ } \\
& \text { HC }
\end{aligned}
\] & & 01/77-07/80 14 & HC\$ \\
\hline POR 23 & 0 & 07/75-04/77 & 26 & POR.D23 & 04/75-01/78 & 33 & HC\$ & & 03/77-06/80 13 & HC\$ \\
\hline POR 25 & 0 & \[
\begin{aligned}
& 07 / 74-05 / 75 \\
& 05 / 75-03 / 77 \\
& 08 / 77-04 / 78
\end{aligned}
\] & \[
\begin{aligned}
& 19 \\
& 32 \\
& 12
\end{aligned}
\] & \[
\begin{aligned}
& \text { HC } \\
& \text { POR.D25 } \\
& \text { HC }
\end{aligned}
\] & 09/77-01/78 & 5 & HC\$ & & 01/77-07/80 14 & HC\$ \\
\hline POR 26 & 0 & \[
\begin{aligned}
& 10 / 74-05 / 75 \\
& 05 / 75-04 / 78
\end{aligned}
\] & \[
\begin{aligned}
& 11 \\
& 42
\end{aligned}
\] & \[
\begin{aligned}
& \text { HC } \\
& \text { POR.D26 }
\end{aligned}
\] & 04/75-01/78 & 33 & HC\$ & & 03/77-09/80 1 & HC\$ \\
\hline POR 28 & 0 & \[
\begin{aligned}
& 01 / 76-05 / 77 \\
& 11 / 77-05 / 78
\end{aligned}
\] & \[
\begin{aligned}
& 23 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& \text { POR.D28 } \\
& \text { HC }
\end{aligned}
\] & 08/75-01/78 & & & & 01/77-07/80 14 & HC\$ \\
\hline
\end{tabular}
TABLE 15 (cont.)


\section*{(•7u00) SI JTGYI}
----------------------- See Space Heating---
\begin{tabular}{|c|c|c|c|c|}
\hline STL 14 & G & \[
\begin{aligned}
& 03 / 75-05 / 75 \\
& 07 / 75-09 / 77 \\
& 10 / 77-05 / 78 \\
& 08 / 79-04 / 80
\end{aligned}
\] & 2
27
6
8 & \begin{tabular}{l}
HC \\
STL.D14 \\
HC \\
STL.D14
\end{tabular} \\
\hline STL 15 & G & \[
\begin{aligned}
& 03 / 75-05 / 75 \\
& 05 / 75-09 / 77 \\
& 10 / 77-04 / 78 \\
& 07 / 79-03 / 80
\end{aligned}
\] & 2
28
6
8 & \[
\begin{aligned}
& \text { HC } \\
& \text { STL.D15 } \\
& \text { HC } \\
& \text { STL.D15 }
\end{aligned}
\] \\
\hline STL 17 & G & \[
\begin{aligned}
& 06 / 75-09 / 77 \\
& 10 / 77-05 / 78 \\
& 09 / 79-04 / 80
\end{aligned}
\] & 27
7
7 & \[
\begin{aligned}
& \text { STL.D17 } \\
& \text { HC } \\
& \text { HC }
\end{aligned}
\] \\
\hline STL 18 & G & \[
\begin{aligned}
& 03 / 75-06 / 75 \\
& 06 / 75-09 / 77 \\
& 10 / 77-05 / 78 \\
& 09 / 79-04 / 80
\end{aligned}
\] & 3
27
7
7 & \begin{tabular}{l}
HC \\
STL.D18 \\
HC
STL.D18
\end{tabular} \\
\hline
\end{tabular}
\(\begin{array}{lrl}03 / 75-05 / 75 & 2 & \text { HC } \\ 05 / 75-09 / 77 & 27 & \text { STL.D23 } \\ 10 / 77-05 / 78 & 6 & \text { HC } \\ 07 / 79-03 / 80 & 8 & \text { HC }\end{array}\)
\(\checkmark\)

STL 23
0

STL 28

\(\begin{array}{lrl}03 / 75-05 / 75 & 2 & \text { HC } \\ 05 / 75-09 / 77 & 28 & \text { STL.D29 } \\ \text { 10/77-05/78 } & 6 & \text { HC } \\ 07 / 79-03 / 80 & 8 & \text { STL.D29 }\end{array}\)
04/75-09/77 29 STL.D34
OU
Nor
\(04 / 75-09 / 7\)
\(10 / 77-05 / 78\)
\(08 / 79-04 / 8\)
\(\stackrel{5}{6}\)

STL 34
TABLE 15 (cont.)

 07/75-09/77 25 STL.D38 HC
HC
HC
STL
HC
HC
03/75-06/75 3 HC 06/75-09/77 27 STL.D41 \(07 / 79-04 / 80 \quad 9 \mathrm{HC}\) \(\begin{array}{rl}3 & \mathrm{HC} \\ 27 & \text { STL.D41 } \\ 7 & \mathrm{HC} \\ 9 & \mathrm{HC}\end{array}\)
 03/75-05/75 05/75-09/77 10/77-05/78


03/75-04/75 1 HC
 0 \(\checkmark\)
\(\checkmark\)
\(\checkmark\)
\(\checkmark\) \(\square\) \(\checkmark\)
\(\checkmark\)
0
STL 38
STL 40
STL 41
STL 42
STL 44
STL 46
STL 46
STL 49
STL 55
STL 56

\section*{(•7uos) st gTgVI}


\begin{tabular}{|c|c|c|c|c|}
\hline STL 70 & G & \[
\begin{aligned}
& 03 / 75-05 / 75 \\
& 05 / 75-09 / 77 \\
& 10 / 77-04 / 78 \\
& 07 / 79-03 / 80
\end{aligned}
\] & 2
28
6
8 & \[
\begin{aligned}
& \text { HC } \\
& \text { STL.D70 } \\
& \text { HC } \\
& \text { STL.D70 }
\end{aligned}
\] \\
\hline STL 77 & G & \[
\begin{aligned}
& 03 / 75-05 / 78 \\
& 07 / 79-04 / 80
\end{aligned}
\] & 34 & \[
\begin{aligned}
& \text { HC } \\
& \text { STL.D77 }
\end{aligned}
\] \\
\hline STL 92 & G & \[
\begin{aligned}
& 04 / 75-05 / 75 \\
& 05 / 75-10 / 77 \\
& 10 / 77-04 / 78 \\
& 07 / 79-03 / 80
\end{aligned}
\] & 29
6
8 & \[
\begin{aligned}
& \text { HC } \\
& \text { STL.D92 } \\
& \text { HC } \\
& \text { HC }
\end{aligned}
\] \\
\hline STL 93 & G & \[
\begin{aligned}
& 04 / 75-05 / 75 \\
& 05 / 75-10 / 77 \\
& 10 / 77-05 / 78 \\
& 07 / 79-03 / 80
\end{aligned}
\] & 29
7
9 & \[
\begin{aligned}
& \text { HC } \\
& \text { STL.D93 } \\
& \text { HC } \\
& \text { HC }
\end{aligned}
\] \\
\hline TAC 04 & E & \[
\begin{aligned}
& 01 / 75-03 / 75 \\
& 03 / 75-09 / 78 \\
& 09 / 78-05 / 80
\end{aligned}
\] & 21 & \[
\begin{aligned}
& \text { HC } \\
& \text { TAC.D04 } \\
& \text { HC }
\end{aligned}
\] \\
\hline TAC 21 & G & 04/75-07/79 & 51 & TAC.D21 \\
\hline TAC 37 & E & 06/77-06/80 & 18 & TAC.D37 \\
\hline TAC 39 & E & \[
\begin{aligned}
& 09 / 75-09 / 77 \\
& 09 / 77-07 / 80
\end{aligned}
\] & 12 & \[
\begin{aligned}
& \text { TAC.D39 } \\
& \text { HC }
\end{aligned}
\] \\
\hline TAC 45 & G & \[
\begin{aligned}
& 04 / 75-08 / 76 \\
& 08 / 76-08 / 77
\end{aligned}
\] & 17 & \[
\begin{aligned}
& \text { HC } \\
& \text { TAC.D45 }
\end{aligned}
\] \\
\hline TAC 49 & M & \[
\begin{aligned}
& 04 / 75-10 / 77 \\
& 10 / 77-06 / 80
\end{aligned}
\] & 30
32 & \[
\begin{aligned}
& \text { TAC.D49 } \\
& \text { HC }
\end{aligned}
\] \\
\hline TAC 55 & G & 04/75-09/77 & 28 & TAC.D55 \\
\hline
\end{tabular}
(・ユนัว) SI GT\&甘L
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline TAC 57 & G & \[
\begin{aligned}
& 01 / 76-12 / 77 \\
& 12 / 77-05 / 78 \\
& 05 / 78-08 / 78 \\
& 08 / 78-01 / 79 \\
& 01 / 79-06 / 80
\end{aligned}
\] & \[
\begin{aligned}
& 23 \mathrm{TAC.D57} \\
& \text { UNOCCUP. } \\
& 3 \mathrm{TAC.D57} \\
& 4 \mathrm{HCS} \\
& 17 \mathrm{HC}
\end{aligned}
\] & 10/77-06/79 & 11 HC & --See Space Heating--- & 04/75-06/79 & 46 HC \\
\hline TAC 58 & G & 04/75-07/79 & 51 TAC.D58 & 06/77-06/79 & 12 TAC.E58 & --See Space Heating--- & & \\
\hline TAC 75 & G & 04/75-06/80 & 62 TAC.D75 & 07/77-07/79 & 12 TAC.E75 & --See Space Heating--- & & \\
\hline TAC 76 & E & 10/77-06/80 & 16 TAC.D76 & --See Space & Heating-- & & & \\
\hline TAC 81 & E & \[
\begin{aligned}
& 08 / 75-08 / 77 \\
& 08 / 77-06 / 78 \\
& 06 / 78-06 / 80
\end{aligned}
\] & \[
\begin{aligned}
& 12 \mathrm{TAC} . \mathrm{D} 81 \\
& 5 \mathrm{HC} \\
& 12 \mathrm{TAC} . \mathrm{D} 81
\end{aligned}
\] & --See Space & Heating--- & ----------------------- & 01/78-05/79 & 8 нс \\
\hline TAC 83 & G & 04/75-09/77 & 29 TAC.D83 & & & --See Space Heating--- & 12/73-08/79 & 33 HC \\
\hline TAC 87 & G & \[
\begin{aligned}
& 04 / 75-07 / 77 \\
& 07 / 77-06 / 80
\end{aligned}
\] & \[
\begin{aligned}
& 27 \mathrm{TAC} . \mathrm{D} 87 \\
& 35 \mathrm{HC}
\end{aligned}
\] & 01/75-06/79 & 54 HC & --See Space Heating--- & & \\
\hline TAC 98 & M & \[
\begin{aligned}
& 04 / 75-10 / 77 \\
& 10 / 77-06 / 79 \\
& 06 / 79-06 / 80
\end{aligned}
\] & \[
\begin{aligned}
& 22 \mathrm{TAC} \cdot \mathrm{D} 98 \\
& 20 \mathrm{HC} \\
& 12 \mathrm{TAC} . \mathrm{D} 98
\end{aligned}
\] & 06/77-06/79 & 12 HC & --See Space Heating--- & & \\
\hline WAS 02 & B & \[
\begin{aligned}
& 04 / 75-07 / 76 \\
& 07 / 76-06 / 78 \\
& 01 / 79-08 / 80
\end{aligned}
\] & \[
\begin{aligned}
& 9 \text { HC\$ } \\
& 23 \text { WAS.D02 } \\
& 16 \text { HC }
\end{aligned}
\] & \begin{tabular}{l}
04/75-03/77 03/77-02/78 02/78-01/79 \\
01/79-08/80
\end{tabular} & \begin{tabular}{l}
23 HC\$ \\
11 WAS.E02 \\
11 HC \\
19 HC
\end{tabular} & B-See Space Heating- & & \\
\hline WAS 05 & K & \[
\begin{aligned}
& 04 / 75-10 / 76 \\
& 10 / 76-04 / 80
\end{aligned}
\] & \[
\begin{aligned}
& 7 \mathrm{HC} \\
& 20 \text { WAS.D05 }
\end{aligned}
\] & \[
\begin{aligned}
& 01 / 75-01 / 79 \\
& 01 / 79-08 / 80
\end{aligned}
\] & \[
\begin{aligned}
& 48 \mathrm{HC} \mathrm{\$} \\
& 19 \mathrm{HC}
\end{aligned}
\] & & & \\
\hline WAS 06 & 0 & \[
\begin{aligned}
& 03 / 75-11 / 76 \\
& 11 / 76-04 / 80
\end{aligned}
\] & \[
\begin{aligned}
& 6 \mathrm{HC} \\
& 18 \text { WAS.D06 }
\end{aligned}
\] & \[
\begin{aligned}
& 01 / 76-01 / 79 \\
& 01 / 79-08 / 80
\end{aligned}
\] & \[
\begin{aligned}
& 36 \mathrm{HCS} \\
& 19 \mathrm{HC}
\end{aligned}
\] & & & \\
\hline WAS 07 & 0 & 10/76-05/80 & 18 WAS.D07 & 01/77-08/80 & 43 HC & & & \\
\hline
\end{tabular}
TABLE 15 (cont.)
\begin{tabular}{|c|}
\hline B06/75-07/79 45 HC\$ --------------------------- \\
\hline B--See Space Heating \\
\hline B--See Space Heating \\
\hline
\end{tabular}
04/75-10/76 9 HC 01/75-01/79 48 HC\$
01/75-01/79 48 HC\$
1/79
09/76-03/78 10 WAS.D27 01/75-01/79 48 HC\$
10/79-03/80 2 HC 01/79-09/80 20 HC
04/76-04/78 24 WAS.D40 01/75-08/80 68 HC\$
10/79-04/80 5 HC
03/75-06/79 51 HC\$
\(\begin{array}{rrl}12 / 75-06 / 76 & 3 & \text { HC } \\ 06 / 76-06 / 78 & 12 & \text { WAS.D41 } \\ 06 / 78-04 / 79 & 5 & \text { HC } \\ 04 / 79-10 / 79 & 3 & \text { HC } \\ 10 / 79-08 / 80 & 10 & \text { WAS.D41 } \\ 04 / 75-11 / 76 & 11 & \text { HC } \\ 11 / 76-03 / 78 & 13 & \text { WAS.K41 } \\ 03 / 78-03 / 79 & 4 & \text { HC }\end{array}\) \(\begin{array}{lllll}04 / 75-11 / 76 & 9 & \text { HC } & 01 / 75-01 / 79 & 45 \mathrm{HC} \\ 11 / 76-04 / 80 & 15 & \text { WAS.D44 } & 01 / 79-09 / 80 & 20 \mathrm{HC}\end{array}\)
01/75-01/79 47 HC\$ 01/79-08/80 17 HC
01/75-01/77 24 HC\$
N
TABLE 15 (cont.)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline
\end{tabular}

\subsection*{5.3 WEEKLY READINGS DATA}

In order to obtain measurements for the purpose of being able to break out the contribution of different weatherization options--or at least classes of options--considerable metering of the major energy-using systems in the houses (e.g., space heating and service water heating) was carried out: (appropriate) fuel meters on principal (and any secondary) gas, propane, or electric furnaces (or heating units); run-time meters on furnaces; cycle counters on furnaces; a water meter on (the cold water supply line to) the water heater; and a fuel meter on the water heater. A thermometer was to be installed near the center of each occupied floor, to provide "representative" temperatures over the course of the heating season. The instructions for meter installations and for making weekly readings are listed on page 41 of the Project Plan [l]--although those were not followed to the letter in all cases. To maximize the number of data points available, and increase flexibility in the analysis process, all of these meters were to be read and reported weekly.

Since a meter reader visited each house weekly, advantage was taken of the opportunity to also record the utility (electric, gas-if present) meters. Thus, for most of the houses, for at least most of the last heating season (i.e., once meters had been installed and weekly reading began), the data include weekly readings of the utility meters, to which the utility data discussed in the previous section constitute a backup.

A standard 80-column coding sheet was modified into a special purpose recording/ reporting form for the weekly readings data (see exhibit 3). When the sheets with data were received, they were looked over for obvious editing problems (correct city code, reasonable data entries, right-justification of entries in fields), and then given directly to professional keypunchers for conversion to computer-readable form.

Once a mass of weekly readings was in the computer, the individual records had to be distributed to appropriate "house" files as the first step in the analytic process: that process has to start with a chronological set of weekly meter (or thermometer) readings for a house. A program, called SORTWRRC.FTN, was written to do this sorting. (A symbolic listing of SORTWRRC.FTN is on disk CSA3, and also in [6]. Since each weekly reading record was set up to include the city code and the house number, SORTWRRC could use that information to construct the appropriate "house weekly readings" file name for a record. If that file existed, the program opened the file, went to the end of the file, compared the date in the new record with the last meter reading date in the file, and added the new record to the end of the file. Two features of the program affected the contents of the "house weekly readings" file: l) if the interval since the last previous reading data was greater than 10 but less than 17 days (indicating that one "weekly reading" had been missed, a dummy record with "0" in each field was written before the new record. If the interval was greater than 17 days, the dummy record contains "00" in each field--indicating that two or more weekly readings had been missed. Thus, a glance at the printout of a "house weekly readings" file readily shows how consistently "weekly" the data are. 2) When a new record being written to a house file contained an earlier date than the last record in the file, the program wrote an appropriate message to a log.

Thus it is reasonably certain that all cases of "out of chronological order" records have been caught and corrected.

Although the format of the weekly readings file record is entirely different from that of the utility data files, a decision was made to use the same file name format as for the utility data files, with a "W" as the first character of the extension. These files are all located on disk volume CSA3--thus, an example volume:file name would be CSA3:CSP.W49.

The format of the data in the file is shown exactly as by the field recording and reporting form (exhibit 3).

Originally a " \(W\) " was entered in column 6 of each record so it could be identified by any program as a weekly readings record. Later, it was necessary, for the operation of analysis programs, to make changes in this convention: 1) An "S" in column 6 indicated "skip" (do not process) this record. (This was necessary for the dummy records with "0"'s or other possibly "bad" records) ; 2) A "B" was used to tell the program to "begin" determining consumption anew with the current record (i.e., do not relate it to the previous reading). (This was necessary when a meter went bad and was replaced with a new one.)

A comment is required regarding the humidity data, that should appear in columns 71 and 72. (percentage, expressed by a two-digit integer). Some sites never obtained the capability of converting wet/dry-bulb temperatures to relative humidity and simply reported the two temperatures (requiring, of course, four columns). It will be observed that there were a few spare columns at the righthand side of the recording/reporting form. These could be defined for a specifically needed use for a given house (e.g., a fifth electric-heating circuit meter). With humidity data that were reported as wet/dry-bulb temperatures one of two conventions was used: 1) "11" was entered in columns 71, 72 and the two temperatures in columns 77-80; or 2) " 12 " was entered in columns 71, 72 and the two temperatures in columns 73-76. In either case, an analysis program can be suitably instructed to read the temperatures in the appropriate columns and determine the relative humidity.

A CSS file present on the CSA3 disk will print out any house weekly readings file with a heading identifying the many columns in the file (see exhibit 4). This action is invoked by the command "CSA3:PRNTWRF [CTC], [house number]". See exhibit 5 for an example printout of the headings with some weekly readings records.

The "mass" files of weekly readings, that were sorted into the "house" files, are recorded on a tape made using the BACKUP utility. These files are named MASS[n].WRD, \(n\) being a number from 1 to 9 identifying the chronological order of the files. If it should be necessary to reconstruct a single house weekly readings file, a modification of SORTWRRC named FINDWRRC.FTN is available on disk volume CSA3 (see exhibit 6 for the CSS file that runs this program) that will do this. This is run by the command "FINDWRRC [mass weekly readings file name], [city code], [house number]". The CSS file supplies the "W" to create the house weekly readings file name. (Note that this CSS file is presently written to read the "mass" file from a disk volume called CAL, and to write the

\section*{EXHIBIT 4}
* CSS file "PRINTWRF"
*
* Prints (on PR:) "House Weekly Readings" files--with heading. *
XDELETE CSA3: PRDUMMY.;AL CSA3:PRDUMMY.,IN,80 CAL:APPEND CSA3: PRINTWRF.HDG,CSA3: PRDUMMY.
CAL:APPEND @1.W@2,CSA3:PRDUMMY.
CSA3:RCOPYA CSA3:PRDUMMY.,PR:
\$EXIT

\section*{EXHIBIT 5}

EXAMPLE PRINTOUT OF HOUSE WEEKLY READINGS DATA WITH HEADINGS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{PRINC.FRN./SPH} & 2 F/S FUEL & WAT. HT FUEL & TR. WATER & TOT. HS ELECT. & \[
\begin{aligned}
& \text { ISE. TEMPS } \\
& \text { GAS BS } 1
\end{aligned}
\] & \[
2 \text { 3A } \begin{array}{r}
\mathrm{HU} \\
\hline
\end{array}
\] & \\
\hline CTCNO RDGDT & 1 & 23 & 4 & 67 & 7 & 16 & MTF & LFL TDT9 & 5 \\
\hline CSP05W010279 & & & & & 00713100 & 00390170 & 0087516984 & 09 & 71310 \\
\hline CSP05W010979 & & 6657858 & & & & 39175 & 89997082 & 17 & 71740 \\
\hline CSP05W011679 & & 122921930 & & & & 39224 & 91337082 & 24 & 72180 \\
\hline CSP05W012379 & 7942 & 168822895 & & 1235 & 000130 & 39466 & 92466269 & 19 & 72540 \\
\hline CSP05W013079 & 9465 & 226413939 & & 2655 & 000239 & 39610 & 93805766 & 38 & 72810 \\
\hline CSP05W020679 & 0164 & 2799004993 & & 4053 & 000345 & 39755 & 95066473 & 29 & 73100 \\
\hline CSP05W021379 & 7727 & 317485843 & & 5807 & 000486 & 39891 & 96046874 & 30 & 73520 \\
\hline CSP05W022079 & 4341 & 350126520 & & 7099 & 000585 & 40012 & 96886774 & 21 & 73800 \\
\hline CSP05W022779 & 1824 & 386967428 & & 8404 & 000692 & 40130 & 97807275 & 27 & 74080 \\
\hline CSP05W030679 & 8935 & 421828313 & & 9952 & 000825 & 40251 & 98707074 & 27 & 74430 \\
\hline CSP05W031379 & 4277 & 447708960 & & 1563 & 000962 & 40365 & 99447070 & 23 & 74800 \\
\hline CSP05W032079 & 9681 & 473789601 & & 3097 & 001088 & 40471 & 00187071 & 30 & 75120 \\
\hline CSP05W032779 & 6181 & 5055710342 & & 4559 & 001217 & 40583 & 00997576 & 34 & 75500 \\
\hline CSP05W040479 & 3511 & 5413511166 & & 5518 & 001293 & 40686 & 01847478 & 25 & 75740 \\
\hline CSP05W041079 & 7255 & 5592211656 & & 6285 & 001356 & 40757 & 02306969 & 53 & 75950 \\
\hline CSP05W041779 & 0682 & 5752912103 & & 7845 & 001484 & 40863 & 02826974 & 30 & 76400 \\
\hline CSP05W042479 & 2369 & 5826712319 & & 91510 & 0015928 & 40954 & 03147077 & 27 & 76740 \\
\hline CSP05W050179 & 5523 & 5973712744 & & 06930 & 0017164 & 41063 & 03667275 & 32 & 77170 \\
\hline CSP05W050879 & 9202 & 6149313172 & & 21320 & 0018241 & 41164 & 04207776 & 27 & 77420 \\
\hline CSP05W051579 & 3307 & 6347513595 & & 37990 & 0019513 & 41269 & 04827071 & 42 & 77940 \\
\hline CSP05W052279 & 3829 & 6363013617 & & 54100 & 0020754 & 41358 & 05076668 & 38 & 78390 \\
\hline CSP05W052979 & 4713 & 6396613719 & & 6902 & 21892 & 41445 & 05326872 & 42 & 78760 \\
\hline CSP05W060579 & 6598 & 6481213954 & & 8444 & 23141 & 41541 & 05706872 & 37 & 79110 \\
\hline CSP05W 61279 & 8530 & 6568714130 & & 9896 & 24234 & 41630 & 06076973 & 34 & 79510 \\
\hline CSP05W 61979 & 8761 & 6569214135 & & 1185 & 25242 & 41699 & 06256972 & 31 & 79810 \\
\hline CSP05W 62679 & 8981 & 6569114135 & & 2692 & 26485 & 41781 & 06476969 & 55 & 80150 \\
\hline CSP05W 7379 & 8981 & 6569114135 & & 4324 & 27831 & 41856 & 06666977 & 40 & 80630 \\
\hline CSPO5W 71079 & 8981 & 6569114135 & & 6005 & 29195 & 42945 & 06876976 & 38 & 81067 \\
\hline CSP05W 71779 & 9193 & 6569114135 & & 7457 & 30416 & 42039 & 07076974 & 48 & 81616 \\
\hline CSP05W 72479 & 9403 & 6569114135 & & 8513 & 31219 & 42123 & 07237078 & 49 & 81918 \\
\hline CSPO5W 73179 & 9774 & 6576914158 & & 0089 & 32493 & 42211 & 07487171 & 52 & 82614 \\
\hline CSP05W 8779 & 9986 & 6576914158 & & 1297 & 33467 & 42285 & 07647389 & 20 & 83011 \\
\hline CSPO5W 81479 & 0194 & 6576914158 & & 2461 & 34400 & 42362 & 07887273 & 59 & 83445 \\
\hline
\end{tabular}

\section*{EXHIBIT 6}
* CSS file for program "FINDWRCS"
* Specify input (Weekly Readings "Mass" file) by:
* (Vol "CAL:" assumed)
*
@1 = "Mass" Weekly Readings filename
(extension "WRD" will be supplied.)
Specify sought-for house weekly readings by:
@2 [CTC], @3 [HSE. NO.]
(NOTE: House file will be written on CAL:, for COPYA to CSA3:)
\$IFNULL @1
\$COPY
** NO 'MASS' WEEKLY DATA FILE SPECIFIED **
\$N
\$EXIT
\$ENDC
\$IFNULL @2
\$COPY
** MISSING PARAMETER: CITY CODE **
\$NOC
\$EXIT
\$ENDC
\$IFNULL @3
\$COPY
** MISSING PARAMETER: HOUSE NUMBER **
\$NOC
\$EXIT
\$ENDC
\$IFNX CAL: @1.WRD
\$COPY
** 'MASS' DATA FILE ERROR **
\$N
\$EXIT
\$ENDC
\$IFX CAL: @2.W@3
\$COPY
** HOUSE FILE @2.W@3 ALREADY PRESENT ON CAL: **
\$NOC
\$ENDC
\$IFNX CAL:@2.W@3
\$BUILD CAL: ©2.W@3
010177
\$ENDB
\$COPY
** REMEMBER TO EDIT OUT FIRST RECORD OF @2.W@3 **
\$NOC
\$ENDC
XDELETE CAL: SORTWRRC.SCR
AL CAL: SORTWRRC.SCR,IN, 20
XDELETE CAL:SORTWRRC.INF
AL CAL: SORTWRRC.INF,IN,20
```

EXHIBIT 6 (cont)

```
```

XDELETE CAL:SORTWRRC.ERR
AL CAL:SORTWRRC.ERR,IN,80
\$BUILD CAL:SORTWRRC.INF
@1.WRD
@2 @3
\$ENDB
LO .BG,CAL:FINDWRCS
T . BG
AS1,CAL:@1.WRD,ER0
AS2,CAL:SORTWRRC.ERR
AS3,C:
AS4,CAL:SORTWRRC.SCR
AS5,CAL:@2.W@3
AS6,C:
AS7,CAL:SORTWRRC.INF
ST
\$IFE 0
CAL:COPYA CAL:SORTWRRC.ERR,PR2:
DE CAL:@1.WRD
\$EXIT
\$ENDC
CAL:COPYA CAL:SORTWRRC.ERR,PR2:
\$EXIT

```
"house" file on CAL for COPYA to CSA3. It is necessary to "BACKUP" the "mass" weekly readings onto a disk, in order for the FINDWRRC program to read them. The CSS file could be modified to write the reconstructed "house" file directly on CSA3 ) (Note also that some editing has been done to some of the "house weekly readings files"; thus, a file reconstructed from the "mass" files may contain uncorrected errors.)

The inventory tables show the beginning and ending dates of the weekly reading records, the number of records, and whether the readings for the various fields are essentially complete ("C"), partial ("P"), some ("S"), or absent ("-").

The only data in these files that have been subjected to the rigor, and consequently checking, of any mathematical analysis are the readings on space heating energy consumption run through the balance point analysis to measure "post" consumption. For houses heated with natural gas or electricity, these were the utility meter data (for comparability with the whole house, utility "pre" data). For houses heated with oil (or a kerosene furnace with an electrically driven burner), these were the run-time meter data. These analyses pointed up some errors that were corrected in the data. The final analysis results from the weekly readings data (in terms of fit as indicated by the \(R^{2}\) ) can be seen by examining the Balance Point Summary Data Files (HSBPTDTA--see section 6.0 ), where runs based on weekly readings data are identified by a "W" immediately following the ending date of the analysis period. None of the other "weekly readings" data have been subjected to any careful examination or checking, let alone analysis.

\section*{} \(C=\) complete（ \(>90 \%\) ）\(\quad \mathrm{P}=\) partial（ \(50-90 \%) \quad \mathrm{S}=\) some（ \(\langle 50 \%\) ）\(\quad\)＝none
\(\mathrm{WDB}=\) wet／dry bulb temps．TW＝house total water \(\mathrm{SGV}=2\) nd stage gas valve
\(\mathrm{W}=\) wood（ft＊＊3）\(\quad(?)=\) Check original Weekly Data sheets for what these data
\[
\begin{gathered}
\text { Field Field } \\
9
\end{gathered}
\]


 UUUA1 1 UUUUUU1UU1UU111 A～U 1 1 No．Furn．
represent.
会会会


 \(\begin{array}{llr}\text { ABE } & 03 & 09 / 79-05 / 80 \\ \mathrm{ABE} & 04 & 10 / 79-05 / 80 \\ \mathrm{ABE} & 11 & 11 / 79-05 / 80 \\ \mathrm{ABE} & 12 & 07 / 79-05 / 80 \\ \mathrm{ABE} & 20 & 09 / 79-05 / 80 \\ \mathrm{ABE} & 22 & 08 / 79-05 / 80 \\ \mathrm{ABE} & 23 & 09 / 79-05 / 80 \\ \mathrm{ABE} & 25 & 09 / 79-05 / 80 \\ \mathrm{ABE} & 27 & 10 / 79-05 / 80 \\ \mathrm{ABE} & 28 & 09 / 79-05 / 80 \\ \mathrm{ABE} & 31 & 09 / 79-05 / 80 \\ \mathrm{ABE} & 32 & 08 / 79-09 / 79 \\ & +09 / 79-05 / 80 \\ \mathrm{ABE} & 33 & 08 / 79-05 / 80 \\ \mathrm{ABE} & 38 & 08 / 79-09 / 79 \\ & +09 / 79-05 / 80 \\ \mathrm{ABE} & 39 & 08 / 79-05 / 80 \\ \mathrm{ABE} & 41 & 08 / 79-09 / 79 \\ \mathrm{ABE} & 42 & 08 / 79-01 / 80 \\ \text { ABE } & 44 & +01 / 80-05 / 80 \\ \text { ABE } & 46 & 08 / 79-03 / 80 \\ \text { ATL } & 01 & 11 / 78-06 / 80 \\ \text { ATL } & 02 & 11 / 78-06 / 80\end{array}\)
\[
\begin{aligned}
& \underset{\sim_{1}}{\stackrel{\rightharpoonup}{\bullet}}
\end{aligned}
\]
aucauvunuvivuvo
\begin{tabular}{lllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & \(A\) & 1 & 0 & 0 & 0 & 0 & 0 & 1 & \(A\) & 0 & 0 & 1
\end{tabular}

UOUA A OU1UUOUOUO 010100010001000 11111011111111110

 \(\left.\begin{array}{llllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array} \right\rvert\,\) \(\begin{array}{lllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\)

 111111101111111110111

טロuvuv I vuvuvuvuvuvuvo UUUUUAU111UA1 UU1UUU1 UO
 111101111111110 111101111111110










00
 0



 さg



UUUUUUUUUU \(\begin{array}{llllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\) UUUUUUU10～1 UUUUUUU1U～
UUUUUUU～UU
\(\begin{array}{llllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\) 111111111111 \(0 \begin{array}{lllllllll}0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1\end{array}\) טUUUUUUUטU UUAUU \＆AUUU


UUUUUUUUUU
 ৩UUUUUUソטU NANNNNかんNがN




\begin{tabular}{lllllllllllllllllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0
\end{tabular}
\begin{tabular}{|c|}
\hline Uu0u00000 \\
\hline
\end{tabular}



UOU1UAOUOUUUO10
111111110110100110


12/78-06/80




FAR 02 11/78-06/80



\begin{tabular}{l}
0 \\
\(\infty\) \\
\(\infty\) \\
0 \\
0 \\
0 \\
1 \\
1 \\
\(\infty\) \\
\(\sim\) \\
\multirow{1}{n}{} \\
\(\underset{\sim}{-}\)
\end{tabular}
11/78-06/80



\(\begin{array}{ll}0 & 0 \\ \infty & \infty \\ 6 & 6 \\ 0 & 0 \\ 1 & 1 \\ 0 & \infty \\ n & 1 \\ 0 & =\end{array}\)


 \(\circ\)
0
0
1
1
\(\infty\)
\(\vdots\)
\(\vdots\)
\(\vdots\) \(\circ\)
\(\stackrel{\infty}{\circ}\)
1
\(\vdots\)
\(\vdots\)
\(\vdots\)



\section*{}





















 \(10 / 79-02 / 80\)
\(11 / 79-02 / 80\)



 \begin{tabular}{c}
\(\circ\) \\
N \\
o \\
1 \\
\(\vdots\) \\
\(\vdots\) \\
\(\vdots\) \\
\(\vdots\) \\
\hline-1
\end{tabular}


 10/79-02/80 \(\begin{array}{ll}\text { POR } 02 & 10 / 78-04 / 80 \\ \text { POR } 03 & 05 / 78-07 / 78\end{array}\)



\begin{tabular}{lllllllllllllllllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & \(e\) & \(e\) & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & \(A\) & 0 & 0 & 0 & 0 & \(\infty\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}
\[
\underset{\sim}{\check{O}}
\]
\begin{tabular}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & \(a_{1}\) & 1 & 4 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{tabular}
111111111111 いかかいいいいいいい \(1 \begin{array}{lllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\) 1 1 1｜｜1 1｜1 1 1 11111111111 1 1

 AuUUUUUUUUUU \(A_{1} \cup A_{1} A_{1} \cup A_{1} A_{1} \cup \cup \cup\)
 A 1 A A A UU \(\cup \cup \cup \cup \cup\) 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1




 \(\begin{array}{llllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1\end{array}\)




 \(\begin{array}{llllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\)








 1111111111111111
 \(\cup \cup \cup A_{\Psi} \cup \cup \cup A_{1} \cup \cup\) A A A \(\cup \cup\) A

U1U11 1 UUUUUU1U1 A I I UUU




 \(\begin{array}{llr}\text { TAC } & 04 & 01 / 79-06 / 80 \\ \text { TAC } & 21 & 10 / 79-11 / 79 \\ & & +11 / 79-06 / 80 \\ \text { TAC } & 37 & 10 / 79-11 / 79 \\ & & +11 / 79-06 / 80 \\ \text { TAC } & 39 & 01 / 79-06 / 80 \\ \text { TAC } & 45 & 01 / 79-06 / 80 \\ \text { TAC } & 49 & 01 / 79-06 / 80 \\ \text { TAC } & 55 & 01 / 79-06 / 80 \\ \text { TAC } & 57 & 01 / 79-03 / 79 \\ & & +03 / 79-06 / 80 \\ \text { TAC } & 58 & 10 / 79-11 / 79 \\ & & +11 / 79-04 / 80 \\ \text { TAC } & 75 & 10 / 79-11 / 79 \\ & & +12 / 79-06 / 80 \\ \text { TAC } & 76 & 10 / 79-11 / 79 \\ & & +11 / 79-06 / 80 \\ \text { TAC } & 81 & 01 / 79-06 / 80 \\ \text { TAC } 83 & 01 / 79-03 / 79\end{array}\)

\(\stackrel{\overparen{C}}{0}\)

ひu 1v1vuvuvuvuvuvauvuvouv
TABLE 16 (cont.)
0 
00 UOUU1 1 UUUUUA1 UUUU1U01




    \(\begin{array}{llr}\text { TAC } 87 & 01 / 79-06 / 80 \\ \text { TAC } 98 & 01 / 79-06 / 80 \\ & & \\ \text { WAS } & 02 & 11 / 78-12 / 78 \\ & & +12 / 78-07 / 80 \\ \text { WAS } & 05 & 11 / 78-01 / 79 \\ & & +01 / 79-07 / 80 \\ \text { WAS } & 06 & 02 / 79-11 / 79 \\ & & +11 / 79-07 / 80 \\ \text { WAS } & 07 & 02 / 79-07 / 79 \\ & & +07 / 79-01 / 80 \\ & & +02 / 80-07 / 80 \\ \text { WAS } & 08 & 11 / 78-07 / 80 \\ \text { WAS } & 24 & 02 / 79-07 / 80 \\ \text { WAS } & 27 & 02 / 79-07 / 80 \\ \text { WAS } & 40 & 01 / 79-07 / 80 \\ \text { WAS } & 41 & 11 / 78-07 / 80 \\ \text { WAS } & 44 & 11 / 78-01 / 79 \\ & & +01 / 79-07 / 80 \\ \text { WAS } & 47 & 11 / 78-07 / 80 \\ \text { WAS } & 53 & 02 / 79-07 / 80 \\ \text { WAS } & 57 & 02 / 79-01 / 80 \\ & & +01 / 80-07 / 80 \\ \text { WAS } & 58 & 02 / 79-07 / 80 \\ \text { WAS } & 63 & 02 / 79-07 / 80\end{array}\)

\subsection*{5.4 MECHANICAL SYSTEMS TESTS DATA}

To provide part of the basis for selecting mechanical (heating and hot water) systems options, a set of tests was prescribed to be performed on these systems. These tests are described on pages \(42-46\) of the project plan [1]. The purposes of the tests were to determine l) the steady-state combustion efficiency of the furnace or heater (before and after cleaning and adjusting); 2) the efficiency of the distribution system (air or water) ; 3) the combustion efficiency of a (fuel-fired) water heater; 4) the recovery time of the water heater; and 5) the rate of flow of showers.

Appropriate data recording and reporting forms (illustrated on pages 47-54 of the project plan) were provided to the field agencies, along with the test instructions ("Building Heating System Data--Data Sheet 'A'", Air Distribution System (Plenum with Rectangular Cross Section)--Data sheet 'B'", etc., through "Hot Water Heater--Data Sheet 'H'").

These data exist only in the hard copy originals (in the "house files"); none were entered into any computer--all analysis of the data was accomplished by hand calculations.

The inventory (table 17, beginning on page 102) shows whether at least the " \(A\) " (furnace combustion efficiency) and "H" (water heater) data sheets are present in the file. Researchers interested in studying these data further will have to determine whether appropriate--and adequate--distribution system measurements are available for a given house.
5.5 BUILDING DIMENSIONS AND DESCRIPTIONS DATA, AND PHOTOGRAPHS

As part of the original submission of the data for nomination of a house for participation in the demonstration, site personnel were asked to submit photographs of each side of the house. These served to l) help characterize the configuration of the house, 2) show any large areas of glass (the compass orientation of which could be determined by reference to the orientation of the front of the house), and 3) provide some suggestion of the condition of the house. During the demonstration, these photographs were placed in clear plastic folders and retained in "site" notebooks, for ready reference. The folders with the photos in them now have been placed in the "house" files--so they should be readily locatable therein.

Site personnel were also requested to provide, as part of the mechanical systems tests data, photographs of the furnace or heater, the water heater, and any other significant features of the heating system. These pictures are co-located with the mechanical systems test data sheets in the house files.

To be able to perform thermal load calculations of the houses, for comparison with actual measured load, field personnel were requested to provide complete, detailed dimensional and descriptive information on the houses. (For details on this aspect of the study, see the final report of the demonstration [2].) For recording and reporting these data, a set of forms labelled "Building Measurements for Thermal Analysis" (shown on pages 69-71 of the project plan
[1]) was prepared, and copies, along with some instructions, sent out to the site agencies.

Essentially, these data were to describe: the overall dimensions of the living (heated) space of the house, the area of windows and of doors facing each compass direction, and the composition (construction) of each of the building components enclosing the heated area (walls, attic, floor, basement, windows, etc.). At several sites, some difficulty was experienced in obtaining complete and adequate building description data. Consequently, one or two "improved" copies of the forms were received from some sites. Unfortunately, none of the forms were dated, no systematic effort was made to purge the earlier inadequate data sheets, and two or three sets may be found in a house file. For convenience, the latest received data sheets were placed in front of any others in the file. Beyond that, it is hoped that examination of the data sheets will reveal which ones were inadequate or incomplete.

The raw data from these forms were never entered into a computer. They were reduced by hand calculations to such gross quantities as (areas of) "windows south", "windows east and west", "total window", "door", "walls", "basement wall", "floor", "roof", and "surface". These data, together with the appropriate \(R\)-values for "before" and "after" weatherization, were written into a set of files named "[CTC]THERM.", which are located on disk volume CSAl. The data items in these records are listed as shown below. Note that the first 12 records of each [CTC]THERM file contain weather data for use in the thermal load calculations. The building description data then follow, and each "before" or "after" set of data occupies two records:

First line: "1", СTC, House Number, " B " or " A " [solid--no spaces]; window south area; window east and west area; total window area; door area; wall area; basement wall area; (exterior) floor area; roof area; volume; floor.

Second line: Surface area; R-values for: window, door, wall, basement wall, floor, roof; infiltration rate (taken from measured average); ?; mechanical system efficiency (from tests), ?, average indoor temperature (from "eyeballing" weekly readings records) [solid].

These data are also published in appendix A of the final report [2]. Some errors have been found in these data in the course of subsequent analysis. Consequently, it would seem advisable to re-check them against the raw information on the Building Measurements for Thermal Analysis data sheets before making further use of them.

The availability of Building Measurements for Thermal Calculations data sheets is indicated on the Inventory of Miscellaneous Data, table 17 (beginning on page 102).

\subsection*{5.6 AIR INFILTRATION MEASUREMENTS AND FAN TEST DATA}

The raw "data" pertinent to "natural" air infiltration measurements were received in the form of air samples in mylar sample bags. (See the project plan [1], pages 34, 35, for a description of how this test was to be conducted).

As the air samples were analyzed in the laboratory at NBS, the gas chromatograph readings were entered on a standard data sheet (see exhibit 7). Other necessary information (city ID, house number, date of test, floor, time the sample was collected) had to be copied onto the data sheet from labels on the bags (where it was occassionally incomplete). Data on the prevailing weather conditions (outdoor temperature, wind direction, and wind speed) were also supposed to be entered on the labels. However, these measures (with the exception of the temperature) were generally made by "eyeball" and are of questionable value. (The standard guide for estimating wind speed on the Beaufort scale was provided to site personnel.)

As can be seen on exhibit 7, the form contained a format to aid in carrying out the calculations to convert a pair of \(\mathrm{SF}_{6}\) concentration readings into an air infiltration reading in "air changes/hour".

Initially, these calculations were carried out by hand calculator. Subsequently, a program was written to process these data (using a Cromemco Z-2D microcomputer). (This program is listed in [6].) The raw data from the data sheet (1 - identifying data and times, 2 - chromatograph readings, and 3 - exterior temperature--if available) would be typed in, and the computer then calculated the air exchange rate and wrote a record containing l) and 3), above, and the air exchange rate (for each floor of multi-floor houses). Note that separate air infiltration measurements (each requiring a pair of time-separated air samples) were specified to be made for each floor of two- or three story houses.

Other computer programs were written to l) produce (unweighted) "house average" air exchange rates for multi-floor houses, and 2) collect all "house" readings for a house into a single record, listing a) the (unweighted) average of the individual readings, b) the number of readings, and c) the individual readings. The inventory data reported in table 17 are taken from the above listings (which are on "floppy disk" volumes)--i.e., these constitute "successful" tests. Note that the inventory shows how many readings were obtained "before," "during," and "after" the carrying out of infiltration work on the house.

It should be noted that some "bags received" did not result in air infiltration readings, for such reasons as: l) crucial data (e.g., time) missing from a bag label, 2) inability to obtain usable \(\mathrm{SF}_{6}\) concentration data from the air sample bag (due either to oversaturation or too low a concentration), or 3) finding a higher concentration in the second bag than in the first (mislabeling? contamination from a local source? non-representative collection of the air sample?).

The fan test is described in the project plan [1, p. 35]. The data from these tests were recorded and reported on forms as shown in exhibit 8a.

EXHIBIT 7
AIR INFILTRATION (BY SAMPLE BAG) DATA WORKSHEET (Reduced from original \(81 / 2 \times 11\) size.)


NOTES: 1 - Average "standing current"
2 - Average \(\mathrm{SF}_{6}\) reading
3 - \(\mathrm{SF}_{6}\) concentration
4 - Air exchange rate (air changes/hour)
5 - Carbon monoxide concentration (parts per billion)

\section*{Pan Preasurieation Fest Date form}
aty Cuepso Sxinus
Bouse \(\qquad\) 12/3/79

Lecation of gan affin coor. Eovidn
Door 8 Mindous closed - yes \(X\) No (If MO explain)


Basically, a fan test was to be performed before any infiltration work was done to the house, and a second test performed after infiltration work was completed. Some sites recognized the usefulness of the fan test as a diagnostic tool and carried out and reported several tests over the course of the demonstration. Unfortunately, the data form as originally distributed did not have a blank for the "date," and field personnel tended not to record the date. In some cases there may be ambiguity about the chronology of reported tests, or about their relationship to infiltration work. On the other hand, some field personnel, fortunately, had the presence of mind to record on the data sheet, not only the date, but also something about the situation (i.e., "with fireplace cover in place", or "without fireplace cover"). Where it has been possible to determine that a fan test was "before commencement of infiltration work" or "after completion of such work", that is indicated in the "B" and "A" columns of the inventory in table 17. (In cases where the data form does not contain a date, the staff determined an approximate date when the data were processed, and such dates were entered in the computer files.

The data from these tests were analyzed, using the Cromemco micro-computer, to obtain a "standard induced air exchange rate at 50 Pa indoor-outdoor pressure difference." An example of the output of this analysis program is shown as exhibit 8 b . (This program is listed in [6].)

Most, but not all, of the raw data are recorded on Cromemco-compatible floppy disks. Where several "post" fan tests were reported for a house, not all have been entered into the computer files.

\subsection*{5.7 TEMPERATURE STRATIFICATION DATA}

The "temperature stratification" test was originally conceived as one form of quality check on weatherization work: it would be expected that extremes of interior temperatures under severe winter conditions would be reduced by the installation of many of the weatherization options. Before weatherization, such extremes obviously could occur as inordinately low temperatures, but also possibly as undesirably high temperatures in certain areas, resulting from occupants turning up their thermostats to try to attain comfortable temperatures in much-used living spaces. The collection of temperature profiles of the houses became of even more value for future study in connection with some of the data obtained later through the occupant questionnaires (see below, section 5.12)--namely, that on occupant attitudes about comfort and temperature impressions.

The instructions for this test in the project plan [1, page 36] were incomplete and inadequate to obtain useful temperature stratification data. More complete instructions (see exhibit 9) were sent to the field agencies for guidance in obtaining these measurements. Again, a special-purpose data recording and reporting form was designed and provided to the field personnel (see exhibit 10a). Although this in no way resembled a standard 80 -column coding sheet, the small numbers indicating card and column locations for the data provided sufficient guidance that keypunchers were able to punch these data efficiently directly from the coding sheets. (Some editing of the data sheets was generally required before they were given to the keypunchers: ensuring right-justification

\author{
EXHIBIT 8b \\ EXAMPLE OUTPUT OF FAN TEST ANALYSIS PROGRAM
}
```

FRR 13 DATE OF TEST 12-10-78 LOCATION OF FAN .- FD
HOUSE VOLUME = 7680. FTee3
COEFFICIENTS OF THE EQUATION: Q-C*(DP)EB
C=.3972E+B2 (t/-.3367E+81)
B = .4192E+00 (+/- .3420E-01)
025 = 15.13 /HR
050 = 20.23 JHR
Re*2 = .9678E+08

```
\begin{tabular}{ccccc} 
PRE5S & 0 & PRED & RESID & RPM \\
.025 & 7.85 & 8.46 & .61 & 555. \\
.850 & 11.67 & 11.31 & -.36 & 878. \\
.075 & 14.25 & 13.41 & -.84 & 1118. \\
.108 & 15.98 & 15.13 & -.86 & 1328. \\
.150 & 18.65 & 17.93 & -.73 & 1788. \\
.280 & 18.76 & 20.23 & 1.47 & 1984. \\
.225 & 28.50 & 21.25 & .75 & 2191.
\end{tabular}
```

STD. ERROR = 1.820

```

\title{
 Reporthes iocelthos of rater bester \\ Pecordiag/reporting cate of ventherleation uork \\ Sappratara stracifiestion mesurcasnes
}
 mesur enen cos feporths atretlficesion deta.


 ested la the posolble preosace of e ebla layer of cold enf 0 on the floor that ean encerbete arthorlels probles of eccupante.)
2. On af ridicvel-about chest baight of a cending peroon.
3. are ebrot a foot belov twe celilas.

Theee arearcente are bo be mathiy, in the center of ach ining opece ( 800 m ). ( 00 eot pother ribs apeces quiler than obout 5 z 8 fezt, closets, ctc.) In exdicion, in ach epace that has an exterior mall, ve wat a cesurenat (set of readings) taken nom the sidde of each mostertot
 reop, chrea mosuresonts ehould bo cerce in tht space-one at tho center and ono by asch of the cxtatior vaile. If thare is e regulariy usod iviog epace io the beosent, resourceente should be takea in that rooe.
 tent that: 1) the mesuremente be tevet the esos locetions each soath,



 B6.0










 erature at the borse by tharromater (che digital one can bo ased-lut jost Fecord cha searect solole dagroos). If yoo can obtaln the larast riad apeed
 Juet obserpe the opand sy the ixdication sbow on the excloend "coden" ebeot. Ion can aleo call by cboervins wether it is "clear". "pertiy oloody" or "cospletely overchet." Eoce that for esanuresente taken mear
 The inteator cemperature medings ers to be recorded to the mareot ceach - 1 - degree.

* lise codos provided on separate sheet.
of numbers in the heading information on card 1 ; ensuring that the time was recorded as a two-digit (nearest) hour in columns 13, 14 ; with larger houses, where the readings continued over to a second page, crossing out the heading (card 1) section of the second page).

Along with the instructions for obtaining the measurements, a set of codes was provided for recording the descriptive data (see exhibit l0b). (The list of room-type codes was extended several times during the course of the demonstration.)

We were not concerned about comparability of temperatures between houses for particular types of rooms, but were concerned about test-to-test comparability of the readings for a given house--i.e., consistency in the locations at which temperatures were recorded and the room designations--thus, the request that sketches showing the arrangement and designations of rooms (for each occupied floor) of the houses be prepared, that the locations of temperature stratification readings be marked thereon, a copy sent to NBS, and a copy be used as guidance for field personnel when they took the monthly measurements. (One site missed the point, and for several months sent in new floor diagrams, each with somewhat different reading locations.)

We did encounter a few problems with changed room designations as room uses actually changed over the two years of this data collection. Since these codes provide the basis for possible future linkage of temperature stratification measurements of specific rooms and locations with the comfort and temperature ratings of the rooms and locations (see Occupant Questionnaires, section 5.12 below), some effort has been made to ensure uniform designations for a particular house. For the data that are in the computer disk files, such consistency can be reasonably assumed. For the data that are available only in hard copy, checking and editing is probably still required.

The inventory (table 17) shows the numbers of temperature stratification test data sets in the computer files, and those in hard-copy, only, in the "house" files. All of the computer files (along with associated programs) are on disk CSAl. The individual readings on individual houses have been edited together into "mass" files by site, with the file name CSAl:[CTC]l.TST. Within these files the readings are arranged in order 1) by house number, and 2) chronologically within house numbers. Thus, an analysis program (such as STTANAL2.FTN, a source listing of which is on disk volume CSAl and also in [6]) can process these files, printing out the results of each temperature stratification "test" of a house, and writing single lines of results to summary data files in house number and chronological order. Both programs write a one-line summary data file CSAl:TSTRANAL.[CTC], which summarizes the physical measurements recorded. Program STTANAL3 also writes to another summary data file (TSTSTAT.[CTC]) the results of some statistical analysis of the data.

Both of these programs "look up" the dates of weatherization work on a house in the proper HSOPTDTS.[CTC] file (see Options Installed Data, section 5.9), and print at the top of the house/test output listing appropriate messages relating the date of the test to the status of weatherization work on the house.
WIND: Use Beaufort number asshown on other side. by walls):
North ..... 1
Northeast ..... 2
East ..... 3
Southeast ..... 4
South ..... 5
Southwest ..... 6
West ..... 7
Northwest ..... 8
Center ..... CROOM:
Living room ..... LR
L1
L2
DIRECTION (of wind)
DIRECTION (of wind) ..... L3
LOCATION (of measurements
LOCATION (of measurements Dining room ..... DR
Kitchen ..... KT
Kitchen-Dining Rm. ..... KD
Hall ..... HL
Bedroom 1 ..... B1
(up to) ..... \(\downarrow\)
Bedroom 7 ..... B7
Family room ..... FR
Sun room ..... SR
Bathroom 1 ..... W1
Bathroom 2 ..... W2
Living-Dining room ..... LD
Play room ..... PR
Utility room ..... UT
Store room ..... ST
unidentified ..... R1R2

CLOUD COVER:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Clear & C & By a: & Window: & Yes & Y \\
\hline Partly cloudy & P & & & No & N \\
\hline Overcast & 0 & & & and & * \\
\hline & & & Register & & R \\
\hline
\end{tabular}

FLOOR:
\begin{tabular}{llc} 
lst & 1 & Adjacent to unheated space \\
2nd & 2 & (e.g., garage, storage shed) \\
3rd & 3 & \\
Attic & A & \\
Basement & B &
\end{tabular}

\subsection*{5.8 MIN/MAX TEMPERATURES DATA (ATTIC BY-PASS TEST)}

One finding from the earlier Twin Rivers, New Jersey, house energy-conservation research was that there often existed, in houses that had supposedly been thoroughly weatherized, leakage paths by which heated air in the house convected into unheated spaces--particularly the attic.

In the CSA Demonstration, a simple test was devised to identify the presence of such leakage paths after the houses had been weatherized (see project plan [1], page 36). This test required setting up three maximum/minimum recording thermometers at the house late in the day, and reading them the next morning-i.e., obtaining overnight maximum and minimum readings. The thermometers were to be located 1) near the ceiling of the uppermost occupied floor, 2) in the attic, and 3) near the house, outdoors. As can be seen in table 17, some sites conducted this test several times, others only once or not at all. These data have never been analyzed, due to unavailability of resources.

\subsection*{5.9 OPTIONS INSTALLED DATA}

As the Selection of (Architectural, or Mechanical) Options sections of the project plan [1] make clear, the options specified to be installed varied from house to house, even in a given city. This was particularly true of mechanical options, which had to be tailored to the nature of the existing heating system (assuming it was not replaced in its entirety). However, even the specified architectural (building shell) options differed, depending on construction type and the fuel used for space heating (i.e., fuel price). Further differences were generated in the field installation of options (e.g., the house already had good storm windows; the house already had wall insulation; there were no broken windows, or loose glazing, to be repaired; the homeowner refused to permit drilling of the walls to blow in insulation; the arrangement of the attic limited the amount of insulation that could be installed, etc.).

Two different media existed for reporting the options actually installed in a house: 1) Cost data for each option installed in each house were to be reported. (These data went directly to the economists who were working on the analysis of the economic aspects of the study.) 2) The site agencies were requested to report, regularly, options installed, by house, and the dates of installation (needed so that results of periodic tests could be related to the status of various individual options or groups of options).

To organize these options/dates data, two forms were made up for each site, with house numbers across the top and all the options (architectural or mechanical, respectively) prescribed for any house at the site listed down the left margin. Where a particular option was not prescribed to be installed in a particular house, the appropriate box of the matrix was filled in with an "X". The rest of the boxes remained to be filled in with information (either a date, or some indication that the option was not, in fact, installed on that house).

As a check of (and solicitation for more of) these data, copies of the forms were reproduced and sent out to the site agencies, with a request to check the data against their records and fill in any remaining blanks.

In the spring of 1980 , the Project Manager visited each site, and endeavored to inspect each of the houses to spot-check the quality of weatherization work, verify building dimensions and descriptions, and make note of any energyaffecting peculiarities about the house or household that might not have been picked up in response to the prescribed data-gathering requirements. Although there was not time to systematically check the options installed in the houses in their entirety, some changes in the "options installed" data sheets were made based on these site visits.

When assembling the final results of the demonstration, we endeavored to verify the correctness of the "options installed" and the dates data. This proved to be no easy task. In a number of cases, costs were reported for options which were reported "not installed" or for which no date was reported-or vice versa. There were also inconsistencies between a date reported and field trip observation of non-installation of the option. The researchers spent the better part of a week working to try to resolve these inconsistencies--without achieving complete satisfaction. The individual options-installed data (given in tables 14 through 25 of the final report [2] and the installation dates data (see below for physical location) represent our best judgment, and are probably better than 90 percent correct.

The dates of installation of individual options were never computer-recorded, and exist only on the hard-copy data sheets in the city files, under Miscellaneous Data.

To be able to readily compare the dates of periodic tests against the status of option installation work, a set of summary-data computer files was written-one for each site. These files are on disk volume CSAl, are named HSOPTDTS.[CTC], and contain the dates of: 1) first infiltration work, 2) last infiltration work, 3) first conduction work, 4) last conduction work, 5) first mechanical systems work, 6) last mechanical systems work, and 7) service hot water system work. (The latter was usually completed within 1 or 2 days. Where it was spread over a longer time period a "55" flag was entered for the month, and the reference to the hard copy records is necessary to find the actual dates involved.)

A CSS file on CSAl will print any of these "option dates" files, together with a heading and footnotes (see exhibit 11). This is initiated by the command: CSAl: PR20PDTS [CTC].

Essentially these files should contain only the experimental (weatherized) houses. However, it has been mentioned that weatherization or other energy useaffecting work was done to some of the control houses. Such houses do appear in these files with "(C)" following the house number.

It is clear that these files can be easily read by a computer program. Although they contain some summary and notational information at the end that does not conform to the main record format, the last house entry in each file is followed by "***" in the "city code" field. The program will be reading this field under an alphabetic format instruction, and the "***" can be interpreted as "end of file" and appropriate action taken.
* CSS file "PR2OPDTS"
* To print HSOPTDTS files (with heading) on PR2:

Use first parameter (@1) to specify site/city.
夫
XDELETE CSAl:TABLEDTE.
AL CSAl:TABLEDTE., IN, 20
D T , CSAl:TABLEDTE.
XDELETE CSA1:PRDUMMY
AL CSAl:PRDUMMY,IN, 80
CSA1:COPYA CSA1:TABLEDTE,CSA1:PRDUMMY,,10
CSA1:APPEND CSA1:HSOPTDTS.HDG,CSA1:PRDUMMY
CSAl:APPEND CSA1:HSOPTDTS.@1,CSA1:PRDUMMY
CSAl:APPEND CSAl:HSOPTDTS.FNT, CSA1:PRDUMMY
CSA1:COPYA CSAI:PRDUMMY,PR2:
DE CSAl:TABLEDTE;DE CSAl:PRDUMMY

Efforts were made to inspect by thermographic camera all house walls that were supposedly insulated, to obtain some indication of the thoroughness and overall quality of insulation work. In 105 of the houses, an even more extensive thermographic inspection was carried out, sometimes in conjunction with depressurizing the house (see Air Infiltration Measurements and Fan Test Data, section 5.6 ) to look for points of leakage around sill plates, wall-ceiling joints, window and door frames, wall electrical outlets, switch plates, etc.

The raw thermographic data exist in the form of photographic prints (Polaroid or from negatives), \(35-m m\) negatives, and video tape, and are all under the custody of Dr. Richard Grot, Physical Environment Division, Center for Building Technology, NBS. Some examples of raw thermographic data are shown in exhibit 12. The thermography records were analyzed to look for the following types of thermal defects in weatherized houses:
```

missing wall insulation
insulation shrin?age/fissures
defective ceiling insulation
air leakage at doors
frame heat loss at: doors
windows
joint heat loss: wall-wall
wall-ceiling
wal1-f1oor
heat loss at soffits
heat loss at eaves
heat loss at basement/crawl space
cold air penetration: ceiling

```

A table listing the incidences of these defects occuring in the first 65 houses surveyed (i.e., those completed in the winter of \(1978 / 79\) ) is included in the final report of the demonstration ([2], table 26). For further discussion of these data and their significance, see [5].

EXHIBIT 12
EXAMPLES OF RAW THERMOGRAPHY RECORDS

23. LIVING ROOM WALL - VISUAL


2c. DINING ROOM WALL - VISUAL


2b. INTERIOR THERMOGRAM OF 2 a .


2d. INTERIOR THERMOGRAM OF 2 c .

\subsection*{5.11 OPTIONS COSTS DATA}

Detailed data on the costs of weatherizing the houses in each city were collected. The weatherization work was separated into various retrofit techniques, called weatherization options. For each option done to a house, the cost data consisted of the total cost of the option, separated into labor, materials, and overhead costs; the labor type (contracted or in-house); the amount of work done, measured in lineal or square feet (job size); and physical aspects of the houses that could have some bearing on the value of energy savings, such as fuel type for water and space heating.

This information was numerically coded and put into formatted Data Files in the computer so that it could be analyzed. Index Files for the numerical codes were created to aid in accessing the information. The results of statistical analyses of the cost data were put into Summary Files for easy reference. The analyses concerned calculation of measures of central tendency and variation of unft costs. These measures were taken for groups of data categorized according to option, city, and labor type. For one study, the statistics were calculated for each option/city combination so that cost comparisons could be made among the different cities. For another study, the statistics were calculated for each option/city/labor type combination so that the comparisons could be extended to the labor types.* All of the resulting descriptive statistics are in the Summary Files described in this report.

These cost data can serve a number of research purposes. First, by comparing the cost information to the energy savings information described earlier in this report, it can be determined which combinations of options would pay for themselves over time. Second, the cost data could also be used to see whether economies of scale are present in installation costs of architectural options. Third, by applying a regression analysis to the attic insulation cost data, the marginal cost of increasing insulation could be measured. Fourth, the data could be used to develop a cost prediction model incorporating such factors as region, architecture of the house, and labor type.

This section describes the format of the three types of files (Index, Data, and Summary), the data contained in them, and the uses for the data. Subsection 1 describes the Index Files, subsection 2 the Data Files, and subsection 3 the Summary Files. All of the files discussed in this section are on disk volume "cos2."
5.11.1 Index Files

An Index File lists all possible values of a variable. There are four Index Files: ARCOPT lists architectural options, MECOPT lists mechanical options, CITIES lists the cities in the project, and FUELS lists the fuel types for water and space heating in the house studied.

\footnotetext{
* For a detailed description and the results of this second study, see reference [3].
}

Exhibit 13 is a listing of ARCOPT. The first 11 options are infiltration options and the rest are conduction options. Some options are listed twice to distinguish between cost data for an option installed by in-house labor and cost data for the same option installed in the same city by contracted labor. After each option name is an indication of the units in which the job size is measured. The second Index File, MECOPT, is listed in exhibit 14. The first 11 options are space heating options and the rest are water heating options. The third Index File, CITIES, is shown in exhibit 15. It is a listing of the 15 cities originally included in the project. Cost data for Miami and New Orleans were not submitted. In the Summary Files, the remaining cities are often referred to by three-letter codes. In CITIES, each city name is preceded by a code made up of the city's three-letter code followed by "II." The final Index File, FUELS, is presented in exhibit 16. It lists the six fuels used by furnaces, space heaters, and water heaters in the houses studied in this project.

In each of the four Index Files, the values of the variables in the file are listed sequentially according to variable number. For example, in ARCOPT the architectural options are listed according to option number. Thus, architectural option number 1 is "REPLACE BROKEN GLASS," option number 12 is "INSTALL STORM WINDOWS," and option number 13 is also "INSTALL STORM WINDOWS." Likewise, looking at the listings for the other index files, it is seen that mechanical option number 1 is "FLUE/VENT DAMPER," city number 1 is "ALBUQUERQUE, NM," and fuel number 1 is "GAS." In the Data Files, the variables are all referred to by these variable numbers, rather than by name.

\subsection*{5.11.2 Data Files}

The second type of file is the Data File. This type of file lists the cost data in formated form, with much of the data given by numerical codes. Since it contains formatted numerical data with no headings, it is the best suited of the three types of files for use in conducting further computer analyses.

For each city, there are two classes of Data Files and two files of each class. Exhibit 17 shows the four Data Files for a city, the class of each, and what type of data is contained in each. The first class gives cost data for a city categorized by option, and the second gives data categorized by house. For Fargo, for example, the two files in the first class are FARARC and FARMEC and the two in the second class are FARHARC and FARHMEC (for any other city the file names are the same except that the particular city's three-leter code is substituted for "FAR").

FARARC and the equivalent files for the other cities contain architectural cost data grouped by option. For each option there is a line indicating the option number and labor type. The option line has a zero, the option number, and the labor type code ( 1 for in-house, 2 for contracted) with each value followed by one blank space. Each option line is immediately followed by lines containing the cost data for the houses in which the option was installed, one line for each house. For attic insulation options, each house line gives the house number, job size, \(R\)-value added, labor cost, materials cost, and total cost, each value followed by one blank space. For all other options, a house line

EXHIBIT 13

\section*{LISTING OF COST DATA INDEX FILE "ARCOPT"}
```

"REPLACE BROKEN GLASS","SF"
"RESET GLAZING","LF"
"REPLACE THRESHOLDS","LF"
"SEAL STRUCTURAL CRACKS","LF"
"WEATHERSTRIP WINDOWS","LF"
"CAULK WINDOWS","LF"
"WEATHERSTRIP DOORS","LF"
"CAULK DOORS","LF"
"WEATHERSTRIP ATTIC HATCH","LF"
"CAULK WINDOWS AND DOORS","LF"
"WEATHERSTRIP WINDOWS AND DOORS","LF"
"INSTALL STORM WINDOWS","SF"
"INSTALL STORM WINDOWS","SF"
"INSTALL STORM DOORS","SF"
"INSTALL TRIPLE GLAZING","SF"
"INSTALL TRIPLE GLAZING","SF"
"INSULATE BASEMENT WALLS WITH CELLULOSE","SF"
"INSULATE BASEMENT WALLS WITH FIBERGLASS BATTS","SF"
"BASEMENT HIGH R SHEATHING \& FIBERGLASS BATTS","SF"
"INSULATE BASEMENT WALLS WITH UF FOAM","SF"
"INSULATE CRAWL SPACE WITH STYROFOAM","SF"
"INSULATE CRAWL SPACE WITH UF FOAM","SF"
"INSULATE FLOOR JOISTS WITH FIBERGLASS BATTS","SF"
"INSULATE RIM JOISTS WITH FIBERGLASS BATTS","LF"
"INSULATE RIM JOISTS WITH UF FOAM","LF"
"INSULATE RIM JOISTS WITH CELLULOSE","LF"
"INSTALL FOUNDATION VAPOR BARRIER","SF"
"INSTALL FOUNDATION VENTS","SF"
"INSULATE WALLS WITH CELLULOSE","SF"
"INSULATE WALLS WITH CELLULOSE","SF"
"INSULATE WALLS WITH UF FOAM","SF"
"INSULATE WALLS WITH FIBERGLASS","SF"
"INSULATE ATTIC WITH ROCK WOOL","SF*R-VAL"
"INSULATE ATTIC WITH CELLULOSE","SF*R-VAL"
"INSULATE ATTIC WITH CELLULOSE","SF*R-VAL"
"INSULATE ATTIC WITH FIBERGLASS","SF"
"INSTALL ATTIC VENTS","SF"
"MISCELLANEOUS CONDUCTION OPTIONS","**"

```

EXHIBIT 14
LISTING OF COST DATA INDEX FILE "MECOPT"
"FLUE/VENT DAMPER"
"FLUE/VENT RESTRICTOR"
"ELECTRONIC IGNITION"
"TWO-STAGE GAS VALVE"
"DERATE FURNACE"
"REPLACE BURNER"
"REPLACE FURNACE"
"INSULATE DUCTS/PIPES"
"RADIATOR REFLECTOR"
"SET-BACK THERMOSTAT"
"INSTALL AQUA BOOSTER"
"NO OPTION"
"INSULATE WATER HEATER"
"REPLACE WATER HEATER"
"REDUCE TEMPERATURE OF WATER HEATER"
"SHOWER FLOW RESTRICTOR"
"TIMER ON WATER HEATER"
"OVERFLOW PIPE FOR RELIEF VALVE"
"REPAIR WATER HEATER"
"HOT WATER HEATER THERMOSTAT"
"FLUE DAMPER WATER HEATER"

EXHIBIT 15
LISTING OF COST DATA INDEX FILE "CITIES"
```

ALBII, Albuquerque NM
ATLII, Atlanta GA
CHAII, Charleston SC
CHIII, Chicago IL
CSPII, Colorado Springs CO
EASII, Easton PA
FARII, Fargo ND
MIAII, Miami FL
MSPII, Minneapolis/St. Paul MN
NORII, New Orleans LA
OAKII, Oakland CA
PORII, Portland ME
STLII, St. Louis MO
TACII, Tacoma WA
WASII, Washington DC

```
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ Classes } & \multicolumn{2}{|c|}{ DATA TYPE } \\
\cline { 2 - 3 } & Architectural 0ptions & Mechanical 0ptions \\
\hline \begin{tabular}{c} 
1: Data Organized \\
by Option Type
\end{tabular} & [CTC]ARC & [CTC]MEC \\
\hline \begin{tabular}{c} 
2: Data Organized \\
by House
\end{tabular} & [CTC]HARC & [CTC]HMEC \\
\hline
\end{tabular}
gives the house number, job size, labor cost, materials cost, and total cost, each value followed by one blank space. If the labor or materials cost was not reported for a house, the unknown cost was entered as zero as a flag value. If the job size was not reported, it was coded as 1 . Exhibit 18 shows a section of FARARC giving cost data for architectural option number 15, "INSTALL TRIPLE GLAZING." There were 13 houses in Fargo to which this option was applied.

The second Data File for Fargo in the first class is FARMEC. It contains cost data for mechanical options. For each option there is a line indicating option type. It is made up of a zero, one blank space, and the option number. Immediately following the option line are lines giving cost data for the house in which the option was installed, one line for each house. Each house line has the house number, the fuel type code, the labor type code, and the total cost, each value followed by blank space. Exhibit 19 shows a section of FARMEC, giving cost data for one mechanical option number 10 , "SET BACK THERMOSTAT." There were nine houses in Fargo to which this option was applied.

The first Data File for Fargo in the second class is FARHARC. It contains architectural cost data categorized by house. In FARHARC, there is one line for each option installed in each house. Each line gives the house number, option number, cost per job size, job size, and total cost. If the job size was not reported, it was coded as 1 , which has the effect of making unit cost equal to the total cost. Each value in the line is left-justified in a field of 15 spaces. All lines for the same house are grouped together, and there is a blank line separating sets of lines for different houses. Exhibit 20 shows a section of FARHARC, giving cost data for houses 6 and 10 in Fargo.

The other Data File categorizing cost data for Fargo by house is FARHMEC, which stores mechanical cost data. Each line contains a house number, option number, total cost, and fuel type number. Each value is left-justified in a field of 15 spaces. All lines for the same house are grouped together, followed by a blank line to set one house off from the next. Exhibit 21 shows a section of FARHMEC, giving cost data for houses 6 and 10 in Fargo.

Note that some cities had no mechanical work done, and thus have neither a [CTC]MEC file nor a [CTC]HMEC file.

EXHIBIT 18
SAMPLE LISTING FROM "FARARC"
```

0 15 2
5 93 50.00 48.64 151.82
32 153 114.00 80.27 273.56
27 96 30.00 52.73 182.15
25 168 58.00 87.88 269.91
15 113 34 59.68 186.04
30 133 57.6 76.37 230.62
35 60 21.53 31.75 100.86
10 91 41.59 12.31 92.4
11 190 89.58 99.44 352.14
36 69 33.61 39.41 118.65
17 86 58 49.53 198
2 95 58 52.53 216
6 139 65.51 72.87 234.13

```

EXHIBIT 19
SAMPLE LISTING FROM "FARMEC"
010
51154.17
301154.17
321154.17
21154.17
171154.17
103154.17
113154.17
253154.17
63154.17

\section*{EXHIBIT 20 \\ SAMPLE LISTING FROM "FARHARC"}
\begin{tabular}{lll}
6 & 5 & .4 \\
6 & 15 & 1.68 \\
6 & 31 & .58 \\
6 & 34 & .24 \\
6 & 6 & .22 \\
6 & 8 & .13 \\
6 & 9 & .84 \\
6 & 7 & .69 \\
6 & 21 & 1.56 \\
10 & 5 & .92 \\
10 & 7 & .59 \\
10 & 15 & 1.01 \\
10 & 31 & .54 \\
10 & 34 & .25 \\
10 & 6 & .27 \\
10 & 8 & .13 \\
10 & 9 & .84 \\
10 & 38 & 1.05
\end{tabular}

198
139
848
690
198
34
8
32
288
119
37.3

91
864
729
119
34
8
268
            7
10
10
10
13
10

1265
3
\(54.17 \quad 3\)
\(19.5 \quad 3\)
\(65.07 \quad 3\)
1170
3
\(54.17 \quad 3\)
\(19.5 \quad 3\)
\(65.07 \quad 3\)

\section*{EXHIBIT 21 \\ SAMPLE LISTING FROM "FARHMEC"}
\begin{tabular}{ll}
6 & 7 \\
6 & 10 \\
6 & 13 \\
6 & 17 \\
10 & 7 \\
10 & 10 \\
10 & 13 \\
10 & 17
\end{tabular}
80.87
234.13

495
170
43.20
4.50
6.77
22.18
449.92
109.6
22.18
92.4
470.77
184.23
32.4
4.50
6.77
282.00

\subsection*{5.11.3 Sumary Files}

The third type of file is the Summary File. The Summary Files are all derived from the data Files, with the exception of the House Summary Files, which incorporate some additional information about the data.

The House Files contain basically the same information as the Data Files, but all costs for a house, both for architectural and mechanical options, are in the same file, and some of the work done is more fully described. There is one file for each house in the project, and the cost data are grouped according to option class (i.e., infiltration; conduction; and mechanical systems, broken down into "furnace options" and water heating options). The unit and total costs are given for each option, subtotals are given for each option class, and a grand total is given for all work done on the house. Exhibit 22 is one of the House Files, FARIIF10.

In the House Files the option descriptions were expanded in several ways. When costs for two options were reported in such a way that they were inseparable between options, to avoid double counting, the data were recorded as a cost for only one of the two options in the Data Files. In the House Files, the option heading indicates that the cost is for both options. Also unlike the Data Files, when the job size is unknown, the unit cost is not set equal to total cost in the House Files. Instead, a row of asterisks appears in the unit cost column. A third difference between House Files and Data Files is that when it was known that the cost data received were estimated, an "E" was entered after the estimated cost in the house file. However, since the estimations were done by the project managers at the sites, they should be fairly accurate. A final difference is that when work was done that could not be fitted into any specific option type listed in the options Index Files, it was reported in the Data Files as miscellaneous work, but listed in the House File under its full description.

The House File names are composed of the city's three-letter code, followed by "IIF," followed by the house number. For example the House File in figure 10, FARIIF10, is the file for house number 10 in Fargo.

A second type of Summary File is the Option/City File, which gives summary statistics for the costs for each architectural option in each city. For most options, each file reports labor type, the number of houses in which the option was installed, and the minimum, maximum, mean, and median of: job sizes, unit labor costs, unit materials costs, unit overhead costs, and unit total costs reported for the houses in that city. It also gives the mean total cost and standard deviation, both weighted by job size. For attic insulation options, the information given in the Option/City File is slightly different. It includes the minimum, maximum, mean and median of the \(R\)-value added, and the mean total cost and standard deviation are weighted by both R-value and job size. Exhibit 23 shows an example of one of these files, this one called FARIIA5. This and all other Option/City File names were constructed by taking the city's threeletter code, and adding "IIA" and the option number. Thus, the name FARIIA5 indicates that the file gives summary statistics for the cost of weatherstripping windows in Fargo. When both types of labor were used to install an option in

EXHIBIT 22
SAMPLE "HOUSE" FILE OF COST DATA

FARGO ND
HOUSE NUMBER
10

\begin{tabular}{|c|c|c|}
\hline INFILTRATION OPTIONS & \[
\begin{aligned}
& \text { UNIT } \\
& \text { COST }
\end{aligned}
\] & \[
\begin{aligned}
& \text { OPTION } \\
& \text { COST }
\end{aligned}
\] \\
\hline WEATHERSTRIP WINDOWS & \$.92/LF & \$109.60 \\
\hline CAULK WINDOWS & \$.27/LF & \$32.40 \\
\hline WEATHERSTRIP DOORS & \$.59/LF & \$22.18 \\
\hline CAULK DOORS & \$.13/LF & \$4.50 \\
\hline WEATHERSTRIP ATTIC HATCH & \$.84/LF & \$6.77 \\
\hline TOTAL INFILTRATION COST & & \$175.45 \\
\hline \multirow[t]{2}{*}{CONDUCTION OPTIONS} & UNIT & OPTION \\
\hline & COST & COST \\
\hline INSTALL TRIPLE GLAZING & \$1.01/SF & \$92.40 \\
\hline INSULATE WALLS WITH UF FOAM & \$.54/SF & \$470.77 \\
\hline INSULATE ATTIC WITH CELLULOSE & \$.25/SF & \$184.23 \\
\hline INSULATE BASEMENT WALLS WITH THERMAX BOARD & \$1.05/SF & \$282.00 \\
\hline TOTAL CONDUCTION COST & & \$1029.40 \\
\hline FURNACE OPTIONS & & \[
\begin{aligned}
& \text { OPTION } \\
& \text { COST }
\end{aligned}
\] \\
\hline REPLACE FURNACE & & \$1170.00 \\
\hline SET-BACK THERMOSTAT & & \$54.17 \\
\hline TOTAL FURNACE COST & & \$1224.17 \\
\hline HOT WATER HEATING OPTIONS & & \[
\begin{aligned}
& \text { OPTION } \\
& \text { COST }
\end{aligned}
\] \\
\hline INSULATE WATER HEATER & & \$19.50 \\
\hline TIMER ON WATER HEATER & & \$65.07 \\
\hline TOTAL HOT WATER COST & & \$84.57 \\
\hline
\end{tabular}



TOTAL WEATHERIZATION COST

EXHIBIT 23
SAMPLE OF OPTION/CITY SUMMARY COST DATA FILE
FARGO ND
WEATHERSTRIP WINDOWS
WORK DONE UNDER CONTRACT
11 JOBS REPORTED
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{SUMMARY STATISTICS} & \\
\hline & MIN & MAX & MEAN & MEDIAN \\
\hline JOB SIZE (LF) & 75.0 & 261.0 & 163.9 & 187.0 \\
\hline LABOR(\$/LF) & 0.053 & 0.159 & 0.121 & 0.124 \\
\hline MATERIAL (\$/LF) & 0.038 & 0.399 & 0.128 & 0.111 \\
\hline OVERHEAD (\$/LF) & 0.101 & 0.384 & 0.182 & 0.163 \\
\hline TOTAL (\$/LF) & 0.200 & 0.921 & 0.430 & 0.408 \\
\hline
\end{tabular}

TOTAL COST STATISTICS WEIGHTED BY JOB SIZE
\[
\operatorname{MEAN}(\$ / L F)=0.429 \quad \operatorname{STD} \operatorname{DEV}(\$ / L F)=0.143
\]
different houses in a city, there are separate files for the two labor types, the names of the files differing by option number. All options for which this could happen were given two option numbers.

It should be noted that reference [3] has in it a set of these files. However, the data base currently includes some data not available when the report was written, since some of the current cost data were collected after the report was written. Reference [3] used cost data collected up to January, 1980, in its data base, so some Option/City Files have changed since they were printed in that report.

Some of the Option/City Files report no statistics for labor, materials, and overhead costs, since some of the cost data have no such breakdowns. Also, unless job size (and R-value) was reported for every house in which an option was installed that Option/City File was not created.

The third and final type of Summary File is the Combined Options File. It presents summary statistics about the cost data collected for each option in the whole project. There is one such file for architectural options, SCAII, and one for mechanical options, MECDO.

In SCSAII, each architectural option name is listed, followed by summary information about costs in each city. For each city there is a line giving the number of houses worked on, the mean job size, the mean cost per job size, and the coefficient of variation. Exhibit 24 shows a section of SCSAII for architectural option number 1 , "REPLACE BROKEN GLASS."

In MECDO, each mechanical option name is listed, followed by summary information about costs in each city, broken down further by fuels used by the space and water heaters in the houses in which the option was installed. For each fuel type represented in each city, there is a line giving fuel type, city code, number of houses worked on, mean cost, and standard deviation. After these fuel type lines, there is one line sumarizing the costs for the option in the whole project. It gives the total number of houses worked on, the mean cost weighted by number of houses per city, and the standard deviation weighted by number of houses per city. Exhibit 25 shows a section of MECDO for mechanical option number 1, "FLUE/VENT DAMPER."

\subsection*{5.12 OCCUPANT QUESTIONNAIRES}

Two types of data were sought by means of a questionnaire-guided interview of a responsible member of each household (generally the head of the household), which were conducted near the end of the measurement period in May/June 1980. These were: 1) information about occupant activities over the course of the demonstration that might affect energy consumption (e.g., numbers and ages of occupants, thermostat-setting practices and changes therein, periods of extended non-occupancy of the house), and 2) occupant impressions of comfort and temperatures in the house in wintertime.

The data concerning comfort and temperature impressions (in weatherized vs. control houses) have been extensively discussed and analyzed in another report of the demonstration [4]. The latter paper includes a reproduction of the questionnaire used, so it seemed unnecessary to include it in this report.

Questionnaires (for most of the houses at a site) were received from all of the final (12) sites except Portland. However, review of the questionnaires from two sites (Chicago and Minneapolis/St. Paul) revealed inconsistencies and inadequacies in the data that appeared to necessitate considerable editing and "cleaning up" before the data could be used. Time was never available to do this job. Consequently, the questionnaire data have been computer-entered, and checked, for only nine sites: Atlanta, Charleston, Colorado Springs, Easton, Fargo, Oakland, St. Louis, Tacoma and Washington (Hughesville).

The data were coded in SPSS (Statistical Package for the Social Sciences)compatible format, with each case occupying seven 80 -column card records. The data are recorded in a single mass file on disk volume CSAl, with file name QUESTDTA. (It had been hoped to study the correlation of the subjective questionnaire-reported comfort and temperature responses with the objective physical measurements in the temperature stratification test data, which are also located on disk volume CSAl.)

\section*{EXHIBIT 24}

SAMPLE LISTING FROM SUMMARY ARCHITECTURAL OPTIONS COST FILE
\begin{tabular}{lllll} 
REPLACE & BROKEN & GLASS & & \\
CITY & NUMBER & AVERAGE & MEAN & C OF V \\
CODE & OF HOUSES & \begin{tabular}{l} 
JOB SIZE \\
SF
\end{tabular} & \begin{tabular}{l} 
CTS PER \\
SF
\end{tabular} & IN \%
\end{tabular}

EXHIBIT 25
SAMPLE LISTING FROM SUMMARY MECHANICAL OPTIONS COST FILE

FLUE/VENT DAMPER
\begin{tabular}{ll} 
FUEL & CITY \\
CODE & CODE
\end{tabular}
\begin{tabular}{ll} 
GAS & CHI \\
GAS & CSP \\
OIL & EAS \\
GAS & FAR \\
ELEC. & POR \\
OIL & WAS
\end{tabular}

CITY CODE

CHI
CSP
FAR
POR
WAS
\begin{tabular}{|c|c|c|}
\hline NUMBER & MEAN & \\
\hline OF HOUSES & COST \$ & STD.DEV. \\
\hline 11 & 109.08 & 50.98 \\
\hline 11 & 167.45 & 26.92 \\
\hline 6 & 95.36 & 9.25 \\
\hline 5 & 59.5 & 1.99 \\
\hline 12 & 135 & 0 \\
\hline 4 & 260 & 0 \\
\hline SUM OF & WEIGHTED & WEIGHTED \\
\hline HOUSES & MEAN & STD.DEV. \\
\hline 49 & 134.11 & 4.93 \\
\hline
\end{tabular}

Considering, for a moment, card one of each case, the entry in column 80 shows the status of the house vis-a-vis the demonstration sample: S, experimental (weatherized) house; \(C\), control (not weatherized during the demonstration); and -, house dropped for one reason or another from the sample. In addition to the houses so indicated as missing from the sample at the end of the demonstration, certain other houses had to be disregarded in analyzing the comfort/ temperature-impression data because: 1) insufficient data were provided, or 2) there had occurred a change of household, thus valid pre/post comparisons were unavailable. These houses are indicated by a blank in column 79 of card one. Those cases marked with an asterisk (*) in column 79 were considered to have valid, useful data for the comfort study. This is not to say, obviously, that the other cases may not have data useful for other purposes (i.e., when a household change took place, thermostat-setting practices, times of nonoccupancy of the house, comfort and/or temperature ratings for the "after" winter but not the earlier one). Availability of a completed Occupant Questionnaire for a house is indicated in table 17.

\subsection*{5.13 INVENTORY OF MISCELLANEOUS DATA}

The following table inventories the data that have been discussed in sections 5.4 through 5.12. Much of this information is available only in "hard copies" in the "house" files. Exceptions have been discussed in the appropriate sections, and are reviewed here: 1) the numbers of air infiltration measurements shown are taken from the files of "good" air bag tests maintained in "floppy disk" files by Dr. R. Grot; 2) temperature stratification tests data for some cities have been recorded in hard disk files located on disk volume CSAl--for others they have not; the distinction is shown in the table ("HC" = hard copy, only); 3) occupant questionnaire data from Chicago and from Minneapolis/St. Paul have not been computer-recorded; all others are in file QUESTDTA on volume CSAl; 4) for the options costs data, "Options Costs Summary" means there is a hard copy printout of the one-page house/options summary in the "house" file; the complete (raw and summarized) options costs data is on disk volume COS2, and is not inventoried in this paper.
TABLE 17



 | N 1 | | N | N | N 1 | Nの 111111111111111



 \(x \quad x \quad x>x\)












\(\triangle \infty \times x \times x\)
\(x\)


- 0 ○ 0 © 0


\(x \times x \times x \times x \times 1 \times 1 \times x \times x \times 1 \times 1 \times x \times x \times x \times x\)





 \(1 \times 1 \times x \times x\)


\(x \times x \times x \times x \times 1 \times x \times x\)
 \(x \times x \times x\)










\(x \times x \times x\)
-





 TABLE 17 (cont.) N 1 1 1 ( 1 1


111 \(\underbrace{\overparen{U}}_{-1} 1\)
\(11 \sim 1 \begin{array}{lllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\)










 \(\cdots \sim\) \(x\)
 \(x<\sum_{1}^{\infty} \overbrace{1}^{\infty} \underbrace{\infty}_{1}\) \(x \times x \times x\) \(x>11 \times x \times x \times 1 \times 1 \times 1 \times 1 \times 1 \times 1\)

\footnotetext{




}

\(x x \propto x \times x \times x \times x \times x \times x \times x\)
\(1 \times 1 \times 111 \times x 111 \times 1111\)
\(-111111111111111111\)

 TABLE 17 (cont.)

N® oo ONON ONNN


MNை NMNMーNMNHNNHHNな
\(\infty\)
\(x\)
\(\propto \times x \times x 11 \times x 11 \times 1 \times x \times x\) \(\times x \times 11 \times x 1 \times 11 \times x \ddot{x} 1 \times x\) \(x \times x \times x \times x \times x \times x \times x \times x\)



\section*{5. 14 WEATHER (DAILY TEMPERATURES) DATA AND DERIVED DEGREE DAYS}

To be able to run the "floating balance point" analysis program (see section 6.0), we had to have the capability of calculating cumulative degree days for any balance point (i.e., base temperature). Since degree days represent a measure of the extent to which the temperature, on a daily basis, lies below the "balance point" reference temperature, it is necessary to deriving degree days for the balance point temperature to operate as a cut-off value on the daily temperature range. In other words, degree days can only be calculated on a day-by-day basis, with reference to the specified reference temperature, from the recorded high and low temperatures for the day.

Tables (files) of daily high and low temperatures for each site (plus several other weather stations, for comparison) were generated from raw weather data tapes supplied by the National Climatic Data Center (NCDC). It should be noted that the temperatures listed in these files are not necessarily identical to the "maximums" and "minimums" reported on the monthly Local Climatological Data sheets supplied by NCDC. This is because: 1) the NCDC tapes do not report the highest and lowest temperatures recorded on a day, and 2) our "high" and "low" temperatures had to be obtained as follows: The raw data tapes contain "3hourly" readings--the readings of many meteorological parameters taken at 3hour intervals. We employed one program to decode (from their special, modified EBCDIC coding) the eight temperature readings for a day, and then another program to look through that list and find the highest and lowest temperatures. Since the maximum for a day is unlikely to occur right at a 3-hourly reading, it may well be somewhat higher than the "high" found by the program, and the minimum may well be somewhat lower than the "low." Since the errors will be in opposite directions, they presumably tend to cancel each other out, and should not cause any consistent bias in the daily temperature ranges. (Both of the computer programs used are listed in [6].)

For most of the weather stations, these files extend from January 1973 through June 1980. Midway Airport (Chicago) ceased reporting weather data at the end of December 1979, so we obtained data from 0'Hare Airport for 1975 through June 1980, to cover the 1979/80 heating season for Chicago. (When "pre" fuel data records for the Chicago houses were rerun against \(0^{\prime} H a r e ~ t e m p e r a t u r e ~ d a t a, ~\) most of the balance points obtained differed from the original ones obtained with Midway data by no more than 0.5 or 1.0 F degrees. The year-total data in table YTDDYTBL (see below) also demonstrate that the difference between


Although these files have a record length of only 40 characters, their size and the frequency of use of any particular file made it inappropriate to maintain them on a disk volume. They are recorded on a tape, using the Interdata COPY32 utility, with a blocking factor of 100 records (so the COPY32 parameter for reading the tape is "40/100").

The files are named [CTC]N.WEA. For the weather stations that were not site cities, the "CTC" codes are as follows: CHO--(Chicago) O'Hare airport; (CHI contains the data from Midway airport); WNA--Washington National Airport (which
is geographically nearest to Hughesville); WDU--Dulles International Airport (Washington); and BWI--Baltimore Washington International Airport.

The format of the files is as follows:

\section*{CTC MO DY YR HIG LOW}
where HIG and LOW represent, respectively, the high and low temperatures for the day, recorded in FORTRAN 13 format.

The discussion above has described how the daily "high" and "low" temperatures were obtained, and why they are slightly different from the "maximum" and "minimum" temperatures reported on the monthly NCDC data sheets. The algorithm we used for calculating degree days from the daily high and low also differed from the customary one, and produced somewhat different--and probably more accurate--results.

The "standard" method for determining degree days for a day is simply to take the difference between the mean of the high and low temperatures and the (balance point) reference temperature as the (heating) degree day figure. If the difference is zero or negative, no degree days are recorded for that day. Example: if the high is \(70^{\circ}\) and the low is \(30^{\circ}\), the mean for the day is \(50^{\circ}\); if the reference temperature is \(65^{\circ}\), 15 degree days would be recorded for this particular day. The daily figures are then summed to obtain the figure for the period in question (month, year, fuel consumption period).

All of our calculations involving degree days employed a "modified" degree day, obtained by dividing the day into 24 hour intervals, fitting a sine curve to the high and low temperatures for the day, calculating "degree hours" as the differences between the sine curve and the reference temperature, and summing the 24 hourly figures to obtain the degree day figure for the day. Obviously, the sine wave is likely to be a somewhat better model for the actual fluctuation of temperature over a 24 -hour period than the simple mean of the high and low.

Two types of tables of "modified" degree days were generated from the daily high/low temperatures file, and retained in disk files for reference: 1) A set of tables named TDDYTBL.[CTC] gives, for the year July 1976-June 1977 and the year June 1979-May 1980 (as they were generated before the June 1980 weather data tape had been received), monthly total degree days for all balance points from \(45^{\circ} \mathrm{F}\) to \(85^{\circ} \mathrm{F}\) (in one degree intervals). (These were generated for use in the thermal load calculations part of the analysis, which was done on a monthly basis.) 2) A single file, named YTDDYTBL., contains three tables showing, for all sites plus the extra weather stations, year total degree days for all balance points from \(45^{\circ} \mathrm{F}\) to \(85^{\circ} \mathrm{F}\) for: a) 1973-1980 (7-year mean, except where less data were available, e.g., CHI and CHO *) ; b) 1975-1977 (2-year mean for the period over which most of the "pre" fuel consumption data were analyzed); c) and 1979/ 80 (in fact, July 1979-June 1980). These files are on disk volume CSAl. It

\footnotetext{
* This table is printed as appendix \(C\) in the final report of the demonstration [2].
}
should be noted that, at present, the 1979/80 and the 7-year mean data for Chicago-0'Hare (CHO) are in error, due to a problem encountered in decoding the raw weather data tapes from that site.

In order to compare the consumption of fuel for space heating of a house during one period (say, before weatherization) with that at another time (say, after weatherization), one must employ some means to factor out the effect of the actual weather that prevailed during the two measurement periods. If the first winter happened to be abnormally warm and the second abnormally cold, more fuel might be used during the winter after the house had been weatherized--but, obviously, this would not truly reflect the effect of the weatherization.

What must be done in order to compare space heating fuel consumption of a house in different years is to "normalize" the actual measured consumption--to somehow convert it to a rate (e.g., "per year") for a "normal year", somehow defined.

The measure of "amount of coldness" in a heating season, against which one compares the fuel consumption in order to derive the rate of "normal" consumption, is the number of degree days (as discussed above) in the year. What we actually determine is the "consumption per degree day", and then by multiplying by the number of degree days in a specific year, or the average number of degree days over several years for a "normal year", we can "predict" or estimate the actual consumption for that particular year or a "normal" year. This estimate we use as the "measure" of fuel consumption--particularly for a "normal" year, since we cannot wait around for a "normal" winter during which to make field measurements. Ideally we would use 30 -year averages for the "normal" year, but 30 -year average degree days are not available for balance points other than \(65^{\circ} \mathrm{F}\).

The analysis method used to determine "consumption per degree day" in the demonstration was based on a mathematical model that assumes that the energy actually used for space heating is directly proportional to the amount of coldness in the measurement period, measured in degree days. The implication of this assumption is that, if we plot measured fuel consumption against measured degree days, the points should lie roughly on a straight line.

The mathematical term for this type of problem is a regression analysis: One regresses fuel consumption on degree days, finds that line that constitutes a "best fit" to the data points, and obtains three parameters: 1) the slope of the line, referred to as the \(B_{1} ; 2\) ) the \(Y\)-intercept (the \(Y\) value at the point where the line crosses the \(Y\)-axis), referred to as the \(B_{0}\); and 3 ) a regression coefficient-a measure of how "good the fit" of the data to the straight line is (maximum \(=1.0\) ), referred to as the \(R^{2}\) (usually expressed as \(r^{2}--\) the squared coefficient of correlation).

In our "balance point" analysis procedure, the \(B_{1}\) has the meaning "consumption (in whatever units we have entered the data) per degree day", and the \(\mathrm{B}_{0}\) the meaning "consumption (per day, by the way we entered the data) at zero degree days"--i.e., whenever there is no demand for space heating. To be a bit more precise, one should insert "average" before "consumption" in each of the above expressions. Thus, the \(\mathrm{B}_{0}\) may be referred to as the "average daily base load consumption." If we have analyzed whole-house gas consumption, and gas is also used for cooking and service water heating in the house, the \(\mathrm{B}_{0}\) would be expected to have some positive value. On the other hand, if we have analyzed the
consumption of oil which is used only to fire a space heating furnace, under the assumption that some of the space heating load is provided for by solar gains through windows and internal heat gains from operation of appliances and from the occupants themselves, the \(B_{0}\) would reasonably be expected to be negative.

The analysis of fuel consumption that was used in the demonstration was, in fact, one step more complex than described above. It has been mentioned that degree days are calculated with reference to some base temperature, that \(65^{\circ} \mathrm{F}\) is the customarily-assumed base temperature, but that other base temperatures can be used, and may in fact be more correct for a particular house. Our "balance point" analysis program let the base temperature, or balance point, "float" from \(45^{\circ} \mathrm{F}\) to \(84.5^{\circ} \mathrm{F}\) (in steps of 0.5 F degrees), and looked for the balance point ( \(\mathrm{T}_{0}\) ) that gave the best fit of the data to the straight line (as measured by the \(\mathrm{R}^{2}\) ).

We had hoped that this analysis would, in fact, give us a statisticallydetermined unique balance point for a house for a measurement period. From this, we came to refer to it as a "balance point" analysis. However, while this seemed to work out for some houses, for others the analysis proved to be too unstable as far as the balance point temperature was concerned: some went off one or the other end of the balance point range \(\left(45^{\circ} \mathrm{F}\right.\) or \(84.5^{\circ} \mathrm{F}\)--either of which is hard to explain in terms of the real world), while with others the \(\mathrm{R}^{2}\) shifted so little as the balance point changed that the "best fit" temperature could not be said to be well defined.

Nevertheless, as long as the fit of the data points to the straight line was good enough (as measured by the \(\mathrm{R}^{2}\) ), we could validly use the \(\mathrm{B}_{1}, \mathrm{~B}_{0}\) and \(\mathrm{T}_{0}\) obtained to project or "measure" fuel consumption.

The "balance point" fuel consumption analysis was accomplished using program BALPOINT.FTN, a symbolic listing of which will be found on disk volume CSA1, and also in [6]. The required input to the "balance point" analysis program consists of a set of consumption records in the format shown on page 27 (under "Utility Data"). Note that, since each record, having a beginning and an ending date, constitutes a complete consumption measurement, it is not essential for the records to be continuous over the entire analysis period. The absence of measurements for some time periods obviously reduces the amount of data on which the analysis result is based, but causes no problem to the operation of the program.

In the demonstration the analysis of space heating fuel consumption was conducted as follows. The main output of a balance point analysis run consisted of 1 ) a plot showing the data points and the fitted straight line, using degree days as calculated from the "best fit" solution; 2) a table showing the data analyzed (the beginning and ending dates of each consumption period and the associated fuel consumption), the total degree days for each consumption period at the standard \(65^{\circ} \mathrm{F}\) base, and the consumption and degree days per day for each data entry. (The actual plotting and analysis were carried out on the per day figures, since for delivered fuels such as oil, kerosene and propane, the total degree days for each consumption period would tend to be about the same, giving
no useable basis for analysis of fuel consumption against them--all of the data points would lie close together, rather than spread out to form a line.); 3) a table containing a similar listing of the data, but with degree days calculated from the "best fit" balance point-i.e., the data that corresponds to the previously described plot--and also listing the residuals (differences-vertical, on the plot--in the fuel units being used) between the measured data points and the "best fit" line (the latter representing the projected consumption for that number of degree days); 4) a table that lists, for all balance points from \(45^{\circ} \mathrm{F}\) to \(84.5^{\circ} \mathrm{F}\), the \(\mathrm{B}_{1}, \mathrm{~B}_{0}\), and \(\mathrm{R}^{2}\), so that we can observe the effect of changing \(T_{0}\) on the other parameters and the stability of the "best fit" solution. (See exhibit 26 for an example balance point analysis printout.)

The program then went through an edit routine that discarded any data points with residuals larger than a specified criterion--usually two standard errors (S.E.) were used--and reran the regression. (This was done on the rationale that one or two misreported, mispunched, or otherwise erroneous data points, should not be allowed to contaminate the analysis result.) If any points were edited out, the program would print a second plot immediately following the first one (and labeled "EDITED"), and a second set of tables 3) and 4).

A one-line summary of each analysis run was also written (by later versions of the analysis program) to the appropriate one of the site summary data files-which are discussed below.

For all proposed houses for which 2 (or more) years (i.e., mid-1975-mid-1977) of space heating fuel consumption data were submitted to NBS, we ran the data through the "balance point" analysis program. As a selection criterion for houses to be eligible for the program, we required an \(R^{2}\) of at least 0.9 . (This value signifies that 90 percent of the variation in fuel consumption over various time periods is explained by the variations in degree days.) As can be seen by examination of the summary data files (discussed below), a remarkable number of the analysis runs on archival data sets (i.e., ordinary utility meter readings or fuel delivery records) produced \(\mathrm{R}^{2 \text { 's }}\) of 0.97 or higher.

The results of the analysis runs (on both "before" and "after" data) are shown by one-line summaries in a set of summary files. These are present on disk volume CSAl, and are labeled HSBPTDTA.[CTC]. A CSS file, invoked by CSAl:PR2BPD [CTC]" (see exhibit 27) will cause the specified site summary data file to be printed on the high-speed printer attached to the Interdata system, with appropriate headings.

A record in these files displays the following data: city code; house number; fuel code for space heating fuel (see table 18, page 122) (if two are listed, the first is the one analyzed by that run); fuel code for water heating (for identification of co-use of fuel--this had to be entered manually, and is missing from some records); a selection flag (discussed below); the beginning and the ending dates of the period over which consumption is analyzed (in the form MOYR MOYR, each in FORTRAN I2I2 format); a one-letter code for the type of data analyzed (see table 18); then: the \(B_{0}, B_{1}, T_{0}\) and \(R^{2}\) for the 'best fit" solution; the \(B_{0}, B_{1}\) and \(R^{2}\) obtained using degree days calculated from the standard \(65^{\circ} \mathrm{F}\) base; and, if the \(\mathrm{B}_{0}\) 's change sign between balance points \(45^{\circ} \mathrm{F}\)

EXAMPLE OUTPUT OF "BALANCE POINT" ANALYSIS RUN


\section*{EXHIBIT 26 (cont)}
-* DATh aralyzed
SASE TEMPERATUPE: 65.0 FUEL: OIL IN CALLONS


NUMAER OF POIN:S= 10
**
FAR 15
THE FULLOHING DATA WAS USED IN INTERPRETING WEERLY READINGS METERS CODE: 15
 MTR. 6 CHG. DATE: \(/ f\) MTR. 6 FACTURS: 1.0010. HTR. \(2 / 4 / 5 / 9\) FACTOKS: \(1.00 / 1.00 / 1.00 / 1.00\)

\section*{EXHIBIT 26 (cont)}
** oata analyzed
BASE TEMPERATUPE: 76.5
EDIT STANDARU: \(2.0 \mathrm{S.E.S}\)
FUEL: OIL IN GALLONS

DAIE
INITIAL FIMAL
FAR \(15 \quad 10 / 30 / 79 \quad 11 / 20 / 79\)
FAR \(1511 / 20 / 7912 / 10 / 77\)
FAR \(1512 / 10 / 791 / 2 / 80\)
FAR 15 \&/ \(2 / 80\) 1/22/80
FAR 15 1/22/80 2/12/80
F.AR \(15 \quad 2 / 12 / 80 \quad 3 / 3 / 80\)

FAR 15 3/ \(3 / 80\) 3/25/80
FAR 15 3/25/80 4/15/80
FAR 15 a/15/80 5/6/00
FAR 15 5/6/80 \(5 / 28 / 82\)
teials
\begin{tabular}{ll} 
FUEL & DG. CAYS \\
36.1 & 1028.0 \\
41.0 & 1071.5 \\
44.3 & 1284.0 \\
50.3 & 1295.0 \\
59.5 & 1522.5 \\
50.7 & 1391.0 \\
49.3 & 1274.5 \\
25.9 & 792.5 \\
5.6 & 385.4 \\
7.9 & 393.6
\end{tabular}

PER LAY
\begin{tabular}{lccr} 
& KBTU & DG. JAYS & \\
FUEL & RESEOUAL \\
1.72 & 238.43 & 48.35 & -0.01 \\
2.05 & 284.33 & 53.57 & 0.12 \\
1.93 & 267.15 & 55.91 & -0.12 \\
2.51 & 348.83 & 64.75 & 0.06 \\
2.83 & 392.98 & 72.50 & 0.03 \\
2.53 & 351.60 & 69.55 & -0.14 \\
2.24 & 310.81 & 57.93 & 0.10 \\
1.23 & 171.06 & 37.74 & 0.01 \\
0.27 & 36.49 & 18.35 & -0.07 \\
0.36 & 49.81 & 17.89 & 0.04
\end{tabular}

HJHSER OF PDINTS=

FUEL UNITS
\begin{tabular}{|c|c|c|}
\hline 10 & 80 & 81 \\
\hline 45.0 & 0.48 & 0.061 \\
\hline 45.5 & 0.40 & 0.060 \\
\hline +6.0 & 0.45 & 0.060 \\
\hline -0.5 & 0.44 & 0.059 \\
\hline 47.0 & 0.42 & 0.059 \\
\hline 47.5 & 0.41 & 0.058 \\
\hline 48.0 & 0.40 & 0.058 \\
\hline 48.5 & 0.38 & 0.057 \\
\hline 49.0 & C. 37 & 0.057 \\
\hline 49.5 & 0.35 & 0.056 \\
\hline 50.0 & 0.34 & 0.056 \\
\hline 50.5 & 0.33 & 0.056 \\
\hline 51.0 & c. 31 & 0.055 \\
\hline 51.5 & 0.30 & 0.055 \\
\hline 52.0 & 0.26 & 0.055 \\
\hline 52.5 & 0.27 & 0.054 \\
\hline 53.0 & 0.26 & 0.054 \\
\hline 53.5 & C. 24 & 0.054 \\
\hline 54.0 & 0.23 & 0.053 \\
\hline 54.5 & 0.21 & 0.053 \\
\hline 35.0 & 0.20 & 0.053 \\
\hline 35.5 & C. 19 & 0.052 \\
\hline 20.0 & C. 17 & 0.052 \\
\hline 50.5 & 0.16 & 0.052 \\
\hline >7.0 & 0.14 & 0.052 \\
\hline 57.5 & 0.13 & 0.051 \\
\hline 56.0 & 0.11 & 0.051 \\
\hline 58.5 & 0.10 & 0.051 \\
\hline 59.0 & 0.08 & 0.051 \\
\hline 59.5 & 0.07 & 0.050 \\
\hline 60.0 & 0.05 & 0.050 \\
\hline 60.5 & 0.04 & 0.050 \\
\hline 61.0 & 0.03 & 0.050 \\
\hline 61.5 & 0.01 & 0.049 \\
\hline -2.0 & -0.00 & 0.049 \\
\hline 62.5 & -0.02 & 0.049 \\
\hline 03.0 & -0.04 & 0.049 \\
\hline 63.5 & -0.05 & 0.049 \\
\hline 04.0 & -0.07 & 0.048 \\
\hline 64.5 & -0.08 & 0.048 \\
\hline 65.0 & -0.10 & 0.048 \\
\hline 65.5 & -0.11 & 0.048 \\
\hline 66.0 & -0.13 & 0.048 \\
\hline 66.5 & -0.15 & 0.048 \\
\hline 67.0 & -0.16 & 0.048 \\
\hline 67.5 & -0.18 & 0.047 \\
\hline 60.0 & -0.20 & 0.047 \\
\hline 63.5 & -0.21 & 0.047 \\
\hline 69.0 & -0.23 & 0.047 \\
\hline 67.5 & -0.25 & 0.047 \\
\hline
\end{tabular}

CBIU
\begin{tabular}{|c|c|}
\hline 80 & 81 \\
\hline 66.1 & B. 40 \\
\hline 64.2 & 8.33 \\
\hline 62.3 & 6.26 \\
\hline 60.4 & 8.14 \\
\hline 58.6 & 8.13 \\
\hline 56.7 & 8.07 \\
\hline 54.8 & 8.00 \\
\hline 52\%9 & 7.94 \\
\hline 51.0 & 7.89 \\
\hline 49.1 & 7.83 \\
\hline 47.2 & 7.78 \\
\hline 45.3 & 7.72 \\
\hline 43.4 & 7.67 \\
\hline 41.4 & 7.62 \\
\hline 39.5 & 7.57 \\
\hline 37.5 & 7.52 \\
\hline 35.0 & 7.48 \\
\hline 33.0 & 7.43 \\
\hline 31.7 & 7.39 \\
\hline 29.7 & 7.35 \\
\hline 27:7 & 7.30 \\
\hline 25.0 & 7.20 \\
\hline 23.8 & 7.22 \\
\hline 21.8 & 7.19 \\
\hline 19.0 & 7.15 \\
\hline 17.8 & 7.11 \\
\hline 15.8 & 7.08 \\
\hline 13.7 & 7.04 \\
\hline 11.7 & 7.01 \\
\hline 9.7 & 6.98 \\
\hline 7.6 & 6.94 \\
\hline 5.6 & 6.91 \\
\hline 3.5 & 6.88 \\
\hline 1.4 & 6.85 \\
\hline -0.7 & 6.82 \\
\hline -2.d & 6.80 \\
\hline -4.9 & 6.77 \\
\hline -7.1 & 6.74 \\
\hline -9.3 & 6.72 \\
\hline -11.5 & 6.70 \\
\hline -13.7 & 6.67 \\
\hline -15.9 & 6.65 \\
\hline -18.1 & 6.63 \\
\hline -20.4 & 6.61 \\
\hline -22.7 & 6.59 \\
\hline -25.0 & 6.57 \\
\hline -27.3 & 6.55 \\
\hline -29.6 & 6.53 \\
\hline -32.0 & 6.52 \\
\hline -34.3 & 6.50 \\
\hline
\end{tabular}

FUEL UNITS
\begin{tabular}{lll}
10 & 0.0 & 81 \\
70.0 & -0.26 & 0.047 \\
70.5 & -0.26 & 0.047 \\
71.0 & -0.30 & 0.047 \\
71.5 & -0.32 & 0.046 \\
82.0 & -0.33 & 0.046 \\
72.5 & -0.35 & 0.046 \\
73.0 & -0.37 & 0.046 \\
73.5 & -0.34 & 0.046 \\
74.0 & -0.41 & 0.046 \\
84.5 & -0.43 & 0.046 \\
75.0 & -0.44 & 0.046 \\
75.5 & -0.46 & 0.046 \\
76.0 & -0.48 & 0.046 \\
70.5 & -0.50 & 0.046 \\
78.0 & -0.52 & 0.046 \\
77.5 & -0.64 & 0.045 \\
88.0 & -0.56 & 0.045 \\
78.5 & -0.57 & 0.045 \\
78.0 & -0.59 & 0.045 \\
79.5 & -0.61 & 0.045 \\
80.0 & -0.63 & 0.045 \\
80.5 & -0.65 & 0.045 \\
84.0 & -0.67 & 0.045 \\
81.5 & -0.69 & 0.045 \\
82.0 & -0.71 & 0.045 \\
82.5 & 0.73 & 0.045 \\
83.0 & -0.75 & 0.045 \\
83.5 & -0.77 & 0.045 \\
84.0 & -0.79 & 0.045 \\
84.5 & -0.81 & 0.045
\end{tabular}

KBIJ
\begin{tabular}{|c|c|}
\hline 80 & 81 \\
\hline -36.7 & 6.48 \\
\hline -39.1 & 6.47 \\
\hline -41.6 & 6.45 \\
\hline -44.0 & 6.44 \\
\hline -46.4 & 6.43 \\
\hline -49.9 & 6.41 \\
\hline -51.4 & 6.40 \\
\hline -53.9 & 6.39 \\
\hline -55.4 & 6.31 \\
\hline -59.0 & 6.37 \\
\hline -62.5 & 6.35 \\
\hline -64.2 & 6. 34 \\
\hline -66.0 & 6.33 \\
\hline -69.2 & 6.32 \\
\hline -71.8 & 6.32 \\
\hline -74.4 & 6.31 \\
\hline -77.1 & 6.30 \\
\hline -79.7 & 6.29 \\
\hline -82.4 & 6.28 \\
\hline -85.0 & 6.27 \\
\hline -87.7 & 6.27 \\
\hline -90.4 & 6.26 \\
\hline -93.1 & 6.25 \\
\hline -95.0 & 6.25 \\
\hline -98.6 & 6.24 \\
\hline -101.4 & 6.24 \\
\hline -104.1 & 0.23 \\
\hline -206.9 & 6.23 \\
\hline -209.8 & 6.22 \\
\hline -112.6 & 6.22 \\
\hline
\end{tabular}

LEAST SQUARE FIT: FAR HOUSE 15
\(K\) = DEGREE DEYS—BASE 76.5 F
\(V=\mathbb{F U E L}\)
\begin{tabular}{|c|c|c|c|c|}
\hline BJSNBALI & = & \(-0.50\) & 1+1- & 0.271 \\
\hline BLINBAL & \(=\) & 0.046 & 1*/- & 0.6058 \\
\hline SIANDARO & ERGCK & - 0.09 & R**2 & \(=0.9906\) \\
\hline
\end{tabular}
* CSS file "PR2BPD"
* To print HSBPTDTA files (with heading) on PR2:
* Use first parameter (@1) to specify site/city.
*
XDELETE CSA1:TABLEDTE.
AL CSA1:TABLEDTE.,IN, 20
D T , CSAl:TABLEDTE.
XDELETE CSA1:PRDUMMY
AL CSAl: PRDUMMY,IN, 100
CSA1: COPYA CSA1:TABLEDTE,CSA1:PRDUMMY,,10
APPEND CSA1:HSBPTDTA.HDG,CSA1:PRDUMMY., , 100
APPEND CSA1:HSBPTDTA.@1,CSA1:PRDUMMY.,, 100
COPYA CSA1:PRDUMMY.,PR2:,,100
* COPYA CSA1:PRDUMMY.,PR2: ,, 100
* COPYA CSA1:PRDUMMY.,PR2:,,100

DE CSAl:TABLEDTE;DE CSA1:PRDUMMY
\$EXIT

TABLE 18

CODES USED IN "HSBPTDTA" FILES
\begin{tabular}{|c|c|c|}
\hline Code & Fuel type & Units \\
\hline B & bottled gas (propane or LPG) & gallons \\
\hline E & electricity & kWh \\
\hline F & (for service water heating: same as furnace--i.e., heated in furnace) & \\
\hline G & natural gas & therms \\
\hline K & kerosene & gallons \\
\hline M & natural gas & \(100 \mathrm{ft}^{3}\) (i.e., direct meter readings) \\
\hline 0 & oil & gallons \\
\hline P & propane & \(1 \mathrm{ft}^{3}\) (direct meter readings) \\
\hline Code & Type of data analyzed & \\
\hline U & utility or fuel delivery & \\
\hline W & weekly readings & \\
\hline
\end{tabular}
and \(84.5^{\circ} \mathrm{F}\), the \(\mathrm{B}_{1}, \mathrm{~T}_{0}\) and \(\mathrm{R}^{2}\) for the \(\mathrm{B}_{0}\) closest to 0.0 (i.e., the slope at zero base load, or assuming all fuel used goes to space heating); finally, a set of codes (listed in the heading of the HSBPTDTA printout) showing what weatherization options, by group, had been completed by the beginning date of the particular analysis run. Note that an option group code enclosed in parentheses indicates that options of that type were installed on the house, but were not completed until after the beginning date of the analysis run; thus their effect may contaminate the analysis result.

If it is desired to have a print-out of the HSBPTDTA file with all consumption data (i.e., \(B_{0}\) 's and \(B_{1}\) 's) converted to \(k B t u\), to enable direct comparisons between houses using different types of fuel, CSS file CSAl:PR2BPBTU [CTC] (see Exhibit 28) will produce such a table on the high-speed printer with appropriate headings. The fuel-type code in column 8 of each record tells the program what conversion factor to use to get from fuel units to KBtu. (Note that this CSS file/program is presently set up to operate only on records "flagged" with a "非" in column 12--see discussion below, on page \(\overline{126}\). If it is desired to obtain kBtu data on all records in a HSBPTDTA file, the HSBPDTA file can be edited into a "dummy" file with the "非" in column 12 of each record, and PR2BPBTU run on this file.)

The results of virtually all "pre" (i.e., 1975-1977) data analysis runs are listed in the HSBPTDTA files. The only ones omitted from these files were runs resulting in extremely low \(\mathrm{R}^{2 \prime}\) s (<ca. 0.20 )--indicating either very bad data, inconsistent occupant-use patterns, or that the fuel was simply not used for space heating, thus did not correlate with degree days. Most of these "pre" data were manually written into the computer, rather than automatically recorded by the analysis program, as is true of later runs. These data were proofread, but 100 percent accuracy is not assured, especially for houses that were not selected for the demonstration sample.

As to the location of the original computer printouts from "balance point" analysis runs: all printouts for houses in the sample should be in the appropriate "house" files; the printouts for "pre" runs on houses that were not selected for participation in the demonstration should be in the "city" files, in the section labeled "Balance Points."

Multiple analysis runs of either "pre" or "post" data were conducted for such reasons as: 1) the initial submission of "pre" data was insufficient, so it was rerun with added data (we sought to have a minimum of 8-10 data points, over two heating seasons); 2) a relatively low \(\mathrm{R}^{2}\) combined with a pattern of negative residuals for one heating season and positive ones for the other suggested some change in heating energy use patterns had occurred between the seasons, and we split the data and ran the 2 years separately to try to ascertain the nature of the change; 3) original runs on Oakland data using an edit criterion of 2 S.E.'s gave generally low \(\mathrm{R}^{2}\) 's, so most of these data sets were rerun with the criterion tightened to 1 S.E.; 4) some mid-demonstration runs were made on data from Portland and Fargo; 5) with "post" data analysis, a run on weekly readings did not result in a good enough fit, so the utility data was entered and analyzed.

\section*{EXHIBIT 28}

\section*{CSS file "PR2BPBTU"}
* To convert BALPOINT analysis results to KBTU, and print (with headings) on PR2:

Use first parameter (@1) to specify site/city. Use second parameter (@2 NONNULL) to evoke PR: copy, also.

This version converts only (!) HSBPTDTA.[CTC] entries flagged with a '非' in column 8, and sorts the output by l) house number and 2) beginning date of analysis period. (It requires the use of the SORT utility.)
\$IFNULL @1
\$COPY
***
CITY/SITE NOT SPECIFIED ***
\$NOC
\$EXIT
\$ENDC
XDELETE CSAl:BPTDTA.TMP
AL CSAl: BPTDTA.TMP,IN,100
LO CSA1:BPTCONV
AS1,CSA1:HSBPTDTA.@1,SR0
AS2, CSA1: BPTDTA.TMP, EWO
ST
\$IFNE 0; \$CLEAR; \$EXIT; \$ENDC
XDELETE RSORT.TMP;AL RSORT.TMP,IN,100
\$BUILD CSAl:RSORT.CMD
RECL 100
KEY
5/2/A
15/2/A
EKEY
SCRATCH
SORT BPTDTA.TMP,RSORT.TMP
END
END
\$ENDB
LO CSAl:SORT
AS5,CSA1:RSORT.CMD
ST
\$IFNE 0
\$W ** SORT ERROR **
\$CLEAR; \$EXIT
\$ENDC
XDELETE CSAI:TABLEDTE.
AL CSAl:TABLEDTE., IN, 20
D T , CSAI:TABLEDTE.
XDELETE CSAI:PRDUMMY
AL CSAl: PRDUMMY,IN,100

\section*{EXHIBIT 28 (cont.)}
```

CSA1:COPYA/P CSA1:TABLEDTE,CSA1:PRDUMMY, , 10
CSA1:APPEND CSA1:HSBPTDTA.HD2,CSA1:PRDUMMY., ,100
CSA1:APPEND CSA1:RSORT.TMP,CSA1 :PRDUMMY., , 100
COPYA CSA1:PRDUMMY.,PR2:,,100

* COPYA CSA1:PRDUMMY.,PR2:,,100
* COPYA CSA1:PRDUMMY.,PR2:,,100
\$IFNNULL @2
CSA1:UPPR
COPYA CSA1:PRDUMMY.,PR:,,100
CSAl:UPPR
\$ENDC
DE CSA1:TABLEDTE;DE CSA1:BPTDTA.TMP
DE CSAl:PRDUMMY.
\$EXIT

```

When we came to making final comparisons of "before" and "after" fuel consumption, selection had to be made, among multiple runs, of the "before" and the "after" run which represented our best judgment of the measured fuel consumption. The runs selected in this process were flagged with a number sign ("非") in column 12 (immediately following the water heating fuel code), so that subsequent analysis programs could operate on just these records.

\subsection*{6.1 NOTE ON CONVERTING WEEKLY READINGS TO CONSUMPTION DATA}

In order to analyze consumption, one must, of course, have consumption data. Meter readings are not themselves consumption data. They must be converted into consumption measurements, i.e., the differences between successive readings determined.

In order to carry out "balance point" analysis of weekly readings data, a program called RWRITDTA.FTN was written to translate weekly meter readings into consumption figures, and write them out in records of precisely the format shown in section 5.2, "Utility Data". (A source-listing of RWRITDTA.FTN is located on disk volume CSA3 and can also be found in [6].)

In order to carry out this calculation, the program needed to "know" some things about the desired interpretation: Since, as has been described in section 5.3, "Weekly Readings Data", there were a number of (possible) meters recorded in a weekly readings record, the program needed to know which one-i.e., which field (or fields, in the case of multiple space heaters or multiplecircuit electric heating) to "look at." For oil or kerosene furnaces, where consumption was to be calculated as the product of run-time and nozzle flow rate, it needed to know the nozzle "size." If the furnace was replaced or derated, the program needed to know when, and the new nozzle size. For some other meters, a scale factor had to be provided (e.g., Fargo at first reported water heater gas consumption from standard \(100 \mathrm{ft}^{3}\) meters, then replaced those with the requested \(1 \mathrm{ft}^{3}\) meters. Again, the program needed to know the two scaling factors and the date of the change.

All of these necessary interpretation parameters were provided through a set of site files named METRCAR.[CTC], which are present on disk volume CSA3 (along with the weekly readings data files). The data in and format of these files are as shown in table 19, with each pair of fields separated by one space.

We anticipated having field-calibrated furnace nozzle sizes (flow-rates) available for use in calculating "measured" consumption from run-time. However, due to a slip-up in instructions to the field, these data were not collected. The nozzle size information we had (as reported on the Mechanical Systems Tests Data Sheets, see section 5.4 ) was, for the most part, obtained by field personnel by merely observing the rating stamped on the nozzle.

To check the accuracy of these reported nozzle sizes, for those houses for which we had the backup delivery data, we compared the delivery-to-delivery consumption measurements with consumption measurements for the same time intervals generated from weekly readings by RWRITDTA (using the reported nozzle sizes). For some houses, the ratios of the two sets of consumption measures

\section*{DATA LIST FOR METRCAR.[CTC] FILES}
\begin{tabular}{|c|c|}
\hline Datum & (FORTRAN) Format Code \\
\hline city code & A3 \\
\hline house number & I2 \\
\hline space heating fuel & A1 \\
\hline water heating fuel & A1 \\
\hline "meters" (i.e., field(s)) code & I2 \\
\hline (initial) nozzle size (gal/hr)* & F4. 2 \\
\hline change date (MODYYR) & 3 I 2 \\
\hline (new) nozzle size & F4. 2 \\
\hline meter "6" scale factor** & F5. 2 \\
\hline change date (as above) & 312 \\
\hline new meter "6" scale factor & F5. 2 \\
\hline meter "1" scale factor & F5. 2 \\
\hline meter "4" scale factor & F5. 2 \\
\hline meter "5" scale factor \(\dagger\) & F5. 2 \\
\hline meter "9" scale factor† & F5. 2 \\
\hline
\end{tabular}
* In effect, meter field "2" scale factor--see exhibit 3, page 57.
** Meter field "6" contains water heater fuel readings.
\(\dagger\) Meter fields "5" and "9" were available, optionally, for special uses--see exhibit 3.
intervais generated from weekly readings by RWRITDTA (using the reported nozzle sizes). For some houses, the ratios of the two sets of consumption measures were consistently l.0. We took these nozzle sizes to correctly reflect the flow rates of the nozzles, labeled them "OK" in the METRCAR file, and used them for the final calculations of "after" consumption. (We endeavored to use the weekly readings rather than the delivery records for "post" analysis, wherever possible, since this gave us more data points, thus a more reliable analysis. Fuel deliveries tended to be infrequent after houses had been weatherized, and for some cases we had less than the whole 1979/80 heating season in which to obtain "after" measurements.)

For other oil-burning houses, the two sets of consumption measurements displayed a consistent ratio--but one other than 1.0 . We "adjusted" these nozzle sizes (in the METRCAR file) by an appropriate factor so that consumption as calculated from run-time would consistently match consumption as measured by deliveries, considered them "calibrated", and labeled them "MOD" in the reference data file. For houses for which the two sets of measurements displayed no consistent ratio, or for which we had too little (or no) delivery data with which to compare the weekly readings data, we labeled the house "UNC" (for uncalibrated), and had no choice but to use the reported nozzle size for calculating consumption. Obviously, this necessity may introduce a scaling error into the "after" consumption figures for some houses. It will be observed that, for oil (and some kerosene) burning houses, the entries for "after" weekly readings analysis runs in the HSBPTDTA files show whether the calculation was made with a calibrated (or verified) nozzle size, or with a merely reported one. This is indicated by, respectively, the symbols + or - immediately following the "0" for space heating fuel type (i.e., in column 9).

The meanings of the "meter (field) codes" that have been used are as follows:
" 10 " Use whole house gas meter reading (field "8"). Write "M" as fuel code.
"13" Use furnace fuel meter (field "1").
Write "P" as fuel code.
"14" Use run-time meter (field "2") and nozzle size. Write "K" as fuel code.
"15" Use run-time meter (field "2") and nozzle size. Write "0" as fuel code.
" 18 " Use whole-house electric meter (field "16"). Write "E" as fuel code.
"19" (This constituted an attempt to use weekly tank contents, obtained by dip stick, to calculate weekly consumption for gravity-fed kerosene space heaters. Since the readings could only be recorded to the nearest 5 gallons, it did not produce usable weekly consumption data.)

Some additional "meter (field) codes" have already been written into RWRITDTA.FTN to obtain such measurements out of weekly readings as: furnace fuel meter (field "l") with different fuel codes written (i.e., "M" or "E"); whole-house gas meter (field "8") minus water heater gas meter (field "6"); combinations of space heaters or electric heating circuits (field "l" plus field "4"; field "l" plus field "4" plus field "3"; etc.) with appropriate
fuel code written. However, the five described in detail above were all that were needed to obtain "whole-house" consumption results for comparability with the "pre" measures that were derived from whole-house data, and they are the only ones that have actually been used.

When a "balance point" fuel consumption analysis was run on weekly readings, the reference data from the METRCAR file that was used to "interpret" the weekly readings was printed, as a check, at the bottom of the first data-listing table of the analysis output. (See the second page of exhibit 26 for an example.)

\section*{7. "PROJECTED" YEAR TOTAL FUEL CONSUMPTION DATA}

To obtain "normal year" fuel consumption projections from "before" and "after balance point analysis results, a series of programs and operations can be executed by a CSS file on disk volume CSAl. This procedure is invoked by entering: "CSAl:FUELCALC [CTC], [Weather Station Code, if different from CTC]" (see exhibit 29). Starting from the data in the appropriate HSBPTDTA file, and processing only those records flagged with a "非" in column 12, this procedure:
1) runs program BPTCONV.FTN, to convert \(B_{1}\) 's and \(B_{0}\) 's to \(k B t u\);
2) sorts the resulting output on a) house number, and b) beginning date of analysis period, so that the "before" and "after" results for a house are listed together, in that order; and
3) runs program FUELCALC.FTN, which, using the \(B_{1} ' s, B_{0} ' s\), and \(T_{0}{ }^{\prime} s\), and looking up year-total (or average) degree day numbers for appropriate balance points in the three tables of file YTDDYTBL, calculates year-total (or "normal") consumption figures in MBtu. The formula for this calculation is:
\[
Q=\left(B_{0} \times 365\right)+\left(B_{1} \times D_{T_{0}}\right)
\]

The output of the program is printed with appropriate headings, and corresponds to the sets of data in the HSBPTDTA file: i.e., totals are given for the "best fit" results, the \(65^{\circ} \mathrm{F}\) balance point data, and the "zero intercept" results, if present.
```

** CSS file "FUELCALC"
and

* PARAMETERS:
* @1 -- CITY CODE
* @2 -- WEATHER STATION (IF DIFFERENT FROM CITY CODE)
* @3 -- "PR:" FOR VERSATEC OUTPUT, ALSO
*

XDELETE CSA1:RSORT.TMP
LO CSAl:BPTCONV
AS1,CSA1:HSBPTDTA.@1
XDELETE CSAl:FUELCALC.TMP;AL CSAI:FUELCALC.TMP,IN,100
AS2,CSA1 : FUELCALC.TMP
ST
\$BUILD CSA1:REDIT.CMD
G CSAl:FUELCALC.TMP
CH/******/,/0000.0/,1-
S*
DONE
DONE
\$ENDB
LO CSA1:EDIT32
ST ,C=CSA1:REDIT.CMD,L=C:
\$BUILD CSAl:RSORT.CMD
RECL 100
KEY
5/2/A
15/2/A
13/2/A
19/2/A
17/2/A
EKEY
SCRATCH
SORT CSA1:FUELCALC.TMP,CSA1:RSORT.TMP
END
END
\$ENDB
LO CSAl:SORT/S
AL CSAl:RSORT.TMP,IN,100
AS5,CSA1:RSORT.CMD
ST
\$IFNE 0
\$W ** SORT ERROR **
$CLEAR;$EXIT

```
```

EXHIBIT 29 (cont.)

```
\$ENDC
XDELETE CSAl:FUELCALC.OUT;AL CSAl:FUELCALC.OUT,IN,120
\$IFNNUL @2
\$BUILD CSA1:FUELCALC.SCR @2
\$ENDB
\$ENDC
\$IFNULL @2
\$BUILD CSA1:FUELCALC.SCR @1
\$ENDB
\$ENDC
LO CSA1: FUELCALC
AS2,CSA1:RSORT.TMP
AS3,C:
* AS4, PR2:

AS4,CSA1: FUELCALC.OUT
AS5,CSA1:YTDDYTBL,SRO
AS6, C:
AS7,CSA1:FUELCALC.SCR
ST
XDELETE CSA1:FUELCALC.TMP
XDELETE CSA1:FUELCALC.SCR
* XDELETE CSA1:RSORT.TMP

COPYA CSA1: FUELCALC.OUT,PR2:,, 120
* COPYA CSA1:FUELCALC.OUT,PR2:,,120
* COPYA CSA1:FUELCALC.OUT,PR2:,,,120
\$IFNNULL @3
CSAl:UPPR
COPYA CSAl:FUELCALC.OUT,PR:, ,120
CSAI:UPPR
\$ENDC
\$EXIT

As an aid to managing the final analyses of "post" consumption data, a computer file was developed to record some key information about analysis results. Data for all of the sites, in alphabetical order (by "CTC"), are recorded in this one file, named STATTBLE., and present on disk volume CSAl. Some of the data in the table (which is reprinted in this section as a set of site tables) are of interest in evaluating the final results based on the "balance point" analysis that are presented in the final report of the demonstration [2].

The first several columns in the table repeat information from the HSKEYDTA files: house number; "status" of the house vis-a-vis the demonstration (see discussion on page 7); fuel used for space heating; and fuel used for water heating. The next three columns present data about the latest, or "best" balance point analysis of "post" weekly readings data: the \(\mathrm{R}^{2}\) (squared correlation coefficient), number of data points and, for some cases with limited "after" data, the number of months covered by the analysis. (Ideally such analysis should cover an entire heating season and have a minimum of 8 to 10 data points.)

The next several columns relate to analysis of "post" utility data. "Needed?" would be filled in "YES" if: l) weekly readings were not available, were insufficient, or produced an inadequate analysis (i.e., \(R^{2}\) of less than 0.90 ); 2) if the fuel was oil, so that the nozzle rate was a factor in calculating consumption and analysis of the utility (i.e., delivery) data was needed as backup (see discussion in section 6.1) ; or 3) the fuel was propane (since we wanted to cross-check consumption from in-line gas meters on propane heaters with consumption from delivery quantities). Succeeding columns showed: that the needed utility data (had been received and) were in the computer; and the \(\mathrm{R}^{2}\) and the number of data points (months, also, in some cases) obtained from analysis of "post" utility data.

The next column lists the percentage savings calculated from the "before" and the best "after" balance point runs. Note that water heater fuel consumption is not factored out of this figure, so for those houses that use the same fuel for space heating and for water heating, these figures should be somewhat smaller than those reported in the final report of the demonstration [2].

The next four columns indicate what categories of options had been installed by the beginning of the analysis period, and thus are reflected in the "BAL.PT.ANAL." savings figure shown.

Once a "best" (and adequate--in terms of \(R^{2}\) and length of time period analyzed) "post" analysis had been obtained (or selected among several different runs), that result was flagged in the HSBPTDTA table by a "非" in column 12 (see discussion at end of section 6). (In some cases it was a matter of having to choose between a run after all options were completed but which had insufficient data points, and a run with sufficient data points and time coverage but which overlapped the installation of mechanical options, say, or of insulation of a flat roof or some other "problem" option that was completed very late.)

For comparison, the last two columns show the savings as measured by two other methods. (These data are reported and discussed in the final report [2], and the numbers here may not be up to date.)
"STATUS" OF RESULTS: ATLANTA
NOTE: IN "BAL.PT.ANAL." RESULTS, FUEL USED FOR SERVICE WATER HEATING,
IF THE SAME AS THAT USED FOR SPACE HEATING, IS NOT (!) FACTORED OUT.



\(\mathrm{X}=\mathrm{NO}\), OR INSUFFICIENT, "AFTER" FUEL DATA FOR "BALPNT" ANALYSIS. \(*=\) "BEFORE/AFTER" COMPARISON CONTAMINATED BY OCCUPANT CHANGE.
\(+=\) BEFORE/AFTER" COMPARISON CONTAMINATED BY BUILDING CHANGE NOTE: IN "BAL.pT.ANAL." RESULTS, FUEL USED FOR SERVICE WATER HEATING, if the same as that used for space heating, is not (!) factored out. WKLY.RDGS.ANAL. ---UTIL.DATA ANAL.----
NO. OF NEE- DATA NO. OF BAL.PT.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{HSE.}} & \multicolumn{2}{|l|}{WKLY.RDGS.ANAL.} & \multicolumn{2}{|l|}{---util.data a} & AL.-- & -- & & -IN & DIC & ated & \multicolumn{2}{|l|}{SAVINGS----} \\
\hline & & & & & \multicolumn{2}{|l|}{WKLY.RDGS.ANAL. OF NEE-} & \multicolumn{2}{|l|}{data} & NO. OF & BAL. PT & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{-}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{INST.}} & \multirow[t]{3}{*}{TRACK. PROG. \(\qquad\)} & \multirow[t]{3}{*}{LOAD CALCS ==\#==} \\
\hline SITE & NO. & Categ. & & UEL & R**2 & PTS.(MO.)DED? & IN & R**2 & PTS. \({ }^{\text {(MO. }}\) & .)ANAL. & & & & & & \\
\hline =a= & == & =e== & & \(={ }^{\text {a }}\) & ==== & ===3 ==== & == & ==3= & === & ===3= & & & & & & \\
\hline \multirow[t]{32}{*}{CHI} & 3 & -x & G & & & & & & & & & & & & & \\
\hline & 4 & -x & G & & & & & & & & & & & & & \\
\hline & 5 & S & G & G & G 99 & 3 & YES & 96 & 3 & 33 & & & M & W & 19 & \\
\hline & 7 & CX & G & & & & & & & & & & & & 22 & \\
\hline & 8 & SX & G & G & - 49 & 4 & yes & 100 & 2 & & & & & & 11 & \\
\hline & 9 & S & G & G & & & YES & 95 & 4 & 60 & I & C & M & W & 18 & \\
\hline & 10 & SX & G & & & & & & & & & & & & & \\
\hline & 11 & S & G & G & 99 & 3 & & & & 21 & I & C & M & W & 18 & \\
\hline & 12 & S & G & G & c 100 & 4 & YES & 08 & 4 & 69 & I & C & M & W & 50 & \\
\hline & 13 & - & G & & & & & & & & & & & & & \\
\hline & 14 & S & G & G & & & YES & 97 & 4 & 41 & I & C & M & W & 14 & \\
\hline & 15 & SX & G & G & & & YES & 93 & 4 ( & (-133!) & I & C & M & W & 27 & \\
\hline & 16 & SX & G & & & & & & & & & & & & 32 & \\
\hline & 17 & CX & G & & & & & & & & & & & & -6 & \\
\hline & 18 & S & G & G & c 100 & 4 & YES & 100 & 3 & 31 & I & C & M & W & 9 & \\
\hline & 19 & S & G & G & G 99 & 4 & YeS & 79 & 4 & 40 & I & C & M & W & 27 & \\
\hline & 20 & -X & G & & & & & & & & & & & & & \\
\hline & 22 & -x & G & & & & & & & & & & & & & \\
\hline & 23 & SX & G & & & & & & & & & & & & & \\
\hline & 24 & C & G & G & & & Yes & 92 & 8 & 74 & & & & & & \\
\hline & 25 & S & G & G & c 100 & 4 & YES & 89 & 4 & 30 & I & C & M & W & 1 & \\
\hline & 26 & SX & G & & & & & & & & & & & & & \\
\hline & 29 & S & G & G & & & YES & 93 & 4 & 59 & I & C & M & W & 21 & \\
\hline & 30 & -x & G & & & & & & & & & & & & & \\
\hline & 31 & -X & G & & & & & & & & & & & & & \\
\hline & 32 & S & G & G & G 100 & 2 & Yes & 82 & 4 & (-14) & I & C & M & (W) & 18 & \\
\hline & 33 & -x & G & & & & & & & & & & & & & \\
\hline & 34 & -X & G & & & & & & & & & & & & & \\
\hline & 35 & CX & G & G & G 20/18 & 4/3 & & & & & & & & & & \\
\hline & 37 & S & G & G & & & YES & 72 & 4 & (62) & I & c & M & W & 18 & \\
\hline & 38 & S & G & G & - 98 & 5 & YES & 98 & , & 28 & 1 & C & M & W & 28 & \\
\hline & 39 & -X & G & & & & & & & & & & & & & \\
\hline
\end{tabular}
TABLE 23 "STATUS" OF RESULTS: COLORADO SPRINGS




TABLE 27
"STATUS" OF RESULTS: OAKLAND
09/25/81

\(X=N O, O R\) INSUFFICIENT, "AFTER" FUEL DATA FOR "BALPNT" ANALYSIS. * = "BEFORE/AFTER" COMPARISON CONTAMINATED BY OCCUPANT CHANGE. BEFORE/AFTER COMPARISON CONTAMINATED BY BUILDING CHANGE (E.G., NOTE: IN "BAL.PT.ANAL." RESULTS, FUEL USED FOR SERVICE WATER HEATING, IF THE SAME AS THAT USED FOR SPACE HEATING, IS NOT (!) FACTORED OUT.

09/25/81

\section*{}

\section*{= NO, OR INSUFFICIENT, "AFTER" FUEL DATA FOR "BALPNT" ANALYSIS. = "BEFORE/AFTER" COMPARISON CONTAMINATED BY OCCUPANT CHANGE.} NOTE: IN "BAL.PT.ANAL." RESULTS, FUEL USED FOR SERVICE WATER HEATING, IF TIIE SAME AS THAT USED FOR SPACE HEATING, IS *NOT (!) FACTORED OUT.

09/25/81
"STATUS" of RESULTS: ST. LOUIS

09/25/81
"STATUS" OF RESULTS: TACOMA

\(X=N O, O R\) INSUFFICIENT, "AFTER" FUEL DATA FOR "BALPNT" ANALYSIS. * = "BEFORE/AFTER" COMPARISON CONTAMINATED BY OCCUPANT CHANGE. + = "BEFORE/AFTER" COMPARISON CONTAMINATED BY BUILDING CHANGE (E.G., NOTE: IN "BAL.PT.ANAL." RESULTS, FUEL USED FOR SERVICE WATER HEATING, IF THE SAME AS THAT USED FOR SPACE HEATING, IS NOT (!) FACTORED OUT. WKLY.RDGS.ANAL. ---UTIL.DATA ANAL.---- ------------INDICATED \(\mathrm{R} * * 2\) PTS.(MO.)DED? IN \(\mathrm{R} * * 2\) PTS.(MO.)ANAL. OPTIONS INST. ===== ============



 © \(\infty \quad \infty \infty\) on in ar


 SITE NO. CATE.
 USE.
SITE NO.
\(======\)

TABLE 31
NOLONIHSVM : SLTnSty do .. SnLVLS.. \(*=\) BEFORE/AFTER" COMPARISON CONTAMINATED BY OCCUPANT CHANGE.
\(+=\) "BEFORE/AFTER" COMPARISON CONTAMINATED BY BUILDING CHANGE (E.G.,
NOTE: IN "BAL.PT.ANAL." RESULTS, FUEL USED FOR SERVICE WATER HEATING,
IF THE SAME AS THAT USED FOR SPACE HEATING, IS NOT (!) FACTORED OUT. X = NO, OR INSUFFICIENT, "AFTER" FUEL DATA FOR "BALPNT" ANALYSIS. SISATVNV NOILdWNSNOD TGOA ..LSOd.. \&о SLTNSAY * * * *
CONTROL HOUSE).

9. REFERENCES
1. Crenshaw, Richard; Clark, Roy; Chapman, Robert; Grot, Richard; and Godette, McClure, CSA Weatherization Project Plan. Washington, DC: National Bureau of Standards, NBSIR 79-1706, March 1979.
2. Crenshaw, Richard and Clark, Roy E., Optimal Weatherization of Low-Income Housing in the U.S.: A Research Demonstration Project. Washington, DC: National Bureau of Standards (Building Science Series, in press).
3. Weber, Stephen F.; Boehm, Micheal J.; and Lippiatt, Barbara C., Weatherization Investment Costs for Low-Income Housing. Washington, DC: National Bureau of Standards, NBSIR 80-2167, November 1980.
4. Clark, Roy E., Effects of Home Weatherization on Occupant Comfort: First Report of a Field Study. Washington, DC: National Bureau of Standards, NBSIR 81-2335, September 1981.
5. Grot, Richard A., An Assessment of the Application of Thermography for the Quality Control of Weatherization Retrofits. Falls Church, VA: American Society of Photogrammetry, "Proceedings of Thermosense II Conference", 1980.
6. Grot, Richard A., and Clark, Roy E., Techniques for the Field Evaluation of Residential Building Envelope Weatherization Retrofits. Washington DC: National Bureau of Standards, NBSIR 81-xxxx (in press).
NBS-114A (REV. 2-8G)
U.s DEPT. OF COMM.
BIBLIOGRAPHIC DATA
SHEET (See instructions)
\begin{tabular}{l|l|l} 
1. PUBLICATION OR \\
REPORT NO. \\
NBS TN 1156
\end{tabular}\(\quad\) 2. Performing Organ. Report No. \begin{tabular}{l} 
3. Publication Date \\
February 1982
\end{tabular}
4. TITLE AND SUBTITLE

The CSA Weatherization Demonstration Data Base: Contents and Descriptions
5. AUTHOR(S)

Roy E. Clark
6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)
7. Contract/Grant No.

DE-AIO1-76-PR06010
NATIONAL BUREAU OF STANDARDS
Task Order 8
DEPARTMENT OF COMMERCE
8. Type of Report \& Period Covered

WASHINGTON, D.C 20234
Final
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City. State, ZIP)
U. S. Department of Energy

Office of Buildings and Community Systems, Buildings Division 1000 Independence Ave., S W , Washington, nC 20545
10. SUPPLEMENTARY NOTES
\(\square\) Document describes a computer program; SF-I85, FIPS Software Summary, is attached.
11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliogrophy or literature survey, mention it here)
The Conmunity Services Administration (CSA) National Optimal Weatherization Demonstration was conducted over a \(31 / 2\) year period (1977-1981) by the National Burcau of Standards and Comunity Action agencies in 12 areas around the Nation, principally to determine what reductions in residence space heating energy consumption could be achieved by extensive, economically cost-effective weatherization of dwellings. Because the project was funded by the CSA, it was conducted using houses occupied by low-income households. In addition to recording overall energy consumption (for the 1975-1980 period), the denonstration collected considerable additional energy-related measurcments from approximately 240 houses (including some 40 unweatherized control houses) at the 12 sites. These measurements probably constitute the most extensive and comprehensive data base on real energy usage of real houses extant. The report describes the various measurements that werc obtained and how they were obtained. It contains house-by-house inventories of the data actually present in the data base and, as an access aid for further study of the data, it describes the media in which the data exist.
12. KEY WORDS (Six to twelve entries: alphabetical order; capitalize only proper names; and separate key words by semicolons) Community Services Administration Weatherization Demonstration; costs of weatherization;energy conservation; energy consumption data; energy related data; field measurement of building energy use; Optimal Neatherization Demonstration; residential energy 13. AVAILABILITY Consumption; space heating consumption; weatherization.
[X] Unlimited
\(\square\) For Official Distribution. Do Not Release to NTIS
[X] Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C 20402.
\(\square\) Order From National Technical Information Service (NTIS), Springfield, VA. 22161
14. NO. OF PRINTED PAGES 159

\section*{15. Price}
\(\$ 6.00\)

\section*{NBS TECHNICAL PUBLICATIONS}

\section*{PERIODICALS}

JOURNAL OF RESEARCH—The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs. As a special service to subscribers each issue contains complete citations to all recent Bureau publications in both NBS and nonNBS media. Issued six times a year. Annual subscription; domestic \(\$ 18\); foreign \(\$ 22.50\). Single copy \(\$ 4.25\) domestic; \(\$ 5.35\) foreign.
NOTE: The Journal was formerly published in two sections: Section A "Physics and Chemistry" and Section B "Mathematical Sciences."

DIMENSIONS/NBS-This monthly magazine is published to inform scientists, engineers, business and industry leaders, teachers, students, and consumers of the latest advances in science and technology, with primary emphasis on work at NBS. The magazine highlights and reviews such issues as energy research, fire protection, building technology, metric conversion, pollution abatement, health and safety, and consumer product performance. In addition, it reports the results of Bureau programs in measurement standards and techniques, properties of matter and materials, engineering standards and services, instrumentation, and automatic data processing. Annual subscription: domestic \$11; foreign \(\$ 13.75\).

\section*{NONPERIODICALS}

Monographs-Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.
Handbooks-Recommended codes of engineering and industrial practice (including safety codes) developed in cosperation with interested industries, professional organizations, and regulatory bodies.

Special Publications-Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.
Applied Mathematics Series-Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.
National Standard Reference Data Series-Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide program coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).

NOTE: The principal publication outlet for the foregoing data is the Journal of Physical and Chemical Reference Data (JPCRD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056.

Building Science Series-Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes-Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards-Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.
Consumer Information Series-Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.
Order the above NBS publications from: Superintendent of Documents, Government Printing Office, Washington, DC 20402.
Order the following NBS publications-FIPS and NBSIR's—from the National Technical Information Services, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)-Publications in this series collectively constitute the Federal Information Processing Standards Register. The Register serves as the official source of information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law 89-306 ( 79 Stat. 1127), and as implemented by Executive Order 11717 ( 38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).
NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Services, Springfield, VA 22161, in paper copy or microfiche form.

OFFICIAL BUSINESS
Penalty for Private Use, \(\$ 300\)```


[^0]:    'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address Washington, DC 20234.
    ${ }^{2}$ Some divisions within the center are located at Boulder, CO 80303.

[^1]:    U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

    NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

[^2]:    * Numbers in brackets indicate references listed in section 9 .

[^3]:    * Originally 16 cities were selected for the demonstration. Los Angeles was dropped by CSA for agency reasons, and it became evident that it did not really make sense to study space heating weatherization in Miami. Meaningful preweatherization data were received from the other 14 sites. However, Albuquerque and New Orleans did not complete the project; no weatherization work was ever done in New Orleans, and little or no "post" data were received on the Albuquerque dwellings.

