Evaluation of Methods For the Assay of Radium-228 in Water
NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards1 was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers:

THE NATIONAL ENGINEERING LABORATORY provides technology and technical services to the public and private sectors to address national needs and to solve national problems; conducts research in engineering and applied science in support of these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers:

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

1Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address Washington, DC 20234.
2Some divisions within the center are located at Boulder, CO 80303.
Evaluation of Methods For the Assay of Radium-228 in Water

J. R. Noyce

Center for Radiation Research
National Measurement Laboratory
National Bureau of Standards
Washington, DC 20234

Sponsored by:
Quality Assurance Division
Environmental Monitoring Systems Laboratory
U.S. Environmental Protection Agency, P.O. Box 15027
Las Vegas, NV 89114

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary
NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Issued February 1981
EVALUATION OF METHODS FOR THE ASSAY OF RADIUM-228 IN WATER

by

J. R. Noyce

The technical literature from 1967 to May 1980 was searched for methods for assaying radium-228 in water. These methods were evaluated for their suitability as potential EPA reference methods for drinking water assays. We suggest the present EPA reference method (Krieger, 1976) be retained but improved, and a second method (McCurdy and Mellor, 1979), which employs $\beta-\gamma$ coincidence counting, be added. Included in this report is a table that lists the principal features of 17 methods for radium-228 assays.

Key words: Analysis; assay; evaluation; radioactivity; radiochemistry; radium-228; reference method; water.

Introduction

Radium-228 is a radionuclide hazardous to human health because, like radium-226, it is incorporated into the skeleton and has a long biological residence time. Radium-228 is ingested primarily by the drinking of water. It has been found to occur in higher concentrations than 226Ra in water in contact with some geologic formations in the United States (Johnson, 1971; Michel and Moore, 1980) and in Brazil (Hainberger, 1974). Radium-228 is difficult to assay accurately, especially at low concentrations, because it emits only very low-energy conversion electrons (less than 6 keV) and low-energy beta particles (10 keV average energy). Other isotopes of radium or their daughters cannot readily be added to samples as tracers for measuring the chemical yields of assays because: 1) they are also likely to be present in the water, particularly 224Ra and 226Ra, or 2) they are themselves inconvenient to prepare and assay, as in the cases of 223Ra and 225Ra.
The U. S. Environmental Protection Agency has regulations which set limits on the concentrations of radionuclides, including 228Ra, in drinking water (EPA, 1976), and which specify approved assay methods. The EPA reference method for 228Ra (Krieger, 1976) is based on a U.S. Geological Survey method (Johnson, 1971), which was also recommended by the World Health Organization (Lund, 1976). In addition, the U.S. Food and Drug Administration (FDA, 1979) has regulations pertaining to radionuclides in bottled water, modelled on the EPA regulations. Other methods for the low-level assay of 228Ra are available, but each of them, as well as the present reference method, has one or more deficiencies for use in monitoring.

All assay methods for radionuclides should have sufficient and demonstrated precision, accuracy, and sensitivity to meet the purposes of the assay. With the possible exception of simple screening tests, such as "gross α" measurements, all radiochemical methods also should incorporate steps for determining the chemical yield.

There are additional desirable features that should be present in an ideal monitoring method. The method should be "rugged", which means it will perform well under less than ideal conditions. It should provide results without requiring a long wait for the ingrowth or decay of a radionuclide, and it should be suitable for use with large numbers of samples; that is, it should have relatively low labor and supply costs.

The Quality Assurance Division in the Environmental Monitoring Systems Laboratory of the EPA, Las Vegas, requested the NBS Radioactivity Group, Nuclear Radiation Division, to survey the literature for 228Ra assay methods and evaluate their suitability as potential EPA reference methods.
Survey of Literature

Nuclear Science Abstracts was searched from 1967 until its termination in 1977. Then, the Energy Data Base was searched from 1977 through May 1980. Also, Chemical Abstracts was searched from 1968 through May 1980. References cited in the relevant papers found in these searches led to other papers dating from approximately 1960.

There are only a few papers giving methods for assaying 228Ra in water and the results of such measurements. Many of the available papers deal with seawater rather than fresh water. The pertinent aspects of the methods are set forth in Table 1 in alphabetical order of author. Some of these publications also deal with 226Ra assays, and salient features of these methods are included in Table 1. Papers concerned only with 226Ra assays are not included.

Also in Table 1 are 228Ra assay procedures found during the search that are for other types of samples, such as soil. The latter methods usually can be adapted to the assay of water samples, and some contain useful techniques not exploited in the water-assay procedures. Reports of investigations using previously published 228Ra assay procedures are excluded.

Evaluation of Methods

Most of the following discussion further explains important points made in Table 1. Nearly all the assay methods separate and purify 228Ac and count beta particles emitted in its decay. The method of McCurdy and Mellor (1979) is unique in that the 228Ac is not separated from its 228Ra parent for counting. Thus, 228Ac can be counted as long as desired or recounted days later.
without performing additional radiochemistry on the sample. A few procedures use the detection of radiations emitted by later members in the ^{228}Ac decay series, including ^{228}Th, ^{224}Ra, and even ^{212}Pb from de-emanated ^{220}Rn. Only the method of Tomza (1977) uses liquid-scintillation counting.

The assay methods listed in Table 1 appear to have the sensitivity required by the EPA drinking water regulations (EPA, 1976), with the apparent exceptions of those of Iyer et al. (1966) and Baretta and Feldman (1961). There is some evidence that at low ^{228}Ra concentrations a method for counting alpha particles from the decay of ^{228}Th has better precision than one for counting beta particles from the decay of ^{228}Ac (Knauss et al., 1978), but the time required for ^{228}Th ingrowth is much longer than that for ^{228}Ac.

The methods in Table 1 lacking a provision for determining the chemical yield for each sample processed are those of Humphrey et al. (1975), Johns et al. (1979), Kuchta et al. (1976), MacKenzie et al. (1979), Percival and Martin (1974), Petrow et al. (1964), Sakanoue et al. (1973), and Tomza (1977). This is also true of procedures of Barratta and Feldman (1961), and of Kahlos and Asikainen (1973), but both could readily be modified for gravimetric determination of chemical yields. Some of the methods which do provide a chemical yield, however, require long waiting times (see below).

Four of the methods use radioactive tracers to measure chemical yields: Kaufman et al. (1973), Koide and Bruland (1975), Michel and Moore (1980), and Smith and Mercer (1970). Because the present EPA reference methods for radio-nuclides other than tritium do not require radioactive tracers (Krieger, 1976), it was assumed they are to be avoided when another yield-measuring technique
is available. It should be noted that the chemical yield is incorrectly calculated in the reference method for 228Ra (Krieger, 1976). Any loss of sample in steps 13 and 14 is counted twice. The Ba(Ra)SO$_4$ precipitate at the end of step 11 should be weighed, rather than in step 25 as stated.

The waiting periods in the methods given in Table 1 for ingrowth or decay of radionuclides during an assay can be divided into three groups: less than two full days, two days to 30 days, and greater than 30 days. Waiting periods include time for the ingrowth of 222Rn for those procedures where assays of 226Ra are an integral part of the 228Ra assays. The short-time procedures in the first group are Raratta and Feldman (1961), Humphrey et al. (1975), Iyer et al. (1966), Krieger (1976), McCurdy and Mellor (1979), Percival and Martin (1974), and Petrow et al. (1964). Methods with waiting periods of between two and 30 days are Johns et al. (1979), Kahlos and Asikainen (1973), Koide and Bruland (1975), and Smith and Mercer (1970) (via 228Ac). Methods requiring waiting times of longer than 30 days are Kaufman et al. (1973), Kuchta et al. (1976), MacKenzie et al. (1979), Michel and Moore (1980), Sakanoue et al. (1973), Smith and Mercer (1970) (via 228Th), and Tomza (1977).

The methods of Kuchta et al. (1976) and Tomza (1977) would have waiting times of only two to 30 days if 224Ra were known to be in equilibrium with 228Ra, but this condition would probably be rare for drinking water. Finally, the waiting period in the procedure of MacKenzie et al. (1979) could also be reduced to between two and 30 days if the more volatile beta-particle-emitting progeny of 228Ac could be flamed off a
source evaporated on a stainless steel planchet with no accompanying loss of ^{228}Ac (compare with Koide and Bruland (1975)).

A potential problem confronting the methods which assay ^{228}Ra via ^{228}Ac is the presence of radioisotopes of the rare-earth elements or those with similar chemical properties, especially ^{90}Y, daughter of ^{90}Sr. Some of the procedures have one or more steps designed to reduce such contamination, and the $\beta-\gamma$ coincidence counting technique of McCurdy and Mellor (1979) is not affected by ^{90}Y. A recent interlaboratory assay exercise, with a water test sample that had $^{90}\text{Sr}-^{90}\text{Y}$ added, indicated that the present EPA reference method does not adequately remove ^{90}Y from ^{228}Ac (Whittaker, 1980).

The Y or La compound chosen as the carrier for Ac should be checked for radiochemical purity before use, because it may be a significant source of beta activity (Johnson, 1971). Such a warning should be added to the reference method.

It is difficult to assess the "ruggedness" of an analytical method from just a literature survey. In general, the less complex an assay procedure is, the better chance of its being "rugged". However, some of the simpler procedures in Table 1 are without a means for measuring chemical yields.

The "special apparatus" columns in the table list items needed for each method that are judged not likely to be present in the usual water-analysis laboratory. Some of these items, such as the $\beta-\gamma$ coincidence-counting system of McCurdy and Mellor (1979), are a significant expense.
Conclusions

Most of the 228Ra assay methods in Table 1 are eliminated from consideration as an EPA reference method by applying the criteria discussed earlier: adequate sensitivity, yield determination without radioactive tracers, and a waiting time for ingrowth or decay of radionuclides in the sample of no more than 30 days. The methods meeting these criteria, but with the reservation already noted about each, are Kahlos and Asikainen (1973), Krieger (1976) and McCurdy and Mellor (1979). The first of these three would be eliminated if the requirement of a waiting period for ingrowth or decay of no more than two days were imposed. It is possible that Iyer et al. (1966) and Barratta and Feldman (1961) are sufficiently sensitive, but multilaboratory studies would be necessary to demonstrate this.

It is suggested that the EPA keep Krieger (1976) as a reference method but improve its decontamination factor for 90Y and correct its chemical yield calculation. It is also suggested that McCurdy and Mellor (1979) be added as a second reference method. The two procedures complement each other. The first uses radiation-detection systems which most laboratories that assay for radionuclides in water are likely to have, but it requires a considerable amount of labor to process samples. The second requires most laboratories to purchase a new radiation-detection system, but the labor to process samples is definitely less.

Michel, J., and W.S. Moore (1980), "226Ra and 228Ra content of groundwater in fall line aquifers", Health Physics, 38, 663.

The following papers were obtained too late to include in Table 1. They do not alter the conclusions of this report because none is suitable as a reference method for radium-228 assays. The radiochemical section of the Herment paper deals with the production of radium-228. Neither of the other two papers has a way to determine the chemical yield of an assay.

Table 1. Comparison of Major Features of Methods for the Assay of Radium-228 in Water
<table>
<thead>
<tr>
<th>Reference</th>
<th>Intended Use</th>
<th>Sample Size</th>
<th>Preliminaries</th>
<th>Ra Separation</th>
<th>Purification</th>
<th>Final Form</th>
<th>Yielded By</th>
<th>Counted By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baratta and Feldman (1961)</td>
<td>Assay of Ac in U kill effluents and natural waters</td>
<td>1 liter</td>
<td>Ac pptd. with La (12 mg) by HF</td>
<td>On Ba(NO$_3$)$_2$ in 75% HNO$_3$; 6Ra soln.</td>
<td>Solution evaporated on stainless steel planchet, planchet flamed</td>
<td>Nothing</td>
<td>Frisch-grid ionization chamber of 4.78 MeV, with PHA</td>
<td></td>
</tr>
<tr>
<td>Humble et al. (1975)</td>
<td>228Ra and 228Ra in effluent solutions with high 40K concentration</td>
<td>250 ml</td>
<td>None</td>
<td>On 100 ng of Ba pptd. as Ba(NO$_3$)$_2$; Ba weighed before and after Ra separation</td>
<td>Water and Microsorb filters; none; soil and glass-fiber filters; reagent on BaSO$_4$; Dissolve ppt. in alkaline EDTA-solution, reagent sulfates at pH 4.5 with acetic acid</td>
<td>Water and Microsorb filters; OPTA complex in acetic acid; others: chloride solution</td>
<td>Nothing</td>
<td>Ra de-emanated into scintillation chamber after 30 days ingrowth. Counting begun 4.5 h after transfer</td>
</tr>
<tr>
<td>Iyer et al. (1966)</td>
<td>Assay of natural radioactivity in ground water</td>
<td>2 to 5 g</td>
<td>Digest with H$_2$SO$_4$ in Pt dish and fuse with Na$_2$CO$_3$ and K$_2$CO$_3$; Dissolve in HNO$_3$</td>
<td>On 1000 mg of Ba pptd. as Ba(NO$_3$)$_2$; Ba weighed before and after Ra separation</td>
<td>Water, air filters: coppt. on PbSO$_4$; sol. coppt. on BaSO$_4$</td>
<td>Water and Microsorb filters; OPTA complex in acetic acid; others: chloride solution</td>
<td>Nothing</td>
<td>Ra de-emanated into scintillation chamber after 30 days ingrowth. Counting begun 4.5 h after transfer</td>
</tr>
<tr>
<td>Johns et al. (1979)</td>
<td>Assay of natural radioactivity in sea water</td>
<td>1 liter</td>
<td>Citric acid and NH$_4$OH added to filtered sample, then Ba and Pb carriers</td>
<td>Mixed sulfates pptd. with H$_2$SO$_4$</td>
<td>Dissolve ppt. in alkaline EDTA-solution, reagent sulfates at pH 4.5 with acetic acid</td>
<td>25% Ag-activated 3-particle scintillation counter</td>
<td>Ra de-emanated into scintillation chamber after 30 days ingrowth. Counting begun 4.5 h after transfer</td>
<td></td>
</tr>
<tr>
<td>Kahlos and Asikkainen (1975)</td>
<td>Assay of natural radioactivity in sea water</td>
<td>600 to 800 l</td>
<td>Acidify with HCl, add Fe and Ba carriers, 208Pb tracer, ppt. Fe(OH)$_3$ and Ba(BaSO$_4$ with NH$_4$OH)</td>
<td>Hydroxides dissolved in HCl, sulfates transferred to carbonates, dissolved in HCl</td>
<td>None</td>
<td>Nothing</td>
<td>Ra de-emanated into scintillation chamber after 30 days ingrowth. Counting begun 4.5 h after transfer</td>
<td></td>
</tr>
<tr>
<td>Kaufman et al. (1973), Broecker et al. (1973)</td>
<td>Assay of natural radioactivity in sea water</td>
<td>20 l, 1 to 5 g sediment</td>
<td>Add Pb carrier, 208Pb tracer, Sediment: ignite and leach with HCl</td>
<td>Water: coppt. on AlP$_2$O$_5$, dissolve in 4 M HNO$_3$; Sediment: coppt. on Pb(NO$_3$)$_2$ with 75% HNO$_3$</td>
<td>Separate Ra and Pb on anion exchange column, alkaline earths on cation exchange column</td>
<td>Electroplated on Pt planchet after at least two weeks wait for 210Pb to decay</td>
<td>Ra de-emanated into scintillator cell</td>
<td></td>
</tr>
<tr>
<td>Kilde and Hvidland (1975)</td>
<td>Assay of natural radioactivity in drinking water</td>
<td>1 liter</td>
<td>Add citric acid, Pb, Ba and Y carriers, heat</td>
<td>Add NH$_4$OH, ppt. mixed sulfates with H$_2$SO$_4$, then add (NH$_4$)$_2$SO$_4$</td>
<td>Multiple coppt. on Ba(NO$_3$)$_2$ and on BaSO$_4$</td>
<td>In alkaline EDTA-solution, or in BaSO$_4$ ppt. on stainless steel planchet</td>
<td>228Ra tracer, Ac "cow" is required</td>
<td>3-spectrometry with semiconductor detector</td>
</tr>
<tr>
<td>Kuchta et al. (1976)</td>
<td>Assay of skeletal 228Ra and 228Th in presence of gross amounts of 228Ra in bone samples</td>
<td>Not specified</td>
<td>Dry ash sample, dissolve ash in HNO$_3$</td>
<td>None</td>
<td>None</td>
<td>Nothing</td>
<td>Ra de-emanated into scintillator cell</td>
<td></td>
</tr>
<tr>
<td>Special Items</td>
<td>Purification</td>
<td>Final Form</td>
<td>Yielded By</td>
<td>Waiting Period</td>
<td>Counted By</td>
<td>Special Items</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>------------</td>
<td>------------</td>
<td>---------------</td>
<td>------------</td>
<td>--------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Heated ion exchange columns (60°C)</td>
<td>Liquid-liquid extractions using TTA in benzene; ion exchange columns</td>
<td>La(Ac) oxalate.</td>
<td>Not mentioned, but could be gravimetrically</td>
<td>None stated, but sample should be</td>
<td>G-M tube or proportional counter, with absorber when</td>
<td>None</td>
<td>Sekine et al. (1967) say TTA equimolar with TBP in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2nd ion exchange column at 60°C. Ac eluted with 6 M HNO₃, Ac copptd. on Fe(OH)₃, impurities scavenged on Pb and 81 sulfides</td>
<td>solution evap. on stainless steel planchet</td>
<td></td>
<td>sample should be</td>
<td>228Ac ingrowth</td>
<td></td>
<td>TTA is superior to TTA only</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fe(AC)(OH)₃ dissolved in HNO₃, known fraction evaporated on planchet</td>
<td>Weighings of ppt. containing Ra and Ac, or spectrophotometric assay of Fe</td>
<td></td>
<td>Gas-flow proportional counter with 13 mg/cm² absorber</td>
<td></td>
<td>Ba initially present in samples. Na, K, Ca, Mg, and Al each more than 100 ng/g in typical samples</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ppt. Ce with HNO₃, dissolved ppt. in HNO₃, add 8a holdback carrier, reppt. Ac on Ce(OH)₃,</td>
<td>Evap. acid solution to dryness on 5-cm diameter planchet</td>
<td></td>
<td>228Ac ingrowth</td>
<td></td>
<td>Method not tried on very low activity samples</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Th purified on cation and anion exchange columns, extracted into TTA in benzene, evaporated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Method could be changed to assay 222Ra first. No specifics given for assaying biologicals. Section 11 wrongly states no 222Ra std. are available</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>On sage planchet as 228Ra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>226Ra could be counted by de-emanation of 222Rn</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>See under 226Ra; none additional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Method is based in part on Moore (1969a). Kauss et al. (1978) found precision of assays better by counting 229Th than by counting 228Ac.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>As for 226Ra plus copptn. of ingrown Ac on Y(Oh)₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>226Ra/228Ra activity ratio must be at least 0.1. As check, ingrown 222Rn can be counted later. Cochran (1974) completely dissolved sediments.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>None except by Rn de-emanation using a flow-through collection chamber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chemical yield of Ac is incorrectly calculated—see text</td>
<td></td>
</tr>
</tbody>
</table>

-13-
<table>
<thead>
<tr>
<th>Reference</th>
<th>Intended Use</th>
<th>Sample Size</th>
<th>Preliminaries</th>
<th>Ra Separation</th>
<th>Purification</th>
<th>Final Form</th>
<th>Yielded By</th>
<th>Counted By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mackenzie et al. (1974)</td>
<td>Assay of 226Ra and other radio-nuclides in sea water and marine sediments</td>
<td>226Ra and 228Ra in drinking water</td>
<td>Water: 10 to 20 l for 226Ra; 50 l for 228Ra, Sediment: 5 to 10 g</td>
<td>226Ra: none, 228Ra: absorb on MnO(2), desorb with HCl, coppt. on BaSO4</td>
<td>Dissolve ppt. in alkaline EDTA solution, reppt. BaSO4 with acetic acid</td>
<td>222Ra in gas</td>
<td>Nothing, but analysts say assay is quantitative</td>
<td>(\alpha) -scintillation in modified Lucas cell</td>
</tr>
<tr>
<td>McConkey and Sellar (1979)</td>
<td>Assay of 226Ra and 228Ra in ground waters</td>
<td>226Ra: 0.8 l, 228Ra: 10 to 20 l</td>
<td>None (waters assayed were clear)</td>
<td>226Ra: none, 228Ra: absorb on MnO(2), impregnated acrylic filters, coppt. with HCl, ppt. on BaSO4</td>
<td>Add acetic acid, coppt. Ra with BaCl2, on BaSO4, Dissolve ppt. in DTPA solution</td>
<td>222Ra in gas</td>
<td>Nothing, but each sample run at least twice</td>
<td>(\alpha) -scintillation chamber</td>
</tr>
<tr>
<td>Michel and Moore (1980)</td>
<td>Assay of 226Ra and 228Ra in soils, waters, ores, and mill tailings and effluents</td>
<td>5 g of solids, 0.1 to 1 liter of liquid</td>
<td>Liquids: acidify, wait overnight, coppt. on PbSO4, do sulfate fusion</td>
<td>226Ra: none, 228Ra: absorb on MnO(2), impregnated acrylic filters, coppt. with HCl, ppt. on BaSO4</td>
<td>Add acetic acid, coppt. Ra with BaCl2, on BaSO4, Dissolve ppt. in DTPA solution</td>
<td>222Ra in gas</td>
<td>Nothing, but each sample run at least twice</td>
<td>(\alpha) -scintillation chamber</td>
</tr>
<tr>
<td>Percival and Martin (1974)</td>
<td>Assay of 226Ra and 228Ra in biological and mineral samples</td>
<td>Up to 50 g of bone ash, up to 20 g of food or plant soil; 5 g of minerals</td>
<td>Minerals: Fuse with Na2CO3, digest in HNO3. All types: dissolve in acid</td>
<td>226Ra: none, 228Ra: absorb on MnO(2), impregnated acrylic filters, coppt. with HCl, ppt. on BaSO4</td>
<td>Liquid-liquid extractions with Alkaptop 336 and DEHPA to remove Th. Coppt. Ra on PbSO4</td>
<td>222Ra in gas</td>
<td>Pulse-ionization chamber or (\alpha) -scintillation cell</td>
<td></td>
</tr>
<tr>
<td>Petrow et al. (1964)</td>
<td>Assay of 226Ra and 228Ra in sea sediments</td>
<td>228Ra in sea water and 226Ra in sea sediments</td>
<td>80 l</td>
<td>228Ra: BaCl2 and FeCl2, add H2O, ppt. Fe(0H)3 and BaSO4 ppt.</td>
<td>Cation exchange separation of Ra and Ba, Ra coppt. on Pb(NO3)2, separated by knip exchange at 60°</td>
<td>Electrowpated on stainless steel planchet</td>
<td>222Ra for dissocation only, 228Ra for entire assay, from (^{222}Rn) "cow"</td>
<td>(\alpha) -spectrometry with Frisch-grid pulse- ionization chamber</td>
</tr>
<tr>
<td>Sakanoue et al. (1973)</td>
<td>Assay of 226Ra in sea water and 226Ra in sea sediments</td>
<td>226Ra in sea water and 226Ra in sea sediments</td>
<td>Up to 10 g of plant ash and soil</td>
<td>226Ra: Repeated evap. with HClO4 and HF, dissolve residue in HCl</td>
<td>Cooppt. Ra on Ba and Pb sulfates, Ppt. dissolved in alkaline EDTA, sulfates reppt. with acetic acid</td>
<td>Ba(252)SO4 ppt. dispersed in toluene containing PPO, POPOP, and colloidal silica</td>
<td>Nothing, but each sample run at least twice</td>
<td>Liquid-scintillation, two counts several weeks apart</td>
</tr>
<tr>
<td>Smith and Mercer (1970)</td>
<td>Assay of 226Ra and 228Ra in soils and plants</td>
<td>Up to 10 g of plant ash and soil</td>
<td>Repeated evap. with HClO4 and HF, dissolve residue in HCl</td>
<td>226Ra: Repeated evap. with HClO4 and HF, dissolve residue in HCl</td>
<td>Cooppt. Ra on Ba and Pb sulfates, Ppt. dissolved in alkaline EDTA, sulfates reppt. with acetic acid</td>
<td>222Ra in gas</td>
<td>Nothing, but each sample run at least twice</td>
<td>(\alpha) -scintillation chamber</td>
</tr>
<tr>
<td>Tonta (1971)</td>
<td>Assay of low Ra concentrations in mineralized waters</td>
<td>10 l</td>
<td>Add citric acid and NaOH, then Pb and Ba carriers</td>
<td>Mixed ppt. with H2SO4</td>
<td>Cation exchange separation of Ra and Ba, Ra coppt. on Pb(NO3)2, separated by knip exchange at 60°</td>
<td>Ba(252)SO4 ppt. dispersed in toluene containing PPO, POPOP, and colloidal silica</td>
<td>Nothing, but each sample run at least twice</td>
<td>(\alpha)-scintillation chamber</td>
</tr>
</tbody>
</table>

ABBREVIATIONS:
- \(p \) = particle
- \(\alpha \) = particle
- coppt. = coprecipitate
- DEHPA = bis(2-ethylhexyl)phosphoric acid
- DTPA = sodium diethylenetriaminopenta acetic acid
- EDTA = sodium ethylenediaminetetraacetate
- evap. = evaporate, evaporated
- G-M = Geiger-Muller
- PMA = pulse height analyzer
- PPO = 1,4-di-((2-(5-phehnyloxazoyl))benzene
- PPD = 2,6-diphenyloxazole
- ppt. = precipitate (as verb and as noun)
<table>
<thead>
<tr>
<th>Special Items</th>
<th>Purification</th>
<th>Final Form</th>
<th>Yields By</th>
<th>Waiting Period</th>
<th>Counted By</th>
<th>Special Items</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-liter glass vessel</td>
<td>Sr removal step: extractions of Sr by TTA in benzene; store 5 weeks; none extractions of Sr</td>
<td>Evap. organic phases on heated stainless steel planchet</td>
<td>Same as 226Ra</td>
<td>12 d for 226Ra ingrowth, at least 5 weeks for decay of 226Th progeny</td>
<td>Tracerlab Omniguard (gas-flow GM counter with anticoincidence)</td>
<td>MnO₂-impregnated acrylic fibers, Pt crucible</td>
<td>Method does not discuss assay of 226Ra in sediments</td>
</tr>
<tr>
<td>4 timer SCA, 2 coincidence analyzers, special detector assembly, PFA</td>
<td>Apparently none. See under 226Ra</td>
<td>Same as 226Ra</td>
<td>2 d counting of 226Ra</td>
<td>As for 226Ra</td>
<td></td>
<td></td>
<td>Considerable instrumentation is required, but amount of radiochemistry is reduced</td>
</tr>
<tr>
<td>Pt dish</td>
<td>Carbonate fusion, dissolve mixed ppt. in HCl, co-</td>
<td>Purify Th by ion exchange, mount on planchet for thinnest source of counting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ra extraction by fibers based on Krishnaswami et al. (1973) and on Moore and Reid (1973)</td>
</tr>
<tr>
<td>None</td>
<td>Pt dish</td>
<td>Evap. final acid solution on 5-cm diameter stainless steel planchet</td>
<td>Nothing</td>
<td>At least 20 h for 226Ac ingrowth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>None</td>
<td>Evap. on stainless steel plate</td>
<td>226Ra assay on initial sample and on Ra (RaCl₂) solution just before AC extraction. Extraction is not yielded</td>
<td></td>
<td></td>
<td></td>
<td>This method is a variation of similar method by Petrow and Allen (1961) for U mill effluents which also is unyielded</td>
</tr>
<tr>
<td>None</td>
<td>None</td>
<td>Solution evap. on stainless steel planchet</td>
<td>7 to 10 d for growth of 226Ac</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>None</td>
<td>Evap. on stainless steel plate</td>
<td>Equilibrium between 226Ra and 226Th assumed. If not so, must reextract several months later</td>
<td></td>
<td></td>
<td></td>
<td>Use of moderately complex equations of ingrowth and decay is required</td>
</tr>
</tbody>
</table>

rept. = reprecipitate
SCA = single channel analyzer
std. = standard
TBP = tributylphosphate
TFA = 2-thiolytrifluoroacetone
Evaluation of Methods for the Assay of 228Ra in Water

J.R. Noyce

National Bureau of Standards
Department of Commerce
Washington, D.C. 20234

Quality Assurance Division
Environmental Monitoring Systems Laboratory
U.S. Environmental Protection Agency, P.O. Box 15027
Las Vegas, NV 89118

The technical literature from 1967 to May 1980 was searched for methods for assaying radium-228 in water. These methods were evaluated for their suitability as potential EPA reference methods for drinking water assays. We suggest the present EPA reference method (Krieger, 1976) be retained but improved, and a second method (McCurdy and Mellor, 1979), which employs β-γ coincidence counting, be added. Included in this report is a table that lists the principal features of 17 methods for radium-228 assays.

Analysis; assay; evaluation; radioactivity; radiochemistry; radium-228; reference method; water.

Unlimited

Order From National Technical Information Service (NTIS), Springfield, VA 22161

$1.50
There's a new look to...

...the monthly magazine of the National Bureau of Standards. Still featured are special articles of general interest on current topics such as consumer product safety and building technology. In addition, new sections are designed to provide scientists with illustrated discussions of recent technical developments and work in progress. Inform industrial managers of technology transfer activities in Federal and private labs. Describe to manufacturers advances in the field of voluntary and mandatory standards. The new DIMENSIONS/NBS also carries complete listings of upcoming conferences to be held at NBS and reports on all the latest NBS publications, with information on how to order. Finally, each issue carries a page of News Briefs, aimed at keeping scientist and consumer alike up to date on major developments at the Nation's physical sciences and measurement laboratory.

SUBSCRIPTION ORDER FORM

Enter my Subscription To DIMENSIONS/NBS at $11.00. Add $2.75 for foreign mailing. No additional postage is required for mailing within the United States or its possessions. Domestic remittances should be made either by postal money order, express money order, or check. Foreign remittances should be made either by international money order, draft on an American bank, or by UNESCO coupons.

Send Subscription to:

NAME-FIRST, LAST

COMPANY NAME OR ADDITIONAL ADDRESS LINE

STREET ADDRESS

CITY STATE ZIP CODE

☐ Remittance Enclosed
☐ Charge to my Deposit Account No.

MAIL ORDER FORM TO:
Superintendent of Documents
Government Printing Office
Washington, D.C. 20402
NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs. As a special service to subscribers each issue contains complete citations to all recent Bureau publications in both NBS and non-NBS media. Issued six times a year. Annual subscription: domestic $13; foreign $16.25. Single copy: $3 domestic; $3.75 foreign.

NOTE: The Journal was formerly published in two sections: Section A "Physics and Chemistry" and Section B "Mathematical Sciences."

DIMENSIONS/NBS—This monthly magazine is published to inform scientists, engineers, business and industry leaders, teachers, students, and consumers of the latest advances in science and technology, with primary emphasis on work at NBS. The magazine highlights and reviews such issues as energy research, fire protection, building technology, metric conversion, pollution abatement, health and safety, and consumer product performance. In addition, it reports the results of Bureau programs in measurement standards and techniques, properties of matter and materials, engineering standards and services, instrumentation, and automatic data processing. Annual subscription: domestic $11; foreign $13.75.

NONPERIODICALS

Monographs—Major contributions to the technical literature on various subjects related to the Bureau’s scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, compiled from the world’s literature and critically evaluated. Developed under a worldwide program coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).

NOTE: The principal publication outlet for the foregoing data is the Journal of Physical and Chemical Reference Data (JPCRD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements available from ACS, 1155 Sixteenth St., NW, Washington, DC 20036.

Building Science Series—Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today’s technological marketplace.

Order the following NBS publications—FIPS and NBSIR’s—from the National Technical Information Services, Springfield, VA 22161.

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Services, Springfield, VA 22161, in paper copy or microfiche form.