A Computer Data Base System for Indexing Research Papers
NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards\(^1\) was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers:

THE NATIONAL ENGINEERING LABORATORY provides technology and technical services to the public and private sectors to address national needs and to solve national problems; conducts research in engineering and applied science in support of these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers:

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

\(^{1}\)Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address Washington, DC 20234.

\(^{2}\)Some divisions within the center are located at Boulder, CO 80303.
A Computer Data Base System for Indexing Research Papers

Lawrence J. Kaetzel
Robert A. Glass
George R. Smith

Center for Building Technology
National Engineering Laboratory
National Bureau of Standards
Washington, D.C. 20234

U.S. DEPARTMENT OF COMMERCE, Philip M. Klutznick, Secretary
Luther H. Hodges, Jr., Deputy Secretary
Jordan J. Baruch, Assistant Secretary for Productivity, Technology and Innovation
NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Issued October 1980
A COMPUTER DATA BASE SYSTEM FOR INDEXING RESEARCH PAPERS

Lawrence J. Kaetzel
Robert A. Glass
George R. Smith

ABSTRACT

The Kaetzel-Glass-Smith data base system allows the indexing and retrieval of scientific research papers through the use of a minicomputer system in an interactive mode. Criteria are entered through the user's remote terminal which produces subsets of the data base in a report format as well as statistical summaries of data base elements.

Key words: Computer indexing; data base; information retrieval; interactive processing.
ACKNOWLEDGMENTS

The authors wish to thank the Occupational Safety and Health Administration for their support of this work. The KGS data base was developed in conjunction with OSHA's Office of Standards Development in order to be able to quickly retrieve references relevant to the development of a new standard on safety and hazard markings.

The authors also thank Mrs. Sharon Farinholt and Ms. Ulesia Gray for their efforts in the preparation of this manuscript and Dr. Fred Stahl, Mr. Frank Lerchen, and Mr. Dave Wise for their thoughtful suggestions.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Computer System Environment</td>
<td>1</td>
</tr>
<tr>
<td>2.1 Hardware</td>
<td>1</td>
</tr>
<tr>
<td>2.2 Software</td>
<td>2</td>
</tr>
<tr>
<td>2.3 Data Base Storage</td>
<td>2</td>
</tr>
<tr>
<td>2.4 Data Base Sorting</td>
<td>2</td>
</tr>
<tr>
<td>3. Modes of Operation</td>
<td>3</td>
</tr>
<tr>
<td>3.1 Data Base Supervisor Program (PDBSUP)</td>
<td>3</td>
</tr>
<tr>
<td>3.2 EDIT Mode (PDBED)</td>
<td>3</td>
</tr>
<tr>
<td>3.2.1 SEARCH Mode (PDBED)</td>
<td>3</td>
</tr>
<tr>
<td>3.2.2 UPDATE Mode (PDBED)</td>
<td>3</td>
</tr>
<tr>
<td>3.2.3 APPEND Mode (PDBED)</td>
<td>4</td>
</tr>
<tr>
<td>3.2.4 DELETE Mode (PDBED)</td>
<td>4</td>
</tr>
<tr>
<td>3.2.5 RETURN Mode (PDBED)</td>
<td>4</td>
</tr>
<tr>
<td>3.3 KEY WORD Mode (PDBKEY)</td>
<td>4</td>
</tr>
<tr>
<td>3.4 SELECT DB Mode (PSDSUP)</td>
<td>5</td>
</tr>
<tr>
<td>3.5 ONE KEY Mode (PDBQK)</td>
<td>5</td>
</tr>
<tr>
<td>3.6 RETRIEVE Mode (KGSEX)</td>
<td>5</td>
</tr>
<tr>
<td>4. Operating Procedures</td>
<td>6</td>
</tr>
<tr>
<td>4.1 Perkin-Elmer Computer System Signon Procedure</td>
<td>6</td>
</tr>
<tr>
<td>4.1.1 Operator Prompting</td>
<td>6</td>
</tr>
<tr>
<td>4.2 Sorting</td>
<td>7</td>
</tr>
<tr>
<td>4.3 Activating the KGS Data Base</td>
<td>7</td>
</tr>
<tr>
<td>4.4 Data Base Supervisor Program</td>
<td>7</td>
</tr>
<tr>
<td>4.5 EDIT Mode</td>
<td>7</td>
</tr>
<tr>
<td>4.5.1 APPEND Sub-mode</td>
<td>8</td>
</tr>
<tr>
<td>4.5.2 DELETE Sub-mode</td>
<td>8</td>
</tr>
<tr>
<td>4.5.3 UPDATE Sub-mode</td>
<td>8</td>
</tr>
<tr>
<td>4.5.4 SEARCH Sub-mode</td>
<td>8</td>
</tr>
<tr>
<td>4.5.5 RETURN Sub-mode</td>
<td>9</td>
</tr>
<tr>
<td>4.6 SELECT DB Mode</td>
<td>9</td>
</tr>
<tr>
<td>4.7 KEY WORD Mode</td>
<td>9</td>
</tr>
<tr>
<td>4.8 ONE KEY Mode</td>
<td>9</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (Continued)

4.9 RETRIEVE Mode ... 9
4.10 STOP Mode ... 10
4.11 SIGNOFF Procedure ... 10

5. Implementation Considerations ... 10
5.1 Minimum Hardware Resources ... 10
5.2 Software Installation ... 11

6. Conclusions ... 11

LIST OF TABLES

TABLE 1. KGS PROGRAM FUNCTIONS .. 12
TABLE 2. PERKIN-ELMER REMOTE TERMINAL COMMUNICATIONS PROTOCOL .. 12
TABLE 3. SUMMARY OF SIGNON PROCEDURES FOR THE KGS DATA BASE
SYSTEM .. 13
TABLE 4. AVAILABLE KGS DATA RUN MODES 13
TABLE 5. KGS ALLOWABLE COMMAND ABBREVIATIONS 14

LIST OF FIGURES

FIGURE 1. CBT PERKIN-ELMER COMPUTER SYSTEM CONFIGURATION 15
FIGURE 2. KGS DATA BASE RECORD FORMAT 16
FIGURE 3. SAMPLE KGS RETRIEVAL .. 17
FIGURE 4. KGS PROGRAM MODULES .. 18

LIST OF APPENDIX

APPENDIX A. KGS SAMPLE SEARCH STRATEGY A-1
APPENDIX B. EXAMPLE OF A TYPICAL KEY WORD LISTING IN THE
KGS SYSTEM .. D-1
APPENDIX C. PERKIN-ELMER OPERATING AND REFERENCE MANUALS C-1
APPENDIX D. KGS APPLICATIONS PROGRAM LISTING D-1
APPENDIX E. KGS EXTERNAL SUBROUTINES E-1
APPENDIX F. ERROR DIAGNOSTICS .. F-1
1. INTRODUCTION

A set of computer programs written in the FORTRAN V Level I programming language has been developed which allows the indexing, classifying, retrieval, and editing of citations of research papers through the use of a computer terminal in a research laboratory or office. Complete listings of the application programs may be found in Appendix D.

The system is designed to help user's of medium and small computer systems organize, edit, file, and retrieve copies of research papers. A major advantage of implementing a system for personal copies of research papers, is that it allows the user to consider the references to form a research data base, and allows the user to search through them using new search strategies.

The current version of this data base system does not provide publication abstract capabilities. Enhancements to the system are planned during fiscal year 1981 and provisions for abstracting will be included.

This report describes the overall systems, its operation, and the computer program. It allows a user with some familiarity with computers to use or duplicate this system. The software system described enables the user to access the entire data base or subsets of the data base.

A Perkin-Elmer\(^1\) Model 7/32 minicomputer was used in the development and implementation of the system along with its associated peripherals and software routines. Other minicomputer systems can be used to implement the data base system, although minor adjustments in the programs may be necessary.

2. COMPUTER SYSTEM ENVIRONMENT

2.1 Hardware

The memory capacity of the Perkin-Elmer computer used is one-half million bytes. Processing is performed using thirty-two bit word formats.

The computer system hosts a variety of peripheral devices to include rotating magnetic disk, magnetic tape, cassetter recorders, electrostatic printer/plotter and a medium speed line printer (see Fig. 1).

Telecommunications access methods are achieved in one of three ways: 1) commercial telephone network; 2) dedicated short-haul modems; and 3) dedicated cable where short distances (less than four-hundred and fifty feet) are involved.

\(^1\) Reference of computer manufacturer does not constitute an endorsement by NBS.
An asynchronous communications adapter is installed in the computer system and provides a universal hardware communications interface. The ASCII* character data format is used in the transmission of data between the computer system and its remote devices.

2.2 Software

The software operating system installed in the computer is the "Perkin-Elmer OS/32MT" operating system. The system permits multi-user access to the computer's hardware and software resources. Priorities are assigned to a computer program during the development process, and determines the execution of the program with regard to peripheral and central processor availability.

The data base management software system is entitled the "Kaetzel, Glass, Smith Data Base" (KGS). Software sub-systems used with the KGS data base system are: Perkin-Elmer Multi-Terminal Manager (MTM) and the Perkin-Elmer FORTRAN V Level I compiler. The function served by MTM is to provide a remote software link between the user's terminal and the production and development facilities of the computer system.

2.3 Data Base Storage

Data elements (fields) of every KGS related-publication are stored in the data base in a prescribed format. Each publication represents one data base record, (see Fig. 2). Decisions relating to the representation of data within an element are the responsibility of the user. For example, a recommended format for the author name element could be; last name-comma-space-first initial-space-middle initial. The importance of using a consistent format is reflected in the retrieval of information when the "field" search criteria is employed.

Information retrieval is available in two formats (see Fig. 3). Optionally, the operator may have the information displayed on the CRT terminal or direct to a line printer device in the computer facility. Criteria used in selecting data base subsets are key word, author's name, and publication title. In addition, provisions are made to allow the entire data base to be displayed. Other features found in the retrieve mode are field versus character string search, and the union versus the intersection of a selected group of key words.

2.4 Data Base Sorting

The sequential ordering of the KGS data base is performed through the Perkin-Elmer Data System's "Sort-Merge" Software Program. The operator activates the sort program prior to entering the KGS data base system. Features of the sort routine include ascending or descending sequencing and sorting capability up to seven levels. Command files have been

prepared for the operator, which sort in ascending sequence by author and file code. By using this procedure, the entire data base is sorted and remains in that sequence until the next sort is performed.

3. MODES OF OPERATION

3.1 Data Base Supervisor Program (PDBSUP)

The function served by the data base supervisor program is to allow the operator to select from several data bases and to select the desired mode of operation. Refer to Figure 4 for software configuration. Program Modules are stored on disk and are loaded into memory only, when it is called by the operator (see Table 1). Upon completion of a run mode, control is returned to the supervisor program which idles waiting for another operator command. Error conditions which may occur during the execution of a run mode are reported on the operator's terminal, resulting in control returning to the supervisor program.

3.2 EDIT Mode (PDBED)

The user may edit the KGS data base by typing the command "EDIT". Execution of the EDIT mode begins by requesting one of the five EDIT sub-modes: 1) Search; 2) Update; 3) Append; 4) Delete; and 5) Return. All editing is performed by referencing the data base record number. Records are numbered from one to the number of the last record in the file. There is no maximum number of records except that which is dictated by disk storage capacity. Each data base record consists of fifteen lines (elements). Maximum line (element) sizes are preassigned for each record and are shown in Figure 2.

3.2.1 SEARCH Mode (PDBED)

During the process of editing the KGS data base, an identifier (record number) is used for accessing record information. The SEARCH mode is available to assist the operator in locating the desired record number. The program asks for the author's last name which is used in matching against each data base record. When a match is detected, the record number, author's name and publication title are displayed. An option to continue searching or terminate the search is available.

3.2.2 UPDATE Mode (PDBED)

The UPDATE mode is used to modify an element or elements in a data base record which is already in the data base. The program first asks for the record number, then displays the fifteen lines of text which are currently stored in the record. In addition to the text, the line or element number is affixed at the beginning of the line. These numbers, from one to fifteen are then used to identify the element (see Fig. 2).

By typing the line number, the program displays the current contents and asks for the updated information. The new text which has been entered is
then used to replace the old text. "Replace" is by line only, no character string capability is available. The program then asks for the next line number to be updated. When updating is completed, the operator types an asterisk, at which time the entire record is displayed and the user is given the option to save the updated record by typing "Y" or "N". A "Y" response will cause the information to be saved. An "N" response will cause the previously recorded text to be retained. The program then asks for the next record to be updated. When update is completed, the operator types an asterisk and another edit operation is requested.

3.2.3 **APPEND Mode (PDBED)**

The APPEND mode is used to splice new records into the data base. In the APPEND mode, each element is requested by first displaying the element name and then a prompt\(^1\) to indicate that input is necessary. The operator enters the appropriate information for the entire record. The information is then displayed and the option to save or discard the information is given. A "YES" response will result in the record being stored on disk. A "NO" response will result in the request for the next record. By typing an asterisk, the APPEND mode is terminated and another mode is requested.

3.2.4 **DELETE Mode (PDBED)**

The nature of data base manipulation dictates that a method be provided for deleting unwanted records from the data base. The DELETE mode provides the operator with this capability. This process is achieved by marking the elements in the specified record with the characters "DELE". This suppresses the record for all future data base manipulation.

3.2.5 **RETURN Mode (PDBED)**

By typing "RETURN", the control of the system is returned to the data base supervisor program (PDBSUP).

3.3 **KEY WORD Mode (PDBKEY)**

The KEY WORD mode is designed to search each data base record and produce a sorted summary report of key words recorded in the key word fields. This program is activated in the run mode by typing the word "KEYS". An option is also provided which allows output to be displayed on the user CRT or on a hard copy device.

The report is generated in an alpha-numeric sorted order. In addition to the list of key words, the number of occurrences is indicated. A summary

\(^1\) A special character displayed by the computer to indicate that an operator command is expected.
is also presented which indicates the number of records in the data base, the number of "deleted" records, and the number of different key words.

3.4 SELECT DB Mode (PDBSUP)

The purpose of the SELECT DB mode is to allow the user to transfer control to another data base without terminating the KGS data base software package. This is useful if the user wishes to maintain publications on two or more areas of research. By typing "SELECT DB" the command "ENTER DATA BASE NAME" will be displayed. The data base name entered is subsequently used to activate the appropriate retrieval mode for data base manipulation. The valid data names are maintained in the supervisor program and are modified by deleting or inserting as needs arise.

3.5 ONE KEY Mode (PDBQK)

The purpose of the ONE KEY mode is to assist the data base operator in querying the data base for specific publication topics (key words). By typing a key word value when requested, the program searches the data base and displays those records (if any) which contained that key word. This is useful if a "snapshot" of the data base is desired, without displaying each data base record.

3.6 RETRIEVE Mode (KGSEX)

Information retrieval and display of the KGS data base is accomplished using the RETRIEVE mode. Various search criteria such as key word or author name may be entered and subsets of the data base extracted. Also included is the option for a field or character search of a data base record. A field search attempts to match the characters entered by the operator with the characters contained in the data base element. A string search will search the entire element for a match of the characters entered by the operator with any contiguous character match contained in the data base record element. The maximum number of characters in a string search is one hundred. In the case where the key word search option is used, each of the six key word fields plus the title field will be employed in searching. Optional printer hardcopy output is available. An option for the "UNION" or the "INTERSECTION" where more than one key word is also provided. In the UNION ('OR') condition, records must have all key words (maximum six) in either the title or key word field. In the INTERSECTION ('AND') condition a match on any of the entered key words will result in the record being retrieved.

When a string search criteria is employed the operator may enter the root of a key word which allow records to be retrieved having that root plus variations. For example:

Entering the characters "COL" might result in records having key words such as:
4. OPERATING PROCEDURES

Each user is assigned a password, after the KGS system has been put into operation (as it has in the CBT Computer Center).

In order to activate and operate the KGS system, the user must have a terminal which is set in the proper telecommunications mode to allow capability with Perkin-Elmer 7/32 Computer System (or any host computer). For the CBT user, switches must be adjusted to reflect the conditions shown in Table 2.

4.1 Perkin-Elmer Computer System Signon Procedure

As discussed in Section 2.2, Computer Software, remote access to the Perkin-Elmer Computer System is provided through a Multi-Terminal Manager (MTM) subsystem. Two conditions must be met before a user may access the computer and activate the KGS data base. The first is that the MTM system must be active. A user may determine this by turning on the terminal, dialing the computer (if necessary), and depressing the "RETURN" key. If an asterisk is displayed by the computer, the computer system is available and the command to "SIGNON" may be entered. If no response is received, first ensure that all terminal telecommunication settings are correct (see Table 2). If so, contact the computer facility as to system availability. The second requirement of the operator is that the account number and password for the KGS data base be known. With these two conditions met, the operator may access the computer by typing the following command:

SIGNON ID,14,PDB (where ID equals a 1-8 character name for user identification purposes)

An acceptance of the "SIGNON" command will be acknowledged by the computer responding with an asterisk.

4.1.1 Operator Prompting

Operator interaction with the computer system may be described as having three levels. Each level of interaction is signified by the computer displaying a special character (prompt) in the left-most portion of the terminal display line. The presence of a prompt character notifies the operator that the system is available to accept operator commands. An asterisk (*) prompt represents the first or highest level and is the only level at which programs may be loaded. Additionally, other MTM commands may be entered. These include, "Display Time," (D T), "Display Users" (D U), "Cancel" (CA), etc. Refer to the Perkin-Elmer Multi-Terminal User's Manual for complete list of commands and their usage. The second
level, identified by a hyphen (-), acknowledges that a user task is loaded (such as the KGS data base). The third and final prompt is the greater than (>) sign. This is displayed when a program parameter is needed; such as the case when KGS data base is requesting a run mode. Depending on the system usage, situations will arise where a delay in the computer responding with a prompt will vary. Several factors determine the degree of delay in this response. These include the number of active terminal users, the run priority of the assigned tasks, and the amount of memory and disk resources being used. Normal response expected with the KGS system and five to six other programs running simultaneously is in the order of 1-5 seconds. This does not account for data base search time which may require longer periods of time due to data base size and the amount of information being retrieved.

4.2 Sorting

Sorting the KGS data base is performed by typing the following command:

KGSSORT

This will result in the sequencing of the data base in ascending order by author and file code within author.

4.3 Activating the KGS Data Base

Activating the data base system is accomplished via single command. The program loading and device assignments are performed using the Perkin-Elmer Command Substitution System (CSS) command file. For a detailed description of the CSS system refer to the Perkin-Elmer "OS/32MT Operator's Reference Manual."

The command to activate the data base is: PDB

This results in the program being loaded, and a message displayed requesting the operator to enter the desired satellite data base. Selection of the desired data base satellite results in a request that the operator enter the desired run mode.

4.4 Data Base Supervisor Program

When the data base system is activated, a message is displayed on the user terminal requesting the data base name. At this time, the operator should type "KGS". By doing so, the proper data base is assigned, and data record retrieval and manipulation may be performed in the proper format.

4.5 EDIT Mode

The user can edit the KGS data base by typing "EDIT". Then the program asks for one of 5 different run modes (see Table 4).
All of the editing is done through record numbers. The records in the data base are numbered from 1 to the total number of records in the file. Each record contains 15 lines. The SEARCH mode is useful in finding a record number, if the record number is not known (see Section 4.5.4).

4.5.1 APPEND Sub-Mode

The APPEND mode is used to add new records to the data base. If you type APPEND, the program asks for each of the 15 lines that constitutes a record. The user merely enters the appropriate text in the proper field, as requested by the KGS Editor. When the user is finished typing the 15 lines, the text is displayed on the screen. If the user wishes to save this record, he or she types "YES" to the question "SAVE OK?". If no, type "NO" (typing "NO" results in the just entered text being discarded). Then the program asks for the first line of the next record. If no more records are to be added, the user types an "*".

4.5.2 DELETE Sub-Mode

The DELETE mode is used to delete a record from the data base. The program asks for the record number of the record to delete. It then displays the author and title of that record and asks "DELETE OK?". The user types "YES" or "NO". The program then asks for the number of the next record to delete. When through deleting, enter an "*".

4.5.3 UPDATE Sub-Mode

The UPDATE mode is used to change a record already in the data base. The program asks for the record number of the record to be updated. The program then displays the 15 lines of text for that record. The lines are numbered.

The user types a line number to be changed and the program shows the current contents of that line and asks for the next line. The next line of text that the user types in replaces the old line. The program then asks for the next line to change. When finished changing lines of that record, type an "*".

The new record is displayed on the screen and the program asks "SAVE OK?". The user types "YES" or "NO". The program then asks for the next record to update. When finished updating, the user types an "*".

4.5.4 SEARCH Sub-Mode

The SEARCH mode is used to locate a record in the data base. The program asks for an author's name and searches the data base record author field for that author, employing a string search strategy. When a match is found, the record number of that record is displayed along with the author and title. The operator is then asked if the search process should
continue for that author. Type "NO" to end the search mode, and "YES" to find more records containing that author.

4.5.5 RETURN Mode

After entering an "*" to end an active edit mode, the user is asked for a new run mode. When finished editing, type "RETURN". The "RETURN" mode returns the user to the main supervisor program.

4.6 SELECT DB Mode

By typing "SELECT DB", the user may change data bases and then go into any of the modes of operation available in the KGS system.

4.7 KEY WORD Mode

By typing "KEY", the user may have an alphabetical list and number of occurrences of all key words in his data base (see Appendix B). An option for hardcopy or terminal display is provided.

4.8 ONE KEY Mode

By typing "ONE KEY", the user can query the system as to the existence of any number of references containing that key word, without actually retrieving the references.

4.9 RETRIEVE Mode

By typing the word "RETRIEVE," the KGS extract overlay module is activated. This program allows the user to select subsets of the data base by typing one of the following sequence of commands:

OPTIONAL PRINTER OUTPUT? (Yes or No)
(Answer Yes or No)

A "YES" response will cause the retrieved records to be directed to the line printer. A "NO" response will cause the retrieved records to be displayed at the user's terminal.

Field or String Search

Enter "FIELD" or "STRING"

Author or Key Word

If "AUTHOR" is typed, the user should respond with one of the following formats. Last name, First Initial, Middle Initial (for field search) or "ALL" (for entire data base) or

Last name only (for string search)
If "KEY WORD" is typed, the user will be asked to enter the extract condition for more than one key word.

Key Word Union ("OR" condition) or Intersection? ("AND" condition)
Enter "UNION" or "INTERSECTION"

Continue?

Respond with "YES" for additional searches or "NO" for return to KGS data base main program segment.

4.10 STOP Mode

When finished operating the KGS data base system type: "STOP". The system will respond with the words "END OF TASK 0."

4.11 "SIGNOFF" Procedure

Upon completion of KGS data base operations, the operator should sign off the computer system. This is accomplished by entering the command:

 SIGNOFF

The computer acknowledges the command "SIGNOFF" by printing the total elapsed time that the user was on-line. To start the system over see Section 4.1.

5. IMPLEMENTATION CONSIDERATIONS

Considerations relating to implementation of the KGS data base software system are described in the following sections. Restrictions relating to computer system hardware and software availability will vary among different computing systems. Such factors as memory size and disk storage are critical and require careful consideration before implementation takes place. In situations involving Perkin-Elmer 32 bit computers, the implementation process involves little or no software modifications and less emphasis placed on memory requirements.

5.1 Minimum Hardware Resources

The amount of memory required to operate the KGS data base is twenty-three thousand bytes. This takes into consideration the program overlay techniques used in the program design and development process. Memory requirements may increase by three to four times if no program segmentation (overlay) is employed. Disk storage capacity necessary to operate the KGS system is determined by the number of records in the data base. The calculation necessary to determine this is 372 times the maximum number of records to be stored in the data base.
5.2 Software Installation

Applications programs for the KGS data base will most likely require minor modifications where a computer system other than an Perkin-Elmer 32 bit machine is employed. Changes may be necessary to substitute external or library subroutines. A list of these subroutines unique to the Perkin-Elmer computer is provided in Appendix E.

6. CONCLUSIONS

A description of an information retrieval system has been provided which can greatly enhance the development of research projects by allowing the researcher to interrogate computer-stored data bases.

The KGS system enhances the retrieval process by reducing the time spent by the researcher in identifying physical storage locations (file drawer, etc.) of research papers through the file code. A major advantage of implementing a system for personal copies of research papers is that it allows the user to consider all copies of research papers in the researcher's possession as forming a research data base. The user is assisted in searching through the reference articles using new search strategies. In this way, a given collection of papers can be used with greater efficiency to help support a variety of different research projects dealing with similar topics.

Implementation of the KGS data base system is within the realm of most minicomputer systems available today. In addition, the state of the art in microcomputers demonstrates their applicability where sufficient disk and memory capacity can be obtained.
Table 1. KGS Program Functions

<table>
<thead>
<tr>
<th>MODULE NAME</th>
<th>PROGRAM FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDBSUP</td>
<td>Main program segment for data base selection and overlay calling.</td>
</tr>
<tr>
<td>PDBED</td>
<td>Provide insert, delete and update capability</td>
</tr>
<tr>
<td>PDBQK</td>
<td>Provides quick data base search existence of key word.</td>
</tr>
<tr>
<td>PDBKEY</td>
<td>Summarizes key word distribution across entire data base.</td>
</tr>
<tr>
<td>KGSEX</td>
<td>Retrieves and displays data base subsets based on selection criteria.</td>
</tr>
</tbody>
</table>

Table 2. Perkin-Elmer Remote Terminal Communications Protocol

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud Rate</td>
<td>110, 300, 1200, 2400, 9600 characters per second</td>
</tr>
<tr>
<td>Parity</td>
<td>Even</td>
</tr>
<tr>
<td>Number Stop Bits</td>
<td>1</td>
</tr>
<tr>
<td>Duplex</td>
<td>Full</td>
</tr>
<tr>
<td>Character Code Format</td>
<td>ASCII</td>
</tr>
<tr>
<td>Communications Interface</td>
<td>EIA RS-232</td>
</tr>
<tr>
<td>Number data bits</td>
<td>7</td>
</tr>
</tbody>
</table>
Table 3. Summary of SIGNON Procedures for the KGS Data Base System

1. Set switches (see Table 2)
2. Type "SIGNON ID,14,PDB"
3. When an asterisk appears type "PDB"
4. Select appropriate satellite data base
5. Select desired run mode.

Table 4. Available KGS Data Base Run Modes

<table>
<thead>
<tr>
<th>MODE</th>
<th>SUB-MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDIT</td>
<td>APPEND</td>
</tr>
<tr>
<td></td>
<td>DELETE</td>
</tr>
<tr>
<td></td>
<td>UPDATE</td>
</tr>
<tr>
<td></td>
<td>SEARCH</td>
</tr>
<tr>
<td></td>
<td>RETURN</td>
</tr>
<tr>
<td>RETRIEVE</td>
<td></td>
</tr>
<tr>
<td>SELECT DB</td>
<td></td>
</tr>
<tr>
<td>KEYS</td>
<td></td>
</tr>
<tr>
<td>ONE KEY</td>
<td></td>
</tr>
<tr>
<td>STOP</td>
<td></td>
</tr>
</tbody>
</table>
Table 5. KGS Allowable Command Abbreviations*

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>ABBREVIATION OF COMMAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDIT</td>
<td>EDIT</td>
</tr>
<tr>
<td>APPEND</td>
<td>APP</td>
</tr>
<tr>
<td>DELETE</td>
<td>DE</td>
</tr>
<tr>
<td>UPDATE</td>
<td>UPD</td>
</tr>
<tr>
<td>SEARCH</td>
<td>SEA</td>
</tr>
<tr>
<td>RETURN</td>
<td>RET</td>
</tr>
<tr>
<td>RETRIEVE</td>
<td>RETR</td>
</tr>
<tr>
<td>SELECT DB</td>
<td>SELE</td>
</tr>
<tr>
<td>KEYS</td>
<td>KEYS</td>
</tr>
<tr>
<td>ONE KEY</td>
<td>ONE</td>
</tr>
<tr>
<td>STOP</td>
<td>STOP</td>
</tr>
<tr>
<td>AUTHOR</td>
<td>AUTH</td>
</tr>
<tr>
<td>UNION</td>
<td>UNI</td>
</tr>
<tr>
<td>INTERSECTION</td>
<td>INT</td>
</tr>
<tr>
<td>FIELD</td>
<td>FIEL</td>
</tr>
<tr>
<td>STRING</td>
<td>STRI</td>
</tr>
</tbody>
</table>

* NOTE: The user may elect to type the "complete command" or the abbreviation as desired.
Figure 1. CBT Perkin-Elmer Computer System Configuration
Figure 2. KGS Data Base Record Format

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author 1</td>
<td>(32 characters)</td>
</tr>
<tr>
<td>Author 2</td>
<td>(32 characters)</td>
</tr>
<tr>
<td>Author 3</td>
<td>(32 characters)</td>
</tr>
<tr>
<td>Publication Date</td>
<td>(12 characters)</td>
</tr>
<tr>
<td>Publication Title</td>
<td>(100 characters)</td>
</tr>
<tr>
<td>Publication Name</td>
<td>(32 characters)</td>
</tr>
<tr>
<td>Reference</td>
<td>(20 characters)</td>
</tr>
<tr>
<td>Key Word 1</td>
<td>(16 characters)</td>
</tr>
<tr>
<td>Key Word 2</td>
<td>(16 characters)</td>
</tr>
<tr>
<td>Key Word 3</td>
<td>(16 characters)</td>
</tr>
<tr>
<td>Key Word 4</td>
<td>(16 characters)</td>
</tr>
<tr>
<td>Key Word 5</td>
<td>(16 characters)</td>
</tr>
<tr>
<td>Key Word 6</td>
<td>(16 characters)</td>
</tr>
<tr>
<td>Discipline</td>
<td>(16 characters)</td>
</tr>
</tbody>
</table>
Figure 3. Sample KGS Retrieval

KGS PUBLICATIONS DATABASE
RECORD EXTRACT MODE 8/5/80 18:35

OPTIONAL PRINTER OUTPUT? (YES OR NO)
NO
ENTER EXTRACT CRITERIA (AUTHOR OR KEY WORD)
KEY WORD
ENTER KEY WORD/S
MAX 6 - 1 PER LINE - UP TO 16 CHAR EACH - "CR" TO STOP

HUE

KEY WORD/S SELECTED WERE: HUE

AUTHOR: AKITA, M. RECORD NO. 14
AUTHOR(2): GRAHAM, C. H.
AUTHOR(3): HSIA, Y.
FILE CODE: 0232
PUBLICATION DATE: 0464
TITLE: MAINTAINING AN ABSOLUTE HUE IN PRESENCE OF DIFFERENT BACKGROUND COLORS
PUBLICATION NAME: VISION RES. REFERENCE: 4,539-556
- - KEY WORDS - - COLOR PERCEPTION COLOR CONTRAST ABSOLUTE HUE
- - BACKGROUND COLOR LUMINANCE RATIO BEZOLD-BRUCKE

AUTHOR: BEARE, A. C. RECORD NO. 38
AUTHOR(2):
AUTHOR(3):
FILE CODE: 0266
PUBLICATION DATE: 0063
TITLE: COLOR-NAME AS A FUNCTION OF WAVE-LENGTH
PUBLICATION NAME: AMER. J. PSYCH. REFERENCE: 76,249-256
- - KEY WORDS - - COLOR-NAME(S) COLOR PERCEPTION UNIQUE HUE(S)

AUTHOR: BRYANT, R. M. RECORD NO. 78
AUTHOR(2): GORDON, J.
AUTHOR(3):
FILE CODE: 0048
PUBLICATION DATE: 0165
TITLE: BEZOLD-BRUCKE HUE SHIFT MEASURED BY COLOR-NAMING TECHNIQUE
PUBLICATION NAME: J. OPTICAL SOC. AMER. REFERENCE: 55,1,78-86
- - KEY WORDS - - BEZOLD-BRUCKE HUE SHIFT COLOR NAMING
- - UNIQUE HUES

AUTHOR: BURNHAM, R. W. RECORD NO. 104
AUTHOR(2): EVANS, R. M.
AUTHOR(3): NEUMANN, S. M.
FILE CODE: 0088
PUBLICATION DATE: 0157
TITLE: PREDICTION OF COLOR APPEARANCE WITH DIFFERENT ADAPTATION ILLUMINATIONS
PUBLICATION NAME: J. OPTICAL SOC. AMER. REFERENCE: 47,1,35-42
- - KEY WORDS - - HUE SHIFT(S) CHROM ADAPTATION COLOR APPEARANCE
- - COLOR PERCEPTION
APPENDIX A: KGS SAMPLE SEARCH STRATEGY
CBT PUBLICATIONS DATA BASE (REV 02.00-12/14/79)

ENTER THE DATA BASE NAME YOU DESIRE
- - FAA - - REHAB - - KGS - - AUTH740 - -
- - AUTH741 - - AUTH742 - - AUTH743 - - AUTH744 - -
KGS

ENTER DESIRED RUN MODE FOR
K G S DATA BASE
- - EDIT - - RETRIEVE - - KEYS - - STOP - - SELECT DB - - ONE KEY - - ROSTER - RETRIEVE
KGS PUBLICATIONS DATABASE
RECORD EXTRACT MODE 8/8/80 10:39:47

OPTIONAL PRINTER OUTPUT? (YES OR NO)
NO
ENTER EXTRACT CRITERIA (AUTHOR OR KEY WORD)

KEY WORD
ENTER KEY WORD/S
MAX 6 - 1 PER LINE - UP TO 16 CHAR EACH - "CR" TO STOP

RETINA
ANIMAL RESEARCH

ENTER "UNION" (OR) OR "INTERSECTION" (AND) FOR SEARCH TYPE
INTERSECTION

KEY WORD/S SELECTED WERE: RETINA ANIMAL RESEARCH

SEARCH CRITERIA USED: INT

AUTHOR: BARLOW, H. B. RECORD NO. 32
AUTHOR(2): LEVICK, W. R.
AUTHOR(3):
FILE CODE: 0197
PUBLICATION DATE: 1976
TITLE: THRESHOLD SETTING BY THE SURROUND OF CAT RETINAL GAN
GLION CELLS
PUBLICATION NAME: J. PHYSIOL. REFERENCE: 259,737-757
- - KEY WORDS -- THRESHOLD PHYSIOLOGY RETINA
- - KEY WORDS -- GANGLION CELL ANIMAL RESEARCH

AUTHOR: DEMONASTERIO, F. M. RECORD NO. 179
AUTHOR(2): GOURAS, P.
AUTHOR(3): TCLHURST, D. J.
FILE CODE: 0217
PUBLICATION DATE: 1975
TITLE: CONCEALED COLOUR OPPONENCY IN GANGLION CELLS OF THE
RHESUS MONKEY RETINA
PUBLICATION NAME: J. PHYSIOL. REFERENCE: 251,217-229
- - KEY WORDS -- COLOR-OPPONENT RETINA RETINA CELLS
- - KEY WORDS -- ANIMAL RESEARCH GANGLIA

END OF FIELD SEARCH ON
KEYWORDS:
RETINA ANIMAL RESEARCH

2 RECORDS WERE EXTRACTED

CONTINUE?
NO
CBT PUBLICATIONS DATA BASE (REV 02.00-12/14/79)

ENTER DESIRED RUN MODE FOR:
K G S DATA BASE

- - EDIT - - RETRIEVE - - KEYS - - STOP - - SELECT DB - - ONE KEY - - ROSTER - STOP

*** END OF PROCESSING ***

STOP
KGS -END OF TASK CODE= 0 CPUTIME=1:49.539/3.169
SIGNOFF
ELAPSED TIME=2:36:34 CPUTIME=18:58.121/5:06.934
TIME OFF=08/08/80 10:52:00
APPENDIX B: SAMPLE KEY WORD LISTING
PDB

CBT PUBLICATIONS DATA BASE (REV 02.00-12/14/79)

ENTER THE DATA BASE NAME YOU DESIRE
- - FAA - - REHAB - - KGS - - AUTH740 - -
- - AUTH741 - - AUTH742 - - AUTH743 - - AUTH744 - -
KGS

ENTER DESIRED RUN MODE FOR
K G S DATA BASE

- - EDIT - - RETRIEVE - - KEYS - - STOP - - SELECT DB - - ONE KEY - - ROSTER -
KEYS

BEGIN KEYWORD SORT
OPTIONAL PRINTER OUTPUT? (YES OR NO)
NO
<table>
<thead>
<tr>
<th>KEY WORD</th>
<th>OCCURRENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-COLOR THRES</td>
<td>2</td>
</tr>
<tr>
<td>3-PIG COLOR VIS</td>
<td>1</td>
</tr>
<tr>
<td>ABSOLUTE HUE</td>
<td>1</td>
</tr>
<tr>
<td>ACHROMATIC</td>
<td>1</td>
</tr>
<tr>
<td>ACHROMATIC CHAN</td>
<td>1</td>
</tr>
<tr>
<td>ACHROMATIC COLOR</td>
<td>1</td>
</tr>
<tr>
<td>ADAP</td>
<td>1</td>
</tr>
<tr>
<td>ADAPTATION</td>
<td>10</td>
</tr>
<tr>
<td>AFFECT RESPONSE</td>
<td>1</td>
</tr>
<tr>
<td>AGE</td>
<td>1</td>
</tr>
<tr>
<td>ANIMAL BEHAVIOR</td>
<td>1</td>
</tr>
<tr>
<td>ANIMAL RESEARCH</td>
<td>3</td>
</tr>
<tr>
<td>APERIOD PATTERN</td>
<td>1</td>
</tr>
<tr>
<td>APP BRIGHTNESS</td>
<td>1</td>
</tr>
<tr>
<td>APPAR BRIGHTNESS</td>
<td>1</td>
</tr>
<tr>
<td>APPAR CONTRAST</td>
<td>1</td>
</tr>
<tr>
<td>APPARENT CONTR</td>
<td>1</td>
</tr>
<tr>
<td>ASYNCHRON FLASH</td>
<td>1</td>
</tr>
<tr>
<td>AVERAGE LUMINANCE</td>
<td>1</td>
</tr>
<tr>
<td>BACKGROUND COLOR</td>
<td>1</td>
</tr>
<tr>
<td>BACKWARD MASKING</td>
<td>1</td>
</tr>
<tr>
<td>BAR WIDTH</td>
<td>1</td>
</tr>
<tr>
<td>BEZOLD-BRUCKE</td>
<td>5</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>3</td>
</tr>
<tr>
<td>BINOCULAR VISION</td>
<td>1</td>
</tr>
<tr>
<td>BLACK BAR</td>
<td>1</td>
</tr>
<tr>
<td>BLOCHS LAW</td>
<td>1</td>
</tr>
<tr>
<td>BLUR</td>
<td>1</td>
</tr>
<tr>
<td>BORDER</td>
<td>3</td>
</tr>
<tr>
<td>BRIGHT CONSTANCY</td>
<td>1</td>
</tr>
<tr>
<td>BRIGHT ENHANCE</td>
<td>1</td>
</tr>
<tr>
<td>BRIGHT GRADIENTS</td>
<td>1</td>
</tr>
<tr>
<td>BRIGHT PERCEP</td>
<td>1</td>
</tr>
<tr>
<td>BRIGHT REVERSAL</td>
<td>1</td>
</tr>
<tr>
<td>BRIGHTNESS</td>
<td>13</td>
</tr>
<tr>
<td>BRIGHTNESS CONTR</td>
<td>1</td>
</tr>
<tr>
<td>BRIGHTNESS MATCH</td>
<td>1</td>
</tr>
<tr>
<td>CALIBRATION</td>
<td>1</td>
</tr>
<tr>
<td>CATHODE-RAY TUBE</td>
<td>1</td>
</tr>
<tr>
<td>CHLOROLABE</td>
<td>1</td>
</tr>
<tr>
<td>CHROM ADAPATION</td>
<td>8</td>
</tr>
<tr>
<td>CHROM INDUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHROM ROD ACT</td>
<td>1</td>
</tr>
<tr>
<td>CHROM-CONTR SENS</td>
<td>1</td>
</tr>
<tr>
<td>CHROMATIC</td>
<td>1</td>
</tr>
<tr>
<td>CHROMATIC ADAPT</td>
<td>1</td>
</tr>
<tr>
<td>CHROMATIC BORDER</td>
<td>2</td>
</tr>
<tr>
<td>CHROMATIC CHAN</td>
<td>1</td>
</tr>
<tr>
<td>CHROMATIC RESP.</td>
<td>1</td>
</tr>
<tr>
<td>CHROMATIC THRES.</td>
<td>1</td>
</tr>
<tr>
<td>CHROMATICITY</td>
<td>2</td>
</tr>
<tr>
<td>CLR PERCEPTION</td>
<td>1</td>
</tr>
<tr>
<td>CLR RENDITION</td>
<td>1</td>
</tr>
<tr>
<td>COHERENCE</td>
<td>1</td>
</tr>
<tr>
<td>COL MEASUREMENT</td>
<td>1</td>
</tr>
<tr>
<td>COLOR</td>
<td>2</td>
</tr>
<tr>
<td>COLOR APPEAR.</td>
<td>1</td>
</tr>
<tr>
<td>COLOR APPEARANCE</td>
<td>6</td>
</tr>
<tr>
<td>COLOR ATTRIBUTE</td>
<td>1</td>
</tr>
<tr>
<td>COLOR BLINDNESS</td>
<td>3</td>
</tr>
<tr>
<td>COLOR CODING</td>
<td>9</td>
</tr>
<tr>
<td>COLOR CONTRAST</td>
<td>1</td>
</tr>
<tr>
<td>COLOR CONSTANCY</td>
<td>2</td>
</tr>
<tr>
<td>COLOR CONTRAST</td>
<td>10</td>
</tr>
<tr>
<td>COLOR DEFECT</td>
<td>1</td>
</tr>
<tr>
<td>COLOR DEFECTS</td>
<td>1</td>
</tr>
<tr>
<td>COLOR DEFICIENCY</td>
<td>2</td>
</tr>
<tr>
<td>COLOR DIFFERENCE</td>
<td>2</td>
</tr>
<tr>
<td>COLOR DISCR</td>
<td>1</td>
</tr>
<tr>
<td>COLOR DISCRIM</td>
<td>3</td>
</tr>
<tr>
<td>COLOR DISCRIM.</td>
<td>1</td>
</tr>
<tr>
<td>COLOR DISCRIMINA</td>
<td>1</td>
</tr>
<tr>
<td>COLOR INDUCTION</td>
<td>1</td>
</tr>
<tr>
<td>COLOR MATCHING</td>
<td>2</td>
</tr>
<tr>
<td>COLOR MEMORY</td>
<td>1</td>
</tr>
<tr>
<td>COLOR NAMING</td>
<td>2</td>
</tr>
<tr>
<td>COLOR PERCEP.</td>
<td>1</td>
</tr>
<tr>
<td>COLOR PERCEPTION</td>
<td>17</td>
</tr>
<tr>
<td>COLOR RENDERING</td>
<td>1</td>
</tr>
<tr>
<td>COLOR RENDITION</td>
<td>1</td>
</tr>
<tr>
<td>COLOR RESPONSE</td>
<td>1</td>
</tr>
<tr>
<td>COLOR SHIFTS</td>
<td>1</td>
</tr>
<tr>
<td>COLOR SPEC</td>
<td>1</td>
</tr>
<tr>
<td>COLOR SYSTEM(S)</td>
<td>1</td>
</tr>
<tr>
<td>COLOR VIS</td>
<td>1</td>
</tr>
<tr>
<td>COLOR VISION</td>
<td>16</td>
</tr>
<tr>
<td>COLOR(S)</td>
<td>2</td>
</tr>
<tr>
<td>COLOR-OPPONENT</td>
<td>3</td>
</tr>
<tr>
<td>COLOR/NAME(S)</td>
<td>1</td>
</tr>
<tr>
<td>COLORED SIG LIGH</td>
<td>1</td>
</tr>
<tr>
<td>Key Word</td>
<td>Occurrences</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Colored Signal L</td>
<td>1</td>
</tr>
<tr>
<td>Colorimetric Com</td>
<td>1</td>
</tr>
<tr>
<td>Colorimetry</td>
<td>1</td>
</tr>
<tr>
<td>Comparator</td>
<td>2</td>
</tr>
<tr>
<td>Comprehensibility</td>
<td>1</td>
</tr>
<tr>
<td>Comprehension</td>
<td>1</td>
</tr>
<tr>
<td>Concen recep fld</td>
<td>1</td>
</tr>
<tr>
<td>Cone Vision</td>
<td>1</td>
</tr>
<tr>
<td>Cone-to-rod ratio</td>
<td>1</td>
</tr>
<tr>
<td>Cones</td>
<td>1</td>
</tr>
<tr>
<td>Conspicuity</td>
<td>2</td>
</tr>
<tr>
<td>Constancy</td>
<td>1</td>
</tr>
<tr>
<td>Contrast</td>
<td>1</td>
</tr>
<tr>
<td>Consumer product</td>
<td>2</td>
</tr>
<tr>
<td>Contour</td>
<td>1</td>
</tr>
<tr>
<td>Contours</td>
<td>1</td>
</tr>
<tr>
<td>Contr Detection</td>
<td>1</td>
</tr>
<tr>
<td>Contr Reduction</td>
<td>1</td>
</tr>
<tr>
<td>Contr Sensitivity</td>
<td>1</td>
</tr>
<tr>
<td>Contr threshold</td>
<td>2</td>
</tr>
<tr>
<td>Contrast</td>
<td>24</td>
</tr>
<tr>
<td>Contrast contour</td>
<td>1</td>
</tr>
<tr>
<td>Contrast hues</td>
<td>1</td>
</tr>
<tr>
<td>Contrast sensi</td>
<td>5</td>
</tr>
<tr>
<td>Contrast sensi.</td>
<td>3</td>
</tr>
<tr>
<td>Contrast sensi.</td>
<td>2</td>
</tr>
<tr>
<td>Contrast thresho</td>
<td>1</td>
</tr>
<tr>
<td>Craik-Cornsweet</td>
<td>1</td>
</tr>
<tr>
<td>Criteria</td>
<td>1</td>
</tr>
<tr>
<td>Cross-modalities</td>
<td>1</td>
</tr>
<tr>
<td>Cultural Diff</td>
<td>1</td>
</tr>
<tr>
<td>Cultural diff.</td>
<td>1</td>
</tr>
<tr>
<td>Cultural factors</td>
<td>2</td>
</tr>
<tr>
<td>Dark adapt</td>
<td>1</td>
</tr>
<tr>
<td>Dark adapt.</td>
<td>1</td>
</tr>
<tr>
<td>Dark adapt.IAon</td>
<td>1</td>
</tr>
<tr>
<td>Dark adaptation</td>
<td>12</td>
</tr>
<tr>
<td>Demographic</td>
<td>1</td>
</tr>
<tr>
<td>Design</td>
<td>3</td>
</tr>
<tr>
<td>Detection</td>
<td>5</td>
</tr>
<tr>
<td>Detection thres</td>
<td>1</td>
</tr>
<tr>
<td>Deterministic</td>
<td>1</td>
</tr>
<tr>
<td>Deuteranopia</td>
<td>1</td>
</tr>
<tr>
<td>Dichromat.</td>
<td>1</td>
</tr>
<tr>
<td>Diff sensitivity</td>
<td>1</td>
</tr>
<tr>
<td>KEY WORD</td>
<td>OCCURRENCES</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>FILTER(S)</td>
<td>2</td>
</tr>
<tr>
<td>FLASHING LIGHT</td>
<td>2</td>
</tr>
<tr>
<td>FLICKER</td>
<td>5</td>
</tr>
<tr>
<td>FLICKER FUSION</td>
<td>2</td>
</tr>
<tr>
<td>FLUORESCENT</td>
<td>1</td>
</tr>
<tr>
<td>FLUORESCET COLOR</td>
<td>1</td>
</tr>
<tr>
<td>FORM(S)</td>
<td>1</td>
</tr>
<tr>
<td>FOURIER ANALYSIS</td>
<td>2</td>
</tr>
<tr>
<td>FOVEA</td>
<td>3</td>
</tr>
<tr>
<td>FOVEAL DIF THRES</td>
<td>1</td>
</tr>
<tr>
<td>FOVEAL PERCEPT</td>
<td>1</td>
</tr>
<tr>
<td>FOVEAL SENSIT</td>
<td>1</td>
</tr>
<tr>
<td>FOVEAL THRES</td>
<td>1</td>
</tr>
<tr>
<td>FOVEAL VISION</td>
<td>1</td>
</tr>
<tr>
<td>GANGLIA</td>
<td>2</td>
</tr>
<tr>
<td>GANGLION CELL</td>
<td>1</td>
</tr>
<tr>
<td>GANZFELD</td>
<td>1</td>
</tr>
<tr>
<td>GAP-DET THRES</td>
<td>1</td>
</tr>
<tr>
<td>GESTALT</td>
<td>1</td>
</tr>
<tr>
<td>GLARE</td>
<td>1</td>
</tr>
<tr>
<td>GOLDEN SECTION</td>
<td>2</td>
</tr>
<tr>
<td>GRADIENT</td>
<td>1</td>
</tr>
<tr>
<td>GRATING</td>
<td>1</td>
</tr>
<tr>
<td>GRATING(S)</td>
<td>4</td>
</tr>
<tr>
<td>GRATINGS</td>
<td>5</td>
</tr>
<tr>
<td>GRATINS</td>
<td>1</td>
</tr>
<tr>
<td>GREED MECHANISMS</td>
<td>1</td>
</tr>
<tr>
<td>GREEN LIGHT</td>
<td>2</td>
</tr>
<tr>
<td>HALLUCINATION(S)</td>
<td>1</td>
</tr>
<tr>
<td>HERINGS LAU</td>
<td>1</td>
</tr>
<tr>
<td>HETEROCHRO PHOTO</td>
<td>1</td>
</tr>
<tr>
<td>HETEROCHROM BRI</td>
<td>1</td>
</tr>
<tr>
<td>HID LAMP(S)</td>
<td>1</td>
</tr>
<tr>
<td>HIGHINTEN DIS</td>
<td>1</td>
</tr>
<tr>
<td>HRR PLATES</td>
<td>1</td>
</tr>
<tr>
<td>HUE</td>
<td>4</td>
</tr>
<tr>
<td>HUE ESTIMATION</td>
<td>1</td>
</tr>
<tr>
<td>HUE SHIFT</td>
<td>2</td>
</tr>
<tr>
<td>HUE SHIFT(S)</td>
<td>4</td>
</tr>
<tr>
<td>HUE(S)</td>
<td>1</td>
</tr>
<tr>
<td>HUMAN FACTORS</td>
<td>3</td>
</tr>
<tr>
<td>HUMAN PERFORM</td>
<td>1</td>
</tr>
<tr>
<td>IDENTIFICATION</td>
<td>1</td>
</tr>
<tr>
<td>ILL LEVEL(S)</td>
<td>1</td>
</tr>
<tr>
<td>ILLUM ENGINEER</td>
<td>1</td>
</tr>
<tr>
<td>KEY WORD</td>
<td>OCCURRENCES</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>LOGICAL TREES</td>
<td>1</td>
</tr>
<tr>
<td>LOW-PASS FILTER</td>
<td>1</td>
</tr>
<tr>
<td>LUM. EFFICIENCY</td>
<td>1</td>
</tr>
<tr>
<td>LUM. THRESHOLD(S)</td>
<td>1</td>
</tr>
<tr>
<td>LUMIN EFF FUNC</td>
<td>1</td>
</tr>
<tr>
<td>LUMIN SUMMATION</td>
<td>1</td>
</tr>
<tr>
<td>LUMINANCE</td>
<td>5</td>
</tr>
<tr>
<td>LUMINANCE ADDIT</td>
<td>1</td>
</tr>
<tr>
<td>LUMINANCE GRAD</td>
<td>1</td>
</tr>
<tr>
<td>LUMINANCE LEVEL</td>
<td>1</td>
</tr>
<tr>
<td>LUMINANCE LEVELS</td>
<td>1</td>
</tr>
<tr>
<td>LUMINANCE LIMIT</td>
<td>1</td>
</tr>
<tr>
<td>LUMINANCE RATIO</td>
<td>3</td>
</tr>
<tr>
<td>LUMINANCE SENSI</td>
<td>1</td>
</tr>
<tr>
<td>LUMINANCE THRES</td>
<td>1</td>
</tr>
<tr>
<td>LUMINANCE THRESH</td>
<td>1</td>
</tr>
<tr>
<td>LUMINANCE(S)</td>
<td>1</td>
</tr>
<tr>
<td>LUMINOSITY FUNC</td>
<td>1</td>
</tr>
<tr>
<td>LUMINOUS EFF</td>
<td>1</td>
</tr>
<tr>
<td>MACH BAND</td>
<td>3</td>
</tr>
<tr>
<td>MACH BAND(S)</td>
<td>1</td>
</tr>
<tr>
<td>MACH BANDS</td>
<td>1</td>
</tr>
<tr>
<td>MANUAL</td>
<td>1</td>
</tr>
<tr>
<td>MASKING</td>
<td>1</td>
</tr>
<tr>
<td>MAXWELLIAN VIEW</td>
<td>1</td>
</tr>
<tr>
<td>MDS</td>
<td>1</td>
</tr>
<tr>
<td>MEASUREMENT</td>
<td>4</td>
</tr>
<tr>
<td>MEMORY COLOR</td>
<td>1</td>
</tr>
<tr>
<td>MEMORY COLOR(S)</td>
<td>1</td>
</tr>
<tr>
<td>MESOPIC</td>
<td>2</td>
</tr>
<tr>
<td>METHODOLOGY</td>
<td>1</td>
</tr>
<tr>
<td>METHODOLOGY</td>
<td>5</td>
</tr>
<tr>
<td>METHODS</td>
<td>1</td>
</tr>
<tr>
<td>MIN DISTINCT BOR</td>
<td>1</td>
</tr>
<tr>
<td>MODEL</td>
<td>1</td>
</tr>
<tr>
<td>MODULATION SENSI</td>
<td>1</td>
</tr>
<tr>
<td>MODULATION TRANS</td>
<td>2</td>
</tr>
<tr>
<td>MONOCROMATOR</td>
<td>1</td>
</tr>
<tr>
<td>MONOCULAR ADAP</td>
<td>1</td>
</tr>
<tr>
<td>MOOD(S)</td>
<td>1</td>
</tr>
<tr>
<td>MOOD-TONES</td>
<td>1</td>
</tr>
<tr>
<td>MOTION</td>
<td>1</td>
</tr>
<tr>
<td>MOTOR PERF.</td>
<td>1</td>
</tr>
<tr>
<td>MUELLER-LYER</td>
<td>1</td>
</tr>
<tr>
<td>MULTIDIM SCALING</td>
<td>1</td>
</tr>
<tr>
<td>KEY WORD</td>
<td>OCCURRENCES</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>QUANTITATIVE</td>
<td>2</td>
</tr>
<tr>
<td>QUAT MEASURE</td>
<td>1</td>
</tr>
<tr>
<td>RATIO SCALING</td>
<td>2</td>
</tr>
<tr>
<td>REACTION TIME</td>
<td>3</td>
</tr>
<tr>
<td>READABILITY</td>
<td>1</td>
</tr>
<tr>
<td>READING</td>
<td>1</td>
</tr>
<tr>
<td>RECEPTIVE FIELD</td>
<td>1</td>
</tr>
<tr>
<td>RECOGNITION</td>
<td>3</td>
</tr>
<tr>
<td>RECTANGLE(S)</td>
<td>2</td>
</tr>
<tr>
<td>RED</td>
<td>1</td>
</tr>
<tr>
<td>RED ADAPTATION</td>
<td>1</td>
</tr>
<tr>
<td>RED LIGHT</td>
<td>10</td>
</tr>
<tr>
<td>RED MECHANISMS</td>
<td>1</td>
</tr>
<tr>
<td>RED/GREEN</td>
<td>1</td>
</tr>
<tr>
<td>REDUNDANT CODING</td>
<td>1</td>
</tr>
<tr>
<td>REFLEC MEASURE</td>
<td>1</td>
</tr>
<tr>
<td>REFLECTANCE</td>
<td>2</td>
</tr>
<tr>
<td>REFLECTOMETER</td>
<td>1</td>
</tr>
<tr>
<td>REFLUX TECHNIQUE</td>
<td>1</td>
</tr>
<tr>
<td>RESEARCH METHODS</td>
<td>1</td>
</tr>
<tr>
<td>RESOLUTION</td>
<td>1</td>
</tr>
<tr>
<td>RETINA</td>
<td>4</td>
</tr>
<tr>
<td>RETINA CELLS</td>
<td>2</td>
</tr>
<tr>
<td>RETINAL BLUR</td>
<td>1</td>
</tr>
<tr>
<td>RETINAL IMAGE</td>
<td>1</td>
</tr>
<tr>
<td>RETINAL IMAGE(S)</td>
<td>1</td>
</tr>
<tr>
<td>RHODOSPIN</td>
<td>1</td>
</tr>
<tr>
<td>ROD VISION</td>
<td>1</td>
</tr>
<tr>
<td>SACCADIC EYE MOV</td>
<td>1</td>
</tr>
<tr>
<td>SAFETY</td>
<td>2</td>
</tr>
<tr>
<td>SAFETY COLOR(S)</td>
<td>1</td>
</tr>
<tr>
<td>SATURATION</td>
<td>8</td>
</tr>
<tr>
<td>SCALING</td>
<td>3</td>
</tr>
<tr>
<td>SCOTOPIC</td>
<td>3</td>
</tr>
<tr>
<td>SECTOR DISC</td>
<td>2</td>
</tr>
<tr>
<td>SEMANTIC DIFFERE</td>
<td>1</td>
</tr>
<tr>
<td>SENS DEPRIVATION</td>
<td>1</td>
</tr>
<tr>
<td>SENTENCES</td>
<td>1</td>
</tr>
<tr>
<td>SHAPE CODING</td>
<td>1</td>
</tr>
<tr>
<td>SHARPENING</td>
<td>1</td>
</tr>
<tr>
<td>SHUTTER(S)</td>
<td>2</td>
</tr>
<tr>
<td>SIGN DESIGN</td>
<td>2</td>
</tr>
<tr>
<td>SIGN(S)</td>
<td>3</td>
</tr>
<tr>
<td>SIGNAL DETECTION</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KEY WORD</th>
<th>OCCURRENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGNAL LIGHT</td>
<td>1</td>
</tr>
<tr>
<td>SIGNAL LIGHT(S)</td>
<td>1</td>
</tr>
<tr>
<td>SIGNAL RECOGN</td>
<td>1</td>
</tr>
<tr>
<td>SIGNAL(S)</td>
<td>2</td>
</tr>
<tr>
<td>SIMU CONTRAST</td>
<td>1</td>
</tr>
<tr>
<td>SIMUL COLOR CONT</td>
<td>1</td>
</tr>
<tr>
<td>SIMUL COLOR MATCH</td>
<td>1</td>
</tr>
<tr>
<td>SIMUL COMPARISON</td>
<td>1</td>
</tr>
<tr>
<td>SIMUL CONTRAST</td>
<td>1</td>
</tr>
<tr>
<td>SIMULTANEOUS COLOR</td>
<td>1</td>
</tr>
<tr>
<td>SINE WAVE GRAT</td>
<td>1</td>
</tr>
<tr>
<td>SINE-WAVE GRAD</td>
<td>1</td>
</tr>
<tr>
<td>SINE-WAVE GRATIN</td>
<td>1</td>
</tr>
<tr>
<td>SINE-WAVE TARGET</td>
<td>1</td>
</tr>
<tr>
<td>SINUSOIDAL MOVE</td>
<td>1</td>
</tr>
<tr>
<td>SIZE</td>
<td>2</td>
</tr>
<tr>
<td>SNELEN</td>
<td>1</td>
</tr>
<tr>
<td>SODIUM LIGHTING</td>
<td>1</td>
</tr>
<tr>
<td>SPATIAL EFFECT</td>
<td>1</td>
</tr>
<tr>
<td>SPATIAL FREQ</td>
<td>5</td>
</tr>
<tr>
<td>SPATIO-TEMP INT</td>
<td>1</td>
</tr>
<tr>
<td>SPATIO-TEMPORAL</td>
<td>1</td>
</tr>
<tr>
<td>SPEC ENER CALIBR</td>
<td>1</td>
</tr>
<tr>
<td>SPEC ENER DISTR</td>
<td>1</td>
</tr>
<tr>
<td>SPECTRAL ENERGY</td>
<td>1</td>
</tr>
<tr>
<td>SPECTRAL SENSIT</td>
<td>2</td>
</tr>
<tr>
<td>SPECTRAL SENSIT</td>
<td>5</td>
</tr>
<tr>
<td>SQUARE-WAVE GRAT</td>
<td>1</td>
</tr>
<tr>
<td>STABILIZED IMAGE</td>
<td>1</td>
</tr>
<tr>
<td>STABILIZED VIS</td>
<td>1</td>
</tr>
<tr>
<td>STAIRCASE METHOD</td>
<td>1</td>
</tr>
<tr>
<td>STILES</td>
<td>1</td>
</tr>
<tr>
<td>STIMU DURATION</td>
<td>3</td>
</tr>
<tr>
<td>STIMUL DURATION</td>
<td>1</td>
</tr>
<tr>
<td>STIMULUS DUR.</td>
<td>1</td>
</tr>
<tr>
<td>STOCHASTIC</td>
<td>1</td>
</tr>
<tr>
<td>SUBJECTIVE COLOR</td>
<td>3</td>
</tr>
<tr>
<td>SUBJECTIVE EXPER</td>
<td>1</td>
</tr>
<tr>
<td>SUCCESS COL MATCH</td>
<td>1</td>
</tr>
<tr>
<td>SUCCESS COMPAR</td>
<td>1</td>
</tr>
<tr>
<td>SUNSCREEN</td>
<td>1</td>
</tr>
<tr>
<td>SUPRATHRESHOLD</td>
<td>2</td>
</tr>
<tr>
<td>SYMBOL</td>
<td>1</td>
</tr>
<tr>
<td>SYMBOL(S)</td>
<td>2</td>
</tr>
<tr>
<td>KEY WORD</td>
<td>OCCURRENCES</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SYMBOLS</td>
<td>2</td>
</tr>
<tr>
<td>TABLES</td>
<td>1</td>
</tr>
<tr>
<td>TASK COMPLEXITY</td>
<td>1</td>
</tr>
<tr>
<td>TEMP FREQUENCY</td>
<td>1</td>
</tr>
<tr>
<td>TEMPORAL INTERG</td>
<td>1</td>
</tr>
<tr>
<td>TERMINOLOGY</td>
<td>1</td>
</tr>
<tr>
<td>THERMAL COMFORT</td>
<td>1</td>
</tr>
<tr>
<td>THRES CONTRAST</td>
<td>1</td>
</tr>
<tr>
<td>THRES. CONTRAST</td>
<td>16</td>
</tr>
<tr>
<td>THRESHOLD</td>
<td></td>
</tr>
<tr>
<td>THRESHOLD SENS</td>
<td>1</td>
</tr>
<tr>
<td>THRESHOLD(S)</td>
<td>9</td>
</tr>
<tr>
<td>THRESHOLD(S)</td>
<td>1</td>
</tr>
<tr>
<td>TRAFFIC SAFETY</td>
<td>1</td>
</tr>
<tr>
<td>TRAFFIC SAFETY(S)</td>
<td>1</td>
</tr>
<tr>
<td>TRAFFIC SIGN</td>
<td>1</td>
</tr>
<tr>
<td>TRAFFIC SIGN(S)</td>
<td>3</td>
</tr>
<tr>
<td>TRICROMATIC</td>
<td>2</td>
</tr>
<tr>
<td>TUNGSTEN LIGHT</td>
<td>2</td>
</tr>
<tr>
<td>UNDERWATER</td>
<td>3</td>
</tr>
<tr>
<td>UNIQUE BLUE</td>
<td>2</td>
</tr>
<tr>
<td>UNIQUE GREEN</td>
<td>2</td>
</tr>
<tr>
<td>UNIQUE HUE</td>
<td>2</td>
</tr>
<tr>
<td>UNIQUE HUE(S)</td>
<td>2</td>
</tr>
<tr>
<td>UNIQUE HUES</td>
<td>3</td>
</tr>
<tr>
<td>UNIQUE RED</td>
<td>1</td>
</tr>
<tr>
<td>UNIQUE YELLOW</td>
<td>2</td>
</tr>
<tr>
<td>VALUE</td>
<td>1</td>
</tr>
<tr>
<td>VARIABILITY</td>
<td>1</td>
</tr>
<tr>
<td>VECTOR-MAG MODEL</td>
<td>1</td>
</tr>
<tr>
<td>VEILING LUMIN</td>
<td>1</td>
</tr>
<tr>
<td>VEP</td>
<td>1</td>
</tr>
<tr>
<td>VIEWING DISTANCE</td>
<td>1</td>
</tr>
<tr>
<td>VIS ACUITY</td>
<td>1</td>
</tr>
<tr>
<td>VIS DIFFICULTY</td>
<td>1</td>
</tr>
<tr>
<td>VIS INSPECTION</td>
<td>1</td>
</tr>
<tr>
<td>VIS PERCEPTION</td>
<td>1</td>
</tr>
<tr>
<td>VIS PERFORMANCE</td>
<td>9</td>
</tr>
<tr>
<td>VIS RECEPT CELL</td>
<td>1</td>
</tr>
<tr>
<td>VIS RESOLUTION</td>
<td>2</td>
</tr>
<tr>
<td>VIS RESPONSE SYS</td>
<td>1</td>
</tr>
</tbody>
</table>
647 RECORDS READ
3 HAD BEEN DELETED
532 KEY WORDS
958 OCCURRENCES
END OF KEYWORD SORT

CBT PUBLICATIONS DATA BASE (REV 02.00-12/14/79)

ENTER DESIRED RUN MODE FOR
K G S DATA BASE

* - EDIT - - RETRIEVE - - KEYS - - STOP - - SELECT DB - - ONE KEY - - ROSTER - - STOP
* * * END OF PROCESSING * * *
STOP
KGS -END OF TASK CODE= 0 CPUTIME=2:18.508/3.936
SIGNOFF
ELAPSED TIME=1:03:32 CPUTIME=5:24.990/7.802
TIME OFF=08/04/80 15:09:50
APPENDIX C: PERKIN-ELMER OPERATING AND REFERENCE MANUALS
<table>
<thead>
<tr>
<th>MANUAL</th>
<th>REFERENCE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS/32 MT Operator's Reference Manual</td>
<td>29-574</td>
</tr>
<tr>
<td>Sort Merge Program Reference Manual</td>
<td>B29-489R01</td>
</tr>
<tr>
<td>FORTRAN V Level 1 Reference Manual</td>
<td>29-360R03</td>
</tr>
<tr>
<td>FORTRAN V Level 1 User's Guide</td>
<td>29-361R03</td>
</tr>
<tr>
<td>FORTRAN V 32-Bit Run Time Library</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>29-495</td>
</tr>
<tr>
<td>Language Extensions</td>
<td>29-497</td>
</tr>
<tr>
<td>Real Time Extension</td>
<td>29-499</td>
</tr>
<tr>
<td>Technical Description</td>
<td>29-500</td>
</tr>
</tbody>
</table>
APPENDIX D: KGS APPLICATIONS PROGRAM LISTING
PROGRAM PDBSUP.FTN
CBT PUBLICATIONS DATA BASE OVERLAY MODULE
SUPERVISOR, DESIGNED TO CALL SUBROUTINES
FROM DISK FOR THE PURPOSE OF PROCESSING
WRITTEN BY LARRY KAETZEL - CBT - 03/02/79

LOGICAL UNIT ASSIGNMENTS <<<<<>>>>>

LU 6 = COMMAND I/O DEVICE
LU 7 = OPTIONAL PRINT OUTPUT FILE
LU 3 = DATA BASE FILE
LU 4 = OVERLAY MODULE
MODIFIED 03/24/79 - 07:57
MODIFIED 08/10/79 - 18:13
MODIFIED 10/29/79 - 08:39
MODIFIED 10/30/79 - 08:28
MODIFIED 06/03/80 - 09:30
IMPLICIT INTEGER*X2 (J-L)
INTEGER IDATE(3), DBN(4), IMODE(5), BYTE1, BYTE2, KEY(4)
INTEGER AUTDIV(5)
DATA AUTDIV/ '740', '741', '742', '743', '744'/
ISUH=0
BYTE2=BYTE2
DBN(1)= 'CAL:'
CALL DATE(IDATE)
30 WRITE(6,1000,ERR=30)
 IF (ISUH.NE.0) GO TO 70
55 WRITE(6,1001,ERR=55)
60 READ(6,1013,ERR=800) (DBN(I), I=2,4)
 IF (DBN(2).EQ. 'REHA') GO TO 70
 IF (DBN(2).EQ. 'KGS ') GO TO 70
 IF (DBN(2).EQ. 'AUTH') GO TO 70
 IF (DBN(2).EQ. 'FAA ') GO TO 70
 WRITE(6,1003,ERR=800)
 GO TO 60
70 ISUH=1
 IF (DBN(2).EQ. 'REHA') WRITE(6,1004,ERR=800)
 IF (DBN(2).EQ. 'KGS ') WRITE(6,1005,ERR=800)
 IF (DBN(2).EQ. 'FAA ') WRITE(6,1014,ERR=800)
 DO 65 I=1,5
 IF (DBN(3).EQ. AUTDIV(I)) GO TO 67
65 CONTINUE
 GO TO 68
67 IF (DBN(2).EQ. 'AUTH') WRITE(6,1006,ERR=800)
68 WRITE(6,1037,ERR=800)
90 READ(6,1002,ERR=800) IMODE
 IF (IMODE(1).EQ. 'SELE') GO TO 55
 IF (IMODE(1).EQ. 'ONE ') GO TO 350
 IF (IMODE(1).EQ. 'RETR' .AND. DBN(2).EQ. 'REHA')
 - GO TO 500
 IF (IMODE(1).EQ. 'RETR' .AND. DBN(2).EQ. 'KGS ')
 - GO TO 530

D-1
IF (IMODE(1).EQ.'RETR'.AND.DBN(2).EQ.'AUTH')
- GO TO 560
IF (IMODE(1).EQ.'RETR'.AND.DBN(2).EQ.'FPA')
- GO TO 590
IF (IMODE(1).EQ.'EDIT'.AND.DBN(2).EQ.'AUTH')
- GO TO 620
IF (IMODE(1).EQ.'KEYS')
- GO TO 650
IF (IMODE(1).EQ.'STOP')
- GO TO 700
IF (IMODE(1).EQ.'EDIT')
- GO TO 600
IF (IMODE(1).EQ.'ROST')
- GO TO 675
CALL ILBYTE(BYTE1,IMODE,0)
IF (BYTE1.EQ.'0000002A')
- GO TO 400
WRITE(6,1012,ERR=900)
GO TO 90

C >>>>>>> ONE KEY <<<<<<<<
350 WRITE(6,351,ERR = 800)
351 FORMAT('0 WHICH KEY WORD?')
READ(6,360)KEY
360 FORMAT(4A4)
GO TO 411
400 DO 405 I = 1,4
 IMODE(I) = ISHFT(IMODE(I),8)
 CALL ILBYTE(BYTE2,IMODE(I + 1),0)
 CALL ISBYTE(BYTE2,IMODE(I),3)
405 CONTINUE
DO 410 I = 1,4
 KEY(I) = IMODE(I)
410 CALL OPENJ(4,'CAL:PDBQK.OVY ',0,0,0,ISTAT)
 IF (ISTAT.NE.0) GO TO 810
 CALL IFETCH(4,PDBQK,4,4,ISTAT)
 IF (ISTAT.NE.0) GO TO 820
 CALL CLOSE(4,ISTAT)
 CALL PDBQK(KEY,DBN)
 GO TO 30
C >>>>>>> REHAB RETRIEVE MODE <<<<<<<<
500 CALL OPENJ(4,'CAL:REHAEX.OVY ',0,0,0,ISTAT)
 IF (ISTAT.NE.0) GO TO 810
 CALL IFETCH(4,REHAEX,4,4,ISTAT)
 IF (ISTAT.NE.0) GO TO 820
 CALL CLOSE(4,ISTAT)
 CALL REHAEX
 GO TO 30
C >>>>>>> KGS RETRIEVE MODE <<<<<<<<<<<
530 CALL OPENJ(4,'CAL:KGSEX.OVY ',0,0,0,ISTAT)
 IF (ISTAT.NE.0) GO TO 810
 CALL IFETCH(4,KGSEX,4,4,ISTAT)
 IF (ISTAT.NE.0) GO TO 820
 CALL CLOSE(4,ISTAT)
 CALL KGSEX
 GO TO 30
C >>>>>>>>>> AUTHOR RETRIEVE MODE <<<<<<<<<<<
560 CALL OPENJ(4,'CAL:AUTHEX.OVY ',0,0,0,ISTAT)
 IF (ISTAT.NE.0) GO TO 810
CALL IFETCH('AUTHEX ',4,4,ISTAT)
IF (ISTAT.NE.0) GO TO 820
CALL AUTHEX
GO TO 30

C >>>>>>>> FAA RETRIEVE MODE <<<<<<<<<
590 CALL OPENW(4,'CAL:FAAEX.OVY ',0,0,0,ISTAT)
IF (ISTAT.NE.0) GO TO 810
CALL IFETCH('FAAEX ',4,4,ISTAT)
IF (ISTAT.NE.0) GO TO 820
CALL CLOSE(4,ISTAT)
CALL FAAEX
GO TO 30

C >>>>>>>>>>> EDIT MODE <<<<<<<<<
600 CALL OPENW(4,'CAL:PDBED.OVY ',0,0,0,ISTAT)
IF (ISTAT.NE.0) GO TO 810
CALL IFETCH('PDBED ',4,4,ISTAT)
IF (ISTAT.NE.0) GO TO 820
CALL CLOSE(4,ISTAT)
CALL PDBED(DBN)
CALL CLOSE(3,ISTAT)
GO TO 30

C >>>>>>>>>>> EDIT AUTHOR MODE <<<<<<<<<
620 CALL OPENW(4,'CAL:PDBED2.OVY ',0,0,0,ISTAT)
IF (ISTAT.NE.0) GO TO 810
CALL IFETCH('PDBED2 ',4,4,ISTAT)
IF (ISTAT.NE.0) GO TO 820
CALL CLOSE(4,ISTAT)
CALL PDBED2(DBN)
CALL CLOSE(3,ISTAT)
GO TO 30

C >>>>>> KEYS MODE <<<<<<<<<
650 CALL OPENW(4,'CAL:PDBKEY.OVY ',0,0,0,ISTAT)
IF (ISTAT.NE.0) GO TO 810
CALL IFETCH('PDBKEY ',4,4,ISTAT)
IF (ISTAT.NE.0) GO TO 820
CALL CLOSE(4,ISTAT)
CALL PDBKEY(DBN)
CALL CLOSE(3,ISTAT)
GO TO 30

C >>>>>>> ROSTER MODE <<<<<<<<<
675 CALL OPENW(4,'CAL:PDBROS.OVY ',0,0,0,ISTAT)
IF (ISTAT.NE.0) GO TO 810
CALL IFETCH('PDBROS ',4,4,ISTAT)
IF (ISTAT.NE.0) GO TO 820
CALL CLOSE(4,ISTAT)
CALL PDBROS(DBN)
CALL CLOSE(3,ISTAT)
GO TO 30

C >>>>>>>>>> STOP PROCESSING <<<<<<<<<
700 WRITE(6,1008,ERR=800)
STOP

C >>>>>>> ERROR REPORTING <<<<<<<<<
WRITE(6,1009,ERR=801)
STOP
C >>>>>>>>>>> OVERLAY OPEN ERROR <<<<<<<<<<<
WRITE(6,1010,ERR=800) IMODE(1),ISTAT
GO TO 30
C >>>>>>>>>>> OVERLAY FETCH ERROR <<<<<<<<<<<
WRITE(6,1011,ERR=800) IMODE(1),ISTAT
CALL CLOSE(4,ISTAT)
GO TO 30
1000 FORMAT(/1X,'CBT PUBLICATIONS DATA BASE (REV 02.00-12/14/79)')
1001 FORMAT(/1X,'ENTER THE DATA BASE NAME YOU',IX,
 - 'DESIRE'/5X,'- - FAA - - REHAB - - KGS - - AUTH?40 - -'/1X,
1002 FORMAT(5A4)
1003 FORMAT(/1X,'ILLEGAL DATA BASE NAME..RE-ENTER')
1004 FORMAT(/1X,'ENTER DESIRED RUN MODE FOR'/IX,
 - 'REHAB DATA BASE'/IX)
1005 FORMAT(/1X,'ENTER DESIRED RUN MODE FOR'/IX,
 - 'K G S DATA BASE'/IX)
1006 FORMAT(/1X,'ENTER DESIRED RUN MODE FOR'/IX,
 - 'CBT AUTHOR DATA BASE'/IX)
1007 FORMAT(1X,'- - EDIT - - RETRIEVE - - KEYS',
 - 1X,'- - STOP - - SELECT DB - - ONE KEY - - ROSTER - -')
1008 FORMAT(1X,'*** END OF PROCESSING ***')
1009 FORMAT(1X,'TERMINAL ERROR OCCURED')
1010 FORMAT(1X,'ERROR OPENING OVERLAY FOR',
 - 1X,'MODE ',A4,' STATUS=',I3)
1011 FORMAT(1X,'ERROR FETCHING OVERLAY FOR',
 - 1X,'MODE ',A4,' STATUS=',I3)
1012 FORMAT(/1X,'ILLEGAL RUN MODE...RE-ENTER')
1013 FORMAT(3A4)
1014 FORMAT(/1X,'ENTER DESIRED RUN MODE FOR'/IX,
 - 'FAA DATA BASE'/IX)
END

.U EXT FUNC
IDATE INT4 VAR
DBN INT4 VAR
IMODE INT4 VAR
BYTE1 INT4 VAR
BYTE2 INT4 VAR
KEY INT4 VAR
AUTH30 INT4 VAR
ISUH INT4 VAR
DATE EXT FUNC
30 LABEL
1000 LABEL
@H EXT FUNC
70 LABEL
55 LABEL
1001 LABEL
50 LABEL
1013 LABEL
800 LABEL
I INT4 VAR
1003 LABEL
1004 LABEL
1005 LABEL
1014 LABEL
65 LABEL
67 LABEL
68 LABEL
1006 LABEL
1007 LABEL
90 LABEL
1002 LABEL
350 LABEL
500 LABEL
530 LABEL
560 LABEL
590 LABEL
620 LABEL
650 LABEL
700 LABEL
600 LABEL
675 LABEL
ILBYTE EXT FUNC
400 LABEL
1012 LABEL
351 LABEL
360 LABEL
411 LABEL
405 LABEL
ISHFT EXT FUNC
ISBYTE EXT FUNC
410 LABEL
OPENW EXT FUNC
ISTAT INT4 VAR
810 LABEL
IFETCH EXT FUNC
820 LABEL
CLOSE EXT FUNC
PDBOK EXT FUNC
REHAEX EXT FUNC
KGSEX EXT FUNC
AUTHEX EXT FUNC
FAAEX EXT FUNC
PDGED EXT FUNC
PDGED2 EXT FUNC
PDBKEY EXT FUNC
PDROS EXT FUNC
1008 LABEL
.S EXT FUNC
1009 LABEL
801 LABEL
0 errors: FORTRAN V LEVEL 1 804-00
SUBROUTINE PDBQK(KEY,DBNAME)
C WRITTEN BY GEORGE SMITH - CBT
C THIS SUBROUTINE SEARCHES A PUBLICATIONS DATABASE
C FOR A PARTICULAR KEY WORD. EACH RECORD IS CHECKED
C FOR HAVING THE KEY WORD. THIS SUBROUTINE MAY BE INVOKED
C FROM "PDBSUP" BY TYPING 'ONE KEY', OR BY TYPING AN
CASTERISK IN COLUMN 1 IMMEDIATELY FOLLOWED BY THE KEY
C WORD. THE NUMBER OF RECORDS HAVING THIS KEY WORD
C IS OUTPUT TO THE TERMINAL.
C
C MODIFIED 10/29/79 - 08:58
C MODIFIED 10/30/79 - 08:24
INTEGER KEY(4),RECPTR,ISTAT,IPBLK(5),I,J,INDEX1,INDEX2
INTEGER RECS,RECORD(93),BYTE1,DBNAME(4),ORGST(25),INST(25)
RECPTR = -1
RECS = 0
CALL OPENW(3,DBNAME,0,0,0,ISTAT)
IF(ISTAT .NE. 0)GO TO 500
DO 50 I=1,25
ORGST(I)=""
INST(I)=""
50 CONTINUE
RECPTR = RECPTR + 1
CALL SYS10(IPBLK,Y'4D',3,RECORD,372,RECPTR)
IF(IPBLK(1) .NE. Y'4D030000')GO TO 400
J = 62
150 J = J + 4
IF(J .EQ. 90)GO TO 300
DO 200 INDEX1 = 1,4
INDEX2 = INDEX1 + J - 1
IF(RECORD(INDEX2) .NE. KEY(INDEX1))GO TO 150
200 CONTINUE
RECS = RECS + 1
GO TO 100
C *** SEARCH TITLE FOR KEY WORD ***
300 II=28
DO 320 I=1,25
ORGST(I)=RECORD(I)
II=II+1
320 CONTINUE
DO 350 I=1,4
INST(I)=KEY(I)
350 CONTINUE
CALL STSRCH(ORGST,INST,ISTAT)
IF (ISTAT.EQ.1) GO TO 250
GO TO 100
400 CALL ILBYTE(BYTE1,IPBLK(1),2)
IF(BYTE1 .NE. Y'00000088')GO TO 450
405 WRITE(6,410,ERR = 405)RECS,(KEY(I),I = 1,4)
410 FORMAT('0',I4,' RECORD/S HAVE THE KEYWORD ',I1H',4A4,1H'/4X
- 'IN EITHER THE KEY WORD OR TITLE FIELD')
GO TO 600
450 WRITE(6,460,ERR = 450)IPBLK(1)
460 FORMAT('ERROR IN READING DATA FILE - ',Z8)
GO TO 600
500 WRITE(6,510,ERR = 500)ISTAT
510 FORMAT('ERROR IN OPENING DATA FILE - ',I3)
600 CALL CLOSE(3,ISTAT)
RETURN
END

PDBQK FUNC/SUB
 Q EXT FUNC
 P EXT FUNC
KEY FORM PAR
DBNAME FORM PAR
RECPTTR INT4 VAR
ISTAT INT4 VAR
IPBLK INT4 VAR
I INT4 VAR
J INT4 VAR
INDEX1 INT4 VAR
INDEX2 INT4 VAR
RECS INT4 VAR
RECORD INT4 VAR
BYTE1 INT4 VAR
ORGST INT4 VAR
INST INT4 VAR
OPENW EXT FUNC
500 LABEL
50 LABEL
100 LABEL
SYS10 EXT FUNC
400 LABEL
150 LABEL
300 LABEL
200 LABEL
250 LABEL
II INT4 VAR
320 LABEL
350 LABEL
STSRCH EXT FUNC
ILBYTE EXT FUNC
450 LABEL
405 LABEL
410 LABEL
0H EXT FUNC
600 LABEL
460 LABEL
510 LABEL
CLOSE EXT FUNC

0 ERRORS: FORTRAN V LEVEL 1 R04-80
SUBROUTINE STSRCH(ORGST, INST, ISTAT)
C PROGRAM DESIGNED TO SEARCH AN ASCII
C FIELD AGAINST AN INPUT FIELD TO
C DETERMINE A MATCH CONDITION.
C WRITTEN BY L. KAETZEL - CBT - 02/23/79
C >>>>>>> ARGUMENT DEFINITIONS <<<<<<<<
C ORGST = ORIGINAL STRING MAX 100 CHARACTERS
C INST = INPUT STRING MAX 100 CHARACTERS
C STAT = DISPOSITION OF PROCESSING
C 0=NO MATCH
C 1=MATCH
C -2=NON ASCII CHARACTERS IN STRING
INTEGER ORGST(25), INST(25)
INTEGER OSTOR, ISTOR, OSCT, TCT, BLNK
C >>>>>> FIND NO. OF CHAR FOR SEARCH <<<<<<<<
NCHAR=-1
ITMP='llll'
DO 30 I=1,25
DO 20 J=1,4
ISCON=32-(8*KJ)
ICHAR=ISHFT(INST(I),-ISCON)
ISTOR=' ' CALL ISBYTE(ICHAR, ISTOR, 0)
IF (ISTOR.EQ. '.AND. ITMP.EQ. ' ') GO TO 40
NCHAR=NCHAR+1
ITMP=ISTOR
20 CONTINUE
30 CONTINUE
C >>>>>> VALIDATE ASCII STRINGS <<<<<<<<
40 ICOUNT=0
NDIF=(NCHAR/4)+1
DO 100 I=1,25
DO 50 J=1,4
ISCON=32-(8*KJ)
ICHAR=ISHFT(ORGST(I),-ISCON)
ISTOR=' ' CALL ISBYTE(ICHAR, ISTOR, 0)
IF (ISTOR.LT.Y'20202020'.OR.
- ISTOR.GT.Y'5A202020') GO TO 600
ICHAR=ISHFT(INST(I),-ISCON)
ISTOR=' ' CALL ISBYTE(ICHAR, ISTOR, 0)
IF (ISTOR.LT.Y'20202020'.OR.
- ISTOR.GT.Y'5A202020') GO TO 600
ICOUNT=ICOUNT+1
IF (ICOUNT.EQ.NCHAR) GO TO 150
50 CONTINUE
100 CONTINUE
C >>>>>>> MASK IT <<<<<<<<
150 OSCT=1
ISCT=1
TCCT=1
II=1
I=1
ISTMP=‘AAAA’
200 ISCON=32-(8*I)
IIOCHAR=ISHFT(ORGST(OSCT),-ISCON)
IIOSTOR=’ ‘
CALL ISBYTE(IIOCHAR,IIOSTOR,0)
IF (IIOSTOR.EQ.’ ‘ .AND.IISTMP.EQ.’ ‘) GO TO 275
IISTMP=IIOSTOR
ISCON=32-(8*I)
IIICHAR=ISHFT(INST(ISCT),-ISCON)
IIISTOR=’ ‘
CALL ISBYTE(IIICHAR,IIISTOR,0)
IF (IIISTOR.NE.IIISTOR) GO TO 300
C >>>>>>> CHARACTER MATCH <<<<<<
TCCT=TCCT+1
IF (TCCT.GT.NCHAR) GO TO 500
II=II+1
215 I=I+1
IF (II.LE.4.AND.I.LE.4) GO TO 200
IF (II.LE.4) GO TO 250
II=I
ISCT=ISCT+1
IF (ISCT.LE.25) GO TO 250
ISTAT=1
RETURN
250 IF (II.LE.4) GO TO 200
I=I
OSCT=OSCT+1
IF (OSCT.LE.25) GO TO 200
275 ISTAT=0
RETURN
C >>>>>>> CHARACTER NO-MATCH <<<<<<
300 ISCT=I
II=I
TCCT=I
GO TO 215
500 ISTAT=1
RETURN
600 ISTAT=-2
RETURN
END
STrch FUNC/SUB
.O EXT FUNC
.P EXT FUNC
ORGST FORM PAR
INST FORM PAR
ISTAT FORM FAR
OSTOR INT4 VAR
ISTOR INT4 VAR
OSCT INT4 VAR
TCCT INT4 VAR
BLNK INT4 VAR
NCHAR INT4 VAR
ITMP INT4 VAR
30 LABEL
I INT4 VAR
20 LABEL
J INT4 VAR
ISCON INT4 VAR
ICHAR INT4 VAR
ISHFT EXT FUNC
ISBYTE EXT FUNC
40 LABEL
ICOUNT INT4 VAR
NDIF INT4 VAR
100 LABEL
50 LABEL
600 LABEL
150 LABEL
ISCT INT4 VAR
II INT4 VAR
ISTMP INT4 VAR
200 LABEL
I0CHAR INT4 VAR
I0STOR INT4 VAR
275 LABEL
I1CHAR INT4 VAR
I1STOR INT4 VAR
300 LABEL
500 LABEL
215 LABEL
250 LABEL

0 ERRORS: FORTRAN V LEVEL 1 R04-00
SUBROUTINE PDKKEY(DBNAME)

C MODIFIED 04/13/79 - 08:06
C MODIFIED 10/29/79 - 13:51
C MODIFIED 10/30/79 - 08:29

INTEGER*4 TEMP(4,6), KEY(4,700), CHECK, ISTAT, DBNAME(4)
$ TOTAL, IPBLK1(5), RECORD(93), I, J, IDATE(3), J2
INTEGER*4 FILE(4)
INTEGER*2 ANSWER, TOSORT, SWAP, END, COUNT(700)
INTEGER*2 PAGES, BEGIN, LOOPCT, OFFSET, RECS, OCCURS
INTEGER*2 DELET

EQUIVALENCE (TEMPC1, 1), RECORD(66)

RECS = 0
DELET = 0
OCCURS = 0
TOTAL = 0

PROFILE(1) = 'PR2:'
PROFILE(2) = '
PROFILE(3) = '
PROFILE(4) = '

19 WRITE(6,20,ERR = 19)
20 FORMAT('BEGIN KEYWORD SORT')

CALL CLOSE(3, ISTAT)
CALL OPENW(3, DBNAME, 0, 0, ISTAT)

IF (ISTAT .EQ. 0) GO TO 30

Complex logic...

WRITE(6,1003,ERR=800)

READ(6,1002,ERR=800) IOPT
IF (IOPT.EQ., "YES") ILU=7
IF (IOPT.EQ., "NO") ILU=6
IF (ILU.NE.0) GO TO 38

WRITE(6,1003,ERR=800)

GO TO 34

38 IF (ILU.EQ.6) GO TO 50

CALL CLOSE(7, ISTAT)
CALL OPENW(7, PROFILE, 7, 0, ISTAT)

IF (ISTAT .EQ. 0) GO TO 50

WRITE(6,45,ERR = 44) ISTAT

45 FORMAT('ERROR IN OPENING PRINT FILE')

GO TO 640

50 CALL SYSIO(IPBLK1,Y'48',3,RECORD,372,0)
IF(IPBLK1(1) .NE. Y'43030000') GO TO 65

RECS = RECS + 1
DO 55 I = 1,5

55 CONTINUE

DELET = DELET + 1

GO TO 50

65 CALL ILBYTE(CHECK, IPBLK1(1), 2)
IF (CHECK .EQ. Y'88') GO TO 150
70 WRITE (6,72,ERR = 70) IPBLK1(1)
72 FORMAT ('0', 'ERROR: IPBLK(1) = ',Z8)
GO TO 640
100 DO 150 J = 1,6
 DO 120 I = 1,4
 IF (TEMP(I,J) .NE. ' ') GO TO 125
 CONTINUE
GO TO 150
125 IF (TOTAL .EQ. 0) GO TO 132
 DO 130 T = 1, TOTAL
 DO 127 I = 1,4
 IF (TEMP(I,J) .NE. KEY(I,T)) GO TO 130
 CONTINUE
 COUNT(T) = COUNT(T) + 1
 OCCURS = OCCURS + 1
 GO TO 150
130 CONTINUE
132 TOTAL = TOTAL + 1
 IF (TOTAL .EQ. 701) GO TO 550
 COUNT(TOTAL) = 1
 OCCURS = OCCURS + 1
 DO 135 I = 1,4
 KEY(I,TOTAL) = TEMP(I,J)
 CONTINUE
135 CONTINUE
150 CONTINUE
GO TO 50
158 TOSORT = TOTAL
160 TOSORT = TOSORT - 1
 IF (TOSORT .EQ. 0) GO TO 280
SWAP = 'N'
 DO 180 J = 1, TOSORT
 DO 170 I = 1,4
 IF (KEY(I,J) .GT. KEY(I,J + 1)) GO TO 172
 IF (KEY(I,J) .LT. KEY(I,J + 1)) GO TO 180
 CONTINUE
GO TO 180
170 CONTINUE
172 DO 175 I = 1,4
 TEMP(I,1) = KEY(I,J)
 KEY(I,J) = KEY(I,J + 1)
 KEY(I,J + 1) = TEMP(I,1)
175 CONTINUE
SWAP = 'Y'
 TEMP(I,1) = COUNT(J)
 COUNT(J) = COUNT(J + 1)
 COUNT(J + 1) = TEMP(I,1)
180 CONTINUE
 IF (SWAP .EQ. 'Y') GO TO 160
280 BEGIN = -45
 PAGES = TOTAL / 90
 CALL DATE(IDATE)
400 PAGES = PAGES - 1

D-13
403 WRITE (ILU, 407, ERR = 403) DBNAME(2), DBNAME(3), IDATE(2)
$, IDATE(3), IDATE(1)
407 FORMAT ("1", 5X, 2A4, 2X, 'PUBLICATIONS DATA BASE', 5X, 'KEY WORD LIST',
$ 5X, I2, '/', I2, '/', I2)
408 WRITE (ILU, 409, ERR = 408)
409 FORMAT (0, 5X, 'KEY WORD', 7X, 'OCCURRENCES', 18X, 'KEY WORD'.
$ 7X, 'OCCURRENCES')
40900 WRITE (ILU, 40901, ERR = 40900)
40901 FORMAT (', 5X, ?, X, ', 13X, ',
$ 7X, ')')
IF (PAGES .EQ. -DGO TO 500
LOOPCT = 0
BEGIN = BEGIN + 45
410 LOOPCT = LOOPCT + 1
ICRT = ICRT + 1
BEGIN = BEGIN + 1
END = BEGIN + 45
429 WRITE (ILU, 430, ERR = 429) (KEY(I, BEGIN), I = 1, 4), COUNT(BEGIN),
$ (KEY(I, END), I = 1, 4), COUNT(END)
430 FORMAT (5X, 4A4, 2X, I3, 23X, 4A4, 2X, I3)
IF (ILU .EQ. 7) GO TO 450
IF (LOOPCT .EQ. 45) GO TO 400
IF (ICRT .LT. 18) GO TO 410
READ(6, 1000) IDUM
ICRT = 0
GO TO 410
450 IF (LOOPCT .EQ. 45) GO TO 400
 GO TO 410
500 BEGIN = BEGIN + 45
LOOPCT = 0
OFFSET = (TOTAL - TOTAL / 90 * 90) / 2
IF (TOTAL / 2 .LE. TOTAL) OFFSET = OFFSET + 1
505 BEGIN = BEGIN + 1
LOOPCT = LOOPCT + 1
IF (LOOPCT .GE. OFFSET) GO TO 550
END = BEGIN + OFFSET
509 WRITE (ILU, 430, ERR = 509) (KEY(I, BEGIN), I = 1, 4), COUNT(BEGIN),
$ (KEY(I, END), I = 1, 4), COUNT(END)
GO TO 505
550 IF (TOTAL .EQ. -DGO TO 570
IF (OFFSET .EQ. 0) GO TO 600
END = BEGIN + OFFSET
559 WRITE (ILU, 430, ERR = 559) (KEY(I, BEGIN), I = 1, 4), COUNT(BEGIN),
$ (KEY(I, END), I = 1, 4), COUNT(END)
GO TO 600
570 WRITE (ILU, 430, ERR = 570) (KEY(I, BEGIN), I = 1, 4), COUNT(BEGIN)
600 WRITE (ILU, 407, ERR = 600) DBNAME(2), DBNAME(3), IDATE(2)
$, IDATE(3), IDATE(1)
610 WRITE (ILU, 615, ERR = 610) RECSD, DELETD, TOTAL, OCCURS
615 FORMAT (0*'0', '0', 'END OF KEY WORDS',
$ '0', 14, ' RECORDS READ')
$ '0', I4, 'HAD BEEN DELETED' /
$ '0', I4, 'KEY WORDS' /
$ '0', I4, 'OCCURRENCES')
620 WRITE(6,630,ERR = 620)
630 FORMAT('BEGIN OF KEYWORD SORT')
640 CALL CLOSE(3, ISTAT)
 CALL CLOSE(7, ISTAT)
 RETURN
650 WRITE(1LU,651,ERR = 650)
651 FORMAT('0', 'MORE THAN 700 KEYS'
 $ ' ONLY FIRST 700 PROCESSED')
 TOTAL = TOTAL - 1
 GO TO 150
C >>>>>> TERMINAL ERROR <<<<<<<<<<<<<
800 WRITE(6,1004)
 STOP
1000 FORMAT(A1)
1001 FORMAT(IX, 'OPTIONAL PRINTER OUTPUT? (YES OR NO)')
1002 FORMAT(A4)
1003 FORMAT(IX, 'RESPONSE NOT "YES" OR "NO"..RE-ENTER')
1004 FORMAT(IX, 'TERMINAL ERROR OCCURED')
END
PDBKEY FUNC/SUB
 .Q EXT FUNC
 .P EXT FUNC
DBNAME FORM PAR
 TEMP INT4 VAR
 KEY INT4 VAR
 CHECK INT4 VAR
 ISTAT INT4 VAR
 TOTAL INT4 VAR
 IPBLK1 INT4 VAR
 RECORD INT4 VAR
 I INT4 VAR
 J INT4 VAR
 T INT4 VAR
 IDATE INT4 VAR
 J2 INT4 VAR
 PROFILE INT4 VAR
 ANSWER INT2 VAR
 TOSORT INT2 VAR
 SWAP INT2 VAR
 END INT2 VAR
 COUNT INT2 VAR
 PAGES INT2 VAR
 BEGIN INT2 VAR
 LOOPCT INT2 VAR
 OFFSET INT2 VAR
 RECS INT2 VAR
 OCCURS INT2 VAR
 DELETD INT2 VAR
 19 LABEL
SUBROUTINE PDBED(DBNAME)

C MODIFIED BY L. KAETZEL 09/14/79
C MODIFIED 10/29/79 - 09:39
C MODIFIED 10/31/79 - 06:51

INTEGER MAX, MIN, RECPTR, RECORD(93), I, IPBLK1(5), PTRADJ
INTEGER*2 DBCODE, ANSWER, LINE
INTEGER MODE, DBNAME(4), CHECK, START, END, DIGITS, I2, ISTAT
INTEGER TEMP, TEMP2(40), STOP, ASTRIX, BEGIN, END, BLANKS

ASTRIX = '*'
BLANKS = ' '

CALL CLOSE(3, ISTAT)
DBCODE = 1
IF(DBNAME(2).EQ. 'REHA') DBCODE = 2
CALL OPENW(3, DBNAME, 7, 0, 0, ISTAT)
IF(ISTAT .NE. 0) GO TO 80
GO TO 100

80 WRITE(6, 81, ERR = 80) ISTAT
81 FORMAT(' ERROR IN OPENING FILE ', I3)
GO TO 900

50 WRITE(6, 51, ERR = 50)
51 FORMAT('0', 'BEGIN UPDATING OF DATABASE')

100 WRITE(6, 110, ERR = 100)
110 FORMAT(' ENTER RUN MODE'/
$ 'APPEND - DELETE - UPDATE - SEARCH - RETURN')

READ(6, 120) MODE

120 FORMAT(A4)
IF(MODE .EQ. 'APPE') GO TO 200
IF(MODE .EQ. 'DELE') GO TO 300
IF(MODE .EQ. 'UPDA') GO TO 30601
IF(MODE .EQ. 'SEAR') GO TO 500
IF(MODE .EQ. 'RET') GO TO 900

129 WRITE(6, 130, ERR = 129)
130 FORMAT(' ILLEGAL RUN MODE')
GO TO 100

C
C APPEND MODE
C
C FIND END OF FILE
C

200 MAX = 16384
MIN = 0
205 RECPTR = (MAX + MIN) / 2
READ(3, 210, END = 220, REC = RECPTR) TEMP
210 FORMAT(A4)
RECPTR = RECPTR + 1
READ(3, 210, END = 230, REC = RECPTR) TEMP
MIN = RECPTR
IF(RECPTR .GT. 16300) GO TO 290
GO TO 265
220 IF(RECPTR .EQ. 0) GO TO 230
MAX = RECPTR
GO TO 205
C
C READ IN DATA
C
C DBCODE ONE IS KGS AND AUTHOR DATABASE
C DBCODE TWO IS REHAB DATABASE
C
C (PROGRAM DEFAULTS TO DBCODE ONE)
C
230 DO 2301 I = 1,93
2301 RECORD(I) = BLANKS
 IF(DBCODE .EQ. 1) GO TO 231
 IF(DBCODE .EQ. 2) GO TO 23410
231 WRITE(6,232,ERR = 231)
232 FORMAT(' ENTER 3 AUTHORS, ONE TO A ',
 '$', 'LINE'/' OR AN ''*'' TO EXIT')
 READ(6,234)(RECORD(I),I = 1,8)
234 FORMAT(8A4)
 IF(RECORD(1) .EQ. ASTRIX) GO TO 100
 READ(6,234)(RECORD(I),I = 9,16)
 IF(RECORD(9) .NE. ASTRIX) GO TO 23401
 RECORD(9) = BLANKS
 GO TO 249
23401 READ(6,234)(RECORD(I),I = 17,24)
 IF(RECORD(17) .NE. ASTRIX) GO TO 235
 RECORD(17) = BLANKS
 GO TO 249
23410 WRITE(6,23415,ERR = 23410)
23415 FORMAT(' ENTER NAME OF AUTHOR/'
 '$', ' OR AN ''*'' TO EXIT')
 READ(6,234)(RECORD(I),I = 1,8)
23419 WRITE(6,23420,ERR = 23418)
23420 FORMAT(' ENTER LIBRARY LOCATION')
 READ(6,234)(RECORD(I),I = 9,16)
 IF(RECORD(9) .NE. ASTRIX) GO TO 23423
 RECORD(9) = BLANKS
 GO TO 249
23423 WRITE(6,23425,ERR = 23423)
23425 FORMAT(27H ENTER AUTHOR'S AFFILIATION)
 READ(6,234)(RECORD(I),I = 17,24)
 IF(RECORD(17) .NE. ASTRIX) GO TO 235
 RECORD(17) = BLANKS
 GO TO 249
235 WRITE(6,236,ERR = 235)
236 FORMAT(' ENTER PUBLICATION DATE')
 READ(6,234)(RECORD(I),I = 25,27)
 IF(RECORD(25) .NE. ASTRIX) GO TO 239
 RECORD(25) = BLANKS
 GO TO 249
239 WRITE(6,240,ERR = 239)
240 FORMAT(' ENTER TWO LINES OF THE TITLE')
READ(6,241)(TEMP2(I),I = 1,20)
IF(TEMP2(1) .EQ. ASTRIX)GO TO 249
READ(6,241)(TEMP2(I),I = 21,40)
STOP = TEMP2(21)
IF(TEMP2(21) .EQ. ASTRIX)TEMP2(21) = BLANKS
241 FORMAT(20A4)
2410 CALL CRAM(TEMP2)
 DO 2411 I = 1,25
 RECORD(I + 27) = TEMP2(I)
 IF(STOP .EQ. ASTRIX)GO TO 249
 WRITE(6,243,ERR = 242)
242 FORMAT(’ENTER PUBLICATION NAME’)
 READ(6,234)(RECORD(I),I = 53,60)
 IF(RECORD(53) .NE. ASTRIX)GO TO 244
 RECORD(53) = BLANKS
 WRITE(6,245,ERR = 244)
244 WRITE(6,24500)
24500 FORMAT(’ENTER PUBLISHER LOCATION’)
24501 FORMAT(’ENTER PUBLISHERS NAME’)
24502 FORMAT(’ENTER DIVISION/GROUP’)
 WRITE(6,24501)
 BEGIN = BEGIN + 4
24501 FORMAT(’ENTER 6 KEY WORDS, ONE TO A LINE’)
 DO 248 BEGIN = 66,89,4
 END = BEGIN + 3
 READ(6,234)(RECORD(I),I = BEGIN,END)
 IF(RECORD(BEGIN) .NE. ASTRIX)GO TO 248
 RECORD(BEGIN) = BLANKS
 WRITE(6,247,ERR = 246)
247 FORMAT(’ENTER DATA FOR AUTHOR DATA BASE’)
24504 IF (DBNAME(2),NE,’AUTH’) GO TO 246
 WRITE(6,24500)
 BEGIN = 66
24500 FORMAT(’ENTER PUBLISHER LOCATION’)
 END = 69
 READ(6,234)(RECORD(I),I = BEGIN,END)
 WRITE(6,24501)
 BEGIN = BEGIN + 4
24501 FORMAT(’ENTER PUBLISHERS NAME’)
 END = END + 4
 READ(6,234)(RECORD(I),I = BEGIN,END)
 WRITE(6,24502)
 BEGIN = BEGIN + 4
24502 FORMAT(’ENTER DIVISION/GROUP’)
 END = END + 4
 READ(6,234)(RECORD(I),I = BEGIN,END)
 DO 24503 I = 78,93
 RECORD(I) = ’
24503 CONTINUE
 GO TO 250
 FORMAT(’ENTER PUBLISHER LOCATION’)
24500 FORMAT(’ENTER PUBLISHERS NAME’)
24501 FORMAT(’ENTER DIVISION/GROUP’)
246 WRITE(6,247,ERR = 246)
247 FORMAT(’ENTER 6 KEY WORDS, ONE TO A LINE’)
 DO 248 BEGIN = 66,89,4
 END = BEGIN + 3
 READ(6,234)(RECORD(I),I = BEGIN,END)
 IF(RECORD(BEGIN) .NE. ASTRIX)GO TO 248
 RECORD(BEGIN) = BLANKS
 GO TO 249
248 CONTINUE
IF(DBCODE .EQ. 2) GO TO 249
24800 WRITE(6,24801,ERR = 24800)
24801 FORMAT(' ENTER DISCIPLINE')
READ(6,234)(RECORD(I),I = 90,93)
IF(RECORD(90).NE. ASTRIX) GO TO 249
 RECORD(90) = '
249 CALL DISPLAY(RECORD,DCODE)
250 WRITE(6,251,ERR = 250)
251 FORMAT(' SAVE OK?')
READ(6,260)ANSWER
260 FORMAT(A4)
 IF(ANSWER .EQ. 'YES ') GO TO 2700
 IF(ANSWER .EQ. 'NO ') GO TO 230
261 WRITE(6,262,ERR = 261)
262 FORMAT(' ANSWER "YES" OR "NO"')
 GO TO 250
C
C SAVE APPENDED RECORD
C
270 CALL SYSIO(IPBLK1,Y'28'.3.RECORD,372,0)
 IF(IPBLK1(1).NE. Y'28030000') GO TO 270
 GO TO 230
270 WRITE(6,272,ERR = 270)IPBLK1(1)
272 FORMAT('0',"ERROR IN WRITING RECORD'/
 $ ' IPBLK(1) = ',28)
 GO TO 100
290 WRITE(6,292,ERR = 290)
292 FORMAT('0','TOO MANY RECORDS ON FILE')
 GO TO 100
C
C DELETE AND UPDATE MODES
C
300 WRITE(6,305,ERR = 300)
305 FORMAT(' ENTER NUMBER OF THE RECORD TO'
 $ ' DELETE'/ OR AN "*" TO EXIT')
 GO TO 307
30601 WRITE(6,306,ERR = 30601)
306 FORMAT(' ENTER NUMBER OF RECORD TO UPDATE'/
 $ ' OR AN "*" TO EXIT')
C
C READ NUMBER IN ALPHANUMERIC FORMAT
C OF RECORD TO DELETE OR UPDATE AND
C CONVERT NUMBER TO INTEGER
C
307 READ(6,309)DIGITS
308 FORMAT(A4)
 IF(DIGITS .EQ. ASTRIX) GO TO 100
 RECPTR = 0
 DO 310 I = 1,4
 I2 = I - 1
 CALL ILBYTE(CHECK,DIGITS,I2)
 IF(CHECK .EQ. Y'00000020') GO TO 310
C
D-21
IF(CHECK .LT. Y'00000030' .OR.
$ CHECK .GT. Y'00000039')GO TO 315
RECPTR = RECPTR * 10 + (CHECK - 48)
310 CONTINUE
 GO TO 320
315 WRITE(6,317,ERR = 315)
317 FORMAT('0' , 'THAT IS NOT AN ASTERISK'/
$ 22H AND IT'S NOT A NUMBER)
 IF(MODE .EQ. 'UPDA')GO TO 38601
 GO TO 300
C C READ RECORD TO DELETE OR UPDATE
C 320 PTRADJ = RECPTR - 1
 CALL SYSIO(IPBLK1,Y'4C',3,RECORD,372,PTRADJ)
 IF(IPBLK1(1) .NE. Y'4C030000')GO TO 360
DO 321 I = 1,93
 IF(RECORD(I) .NE. 'DELE')GO TO 323
321 CONTINUE
322 WRITE(6,3220,ERR = 322)RECPTR
3220 FORMAT('RECORD NUMBER ',14/
$ ' HAS ALREADY BEEN DELETED')
 IF(MODE .EQ. 'DELE')GO TO 300
 DO 323 I = 1,93
323 WRITE(6,325,ERR = 323)RECPTR,(RECORD(I),I
$ = 1,8)
325 FORMAT('RECORD NUMBER ',14/
$ ' AUTHOR: ',8A4)
326 WRITE(6,326,ERR = 326),(RECORD(I),I = 28,52)
327 FORMAT('TITLE: ',12A4/' ',13A4)
 IF(MODE .EQ. 'UPDA')GO TO 390
328 WRITE(6,328,ERR = 328)
329 FORMAT('DELETE OK?')
 READ(6,330)ANSWER
330 FORMAT(A4)
 IF(ANSWER .EQ. 'NO ')GO TO 300
 IF(ANSWER .EQ. 'YES ')GO TO 340
332 WRITE(6,332,ERR = 332)
333 FORMAT('ANSWER "YES" OR "NO"')
 GO TO 328
C C DELETE RECORD
C 340 DO 345 I = 1,93
345 RECORD(I) = 'DELE'
 CALL SYSIO(IPBLK1,Y'2C',3,RECORD,372,PTRADJ)
 IF(IPBLK1(1) .NE. Y'2C030000')GO TO 370
349 WRITE(6,350,ERR = 349)
350 FORMAT('RECORD DELETED')
 GO TO 300
360 CALL ILBYTE(CHECK,IPBLK1(1),2)
 IF(CHECK .EQ. Y'88')GO TO 365
D-22
GO TO 370
365 WRITE(6,367,ERR = 365)RECPR
367 FORMAT('RECORD NUMBER ',I4, ' IS PAST THE END OF THE FILE')
 IF(MODE .EQ. 'UPDA')GO TO 30601
 GO TO 300
370 WRITE(6,373,ERR = 370)IPBLK(1)
373 FORMAT('ERROR'/ IPBLK(1) = ',Z8)
 GO TO 100
C
C DISPLAY RECORD TO UPDATE
C
390 CALL DISPLAY(RECORD, DBCODE)
C
C GET NEW LINE
C
400 WRITE(6,405,ERR = 405)
405 FORMAT('ENTER LINE NUMBER TO UPDATE'/
 $ ' OR AN "*" TO EXIT')
 READ(6,4050)DIGITS
4050 FORMAT(A2)
 IF(DIGITS .EQ. '*')GO TO 4050
 LINE = 0
 DO 455 I = 1,2
 12 = I - 1
 CALL ILBYTE(check,digits,12)
 IF(check .EQ. 'Y'00000020')GO TO 455
 IF(check .GT. 'Y'00000039' .OR. $
 Check .LT. 'Y'00000030')GO TO 456
 LINE = LINE * 10 + CHECK - 48
455 CONTINUE
 GO TO 461
456 WRITE(6,317,ERR = 456)
 GO TO 440
C
C GET NEW LINE
C
461 IF(LINE .LT. 1 .OR. LINE .GT. 15)GO TO 495
 IF(LINE .EQ. 15 .AND. DBCODE .EQ. 2)GO TO 495
 GO TO (4610,4610,4611,4612,4971,4613,4614,4615,4615,4615,4615,
 $ 4615,4615,4615,4616),LINE
4610 START = (LINE - 1) * 8 + 1
 END = START + ?
 GO TO 470
4611 START = 25
 END = 27
 GO TO 470
4612 WRITE(6,46120,ERR = 4612)LINE,(RECORD(I),I = 28,52)
46120 FORMAT('0', 'LINE ',I2,' WAS:/' ',13A4/ '12A4/
 $ ' ENTER 2 LINES OF THE NEW TITLE')
 READ(6,46121)(TEMP2(I),I = 1,20)
46121 FORMAT(20A4)
 READ(6,46121)(TEMP2(I),I = 21,40)
CALL CRAM(TMP2)
DO 46123 I = 1,25
 RECORD(I + 27) = TEMP2(I)
46123 CONTINUE
 GO TO 440
4613 START = 53
 END = 60
 GO TO 470
4614 START = 61
 END = 65
 GO TO 470
4615 START = 4 * LINE + 30
 END = START + 3
 GO TO 470
4616 START = 90
 END = 93
470 WRITE(6,475,ERR = 470)LINE,(RECORD(I),I = START,END)
475 FORMAT('0','LINE '.ID.' WAS:/''8A4/' ENTER NEW LINE')
 READ(6,480)(RECORD(I),I = START,END)
480 FORMAT(20A4)
 GO TO 440
C
C DISPLAY UPDATED RECORD
C
490 CALL DISPLAY(RECORD,DBCODE)
491 WRITE(6,251,ERR = 491)
 READ(6,492)ANSWER
492 FORMAT(A4)
 IF(ANSWER .EQ. 'YES ')GO TO 493
 IF(ANSWER .EQ. 'NO ')GO TO 30601
43201 WRITE(6,262,ERR = 262)
 GO TO 491
C
C SAVE UPDATED RECORD
C
493 CALL SYSIO(IPBLK1,'Y2C',3,RECORD,372,PTRADJ)
 IF(IPBLK1(I) .NE. Y'2C03000')GO TO 370
 GO TO 30601
495 WRITE(6,497,ERR = 495)
497 FORMAT(' THAT IS NOT A VALID LINE NUMBER')
 GO TO 440
4971 WRITE(6,4972,ERR = 4971)
4972 FORMAT(' YOU CAN ONLY EDIT LINE 6'
 "$ /" AFTER YOU HAVE EDITED LINE 5')
 GO TO 440
500 CALL SEARCH
 GO TO 100
900 CALL CLOSE(3,ISTAT)
 RETURN
END
PDBED FUNC/SUB
_.Q EXT FUNC
.P EXT FUNC
DBNAME FORM PAR
MAX INT4 VAR
MIN INT4 VAR
RECPTR INT4 VAR
RECORD INT4 VAR
I INT4 VAR
IPBLK1 INT4 VAR
PTRADJ INT4 VAR
DBCODE INT2 VAR
ANSWER INT2 VAR
LINE INT2 VAR
MODE INT4 VAR
CHECK INT4 VAR
START INT4 VAR
END INT4 VAR
DIGITS INT4 VAR
12 INT4 VAR
1STAT INT4 VAR
TEMP INT4 VAR
TEMP2 INT4 VAR
STOP INT4 VAR
ASTRIIX INT4 VAR
BEGIN INT4 VAR
BLANKS INT4 VAR
CLOSE EXT FUNC
OPENW EXT FUNC
80 LABEL
100 LABEL
81 LABEL
@H EXT FUNC
900 LABEL
50 LABEL
51 LABEL
110 LABEL
120 LABEL
200 LABEL
300 LABEL
30501 LABEL
500 LABEL
129 LABEL
130 LABEL
205 LABEL
210 LABEL
220 LABEL
230 LABEL
290 LABEL
2301 LABEL
231 LABEL
23410 LABEL
232 LABEL
234 LABEL
23401 LABEL
249 LABEL
235 LABEL
23415 LABEL
23419 LABEL
23420 LABEL
23423 LABEL
23425 LABEL
236 LABEL
239 LABEL
240 LABEL
241 LABEL
2410 LABEL
CRAM EXT FUNC
2411 LABEL
242 LABEL
243 LABEL
244 LABEL
245 LABEL
24504 LABEL
246 LABEL
24500 LABEL
24501 LABEL
24502 LABEL
24503 LABEL
250 LABEL
247 LABEL
248 LABEL
24800 LABEL
24901 LABEL
DISPLAY EXT FUNC
251 LABEL
260 LABEL
2700 LABEL
261 LABEL
262 LABEL
SYS10 EXT FUNC
270 LABEL
272 LABEL
292 LABEL
305 LABEL
307 LABEL
306 LABEL
309 LABEL
310 LABEL
ILBYTE EXT FUNC
315 LABEL
320 LABEL
317 LABEL
360 LABEL
321 LABEL
323 LABEL
ERRORS: FORTRAN V LEVEL 1 R04-00
SUBROUTINE CRAM(RECORD)

C THIS SUBROUTINE COMPRESSES CONSECUTIVE CBLANKS INTO ONE BLANK
C

INTEGER TPOINT, LPOINT, CHAR, RECORD(40)
TPOINT = -1
LPOINT = -1

100 LPOINT = LPOINT + 1
IF (LPOINT .EQ. 160) GO TO 300
TPOINT = TPOINT + 1
IF (TPOINT .EQ. 100) GO TO 400
CALL ILBYTE(CHAR, RECORD, LPOINT)

110 CALL ISBYTE(CHAR, RECORD, TPOINT)
IF (CHAR .EQ. '00000020') GO TO 120
GO TO 100

120 LPOINT = LPOINT + 1
IF (LPOINT .EQ. 160) GO TO 300
CALL ILBYTE(CHAR, RECORD, LPOINT)
IF (CHAR .EQ. '00000020') GO TO 120
IF (TPOINT .EQ. 100) GO TO 110
TPOINT = TPOINT + 1
IF (TPOINT .EQ. 160) GO TO 300
GO TO 110

300 TPOINT = TPOINT + 1
IF (TPOINT .EQ. 100) GO TO 400
CALL ISBYTE('0020', RECORD, TPOINT)
GO TO 300

400 RETURN
END

CRAM FUNC/SUB
.Q EXT FUNC
.P EXT FUNC
RECORD FORM PAR
TPOINT INT4 VAR
LPOINT INT4 VAR
CHAR INT4 VAR
100 LABEL
300 LABEL
400 LABEL
ILBYTE EXT FUNC
110 LABEL
ISBYTE EXT FUNC
120 LABEL

0 ERRORS: FORTRAN V LEVEL 1 R04-00
SUBROUTINE SEARCH

C
C THIS SUBROUTINE SEARCHES FOR THE (FIRST)
C AUTHOR'S NAME OF EACH RECORD FOR A MATCH
C WITH AN AUTHOR'S NAME ENTERED BY THE USER.
C
C THE SUBROUTINE IS USEFUL IN FINDING THE
C RECORD NUMBER OF A RECORD

C INTEGER AUTHOR(8),RECPTR,IPBLK1(1),RECORD(93),I,CHECK
INTEGER PTRADJ
INTEGER*2 ANSWER
100 WRITE(6,110,ERR = 100)
110 FORMAT(20H ENTER AUTHOR'S NAME)
READ(6,120)AUTHOR
120 FORMAT(8A4)
PTRADJ = -1
125 PTRADJ = PTRADJ + 1
CALL SYSIO(IPBLK1,Y'4C',3,RECORD,372,PTRADJ)
IF(IPBLK1(1),.NE. Y'4C030000')GO TO 160
DO 130 I = 1,8
 IF(RECORD(I),.NE. AUTHOR(I))GO TO 125
130 CONTINUE
RECPTR = PTRADJ + 1
133 WRITE(6,135,ERR = 133)RECPTR,(RECORD(I),I = 1,8)
135 FORMAT(14H RECORD NUMBER ',I4/' AUTHOR: ',8A4)
136 WRITE(6,138,ERR = 136)(RECORD(I),I = 28,52)
138 FORMAT(12H TITLE: ',12A4/' ',13A4)
139 WRITE(6,140,ERR = 139)
140 FORMAT(1H '0',13H SHALL I SEARCH FOR MORE UNDER THIS AUTHOR?')
READ(6,145)ANSWER
145 FORMAT(A4)
 IF(ANSWER .EQ. 'YES ')GO TO 125
 IF(ANSWER .EQ. 'NO ')RETURN
149 WRITE(6,150,ERR = 149)
150 FORMAT(1H ANSWER "YES" OR "NO")
 GO TO 139
160 CALL ILBYTE(CHECK,IPBLK1(1),2)
 IF(CHECK .EQ. Y'88')GO TO 170
 GO TO 150
170 WRITE(6,171,ERR = 170)
171 FORMAT(1H '0',13H END OF SEARCH')
RETURN
180 WRITE(6,181,ERR = 180)IPBLK1(1)
181 FORMAT(1H ERROR'/' IPBLK(1) = ',28)
RETURN
END
IPBLK1 INT4 VAR
RECORD INT4 VAR
I INT4 VAR
CHECK INT4 VAR
PTRADJ INT4 VAR
ANSWER INT2 VAR
100 LABEL
110 LABEL
@H EXT FUNC
120 LABEL
125 LABEL
SYSIO EXT FUNC
160 LABEL
130 LABEL
133 LABEL
135 LABEL
136 LABEL
138 LABEL
139 LABEL
140 LABEL
145 LABEL
149 LABEL
150 LABEL
ILBYTE EXT FUNC
170 LABEL
180 LABEL
171 LABEL
181 LABEL

0 ERRORS: FORTRAN V LEVEL 1 R04-00
SUBROUTINE DISPLAY(RECORD, DBCODE)

C
C THIS SUBROUTINE DISPLAYS A RECORD IN
C A 14 LINE FORMAT FOR VIEWING FROM A
C TERMINAL
C
INTEGER RECORD(93)
INTEGER*DDBCODE
100 WRITE(6,110,ERR = 100)(RECORD(I), I = 1, 24)
110 FORMAT(0/ ,18A4/ 2 ,8A4/ 3 ,8A4)
120 WRITE(6,130,ERR = 120)(RECORD(I), I = 25, 52)
130 FORMAT(,13A4/ 6 ,12A4)
140 WRITE(6,150,ERR = 140)(RECORD(I), I = 53, 65)
150 FORMAT(,13A4/ 8 ,5A4)
160 WRITE(6,170,ERR = 160)(RECORD(I), I = 66, 89)
170 FORMAT(,9 ,4A4/ 10 ,4A4/ 11 ,4A4/ 12 ,4A4/
180 $,13 ,4A4/ 14 ,4A4)
190 IF(DBCODE .EQ. 2)GO TO 900
200 WRITE(6,190,ERR = 180)(RECORD(I), I = 90, 93)
210 FORMAT(,15 ,4A4)
900 RETURN
END

DISPLY FUNC/SUB
.Q EXT FUNC
.P EXT FUNC
RECORD FORM PAR
DBCODE FORM PAR
100 LABEL
110 LABEL
@H EXT FUNC
I INT4 VAR
120 LABEL
130 LABEL
140 LABEL
150 LABEL
160 LABEL
170 LABEL
900 LABEL
180 LABEL
190 LABEL

0 ERRORS: FORTRAN V LEVEL 1 R04-80
SUBROUTINE KGSEX
C DESIGNED TO READ A CBT PUBLICATIONS DATABASE
C AND EXTRACT RECORDS BASED ON PARAMETERS INPUT
C FROM USER COMMAND DEVICE—-INPUTS MAY BE AUTHOR,
C OR 1 TO 6 KEYWORDS. SEARCH IS BY FIELD OR STRING
C THIS PROGRAM IS OVERLaid FROM PDBSUP
C WRITTEN BY LARRY KAETZEL — CBT — 02/21/79
C >>>>>>>>>>> LOGICAL UNIT ASSIGNMENTS <<<<<<<<<<<
C LU6 = COMMAND I/O DEVICE
C LU3 = DATABASE FILE
C LU7 = OPTIONAL PRINT FILE
C MODIFIED 06/29/80 — 14:29
C MODIFIED 06/30/80 — 12:51
C MODIFIED 07/01/80 — 08:30
C MODIFIED 07/10/80 — 16:56
C MODIFIED 07/31/80 — 15:00
C MODIFIED 08/01/80 — 10:26
C >>>>>>>>>>> RECORD FORMAT <<<<<<<<<<<
C AUTHOR 1 — 32 CHAR — POSITION 1-8
C AUTHOR 2 — 32 CHAR — POSITION 9-16
C AUTHOR 3 — 32 CHAR — POSITION 17-24
C PUBL DATE — 12 CHAR — POSITION 25-27
C TITLE — 100 CHAR — POSITION 28-52
C PUBL NAME — 32 CHAR — POSITION 53-60
C REFERENCE — 20 CHAR — POSITION 61-65
C KEY WORD 1 — 16 CHAR — POSITION 66-69
C KEY WORD 2 — 16 CHAR — POSITION 70-73
C KEY WORD 3 — 16 CHAR — POSITION 74-77
C KEY WORD 4 — 16 CHAR — POSITION 78-81
C KEY WORD 5 — 16 CHAR — POSITION 82-85
C KEY WORD 6 — 16 CHAR — POSITION 86-89
C DISCIPLINE — 16 CHAR — POSITION 90-93
C >>
C INTEGER IPBLK(5), RECORD(93), INAUTHCS), INKEY(6,4),
C — IDATE(3), ITIME(3), DBNAME(4), IKMAP(6),
C — KEY(25), ORGST(25)
C INTEGER JLU, INDEX2
C DATA DBNAME,'CAL:KGS
C IPAGE=0
C CALL DATE.IDATE)
C CALL TIME(ITIME)
C CALL OPENU(3, DBNAME, 0, 0, 0, ISTAT)
C IF (ISTAT.NE.0) GO TO 3010
C >>>>>>> GET INPUT CRITERIA <<<<<<<<
C 103 WRITE(6,9000,ERR=6000) IDATE(2), IDATE(3), IDATE(1),
C — ITIME
C WRITE(6,9001,ERR=6000)
C 120 READ(6,9002,ERR=6000) IPRT
C IF (IPRT.EQ.'YES ') GO TO 140
IF (IPRT.EQ."NO") GO TO 200
WRITE(6,9005,ERR=8000)
GO TO 120

140 CONTINUE
160 CALL OPENW(?,'PR2: ',4,0,0,ISTAT)
IF (ISTAT.NE.0) GO TO 8005
200 DO 205 I=1,8
INAUTH(I)="
205 CONTINUE
DO 210 J=1,4
INKEY(I,J)="
210 CONTINUE
DO 215 I=1,6
ORGST(I)="
215 CONTINUE
WRITE(6,9007,ERR=8000)
220 READ(6,9002,ERR=8000) IPAR
IF (IPAR.EQ."AUTH") GO TO 200
IF (IPAR.EQ."KEY") GO TO 250
WRITE(6,9005,ERR=8000)
GO TO 200

C ********* GET KEYWORD PARAMETERS *********
250 WRITE(6,9010,ERR=8000)
ISTYP='UNI'
DO 260 I=1,6
READ(6,9011,ERR=8000) (INKEY(I,J),J=1,4)
IF (INKEY(I,1).EQ.'20202020') GO TO 265
260 CONTINUE
265 IF (INKEY(2,1).EQ.'20202020') GO TO 300
WRITE(6,9035,ERR=8000)
270 READ(6,9036,ERR=8000) ISTYP
IF (ISTYP.EQ."UNI".OR.ISTYP.EQ."INT") GO TO 300
WRITE(6,9005,ERR=8000)
GO TO 270

C ********* GET AUTHOR PARAMETERS *********
280 WRITE(6,9008,ERR=8000)
READ(6,9009,ERR=8000) INAUTH
WRITE(6,9031,ERR=8004)
285 READ(6,9022,ERR=8004) ISRC
IF (ISRC.EQ."STRI".OR.ISRC.EQ."FIEL") GO TO 300
WRITE(6,9032,ERR=8004)
GO TO 285

C >>>>>>> START DATABASE SEARCH <<<<<<<<
300 IREC=0
IEXT=0
ICRT=1
IF (IPRT.EQ."YES") ILU=7
IF (IPRT.EQ."NO") ILU=6
310 IPAGE=IPAGE+1
IF (ILU.EQ.7) WRITE(6,9028,ERR=8004) IDATE(2),IDATE(3),IDATE(1)
WRITE(ILIU,9029,ERR=8004)
IF (INAUTH(I),NE.' ') WRITE(ILIU,9022,ERR=8004) INAUTH, IPAGE
IF (INKEY(1),NE.' ') WRITE(ILIU,9023,ERR=8004) (INKEY(1,J1),J1=1,4).
- (INKEY(2,J2),J2=1,4), (INKEY(3,J3),J3=1,4), IPAGE
IF (INKEY(1),NE.' ') WRITE(ILIU,9024,ERR=8004) (INKEY(4,J4), J4=1,4).
- (INKEY(5,J5),J5=1,4), (INKEY(6,J6), J6=1,4)
IF (INKEY(2,1),NE.'Y'20202020') WRITE(ILIU,9037) I$TYP
WRITE(ILIU,9029,ERR=8004)
IRNUM=0
340 CALL SYS10(IPBLK,Y'4D',3,RECORD,372,IREC)
IF (IPBLK(I),NE.Y'4D03000') GO TO 500
IREC=IREC+1
I0R=IREC
IF (RECORD(1).EQ.'DELE'.AND.RECORD(25).EQ.'DELE')
- GO TO 340
IF (INAUTH(I).EQ.'ALL ') GO TO 370
IF (INAUTH(I).EQ.' ') GO TO 400
C >>>>>> AUTHOR SEARCH <<<<<<<<<
IF (ISRC.EQ.'FIEL') GO TO 350
342 DO 360 I=1,8
ORGST(I)=RECORD(I)
CONTINUE
CALL STSRCH(ORGST,INAUTH,ISTAT)
IF (ISTAT.EQ.1) GO TO 370
IF (ISTAT.EQ.-2) GO TO 520
I1=9
DO 344 I=1,8
ORGST(I)=RECORD(I)
I1=I1+1
344 CONTINUE
CALL STSRCH(ORGST,INAUTH,ISTAT)
IF (ISTAT.EQ.1) GO TO 370
IF (ISTAT.EQ.-2) GO TO 520
I1=17
DO 346 I=1,8
ORGST(I)=RECORD(I)
I1=I1+1
346 CONTINUE
CALL STSRCH(ORGST,INAUTH,ISTAT)
IF (ISTAT.EQ.1) GO TO 370
IF (ISTAT.EQ.-2) GO TO 520
GO TO 340
350 DO 360 I=1,8
IF (INAUTH(I).NE.RECORD(I)) GO TO 340
360 CONTINUE
C >>>>>>> CRITERIA FOUND - WRITE IT OUT <<<<<<<<<
370 WRITE(ILIU,9014,ERR=8004) (RECORD(I),I=1,8), IOR
WRITE(ILIU,9015,ERR=8004) (RECORD(I),I=9,16)
WRITE(ILIU,9016,ERR=8004) (RECORD(I),I=17,24)
WRITE(ILU,9030,ERR=8004) (RECORD(K1),K1=90.93)
WRITE(ILU,9017,ERR=8004) (RECORD(I),I=25.27)
WRITE(ILU,9018,ERR=8004) (RECORD(I),I=28.40)
WRITE(ILU,9018,ERR=8004) (RECORD(I),I=41.52)
WRITE(ILU,9019,ERR=8004) (RECORD(I),I=53.60).
- (RECORD(II),II=61.65)
WRITE(ILU,9020,ERR=8004) (RECORD(K1),K1=66.69).
- (RECORD(K2),K2=70.73), (RECORD(K3),K3=74.77)
WRITE(ILU,9021,ERR=8004) (RECORD(K4),K4=78.81).
- (RECORD(K5),K5=82.85), (RECORD(K6),K6=86.89)
WRITE(ILU,9029,ERR=8004)
IF (ILU.EQ.7) GO TO 372
ICRT=ICRT+1
IF (ICRT.LT.3) GO TO 372
READ(6,9034,ERR=8004) IIDUM
ICRT=1
372 IEKT=IEKT+1
IRNUM=IRNUM+1
IF (IRNUM.GT.3) GO TO 310
GO TO 340
C
>>> KEY WORD SEARCH <<<<<<
400 DO 405 I=1,6
IKMAP(I)=0
405 CONTINUE
DO 410 I=1,25
ORGST(I)='Y'20202020'
SKEY(I)='Y'20202020'
410 CONTINUE
420 IKEY=1
430 DO 435 I=1,4
SKEY(I)=INKEY(IKEY,I)
435 CONTINUE
IKST=66
IKSP=69
438 J=1
DO 440 I=IKST,IKSP
ORGST(J)=RECORD(I)
J=J+1
440 CONTINUE
CALL STSRCH(ORGST,SKEY,ISTPT)
IF (ISTPT.EQ.1) IKMAP(IKEY)=1
445 IKST=IKST+4
IKSP=IKSP+4
IF (RECORD(IKST),EQ.'Y'20202020') GO TO 450
IF (IKSP.GT.89) GO TO 450
GO TO 438
450 IKEY=IKEY+1
IF (IKEY.GT.6) GO TO 462
IF (INKEY(IKEY,1).EQ.'Y'20202020') GO TO 462
GO TO 430
C
******* SETUP KEY WORD TITLE SEARCH ******
462 JJ=23
D-35
DO 463 KK=1,25
SKEY(KK)=′
ORGST(KK)=RECORD(JJ)
JJ=JJ+1
463 CONTINUE
J=1
465 DO 470 I=1,4
IF (J.GT.6) GO TO 480
IF (INKEY(J,1).EQ.′Y′.AND.ISTYP.EQ.′UNI′)
SKEY(I)=INKEY(J,1)
GO TO 475
IF (INKEY(J,1).EQ.′Y′.AND.ISTYP.EQ.′INT′)
GO TO 480
470 CONTINUE
CALL STSRCH(ORGST,SKEY,ISTP)
IF (ISTP.EQ.1.AND.ISTYP.EQ.′UNI′) IKMAP(J)=1
IF (ISTP.EQ.1.AND.ISTYP.EQ.′INT′) GO TO 370
J=J+1
GO TO 465
C ****** CHECK HIT - " OR " CONDITION ******
475 DO 478 I=1,6
IF (IKMAP(I).EQ.1) GO TO 370
478 CONTINUE
GO TO 340
C ****** CHECK HIT - " AND " CONDITION ******
480 IKCNT=0
IHIT=0
DO 495 I=1,6
IF (INKEY(I,1).NE.′Y′.AND.ISTYP.EQ.′INT′) IKCNT=IKCNT+1
495 CONTINUE
IF (IKCNT.EQ.0) GO TO 340
DO 498 I=1,6
IF (IKMAP(I).NE.0) IHIT=IHIT+1
498 CONTINUE
IF (IHIT.EQ.IKCNT) GO TO 370
GO TO 340
500 IF (IPBLK(I).NE.′Y′) GO TO 8015
50000 JLU = JLU + 1
IF(JLU .EQ. 8) GO TO 50008
IF(ISRC .EQ. ′STRD′) GO TO 50001
GO TO 58302
50001 WRITE(JLU,90261,ERR = 8000)
90261 FORMAT(′END OF STRING SEARCH ON′)
GO TO 50003
50002 WRITE(JLU,90262,ERR = 8000)
90262 FORMAT(′END OF FIELD SEARCH ON′)
50003 IF(IPAR .EQ. ′AUTH′) GO TO 50004
GO TO 50005
50004 WRITE(JLU,90263,ERR = 8000)INAUTH
90263 FORMAT(′ AUTH ′,A4)
GO TO 50007
50005 WRITE(JLU,90264,ERR = 8000)((INKEY(I,INDEX2)
$,INDEX2 = 1.4),I = 1.6)
90264 FORMAT(* KEYWORDS: '/4X,4A4,3X,4A4,3X,4A4/
$ 4X,4A4,3X,4A4,3X,4A4)
50007 WRITE(JLU,90265,ERR = 50007)IEXT
90265 FORMAT(*',14,' RECORDS WERE EXTRACTED')
IF(IPT .EQ. 'YES ')GO TO 50000
50008 IEXT=0
505 WRITE(6,90255,ERR=8000)
510 READ(6,9002,ERR=8000) IOPT
IF (IOPT.EQ.'YES ') GO TO 200
IF (IOPT.EQ.'NO ') GO TO 600
WRITE(6,9005,ERR=8000)
GO TO 510
520 WRITE(6,5033,ERR=5004)
GO TO 505
C >>>>>> TERMINATE PROCESS <<<<<<
600 CONTINUE
610 CALL CLOSE(7,ISTAT)
CALL CLOSE(3,ISTAT)
RETURN
C >>>>>> ERROR REPORTING <<<<<<
C >>>>>> COMMAND DEVICE ERROR <<<<<<
8000 WRITE(6,9003,ERR=610)
GO TO 610
C >>>>>> PRINT FILE ERROR <<<<<<
8004 ISTAT=-2
8005 WRITE(6,9004,ERR=8000) ISTAT
GO TO 610
C >>>>>> DATABASE FILE ERROR OPEN/FORMAT <<<<<<
8010 WRITE(6,9012,ERR=8000) ISTAT
GO TO 610
C >>>>>> DATABASE FILE READ ERROR <<<<<<
8015 WRITE(6,9013,ERR=8000) IREC,IPBLK(I)
GO TO 610
C >>>>>> I/O FORMATTING <<<<<<
9000 FORMAT(:H1/1X,'KGS PUBLICATIONS DATABASE'/1X,
- 'RECORD EXTRACT MODE ',5X,'/12,/'12,/'12,/'12,
- 3X,'/12,:'12,:'12,:'12/1X)
9001 FORMAT(:X,'OPTIONAL PRINTER OUTPUT? (YES OR NO)')
9002 FORMAT(A4)
9003 FORMAT(:X,'COMMAND DEVICE ERROR')
9004 FORMAT(:X,'ERROR ON PRINT FILE STATUS=',I3)
9005 FORMAT(:X,'ILLEGAL COMMAND...RE-ENTER')
9007 FORMAT(:X,'ENTER EXTRACT CRITERIA (AUTHOR OR KEY WORD)')
9008 FORMAT(:X,'ENTER AUTHOR NAME (LAST, FI M)')
9009 FORMAT(A4)
9010 FORMAT(:X,'ENTER KEY WORD/5'/1X,
- 'MAX 5 - 1 PER LINE - UP TO 16 CHAR EACH - "CR" TO STOP')
9011 FORMAT(A4)
9012 FORMAT(:X,'DATABASE FILE ERROR STATUS=',I3)

D-37
PAGE 7

9013 FORMAT(1X,'DATABASE READ ERROR AT REC ',I4,2X,
- 'STATUS=',Z8)
9014 FORMAT(1X,'AUTHOR: ',A4,
- 10X,'RECORD NO. ',I4)
9015 FORMAT(1X,'AUTHOR(2): ',8A4)
9016 FORMAT(1X,'AUTHOR(3): ',8A4)
9017 FORMAT(1X,'PUBLICATION DATE: ',3A4)
9018 FORMAT(1X,'TITLE: ',13A4)
9019 FORMAT(1X,'PUBLICATION NAME: ',8A4,2X,
- 'REFERENCE: ',5A4)
9020 FORMAT(1X,'- - KEY WORDS - - ',3(4A4,4X))
9021 FORMAT(20X3(4A4,4X))
9022 FORMAT(1X,'AUTHOR EXTRACTED WAS: ',1X,
- 8A4,1X,'PAGE ',I4)
9023 FORMAT(1X,'KEY WORD/S SELECTED WERE: ',
- 3(4A4,2X),5X,'PAGE ',I4)
9024 FORMAT(20X3(4A4,2X))
9025 FORMAT(1X,'CONTINUE?')
9028 FORMAT(1H1/20X,'K G S P U B L I C A T I O N S',IX,
- 'D A T A B A S E R E T R I E V A L ',8X,12,'/',I2,')',12)
9029 FORMAT(1X,'- ',1X,
- ' - ',1X,
- ' - ')
9030 FORMAT(1X,'FILE CODE: ',4A4)
9031 FORMAT(1X,'ENTER TYPE OF SEARCH..FIELD',1X,
- 'OR STRING')
9032 FORMAT(1X,'ILLEGAL SEARCH TYPE..RE-ENTER')
9033 FORMAT(1X,'ILLEGAL CHARACTERS IN STRING SEARCH')
9034 FORMAT(A1)
9035 FORMAT(1X,'ENTER "UNION" (OR) OR "INTERSECTION" (AND)
- 1X,'FOR SEARCH TYPE')
9036 FORMAT(A3)
9037 FORMAT(1X,'SEARCH CRITERIA USED: ',A4)
END

KGSEX FUNC.SUB
.Q EXT FUNC
.P EXT FUNC
IPBLK INT4 VAR
RECORD INT4 VAR
INAUTH INT4 VAR
INKEY INT4 VAR
IDATE INT4 VAR
ITIME INT4 VAR
DBNAME INT4 VAR
IKMAP INT4 VAR
SKEY INT4 VAR
ORGST INT4 VAR
JLU INT2 VAR
INDEX2 INT2 VAR
IPAGE INT4 VAR
DATE EXT FUNC

D-38
TIME EXT FUNC
OPENU EXT FUNC
ISTAT INT4 VAR
8010 LABEL
100 LABEL
9000 LABEL
8000 LABEL
OH EXT FUNC
9001 LABEL
120 LABEL
9002 LABEL
IPRT INT4 VAR
140 LABEL
200 LABEL
9005 LABEL
160 LABEL
8005 LABEL
205 LABEL
1 INT4 VAR
215 LABEL
210 LABEL
J INT4 VAR
212 LABEL
9007 LABEL
220 LABEL
IPAR INT4 VAR
280 LABEL
250 LABEL
9010 LABEL
ISTYP INT4 VAR
260 LABEL
9011 LABEL
265 LABEL
300 LABEL
9035 LABEL
270 LABEL
9036 LABEL
9038 LABEL
9009 LABEL
9031 LABEL
8004 LABEL
235 LABEL
ISRC INT4 VAR
9032 LABEL
IREC INT4 VAR
IEXT INT4 VAR
ICRT INT4 VAR
ILU INT4 VAR
310 LABEL
9028 LABEL
9029 LABEL
9022 LABEL
9023 LABEL
J1 INT4 VAR
J2 INT4 VAR
J3 INT4 VAR
9024 LABEL
J4 INT4 VAR
J5 INT4 VAR
J6 INT4 VAR
9037 LABEL
IRNUM INT4 VAR
340 LABEL
SYS10 EXT FUNC
500 LABEL
10P INT4 VAR
370 LABEL
480 LABEL
350 LABEL
342 LABEL
STRECH EXT FUNC
520 LABEL
II INT4 VAR
344 LABEL
346 LABEL
360 LABEL
9014 LABEL
9015 LABEL
9016 LABEL
9030 LABEL
K1 INT4 VAR
9017 LABEL
9018 LABEL
90181 LABEL
9019 LABEL
9020 LABEL
K2 INT4 VAR
K3 INT4 VAR
9021 LABEL
K4 INT4 VAR
K5 INT4 VAR
K6 INT4 VAR
372 LABEL
5034 LABEL
IIIDUM INT4 VAR
405 LABEL
410 LABEL
420 LABEL
IKEY INT4 VAR
430 LABEL
435 LABEL
IKST INT4 VAR
IKSP INT4 VAR
438 LABEL
0 ERRORS: FORTRAN V LEVEL 1 R04-00
SUBROUTINE STSRCH(ORGST, INST, ISTAT)
C C PROGRAM DESIGNED TO SEARCH AN ASCII C FIELD AGAINST AN INPUT FIELD TO C DETERMINE A MATCH CONDITION. C WRITTEN BY L. KAETZEL - CBT - 02/23/79
C >>>>>>> ARGUMENT DEFINITIONS <<<<<<<<<<<
C ORGST = ORGINAL STRING MAX 100 CHARACTERS
C INST = INPUT STRING MAX 100 CHARACTERS
C STAT = DISPOSITION OF PROCESSING
C 0=NO MATCH
C 1=MATCH
C -2=NON ASCII CHARACTERS IN STRING
INTEGER ORGST(25), INST(25)
INTEGER OSTAT, IRSOR, OSTAT, TCCT, BLNK
C >>>>>>> FIND NO. OF CHAR FOR SEARCH <<<<<<<<
NCHAR=-1
ITMP='llir
DO 30 I=1,25
DO 20 J=1,4
ISCON=32-(8*J)
ICHAR=ISHFT(INST(J),-ISCON)
ISTOR=' '
CALL ISBYTE(ICHAR, ISTOR, 0)
IF (ISTOR.EQ.' ' .AND. ITMP.EQ.' ')
- GO TO 40
NCHAR=NCHAR+1
ITMP=ISTOR
20 CONTINUE
30 CONTINUE
C >>>>>>> VALIDATE ASCII STRINGS <<<<<<<<
40 ICOUNT=0
NDIF=(NCHAR/4)+1
DO 100 I=1,25
DO 50 J=1,4
ISCON=32-(8*J)
ICHAR=ISHFT(ORGST(I),-ISCON)
ISTOR=' '
CALL ISBYTE(ICHAR, ISTOR, 0)
IF (ISTOR.GT.'25202020'.OR. ISTOR.LT.'25202020') GO TO 600
ICHAR=ISHFT(INST(I),-ISCON)
ISTOR=' '
CALL ISBYTE(ICHAR, ISTOR, 0)
IF (ISTOR.GT.'25202020'.OR. ISTOR.LT.'25202020') GO TO 600
ICOUNT=ICOUNT+1
IF (ICOUNT.EQ.NCHAR) GO TO 150
50 CONTINUE
100 CONTINUE
C >>>>>>> MASK IT <<<<<<<<
150 OSTAT=1
OSTAT=1
TCCT=1
II=1
I=1
ISTMP='AAAA'

200 ISC0N=32-(8*I)
 IOCHAR=ISHFT(ORGST(OSCT),-ISC0N)
 IOSTOR=)
 CALL ISBYTE(IOCHAR,IOSTOR,0)
 ISC0N=32-(8*I)
 IF (IOSTOR.EQ. ' .AND. ISTMP.EQ. ') GO TO 275
 ISTMP=IOSTOR
 IICHFT=ISHFT(INST(ISCT),-ISC0N)
 IISTOR=)
 CALL ISBYTE(IICHAR,IISTOR,0)
 IF (IISTOR.NE.IISTOR) GO TO 300

C >>>>>>> CHARACTER MATCH <<<<<<<<
 TCCT=TCCT+1
 IF (TCCT.GT.NCHAR) GO TO 500
 II=II+1
 215 I=I+1
 IF (II.LE.4.AND.I.LE.4) GO TO 200
 IF (II.LE.4) GO TO 250
 I=1
 ISCT=ISCT+1
 IF (ISCT.LE.25) GO TO 250
 ISTAT=1
 RETURN
250 IF (I.LE.4) GO TO 200
 I=1
 OSCT=OSCT+1
 IF (OSCT.LE.25) GO TO 200
275 ISTAT=0
 RETURN
C >>>>>>> CHARACTER NO-MATCH <<<<<<<<
300 ISCT=1
 II=1
 TCCT=1
 GO TO 215
500 ISTAT=1
 RETURN
600 ISTAT=-2
 RETURN
END

STSRCH FUNC/SUB
.Q EXT FUNC
.P EXT FUNC
ORGST FORM PAR
INST FORM PAR
ISTAT FORM PAR
OSTOR INT4 VAR
ISTOR INT4 VAR
OSCT INT4 VAR
TCCT INT4 VAR
BLNK INT4 VAR
NCHAR INT4 VAR
ITMP INT4 VAR
30 LABEL
I INT4 VAR
20 LABEL
J INT4 VAR
ISCON INT4 VAR
ICHAR INT4 VAR
ISHFT EXT FUNC
ISBYTE EXT FUNC
40 LABEL
ICOUNT INT4 VAR
NDIF INT4 VAR
100 LABEL
50 LABEL
600 LABEL
159 LABEL
ISCT INT4 VAR
II INT4 VAR
ISTMP INT4 VAR
200 LABEL
I0CHAR INT4 VAR
I0STOR INT4 VAR
275 LABEL
IICHAR INT4 VAR
II1STOR INT4 VAR
300 LABEL
500 LABEL
215 LABEL
250 LABEL

0 ERRORS: FORTRAN V LEVEL 1 R84-00
APPENDIX E: KGS EXTERNAL SUBROUTINES
<table>
<thead>
<tr>
<th>Subroutine</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSIO</td>
<td>Performs input/output</td>
</tr>
<tr>
<td>CFILW</td>
<td>Create mass storage files</td>
</tr>
<tr>
<td>DFILW</td>
<td>Deletes mass storage files</td>
</tr>
<tr>
<td>OPENW</td>
<td>Opens mass storage files or devices</td>
</tr>
<tr>
<td>CLOSE</td>
<td>Closes mass storage files or devices</td>
</tr>
<tr>
<td>IFETCH</td>
<td>Gets program overlay from disk</td>
</tr>
<tr>
<td>DATE</td>
<td>Gets system date</td>
</tr>
<tr>
<td>TIME</td>
<td>Gets system time</td>
</tr>
<tr>
<td>ISHFT</td>
<td>Shifts memory location left or right a specified number of bits</td>
</tr>
<tr>
<td>ILBYTE</td>
<td>Loads a specified byte</td>
</tr>
<tr>
<td>ISBYTE</td>
<td>Stores a specified byte</td>
</tr>
</tbody>
</table>
APPENDIX F: KGS ERROR DIAGNOSTICS
Data Base File Error, Status=YYYY
Error Opening Overlay For Mode XXXX, Status=YYYY
Error Fetching Overlay For Mode XXXX, Status=YYYY

Where XXXX= KGS run mode
YYYY= Return status from program library subroutine

<table>
<thead>
<tr>
<th>Status Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Illegal function, illegal file type</td>
</tr>
<tr>
<td>2</td>
<td>LU error, illegal logical unit</td>
</tr>
<tr>
<td>3</td>
<td>Volume error, no such volume</td>
</tr>
<tr>
<td>4</td>
<td>Name error, no such file name</td>
</tr>
<tr>
<td>5</td>
<td>Size error, no room on disk</td>
</tr>
<tr>
<td>6</td>
<td>Protect error, mismatch on protect keys</td>
</tr>
<tr>
<td>7</td>
<td>Privilege error</td>
</tr>
<tr>
<td>8</td>
<td>Buffer error, no room for file control block</td>
</tr>
<tr>
<td>9</td>
<td>Assignment error, logical unit already assigned</td>
</tr>
<tr>
<td>11</td>
<td>File descriptor syntax error</td>
</tr>
<tr>
<td>112-225</td>
<td>File input or output error</td>
</tr>
</tbody>
</table>
FEDERAL INFORMATION PROCESSING STANDARD SOFTWARE SUMMARY

<table>
<thead>
<tr>
<th>01. Summary date</th>
<th>02. Summary prepared by (Name and Phone)</th>
<th>03. Summary action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yr. Mo. Day</td>
<td>Lawrence Kaetzel 921-3229</td>
<td>New Replacement</td>
</tr>
<tr>
<td>7.11.12.6</td>
<td></td>
<td>Deletion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>04. Software data</th>
<th>05. Software title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yr. Mo. Day</td>
<td>KGS Data Base System</td>
</tr>
<tr>
<td>7.11.12.6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>06. Short title</th>
<th>07. Internal Software ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>KGS</td>
<td>PDB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>08. Software type</th>
<th>09. Processing mode</th>
<th>10. General Application area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automated Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>Interactive</td>
<td>Computer Systems</td>
</tr>
<tr>
<td></td>
<td>Batch</td>
<td>Support/Utility</td>
</tr>
<tr>
<td></td>
<td>Combination</td>
<td>Scientific/Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bibliographic/Textual</td>
</tr>
<tr>
<td>Computer Program</td>
<td></td>
<td>Management/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Business</td>
</tr>
<tr>
<td>Subroutine/Module</td>
<td></td>
<td>Process Control</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. General Application area</th>
<th>Specific</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scientific lab or office</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Submitting organization and address</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Bureau of Standards</td>
</tr>
<tr>
<td>National Engineering Laboratory</td>
</tr>
<tr>
<td>Center for Building Technology</td>
</tr>
<tr>
<td>Bldg. 226, Room B 266</td>
</tr>
<tr>
<td>Washington, D.C. 20234</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. Technical contact(s) and phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lawrence Kaetzel</td>
</tr>
<tr>
<td>Robert Glass</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Narrative</th>
</tr>
</thead>
<tbody>
<tr>
<td>The KGS data base system allows the indexing and retrieval of scientific papers through the use of a minicomputer system in an interactive mode. Criteria are entered through the user's terminal which produces subsets of the data base in a report format as well as statistical summaries of data base elements.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>data base, information retrieval, interactive processing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Computer manuf' r and model</th>
<th>16. Computer operating system</th>
<th>17. Programing language(s)</th>
<th>18. Number of source program statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perkin-Elmer 7/32</td>
<td>OS32MT4.3</td>
<td>FORTRAN</td>
<td>1,359</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,375 thousand bytes</td>
<td>3</td>
<td>7</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>23. Other operational requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Available</td>
<td>Available</td>
</tr>
<tr>
<td>Limited</td>
<td>Inadequate</td>
</tr>
<tr>
<td>In-house only</td>
<td>In-house only</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>26. FOR SUBMITTING ORGANIZATION USE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>185-101</th>
</tr>
</thead>
</table>

Standard Form 185
1974 July
U.S. Dept. of Commerce—NBS
(FIPS, Pub. 30)
Title and Subtitle

A Computer Data Base System for Indexing Research Papers

Author(s)

Lawrence J. Kaetzel, Robert A. Glass and George R. Smith

Performing Organization

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

Sponsoring Organization Name and Complete Address

Same as above.

Abstract

The KGS data base system allows the indexing and retrieval of scientific research papers through the use of a minicomputer system in an interactive mode. Criteria are entered through the user's computer terminal which produces subsets of the data base in a report format as well as statistical summaries of data base elements.

Key Words

Data base; information retrieval; interactive processing.

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau’s technical and scientific programs. As a special service to subscribers each issue contains complete citations to all recent Bureau publications in both NBS and non-NBS media. Issued six times a year. Annual subscription: domestic $13; foreign $16.25. Single copy, $3 domestic; $3.75 foreign.

NOTE: The Journal was formerly published in two sections: Section A “Physics and Chemistry” and Section B “Mathematical Sciences.”

DIMENSIONS/NBS—This monthly magazine is published to inform scientists, engineers, business and industry leaders, teachers, students, and consumers of the latest advances in science and technology, with primary emphasis on work at NBS. The magazine highlights and reviews such issues as energy research, fire protection, building technology, metric conversion, pollution abatement, health and safety, and consumer product performance. In addition, it reports the results of Bureau programs in measurement standards and techniques, properties of matter and materials, engineering standards and services, instrumentation, and automatic data processing. Annual subscription: domestic $11; foreign $13.75.

NONPERIODICALS

Monographs—Major contributions to the technical literature on various subjects related to the Bureau’s scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, compiled from the world’s literature and critically evaluated. Developed under a worldwide program coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).

NOTE: The principal publication outlet for the foregoing data is the Journal of Physical and Chemical Reference Data (JPCRD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements available from ACS, 1155 Sixteenth St., NW, Washington, DC 20036.

Building Science Series—Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today’s technological marketplace.

Order the following NBS publications—FIPS and NBSIR’s—from the National Technical Information Services, Springfield, VA 22161.

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Services, Springfield, VA 22161, in paper copy or microfiche form.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibliographies are issued periodically by the Bureau:

