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The Use of Aerial Infrared Thermography to Compare the
Thermal Resistances of Roofs

by

D. M. Burch

ABSTRACT

The paper investigates whether a comparative roof survey using aerial
infrared thermography can be used to rank the roofs of residential and
commercial buildings according to their thermal resistance. Mathemat-
ical models are presented for predicting the apparent radiance temper-
ature of these roof systems. These models are used to investigate
the differences in apparent radiance temperature between roofs having
various thermal resistances. These predicted differences are then
compared with predicted differences in apparent radiance temperature
caused by typical variations in roof emittance, local outdoor temper-
ature, and local wind speed throughout the macroclimate. The trans-
mission characteristics of the atmosphere are reviewed, and the
required dew-point spread for preventing dew or frost formation on
a roof is examined.

Key words: Aerial flyovers; aerial infrared thermography; energy
conservation; roof heat-loss survey.

ACKNOWLEDGMENT

The author gratefully acknowledges the contribution of John Bean,
who carried out the computer analysis for this study.

ili



Nomenclature

A * surface area
C » specific heat of air
e * surface emittance
E * emittance factor
F " radiation heat-transfer coefficient
h = convection heat-transfer coefficient
I = rate of air infiltration
M = emitted thermal radiation (exitance)
R =• thermal resistance
T = temperature
V = vo lume

^ = air penetration rate per unit ceiling area
W = wind speed

= field of view
p = density of air
a = Stefan-Boltzmann constant

Subscripts

a » apparent radiance property or attic property
c = ceiling property
e = attic end wall property
f = attic floor property
i = indoor property
o = outdoor environment
r = roof property
s

=" soffit (eaves) property
sky = calorimetric sky property
sky' = spectral sky property
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CONVERSION FACTORS TO METRIC (SI) UNITS

Physical
Quantity Symbol

To Convert
From To Multiply By

Length I ft m 3.05 X 10"^

Area A ft2 m2 9.29 X 10"2

Volume V ft3 b3 2.83 X 10~2

Temperature T Fahrenheit Celsius T(, = (Tp-32)/1.8

Temp. Dlff. AT Fahrenheit Kelvin K = (ATp)/1.8

Density P Ib/ft^ kg/m^ 1.602 X lO"*"^

Thermal
Transmlttance
(or Conductance) U,h Btu/h*ft^*°F W/m^'K 5.68

Thermal Resistance R h*ft^*°F/Btu m^'K/W 0.176

Heat Flux
(Thermal Radiation)

q/A Btu/h'ft^ W/m^ 3.15

Heat Flow q Btu/h W 2.93 X 10"^

Volumetric Flow
Rate V ft-^/min m^/s 4.72 X 10"^

Wind Speed w ft/min m/s 5.08 X 10"3

Specific Heat Cn Btu/lb'°F J/kg'K 4.19 X 10^
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THE USE OF AERIAL INFRARED THERMOGRAPHY
TO COMPARE THE THERMAL RESISTANCES OF ROOFS

D. M. Burch

1 . INTRODUCTION

Aerial infrared thermography is an imagery process utilizing an
infrared line scanner which produces an apparent radiance temperature
map of a portion of the terrain underneath an aircraft. Such a process
has been shown to be effective in locating regions on low-slope built-
up roofs that have defective insulation [1,2], These regions will
show up as "hot spots" in the radiance temperature map. A common
problem with built-up roofs is that the exterior membrane becomes
ruptured, permitting water to penetrate the roof system and wet
the insulation. Regions having wet insulation will conduct more
heat and will appear warmer than regions having dry insulation.
The merit of such a survey technique is that defective regions
can be located, permitting local repairs to be carried out instead
of replacing the whole roof system.

Aerial infrared thermography has also been used to compare the thermal
resistances of roofs included in an aerial infrared photograph [3-12].
Proponents of such comparative surveys assert that roofs which lose
more heat will be warmer and will therefore appear as having higher
apparent radiance temperatures. In an aerial infrared photograph,
such roofs are said to appear lighter in gray tone than roofs losing
less heat. It is normally recommended that aerial infrared surveys
not be carried out under an overcast-sky condition, in order to

avoid the problem of large variations in sky temperature affecting
the apparent radiance temperature. In addition, under a clear-sky
condition, radiation exchange with a cold night sky reduces roof

temperature below the ambient air temperature and thereby increases
roof heat loss. This process will cause the roofs to be displayed
in a greater range of gray tones, which increases the contrast in
the thermal image,

A controversial issue within the technical community is whether such
comparative roof surveys are actually successful in ranking roofs
according to their thermal resistance. An aerial infrared photograph
may include as much as a square mile of terrain, depending upon
the altitude of the flight. Considerable variation in local air
temperature and wind speed may exist throughout the macroclimate
of an aerial infrared photograph. In addition, roof emittance varies
from one roof to the next. Variations in local wind speed, local
outdoor temperature, and roof emittance may produce differences
in radiance temperatures of roofs which may mask out those differences
in radiance temperature due to roof resistance. This paper examines
this issue.



This paper also investigates the depression In surface temperature from
which the required dew-point spread for preventing the formation of dew
or frost on roofs can be determined. It is recommended that aerial
infrared surveys be conducted under outdoor conditions which preclude
dew or frost from occurring on roofs. The formation of dew or frost on
a roof may change its emittance, and the phase change which occurs
releases latent heat to the roof which increases its surface temperature.
Both of these effects may substantially change the apparent radiance
temperature of a roof.

2. CONCEPT OF AERIAL INFRARED THERMOGRAPHY

The basic concept of aerial infrared thermography is that all objects
emit thermal radiation according to the Stefan-Boltzmann equation:

M = e*a»T^ (1)

where M = emitted thermal energy (exitance),
a = Stefan-Boltzmann constant,
T = absolute temperature, and
e = surface emittance.

As the heat-loss rate through an exterior surface of a building
increases, the exterior surface temperature of that part of the build-
ing also increases. The emitted thermal energy as given by eq. (1)
will increase if the surface emittance remains constant.

In conducting an aerial infrared survey, an infrared line scanning
system mounted in an aircraft scans the terrain, building up a

thermal image as the aircraft progresses along a flight line, as

shown in figure 1. The scanner is basically an optical telescope,
with its narrow field of view continuously redirected by a spinning
flat mirror. The mirror causes the system to scan in a plane
perpendicular to the direction of flight of the aircraft. Such
systems have one or more cryogenically cooled thermal radiation
detectors in the focal plane of the telescope which convert the
focused thermal energy received by the detector into an electrical
signal. This electrical signal can be processed into a visual
image on a cathode-ray tube (CRT) which can be photographically
recorded or digitized and recorded on a magnetic tape recorder
for future processing.

Much of this description was taken from ref. [3]
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Figure 1. Schematic illustration of the use of a line scanner to
perform aerial infrared thermography [3].



An aerial infrared photograph of a large number of residential roofs
is shown in figure 2. Variations in gray tone from light to dark
correspond directly to variations in apparent radiance temperature.
Parts of the thermal picture appearing in lighter gray tones have
a higher apparent radiance temperature than other parts of the thermal
picture.

Infrared line-scanning systems usually have a sweep angle (6) , as

depicted in figure 1, which does not exceed 110 degrees, in order to
restrict distortion at the outer edges of the thermal picture [4]

,

Flights are most often conducted at altitudes between 1000 and 2000 ft.

The instantaneous field of view of the infrared line scanner varies
with the particular system but will generally range between 1 and 2.5
milliradians on a side.

Aerial infrared thermography is usually performed in the 8 to 14 jam

wavelength band because of the high atmospheric transmission over that
part of the infrared spectrum (see figure 3). Atmospheric transmit-
tance data presented in figure 4 show that the average atmospheric
transmittance at a distance of 1640 ft above ground level is 0.93 and
0.97 at outdoor relative humidities of 95 and 20%, respectively. In
addition, the same data show that increases in path length due to

increases in the view angle have a very small effect on the atmospheric
transmittance over this particular wavelength band.

The thermal radiation sensed from surfaces such as roofs by an infrared
line scanner includes both self-emitted thermal radiation and reflected
radiation from the sky. The apparent radiance temperature (T ) is

defined as the temperature of a perfectly black surface which would
radiate the same amount of thermal radiation as a real surface at a

temperature (T ) and having a surface emittance (e). An equation
relating the apparent radiance temperature of a surface to its actual
temperature has been derived by Goldstein [13] . For the convenience
of the reader, a derivation for the equation is given below.

For the 8-14 Mm wavelength band, the self-emitted energy from a per-
fectly black surface at the apparent radiance temperature (T ) is

equal to the self-emitted and reflected sky radiation from the actual
surface at a temperature (T ), or

n n.,..'.n .„.

2 Atmospheric transmittance is defined as the fraction of the flux of

infrared radiation which is not absorbed or scattered and is trans-
mitted through a layer of the atmosphere.
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Figure 2. An aerial infrared photograph of a large number of

residential roofs (this aerial infrared photograph
was provided by Texas Instruments of Dallas, Texas).
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Figure 3. Transmittance of the whole atmosphere as a function of
wavelength [5].
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Here the radla^jit energy from the sky is based on the spectral sky
temperature (T , ) instead of the calorimetric sky temperature
(T 1 ), since raaiant energy is being considered only over the
8-14 vim portion of the infrared spectrum.

The spectral sky temperature is lower than the calorimetric sky
temperature because the atmosphere is relatively transparent over
the 8-14 pm wavelength band. The exponent n is 5 instead of 4

because radiation is only being considered between 8-14 pm instead
of the whole infrared spectrum .

Solving eq. (2) for T^ gives:

Ta = Tg. [e + (l-e)-3^]l/^ (3)

Here 3 is the ratio of the spectral sky temperature (T , ) to the

surface temperature (T ). The accuracy of equation (3) was investi-

gated by numerically integrating the Planck distribution function
for the self-emitted and reflected components of the roof radiance.
Equation (3) was found to be accurate within a fraction of a degree
Fahrenheit over a representative range of surface temperatures and
sky temperatures. It should be pointed out that equation (3) does

not account for thermal reflections from nearby buildings.

3. LOW-SLOPE BUILT-UP ROOFS

3.1 MATHEMATICAL MODEL

For a low-slope built-up roof, the steady-state heat conduction through

the roof during the night is equal to the heat loss by convection to

the ambient outdoor air and the net radiation loss to the sky, or

(T.-Tg)/R = h. (Tg-T^) + F^. (Tg-T^i^y) , (4)

where

^i» '"s ' -^o' "^skv
~ temperatures of the indoor environment of the

building, the exterior surface of the roof,

the outdoor air, and the calorimetric sky,

respectively.

The spectral sky temperature (T 1^ ) is the equivalent black-body
temperature of the sky vault based on sky radiance between 8-14 um.

The calorimetric sky temperature (T
j^

) is the equivalent black-body

temperature of the sky vault based on sky radiance covering the

entire infrared spectrum,

8



h = convection heat-transfer coefficient,

R = thermal resistance of the roof (does not
include resistance of the air film at
the exterior surface), and

F = radiation heat-transfer coefficient.

The radiation heat-transfer coefficient (Fq) is given by the relation;

^o
= ^s-c-(Ts^+ T^^y^-^T^ +T^^^) (5)

where c = emittance of the exterior roof surface and
^s

a = Stefan-Boltzmann constant

Solving eq. (4) for the roof surface temperature (T ) yields

Ts =
Tj^/R + h«TQ + Fq»T

h + Fq + 1/R
^^ (6)

3.2 DESCRIPTION OF ROOF SYSTEM

The built-up roof system used for the analysis was comprised of the

following components: 3/8-inch built-up roof membrane; perlite
aggregate board; 4-inch concrete deck; and 1/2-inch gypsum plaster.
Several thicknesses of perlite aggregate board were considerd in the

analysis.

3.3 HEAT-TRANSFER PARAMETERS

Thermal resistance values for the components of the built-up roof

system were taken from refs. [15,16] and are summarized in Table 1.

In a recent survey of built-up roof systems [17], perlite insulation
was found to be the most common type of insulation. This same survey
reported the percentage of roofing systems having various insulation
thicknesses (see Table 2). For the analysis in this paper, insulation
thicknesses of 0, 2, and 4 inches were considered.

The overall thermal resistances for built-up roofs having these insula-
tion thicknesses were calculated using the series resistance method [16]

These values are summarized in Table 3.

3.4 OUTDOOR AND INDOOR PARAMETERS

The indoor temperature below the built-up roof system was taken to be

70°F. A search of the literature was made for emittance values of

exterior covering materials and materials which may deposit on built-

up roofs. These values are summarized in Table 4. From this table.
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Table 1. Thermal Resistance Values for the Components of

the Built-up Roof

Component Thermal Resistance
h»ft2.°F/Btu

3/8-inch Built-up Roof Membrane 0.33
Perlite Aggregate Board (per inch thickness) 2.63
4-inch Concrete Deck 0.32
1/2-inch Gypsum Plaster 0.09
Interior Still Air Film 0.61

Obtained from refs. [15,16].

Table 2. Survey of Insulation Thicknesses of Built-up Roof
Systems

Percentage of

Roof Systems Surveyed
Insulation Thickness,

Inch

26

21

41

12

5/16 -1

1 1/16 -2

more than 2

Obtained from ref. [17].

Table 3. Total Thermal Resistance Values for Built-up Roof

Systems

Insulation Thickness,
Inches

Total Thermal Resistance
h*ft^»°F/Btu

1.4

6.6
11.9

Includes thermal resistances of the air films.

10



Table 4. Emittances for Various Exterior Covering Materials
and Materials which May Deposit on Built-up Roofs

Material Emittance

Aluminum Roofing 0.22
Bituminized Roofing Felt 0.91
Concrete, rough 0.94
Frost, rime 0.99

Ice, smooth 0.91
Soot 0.95
Water 0.97

Asphalt 0.93-0.96
Dolomite Gravel, 0.;5-cm rocks 0.96
Snow 0.82

Reference

18

14

19

14

14

20
14

5

27

21

Table 5. Calorimetric and Spectral Sky

Temperatures Used for the Analysis

Calorimetric Spectral
Outdoor Sky Sky

Temperature Temperature Temperature
°F °F °F

-54 -121

10 -40 -102

20 -27 - 83

30 -13 - 65

40 - 47

11



it is seen that the emittances of most exterior covering materials
vary over a range of 0.91 to 0.96, except for metallic roof surfaces
such as aluminum roofing. It is noted that the accumulation of ice,
soot, water, or frost can change the roof emittance. Roof emittance
will usually have a weak dependence on the view angle, except for view
angles exceeding 60° from the normal [5]. For the thermal analysis,
the roof emittance was assumed to be 0.90, unless otherwised specified.
Calorimetric and spectral sky temperatures for a clear winter sky
which were used for the analysis are given in Table 5. The calori-
metric sky temperatures are based on measured data of Swinbank [22],
and the spectral sky temperatures were obtained from Goldstein [25].

The convection heat-transfer coefficient (h) was calculated using the
following relation:

h = 0.5 + 0.38*W. (7)

Here W is the wind speed in miles per hour. This equation is based
on data for a concrete surface [24] with the radiation portion of the

overall heat-transfer coefficient subtracted. Equation (7) applies
to a roof that has no obstructions to the flow of air.

3.5 RESULTS MP ANALYSIS

3.5.1 Effect of Thermal Resistance

The mathematical model described in the previous sections was used to

predict the difference in apparent radiance temperature between built-
up roofs having and 2 inches of perlite insulation under a wide
range of outdoor conditions. The results of this analysis are given
in figure 5. Under low wind conditions (wind speeds less than 5 mph)

,

the radiance temperature differences between built-up roofs having
and 2 inches of insulation are substantially greater than at higher
wind speeds. Mean winter wind speeds for the United States are well
above 5 mph [23]. It is likely that most aerial infrared surveys
would be performed under conditions for which the surface wind speeds
would be greater than 5 mph. Under such conditions, the maximum
radiance temperature difference between built-up roofs having and 2

inches of insulation would be 12°F. For an outdoor ambient temperature
of 20°F and a 10-mph wind speed, the radiance temperature difference
between these roofs would be 5°F, which perhaps could be considered
a representative value.

Predicted differences in apparent radiance temperature between the

exterior surfaces of built-up roofs having 2 and 4 inches of insula-
tion are given in figure 6. These temperature differences are seen

to be considerably less than those between roofs having and 2 inches
of insulation. For wind speeds in excess of 5 mph, the difference in

apparent radiance temperature is seen to be less than 2°F.

12
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Figure 5. Predicted differences in apparent radiance temperature
between, the exterior surfaces of built-up roofing systems
having and 2 inches of insulation as a function of wind
speed for various outdoor temperatures.
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Figure 6. Predicted differences in apparent radiance temperature between
the exterior surfaces of built-up roofing systems having 2 and
4 inches of insulation as a function of wind speed for various
outdoor temperatures.
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3.5.2 Effect of Other Parameters

In this section, the mathematical model is used to compare differences
in radiance temperature between roofs having different thermal resis-
tances to differences in radiance temperatures resulting from variations
in roof emittance, local outdoor temperature, and local wind speed.
For this analysis, the outdoor temperature of the macroclimate is taken
to be 20°F.

The difference in radiance temperature between two roofs, one having no
insulation and the other having 2 inches of insulation, is given in

curve a of figure 7. The emittance of these two roofs was taken to be
0.9. Similarly, the radiance temperature difference between two roofs,
one having 2 and the other having 4 inches of insulation, is given in

curve b of figure 7.

Differences in radiance temperature due to variations in roof emit-
tance, local outdoor temperature, and local wind speed for a roof with
2 inches of insulation are also plotted in figure 7. Curve c gives
the difference in radiance temperature between two roofs, one having
an emittance of 0.9 and the other having an emittance of 1.0. Such an

emittance range is consistent with the range in emittances of common
roofing materials given in Table 4. Curve d gives the difference in

radiance temperature between two roofs, one exposed to a local outdoor
temperature of 20°F and the other exposed to a local outdoor tempera-
ture of 25°F. It was believed that a 5°F variation in the local out-
door temperature throughout a macroclimate would be representative of

actual conditions. And finally, curve e gives the difference in

radiance temperature between two roofs, one exposed to a particular
wind speed and the other exposed to a fifty percent reduced wind speed.
Variations in terrain elevation (such as hills and high-rise buildings)
will shelter certain roofs from the wind. It was assumed for this

analysis that such sheltered roofs would be exposed to winds having
one half the wind speed of unsheltered roofs. Similar results were
obtained for roofs having different insulation thicknesses.

From this analysis, it can be seen that variations in roof emittance,
local wind speed, and local outdoor temperature produce differences
in radiance temperature which mask out those differences in radiance
temperature between roofs having 2 and 4 inches of insulation.
Therefore, it will often be difficult to distinguish a roof with
2 inches of insulation from one having 4 inches of insulation. On the
other hand, the differences in radiance temperature between roofs
having and 2 inches of insulation are larger than those differences
in radiance temperature due to variations in other parameters when the
wind speed is less than 7.5 mph. Therefore, there is a good chance of

distinguishing a roof having inches of insulation from one having
2 inches of insulation, particularly if the wind speed is less than
7.5 mph

.

15
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Figure 7. A comparison of the effect of emittance, thermal resistance,
local wind speed and local outdoor temperature on the

apparent radiance temperature of a built-up roof having
2 inches of insulation.
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3.5.3 Dew-Polnt Spread

The mathematical model was also used to investigate the depression in
surface temperature for a built-up roof due to radiation exchange with
a clear night sky (see figure 8). For the analysis, the built-up roof
having 4 inches of insulation was used, since the depression in surface
temperature would be greater for this roof than for roofs having lesser
insulation. Dew or frost would form on this roof before it would form
on roofs having less thermal insulation. A criterion for precluding
the formation of dew or frost would be that the dew-point spread
(difference between the dry- bulb and dew-point temperatures) of the
outdoor air should be larger than the depression in surface temperature.

To illustrate the use of figure 8, consider the following example: An
aerial infrared survey is carried out at an outdoor temperature of 20°F
and a relative humidity of 75%. The dew-point temperature correspond-
ing to this psychrometric condition is 14°F, giving a dew-point spread
of 6°F. From figure 8, the depression in surface temperature for wind
speeds less than 7 mph is greater than 6°F. Therefore, if this aerial
infrared survey is to be performed without dew or frost formation on
a built-up roof, then the local outdoor wind speed should be greater
than 7 mph.

Under still-air conditions, the radiation exchange between a roof and

a cold night sky can reduce the surface temperature as much as 19°

F

below the ambient air (see figure 8). This figure agrees with measured
data of Cullen [28] which show as much as a 20°F depression in the

surface temperature of a roof due to radiation exchange with a cold
night sky. As the wind speed across a roof increases, the roof tem-
perature approaches the outdoor air temperature and the likelihood of

dew or frost formation is reduced substantially.

4. PITCHED VENTILATED ROOFS

4.1 MATHEMATICAL MODEL

A mathematical model for predicting the exterior surface temperature

of a pitched ventilated roof is presented herein. Using the attic
space as a control volume for a steady-state heat balance, the rates

of heat gain into the attic space by way of convection from the attic
floor and air penetration through the attic floor are equal to the
rates of heat loss by convection to the roof, heat conduction through
the soffit region and attic end walls, and the rate of heat loss due

to the exchange of attic air with outdoor air, or:

A^-hf-(Tf-T^) + V-A^-C -p-d.-T^) = VV^V^r) +

17
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Figure 8. Depression in surface temperature on a built-up roof having
4 inches of insulation as a function of wind speed.
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where T. , T , T^:, T = temperatures of the indoor air, attic space
air, surface of attic floor, and underside
of the roof, respectively,

A , A^, A , and A = surface areas of the ceiling, roof, soffit
(eaves) region, and attic end walls,
respectively,

I = attic ventilation rate,

p = density of air,

C = specific heat of air,

V = volume of the attic space,

V = rate of air penetration per unit ceiling
area, and

h^,h = convection heat-transer coefficients for
the attic floor and underside of the roof.

Performing a heat balance on a unit area of attic floor, the rate of

heat conduction through the attic floor is equal to the convective
heat loss and the net radiation exchange between the attic floor and
the underside of the roof, or:

(T.-T^)/R^ = hf-(Tf-T^) + F^-(Tf-T^), (9)

where R = thermal resistance of the attic floor (ceilng) and

F„ = radiation heat-transfer coefficient between the atticd
floor and the underside of the roof.

The other symbols are as previously defined. The thermal resistance
of the attic floor (ceiling) (R„) does not include the air film
resistance at the attic floor. The radiation heat-transfer coefficient
(F„) is defined by the relation:

a.

2 2
F^ = E'a«(Tf + T^)*(Tf + T^)

, (10)

where E = emittance factor (see eq. 18) and

a = Stef an-Boltzmann constant.

Performing a similar heat balance on a unit area of the underside of

the roof, the rate of heat conduction through the roof is equal to

the convective heat gain from the attic air and the net radiation
exchange from the attic floor to the underside of the roof, or
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where T = temperature of the exterior surface of the roof and

R = thermal resistance of the roof.

The thermal resistance (R^) does not include the air-film resistances
at the exterior and interior surfaces of the roof. The radiation
heat-transfer coefficient is defined by equation (10).

At the exterior surface of the roof, the rate of heat conduction
through the roof is equal to the rate of convection heat loss
to the ambient air and the radiation heat-loss rate to the sky,
or:

(Tr - Ts)/R^ = h^.CTg - T^) + F^-CT^ - T^j^y), (12)

where h = convection heat-transfer coefficient at the exterior
surface,

F = radiation heat-transfer coefficient between the roof and
sky,

T ,T , = temperatures of the outdoor air and the sky, respectively.

Equations (8), (9), (11), and (12) can be rearranged respectively
as follows:

A , A V
-^ . 1 + _§.

^^ R ACSC(h + VC-p +^ -h +-^ .1 +-^ -R +1 .p.c • -^).T^ P AirARA e a'^pA^a

-^f-'f -/'^ •^r=V.S.,.T,^(^i-H-l,.,.Cp4i^^4^).T, ^,3)

-F^.T^ + (1/R^ + hf + F^).Tf - hf .T^ = T./R^

(1/R, + h^ + F^).T^ - F^.Tf - h^.T^ - l^/R^ =

• ^.Tr + Ts.(l_ + h^ + FJ = h^.T^ + F^ .Ts^y •
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These four linear algebraic equations for T^ , T , T , and T can be

solved simultaneously. An iterative procedure is required, however,
in order to converge to values for F and F .

4.2 DESCRIPTION OF ROOF SYSTEM

A schematic drawing of the attic model is given in figure 9. Using
this attic model, the surface areas of the ceiling (A ), the soffit
(eaves) region (A ), the attic end walls (A ), and the roof (A^) were
determined and the following dimensionless ratios of physical para-
meters were defined:

A^/A = 1.16; \/\ " 0.187; and
Ag/A^ = 0.0667; V^/A^ = 3.73.

The mathematical model developed in the previous section was expressed
in terms of dimensionless ratios with the idea that such ratios would
vary much less than the physical parameters themselves from one attic
to the next. The construction details of various components comprising
the attic model were selected as follows: the roof consisted of shingles
and roofing paper laid on top of 1/2-inch plywood sheathing which
was nailed to nominal 2 x 6-inch rafters placed 16 inches on center;
the soffit region consisted of 1/2-inch plywood sheathing; the attic
end walls were comprised of wood-bevel siding attached to 1/2-inch
insulating sheathing, which was nailed to nominal 2 x 4-inch studs

placed 16 inches on center; and the ceiling consisted of 1/2-inch
gypsum board attached to nominal 2 x 6-inch joists placed 16 inches
on center. Various amounts of ceiling insulation were considered
(see Table 6)

.

Table 6. Thermal Resistances of the Components
of the Attic

Component Thermal Resistance
h»ft^«°F/Btu

Roof 1.50
Soffit (eaves) region 1.83
Attic End Wall 3.57
Ceiling

° No Insulation 1.19
° R-11 Insulation 11.3
° R-30 Insulation 28.7

4.3 HEAT-TRANSFER PARAMETERS

The thermal resistances of the various components of the attic space
were calculated using the series resistance method as outlined in
ref. [16]. For these calculations, wood structural members were
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Figure 9. Schematic drawing of roof system.
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treated as parallel heat-flow paths. Thermal resistance values for the
various components were taken from ref. [16]. Thermal resistance values
for the various components of the attic are summarized in Table 6.

The thermal resistance values for the soffit (eaves) region and attic
end walls include the thermal resistances of the air films at the
exterior and interior surfaces. The value for the roof does not include
the air film, while the attic floor (ceiling) values include the
air film at the interior surface (living-space side). The convection
heat-transfer coefficient (h) at the underside of the roof and floor
were assumed to be governed by the relation:

h = 0.2*(AT)^-^^. (17)

Here AT is the surface-to-air temperature difference. This relation
is applicable to natural convection heat-transfer with heat flow in
an upward direction. The emittance factor (E) was calculated using
the relation:

E =

^f ^r

(18)

where e^ and e are the emittances of the attic floor and the under-
side of the roof. Taking the emittance values to be 0.9, the emittance
factor (E) is found to be 0.82.

The attic was assumed to have a natural ventilation rate of 2 volume
changes per hour, unless specified otherwise. The rate of convective
air penetration through the ceiling was taken to be 0.025 ft /min per
square foot of ceiling. This figure is based on a house overall air
infiltration rate of 0.75 volume changes per hour. It was assumed
that 25% of the house exfiltration occurred through cracks in the
ceiling construction.

The most common exterior surface covering for the roofs of residences
is asphalt shingles. Emittance values for asphalt shingles could not

be found in the literature. It was estimated that the surface emit-

tance of asphalt shingles would probably be between 0.85 and 0.95 [26].
Variations would be due to differences in such factors as surface
roughness, density and type of top covering material, dust and soot

deposits, moisture absorption, etc. For this analysis, the emittance
of the shingles of the roof was taken to be 0.90, unless specified
otherwise.

4.4 OUTDOOR AND INDOOR PARAMETERS

The outdoor and indoor parameters used for the analysis were the same

as those used for the built-up roof analysis given in section 3.4.
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4.5 RESULTS AND ANALYSIS

As in the case of the previous section, the mathematical model was used
to predict differences in radiance temperature between ventilated
pitched roofs having R-0 and R-11 ceiling insulation (see figure 10)

and ventilated pitched roofs having R-11 and R-30 ceiling insulation
(see figure 11). These differences in radiance temperature are seen
to be approximately a factor of 3 smaller than corresponding differences
in radiance temperature between built-up roofs having various insulation
thickness (see figures 5 and 6). This is due to the decoupling of the
roof from the attic floor by the ventilated attic space.

As in the case of the previous section on built-up roofs, the mathe-
matical model was used to compare the differences in radiance temper-
ature caused by variations in roof emittance, local wind speed, and
local outdoor temperature to those differences due to variations in
ceiling thermal resistance. For this analysis, the range in emittance
was taken to be 0.85 to 0.95, sheltered roofs were assumed to be

exposed to fifty percent lower wind speeds, and some regions within
the macroclimate were assumed to have a local outdoor ambient tempera-
ture of 5°F higher than other regions. In addition, the effect of

changing the attic ventilation rate from 2 to 4 volume changes per
hour was investigated. The outdoor temperature was taken to be 20°F.

The results of this analysis are presented graphically in figure 12.

The effect of variations in roof emittance (curve c), local wind speed
(curve e), and local outdoor temperature (curve d) on the radiance
temperature are seen to be approximately the same magnitude as for the
case of the built-up roof (see figure 7). However, the differences in
radiance temperature between ventilated pitched roofs having R-0 and
R-11 ceiling insulation (curve a) and those having R-11 and R-30
ceiling insulation (curve b) are seen to be usually smaller than
those differences in radiance temperature caused by variations in
roof emittance (curve c). This means that the effect of an emittance
range from 0.85 to 0.95 makes it difficult, if not impossible, to dis-
tinguish insulation levels in pitched ventilated roofs. For wind
speeds in excess of 4 mph, variations in local wind speed (curve e)
and local outdoor temperature (curve d) throughout the macroclimate
produce differences in radiance temperature which mask out those dif-
ferences in radiance temperature due to ceiling thermal resistance.
It is interesting to note that varying the attic ventilation rate from

2 to 4 volume changes per hour (curve f) has an insignificant effect
on the radiance temperature of the roof. This is because the radiation
exchange between the attic floor and the underside of the roof is

large in comparison with that from convective heat-transfer processes.

The mathematical model was also used to predict the depression in sur-
face temperature for a ventilated pitched roof having R-30 ceiling
insulation (see figure 13). Comparing figure 8 to figure 13, it is

seen that the depression in surface temperature is slightly greater for
the ventilated pitched roof than for the built-up roof.
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Figure 10. Predicted differences in apparent radiance temperatures

between the exterior surfaces of ventilated pitchea roofs

having R-0 and R-11 ceiling insulation as a function of

wind speed for various outdoor temperatures,
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Figure 11. Predicted differences in apparent radiance temperatures
between the exterior surfaces of ventilated pitched roofs
having R-11 and R-30 ceiling insulation as a function
of wind speed for various outdoor temperatures.
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Figure 12. A comparison of the effect of emittance, thermal
resistance, local wind speed, and local outdoor
temperature on the apparent radiance temperature
of a pitched ventilated roof.
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Figure 13. The depression in surface temperature for a pitched venti-

lated roof having R-30 ceiling insulation as a function of

wind speed.
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5. SmiMARY AND CONCLUSIONS

When aerial Infrared surveys of pitched ventilated roofs are carried
out under optimum and preferred clear-sky conditions, variations in
roof emittance and variations in local wind speed and local outdoor
temperature throughout the macroclimate were shown to cause differences
in apparent radiance temperature which mask out those differences in
radiance temperature due to variations in ceiling thermal resistance.
In other words, gray tone differences between pitched ventilated roofs
observed in an aerial infrared photograph were found more likely to be

due to variations in roof emittance and variation in local wind speed
and local outdoor temperature thoughout the macroclimate than due to
variations in ceiling thermal resistance.

In the case of low-slope built-up roofs, variations in roof resistance
cause differences in apparent radiance temperature among the roofs
displayed in an aerial infrared photograph which are approximately a

factor of three greater than those for pitched ventilated roofs.
Variations in roof emittance and variations in local wind speed and
local outdoor temperature throughout the macroclimate produced differ-
ences in radiance temperature which were larger than those between
built-up roofs having 2 and 4 inches of insulation, but smaller than
those between built-up roofs having and 2 inches of insulation.
Therefore, there is a good chance that built-up roofs which have little
or no roof insulation will be displayed in a lighter gray tone than
more insulated built-up roofs included in an aerial infrared photograph.
However, if all the built-up roofs displayed in an aerial infrared photo-

graph are well insulated, then variations in other parameters such as

roof emittance, local wind speed, and local outdoor temperature may also
cause particular roofs to appear warmer than other roofs, which may be

incorrectly interpreted as the absence of roof insulation.

The optimum condition for carrying out an aerial infrared survey is a

low-wind condition. As the wind speed decreases, differences in radi-
ance temperature due to variations in roof resistance become larger.

Under such a condition, differences in radiance temperature caused by

variation in roof emittance, local wind speed, and local outdoor tem-
perature are less likely to mask out those differences due to roof
resistance. However, the depression in surface temperature and cor-
responding required dew-point spread under such a condition becomes
large. For instance, the required dew-point spread was shown to

vary between 20 and 8°F for wind speeds ranging from and 5 mph.
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