NBS TECHNICAL NOTE 1098
U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards

Linear Gain - Standard Antennas Below 1000 MHz

R.G. FitzGerrell

[^0]he National Bureau of Standards ${ }^{1}$ was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Institute for Materials Science and Engineering.

The National Measurement Laboratory

Provides the national system of physical and chemical measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; provides advisory and research services to other Government agencies; conducts physical and chemical research; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers:

- Basic Standards ${ }^{2}$
- Radiation Research
- Chemical Physics
- Analytical Chemistry

The National Engineering Laboratory

Provides technology and technical services to the public and private sectors to address national needs and to solve national problems; conducts research in engineering and applied science in support of these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers:

- Applied Mathematics
- Electronics and Electrical Engineering ${ }^{2}$
- Manufacturing Engineering
- Building Technology
- Fire Research
- Chemical Engineering ${ }^{2}$

The Institute for Computer Sciences and Technology

Conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following centers:

- Programming Science and Technology
- Computer Systems

Engineering

The Institute for Materials Science and Engineering

Abstract

Conducts research and provides measurements, data, standards, reference materials, quantitative understanding and other technical information fundamental to the processing, structure, properties and performance of materials; addresses the scientific basis for new advanced materials technologies; plans research around cross-country scientific themes such as nondestructive evaluation and phase diagram development; oversees Bureau-wide technical programs in nuclear reactor radiation research and nondestructive evaluation; and broadly disseminates generic technical information resulting from its programs. The Institute consists of the following Divisions: - Inorganic Materials - Fracture and Deformation ${ }^{3}$ - Polymers - Metallurgy - Reactor Radiation

Linear Gain - Standard Antennas Below 1000 MHz

R.G. FitzGerrell

Electromagnetic Fields Division
Center for Electronics and Electrical Engineering
National Engineering Laboratory
National Bureau of Standards
Boulder, Colorado 80303

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

National Bureau of Standards Technical Note 1098 Natl. Bur. Stand. (U.S.), Tech Note 1098, 44 pages (May 1986) CODEN:NBTNAE
U.S. GOVERNMENT PRINTING OFFICE

WASHINGTON: 1986

Contents

Page

1. Introduction 1
2. Definitions and Equations 3
3. Gain-Standard Antennas 7
4. Examples of Gain-Standard Antenna Calculations 11
5. Conclusions. 27
6. References 28
Appendix -- Listing of Program HVD6. 29

LINEAR GAIN-STANDARD ANTENNAS BELOW 1000 MHz

R.G. FitzGerrell
Electromagnetic Fields Division
National Engineering Laboratory
National Bureau of Standards Boulder, Colorado 80303

Gain and antenna parameters related to input impedance are calculated using a computer program named HVD6. This program uses well documented equations to compute these parameters for gainstandard antennas used in relative-gain or gain-transfer measurements at frequencies below 1000 MHz . The utility of this program is that it calculates gain patterns and input impedances for linear dipoles above perfect or imperfectly conducting plane ground and in free space, and for monopoles on perfectly conducting plane ground. Examples are included to illustrate the use of the program. Uncertainties in the calculated parameters are estimated to be less than those of the measured parameters.

Key words: antenna gain; dipole antennas; gain standards; monopole antennas.

1. Introduction

"The power gain of an antenna, in a specified direction, is 4π times the ratio of the power radiated per unit solid angle in that direction to the net power accepted by the antenna from its generator. This quantity is an inherent property of the antenna and does not involve system losses arising from a mismatch of impedance or polarization.
"Antennas which are to be used for gain standards should have the following characteristics:
(1) The gain of the antenna shall be accurately known.
(2) The antenna shall have a high degree of dimensional stability.
(3) The antenna's polarization should be linear or, for some applications, circular....
"Although any antenna meeting these criteria may be used as a gain standard, the two universally accepted antenna types are the dipole and the pyramidal horn. The gains of these antennas can be fairly accurately calculated, and because of their mechanical simplicity they can be manufactured with a high degree of reproducibility." [1]

The purpose of this document is to present an interactive computer program, listed in the Appendix, for calculating power gain (the term gain will be used henceforth) of dipoles used as gain standards over perfect or imperfectly conducting plane ground, and in free space, and of monopoles used on perfectly conducting plane ground. In addition to gain versus
elevation angle, the computer program lists the following antenna parameters:
(1) Input impedance
(2) Mutual impedance between the dipole and its image in ground
(3) Antenna factor
(4) Antenna VSWR
(5) Mismatch loss

The equations used to calculate gain and various antenna parameters are located in Section 2. As discussed in [2], monopoles should be considered for use as gain standards only on electrically large, highly conducting ground screens.

These standard antennas are used in gain-transfer measurements to determine the gain of test antennas [1]. Below 1000 MHz , these measurements are frequently performed outdoors because of the size of the antennas or the expense of anechoic chambers large enough to simulate a free-space environment at these frequencies. Measurements are also made outdoors because the test antennas may be outdoors and, as an added complication, may be within a few wavelengths of the ground. As a result, gain of the standard antenna must be calculated taking the effect of ground into account.

The electrical properties of the ground must be known to calculate the gain of dipoles over imperfect ground. These properties may be estimated by measuring soil samples and assuming the entire test site is uniform plane ground exhibiting these properties. The curvature of the earth and the effects of ground-wave propagation are neglected in these gain calculations. It is often very difficult to measure the gain of standard antennas below 1000 MHz , therefore the calculated gain must be assumed to be correct in many gain measurement situations.

Actual antennas having calculable gains are described in Section 3. Recent measurements of insertion loss between pairs of these antennas in the $30-\mathrm{MHz}$ to $1000-\mathrm{MHz}$ frequency range have been made using the NBS ground screen [3]. Comparisons of measured and calculated data imply that the
calculated gain, at or near the maximum, may have uncertainties on the order of 0.4 dB or less. This does not mean that the entire gain pattern of a standard antenna will have this small an uncertainty.

Section 4 is a compilation of examples of the use of the computer program. Most of the examples are for radiating elements with a half-length of a quarter wavelength or less, which is typical of most gain-standard antennas. The term half-length is used for the length of a single radiating element. It is the distance from the dipole feedpoint to the end of one radiating element, or the distance from the monopole feedpoint to the end of its radiating element. Validity of the equations used in the computer program is restricted to half-lengths less than one-half wavelength.

2. Definitions and Equations

All equations in this document are generally considered to be good engineering approximations. They are presented in a format incorporating the variable names and library functions used in the computer code while at the same time retaining the conventional form of the equations as they appear in the referenced material. The purpose of this somewhat mixed format is to enable the reader to easily recognize the lines of code embodying the equations from the references.

The radiating elements of the gain-standard antennas have a halflength, L, a circular cross section, may have a linear taper, have no internal losses, and no shunt admittance in the input region. The principal quantity required for calculating most antenna performance parameters is input impedance, ZR. It is obtained by calculating the intrinsic impedance, $Z I$, and adding the mutual impedance between the antenna and its image in ground if the antenna is located over ground. The intrinsic impedance is the input impedance of a dipole in free space or a monopole on a perfectly conducting ground plane. The mutual impedance between a dipole and its image in ground, ZMB, is obtained by calculating ZML, the mutual impedance between two free-space dipoles in echelon [4], one representing the image dipole, and changing the reference from the loop current to the base current. The mutual impedance, $Z M B$, is then multiplied by the reflection
coefficient of the ground evaluated at an elevation angle $\psi=90$ deg and denoted RH90 for horizontal polarization and RV90 for vertical polarization. Because of the length of the mutual impedance equations, the reader is referred to reference [4] and Subroutine Mutual in program HVD6 located in the appendix.

The equations yielding intrinsic impedance are from [5]. All linear dimensions and wavelength, λ, are in meters. Upper-case variables, except M and N, are the variable names actually used in program HVD6.

$$
\begin{equation*}
Z I=\frac{K A\left((K A-M) \cos (\beta L)+j\left(Z A+J W C T^{*} K A^{2}-j N\right) \sin (\beta L)\right)}{\left(Z A+J W C T * K A^{2}+j N\right) \cos (\beta L)+j(K A+M) \sin (\beta L)}=\frac{Z I N N}{Z I N D} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
B & =2 \pi / \lambda, \text { and } \\
K A & =120\left(\log _{e}(2 L / R T)-1\right)
\end{aligned}
$$

for antenna elements with a uniform cross section, and

$$
K A=120\left(\log _{e}(2 L / R B)+(R T /(R B-R T)) \log _{e}(R T / R B)\right)
$$

for antenna elements tapered from the base with radius $R B$, to the tip with radius RT.
$M=60(\operatorname{Cin}(2 \beta L)-1+\cos (2 \beta L))=M B L$,
$N=60(S i(2 \beta L)-\sin (2 \beta L))=N B L$,
$J W C T=j R T / 30 \lambda$, and
$Z A=R A B L+j X A B L$, where
$\operatorname{Real}(Z A)=\operatorname{RABL}=60 \operatorname{Cin}(2 \beta L)+30(2 \operatorname{Cin}(2 \beta L)-\operatorname{Cin}(4 \beta L)) \cos (2 \beta L)$

$$
+30(S i(4 \beta L)-2 S i(2 \beta L) \sin (2 \beta L)), \text { and }
$$

$\operatorname{Imag}(Z A)=X A B L=60 \operatorname{Si}(2 \beta L)-30\left(C i n(4 \beta L)-\log _{e} 4\right) \sin (2 \beta L)-30 \operatorname{si}(4 \beta L) \cos (2 \beta L)$.

In the preceding equations, $S i$ and $C i n$ (and $C i$ in Subroutine Mutual) are functional notations for sine and cosine integrals. These integrals are calculated in Program HVD6 in Subroutine SCI using series expansions and rational approximations given in [6].

For free-space dipoles,
$Z R=Z I$,
and for monopoles,
$Z R=2 I / 2$.
For horizontal dipoles over ground,
$Z \mathrm{R}=\mathrm{ZI}+\mathrm{RH} 90^{*} \mathrm{ZMB}$.
For vertical dipoles over ground,
$Z R=Z I+R V 90 * Z M B$.

Antenna factor is the ratio, expressed in decibels, of the linearly polarized field strength incident upon a copolarized antenna to the voltage at the antenna terminals measured with a receiver having a characteristic impedance, ZCHAR. Antenna factor is

$$
\begin{equation*}
\mathrm{AF}=20 \log _{10}|(\mathrm{ZCHAR}+\mathrm{ZR}) / \mathrm{ZCHAR}| /(\text { effective length of antenna }) \tag{6}
\end{equation*}
$$

where $|(\lambda / \pi) \tan (\beta L / 2)|$ is the effective length of a free-space dipole, and $|(\lambda / 2 \pi) \tan (\beta L / 2)|$ is the effective half-length of a monopole on infinite, perfectly conducting ground.

The voltage reflection coefficient at the antenna terminals is $R=(Z R-Z C H A R) /(Z R+Z C H A R)$,
and the voltage standing-wave ratio is

$$
\begin{equation*}
\operatorname{VSWR}=(1+|R|) /(1-|R|) . \tag{8}
\end{equation*}
$$

The conjugate mismatch loss [7], expressed in decibels, is

$$
\begin{equation*}
\text { LOSS }=10 \log _{10}\left(1 /\left(1-\left|R^{2}\right|\right)\right) \tag{9}
\end{equation*}
$$

Antenna gain is a function of input impedance, free-space effective length, and radiation pattern of the array formed by the antenna and its
image in the ground. Based upon equations in $[8,9,10,11]$, antenna gain is expressed in decibels as

$$
\begin{equation*}
\text { GAIN }=10 \log _{10}\left(120\left|\mathrm{E}^{2}\right| / \operatorname{Real}(\mathrm{ZR})\right) \tag{10}
\end{equation*}
$$

where E is the effective length of a dipole over ground, multiplied by π / λ.

The three equations for E for a dipole with its feedpoint H meters above ground and for a monopole on perfect ground are as follows: Horizontal dipole over ground, H-plane

$$
\begin{equation*}
E=|\tan (\beta L / 2)|\left(e^{j \beta H \sin \psi}+R H e^{-j \beta H \sin \psi}\right) \tag{11}
\end{equation*}
$$

Vertical dipole over ground or monopole on perfect ground, E-plane

$$
\begin{equation*}
E=|(\cos (\beta L \sin \psi)-\cos (\beta L)) /(\cos \psi(\sin \beta L))|\left(e^{j \beta H \sin \psi}+R V e^{-j \beta H \sin \psi}\right) \tag{12}
\end{equation*}
$$

(Monopole gain is computed using the value of E for a vertically polarized dipole in free space.)

Horizontal dipole over ground, E-plane

$$
\begin{equation*}
E=|(\cos (\beta L \cos \psi)-\cos (\beta L)) /(\sin \psi(\sin \beta L))|\left(e^{j \beta H \sin \psi}-R V e^{-j \beta H \sin \psi}\right) \tag{13}
\end{equation*}
$$

The vertical and horizontal reflection coefficients [8] for the ground plane or test site ground are

$$
\begin{align*}
& R V=(((E P S N-j X) \sin \psi)-T S Q) /(((E P S N-j X) \sin \psi)+T S Q), \text { and } \tag{14}\\
& R H=(\sin \psi-T S Q) /(\sin \psi+T S Q), \tag{15}
\end{align*}
$$

where

```
    X = 17.975 SIGMA/FREQ,
    FREQ = frequency, in MHz,
SIGMA = \sigma = conductivity in millisiemens/m (abbreviated mS/m, and
        originally millimhos/m in past usage),
    EPSN = \varepsilonrr relative dielectric constant, and
    TSQ = (EPSN-jX-\mp@subsup{\operatorname{cos}}{}{2}\psi\mp@subsup{)}{}{1/2}.
```

Half-wave gain-standard dipoles and quarter-wave monopoles are fabricated using rigid metal tubing above about 30 MHz and tensioned wires below this frequency. This approximate frequency crossover may be reduced when using electrically small antennas. The feedpoints are electrically small, and the amount of low-loss dielectric material used as a support is kept to a minimum. The dipole balun (balanced-to-unbalanced transmissionline transformer) is removable for calibration.

Figures 1 and 2 show dipoles used for insertion loss measurements in the $30-\mathrm{MHz}$ to $1000-\mathrm{MHz}$ frequency range [3]. The feedpoint assembly is a dielectric cylinder $8.9 \mathrm{~cm}(3.5 \mathrm{in})$ long and 2.54 cm (1 in) in diameter. Two, small, coaxial panel jacks (Type SMA) form the feedpoint, and banana jacks soldered to the inner conductors provide a simple slip fit to the radiating elements. Below about 97 MHz , the radiating elements are extensible whips used down to about 30 MHz . Above 97 MHz , thin-wall brass tubing is used for elements up to 1000 MHz . Precision attenuators (pads) and equal length, 50 -ohm, coaxial cables connect the dipole terminals to the collinear (0 and 180 deg) ports of a coaxial hybrid junction serving as the dipole balun. Figure 3 shows the monopole antenna using the same radiating elements as the dipole.

Figure 4 shows how the hybrid junction, cable, and precision attenuator assemblies are calibrated for use with the dipole antennas. The initial received signal level at the spectrum analyzer is measured with the cables, shown attached to the E-ports, joined with a coaxial adapter. The final received signal level is measured as shown, and the difference between the two levels is the total insertion loss of two assemblies providing the spectrum analyzer and signal generator have input- and output-port impedances that are matched to the impedance of the cables. It is assumed that the assemblies are identical, and that the loss of a single assembly is just one-half the total measured loss. The $3-d B$ attenuators are used at the dipole feedpoint end of the cables to force the actual value of ZCHAR toward the $100-0 \mathrm{hm}$ value assumed for the calculations.

 assemblies shown upper photograph, lower photograph.

NOTE: $\triangle 1 \mathrm{~cm} \varnothing$ or size to fit largest diameter radiator

Figure 2. Schematic drawing of the dipole feedpoint assembly. Note, for use

Figure 3. A composite photograph (not all to same scale) of the monopole
assemblies - feedpoint assembly, a 97 MHz monopole, and a
677 MHz monopole.

Figure 4. Schematic diagram of the balun and cable assembly calibration.

Insertion loss between pairs of these antennas has been measured using the $30-\mathrm{m}$ by $60-\mathrm{m}$ NBS ground screen. See reference [3] and Example 非7 in Section 4 for a comparison of part of the measured and calculated data. In the $30-\mathrm{MHz}$ to $1000-\mathrm{MHz}$ frequency range of interest, the results imply that the mean difference between measured and calculated gain is typically $\leqq 0.05 \mathrm{~dB}$, with a value $\leqq 0.42 \mathrm{~dB}$ on the outside. This result is for dipoles with $0.1 \lambda \leqq L \leqq 0.25 \lambda$ and for monopoles with $L=0.25 \lambda$, assuming the effective lengths are correct. Effective length is the only quantity used for calculating gain that is not used explicitly for calculating insertion loss. However, insertion loss between pairs of antennas in free space is precisely the quantity obtained using the antenna gains in Friis's transmission formula [5], assuming the mismatch losses are zero. Therefore, antenna gains are implicit in the more general insertion loss equations. Comparing measured and calculated insertion-loss data is a valid method of determining the uncertainty in the gain-product of two linear antennas.

4. Examples of Gain-Standard Antenna Calculations

\#1 Thin $\lambda / 2$ Dipole and $\lambda / 4$ Monopole -299.792458 MHz
The computer program assumes all free-space dipoles are "horizontal" and calculates both the E- and H-plane patterns. For this example, the half-length of the dipole and monopole are exactly $\lambda / 4$ and the radii are 0 m . Since the program must have some nonzero dimension for the radius, a value of 0 input for the requested radius results in the program setting the value to $10^{-30} \mathrm{~m}$. Figure 5a shows the dipole gain is a constant 2.14 dB in the H plane and exhibits a quarter-section of the "figure-eight" pattern in the E plane. Figure 5b shows the monopole gain is 5.14 dB and its pattern is an inverted copy of the dipole pattern.

The following data are copied from the computer screen during program execution:

```
TYPE THE REQUESTED DATA AFTER EACH ?
FREQUENCY, MHZ
    %299.792458
gNTENNA HALF-LENGTH < LAMBDA/2, M
? %5
ANTENNA RADII, FEEDPOINT THEN END, M
?0
TYPE 1. FOR DIPOLE, O FOR MONOPOLE
? 1.
TYPE 1. FOR GROUND, O FOR FREE SPACE
IO
IMPEDANCE OF T-LINE ATTACHED TO ANTENNA, OMMS
? 100.
INPUT IMPEDANCE = - 73.3209+JL 42.6559JOHMS
ENTER NEN HaLF-LENGTH, OR ENTER -
? 8
ANTENNA FACTOR ASSUMING A 100.00-OHM RECEIUER
ANO A 1:1 BALUN ARE EMPLOYED = 14.98 DB
USNR = 1.7850
MISMATCH LOSS = . . }3595\mathrm{ DB
-- -----------
PRESS RETURN FOR GAIN US PHI, OTHERHISE TYPE CNTL T
    PRUSE
?
ELEU ANGLE INCREMENT FOR BELOH 10 DEG AND THE
    ADDITIONAL INCREMENT FOR ABOUE 1Q DEG
?2.
```

H-PLANE ELEUATIOH ANGLE IN DEGREES AND GAIN IH DB E-PLAHE ELEUATION ANGLE IN DEGREES RND GAIN IN D
HORIZONTAL POLARIZATION

2.008 -29.100
4.000 -23.076
$6.000-19.550$
8.000 - 17.046
$10.000-15.100$
$15.000-11.554$
$20.000 \quad-9.025$
$\begin{array}{ll}25.000 & -7.054 \\ 30.080 & -5.441\end{array}$
$35.000 \quad-4.081$
$\begin{array}{ll}30.000 & -2.0813 \\ 45.098 & -1.913\end{array}$
$50.000 \quad-1.922$
$\begin{array}{lr}55.090 & -.268 \\ 60.008 & .379\end{array}$
$65.000 \quad .920$
$70.000 \quad 1.361$
75.0001 .702
$80.000 \quad 1.945$
90.090

Figure 5 a. Calculated gain versus elevation angle for a thin, $\lambda / 2$ dipole in free space. $\lambda=1 \mathrm{~m}$

```
TIPE THE REQUESTED DATA AFTER EACH ?
FFEOUENCY, MH?
? 299.792458
AHTENNA HALF-LENGTH < LAMBDA/2, M
? ? 25
ANTENHA RADII, FEEDPOINT THEN END, M
? % O
TYPE 1. FOR DIPOLE, }8\mathrm{ FOR MONOPOLE
O
IMPEDANCE OF T-LINE ATTACHED TO ANTENNA, OHMS
? 50.
IHPUT IMPEDANCE = 36.6685+J[ - 21.3279]]-HMS
ENTER NEH HALF-LENGTH, OR ENTER O
7 0
GHTENHA FACTOR ASSUMING A 50.00-OHM RECEIUER
AND TRANSMISSION LINE ARE EMPLOYED = 21.80 DB
USHR = 1.7850
MISMATCH LOSS = . }3595\mathrm{ DB
```



```
    PAUSE
? ELEU ANGLE INCREMENT FOR BELOH }18\mathrm{ DEG AND THE
    ADDITIONAL INCREMENT FOR ABOUE 10 DEG
?2.
```

E-PLANE ELEUATION ANGLE IN DEGREES AND GAIN IN DB UERTICAL POLARIZATION

2.800	5.142
4.808	5.119
6.800	5.080
8.090	5.826
10.000	4.956
15.000	4.712
20.000	4.371
25.880	3.931
30.008	3.389
35.080	2.742
40.800	1.985
45.000	1.108
50.000	. 897
55.000	-1.078
60.000	-2.431
65.000	-4.044
70.000	-6.014
75.000	-8.543
80.888	-12.090
85.000	-18.126
90.000	-120.000

```
ELEU ANGLE INCREMENT FOR BELOH 18 DEG AND THE
\(?\)
\(?\)
\(?\)
\(?\)
```


Figure 5 b. Calculated gain versus elevation angle for a thin, $\lambda / 4$ monopole fed against an infinite, perfectly conducting, plane ground. $\lambda=1 \mathrm{~m}$

In 1979, an extensive set of measurements were made near Dateland, Arizona, to determine the gain of various medium-frequency antenna configurations at low elevation angles. The $485-\mathrm{kHz}$ test signal was transmitted from an electrically short (61 m), vertical sleeve dipole suspended by a helicopter. An optical tracker provided elevation and azimuth angle data for these measurements.

The gain-standard antenna was a vertical sleeve dipole, with $L=152.4 \mathrm{~m}$, supported by a $25-\mathrm{m}^{3}$ helium-filled blimp. A large toroidal choke suppressed undesired currents on the outer conductor of the antenna-to-receiver cable at ground level. The gain pattern of this antenna, shown in Fig. 6, is calculated for $\sigma=10 \mathrm{mS} / \mathrm{m}$ and $\varepsilon_{r}=50$ based upon soil samples from the dry lakebed test site.

Measurements were made at a range of 1620 m , and, because of the strong ground-wave component in the electromagnetic field at the test site, the resulting data are "gain" values relative to the particular reference dipole measured at that specific range. In fact, "the concepts of power gain, directive gain, radiation resistance, and radiation efficiency are not directly applicable in this situation..."[1].

```
TYPE TME REQUESTED DATA AFTER EACH ?
FREQUENCY, MHZ
? 8.485
ANTENHA HALF-LENGTH < LAMBDA:2, M
? 152.4
antenig radil, feedpoint then end, m
? 0.802
? 0.802
TYPE 1. FOR DIPOLE, \(\theta\) FOR MONOPOLE
? 1.
TYPE 1. FOR GROUND, 8 FOR FREE SPACE
? 1.
OIPOLE FEED-POINT HEIGHT ABOUE GROUND, M
153. FOR HORIZONTAL POLARIZATIOM,
YPE 1. FOR HORIZONTAL POLARIZATION, 8 FOR UERTICAL
8
IYPE 1. FOR PERFECT GROUMD, \(\theta\) FOR IMPERFECT GROUND
? 0
GROUND CONDUCTIUITY, MILLISIEMENS/M
? 10.
GROUND RELATIUE DIELECTRIC CONSTANT
? 58.
IMPEDANCE OF T-LIME ATTACHED TO ANTENHA, OHMS
? 50.
IAPUT IMPEDANCE = \(96.1373+J[\) 31.1427JOHMS
Enter neh half-lengith, or enter o
? 8
AMTENNA FACTOR ASSUMING A 50.00-OHM RECEIVER
AND A 1:1 BALUN ARE EMPLOYED \(=-36.18\) DB
MUTUAL IMPEDANCE DUE TO THE DIPOLE'S IMAGE
IN THE GROUND \(=125.0490+\sqrt{2} \quad 15.8547\) JOHMS
USHR \(\equiv\) GROUN 2.1875
MISMATCH LOSS \(\equiv\). 6489 DB
PRESS RETURN fOR GAIN US PNI, OTHERHISE TYPE CNTL T
        PAUSE
?
ELEU ANGLE INCREMENT FOR BELOW 10 DEG AND
THE ADDITIONAL INCREMENT FOR ABOUE IB DEG
? 2.
e-'-
UERTICAL POLARIZATION
    \(\begin{array}{ll}2.008 & -1.026 \\ 4.008 & 1.998\end{array}\)
    \(\begin{array}{ll}4.008 & 1.999 \\ 3.164\end{array}\)
    \(8.808 \quad 3.787\)
    \(\begin{array}{ll}10.808 & 3.949 \\ 15.888 & 3.885\end{array}\)
    \(\begin{array}{ll}10.808 & 3.885 \\ 29.868 & 3.268\end{array}\)
    \(25.888 \quad 2.237\)
    \(30.808 \quad .866\)
    \(\begin{array}{lr}35.088 & -.846 \\ 40.888 & -2.988\end{array}\)
    40.888
    45.888
    50.088
    55.808
    68.808
    -5. 356
    \(-8.221\)
    -11.598
-15.598
    -15.598
-28.395
    \(65.808 \quad-28.39\)
    70.808
    \(75.808-32.821\)
    \(80.880 \quad-38.727\)
    \(85.808 \quad-44.486\)
    \(90.000-120.000\)
```


Figure 6. Calculated gain versus elevation angle for a vertical dipole over imperfect ground with lower tip of dipole at ground level. $\lambda=618 \mathrm{~m} ; \sigma=10 \mathrm{mS} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=50$

The Table Mountain test site is located near Boulder, Colorado. Frequent high winds make the use of a blimp-supported vertical reference impractical in the high-frequency band, so a horizontal wire-dipole, stretched between two wooden poles, was used as a gain-standard antenna for some measurements performed in 1977.

The test antenna was a vehicular omnidirectional antenna mounted on a large van which was placed on a turntable rotating at about 1 rpm during the measurements. The test site was illuminated with an electrically-small, reflector-backed, vertically-polarized antenna mounted between the skids of a helicopter. This antenna pivoted so the main beam always pointed at the test site. The helicopter flew over the test site on a radial in the vertical plane through the gain-standard antenna. Test antenna gain data were presented as mean vertical-plane patterns with horizontal bars indicating the standard deviation of the sampled data measured in specific, elevation-angle increments. Figure 7 shows the gain of the standard, horizontal, $\lambda / 2$ dipole, positioned at a $6.3-m$ height, used as a vertically polarized reference. That is, the E-plane gain-pattern of the dipole was used as the gain-transfer standard. Toroidal chokes are required in the dipole feed cable to reduce radiation by any currents on the outer conductor of this cable.

```
TYPE THE REQUESTED DATA AFTER EACH ?
FREQUENCY, MHZ
? 11.555
ANTENNA HALF-LENGTH < LAMBDA/2, M
? 5.?
ANTEFNA RADII, FEEDPOINT THEN END, M
? 0.08125
? 0.80125
TYPE 1. FOR DIPOLE, & FOR MONOPOLE
?YPE 1. FOR GROUND, & FOR FREE SPACE
? 1.
DIPOLE FEED-POINT HEIGHT ABOVE GROUND, M
? 6.3
TYPE 1. FOR HORIZONTAL POLARIZATION, O FOR UERTICAL
? 1.
TYPE 1. FOR PERFECT GROUNO, B FOR IMPERFECT GROUNO
GROUND CONDUCTIUITY, MILLISIEMENS/M
? 20.
GROUND RELATIUE DIELECTRIC CONSTANT
? }5
IMPEDANCE OF T-LINE ATTACHED TO ANTENNA, OHMS
? 100.
```



```
INPUT IMPEDANCE = 58.9441+J[ -123.4851]OHMS
```



```
ENTER NEN HALF-LENGTH, OR ENTER O
? 0
ANTENNA FACTOR ASSUMING A 100.0日-OHM RECEIUER
AND A 1:1 BALUN ARE EMPLOYED = -10.60 DB
HUTUAL IMPEDANCE DUE TO THE DIPOLE'S IMAGE
IH THE GROUND = 9.0674+J[ 15.2329]OHMS
USWR = 4.6582
MISMGTCH LOSS = 2.35e8 DB
```



```
    PAUSE
?
ELEU ANGLE INCREMENT FOR BELOW 10 DEG AND
THE ADDITIONAL INCREMENT FOR ABOUE 10 DEG
?}2
```

E-PLANE ELEUATION ANGLE IN DEGREES ANO GAIN IN DB H-PLANE ELEUATION ANGLE IN DEGREES AND GAIN IN DB
UERTICAL POLARIZATION

H-PLANE ELEUATION ANGLE
HORIZONTAL POLARIZATION

Figure 7. Calculated gain versus elevation angle for a horizontal dipole with its feedpoint 0.24λ above ground. $\lambda=25.9 \mathrm{~m}$; $\sigma=20 \mathrm{mS} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=5$

Reference [12] describes measurements of buried, vertically polarized antennas in the $225-\mathrm{MHz}$ to $400-\mathrm{MHz}$ frequency range. The gain-standard dipole used for the measurements at Table Mountain was a horizontal $\lambda / 2$ dipole positioned 2.6λ above the ground. A rotatable, reflector-backed dipole was used to illuminate the test range enabling the use of the $H-p l a n e$ pattern as a gain-transfer standard for these vertically polarized test antenna measurements [13]. Figure 8 shows the calculated gain versus elevation angle for the gain-standard dipole. This dipole was positioned at a height chosen to place its main beam at a 5-deg elevation angle to insure accurate measurements near this elevation angle. It is difficult to make accurate gain-transfer measurements near the nulls of gain-standard antennas.

```
TYPE THE REQUESTED DATA AFTER EACH ?
FREQUENCY, MHZ
? 392.5
ANTEHNA HALF-LENGTH < LAMBDA/2; M
? 0.172
ANTENNA RADII, FEEDPOINT THEN END, M
? 0.003
? 0.003
TYPE 1. FOR DIPOLE, O FOR MONOPOLE
? ? 1.
TYPE 1. FOR GROUND, & FOR FREE SPACE
? 10.
OIPOLE FEED-POINT HEIGHT RBOUE GROUND, M
? 1.987
TYPE 1. FOR HORIZONTAL POLARIZATION, & FOR UERTICAL
TYYPE
? }
GROUND CONDUCTIUITY, MILLISIEMENS/M
? }20
GROUND RELATIUE DIELECTRIC CONSTANT
?4.
IMPEDANCE OF T-LINE ATTACHED TO ANTENHA, OHMS
? 100.
```



```
- - - - - - - - - - - - - - - - - - - - - - - - - - 
ENTER NEN HALF-LENGTH, OR ENTER O
? 8
ANTENNA FACTOR ASSUMING A 100.00-OHM RECEIUER
AND A 1:1 BALUN ARE EMPLOYED = 17.22 DB
MUTUAL IMPEDANCE DUE TO THE ANTENNA:Z2 IMAGE
USHR = TH THE GROUND = -.9154+J[ - - 0995]OHMS
USHR = 1.9617
MISMATCH LOSS = . 4839 DB
```



```
        PAUSE
?
ELEU ANGLE INCREMENT FOR BELOW 10 DEG AND THE
                        ADDITIONAL INCREMENT FOR ABOUE IO DEG
? 2.
```

E-PLANE ELEUATION ANGLE IN DEGREES RND GAIN IN DB H-PLANE ELEUATION ANGLE IN DEGREES AND GAIN IN DB
UERTICAL POLARIZATION

	-24.536
4.800	-24.565
6.800	-26. 223
8.888	-16.208
18.888	-11.768
15.888	-11.692
20.888	-8.484
25.888	-6. 865
30.888	-4.715
35.808	-4.689
48.888	-1.319
45.888	-. 892
58.888	-3.859
55.888	. 917
68.808	2.981
65.888	1.752
78.808	-. 951
75.888	-1.256
88.888	. 672
85.888	2.884
98.888	2.422

 HORIZONTAL POLARIZATION
 | 2.808 | 2.988 |
| :---: | :---: |
| 4.888 | 7.238 |
| 6.888 | 7.792 |
| 8.808 | 5.384 |
| 18.888 | -2.896 |
| 15.888 | 6.282 |
| 28. 888 | 2.928 |
| 25.888 | 2.686 |
| 38.808 | 5.779 |
| 35.888 | -4.242 |
| 40.800 | 5.891 |
| 45.808 | 4.171 |
| 58.888 | -2.596 |
| 55.808 | 3.684 |
| 68. 808 | 5.288 |
| 65.888 | 3.163 |
| 78.888 | -. 533 |
| 75.808 | -1.131 |
| 88.808 | . 889 |
| 85.888 | 2.848 |
| 98.808 | 2.422 |

Figure 8. Calculated gain versus elevation for a horizontal dipole with its feedpoint 2.6λ above ground. $\lambda=0.76 \mathrm{~m} ; \sigma=20 \mathrm{mS} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=4$

A simple 1 -m monopole antenna was fabricated using brass tubing with a $0.002-m$ radius. The antenna factor of this monopole was measured on the NBS ground screen during the calibration of a commercial active monopole in the $0.014-\mathrm{MHz}$ to $72.5-\mathrm{MHz}$ frequency range. The following table gives the results at six selected frequencies in this range.

Frequency, MHz		Measured AF, dB	
0.1		75.7	
1.0	55.5		75.58
10.0	35.6		55.58
20.0	28.8		35.42
30.0	25.6	28.88	
50.0	15.8	24.44	
			16.32

\#\# Antenna Factor Calcułation For Comparison With Measured Data - Dipole

A commercial dipole was calibrated in the NBS anechoic chamber in the $400-\mathrm{MHz}$ to $1000-\mathrm{MHz}$ frequency range. This dipole consists of extensible radiating elements permanently attached to a balun. The element lengths are set using a scale provided by the manufacturer, and the larger radius sections are used to form the elements as specified. Calculations assume the antenna input impedance is 50 ohms, and the balun transformer ratio is 1:1. The following table gives the results at nine selected frequencies.

Frequency, MHz	Measured AF, dB	
400.0	20.6	
500.0	22.6	20.41
550.0	21.9	22.48
600.0	22.4	23.26
650.0	23.8	24.10
700.0	25.9	24.74
800.0	26.2	25.48
900.0	27.0	26.64
1000.0	28.7	27.76
		28.70

These comparisons of measured and calculated data show the difference between the actual antenna factior and the "ideal" or calculated antenna factor.

Uncertainties in the antenna factor calibration technique may be determined by measuring the antenna factor of gain-standard dipoles and monopoles and comparing measured and calculated data.

\#7 7 Site Attenuation Using Gain-Standard $\lambda / 2$ Dipoles

Site attenuation is the minimum insertion loss between two copolarized antennas located above a test site. It is measured with one antenna at a fixed height, while the other antenna is located at a specified horizontal distance away and scanned vertically over a specified range of heights.

Gain-standard $\lambda / 2$ dipoles, fabricated as described in Section 3, were used to measure site attenuation of the NBS ground-screen test site at ten frequencies from 30 MHz to 1000 MHz [14]. These dipoles are required for obtaining measured site-attenuation data that are used for comparison with calculated data. Calculated data are shown as the solid lines and + + + symbols, and measured data are shown as circles, in Fig. 9.

Although site attenuation calculations do not involve gain directly (some measurements are actually made in the near-field where gain is not defined), the input and mutual impedance formulations are the same as those used in the gain calculations. Program HVD6 is used to calculate the length of the gain-standard dipoles, given the radii of the radiating elements. This length is somewhat arbitrarily chosen to make the calculated, freespace value of $Z R(Z I)$ purely real when the element length is near $\lambda / 4$.

Figure 9. Minimum insertion loss vs. frequency for $\lambda / 2$ dipoles horizontally polarized, HP, and vertically polarized, VP. Scan heights are 1 to 4 m for the 3 and 10 m distances and 2 to 6 m for the 30 m distance.
Solid line -- calculated for infinitely thin $\lambda / 2$ dipoles

+ + + + + -- calculated using the actual dipole dimensions
- ○ ○ ○ ○ -- measured using gain standard dipoles

5. Conclusions

The examples given in Section 4 illustrate the usefulness of Program HVD6. It is written in the FORTRAN programming language because of the ease with which this language handles complex arithmetic. It is used on the large, main-frame computer installed at the NBS Boulder Laboratories, but it should run properly on any computer with a FORTRAN compiler.

The well documented equations used in this program are based upon conventional engineering approximations. It is the author's opinion that gain-standard antenna parameters, that is, parameters for thin linear dipoles with removable baluns, positioned over ground or in free space, and monopoles on highly conducting ground, can be calculated with less uncertainty than they can be measured. That is, the calculated parameters may more accurately represent the actual antenna performance than the measured parameters because of the difficulty of making accurate measurements in the frequency range below 1000 MHz .

6. References

[1] IEEE Standard Test Procedures for Antennas. IEEE Std 149-1979 (Revision of IEEE Std 149-1965). New York, NY: IEEE, Inc.; 1979.
[2] FitzGerrell, R.G. Limitations on vertically polarized ground-based antennas as gain standards. IEEE T-AP-23: 284-286; March 1975.
[3] FitzGerrell, R.G. Standard linear antennas, 30 MHz to 1000 MHz . Fifth International Conference on 'Electromagnetic Compatibility.' 1986 Sept. 29 - Oct. 2; University of York, York, England.
[4] King, H.E. Mutual impedance of unequal length antennas in echelon. IEEE T-AP-5: 306-313; 1957 July.
[5] Schelkunoff, S.A.; and Friis, H.T. Antennas, Theory and Practice. New York, NY: John Wiley \& Sons; 1952.
[6] Abramowitz, M.; and Stegun, I.A. Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables. Nat. Bur. Stand. (U.S.) Appl. Math. Ser. 55; Washington, D.C.; 1964. 231-233.
[7] Beatty, R.W. Insertion loss concepts. Proc. IEEE. Vol 52: 663-671; 1964 June.
[8] Jordan, E.C. Electromagnetic Waves and Radiating Systems. Englewood Cliffs, NJ: Prentice-Hall; 1950.
[9] Ma, M.T. Theory and Application of Antenna Arrays. New York, NY: John Wiley \& Sons; 1974.
[10] Ma, M.T.; and Walters, L.C. Power gains for antennas over lossy ground. ESSA Tech. Rept. ERL 104 - ITS 74. U.S. Govt. Printing Office, Washington, D.C.; 1969.
[11] Berry, L.A.; and Chrisman, L.E. Linear high frequency antennas over a finitely conducting spherical earth. ESSA Tech. Rept. ITSA No. 8. U.S. Govt. Printing Office, Washington, D.C.; 1966.
[12] FitzGerrell, R.G.; and Haidle, L.L. Design and performance of four buried UHF antennas. IEEE T-AP-20: 56-62; 1972 January.
[13] FitzGerrell, R.G. Gain measurements of vertically polarized antennas over imperfect ground. IEEE T-AP-15: 211-216; 1967 March.
[14] FitzGerrell, R.G. Site attenuation. IEEE T-EMC-28: 38-40; 1986 February.

```
Appendix -- Listing of Program HVD6
```

```
00100 PROGRAM HVD6(INPUT,OUTPUT,TAPE50)
00110C********************************************************************
00120C* GAIN VERSUS ELEVATION ANGLE AND ImPEDANCE RELATED PARAMETERS *
00130C* FOR VERTICAL AND HORIZONTAL DIPOLES OVER GROUND AND MONOPOLES *
00140C* ON PERFECT GROUND................G. FITZGERRELL (303) 497-3737 *
00150C* TAPE50 IS USED IN A PLOTTING PROCEDURE FILE. DELETE THE FOUR *
00160C* CALLS TO FILE AND SUBROUTINE FILE IF DESIRED.
00170C********************************************************************
0 0 1 8 0 ~ D I M E N S I O N ~ A R G ( 2 ) , C I ( 2 ) , C I N ( 2 ) , S I ( 2 )
00190 COMPLEX E, J, JWCT,R, RH,RV, RH90, RV90, TSQ, ZA, ZIND, ZINN, ZML, ZR, ZI, ZMB
0 0 2 0 0 ~ R E A L ~ K A , ~ L A M B D A , ~ L , ~ L 2 , ~ L O S S , N B L , M B L , M O N O ~
00210C*************************************************************
00220C* USER SPECIFIES ANTENNA GEOMETRY. ANTENNA ELEMENTS MAY *
00230C* HAVE A LINEAR TAPER OR A ZERO (1.E-30) RADIUS.
00240C************************************************************
00250 10 FORMAT(*TYPE THE REQUESTED DATA AFTER EACH ?*)
0 0 2 6 0 ~ P R I N T ~ 1 0 ~
00270 20 FORMAT(*FREQUENCY, MHZ*)
0 0 2 8 0 ~ P R I N T ~ 2 0 ~
0 0 2 9 0 ~ 3 0 ~ F O R M A T ( F 1 2 . 4 )
00300 READ 30,FREQ
00310 40 FORMAT(*ANTENNA HALF-LENGTH < LAMBDA/2, M*)
0 0 3 2 0 ~ P R I N T ~ 4 0 ~
00330 READ 30,L
00340 50 FORMAT(*ANTENNA RADII, FEEDPOINT THEN END, M*)
0 0 3 5 0 ~ P R I N T ~ 5 0 ~
00360 READ 30,RB
00370 READ 30,RT
00380 IF(RT.EQ.0.)RT=1.E-30
00390 IF(RB.EQ.0.)RB=1.E-30
00400 60 FORMAT(*TYPE 1. FOR DIPOLE, O FOR MONOPOLE*)
0 0 4 1 0 ~ P R I N T ~ 6 0 ~
00420 READ 30, MONO
00430 IF(MONO.EQ.0)POLAR=0.
00440 IF(MONO.EQ.O) GO TO 140
00450 70 FORMAT(*TYPE 1. FOR GROUND, O FOR FREE SPACE*)
0 0 4 6 0 ~ P R I N T ~ 7 0 ~
00470 READ 30,GF
00480 IF(GF.EQ.O.)POLAR=1.
0 0 4 9 0 ~ I F ( G F . E Q . 0 ) ~ G O ~ T O ~ 1 4 0 ~
00500 80 FORMAT(*DIPOLE FEED-POINT HEIGHT ABOVE GROUND, M*)
0 0 5 1 0 ~ P R I N T ~ 8 0 ~
00520 READ 30, H
00530 IF(H.LE.L)POLAR=1.
0 0 5 4 0 ~ I F ( H . L E . L ) ~ G O ~ T O ~ 9 5 ~
00550 90 FORMAT(*TYPE 1. FOR HORIZONTAL POLARIZATION, O FOR VERTICAL*)
0 0 5 6 0 \text { PRINT } 9 0
00570 READ 30, POLAR
0 0 5 8 0 9 5 ~ C O N T I N U E ~
00590 100 FORMAT(*TYPE 1. FOR PERFECT GROUND, O FOR IMPERFECT GROUND*)
0 0 6 0 0 ~ P R I N T ~ 1 0 0 ~
```

```
00610 READ 30, GND
00620 IF(GND.EQ.1.) GO TO 130
00630 110 FORMAT(*GROUND CONDUCTIVITY, MILLISIEMENS/M*)
00640 PRINT 110
00650 READ 30,SIGMA
00660 120 FORMAT(*GROUND RELATIVE DIELECTRIC CONSTANT*)
00670 PRINT 120
00680 READ 30,EPSN
00690 GO TO 150
00700C**************************************************************
00710C* PERFECT GROUND AND FREE-SPACE APPROXIMATIONS ARE MADE. *
00720C************************************************************
0 0 7 3 0 1 3 0 ~ S I G M A = 1 . E 3 0 ~
00740 GO TO 145
00750 140 SIGMA=0.0
00760 145 EPSN=1.0
00770 150 CONTINUE
00780 160 FORMAT(*IMPEDANCE OF T-LINE ATTACHED TO ANTENNA, OHMS*)
00790 PRINT 160
00800 READ 30,ZCHAR
00810 J=CMPLX (0.,1.)
00820 LAMBDA=299.792458/FREQ
0 0 8 3 0 ~ B E T A = 6 . 2 8 3 1 8 5 3 / L A M B D A ~
00840 X=17.975*SIGMA/FREQ
```



```
0 0 8 6 0 ~ P R I N T ~ 1 7 0 ~
00870C************************************
00880C* THE CALCULATIONS BEGIN HERE *
00890C**********************************
00900 200 B=2.*BETA*L
0 0 9 1 0 ~ B L = B E T A * L
0 0 9 2 0 ~ D O ~ 2 1 0 ~ M = 1 , 2
00930 ARG(M)=M*B
00940 210 CALL SCI(ARG(M),SI(M),CI(M),CIN(M))
00950C********************************************************************
00960C* COMPUTE SELF-IMPEDANCE, ZI, USING SCHELKUNOFF'S EQN. 13-108 *
00970C*******************************************************************
00980 IF(RT.EQ.RB)KA=120.*(ALOG(2.*L/RT)-1.)
00990 IF(RT.NE.RB)KA=120.*(ALOG(2*L/RB)+(RT/(RB-RT))*ALOG(RT/RB))
01000 MBL=60.*(CIN (1)-1.+COS (B))
01010 NBL=60.*(SI(1)-SIN(B))
01020 RABL=60.*CIN(1)+30.*(2.*CIN(1)-CIN(2))*COS(B)+30.*(SI(2)
01030+ -2.*SI(1))*SIN(B)
01040 XABL=60.*SI(1)-30.*(CIN(2)-ALOG(4.))*SIN(B)-30.*SI(2)*\operatorname{COS}(\textrm{B})
01050 ZA=RABL+J*XABL
01060 JWCT=J*RT/(30. *LAMBDA)
01070 ZINN=KA*((KA-MBL)*COS(BL) +J*(ZA+JWCT*KA*KA-J*NBL)*SIN(BL))
01080 ZIND=(ZA+JWCT*KA*KA+J*NBL)*COS(BL)+J* (KA+MBL)*SIN(BL)
01090 ZI=ZINN/ZIND
01100C**********************************************************************
01110C* COMPUTE ANTENNA INPUT IMPEDANCE, ZR. SUBROUTINE MUTUAL RETURNS *
01120C* MUTUAL IMPEDANCE REFERRED TO THE LOOP CURRENT, ZM, BETWEEN TWO *
01130C* FREE-SPACE DIPOLES. SIN(BL)**2 CHANGES REFERENCE TO BASE CURRENT*
01140C***********************************************************************
```

```
01150 IF(SIGMA.EQ.O.AND.MONO.EQ.1.)ZR=ZI
01160 IF(MONO.EQ.O.)ZR=ZI/2.
01170 IF(MONO.EQ.O.OR.SIGMA.EQ.O.) GO TO 240
01180 CALL MUTUAL(BETA,H,J,L,ZML,POLAR)
01190 ZMB=ZML/(SIN(BL)**2)
01200 IF(H.GE.O.1*L) GO TO 230
01210 H1=0.0001*LAMBDA
01220 POLAR1=1.0
01230 CALL MUTUAL(BETA,H1,J,L,ZML,POLAR1)
01240 ZI=ZML/(SIN(BL)**2)
01250C*******************************************************************
01260C* THE ABOVE 5 LINES HELP PREVENT NEGATIVE VALUES OF ZR FOR *
01270C* DIPOLES NEAR THE GROUND BECAUSE SCHELKUNOFF'S ZI DOES NOT *
01280C* CONVERGE TO THAT OBTAINED USING SUBROUTINE MUTUAL. *
01290C****************************************************************
01300C* COMPUTE REFLECTION COEFFICIENTS FOR PSI=90 DEG *
01310C*******************************************************
01320 230 RV90=((EPSN-J*X)-CSQRT(EPSN-J*X))/((EPSN-J*X)+CSQRT(EPSN-J*X))
01330 RH90=(1.-CSQRT(EPSN-J*X))/(1.+CSQRT(EPSN-J*X))
01340 IF(POLAR.EQ.1.AND.MONO.EQ.1.)ZR=ZI+RH90*ZMB
01350 IF(POLAR.EQ.O.AND.MONO.EQ.1.) ZR=ZI+RV90*ZMB
01360 240 CONTINUE
01370 250 FORMAT(*INPUT IMPEDANCE =*F12.4*+J[*F12.4*]OHMS*)
01380 PRINT 250,ZR
0 1 3 9 0 \text { PRINT } 1 7 0
01400 260 FORMAT(*ENTER NEW HALF-LENGTH, OR ENTER 0*)
01410 PRINT 260
01420 READ 30,L2
01430 IF(L2.GT.0) L=L2
01440 IF(L2.GT.0) GO TO 200
01450C*********************************************************************
01460C* COMPUTE ANTENNA FACTOR; MUTUAL IMPEDANCE; VSWR; MISMATCH LOSS*
01470C* ANTENNA FACTOR=VOLTAGE DIVIDER FACTOR/EFFECTIVE LENGTH *
01480C*******************************************************************
01490 IF(MONO.EQ.O.)AF=(CABS(ZCHAR+ZR)/ZCHAR)/ABS((1./BETA)*TAN(BL/2.))
01500 IF(MONO.EQ.1.)AF=(CABS(ZCHAR+ZR)/ZCHAR)/ABS((2./BETA)*TAN(BL/2.))
0 1 5 1 0 ~ P R I N T ~ 1 7 0 ~
0 1 5 2 0 3 0 0 ~ F O R M A T ( * A N T E N N A ~ F A C T O R ~ A S S U M I N G ~ A ~ * F 6 . 2 * - O H M ~ R E C E I V E R * ) ~
0 1 5 3 0 3 1 0 ~ F O R M A T ( * A N D ~ A ~ 1 : 1 ~ B A L U N ~ A R E ~ E M P L O Y E D ~ = * F 8 . 2 * ~ D B * ) ~
0 1 5 4 0 3 2 0 ~ F O R M A T ( * A N D ~ T R A N S M I S S I O N ~ L I N E ~ A R E ~ E M P L O Y E D ~ = * F 8 . 2 * ~ D B * )
0 1 5 5 0 ~ P R I N T ~ 3 0 0 , Z C H A R ~
01560 IF(MONO.EQ.1.) PRINT 310, 20.*ALOG10(AF)
01570 IF(MONO.EQ.O.) PRINT 320, 20.*ALOG10(AF)
01580 330 FORMAT(*MUTUAL IMPEDANCE DUE TO THE DIPOLE'S IMAGE*/
01590+*IN THE GROUND =*F12.4*+J[*F12.4*]OHMS*)
0 1 6 0 0 ~ I F ( S I G M A . G T . O . ) ~ P R I N T ~ 3 3 0 , ~ Z R - Z I ~
01610 R=(ZR-ZCHAR)/(ZR+ZCHAR)
01620 VSWR=(1.+CABS(R))/(1.-CABS(R))
01630 340 FORMAT(*VSWR =*F12.4)
01640 PRINT 340,VSWR
01650 LOSS=10.0*ALOG10(1.0/(1.0-CABS(R*R)))
01660 350 FORMAT(*MISMATCH LOSS =*F12.4* DB*)
01670 PRINT 350,LOSS
0 1 6 8 0 ~ P R I N T ~ 1 7 0 ~
```

```
01690C********************************************************
01700C* COMPUTE GAIN VERSUS ELEVATION OR EXIT PROGRAM.
01710C**********************************************************
01720 400 FORMAT(*PRESS RETURN FOR GAIN VS PHI, OTHERWISE TYPE CNTL T*)
01730 PRINT 400
0 1 7 4 0 ~ P A U S E ~
01750 410 FORMAT(*ELEV ANGLE INCREMENT FOR BELOW 10 DEG AND*/
01760+*THE ADDITIONAL INCREMENT FOR ABOVE 10 DEG*)
01770 PRINT 410
01780 READ 30, ENC
01790 READ 30, ENC2
01800 CALL FILE(ENC,ENC2,L,POLAR,SIGMA,0.,0.)
01810 IF(SIGMA.EQ.O.) H=1.
01820 BH=BETA*H
01830 IF(POLAR.EQ.O) GO TO 530
01840 PRINT 170
0 1 8 5 0 4 2 0 ~ F O R M A T ( * H - P L A N E ~ E L E V A T I O N ~ A N G L E ~ I N ~ D E G R E E S ~ A N D ~ G A I N ~ I N ~ D B * )
01860 PRINT 420
01870 430 FORMAT(*HORIZONTAL POLARIZATION*)
01880 PRINT 430
01890 PSI=0
01900C*********************************
01910C* HORIZONTAL POLARIZATION *
01920C*******************************
01930500 PSI=PSI + ENC
01940 IF (PSI.LT.10.1) GO TO 510
01950 PSI=PSI+ENC2
0 1 9 6 0 ~ I F ( P S I . G T . 9 0 . ) ~ G O ~ T O ~ 5 3 0 ~
0 1 9 7 0 5 1 0 ~ P S I R A D = 0 . 0 1 7 4 5 3 2 9 2 5 2 * P S I ~
01980 SNPSI=SIN(PSIRAD)
01990 CNPSI=COS(PSIRAD)
02000 TSQ=CSQRT(EPSN-J*X-(CNPSI**2))
02010 RH=(SNPSI-TSQ)/(SNPSI +TSQ)
02020C**********************************************************************
02030C* RH & RV ARE HORIZONTAL AND VERTICAL REFLECTION COEFFICIENTS *
02040C********************************************************************
02050 EFLH=ABS(TAN(BL/2.))
02060 E=EFLH*(CEXP(J*BH*SNPSI)+RH*(CEXP(-J*BH*SNPSI)))
02070 E2=120.*CABS(E*E)/REAL(ZR)
02080C*********************************************************************
02090C* THE GAIN EQUATION IS BASICALLY JORDAN'S EQN. 12-18 USING *
02100C* (EFFECTIVE LENGTH)*PI/LAMBDA DENOTED AS E AND APPROPRIATELY *
02110C* DEFINED FOR THE ORIENTATION OF THE DIPOLE. *
02120C*****************************************************************
02130 GAIN=10.0*ALOG10(E2)
02140 520 FORMAT(2F15.3)
02150 PRINT 520,PSI,GAIN
02160 CALL FILE(-1.,-1.,-1.,-1.,-1.,PSI,GAIN)
0 2 1 7 0 ~ G O ~ T O ~ 5 0 0 ~
02180 530 PRINT 170
02190 IF(POLAR.GT.0) PAUSE
02200 540 FORMAT(*E-PLANE ELEVATION ANGLE IN DEGREES AND GAIN IN DB*)
0 2 2 1 0 5 4 5 ~ F O R M A T ( * V E R T I C A L ~ P O L A R I Z A T I O N * ) ~
02220 PRINT 540
```

```
02230 PRINT 545
02240 PSI=0
02250C******************************
02260C* VERTICAL POLARIZATION *
02270C****************************
02280 550 PSI=PSI+ENC
0 2 2 9 0 ~ I F ~ ( P S I . L T . 1 0 . 1 ) ~ G O ~ T O ~ 5 6 0 ~
02300 PSI=PSI+ENC2
02310 IF (PSI.GT.90.) GO TO 580
02320560 PSIRAD=0.01745329252*PSI
02330 SNPSI=SIN(PSIRAD)
02340 CNPSI=COS(PSIRAD)
02350 TSQ=CSQRT(EPSN-J*X-(CNPSI**2))
02360 RV=(((EPSN-J*X)*SNPSI)-TSQ)/(((EPSN-J*X)*SNPSI)+TSQ)
0 2 3 7 0 ~ I F ( P O L A R . E Q . 1 . ) ~ G O ~ T O ~ 5 7 0 ~
02380 EFLV=ABS(COS(BL*SNPSI)-COS(BL))/(CNPSI*SIN(BL))
02390 E=EFLV*(CEXP (J*BH*SNPSI)+RV*(CEXP(-J*BH*SNPSI)))
02400 E2=120.*CABS(E*E)/REAL(ZR)
02410 IF(E2.EQ.0.) E2=1.E-12
02420 GAIN=10.0*ALOG10(E2)
02430 PRINT 520,PSI,GAIN
02440 CALL FILE(-1.,-1.,-1.,-1.,-1.,PSI,GAIN)
02450 GO TO 550
02460C***************************************************
02470C* VERTICAL POLARIZATION FOR A HORIZONTAL DIPOLE *
02480C****************************************************
02490 570 EFLVH=ABS(COS(BL*CNPSI)-COS(BL))/(SNPSI*SIN(BL))
02500 E=EFLVH*(CEXP(J*BH*SNPSI)-RV*(CEXP (-J*BH*SNPSI)))
02510 E2=120.0*CABS(E*E)/REAL(ZR)
02520 GAIN=10.0*ALOG10(E2)
0 2 5 3 0 ~ P R I N T ~ 5 2 0 , P S I , G A I N ~
02540 CALL FILE(-1.,-1.,-1.,-1.,-1.,PSI,GAIN)
0 2 5 5 0 ~ G O ~ T O ~ 5 5 0 ~
02560 580 PRINT 170
0 2 5 7 0 ~ E N D
02580C************************************************************
02590 SUBROUTINE MUTUAL(BETA,H,J,L,ZML,POLAR)
02600C* COMPUTES MUTUAL IMPEDANCES BETWEEN DIPOLES IN ECHELON *
02610C*************************************************************
0 2 6 2 0 ~ D I M E N S I O N ~ A R G ( 5 ) , S I ( 5 ) , C I ( 5 ) , C I N ( 5 )
02630 REAL L, L1, L2, L3, L4
0 2 6 4 0 \text { COMPLEX J,ZML}
02650C*********************************************************
02660C* COMPUTE ARGUMENTS FOR SINE AND COSINE INTEGRALS *
02670C*******************************************************
02680 Y0=0.
02690 X0=2. *H
0 2 7 0 0 ~ I F ( P O L A R . E Q . O . ) ~ G O ~ T O ~ 1 /
02710 YO=2. *H
02720 XO=0.
```

```
02730C***********************************************************************
02740C* XO IS THE SEPARATION BETWEEN THE FEEDPOINTS OF THE VERTICAL
02750C* DIPOLE AND ITS COLINEAR IMAGE. YO IS THE SEPARATION BETWEEN *
02760C* THE HORIZONTAL DIPOLE AND ITS IMAGE.
02770C************************************************************************
02780 1 B=BETA
02790 Y02=Y0**2
0 2 8 0 0 ~ H L 1 = X 0 - 2 . ~ * L ~
0 2 8 1 0 ~ H L 2 = X 0 - L ~
0 2 8 2 0 ~ H L 3 = X 0
0 2 8 3 0 ~ H L 4 = X 0 + L ~
0 2 8 4 0 ~ H L 5 = X 0 + 2 . * L ~
02850 ARG(1)=B*(SQRT(Y02+HL1**2)+HL1)
02860 ARG(2)=B*(SQRT(Y02+HL2**2)+HL2)
02870 ARG(3)=B*(SQRT(Y02+HL3**2)+HL3)
02880 ARG(4)=B*(SQRT (Y02+HL4**2)+HL4)
02890 ARG(5)=B*(SQRT (Y02+HL5**2) +HL5)
0 2 9 0 0 ~ D O ~ 1 0 ~ I = 1 , 5 ~
0 2 9 1 0 1 0 ~ C A L L ~ S C I ( A R G ( I ) , S I ( I ) , C I ( I ) , C I N ( I ) ) ~
02920 IF(POLAR.EQ.O.) GO TO 20
02930C**************************************************************
02940C* COMPUTE MUTUAL IMPEDANCE FOR HORIZONTAL POLARIZATION *
02950C*************************************************************
02960 R12=30.*(COS(2.*B*L)*(CI(1)+CI(5)-2.*CI(2)-2.*CI(4)+2.*CI(3))
02970+ +SIN(2.*B*L)*(-SI(1)+SI(5)+2.*SI(2)-2.*SI(4))
02980+ +4.*CI(3)-2.*CI(2)-2.*CI(4))
02990 X12=30.*(COS(2.*B*L)*(-SI(1)-SI(5)+2.*SI(2)+2.*SI(4)-2.*SI(3))
03000+ +SIN(2.*B*L)*(-CI(1)+CI(5)+2.*CI(2)-2.*CI(4))
03010+ -4.*SI(3)+2.*SI(2)+2.*SI(4))
0 3 0 2 0 ~ Z M L = R 1 2 + J * X 1 2 ~
03030 RETURN
03040C*********************************************************
03050C* COMPUTE MUTUAL IMPEDANCE FOR VERTICAL POLARIZATION *
03060C**********************************************************
03070 20 L1=ALOG(HL2/HL1)
03080 L2=ALOG(HL4/HL3)
03090 L3=ALOG(HL2/HL3)
03100 L4=ALOG(HL4/HL5)
03110 B1 =B*HL1
03120 B2=B*HL3
0 3 1 3 0 ~ B 3 = B * H L 5 ~
03140 B4=B*HL2
03150 B5=B*HL4
03160 R12=15.*(COS(B1)*(CI(1)-CI(2)+L1)+SIN(B1)*(SI(1)-SI(2))+COS(B2)
03170+ *(CI(3)-CI(4)+L2)+SIN(B2)*(SI(3)-SI(4))+COS(B2)*(-CI(2)+CI(3)
03180+ +L3)+SIN(B2)*(-SI(2)+SI(3))+COS(B3)*(-CI(4)+CI(5)+L4)+SIN(B3)
03190+*(-SI(4)+SI(5))+2.*COS(B*L)*COS(B4)*(-CI(2)+CI(3)+L3)+2.
03200+ *COS(B*L)*SIN(B4)*(-SI(2)+SI(3))+2.*COS(B*L)*\operatorname{COS}(B5)*(CI(3)
03210+ -CI(4)+L2)+2.*COS(B*L)*SIN(B5)*(SI(3)-SI(4)))
```

```
03220 X12=15.*(COS(B1)*(-SI(1)+SI(2))+SIN(B1)*(CI(1)-CI(2)-L1)+COS(B2)
03230+ *(-SI(3)+SI(4))+SIN(B2)*(CI(3)-CI(4)-L2)+COS(B2)*(SI(2)
03240+ -SI(3))+SIN(B2)*(-CI(2)+CI(3)-L3)+COS(B3)*(SI(4)-SI(5))
03250+ +SIN(B3)*(-CI(4)+CI(5)-L4)+2.*COS(B*L)*COS(B4)*(SI(2)
03260+ -SI(3))+2.*COS(B*L)*SIN(B4)*(-CI(2)+CI(3)-L3)+2.*COS(B*L)
03270+ *(-SI(3)+SI(4))+2.*COS(B*L)*SIN(B5)*(CI(3)-CI(4)-L2))
0 3 2 8 0 ~ Z M L = R 1 2 + J * X 1 2 ~
0 3 2 9 0 ~ R E T U R N
0 3 3 0 0 ~ E N D
03310C*****************************************************************
03320 SUBROUTINE SCI(ARG,SI,CI,CIN)
03330C* COMPUTES THE SINE, COSINE, AND MODIFIED COSINE INTEGRALS *
03340C******************************************************************
0 3 3 5 0 ~ D I M E N S I O N ~ T ( 4 2 ) , S ( 2 0 ) , C ( 2 0 )
03360 K=1
0 3 3 7 0 ~ T ( 1 ) = 1 . 0
03380 DO 10 M=1,42
0 3 3 9 0 ~ K = K + 1
0 3 4 0 0 ~ 1 0 ~ T ( K ) = M * T ( K - 1 ) ~
03410 IF(ARG.GT.1.) GO TO 25
03420C***************************************
03430C* COMPUTE THE INTEGRALS FOR 0<ARG<1 *
03440C***************************************
03450 DO 20 N=1,20
03460 20 S(N)=((-1)**N)*(ARG**(2*N+1))/((2*N+1)*T(2*N+2))
03470 SI=ARG+S(1)+S(2)+S(3)+S(4)+S(5)+S(6)+S(7)+S(8)+S(9)+S(10)
03480+ +S(11)+S(12)+S(13)+S(14)+S(15)+S(16)+S(17)+S(18)+S(19)+S(20)
03490 DO 30 N=1,20
03500 30 C(N)=((-1)**N)*(ARG**(2*N))/((2*N)*T(2*N+1))
03510 SA=C(1)+C(2)+C(3)+C(4)+C(5)+C(6)+C(7)+C(8)+C(9)+C(10)+C(11)
03520+ +C(12)+C(13)+C(14)+C(15)+C(16)+C(17)+C(18)+C(19)+C(20)
03530 CI=0.577215665+ALOG(ARG)+SA
03540 CIN=-SA
0 3 5 5 0 ~ G O ~ T O ~ 4 0 ~
03560C***********************************************
03570C* COMPUTE THE INTEGRALS FOR 1<ARG<INFINITY *
03580C***********************************************
03590 25 FZ=(ARG**8+38.027264*(ARG**6)+265.187033*(ARG**4)
03600+ +335.67732*(ARG**2)+38.102495)/(ARG* ((ARG**8)
03610+ +40.021433*(ARG**6)+322.624911*(ARG**4)
03620+ +570.23628*(ARG**2)+157.105423))
03630 GZ=(ARG**8+42.242855*(ARG**6)+302.757865*(ARG**4)
03640+ +352.018498*(ARG**2) +2i.821899)/((ARG**2)*((ARG**8)
03650+ +48.196927*(ARG**6)+482.485984*(ARG**4)+1114.978885
03660+ *(ARG**2)+449.690326))
03670 SI=1.570796327-FZ*COS(ARG)-GZ*SIN(ARG)
03680 CI=FZ*SIN(ARG)-GZ*COS(ARG)
03690 CIN=-CI+0.5772157+ALOG(ARG)
0 3 7 0 0 4 0 ~ R E T U R N
0 3 7 1 0 ~ E N D
```

```
03720C********************************************************************
03730 SUBROUTINE FILE(ENC,ENC2,L,POLAR,SIGMA,PSI,GAIN)
03740C* WRITES DATA ON TAPE50 FOR PLOTTING USING PROCEDURE FILE 4T *
03750C**
03760 N=AINT(10./ENC+80./(ENC+ENC2))
0 3 7 7 0 1 0 ~ F O R M A T ( I 5 )
03780 20 FORMAT(2F10.3)
0 3 7 9 0 3 0 ~ F O R M A T ( F 1 0 . 3 )
0 3 8 0 0 4 0 ~ F O R M A T ( E 9 . 3 ) ~
0 3 8 1 0 ~ I F ( E N C . G T . 0 ) ~ W R I T E ( 5 0 , 1 0 ) N ~
0 3 8 2 0 ~ I F ( E N C . G T . 0 ) ~ W R I T E ~ ( 5 0 , 3 0 ) L ~ L
03830 IF(ENC.GT.0) WRITE(50,30)POLAR
03840 IF(ENC.GT.0) WRITE(50,40)SIGMA
03850 IF(ENC.LT.0) WRITE(50,20)PSI,GAIN
03860 RETURN
03870 END
```

Note: If file TAPE50 is not wanted, delete line 00100, calls to FILE in lines 01800, 02160, 02440, and 02540, and the entire Subroutine FILE.

1. PUBLICATION OR REPORT NO. NBS/TN-1098
2. Performing Organ. Report No.
3. Publication Date

May 1986
4. TITLE AND SUBTITLE

Linear Gain-Standard Antennas Below 1000 MHz
5. AUTHOR(S)
R. G. FitzGerrell

6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)	7. Contract/Grant No.
NATIONAL BUREAU OF STANDARDS	
DEPARTMENT OF COMMERCE	
WASHINGTON, D.C. 20234	

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)
10. SUPPLEMENTARY NOTES
\square Document describes a computer program; SF-185, FIPS Software Summary, is attached,
11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here)

Gain and antenna parameters related to input impedance are calculated using a computer program called HVD6. This program uses well documented equations to compute these parameters for gain-standard antennas used in relative-gain or gaintransfer measurements at frequencies below 1000 MHz . The utility of this program is that it calculates gain patterns and input impedances for linear dipoles above perfect or imperfectly conducting plane ground and in free space, and for monopoles on perfectly conducting plane ground. Examples are included to illustrate the use of the program. Uncertainties in the calculated parameters are estimated to be less than those of the measured parameters.
12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons) antenna gain; dipole antennas; gain standards; monopole antennas
13. AVAILABILITY

Unlimited
For Official Distribution. Do Not Release to NTIS
[X] Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.Order From National Technical Information Service (NTIS), Springfield, VA. 22161
14. NO. OF PRINTED PAGES

44
15. Price

NBS Technical Publications

Periodical

Journal of Research-The Journal of Research of the National Bureau of Standards reports NBS research ana development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs-Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.
Handbooks-Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.
Special Publications-Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.
Applied Mathematics Series-Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.
National Standard Reference Data Series-Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide program coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).
NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056.
Building Science Series-Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.
Technical Notes-Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.
Voluntary Product Standards-Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.
Consumer Information Series-Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.
Order the above NBS publications from: Superintendent of Documents, Government Printing Office, Washington, DC 20402.
Order the following NBS publications-FIPS and NBSIR's-from the National Technical Information Service, Springfield, VA 22161.
Federal Information Processing Standards Publications (FIPS PUB)-Publications in this series collectively constitute the Federal Information Processing Standards Register. The Register serves as the official source of information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).
NBS Interagency Reports (NBSIR)-A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper copy or microfiche form.
U.S. Department of Commerce

National Bureau of Standards
Gaithersburg. MD 20899

Official Business
Penalty for Private Use $\$ 300$

[^0]: -QC

