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Disclaimer

No warranties 3 express or implied, are made
by the distributors or developers that
STARPAC or its constituent parts are free of
error. "Vh.ey should not be relied upon as
the sole basis for solving a problem whose
incorrect solution could result in injury to
person or property . If the programs are
employed in such a manner, it is at the
user's ovm risk and the distributors and
developers disclaim all liability for such
misuse.

Computers have been identified in this paper
in order to adequately specify the sample
programs and test results. Such
identification does not imply recommendation
or endorsement by the National Bureau of
Standards, nor does it imply that the
equipment identified is necessarily the best
available for the purpose.

iv



Preface

STARPAC, the Standards Time Series and Regression Package, is a library
of Fortran subroutines for statistical data analysis developed by the

Statistical Engineering Division (SED) of the National Bureau of Standards
(NBS), Boulder, Colorado. Earlier versions of this library were distributed
by the SED under the name STATLIB [Tryon and Donaldson, 1978] . STARPAC

incorporates many changes to STATLIB, including additional statistical
techniques, improved algorithms and enhanced portability.

We are distributing STARPAC source code in segments, and the

documentation as a series of NBS Technical Notes. This will allow us to make
the new capabilities of STARPAC available more quickly and to facilitate the

release of future changes.

The first of the series of Technical Note documenting STARPAC is an
Introduction to STARPAC [Donaldson and Tryon, 1983] which gives an an overview
of the STARPAC library, defines conventions used to specify the documentation,
and presents general background material. The Introduction to STARPAC incudes
information which is essential for using the STARPAC library, and users should
be familiar with its contents before attempting to use any STARPAC
subroutine.

This Technical Note documents the STARPAC nonlinear least squares
regression subroutines. These subroutines:

• use the quasi-Newton NL2S0L algorithm [Dennis et al. , 1981a] , designed
specifically for problems which may have highly nonlinear models, large
residuals, or poor scaling;

• accept user-supplied derivatives (the Jacobian matrix) when available,
and approximate the derivatives numerically otherwise;

• provide utility procedures to verify the correctness of the

user-supplied derivatives, or to select optimum step sizes for
numerically approximating the derivative [Schnabel, 1982];

• allow both weighted and unweighted analyses;

• permit subsets of the model parameters to be treated as constants with
their values held fixed at their input values, allowing the user to

examine the results obtained by estimating subsets of the parameters of
a general model without rewriting the model subroutine;

• are easy to use, providing three levels of user-control of the
computations and results, extensive error handling facilities,
comprehensive printed reports, and no size restrictions other than
effective machine size;



• are portable; and

• are easily used with other Fortran subroutine libraries.

Other code segments of STARPAC include subroutines for time series
analysis (in both time and frequency domains), line printer graphics, basic
statistical analysis, linear least squares regression, and nonlinear
optimization. Users may obtain a list of the available code segments and
their associated documentation from their local installer of STARPAC, or
directly from the author. Notation, format, and naming conventions will
remain constant throughout the series of Technical Notes documenting STARPAC,
allowing the documentation for each code segment to be used alone or in
conjunction with the documentation for another.

The code for STARPAC was developed at the U.S. Department of Commerce
Boulder Laboratories on a CDC CYBER 170/750 under NOS 1.4, and all examples
presented in this documentation were executed in this environment using the
FTN 4.8+552 compiler with rounding. STARPAC has also been tested on the
following equipment.

Computer Facility

IBM 4 340

VAX 11/780
National Center for Atmospheric Research,

Boulder, Colorado

Sperry 1100/82 National Bureau of Standards,
Gaithersburg, Maryland

Perkin-Elmer 3230 National Bureau of Standards,
Boulder, Colorado

Data General ECLIPSE S/140 Forest Fire Laboratory,
Riverside, California

STARPAC is written in Fortran '66. Adherence to a portable subset of
ANSI Fortran [1966] has been verified by the PFORT Verifier [Rvder, 1974].
Workspace and machine-dependent constants are supplied using subroutines based
on the Bell Laboratories "Framework for a Portable Library" [Fox et al.

,

1978a]. We have also used subroutines from UNPACK [Dongarra et al. , 1979],
from the "Basic Linear Algebra Subprograms for Fortran Usage" [Lawson et al.

,

1979], and from DATAPAC [Filliben, 1977]. The subroutines used to compute the
least squares solution are those referenced in Dennis et al. [1981a and
1981b], and the algorithms used to select optimum step sizes for numerical
derivatives, and to check analytic derivatives were developed by Schnabel
[1982]. The printed reports from the nonlinear least squares subroutines have
been adapted from OMNITAB II [Hogben et al. , 1971].
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Nonlinear Least Squares Regression

Using STARPAC

The Standards Time Series and Regression Package

Janet R. Donaldson and Peter V. Tryon

National Bureau of Standards
Washington, DC 20234

STARPAC, the Standards Time Series and Regression Package, is a

library of Fortran subroutines for statistical data analysis
developed by the Statistical Engineering Division (SED) of the
National Bureau of Standards (NBS), Boulder, Colorado. Earlier
versions of this library were distributed by the SED under the name
STATLIB [Tryon and Donaldson, 1978]. STARPAC incorporates many
changes to STATLIB, including additional statistical techniques,
improved algorithms and enhanced portability.

STARPAC emphasizes the statistical interpretation of results,
and, for this reason, comprehensive printed reports of auxiliary
statistical information, often in graphical form, are automatically
provided to augment the basic statistical computations performed by
each user-callable STARPAC subroutine. STARPAC thus provides the
best features of many stand-alone statistical software programs
within the flexible environment of a subroutine library.

This Note documents 16 subroutines for nonlinear least squares
regression. Twelve of these compute the least squares estimates,
performing either weighted or unweighted analysis with either
numerically approximated or user-supplied (analytic) derivatives.
The other four are user-callable subroutines for two procedures used
within the estimation code: the first selects optimum step sizes
for approximating the partial derviatives of the model; and the
second checks the validity of a user-supplied derivative
subroutine.

Key words: derivative checking; NL2S0L; nonlinear least squares;
nonlinear regression; quasi-Newton methods; STARPAC; statistical
computing; statistical subroutine library; statistics; derivative
step size selection; weighted nonlinear least squares.
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CHAPTER 1

NONLINEAR LEAST SQUARES REGRESSION

A. Introduction

STARPAC contains 16 user-callable subroutines for nonlinear least squares
regression. Twelve of these are estimation subroutines that compute the least
squares solution as described below, performing either weighted or unweighted
regression with either numerically approximated or user-supplied (analytic)
derivatives. The estimation subroutines allow three levels of control of the
computations and printed output, and allow the user to specify a subset of the
parameters to be treated as constants, with their values held fixed at their
input values. This last feature allows the user to examine the results
obtained estimating various subsets of the parameters of a general model
without rewriting the model subroutine for each subset. The other four

subroutines described in this chapter are utility procedures which choose
optimum step sizes for numerically approximating the derivative, and which
verify the correctness of user-supplied (analytic) derivatives.

Each of the subroutines described in this chapter assumes that the
observations of the dependent variable, y^ , are modeled by

y±
= f

i(
x i>£) + £± for 1-1, .-., N,

where

N is the number of observations;

f^ is the function (nonlinear in its parameters) that models the itn

observation;

x^ is the vector of the M independent variables at the i tn observation;

3 is the vector of the NPAR model parameters; and

e^ is the unobservable random error in the i tn observation, which is
estimated by the i tn residual.

The least squares estimates of the parameters, 6, are obtained using an
iterative procedure that requires the matrix of partial derivatives of the
model with respect to each parameter,

D(i,k) = 3f1 (x 1
,3)/33(k) for 1=1, ..., N

and k = 1, . .
.

, NPAR.

The derivative matrix may be supplied analytically or approximated
numerically

.
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The least squares solution, 3, is that which minimizes (with respect to

3) the residual sum of squares function,

N N

RSS(3) = I [{yi
~ f±

(x it &))
2 -wt

± ]
=

I [e ±2-wt± l

i=l 1=1

where carat (*) denotes the estimated quantity, and

wt^ is the weight assigned to the i fc " observation (wt^ = 1.0 in the

"unweighted" case). Appendix A discusses several common applications
for weighted least squares.

The user must supply both initial values for the parameters, and a

subroutine [see §D, argument NLSMDL] to compute f^x^,^), 1 = 1, . . . , N,

i.e., the predicted values of the dependent variable given the independent
variables and the parameter values from iteration I, % = 1, 2, ... . Initial
parameter values should be chosen with care, since good values can
significantly reduce computer time.

STARPAC provides a variety of subroutines to accommodate many levels of
user sophistication and problem difficulty. Users are directed to §B for a

brief description of the features and subroutines available. The actual
declaration and CALL statements are given in §C, and the subroutine arguments
are defined in §D. Generally, the computational details provided in §E are
not needed unless difficulties arise. Sample programs and their output are
shown in %¥

.

B . Subroutine Descriptions

B .1 Nonlinear Least Squares Estimation Subroutines

The simplest of the 12 nonlinear least squares estimation subroutines,
NLS, requires neither user-supplied weights nor analytic derivatives. The
estimated results and a variety of statistics are automatically summarized in

a five-part printed report, and the estimated parameters and residuals are
returned to the user via the subroutine argument list (level one control,

described below). Most nonlinear least squares problems can be solved using
NLS.

The other 11 estimation subroutines add the weighting, derivative, and
level two and three control features both singly and in combination, providing
greater flexibility to the user at the price of less simplicity. These
features are indicated by the suffix letter(s) on the subroutine name (e.g.,

NLSS and NLSWDC).
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• Suffix W indicates user-supplied weights.

• Suffix D indicates user-supplied (analytic) derivatives.

• Suffix C indicates level two control of the computations.

m Suffix S indicates level three control of the computations.

The three levels of computation and printed output control are described
as follows.

o In level one, a five-part printed report is automatically provided
[see §E.l.b], and the estimated model parameters and residuals are
returned to the user via the argument list.

• Level two also returns the estimated parameters and residuals, and,

in addition, allows the user to supply arguments to indicate
- a subset of the model parameters to be treated as constants,
with their values held fixed at their input values;

- either the step sizes used to compute the numerical
approximations to the derivative [see §E.2], or, when
user-supplied analytic derivatives are used, whether they will
be checked [see §E.3];

- the maximum number of iterations allowed;
- the convergence criteria;
- the scale (i.e., the typical size) of each parameter;
- the maximum change allowed in the parameters at the first

iteration;
- how the variance-covariance matrix is to be approximated; and
- the amount of printed output desired.

• Level three has all the features of level two, and, in addition
returns the following estimated values via the argument list:

- the number of nonzero weighted observations (only when a

weighted analysis is performed);
- the number of parameters actually estimated;
- the residual standard deviation;
- the predicted values;
- the standard deviations of the predicted values;
- the standardized residuals; and
- the variance-covariance matrix of the estimated parameters.

B .2 Derivative Step Size Selection Subroutines

When the partial derivatives used in the nonlinear least squares solution
are not available analytically, STARPAC subroutines approximate them
numerically. In this case, the subroutines can select optimum step sizes for
approximating the derivatives [see §E.2]. The user also has the option of
computing these step sizes independently of the estimation process by calling
either of the two step size selection subroutines directly. For example, when
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planning to use the parameter fixing capability [see §D, argument IFIXED] to

examine several subsets of the parameters of a general model, computing the
step sizes first and passing them to the estimation subroutine is more
efficient than recomputing them each time the estimation subroutine is
called.

The simplest of the two user-callable step size selection subroutines,
STPLS, summarizes the step size selection information for each parameter in a

printed report, and returns the step sizes to the user via the subroutine
argument list.

The second step size selection subroutine, STPLSC, differs from STPLS
only in that it enables the user to supply arguments to indicate

- the number of reliable digits in the model results;
- the number of exemptions allowed by the acceptance criteria;
- the scale (i.e., the typical size) of each parameter; and
- the amount of printed output desired.

B .3 Derivative Checking Subroutines

When the partial derivatives used in the nonlinear least squares solution
are available analytically, the user can code them for use by the estimation
subroutines [see §D, argument NLSDRV] . Because coding errors are a common
problem with user-supplied derivatives, the STARPAC estimation subroutines
automatically check the validity of the user-supplied derivative code by
comparing its results to numerically approximated values for the derivative.
When the results are questionable, the checking procedure attempts to

determine whether the problem lies with the user's code or with the accuracy
of the numerical approximation [see §E.3]. Although the checking procedure is

automatically available to the estimation subroutines which accept
user-supplied derivatives, the user may want to check the derivative code
independently of the estimation process. In these cases, the user can call
either of the two derivative checking subroutines directly, and suppress
checking by the estimation subroutines. [See §D, argument IDRVCK.

]

The simplest of the two derivative checking subroutines, DCKLS,

summarizes the results of the check in a printed report.

The second derivative checking subroutine, DCKLSC, differs from DCKLS
only in that it enables the user to supply arguments to indicate

- the number of reliable digits in the model results;
- the agreement tolerance;
- the scale (i.e. , the typical size) of each parameter;
- the row at which the derivative is to be checked; and
- the amount of printed output desired.

2-1.4



C . Subroutine Declaration and CALL Statements

NOTE: Argument definitions and sample programs are given in §D and §F

,

respectively. The conventions used to present the following declaration and
CALL statments are given in the Introduction to STARPAC [Donaldson and Tryon,
1983, chapter 1, §B, and §D] .

Nonlinear Least Squares Estimation Subroutines

The <basic declaration block> identifies declaration statements that are
needed by all of the nonlinear least squares estimation subroutines. The user
should substitute the following four statements for each occurrence of <basic
declaration block> given below.

<real> Y(n), XM(n,r?), ?AR(npar) , RES(^?)

DOUBLE PRECISION DSTAK( Idstak)
COMMON /CSTAK/ DSTAK
EXTERNAL NLSMDL

NLS: Unweighted nonlinear least squares regression; numerically
approximated derivatives; five-part printed report; minimal return of
results.

<basic declaration block>

CALL NLS (Y, XM , N, M, IXM , NLSMDL, PAR, NPAR, RES, LDSTAK)

NLSC: Unweighted nonlinear least squares regression; numerically
approximated derivatives; user-supplied control values; minimal return
of results.

<basic declaration block>
INTEGER IFIXED( npar)
<real> ST?(n par) , STOPSS, STOPP, SCALE(npar) , DELTA

CALL NLSC (Y, XM , N, M, IXM, NLSMDL, PAR, NPAR, RES, LDSTAK,
1 IFIXED, STP, MIT, STOPSS, STOPP, SCALE, DELTA, IVAPRX, NPRT)
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NLSS: Unweighted nonlinear least squares regression; numerically

approximated derivatives; user-supplied control values; maximal return
of results.

<basic declaration block>
INTEGER IFIXEV( npar)
<real> ST? (n par) , STOPSS, STOPP, SCKLE(npar) , DELTA
<real> RSD, PV( n) , SDPV( n) , SDRES(w), VCV(npare 3npare)

CALL NLSS (Y, XM , N, M, IXM , NLSMDL, PAR, NPAR, RES, LDSTAK,
1 IFIXED, STP, MIT, STOPSS, STOPP, SCALE, DELTA, IVAPRX, NPRT,

2 NPARE, RSD, PV, SDPV, SDRES, VCV, IVCV)

NLSW: Weighted nonlinear least squares regression; numerically approximated
derivatives; five-part printed report; minimal return of results.

<basic declaration block>
<real> WT(rz)

CALL NLSW (Y, WT, XM , N, M, IXM, NLSMDL, PAR, NPAR, RES, LDSTAK)

NLSWC: Weighted nonlinear least squares regression; numerically approximated
derivatives; user-supplied, control values; minimal return of results.

<basic declaration block>
INTEGER IFIXED(rzpar)

<real> WT(rz)

<real> STP (n par) , STOPSS, STOPP, SCALE( npar) , DELTA

CALL NLSWC (Y, WT, XM , N, M, IXM, NLSMDL, PAR, NPAR, RES, LDSTAK,
1 IFIXED, STP, MIT, STOPSS, STOPP, SCALE, DELTA, IVAPRX, NPRT)
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NLSWS: Weighted nonlinear least squares regression; numerically approximated
derivatives; user-supplied control values; maximal return of results,

<basic declaration block>
INTEGER IFIXED( n par)

<real> WT(n)
<real> STP(npar), STOPSS, STOPP, SCALE(npar) , DELTA
<real> RSD, PV( n) , SDPV( n) , SDRES(n), VCV ( n par

e

s n pare)

CALL NLSWS (Y, WT, XM , N, M, IXM , NLSMDL, PAR, NPAR, RES, LDSTAK,
1 IFIXED, STP, MIT, STOPSS, STOPP, SCALE, DELTA, IVAPRX, NPRT,
2 NNZW, NPARE, RSD, PV, SDPV, SDRES, VCV, IVCV)

NLSD: Unweighted nonlinear least squares regression; user-supplied
derivatives; five-part printed report; minimal return of results,

<basic declaration block>
EXTERNAL NLSDRV

CALL NLSD (Y, XM, N, M, IXM, NLSMDL, NLSDRV, PAR, NPAR, RES,
1 LDSTAK)

NLSDC: Unweighted nonlinear least squares regression; user-supplied
derivatives; user-supplied control values; minimal return of results,

<basic declaration block>
EXTERNAL NLSDRV
INTEGER IFIXED( npar)

<real> STOPSS, STOPP, SCALE(npar), DELTA

CALL NLSDC (Y, XM , N, M, IXM, NLSMDL, NLSDRV, PAR, NPAR, RES,
1 LDSTAK, IFIXED, IDRVCK, MIT, STOPSS, STOPP, SCALE, DELTA,
2 IVAPRX, NPRT)
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NLSDS: Unweighted nonlinear least squares regression; user-supplied
derivatives; user-supplied control values; maximal return of results,

<basic declaration block>
EXTERNAL NLSDRV
INTEGER IFIXED(npa^)
<real> STOPSS, STOPP, SCALE(npar), DELTA
<real> RSD, PV(w), SDPV( n) , SDRES(n), VCV

(

n par

e

3n pare)

CALL NLSDS (Y, XM , N, M, IXM , NLSMDL, NLSDRV, PAR, NPAR, RES,
1 LDSTAK, IFIXED, TDRVCK, MIT, STOPSS, STOPP, SCALE, DELTA,
2 IVAPRX, NPRT, NPARE, RSD, PV, SDPV, SDRES, VCV, IVCV)

NLSUD: Weighted nonlinear least squares regression; user-supplied
derivatives; five-part printed report; minimal return of results.

<basic declaration block>
EXTERNAL NLSDRV
<real> WT(rz)

CALL NLSWD (Y, WT, XM , N, M, IXM, NLSMDL, NLSDRV, PAR, NPAR, RES,
1 LDSTAK)

NLSWDC: Weighted nonlinear least squares regression; user-supplied
derivatives; user-supplied control values; minimal return of results,

<basic declaration block>
EXTERNAL NLSDRV
INTEGER IFIXED( npar)
<real> WTO)
<real> STOPSS, STOPP, SCALE(npar), DELTA

CALL NLSWDC (Y, WT, XM , N, M, IXM, NLSMDL, NLSDRV, PAR, NPAR, RES,
1 LDSTAK, IFIXED, IDRVCK, MIT, STOPSS, STOPP, SCALE, DELTA,
2 IVAPRX, NPRT)
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NLSWDS: Weighted nonlinear least squares regression; user-supplied

derivatives; user-supplied control values; maximal return of results,

<basic declaration block>
EXTERNAL NLSDRV
INTEGER IFIXED(npar)
<real> WT(w)
<real> STOPSS, STOPP, SCALE( npar) , DELTA
<real> RSD, PV( n) , SDPV( n) , SDRES(n), VCV (n pare } n pare)

CALL NLSWDS (Y, WT, XM , N, M, IXM, NLSMDL, NLSDRV, PAR, NPAR, RES,
1 LDSTAK, IFIXED, IDRVCK, MIT, STOPSS, STOPP, SCALE, DELTA,
2 IVAPRX, NPRT, NNZW, NPARE, RSD, PV, SDPV, SDRES, VCV, IVCV)

Step Size Selection Subroutines

STPLS: Optimum step size selection for numerically approximating
derivatives; printed report; maximal return of results.

<real> XM(n,w), FkR(npar) , ST?(npar)
DOUBLE PRECISION DSTAK( Idstak)
COMMON /CSTAK/ DSTAK
EXTERNAL NLSMDL

CALL STPLS (XM, N, M, IXM, NLSMDL, PAR, NPAR, LDSTAK, STP)

S^PLSC: Optimum step size selection for numerically approximating
derivatives; user-supplied control values; maximal return of results,

<real> m(n,m) , PAR( npar)
y
STP(npar)

<real> EXMPT, SCALE(npar)
DOUBLE PRECISION DSTAK( Idstak)
COMMON /CSTAK/ DSTAK
EXTERNAL NLSMDL

CALL STPLSC (XM, N, M, IXM, NLSMDL, PAR, NPAR, LDSTAK, STP,

1 NETA, EXMPT, SCALE, NPRT)
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Derivative Checking Subroutines

DCKLS: Derivative checking; -printed report; maximal return of results,

<real> XM(n,m), PAR( npar) t
ST?(npar)

DOUBLE PRECISION DSTAK( Idstak)
COMMON /CSTAK/ DSTAK
EXTERNAL NLSMDL, NLSDRV

CALL DCKLS (XM, N, M, IXM , NLSMDL, NLSDRV, PAR, NPAR, LDSTAK)

DCKLSC: Derivative checking; user-supplied control values; maximal return of
results.

<real> XM(n,m), PAR( npar), STP(npar)
<real> SCALE(npar)
DOUBLE PRECISION DSTAK( Idstak)
COMMON /CSTAK/ DSTAK
EXTERNAL NLSMDL, NLSDRV

CALL DCKLSC (XM , N, M, IXM, NLSMDL, NLSDRV, PAR, NPAR, LDSTAK,
1 NETA, NTAU, SCALE, NROW , NPRT)

D. Dictionary of Subroutine Arguments and COMMON Variables

NOTE: —> indicates that the argument is input to the subroutine, and that
the input value is preserved;

<— indicates that the argument is returned by the subroutine;
<-> indicates that the argument is input to the subroutine and that

the input value will be overwritten by the subroutine;
indicates that the argument is input to some subroutines and is
returned by others;

*** indicates that the argument is a subroutine name;
••• indicates that the variable is passed via COMMON.

<— The matrix of exact dimension N by NPAR that contains the partial
derivatives of the model with respect to each parameter,
PAR(k) , k = 1, ..., NPAR. This argument is used within derivative
subroutine NLSDRV [see argument NLSDRV below].
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DELTA —> The maximum scaled change allowed In the parameters at the first

iteration, i.e., 6q [see §E.l.a]. The default value is 100.0.

When DELTA < 0.0, or when DELTA is not an argument of the
subroutine CALL statement, the default value is used. A smaller
value of DELTA may be appropriate if, at the first iteration, the
computation of the predicted values from the user's model
subroutine produces an arithmetric overflow, or the parameters
leave the region of interest in parameter space. A reasonable
alternative to the default value of DELTA is an upper bound to the
scaled change that the estimated parameters should be allowed to
make on the first iteration,

DELTA = min{ |AmaxB(k) |/SCALE(k), for k = 1, ..., NPAR}

where Amax3(k) is the maximum change allowed for the k tn parameter

at the first iteration.

DSTAK The DOUBLE PRECISION vector in COMMON /CSTAK/ of dimension at
least LDSTAK. DSTAK provides workspace for the computations. The
first LDSTAK locations of DSTAK will be overwritten during
subroutine execution.

EXMPT —> The proportion used to compute the number of observations,
a = EXMPT»N, for which the forward difference quotient derivative
with respect to a given parameter is exempted from meeting the
acceptance criteria for step size selection [see §E.2.a]. The
default value for EXMPT is 0.1 (10 percent). When the
user-supplied value is outside the range [0.0, 1.0], or when EXMPT
is not an argument of the subroutine CALL statement, the default
value is used.

IDRVCK —> The indicator variable used to designate whether or not the

user-supplied derivative subroutine is to be checked. When
IDRVCK * the derivative is checked, and when IDRVCK =0 it is

not. The default value is IDRVCK * 0. When IDRVCK is not an

argument of the subroutine CALL statement, the default value is

used.

IERR An error flag returned in COMMON /ERRCHK/. [See Donaldson and
Tryon, 1983, chapter 1, §D.5.] Note that using (or not using) the

error flag will not affect any error messages that are
automatically printed, even when the user has suppressed the

normal printed output.

For the estimation subroutines:

IERR = indicates that no errors were detected, and that the
iterations converged satisfactorily.

IERR = 1 indicates that improper input was detected.

continued —

2-1.11



IERR = 2 indicates that the computation of the residual sum of

squares using the initial parameter values produced an
arithmetic overflow. The user should reduce the size
of DELTA or should supply new starting values.

IERR = 3 indicates that the model is computationally singular,
which means the model has too many parameters near the
solution. The user should examine the model and data
to determine and remove the cause of the singularity.

IERR = 4 indicates that at least one of the standardized
residuals could not be computed because its standard
deviation was zero. The validity of the covariance
matrix is questionable.

IERR = 5 indicates false convergence. [See §E.l.a.]
IERR = 6 indicates that convergence was not reached in the

allowed number of iterations or model subroutine
calls. [See argument MIT.]

IERR = 7 indicates that the variance-covariance matrix could
not be computed.

For the step size selection subroutines:

IERR = indicates that no errors were detected, and that all
the step sizes satisfied the selection criteria.

IERR = 1 indicates that improper input was detected.
IERR = 2 indicates that one or more of the step sizes did not

satisfy the selection criteria.

For the derivative checking subroutines:

IERR = indicates that no errors were detected, and that the
user-supplied derivative code appears to be correct.

IERR = 1 indicates that improper input was detected.
IERR = 2 indicates that the user-supplied derivative code and

numerical derivatives do not agree for at least one
parameter, but that in each case of disagreement the
accuracy of the numerical derivatives is questionable.
Further testing is suggested.

IERR = 3 indicates that the user-supplied derivative code and
numerical derivatives do not agree for at least one
parameter, and in at least one instance of
disagreement there is no reason to doubt the numerical
derivatives.

IFIXED —> The vector of dimension at least NPAR that contains values used to

indicate whether the corresponding parameter in PAR is to be
treated as a fixed constant or is to be estimated. If

IFIXED(I) > 0, PAR(I) will be held fixed at its input value; if

IFIXED(I) = 0, PAR(I) will be estimated using the least squares

continued —
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IVCV

procedure described in §A. The default values are IFIXED(I) = 0,

I = 1, •••, NPAR, i.e., all parameters are estimated. When
IFIXED(l) < -1, or when IFIXED is not an argument of the
subroutine CALL statement, the default value will be used.

•> The exact value of the first dimension of the matrix VCV as

specified in the calling program.

IVAPRX —> The indicator variable used to specify how the variance-covariance
matrix, VCV, is to be approximated. Three approximations are
available:

(1) VCV = RSD 2 «(DT .W.D)

(2) VCV = RSD 2 .H~1

(3) VCV = RSD 2 .H
_1

.(DT .W.D).H-1

where

H = DT .W.D +
{ y ei'wt. .(8 2 e

i
/3B(j)96(k)) for j = 1, ..., NPAR

i=l and k = 1, . .
.

, NPAR}

;

W is an N by N diagonal matrix of user-supplied weights,

W = diag{wtis i = 1, ..., N},

when a weighted analysis is performed, and is the identity matrix
otherwise.

Approximation (1) is based on the assumption that H ~ D »W«D

because the residuals are sufficiently small at the solution;
approximation (2) is based on the assumption that the necessary
conditions for asymptotic maximum likelihood theory have been met;
and approximation (3) is based on the assumption that the

necessary conditions for asymptotic maximum likelihood theory may
be violated. All approximations to the variance-covariance matrix
are subject to sampling variation, however, because they are
computed using the estimated parameter values. The
variance-covariance matrix computed for any particular nonlinear
least squares solution should thus be regarded as only a rough
estimate, correct to within an order of magnitude [Bard, 1974].

If IVAPRX = 1 or 4 then approximation (1) is used;
= 2 or 5 then approximation (2) is used; and
= 3 or 6 then approximation (3) is used.

If IVAPRX =1, 2, or 3, then, when user-supplied analytic
derivatives are available [see argument NLSDRV] , they are used to
compute VCV; if IVAPRX =4, 5, or 6, then only the predicted
values from the model subroutine are used to compute VCV. When
analytic derivatives are available, options 1, 2, or 3, will
generally result in a faster, more accurate computation of VCV.

continued —
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The default value for IVAPRX is 1. When argument IVAPRX is

outside the range [1, 6], or when IVAPRX is not an argument of the
subroutine CALL statement, then the default value will be used.

IXM —> The exact value of the first dimension of the matrix XM as
specified in the calling program.

LDSTAK —> The length of the DOUBLE PRECISION workspace vector DSTAK. LDSTAK
must equal or exceed the appropriate value given below. If the
single precision version of STARPAC is being used, P = 0.5
otherwise P = 1.0 [see Donaldson and Tryon, 1983, chapter 1, $B]

.

For NLS, NLSC, NLSS, NLSW, NLSWC, NLSWS:

LDSTAK > 27 + max) IS* (N+NPAR) , 30+NPAREJ +

P.max{lS'10.N, 94+N« (3+NPAR)+(3 .NPARE2+37.NPARE) /2

}

where IS = 1 if default values are used for the derivative
step sizes, and IS = otherwise.

For NLSD, NLSDC , NLSDS, NLSWD, NLSWDC , NLSWDS:

LDSTAK > 45 + NPAR + P« (94+N • (3+NPAR)+(3 .NPARE 2+35» NPARE) /2
)

For STPLS, STPLSC:

LDSTAK > 27 + (N+NPAR) + P«10-N

For DCKLS, DCKLSC:

LDSTAK > 14 + NPAR + P- (N-NPAR+N+NPAR)

M —> The number of independent variables, i.e., the number of columns
of data in XM.

MIT —> The maximum number of iterations allowed. This argument is also

used to compute the maximum number of model subroutine calls,
(2»MIT). The iterations will stop if either limit is reached,
although, as a rule, the maximum number of iterations will be
reached first. The default value for the maximum number of

iterations is 21. When MIT < 0, or when MIT is not an argument of

the subroutine CALL statement, the default value will be used.

N —> The number of observations.
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NETA —> The number of reliable decimal digits in the predicted values (PV)

computed by the user's model subroutine. The default value for
NETA is experimentally determined by the procedure described in
Appendix B. The default value will be used when NETA is not an
argument in the subroutine CALL statement, or when the
user-supplied value of NETA is outside the range [1, DIGITS],
where DIGITS is the number of decimal digits carried by the user's
computer for a single precision value when the single precision
version of STARPAC is being used and is the number carried for a

double precision value otherwise.

NLSDRV *** The name of the user-supplied subroutine that computes the partial
derivative matrix (Jacobian) . This argument must be listed in an
EXTERNAL statement in the program which calls the STARPAC
estimation or derivative checking subroutine. The form of the
derivative subroutine argument list and dimensioning statements
must be exactly as shown below, although if there is only one
independent variable (M = 1), XM may be declared to be a vector
with dimension IXM

.

SUBROUTINE NLSDRV (PAR, NPAR, XM , N, M, IXM, D)

<real> PAR(NPAR), XM(IXM,M), D(N,NPAR)

< Computations for D(I,J),
1=1, . .

.
, N and J = 1 , . .

.
, NPAR >

RETURN
END

NLSMDL *** The name of the user-supplied subroutine that computes the
predicted value of the dependent variable given the independent
variables and the current values of the model parameters. This
argument must be listed in an EXTERNAL statement in the program
which calls the STARPAC estimation, step size selection, and/or
derivative checking subroutines. The form of the model subroutine
argument list and dimensioning statements must be exactly as shown
below, although if there is only one independent variable (M = 1)

,

XM may be declared to be a vector with dimension IXM.

SUBROUTINE NLSMDL (PAR, NPAR, XM , N, M, IXM, PV)

<real> PAR(NPAR) , XM(IXM,M), PV(N)

< Computations for PV(I), 1=1, ..., N >

RETURN
END

NNZW <— The number of observations with nonzero weights.
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NPAR —> The number of parameters in the model, including both those held

fixed at their starting values, and those which are to be
estimated.

NPARE <— The number of parameters actually estimated, i.e., the number of
zero elements in IFIXED. N.B. This value is returned by the
estimation subroutines.

NPRT —> The argument controlling printed output.

For the estimation subroutines:

NPRT is a five-digit integer, in which the value of the 1^

digit (counting from left to right) is used to control the Itn

section of the output.

If the I tn digit = the output from the I tn section is
suppressed;

= 1 the brief form of the I tn section is
given;

> 2 the full form of the Itn section is
given.

The default value for NPRT is 11112. When NPRT < -1, or when
NPRT is not an argument in the subroutine CALL statement, the
default value will be used. If the convergence criteria are
not satisfied, the subroutine gives a suitable warning and
provides a printed report even if NPRT =0. A full discussion
of the printed output is given in §E.l.b, and is summarized as
follows.
Section 1 lists the starting estimates and control values.

Brief output and full output are the same for this

section.
Section 2 reports the results of the iterations. Brief output

includes information only about the first and last
iteration while full output includes information
about all of the iterations.

Section 3 provides information for each observation based on

the final solution. Brief output includes
information for the first 40 observations, while full

output provides the information for all of the data.

Section 4 is a set of four residual plots. Brief output and
full output are the same for this section.

Section 5 is the final summary of the estimated parameters.
Brief output does not include printing the

variance-covariance matrix, while full output does.

For the step size selection and derivative checking subroutines:

If NPRT = the output is suppressed.
If NPRT * the output is provided.

If the acceptance criteria were not met, then a printed report
is provided even if NPRT = 0.
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NROW —> The row of the independent variable matrix at which the

user-supplied derivative code is to be checked. The default value
is the first row with no independent variables equal to zero; when
all rows have one or more independent variables equal to zero, row

one will be used for the default value. When the user-supplied
value is outside the range [1, N] , or when NROW is not an argument
of the subroutine CALL statement, the default value will be used.

NTAU —> The agreement tolerance, i.e., the number of digits of agreement
required between the user-supplied derivatives and the derivatives
numerically approximated by the derivative checking subroutine.
The default value is NETA/4 . When the user-supplied value of NTAU
is outside the range [1, NETA/2], or when NTAU is not an argument
of the subroutine CALL statement, the default value will be" tised.

PAR The vector of dimension at least NPAR that contains the parameter
values. For all estimation subroutines it must contain initial
values for the parameters on input and will contain the final
values on return. For the step size and derivative checking
subroutines it must contain the parameter values at which the
operations are to be performed.

PV <— The vector of dimension at least N that contains the predicted

values of the dependent variable at the solution,

PV(i) = fiCxi.3) = y ± ,
for i = 1 , .

.
, N.

RES <— The vector of dimension at least N that contains the residuals at

the solution,

RES(i) = y(i) - fiCxj.B) - y(i) - y(i) = e(i) , for i = 1, ..., N.

RSD <— The residual standard deviation at the solution,

RSD = (RSS(3)/(NNZW-NPARE))
1/2

.

SCALE —> The vector of dimension at least NPAR that contains the scale, or

typical size, of each parameter. The vector SCALE is used to
normalize the size of each parameter so that

3(j)/SCALE(j) B(k)/SCALE(k) for k = 1, . . ., NPAR
and .1

= 1, • • . , NPAR.

Values of |SCALE(k)| > I B(k) I can be used to increase the step
size in cases where the model function is known to be insensitive
to small changes in the value (3(k) .

For the estimation subroutines:

The default values for SCALE are selected by the NL2S0L
algorithm [Dennis et al. , 1981a and 1981b] and are updated at

each iteration. When SCALE is not an argument in the
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subroutine CALL statement, or when the user-supplied value for

SCALE(l) < 0, the default procedure will be used to select
scale values. When SCALE(l) > 0, values of SCALE(k) < 0,

k = 2, ..., NPAR, will be interpreted as an input error.

User-supplied scale values may be either a vector of the
typical size of each parameter or a vector of ones if the
typical sizes of the parameters are roughly equal;
user-supplied scale values can sometimes result in reduced
computing time since these values are not updated at each
iteration.

For the derivative checking and step size selection subroutines:

The default values of SCALE are defined as:

SCALE(k) = 1.0 if 3(k) = 0.0

SCALE(k) = l3(k)| otherwise
for k = 1, . .. , NPAR.

When SCALE is not an argument in the subroutine CALL statement,
or when the user-supplied value of |SCALE(k)| < l3(k)|, the
default value for SCALE(k) is used. When SCALE(l) < 0, the
default values will be used for SCALE(k), k = 1, ..., NPAR.
When SCALE(l) > 0, values of SCALE(k)
will be interpreted as an input error.

0, k = 2, NPAR,

SDPV

SDRES

<— The vector of dimension at least N that contains an approximation
to the standard deviation of each predicted value at the
solution,

SDPV(i) = the i
th diagonal element of [rSD 2 . (D. VCV.D r

)

]

1/2

for i = 1, ..., N. This approximation is based on a linearization

of the model in the neighborhood of the solution; the validity of
the approximation depends on the nonlinearity of the model. This
approximation may be extremely inaccurate for a problem with a

highly nonlinear model.

<-- The vector of dimension at least N that contains an approximation
to the standardized residuals at the solution,

SDRES(i) = RES(i)/[(RSD 2 /WT(i)) - SDPV(i) 2
]

1/2

for i = 1, . . . , N, which is the itn residual divided by its

individual estimated standard deviation. This approximation is

based on a linearization of the model in the neighborhood of the

solution; the validity of the approximation depends on the

nonlinearity of the model. This approximation may be extremely
inaccurate for a problem with a highly nonlinear model.
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STOPP —> The stopping value for the convergence test based on the maximum

scaled relative change in the parameters at the most recent
iteration. The convergence criterion is satisfied if the current
step is a Newton step [see Dennis et al. , 1981a] and

max{|g8.
1. 1
(k)-3g(k)|/SCALE(k) fork = 1, ..., NPAR} < ST0PP

max{(le £+1 (k)|+|B £
(k)| J/SCALE(k) for k = 1, .... NPAR}

This convergence test is roughly equivalent to the test based on
the maximum relative change in each parameter as measured by

max{ l3£+i(k)-6 £ (k)|/l3 £
(k)| fork = 1, ..., NPAR} . STOPP is not a

scale-dependent value; if its value is 10-t+ , then this criteria
will he met when the first four digits of each parameter are the
same at two successive iterations, regardless of the size of the
parameter values.

The default value is approximately 10~DIGITS / 2
, where DIGITS is

the number of decimal digits carried by the user's computer for a

single precision value when the single precision version of
STARPAC is being used, and is the number carried for a double
precision value otherwise. When the user-supplied value for STOPP
is outside the interval [0.0, 1.0], or when STOPP is not an
argument of the subroutine CALL statement, the default value will
be used.

STOPSS —> The stopping value for the convergence test based on the ratio of
the forecasted change in the residual sum of squares, As 2

£+l» to

the current residual sum of squares, s 2
%

= RSSCB^) /(NNZW-NPARE)

.

The convergence criterion is satisfied if certain conditions are
met [see Dennis et al. , 1981a] and

As 2
£+1 /s

2
£ < STOPSS.

This convergence test is roughly equivalent to the test based on
the relative change in the residual standard deviation between two

iterations % and £+1 as measured by (s^ - s^+i) /$ %• STOPSS is not
a scale-dependent value; if its value is 10~ 5

, this criteria will
be met when the first five digits of the residual sum of squares
are the same at two successive iterations regardless of the size
of the residual sum of squares.

The default value is approximately the maximum of 10 and
10-2 * DIGITS/3

^ Where DIGITS is the number of decimal digits
carried by the user's computer for a single precision value when
the single precision version of STARPAC is being used, and is the
number carried for a double precision value otherwise. When the
user-supplied value for STOPSS is outside the interval
[10"DIGiTS

, 0.1], or when STOPSS is not an argument of the
subroutine CALL statement, the default value will be used.
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STP The vector of dimension at least NPAR that contains the relative

step sizes used to approximate the derivative matrix numerically.
It is input to the estimation subroutines and returned from the
step size selection subroutines. The procedure used to select the
default values is described in §E.2. For the estimation
subroutines, when STP is not an argument of the subroutine CALL
statement or when STP(l) < 0, the default values will be used for
all of the step sizes, and when STP(l) > 0, values of STP(k) < 0,

k = 2, ..., NPAR, will be interpreted as an input error.

VCV <— The matrix of dimension at least NPARE by NPARE that contains the
variance-covariance matrix of the estimated parameters,
approximated as designated by argument IVAPRX. The parameters
which are held fixed [see argument IFIXED] are not included in the
variance-covariance matrix.

The approximation of the variance-covariance matrix is based on a

linearization of the model in the neighborhood of the solution;
the validity of the approximation depends on the nonlinearity of
the model. This approximation may be extremely inaccurate for a

problem with a highly nonlinear model.

WT —> The vector of dimension at least N that contains the weights.
Negative weights are not allowed and the number of nonzero weights
must equal or exceed the number of parameters being estimated. A
zero weight eliminates the corresponding observation from the
analysis, although the predicted values and standard deviations of
the predicted values are still computed. [See Appendix A.]

XM —> The matrix of dimension at least N by M whose j column contains
the N values of the j

tn independent variable, j = 1, ..., M.

Y —> The vector of dimension at least N that contains the dependent
variable.

E . Computational Methods

E .1 Nonlinear Least Squares Estimation

E.l.a The Nonlinear Least Squares Algorithm

The nonlinear least squares estimation subroutines use the NL2S0L
software package written by Dennis et al. [1981a and 1981b] . The observations
of the dependent variable, which are measured with error, are iteratively fit

to a nonlinear model by minimizing the sums of squares of the errors as

described in §A. The iterations continue until the convergence criteria based
on the change in the parameter values or in the residual sum of squares are
satisfied [see §D, arguments STOPP and STOPSS] , the maximum number of

iterations (or model subroutine calls) is reached [see §D, argument MIT], or
the iterations are terminated due to singularity in the model or false
convergence. All but the first of these stopping conditions may indicate
computational problems and will produce an error report. [See Donaldson and
Tryon, 1983, §D.5.]
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Singular convergence means that the model contains too many parameters,

at least near the solution, while false convergence can indicate that either
STOPSS or STOPP is set too small for the accuracy to which the model and its
derivatives are being computed, or that there is an error or discontinuity in
the derivative. Users should examine their models to determine and correct
the underlying cause of singular or false convergence.

Iterative procedures for solving nonlinear least squares problems are
discussed in Dennis and Schnabel [1983] , Draper and Smith [1981] , and Kennedy
and Gentle [1980] . The specific procedure used in STARPAC is as follows. At

iteration £+1 the values of the parameter vector $£+i are given by

H+l = H ~ (V-W' D
*
+ S

i
+ A jJ

_1
-D£T - W ' e

)t

T

subject to the restriction that

NPAR

{ I [(0£+l(k > " Mk))/SCALE(k)]2}l/2 < 6£>
k=l

where

NPAR is the number of parameters.

is the vector of NPAR estimated parameter values from the I

i teration.

th

is the N by NPAR matrix of the partial derivatives,

D
£
(i,k) = 8f

i
(x

i ,B £ )/36 )l
(k) for i = 1, . . ., N

and k = 1, . .
.

, NPAR.

W is an N by N diagonal matrix of user-supplied weights,
W = diag{wt^, i = 1, ..., N}, when a weighted analysis is performed,

and is the identity matrix otherwise.

is an approximation to the exact term S^* in the matrix of second
order terms (Hessian) of the Taylor series expansion of the residual
sum of squares function,

N

S **(j> k )
=

I [e £i -wt i
.(82e

£(i)/3B Ji
(j)8B £

(k))],

i=l

e
£

SCALE

for j = 1, ..., NPAR, and k = 1, ..., NPAR.

is the vector of the N residuals from the previous iteration.

is the vector of the scale value (i.e., the typical size) of each of

the NPAR parameters. They are either selected by STARPAC or are

supplied by the user via subroutine argument SCALE [see §D]

.
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6« is the adaptively chosen diameter of the trust region, i.e., the
region in which the local approximation to the user's model function
is reliable. At each iteration i, 5^ is computed based on information
from the previous iteration. At the first iteration, the initial
value, 6q, is supplied by argument DELTA [see §D] , which can be used
to control the change in the parameters permitted at the first
i teration.

A £
is an NPAR by NPAR diagonal matrix, A

£
= diagj X^/SCALECk) , k = 1, ...,

NPAR} , where Ag, is chosen to approximate the smallest non-negative
number such that the restriction given above on the size of the change
in the parameters is satisfied.

The second order term S^
, which is expensive and difficult to compute

accurately, is important only if it is large compared to the term D^^.y.n.,
that is, when the residuals are large or the model is highly nonlinear. When
S^ is large compared to D£T »W»D£, algorithms which ignore it, such as

Levenberg-Marquardt or Gauss-Newton, may converge slowly. The NL2S0L
algorithm used by STARPAC, however, adaptively decides when inclusion of this
terra is necessary for reliable results and uses an inexpensive approximation
to Sj£ in those cases.

The matrix, D, of partial derivatives of the model with respect to each
parameter is either computed analytically using a user-supplied subroutine
[see §D, argument NLSDRV], or is numerically approximated using forward
difference quotients as described in §E.2. When the derivatives are
approximated numerically, the least squares solution, especially the
variance-covariance matrix, can be sensitive to the step sizes used for the
approximation. The user may want to use STARPAC subroutines STPLS or STPLSC
to recompute the step sizes at the solution provided by the estimation
subroutines to assure that the step sizes which were used are still
acceptable. If there is a significant change in the step size, the least
squares solution should be recomputed with the new step sizes from the current
point. In addition, if the estimation subroutine has convergence problems,
the user may want to recompute the step sizes with the most recent parameter
values to see if a change in the curvature of the model, which will be
reflected as a change in the optimum step sizes, is causing the problem.

Dennis et al. [1981a] provides a detailed description of the algorithm
used in STARPAC. STARPAC also includes the subroutines NL2S0L, NL2SN0, and
NL2ITR, which they reference, and which can be used as documented by them.

[See Dennis et al. , 1981b.]

E.l.b Computed Results and Printed Output
From the Nonlinear Least Squares Regression Subroutines

The argument controlling the printed output, NPRT, is discussed in §D.

The output from the nonlinear least squares estimation subroutines consists of

five sections, several of which include tables summarizing the results. In

the following descriptions, the actual table headings are given by the

underlined, uppercase phrases. Results which correspond to input or returned
subroutine CALL statement arguments are identified by the argument name in
upper case (not underlined)

.
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Section 1 provides a summary of the initial estimates and control values.

It lists the following information.

• The initial values of the parameters, PAR, and whether they are to be
held fixed or not, IFIXED.

• The scale values, SCALE.

• Either the step sizes used to approximate the derivatives numerically,
or, when user-supplied (analytic) derivatives are used, the results of
the checking procedure; and the control values used in these
computations as applicable [see §E.2.b and §E.3.b].

• The number of observations, N.

• The number of observations with nonzero weights, NNZW.

9 The number of independent variables, M.

• The maximum number of iterations allowed, MIT.

« The maximum number of model subroutine calls allowed.

• The two convergence criteria, STOPSS and STOPP.

» The maximum change in the parameters allowed at the first iteration,
DELTA.

fl> The residual sum of squares computed using the starting parameter
values.

» The residual standard deviation computed using the starting parameter
values, RSD.

Section 2, lists selected information about each iteration and includes
the reason the iterations were terminated. The information provided for each
iteration includes the following.

• The iteration number.

9 MODEL CALLS : the total number of times since execution began that the

user's model subroutine has been called, not including calls required
to approximate the derivatives numerically.

9 RSD: the residual standard deviation computed using the parameter
values from the current iteration.

• RSS : the residual sum of squares computed using the parameter values
from the current iteration.
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© REL CHNG RSS : the relative change in the residual sum of squares

caused by the current iteration.

• FORECASTED REL CHNG RSS : the forecasted relative change in the
residual sura of squares at the current iteration, and whether this
value was checked against STOPSS ( CHKD = Y) or not ( CHKD = N)

.

• REL CHNG PAR : the maximum scaled relative change in the parameters at
the current iteration, and whether this value was checked against
STOPP ( CHKD = Y) or not ( CHKD = N)

.

• CURRENT PARAMETER VALUES : the estimated parameter values resulting
from the current iteration.

Section 3 provides the following information for each observation,
i = 1, . .

.
, N, based on the final solution.

• ROW: the row number of the observations.

• PREDICTOR VALUES : the values for up to the first three columns of the
independent variable matrix, XM , not including the first column if it
is constant.

• DEPENDENT VARIABLE : the values of the dependent variable, Y.

© PREDICTED VALUE : the estimated predicted values, PV, from the fit.

• STD DEV OF PREP VALUE : the standard deviations of the predicted
values, SDPV.

m RESIDUAL : the error estimates, RES.

• STD RES : the standardized residuals, SDRES.

• WEIGHT : the user-supplied weights, WT, printed only when weighted
analysis is performed.

Section 4, displays the following plots of the standardized residuals.

» The standardized residuals versus row numbers.

• The standardized residuals versus predicted values.

• The standardized residuals versus the standardized residuals lagged by

one observation, that is, SDRES(i) versus SDRES(i-l) , i = 2 . .
. , N.

© The normal probability plot of the standardized residuals.

Section 5, summarizes the following information about the final parameter
estimated and their variances.
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• The variance-covariance matrix, VCV, of the estimated (unfixed)

parameters, and the corresponding correlation matrix,

r jk
= VCV(j,k)/(vCV(j,j) VCV(k,k))

1/2
for j = 1, ..., NPARE
and k = 1, . .

.
, NPARE.

• PARAMETER : the final value of each parameter, PAR(k), k = 1, ...,

NPAR.

• SD OF PAR : the standard deviation of each estimated parameter,

(vCV(k,k)) 1/2 for k = 1, ..., NPAR.

• RATIO : the ratio of each estimated parameter to its standard
deviation,

RATIOk = PAR(k)/(vCV(k,k)) 1/2 for k = 1 , ..., NPAR.

• APPROXIMATE 9 5 PERCENT CONFIDENCE LIMITS : the lower and upper 95
percent confidence limits for each parameter, computed using the
appropriate value of the Student's t distribution with NNZW-NPARE
degrees of freedom.

• the residual sum of squares, RSS(3).

• the residual standard deviation at the solution, RSD.

• the residual degrees of freedom, NNZW-NPARE.

• an approximation to the condition number of the derivative matrix, D

(the Jacobian) , under the assumption that the absolute error in each
column of D is roughly equal. The approximation will be meaningless
if this assumption is not valid; otherwise it will usually
underestimate the actual condition number by a factor of from 2 to 10

[see Dongarra et al. , 1979, p. 9.5].

NOTE : The standard deviation of the predicted values, the standardized
residuals, the variance-covariance matrix, the standard deviations of the
parameters, and the 95 percent confidence limits on the parameters are all
based on a linear approximation to the model in a neighborhood of the
solution; the validity of this approximation depends on the nonlinearity of
the model. The statistics based on this approximation may be extremely
inaccurate for a problem with a highly nonlinear model.

E .2 Step Size Selection

E.2.a The Step Size Selection Algorithm

The STARPAC step size selection subroutines use an algorithm developed by
Schnabel [1982] to compute optimum step sizes for approximating the partial
derivatives of the model with respect to each parameter. Briefly, the
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relative step sizes selected by these subroutines are those which produce
forward difference quotient approximations to the derivative, Df^j that agree
reasonably well with the central difference quotient approximations, D

C(j.
The

central difference quotient approximations are twice as accurate but also
twice as expensive to compute. Since the additional accuracy is not usually
needed, central difference quotient approximations are not used by the
estimation subroutines.

The number of reliable digits in these derivatives is a function of the
step sizes used to compute them. Given properly chosen step sizes, the number
of reliable digits in Df^ and Dccj

will be approximately n/2 and r\
,

respectively, where n is the number of reliable digits in the predicted
values, PV, from the user's model subroutine. For example, if the predicted
values are computed using an iterative procedure (such as quadrature or a

solution of partial differential equations) which is expected to provide five
good digits, then n would be five; if the predicted values are calculated from
a simple algebraic expression translated directly into Fortran code, then n

would (usually) be the number of decimal digits carried by the user's computer
for the results.

The relative step size for B(k), k = 1, ..., NPAR, is initially

STP(k) = 2(1CTNETA/ Y )

1/2
for k = 1, ..., NPAR,

where

Y is the average curvature (estimated by STARPAC) of the model with
respect to 3(k)

.

NETA is the argument used to specify the number of reliable digits, n , in
the model results.

The forward difference quotient approximations with respect to 3(k),

k = 1 , . .
.

, NPAR are then

f i
(x

i ,B
k

) - £± (x±i $)

Dfd (i,k)
= for 1-1, ..., N,

STP(k) -SCALE(k) •SIGN( B(k)

)

where

N is the number of observations.

f^ is the function which models the i tn observation.

Xj is the vector of the values of the M independent variables at the i

observation.

B is the vector of the NPAR parameter values.

th

2-1.26



8 is a vector which has the same values as 8, except that the
k 1

- parameter is equal to

8(k) + (STP(k).SCALE(k).SIGN(3(k))).

SCALE is the vector of the scale value (i.e., of the typical size) of each
of the parameters.

SIGN is a function which returns the sign of its argument.

The central difference approximations to the model derivative with
respect to B(k), k = 1, ..., NPAR, are

f
i
(x ±i B

+h - f± (xlf B-
k
)

Dcd (i,k) = for 1 = 1, ..., N,

3 1/3 .10"NETA/3 .SCALE(k).SIGN(B(k))

where

8 is a vector which has the same values as 8, except that the k*-

parameter is equal to

8(k) + (3
1/3 .10"NETA/3 .SCALE(k).SIGN(8(k))).

—k t" h
8 is a vector which has the same values as 8, except that the k LU

parameter is equal to

B(k) - (3
1/3 .10"NETA/3 .SCALE(k).SIGN(8(k))).

The relative step size is considered acceptable if, for at least N-a
observations,

|D fd (i,k)
- Dcd (i,k)| < min{lO-NETA/4 )10-2| for i = 1, ..... N,

where a is the number of observations exempted from meeting the above
acceptance criterion [see §D, argument EXMPT] . If the step size is not
acceptable, it is adjusted by factors of 10 until the condition is met, or
until no further decrease in the number of failures can be made, although in

no case will the selected relative step size be greater than 1.0 or less than
j^-NETA^

Note that the step size selection subroutines will return the selected
step sizes even when the number of failures exceeds the allowed value; this

condition will be noted by the value of IERR. The detailed printed output
should always be examined for problems discovered by the step size selection
subroutines.
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E.2.b Computed Results and Printed Output
From the Derivative Step Size Selection Subroutines

The argument controlling the printed output, NPRT, is discussed in §D.

The output from the step size selection subroutines consists of a summary
of the input and control values and, for each parameter, the selected relative
step size, the number of observations at which this step size failed the step
size selection criteria, and the row numbers at which the failures occurred.

E .3 Derivative Checking

E.3.a The Derivative Checking Algorithm

The STARPAC derivative checking subroutines use an algorithm developed by
Schnabel [1982] to determine the validity of the user-supplied derivative
subroutine. The user-supplied derivative subroutine is considered correct for
a given row i, i = 1, . .

.
, N, and coefficient B(k) , k = 1, ..., NPAR, if

D fd (i,k)
- D(i,k)| < 10-t |D(i,k)|

where

'fd

is the derivative computed by the user's subroutine.

is the forward difference quotient approximation to the derivative.

[See §E.2.a.]

t is the agreement tolerance, i.e., number of digits of agreement
required between D and Df^, which must be less than or equal to the

number of good digits in Df^. [See §D, argument NTAU.
]

When the agreement tolerance is not satisfied, the checking subroutine
attempts to determine whether the disagreement is due to an error in the
user's code or is due to the inaccuracy of the difference quotient
approximation, caused either by high curvature in the user's model or by

significant roundoff error.

The derivative checking subroutines each check only one row of the

derivative matrix. The user should examine the row at which the derivatives
were checked to ensure that some relation between the coefficients and
independent variables, such as a zero-valued independent variable or a factor
(x^ - 3(k)) when x^ = $(k), is not hiding the effect of an incorrectly
computed derivative. Checking only one row is appropriate since the same code
is frequently used to compute the model function and derivatives at each row

i =1, . .
.

, N, as is the case in the examples shown in §F. If the code used
to express the model function and derivatives is not the same for each row,

then each distinct section of the code should be checked by making multiple
calls to DCKLSC with NROW set to a row within each section. [See §D, argument
NROW.]
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E.3.b Computed Results and Printed Output

From the Derivative Checking Subroutines

The argument controlling the printed output, NPRT, is discussed in §D.

The output for the derivative checking subroutines consists of a summary
of the input and control values, and the results of the derivative checking
test with respect to each of the model parameters, 3(k), k = 1, •••, NPAR.

The possible test results are:

OK -

• The user-supplied derivative and the numerical derivative agree to the

required number of digits.

QUESTIONABLE -

• The user-supplied derivative and the approximated derivative agree to

the required number of digits but both are equal to zero. The user
should recheck the derivative at another row.

• The user-supplied derivative and the approximated derivative do not
agree to the required number of digits, but the user-supplied
derivative is identically zero and the approximated derivative is

approximately zero. The user should recheck the derivative at another
row

.

• The user-supplied derivative and the approximated derivative disagree,
but the user-supplied derivative is identically zero. The user should
recheck the derivative at another row.

o The user-supplied derivative and the approximated derivative disagree,
but the validity of the approximated derivative is questionable
because either the ratio of the relative curvature of the model to the
slope of the model is too high, or SCALE(k) is wrong.

• The user-supplied derivative and the approximated derivative disagree,
but the validity of the estimated derivative is questionable because
the ratio of the relative curvature of the model to the slope of the

model is too high.

INCORRECT -

• The user-supplied derivative and the approximated derivative disagree,

and there is no reason to question the accuracy of the approximated
derivative.
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F . Examples

The sample programs of this section use the model and data given in
example one, pages 428 to 441 of Daniel and Wood [1980]; the model is

f± (x lt 3) = 6(l)-x
1
(l)3( 2

), for i = 1, ..., N.

In the sample program of figure F-la, NLS is used to compute the least
squares solution using numerically approximated derivatives; figures F-lb
through F-lf show the output from NLS.

In sample program of figures F-2a, NLSD is used to compute the least
squares solution given analytic derivatives; figures F-2b through F-2f show
the output from NLSD.

In the example program of figure F-3a, STPLS is used to compute the

optimum step sizes for numerically approximating the derivatives with respect
to each of the parameters, B(k) , k = 1, 2. Figure F-3b shows the output from
STPLS.

In the example program of figure F-4a, DCKLS is used to check the
validity of a user-supplied derivative subroutine. In figure F-4a, the
derivative subroutine has been intentionally coded incorrectly in order to

display the report obtained when the derivative checking subroutine determines
the derivatives are incorrect, and the starting parameter values have been
chosen in order to display the report obtained when the test results are
questionable. Figure F-4b shows the output from DCKLS.
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MAIN PROGRAM!

MODEL SUBROUTINE!

DATAl

Nonlinear Least Squares Estimation

With Numerically Approximated Derivatives

PROGRAM EXAMPL (INPUT, OUTPUT» TAPES INPUT. TAPE6 OUTPUT)

REAL YUO), XM(10»5), PAR«5), RES(IO)
DOUBLE PRECISION DSTAK(2O0)

EXTERNAL NLSMDL

COMMON /CSTAK/ DSTAK

OEFINE VARIABLES FOR VARIOUS DIMENSIONS

LOSTAK 200
IXM 10

READ NUMBER OF PARAMETERS
STARTING VALUES FOR PARAMETERS
NUMBER OF OBSERVATIONS AND NUMBER OF INDEPENDENT VARIABLES
INDEPENDENT AND DEPENDENT VARIABLES

READ (5, 100) NPAR
REAO (5, 101) (PARII), I»1,NPAR)
REAO (5, 100) N, M
READ (5, 101) MXH(I,J), I-1.N)# J"1,M), (Yd), I-1,N)

PRINT TITLE AND CALL NLS TO PERFORM NONLINEAR REGRESSION
WITH NUMERICALLY APPROXIMATED DERIVATIVES

WRITE (6, 102)
CALL NLS (Y, XM, N, H, IXM, NLSMDL, PAR, NPAR, RES, LDSTAK)

STOP

FORMAT STATEMENTS

100 FORMAT (215)
101 FORMAT (6F6.3)
102 FORMAT (1H1, 44HTHIS IS AN EXAMPLE OF STARPAC SUBROUTINE NLS/)

END

SUBROUTINE NLSMDL (PAR, NPAR, XH, N, M, IXM, PV)

SUBROUTINE TO COMPUTE PREDICTED VALUES OF OEPENOENT VARIABLE

REAL PAR(NPAR), XH(IXH,M), PV(N)

DO 10 1-1,

N

PV(I) - PAR(l) * XM(I, 1) • PAR(2)
10 CONTINUE

RETURN
END

0.725 4.000
6 1

1.309 1.471 1.490 1.565 1.611 1.660
2.138 3.421 3.597 4.340 4.662 5.660

Figure F-la

Example program and data using NLS
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Nonlinear Least Squares Estimation
With User-Supplied Analytic Derivatives

MAIN PR06RAMJ

MODEL SUBROUTINEi

DERIVATIVE SUBROUTINE

OATAl

PR06RAM EXANPL (INPUT, OUTPUT, TAPES • INPUT, TAPE6 • OUTPUT)

REAL Y(10)» XM(10,9), PAR(5), REStlO)
DOUBLE PRECISION DSTAM200)

EXTERNAL NLSMDL, NLSDRV

COMMON /CSTAK/ DSTAK

DEFINE VARIABLES FOR VARIOUS DIMENSIONS

LDSTAK • 200
IXM - 10

READ NUMBER OF PARAMETERS
STARTING VALUES FOR PARAMETERS
NUMBER OF OBSERVATIONS AND NUMBER OF INOEPENOENT VARIABLES
INDEPENDENT AND DEPENDENT VARIABLES

READ (9, 100) NPAR
READ (9, 101) (PAR(I), I-1,NPAR)
READ (9, 100) N, M

READ (5, 101) ((XM(I,J), I-1.N), J-1,M), (Yd), I-1,N)

PRINT TITLE ANO CALL NLSD TO PERFORM NONLINEAR REGRESSION
WITH USER-SUPPLIED DERIVATIVES

WRITE (6, 102)
CALL NLSD <Y, XM, N, M, IXM, NLSMOL, NLSDRV, PAR, NPAR, RES,

* LDSTAK)

STOP

FORMAT STATEMENTS

100 FORMAT (215)
101 FORMAT (6F6.3)
102 FORMAT (1H1, 44HTHIS IS AN EXAMPLE OF STARPAC SUBROUTINE NLSD/)

END

SUBROUTINE NLSMDL (PAR, NPAR, XM, N, M, IXM, PV

)

SUBROUTINE TO COMPUTE PREDICTED VALUES OF DEPENDENT VARIABLE

REAL PAR(NPAR), XM(IXM,M), PV(N)

DO 10 I"1,N
PV(I> • PAR(l) XM(I, 1) • PAR(2)

10 CONTINUE

RETURN
END

SUBROUTINE NLSDRV (PAR, NPAR, XM, N, M, IXM, D)

SUBROUTINE TO COMPUTE THE PARTIAL DERIVATIVE (JACOBIAN) MATRIX

REAL PAR(NPAR), XM(IXM,M), 0(N,NPAR)

DO 10 I-1,N
0(1,1) - XM(I,1) ** PAR(2)
D(I,2) PAR(l) * XM(I,1) ** PAR(2) * AL0G(XM(I,1) )

10 CONTINUE

RETURN
END

0.729 4.000
6 1

1.309 1.471 1.490 1.969 1.611 1.680
2.136 3.421 3.997 4.340 4.682 9.660

Figure F-2a

Example program and data using NLSD
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Derivative Step Size Selection

MAIN PROGRAM PROGRAM EXANPL (INPUT, OUTPUT* TAPES • INPUT, TAPE6 • OUTPUT!

REAL *H!lO»5l, PAB(5)* STPI3)
DOUBLE PRECISION DSTAM200)

EXTERNAL NLSNDL

COMMON /CSTAK/ DSTAK
C

C DEFINE VARIABLES FOR VARIOUS DIMENSIONS
C

LDSTAK - 200
IXM 10

C

C READ NUMBER OF PARAMETERS
C STARTING VALUES FOR PARAMETERS
C NUMBER OF OBSERVATIONS AND NUMBER OF INDEPENDENT VARIABLES
C INDEPENDENT VARIABLES
C

READ (5, 100) NPAR
READ (5, 101) (PAR(I), 1*1, NPAR)
READ (3, 100) Ni M
READ (3, 101) ((XM(I,J>, I-l,N), J-1,H)

C

C PRINT TITLE AND CALL STPLS TO SELECT STEP SIZES FOR
C APPROXIMATING DERIVATIVES
C

WRITE (6, 102)
CALL STPLS (XN, N, H» IXM, NLSMDL, PAR, NPAR, LDSTAK, STP)

C

STOP
C

C FORMAT STATEMENTS
C

100 FORMAT (215)
101 FORMAT (6F6.3)
102 FORMAT (1H1, 46HTHIS IS AN EXAMPLE OF STARPAC SUBROUTINE STPLS/)

END

MODEL SUBROUTINE! SUBROUTINE NLSMDL (PAR, NPAR, XM, N, M, IXM, PV)
C

C SUBROUTINE TO COMPUTE PREDICTED VALUES OF DEPENDENT VARIABLE
C

REAL PAR(NPAR), XM(IXN,M), PV(N)
C

DO 10 I 1, N
PV(I) • PAR(l) • XM(I, 1) •* PAR(2)

10 CONTINUE
C

RETURN
END

DATAl 2

0.725 4.000
6 1

1.309 1.471 1.490 1.565 1.611 1.680

Figure F-3a

Example program and data using STPLS
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Derivative Checking

MAIN PROGRAM!

MODEL SUBROUTINE!

DERIVATIVE SUBROUTINE!

PROGRAM EXAMPL (INPUT* OUTPUT, TAPES INPUT, TAPE6 - OUTPUT)

REAL XM(10,5), PAR(5)
DOUBLE PRECISION DSTAK(ZOO)

EXTERNAL NLSMOL, NLSORV

COMMON /CSTAK/ DSTAK

DEFINE VARIABLES FOR VARIOUS DIMENSIONS

LDSTAK 200
IXM « 10

READ NUMBER OF PARAMETERS
STARTINS VALUES FOR PARAMETERS
NUMBER OF OBSERVATIONS ANO NUMBER OF INDEPENDENT VARIABLES
INDEPENDENT VARIABLES

READ (5, 100) NPAR
READ (3, 101) (PAR(I), I- 1, NPAR)
READ (5, 100) N, M

READ (5, 101) ((XM(I,J), I-1,N), j>l,M)

PRINT TITLE AND CALL DCKLS TO PERFORM DERIVATIVE CHECKING

WRITE (6, 102)
CALL DCKLS (XM, N, M, IXM, NLSMDL, NLSORV, PAR, NPAR, LDSTAK)

STOP

FORMAT STATEMENTS

100 FORMAT (215)
101 FORMAT (6F6.3)
102 FORMAT (1H1, 46HTHIS IS AN EXAMPLE OF STARPAC SUBROUTINE DCKLS/)

END

SUBROUTINE NLSMDL (PAR, NPAR, XM, N, M, IXM, »V)

SUBROUTINE TO COMPUTE PREDICTED VALUES OF DEPENDENT VARIABLE

REAL PAR(NPAR), XM(IXM,M), PV(N)

DO 10 I-1,N
PV(I) " PAR(l) XM(I,1) PAR(2)

10 CONTINUE

RETURN
END

SUBROUTINE NLSORV (PAR, NPAR, XM, N, M, IXM, 0)

SUBROUTINE TO COMPUTE THE PARTIAL DERIVATIVE (JACOBIAN) MATRIX

DERIVATIVE WITH RESPECT TO FIRST PARAMETER HAS BEEN CODED
INCORRECTLY (WITH MULTIPLICATION RATHER THAN EXPONENTIATION)
FOR DEMONSTRATION PURPOSES

REAL PAR(NPAR), XM(IXM,M), DIN, NPAR)

DO 10 I-1,N
D(I,1) XM(I,1) • PAR(2)
0(1,2) • PAR(l) » XH(I,1) * PAR(l) * ALOG(XN(I,D)

10 CONTINUE

RETURN
END

DATA!
0.000 4.000

6 1

1.309 1.471 1.490 1.365 1.611 1.680

Figure F-4a

Example program and data using DCKLS
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Appendix A

WEIGHTED LEAST SQUARES

Weighted least squares can be used to eliminate observations from the
analysis, and to compensate for unequal variances in the observational
errors.

Observations can be eliminated from the analysis by using weight values
consisting only of zeros and ones. This will produce the same results as
performing an unweighted analysis with the zero-weighted values removed except
that the predicted values, the standard deviations of the predicted values,
and the residuals of the zero-weighted data are computed. There are two main
reasons for weighting observations zero. The first is to obtain the predicted
values and their standard deviations for a set of independent variables not
included in the observed data. (This is done by assigning any arbitrary value
to the dependent variable of the desired set of independent variables, and
then weighting these values zero.) The second reason is to allow easy
examination of the effect of outliers and influential data points. Outliers
often appear as large values in residual plots. Careful checking of the data
often leads to confirmation that the data are in error, and sometimes to a

correction. When a cause for suspicious data cannot be found, it may be
advisable to compare the analysis with and without the questionable data.
Caution is in order if the estimates or conclusions are highly sensitive to a

small amount of suspicious data. Data that have a very high influence on a

fitted curve may not result in large residuals, however, even if they are in
error. In fact, extremely influential observations may force the fitted curve
to be very close, leading to very small residuals. It is therefore desirable
to identify influential observations and to compare the results obtained with
and without these points. Several methods for detecting influential
observations are discussed in Bement and Williams [1969], Cook [1977], Hoaglin
and Welsch [1978], and Belsley et al. [1980].

Using weights to compensate for unequal observational error variances is

not as straightforward as using zero weights to eliminate observations from
the analysis. When the variances of the observational errors, e^, are not

equal, the unweighted least squares estimates remain unbiased but do not have
minimum variance. Minimum variance estimates are obtained by using weights
wt.j = 1/Variance[ e^] when the error variances are known . If weights must be

estimated, they should be based on at least 10 degrees of freedom [see Bement
and Williams, 1969]. In practice, however, weights are derived from theory,

or obtained from the data being fit, and either of these methods can do more
harm than good. When the need for weights is suspected and the error
variances are not known, first fit the data using unweighted least squares;

analysis of the residuals may confirm the need for weighting and may also
provide estimates for the weights themselves. If the need for weights is

confirmed, then a statistician should be consulted to assist in selecting the

weights and in interpreting the results.
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Appendix B

ESTIMATING THE NUMBER OF RELIABLE DIGITS
IN THE RESULTS OF A FUNCTION

The number of reliable digits, n, in the results of a real valued
function, g((3), can be estimated in most cases by evaluating

n = -log10 ( max (lg(B j
) - [a + j»b] I}]

J—

2

2 fiOOl

where

6 J is the vector of the NPAR parameters of the function given by,

BJ(k) = B(k) + j.lO-( DIGITS/2 ).B(k) for j = -2, ..., 2,

and k = 1, . . ., NPAR,

where

DIGITS is the number of decimal digits carried by the user's computer
for a single precision value when the single precision version of
STARPAC is being used and is the number carried for a double precision
value otherwise.

2

a = (0.20). y
g(3J).

J—

2

2

b = (o.io). y j. g(0j).
j—

2

This procedure may underestimate the number of reliable digits if g(3) is

extremely nonlinear. A more elaborate and more robust procedure is described
in Gill et al. [1981] .
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graphical form, are automatically provided to augment the basic statistical
computations performed by each user-callable STARPAC subroutine. STARPAC thus
provides the best features of many stand-alone statistical software programs within
the flexible environment of a subroutine library. This Note documents 16 subroutines
for nonlinear least squares regression. Twelve of these compute the least squares

estimates, performing either weighted or unweighted analysis with either numerically
approximated or user-supplied (analytic) derivatives. The other four are
user-callable subroutines for two procedures used within the estimation code: the
first selects optimum step sizes for approximating the partial derviatives of the
model; and the second checks the validity of a user-supplied derivative subroutine.
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