

NBS TECHNICAL NOTE 1059

U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards

A Method to Quantify the Radiation Characteristics of an Unknown Interference Source

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards ${ }^{1}$ was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benelit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers:

```
Absolute Physical Quantities \({ }^{2}\) - Radiation Research - Chemical Physics -
Analytical Chemistry - Materials Science
```

THE NATIONAL ENGINEERING LABORATORY provides technology and technical services to the public and private sectors to address national needs and to solve national problems; conducts research in engineering and applied science in support of these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers:

Applied Mathematics - Electronics and Electrical Engineering ${ }^{2}$ - Manufacturing Engineering - Building Technology - Fire Research - Chemical Engineering ${ }^{2}$

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following centers:

Programming Science and Technology-Computer Systems Engineering.

[^0]
A Method to Quantify the Radiation Characteristics of an Unknown Interference Source

Mark T. Ma
Galen H. Koepke

Electromagnetic Fields Division
National Engineering Laboratory National Bureau of Standards
Boulder, Colorado 80303

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

National Bureau of Standards Technical Note 1059

Nat. Bur. Stand. (U.S.), Tech. Note 1059, 60 pages (October 1982) CODEN: NBTNAE

U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1982

[^1]CONTENTS
Page

1. Introduction 1
2. A Short Summary of Fundamental Theory for Determining the Radiation Characteristics of an Electrically Small Source 2
3. Phase Considerations for Determining an Unknown General Source Consisting of Both Electric and Magnetic Dipole Moments 7
4. Illustrative Examples 20
Example 1 A general simulated theoretical example 20
Example 2 A special simulated theoretical example 24
Example 3 A practical experiment 27
5. Conclusions. 32
6. References 32
Appendix 33

A Method to Quantify the Radiation Characteristics of an Unknown Interference Source

Mark T. Ma and Galen H. Koepke
Electromagnetic Fields Division
National Bureau of Standards Boulder, Colorado 80303

A new method for determining the radiation characteristics of leakage from electronic equipment for interference studies is described in this report. Basically, an unintentional leakage source is considered to be electrically small, and may be characterized by three equivalent orthogonal electric dipole moments and three equivalent orthogonal magnetic dipole moments. When an unknown source object is placed at the center of a transverse electromagnetic (TEM) cell, its radiated energy couples into the fundamental transmission mode and propagates toward the two output ports of the TEM cell. With a hybrid junction inserted into a loop connecting the cell output ports, one is able to measure the sum and difference powers and the relative phase between the sum and difference outputs. Systematic measurements of these powers and phases at six different source object positions, based on a well-developed theory, are sufficient to determine the amplitudes and phases of the unknown component dipole moments, from which the detailed free-space radiation pattern of the unknown source and the total radiated power can be determined. Results of simulated theoretical examples and an experiment using a spherical dipole radiator are given to illustrate the theory and measurement procedure.

Key words: dipole moments; electrically small; interference source; leakage; phase measurements; power measurements; radiation pattern; TEM cell; total radiated power.

1. Introduction

As part of a continuing effort to devise measurement methods for quantifying radio frequency leakage from electronic equipment, a practical method has been developed. The measurement system shown in figure 1 uses a transverse electromagnetic (TEM) cell to isolate the equipment under test (EUT) from the environment while providing the coupling mechanism for the necessary power and phase measurements.

The premise for this approach is twofold. The first is that the cell is well constructed and operation is limited to the dominant TEM mode only. The second is that leakage currents on the exterior surface of the EUT may be modeled with equivalent electric and magnetic short dipole sources $[1,2]$. These dipoles may then be vectorially combined to yield a composite equivalent source consisting of three orthogonal electric and three orthogonal magnetic dipole moments as represented in figure 2.

It has been shown that the total power radiated in free space by the unknown leakage source under study can be determined with an experimental setup similar to that given in figure 1 by measuring the sum and difference powers [1,2]. The detailed radiation pattern, however, can be obtained only when the unknown source is characterized by equivalent three orthogonal electric dipole moments or three orthogonal magnetic dipole moments, but not both. The reason for this is clearly shown in the next section. For a general unknown radiator characterized by a composite source consisting of both electric and magnetic dipole moments, such as that represented in figure 2, the amplitudes and phases of the component dipole moments will be equally important for determining the radiation pattern for such a composite source. Hence, it is the objective of this report to describe additional required measurements and their theoretical justifications to determine uniquely the equivalent six unknown amplitudes and six unknown phases displayed in figure 2.

To avoid the complication of having to establish a phase reference physically connected to the EUT, the phase difference from sum to difference ports in figure 1 , namely $\phi_{\Sigma}-\phi_{\Delta}$, is measured for
each of the six EUT orientations required previously for power measurements. Thus, the measurement setup described in this report remains essentially the same as before [1,2] except that an additional instrument capable of measuring the relative sum-difference phase is inserted into the system.

For easy reference and clarity, the previous theoretical work is very briefly outlined in Section 2. It is there that the notation and definition of terms are also established. Section 3 describes the power and relative phase measurements and shows how the individual phase information associated with each component dipole moment (both types) can be extracted from these measurements. Specific results for two theoretically simulated examples and an experiment using a spherical dipole are presented in Section 4. A computer algorithm giving instructions of measurement sequences and numerical results is included as Appendix.
2. A Short Summary of Fundamental Theory for Determining the Radiation Characteristics of an Electrically Small Source

The electric and magnetic fields appearing at the output ports of a waveguide of arbitrary cross section, such as one half of a TEM cell shown in figure 3, generated by a current source located inside the waveguide may be expressed as [1,2]:

$$
\begin{align*}
\bar{E}^{(+)} & =\text {the vector electric field appearing at the right-hand port } \\
& =\sum_{n} a_{n} \bar{E}_{n}^{(+)} \\
\bar{E}^{(-)} & =\text {the vector electric field appearing at the left-hand port } \\
& =\sum_{n} b_{n} \bar{E}_{n}^{(-)} \\
\bar{H}^{(+)} & =\text {the vector magnetic field appearing at the right-hand port } \\
& =\sum_{n} a_{n} \bar{H}_{n}^{(+)} \\
\bar{H}^{(-)} & =\text {the vector magnetic field appearing at the left-hand port } \tag{1d}\\
& =\sum_{n} b_{n} \bar{H}_{n}^{(-)}
\end{align*}
$$

where $\bar{E}_{n}^{(\pm)}$and $\bar{H}_{n}^{(\pm)}$are respectively the vector orthonormal electric and magnetic basis functions describing the field structure for each of the n modes that can exist in the waveguide, and a_{n} and b_{n} are the expansion coefficients.

When the size of the waveguide cross section and operating frequency are such that only the dominant TEM mode ($n=0$) exists, and the current source is placed at $z=0$, we obtain, with an application of the Lorentz reciprocity theorem for perfectly conducting waveguide walls [1],

$$
\begin{equation*}
a_{0}=b_{0}=-\frac{1}{2} \bar{m}_{e} \cdot \bar{e}_{0} \tag{2a}
\end{equation*}
$$

when the source is a short infinitesimally thin current filament with an electric dipole moment $\vec{m}_{e}=J \bar{d} \bar{\ell}$, where J is a normalized filament current and $\overline{d \ell}$ is the directed length vector of the short dipole; or

$$
\begin{equation*}
a_{0}=-b_{0}=-\frac{1}{2} j k\left(\bar{m}_{m} \times \bar{z}\right) \cdot \bar{e}_{0} \tag{2b}
\end{equation*}
$$

when the source is a small current loop with a magnetic dipole moment $\bar{m}_{m}=J \overline{d s}$, where J ' is the normalized loop current, $\overline{d s}$ is the vector loop area, k is the free space wave number, and \vec{z} is the unit vector along the direction of propagation.

In (2a) and (2b), \bar{e}_{0} is the normalized transverse vector electric field inside the TEM cell. Physically, it is the fundamental mode field generated at $z=0$ when a power of one watt is supplied to the TEM cell. It has mostly the vertical component (y-directed) at the cell center. When the TEM cell size and frequency are specified, \bar{e}_{0} in v / m can be computed theoretically [3].

When a general EUT is represented by a combination of both small electric and magnetic dipoles, the principle of superposition yields,

$$
\begin{equation*}
a_{0}=-\frac{1}{2}\left(\bar{m}_{e}+j k \bar{M}\right) \cdot \bar{e}_{0} \tag{3a}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{0}=-\frac{1}{2}\left(\bar{m}_{e}-j k \bar{M}\right) \cdot \bar{e}_{0} \tag{3b}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{M}=\bar{m}_{m} \times \bar{z} \tag{3c}
\end{equation*}
$$

The unit for \vec{m}_{e} is in meters (or amp-m normalized with respect to a unit current), and that for \bar{m}_{m} is in meter-squares (or amp-m normalized with respect to a unit current). The units for a_{0} and b_{0} are in volts.

Taking the sum and difference of (3a) and (3b), we obtain, for the sum power,

$$
\begin{equation*}
P_{s}=\left|a_{0}+b_{0}\right|^{2}=\left|\bar{m}_{e} \cdot \bar{e}_{0}\right|^{2} \tag{4a}
\end{equation*}
$$

and for the difference power,

$$
\begin{equation*}
p_{d}=\left|a_{0}-b_{0}\right|^{2}=k^{2}\left|M \cdot \bar{e}_{0}\right|^{2} \tag{4b}
\end{equation*}
$$

Note that the sum power depends only on the electric dipole moment while the difference power depends only on the magnetic dipole moment. Note further that only the components of \bar{m}_{e} and \bar{M} that lie along the direction of the transverse vector field \bar{e}_{0} contribute to the output. From the analysis point of view, when the current sources (\bar{m}_{e} and \bar{M}) are specified, a_{0} and b_{0} can be calculated to give the field amplitudes at the cell output ports. Or equivalently, the sum and difference powers can be calculated from (4). From the synthesis point of view, P_{s} and P_{d} are obtained from measurements, and \bar{m}_{e} and M can be determined from (4) to represent the unknown EUT. After \bar{m}_{e} and \mathbb{M} (and hence \bar{m}_{m}) are determined, the corresponding far-field power pattern radiated in free space may be written as [1]

$$
\begin{align*}
P(\theta, \phi) & =\frac{15 \pi}{r^{2} \lambda^{2}}\left[\left(m_{e x}^{2}+k^{2} m_{m x}^{2}\right)\left(\cos ^{2} \theta \cos ^{2} \phi+\sin ^{2} \phi\right)\right. \\
& +\left(m_{e y}^{2}+k^{2} m_{m y}^{2}\right)\left(\cos ^{2} \theta \sin ^{2} \phi+\cos ^{2} \phi\right)+\left(m_{e z}^{2}+k^{2} m_{m z}^{2}\right) \sin ^{2} \theta \\
& -2\left\{m_{e x} m_{e y} \cos \left(\psi_{e x}-\psi_{e y}\right)+k^{2} m_{m x} m_{m y} \cos \left(\psi_{m x}-\psi_{m y}\right)\right\} \sin { }^{2} \theta \sin \phi \cos \phi \\
& -2\left\{m_{e y} m_{e z} \cos \left(\psi_{e y}-\psi_{e z}\right)+k^{2} m_{m y} m_{m z} \cos \left(\psi_{m y}-\psi_{m z}\right)\right\} \sin \theta \cos \theta \sin \phi \\
& -2\left\{m_{e z}^{m} e x \cos \left(\psi_{e z}-\psi_{e x}\right)+k^{2} m_{m z} m_{m x} \cos \left(\psi_{m z}-\psi_{m x}\right)\right\} \sin \theta \cos \theta \cos \phi \\
& +2 k\left\{m_{e x}^{m} m_{m y} \sin \left(\psi_{e x}-\psi_{m y}\right)-m_{e y} m_{m x} \sin \left(\psi_{e y}-\psi_{m x}\right)\right\} \cos \theta \\
& +2 k\left\{m_{e y} m_{m z} \sin \left(\psi_{e y}-\psi_{m z}\right)-m_{e z} m_{m y} \sin \left(\psi_{e z}-\psi_{m y}\right)\right\} \sin \theta \cos \phi \\
& \left.+2 k\left\{m_{e z}^{m} m_{m x} \sin \left(\psi_{e z}-\psi_{m x}\right)-m_{e x} m_{m z} \sin \left(\psi_{e x}-\psi_{m z}\right)\right\} \sin \theta \sin \phi\right] \tag{5}
\end{align*}
$$

where $m_{e x}, m_{e y}$, and $m_{e z}$ are the amplitudes of the three orthogonal components of the electric dipole moment $\bar{m}_{e}, \psi_{e x}, \psi_{e y}$, and $\psi_{e z}$ are the phases associated with the components of $\bar{m}_{e} ; m_{m x}, m_{m y}, m_{m z}, \psi_{m x}$, $\psi_{m y}$, and $\psi_{m z}$ have similar meanings for the magnetic dipole moment $\bar{m}_{m} ; \lambda$ is the operating wavelength; r is the distance measured from the radiator; and θ and ϕ are the spherical coordinates relative to a chosen origin at the radiator.

The total radiated power is given by

$$
P_{T}=\int_{4 \pi} P(\theta, \phi) d \Omega
$$

$$
\begin{align*}
& =\frac{40 \pi^{2}}{\lambda^{2}}\left\{m_{e x}^{2}+m_{e y}^{2}+m_{e z}^{2}+k^{2}\left(m_{m x}^{2}+m_{m y}^{2}+m_{m z}^{2}\right)\right\} \\
& =\frac{40 \pi^{2}}{\lambda^{2}}\left(\left|\bar{m}_{e}\right|^{2}+k^{2}\left|\bar{m}_{m}\right|^{2}\right) . \tag{6}
\end{align*}
$$

It is clear that the total radiated power in (6) depends only on the amplitudes of dipole moments, and that the power pattern in (5) is much more involved.

Based on the above observation and various properties noted earlier for P_{s} and P_{d}, an experimental procedure was developed to measure the sum and difference powers for six different EUT positions, from which the total radiated power and the radiation pattern for an EUT made of one kind of dipole moment can be determined [1].

Outlining this method, we establish a coordinate system (x, y, z) with respect to the TEM cell with the origin at the geometric center of the cell, place the EUT at ($0, y_{0}, 0$), assign another coordinate system ($x^{\prime}, y^{\prime}, z^{\prime}$) with respect to the center of the EUT. Initially, we align $x-x^{\prime}, y-y^{\prime}$, and $z-z^{\prime}$ as shown in figure 4a. We then rotate the EUT counterclockwise by an angle of $\pi / 4$ about the z^{\prime}-axis so that its position relative to the TEM cell can be seen in figure 4 b , measure the sum and difference powers, and designate them respectively as $P_{s 1}$ and $P_{d 1}$. Remembering the transverse electric field $\bar{e}_{0}=p \bar{x}+q \bar{y}$, we see from (4) that only the x - and y-components of the "rotated" transverse electric field $\bar{e}_{0}^{\prime}=\frac{1}{\sqrt{2}}(p+q) \bar{x}+\frac{1}{\sqrt{2}}(q-p) \bar{y}$ and the x - and y-components of \bar{m}_{e} and \bar{M} contribute to $p_{s 1}$ and $P_{d l}$.

We next rotate the EUT by an additional $\pi / 2$, also counterclockwise about the z^{\prime}-axis as displayed in figure $4 c$, and measure the sum and difference powers $P_{s 2}$ and $P_{d 2}$. Clearly, this time $\bar{e}_{0}^{\prime \prime}=\frac{1}{\sqrt{2}}(-p+q) \bar{x}-\frac{1}{\sqrt{2}}(p+q) \bar{y}$ and the x - and y-components of \bar{m}_{e} and \bar{M} make contribution to $P_{s 2}$ and $P_{\mathrm{d} 2}$.

We then align the coordinate frames such that $x=y^{\prime}, y=z^{\prime}$ and $z=x^{\prime}$ as shown in figure $5 a$. Now, we rotate the EUT counterclockwise by an angle of $\pi / 4$ about the x^{\prime}-axis to have a geometric condition given in figure 5b, proceed to make the sum and difference power measurements, and call them respectively $P_{s 3}$ and $P_{d 3}$. Note the \bar{e}_{0}^{\prime} and the y - and z-components of \bar{m}_{e} and \bar{M} contribute to $P_{s 3}$ and $P_{d 3}$. The EUT is then rotated counterclockwise by another $\pi / 2$ about the x^{\prime}-axis with its position displayed in figure $5 c$ yielding measurements of $P_{s 4}$ and $P_{d 4}$ due to contributions by $\bar{e}_{0}^{\prime \prime}$ and the y - and z components of the dipole moments.

Finally, we align the coordinate frames in accordance with $x=z^{\prime}, y=x^{\prime}$, and $z=y$, rotate in a similar manner as indicated in figures $6 \mathrm{a}, \mathrm{b}, \mathrm{c}$, and measure $\mathrm{P}_{55}, P_{d 5}, P_{56}$ and $P_{d 6}$. Now, \bar{e}_{0}^{\prime} and the x - and z-components of \bar{m}_{e} and \bar{M} contribute to $P_{s 5}$ and $P_{d 5}$ while $\bar{e}_{0}^{\prime \prime}$ and the x - and z-components of \bar{m}_{e} and \bar{M} contribute to $P_{s 6}$ and $P_{d \sigma}$.

After collecting the measured sum and difference powers, we obtain the following [1]:

$$
\begin{gather*}
\left(\begin{array}{c}
m_{e x}^{2} \\
m_{e y}^{2} \\
m_{e z}^{2}
\end{array}\right)=[c]\left[p_{s}\right] / 2\left(p^{2}+q^{2}\right) \tag{7a}\\
\left(\begin{array}{c}
m_{m x}^{2} \\
m_{m y}^{2} \\
m_{m z}^{2}
\end{array}\right)=[c]\left[p_{d}\right] / 2 k^{2}\left(p^{2}+q^{2}\right) \tag{7b}\\
{\left[\begin{array}{l}
m_{e x} m_{e y} \cos \left(\psi_{e x}-\psi_{e y}\right) \\
m_{e y}^{m} m_{e z} \cos \left(\psi_{e y}-\psi_{e z}\right) \\
m_{e z^{m} e x} \cos \left(\psi_{e z}-\psi_{e x}\right)
\end{array}\right]=[D]\left[p_{s}\right] / 2\left(q^{2}-p^{2}\right)} \tag{7c}
\end{gather*}
$$

and

$$
\left[\begin{array}{l}
m_{m x} m_{m y} \cos \left(\psi_{m x}-\psi_{m y}\right) \tag{7d}\\
m_{m y} m_{m z} \cos \left(\psi_{m y}-\psi_{m z}\right) \\
m_{m z} m_{m x} \operatorname{cox}\left(\psi_{m z}-\psi_{m x}\right)
\end{array}\right]=[D]\left[p_{d}\right] / 2 k^{2}\left(q^{2}-p^{2}\right)
$$

where

$$
\left[p_{s}\right]=\left(\begin{array}{c}
P_{s 1} \\
P_{s 2} \\
P_{s 3} \\
P_{s 4} \\
P_{s 5} \\
P_{s 6}
\end{array}\right)
$$

$$
\left[P_{d}\right]=\left(\begin{array}{l}
P_{d 2} \tag{7f}\\
P_{d 1} \\
P_{d 4} \\
P_{d 3} \\
P_{d 6} \\
P_{d 5}
\end{array}\right)
$$

$$
\begin{align*}
& {[C]=\left[\begin{array}{rrrrrr}
1 & 1 & -1 & -1 & 1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 \\
-1 & -1 & 1 & 1 & 1 & 1
\end{array}\right]} \\
& {[D]=\left(\begin{array}{rrrrrr}
1 & -1 & f & f & -f & -f \\
-f & -f & 1 & -1 & f & f \\
f & f & -f & -f & 1 & -1
\end{array}\right)} \tag{7h}
\end{align*}
$$

and

$$
\begin{equation*}
f=2 p q /\left(p^{2}+q^{2}\right) \tag{7i}
\end{equation*}
$$

From (6) and (7a,b) we see why the sum and difference power measurements alone are sufficient to determine the total radiated power, in free space, of the unknown EUT. From (5) and (7c,d) we see why the radiation pattern can also be determined by the power measurements under the condition that the EUT may be characterized by either \bar{m}_{e} or \bar{m}_{m} (but not both) even though the phases associated with the component dipole moments have not been treated yet. For a general EUT consisting of a combination of both types of dipole moments, the phases as well as the amplitudes of the component dipole moments will be important for determining the radiation pattern in view of the last three lines in (5).

Before considering the phase measurements to be presented in the next section, we note from (7a) that the electric dipole moment components are related only to the sum powers, and from (7b) that the magnetic dipole moment components are related only to the difference powers. Thus, an observation of the relative values of the measured sum and difference powers may reveal the basic characteristics of the unknown EUT as to whether it is of electric type, magnetic type, or both.
3. Phase Considerations for Determining an Unknown General Source Consisting of Both Electric and Magnetic Dipole Moments

The results in (7c,d) contain limited phase information already. Once the amplitudes of the component electric dipole moments are obtained from (7a), application of (7c) yields

$$
\begin{align*}
& \psi_{e x}-\psi_{e y}=\cos ^{-1}\left[\frac{p_{s 1}-P_{s 2}+f\left(P_{s 3}+P_{s 4}-P_{s 5}-P_{s 6}\right)}{2\left(q^{2}-p^{2}\right) m_{e x} m_{e y}}\right] \equiv \theta_{e 1} \tag{8a}\\
& \psi_{e y}-\psi_{e z}=\cos ^{-1}\left[\frac{p_{s 3}-P_{s 4}+f\left(-P_{s 1}-P_{s 2}+P_{s 5}+P_{s 6}\right)}{2\left(q^{2}-p^{2}\right) m_{e y} m_{e z}}\right) \equiv \theta_{e 2} \tag{8b}
\end{align*}
$$

and

$$
\begin{equation*}
\psi_{e z}-\psi_{e x}=\cos ^{-1}\left[\frac{P_{s 5}-P_{s 6}+f\left(P_{s 1}+P_{s 2}-P_{s 3}-P_{s 4}\right)}{2\left(q^{2}-p^{2}\right) m_{e z} m_{e x}}\right] \equiv \theta_{e 3}, \tag{8c}
\end{equation*}
$$

where the results have been designated as $\theta_{e i}, i=1,2$, and 3 .
Similarly, we obtain the following with the aid of (7b) and (7d):

$$
\begin{align*}
& \psi_{m x}-\psi_{m y}=\cos ^{-1}\left(\frac{-P_{d 1}+P_{d 2}+f\left(p_{d 3}+P_{d 4}-P_{d 5}-P_{d 6}\right)}{2 k^{2}\left(q^{2}-p^{2}\right) m_{m x} m_{m y}}\right) \equiv \theta_{m 1} \tag{9a}\\
& \psi_{m y}-\psi_{m z}=\cos ^{-1}\left(\frac{-P_{d 3}+P_{d 4}+f\left(-P_{d 1}-P_{d 2}+P_{d 5}+P_{d 6}\right)}{2 k^{2}\left(q^{2}-p^{2}\right) m_{m y} m_{m z}}\right) \equiv \theta_{m 2} \tag{9b}\\
& \psi_{m z}-\psi_{m x}=\cos ^{-1}\left[\frac{-P_{d 5}+P_{d 6}+f\left(P_{d 1}+P_{d 2}-P_{d 3}-P_{d 4}\right)}{2 k^{2}\left(q^{2}-p^{2}\right) m_{m x} m_{m z}}\right) \equiv \theta_{m 3} . \tag{9c}
\end{align*}
$$

Note that (8) and (9) give some phase relationship between the component dipole moments of the same kind only. The phase relationship between the components of mixed types, which is also necessary for determining the power pattern in (5), has to be obtained by other means.

To avoid the difficulty of having to establish a phase reference with respect to a physical point on the EUT, and to keep the measurement setup simple, we only insert an additional instrument into the previous system $[1,2]$ that has the ability to measure the relative phase between the sum and difference ports, as shown in figure 1. We will now present the necessary derivations to demonstrate that the relative sum and difference phases measured at the same six EUT orientations as those for measuring the sum and difference powers are sufficient to extract the individual phase information for the component dipole moments.

Referring to (3a), (3b), and figure $4 b$ where the first sum and difference power measurements are made, we have, for the sum port,

$$
\begin{align*}
a_{0}+b_{0} & =-\bar{m}_{e} \cdot \bar{e}_{0}^{\prime}=-\left(\bar{x} m_{e x} e^{j \psi e x}+\bar{y} m_{e y} e^{j \psi e y}\right) \cdot\left(\bar{x} p^{\prime}+\bar{y} q^{\prime}\right) \tag{10a}\\
& =-\left(A_{1}+j B_{1}\right),
\end{align*}
$$

where

$$
\begin{align*}
& A_{1}=p^{\prime} m_{e x} \cos \psi e x+q^{\prime} m_{e y} \cos \psi e y \tag{10b}\\
& B_{1}=p^{\prime} m_{e x} \sin \psi e x+q^{\prime} m_{e y} \sin \psi e y \tag{10c}
\end{align*}
$$

$$
\begin{align*}
& p^{\prime}=p \cos (\pi / 4)+q \sin (\pi / 4)=(p+q) / \sqrt{2} \tag{10d}\\
& q^{\prime}=q \cos (\pi / 4)-p \sin (\pi / 4)=(-p+q) / \sqrt{2} \tag{10e}
\end{align*}
$$

and p and q are respectively the x - and y-components of the normalized transverse electric field vector $\overline{\mathrm{e}}_{0}$.

For the difference port, we have
where

$$
\begin{align*}
a_{0}-b_{0} & =-j k \bar{M} \cdot \bar{e}_{0}^{\prime}=-j k\left(\bar{m}_{m} \times \bar{z}\right) \cdot \bar{e}_{0}^{\prime} \tag{11a}\\
& =-k\left(c_{1}+j D_{1}\right)
\end{align*}
$$

$$
\begin{equation*}
c_{1}=q^{\prime} m_{m x} \sin \psi_{m x}-p^{\prime} m_{m y} \sin \psi_{m y} \tag{11b}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{1}=-q^{\prime} m_{m x} \cos \psi_{m x}+p^{\prime} m_{m y} \cos \psi_{m y} \tag{11c}
\end{equation*}
$$

The relative phase between the sum and difference ports for this first measurement orientation is then,

$$
\begin{equation*}
\phi_{1}=\tan ^{-1}\left(B_{1} / A_{1}\right)-\tan ^{-1}\left(D_{1} / C_{1}\right) \tag{12a}
\end{equation*}
$$

When the relation $\psi_{e y}=\psi_{e x}-\theta_{e l}$ from ($8 a$) is substituted above for A_{1} and B_{1}, and $\psi_{m x}=\psi_{m y}+\theta_{m l}$ from (9a) is substituted for C_{1} and D_{1}, we obtain

$$
\begin{equation*}
\tan ^{-1}\left(B_{1} / A_{1}\right)=\psi_{e x}-\alpha_{1} \tag{12b}
\end{equation*}
$$

and

$$
\begin{equation*}
\tan ^{-1}\left(D_{1} / C_{1}\right)=\psi_{m y}-\beta_{1} \tag{12c}
\end{equation*}
$$

where

$$
\alpha_{1}=\tan ^{-1}\left(\frac{q^{\prime} m_{e y} \sin \theta e 1}{p^{\top} m_{e x}+q^{\prime} m_{e y} \cos \theta} e 1\right)
$$

and

$$
\begin{equation*}
\beta_{1}=\tan ^{-1}\left[\frac{q^{\prime} m_{m x} \cos \theta_{m 1}-p^{\prime} m_{m y}}{q^{\prime} m_{m x} \sin \theta_{m 1}}\right] \tag{12e}
\end{equation*}
$$

Thus, equation (12a) becomes

$$
\begin{equation*}
\phi_{1}=\psi_{e x}-\alpha_{1}-\left(\psi_{m y}-\beta_{1}\right) \tag{12f}
\end{equation*}
$$

or

$$
\begin{equation*}
\psi_{e x}-\psi_{m y}=\phi_{1}+\alpha_{1}-\beta_{1} \tag{12~g}
\end{equation*}
$$

Note that α_{1} and β_{1} are obtainable from the measured sum and difference powers in accordance with (7a,b), (8a) and (9a). Since ϕ_{1} is also available through a direct measurement, the mixed phase $\psi_{e x}-\psi_{\text {my }}$ required in (5) can then be obtained from (12 g).

Alternatively, when the relation $\psi_{e x}=\psi_{e y}+\theta_{e l}$ and $\psi_{m y}=\psi_{m x}-\theta_{m 1}$ are used in (12a), we have

$$
\begin{equation*}
\phi_{1}=\psi_{e y}-\alpha_{1}^{\prime}-\left(\psi_{m x}-\beta_{1}^{\prime}\right) \tag{12h}
\end{equation*}
$$

or

$$
\begin{equation*}
\psi_{e y}-\psi_{m x}=\phi_{1}+\alpha_{1}^{\prime}-\beta_{1}^{\prime} \tag{12i}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{1}^{\prime}=\tan ^{-1}\left[\frac{-p^{\prime} m_{e x} \sin \theta e 1}{p^{\prime} m_{e x} \cos \theta e 1+q^{\prime} m_{e y}}\right) \tag{12j}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{1}^{\prime}=\tan ^{-1}\left[\frac{q^{\prime} m_{m x}-p^{\prime} m_{m y} \cos \theta_{m 1}}{p^{\prime} m_{m y} \sin \theta_{m 1}}\right] \tag{12k}
\end{equation*}
$$

Taking the difference between (12g) and (12i), and using (8a) and (9a) yields

$$
\begin{equation*}
\theta_{e 1}+\theta_{m 1}=\alpha_{1}-\beta_{1}-\left(\alpha_{1}^{\prime}-\beta_{1}^{\prime}\right) \tag{122}
\end{equation*}
$$

which may serve as a useful check to determine data consistency.

The truth of (12८) may also be evidenced by showing

$$
\begin{equation*}
\alpha_{1}-\alpha_{1}^{\prime}=\theta_{e} 1 \tag{12m}
\end{equation*}
$$

from (12d,j), and

$$
\begin{equation*}
\beta_{1}^{\prime}-\beta_{1}=\theta_{m 1} \tag{12n}
\end{equation*}
$$

from (12e,k).

Clearly, either the set of ($12 \mathrm{~d}, \mathrm{e}, \mathrm{g}$) or that of ($12 \mathrm{i}, \mathrm{j}, \mathrm{k}$) is necessary from the computation point of view, provided, of course, that a measured ϕ_{1} is available. This means that we may either compute
the relative mixed phase $\psi_{e x}-\psi_{m y}$ from $(12 d, e, g)$ and then obtain its counterpart $\psi_{e y}-\psi_{m x}$ also required in (5) by

$$
\begin{equation*}
\psi_{e y}-\psi_{m x}=\psi_{e x}-\psi_{m y}-\theta_{e 1}-\theta_{m 1} \tag{120}
\end{equation*}
$$

or compute $\psi_{e y}-\psi_{m x}$ from $(12 i, j, k)$ and then obtain $\psi_{e x}-\psi_{m y}$ by

$$
\begin{equation*}
\psi_{e x}-\psi_{m y}=\psi_{e y}-\psi_{m x}+\theta_{e 1}+\theta_{m l} \tag{12p}
\end{equation*}
$$

When the measured quantities (sum and difference powers, and the relative phase ϕ_{1} between the sum and difference ports) are not contaminated by noise, there will be no inaccuracy contained in the computed values. The computation from either of the above two sets is then equally good and yields identical results. However, when the computed values are relatively inaccurate because of the noisy measured quantities, more reasonable results may be obtained from one set of computations than the other, as will be evident later in Example 3. For this reason only, the derivations for both sets of computations are presented above.

At the second measurement orientation shown in figure $4 c$, we have

$$
\begin{gather*}
a_{0}+b_{0}=-\bar{m}_{e} \cdot \bar{e}_{0}^{\prime \prime}=-\left(A_{2}+j B_{2}\right) \tag{13a}\\
a_{0}-b_{0}=-j k\left(\bar{m}_{m} \times \bar{z}\right) \cdot \bar{e}_{0}^{\prime \prime}=-k\left(c_{2}+j D_{2}\right), \tag{13b}
\end{gather*}
$$

where

$$
\begin{align*}
& A_{2}=q^{\prime} m_{e x} \cos \psi_{e x}-p^{\prime} m_{e y} \cos \psi_{e y} \tag{13c}\\
& B_{2}=q^{\prime} m_{e x} \sin \psi_{e x}-p^{\prime} m_{e y} \sin \psi_{e y} \tag{13d}\\
& C_{2}=p^{\prime} m_{m x} \sin \psi_{m x}-q^{\prime} m_{m y} \sin \psi_{m y} \tag{13e}
\end{align*}
$$

and

$$
\begin{equation*}
D_{2}=p^{\prime} m_{m x} \cos \psi_{m x}+q^{\prime} m_{m y} \cos \psi_{m y} \tag{13f}
\end{equation*}
$$

Note that A_{2}, B_{2}, C_{2} and D_{2} above can be obtained from (10b,c) and (11b,c) merely by replacing p^{\prime} by q^{\prime} and q^{\prime} by $-p^{\prime}$ in the latter expressions. This is so because the measurement orientation for EUT in figure $4 c$ differs by 90° from that in figure $4 b$. Thus, the relative sum-to-difference phase now becomes

$$
\begin{equation*}
\phi_{2}=\tan ^{-1}\left(B_{2} / A_{2}\right)-\tan ^{-1}\left(D_{2} / C_{2}\right) \tag{14a}
\end{equation*}
$$

Which is of the same form as that in (12a) except a change in subscript from 1 to 2 .

The same application of $\psi_{e y}=\psi_{e x}-\theta_{e l}$ and $\psi_{m x}=\psi_{m y}+\theta_{m l}$ in (14a) yields

$$
\begin{gather*}
\tan ^{-1}\left(B_{2} / A_{2}\right)=\psi_{e x}-\alpha_{2}, \tag{14b}\\
\tan ^{-1}\left(D_{2} / C_{2}\right)=\psi_{m y}-\beta_{2}, \tag{14c}\\
\phi_{2}=\psi_{e x}-\alpha_{2}-\left(\psi_{m y}-\beta_{2}\right), \tag{14d}
\end{gather*}
$$

or

$$
\begin{equation*}
\psi_{e x}-\psi_{m y}=\phi_{2}+\alpha_{2}-\beta_{2}, \tag{14e}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{2}=\tan ^{-1}\left[\frac{-p^{\prime} m_{e y} \sin \theta}{q^{\prime} m_{e x}-p^{\prime} m_{e y} \cos _{e 1}}\right], \tag{14f}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{2}=\tan ^{-1}\left(\frac{-p^{\prime} m_{m x} \cos \theta_{m 1}-q^{\prime} m_{m y}}{-p^{\top} m_{m x} \sin \theta_{m 1}}\right) \tag{14g}
\end{equation*}
$$

Note that (14e) and (12g) should give an identical result for $\psi_{e x}-\psi_{m y}$ if no error is present in the measured quantities. When errors are present because of the noisy measurement background, inaccurate readings of the instruments, or other reasons, the results from (12g) and (14e) are no longer identical. The difference between them may be indicative of the quality of the measured quantities involved. In practise, we may be forced to take the average of them as the final result for $\psi_{e x}-\psi_{m y}$.

Alternatively, we obtain the following, if the relations $\psi_{e x}=\psi_{e y}+\theta_{e 1}$ and $\psi_{m y}=\psi_{m x}-\theta_{m l}$ are used in (14a),

$$
\begin{equation*}
\phi_{2}=\psi_{e y}-\alpha_{2}^{\prime}-\left(\psi_{m x}-\beta_{2}^{\prime}\right), \tag{14h}
\end{equation*}
$$

or

$$
\begin{equation*}
\psi_{\mathrm{ey}}-\psi_{\mathrm{mx}}=\phi_{2}+\alpha_{2}^{\prime}-\beta_{2}^{\prime}, \tag{14i}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{2}^{\prime}=\tan ^{-1}\left[\frac{-q^{\prime} m_{e x} \sin \theta e 1}{q^{\prime} m_{e x} \cos ^{\prime} e^{-}-p^{\prime} m_{e y}}\right], \tag{14j}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{2}^{\prime}=\tan ^{-1}\left[\frac{-p^{\prime} m_{m x}-q^{\prime} m_{m y} \cos \theta_{m 1}}{q^{\prime} m_{m y} \sin \theta_{m l}}\right] \text {. } \tag{14k}
\end{equation*}
$$

The identities,

$$
\alpha_{2}-\alpha_{2}^{\prime}=\theta_{e 1}
$$

and

$$
\begin{equation*}
\beta_{2}^{\prime}-\beta_{2}=\theta_{\mathrm{ml}} \tag{14m}
\end{equation*}
$$

may also be useful for the purpose of checking data consistency.
Furthermore, the equality of (12g) and (14e) also helps to establish the following important phase relationships between $\theta_{e 1}$ and θ_{ml} :

$$
\begin{equation*}
\sin \theta_{m 1}=M_{12} / N_{12} \tag{15a}
\end{equation*}
$$

or

$$
\begin{equation*}
\sin _{e 1}=M_{12}^{\prime} / N_{12}^{\prime} \tag{15b}
\end{equation*}
$$

where

$$
\begin{align*}
M_{12} & =2\left(m_{m x}^{2}-m_{m y}^{2}\right) m_{e x} m_{e y} \sin \theta_{e 1} \\
& +\left(m_{e x}^{2}-m_{e y}^{2}\right)\left(m_{m x}^{2}-m_{m y}^{2}\right) \tan \left(\phi_{1}-\phi_{2}\right) \tag{15c}\\
N_{12} & =-2\left(m_{e x}^{2}-m_{e y}^{2}\right) m_{m x} m_{m y} \\
& +4 m_{e x}^{m} e m_{m x}^{m_{m y}} \tan \left(\phi_{1}-\phi_{2}\right) \sin \theta_{e 1} \tag{15~d}\\
M_{12}^{1} & =2\left(m_{e x}^{2}-m_{e y}^{2}\right) m_{m x} m_{m y} \sin \theta_{m 1} \\
& +\left(m_{e x}^{2}-m_{e y}^{2}\right)\left(m_{m x}^{2}-m_{m y}^{2}\right) \tan \left(\phi_{1}-\phi_{2}\right) \tag{15e}
\end{align*}
$$

and

$$
\begin{align*}
N_{12}^{\prime} & =-2\left(m_{m x}^{2}-m_{m y}^{2}\right) m_{e x} m_{e y} \\
& +4 m_{e x} m_{e y} m_{m x} m_{m y} \tan \left(\phi_{1}-\phi_{2}\right) \sin \theta_{m 1} \tag{15f}
\end{align*}
$$

The importance of (15a,b) can be seen when we refer to (8) and (9). In addition to the obvious constraints,

$$
\begin{equation*}
\theta_{e 1}+\theta_{e 2}+\theta_{e 3}=0 \tag{16a}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{m 1}+\theta_{m 2}+\theta_{m 3}=0 \tag{16b}
\end{equation*}
$$

there is still a sign ambiguity for $\theta_{e i}$ and $\theta_{m i}, i=1,2,3$, based on the power measurement data and the operation of taking inverse cosines. Equation (15a) or (15b) will solve this problem of sign ambiguity in the sense that only one particular choice of sign set will satisfy (15a) or (15b).

Similarly, the other four EUT orientations discussed in Section 2 yield:

$$
\begin{equation*}
\phi_{\mathbf{i}}=\tan ^{-1}\left(B_{\mathbf{i}} / A_{\mathbf{i}}\right)-\tan ^{-1}\left(\mathrm{D}_{\mathbf{i}} / \mathrm{C}_{\mathbf{i}}\right) \quad, \quad \mathbf{i}=3,4,5,6 \tag{17}
\end{equation*}
$$

where A_{3}, B_{3}, C_{3} and D_{3} may be obtained from $(10 b, c)$ and $(11 b, c)$ when the subscript x in the latter expressions is replaced by y and y by $z ; A_{4}, B_{4}, C_{4}$ and D_{4} from ($13 c, d, e, f$) by doing the same changes in suscripts; A_{5}, B_{5}, C_{5} and D_{5} from $(10 b, c),(11 b, c)$ and A_{6}, B_{6}, C_{6} and D_{6} irom (13c,d,e,f) by changing the subscript x to z and y to x.

More explicitly, we have

$$
\begin{align*}
& A_{3}=p^{\prime} m_{e y} \cos \psi_{e y}+q^{\prime} m_{e z} \cos \psi_{e z} \tag{18a}\\
& B_{3}=p^{\prime} m_{e y} \sin \psi_{e y}+q^{\prime} m_{e z} \sin \psi_{e z} \tag{18b}\\
& C_{3}=q^{\prime} m_{m y} \sin \psi_{m y}-p^{\prime} m_{m z} \sin \psi_{m z} \tag{18c}\\
& D_{3}=-q^{\prime} m_{m y} \cos \psi_{m y}+p^{\prime} m_{m z} \cos \psi_{m z} \tag{18d}\\
& A_{4}=q^{\prime} m_{e y} \cos \psi_{e y}-p^{\prime} m_{e z} \cos \psi_{e z} \tag{19a}\\
& B_{4}=q^{\prime} m_{e y} \sin \psi_{e y}-p^{\prime} m_{e z} \sin \psi_{e z} \tag{19b}\\
& C_{5}=q^{\prime} m_{m z} \sin \psi_{m z}-p^{\prime} m_{m x} \sin \psi_{m x} \tag{19c}\\
& B_{5}=p^{\prime} m_{e z} \sin \psi_{e z}+q^{\prime} m_{e x} \sin \psi_{e x} \tag{19d}\\
& A_{5}=p^{\prime} m_{e z} \cos \psi_{e z}+q^{\prime} m_{e x} \cos \psi_{e x} \sin \psi_{m y}-q^{\prime} m_{m z} \sin \psi_{m z} \tag{20a}\\
& D_{4}=p^{\prime} m_{m y} \cos \psi_{m y}+q^{\prime} m_{m z} \cos \psi_{m z} ; \tag{20b}
\end{align*}
$$

$$
\begin{equation*}
D_{5}=-q^{\prime} m_{m z} \cos \psi_{m z}+p^{\prime} m_{m x} \cos \psi_{m x} ; \tag{20d}
\end{equation*}
$$

and

$$
\begin{align*}
& A_{6}=q^{\prime} m_{e z} \cos \psi_{e z}-p^{\prime} m_{e x} \cos \psi_{e x}, \tag{21a}\\
& B_{6}=q^{\prime} m_{e z} \sin \psi_{e z}-p^{\prime} m_{e x} \sin \psi_{e x}, \tag{21b}\\
& C_{6}=-p^{\prime} m_{m z} \sin \psi_{m z}-q^{\prime} m_{m x} \sin \psi_{m x}, \tag{21c}\\
& D_{6}=p^{\prime} m_{m z} \cos \psi_{m z}+q^{\prime} m_{m x} \cos \psi_{m x} . \tag{21d}
\end{align*}
$$

With the substitution of $\psi_{\mathrm{ez}}=\psi_{\mathrm{ey}}{ }^{-} \theta_{\mathrm{e} 2}$ from (8b) and $\psi_{\mathrm{my}}=\psi_{\mathrm{mz}}+\theta_{\mathrm{m} 2}$ from (9b) in (17) for $\mathbf{i}=$ 3 and 4, we obtain:
and

$$
\begin{equation*}
\phi_{3}=\psi_{\mathrm{ey}}-\alpha_{3}-\left(\psi_{\mathrm{mz}}-\beta_{3}\right) \tag{22a}
\end{equation*}
$$

$$
\begin{equation*}
\phi_{4}=\psi_{\mathrm{ey}}-\alpha_{4}-\left(\psi_{\mathrm{mz}}-\beta_{4}\right) ; \tag{22b}
\end{equation*}
$$

yielding

$$
\begin{equation*}
\psi_{e y}-\psi_{\mathrm{mz}}=\phi_{3}+\alpha_{3}-\beta_{3}=\phi_{4}+\alpha_{4}-\beta_{4}, \tag{22c}
\end{equation*}
$$

where
and

$$
\begin{align*}
& \alpha_{3}=\tan ^{-1}\left(\frac{q^{\prime} m_{e z} \sin \theta_{e 2}}{p^{\top} m_{e y}+q^{\prime} m_{e z} \cos \theta_{e 2}}\right), \tag{22d}\\
& \beta_{3}=\tan ^{-1}\left(\frac{q^{\prime} m_{m y} \cos \theta_{m 2}-p^{\prime} m_{m z}}{q^{\prime} m_{m y} \sin \theta_{m 2}}\right), \tag{22e}
\end{align*}
$$

$$
\begin{equation*}
\alpha_{4}=\tan ^{-1}\left(\frac{-p^{\prime} m_{e z} \sin \theta}{q^{\prime} 2} q^{\prime} m_{e y}-p^{\prime} m_{e z} \cos ^{2} \theta_{e 2}\right), \tag{22f}
\end{equation*}
$$

$$
\begin{equation*}
\beta_{4}=\tan ^{-1}\left[\frac{-p^{\prime} m_{m y} \cos \theta_{m 2}-q^{\prime} m_{m z}}{-p^{\prime} m_{m y} \sin \theta_{m 2}}\right], \tag{22g}
\end{equation*}
$$

In addition, equation (22c) also yields a relationship between $\theta_{e 2}$ and $\theta_{m 2}$,

$$
\begin{equation*}
\sin \theta_{m 2}=M_{34} / N_{34} \tag{23a}
\end{equation*}
$$

or

$$
\begin{equation*}
\sin \theta_{e 2}=M_{34}^{\prime} / N_{34}^{\prime}, \tag{23b}
\end{equation*}
$$

where

$$
\begin{align*}
M_{34} & =2\left(m_{m y}^{2}-m_{m z}^{2}\right) m_{e y}^{m} e_{e z} \sin \theta e 2 \\
& +\left(m_{e y}^{2}-m_{e z}^{2}\right)\left(m_{m y}^{2}-m_{m z}^{2}\right) \tan \left(\phi_{3}-\phi_{4}\right), \tag{23c}\\
N_{34} & =-2\left(m_{e y}^{2}-m_{e z}^{2}\right) m_{m y} m_{m z} \tag{23d}\\
& +4 m_{e y}^{m} m_{e z} m_{m y} m_{m z} \tan \left(\phi_{3}-\phi_{4}\right) \sin \theta e 2 \\
M_{34}^{1} & =2\left(m_{e y}^{2}-m_{e z}^{2}\right) m_{m y} m_{m z} \sin \theta_{m 2} \tag{23e}\\
& +\left(m_{e y}^{2}-m_{e z}^{2}\right)\left(m_{m y}^{2}-m_{m z}^{2}\right) \tan \left(\phi_{3}-\phi_{4}\right),
\end{align*}
$$

and

$$
\begin{align*}
N_{34}^{\prime} & =-2\left(m_{m y}^{2}-m_{m z}^{2}\right) m_{e y} m_{e z} \tag{23f}\\
& +4 m_{e y}{ }^{m} e z{ }^{m} m y{ }^{m} m_{m z} \tan \left(\phi_{3}-\phi_{4}\right) \sin \theta_{m 2}
\end{align*}
$$

Alternatively, with the substitution of $\psi_{e y}=\psi_{e z}+\theta_{e 2}$ and $\psi_{m z}=\psi_{m y}-\theta_{m 2}$ in (17) for $\mathbf{i}=3$ and 4 , we obtain:
and

$$
\begin{equation*}
\phi_{3}=\psi_{e z}-\alpha_{3}^{\prime}-\left(\psi_{m y}-\beta_{3}^{\prime}\right) \tag{24a}
\end{equation*}
$$

$$
\begin{equation*}
\phi_{4}=\psi_{e z}-\alpha_{4}^{\prime}-\left(\psi_{m y}-\beta_{4}^{\prime}\right) ; \tag{24b}
\end{equation*}
$$

yielding

$$
\begin{equation*}
\psi_{e z}-\psi_{\mathrm{my}}=\phi_{3}+\alpha_{3}^{\prime}-\beta_{3}^{\prime}=\phi_{4}+\alpha_{4}^{\prime}-\beta_{4}^{\prime}, \tag{24c}
\end{equation*}
$$

where

$$
\begin{align*}
& \alpha_{3}^{\prime}=\tan ^{-1}\left[\frac{-p^{\prime} m_{e y} \sin \theta e 2}{p^{\prime} m_{e y} \cos \theta e^{+} q^{\prime} m_{e z}}\right), \tag{24d}\\
& \beta_{3}^{\prime}=\tan ^{-1}\left[\frac{q^{\prime} m_{m y}-p^{\prime} m_{m z} \cos \theta_{m 2}}{p^{\prime} m_{m z} \sin _{m 2}}\right], \tag{24e}
\end{align*}
$$

$$
\begin{equation*}
\alpha_{4}^{\prime}=\tan ^{-1}\left(\frac{-q^{\prime} m_{e y} \sin \theta}{e 2} q^{\prime} m_{e y} \cos \theta e^{2}-p^{\prime} m_{e z}\right) \tag{24f}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{4}^{\prime}=\tan ^{-1}\left[\frac{-p^{\prime} m_{m y}-q^{\prime} m_{m z} \cos \theta_{m 2}}{q^{\prime} m_{m z} \sin \theta_{m 2}}\right] . \tag{24~g}
\end{equation*}
$$

Of course, the second relation in (24c) yields the same relationship between $\theta_{e 2}$ and $\theta_{m 2}$ as those in $(23 a, b)$. The following identities,

$$
\begin{equation*}
\alpha_{3}-\alpha_{3}^{\prime}=\alpha_{4}-\alpha_{4}^{\prime}=\theta_{e 2} \tag{24h}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{3}^{\prime}-\beta_{3}=\beta_{4}^{\prime}-\beta_{4}=\theta_{m 2} \tag{24i}
\end{equation*}
$$

may be useful for checking the correctness of various quantities.
Applying the relationships of $\psi_{e x}=\psi_{e z}-\theta_{e 3}$ from (8c) and $\psi_{m z}=\psi_{m x}+\theta_{m 3}$ from (9c) to (17) with $\mathbf{i}=5$ and 6 , we obtain:

$$
\begin{equation*}
\phi_{5}=\psi_{e z}-\alpha_{5}-\left(\psi_{m x}-\beta_{5}\right) \tag{25a}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{6}=\psi_{e z}-\alpha_{6}-\left(\psi_{m x}-\beta_{6}\right) \tag{25b}
\end{equation*}
$$

yielding

$$
\begin{equation*}
\psi_{e z}-\psi_{m x}=\phi_{5}+\alpha_{5}-\beta_{5}=\phi_{6}+\alpha_{6}-\beta_{6}, \tag{25c}
\end{equation*}
$$

where

$$
\begin{align*}
& \alpha_{5}=\tan ^{-1}\left(\frac{q^{\prime} m_{e x} \sin \theta}{e 3}\right. \tag{25d}\\
& p^{\prime} m_{e z}+q^{\prime} m_{e x} \cos \theta e 3 \tag{25e}
\end{align*},
$$

$$
\begin{equation*}
\alpha_{6}=\tan ^{-1}\left[\frac{-p^{\prime} m_{e x} \sin \theta e 3}{q^{\prime} m_{e z}-p^{\prime} m_{e x} \cos \theta} e 3\right) \tag{25f}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{6}=\tan ^{-1}\left(\frac{-p^{\prime} m_{m z} \cos \theta_{m 3}-q^{\prime} m_{m x}}{-p^{\top} m_{m z} \sin \theta_{m 3}}\right) \tag{25~g}
\end{equation*}
$$

Also, equation (25c) yields a relationship between $\theta_{e 3}$ and $\theta_{m 3}$,

$$
\begin{equation*}
\sin \theta_{m 3}=M_{56} / N_{56} \tag{26a}
\end{equation*}
$$

or

$$
\begin{equation*}
\sin \theta_{e 3}=M_{56}^{\prime} / N_{56}^{\prime} \tag{26b}
\end{equation*}
$$

where

$$
\begin{align*}
M_{56} & =2\left(m_{m z}^{2}-m_{m x}^{2}\right) m_{e z} m_{e x} \sin \theta \\
& +\left(m_{e z}^{2}-m_{e x}^{2}\right)\left(m_{m z}^{2}-m_{m x}^{2}\right) \tan \left(\phi_{5}-\phi_{6}\right), \tag{26c}\\
N_{56} & =-2\left(m_{e z}^{2}-m_{e x}^{2}\right) m_{m z} m_{m x}+4 m_{e z} m_{e x} m_{m z} m_{m x} \tan \left(\phi_{5}-\phi_{6}\right) \sin \theta_{e}, \tag{26d}\\
M_{56}^{\prime} & =2\left(m_{e z}^{2}-m_{e x}^{2}\right) m_{m z} m_{m x} \sin \theta_{m 3} \\
& +\left(m_{e z}^{2}-m_{e x}^{2}\right)\left(m_{m z}^{2}-m_{m x}^{2}\right) \tan \left(\phi_{5}-\phi_{6}\right) \tag{26e}
\end{align*}
$$

and

$$
\begin{equation*}
N_{56}^{1}=-2\left(m_{m z}^{2}-m_{m x}^{2}\right) m_{e z} m_{e x}+4 m_{e z} m_{e x} m_{m z} m_{m x} \tan \left(\phi_{5}-\phi_{6}\right) \sin \theta_{m 3} \tag{26f}
\end{equation*}
$$

Alternatively, if we use $\psi_{e z}=\psi_{e x}+\theta_{e 3}$ and $\psi_{m x}=\psi_{m z}-\theta_{m 3}$ in (17) for $\mathbf{i}=5$ and 6, we obtain:

$$
\begin{equation*}
\phi_{5}=\psi_{e x}-\alpha_{5}^{\prime}-\left(\psi_{m z}-\beta_{5}^{\prime}\right) \tag{27a}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{6}=\psi_{e x}-\alpha_{6}^{\prime}-\left(\psi_{m z}-\beta_{6}^{\prime}\right) ; \tag{27b}
\end{equation*}
$$

yielding

$$
\begin{equation*}
\psi_{e x}-\psi_{m z}=\phi_{5}+\alpha_{5}^{\prime}-\beta_{5}^{\prime}=\phi_{6}+\alpha_{6}^{\prime}-\beta_{6}^{\prime}, \tag{27c}
\end{equation*}
$$

where

$$
\begin{align*}
& \alpha_{5}^{\prime}=\tan ^{-1}\left(\frac{-p^{\prime} m_{e z} \sin \theta e 3}{p^{\prime} m_{e z} \cos \theta_{e 3}+q^{\prime} m_{e x}}\right), \tag{27d}\\
& \beta_{5}^{\prime}=\tan ^{-1}\left(\frac{q^{\prime} m_{m z}-p^{\prime} m_{m x} \cos \theta_{m 3}}{p^{\top} m_{m x} \sin \theta_{m 3}}\right), \tag{27e}\\
& \alpha_{6}^{\prime}=\tan ^{-1}\left(\frac{-q^{\prime} m_{e z} \sin \theta e 3}{q^{\top} m_{e z} \cos \theta e 3-p^{\top} m e x}\right), \tag{27f}
\end{align*}
$$

and

$$
\begin{equation*}
\beta_{6}^{\prime}=\tan ^{-1}\left(\frac{-p^{\prime} m_{m z}-q^{\prime} m_{m x} \cos \theta_{m 3}}{q^{\prime} m_{m x} \sin \theta_{m 3}}\right] \text {. } \tag{27g}
\end{equation*}
$$

Of course, equation (27c) yields the same relationship between $\theta_{\mathrm{e} 3}$ and $\theta_{\mathrm{m} 3}$ as given in (26a, b). The following identities for possible checking purpose are also obvious,

$$
\begin{align*}
& \alpha_{5}-\alpha_{5}^{\prime}=\alpha_{6}-\alpha_{6}^{\prime}=\theta_{e 3}, \tag{27h}\\
& \beta_{5}^{\prime}-\beta_{5}=\beta_{6}^{\prime}-\beta_{6}=\theta_{m 3} .
\end{align*}
$$

and

$$
\begin{align*}
\phi_{1}-\phi_{2}+\phi_{3}-\phi_{4}+\phi_{5}-\phi_{6} & =\alpha_{2}+\alpha_{4}+\alpha_{6}-\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) \\
& +\beta_{1}+\beta_{3}+\beta_{5}-\left(\beta_{2}+\beta_{4}+\beta_{6}\right) \tag{27j}
\end{align*}
$$

Similarly, from (12h), (14h), (24a,b) and (27a,b), we also have

$$
\begin{align*}
\phi_{1}-\phi_{2}+\phi_{3}-\phi_{4}+\phi_{5}-\phi_{6} & =\alpha_{2}^{\prime}+\alpha_{4}^{\prime}+\alpha_{6}^{\prime}-\left(\alpha_{1}^{\prime}+\alpha_{3}^{\prime}+\alpha_{5}^{\prime}\right) \tag{27k}\\
& +\beta_{1}^{\prime}+\beta_{3}^{\prime}+\beta_{5}^{\prime}-\left(\beta_{2}^{\prime}+\beta_{4}^{\prime}+\beta_{6}^{\prime}\right) .
\end{align*}
$$

Thus, the phases obtained in (12g) [or (14e)], (12i) [or (14i)], (22c), (24c), (25c) and (27c) together with (7a-d) derived previously constitute the complete set of information characterizing an unknown emitter being investigated, from which the detailed radiation pattern may be plotted in accordance with (5).

After the rather lengthy formal derivations presented above, it is instructive to summarize a few points. (i) The sum and difference power measurements taken at the proposed six EUT positions are sufficient to determine the equivalent six unknown dipole moments amplitude ($m_{e x}, m_{e y}, m_{e z} ; m_{m x}, m_{m y}$, $m_{m z}$), and the total power radiated by the unknown EUT in free space. (ii) The same power measurements are not enough to determine the detailed radiation pattern if the EUT is made of both types of dipole moments. To achieve this objective for the general case, the relative phase measurements between the sum and difference ports taken at the six prescribed EUT positions are required. (iii) An examination of the power pattern expression given by (5) shows that all phase terms appear as relative quantities (i.e., $\psi_{e x}-\psi_{\text {my }}$). This permits specifying one phase angle as a reference, assigning an arbitrary value to it, and resolving the five remaining angles relative to the chosen reference. Of course, the reference value assigned will have no effect on the final radiation power pattern. (iv) To extract the remaining five relative phase angles from the measured power and phase data ($\left.P_{s i}, P_{d i}, \phi_{i}, i=1,2, \ldots, 6\right)$, after choosing one of the six phases $\psi_{e x}, \psi_{e y}, \psi_{e z} ; \psi_{m x}, \psi_{m y}, \psi_{m z}$ as a reference, it is necessary to use:
(A) One set of three equations from either (8) or (9) with the constraints given by (16a) or (16b),
(B) $(12 \mathrm{~g})$ or (14e),
(C) one of the relations in (22c)
and
(D) one of the relations in (25c)
for a total of five independent equations. The sign ambiguity in (8) or (9) is solved by (15a), (23a), and (26a) [or (15b), (23b), and (26b)].

Three examples are given in the next section to illustrate the above summary.
4. Illustrative Examples

Since the equations required for extracting the unknown phases are quite involved, we wish first to verify their usefulness and validity by two simulated theoretical examples so that the problem is not futher complicated by practical considerations such as measurement inaccuracy caused by the background noise and imperfect readings of the instrument.

Example 1. Suppose the equivalent electric and magnetic dipole moments in meters and square-meters respectively and phases in degrees representing an unknown EUT are:

$$
\begin{array}{ll}
m_{e x}=1.4, & m_{e y}=1.8,
\end{array} \quad m_{e z}=1.6, \quad \psi_{e x}=0, \quad \psi_{e y}=80, \quad \psi_{e z}=60 ;
$$

In addition, suppose the particular TEM cell used has a cross-sectional area of $1.2 m \times 1.2 \mathrm{~m}$ so that at the frequency of 30 MHz , only the dominant TEM mode can propagate and the vector transverse electric field is computed as $\bar{e}_{0}=\bar{x} p+\bar{y} q$, where $p=0$ and $q=11.83 \mathrm{v} / \mathrm{m}$ [3].

In accordance with the material presented in Section 2, we have the following sum and difference powers,

$$
\begin{align*}
& P_{s 1}=\frac{1}{2} q^{2}\left[m_{e x}^{2}+m_{e y}^{2}+2 m_{e x} m_{e y} \cos \left(\psi_{e x}-\psi_{e y}\right)\right]=425.107856, \tag{28a}\\
& P_{s 2}=\frac{1}{2} q^{2}\left[m_{e x}^{2}+m_{e y}^{2}-2 m_{e x} m_{e y} \cos \left(\psi_{e x}-\psi_{e y}\right)\right]=302.626424, \tag{28b}\\
& P_{s 3}=\frac{1}{2} q^{2}\left[m_{e y}^{2}+m_{e z}^{2}+2 m_{e y} m_{e z} \cos \left(\psi_{e y}-\psi_{e z}\right)\right]=784.597583, \tag{28c}
\end{align*}
$$

$$
\begin{align*}
& P_{s 4}=\frac{1}{2} q^{2}\left[m_{e y}^{2}+m_{e z}^{2}-2 m_{e y} m_{e z} \cos \left(\psi_{e y}-\psi_{e z}\right)\right]=27.106038, \tag{28d}\\
& P_{s 5}=\frac{1}{2} q^{2}\left[m_{e z}^{2}+m_{e x}^{2}+2 m_{e z} m_{e x} \cos \left(\psi_{e z}-\psi_{e x}\right)\right]=473.027282, \tag{28e}\\
& P_{s 6}=\frac{1}{2} q^{2}\left[m_{e z}^{2}+m_{e x}^{2}-2 m_{e z} m_{e x} \cos \left(\psi_{e z}-\psi_{e x}\right)\right]=159.541746, \tag{28f}\\
& P_{d 1}=\frac{1}{2} k^{2} q^{2}\left[m_{m x}^{2}+m_{m y}^{2}-2 m_{m x} m_{m y} \cos \left(\psi_{m x}-\psi_{m y}\right)\right]=2.704333, \tag{28g}\\
& P_{d 2}=\frac{1}{2} k^{2} q^{2}\left[m_{m x}^{2}+m_{m y}^{2}+2 m_{m x} m_{m y} \cos \left(\psi_{m x}-\psi_{m y}\right)\right]=52.545279, \tag{28h}\\
& P_{d 3}=\frac{1}{2} k^{2} q^{2}\left[m_{m y}^{2}+m_{m z}^{2}-2 m_{m y} m_{m z} \cos \left(\psi_{m y}-\psi_{m z}\right)\right]=1.556813, \tag{28i}\\
& P_{d 4}=\frac{1}{2} k^{2} q^{2}\left[m_{m y}^{2}+m_{m z}^{2}+2 m_{m y} m_{m z} \cos \left(\psi_{m y}-\psi_{m z}\right)\right]=27.172985, \tag{28j}\\
& P_{d 5}=\frac{1}{2} k^{2} q^{2}\left[m_{m z}^{2}+m_{m x}^{2}-2 m_{m z} m_{m x} \cos \left(\psi_{m z}-\psi_{m x}\right)\right]=7.617338, \tag{28k}
\end{align*}
$$

and

$$
\begin{equation*}
P_{d 6}=\frac{1}{2} k^{2} q^{2}\left[m_{m z}^{2}+m_{m x}^{2}+2 m_{m z} m_{m x} \cos \left(\psi_{m z}-\psi_{m x}\right)\right]=36.582351 . \tag{28i}
\end{equation*}
$$

The relative sum-to-difference phases in degrees can be obtained from (12f), (14d) and (22a), (22b), (25a) and (25b) in Section 3 as:

$$
\begin{align*}
& \phi_{1}=-103.0261, \quad \phi_{2}=-77.0300, \quad \phi_{3}=-113.5502, \tag{29}\\
& \phi_{4}=105.5593, \quad \phi_{5}=48.1116, \quad \phi_{6}=91.9132 .
\end{align*}
$$

We, now, assume that the EUT is unknown and the values given in (28) and (29) are the "measured" sum and difference powers and phases. The problem at hand is then to verify the validity and usefulness of the development presented in Sections 2 and 3 to see whether the unknown dipole moments and phases can be recovered to compute the radiation pattern. Using (7) with $p=0$ and $q=11.83$, we obtain

$$
\begin{equation*}
m_{e x}^{2}=\left(p_{s 1}+p_{s 2}-p_{s 3}-P_{s 4}+p_{s 5}+p_{s 6}\right) /\left(2 q^{2}\right)=1.96, \tag{30a}
\end{equation*}
$$

$$
\begin{align*}
& m_{e y}^{2}=\left(p_{s 1}+p_{s 2}+p_{s 3}+p_{s 4}-p_{s 5}-p_{s 6}\right) /\left(2 q^{2}\right)=3.24, \\
& m_{e z}^{2}=\left(-P_{s 1}-P_{s 2}+p_{s 3}+p_{s 4}+p_{s 5}+p_{s 6}\right) /\left(2 q^{2}\right)=2.56, \\
& m_{m x}^{2}=\left(P_{d 1}+P_{d 2}-P_{d 3}-P_{d 4}+P_{d 5}+P_{d 6}\right) /\left(2 k^{2} q^{2}\right)=0.64, \\
& m_{m y}^{2}=\left(P_{d 1}+P_{d 2}+P_{d 3}+P_{d 4}-P_{d 5}-P_{d 6}\right) /\left(2 k^{2} q^{2}\right)=0.36, \\
& m_{m z}^{2}=\left(-P_{d 1}-P_{d 2}+P_{d 3}+P_{d 4}+p_{d 5}+P_{d 6}\right) /\left(2 k^{2} q^{2}\right)=0.16 ; \\
& \cos \left(\psi_{e x}-\psi_{e y}\right)=\left(p_{s 1}-p_{s 2}\right) /\left(2 q^{2} m_{e x} m_{e y}\right)=0.173648 \\
& \text { or } \psi_{e x}-\psi_{e y}=\theta_{e 1}= \pm 80^{\circ} \text {, } \\
& \cos \left(\psi_{e y}-\psi_{e z}\right)=\left(p_{s 3}-p_{s 4}\right) /\left(2 q^{2} m_{e y}{ }^{m_{e z}}\right)=0.939693 \\
& \text { or } \psi_{\text {ey }}-\psi_{e z}=\theta_{e 2}= \pm 20^{\circ} \text {, } \\
& \cos \left(\psi_{e z}-\psi_{e x}\right)=\left(p_{s 5}-p_{s 6}\right) /\left(2 q^{2} m_{e z} m_{e x}\right)=0.500000 \\
& \text { or } \psi_{e z}-\psi_{e x}=\theta_{e 3}= \pm 60^{\circ} \text {, } \\
& \cos \left(\psi_{m x}-\psi_{m y}\right)=\left(p_{d 2}-P_{d 1}\right) /\left(2 k^{2} q^{2} m_{m x} m_{m y}\right)=0.939693 \\
& \text { or } \psi_{m x}-\psi_{m y}=\theta_{m l}= \pm 20^{\circ} \text {, } \\
& \cos \left(\psi_{m y}-\psi_{m z}\right)=\left(P_{d 4}-P_{d 3}\right) /\left(2 k^{2} q^{2} m_{m y} m_{m z}\right)=0.965926 \tag{30k}\\
& \text { or } \psi_{m y}-\psi_{m z}=\theta_{m 2}= \pm 15^{0} \text {, } \\
& \cos \left(\psi_{m z}-\psi_{m x}\right)=\left(P_{d 6}-P_{d 5}\right) /\left(2 k^{2} q^{2} m_{m z} m_{m x}\right)=0.819152 \tag{30l}\\
& \text { or } \psi_{m z}-\psi_{m x}=\theta_{m 3}= \pm 35^{\circ} \text {. }
\end{align*}
$$

Clearly, all the amplitudes of dipole moments have been recovered, ($16 \mathrm{a}, \mathrm{b}$) can be satisfied with two possibilities for each. The sign ambiguity for $\theta_{e i}$ and $\theta_{m i}$, $\mathbf{i}=1,2,3$ may be resolved by (15), (23) and (26).

Case 1. Choosing $\theta_{e 1}=80^{\circ}, \theta_{e 2}=-20^{\circ}$, and $\theta_{e 3}=-60^{\circ}$ for (15a), (23a) and (26a), we obtain

$$
\begin{aligned}
& \sin \theta_{m 1}=-1.428572, \text { no solution; } \\
& \sin \theta_{m 2}=-1.140644, \text { no solution } ; \\
& \sin \theta_{m 3}=1.070753, \text { no solution. }
\end{aligned}
$$

Case 2. Choosing $\theta_{e 1}=-80^{\circ}, \theta_{e 2}=20^{\circ}$, and $\theta_{e 3}=60^{\circ}$ for (15a), (23a) and (26a) we obtain

$$
\begin{align*}
& \sin \theta_{m 1}=-0.342020, \\
& \sin \theta_{m 2}=-0.258819, \tag{31a}\\
& \sin \theta_{m 3}=0.573605,
\end{align*}
$$

which yield

$$
\begin{equation*}
\theta_{\mathrm{m} 1}=-20^{0}, \quad \theta_{\mathrm{m} 2}=-15^{0}, \quad \theta_{\mathrm{m} 3}=35^{0} \tag{31b}
\end{equation*}
$$

or

$$
\begin{equation*}
\theta_{\mathrm{m} 1}=-160^{0}, \quad \theta_{\mathrm{m} 2}=-165^{0}, \quad \theta_{\mathrm{m} 3}=145^{0} . \tag{31c}
\end{equation*}
$$

A quick check of (16 b) and ($30 j, k, \ell$) confirms that the solution in (31b) is correct. The false solution in (31c) should be discarded. Thus,

$$
\begin{align*}
& \psi_{e x}-\psi_{e y}=-80^{0}, \quad \psi_{e y}-\psi_{e z}=20^{0}, \quad \psi_{e z}-\psi_{e x}=60^{\circ} \tag{32}\\
& \psi_{m x}-\psi_{m y}=-20^{0}, \quad \psi_{m y}-\psi_{m z}=-15^{0}, \quad \psi_{m z}-\psi_{m x}=35^{0}
\end{align*}
$$

Should we start with $\theta_{m 1}, \theta_{m 2}$ and $\theta_{m 3}$ obtained in ($30 j, k, \ell$) and then use (15b), (23b) and (26b), we would reach the same conclusion.

The application of (12d,e,g), (14e,f,g); (22c,d,e,f,g) and (25c,d,e,f,g) yields

$$
\begin{align*}
& \alpha_{1}=-45.9877^{0}, \quad \beta_{1}=150.9862^{0} \tag{33a}\\
& \alpha_{2}=58.4730^{\circ}, \tag{33b}
\end{align*}
$$

$$
\begin{align*}
& \alpha_{3}=9.4057^{0}, \beta_{3}=130.8555^{0} \tag{33c}\\
& \alpha_{4}=-61.5510^{0}, \beta_{4}=-80.9917^{0}, \tag{33d}\\
& \alpha_{5}=27.7958^{0}, \beta_{5}=-64.0926^{0}, \tag{33e}\\
& \alpha_{6}=-53.4132^{0}, \beta_{6}=-101.5000^{0} \tag{33f}\\
& \psi_{e x}-\psi_{m y}=60^{\circ}, \psi_{e y}-\psi_{m z}=125^{0}, \psi_{e z}-\psi_{m x}=140^{0} .
\end{align*}
$$

and

The application of (12i,j,k), (14i,j,k), (24c,d,e,f,g) and (27c,d,e,f,g) yields

$$
\begin{array}{ll}
\alpha_{1}^{\prime}=34.0123^{0}, & \beta_{1}^{\prime}=130.9862^{0} \\
\alpha_{2}^{\prime}=138.4730^{\circ}, & \beta_{2}^{\prime}=-98.5570^{0} \\
\alpha_{3}^{\prime}=-10.5943^{0}, & \beta_{3}^{\prime}=115.8554^{0} \\
\alpha_{4}^{\prime}=-81.5511^{0}, & \beta_{4}^{\prime}=-95.9917^{0} \\
\alpha_{5}^{\prime}=-32.2042^{0}, & \beta_{5}^{\prime}=-29.0926^{0} \\
\alpha_{6}^{\prime}=-113.4132^{0}, & \beta_{6}^{\prime}=-66.5000^{0} \tag{34f}
\end{array}
$$

and

$$
\begin{equation*}
\psi_{e y}-\psi_{m x}=160^{\circ}, \psi_{e z}-\psi_{m y}=120^{\circ}, \psi_{e x}-\psi_{\mathrm{mz}}=45^{\circ} \tag{34g}
\end{equation*}
$$

Note that the quantities obtained in (32), (33g) and (34g) fulfill the relative phase requirement for the radiation pattern in (5). Note further that the relationships in ($12 \ell, m, n$), ($14 \ell, m$), ($24 \mathrm{~h}, \mathrm{i}$), and ($27 \mathrm{~h}, \mathrm{i}, \mathrm{j}, \mathrm{k}$) are all exactly satisfied.

If, in addition, $\psi_{e x}=0$ is chosen as the phase reference, the other phases will be $\psi_{\text {ey }}=80^{\circ}$, $\psi_{\mathrm{ez}}=60^{\circ}, \psi_{\mathrm{mx}}=-80^{\circ}, \psi_{\mathrm{my}}=-60^{\circ}$, and $\psi_{\mathrm{mz}}=-45^{\circ}$, which are exactly the ones assigned in this particular example.

At this point, one may doubt the validity of the formal presentation if some of the six amplitudes of the dipole moments vanish. To eliminate this doubt, another theoretical example is given below.

Example 2. Suppose the input data remain the same as those presented in Example 1, except that $\mathrm{m}_{\mathrm{mz}}=$ 0 . Naturally, under this condition, $\psi_{m z}$ has no meaning. The sum powers and the first two difference powers should also remain as those obtained in (28) because they do not involve $m_{m z}$. The other difference powers will be different. They are:

$$
\begin{equation*}
P_{d 3}=P_{d 4}=k^{2} q^{2} m_{m y}^{2} / 2=9.944930 \tag{35a}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{d 5}=P_{d 6}=k^{2} q^{2} m_{m x}^{2} / 2=17.679876 \tag{35b}
\end{equation*}
$$

By the same reason, ϕ_{1} and ϕ_{2} should have the same values as those given in (29). The other sum-todifference phases in degrees may be obtained from (17) as:

$$
\begin{equation*}
\phi_{3}=-139.4057, \quad \phi_{4}=111.5511, \quad \phi_{5}=22.2042 \text { and } \phi_{6}=103.4132 \tag{36}
\end{equation*}
$$

Note that, for this special case, we not only have $P_{d 3}=P_{d 4}$ and $P_{d 5}=P_{d 6}$ as given in (35), but also have $2\left(P_{d 3}+P_{d 5}\right)-P_{d 1}-P_{d 2}=0$. In fact, these relations insure $m_{m z}=0$ as can be easily seen from (7). The sum-to-difference phases ϕ_{i} have, however, no simple relationship.

Again, from the testing point of view, we assume that the powers given in (28a through h) and $(35 a, b)$ and the sum-to-difference phases given in (36) together with $\phi_{1}=-103.0261^{\circ}$ and $\phi_{2}=$ -77.0300° are the "measured" values. Obviously, all the dipole-moment amplitudes can be totally recovered by the same exercise presented in (30a through f). The relative phases associated with the electric dipole moments also remain the same as before, namely, $\theta_{e 1}= \pm 80^{\circ}, \theta_{e 2}= \pm 20^{\circ}$, and $\theta_{e 3}=$ $\pm 60^{\circ}$. The only relative phase associated with the magnetic dipole moment is still $\theta_{\mathrm{ml}}= \pm 20^{\circ}$. The other relative phases associated with the magnetic dipole moments, $\theta_{m 2}$ and $\theta_{m 3}$, are undefined because they both involve the meaningless quantity $\psi_{m z}$. Fortunately, they are not required, as can be seen 1ater.

Case 1. Choosing $\theta_{e 1}=80^{\circ}, \theta_{e 2}=-20^{\circ}$, and $\theta_{e 3}=-60^{\circ}$ for (15a), we have

$$
\sin \theta_{m l}=-1.428572, \text { no solution. }
$$

Case 2. Choosing $\theta_{e 1}=-80^{\circ}, \theta_{e 2}=20^{\circ}$, and $\theta_{e 3}=60^{\circ}$ for (15a), we have

$$
\sin \theta_{\mathrm{ml}}=-0.342020, \text { or } \theta_{\mathrm{ml}}=-20^{\circ}
$$

which implies that the correct solution should be:

$$
\begin{equation*}
\psi_{e x}-\psi_{e y}=-80^{\circ}, \psi_{e y}-\psi_{e z}=20^{\circ}, \psi_{e z}-\psi_{e x}=60^{\circ}, \text { and } \psi_{m x}-\psi_{m y}=-20^{\circ} . \tag{37a}
\end{equation*}
$$

Note that the other possible solution of $\theta_{m 1}=-160^{\circ}$ is discarded in view of (28g) and (28h). So long as $P_{d 2}>P_{d 1}$, we always have $\left|\theta_{\mathrm{m} 1}\right|<90^{\circ}$.

$$
\begin{equation*}
\psi_{e x}-\psi_{m y}=60^{\circ} \tag{37b}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{e y}-\psi_{\mathrm{mx}}=160^{\circ} \tag{37c}
\end{equation*}
$$

the condition (24c) yields

$$
\begin{equation*}
\psi_{e z}-\psi_{\mathrm{my}}=120^{\circ} \tag{37d}
\end{equation*}
$$

and the condition (25c) yields

$$
\begin{equation*}
\psi_{\mathrm{ez}}-\psi_{\mathrm{mx}}=140^{\circ} \tag{37e}
\end{equation*}
$$

The relative phases so extracted above are all required by (5) for computing the power pattern for the emitter being considered. The other conditions, (22c) and (27c) are meaningless in this case. Note that the values for $\alpha_{i}, \alpha_{i}^{\prime},(i=1,2,3,4,5,6), \beta_{1}, \beta_{2}, \beta_{1}^{\prime}, \beta_{2}^{\prime}$ remain the same as those given in (33) and (34) since they involve only $\theta_{e i}(i=1,2,3)$ and $\theta_{m l}$. The other β_{i} and β_{i}^{\prime} become

$$
\begin{align*}
& \beta_{3}, \beta_{4}, \beta_{5}^{\prime}, \beta_{6}^{\prime} \text { undefined, } \\
& \beta_{3}^{\prime}=90^{\circ}, \beta_{4}^{\prime}=-90^{\circ}, \beta_{5}=-90^{\circ}, \beta_{6}=-90^{\circ} . \tag{38}
\end{align*}
$$

Of course, when $\psi_{e x}=0$ is chosen as the phase reference, we obtain from (37)

$$
\begin{equation*}
\psi_{e y}=80^{\circ}, \quad \psi_{e z}=60^{\circ}, \quad \psi_{\mathrm{mx}}=-80^{\circ} \text { and } \psi_{\mathrm{my}}=-60^{\circ} \tag{39}
\end{equation*}
$$

Thus, we demonstrated that the theoretical development presented in this report is also applicable to the special case when one of the component dipole moments vanishes. The same conclusion is valid when any one of the other five component dipole moments is zero. For example, when $\mathrm{m}_{\mathrm{my}}=0$, we will have $P_{d 1}=P_{d 2}, P_{d 3}=P_{d 4}$, and $2\left(P_{d 1}+P_{d 3}\right)-P_{d 5}-P_{d 6}=0$; and $\theta_{\mathrm{m} 1}$ and $\theta_{\mathrm{m} 2}$ will be meaningless. As another example, if $m_{e x}=0$, we will then have $P_{s 1}=P_{s 2}, P_{s 5}=P_{s 6}$, and $2\left(P_{s 1}+P_{s 5}\right)$ - $P_{s 3}-P_{s 4}=0 ;$ and $\theta_{e l}$ and $\theta_{e 3}$ will have no meaning.

The formulation is also good when any two or more of the six component dipole moments vanish. For example, when $m_{m y}=m_{m z}=0$, we will have $P_{d 1}=P_{d 2}=P_{d 5}=P_{d 6}$, and $P_{d 3}=P_{d 4}=0$; and all $\theta_{\text {mi }}(i=1,2,3)$ will have no meaning. Then $\theta_{e 1}, \theta_{e 2}, \theta_{e 3}$, and $\psi_{e z}-\psi_{m x}$ from (25c) will be sufficient to give the correct solution. As another example, if $m_{e z}=m_{m z}=0$, we then have $P_{s 3}=$ $P_{s 4}, P_{s 5}=P_{s 6}, 2\left(P_{s 3}+P_{s 5}\right)-P_{s 1}-P_{s 2}=0 ; P_{d 3}=P_{d 4}, P_{d 5}=P_{d 6}, 2\left(P_{d 3}+P_{d 5}\right)-P_{d 1}-P_{d 2}=0$; and
$\theta_{\mathrm{e} 2}, \theta_{\mathrm{e} 3}, \theta_{\mathrm{m} 2}$, and $\theta_{\mathrm{m} 3}$ will all have no meaning. Then, $\theta_{\mathrm{e} 1},(12 \mathrm{~g}),(14 \mathrm{i})$, and (15a) will give an unambiguous solution for the relative phases.

After demonstrating the usefulness and validity of the theory and computation procedures outlined in Sections 2 and 3 by two theoretical examples, we now give a practical example based on actual experimental data. It should be anticipated that the procedures involved will not be as straightforward as those for the theoretical examples because the measured inaccuracy and noise will mask the consistency required by various equations.

Example 3. In this experiment, the unknown EUT is represented by a spherical dipole radiator with a radius of 5 cm . The radiator consists of two hemispherical shells which are fed at the poles and held together by threading onto a dielectric disc such that there is a gap of 3 mm between them. The electronic circuitry feeding the dipole is enclosed within the shells and consists of a batteryoperated power supply and a $30-\mathrm{MHz}$ crystal oscillator followed by an amplifier. Thus, the radiator is self-contained and no external connections are needed.

The radiator, with an arbitrary orientation, was placed at the center of the upper chamber of a TEM cell of $1.20 \mathrm{~m} \times 1.20 \mathrm{~m} \times 2.40 \mathrm{~m}$. The measured sum powers in watts, difference powers in watts, and relative phases in degrees between the sum and difference outputs at the six positions depicted in figures 4,5 , and 6 , as recorded by the computer in the experimental system, are as follows:

$$
\begin{array}{lll}
P_{s 1}=9.935735\left(10^{-6}\right), & P_{s 2}=8.855233\left(10^{-10}\right), & P_{s 3}=2.224334\left(10^{-6}\right), \\
P_{s 4}=2.674238\left(10^{-6}\right), & P_{s 5}=2.329164\left(10^{-6}\right), & P_{s 6}=2.800271\left(10^{-6}\right), \\
P_{d 1}=2.640584\left(10^{-8}\right), & P_{d 2}=5.391381\left(10^{-12}\right), & P_{d 3}=5.031529\left(10^{-9}\right), \\
P_{d 4}=5.911531\left(10^{-9}\right), & P_{d 5}=5.268658\left(10^{-9}\right), & P_{d 6}=1.179506\left(10^{-8}\right) ; \\
\phi_{1}=-32.94, & \phi_{2}=\text { unstable because of weak levels of } P_{s 2} \text { and } P_{d 2}, \\
\phi_{3}=166.5, & \phi_{4}=-13.5 \\
\phi_{5}=168.66, & \phi_{6}=-48.6 . &
\end{array}
$$

An examination of the relative values of the sum and difference powers confirms that this radiator is essentially an electric-type source, as it should be. We, nevertheless, treat it as a combination of both types even though the magnetic dipole moments are not as important as the electric counterparts. The frequency of 30 MHz assures that only the dominant mode may exist inside this cell. The size of the radiator is, indeed, small compared to the cross section of the cell and to the wavelength of 10 m . The normalized transverse electric field at the radiator center for this particular example is estimated at $\bar{e}_{0}=11.825 \bar{y} \mathrm{v} / \mathrm{m}[3]$. That is, $p=0, q=11.825$, and the field is purely y-directed.

The amplitudes of the dipole moments extracted from these measurement data in accordance with (7a,b) are:

$$
\begin{array}{lll}
m_{e x}=1.906736\left(10^{-4}\right), & m_{e y}=1.862939\left(10^{-4}\right), & m_{e z}=0.180769\left(10^{-4}\right), \\
m_{m x}=1.716559\left(10^{-5}\right), & m_{m y}=1.355661\left(10^{-5}\right), & m_{m z}=0.380153\left(10^{-5}\right) . \tag{40}
\end{array}
$$

The relative phases between the dipole components of the same kind may be extracted in accordance with (7c,d) [or (8) and (9)] as:

$$
\begin{align*}
& \cos \theta_{\mathrm{e} 1} \cong 1.0, \\
& \cos \theta_{\mathrm{e} 2}=-0.477711, \\
& \cos \theta_{\mathrm{e} 3}=-0.488734, \\
& \cos \theta_{\mathrm{m} 1} \cong-1.0, \\
& \cos \theta_{\mathrm{m} 2}=0.154661, \\
& \cos \theta_{\mathrm{m} 3}=0.905867, \tag{41}
\end{align*}
$$

$$
\begin{aligned}
& \theta_{\mathrm{e} 1}=\psi_{\mathrm{ex}}-\psi_{\mathrm{ey}}=0^{\circ}, \\
& \theta_{\mathrm{e} 2}=\psi_{\mathrm{ey}}-\psi_{\mathrm{ez}}= \pm 118.5360^{\circ}, \\
& \theta_{\mathrm{e} 3}=\psi_{\mathrm{ez}}-\psi_{\mathrm{ex}}= \pm 119.2574^{\circ}, \\
& \theta_{\mathrm{m} 1}=\psi_{\mathrm{mx}}-\psi_{\mathrm{my}}= \pm 180^{\circ}, \\
& \theta_{\mathrm{m} 2}=\psi_{\mathrm{my}}-\psi_{\mathrm{mz}}- \pm 81.1028^{\circ}, \\
& \theta_{\mathrm{m} 3}=\psi_{\mathrm{mz}}-\psi_{\mathrm{mx}}- \pm 25.0596^{\circ} .
\end{aligned}
$$

Since the measurement data involve inaccuracies due to background noise, instrument errors, etc., obviously we should not expect a perfect satisfaction of various restraining equations as for the theoretical examples considered previously. For example, to satisfy (16a), we may choose (a) $\theta_{e 1}=0$, $\theta_{e 2}=118.5360^{\circ}$, and $\theta_{e 3}=-119.2574^{\circ}$, or (b) $\theta_{e 1}=0, \theta_{e 2}=-118.5360^{\circ}$, and $\theta_{e}=119.2574^{\circ}$. Either of these two cases yields a small error of less than 1°, which implies that the accuracy on the measured sum powers and the values of m_{e}, $\mathbf{i}=1,2,3$ deduced from them is quite acceptable. However, the values of θ_{mi} do not nearly meet the requirement in (16b). In fact, the smallest deviation among various combinations of $\theta_{\text {mi }}$ from (16b) is of the order of 74°. This is not surprising in view of the relatively weak levels of $m_{m i}$. Since $\cos \theta_{m 1}$ involves $P_{d 2}-P_{d 1}$ and the measured $P_{d 2}$ is a few orders smaller than the measured $P_{d 1}$, we are certain that $\left|\theta_{\mathrm{m} 1}\right|>90^{\circ}$. Whether or not the absolute value of θ_{ml} is closer to 180° as obtained in (41) depends naturally on the actual accuracy. Similarly, since the measured $P_{d 6}$ is quite stronger than the measured $P_{d 5}$, we may be certain that $\cos \theta_{m 3}$ determined by $P_{d 6}-P_{d 5}$ is positive, giving an absolute value for $\theta_{m 3}$ smaller than 90°. Of course, the true value for $\theta_{\mathrm{m} 3}$ may be much different from 25° as approximately shown in (41). As for $\theta_{\mathrm{m} 2}$, the situation is very different from $\theta_{m 1}$ and $\theta_{m 3}$. Since the measured values for $P_{d 3}$ and $P_{d 4}$ are quite close, the true value for $\cos \theta_{\mathrm{m} 2}$ determined by $P_{d 4}-P_{d 3}$ may be small-positive or small-negative. Thus, the absolute value for $\theta_{\mathrm{m} 2}$ may be greater or smaller than 90°. The above analysis explains that the condition (16b) is still likely to be met if the accuracy involved in the measurement of difference powers is more reasonable. In any case, we still have other conditions such as (15), (23), and (26) to be examined.

Case 1. Choosing $\theta_{e 1}=0^{\circ}, \theta_{e 2}=118.5360^{\circ}$, and $\theta_{e} 3=-119.2574^{\circ}$, we obtain respectively from (23a) and (26a):

$$
\sin \theta_{\mathrm{m} 2}=-0.282754 \text { yie1ding } \theta_{\mathrm{m} 2}=-16.4246^{\circ} \text { or }-163.5754^{\circ}
$$

and

$$
\sin \theta_{m 3}=9.364986 / 4.105186=2.281247, \text { no solution. }
$$

In examining (26a) more closely for this case, we find that the result of an unrealizable $\theta_{\mathrm{m} 3}$ is mainly due to the chosen negative sign for $\theta_{e 3}$ even though the values for $m_{e x}, m_{e z}, m_{m x}$, $m_{m z}$ and the measured ϕ_{5} and ϕ_{6} are all somewhat responsible. Even a substantial deviation in all of these values in view of the implicit measurement errors is not likely to yield a realizable value for θ_{m} so long as a negative sign is chosen for θ_{e}.

The value for θ_{ml} cannot even be determined from (15a) because it requires ϕ_{1} and ϕ_{2}, and yet the weak levels of $P_{s 2}$ and $P_{d 2}$ fail to produce a stable measured value for ϕ_{2}. Thus, we are forced to use $\theta_{\mathrm{ml}}=180^{\circ}$ as obtained in (41).

Case 2. Choosing $\theta_{e 1}=0^{\circ}, \theta_{e 2}=-118.5360^{\circ}$, and $\theta_{e 3}=119.2574^{\circ}$, we obtain from (23a)

$$
\sin \theta_{m 2}=0.282754 \text { giving } \theta_{m 2}=16.4246^{\circ} \text { or } 163.5754^{\circ} \text {, }
$$

and from (26a)

$$
\sin \theta_{\mathrm{m} 3}=5.994492 / 5.299348=1.131175 .
$$

Although $\theta_{m 3}$ also appears unrealizable for this case, the situation is rather encouraging because only a small deviation in $m_{e x}, m_{e z}, m_{m x}, m_{m z}, \phi_{5}, \phi_{6}$, or $\theta_{e 3}$ will make $\sin \theta_{m 3}$ approach to 1.0 , yielding $\theta_{m 3}$ $=90^{\circ}$.

Thus, from the above considerations, it is more reasonable to choose Case 2 to represent the unknown radiator. Even so, the sum of θ_{mi}, $\mathbf{i}=1,2,3$ is still approximately 74° off the ideal condition (16b). This amount of deviation is considered too excessive to deduce any meaningful results for other mixed phases. To make a compromise in this regard and in view of the previous comment that the absosolute value for $\theta_{\mathrm{m} 2}$ may be greater or smaller than 90°, we take, for $\theta_{\mathrm{m} 2}$, the arithmetic average of 81.1028° obtained in (41) with the actual measured difference powers ($P_{d 4}>P_{d 3}$) and 163.5754° obtained from (23a) by allowing the possibility that the true value for $P_{d 3}$ could well be greater than the true value for $P_{d 4}$. That is,

$$
\begin{equation*}
\theta_{\mathrm{m} 2}=1 / 2\left(81.1028^{\circ}+163.5754^{\circ}\right)=122.3391^{\circ} . \tag{42a}
\end{equation*}
$$

Similarly, for $\theta_{m 3}$, we take the arithmetic average of 25.0596° obtained in (41) based on the measured $P_{d 5}$ and $P_{d 6}$ and 90° obtained from (26a) with a minor adjustment in measured quantities to account for the measurement inaccuracy,

$$
\begin{equation*}
\theta_{\mathrm{m} 3}=1 / 2\left(25.0596^{\circ}+90^{\circ}\right)=57.5298^{\circ} \tag{42b}
\end{equation*}
$$

Now, the sum of $\theta_{m 1}=180^{\circ}, \theta_{m 2}$ in (42a) and $\theta_{m 3}$ in (42b) almost satisfies (16b).
With this important constraining condition almost satisfied, we then proceed as follows.

From (12d,e,g,j,k,i) we obtain

$$
\begin{align*}
& \alpha_{1}=0, \quad \beta_{1}=-90^{0}, \quad \alpha_{1}^{\prime}=0, \quad \beta_{1}^{\prime}=90^{0} \tag{43a}\\
& \psi_{e x}-\psi_{\mathrm{my}}=\phi_{1}+\alpha_{1}-\beta_{1}=57.06^{0} \tag{43b}
\end{align*}
$$

and

$$
\begin{equation*}
\psi_{e y}-\psi_{m x}=\phi_{1}+\alpha_{1}^{\prime}-\beta_{1}^{\prime}=-122.94^{0} \tag{43c}
\end{equation*}
$$

Note that for this case,

$$
\begin{equation*}
\alpha_{1}-\alpha_{1}^{\prime}=0=\theta_{e 1}, \quad \beta_{1}^{\prime}-\beta_{1}=180^{0}=\theta_{\mathrm{m} 1} \tag{43d}
\end{equation*}
$$

which exactly satisfy $(12 m, n)$.
Equations (14e,i) are useless under the current measurement condition because we do not have a stable measured value for ϕ_{2}. Therefore, (43b) is the only computed value for $\psi_{e x}$ - $\psi_{m y}$, and (43c) for $\psi_{e y}-\psi_{m x}$.

From (22d,e,f,g,c) we have

$$
\begin{gather*}
\alpha_{3}=-5.1081^{0}, \beta_{3}=-43.9804^{0}, \alpha_{4}=4.6576^{0}, \beta_{4}=163.2360^{\circ} \tag{43e}\\
\psi_{\mathrm{ey}}-\psi_{\mathrm{mz}}=\phi_{3}+\alpha_{3}-\beta_{3}=-154.6277^{0} \tag{43f}
\end{gather*}
$$

and

$$
\begin{equation*}
\psi_{e y}-\psi_{\mathrm{mz}}=\phi_{4}+\alpha_{4}-\beta_{4}=-172.0784^{0} \tag{43~g}
\end{equation*}
$$

The reason that the result in (43f) does not agree exactly with that in (43g) is because of the approximation for $\theta_{\mathrm{m} 2}$ used in (42a). Again, taking the arithmetic average of (43f) and (43g) gives

$$
\begin{equation*}
\psi_{e y}-\psi_{m z}=-163.3530^{\circ} \tag{43h}
\end{equation*}
$$

From (24d,e,f,g,c), we have

$$
\begin{gather*}
\alpha_{3}^{\prime}=113.4279^{0}, \quad \beta_{3}^{\prime}=78.3587^{0}, \quad \alpha_{4}^{\prime}=123.1936^{0}, \quad \beta_{4}^{\prime}=-74.4249^{\circ}, \tag{43i}\\
\psi_{\mathrm{ez}}-\psi_{\mathrm{my}}=\phi_{3}+\alpha_{3}^{\prime}-\beta_{3}^{\prime}=-158.4308^{0}, \tag{43j}
\end{gather*}
$$

and

$$
\begin{equation*}
\psi_{\mathrm{ez}}-\psi_{\mathrm{my}}=\phi_{4}+\alpha_{4}^{\prime}-\beta_{4}^{\prime}=-175.8815^{0} \tag{45k}
\end{equation*}
$$

Taking the arithmetic average of (43j) and (43k) yields

$$
\psi_{e z}-\psi_{m y}=-167.1562^{\circ}
$$

Also, note that

$$
\begin{equation*}
\alpha_{3}-\alpha_{3}^{\prime}=\alpha_{4}-\alpha_{4}^{\prime}=-118.5360^{0}=\theta_{\mathrm{e} 2}, \quad \beta_{3}^{\prime}-\beta_{3}=\beta_{4}^{\prime}-\beta_{4}=122.3391^{0}=\theta_{\mathrm{m} 2} \tag{43m}
\end{equation*}
$$

which are the results expected from (24h,i).

From (25d,e,f,g,c), we have

$$
\begin{gather*}
\alpha_{5}=114.3005^{0}, \beta_{5}=-78.0276^{0}, \quad \alpha_{6}=-56.2228^{0}, \quad \beta_{6}=-99.4802^{0} \tag{43n}\\
\psi_{e z}-\psi_{m x}=\phi_{5}+\alpha_{5}-\beta_{5}=0.9881^{0} \tag{430}
\end{gather*}
$$

and

$$
\begin{equation*}
\psi_{e z}-\psi_{m z}=\phi_{6}+\alpha_{6}-\beta_{6}=-5.3426^{0} \tag{43p}
\end{equation*}
$$

Taking the arithmetic average of (430) and (43p) yields

$$
\begin{equation*}
\psi_{e z}-\psi_{\mathrm{mx}}=-2.1773^{\circ} \tag{43q}
\end{equation*}
$$

Finally, from (27d,e,f,g,c), we have

$$
\begin{gather*}
\alpha_{5}^{\prime}=-4.9569^{0}, \quad \beta_{5}^{\prime}=-20.4978^{0}, \quad \alpha_{6}^{\prime}=-175.4802^{0}, \quad \beta_{6}^{\prime}=-41.9504^{0}, \tag{43r}\\
\psi_{e x}-\psi_{m z}=\phi_{5}+\alpha_{5}^{\prime}-\beta_{5}^{\prime}=-175.7991^{0}, \tag{43s}
\end{gather*}
$$

and

$$
\begin{equation*}
\psi_{e x}-\psi_{m z}=\phi_{6}+\alpha_{6}^{\prime}-\beta_{6}^{\prime}=-182.1298^{0} \tag{43t}
\end{equation*}
$$

Taking the arithmetic average of (43s) and (43t) yields

$$
\begin{equation*}
\psi_{e x}-\psi_{m z}=-178.9645^{\circ} \tag{43u}
\end{equation*}
$$

Note that,

$$
\begin{equation*}
\alpha_{5}-\alpha_{5}^{\prime}=\alpha_{6}-\alpha_{6}^{\prime}=119.2574^{0}=\theta_{\mathrm{e} 3}, \beta_{5}^{\prime}-\beta_{5}=\beta_{6}^{\prime}-\beta_{6}=57.5298^{0}=\theta_{\mathrm{m} 3} \tag{43v}
\end{equation*}
$$

which are the results expected from ($27 \mathrm{~h}, \mathrm{i}$).

In summary, the results of $\psi_{e x}-\psi_{e y}=0, \psi_{e y}-\psi_{e z}=-118.5360^{\circ}, \psi_{e z}-\psi_{e x}=119.2574^{\circ}$, $\psi_{\mathrm{mx}}-$ $\psi_{m y}=180^{\circ}$, $\psi_{m y}-\psi_{m z}=122.3391^{\circ}, \psi_{m z}-\psi_{m x}=57.5298^{\circ}$, together with those in (40) and (43b, c, h, ℓ, q, u) are $a l l$ we need in computing the radiation pattern (5) for the spherical dipole radiator being analyzed.

In addition, the total dipole strengths and orientations can also be determined as follows:
(i) for the electric type,

$$
\begin{equation*}
m_{e r}=\left(m_{e x}^{2}+m_{e y}^{2}+m_{e z}^{2}\right)^{1 / 2}=2.671865\left(10^{-4}\right) m(\text { actually, amp-m } \tag{43w}
\end{equation*}
$$

normalized to a unit current),

$$
\begin{equation*}
\theta_{e}=\cos ^{-1}\left(m_{e z} / m_{e r}\right)=86.12^{0}, \quad \phi_{e}=\tan ^{-1}\left(m_{e y} / m_{e x}\right)=44.33^{\circ} ; \tag{43x}
\end{equation*}
$$

(ii) for the magnetic type,

$$
\begin{aligned}
& m_{m r}=2.220114\left(10^{-5}\right) m^{2}\left(\text { actually, amp }-m^{2}\right. \text { relative to a } \\
& \text { unit current), }
\end{aligned}
$$

$$
\begin{equation*}
\theta_{\mathrm{m}}=80.14^{0} \quad \phi_{\mathrm{m}}=38.30^{0} \tag{43z}
\end{equation*}
$$

It is significant to note that the electric dipole strength obtained in (43w) agrees very well (within $\pm 1 \%$) with that deduced from another measurement method [4], and that the orientation obtained in (43x) is approximately (within $\pm 2 \%$) equal to that of the spherical dipole radiator (relative to the TEM cell
coordinates) placed originally inside the TEM cell to begin with this experiment. This kind of confirmation certainly helps to establish a good degree of confidence in the proposed method. Since there is no a priori knowlege about the equivalent magnetic dipole vector associated with the spherical dipole radiator, we have no way to determine the accuracy for the results obtained in $(43 y, z)$.

From (43x) we realize that the electric dipole is approximately located in the plane of $\phi=45^{\circ}$ and $\phi=225^{\circ}$. The normalized radiation pattern in this particular plane, in accordance with (5), is presented in figure 7. Clearly, the maximum radiation is approximately in the direction perpendicular to the dipole axis as expected. The presence of some magnetic dipole moments causes a minor unsymmetry of the pattern. The total power radiated by this spherical dipole is, in accordance with (6), about $0.283 \mu \mathrm{w}$.

The relative phases extracted in this example are relatively consistent, though not perfect, under the practical measurement circumstance. It is felt that a general composite interference source with comparable strengths of electric and magnetic dipoles will give even better results. Corresponding results due to a source of essentially magnetic type are to be reported on in the future.

5. Conclusions

The theoretical development and measurement procedures have been presented to determine the freespace radiation characteristics, both the total radiated power and detailed radiation pattern, for a general unknown emitter. The success of this proposed method relies on the measurements of powers and phases at six different emitter positions when it is placed inside a TEM cell. One of the main requirements is that the emitter is electrically small compared to the wavelength and the TEM cell size. The other requirement is that the frequency is low enough such that only the dominant mode is propagating inside the TEM cell. Both theoretical and experimental examples have been given to demonstrate the usefulness and validity of the method. An error analysis of the final experimental results should be made in the future to gain insight into the accuracy of the method due to background noise and other practical imperfections involved in the measurements.

6. References

[1] Sreenivasiah, I.; Chang, D. C.; Ma, M. T. Characterization of electrically small radiating sources by tests inside a transmission line cel1. Nat. Bur. Stand. (U.S.) Tech. Note 1017; 1980.
[2] Sreenivasiah, I.; Chang, D. C.; Ma, M. T. Emission characteristics of electrically small radiating sources from tests inside a TEM cell. IEEE Trans. on Electromag. Compat., EMC-23, No.3: 113-121; August, 1981.
[3] Tippet, J. C. Model characteristics of rectangular coaxial strip line. Ph.D. Thesis, University of Colorado, Boulder; 1978.
[4] Crawford, M. L.; Workman, J. L. Predicting free-space radiated emissions from electronic equipment using TEM cell and open-field site measurements. IEEE Internat. Synp. on Electromag. Compat. Record 80-85; 1980.

Appendix

```
100 FEM....THIS RCHTINE WILL COLLECT AHD ANAL'ZE OR SIMFL'Y ASEIST IH THS
105 FEM....AHALYSIS OF POWER ANI PHASE DATA AS OUTLIHED IN THIS HES TEEH HOTE.
110 FEM1....THE FHIIATION FATTERN FUR THE EQUIPMEMT LINDER TEST
115 FEM....IS RLSO DEVELIPED. THIS FROGRAM IS WRITTEN ON THE HP 9830 WITH
120 REM....THE HP 9862A PLDTTER, 8568A SFECTRUM FNALYZER; THE IHFUJT/OITFUIT
125 FEM....COHHAHIIS MIJST EE MODIFIED TO FETUAL EOUIPHENT IEED. THE FHA゙ょE
130 FEMM....IS IHPUT MRHUGLL'' WHEN PROMPTED BY THE COMPUTER.
135 REM....
140 FEM....
145 LEF FHF(%)=ATH(%,SQR(1-X*' +1E-99))
150 IEF FHE(X)=ATH(SER(1-%*K)/(X+1E-99))+2*ATNIE+99%(X<0)
155 FEM INITIHLIZE ALL MATPIPIE
160 IIM H$[10],B$[10],C$[30]
165 DIM F[5],O[6],C[3,5],D[3,6],E[3],F[3],M[3],N[3]
170 DIM E[185,2],1J[100,2],W[E],2[6,6]
175 MAT S=\ER[185,2]
180 MAT (I=2ER[10日,2]
185 MAT |=ZER[ ह]
190 HAT E=こEF[G,E]
195 IHTA 1,1,-1,-1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1
200 JATA 1,-1,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,1,-1
205 MAT FEFII C[3,6], D[ 3,6]
210 HAT F=C[H|[E]
215 MAT O=GUH[ \epsilon]
2こ! MAT E=[ON[S]
225 MAT F=COH[3]
250 MAT M=[0H[3]
255 MRT H=COH[ S]
240 FEM....IF FDNEFR AND FHASE IIATA AFE TO BE COLLECTEI USE THE ME:OT SUEFDINT!,E
245 FEM....AHD SKIF THE FEHD INTH COHHAMIS. IF IIHTA IS TO EE STIIIEII FIFTEF
2SG FEM....COLLEGTION, UEE DHTA FEMD WITH IIFIHTED IHFOFMATIOH. (EG,FG FLEO:.
255 FEM....AHD SKIP THE DFTA COLLECTIOH SUERDUTIHE. UUSE OR IELETE LIHE C'EG`
3E日 LOTU 275
2E5 DOSIJB 4200
27日 10T0 300
275 FEM....FEAI IH DATA FROM THE IATA COMMANIS AT THE EHII.................
20日 60E148 4710
285 EM=11.83
290 FG=3E+07
295 FEM....ENII DATA IHPUT....
30日 FIKED }
30.5 FFINT "FFEQUENCY="(FO/1E+竐):"MHZ. CELL FHCTOR EG=";EO
3 1 0 ~ F F I H T ~ T
315 00=E0;1.414213562
320 FD=0, 
325 人0=(2*PI - FO)/3E+0S
330 K3=1 (2*E0%`)
35k1=1:(2*K.012-E@\uparrow2)
340 FLOHT 4
345 MHT E=C*F
350 MAT E=(K2)-E
35.5 MHT M=C*Q
369 MAT M= (K1)*M
365 MAT F= }=
370 MAT F=(K2)*F
3.5 |RT H=0%0
380 MAT H=(K1)*N
385 FOR C=1 TO 3
390 IF E[C]>0 THEN 400
3.5 E[C ]=0
40日 IF M[E]>0 THEN 410
4@5 M[C]=0
410 NENT C
41.5 FFINT
42G PRIHT
GES FFIHT "THE SIJM POWERS GRE;"
430 FFINT "FEI=";P[1];"PSS=";P[2];"PS3=";P[3]
435 FRIHT "PS4="!P[4];"PSS=";P[5];"PS5=";P[6]
440 FF
```

```
44E FF:IMT
#EG F'FINT "THE IIIFFEFENCE FGNEF:S FIFE:"
455 FFIHNT "FII=";O[2];"FFIE=":@[1]!"FIG=";0[4]
```



```
4E.E FFINT
4T6 FINEII4
4F5 FFINT
4EO FFIH!T "THE FHFSE RHGLES, SHM TO IITFFEFEHLE FOUNEFS GFEE (1-6);"
```



```
40%FGF=1 T0 E
4GE H[L]=(W[[] 1EG)*FI
EGG HEPT E
```



```
E10 FFIHT
E15 FFINT
EcG FLGIFT 4
EES FFIHT "THE ELELTFIL IIFULE MOHENTS AFEE"
```



```
5E FFINT
```



```
S4E FFIHT "THE MHGNETIC IIFOLLE MLHENTE FFE:"
```



```
EES FFIITT
5EG FF:INT
SEE FFINT "THE ELEOTFIT IIFOLE MOMEHT CFOSS TEFMS RFE:"
```



```
5T5 FFIHT
5%4 FHLHT
```



```
EGEH!=[!1J+!ETE-M11]
BGG F
EGE HO=E[3]+1EDTE)
&.16 H4=F[1]+10+2+N[1]
6.15 HE=F[z]+M01z)+N[z]
EOGFE=F[%]+4G12)+N[S]
EEFFO(16+FGTC)*(A1+H2+FS)
EOTFIIT
ES FFITH
```



```
SE F.E
```



```
EEE FFIHT
GEG FFIIIT
EEE FFIINT
GTG FFINT "THE TOTHL FAIIIHTEII FIDNEF IH FEEE SFHCE IS"FG"UHTTE "
6-5 FFIIHT
GE0 FFFIHT
EC5 CFINT
EG HEM GO IEVELOF THE E TO M CFOES TERMS
6%E GOEUE 1EG0
TGG FEM....IEVELQF THE G TERMS FDF: THE PATTEFNH............................................
TEEGGUE S125
714 FEM ...THE FFIIIATION FFTTEFN IS IIENELOFEII HEFE..........................................
715 REM....THETFI=I, FHI=J, LAMIIF=L
```



```
てご5 IIET
ア0日FFLHG
75L=SE+BEFE
74G IHSF "FRIIIFL IISTRHCE IH METEFS%%Or";
745 EEEF
75 IHFUTT F
75E IISF "WHF:' THETH OR FHI? (TVF";
7EE EEEF
EE IUFUT H%
709 IF f4[1]="F'" THEN 795
3-5 IF FH{[1]="T" THEN 785
7EOG FOTE 子55
785 GOEUE:1545
```

```
706 L1T0 806
T55 FOEUE 1FEE
EgG Gu&E G46
&0E GUSLIE 12MT
810 FFIHT
&15 FINEL 2
8c@ IF FIF[1]="F" THEN &55
```



```
EG5 FFINT
&40 FGF:IFT EN,FE.G.G%,F12.z
&&E FFILT "THETH IIEGFEES FAITATEII FGWEF &IE WATTS EELOW MAN""
856 50TG ET5
&5E FFIHT "THE F:HIIIRTIOH FHTTEFH FOR THETA="I"IEG. FHIV F:="F:"METEFE"
```



```
EGE FFIHT
ETGFFIHT " FHI IEGFEEE FRIIFTEII FUWEF (IE WATTE EELOW MFN*"
ETS F'FIHT
EG FOF Z=1 TOO
&G5 WFITE (15,8,40)OU[2,1],U[Z,2]
8G4 HEKT Z
855 FFIIUT
90% F'FIHT
```



```
916 EEEF
915 1:|F|T E:
OEG If EF[1]="Y" THEN 740
95, ITGF "THETE HLL FOLKS!";
%%G ETOF
G5 EliI
```



```
GES FEM....THFT E:IST FGF: THE FHTTEF:H CFLCLILFTEII IH HFTEIS
9EG FEEM......
GES IF HOT FLFIGE THEH GOE
GTG IIEF "REFEF TO NEW MAXINUM' ©YN%.;
OTS EEEF
SEG IUFllT E&
GE5 IF E{[1]="Y" THEN 595
GG6 [OTG 1036
OEFIZ=[1:1]
1004 FOFC=2 TOK
16G IF S[C.ZJNG THEN 1015
1010 İ-E[に2]
1615 HEST C
10EG SFLHG 2
105 FLDHT 4
```



```
10SE FFIHT
104G FF'IHT
1@4E FOFGC=1 TO K
1[5G E[[,2]=1 IO-%S[0,2]
1055 IF S[C,2]>1E-50 THEH 1065
106% S[C:2]=1E-5回
1005 S[C,z]=10-LGT(S[C,2])
1070 HE:TT C
10%5 IF E[f,2],S[1,2] ANII S[2,2]&S[1,2] THEN 1096
10E0 Q=1
1085 G0TO 1195
105[ |[1.1]=5[1,1]
1055 U[1,2]=6[1,2]
11090%=2
1105 FGF C:=2 TG K-1
1110 咋-1
1115 I=T.+1
```



```
1125 507011145
11E0 U[0,1]=E[[0,1]
```

```
1:354[0.こ丁=36.きう
```



```
114E IENT C
```



```
1155E=1-1
```



```
11E5 0=0-1
117E FETUFH
1175 |[0,1]=5[1:17
118G |[g,z]=-iん!こう
1105 FETUFH
11%0 STOF
11%5 EHII
1206 FEM:...THIS FOUITIHE HILL FLOT FIHI LAEEL THE FFHIIFITIDH F'HTTEFN................
120.5 FEM......
121言 FEM......
121E IISF "INSTHLL FFFEEF FHII SET EGUHIS":
1220 EEEF
1225 STOF
1こ3日 GCALE -30.3TG,-34,E
1235 FCIF C=1 TOT k
1246 FLGTT E[C:1], S[C,2]
1245 HENT C
256 FEH
1255 IHEF " LAEEL CUFVE (%,NO?";
2EG EEEF
12ES IHFIIT E:*
270 IF E:$[1:1]="%" THEH 12e5
2T5 FEL
200 FETIIFH
125 NH%IS -30,20,0,360
204 THN: ESG0+2,-30,2
```



```
1305 FEH
```



```
1E15 FOFNHT F4.G
```



```
135 FUF C=-2G TG GTEF 4
1%G FLOT -2EMC-G.3,-1
1OE LAFEL (1315MO
134E HENT C
1345 FEN
356 FLOT -SE,-15,-1
1%E LHEEL (% "IE"
1060 FLiT 1EG1,-30,-1
1%ES IF H4[1]="F"' THEN 1470
1%TG LAEEL &*;"THETA IEGFEES"
12T5 FUFNAT "FHI=",FE.1
1380 FLGT 40,-5S,-1
1305 LAEEL 1.155) (1-i&0)
1%G4 FLOT E&6,-3:-1
1295 LFEEL (1375)J
14E0 05=154
1405 FOF C:=0 TO 340 STEF 40
1410 IF C>184 THEN 1430
1+15 FLOT C:-12,-31,-1
1420 LAEEL (1315)C
1425 G01701 1445
1406 :!5=0%-45
1435 FLGT (-12,-31,-1
1440 LFEEL (1315)0马
1445 NENT C
1450 FLOTT 16, 3,-1
1455 LFEEL (1310)(F0/1E+0%), J-180, \,I2
14EOT FEN
14E5 GOTO 1510
1474 FGF:C=@ TO SEE STEF 4E
1475 FLGT C:-1え゙,-31,-1
```

```
14E0 LHEEL & 15150%
14E5 HE%T [
14% FEH
14G5 LHEEL * "F'HI DEDFEES"
1500 FLOT 1E, シ`-1
```



```
1E16 IISF "IHFUT TITLE. EG CHAFF MA%.":
1515 INF'!T C. 
15%GF'LIT JG,E,O-1
15:5 LHEEL &-IG
1536 F:ETLIFH
15%5 ETOF
1540 ElII
1545 FEH....THIG FOUTINE GHLCULATES THE FHIIHTIONFHTTEFN FIN A FIKEII FHI
15EG FEM....WITH THETF UHFIEIIFFGM G TG 18G IEGFEES IN STEFS GF 2 IEDFEE........
1EES F:EM....THE IIATA IS IEFUSITEI IN MATFI% E
15EG FE\......
15%5 FEMM......
15TG IIEG
1ETE IIGF' "INFUT FH|LLE FHI CIEGREES":
15GG EEEF
1585 IHFUTT J
1590 11=[0EC1)
15%5 l2=SIH(1)
16EG FFIHT "FLEHGE EE FGTIEHT WHILE THE FAIIHTIOH FATTEF:H IS GALGULHTEII......
1EG5 FFF!|TT
1E1G FFIHT
1E15 FFIHT
102G K=0
1ES FOF I=G TG IEG ETEF Z
1E%目 (%1
1035 I1=00601%
104G İ=sIW!!
```



```
1EESE[L,1]=1
1f05 E[t,&]=FE
1ETG HE%T I
1075 I=. 1+180
1080 11=006(1)
1685 a=5iNCN
1040% 0%=180
1EEE FOF I=17E T0 ETEF -2
17640%=0%+2
1505 =1+1
1715 11=[0E%!
1715 I2=5INCI
```



```
1735 S[K,1]=0%
174% S[1:2]=FE
1745 HE%T I
1756 FETIIFN
17EF FEM....THIE FOUIINE CALCULATES THE FAIIHTIGI: FHTTETH FUF F FI%EI: THETA
17EG FEM....WITH FHI YARIEI FFCHG G TO SEG ILEGFEES IHSTEFS IIF Z IIEGFEE...........
17ES F:EM.... IHTA IS IIEFUSITEI IN MATFI% S
17アU゙ FEM......
1775 FEM......
1TGg IISF "IHFUT FHGLE THETA (IEGFEES,";
1785 EEEF
17ES INFUT I
1795 I1=00E?I)
18GGIz=siItil)
IEGE FFINT "FLEAEE EE PFTIEHT WHILE THE FAIHIATIOH FATTEFN IS CALCULATEI......
1E14 FFFINT
1E15 FFINT
1EOG FFINT
```

```
1Gごにば
150 FiF I=, T0 3EG STEF Z
10t =1:+1
1846 11=008!
1%45 l2=SIH6!
```



```
1)05c[t:]]=.1
@9[日[ト:ごJ=F゙も
1875 HENT I
18E0 FETLHFH
18EE GTOF
1EGG FEN THIS FOLTINE CFLRULFITES THE E TO N CROSS TEFNS...................................
1EGE FIGEII 4
1000 FOF C=1 TG 3
1%as [i[]=S0E<E[C])
1510 M[:]=50%EM[C])
1%15 HE:T E
19EG FE| THIE FOUTINE IS IESIDHEII TO LFUUNIE'i FHULT'i IIFTG
1925 FGF E=1 TO S
1530 IF E[E]#G THEN 194E
1%35 E[!] ]=1E-E|
194[ IF N[E]#G THEN 1950
1:45 M[r]= E E-20
1G5G HEMT [
155:E1=F[1]*(E[1]*E[2])
1GEG 1F FESCEI% = 1 THEH 19F5
```



```
1%70 E1=E1 HEGGE1.
1975 EJ=FNECE1:
106G MI=N[1].<M[1]+M[2])
15E5 IF FEC(li) <= 1 THEH 20日G
```



```
1%%5 11= =11/RESUM1)
2G日G M1=FHE\M1:
```



```
ZbIG IF REGGEZ &= 1 THE:1 2GEE
```



```
2GEGEO=E2 HESGEO)
ZGOE EO=FHECE`
```



```
20SE IF FIESQME) & = 1 THEH EGEG
```



```
2045 HE= 位/FECME)
```



```
205E ES=F[3](E[3]*E[1])
2GEO IF HEESES <= 1 THEH 20%5
```



```
2070 EO=ESHEGGO)
2W75 ES=FNE(ES)
```



```
ZUES IF FESCl13: <= 1 THEH 21GE
```



```
2G%5 HE:ME,HES(M3)
21014 MS=FHE(M3)
2105 FFFHT "E1,M1=";(E1,FI)>1EG:GM&FI)*18G
2110 FFIHT "E2,M2=";(E2,FI)*1EG!(NE'FI)*180
2115 FR1HT "ES,MS=";(ES/FI)*1E0; (ME/FI)*180
212g PFIHT
2125 FOF }C=1 TG
```



```
21%5 S=H[C]/FES(W[C])
2140 H[C]=FES(H[C])
<14E IF W[i's s= 1.57079E THEN Z1EE
215G W[C]=1.5?1
255 G0T0 2185
216G W[:]=1.5706
21E5 W[%]=5%WLCJ
```

```
O10 HEET 
```



```
20.4 1MOT E:S
-185 if E:I17="E" THEH 2S45
```



```
21%5 4=1
20日名 =
2g05 IF E#[1:2]="M1" THEH E2E0
2%19IISF ExIHE1, +1,-1O";
2215 14r'ilT S1
2G6 E1=G1%E1
225 TH=EIHCEJ
```



```
2zs Gugue zes
ze40 IF NOT FLAGI THEN EこEG
```



```
250 E1=S1-E1
2255 E0T0 2175
```



```
2%E5 LOGUE 2GES
2こ0111=T4
2075 C!TG 2545
```



```
22g5 IMFITT S1
2290 111=51+M1
EEE Tu=Gbuml?
2%G6S=Sth(F[1]-F[2])
OGE EOGUE 25E
210 JF NOT FLAS: THEN EOSt
```



```
2%0111=61*M1
23550T0 ご一5
23O FF!HT "FOF MI=":OM1.FIM+186:" EI="
235 LGE!星 ご曋
2540 [1=T4
2S45 IHEF 'EELIEYE EE, MZ GF EOTHO":
2564 INF!IT E:士
```



```
2%GT1-THNGHIS]-N[4])
2%e5 !=2
2%0 4=3
2375 IF EF[1:2]="Mぎ THEH 245げ
20% IIOF "SIGHEO! +1,-1?";
2Sg IHF!!T S1
2%GEこご1*Eこ
2FG5 TG=GTHUEO)
2404 Sz=5[4t(0[ 3]-0[4])
24日G G!GuE 28E
2410 IF HOT FLFG1 THEN 2430
```



```
24zer EZ=51-Ez
2425 50T! 2:45
```



```
2435 GOE|E: 2984
2445 nE=T4
2445 E0T0 2515
```



```
2455 INFU\T Sil
z4EG Mz= %1-Mz
24ES TG=SIH/M2%
247G SZ=5[H:F[z]-F[4])
2475 5iGUE 2946
z4BG IF NOT FLFGI THEN 2506
```



```
<496 H2-81-142
24%5 50TG こ345
25GUFFIHT "FOF ME=";(MZ/FI)*1E69" Eこ="
2E05 r0GUE 2006
2510 E2=T4
```

```
2E, IIGF "EELIEME ES, ME UR EUTH`";
E-G IHF|| E'ま
    IF E:[1]]="E" THEH CESS
    Ti=TAN(W[E]-W[E])
    !こ=
2E40 !'=1
2545 IF Es[190]="HE" THEH 2Eこ0
25EWIIEF "EIGHES, +1,-1%";
2ESE IHFUTTO2
25%6 ES=S1-ES
25-5 TG=EIH!ES%
```



```
25-5 GOG!E 28E5
25E0 IF NOT FLHG1 THEN ZEGG
```



```
2506 ES=51*ES
25G5 GOTU ご55
2EGG FKIHT "FOF ES="!(ESFFI)*1EN;" M:="
2605 GUSUE こ9&%
20101 MS=T4
2E15 GOTO EFGE
z6%G IIEF "SIGH MS', +1:-1?";
2Eこ5 INFUUT S1
2Es0 MS=S1*MS
2GS TG=SIH:MS:
2*4G SO=5目(F'[5]-F[E])
2E45 TOGUE 2G46
2EEG IF HUT FLH[』 THEH 2ETG
```



```
E0G n5:51-14:
20E5 TOTG こ5,5
2ETG FFIHT "FOF MS=":MEFIO-1EQ:" ES="
2075 FOGUE 2%804
20E0 ES=T4
```



```
200GFFINT "EI,M1="(EI,FI)-1EG:N1FFI)+1E[
```



```
2TGGFFIHT "ES,MS=";(ESFI)*1EW!GSFFIO*1EO
2TGE FFIHT
2T1G IISF "EELECT GTHEF GHOICE? ''|H";
ジ15 INF||T E:手
2FEG IF E&[1]="|" THEN こEe4
```



```
2゙SU INFIIT 2E.
```



```
T40 IIEF "JHFUT E1";
2T45 INFUT E1
27501 E1= E1/1E0)*FI
```



```
2TGEOUSF"INFIUT Eこ";
2TES IHFUT E2
27T0 Ez=(E2-1E0)*F1
2Tア5 60T0 26S
27&0 IIEF"IHFFUT ES";
CTES IHFUTT ES
2700 EO=E %180)*FI
2T与5 LOT0 こeS5
CE日G IICF "INFUT M1";
E&G5 IHFUT M1
2E10 M1= M1-1EG)*FI
<&15 GのTO こもE5
2&こG IISF "INFUT ME";
2Eこ5 IHFUIT MZ
2\varepsilon%0 Mジ=(Mシノ180)*FF!
2%5 r
2E4G IISF "INFUT M3";
2&45 IHF!UT MS
```



```
2655 GUTU 2EE5
```



```
    &5 14%7 EF
    IF E:湆1]="Y" THEN 195%
    FEFLIF:H
    ETOF
    F[!....in_CHLHTE | FFidM E TEFMS.
    OFL-Fi= 1
```



```
    IF FESOW <= 1 THEN EGSG
    W1=ij
```



```
    SFLHG 1
    FETUFW
    STOF
    FEM....CHLCULATE E FEOM M TEFMG.
    EFLAG 1
```



```
    DTTG 2%16
    FETLEH
    STOF
```



```
    IF HCE THEH S0195
    TシFF1-TE
    G0TO 2010
    TS=-'FI+Tご
    IF SE< THEH SUES
S1E1F
30%G FTTG 3G%
605 T4=T
```



```
6H5F FFItiT
SG4-1 FETUF!!
O45 STOF
605 EMI
OG55 FEH....IETEFMINE COFEEGT QHIII FUF: IHNEREE TAHGENT FUNICTIGH.
20GE IF fESCE:1E-25 THEN SGTG
OE E:=SGHEEO*1E-2E
850 IF E; = G THEN 3085
OOTS 24=HTH(HEO
SGES FETIEH
SOE こH=FI+HTHCH.E
SGGG FETUFH
SOETOF
Z1GG FEM....TFHE FHILES EETWEEH +- 1EG DETFEES.
3105 IF AEG(25)<= FI THEH 3115
3110 25=25-(SGH゙25)*で*F!
2115 FETUFH
310G ETF
325 FEM....TEST EULINTIOHS FOF:(EX-HM%.
S13@ fi=0[1-E[z]-EIN(E1)
```



```
#40 EOCSE 355E
2145 -[1,2]=24
315GH=[G+M[1]*COS(M1)-P[1+1[2]
25E E=CMOH[1]+SIN(M1)
O105 50%UE 3055
31EE, [1,3]=24
※17[125=W[1]+2[1,2]-2[1, ङ]
3175 GCIG|E З,00
8:64 2[1,1]=25
S1EE 2G= (HI1]FFI)*180
```



```
3135=2=2[1:3]FI)*186
```



```
O1G FOFMAT 4FG.3
S15 H=-FG*E[z]*SIN(E1)
%26 E:00%E[1]-FG*E[2]*[0EEE1)
O25 F0EUE S05E
`%6 2[1:5]=24
```



```
S24日 E:= F(0+M[1]\divS1H(M1)
34E EOSOE 3055
*E6 Ј[1,E]=24
OES ZE=H[E]+こ[1,E]-Z[1,E]
%60 G0GUE S150
32E5 2[1:4]=25
3%G ZG=G[HZ]FIO+1EG
375 21={2[1, 5]/FI)*18[1
*こ0 2z=2[1,E]/FI)*18[
%85 ZO= 2[1,4]FFI)*1EG
32G0 WFITE (15,321(1)"EN-HY=":20!" +":21;" -"!22;" =":2%
32G5 FFIHT
3SG5 FEM....TEST EQUATIONS FOF (EY-M%).
SOS F=-FG%E[1]*EIN(E1)
```



```
OST GOSUE O655
2%6 2[ごこ]=24
325 fi=60*M[1]-FG+M[{]*[:0G<M1)
```



```
355 O0GUE 3055
340 2[-3 J=24
3.45, 25=11[1]+2[2, 2]-2[2,3]
S50 EUGUE O105
355 2[2,1]=25
860 EG=(W[1] FI)+186
Fre = [2,Z]F1;*18
O70 2-2L2, シJ.FI)*1S0
ST5 こG=12[%,1]/F1)*1SG
```



```
3305 A=-0ETE[1]*SIHCEI)
OG E:OG-E[1] COE(E1)-F[GE[2]
O-5 GOSUE E05E
3406 [ 2,5]=24
```



```
3H15 E0FUE 5055
34EG 2[2,G]=24
3425 25=W[2]+2[2:5]-2[z,G]
```



```
345 2[2,4]=25
```



```
3445 こ1=(2[2,5],FI)*186
345(42こ=(2[2,E],FI)*186
O455 こ%=2[2:4],FI)*180
```



```
OHEE FFIHT
347G FEM....TEST EOUATIUNG FDF:(EY-ME).
#4TE F=010+E[こ]*SIH(EZ)
```



```
34E5 GOGUE 3055
#40 [[3:2]=24
34%5 F=06+M[2]\divCOS(M2)-F[%M[3]
SG0 E=CM%M[2]*SIN(M2)
3505 GOGLIE 3655
3519 [[3:3]=24
315 25=1[ふ]+2[%って]-2[ぶぶ]
352[4 GOFLE 3100
3525 2[5:1]=25
350@ 2(1=(W[ 3 ]/FI)*18@
z52% 21=(2[3,2]/FI)*18@
3546 Zこ=2[3.3]/FI)*180
3545 2S=6[%,1]/FI)*180
```



```
SEEE, fi=-FG-E[S]-G! NHE
```



```
G5% GOS|E S055
    2[.5.5]=24
```



```
    E=-FG+M[z]*EIN(M2)
    GOE|E 2055
    Z[こに]=こ4
    E=%[4] ]+2[3,5]-2[3,6]
    G口E|E こ104
    -[2.4]=2E
    こう=(W[4]FI)%18G
    Z1=(Z[亏:5] FI) +18G
    Zこ=[[3,E]/FI)*186
    z=(z[3.4]/FI)*1\varepsilonG
```



```
    FFEIHT
    FEM....TEST ESUATIONE FOF &EZ-MM'夕,
    F=-FG+E[z]*SIN(EZ)
    E=F[G+E[2]+COS(E2)+[!T-E[%]
    GOUE 3055
    2[4:2]=24
    F=[0%H[2]-F[G+M[3]*COE(M2)
    E=FGON[G]*SIH(M2)
    501E 3055
    2[4:2]=こ4
```



```
    GOENE SJTM
    -[4=11]-こE
    ZH=1H[%]FIO+186
    2I=2[4:Z]FI:*1S!
    Z=:2[4, #] FI% - 8% 
    O=2[4:1]/FI:*18!
```



```
    F=-ח[-E[2]*EIt\EZ
```



```
    LuSuE SOSE
    2[4,5]=त-4
```



```
    \square0%|E 5055
    Zi 4.E]=24
    2E=|[4]+2[4:5]-2[4,E]
    GGIE 31111
    2[4,9]=こ5
    2G=:W[4]`FI)*18G
    Z1=こ[4,5]/FI)*18[
    z=2[4:E] FI`*1EG
    Z=C[4.4]/FI)*186
    WFITE (15,3こ10)"EZ-Mi=";こ0;" +":Z1;" -";己こ!" ="!こう
    FFIHT
    FEM....TEST ESUATIGNS FQF: (EO-M%).
3@15 Fi=c!-E[1]*EI|CE%)
3E[G E=F[1+E[3]+001*E[1]*C0G(EO)
3%%5 G0E|E OG55
%5@ =[5:こ]=こ4
3ESEf
```



```
3845 GOGUE 3655
85% -[5,3]=24
3&:5 25=H[5]+2[5,で]-2[5, こ]
```



```
SEEF [[5,1]=25
3ETG FG=(H[E]/FI)+186
3&`F 21={2[E!2]/FI)*180
```



```
*esE J= [E5:1],FI)*1EG
3594
WFITE (15.3210)"EZ-Mn=";20;" +";21;" -";22;" =":23
```

```
38.5.5 म=-F'G-E[1]*SIN(E3)
3%09 E=00%E[3]-PQ*E[1]*(DS:E3)
8005 G05UE 3G55
5910 2[5,5]=24
3915 A=-(FG*M[3]*[0S(M3)+[00*M[1])
3F2S B=-F0*M[; ]*SIN\\\3)
3425 GOSLIB 3055
3550 [55.6]=24
3535 25=|[6]+2[5,5]-2[5,6]
3940 G0&US 3150
3945 2[5,4]=25
3%50 Zb=(W[5]FI)+150
3955 21=(2[5,5]%F1)*150
OU@G Z2=iZ[5,E]/FI;*160
39%5 Z3=( ?[5,4]/PI)*180
```



```
#%75 FFIHTT
S%GD FEM....TEST EOUHTIOHS FOR (EK-MZ).
30%5 A =-F0-E[3]*SIN(E3)
39.30 E=F'も゙#E[3]\divCUE(ES゙)+Q0*E[1]
3.75 505118 3055
4000 ?[6,2]=24
```



```
4910 E=PG*M[1]*SIN(MS)
4015 G0SIJE 3055
4020 2[6:3]=24
4[25 25=W[5]+2[6,2]-2[6,3]
4030 FUSUB 3196
40.35 2[ध,1]=25
4040 2G=(W[5]/F1)*1.95
4045 21=2[E.2]/FI)*180
4@5(2 E=(Z[EO3]/FI)*180
4055 23= 2[E.1] FI) $1E\
4500 URITE (15, 3こ10)"E%-ME=";20;" +":こ1;" -";22;" =";23
406.5 A=-0G-E[%]+SIH(ES)
```



```
4075 T0511e 3055
4W:0 2[5,5]=24
4035 }\textrm{H}=-(\textrm{FGH}M[3]+[0%*M[1]+[0S<MS)
4日9日 B=60*M[1]*5I|(M3)
40%5 [0801, 3055
4190 2[5,6]=24
4105 25=H[ 6]+2[6,5]-2[6:6]
4110 505|18 3100
4115 2[6,4]=2.5
```



```
4125 21={2[6,5],PI)*180
4130 22=(2[6,5]/FI;*180
4135 2%=2[6,4]/FI)*160
```



```
4145 FRINT
4150 FRINT
```



```
41EQ E2=2*K0+(E[2]*M[3]*SIN(Z[3,1])-E[3]*M[2]*SIN(Z[4,1]))
```



```
4170 URITE (15,4175)"B%Y-BYK=";B1;" BYZ-BZY=";B2;" EZ%-BKZ=";B%
4175 FOFMMT SEL2.4
41EQ FRINT
4185 FRIHT
4 1 3 0 ~ R E T U R N
4 1 9 5 ~ S T O P ~
400G FEM EEGIH THE MERSUFEMEHT FROCEDUFE AS OUTLIHED IH THIS NES TEGH NOTE.
42G5 IISP "FLACE EUT IN TEM CELL HT CENTER"
4 2 1 0 ~ E E E P
4215 STUF
4<20 DISP "INPUT TEM CELL FRCTOR (EO)";
4E25 BEEP
~二边 INFUT EG
42JS REM ...INITIRLIZE SPECTRUM GNALYZER AND SET OFERATIHI FREOUENCY.........
```

```
4-4 CoUE 4556
```



```
4E5G EEEF
4EES CTOF
```



```
4EEG EEEF
4%G ETGF
```



```
4EG BOEE 25GO
4EEG F[j]=F1
4こG[ [[c]=F2
4二心5 1:[1]=F%
```



```
4GE EEEF
4:15 Ejof
4215 FEH:FEHI THE SPETTFUM AHHLYZEF AHII IET FEZ, FIE, HHII FHFEE 2.
4%こGGGUE 4596
4こE F[2]=F1
4%0[1]=F%
45% N[z]=F%
```



```
445 EEEF
456 ETOF
455 IISF "FOTATE 4E IEG CLN FEOUIT こ (X')"
4%EG E'EEF
4SEESTOF
4OG FEM FEHT THE SFECTFUM FHFLYZEF FHII GET FSS, FIS, FHII FHAEE S
4575 FOGUE 4%O6
40日F[%]=F1
4%5 [[4]=F%
4%50 W[3]=F%
```



```
4456 EEEF
44GE ETOF
```



```
4415 F0%%E 45Sに
44E6 F! 4 l=F!
```



```
44SG \1: 4]=F'S
```



```
440 EEFF
444E STOF
4AEG IIEF "FGTFTE 45 IEG CTH HEOMT こ \because',"
4#55 EEEFF
4+6050F
```



```
44FGGOENE 45.96
44TE F[E]=F'1
44E00[E]=FF
4ヶも与 W[5]=F%
4400 IIEF "FITATE GO IEG ECN REOUTT Z &";"
44GE EEEF
4EOGOF
4EGE FEM FEAII THE SFECTFUH RNALYZEF FNNI GET FSE, FIE, FHII FHASE E.
4E1G GO:NE 4E96
4E1E F[E]=F1
```



```
4E`5 W[E]=F3
4535 FEM......
4ESE FEM THIS CONELUIES THE GATHEFIHG OF IIRTA FGF THE EMIESIOHS EHAFRGTEFIEATION
45.45 FEETUF:H
4545 ENII
```



```
4E5S FEM THIS IS WHEFE THE HECESSAFY FREOUENS:'I IHFUFMFTIOH IS GATHEREI...........
45EG OMI "UZ"
4EES FGFHAT SE
4570 OLTFUT (13,4565)ご56.4,512
4%5 EM1 "LO","VE 10 K2 FA z ME FE 200 M2 ME EK"
4ESG WFIT 5GE
```

```
45`t MI, "Wに","E1"
4ETG :1EF "MUGE MAF:GEF: TO IESIFEI FFELUENCY":
4EFE STOF
4EOG CHI "CUこ", "MT1"
40,5 मMIT 50G
4E10 [HI US'SF 2 H2 FE SG LZ HI"
4E15 HFIT E06
4Eこも CMI "FUご, "MF
4FE5 [1II "FFE
4ES0 EHTEF 01E,*)FE
4ESE [MI "नUE", "ME,夏\"
4E40 FIMEI z
4E4E FFIHT "FFENUEHCY=";(FG1|E+EGO;" MHE"
4E5G FLIHT &
4EEE IISF. INFUT AMFLITUIE THFEEHOLII (IEMM";
4EEG EEEF
4EES INFUT 21
4ETG FFINT
4ETE FEETLEH
4EEOETOF
4ESE EHII
4EGQ FEM FE&II THE FMFLITUIIE INFOF:HATIGIN FFOM THE SFEGTFUH FHHL'OZEF................
4EOE FEM......
4714 FEM......
4TGE IIGF" "EET COMA" SNITCH TO THE SUM FGFT";
4710570f
```



```
4%20 CHIN "FF5"
4%E EHTEF (igu%FFI
4TSU IISF "GET [GH* SWITCH TL IIFFEFENIE";
4TS5 ETOF
4'4, mi "-tz","E1 MH"
4-45 EMI "FFE"
4FEGNTEF:1ミब*)FE
4TEE IIEF "IHF'LT FHASE (SUM-IIFF)";
4TEG !HFUT FG
4EE FIOEN4
```



```
4-E FFIIHT
4TEG FFIHT "WITH F COPFEGTIOH FLF: LOSSES, THE FOWEF LEWELS FFE:"
4TE5 IF F'1<E! THEN 4806
47GGFI=F1+3.ES4E
47GE [GTO 400E
4006 F'1=0
4E05 IF FO<Z1 THEN 4E20
4日16FOFF+3.8G%
4E1E TITG 4&&E
4EこG FE=01
4E2E F'RIHT
4ESO IF FI=@ THEN 4E4E
4855 F'1=16t( (F'1,10;-3)
4E40 IF FO=0
4&+5 F'Z=10%(FO,16)-2)
4050 FLGHT 15
4E55 FFINT "FE=";F'1;"W FI=";F'Z゙;"W"
4EEG FFFINT
4EEG FINEI E
4ETG FFIHT "FHASE =";F`;"DEG ";(F%`18G)*F'I;" FMII"
4%75 F'S=C'S18G)*FI
4EEO FFIIHT
42%5 FFINTT
4EGG FF:INT
45%5 FETLIFIH
4SGU STOF
4905 E|II
4910 FEM....FEFAI IH FOUNEF: FHIL PHASE IIATA: SUM 1-E: IIFFEFENCE 1-E, FHI 1-E.
4515 IINTA 4.8978E-6E,3.4ET4E-68,7.61795E-6E.
4%2G IF:TH 4.168:PE-67,7.9433E-6E,2.236TE-617
492E IFTH S.7724E-09, 3.02E-09,1.2023E-06
```



```
4FSEFFFI: F[[!],F[こ],F[S],F[4],F[[5]F[E]
4G4日 FEFI O[2],0[1], O[4],O[%],O[E],[![5]
```



```
4#56 INTH -144.5,-60.4[2'T, - 41.1ET2
```



```
4EG FETUFN
4OEE ENII
```


THE EUM FGUEFS AFE:
$F 51=4.8 G E E-6 E \quad F E=3.46 T 4 E-6 G \quad F S O=7.695 E-6 E$

THE IIFFFFENGE FOLEFS RFE:

THE ELETTFIC. IIFIOLE MOMEHTS RFE:

THE MAEHETIL IJFGLE MOMEHTS GEE;

THE EIECTFIE IIFGLE MOMEHT CFOGS TEFME HFE:
$A E K=1.735 E-6 E \quad M E O Z=2.36 G E-6 E \quad M E X=2.75 \% E-6 E$
THE MRINETIC IIFOLE MOMEHT CFOSS TEFME AFE:

H $\because H=1.7551 E-18$ A YZ= $2.3 T E E-0 E$ A $2 \%=2.755 E-68$

E1, M1 = 5.624 $123.1 \hat{3} 19$
$E=M=9.80=162.715$


```
FBF'E:=-t.EE4日 N1=
```



```
FBFEこ=G.8もご NE=
FGGESELS FHAEES 15.6TS3 , 1E4.3EET CHOSEH= 1E4.32GT
FOF ES=-5.4%E4 MS=
FOESEIEE AHGES-E1.14EG , -17%.8544 [HOSEH=-17G.8544
E|.M=-5.EO4! 175.4865
EこッM= =.86こう 1E4.3207
E.-1:=-514554 -17%08544
E1,M=-5.EE45 4.5105
EO,N二= 3.8EzS 1e4.32ET
ESMS=-5.4S54 -179.8544
```



```
EN-M=-162.742 + 32.405 - 207.445 = 22.756
EM-MN= 9E.43E + 3.044 - 75.635 = 23.8EE
```



```
E'M-M= 103.602 + E.052 - -E3.0日t = -1ET.250
E,NO=-144.5010 + 205.754 - 208.514 = -107.250
EO-M=1日S.0日2 + -3.810 - 81.2S1 = 18.561
```



```
E-1%=-91.157 + 13.70% - -84.860 = 7.369
ENM= -6E403 + 3.15E- 90.67 = -1FT.321
EN-M= -11.17? + 19.142-95.2E5 = -167.221
```



```
FLEAEE EE FHTIENT WHILE THE FHMHATIOH FATTEFN IE GHLEMLATEI......
```



```
HAS THE FCLLOWIHG MA:IMLM HHII EELfTIUE Mf%IMUHE;
```

HAS THE FCLLOWIHG MA:IMLM HHII EELfTIUE Mf%IMUHE;
THETh IEGFEEG RFIIIGTEI PGMEF (IE WFTTS EELOH MA:%
134 % -0.61
THE E:HI

```


Figure 1. Emissions testing measurement system.


Figure 2. Unknown equipment under test (EUT) is made of equivalent three orthogonal electric and three orthogonal magnetic dipoles.


Figure 3. An arbitrary current source inside one half of a TEM cell.


Figure 4. Two EUT orientations in the TEM cell.

(b)


Figure 5. Another two EUT orientations in the TEM cell.

(b)


Figure 6. Final two EUT orientations in the TEM cell.


Figure 7. Calculated power pattern in the phi \(=45^{\circ}\), \(225^{\circ}\) plane for a spherical dipole radiator, based on measured data.
4. TITLE AND SUBTITLE

A Method to Quantify the Radiation Characteristics
of an Unknown Interference Source
5. AUTHOR(S)

Mark T. Ma and Galen H. Koepke
\begin{tabular}{|l|l|}
\hline 6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions) & 7. Contract/Grant No. \\
NATIONAL BUREAU OF STANDARDS \\
DEPARTMENT OF COMMERCE \\
WASHINGTON, D.C. 20234
\end{tabular}
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)
10. SUPPLEMENTARY NOTES
[.] Document describes a computer program; SF-I85, FIPS Software Summary, is attached.
11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here)
A new method for determining the radiation characteristics of leakage from electronic equipment for interference studies is described in this report. Basically, an unintentional leakage source is considered to be electrically small, and may be characterized by three equivalent orthogonal electric dipole moments and three equivalent orthogonal magnetic dipole moments. When an unkonown source object is placed at the center of a transverse electromagnetic (TEM) cell, its radiated energy couples into the fundamental transmission mode and propagates toward the two output ports of the TEM cell. With a hybrid junction inserted into a loop connecting the cell output ports, one is able to measure the sum and difference powers and the relative phase between the sum and difference outputs. Systematic measurements of these powers and phases at six different source object positions, based on a well-developed theory, are sufficient to determine the amplitudes and phases of the unknown component dipole moments, from which the detailed free-space radiation pattern of the unknown source and the total radiated power can be determined. Results of simulated theoretical examples and an experiment using a spherical dipole radiator are given to illustrate the theory and measurement procedure.
12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons) dipole moments; electrically smalt; interference source; leakage; phase measurements; power measurements; radiation pattern; TEM cell; total radiated power.
13. AVAILABILITY
[ \(X\) U Unlimited
\(\square\) For Official Distribution. Do Not Release to NTIS
[X Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.
\(\square\) Order From National Technical Information Service (NTIS), Springfield, VA. 22161
14. NO. OF

PRINTED PAGES

\section*{58}
15. Price
\(\$ 4.75\)

\section*{NBS TECHNICAL PUBLICATIONS}

\section*{PERIODICALS}

JOURNAL OF RESEARCH - The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs. As a special service to subscribers each issue contains complete citations to all recent Bureau publications in both NBS and nonNBS media. Issued six times a year. Annual subscription: domestic \(\$ 18\); foreign \(\$ 22.50\). Single copy, \(\$ 4.25\) domestic; \(\$ 5.35\) foreign.

\section*{NONPERIODICALS}

Monographs-Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.
Handbooks-Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.
Special Publications-Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.
Applied Mathematics Series-Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.
National Standard Reference Data Series-Provides quantitative data on the physical anr chemical properties of materials, compiled from the worlds literature and critically evaluated Developed under a worldwide program coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).

NOTE: The principal publication outlet for the foregoing data is the Journal of Physical and Chemical Reference Data (JPCRD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056.

Building Science Series-Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes-Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards-Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations
Consumer Information Series-Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace
Order the above NBS publications from: Superintendent of Documents, Government Printing Office, Washington, DC 20402.
Order the following NBS publications-FIPS and NBSIR's-from the National Technical Information Services, Springfield, VA 22161

Federal Informatioli Processing Standards Publications (FIPS PUB)-Publications in this series collectively constitute the Federal Information Processing Standards Register. The Register serves as the official source of information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May II, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Services, Springfield, VA 22161, in paper copy or microfiche form.```


[^0]:    'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address Washington, DC 20234.
    ${ }^{2}$ Some divisions within the center are located at Boulder, CO 80303

[^1]:    For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Price $\$ 4.75$
    (Add 25 percent for other than U.S. mailing)

