A Computer Program for the Prediction of Viscosity and Thermal Conductivity in Hydrocarbon Mixtures
NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards¹ was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers:

THE NATIONAL ENGINEERING LABORATORY provides technology and technical services to the public and private sectors to address national needs and to solve national problems; conducts research in engineering and applied science in support of these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers:

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

¹Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address Washington, DC 20234.
²Some divisions within the center are located at Boulder, CO 80303.
A Computer Program for the Prediction of Viscosity and Thermal Conductivity in Hydrocarbon Mixtures

James F. Ely
H.J.M. Hanley

Thermophysical Properties Division
National Engineering Laboratory
National Bureau of Standards
Boulder, Colorado 80303
NATIONAL BUREAU OF STANDARDS TECHNICAL NOTE 1039
CODEN: NBTNAE
CONTENTS

1. INTRODUCTION ... 1
2. THE ONE-FLUID MODEL AND EQUATIONS 2
 2.1 Extended Corresponding States 4
 2.2 Mixing Rules and Assumptions 5
3. SUMMARY OF THE CALCULATION PROCEDURE 7
4. THE REFERENCE FLUID: EXTENDED EQUATIONS FOR METHANE ... 7
5. RESULTS FOR PURE FLUIDS 14
6. RESULTS FOR MIXTURES 14
7. CONCLUSIONS .. 25
8. COMPUTER PROGRAM 25
9. ACKNOWLEDGMENTS 31
10. REFERENCES .. 32
APPENDIX A. TRAPP USER'S GUIDE 33
APPENDIX B. LISTING OF COMPUTER PROGRAM TRAPP 42
LIST OF FIGURES

Figure 1. (a) Comparison of reduced density of methane and n-decane as a function of reduced temperature. (b) Comparison of scaled viscosity of methane and n-decane as a function of reduced density ... 9

Figure 2. Comparison of calculated and experimental viscosity of methane, pentane, decane and hexadecane as a function of reduced density ... 20

Figure 3. Comparison of calculated and experimental viscosity for toluene, carbon dioxide, ethylene and isobutane 21

Figure 4. Comparison of calculated and experimental thermal conductivity for propane, decane, hexadecane, eicosane and methylcyclohexane ... 22

Figure 5. Comparison of calculated and experimental thermal conductivity for ethylene, 1-hexene, benzene, toulene, p-xylene and carbon dioxide ... 23

Figure 6. Comparison of calculated and experimental viscosity of selected paraffin binary mixtures as a function of reduced density .. 28

Figure 7. Comparison of calculated and experimental viscosity of selected aromatic/paraffin mixtures .. 29

Figure 8. Comparison of calculated and experimental thermal conductivity of selected binary mixtures 30

Figure A1. Block diagram of computer program TRAPP 35

Figure A2. Flow diagram of I/O portion of TRAPP 38

LIST OF TABLES

Table 1. Reference Fluid Equation of State 10
Table 2. Coefficients for Shape Factor Correlations 12
Table 3. Reference Fluid Viscosity Correlation 13
Table 4. Reference Fluid Translational Thermal Conductivity Correlation ... 15
Table 5. Summary of Calculated Results for Pure Fluid Viscosity ... 16
Table 6. Summary of Calculated Results for Pure Fluid Thermal Conductivity ... 18
List of Tables (Continued)

Table 7. Summary of Results for Binary Mixture Viscosity 26
Table 8. Summary of Results for Binary Mixture Thermal Conductivity . 27
Table A1. Listing of Components and TRAPP Data Base 34
Table A2. Sample Input and Output 39
Table A3. Sample Input and Output 40
Table A4. Sample Input and Output 41
A COMPUTER PROGRAM FOR THE PREDICTION OF VISCOSITY AND THERMAL CONDUCTIVITY IN HYDROCARBON MIXTURES

by

James F. Ely and H. J. M. Hanley

Thermophysical Properties Division
National Engineering Laboratory
National Bureau of Standards
Boulder, Colorado 80303

A model for the prediction of the density, viscosity and thermal conductivity of non-polar fluid mixtures over the entire range of pVT states is presented. The model is based on the extended corresponding states model and covers molecular weight ranges including C20. Only pure component equilibrium data such as the critical constants are required as input to the calculation procedure—no transport data are required. Extensive comparisons with experimental data for pure fluids and binary mixtures are presented. The average percentage deviation for both the viscosity and thermal conductivity was observed to be less than 8 percent. A computer program (TRAPP) which performs the calculations reported in this manuscript is described and listed in the Appendices.

Key words: Computer program; density; extended corresponding states; fluid mixtures; thermal conductivity; viscosity.

1. INTRODUCTION

Engineering design requires transport properties for heat exchangers, compressors, pumps and for example, pipelines. Owing to the complexity of transport phenomena in general, accurate methods for the prediction of these properties have not advanced to a level comparable to equilibrium properties. In fact, most engineering calculations of transport properties are based on empirical correlations which are generally limited to narrow ranges of pressure and temperature and very frequently to pure fluids. These methods have been reviewed by Reid, et al. [1].

The purpose of this manuscript is to present a reliable, self-consistent method for predicting the density, viscosity and thermal conductivity of pure non-polar fluids and their mixtures. The method is applicable to a wide variety of chemical types, to thermodynamic states ranging from the dilute gas to compressed liquid and, in principle, the number of mixture components is unrestricted.
The procedure is an extension of a method [2,3] which was proposed to estimate the transport properties of natural gas and similar mixtures and is based on the corresponding states principle and the conformal, one-fluid concept. It is predictive and requires only the critical parameters, Pitzer's acentric factor and the component ideal gas heat capacity as input. No mixture properties or transport data are required. The basic idea is relatively straightforward. It is assumed that the configurational properties of a single phase mixture can be equated to those of a hypothetical pure fluid. The properties of this hypothetical pure fluid are then evaluated via corresponding states with respect to a given reference fluid.

The theoretical foundation of the approach is well defined for a conformal system in equilibrium [4]. It is less well understood for a nonconformal system (i.e., a system in which the mixture components do not interact with the same intermolecular potential, e.g., polyatomic molecules) and for a system in nonequilibrium. The assumptions involved in the latter example have, however, been a topic of recent discussion [5,6]. Nevertheless, we have found by experience that the method gave very good agreement -- typically less than ten percent uncertainty -- for the transport properties of liquefied natural gas (LNG) like fluids (i.e., polyatomic nonpolar species). Further, even though the procedure in our earlier work was optimized for the \(C_1\) to \(C_5\) hydrocarbons and common inorganics, it gave acceptable results -- typically ten to forty percent uncertainty -- for a diverse number of more complex pure components and their mixtures. These results for fluids which were well beyond the intended scope of the original model, encouraged us to explore a systematic extension of the method to more complex systems.

In this manuscript we briefly report the details of the model and results of the method for the viscosity and thermal conductivity of pure paraffins, alkenes, aromatics and cycloalkanes in the \(C_1\) to \(C_{20}\) molecular weight range and their mixtures. Carbon dioxide is included in the comparisons as an example of a common inorganic.

2. THE ONE-FLUID MODEL AND EQUATIONS

In our procedure, the viscosity (\(\eta\)) of a mixture at density, \(\rho\), and temperature, \(T\), and composition \(\{x\}\) is equated to the viscosity of a hypothetical pure fluid, i.e., \(\eta_{\text{mix}}(\rho,T) = \eta_x(\rho,T)\). Then, via the corresponding states argument
\[\eta_x(\rho, T) = \eta_0(\rho_0, T_0) F_\eta \] (1)

where

\[F_\eta = \left(\frac{M^n_x}{M^n_0} \right)^{1/2} f_{x,0}^{1/2} h_{x,0}^{-2/3} \] (2)

where the subscript x refers to the fluid of interest, pure fluid or mixture, and 0 refers to the reference fluid. \(M \) is the molecular weight and \(T_0 \) and \(\rho_0 \) are defined by the ratios

\[T_0 = T/f_{x,0} \text{ and } \rho_0 = \rho h_{x,0} \] (3)

where \(f_{x,0} \) and \(h_{x,0} \) are, in general, functions of the critical parameters and acentric factor. In the special case of two parameter corresponding states between two pure fluids \(\alpha \) and 0, they reduce to the well known ratios of critical constants:

\[f_{\alpha,0} = \frac{T^C_{\alpha}}{T^C_0} \text{ and } h_{\alpha,0} = \frac{\nu^C_{\alpha}}{\nu^C_0} = \frac{\rho^C_0}{\rho^C_\alpha} \] (4)

where \(\nu \) is the volume and the superscript \(C \) indicates a critical value.

Note for the special case of two parameter corresponding states for which \(Z^C_{\alpha} = Z^C_0 \), the factor \(F_\eta \) can be written in terms of the common viscosity reducing parameter \(\xi_\alpha \), viz

\[\xi_\alpha = \frac{T^C_{\alpha}}{T^C_0} \frac{1/6}{M^C_{\alpha}} \frac{1/2}{p^C_{\alpha}} 2/3 \] (5)

so

\[F_\eta = \frac{\xi_0}{\xi_\alpha} \] (6)

where \(p \) is the pressure.

The thermal conductivity (\(\lambda \)) of a mixture or pure fluid must be divided into two contributions -- one arising from the transfer of energy from purely collisional or translational effects, \(\lambda' \), and the other from the transfer of energy through the internal degrees of freedom, \(\lambda'' \). In our model, the translational contribution to the thermal conductivity is equated to that of a hypothetical pure fluid, i.e., \(\lambda_{mix}'(\rho, T) = \lambda_x'(\rho, T) \), then, via the corresponding states argument...
\[
\lambda_x'(\rho, T) = \lambda_0'(\rho_0', T_0') F_\lambda
\]

where

\[F_\lambda = \left(\frac{M_0}{M_x}\right)^{1/2} f_{x,0}^{1/2} h_{x,0}^{-2/3}\]

The internal contribution is calculated via the mixing rule

\[
\lambda''_{\text{mix}}(\rho, T) = \sum_{\alpha} \sum_{\beta} \chi_{\alpha\beta} \lambda''_{\alpha\beta}(\rho, T)
\]

where

\[
\lambda''_{\alpha\beta}(\rho, T) = 2\lambda''(0, T) \lambda''(0, T)/[\lambda''(0, T) + \lambda''(0, T)]
\]

Generally speaking, the density dependence of the internal contribution is not known on sound theoretical grounds. We assume, therefore, that the contribution for each component is the same as it would be in the dilute gas state \{hence the designation \(0, T\)\} which we calculate from a Bromley [1] type formula, viz

\[
\lambda''(0, T) = f_{\text{int}} \left[c^0_{p\alpha}(T) - \frac{5R}{2} \right] n^0_{\alpha}(T)/M_{\alpha}
\]

where \(c^0_{p\alpha}\) is the ideal gas heat capacity of component \(\alpha\), \(n^0_{\alpha}\) is the dilute gas viscosity which is evaluated via eq (1) using \(T_0 = T/f_{\alpha,0}\) where \(f_{\alpha,0}\) is the reducing ratio for the component in the mixture, \(R\) is the gas constant and \(f_{\text{int}} = 1.32\). We have then our working equation for the thermal conductivity of a mixture or pure fluid

\[
\lambda_{\text{mix}}(\rho, T) = \lambda_0'(\rho_0', T_0') F_\lambda + \lambda''_{\text{mix}}(\rho, T)
\]

2.1 Extended Corresponding States

The range of applicability of corresponding states in general can be broadened considerably by introducing the extended corresponding states model [7,8]. In this model, the two parameter corresponding states formalism is maintained except that the equivalent substance reducing ratios become, using the special case of the pure fluid as an example

\[
f_{\alpha,0} = \left(\frac{T_0^c}{T_0^c} T_0^c \right) \theta_{\alpha,0} (T_0^*, V_0^*, \omega_0)
\]
and

\[h_{\alpha,o} = \left(\frac{V_C^C}{V_0^C} \right)^{\phi_{\alpha,o}} (T^{*}_{\alpha}, V^{*}_{\alpha}, \omega_{\alpha}) \] \hspace{1cm} (14)

where \(\theta_{\alpha,o} \) and \(\phi_{\alpha,o} \) are the so-called shape factors \([9,10]\) which are functions of the acentric factor \(\omega \) and of the reduced variables \(T^{*}_{\alpha} \) and \(V^{*}_{\alpha} \) where the superscript "*" indicates reduction by the critical point value.

In principle, the shape factors can be determined exactly for any pure fluid with respect to a reference fluid by simultaneous solution of the conformal solution equations [8]. By performing this solution one could ensure that the pure fluid \(\alpha \) maps exactly with the reference fluid on a pVT surface via the shape factors. However, it is much more convenient to have some generalized analytical relationships for \(\theta \) and \(\phi \). Leach and Leland [9,10] have obtained such relationships for the pure normal paraffins \(C_1 \) - \(C_{15} \) with essentially a methane reference fluid. Their results are generalized as follows

\[\theta_{\alpha,o}(T_{\alpha}, V_{\alpha}, \omega_{\alpha}) = 1 + (\omega_{\alpha} - \omega_o) F(T^{+}_{\alpha}, V^{+}_{\alpha}) \] \hspace{1cm} (15)

\[\phi_{\alpha,o}(T_{\alpha}, V_{\alpha}, \omega_{\alpha}) = \left[1 + (\omega_{\alpha} - \omega_o) G(T^{+}_{\alpha}, V^{+}_{\alpha}) \right] \frac{Z^C_0}{Z^C_{\alpha}} \] \hspace{1cm} (16)

\[F(T_{\alpha}, V_{\alpha}) = a_1 + b_1 \ln T^{+}_{\alpha} + (c_1 + d_1/T^{+}_{\alpha})(V^{+}_{\alpha} - 0.5) \] \hspace{1cm} (17)

\[G(T_{\alpha}, V_{\alpha}) = a_2(V^{+}_{\alpha} + b_2) + c_2(V^{+}_{\alpha} + d_2) \ln T^{+}_{\alpha} \] \hspace{1cm} (18)

\[T^{+}_{\alpha} = \min \{ 2, \max \{ T_{\alpha}, 0.5 \} \} \] \hspace{1cm} (19)

\[V^{+}_{\alpha} = \min \{ 2, \max \{ V_{\alpha}, 0.5 \} \} \] \hspace{1cm} (20)

2.2 Mixing Rules and Assumptions

There are two basic assumptions of the theory: (1) A pure fluid and a reference fluid obey the two parameter classical corresponding states formalism and, for a mixture, that all interactions in the mixture follow this principle; (2) The mixture can be represented by a hypothetical pure fluid which implies mixing rules exist to evaluate the reducing ratios. Clearly, it has been assumed
that the introduction of extended corresponding states allows these assumptions to be upheld.

As we pointed out in the introduction, the assumptions have been discussed for a system in equilibrium but have received less attention for a system in nonequilibrium, especially for polyatomic molecules. It is at once apparent that the one-fluid concept is formally weak for transport since the transport properties can contain contributions unique to the mixture -- the diffusion coefficient, for example. There is also the difficulty in formulating a consistent mass mixing rule which is unnecessary for the equilibrium properties but is required for eqs (2) and (8). These problems have been recently discussed and the interested reader is referred to references [6] and [11] for details.

The mixing rules which are used in the model may be summarized as follows:

\[
f_{x,0} = h_{x,0}^{-1} \sum_{\alpha} \sum_{\beta} x_{\alpha} x_{\beta} f_{\alpha\beta,0} h_{\alpha\beta,0} \tag{21}
\]

\[
h_{x,0} = \sum_{\alpha} \sum_{\beta} x_{\alpha} x_{\beta} h_{\alpha\beta} \tag{22}
\]

\[
M_{x}^{\alpha} = \left(\sum_{\alpha} \sum_{\beta} x_{\alpha} x_{\beta} h_{\alpha\beta,0}^{-4/3} f_{\alpha\beta,0}^{1/2} M_{\alpha\beta}^{1/2} \right)^{2} f_{x,0}^{-1} h_{x,0}^{-8/3} \tag{23}
\]

and

\[
M_{x}^{\lambda} = \left(\sum_{\alpha} \sum_{\beta} x_{\alpha} x_{\beta} M_{\alpha\beta}^{-1/2} f_{\alpha\beta,0}^{1/2} h_{\alpha\beta,0}^{4/3} \right)^{-2} f_{x,0} h_{x,0}^{8/3} \tag{24}
\]

The combining rules are needed finally and these were selected to be

\[
f_{\alpha\beta,0} = (f_{\alpha,0} f_{\beta,0})^{1/2} (1 - k_{\alpha\beta}) \tag{25}
\]

\[
h_{\alpha\beta,0} = \frac{1}{8} (h_{\alpha,0}^{-1/3} + h_{\beta,0}^{-1/3})^{3} (1 - \lambda_{\alpha\beta}) \tag{26}
\]

and

\[
M_{\alpha\beta} = 2 \text{ } M_{\alpha} M_{\beta} / (M_{\alpha} + M_{\beta}) \tag{27}
\]

where \(k_{\alpha\beta}\) and \(\lambda_{\alpha\beta}\) are correction factors or binary interaction parameters with values close to zero. Although it is well known that thermodynamic calculations (especially phase equilibria) can be sensitive to their numerical value, this
does not appear to be true for the viscosity or thermal conductivity, hence they were set equal to zero for the results reported here.

3. SUMMARY OF THE CALCULATION PROCEDURE

A summary of the calculation procedure to evaluate a viscosity or thermal conductivity is as follows. Input parameters are the critical temperature, volume, and pressure, the acentric factor and the ideal gas heat capacity and molecular weight of each component of the mixture of interest. These parameters for the reference fluid are required with an equation of state and some functional form for the viscosity and thermal conductivity for this reference fluid.

Typical experimental input would be the pressure, temperature and mixture composition. The density of the fluid or mixture is obtained by finding the equivalent pressure of the reference substance via the ratio \(p_o = \frac{p_x h_{x,o}}{f_{x,o}} \) from the corresponding pressure in the mixture, \(p_x \). Initially, the shape factors in eqs (13) and (14) are set to unity. Given \(p_o = p(\rho_0, T_0) \), the density \(\rho_o \) follows. Thus, a first guess of the density is that obtained using eqs (3) and (4). Repeated iterations using eqs (13) and (14) give the final density. Having, therefore, final values of \(\rho, f_{x,o} \) and \(h_{x,o} \), one can evaluate \(F_\eta \) and \(F_\lambda \) of eqs (2) and (11), \(\rho_o \) and \(T_o \) and hence \(\eta'_{o}(\rho_o, T_o) \), \(\lambda'_{o}(\rho_o, T_o) \) and \(\lambda''(\rho, T) \), thereby obtaining values for \(\eta_x(\rho, T) \) and \(\lambda_x(\rho, T) \).

4. THE REFERENCE FLUID: EXTENDED EQUATIONS FOR METHANE

The procedure outlined in the previous section does not in principle place restrictions on the choice of the reference fluid and, especially, the reference fluid does not have to be a component of the mixture. Nonetheless, common sense suggests that the reference fluid should be similar to the systems of interest. Methane was chosen for the earlier work because we were concerned mainly with the properties of LNG and the light hydrocarbons. Since the object of this work is to study the heavy and aromatic hydrocarbons in particular, it would seem appropriate to select a fluid such as hexane or decane, or say benzene. Unfortunately, at this time, methane is the only fluid which has sufficient reliable data correlated over a wide range of experimental conditions for the equation of state, the viscosity and the thermal conductivity. Methane was, therefore, selected as the reference for this work. One can anticipate problems -- for example, lack of conformality between methane and the mixtures, effects of internal degrees of freedom, of hindered rotation, and so on.
In practice, a more obvious difficulty occurs: methane freezes at a reduced temperature of 0.48 which is well above the reduced temperatures commonly encountered for the liquid states of fluids as simple as propane. This is demonstrated in fig. (1a) where we plot the saturated liquid density for methane and n-decane in terms of T^* and ρ^*. One sees that the range of states of n-decane is simply not covered by those of methane. Similarly, for the viscosity as is shown in fig. (1b) in which $\eta(\rho,T)\xi$ is plotted versus ρ^*, where ξ was defined by eq (5). Again the data for liquid methane terminate due to freezing well before the freezing point of decane is reached. Similar problems are encountered for the thermal conductivity.

In order to overcome these problems, the methane pVT, shape factor, viscosity and thermal conductivity correlations (surfaces) were extended to 40 K. The details of the methods used in performing these extensions may be found in references [13] and [14]. Summarizing the results, the pVT surface is given by a 32 term BWR type equation [12] whose functional form and coefficients are given in table 1. Table 2 lists the shape factor correlation parameters with the functional form being given by eqs (15-20) except that the restriction given in eq (19) is removed. The reference fluid viscosity is given by the equation

$$\eta_0(\rho_0,T_0) = \eta_0^{(1)}(T_0) + \eta_0^{(2)}(T_0)\rho_o + \Delta\eta_0(\rho_0,T_0)X_\eta$$ \hspace{1cm} (28)$$

where X_η is a correction factor for non-correspondence in the viscosity given by

$$X_\eta = \left[\left(1 - \psi \frac{T_x}{f_{x,0}} \left(\frac{\partial f_{x,0}}{\partial T_x} \right) \right) \right]^{1/2} \frac{Z_x}{Z_0}$$ \hspace{1cm} (29)$$

where for a mixture $Z_x^C = \sum \chi_\alpha Z_\alpha^C$ and $\psi = 1.5$. This expression has a basis in the Enskog theory in that the density dependence of the viscosity is strongly dependent on the derivative $(dp/dT)_v$. The detailed functional forms and coefficients for eq (28) are given in table 3. Finally, the translational reference fluid thermal conductivity is given by

$$\lambda_0'(\rho_0,T_0) = [\lambda_0^{(1)}(T_0) + \lambda_0^{(2)}(T_0)\rho_0 + \Delta\lambda_0(\rho_0,T_0)] X_\lambda$$ \hspace{1cm} (30)$$

where
Figure 1. (a) Comparison of reduced density of methane and n-decane as a function of reduced temperature. (b) Comparison of scaled viscosity of methane and n-decane as a function of reduced density.
Table 1. Reference Fluid Equation of State
(p, atm; \(\rho \), mol/L; \(T \), kelvin)

\[
p = \sum_{n=1}^{9} a_n(T) \rho^n + \sum_{n=10}^{15} a_n(T) \rho^{2n-17} e^{-\gamma \rho^2}
\]

\[
a_1 = RT
\]
\[
a_2 = N_1 T + N_2 T^{1/2} + N_3 + N_4 / T + N_5 / T^2
\]
\[
a_3 = N_6 T + N_7 + N_8 / T + N_9 / T^2
\]
\[
a_4 = N_{10} T + N_{11} + N_{12} / T
\]
\[
a_5 = N_{13}
\]
\[
a_6 = N_{14} / T + N_{15} / T^2
\]
\[
a_7 = N_{16} / T
\]
\[
a_8 = N_{17} / T + N_{18} / T^2
\]
\[
a_9 = N_{19} / T^2
\]
\[
a_{10} = N_{20} / T^2 + N_{21} / T^3
\]
\[
a_{11} = N_{22} / T^2 + N_{23} / T^4
\]
\[
a_{12} = N_{24} / T^2 + N_{25} / T^3
\]
\[
a_{13} = N_{26} / T^2 + N_{27} / T^4
\]
\[
a_{14} = N_{28} / T^2 + N_{29} / T^3
\]
\[
a_{15} = N_{30} / T^2 + N_{31} / T^3 + N_{32} / T^4
\]
Table 1. Reference Fluid Equation of State (Continued)

<table>
<thead>
<tr>
<th>i/N_1</th>
<th>i/N_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.184347314485E-2</td>
</tr>
<tr>
<td>2</td>
<td>7.540377272657E-1</td>
</tr>
<tr>
<td>3</td>
<td>-1.225769717554E+1</td>
</tr>
<tr>
<td>4</td>
<td>6.260681393432E+2</td>
</tr>
<tr>
<td>5</td>
<td>-3.490654409121E+4</td>
</tr>
<tr>
<td>6</td>
<td>5.301046385532E-4</td>
</tr>
<tr>
<td>7</td>
<td>-2.875764479978E-1</td>
</tr>
<tr>
<td>8</td>
<td>5.011947936427E+1</td>
</tr>
<tr>
<td>9</td>
<td>-2.821562800903E+4</td>
</tr>
<tr>
<td>10</td>
<td>-2.064957753744E+5</td>
</tr>
<tr>
<td>11</td>
<td>1.285951844828E-2</td>
</tr>
<tr>
<td>12</td>
<td>-1.106266656726E+0</td>
</tr>
<tr>
<td>13</td>
<td>+3.060813353408E-4</td>
</tr>
<tr>
<td>14</td>
<td>-3.174982181302E-3</td>
</tr>
<tr>
<td>15</td>
<td>5.191608004779E+0</td>
</tr>
<tr>
<td>16</td>
<td>-3.074944210271E-4</td>
</tr>
</tbody>
</table>

\[
\gamma = 0.0096 \quad R = 0.08205616
\]

1 atm = 0.101325 MPa
Table 2. Coefficients for Shape Factor Correlations

<table>
<thead>
<tr>
<th>Coefficients [eq 16]</th>
<th>Coefficients [eq 17]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_1 = 0.090569$</td>
<td>$a_2 = 0.394901$</td>
</tr>
<tr>
<td>$b_1 = -0.862762$</td>
<td>$b_2 = -1.023545$</td>
</tr>
<tr>
<td>$c_1 = 0.316636$</td>
<td>$c_2 = -0.932813$</td>
</tr>
<tr>
<td>$d_1 = -0.465684$</td>
<td>$d_2 = -0.754639$</td>
</tr>
</tbody>
</table>
Table 3. Reference Fluid Viscosity Correlation

\[\eta(\rho, T) = \eta^{(1)}(T) + \eta^{(2)}(T)\rho + \Delta\eta(\rho, T) \]

where

\[\eta^{(1)} = \sum_{n=1}^{9} c_n T^{(n-4)/3} \]

\[\eta^{(2)} = b_1 + b_2 \left[b_3 - \ln(T/b_4) \right]^2 \]

\[\Delta\eta = \exp \left[a_1 + a_2/T \right] \left\{ \exp \left[(a_3 + a_4/T^{3/2}) \rho^{0.1} \right. \right. \]

\[\left. \left. + (\rho/\rho_c - 1)\rho^{0.5} (a_5 + a_6/T + a_7/T^2) \right] - 1.0 \right\} \]

<table>
<thead>
<tr>
<th>i</th>
<th>(a_i)</th>
<th>(b_i)</th>
<th>(c_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.0239160427E+1</td>
<td>1.6969859271E+0</td>
<td>2.907741307E+6</td>
</tr>
<tr>
<td>2</td>
<td>1.7422822961E+2</td>
<td>-1.3337234608E-1</td>
<td>-3.312874033E+6</td>
</tr>
<tr>
<td>3</td>
<td>1.7460545674E+1</td>
<td>1.4</td>
<td>1.608101838E+6</td>
</tr>
<tr>
<td>4</td>
<td>-2.8476328289E+3</td>
<td>1.68E+2</td>
<td>-4.331904871E+5</td>
</tr>
<tr>
<td>5</td>
<td>1.3368502192E-1</td>
<td>7.062481330E+4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.4207239767E+2</td>
<td>-7.116620750E+3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5.0020669720E+3</td>
<td>4.325174400E+2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>-1.445911210E+1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>2.037119479E-1</td>
<td></td>
</tr>
</tbody>
</table>

\((T, \text{kelvin}; \rho, \text{g/cm}^3, \rho_c = 0.1628)\)
The detailed functional forms and coefficients for eq (30) are listed in table 4.

5. RESULTS FOR PURE FLUIDS

Having the reference fluid correlations for methane, it was straightforward to calculate the transport properties of any pure species via eqs (1) and (12). A considerable data base was assembled to provide a thorough test of the procedure. The data and references used in this comparison are available upon request. The data were evaluated as far as possible for accuracy and internal consistency. One should point out that in general the data situation is not too satisfactory for transport properties in that the more recent experimental techniques have not been applied to many organic liquids other than methane, and recently to ethane and propane. A realistic guess as to the accuracy of the data is 5-15 percent and probably much worse for the very heavy species.

The results are summarized in tables 5 and 6 and in figs. (2-5). The tables show the average absolute percent deviation, AAD, and the average percentage error, BIAS. The overall deviations between experiment and the calculations are very satisfactory. The viscosity results become somewhat worse, and negative, as the freezing point of the fluid is approached. It is not clear why this should be the case, but one can say that there is a good chance that the viscosity becomes non-Newtonian in this region and that pre-freezing nucleation effects are important. One also observes that the viscosity results are markedly worse for highly branched alkanes and for the cycloalkanes. We attribute this to a failure of the corresponding states model to represent adequately the effect of the molecular structure on the transport coefficient. In spite of these limitations, the overall results are excellent, especially considering the limited input \((T_c, p_c, V_c, M, \omega, \text{ and } C^0_D)\) needed to make the predictions. In fact, the thermal conductivity results are in better agreement with experiment than the estimated error for this property.

6. RESULTS FOR MIXTURES

The main objective of this work was to develop a procedure to predict the transport properties of mixtures: there is a real need for such a procedure, yet
Table 4. Reference Fluid Translational Thermal Conductivity Correlation

\[\lambda'(\rho, T) = \lambda^{(1)'}(T) + \lambda^{(2)}(T)\rho + \Delta\lambda(\rho, T) \]

\[\lambda^{(1)'}(T) = \frac{15R}{4M} n^{(1)}(T) \]

\[\lambda^{(2)}(T) = b_1 + b[b_3 - \ln(T/b_4)]^2 \]

\[\Delta\lambda = \exp \left[a_1 + \frac{a_2}{T} \right] \left\{ \exp \left[(a_3 + a_4/T^{3/2}) \rho^{0.1} \right. \right. \]
\[\left. \left. + \left(\rho/\rho_c - 1 \right) \rho^{0.5} \left(a_5 + a_6/T + a_7/T^2 \right) \right] - 1.0 \right\} \]

<table>
<thead>
<tr>
<th>i</th>
<th>(a_i)</th>
<th>(b_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-7.1977082270E+0</td>
<td>-0.252762920E+0</td>
</tr>
<tr>
<td>2</td>
<td>8.5678222640E+1</td>
<td>0.334328590E+0</td>
</tr>
<tr>
<td>3</td>
<td>1.2471834689E+1</td>
<td>1.12</td>
</tr>
<tr>
<td>4</td>
<td>-9.8462522975E+2</td>
<td>0.1680E+3</td>
</tr>
<tr>
<td>5</td>
<td>3.5946850007E-1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6.9798412538E+1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-8.728332851E+2</td>
<td></td>
</tr>
</tbody>
</table>

(T, kelvin; \(\rho \), g/cm\(^3\); \(\rho_c = 0.1628 \))
Table 5. Summary of Calculated Results for Pure Fluid Viscosity
(AAD = Average Absolute Percent Deviation;
BIAS = Percentage Bias)

<table>
<thead>
<tr>
<th>Fluid</th>
<th>N</th>
<th>AAD</th>
<th>BIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane</td>
<td>76</td>
<td>3.03</td>
<td>-2.89</td>
</tr>
<tr>
<td>Ethane</td>
<td>48</td>
<td>12.31</td>
<td>9.99</td>
</tr>
<tr>
<td>Propane</td>
<td>146</td>
<td>6.56</td>
<td>-5.10</td>
</tr>
<tr>
<td>n-Butane</td>
<td>200</td>
<td>3.39</td>
<td>-2.80</td>
</tr>
<tr>
<td>i-Butane</td>
<td>68</td>
<td>11.49</td>
<td>-11.39</td>
</tr>
<tr>
<td>n-Pentane</td>
<td>195</td>
<td>4.15</td>
<td>-1.49</td>
</tr>
<tr>
<td>neo-Pentane</td>
<td>75</td>
<td>32.83</td>
<td>-32.83</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>66</td>
<td>3.30</td>
<td>2.16</td>
</tr>
<tr>
<td>i-Hexane</td>
<td>12</td>
<td>3.09</td>
<td>-3.09</td>
</tr>
<tr>
<td>n-Heptane</td>
<td>78</td>
<td>6.31</td>
<td>3.45</td>
</tr>
<tr>
<td>n-Octane</td>
<td>52</td>
<td>6.22</td>
<td>4.30</td>
</tr>
<tr>
<td>n-Nonane</td>
<td>46</td>
<td>2.89</td>
<td>1.54</td>
</tr>
<tr>
<td>n-Decane</td>
<td>107</td>
<td>3.25</td>
<td>-1.56</td>
</tr>
<tr>
<td>n-Undecane</td>
<td>19</td>
<td>3.47</td>
<td>1.29</td>
</tr>
<tr>
<td>n-Dodecane</td>
<td>41</td>
<td>5.12</td>
<td>1.19</td>
</tr>
<tr>
<td>n-Tridecane</td>
<td>58</td>
<td>4.69</td>
<td>-1.12</td>
</tr>
<tr>
<td>n-Tetradecane</td>
<td>53</td>
<td>5.04</td>
<td>-2.97</td>
</tr>
<tr>
<td>n-Pentadecane</td>
<td>18</td>
<td>5.37</td>
<td>-2.23</td>
</tr>
<tr>
<td>n-Hexadecane</td>
<td>39</td>
<td>6.33</td>
<td>2.08</td>
</tr>
<tr>
<td>n-Heptadecane</td>
<td>15</td>
<td>6.11</td>
<td>3.56</td>
</tr>
<tr>
<td>n-Octadecane</td>
<td>28</td>
<td>9.66</td>
<td>5.89</td>
</tr>
<tr>
<td>n-Eicosane</td>
<td>16</td>
<td>6.37</td>
<td>3.89</td>
</tr>
<tr>
<td>Ethylene</td>
<td>10</td>
<td>2.02</td>
<td>-0.61</td>
</tr>
<tr>
<td>Propylene</td>
<td>13</td>
<td>9.72</td>
<td>3.18</td>
</tr>
<tr>
<td>3-Methyl-1-butene</td>
<td>8</td>
<td>5.53</td>
<td>-5.53</td>
</tr>
<tr>
<td>1-Hexene</td>
<td>27</td>
<td>17.19</td>
<td>17.19</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>48</td>
<td>49.25</td>
<td>-49.25</td>
</tr>
<tr>
<td>Methylcyclohexane</td>
<td>14</td>
<td>30.69</td>
<td>-30.69</td>
</tr>
<tr>
<td>Ethylcyclohexane</td>
<td>17</td>
<td>30.81</td>
<td>-30.81</td>
</tr>
<tr>
<td>Cyclopentane</td>
<td>10</td>
<td>29.20</td>
<td>-29.20</td>
</tr>
<tr>
<td>Benzene</td>
<td>82</td>
<td>8.39</td>
<td>-8.33</td>
</tr>
</tbody>
</table>
Table 5. (Continued)

<table>
<thead>
<tr>
<th>Fluid</th>
<th>N</th>
<th>AAD</th>
<th>BIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toluene</td>
<td>47</td>
<td>4.13</td>
<td>3.17</td>
</tr>
<tr>
<td>m-Xylene</td>
<td>16</td>
<td>20.35</td>
<td>20.35</td>
</tr>
<tr>
<td>Propylbenzene</td>
<td>5</td>
<td>8.16</td>
<td>8.16</td>
</tr>
<tr>
<td>Butylbenzene</td>
<td>5</td>
<td>12.12</td>
<td>12.12</td>
</tr>
<tr>
<td>Carbon Dioxide</td>
<td>111</td>
<td>4.75</td>
<td>-4.53</td>
</tr>
<tr>
<td>Overall</td>
<td>1869</td>
<td>8.42</td>
<td>-4.10</td>
</tr>
</tbody>
</table>
Table 6. Summary of Calculated Results for Pure Fluid Thermal Conductivity

(AAD = Average Absolute Percent Deviation; BIAS = Percentage Bias)

<table>
<thead>
<tr>
<th>Fluid</th>
<th>N</th>
<th>AAD</th>
<th>BIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethane</td>
<td>15</td>
<td>5.44</td>
<td>5.06</td>
</tr>
<tr>
<td>Propane</td>
<td>188</td>
<td>5.12</td>
<td>4.99</td>
</tr>
<tr>
<td>n-Butane</td>
<td>32</td>
<td>6.41</td>
<td>6.41</td>
</tr>
<tr>
<td>Isobutane</td>
<td>4</td>
<td>12.49</td>
<td>-12.49</td>
</tr>
<tr>
<td>n-Pentane</td>
<td>35</td>
<td>5.24</td>
<td>5.24</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>10</td>
<td>1.88</td>
<td>-1.31</td>
</tr>
<tr>
<td>Isohexane</td>
<td>3</td>
<td>.91</td>
<td>-.91</td>
</tr>
<tr>
<td>3-Methylpentane</td>
<td>3</td>
<td>2.56</td>
<td>-2.56</td>
</tr>
<tr>
<td>2,2-Dimethylbutane</td>
<td>3</td>
<td>1.03</td>
<td>-1.03</td>
</tr>
<tr>
<td>2,3-Dimethylbutane</td>
<td>4</td>
<td>1.42</td>
<td>.95</td>
</tr>
<tr>
<td>n-Heptane</td>
<td>84</td>
<td>8.15</td>
<td>-8.13</td>
</tr>
<tr>
<td>2,4-Dimethylpentane</td>
<td>3</td>
<td>1.69</td>
<td>1.69</td>
</tr>
<tr>
<td>2,2,3-Trimethylbutane</td>
<td>1</td>
<td>4.40</td>
<td>4.40</td>
</tr>
<tr>
<td>n-Octane</td>
<td>15</td>
<td>5.37</td>
<td>-5.37</td>
</tr>
<tr>
<td>3-Methylheptane</td>
<td>1</td>
<td>1.71</td>
<td>1.71</td>
</tr>
<tr>
<td>2,2,4-Trimethylpentane</td>
<td>5</td>
<td>2.30</td>
<td>2.23</td>
</tr>
<tr>
<td>n-Nonane</td>
<td>15</td>
<td>6.13</td>
<td>-6.13</td>
</tr>
<tr>
<td>2,2,5-Trimethylhexane</td>
<td>4</td>
<td>3.68</td>
<td>.31</td>
</tr>
<tr>
<td>n-Decane</td>
<td>44</td>
<td>3.41</td>
<td>-1.54</td>
</tr>
<tr>
<td>n-Undecane</td>
<td>8</td>
<td>12.19</td>
<td>-12.19</td>
</tr>
<tr>
<td>n-Dodecane</td>
<td>3</td>
<td>6.67</td>
<td>-6.67</td>
</tr>
<tr>
<td>n-Tridecane</td>
<td>9</td>
<td>6.90</td>
<td>-6.90</td>
</tr>
<tr>
<td>n-Tetradecane</td>
<td>50</td>
<td>1.78</td>
<td>-1.76</td>
</tr>
<tr>
<td>n-Pentadecane</td>
<td>51</td>
<td>1.62</td>
<td>-.92</td>
</tr>
<tr>
<td>n-Hexadecane</td>
<td>49</td>
<td>.96</td>
<td>.40</td>
</tr>
<tr>
<td>n-Heptadecane</td>
<td>38</td>
<td>2.79</td>
<td>-2.19</td>
</tr>
<tr>
<td>n-Octadecane</td>
<td>34</td>
<td>3.44</td>
<td>-2.52</td>
</tr>
<tr>
<td>n-Nonadecane</td>
<td>8</td>
<td>7.12</td>
<td>-4.42</td>
</tr>
<tr>
<td>n-Eicosane</td>
<td>33</td>
<td>1.87</td>
<td>1.75</td>
</tr>
<tr>
<td>Cyclopentane</td>
<td>4</td>
<td>1.57</td>
<td>-1.57</td>
</tr>
<tr>
<td>Fluid</td>
<td>N</td>
<td>AAD</td>
<td>BIAS</td>
</tr>
<tr>
<td>----------------------</td>
<td>----</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>Methylcyclopentane</td>
<td>3</td>
<td>.16</td>
<td>.13</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>4</td>
<td>1.80</td>
<td>-.58</td>
</tr>
<tr>
<td>Methylcyclohexane</td>
<td>10</td>
<td>5.39</td>
<td>5.39</td>
</tr>
<tr>
<td>Ethylene</td>
<td>75</td>
<td>8.53</td>
<td>-8.51</td>
</tr>
<tr>
<td>Propylene</td>
<td>42</td>
<td>9.96</td>
<td>-9.96</td>
</tr>
<tr>
<td>2-Methylpropene</td>
<td>3</td>
<td>5.27</td>
<td>5.27</td>
</tr>
<tr>
<td>1-Hexene</td>
<td>64</td>
<td>4.67</td>
<td>-2.43</td>
</tr>
<tr>
<td>1-Heptene</td>
<td>67</td>
<td>9.55</td>
<td>-9.55</td>
</tr>
<tr>
<td>Benzene</td>
<td>18</td>
<td>2.88</td>
<td>-1.71</td>
</tr>
<tr>
<td>Toluene</td>
<td>67</td>
<td>6.81</td>
<td>6.42</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>8</td>
<td>4.67</td>
<td>4.67</td>
</tr>
<tr>
<td>ortho-Xylene</td>
<td>9</td>
<td>10.64</td>
<td>10.64</td>
</tr>
<tr>
<td>meta-Xylene</td>
<td>7</td>
<td>8.69</td>
<td>8.69</td>
</tr>
<tr>
<td>para-Xylene</td>
<td>66</td>
<td>6.24</td>
<td>5.72</td>
</tr>
<tr>
<td>Propylbenzene</td>
<td>5</td>
<td>2.32</td>
<td>1.04</td>
</tr>
<tr>
<td>Cumene</td>
<td>8</td>
<td>3.58</td>
<td>3.58</td>
</tr>
<tr>
<td>Butylbenzene</td>
<td>7</td>
<td>3.15</td>
<td>3.15</td>
</tr>
<tr>
<td>Biphenyl</td>
<td>14</td>
<td>14.76</td>
<td>-14.76</td>
</tr>
<tr>
<td>Carbon Dioxide</td>
<td>22</td>
<td>6.67</td>
<td>6.67</td>
</tr>
<tr>
<td>Overall Results</td>
<td>1255</td>
<td>5.06</td>
<td>-0.67</td>
</tr>
</tbody>
</table>
Figure 2. Comparison of calculated and experimental viscosity of methane, pentane, decane and hexadecane as a function of reduced density.
Figure 3. Comparison of calculated and experimental viscosity for toluene, carbon dioxide, ethylene and isobutane.
Figure 4. Comparison of calculated and experimental thermal conductivity for propane, decane, hexadecane, eicosane and methylcyclohexane.
Figure 5. Comparison of calculated and experimental thermal conductivity for ethylene, 1-hexene, benzene, toluene, p-xylene and carbon dioxide.
none exists which does not require in some way transport data of the pure components. Our method, however, avoids this and the mixture evaluations are no more complicated than those for the purtes, given the mixing and combining rules, eqs (21-27). It is also worth remarking that the procedure also gives the mixture density automatically.

One further refinement was considered for the mixture viscosity. We introduced a factor in eq (29) to account for the lack of correspondence between the reference fluid and a pure fluid of interest. For mixtures, however, will act as a correction not only for lack of correspondence between the reference fluid and hypothetical pure fluid, but should also account for the basic lack of conformality in the mixture. It turns out that although most of the mixtures studied cannot be conformal, the procedure works reasonably well with . Our results for the mixture viscosity (but not thermal conductivity) did show, however, a systematic disagreement with experiment in one special case, namely when the components of the mixture differed substantially in effective size, e.g., in the values of the critical volume. In particular, initial calculations for the methane/decane mixture viscosity showed large deviations at high densities as the mole fraction of methane increased. In effect, the contribution of methane to the mixture viscosity was negligible until its mole fraction approached 0.9 and the procedure tended to overestimate it. For this system the critical volume ratio is approximately 6.

Since a methane/decane type mixture is relatively common, we attempted to account for the size effect empirically in the present model. The correction factor was modified to become

\[
X_n = \left[1 - \psi \frac{T_x}{f_{x_0}} \left(\frac{\partial f}{\partial T_x} \right) \frac{Z_x^c}{Z_0^c} \right]^{1/2} \frac{a + b\bar{R}}{1 + c\bar{R}}
\]

where

\[
\bar{R}^{-1} = \sum_\alpha X_\alpha \left(\frac{V_{c_\alpha}}{V_{c_{\alpha}}^\text{min}} \right)^{1/3}
\]

and . is the critical volume of the smallest component in the mixture.
It should be noted that for most mixtures, results from eq (32) are very close to those from eq (29) and in fact X_η is often very close to unity. No further corrections were made for the mixture thermal conductivity.

Tables 7 and 8 list the mixtures, number of points considered and the AAD and BIAS between experiment and our procedure. Figures (6-8) are typical of the deviations observed. In general the results are excellent with an average absolute deviation of approximately seven percent for both transport properties. An assessment of the method should, however, bear in mind that the data situation for mixtures is very poor and that an assignment of 5-20 percent on the accuracy of the mixture data is reasonable.

7. CONCLUSIONS

We have presented a predictive procedure to estimate the viscosity and thermal conductivity of nonpolar pure fluids and mixtures over the entire range of fluid states, from the dilute gas to the dense liquid. Extensive comparisons with data have shown that the transport properties of a wide variety of pure fluids and mixtures are predicted to within an absolute percent deviation of about seven percent. Not shown in this paper are comparisons for the density, which is also predicted and for the dilute gas properties. In general the density is predicted to better than one percent and the dilute gas transport properties are predicted to within five to ten percent.

The basis of the method is the one fluid corresponding states concept with the extended corresponding states approach included. The method is predictive and requires only the common characterization parameters of the pure as input. The number of components of a mixture which can be considered is, in principle, unrestricted.

The application of the methodology described herein to polar fluids and to molecules with structures which could cause hindered rotation and stearic effects is under current investigation.

8. COMPUTER PROGRAM

A computer program for predicting the transport properties and the density of pure fluids and their mixtures has been developed. The program is essentially identical to that used to generate the results reported here. A detailed user's manual has been prepared which describes the program input, output and overall structure and is given in Appendix A. Appendix B lists the program.
<table>
<thead>
<tr>
<th>Component 1</th>
<th>Component 2</th>
<th>N</th>
<th>AAD</th>
<th>BIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane</td>
<td>Propane</td>
<td>134</td>
<td>3.86</td>
<td>-2.85</td>
</tr>
<tr>
<td>n-Nonane</td>
<td></td>
<td>32</td>
<td>9.56</td>
<td>8.12</td>
</tr>
<tr>
<td>n-Decane</td>
<td></td>
<td>71</td>
<td>10.62</td>
<td>-5.80</td>
</tr>
<tr>
<td>2,3-Dimethylbutane</td>
<td>n-Octane</td>
<td>2</td>
<td>5.04</td>
<td>-5.04</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>2,3-Dimethylbutane</td>
<td>2</td>
<td>5.19</td>
<td>5.19</td>
</tr>
<tr>
<td>n-Tetradecane</td>
<td></td>
<td>10</td>
<td>1.23</td>
<td>0.99</td>
</tr>
<tr>
<td>n-Hexadecane</td>
<td></td>
<td>26</td>
<td>1.84</td>
<td>-0.58</td>
</tr>
<tr>
<td>n-Heptane</td>
<td>n-Dodecane</td>
<td>3</td>
<td>4.32</td>
<td>4.32</td>
</tr>
<tr>
<td>n-Tetradecane</td>
<td></td>
<td>3</td>
<td>2.47</td>
<td>2.47</td>
</tr>
<tr>
<td>n-Hexadecane</td>
<td></td>
<td>3</td>
<td>1.96</td>
<td>-0.24</td>
</tr>
<tr>
<td>n-Octadecane</td>
<td></td>
<td>2</td>
<td>1.73</td>
<td>0.27</td>
</tr>
<tr>
<td>Methylcyclohexane</td>
<td></td>
<td>24</td>
<td>17.31</td>
<td>-16.51</td>
</tr>
<tr>
<td>2,2,3-Trimethylbutane</td>
<td>2,3,3-Trimethylpentane</td>
<td>2</td>
<td>29.93</td>
<td>-29.93</td>
</tr>
<tr>
<td>n-Octane</td>
<td>n-Decane</td>
<td>2</td>
<td>3.83</td>
<td>3.83</td>
</tr>
<tr>
<td>n-Tetradecane</td>
<td>n-Hexadecane</td>
<td>11</td>
<td>2.73</td>
<td>2.53</td>
</tr>
<tr>
<td>Benzene</td>
<td>n-Hexane</td>
<td>15</td>
<td>6.02</td>
<td>-1.58</td>
</tr>
<tr>
<td>n-Heptane</td>
<td></td>
<td>3</td>
<td>1.58</td>
<td>6.56</td>
</tr>
<tr>
<td>2,2,4-Trimethylpentane</td>
<td></td>
<td>26</td>
<td>11.21</td>
<td>-11.21</td>
</tr>
<tr>
<td>n-Decane</td>
<td></td>
<td>3</td>
<td>5.68</td>
<td>4.00</td>
</tr>
<tr>
<td>n-Dodecane</td>
<td></td>
<td>3</td>
<td>7.04</td>
<td>7.04</td>
</tr>
<tr>
<td>n-Tetradecane</td>
<td></td>
<td>3</td>
<td>3.41</td>
<td>3.27</td>
</tr>
<tr>
<td>n-Hexadecane</td>
<td></td>
<td>3</td>
<td>3.57</td>
<td>2.46</td>
</tr>
<tr>
<td>n-Octadecane</td>
<td></td>
<td>3</td>
<td>2.79</td>
<td>2.79</td>
</tr>
<tr>
<td>Toluene</td>
<td>n-Heptane</td>
<td>21</td>
<td>6.09</td>
<td>6.09</td>
</tr>
<tr>
<td>n-Octane</td>
<td></td>
<td>20</td>
<td>10.14</td>
<td>10.14</td>
</tr>
<tr>
<td>2,2,4-Trimethylpentane</td>
<td></td>
<td>28</td>
<td>5.87</td>
<td>-3.40</td>
</tr>
<tr>
<td>Overall Results</td>
<td></td>
<td>455</td>
<td>6.95</td>
<td>-2.07</td>
</tr>
</tbody>
</table>
Table 8. Summary of Results for Binary Mixture Thermal Conductivity

<table>
<thead>
<tr>
<th>Component 1</th>
<th>Component 2</th>
<th>N</th>
<th>AAD</th>
<th>BIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane</td>
<td>n-Butane</td>
<td>15</td>
<td>11.69</td>
<td>11.49</td>
</tr>
<tr>
<td>2,3-Dimethylbutane</td>
<td>2,2,4-Trimethylpentane</td>
<td>6</td>
<td>5.15</td>
<td>5.15</td>
</tr>
<tr>
<td>n-Heptane</td>
<td>2,2,4-Trimethylpentane</td>
<td>6</td>
<td>1.94</td>
<td>1.71</td>
</tr>
<tr>
<td>n-Heptane</td>
<td>1-Hexene</td>
<td>8</td>
<td>7.18</td>
<td>-7.18</td>
</tr>
<tr>
<td>n-Octane</td>
<td>n-Heptane</td>
<td>5</td>
<td>2.09</td>
<td>-2.09</td>
</tr>
<tr>
<td>n-Octane</td>
<td>n-Heptane</td>
<td>6</td>
<td>2.77</td>
<td>-2.77</td>
</tr>
<tr>
<td>n-Octane</td>
<td>2,2,4-Trimethylpentane</td>
<td>9</td>
<td>3.96</td>
<td>-3.96</td>
</tr>
<tr>
<td>n-Octane</td>
<td>1-Hexene</td>
<td>9</td>
<td>7.19</td>
<td>-7.19</td>
</tr>
<tr>
<td>2,2,5-Trimethylhexane</td>
<td>2,2,4-Trimethylpentane</td>
<td>6</td>
<td>4.35</td>
<td>4.35</td>
</tr>
<tr>
<td>n-Tetradecane</td>
<td>2,2,4-Trimethylpentane</td>
<td>6</td>
<td>4.43</td>
<td>-4.43</td>
</tr>
<tr>
<td>n-Hexadecane</td>
<td>n-Heptane</td>
<td>2</td>
<td>2.81</td>
<td>-2.81</td>
</tr>
<tr>
<td>n-Heptadecane</td>
<td>n-Octane</td>
<td>6</td>
<td>4.16</td>
<td>-4.16</td>
</tr>
<tr>
<td>Cyclopentane</td>
<td>n-Heptane</td>
<td>6</td>
<td>1.72</td>
<td>1.29</td>
</tr>
<tr>
<td>Cyclopentane</td>
<td>Methylcyclohexane</td>
<td>6</td>
<td>5.90</td>
<td>5.90</td>
</tr>
<tr>
<td>Methylcyclohexane</td>
<td>2,2,4-Trimethylpentane</td>
<td>6</td>
<td>11.42</td>
<td>-11.42</td>
</tr>
<tr>
<td>Benzene</td>
<td>Cyclohexane</td>
<td>4</td>
<td>5.54</td>
<td>5.54</td>
</tr>
<tr>
<td>Benzene</td>
<td>Toluene</td>
<td>12</td>
<td>6.79</td>
<td>6.79</td>
</tr>
<tr>
<td>Toluene</td>
<td>n-Heptane</td>
<td>5</td>
<td>6.37</td>
<td>6.37</td>
</tr>
<tr>
<td>Toluene</td>
<td>2,2,4-Trimethylpentane</td>
<td>6</td>
<td>11.05</td>
<td>11.05</td>
</tr>
<tr>
<td>Toluene</td>
<td>Cyclohexane</td>
<td>4</td>
<td>5.26</td>
<td>5.26</td>
</tr>
<tr>
<td>Toluene</td>
<td>o-Xylene</td>
<td>6</td>
<td>13.97</td>
<td>13.97</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>2,2,4-Trimethylpentane</td>
<td>6</td>
<td>10.65</td>
<td>10.65</td>
</tr>
<tr>
<td>n-Heptane</td>
<td>n-Decane</td>
<td>6</td>
<td>8.89</td>
<td>-8.89</td>
</tr>
<tr>
<td>Benzene</td>
<td>n-Heptane</td>
<td>8</td>
<td>2.80</td>
<td>-1.71</td>
</tr>
</tbody>
</table>

Overall Results 159 6.58 1.73
Figure 6. Comparison of calculated and experimental viscosity of selected paraffin binary mixtures as a function of reduced density.
Figure 7. Comparison of calculated and experimental viscosity of selected aromatic/paraffin mixtures.
Figure 8. Comparison of calculated and experimental thermal conductivity of selected binary mixtures.
9. ACKNOWLEDGMENTS

This work was supported by the Office of Standard Reference Data and, in part, by the Gas Research Institute. We are grateful to Professor R. P. Danner of Pennsylvania State University for making his viscosity and thermal conductivity data bases available to us. Mrs. Karen Bowie helped substantially in the preparation of this manuscript.
10. REFERENCES

APPENDIX A. TRAPP USER'S GUIDE

The method is applicable to the full range of densities and temperatures, from the dilute gas to dense liquid. The required material constants for each mixture component are the critical parameters, T_c, p_c, V_c and Pitzer's acentric factor. The thermal conductivity calculation also requires the ideal gas heat capacity. No transport data for the mixture or components are required. The computer program currently has a built in database for the 61 components. These components and their synonyms are listed in table A1.

Program Description

The program is modular in construction consisting of a sample driver or main program and a collection of subroutines. Most of the communication between the routines is accomplished via block common with a few parameters being passed in the subroutine calling lists. Figure A1 shows a block diagram of the program communication links. The purpose of these routines are as follows:

TRAPP is the main program which inputs the components, temperature, pressure and compositions. It then makes the appropriate subroutine calls and prints out the calculated density, viscosity and thermal conductivity.

LIB takes the component names from TRAPP and tries to identify them in the component library. After a successful identification, it loads the various material constants in the common block/COMPRP/, initializes the binary interaction constants to zero and returns. If the component is not identified as being in the database, it aborts with an error message. LIB utilizes the block data subroutine LIBSET which loads the common block /LIBDAT/.

DCST takes the input pressure, temperature and composition and calculates the mixture density via the extended corresponding states model. It uses several subroutines to accomplish this calculation which are described below. After the density is calculated it calls the subroutine ECSTX to evaluate the derivatives needed in the viscosity calculation.

RHOF is called by DCST and makes an initial guess at the reference fluid density given the equivalent temperature and pressure.

DO is called by RHOF and performs a Newton-Raphson iteration to calculate the reference fluid density given the temperature and pressure.

PVTO is called by DO and calculates the reference fluid pressure and its derivative w.r.t. density given the density and temperature.
<table>
<thead>
<tr>
<th>Component Name</th>
<th>Synonym</th>
<th>Component Name</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane</td>
<td>C1</td>
<td>2-Methyl-2-Butene</td>
<td>2M2C4-</td>
</tr>
<tr>
<td>Ethane</td>
<td>C2</td>
<td>2-Methyl-1-Butene</td>
<td>2M1C4-</td>
</tr>
<tr>
<td>Propane</td>
<td>C3</td>
<td>3-Methyl-1-Butene</td>
<td>3M1C4-</td>
</tr>
<tr>
<td>Isobutane</td>
<td>IC4</td>
<td>Cis-2-Pentene</td>
<td>C2C5-</td>
</tr>
<tr>
<td>n-Butane</td>
<td>C4</td>
<td>Trans-2-Pentene</td>
<td>T2C5-</td>
</tr>
<tr>
<td>2,2-Dimethylpropane</td>
<td>22DMPR</td>
<td>1-Pentene</td>
<td>C5-</td>
</tr>
<tr>
<td>Isopentane</td>
<td>IC5</td>
<td>1-Hexene</td>
<td>C6-</td>
</tr>
<tr>
<td>n-Pentane</td>
<td>C5</td>
<td>1-Heptene</td>
<td>C7-</td>
</tr>
<tr>
<td>2,2-Dimethylbutane</td>
<td>22DMB</td>
<td>Propadiene</td>
<td>12C5=</td>
</tr>
<tr>
<td>2,3-Dimethylbutane</td>
<td>23DMB</td>
<td>1,3-Butadiene</td>
<td>13C4=</td>
</tr>
<tr>
<td>3-Methylpentane</td>
<td>3MP</td>
<td>1,2-Butadiene</td>
<td>12C4=</td>
</tr>
<tr>
<td>Isohexane</td>
<td>IC6</td>
<td>Cyclopentane</td>
<td>CC5</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>C6</td>
<td>Methylcyclopentane</td>
<td>MCC5</td>
</tr>
<tr>
<td>n-Heptane</td>
<td>C7</td>
<td>Ethylcyclopentane</td>
<td>ECC5</td>
</tr>
<tr>
<td>n-Octane</td>
<td>C8</td>
<td>Cyclohexane</td>
<td>CC6</td>
</tr>
<tr>
<td>n-Nonane</td>
<td>C9</td>
<td>Methylcyclohexane</td>
<td>MCC6</td>
</tr>
<tr>
<td>n-Decane</td>
<td>C10</td>
<td>Ethylcyclohexane</td>
<td>ECC6</td>
</tr>
<tr>
<td>n-Undecane</td>
<td>C11</td>
<td>Benzene</td>
<td>BNZ</td>
</tr>
<tr>
<td>n-Dodecane</td>
<td>C12</td>
<td>Toluene</td>
<td>TOl</td>
</tr>
<tr>
<td>n-Tridecane</td>
<td>C13</td>
<td>Ethylbenzene</td>
<td>EB</td>
</tr>
<tr>
<td>n-Tetradecane</td>
<td>C14</td>
<td>Ortho-xylene</td>
<td>OXYL</td>
</tr>
<tr>
<td>n-Pentadecane</td>
<td>C15</td>
<td>Meta-Xylene</td>
<td>MXYL</td>
</tr>
<tr>
<td>n-Hexadecane</td>
<td>C16</td>
<td>Para-Xylene</td>
<td>PXYL</td>
</tr>
<tr>
<td>n-Heptadecane</td>
<td>C17</td>
<td>Hydrogen</td>
<td>H2</td>
</tr>
<tr>
<td>Ethene</td>
<td>C2-</td>
<td>Nitrogen</td>
<td>N2</td>
</tr>
<tr>
<td>Propene</td>
<td>C3-</td>
<td>Oxygen</td>
<td>O2</td>
</tr>
<tr>
<td>2-Methylpropene</td>
<td>IC3-</td>
<td>Water</td>
<td>H2O</td>
</tr>
<tr>
<td>Cis-2-Butene</td>
<td>C-2C4-</td>
<td>Carbon Monoxide</td>
<td>CO</td>
</tr>
<tr>
<td>Trans-2-Butene</td>
<td>T-2C4-</td>
<td>Carbon Dioxide</td>
<td>CO2</td>
</tr>
<tr>
<td>1-Butene</td>
<td>C4-</td>
<td>Sulphur Dioxide</td>
<td>SO2</td>
</tr>
<tr>
<td>Hydrogen Sulphide</td>
<td>H2S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure A1. Block diagram of computer program TRAPP.
ECSTX is called by DCST after the density has been calculated. It calculates the appropriate molecular weights for the transport calculations, part of the transport correction factors and the derivatives of the equivalent substance reducing ratios with respect to temperature.

THERMC is called by TRAPP after the density is calculated and evaluates the mixture thermal conductivity. It calculates the contribution to the thermal conductivity from the internal degrees of freedom using the routine VSCTY and ideal gas heat capacity in the text. The routine then calculates the translational contributions to the thermal conductivity using the routine TCOND and combines all the results according to eq (12).

TCOND takes the equivalent temperature and density of the mixture and/or components and calculates the translational contribution to the thermal conductivity via a corresponding states principle. The procedure used is described in the text.

VSCTY is called by TRAPP to evaluate the mixture viscosity via a corresponding states principle. The procedure used is described in the text.

Program Input and Output

The program expects input in a specified order and is set up to run in an interactive mode. When the program begins execution it prints a banner and then inquires if the user desires a list of the library components. If the user answers yes as indicated by a "1" followed by a carriage return, the list is displayed. A "0" response indicates a no and the list is skipped. Next the program asks if engineering units are desired. A "0" response indicates that scientific units are desired (K, bar, Kg/m³, Pa•s, and W/m-K) and a "1" response means that engineering units are desired (F, psia, lb/ft³, lb/ft-hr, and BTU/ft-hr- F).

Next, (Step A) the program requests the number of components, the response to which can be 0-20. If 0 is entered, the program stops.

(Step B) A nonzero response causes the program to ask for the component names (7A4 Format), one at a time. If a component name is incorrectly spelled or not in the database, the program aborts with an error message. The synonym may be entered in lieu of the full name.

(Step C) If there is more than one component in the system the program then requests the composition of each component, one component at a time. The compositions may be entered in moles or mole percent. The program automatically
normalizes the compositions to sum to unity, i.e., they are internally converted to mole fraction. If the composition of any component is entered as less than zero, the program assumes that you want to change the mixture components and reverts to step A.

(Step D) The program next requests the temperature and pressure in the units specified previously on one line separated by a comma. If "0,0" is entered the program reverts to step C. For any other response the program then calculates the density, viscosity and thermal conductivity and prints the results of the calculations. The program then reverts to step D. The logical flow of the input/output phases is shown in fig. A2.

Sample Input and Output

Tables A2-A4 give typical input/output examples.

Cautions

The program assumes that the mixture is single phased. If it is not, the results of the calculations will be meaningless. In addition, if the mixture is single phased but very close to the two-phase boundary it may converge to a liquid solution when the mixture is actually a vapor and vice-versa. If this happens, raise or lower the pressure slightly until you get into the desired phase. Appendix B lists the computer program.
Figure A2. Flow diagram of I/O portion of TRAPP.
Table A2. Sample Input and Output

**
**
** T R A P P
**
** TRANSPORT PROPERTIES PREDICTION PROGRAM
**
** BY
**
** J. F. ELY AND H. J. M. HANLEY
**
** U.S. NATIONAL BUREAU OF STANDARDS
**
** NATIONAL ENGINEERING LABORATORY
**
** THERMOPHYSICAL PROPERTIES DIVISION
**
** BOULDER, COLORADO 80303
**
** (PARTIALLY SPONSORED BY THE OFFICE OF
** STANDARD REFERENCE DATA)
**
**

DO YOU WANT A LIST OF LIBRARY COMPONENTS (0-NO; 1-YES) ? 0

DO YOU WANT ENGINEERING UNITS (0-NO; 1-YES) ? 0

ENTER NUMBER OF COMPONENTS ? 1
ENTER NAME OF COMPONENT 1 ? METHANE

ENTER T(K) AND P(BAR) ? 100,1
 D= 439.219 KG/M**3 ETA = 1482.3E-7 PA-S TC = .21842 W/M-K

ENTER T(K) AND P(BAR) ? 120,1
 D= 1.654 KG/M**3 ETA = 48.2E-7 PA-S TC = .01471 W/M-K

ENTER T(K) AND P(BAR) ? 120,5
 D= 410.533 KG/M**3 ETA = 971.3E-7 PA-S TC = .17804 W/M-K

ENTER T(K) AND P(BAR) ? 140,10
 D= 377.755 KG/M**3 ETA = 673.5E-7 PA-S TC = .14425 W/M-K

ENTER T(K) AND P(BAR) ? 190,50
 D= 239.837 KG/M**3 ETA = 239.7E-7 PA-S TC = .07190 W/M-K

ENTER T(K) AND P(BAR) ? 0,0

ENTER NUMBER OF COMPONENTS ? 0

.035 CP SECONDS EXECUTION TIME.
Table A3. Sample Input and Output

TRANSPORT PROPERTIES PREDICTION PROGRAM

BY

J. F. ELY and H. J. M. HANLEY
U.S. NATIONAL BUREAU OF STANDARDS
NATIONAL ENGINEERING LABORATORY
THERMOPHYSICAL PROPERTIES DIVISION
BOULDER, COLORADO 80303

(PARTIALLY SPONSORED BY THE OFFICE OF STANDARD REFERENCE DATA)

DO YOU WANT A LIST OF LIBRARY COMPONENTS (0-NO; 1-YES)? 0

DO YOU WANT ENGINEERING UNITS (0-NO; 1-YES)? 1

ENTER NUMBER OF COMPONENTS? 3
ENTER NAME OF COMPONENT 1? METHANE
ENTER NAME OF COMPONENT 2? PROPANE
ENTER NAME OF COMPONENT 3? NITROGEN
ENTER NUMBER OF MOLES OF METHANE? 3
ENTER NUMBER OF MOLES OF PROPANE? 1
ENTER NUMBER OF MOLES OF NITROGEN? 6

ENTER T(F) AND P(PSIA)? 400, 1000
D= 2.8122 LB/FT**3 ETA = .053292 LB/FT-HR TC = .02700 BTU/FT-HR-F

ENTER T(F) AND P(PSIA)? -100, 1000
D= 12.4563 LB/FT**3 ETA = .040324 LB/FT-HR TC = .02040 BTU/FT-HR-F

ENTER T(F) AND P(PSIA)? -300, 1450
D= 44.8939 LB/FT**3 ETA = .553857 LB/FT-HR TC = .11165 BTU/FT-HR-F

ENTER T(F) AND P(PSIA)? 0, 0
ENTER NUMBER OF MOLES OF METHANE? 7
ENTER NUMBER OF MOLES OF PROPANE? .5
ENTER NUMBER OF MOLES OF NITROGEN? 2.5

ENTER T(F) AND P(PSIA)? 77, 14.7
D= .0523 LB/FT**3 ETA = .030090 LB/FT-HR TC = .01912 BTU/FT-HR-F

ENTER T(F) AND P(PSIA)? 77, 3000
D= 12.4219 LB/FT**3 ETA = .051985 LB/FT-HR TC = .03323 BTU/FT-HR-F

ENTER T(F) AND P(PSIA)? 0, 0
ENTER NUMBER OF MOLES OF METHANE? -1

ENTER NUMBER OF COMPONENTS? 0
"155 CP SECONDS EXECUTION TIME."
DO YOU WANT A LIST OF LIBRARY COMPONENTS (0-NO; 1-YES)? 0

DO YOU WANT ENGINEERING UNITS (0-NO; 1-YES)? 0

ENTER NUMBER OF COMPONENTS ? 6
ENTER NAME OF COMPONENT 1 ? N2
ENTER NAME OF COMPONENT 2 ? CO2
ENTER NAME OF COMPONENT 3 ? C3
ENTER NAME OF COMPONENT 4 ? BNZ
ENTER NAME OF COMPONENT 5 ? H2S
ENTER NAME OF COMPONENT 6 ? ETHENE
ENTER NUMBER OF MOLES OF N2 ? 3
ENTER NUMBER OF MOLES OF CO2 ? 4
ENTER NUMBER OF MOLES OF C3 ? 8
ENTER NUMBER OF MOLES OF BNZ ? 1
ENTER NUMBER OF MOLES OF H2S ? 0.4
ENTER NUMBER OF MOLES OF ETHENE ? 50

ENTER T(K) AND P(BAR) ? 400, 0.01
D = 0.010 KG/M**3 ETA = 138.6E-7 PA-S TC = .03563 W/M-K

ENTER T(K) AND P(BAR) ? 200, 100
D = 594.880 KG/M**3 ETA = 1515.8E-7 PA-S TC = .15493 W/M-K

ENTER T(K) AND P(BAR) ? 0, 0
ENTER NUMBER OF MOLES OF N2 ? -1

ENTER NUMBER OF COMPONENTS ? 2
ENTER NAME OF COMPONENT 1 ? CARBON DIOXIDE
ENTER NAME OF COMPONENT 2 ? C10
ENTER NUMBER OF MOLES OF CARBON DIOXIDE ? 95
ENTER NUMBER OF MOLES OF C10 ? 5

ENTER T(K) AND P(BAR) ? 273, 250
D = 1059.534 KG/M**3 ETA = 2158.5E-7 PA-S TC = .16524 W/M-K

ENTER T(K) AND P(BAR) ? 0, 0
ENTER NUMBER OF MOLES OF CARBON DIOXIDE ? -1

ENTER NUMBER OF COMPONENTS ? 0
.082 CP SECONDS EXECUTION TIME.
APPENDIX B. LISTING OF COMPUTER PROGRAM TRAPP
PROGRAM TRAPP(INPUT,OUTPUT)

*C ***********************************
* PURPOSE — DEMONSTRATION DRIVER FOR EXTENDED CORRESPONDING
* STATES ESTIMATION OF VISCOSITY AND THERMAL
* CONDUCTIVITY OF HYDROCARBON MIXTURES.

VERSION G2.3 8/11/80

CODED BY: J. F. ELY
NATIONAL BUREAU OF STANDARDS
NATIONAL ENGINEERING LABORATORY
THERMOPHYSICAL PROPERTIES DIVISION
BOULDER, COLORADO 80303

*C ***********************************
DIMENSION X(20), TA(2), TD(2), PD(2), DM(2), VM(2), TM(2)
INTEGER TUNIT(2), PUNIT(2)

COMMON /COMPRP/ NC, ND, NAME(20,7), DPROPS(20,14), DINC(380)

COMMON /MIXDAT/ FX, DFXDT, F(20), HX, DHXDT, H(20), CMX, CMXV,
1 CMXT, ZCX, CORV, CORT

COMMON /LIBDAT/ NLIB, NDUM, PROPS(22,61)

LOGICAL MIX

DATA TA, TD, PD, DM, VM, TM / 0.000, 459.67D0, 1.000, 1.800,
1 1.01325D0, 14.69595D0, 1.000, 0.06242795D0, 1.000, 2.419D-4,
2 1.0D-3, 5.777675D-4 /

DATA TUNIT, PUNIT / "K", "F", "BAR", "PSIA" /

PRINT 260
PRINT 280
READ *, INOT
IF(INOT.EQ.0) GO TO 015
NC = NLIB / 2
PRINT 270
DO 010 K=1,NC
010 PRINT 290, (PROPS(J,K),J=1,9), (PROPS(J,K+NC),J=1,9)
PRINT 290, (PROPS(J,NLIB),J=1,9)

SEE IF ENGINEERING UNITS ARE DESIRED

015 IU = 1
PRINT 300
READ *, INOT
IF(INOT.EQ.0) GO TO 020
IU = 2

INITIALIZE PROGRAM PARAMETERS

43
X(1) = 1.0
MIX = .FALSE.

INPUT THE NUMBER OF COMPONENTS IF IT IS ZERO OR LESS, STOP.

PRINT 200
READ *, NC
IF (NC.LE.0) STOP
IF (NC.GT.1) MIX = .TRUE.
DO 040 K=1,NC
PRINT 210, K
READ 230, (NAME(K,J),J=1,7)
CALL LIB(K)
040 CONTINUE
IF (.NOT.MIX) GO TO 080

IF A MIXTURE, GET THE COMPOSITION

XSUM = 0.0
DO 060 K=1,NC
PRINT 220, (NAME(K,J),J=1,4)
READ *, X(K)
IF (X(K).LT.0.0) GO TO 020
XSUM = XSUM + X(K)
060 CONTINUE
DO 070 K=1,NC
X(K) = X(K) / XSUM
070 CONTINUE

INPUT THE TEMPERATURE AND PRESSURE

PRINT 240, TUNIT(IU), PUNIT(IU)
READ *, TIN, PIN
IF (TIN.NE.0.0 .AND. PIN.NE.0.0) GO TO 100
090 IF (.NOT.MIX) GO TO 020
GO TO 050

CONVERT TO K AND ATM FOR CALCULATIONS

TK = (TIN + TA(IU)) / TD(IU)
PATM = PIN / PD(IU)
CALL DCST(PATM,DX,TK,X)
ETAX = VM(IU) * VSCTY(DX,TK)
TCX = TM(IU) * THERMC(DX,TK,X)
DX = DX * CMX * DM(IU)
IF (IU.EQ.2) GO TO 110
PRINT 250, DX, ETAX, TCX
GO TO 080
110 PRINT 255, DX, ETAX, TCX
GO TO 080

200 FORMAT(/" ENTER NUMBER OF COMPONENTS :K")
210 FORMAT(" ENTER NAME OF COMPONENT",I3," :K")
220 FORMAT(" ENTER NUMBER OF MOLES OF ",4A4," :K")
230 FORMAT(7A4)
250 FORMAT(" D="F8.3," KG/M**3 ETA ="F9.1,"E-7 PA-S TC =",)
1 F7.5," W/M-K")
255 FORMAT(" D="F8.4," LB/FT**3 ETA =",F9.6," LB/FT-HR TC =",
1 F7.5," BTU/FT-HR-F")
260 FORMAT(/6X,48(1H*)/6X,1H*,46X,1H*/6X,1H*,18X,"T R A",
1" P P",19X,1H*/6X,1H*,46X,1H*/6X, "* TRANSPORT P",
2"ROPERTIES PREDICTION PROGRAM *"/6X,1H*,46X,1H*/
36X,1H*,22X,"BY",22X,1H*/6X,1H*,46X,1H*/6X,1H*,8X,"J. F. ELY AND
4H. J. M. HANLEY",7X,1H*/6X,1H*,8X, "U.S. NATIONAL BUREAU OF STA
5NDARDS",5X,1H*/6X,1H*,8X,"NATIONAL ENGINEERING LABORATORY",7X,1H*
6/ 6X,1H*,8X,"THERMOPHYSICAL PROPERTIES DIVISION",4X,1H*/ 6X,1H*
7, 8X,"BOULDER, COLORADO 80303",14X,1H*/ 6X,1H*,46X,1H*/
8 6X,1H*,5X,"(PARTIALLY SPONSORED BY THE OFFICE OF",4X,1H*
9 / 6X,1H*,11X,"STANDARD REFERENCE DATA)", 11X,1H* /
A 6X,1H*,46X,1H*/ 6X,48(1H*) //)
270 FORMAT(" COMPONENT NAME",11X,"SYNONYM",7X,"COMPONENT NAME",
1 13X,"SYNONYM")
280 FORMAT(" DO YOU WANT A LIST OF LIBRARY COMPONENTS(0-NO;1-YES) :K")
290 FORMAT(1X,9A4,3X,9A4)
300 FORMAT(" DO YOU WANT ENGINEERING UNITS(0-NO,1-YES) :K")
 END
SUBROUTINE DCST(PX,DX,TX,X)

* *

PURPOSE --- THIS ROUTINE CALCULATES A HYDROCARBON MIXTURE
DENSITY USING THE SHAPE FACTOR APPROACH TO
CORRESPONDING STATES.

CODED BY : J. F. ELY
NATIONAL BUREAU OF STANDARDS
NATIONAL ENGINEERING LABORATORY
THERMOPHYSICAL PROPERTIES DIVISION
BOULDER, COLORADO 80303

VERSION G2.1 - - 1/15/80
* *

COMMON /REFDAT/ R, PCO, DCO, TCO, ZCO, W0, CMWO, GAMMA, A(32),
* CT(4), CP(4), CO(9), CD(4), CE(8), COT(9),
* CDT(4), CET(8)

COMMON /COMPRP/ NC, ND, NAME(20,7), PC(20), DC(20), TC(20),
* ZC(20), W(20), CMW(20), TB(20), CPC(20,7),
* OMK(190), OML(190)

COMMON /MIXDAT/ FX, DFXDT, F(20), HX, DHXDT, H(20), CMX, CMXV,
1 CMXT, ZCX, CORV, CORT

DIMENSION X(1)
LOGICAL MASK(20)

DATA TOLERS / 1.0E-5 /

THETAF(TR,VR,WN) = 1. + (WN - W0) * (CT(1) + CT(2) * ALOG(TR)
 * + (CT(3) + CT(4) / TR) * (VR - 0.5))

PHIF(TR,VR,WN) = (1.0 + (WN - W0) * (CP(1) * (VR + CP(2))
 * + CP(3) * (VR + CP(4)) * ALOG(TR)))

INITIALIZE THE SHAPE FACTORS AND CST PARAMETERS

020 FX = 1.0
HX = 1.0
DO 040 N = 1, NC
MASK(N) = .FALSE.
IF(X(N).LE.0.0) MASK(N) = .TRUE.
F(N) = TC(N) / TCO
H(N) = DCO / DC(N)
040 CONTINUE

SHAPE FACTOR ITERATION LOOP

DO 200 LOOP = 1, 15
SAVE RESULTS FROM PREVIOUS ITERATION
FXS = FX
HXS = HX
FX = 0.0

CALCULATE CST PARAMETERS FOR MIXTURE
DO 100 N = 1, NC
IF(MASK(N)) GO TO 100
K = N * (N - 1) / 2
GN = CBRT(H(N))
S2 = 0.0
S3 = 0.0
DO 080 M = 1, N
IF(MASK(M)) GO TO 080
TMP2 = 0.125 * X(M) * (GN + CBRT(H(M)))**3 * OML(K+M)
TMP3 = SQRT(F(N) * F(M)) * TMP2 * OMK(K + M)
S2 = S2 + TMP2
S3 = S3 + TMP3
080 CONTINUE
HX = HX + X(N) * (2.0 * S2 - TMP2)
FX = FX + X(N) * (2.0 * S3 - TMP3)
100 CONTINUE
FX = FX / HX
C CALCULATE THE EQUIVALENT METHANE DENSITY.
TO = TX / FX
PO = PX * HX / FX
DO = RHOF(PO,TO)
C RECALCULATE SHAPE FACTORS AND CHECK FOR
C CONVERGENCE IN FX AND HX
140 DO 160 N = 1, NC
IF(MASK(N)) GO TO 160
TR = AMIN1(2.0,F(N) * TO / TC(N))
VR = AMIN1(2.0,AMAX1(0.5,H(N)*DC(N)/D0))
WN = W(N)
F(N) = TC(N) * THETAF(TR,VR,WN) / TCO
H(N) = DCO * PHIF(TR,VR,WN) * ZCO / (ZC(N) * DC(N))
160 CONTINUE
C TEST FOR CONVERGENCE
C IF(ABS(FX / FXS - 1.0).GT.TOLERS) GO TO 200
IF(ABS(HX / HXS - 1.0).GT.TOLERS) GO TO 200
GO TO 220
C NO CONVERGENCE YET - - TRY AGAIN
C 200 CONTINUE
C FAILURE--ISSUE MESSAGE & RETURN
C 210 PRINT 300, TX, PX
C CONVERGENCE!!!
C 220 DX = DO / HX
CALL ECSTX(PX,DX,TX,X)
RETURN
300 FORMAT(/" /DCST/ FAILED TO CONVERGE AT T="F8.3," AND P="G14.7)
END
SUBROUTINE ECSTX(PX,DX,TX,X)

* *

PURPOSE -- THIS ROUTINE EVALUATES VARIOUS SUMS WHICH ARE USED TO EVALUATE THE DERIVATIVES OF FX AND HX W.R.T. T. IT ASSUMES THAT ECSTD HAS BEEN CALLED TO EVALUATE DENSITY, FX AND HX.

CODED BY: J. F. ELY
NATIONAL BUREAU OF STANDARDS
NATIONAL ENGINEERING LABORATORY
THERMOPHYSICAL PROPERTIES DIVISION
BOULDER, COLORADO 80303

VERSION G2.0 -- 5/20/80

* *

REAL MIJ
COMMON /REFDAT/ R, PCO, DCO, TCO, ZCO, WO, CMWO, GAMMA, A(32), * CT(4), CP(4), CO(9), CD(4), CE(8), COT(9), * CDT(4), CET(8)
COMMON /COMPRP/ NC, ND, NAME(20,7), PC(20), DC(20), TC(20), * ZC(20), W(20), CMW(20), TB(20), CPC(20,7), * OM(190), OML(190)
COMMON /MIXDAT/ FX, DFXDT, F(20), HX, DHXDT, H(20), CMX, CMXV, CMXT, ZCX, CORV, CORT
DIMENSION S(5,3), SJ(5), Z(5), X(1)
EQUIVALENCE (Z(1),FIJ), (Z(2),GIJ), (Z(3),MIJ)
DATA Z / 5*0.0 /

INITIALIZE

ZCX = 0.0
CMX = 0.0
CMXV = 0.0
CMXT = 0.0
RBAR = 0.0
DCMAX = 0.0
DO 015 I = 1, NC
IF(DC(I).GT.DCMAX) DCMAX = DC(I)
015 CONTINUE
DO 020 M=1,3
DO 020 N=1,5
020 S(N,M) = 0.0

DO 120 I = 1,NC
IF (X(I).LE.0.0) GO TO 120
K = I * (I-1) / 2
GI = CBRT(H(I))
DO 040 M = 1, 5
040 SJ(M) = 0.0
DO 080 J = 1, NC
IF (X(J).LE.0.0) GO TO 080
L = K + J
IF (J.GT.I) L = I + J * (J-1) / 2
GIJ = 0.5 * (GI+CBRT(H(J)))
HIJ = GIJ**3 * OML(L)
FIJ = SQRT(F(I)*F(J)) * OMK(L)
RMIJ = CMW(I)*CMW(J)/(CMW(I)+CMW(J))
Z(4) = 1.0 / RMIJ
MIJ = CBRT(HIJ) * SQRT(RMIJ/FIJ)
GIJ = GIJ / GI
TERM = X(J) * HIJ / GIJ
DO 060 M = 1, 5
SJ(M) = SJ(M) + TERM
060 TERM = TERM * Z(M)
080 CONTINUE
THETA = F(I) * TCO / TC(I)
PHI = H(I) * DC(I) / DCO
TR = AMIN1(2.0,F(I) * TX / (FX * TC(I)))
VR = AMIN1(2.0,AMAX1(0.5,H(I)*DC(I)/(HX*DX)))
TEMP = (W(I) - WO) / THETA
Z(I) = 1.0 - TEMP * (CT(2) - CT(4) * (VR-0.5) / TR)
Z(2) = TEMP * (CT(3) + CT(4) / TR) * VR
TEMP = (W(I)-WO) * ZCO / (PHI * ZC(I))
Z(3) = 1.0 - TEMP * (CP(1) + CP(3) * ALOG(TR)) * VR
Z(4) = TEMP * CP(3) * (VR + CP(4))
IF(TR.LT.2.0) GO TO 085
Z(1) = 1.0
Z(4) = 0.0
085 IF (VR.GT.0.5 .AND. VR.LT.2.0) GO TO 090
Z(2) = 0.0
Z(3) = 1.0
090 Z(5) = Z(I) * Z(3) - Z(2) * Z(4)
TERM = HX
DO 100 M = 1, 3
SJ(M) = X(I) * SJ(M) / (Z(5) * TERM)
TERM = FX * HX
DO 100 N = 1, 5
100 S(N,M) = S(N,M) + Z(N) * SJ(M)
CMX = CMX + X(I) * CMW(I)
CMXV = CMXV + X(I) * SJ(4)
CMXT = CMXT + X(I) * SJ(5)
ZCX = ZCX + X(I) * ZC(I)
RBAR = RBAR + X(I) * CBRT(DCMAX/DC(I))
120 CONTINUE
TERM = 1.0 + S(1,1) - S(5,1)
TEMP = S(3,3) + S(4,2)
TRM2 = 1.0 + S(2,3) + S(1,2) - S(5,2)
DFXDT = 1.0 - TERM / (TERM * TEMP - S(4,1) * TRM2)
DHXDT = S(4,1) * (1.0 - DFXDT) / TERM
TERM = FX * HX**((8.0/3.0)
CMXV = 2.0 * CMXV * CMXV / TERM
CMXT = 2.0 * TERM / (CMXT * CMXT)
DFXDT = FX * DFXDT / TX
DHXDT = HX * DHXDT / TX
RBAR = 1.0/RBAR
CORV = (0.161290 - 4.516129*RBAR)/(1.0 - 5.354839*RBAR)
RETURN
END
FUNCTION RHOF(P,T)

* *

PURPOSE --- THIS ROUTINE CALCULATES THE DENSITY IN MOL/L OF A
FLUID FROM AN EQUATION OF STATE GIVEN THE TEMPERATURE
T IN KELVIN AND THE PRESSURE P IN ATMOSPHERES.

CODED BY : J. F. ELY
NATIONAL BUREAU OF STANDARDS
NATIONAL ENGINEERING LABORATORY
THERMOPHYSICAL PROPERTIES DIVISION
BOULDER, COLORADO 80303

VERSION G2.2 -- 1/9/80

* *

COMMON /REFDAT/ R, PCO, DCO, TCO, ZCO, WO, CMWO, GAMMA, A(32),
* CT(4), CP(4), CO(9), CD(4), CE(8), COT(9),
* CDT(4), CET(8)

DIMENSION AP(4), BP(3)

DATA AP / 6.3240720088E+00,-6.7447661253E+00,-2.5239605832E+00,
* 0.4188447111E+00/

DATA BP / 1.5213153011E+01, 9.2665399400E+00, 1.3551718205E+01/

FIND THE INITIAL DENSITY GUESS. FIRST SEE
IF THE SYSTEM IS SOLIDLY IN A ONE PHASE REGION.

PS = PCO
FOP = P / (R * T)
IF (T.GT.TCO) GO TO 080

SUB-CRITICAL TEMPERATURE.
CALCULATE THE VAPOR PRESSURE. IF T > 170 K,
USE THE CRITICAL REGION FUNCTION. OTHERWISE
THE FROST-KALKWARF TYPE EQUATION.

TR = T / TCO
TAU = 1.0 - TR
IF (T.GT.170.0) GO TO 040
TMP1 = AP(1) + AP(2) / TR + AP(3)*ALOG(TR)
TMP2 = AP(4)/(TR*TR)
PRR = 0.100
DO 020 K = 1, 50
PR = EXP(TMP1 + TMP2 * PRR)
IF (ABS(PR/PRR-1.0).LE.1.0E-6) GO TO 060
020 PRR = PR

040 PR = EXP(BP(1)*(1.0-1.0/TR) + BP(2)*TAU + BP(3)*TAU*TAU)
060 PS = PR * PCO

C IF P % PS, USE A LIQUID DENSITY. OTHERWISE, USE
C IDEAL GAS DENSITY CALCULATED ABOVE.

C 080 IF (P.GT.PS) FOP = 3.0 * DCO
100 RHOF = DO(P,T,FOP)
RETURN
END
FUNCTION DO(PO,T0,FOP)
LOGICAL LIQUID

C
** *
C
C PURPOSE -- THIS ROUTINE CALCULATES THE DENSITY OF A FLUID AT
C T AND P GIVEN AN INITIAL GUESS IN FOP. ON EXIT,
C IT RETURNS THE FUGACITY COEFFICIENT IN FOP. IT
CRequires a routine "PVTO" WHICH CALCULATES P,
CDPDD, AND F/P, GIVEN T AND D.
C
C CODED BY : J. F. ELY
C NATIONAL BUREAU OF STANDARDS
C NATIONAL ENGINEERING LABORATORY
C THERMOPHYSICAL PROPERTIES DIVISION
C BOULDER, COLORADO 80303
C
C VERSION G2.2 -- 1/9/80
C
** *
C COMMON /REFDAT/ R, PCO, DCO, TCO, ZCO, WO, CMWO, GAMMA, A(32),
CT(4), CP(4), C0(9), CD(4), CE(8), COT(9),
* CDT(4), CET(8)
DATA TOLERD, TOLERP / 1.0E-8, 1.0E-8/
C
C INITIALIZE PARAMETERS
 D1=FOP
 NTRY=0
 DMAX=3.2E0*DCO
C
020 DL0=0.0
 DHI=DMAX
 D=D1
 DO 100 LAP=1,20
 CALL PVTO(PX,D,T0,DPDD,FOP)
C
C IF DPDD IS ZERO OR NEGATIVE, TRY BISECTION
C
 IF(DPDD.LE.1.0E-2) GO TO 120
 DP=PO-PX
 DD=DP/DPDD
C
 IF (DP) 040,300,060
040 DHI=D
 GO TO 080
060 DLO=D
080 DN=D+DD
C
 KEEP D WITHIN BOUNDS OR GO TO BISECTION
C
 IF (DN.LT.0.0 .OR. DN.GT.DMAX) GO TO 120
 D=DN
 IF(LAP.EQ.1) GO TO 100
 IF(ABS(DP/PO).LE.TOLERP) GO TO 300

C
C
C
C
C
C
C
C
C
C

53
IF(ABS(DD/D).LE.TOLERD) GO TO 300
100 CONTINUE
C
NEWTON-RAPHSON FAILURE. TRY BISECTION
120 NTRY=NTRY+1
 IF(NTRY.LT.3) GO TO 130
 PRINT 400, TO, PO
400 FORMAT("/DO/ FAILED TO CONVERGE AT TO=",F8.3," AND PO=",G14.7)
 STOP
130 IF(TO.GT.TCO) GO TO 160
C
C SUB-CRITICAL. MAKE SURE THAT WE HAVE THE
C PROPER BOUNDS ON THE DENSITY.
C
IF(D1.LT.DCO) GO TO 140
 LIQUID=.TRUE.
140 LIQUID=.FALSE.
 IF(DLO.LE.DCO) DLO=DCO
 IF(DHI.LE.DCO) DHI=DMAX
 GO TO 160
C
140 LIQUID=.FALSE.
 IF(DLO.GE.DCO) DLO=0.0
 IF(DHI.GE.DCO) DHI=DCO
C
C START THE BISECTION
160 D=0.50E0*(DLO+DHI)
 CALL PVTO(PX,D,TO,DPDD,FOP)
 DP=PX-PO
 IF(DPDD.LT.0.0) GO TO 180
 IF(DP) 200,300,220
180 IF(.NOT.LIQUID) DPDD=-DPDD
 IF(DPDD) 200,240,220
200 DLO=D
 GO TO 240
220 DHI=D
240 IF(ABS(DPDD).LE.TOLERD .AND. ABS(DP).GT.TOLERD) GO TO 260
 IF(ABS(DP/PO).LE. TOLERD) GO TO 300
 IF(ABS(DLO/DHI-1.0).GT.TOLERD) GO TO 160
C
C BISECTION FAILED. WE ARE PROBABLY TRYING ON
C THE WRONG SIDE OF THE DOME.
C
260 D1=3.0*DCO
 IF(LIQUID) D1=0.01
 GO TO 020
C
300 DO=D
 RETURN
END
SUBROUTINE PVTO(PO, DO, TO, DPDDO, FPO)

PURPOSE -- THIS ROUTINE CALCULATES THE EQUIVALENT PRESSURE AND
DERIVATIVE OF PRESSURE WRT DENSITY OF METHANE. THE
EQUATION USED IS THAT OF STEWART AND JACOBSEN. THE
DENSITY IS IN G-MOL/LIT AND TEMPERATURE IN KELVIN. IT
YIELDS THE PRESSURE IN ATMOSPHERES AND RATIO OF THE
FUGACITY TO THE PRESSURE.

CODED BY: J. F. ELY
NATIONAL BUREAU OF STANDARDS
NATIONAL ENGINEERING LABORATORY
THERMOPHYSICAL PROPERTIES DIVISION
BOULDER, COLORADO 80303

VERSION G2.1 -- 1/15/80

DIMENSION G(15), B(9), F(6), S(6)

COMMON /REFDAT/ R, PCO, DC0, TCO, ZCO, W0, CMWO, GAMMA, A(32),
* CT(4), CP(4), CO(9), CD(4), CE(8), COT(9),
* CDT(4), CET(8)

DATA TLAST, B/ -1.00, 9*0.0/

DATA F / 1.0, 1.0, 2.0, 6.0, 24.0, 120.0 /

T=TO
D=DO
IF(T.EQ.TLAST) GO TO 040
TLAST=T
TS=SQRT(T)
T1=1.0/T
T2=T1*T1

G(1)=R*T
G(2)=A(1)*T+A(2)*TS+A(3)+A(4)*T1+A(5)*T2
G(3)=A(6)*T+A(7)+A(8)*T1+A(9)*T2
G(4)=A(10)*T+A(11)+A(12)*T1
G(5)=A(13)
G(6)=A(14)*T1+A(15)*T2
G(7)=A(16)*T1
G(8)=A(17)*T1+A(18)*T2
G(9)=A(19)*T2
G(10)=T2*(A(20)+A(21)*T1)
G(11)=T2*(A(22)+A(23)*T2)
G(12)=T2*(A(24)+A(25)*T1)
G(13)=T2*(A(26)+A(27)*T2)
G(14) = T2 * (A(28) + A(29) * T1)
G(15) = T2 * (A(30) + T1 * (A(31) + T1 * A(32)))

C
DO 010 J = 2, 9
010 B(J) = G(J) / (G(1) * FLOAT(J - 1))
DO 030 K = 1, 6
S(K) = 0.0
TERM = 1.0
DO 020 J = K, 6
S(K) = S(K) + F(J) * G(J + 9) * TERM
020 TERM = TERM / GAMMA
030 S(K) = S(K) / (G(1) * F(K))

C
040 P1 = 0.0
D1 = 0.0
F1 = 0.0
DO 050 J = 1, 9
P1 = P1 * D + G(10 - J)
D1 = D1 * D + P1
050 F1 = F1 * D + B(10 - J)

C
DSQ = D * D
P2 = 0.0
D2 = 0.0
F2 = 0.0
DO 060 J = 10, 15
P2 = (P2 + G(25 - J)) * DSQ
D2 = D2 * DSQ + P2
060 F2 = F2 * DSQ + S(16 - J)
TERM = EXP(-GAMMA * DSQ)
P0 = D * (P1 + P2 * TERM)
IF (P0.EQ.0.0) P0 = 1.0E-20
Z0 = P0 / (D * G(1))
DPDDO = (D1 + TERM * (P2 + 2.0 * (D2 - DSQ * GAMMA * P2)))
FOP = F1 - (F2 * TERM - S(1)) / (2.0 * GAMMA) + Z0 - 1.0 - ALOG(Z0 / P0)
FOP0 = EXP(FOP) / P0
RETURN
END
FUNCTION VSCTY(DX,TX)
C
* *
C PURPOSE - - THIS ROUTINE CALCULATES THE VISCOSITY OF METHANE
 USING HANLEY'S CORRELATION
C
CODED BY : J. F. ELY
 NATIONAL BUREAU OF STANDARDS
 NATIONAL ENGINEERING LABORATORY
 THERMOPHYSICAL PROPERTIES DIVISION
 BOULDER, COLORADO 80303
C
VERSION G2.0 3/12/80
C
* *
C
COMMON /MIXDAT/ FX, DFXDT, F(20), HX, DHXDT, H(20), CMX, CMXV,
1
 CMXT, ZCX, CORV, CORT
C
COMMON /REFDAT/ R, PCO, DCO, TCO, ZCO, WO, CMWO, GAMMA, A(32),
* CT(4), CP(4), CO(9), CD(4), CE(8), C0T(9),
* CDT(4), CET(8)
C
DATA TLAST, PSI /-1.00, 1.5 /
C CALCULATE THE EQUIVALENT DENSITY
DO = 0.001 * DX * HX * CMWO
TO = TX / FX
C CALCULATE THE TEMPERATURE DEPENDENT PART OF THE
C VISCOSITY CORRELATION IF T ISN'T THE SAME AS
C THE LAST CALL TO THIS ROUTINE (USUAL CASE)
C
IF(TO.EQ.TLAST) GO TO 040
TLAST = TO
TI = 1.0 / TO
ETA1 = CD(1) + CD(2) * (CD(3) - ALOG(TO / CD(4))) ** 2
TRMO = CE(1) + CE(2) * TI
TRM1 = CE(3) + CE(4) * TI / SQRT(TO)
TRM2 = CE(5) + TI * (CE(6) + CE(7) * TI)
TRMX = EXP(TRMO)
T1 = CBRT(TO)
ETAO = 0.0
DO 020 J = 1,9
ETAO = ETAO + CO(J) * TI
020 TI = TI * TI
C DENSITY DEPENDENCE IS CALCULATED HERE.
040 R1 = DO ** 0.10
R2 = SQRT(DO) * (DO / CE(8) - 1.0)
ETAX = EXP(TRMO + TRM1 * R1 + TRM2 * R2) - TRMX
FETA = SQRT(FX * CMXV / CMWO) / CBRT(HX * HX)
CORV = SQRT((1.0 - TO*PSI*AMIN1(0.0,DFXDT))*ZCX/ZCO)*CORV
VSCTY = (ETAO + ETA1 * DO + ETAX * CORV) * FETA
RETURN
END
FUNCTION TCOND(DX,TX)

* *

PURPOSE - - THIS ROUTINE CALCULATES THE TRANSLATIONAL PORTION
OF THE METHANE THERMAL CONDUCTIVITY USING HANLEY'S
CORRELATIONS

CODED BY : J. F. ELY
NATIONAL BUREAU OF STANDARDS
NATIONAL ENGINEERING LABORATORY
THERMOPHYSICAL PROPERTIES DIVISION
BOULDER, COLORADO 80303

VERSION G2.1 7/12/80

* *

REAL LAMO, LAM1, LAMX
COMMON /MIXDAT/ FX, DFXDT, F(20), HX, DHXDT, H(20), CMX, CMXV,
1 CMXT, ZCX, CORV, CORT
COMMON /REFDAT/ R, PCO, DCO, TCO, ZCO, WO, CMWO, GAMMA, A(32),
* CT(4), CP(4), CO(9), CD(4), CE(8), COT(9),
* CDT(4), CET(8)

DATA TLAST, CON, PSI / -1.00, 0.19434504, 1.00 /

CALCULATE THE EQUIVALENT DENSITY
DO = 0.001 * DX * HX * CMWO
TO = TX / FX

CALCULATE THE TEMPERATURE DEPENDENT PART OF THE
THERMAL CONDUCTIVITY CORRELATION IF T ISN'T THE
SAME AS THE LAST CALL TO THIS ROUTINE (USUAL
CASE)

IF(TO.EQ.TLAST) GO TO 040
TLAST = TO
TI = 1.0 / TO
LAM1 = CDT(1) + CDT(2) * (CDT(3) - ALOG(TO / CDT(4))) ** 2
TRMO = CET(1) + CET(2) * TI
TRM1 = CET(3) + CET(4) * TI / SQRT(TO)
TRM2 = CET(5) + TI * (CET(6) + CET(7) * TI)
TRMX = EXP(TRMO)
TI = CBRT(TO)

CALCULATE THE IDEAL GAS TRANSLATIONAL THERMAL
CONDUCTIVITY FROM THE EUCKEN FORMULA
K = 15 * R * ETAO / (4 * M)

LAMO = 0.0
DO 020 J = 1,9
LAMO = LAMO + CO(J) * TI
020 TI = TI * TI
LAMO = CON * LAMO

DENSITY DEPENDENCE IS CALCULATED HERE.
R1 = DO ** 0.10
R2 = SQRT(DO) * (DO / CET(8) - 1.0)
LAMX = EXP(TRM0 + TRM1 * R1 + TRM2 * R2) - TRMX
FLAM = SQRT(FX * CMWO / CMXT) / CBRT(HX * HX)
CORT = ((1.0 - TO * AMIN(0.0, PSI*DFXDT)) * ZCO / ZCX) ** 1.5
TCOND = (LAM0 + LAM1 * DO + LAMX) * FLAM * CORT
RETURN
END
FUNCTION THERMC(DX, TX, X)

* *

PURPOSE —- THIS ROUTINE CALCULATES THE THERMAL CONDUCTIVITY OF
A MIXTURE FROM THE EXTENDED CORRESPONDING STATES
MODEL

CODED BY: J. F. ELY
NATIONAL BUREAU OF STANDARDS
NATIONAL ENGINEERING LABORATORY
THERMOPHYSICAL PROPERTIES DIVISION
BOULDER, COLORADO 80303

VERSION G2.1 1/21/81

* *

COMMON /COMPRP/ NC, ND, NAME(20,7), PC(20), DC(20), TC(20),
* ZC(20), W(20), CMW(20), TB(20), CPC(20,7),
* OMK(190), OML(190)

COMMON /MIXDAT/ FX, DFXDT, F(20), HX, DHXDT, H(20), CMX, CMXV,
1 CMXT, ZCX, CORV, CORT

DIMENSION TCINT(20), X(20)

FINT = 1.32 * 4.184 / 10.0
CALCULATE THE TRANSLATIONAL THERMAL
CONDUCTIVITY OF THE MIXTURE
TCTMIX = TCOND(DX, TX)
SAVE THE CST RESULTS

FXS = FX
HXS = HX
CMS = CMXV

TCIMIX = 0.0
DO 100 J = 1, NC
FX=F(J)
HX=H(J)
CMXV=CMW(J)
CPO = CPC(J,1)
TRM = TX
DO 040 K = 2, 7
CPO = CPO + TRM * CPC(J,K)
040 TRM = TRM * TX
TCINT(J) = FINT * (CPO - 4.968) * VSCTY(0.0,TX) / CMW(J)

DO 120 I=1,NC
TRM = 0.0
DO 110 J=1,1
TIJ = X(J) * TCINT(J) / (TCINT(I)+TCINT(J))
TRM = TRM + TIJ

100 CONTINUE
110 CONTINUE
 TCIMIX = TCIMIX + X(I) * TCINT(I) * (2.0 * TRM - TIJ)
120 CONTINUE
 FX = FXS
 HX = HXS
 CMXV = CMS
 THERMC = TCTMIX + 2.0 * TCIMIX
 RETURN
 END
FUNCTION CBRT(X)
C *
SUBROUTINE LIB(N)
*
PURPOSE --- THIS ROUTINE TAKES THE COMPONENT NUMBER "N"
WHOSE NAME RESIDES IN NOM(N,1-7) AND COMPARES
IT WITH NAMES IN THE DATABASE CONTAINED IN /LIBDAT/
IF A MATCH IS OBTAINED, THE APPROPRIATE LOCATIONS
OF THE COMMON BLOCK /COMPP/ ARE LOADED WITH THE
DATA FROM THE CORRESPONDING COMPONENT IN /LIBDAT/
*
CODED BY : J. F. ELY
NATIONAL BUREAU OF STANDARDS
NATIONAL ENGINEERING LABORATORY
THERMOPHYSICAL PROPERTIES DIVISION
BOULDER, COLORADO 80303
*
VERSION G2.1 ---- 8/15/80
*
REAL NOM, CPROPS
COMM N/COMPP/ NC, ND, NOM(20,7), P(20,14), OM(190), OML(190)
COMMON /LIBDAT/ NLIB, NDUM, CPROPS(22,61)
* READ THROUGH THE LIBRARY TO IDENTIFY
THE COMPONENT BY NAME OR SYNONYM.
DO 040 L = 1, NLIB
IF (NOM(N,1).EQ.CPROPS(8,L) .AND. NOM(N,2).EQ.CPROPS(9,L))
* GO TO 030
DO 020 K = 1, 7
IF (NOM(N,K).NE.CPROPS(K,L)) GO TO 040
020 CONTINUE
030 K = L
GO TO 120
040 CONTINUE

COMPONENT COULDN'T BE IDENTIFIED.
PRINT 200, (NOM(N,K),K=1,7)
STOP
COPY DATA FROM LIBRARY TO WORKING
COMMON AREA AND CALCULATE ZC
120 L = 9
DO 130 M = 1, 14
IF(M.EQ.4) GO TO 130
L = L + 1
P(N,M) = CPROPS(L,K)
130 CONTINUE
P(N,2) = 1000.0 / P(N,2)
P(N,4) = P(N,1)/(0.08205616*P(N,2)*P(N,3))
DUMMY IN THE INTERACTION CONSTANTS

DO 140 L=1,N
 I=L*(L-1)/2
 DO 140 J=1,L
 K=I+J
 OMK(K)=1.0
 OML(K)=1.0
 140 CONTINUE
RETURN

200 FORMAT(/" /LIB/ FAILED TO IDENTIFY THE COMPONENT ",7A4)
END
BLOCK DATA LIBSET

PURPOSE --- THIS ROUTINES LOADS VARIOUS COMMON BLOCKS WITH DATA WHICH DOES NOT CHANGE DURING THE CALCULATIONS

THE ORDER OF THE LIBRARY DATA IS AS follows:

<table>
<thead>
<tr>
<th>XPRPXX(K)</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-7</td>
<td>COMPONENT NAME</td>
</tr>
<tr>
<td>8-9</td>
<td>SYNONYM</td>
</tr>
<tr>
<td>10</td>
<td>PC (ATM)</td>
</tr>
<tr>
<td>11</td>
<td>VC (CM**3/MOL)</td>
</tr>
<tr>
<td>12</td>
<td>TC (KELVIN)</td>
</tr>
<tr>
<td>13</td>
<td>ACENTRIC FACTOR</td>
</tr>
<tr>
<td>14</td>
<td>MOLECULAR WEIGHT</td>
</tr>
<tr>
<td>15</td>
<td>T(NBP) (KELVIN)</td>
</tr>
<tr>
<td>16-22</td>
<td>IDEAL HEAT CAPACITY COEFFICIENTS WHERE CP0=SUM(C(J)T*(J-1)) J=1,7</td>
</tr>
</tbody>
</table>

CODED BY : J. F. ELY
NATIONAL BUREAU OF STANDARDS
NATIONAL ENGINEERING LABORATORY
THERMOPHYSICAL PROPERTIES DIVISION
BOULDER, COLORADO 80303

VERSION G2.1 - - 8/12/80

COMMON /REFDAT/ R, PCO, DCO, TCO, ZCO, WO, CMWO, GAMMA, A(32),
* CT(4), CP(4), CO(9), CD(4), CE(8), C0T(9),
* CDT(4), CET(8)

COMMON /LIBDAT/ NLIB, NDUM, XPRP01(22), XPRP02(22), XPRP03(22),
1 XPRP04(22), XPRP05(22), XPRP06(22), XPRP07(22), XPRP08(22),
1 XPRP09(22), XPRP10(22), XPRP11(22), XPRP12(22), XPRP13(22),
2 XPRP14(22), XPRP15(22), XPRP16(22), XPRP17(22), XPRP18(22),
3 XPRP19(22), XPRP20(22), XPRP21(22), XPRP22(22), XPRP23(22),
4 XPRP24(22), XPRP25(22), XPRP26(22), XPRP27(22), XPRP28(22),
5 XPRP29(22), XPRP30(22), XPRP31(22), XPRP32(22), XPRP33(22),
6 XPRP34(22), XPRP35(22), XPRP36(22), XPRP37(22), XPRP38(22),
7 XPRP39(22), XPRP40(22), XPRP41(22), XPRP42(22), XPRP43(22),
8 XPRP44(22), XPRP45(22), XPRP46(22), XPRP47(22), XPRP48(22),
9 XPRP49(22), XPRP50(22), XPRP51(22), XPRP52(22), XPRP53(22),
A XPRP54(22), XPRP55(22), XPRP56(22), XPRP57(22), XPRP58(22),
B XPRP59(22), XPRP60(22), XPRP61(22)

REFERENCE FLUID FIXED POINT DATA
AND EQUATION OF STATE CONSTANTS
DATA R, TCO, PCO, DCO, ZCO, WO, CMWO/ 0.08205616, 190.555, 1 45.387, 10.23, 0.283742, 0.01131, 16.043 /
C
DATA GAMMA / 0.0096 /
C
DATA A/-1.184347314485E-02, 7.540377272657E-01, -1.225769717554E+01 * , 6.260681393432E+02, -3.490654409121E+04, 5.301046385532E-04 * , -2.875764479788E+01, 5.011947936427E+01, -2.821562800903E+04 * , -2.064957753744E-05, 1.28591844828E-05, -1.106266656726E+00 * , 3.060813353084E-04, -3.174982181302E-03, 5.191608004779E+00 * , -3.074944210271E-04, 1.071143181503E-05, -9.290851745353E-03 * , 1.610140169312E-04, 3.469830970789E+04, -1.370878559048E+06 * , 1.790105676252E+02, 1.615880743238E+06, 6.265306650288E+01 * , 1.820173769533E+01, 1.44988505811E-03, -3.15999123798E+01 * , -5.290335668451E-06, 1.694350244152E+03, 8.612049038886E+09 * , -2.598235689063E-06, 3.153374374912E+05 /
C
SHAPE FACTOR CORRELATION CONSTANTS
DATA CT / 0.090569, -0.862762, 0.316636, -0.46568 / DATA CP / 0.394901, -1.023545, -0.932813, -0.754639 /
VISCOSITY CORRELATION CONSTANTS
DATA CO / 0.2907741307E+07, -0.3312874033E+07, 0.1608101838E+07, 1 -0.4331904871E+06, 0.7062481330E+05, -0.7116620750E+04, 2 0.4325174400E+03, -0.1445911210E+02, 0.2037119479E+00 /
DATA CD / 1.6969859271E+00, -1.3337234608E-01, 1.4000000000E+00, 1 1.6800000000E+02 /
DATA CE / -1.0239160427E+01, 1.7422822961E+02, 1.746054674E+01, 1 -2.8476328289E+03, 1.3368502192E-01, 1.4207239767E+02, 2 5.0020669720E+03, 1.6280000000E-01 /
THERMAL CONDUCTIVITY CORRELATION CONSTANTS
DATA COT/-0.214762100E+06, 0.219046100E+06, -0.861809700E+05, 1 0.149609900E+05, -0.4730660000E+03, -0.233117800E+03, 2 0.377843900E+02, -0.232048100E+01, 0.531176400E-01 /
DATA CDT/-0.252762920E+00, 0.334328590E+00, 1.1200000000E+00, 1 0.1680000000E+03 /
DATA CET/-7.1977082270E+00, 8.5678222640E+01, 1.2471834689E+01, 1 -9.8462522975E+02, 3.5946850007E-01, 6.9798412538E+01, 2 -8.7288332851E+02, 0.1628000000E+00 /
LIBRARY COMPONENT DATA
DATA NLIB / 61 /

66
| DATA XPRP01 | / "METH", "ANE", "", "", "", "", "", "", "", "", "", "", "", 1 2 3 4 | 190.555E0, 45.387E0, 97.752E0, -19759199E-10, -12233376E-21, 31782271E-17/
| DATA XPRP02 | / "ETHA", "NE", "", "", "", "", "", "", "", "", "", "", 1 2 3 4 | 305.330E0, 48.077E0, 147.060E0, 13183583E-10, 21686626E-13, -85251740E-17/
| DATA XPRP03 | / "PROP", "ANE", "", "", "", "", "", "", "", "", "", "", 1 2 3 4 | 369.820E0, 41.914E0, 201.610E0, -71806497E-11, 42920084E-18, 26266881E-17/
| DATA XPRP04 | / "ISOB", "UTAN", "E", "", "", "", "", "", "", "", "", "", 1 2 3 4 | 408.150E0, 36.003E0, 263.000E0, 83448685E+01, 40337532E-02, 28869652E-03, 57571458E-09, -27078809E-12, 46492802E-18, 50258511E-16/
| DATA XPRP05 | / "N-BU", "TANE", "", "", "", "", "", "", "", "", "", "", 1 2 3 4 | 425.160E0, 37.465E0, 256.410E0, -35770071E-11, 46492802E-18, -16554141E-16/
| DATA XPRP06 | / "2,2-", "DIME", "THYL", "PROP", "ANE", "", "", "", "", "", "", "", 1 2 3 4 | 433.780E0, 31.572E0, 303.000E0, 49657490E-11, 61782974E-13, 23947987E-16/
| DATA XPRP07 | / "ISOP", "ENTA", "NE", "", "", "", "", "", "", "", "", "", 1 2 3 4 | 460.430E0, 33.368E0, 306.000E0, 61029072E-01, 78716077E-01, 21259122E-06, 17894175E-10, -30123834E-13, 15028683E-16/
| DATA XPRP08 | / "N-PE", "NTAN", "E", "", "", "", "", "", "", "", "", "", 1 2 3 4 | 469.750E0, 33.319E0, 313.600E0, 10821614E+02, 30187967E-01, 17717678E-03, 20500004E-09, -57300484E-13, 37303568E-17/
| DATA XPRP09 | / "2,2-", "DIME", "THYL", "BUTA", "NE", "", "", "", "", "", "", "", 1 2 3 4 | 488.780E0, 30.397E0, 359.000E0, 52148046E+01, 96768749E-01, 11150945E-04, -34860062E-11, 82176408E-13, 72372053E-16/
DATA XPRP10 / "2,3-", "DIME", "THYL", "BUTA", "NE ", 1 " ", " ", "23DM", "B ", 30.861E0, 358.000E0, 2 499.980E0, .24700E0, 86.178E0, 331.130E0, 3 .64690800E+01, .82804874E-01, .46561817E-04, -.45005110E-07, 4 -.38194312E-10, -.75539658E-14, .34978877E-16/
C
DATA XPRP11 / "3-ME", "THYL", "PENT", "ANE ", " " 1 " ", " ", "3MP ", " ", 30.831E0, 367.000E0, 2 504.500E0, .27300E0, 86.178E0, 336.420E0, 3 .89448557E+01, .91643076E-01, -.14517463E-04, .15734975E-07, 4 -.29889279E-10, -.61427879E-18, .64139897E-17/
C
DATA XPRP12 / "ISOH", "EXAN", "E ", " " 1 " ", " ", "IC6 ", " ", 29.706E0, 367.000E0, 2 497.500E0, -.24700E0, 86.178E0, 333.410E0, 3 .71860952E+01, .75717727E-01, .10250425E-03, -.16853579E-06, 4 -.25632874E-12, .11153552E-13, -.48404655E-16/
C
DATA XPRP13 / "N-HE", "XANE", " " 1 " ", " ", "C6 ", " 29.884E0, 373.220E0, 2 507.889E0, .29777E0, 86.178E0, 341.880E0, 3 .10736446E+02, .64479391E-01, .87557824E-04, -.11685574E-06, 4 -.12019797E-11, .53278033E-13, -.19076817E-16/
C
DATA XPRP14 / "N-HE", "PTAN", "E ", " " 1 " ", " ", "C7 ", " 26.997E0, 431.970E0, 2 540.140E0, .34991E0, 100.206E0, 371.580E0, 3 .15205618E+02, .22270435E-01, .36769377E-03, -.72308061E-06, 4 .64010192E-09, -.27923771E-12, .48332058E-16/
C
DATA XPRP15 / "N-OC", "TANE", " " 1 " ", " ", "C8 ", " 24.650E0, 490.000E0, 2 568.820E0, .39953E0, 114.232E0, 398.820E0, 3 .13014803E+02, .92904278E-01, .95691535E-04, -.13010358E-06, 4 -.18629703E-10, .77087455E-13, -.26357422E-16/
C
DATA XPRP16 / "N-NO", "NANE", " " 1 " ", " ", "C9 ", " 22.576E0, 548.900E0, 2 594.561E0, .44505E0, 128.259E0, 423.970E0, 3 .18048935E+02, .40960429E-01, .42543344E-03, -.8494194E-06, 4 .74964999E-09, -.32490581E-12, .55750386E-16/
C
DATA XPRP17 / "N-DE", "CANE", " " 1 " ", " ", "C10 ", " 20.693E0, 607.530E0, 2 617.550E0, .48847E0, 142.287E0, 447.300E0, 3 .19702209E+02, .46038560E-01, .47657798E-03, -.96332701E-06, 4 .86409089E-09, -.38184805E-12, .67103558E-16/
C
DATA XPRP18 / "N-UN", "DECA", "NE ", " " 1 " ", " ", "C11 ", " 19.130E0, 665.000E0, 2 638.739E0, .53014E0, 156.314E0, 469.080E0, 3 .21579239E+02, .46998191E-01, .55034064E-03, -.11325708E-05, 4 .10434666E-08, -.47541241E-12, .86318577E-16/
C

68
DATA	XPRP19 / "N-DO", "DECA", "NE", "", "", "", 1	"", "", "C12", "", "", 17.828E0, 719.700E0, 2	658.250E0, .570833E0, 170.341E0, 489.470E0, 3	.17638199E+02, .14817699E+00, .12419743E-03, -.19432137E-06, 4	-.56242230E-12, .9048199E+13, -.32622075E-16/
C	XPRP20 / "N-TR", "IDEC", "ANE", "", "", "", 1	"", "", "C13", "", "", 16.610E0, 775.200E0, 2	676.150E0, .609600E0, 184.368E0, 508.620E0, 3	.28380463E+02, .22925102E-08, .92126747E-03, -.19254228E-05, 4	.18610851E-08, -.89150564E-12, .16836658E-15/
C	XPRP21 / "N-TE", "TRAD", "ECAN", "E", "", "", 1	"", "", "C14", "", "", 15.525E0, 827.130E0, 2	692.950E0, .644160E0, 198.395E0, 526.730E0, 3	.25255463E+02, .85908607E-01, .57805430E-03, -.11800856E-05, 4	.10398230E-08, -.44714033E+00, .75924416E-16/
C	XPRP22 / "N-PE", "NTAD", "ECAN", "E", "", "", 1	"", "", "C15", "", "", 14.459E0, 880.280E0, 2	706.750E0, .691800E0, 212.422E0, 543.870E0, 3	.22693863E+02, .1625498E+00, .27955425E-03, -.53815627E-06, 4	.33992350E-09, -.76462529E-13, .42904154E-20/
C	XPRP23 / "N-HE", "XADE", "CANE", "", "", "", 1	"", "", "C16", "", "", 13.576E0, 930.230E0, 2	720.550E0, .731050E0, 226.449E0, 569.010E0, 3	.28160385E+02, .1029364E+00, .64807391E-03, -.13426743E-05, 4	.12019017E-08, -.52831352E-12, .92412225E-16/
C	XPRP24 / "N-HE", "PTAD", "ECAN", "E", "", "", 1	"", "", "C17", "", "", 12.748E0, 977.000E0, 2	733.350E0, .762333E0, 240.476E0, 575.200E0, 3	.29822159E+02, .10787048E+00, .69936961E-03, -.14565206E-05, 4	.13141384E-08, -.58277342E-12, .10288245E-15/
C	XPRP25 / "ETHE", "NE", "", "", "", "", 1	"", "", "C2-", "", "", 49.700E0, 129.000E0, 2	282.400E0, .085000E0, 28.054E0, 169.400E0, 3	.68128414E+01, .17746499E+00, .75724612E-04, -.11456202E-06, 4	.66020561E-10, -.87280118E+00, .28854092E-17/
C	XPRP26 / "PROP", "ENE", "", "", "", "", 1	"", "", "C3-", "", "", 45.408E0, 181.000E0, 2	364.850E0, .144000E0, 42.081E0, 225.460E0, 3	.79263134E+01, .35798585E-05, .14916311E-03, -.28064405E-06, 4	.24922234E-09, -.11089376E-12, .19695749E-16/
C	XPRP27 / "2-ME", "THYL", "PROP", "ENE", "", "", 1	"", "", "IC3-", "", "", 39.477E0, 239.000E0, 2	417.900E0, .194000E0, 56.108E0, 266.200E0, 3	.58687611E+01, .50494597E-01, .18286034E-04, -.40314673E-07, 4	.52767787E-12, .20558363E-13, -.75344261E-17/
DATA XPRP28 / "CIS-", "2-BU", "TENE", "", "", ", 1 " ", ", "C-2C", "4-", 41.5000E0, 234.0000E0, 2
435.6000E0, .202000E0, 56.1080E0, 276.9000E0, 3
.96192379E+01, .10515795E-07, .17176652E-03, -.25410206E-06, 4
.15268957E-09, -.33898322E-13, -.19083062E-22/
C
DATA XPRP29 / "TRAN", "S-2-", "BUTE", "NE ", "", "", 1 " ", ", "T-2C", "4-", 40.50000E0, 238.0000E0, 2
428.6000E0, .214000E0, 56.1080E0, 274.0000E0, 3
.88378361E+01, .14174777E-01, .16193694E-03, -.32203898E-06, 4
.29520414E-09, -.13642628E-12, .25449097E-16/
C
DATA XPRP30 / "1-BU", "TENE", "", "", "", "", 1 " ", ", "C4-", "", ", 39.7000E0, 240.0000E0, 2
419.6000E0, .187000E0, 56.1080E0, 266.9000E0, 3
.73262300E+01, .35010204E-01, .57569349E-04, -.74857452E-07, 4
.20407881E-11, .30827962E-13, -.11335452E-16/
C
DATA XPRP31 / "2-ME", "THYL", "-2-B", "UTEN", "E ", "", 1 " ", ", "2M2C", "4-", 34.00000E0, 318.0000E0, 2
470.00000E0, .285000E0, 70.1350E0, 311.7000E0, 3
.96201916E+01, .15760204E-01, .21993817E-03, -.42323440E-06, 4
.36676477E-09, -.15714517E-12, .26823430E-16/
C
DATA XPRP32 / "2-ME", "THYL", "-1-B", "UTEN", "E ", "", 1 " ", ", "2M1C", "4-", 34.00000E0, 318.0000E0, 2
470.00000E0, .285000E0, 70.1350E0, 311.7000E0, 3
.71484098E+01, .54705301E-01, .81847848E-04, -.17371399E-06, 4
.11730191E-09, -.28000723E-13, .43375310E-19/
C
DATA XPRP33 / "3-ME", "THYL", "-1-B", "UTEN", "E ", "", 1 " ", ", "3M1C", "4-", 34.70000E0, 300.0000E0, 2
450.00000E0, .209000E0, 70.1350E0, 293.3000E0, 3
.43739162E+01, .92181863E-01, .31553563E-04, -.27930456E-07, 4
.31632638E-10, -.90871034E-14, .10619723E-20/
C
DATA XPRP34 / "CIS-", "2-PE", "NTEN", "E ", "", "", 1 " ", ", "C2C5", "-", 36.00000E0, 300.0000E0, 2
476.00000E0, .240000E0, 70.1350E0, 310.1000E0, 3
.10886964E+02, .18074699E-03, .26631192E-03, -.47132444E-06, 4
.37648996E-09, -.14593591E-12, .22066336E-16/
C
DATA XPRP35 / "TRAN", "S-2-", "PENT", "ENE ", "", "", 1 " ", ", "T2C5", "-", 36.10000E0, 300.0000E0, 2
475.00000E0, .237000E0, 70.1350E0, 309.5000E0, 3
.10664039E+02, .73196024E-02, .27286010E-03, -.55874988E-06, 4
.53005516E-09, -.25088630E-12, .47520815E-16/
C
DATA XPRP36 / "1-PE", "NTEN", "E ", "", "", "", 1 " ", ", "C5-", "", ", 40.00000E0, 300.0000E0, 2
464.70000E0, .245000E0, 70.1350E0, 303.1000E0, 3
.11449557E+02, .87397409E-02, .25250466E-03, -.49521402E-06, 4
.44436839E-09, -.19770821E-12, .35071268E-16/
C
<table>
<thead>
<tr>
<th>DATA</th>
<th>XPRP37</th>
<th>/ "1-HE", "XENE", "", "", "", "",</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>"", "", "", "C6-", "", "", "", "", 31.300E0, 350.000E0,</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>504.000E0, .28500E0, 84.162E0, 336.600E0,</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.12924405E+02, .15954369E-01, .29468316E-03, -.59197697E-06,</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>.54032622E-09, -.24432103E-12, .43999125E-16,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>DATA</td>
<td>XPRP38</td>
<td>/ "1-HE", "PTEN", "E", "", "", "",</td>
</tr>
<tr>
<td>1</td>
<td>"", "", "", "C7-", "", "", "", "", 28.000E0, 440.000E0,</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>537.200E0, .35800E0, 98.189E0, 366.800E0,</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.11443281E+02, .75199352E-01, .75832570E-04, -.11000747E-06,</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-.18685235E-11, .5182362E-13, -.18519920E-16,</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>DATA</td>
<td>XPRP39</td>
<td>/ "PRO", "ADIE", "NE", "", "", "",</td>
</tr>
<tr>
<td>1</td>
<td>"", "", "", "12C3", "", "", "", "", 54.000E0, 162.000E0,</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>393.000E0, .31300E0, 40.070E0, 238.700E0,</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.73395252E+01, .25859353E-02, .12880163E-03, -.26785793E-06,</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>.25164929E-09, -.11538423E-12, .20834873E-16,</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>DATA</td>
<td>XPRP40</td>
<td>/ "1,3-", "BUTA", "DIEN", "E", "", "", "",</td>
</tr>
<tr>
<td>1</td>
<td>"", "", "", "13C4", "", "", "", "", 42.700E0, 221.000E0,</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>425.000E0, .19500E0, 54.092E0, 268.700E0,</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.46207895E+01, .48677440E-01, .19479788E-04, -.49883879E-07,</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>.11138439E-12, .28137181E-13, -.10665350E-16,</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>DATA</td>
<td>XPRP41</td>
<td>/ "1,2-", "BUTA", "DIEN", "E", "", "", "",</td>
</tr>
<tr>
<td>1</td>
<td>"", "", "", "12C4", "", "", "", "", 44.400E0, 219.000E0,</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>443.700E0, .25500E0, 54.092E0, 284.000E0,</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.61028252E+01, .46325894E-01, -.51054392E-07, -.16761797E-07,</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-.11230577E-11, .79971874E-14, -.24261265E-17,</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>DATA</td>
<td>XPRP42</td>
<td>/ "CYCL", "OPEN", "TANE", "", "", "", "",</td>
</tr>
<tr>
<td>1</td>
<td>"", "", "", "CC5", "", "", "", "", 44.491E0, 260.000E0,</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>511.700E0, .19600E0, 70.140E0, 322.400E0,</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.68700514E+01, .42027257E-03, .23024765E-03, -.28467266E-06,</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>.91958409E-10, .34111618E-13, -.19240855E-16,</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>DATA</td>
<td>XPRP43</td>
<td>/ "METH", "YLCY", "CLOP", "ENTA", "NE", "", "", "",</td>
</tr>
<tr>
<td>1</td>
<td>"", "", "", "MCC5", "", "", "", "", 37.345E0, 319.000E0,</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>532.730E0, .23100E0, 84.160E0, 344.950E0,</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.13644801E+02, -.74725459E-01, .69186318E-03, -.13116369E-05,</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>.12042006E-08, -.55158466E-12, .10065042E-15,</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>DATA</td>
<td>XPRP44</td>
<td>/ "ETHY", "LCYC", "LOPE", "NTAN", "E", "", "", "",</td>
</tr>
<tr>
<td>1</td>
<td>"", "", "", "ECC5", "", "", "", "", 33.526E0, 375.000E0,</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>569.500E0, .27100E0, 98.190E0, 376.620E0,</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.91773872E+01, .39288596E-01, .19385635E-03, -.21636194E-06,</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>.19215759E-11, .88362908E-13, -.31171836E-16,</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>DATA</td>
<td>XPRP45</td>
<td>/ "CYCL", "OHEX", "ANE", "", "", "", "",</td>
</tr>
<tr>
<td>1</td>
<td>"", "", "", "CC6", "", "", "", "", 40.168E0, 308.000E0,</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>553.500E0, .21200E0, 84.160E0, 353.880E0,</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.70494375E+01, .80017628E-04, .33824867E-03, -.50896443E-06,</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>.31352284E-09, -.77854579E-13, .37046979E-17,</td>
<td></td>
</tr>
<tr>
<td>DATA XPRP46</td>
<td>"METH", "YLCP", "CLOH", "EXAN", "E"</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>"", "", "", "", "MCC6", "", ""</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>572.200E0, 0.32600E0, 98.190E0, 374.080E0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.83217106E+01, -.11802893E-02, .47348840E-03, -.84093213E-06</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>.65936050E-09, -.24415924E-12, .33736263E-16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATA XPRP47</th>
<th>"ETHY", "LCYC", "LOHE", "XANE", "E"</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>"", "", "", "", "ECC6", "", ""</td>
</tr>
<tr>
<td>2</td>
<td>609.000E0, 0.24300E0, 112.216E0, 404.900E0</td>
</tr>
<tr>
<td>3</td>
<td>.97181473E+01, .21337048E-02, .57002378E-03, -.11023450E-05</td>
</tr>
<tr>
<td>4</td>
<td>.97616516E-09, -.43011162E-12, .76199984E-16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATA XPRP48</th>
<th>"BENZ", "ENE", "", "", "", "", "", ""</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>"", "", "", "", "BNZ", "", "", ""</td>
</tr>
<tr>
<td>2</td>
<td>562.160E0, 0.21200E0, 78.110E0, 353.240E0</td>
</tr>
<tr>
<td>3</td>
<td>.36751518E+01, .38030224E-01, .95355250E-04, -.12393250E-06</td>
</tr>
<tr>
<td>4</td>
<td>.77250878E-12, .56966582E-13, -.20768997E-16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATA XPRP49</th>
<th>"TOLU", "ENE", "", "", "", "", "", ""</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>"", "", "", "", "TOL", "", "", ""</td>
</tr>
<tr>
<td>2</td>
<td>591.790E0, 0.26300E0, 92.140E0, 383.780E0</td>
</tr>
<tr>
<td>3</td>
<td>.75503044E+01, .12938867E-02, .34966311E-03, -.68329765E-06</td>
</tr>
<tr>
<td>4</td>
<td>.60172836E-09, -.25926373E-12, .44180039E-16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATA XPRP50</th>
<th>"ETHY", "LBEN", "ZENE", "", "", "", "", ""</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>"", "", "", "", "EB", "", "", ""</td>
</tr>
<tr>
<td>2</td>
<td>617.200E0, 0.30200E0, 106.170E0, 409.340E0</td>
</tr>
<tr>
<td>3</td>
<td>.94558764E+01, .84744814E-04, .4474164E-03, -.90994589E-06</td>
</tr>
<tr>
<td>4</td>
<td>.83863563E-09, -.3787297E-12, .67718502E-16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATA XPRP51</th>
<th>"ORTH", "O-XY", "LENE", "", "", "", "", ""</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>"", "", "", "", "OXL", "", "", ""</td>
</tr>
<tr>
<td>2</td>
<td>630.300E0, 0.31000E0, 106.170E0, 417.580E0</td>
</tr>
<tr>
<td>3</td>
<td>.81559858E+01, .36442048E-01, .2799644E-03, -.59909698E-06</td>
</tr>
<tr>
<td>4</td>
<td>.55648350E-09, -.25352318E-12, .45943105E-16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATA XPRP52</th>
<th>"META", "-XYL", "ENE", "", "", "", "", ""</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>"", "", "", "", "MXL", "", "", ""</td>
</tr>
<tr>
<td>2</td>
<td>617.050E0, 0.32500E0, 106.170E0, 412.270E0</td>
</tr>
<tr>
<td>3</td>
<td>.90353098E+01, .10930140E-01, .38364207E-03, -.78521726E-06</td>
</tr>
<tr>
<td>4</td>
<td>.73026082E-09, -.33607092E-12, .61700011E-16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATA XPRP53</th>
<th>"PARA", "-XYL", "ENE", "", "", "", "", ""</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>"", "", "", "", "PXL", "", "", ""</td>
</tr>
<tr>
<td>2</td>
<td>616.200E0, 0.32100E0, 106.170E0, 411.520E0</td>
</tr>
<tr>
<td>3</td>
<td>.95711050E+01, .78086095E-02, .38177642E-03, -.76441862E-06</td>
</tr>
<tr>
<td>4</td>
<td>.69783379E-09, -.31544447E-12, .56916441E-16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATA XPRP54</th>
<th>"HYDR", "OGEN", "", "", "", "", "", ""</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>"", "", "", "", "H2", "", "", ""</td>
</tr>
<tr>
<td>2</td>
<td>32.980E0, -0.21800E0, 2.020E0, 20.280E0</td>
</tr>
<tr>
<td>3</td>
<td>.67501459E+01, .38754626E-03, .31844129E-17, -.87429101E-24</td>
</tr>
<tr>
<td>4</td>
<td>.18934493E-12, -.95360879E-16, .10839431E-19</td>
</tr>
</tbody>
</table>
DATA XPRP55 / "NITR", "OGEN", "", "", "", "",
1 "", "", "N2", "", "", 33.457E0, 89.000E0,
2 126.200E0, 0.390E0, 28.010E0, 77.350E0,
3 .69039288E+01, .10369611E-11, .58071192E-06, .11181148E-08,
4 -.10532056E-11, .22631708E-15, -.23281314E-26/
C
DATA XPRP56 / "OXYG", "EN", "", "", "", "",
1 "", "", "O2", "", "", 49.771E0, 73.000E0,
2 154.580E0, 0.24000E0, 32.000E0, 90.180E0,
3 .67519922E+01, .75807436E-03, .24461570E-05, -.25044950E-08,
4 .10016526E-11, -.18067817E-15, .12183202E-19/
C
DATA XPRP57 / "WATE", "R", "", "", "", "",
1 "", "", "H2O", "", "", 217.617E0, 56.000E0,
2 647.140E0, 0.32900E0, 18.020E0, 373.150E0,
3 .78004847E+01, .36081475E-05, .38989103E-05, -.24559562E-08,
4 .67111619E-12, -.87348723E-16, .44003939E-20/
C
DATA XPRP58 / "CARB", "ONM", "ONOX", "IDE", "", "",
1 "", "", "CO", "", "", 34.532E0, 93.000E0,
2 132.910E0, 0.05200E0, 28.010E0, 81.650E0,
3 .67485971E+01, .74466500E-03, .72321240E-06, -.37141838E-09,
4 .31753748E-14, .20581126E-16, -.25343692E-20/
C
DATA XPRP59 / "CARB", "OND", "IOXI", "DE", "", "",
1 "", "", "CO2", "", "", 72.860E0, 94.430E0,
2 304.210E0, 0.22510E0, 44.010E0, 194.600E0,
3 .56366806E+01, .14155747E-01, -.99279448E-05, .38773364E-08,
4 -.84820125E-12, .97181323E-16, -.45337256E-20/
C
DATA XPRP60 / "SULP", "HUR", "DIOX", "IDE", "", "",
1 "", "", "SO2", "", "", 77.809E0, 122.000E0,
2 430.800E0, .25700E0, 64.060E0, 263.200E0,
3 .75942478E+01, .33130160E-02, .19711439E-04, -.35434399E-07,
4 .24974158E-10, -.81159935E-15, .10072061E-17/
C
DATA XPRP61 / "HYDR", "OGEN", "SUL", "PHID", "E",
1 "", "", "H2S", "", "", 88.231E0, 98.000E0,
2 373.200E0, .10900E0, 34.080E0, 213.500E0,
3 .78297129E+01, .64258499E-10, .48952396E-05, .37981427E-09,
4 -.38237442E-11, .20021084E-14, -.31539707E-18/
END
A computer program for the prediction of viscosity and thermal conductivity in hydrocarbon mixtures

A model for the prediction of the density, viscosity and thermal conductivity of non-polar fluid mixtures over the entire range of pVT states is presented. The model is based on the extended corresponding states model and covers molecular weight ranges including C_{20}. Only pure component equilibrium data such as the critical constants are required as input to the calculation procedure—no transport data are required. Extensive comparisons with experimental data for pure fluids and binary mixtures are presented. The average percentage deviation for both the viscosity and thermal conductivity was observed to be less than 8 percent. A computer program (TRAPP) which performs the calculations reported in this manuscript is described and listed in the Appendices.
NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs. As a special service to subscribers each issue contains complete citations to all recent Bureau publications in both NBS and non-NBS media. Issued six times a year. Annual subscription: domestic $13; foreign $16.25. Single copy, $3 domestic; $3.75 foreign.

NOTE: The Journal was formerly published in two sections: Section A “Physics and Chemistry” and Section B “Mathematical Sciences.”

DIMENSIONS/NBS—This monthly magazine is published to inform scientists, engineers, business and industry leaders, teachers, students, and consumers of the latest advances in science and technology, with primary emphasis on work at NBS. The magazine highlights and reviews such issues as energy research, fire protection, building technology, metric conversion, pollution abatement, health and safety, and consumer product performance. In addition, it reports the results of Bureau programs in measurement standards and techniques, properties of matter and materials, engineering standards and services, instrumentation, and automatic data processing. Annual subscription: domestic $11; foreign $13.75.

NONPERIODICALS

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, compiled from the world’s literature and critically evaluated. Developed under a worldwide program coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).

NOTE: The principal publication outlet for the foregoing data is the Journal of Physical and Chemical Reference Data (JPCRD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements available from ACS, 1155 Sixteenth St., NW, Washington, DC 20036.

Building Science Series—Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

Order the following NBS publications—FIPS and NBSIR's—from the National Technical Information Services, Springfield, VA 22161.

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Services, Springfield, VA 22161, in paper copy or microfiche form.