The Bispectrum and Higher-Order Spectra: A Bibliography
NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers:

THE NATIONAL ENGINEERING LABORATORY provides technology and technical services to the public and private sectors to address national needs and to solve national problems; conducts research in engineering and applied science in support of these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers:

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

1Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address Washington, DC 20234.
2Some divisions within the center are located at Boulder, CO 80303.
The Bispectrum and Higher-Order Spectra: A Bibliography

Peter V. Tryon

Statistical Engineering Division
National Engineering Laboratory
National Bureau of Standards
Boulder, Colorado 80303

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Issued April 1981
The Bispectrum and Higher-Order Spectra: A Bibliography

by

Peter V. Tryon

Statistical Engineering Division
National Engineering Laboratory
National Bureau of Standards
Boulder, Colorado 80303

The bispectrum or Fourier transform of the 3rd order moments of a time series is useful for the study of nonlinear or non-Gaussian phenomena. This bibliography cites 134 papers covering both theory and application. The entries are classified by content with special effort made to indicate papers that contain material on the computation, display and interpretation of the bispectrum.

Key Words: Bispectrum; cumulant spectra; nonlinear time series; polyspectra; spectrum analysis; statistics; time series.

INTRODUCTION

The bispectrum or Fourier transform of 3rd order moments is useful for the study of nonlinear structure in time series. It is sensitive to phase coherence between wave components due, for example, to nonlinear wave interactions or to the harmonic structure of periodic functions that are not pure sinusoids. The bispectrum is useful both for detecting the presence of phase coherent structure and measuring the fraction of spectral power due to coherent components.

The bispectrum was first discussed by Tukey (1953). The general idea of harmonic analysis of higher order moments was also introduced by Blanc-Lapierre and Fortet (1953). Magness (1954) used what would now be called the trispectrum (transform of 4th order moments) to compute the spectral response of a quadratic device to non-Gaussian noise. Mazelsky (1954) used higher order spectra to determine non-Gaussian probability functions for the input disturbances and output responses of linear systems. Tick (1961) showed how the cross-bispectrum could be used to estimate the transfer function of a quadratic system. Following the suggestion of Tukey (1963) and Tick (1963), bispectral analysis was first applied to the study of nonlinear phenomena in ocean waves by Hasselmann, Munk and MacDonald (1963). The first rather thorough discussion of the bispectrum and its properties appears in Shaman (1964) which extends Tukey's 1953 unpublished manuscript. Between 1965 and 1967 the general theory of the bispectrum and higher order cumulant spectra (or polyspectra) was intensively developed by Brillinger, Rosenblatt, Van Ness, Godfrey, Parzen, and Akaike. Since 1967 the bispectrum has found a wide variety of applications primarily in the physical sciences. However, the practice of bispectral analysis has received little attention in the statistical literature in more than a decade.
The purpose of this bibliography is to make the literature of the last two decades, now widely scattered in physical sciences journals, more accessible. There may well be other references to harmonic analysis of higher order moments in the literature of stochastic processes. In particular, the vast literature on kernel estimation and identification methods has not been searched for related papers. However, four such papers that are of special interest are included. Hung and Stark (1977) is a review of kernel identification methods with an extensive bibliography (88 entries). Yasui (1979) discusses the application of kernel methods to nonlinear systems analysis, and also has an extensive bibliography (49 entries). Both papers mention the relationship to the bispectrum. Hung and Stark (1979), and Hung, Brillinger, and Stark (1979) use bispectral analysis to compute higher order kernels for nonlinear systems.

The bibliography is arranged alphabetically by first author. There is a chronological listing of first authors and an alphabetical cross reference of second authors with first authors. Finally, the entries are classified by content. Although this is not a review paper, an effort has been made to indicate papers that contain material on the computation, display and interpretation of the bispectrum. Huber, Kleiner, Gasser, and Dummermuth (1971), and Kim and Powers (1979) give nice reviews of the bispectrum and its interpretation.

I would like to thank Vicki Schneller of the Department of Commerce Boulder Library for her assistance with the literature search, and Lorna Buhse of the Statistical Engineering Division for her help in organizing and typing the bibliography.
Bibliography

First authors by year

1953
Blanc-Lapierre, A.
Tukey, J. W.

1954
Magness, T. A.
Mazelsky, B.

1959
Tukey, J. W.

1960
Shiryaev, A. N.

1961
Tick, L. J.

1963
Hasselmann, K.
MacDonald, G.
Sinai, Ya. G.
Tick, L. J.
Tukey, J. W.

1964
Leonov, V. P.
Madden, T.
Rosenblatt, M.
Shaman, P.

1965
Brillinger, D. R.
Godfrey, M. D.
Haubrich, R. A.
Rosenblatt, M.

1966
Akaike, H.
Aubry, M. P.
Hasselmann, K.
Rosenblatt, M.
Van Ness, J. W. (2)

1967
Aubry, M. P.
Bartlett, M. S.
Brillinger, D. R. (2)
Parzen, E.

1968
Bozzi Zadro, M.
Cartwright, D. E.
Hinich, M. J.
Korein, J.
Marussi, A.

1970
Alekseyev, V. G.
Brillinger, D. R.
Dumermuth, G.
Van Atta, C. W.
Westcott, M.

1971
Barnett, T.
Dumermuth, G.
Huber, P. J.
Kleiner, B.
Rosenblatt, M.

1972
Brillinger, D. R.
Dalzell, J. F. (2)
Feuerverger, A.
Gasser, T.
Kiriyama, K.
Mitsuishi, A.
Murty, T. S.
Sasaki, K.

1973
Brillinger, D. R.
Roden, G. I.
Tachi, S.
Yeh, T. T.

1974
Brillinger, D. R. (2)
Mager, P. P.
Van Atta, C. W.
Yao, N. C.
1975
Akaike, H.
Brillinger, D. R.
Gasser, T.
Kedem-Kimelfeld, B.
Mager, P. P.
Neshyba, S
Ohta, M.
Sasaki, K
Sato, T.
Tachi, S.
Yao, N. C.
Zhurbenko, G.

1976
Akaike, H.
Briscoe, M. G.
Helland, K. N.
Kim, Y. C.
Lii, K. S.
Lumley, J. L.
Ten Hoopen, M.
Ueno, T.
Yamakawa, S.

1977
Armstrong, J. W.
Brillinger, D. R.
Davies, R. B.
Helland, K. N.
Hung, G.
Kim, Y. C.
Murata, T.
Ohta, M.
Powers, E. J.
Rao, S. T.
Sasaki, K.
Sato, T. (3)
Ten Hoopen, M.
Ueno, T.
Yao, N. C.

1978
Barresen, R.
Dubkov, A. A.
Dumermuth, G.
Gerzon, M. A.
Hasselmann, D. E.
Kim, Y. C.
McComas, C. H. III
Ohta, M.
Rosenblatt, M.
Sasaki, K.
Sato, T. (3)
Sclove, S. L.
Shimizu, H.
Tanaka, K.

1979
Fried, D. L.
Gabrielli, C.
Helland, K. N.
Hinich, M. J.
Hung, G. (2)
Kim, Y. C.
Sasaki, K.
Sato, T.
Van Atta, C. W.
Yasui, S.

1980 (Partial)
Herring, J.
Kim, Y. C.
McComas, C. H.
Rosenblatt, M.
Sasaki, O.
<table>
<thead>
<tr>
<th>Second Author's Name</th>
<th>First Author's Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arahata, E.</td>
<td>Akaike, H. (2)</td>
</tr>
<tr>
<td>Beall, J. M.</td>
<td>Kim, Y. C.</td>
</tr>
<tr>
<td>Bendiner, D. J.</td>
<td>Roden, G. I.</td>
</tr>
<tr>
<td>Bozzi Zadro, M.</td>
<td>Marussi, A.</td>
</tr>
<tr>
<td>Brillinger, D. R.</td>
<td>Hung. G.</td>
</tr>
<tr>
<td>Briscoe, M. G.</td>
<td>McComas, C. H.</td>
</tr>
<tr>
<td>Caputo, M.</td>
<td>Bozzi Zadro, M.</td>
</tr>
<tr>
<td>Clay, C. S.</td>
<td>Hinich, M. J.</td>
</tr>
<tr>
<td>Czapski, U.</td>
<td>Rao. S. T.</td>
</tr>
<tr>
<td>Fortet, R.</td>
<td>Blanc-Lapierre, A.</td>
</tr>
<tr>
<td>Gasser, T.</td>
<td>Dumermuth, G.</td>
</tr>
<tr>
<td>Hatakeyama, K.</td>
<td>Ohta, M.</td>
</tr>
<tr>
<td>Henry, R. F.</td>
<td>Murty, T. S.</td>
</tr>
<tr>
<td>Huber, P. J.</td>
<td>Dumermuth, G. (2)</td>
</tr>
<tr>
<td>Inoue, T.</td>
<td>Shimizu, H.</td>
</tr>
<tr>
<td>Johnson, L. C.</td>
<td>Barnett, T.</td>
</tr>
<tr>
<td>Keddam, M.</td>
<td>Gabrielli, C.</td>
</tr>
<tr>
<td>Kikkawa, S.</td>
<td>Tanaka, K.</td>
</tr>
<tr>
<td>Kim, Y. C.</td>
<td>Powers, E. J.</td>
</tr>
<tr>
<td>Kishimoto, T.</td>
<td>Sato, T.</td>
</tr>
<tr>
<td>Kleiner, B.</td>
<td>Huber, P. J.</td>
</tr>
<tr>
<td>Lii, K. S.</td>
<td>Helland, K. N. (2)</td>
</tr>
<tr>
<td>Malakhov, A. N.</td>
<td>Dubkov, A. A.</td>
</tr>
<tr>
<td>Munk, W.</td>
<td>Hasselmann, K.</td>
</tr>
<tr>
<td>Nakajima, T.</td>
<td>Ueno, T.</td>
</tr>
<tr>
<td>Nakashima, S. N.</td>
<td>Mitsuishi, A.</td>
</tr>
<tr>
<td>Neshyba, S.</td>
<td>Yao, N. C. (2)</td>
</tr>
<tr>
<td>Ohara, H.</td>
<td>Murata, T.</td>
</tr>
<tr>
<td>Powers, E. J.</td>
<td>Kim, Y. C. (4)</td>
</tr>
<tr>
<td>Rosenblatt, M.</td>
<td>Brillinger, D. R. (2)</td>
</tr>
<tr>
<td>Rosenblatt, M.</td>
<td>Lii, K. S.</td>
</tr>
<tr>
<td>Sasaki, K.</td>
<td>Sato, T. (5)</td>
</tr>
<tr>
<td>Sasaki, O.</td>
<td>Sato, T. (2)</td>
</tr>
<tr>
<td>Sato, T.</td>
<td>Kiriyama, K.</td>
</tr>
<tr>
<td>Sato, T.</td>
<td>Sasaki, K. (5)</td>
</tr>
<tr>
<td>Sato, T.</td>
<td>Sasaki, O.</td>
</tr>
<tr>
<td>Sobey, E. J. C.</td>
<td>Neshyba, S.</td>
</tr>
<tr>
<td>Stark, L.</td>
<td>Hung, G. (2)</td>
</tr>
<tr>
<td>Tachi, S.</td>
<td>Ueno, T.</td>
</tr>
<tr>
<td>Takeuchi, K.</td>
<td>Lumley, J. L.</td>
</tr>
<tr>
<td>Tick, L. J.</td>
<td>Korein, J.</td>
</tr>
<tr>
<td>Van Atta, C. W.</td>
<td>Helland, K. N.</td>
</tr>
<tr>
<td>Van Atta, C. W.</td>
<td>Yeh, T. T.</td>
</tr>
<tr>
<td>Van Ness, J. W.</td>
<td>Rosenblatt, M.</td>
</tr>
<tr>
<td>Yamaguchi, S.</td>
<td>Ohta, M. (2)</td>
</tr>
<tr>
<td>Yeh, T. T.</td>
<td>Van Atta, C. W.</td>
</tr>
<tr>
<td>Zandt, P. A.</td>
<td>Ten Hoopen, M. (2).</td>
</tr>
<tr>
<td>Zuev, N. M.</td>
<td>Zhurbenko, G.</td>
</tr>
</tbody>
</table>
Brief Discussion or Close Relationship

Tukey (1959) (1963)
Tick (1963)
Bartlett (1967)
Hinich and Clay (1968)
Westcott (1970)
Dumermuth, Huber, Kleiner and Gasser (1970)
Rosenblatt (1971)
Brillinger (1974)
Van Atta (1974)
Ohta, Hatakeyama, Hiromitsu and Yamaguchi (1975)
Kedem-Kimelfeld (1975)
Helland and Van Atta (1976)
Hung and Stark (1977)
Ohta, Yamaguchi, and Hiromitsu (1978)
Sclove (1978)
Yasui (1979)
Gabrielli, Keddam, and Raillon (1979)

General Theory

Blanc-Lapierre and Fortet (1953)
Shiryaev (1960)
Tick (1961)
Hasselmann, Munk and MacDonald (1963)
MacDonald (1963)
Sinai (1963)
Shaman (1964)
Brillinger (1965)
Rosenblatt and Van Ness (1965)
Rosenblatt (1966)
Van Ness (1966)
Akaike (1966)
Parzen (1967)
Brillinger and Rosenblatt (1967a, b)
Huber, Kleiner, Gasser, and Dumermuth (1971)
Sasaki, Sato, and Yamahita (1975)
Brillinger (1975)
Estimation/Computation

Tick (1961)
Hasselmann, Munk and MacDonald (1963)
Shaman (1964)
Brillinger (1965)
Rosenblatt and Van Ness (1965)
Godfrey (1965)
Haubrich (1965)
Rosenblatt (1966)
Van Ness (1966)
Brillinger and Rosenblatt (1967a, b)
Alekseyev (1970)
Van Atta and Yeh (1970)
Huber, Kleiner, Gasser and Dumermuth (1971)
Sasaki, Sato and Yamashita (1975)
Akaike, Arahata, Ozaki (1975)
Dumermuth and Gasser (1978)
Kim and Powers (1979)

Display/Interpretation

Hasselmann, Munk and MacDonald (1963)
MacDonald (1963)
Shaman (1964)
Godfrey (1965)
Haubrich (1965)
Brillinger and Rosenblatt (1967b)
Cartwright (1968)
Marussi, Bozzi Zadro and Manzoni (1968)
Bozzi Zadro and Caputo (1968)
Huber, Kleiner, Gasser and Dumermuth (1971)
Roden and Bendiner (1973)
Neshyba and Sobey (1975)
Lii, Rosenblatt and Van Atta (1976)
Helland, Lii, and Rosenblatt (1977), (1979)
Dumermuth and Gasser (1978)
Kim and Powers (1979)
Kim, Beall, Powers, and Miksad (1980)
Applications

Acoustics

Ohta, Yamaguchi, and Iwashige (1977)
Sasaki, Sato, and Nakamura (1977)
Gerzon (1978)
Sato and Sasaki (1979)

Astrophysics

Aubry (1966), (1967)
Armstrong (1977)
Fried (1979)

Biomedicine

Koren, Tick, Zeitlin, and Randt (1968)
Dumermuth, Huber, Kleiner and Gasser (1970), (1971)
Huber, Kleiner, Gasser, and Dumermuth (1971)
Barnett, Johnson, Naitoh, Hicks and Nute (1971)
Magar (1974)
Tachi (1975)
Ten Hoopen and Zandt (1976), (1977)

Economics

Godfrey (1965)

Fluid Mechanics – Turbulence

Van Atta and Yeh (1970)
Yeh and Van Atta (1973)
Van Atta (1974), (1979)
Helland and Van Atta (1976)
Lumley and Takeuchi (1976)
Lii, Rosenblatt and Van Atta (1976)
Helland, Lii, and Rosenblatt (1977), (1979)
Rosenblatt (1978)
Herring (1980)

Geophysics

Brillinger (1973)
Haubrich (1965)
Hinich and Clay (1968)
Bozzi Zadro and Caputo (1968)
Madden (1964)
Marussi, Bozzi Zadro and Manzoni (1968)
Goodness-of-Fit Tests
Gasser (1975)

Hydromechanics
Hasselmann (1966)
Dalzell (1972a, b)

Image Processing
Sato and Sasaki (1977)
Sato, Sasaki, and Nonaka (1978)
Sasaki, Sato and Nakamura (1978)

Kernel Estimation and Identification
Hung and Stark (1977), (1979)
Hung, Brillinger and Stark (1979)
Yasui (1979)

Mechanical Engineering
Mazelsky (1954)
Yamakawa (1976)
Sato, Sasaki and Nakamura (1977)
Sato and Sasaki (1977)
Ueno and Nakajima (1977)
Sato, Sasaki, and Nonaka (1978)
Shimizu and Inoue (1978)

Meteorology
MacDonald (1963)
Sato, Sasaki, and Mori (1975)

Nonlinear Prediction
Van Ness (1966)
Oceanography

Hasselmann, Munk and MacDonald (1963)
Cartwright (1968)
Murty and Henry (1972)
Roden and Bendiner (1973)
Yao (1974)
Neshyba and Sobey (1975)
Yao, Neshyba and Crew (1975), (1977)
Briscoe (1976)
Rao, Czapski, and Sedefian (1977)
McComas (1978)
Hasselmann (1978)
McComas and Briscoe (1980)

Optics

Sato, Kishimoto and Sasaki (1978)
Sato and Sasaki (1978)
Sasaki, Sato and Oda (1980)

Plasma Physics

Powers and Kim (1977)
Kim, Beall, Powers, and Miksad (1980)

Transfer Function Estimation

Magness (1954)
Tick (1961)
Brillinger (1970)
Tachi (1975)
Kedem–Kimelfeld (1975)
Brillinger (1977)
Borresen (1978)
Hinich (1979)

Signal Processing

Parzen (1967)
Tachi (1973)
Murata and Ohara (1977)
Tanaka, Kikkawa, and Ohara (1978)
Dubkov and Malakhov (1978)
Simulation

Sasaki and Sato (1978)

Stochastic Processes

Rosenblatt (1964), (1980)
Brillinger (1972), (1974)
Zhurbenko and Zuev (1975)
Davies (1977)
The Bispectrum and Higher-Order Spectra: A Bibliography

Peter V. Tryon

National Bureau of Standards
Department of Commerce
Washington, D.C. 20234

The bispectrum or Fourier transform of the 3rd order moments of a time series is useful for the study of nonlinear or non-Gaussian phenomena. This bibliography cites 134 papers covering both theory and application. The entries are classified by content with special effort made to indicate papers that contain material on the computation, display and interpretation of the bispectrum.
NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs. As a special service to subscribers each issue contains complete citations to all recent Bureau publications in both NBS and non-NBS media. Issued six times a year. Annual subscription: domestic $13; foreign $16.25. Single copy, $3 domestic; $3.75 foreign.

NOTE: The Journal is formerly published in two sections: Section A "Physics and Chemistry" and Section B "Mathematical Sciences."

DIMENSIONS/NBS—This monthly magazine is published to inform scientists, engineers, business and industry leaders, teachers, students, and consumers of the latest advances in science and technology, with primary emphasis on work at NBS. The magazine highlights and reviews such issues as energy research, fire protection, building technology, metric conversion, pollution abatement, health and safety, and consumer product performance. In addition, it reports the results of Bureau programs in measurement standards and techniques, properties of matter and materials, engineering standards and services, instrumentation, and automatic data processing. Annual subscription: domestic $11; foreign $13.75.

NONPERIODICALS

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide program coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).

NOTE: The principal publication outlet for the foregoing data is the Journal of Physical and Chemical Reference Data (JPCRFD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements available from ACS, 1155 Sixteenth St., NW, Washington, DC 20036.

Building Science Series—Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

Order the following NBS publications—FIPS and NBSIR's—from the National Technical Information Services, Springfield, VA 22161.

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Services, Springfield, VA 22161, in paper copy or microfiche form.