

U.S. DEPARTMENT OF COMMERCE /National Bureau of Standards

Four Mathematical Models for the Prediction of LNG Densities

QC 100 .U5753 No.1030 1981

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards¹ was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities² — Radiation Research — Thermodynamics and Molecular Science — Analytical Chemistry — Materials Science.

THE NATIONAL ENGINEERING LABORATORY provides technology and technical services to the public and private sectors to address national needs and to solve national problems; conducts research in engineering and applied science in support of these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering² — Mechanical Engineering and Process Technology² — Building Technology — Fire Research — Consumer Product Technology — Field Methods.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

¹Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address Washington, DC 20234. ²Some divisions within the center are located at Boulder, CO 80303.

Four Mathematical Models for the Prediction of LNG Densities

Nº# -----

NATIONAL BUREAU OF STANDARDS

JUL 2 0 1981

1:753

rut a

Robert D. McCarty

Thermophysical Properties Division National Engineering Laboratory National Bureau of Standards Boulder, Colorado 80303

U.S. DEPARTMENT OF COMMERCE, Philip M. Klutznick, Secretary Jordan J. Baruch, Assistant Secretary for Productivity, Technology and Innovation NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Issued December 1980

The second secon

1- . NE 200

NATIONAL BUREAU OF STANDARDS TECHNICAL NOTE 1030 Nat. Bur. Stand. (U.S.), Tech. Note 1030, 84 pages (Dec. 1980) CODEN: NBTNAE

U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1980

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402

Price \$4.00

(Add 25 percent additional for other than U.S. mailing)

CONTENTS

Page

Abstract					
1. I	NTRODUCTION	1			
2. E	XTENDED CORRESPONDING STATES	3			
3. A	HARD SPHERE METHOD	6			
4. A	REVISED KLOSEK AND MCKINLEY METHOD	11			
5. T	HE CELL MODEL	13			
6. U	SE OF THE METHODS	15			
7. C	ONCLUSIONS	19			
8. R	EFERENCES	20			
Appendix A. Experimental Data					
Appendix B. Computer Program and Equation Parameters for the					
E	xtended Corresponding States Model	39			
Appendix C. Computer Program and Equation Parameters for the					
H	ard Sphere Model	16			
Appendix D. Computer Program and Parameters for the Revised					
K	losek and McKinley Model	50			
Appendix E. Computer Program for the Cell Model					
Appendix F. Computer Programs					

FOUR MATHEMATICAL MODELS FOR THE PREDICTION OF LNG DENSITIES*

Robert D. McCarty

Thermophysical Properties Division National Engineering Laboratory National Bureau of Standards Boulder, Colorado 80303

Four mathematical models of the equation of state for LNG like mixtures are presented. The four models include an extended corresponding states model, a cell model, a hard sphere model and a revised Klosek and McKinley model. Each of the models has been optimized to the same experimental data set which included data for pure nitrogen, methane, ethane, propane, iso and normal butane, iso and normal pentane and mixtures thereof. For LNG like mixtures (mixtures of the orthobaric liquid state at temperatures of 120 K or less and containing at least 60% methane, less than 4% nitrogen, less than 4% each of iso and normal butane and less than 2% total of iso and normal pentane), all of the models are estimated to predict densities to within 0.1% of the true value. The revised Klosek and McKinley model is valid only for mixtures within the range of temperature and composition specified above while the other three models are valid for a broader range of pressure, temperature and composition. The experimental PVTx data set used in the optimization together with comparisons are given and listings of computer programs for each of the models are included.

Key words: Cell model; comparisons; computer programs; corresponding states; equation of state; hard sphere; LNG; mixtures; PVTx data; revised Klosek and McKinley.

1. INTRODUCTION

The purpose of this report is to present in final form the four mathematical models which were optimized to the experimentally determined orthobaric liquid

^{*} This work was carried out at the National Bureau of Standards under the sponsorship of British Gas Corp., Chicago Bridge and Iron Co., Columbia Gas Service Corp., Distrigas Corp., Easco Gas LNG, Inc., El Paso Natural Gas, Gaz de France, Marathon Oil Co., Mobil Oil Corp., Natural Gas Pipeline Co., Phillips Petroleum Co., Shell International Gas, Ltd., Sonatrach, Southern California Gas Co., Tennessee Gas Pipeline, Texas Eastern Transmission Co., Tokyo Gas Co., Ltd., and Transcontinental Gas Pipe Line Corp., through a grant administered by the American Gas Association, Inc.

PVTx data of Miller and Hiza [25], Haynes and Hiza [12], Haynes, et al. [11], Hiza, et al. [14], Hiza and Haynes [15] and Haynes [9]. Interim results of the project have been reported by Haynes, et al. [13] and by McCarty [23]. The models reported in these two interim publications differ only slightly from those presented here. A companion archival document, McCarty [24] with the same results but in much less detail has been submitted to the Journal of Chemical Thermodynamics. The intent of the documentation here is more in the vein of a user's handbook. The above experimental data are for the liquid phase of nitrogen, methane, ethane, propane, normal and isobutane and various mixtures thereof.

The goal of the project (the project included the above referenced experimental work) was to produce one or more computer models which would predict the density of LNG to within 0.1% of the true value from a knowledge of the temperature, pressure and composition of the LNG. At the beginning of this study LNG was defined as mixtures of the above components (N_2 , CH_4 , C_2H_6 , C_3H_8 , n and iC_4H_{10}) and only the saturated liquid between 95 - 150 K was to be considered. Near the end of the project n and iC_5H_{12} were added to the list of allowable components but no experimental PVTx of pure n and iC_5H_{12} or binary systems containing n and iC_5H_{12} were measured as part of the project. The inclusion of these two components is based on data from Orrit, et al. [29] and Orrit, et al. [30].

Four models were considered: the extended corresponding states model, a hard sphere model, a cell model and a Revised Klosek and McKinley model. With the exception of the Revised Klosek and McKinley model only pure fluid and binary system data were used to optimize the models. In the case of the Revised Klosek and McKinley model multicomponent PVTx data were used in the optimization process.

Over a normal range of LNG composition and temperature all four of the models predict densities which agree to within 0.1% of experiment. This is true of all of the experimental PVTx measurements on LNG like mixtures made as part of this project.

No equation or mathematical model based on experimental data can be more accurate than the original data and therefore the extent to which the original goal of 0.1% accuracy has been met depends entirely upon the accuracy of the experimental data referenced above.

There is no reason to doubt the experimental data and therefore there is every reason to believe that the goal of the project has been achieved.

2. EXTENDED CORRESPONDING STATES

The thermodynamic equations for the extended corresponding states method are developed in a paper by Rowlinson and Watson [35] and only a very brief description will be given here. Leach [20] developed transformation functions for hydrocarbons which are called shape factor functions. Mollerup [27] and Mollerup and Rowlinson [26] combined the earlier work with the equation of state for methane by Goodwin [8] to produce a computer program to calculate the density of LNG mixtures, which was further modified by Mollerup [28].

The computer program in Appendix F for the calculation of LNG densities based on the extended corresponding states method is an extensive revision of the Mollerup program. Earlier revisions were reported by McCarty [23] and Haynes, Hiza and McCarty [13].

The extended corresponding states method is defined by the following equations:

$$Z_{i}[P,T] = Z_{o}[P h_{ii,o}/f_{ii,o}, T/f_{ii,o}]$$
(1)

$$G_{i}[P,T] = f_{ii,o} G_{o}[P h_{ii,o}/f_{ii,o}, T/f_{ii,o}] - RT \ln(h_{ii,o})$$
(2)

where Z is the compressibility factor, G is the Gibbs free energy, P is pressure and T is temperature. The subscript o denotes the reference fluid and the subscript i denotes the fluid for which properties are to be obtained via the equation of state for the reference fluid and the transformation functions $f_{ii,o}$ and $h_{ii,o}$. The double subscript ii is introduced now to allow extension of the method to mixtures. The two defining eqs (1) and (2) are necessary since there are two transformation functions. In this case the equation of state for methane by McCarty [22] was chosen for the reference fluid. During the course of the study it was necessary to modify the equation of state by McCarty [22] to give a realistic vapor liquid phase boundary down to a temperature of 43 K. This modification was necessary to accommodate the very low reduced temperatures of the heavier hydrocarbons and was accomplished without changing the performance of the equation of state above the triple point of methane. The equation of state is given in Appendix B.

The f_{ii,0} and h_{ii,0} are defined as

$$f_{ii,0} = (T_{ii}^{C}/T_{0}^{C}) \theta_{ii,0} (T_{r},V_{r})$$
(3)

and

$$h_{ii,o} = (V_{ii,o}^{c}/V_{o}^{c}) \phi_{ii,o} (T_{r},V_{r})$$

$$\tag{4}$$

where

$$\theta_{ii,o} = 1 + (w_i - w_o)[n_1 - n_2 \ln T_r + (n_3 - n_4/T_r)(V_r - n_5)]$$
(5)

and

$$\phi_{ii,0} = \frac{Z_0^c}{Z_i^c} \left[1 + (w_i - w_0) [n_6(V_r - n_7) - n_8(V_r - n_9) e_n T_r] \right]$$
(6)

The V_{ri} and T_{ri} are reduced temperature and volume, (i.e., T_{ri} = T/T^C_{ii} and V_{ri} = V/V^C_{ii}) each fluid requires a unique w_i which was estimated using pure fluid experimental data. A single set of the n_i's are used for all fluids. The n_i's were estimated using all of the pure fluid experimental data from this study. The Z_0^C/Z_i^C is the ratio of the compressibility factors ($Z^C = P_c V_c/RT_c$) at the critical point. The parameters n_j, n_j, w_i and Z_{ii} are given in Appendix B. All of these parameters were estimated using the experimental PVT data set from this laboratory and least squares estimation techniques.

The extension of the above to mixtures is now accomplished by the following application of the following combining rules:

$$h_{x,o} = \sum_{i} \sum_{j} x_{i}x_{j} h_{ij,o}$$
(7)

$$f_{x,0} h_{x,0} = \sum_{i} \sum_{j} x_{i} x_{j} f_{ij,0} h_{ij,0}$$
 (8)

$$f_{ij,o} = \xi_{ij} (f_{ii,o} f_{jj,o})^{1/2}$$
 (9)

$$h_{ij,0} = n_{ij} \left(\frac{1}{2} h_{ii,0}^{1/3} + \frac{1}{2} h_{jj,0}^{1/3}\right)^3$$
(10)

The ξ_{ij} and the n_{ij} are binary interaction parameters determined by least squares from the PVTx data for binary mixtures. These parameters are given in Appendix B.

This method works quite well as may be seen in the comparisons in Appendix A. It has indeed reproduced all of the present experimental data set to within <u>+</u> 0.1% except for 14 out of a total of 285 experimental data points. Of these 14 points, 11 are judged to have an uncertainty greater than 0.1%. Figure 1 presents the deviations between the calculated and experimental densities for these 14 points. Appendix A contains comparisons of calculated and experimental densities for the entire data set. This is the best performance of the four models presented here. No pressure, temperature or composition restrictions have been placed on this model.

In the interim publications by McCarty [23] and Haynes, Hiza and McCarty [13] some doubt about the accuracy of the calculated densities was expressed because of the disagreement with a few binary and multicomponent systems containing methane and butane. This disagreement has since been resolved by additional measurements (Haynes [9], Haynes [10] and Miller and Hiza [25] on some of the systems which agree with the predictions of the model but disagree with the previous measurements. The net result of the new measurements is a very slight change in binary interaction coefficients of the methane-butane and nitrogen-butane system. These changes have no practical effect on LNG like mixtures where the concentrations of N_2 , iC_4H_{10} and nC_4H_{10} are individually less than 5%. In other words either the models presented here or those in the interim publications may be used to predict the density of a LNG like mixture to within 0.1% of the true density.

3. A HARD SPHERE METHOD

The model of Rodosevich and Miller [33] is one of many modifications of the Longuet-Higgins and Widom [21] model, and was chosen to be included in this study

as a representative example of the application of the hard sphere equation of state concept to the correlation of PVTx data. The equation of state by Rodosevich and Miller [33] is

$$\frac{PV}{RT} = c \frac{1 + y + y^2}{(1 - y)^3} - \frac{a}{RTV}$$
(11)

where the y = b/4V and a, b, and c are adjustable parameters, P is pressure, V is specific volume, T is temperature and R is the gas constant. The equation is applied to mixtures by assuming the one-fluid theory and applying the following combining rules.

$$a_{m} = \sum_{i} \sum_{j} a_{ij} x_{i} x_{j}$$
(12)

$$b_{m} = \sum_{i} \sum_{j} b_{ij} x_{i} x_{j}$$
(13)

$$c_{m} = \sum_{i} \sum_{j} c_{ij} x_{i} x_{j}$$
(14)

The mixing rules are:

$$b_{ij} = \left[\frac{b_{ii}^{1/3} + b_{jj}^{1/3}}{2} (1 - j_{ij})\right]^{3}$$
(15)

$$a_{ij} = (a_{ij}a_{jj})^{1/2} \left[\frac{b_{ij}^2}{b_{ij}b_{jj}} \right]^{1/2} (1 - k_{ij})$$
(16)

$$c_{ij} = \frac{c_{ii} + c_{jj}}{2}$$
(17)

The parameters j_{ij} and k_{ij} are in this case the binary interaction parameters. The a's, b's, c's, j_{ij} 's and k_{ij} 's are given in Appendix B. The excess volume is now calculated using the equation of state and

$$V_{E} = \tilde{V}_{m} - \tilde{V}_{i} \times_{i}$$
(18)

where
$$V_{\rm m}$$
 and the $V_{\rm i}$ are calculated via the eqs 11 through 1/ and then
 $V_{\rm m} = V_{\rm i} x_{\rm i} + V_{\rm E}$ (19)

where the V_E is from eq (18) and the V_i are from experimental data. The values of V_i in this case were calculated from the equations for the liquid density of the pure fluids given in Appendix C.

The above equations are those of Rodosevich and Miller [33] and Rodosevich [34] and only the j_{ij} 's and k_{ij} 's have been revised on the basis of the present new data set, and only binary systems data were used to estimate via least squares the j_{ij} 's and k_{ij} 's.

As the method is used here it is an excess volume method, and consequently when the temperature of the mixture approaches the critical temperature of one of the component fluids, the method fails. Since the critical temperature of nitrogen is about 126 K, this method should not be used for mixtures containing nitrogen at temperatures above 120 K. Eliminating the data points for mixtures which contain nitrogen at temperatures above 120 K reduces the set from 285 to 251 PVTx points. Figure 2 is a percentage deviation plot containing all of the data points from the set of 251 for which densities calculated by the hard sphere method differ from the experimental density by more than 0.1%. Two things are readily seen in comparing figs. 1 and 2; first, even though total number of points has been reduced in the comparison set, the number of points for which deviations exceed 0.1% in the hard sphere comparison, fig. 2, is far more than for the extended corresponding states comparison, fig. 1. Second, the hard sphere method becomes more uncertain for all mixtures, regardless of components as the temperature exceeds 115 K.

Figure 1. All deviations greater than 0.1% between experimental and calculated comparison set is all of the data points in Appendix A. (285 data The densities using the Extended Corresponding States method. points)

(251 data points)

at temperatures above and including 120 K.

DENSITY % NI DEVIATION

4. A REVISED KLOSEK AND MCKINLEY METHOD

The Klosek and McKinley method [18] is a totally empirical recipe for calculating the density of a LNG-like mixture given the temperature and composition. Pressure is not taken into account. However, this does not seem to be a serious omission. The procedure proposed by Klosek and McKinley [18] is as follows:

$$v_{mix} = \sum X_i v_i - k X_{CH_4}$$
(20)

where V_{mix} is the volume of the mixture, X_i and V_i are the mole fraction and volume of the ith component, X_{CH_4} is the mole fraction of methane and k is a correction factor obtained from a table or graph. The V_i and k are obviously temperature dependent and in addition k is dependent upon the molecular weight of the mixture.

Using the present data set k was calculated for all of the experimental data points where methane was present in the mixture and excluding all data points where N_2 was present in greater than 5% concentration. Figure 3 shows a typical isotherm for k, with N_2 present (labeled k_2) and without N_2 present (labeled k_1). All of the isotherms available show similar behavior, i.e., all of the k's for mixtures containing nitrogen (of about 5%) fall on one line and all of those for mixtures without nitrogen fall on another. Since all of the mixtures with nitrogen have about the same amount of nitrogen present (about 4.5%), the method was modified by adding a term to take into account the nitrogen when it is present. The equation becomes

$$V_{mix} = \sum X_i V_i - [k_1 + (k_2 - k_1) X_{N_2} / .0425] X_{CH_4}$$
(21)

where everything is the same as in eq (20) except that k_1 is read from one

к ×103

Figure 3. A plot of the correction factors (${\bf k}_1$ and ${\bf k}_2)$ for the 115 kelvin isotherms.

curve and k_2 is read from the other. Appendix D gives tables of values for the V_i, k_1 and k_2 which are spaced such that linear interpolation is adequate in both variables (i.e., temperature or molecular weight). The k factors in Appendix D have been obtained graphically from the multicomponent PVTx data of Hiza and Haynes [15] and Miller and Hiza [25] as well as densities calculated from the extended corresponding states method of section 2.

The limits of compositions of the revised Klosek and McKinley method are the most severe of any of the methods given here. This method should not be used for mixtures other than LNG like mixtures and for LNG like mixtures only when they contain at least 60% methane, less than 4% nitrogen, less than 4% each of iC_4H_{10} nC_4H_{10} and less than 2% total of iC_5H_{12} and nC_5H_{12} .

There are 40 experimental PVTx points from the original set of 285 which may be considered LNG like and fall within the composition limits outlined above. Figure 4 shows all of the deviations between calculated and experimental densities in this 40 point comparison set which exceeds the 0.1% criterion. The deviation trends for the revised Klosek and McKinley method (fig. 4) are very similar to those of the hard sphere method (fig. 2) and in fact all of the deviations in fig. 4 occur at temperatures at or above 115 K, therefore the method can only be considered as accurate as the others for LNG like mixtures at temperatures below 115 K.

5. THE CELL MODEL

The cell model considered here was originally proposed by Renon, et al. [32]. In a paper by the same three authors which appeared simultaneously (Eckert, et al. [7]), the cell model was applied to mixtures via Scott's [36] two-fluid theory and a three parameter corresponding states theory. Albright [2] further modified the method by modifying the mixing rules on the basis of a

densities using the Revised Klosek and McKinley model. The comparison Figure 4. All deviations greater than 0.1% between experimental and calculated set is all multicomponent mixture data in Appendix A with > 60% CH4, < 4% nC_4H_{10} , < 4% iC_4H_{10} , < 4% N_2 and < 2% of n + iC_5H_{12} . (40 data points)

proposal by Yuan [38] and by inserting a pressure dependence based on the experimental liquid ethane data by Pope [31].

The optimization of this method was carried out by M. Albright [1] at Phillips Petroleum Company in Bartlesville, Oklahoma and the details of this work will be published elsewhere. The model is included here because it was optimized to the same data set as the others and therefore the comparisons between experimental and calculated densities given here in fig. 5 together with figs. 1, 2 and 4 provide a common basis of comparison with the other three methods. A listing of the computer program is given in Appendix F.

The same data set as was used in the hard sphere method for comparison has been used here, i.e., all of the data points for mixtures containing nitrogen at temperatures 120 K and above have been taken out of the original 285 points leaving a total of 251 data points.

As in the case of the other methods fig. 5 shows all of the points for which the calculated and experimental densities differ by more than 0.1%.

6. USE OF THE METHODS

When the project started in 1972, the atomic weights of nitrogen, carbon and hydrogen were taken from the 1961 carbon 12 scale, IUPAC [16]. During the course of the investigation a revision, Atomic Weights of the Elements [3], to this scale appeared. The revision changed slightly the atomic weights of carbon and hydrogen, but since the changes were small (the maximum difference in any of the densities used here is 0.003%), and because changing the atomic weights would not change the relative results, the changes were not made. Therefore when using the tables and programs in the appendices, the molecular weights given in the tables and programs should be used to maintain consistency.

Figure 5. Deviations greater than 0.1% between experimental and calculated densities using the Cell model. The comparison set is all of the data in Appendix A except those data points for mixtures containing N₂ at temperatures above and including 120 K. (251 data points)

The critical parameters used here are from: CH_4 , McCarty [22]; C_2H_6 , Sliwinski [37]; C_3H_8 , Das, et al. [4]; iC_4H_{10} , Das, et al. [5]; nC_4H_{10} , Das, et al. [6]; iC_5H_{12} , Kudchadker, et al. [19]; and N₂, Jacobsen, et al. [17].

Errors in the input variables will of course, cause errors in the density predicted by the models. In general, the error in density caused by an error in the input variables is a function of those input variables, and must be treated on an individual basis. However, for LNG like mixtures certain general trends are found. An error in the pressure must be at least 50% before it will have any effect at all on the resulting density. An error in composition, unless it is of the order of several percent, will cause the same relative error in density as it will cause in the molecular weight of the mixture, i.e., if an error in composition causes a 0.1% error in the resulting molecular weight, it will also cause a 0.1% error in the predicted density.

The error in the calculated density due to an error in the input temperature is a function of the composition and the temperature. Table 1 gives resulting errors in density for a 1% error in temperature, for three hypothetical LNG like mixtures.

In general the errors in density caused by an error in temperature are the largest for mixtures containing a high concentration of the most volatile fluids, CH_4 and N_2 , and correspondingly the errors decrease as the concentration of the heavier hydrocarbons increases in the mixture. These errors are not a function of which model is being used.

When using the extended corresponding states method, one should keep in mind that twelve significant figures are required by the methane equation of state. The hard sphere model also uses the methane equation from McCarty [22] and the nitrogen equation of Jacobsen, et al. [17] to calculate compressibilities and

TABLE 1. Errors in Density Caused by an Error in the Input Temperature of 1%.

Temperature		% Error in Density		
к	Mix A [*]	Mix B [*]	Mix C [*]	
95	0.28	0.25	0.20	
100	0.30	0.27	0.22	
105	0.32	0.29	0.24	
110	0.35	0.32	0.29	
115	0.39	0.34	0.31	

*Arbitrary LNG like compositions assumed for the purpose of illustrating the effect of an error in the input temperature.

therefore requires twelve significant figures to insure the accuracy of the calculated density. The other two models require only eight significant figures to be carried along in the calculations.

7. CONCLUSIONS

On the basis of the performance of the four models given here and subject to the composition and temperature restrictions already noted, it is estimated that given the pressure, temperature and composition of LNG, any one of the four models may be used to predict the density to within 0.1% of the true value. As has already been mentioned (see section 1) the above accuracy statement is dependent entirely upon the accuracy of the experimental data in Haynes, et al. [11], Haynes, et al. [13], Hiza, et al. [14], Haynes [9], Hiza and Haynes [15], Miller and Hiza [25] and Haynes [10]. These data have been estimated by the authors to be accurate to within 0.1% of the true value with a precision of a few hundredths of a percent. The work on the models given here have provided no basis for questioning the claims of the experimenters, in fact the ability of the models to predict the densities of the multicomponent mixtures to within 0.1% of the measured values tends to support the accuracy claims of the experimenters.

Interim results of this study were reported by Haynes, et al. [13] and McCarty [23], both of which contain earlier versions of the mathematical models given here. These earlier versions are only slightly different than the final ones and for the purposes of calculating LNG densities either of the versions may be used. The reader is, however, cautioned to read the limitations of each model as defined in the earlier sections.

Computer programs for the four models are available at the Thermophysical Properties Division of the National Bureau of Standards in Boulder, Colorado.

8. REFERENCES

- [1] Albright, M. A., Private communication (1976).
- [2] Albright, M. A., A Model for the Precise Calculation of Liquefied Natural Gas Densities, NGPA Technical Publication TP-3 (1973).
- [3] Atomic Weights of the Elements 1973, Pure and Applied Chemistry, Vol 37, 589-603 (1974).
- [4] Das, T. R., Eubank, P. T., Advances in Cryogenic Engineering Vol 18, Plenum Press, New York (1973), p. 208.
- [5] Das, T. R., Eubank, P. T., Advances in Cryogenic Engineering Vol 18, Plenum Press, New York (1973), p. 253.
- [6] Das, T. R., Eubank, P. T., Advances in Cryogenic Engineering Vol 18, Plenum Press, New York (1973), p. 244.
- [7] Eckert, C. A., Renon, H. and Prausnitz, J. M., Molecular Thermodynamics of Simple Liquids, IEC Fund <u>6</u>, 58 (1967).
- [8] Goodwin, R. D., The Thermophysical Properties of Methane, from 90 to 500 K at Pressures up to 700 Bars, Nat. Bur. Stand. (U.S.), Tech. Note 653 (1974).
- [9] Haynes, W. M., Orthobaric Liquid Densities of Methane + Isobutane and Methane + Normal Butane Mixtures at Low Temperatures (to be published).
- [10] Haynes, W. M., Measurements of Orthobaric Liquid Densities of Multicomponent Mixtures of LNG Components (N_2 , CH_4 , C_2H_6 , C_3H_8 , iC_4H_{10} , nC_4H_{10} , iC_5H_{12} , nC_5H_{12}) Between 110 and 130 K, to be published.
- [11] Haynes, W. M., Hiza, M. J. and Frederick, N. V., A Magnetic Suspension Densimeter for Measurements on Fluids of Cryogenic Interest, Review of Scientific Instruments <u>47</u>, No. 10, 1237-50 (Oct 1976).
- [12] Haynes, W. M. and Hiza, M. J., Measurements of the Orthobaric Liquid Densities of Methane, Ethane, Propane, Isobutane, and Normal Butane, J. Chem. Thermodyn., <u>9</u>, 179 (1977).

- [13] Haynes, W. M., Hiza, M. J. and McCarty, R. D., Densities of LNG for Custody Transfer, (Proc. Fifth International Conference of LNG, Dusseldorf, Germany), J. W. White, W. McGrew, S. Farmer, D. Hansen, H. Jacobshagen, editors; Institute of Gas Technology, Chicago, Ill., Vol. 2, Paper II, Section III (1977).
- [14] Hiza, M. J., Haynes, W. M. and Parrish, W. R., Orthobaric Liquid Densities and Excess Volumes for Binary Mixtures of Low Molecular Weight Alkanes and Nitrogen Between 105 and 140 K, J. Chem. Thermodyn. <u>9</u>, 873 (1977).
- [15] Hiza, M. J. and Haynes, W. M., Orthobaric Liquid Densities and Excess Volumes for Multicomponent Mixtures of Low Molar Mass Alkanes and Nitrogen Between 105 and 125 K, J. Chem. Thermodyn. <u>12</u>, 1 (1980).
- [16] International Union of Pure and Applied Chemistry, 1961 Carbon 12 Scale.
- [17] Jacobsen, R. T., Stewart, R. B., McCarty, R. D. and Hanley, H. J. M., Thermophysical Properties of Nitrogen from the Fusion Line to 3500 R (1944 K) for Pressures to 150,000 psia (10342 x 10⁵ N/m²), Nat. Bur. Stand. (U.S.), Technical Note No. 648 (Dec 1973).
- [18] Klosek, J. and McKinley, C., Densities of Liquefied Natural Gas and of Low Molecular Weight Hydrocarbons, Proc. First Int. Conf. on LNG, IGT, Chicago (1968).
- [19] Kudchadker, A. P., Alani, G. H. and Zwolinski, B. J., The Critical Constants of Organic Substances, Chem. Rev. 68, 659-735 (1968).
- [20] Leach, J. W., Molecular Structure Correction for Applying the Theory of Corresponding States to Non-Spherical Pure Fluids and Mixtures, Ph.D. Thesis, Rice University (1967).
- [21] Longuet-Higgins, H. C. and Widom, B., A Rigid Sphere Model for Melting of Argon, Mol. Phys. 8, 549 (1964).

- [22] McCarty, R. D., A Modified Benedict-Webb-Rubin Equation of State for Methane Using Recent Experimental Data, Cryogenics <u>14</u>, No. 5, 276-80 (May 1974).
- [23] McCarty, R. D., A Comparison of Mathematical Models for the Prediction of LNG Densities, Nat. Bur. Stand. (U.S.), Interagency Report NBSIR 77-867 (Oct 1977).
- [24] McCarty, R. D., Optimization and Comparisons of Mathematical Models for the Prediction of Liquefied Natural Gas Densities, J. Chem. Thermodyn. (to be published, 1980).
- [25] Miller, R. C. and Hiza, M. J., Experimental Molar Volumes for Some LNG Related Saturated Liquid Mixtures, Fluid Phase Equilibria <u>2</u>, 49-57 (1978).
- [26] Mollerup, J. and Rowlinson, J. S., The Prediction of Densities of Liquefied Natural Gas and of Lower Molecular Weight Hydrocarbons, Chem. Engng. Sci. <u>29</u> (1973).
- [27] Mollerup, J., Correlated and Predicted Thermodynamic Properties of LNG and Related Mixtures in the Normal and Critical Region, Adv. Cryog. Eng. <u>20</u>, 172 (K. D. Timmerhaus, editor, Plenum Press, New York, 1975).
- [28] Mollerup, J., Thermodynamic Properties of Natural Gas, Petroleum Gas, and Related Mixtures Enthalpy Predictions, Adv. Cryog. Eng. <u>23</u>, 550 (K. D. Timmerhaus, editor, Plenum Press, New York, 1978).
- [29] Orrit, J. and Olives, J. F., Density of Liquefied Natural Gas and Its Components, Distributed at the 4th International Conference on Liquefied Natural Gas, Algeria (1974).
- [30] Orrit, J. E. and Laupretre, T. M., Density of Liquefied Natural Gas Components, Adv. Cryog. Eng. <u>23</u>, 573 (K. D. Timmerhaus, editor, Plenum Press, New York, 1978).

- [31] Pope, G. A., Calculation of Argon, Methane and Ethane Virial Coefficients at Low Reduced Temperature, Ph.D. Thesis, Rice University (1971).
- [32] Renon, H., Eckert, C. A. and Prausnitz, J. M., Molecular Thermodynamics of Simple Liquids, IEC Fund. 6, 52 (1967).
- [33] Rodosevich, J. B. and Miller, R. C., Calculation of LNG Excess Volumes by a Modified Hard-Sphere Model, Adv. Cryog. Eng. <u>19</u>, 339 (1974).
- [34] Rodosevich, J. B., Measurements and Prediction of Liquefied Natural Gas Densities, M.Sc. Thesis, Univ. Wyoming (1973).
- [35] Rowlinson, J. S. and Watson, I. D., The Prediction of the Thermodynamic Properties of Fluids and Fluid Mixtures - I. The Principle of Corresponding States and Its Extensions, Chem. Engng. Sci. <u>24</u>, 1565 (1969).
- [36] Scott, R. L., J. Chem. Phys. <u>25</u>, 193 (1956).
- [37] Sliwinski, P. Z., Die Lorentz-Lorenz Funktion Von Dampfformigem und Fluessiyem Athan, Propan and Butan, Phys. Chem. (Frankfurt) <u>63</u>, 263 (1969).
- [38] Yuan, I. C., Correlation and Prediction of Excess Properties for Selected Binaries in the C₆-C₇ Hydrocarbon Boiling Range of Conformal Solution Theory, D.Sc. Dissertation, Washington University (1971).

Appendix A. Experimental Data

The following is a list of all of the experimental PVTx mixtures data which were measured during the course of this project. The data are from Miller and Hiza [25]; Haynes and Hiza [12]; Haynes, et al. [11]; Hiza, et al. [14]; Hiza and Haynes [15] and Haynes [9,10).

All of the data are for the orthobaric liquid except for the data of Miller and Hiza [25] which are for the single phase liquid phase, very close to the orthobaric conditions. The units of the data are bars, moles per liter and kelvin. The columns labeled RKM, HS, CELL and CS correspond to percentage derivations between experimental and predicted densities by the Revised Klosek and McKinley, hard sphere, cell and extended corresponding states models respectively. The derivations are always calculated using experimental-calculated densities.
		MIXTURE I	NO 1 (Miller	and Hiza [[25])		
0.85147	$CH_4 + 0.14853$	^C 2 ^H 6					
Р	D	T	MW	RKM	HS	CELL	CS
.977	25.7499	110.08	18.1265	.13	02	.02	.01
		MIXTURE	NO 2 (Hiza,	et al. [14	-])		
0.68006	$CH_4 + 0.31994$	^C 2 ^H 6					
.416	25.1027	105.00	20.5309	.14	.05	.10	.07
.645	24.7802	110.00	20.5309	.07	01	.02	.01
.961	24.4612	115.00	20.5309	.05	04	03	03
1.380	24.1402	120.00	20.5309	.06	06	06	05
1.930	23.8212	125.00	20.5309	.08	05	04	05
2.620	23.5007	130.00	20.5309	.12	01	.00	02
		MIXTURE	NO 3 (Hiza,	et al. [14	+])		
0.49325	$CH_4 + 0.50675$	^C 2 ^H 6					
.325	23.9619	105.00	23.1513	.14	.07	.11	.07
.503	23.6937	110.00	23.1513	.09	.03	.03	.03
.749	23.4328	115.00	23.1513	.11	.03	.01	.03
1.080	23.1559	120.00	23.1513	.07	02	06	03
1.500	22.8933	125.00	23.1513	.08	.00	05	.00
2.050	22.6290	130.00	23.1513	.14	.04	02	.03
2.720	22.3581	135.00	23.1513	.19	.06	.01	.05
3.550	22.0765	140.00	23.1513	.25	.05	.02	.04
		MIXTURE	NO 4 (Hiza,	et al. [14	1])		
0.35457	$CH_4 + 0.64543$	^C 2 ^H 6					
.256	23.1033	105.00	25.0965	04	07	04	07
.397	22.8777	110.00	25.0965	01	04	05	05
.580	22.6478	115.00	25.0965	.03	02	06	03
.826	22.4035	120.00	25.0965	.00	06	11	07
1.146	22.1872	125.00	25.0965	.10	.04	03	.03
1.550	21.9441	130.00	25.0965	.10	.03	04	.02

MIXTURE NO 5 (Hiza, et al. [14])

0.85/96	$CH_4 + 0.1420$	04 C ₃ H ₈					
Р	D	T	MW	RKM	HS	CELL	CS
.517	24.9622	105.00	20.0279	.01	.10	.10	.07
.817	24.6332	110.00	20.0279	02	.08	.07	.06
1.199	24.2942	115.00	20.0279	04	.04	.03	.03
1.785	23.9492	120.00	20.0279	07	.00	.00	.00
2.415	23.5942	125.00	20.0279	09	06	04	05
3.290	23.2461	130.00	20.0279	11	06	01	04

MIXTURE NO 6 (Hiza, et al. [14])

0.74920	$CH_4 + 0.2508$	30 С ₃ Н ₈					
.478	23.4767	105.00	23.0790	.01	.02	.03	02
.738	23.2064	110.00	23.0790	03	.00	01	03
1.099	22.9364	115.00	23.0790	01	.00	02	02
1.582	22.6665	120.00	23.0790	.02	.01	01	.01
2.216	22.3818	125.00	23.0790	03	04	04	01
3.029	22.1019	130.00	23.0790	.02	05	02	.01

MIXTURE NO 7 (Hiza, et al. [14])

0.49637	$CH_4 + 0.50363$	с ₃ н ₈					
.384	20.4909	105.00	30.1720	05	.01	.04	03
.591	20.3046	110.00	30.1720	08	.01	.01	02
.874	20.1180	115.00	30.1720	06	.01	02	02
1.250	19.9311	120.00	30.1720	.00	.01	03	.00
1.730	19.7471	125.00	30.1720	.04	.03	01	.04
2.320	19.5546	130.00	30.1720	01	.01	03	.05

MIXTURE NO 8 (Hiza, et al. [14])

0.29538	$CH_4 + 0.70462$	с ₃ н ₈					
.271	18.5132	105.00	35.8106	19	08	05	12
.409	18.3624	110.00	35.8106	24	09	10	12

		MIXTU	JRE NO 9 (Hay	nes [10])			
0.92788	CH ₄ + 0.072	12 nC ₄ H ₁₀					
Р	D	T	MW	RKM	HS	CELL	CS
1.820	24.2615	120.00	19.0779	.00	.04	04	04
2.547	23.8868	125.00	19.0779	.00	.00	07	05
3.470	23.5047	130.00	19.0779	01	03	09	07
4.616	23.1225	135.00	19.0779	.04	03	06	05
6.023	22.7284	140.00	19.0779	.16	04	03	03
		MIXTU	JRE NO 10 (Ha	ynes [10])			
0.92780	$CH_4 + 0.0722$	20 nC ₄ H ₁₀					
1.270	24.6285	115.00	19.0813	.01	.08	.01	01
1.824	24.2783	120.00	19.0813	.07	.11	.03	.04
2.549	23.8999	125.00	19.0813	.06	.07	01	.01
		MIXTURE	NO 11 (Hiza,	, et al. [1	.4])		
0.91674	$CH_4 + 0.0832$	26 nC ₄ H ₁₀					
.521	25.1536	105.00	19.5467	.21	.35	.33	.22
.810	24.7960	110.00	19.5467	.12	.26	.21	.15
1.216	24.4512	115.00	19.5467	.14	.24	.18	.15
1.753	24.0889	120.00	19.5467	.10	.19	.11	.11
2.472	23.7370	125.00	19.5467	.15	.18	.10	.13
3.374	23.3789	130.00	19.5467	.17	.19	.12	.16
4.509	23.0110	135.00	19.5467	.21	.19	.15	.18
5.887	22.6391	140.00	19.5467	• .35	.20	.22	.23
		MIXTU	JRE NO 12 (Ha	ynes [10])			
0.77982	$CH_4 + 0.2202$	18 nC ₄ H ₁₀					
1.702	21.6066	120.00	25.3805	.12	.14	.11	.06
2.369	21.3549	125.00	25.3805	.11	.08	.02	.04
3.228	21.1020	130.00	25.3805	.09	.00	07	.03
4.291	20.8555	135.00	25.3805	.12	03	10	.07
5.576	20.5978	140.00	25.3805	.20	13	15	.07

		MIXTU	JRE NO 13 (Ha	aynes [10])		
0.77762	$CH_4 + 0.2223$	38 nC ₄ H ₁₀					
Р	D	LT	MW	RKM	HS	CEL	CS
1.179	21.8054	115.00	25.4011	.07	.15	.16	.02
1.699	21.5601	120.00	25.4011	.07	.10	.07	.02
2.372	21.3164	125.00	25.4011	.10	.06	.01	.03
3.230	21.0605	130.00	25.4011	.06	03	10	.00
4.291	20.8011	135.00	25.4011	.02	14	20	03
5.579	20.5448	140.00	25.4011	.09	23	26	03
		MIXTURE	NO 14 (Hiza	. et al. [147)		
0.58828	CH. + 0.4117	72 nC .H.		,			
3.183	4 18.3058	4 10 130.00	33.3687	32	11	15	08
2.342	18.4853	125.00	33.3687	17	.00	.00	03
2.281	18.4772	125.00	33.3687	21	05	04	08
1.636	18.6495	120.00	33.3687	18	.02	.07	06
		MIXTU	JRE NO 15 (Ha	aynes [10]))		
0.92044	$CH_4 + 0.0795$	56 iC ₄ H ₁₀					
1.254	24.3633	115.00	19.3910	21	.05	.06	01
1.805	24.0029	120.00	19.3910	24	•02	.03	03
2.521	23.6403	125.00	19.3910	22	.01	.04	03
3.434	23.2752	130.00	19.3910	21	.03	.08	.00
4.567	22.8920	135.00	19.3910	22	•00	.09	02
5.950	22.5037	140.00	19.3910	14	02	.14	02
		MIXTU	JRE NO 16 (Ha	aynes [10]))		
0.78329	CH, + 0.2167	71 iC ₄ H ₁₀		•			
.782	4 21.9144	110.00	25.1625	33	.10	.15	.01
1.164	21.6652	115.00	25.1625	33	.05	.07	01
1.671	21.4136	120.00	25.1625	35	.01	•00	02
2.329	21.1668	125.00	25.1625	34	.00	03	.00
3.170	20.9125	130.00	25.1625	35	04	07	.00
4.208	20.6629	135.00	25.1625	33	06	06	.04
5.474	20.4082	140.00	25.1625	23	09	04	.07

MIXTURE NO 17 (Hiza, et al. [14])

0.48687	$CH_4 + 0.5131$	³ ¹ ⁴ ^H 10					
Р	D	Т	MW	RKM	HS	CELL	CS
.629	17.3575	110.00	37.6362	62	.05	.11	.02
.938	17.2076	115.00	37.6362	70	.00	01	02
1.361	17.0639	120.00	37.6362	64	02	08	02
1.852	16.9156	125.00	37.6362	69	07	17	04

MIXTURE NO 18 (Hiza, et al. [14])

0.95248	$CH_4 + 0.04/9$	52 N ₂					
1.380	26.8476	105.00	16.6119	05	04	04	02
1.990	26.4052	110.00	16.6119	.06	.00	.00	.04
2.634	25.9374	115.00	16.6119	.20	.01	.02	.06
3.500	25.4522	120.00	16.6119	.26	*	.03	.07
4.600	24.9496	125.00	16.6119	.54	*	.04	.07
5.830	24.4210	130.00	16.6119	.69	-5.69	.03	.05
7.300	23.8600	135.00	16.6119	.77	-3.99	01	03
9.200	23.2809	140.00	16.6119	1.09	-2.69	02	07

MIXTURE NO 19 (Hiza, et al. [14])

0.69651	$CH_4 + 0.3034$	49 N ₂					
3.450	26.8735	100.00	19.6759	39	.06	.09	.00
4.661	26.3393	105.00	19.6759	56	.02	.07	.04
6.181	25.7686	110.00	19.6759	92	05	02	.00
8.010	25.1790	115.00	19.6759	-1.28	.13	08	03
10.112	24.5737	120.00	19.6759	-1.56	1.88	07	04

MIXTURE NO 20 (Hiza, et al. [14])

0.50758	$CH_4 + 0.4924$	12 N ₂					
3.303	27.0801	95.00	21.9375	-2.16	.11	.14	.06
4.468	26.4588	100.00	21.9375	-1.92	01	.05	.04
6.383	25.8106	105.00	21.9375	-1.56	15	05	01
8.461	25.1387	110.00	21.9375	-1.29	17	09	03
10.740	24.4431	115.00	21.9375	1.12	.28	04	01
13.983	23.7096	120.00	21.9375	-1.79	3.41	.07	01
17.529	22.9315	125.00	21.9375	-1.14	*	.26	.00
21.076	22.1005	130.00	21.9375	72	-2.84	.05	.10

* The hard sphere solution for the density of $\ensuremath{\text{N}}_2$ failed.

		MIXTURE	NO 21 (Hiza,	et al. [14])		
0.67287	$C_2H_6 + 0.32$	713 C ₃ H ₈					
Р	D	Т	MW	RKM	HS	CELL	CS
	18.6192	125.00	34.6588	.00	•02	02	.00
	18.4648	130.00	34.6588	.00	.02	.00	.01
	18.3059	135.00	34.6588	.00	.00	.00	.00
	18.1509	140.00	34.6588	•00	.01	.04	.02
		MIXTURE	NO 22 (Hiza,	et al. [14])		
0.50105	$C_{2}H_{6} + 0.49$	895 C ₃ H ₈					
	18.3618	105.00	37.0689		.02	.04	.02
	18.2169	110.00	37.0689		.01	.00	.00
	18.0726	115.00	37.0689		.00	03	01
	17.9282	120.00	37.0689		01	05	01
	17.7880	125.00	37.0689		.00	03	.00
	17.6412	130.00	37.0689		02	04	02
	17.4988	135.00	37.0689		01	01	01
	17.3526	140.00	37.0689		03	.00	01
					_		
		MIXTURE	NO 23 (Hiza,	et al. [14])		
0.67117	$C_2H_6 + 0.32$	883 nC ₄ H ₁₀					
	17.5047	110.00	39.2952		.00	.02	•00
	17.3706	115.00	39.2952		.01	•00	•00
	17.1031	125.00	39.2952		.02	•00	•02
	16.9626	130.00	39.2952		01	03	02
	16.8285	135.00	39.2952		.00	01	01
	16.6947	140.00	39.2952		•00	.03	.01
		MIXTURE	NO 24 (Hiza,	et al. [14])		
0.65343	$C_{2}H_{6} + 0.34$	657 nC ₄ H ₁₀		•			
	17.2184	115.00	39.7929		.00	.00	.00
	17.0824	120.00	39.7929		02	03	02
		MIXTURE	NO 25 (Hiza,	et al. [14	7)		
0.72436	$C_2H_6 + 0.27$	564 iC ₄ H ₁₀					
	17.9779	105.00	37.8030		.01	.01	.01
	1/.8401	110.00	37.8030		.01	.00	.01
	17.4235	125.00	37.8030		.01	.00	.01
	1/.2825	130.00	37.8030		.00	.01	.01

.

		MIXTURE N	0 26 (Hiza, et	al. [14])			
0.68939	$C_2H_6 + 0.3106$	1 iC ₄ H ₁₀					
Р	D	T	MW	RKM	HS	CELL	CS
	17.3716	115.00	38.7840		•00	03	.00
	17.2344	120.00	38.7840	-	.02	04	02
		MIXTURE N	0 27 (Hiza, et	al. [14])			
0.94067	$C_2H_6 + 0.05933$	3 N ₂					
3.850	21.4718	105.00	29.9481	-	.02	01	03
4.630	21.2912	110.00	29.9481		.03	.02	.03
5.472	21.0845	115.00	29.9481	-	.01	04	04
6.383	20.8998	120.00	29.9481	-	.72	.01	.00
		MIXTURE N	0 28 (Hiza, et	al. [14])			
0.60949	$C_3H_8 + 0.39052$	1 nC ₄ H ₁₀					
	14.6487	115.00	49.5749	-	.01	02	01
	14.5521	120.00	49.5749		.02	.00	.02
		MIXTURE N	0 29 (Hiza, et	al. [14])			
0.60650	$C_{3}H_{8} + 0.39350$	D nC ₄ H ₁₀					
	14.1343	140.00	49.6169		.00	03	.00
	14.0333	145.00	49.6169		.00	.00	.00
	13.9346	150.00	49.6169		.02	.05	.02
		MIXTURE N	0 30 (Hiza, et	al. [14])			
0.58692	$C_{3}H_{8} + 0.41308$	8 nC ₄ H ₁₀					
	14.6839	110.00	49.8915		.01	.04	.01
	14.1748	135.00	49.8915	-	.03	06	03
	14.0786	140.00	49.8915		.00	02	.00
		MIXTURE NO	31 (Hiza, et	al., [14])			
0.49030	$C_3H_8 + 0.50970$) iC ₄ H ₁₀					
	14.3080	105.00	51.2468	-	.01	04	01
	14.2136	110.00	51.2468	-	.01	05	.00
	14.1219	115.00	51.2468		.02	03	.02
	14.0257	120.00	51.2468		.01	04	.01
	13.9300	125.00	51.2468		.00	04	.00
	13.8342	130.00	51.2468	-	.01	04	01

		MIXTURE	NO 32 (Hiza,	et al.	[14])		
0.50326	$C_{3}H_{8} + 0.496$	574 iC ₄ H ₁₀					
Р	D	T	MW	RKM	HS	CELL	CS
	13.9718	125.00	51.0650		.01	03	.01
	13.8737	130.00	51.0650		01	04	01
		MIXTURE	NO 33 (Hiza,	et al.	[14])		
0.97986	$C_3H_8 + 0.020$)14 N ₂					
3.567	16.2131	110.00	43.7733		01	04	01
4.712	16.0931	115.00	43.7733		02	05	02
		MIXTURE	NO 34 (Hiza,	et al. [[14])		
0.96206	$C_{3}H_{8} + 0.037$	94 N ₂					
4.955	16.4638	105.00	43.4870		.02	03	.01
6.708	16.3410	110.00	43.4870		.00	04	.00
		MIXTURE	NO 35 (Hiza,	et al. [[14])		
0.93260	$C_3H_8 + 0.067$	40 N2					
8.795	16.7084	105.00	43.0132		.20	.11	.18
6.313	16.8055	100.00	43.0132		.04	07	.01
		MIXTURE	NO 36 (Hiza,	et al. [[14])		
0.52961	$nC_{A}H_{10} + 0.4$	7039 iC ₄ H ₁₀					
	12.6943	125.00	58.1243		01	03	01
	12.6133	130.00	58.1243		.01	01	.01
	12.5271	135.00	58.1243		01	04	01
	12.4447	140.00	58.1243		.00	02	.00
		MIXTURE NO	37 (Hiza an	d Haynes	[15])		
0.80284	CH ₄ + 0.0990	$02 C_2 H_6 + 0.$	09814 C ₃ H ₈				
.476	24.9975	105.00	20.1852	.02	.04	.06	.02
.747	24.6696	110.00	20.1852	03	.00	.00	02
1.119	24.3515	115.00	20.1852	.01	.02	.02	.01
1.616	24.0335	120.00	20.1852	.07	.07	.07	.06

MIXTURE NO 38 (Hiza and Haynes [15])

0.34242	$CH_4 + 0.31372$	$C_2^{H_6} +$	0.34386 C ₃ H ₈				
Р	D	T	MW	RKM	HS	CELL	CS
.427	20.5342	110.00	30.0903	03	.02	.00	03
.636	20.3497	115.00	30.0903	01	.03	02	02
.638	20.3567	115.00	30.0903	.03	.06	.01	.01
.914	20.1786	120.00	30.0903	.12	.10	.04	.06
.914	20.1803	120.00	30.0903	.12	.11	.05	.07
1.280	19.9858	125.00	30.0903	.10	.08	.01	.04

MIXTURE NO 39 (Hiza and Haynes [15])

.

1	0.6/040	$CH_4 + 0.16610$	$C_2^{H_6} +$	0.16350 N ₂				
	3.688	25.8587	105.00	20.3301	.57	.01	.28	.00
1	4.813	25.4598	110.00	20.3301	.64	03	.27	01
1	6.181	25.0466	115.00	20.3301	.79	.02	.25	05
•	7.731	24.6359	120.00	20.3301	.70	.42	.31	04

MIXTURE NO 40 (Hiza and Haynes [15])

0.34140	$CH_4 + 0.3206$	$50 C_2 H_6 + 0$.33800 N ₂				
7.190	24.9084	105.00	24.5861	2.06	.01	.61	.07
9.494	24.5350	110.00	24.5861	2.55	01	.64	.04
12.372	24.1433	115.00	24.5861	3.72	.24	.65	06

MIXTURE NO 41 (Miller and Hiza [25])

0.86786	$CH_4 + 0.0818$	$1 C_{3}H_{8} + 0$.05033 iC4H10)			
.466	24.9239	100.00	20.4561	17	.04	.11	03
.769	24.4200	108.00	20.4561	17	.01	.05	04
1.327	23.9676	115.00	20.4561	18	01	.02	05

MIXTURE NO 42 (Hiza and Haynes [15])

0.79770	$CH_4 + 0.1028$	$30 \text{ C}_{3}\text{H}_{8} + 0$.09950 N ₂				
2.817	25.3950	105.00	20.1181	.17	.08	.24	01
3.620	25.0153	110.00	20.1181	.10	.02	.23	05
4.549	24.6465	115.00	20.1181	.08	.08	.33	.01
5.610	24.2667	120.00	20.1181	.02	*	.44	.04

* The hard sphere solution for the density of N_{2} failed.

		MIX	(TURE NO 43 (Ha	ynes [9])			
0.89071	$CH_4 + 0.04998$	nC ₄ H ₁₀	+ 0.05931 N ₂				
Р	D	T	MW	RKM	HS	CELL	CS
2.400	25.3450	110.00	18.8562	23	.00	.01	.03
3.145	24.9440	115.00	18.8562	25	04	02	.01
4.082	24.5383	120.00	18.8562	38	*	02	.00
5.196	24.1141	125.00	18.8562	32	*	04	04
	1	1IX TURE	NO 44 (Miller	and Hiza	[25])		
0.85317	CH ₄ + 0.05077	C2H6 +	0.04855 C ₃ H ₈ +	0.04751	nC ₄ H ₁₀		
1.038	24.6056	110.04	20.1165	.02	.15	.10	.06
1.464	24.2712	115.00	20.1165	.00	.11	.04	.02
		MI)	TURE NO 45 (Ha	ynes [9])			
0.85133	CH ₄ + 0.05759	C2H6 +	0.04808 C ₃ H ₈ +	0.04300	nC ₄ H ₁₀		
1.180	24.3243	115.00	20.0092	04	.07	.00	01
1.700	23.9965	120.00	20.0092	.00	.10	.02	.03
2.374	23.6586	125.00	20.0092	.05	.11	.04	.05
3.232	23.3108	130.00	20.0092	.04	.11	.05	.05
4.301	22.9634	135.00	20.0092	.08	.13	.11	.09
		MI>	(TURE NO 46 (Ha	ynes [9])			
0.84566	CH _A + 0.07924	C2H6 +	0.05060 C ₃ H ₈ +	0.02450	nC ₄ H ₁₀		
1.167	24.5569	115.00	19.6051	.00	.04	.00	01
1.683	24.2126	120.00	19.6051	.02	.04	01	01
2.350	23.8698	125.00	19.6051	.08	.07	.03	.03
3.201	23.5204	130.00	19.6051	.12	.11	.09	.07
		MI)	(TURE NO 47 (Ha	ynes [9])			
0.86040	$CH_{A} + 0.04600$	C2H6 +	0.04790 C ₃ H ₈ +	0.04570	iC ₄ H ₁₀		
1.186	24.2654	115.00	19.9552	14	.01	.04	03
1.710	23.9371	120.00	19.9552	10	.04	.07	.01
2.387	23.5860	125.00	19.9552	10	.01	.05	01
3.248	23.2331	130.00	19.9552	13	01	.06	02
4.320	22.8637	135.00	19.9552	18	07	.05	07

 \star The hard sphere solution for the density of $N_{\rm 2}$ failed.

0.853/8	LH4 + 0.051	² ⁶ ⁺	$0.04/03 \ C_3H_8 +$	0.04/41	¹⁰ 4 ¹¹ 10		
Р	D	T	MW	RKM	HS	CELL	CS
1.190	24.2100	115.00	20.0838	14	.01	.04	03
1.706	23.8779	120.00	20.0838	14	.01	.04	02
2.379	23.5324	125.00	20.0838	13	02	.02	04
3.238	23.1834	130.00	20.0838	15	04	.03	05
		MIXTURE	NO 49 (Miller	and Hiza	[25])		
0.85378	$CH_4 + 0.0517$	^{78 C} 2 ^H 6 +	0.04703 C ₃ H ₈ +	0.04741	iC ₄ H ₁₀		
.972	24.5434	110.02	20.0838	14	.03	.06	01
1.429	24.2154	115.01	20.0838	12	.02	.05	01
		MIXTURE	NO 50 (Hiza an	d Haynes	[15])		
0.85260	$CH_4 + 0.0483$	^{30 C} 2 ^H 6 +	0.05070 C ₃ H ₈ +	0.04840	N ₂		
1.581	25.8910	105.00	18.7223	.01	04	.03	07
2.138	25.5081	110.00	18.7223	09	07	.03	07
2.827	25.1224	115.00	18.7223	05	06	.05	06
3.650	24.7283	120.00	18.7223	08	*	.08	06
		MIX	TURE NO 51 (Ha	ynes [9])			
0.85892	CH ₄ + 0.1153	^{32 C} 2 ^H 6 +	0.01341 C ₃ H ₈ +	0.00705	^{nC} 4 ^H 10 + 1	0.00530 iC ₄	^H 10
1.185	25.0957	115.00	18.5565	.05	02	01	03
1.706	24.7131	120.00	18.5565	.03	06	05	07
2.372	24.3294	125.00	18.5565	.02	07	05	09
3.225	23.9490	130.00	18.5565	.05	02	.01	06

MIXTURE NO 48 (Haynes [9])

~ ..

. .

MIXTURE NO 52 (Hiza and Haynes [15])

0.85442	$CH_4 + 0.05042$	C ₂ H ₆ +	0.04038 C ₃ H ₈ +	0.02901	nC ₄ H ₁₀ +	0.02577 iC ₄ H ₁₀	
.515	24.8775	105.00	20.1885	.09	.25	.25	.16
.818	24.5382	110.00	20.1885	.00	.17	.15	.09
1.190	24.2083	115.00	20.1885	.00	.15	.12	.08
1.695	23.8859	120.00	20.1885	.05	.19	.15	.13

MIXTURE NO 53 (Haynes [9])

0.84558	$CH_4 + 0.08153$	^C 2 ^H 6 +	0.04778 C3H8 +	0.01252	^{nC} 4 ^H 10 +	0.01259 iC ₄ H ₁₀	
1.166	24.5586	115.00	19.5838	.01	.05	.04	.01
1.680	24.2180	120.00	19.5838	.04	.07	.05	.03
2.348	23.8688	125.00	19.5838	.08	.08	.08	.04
3.188	23.5154	130.00	19.5838	.10	.10	.12	.07

 \star The hard sphere solution for the density of N_{2} failed.

		MI	XTURE NO 54 (Ha	ynes [9])		
0.81249	$CH_4 + 0.08484$	^C 2 ^H 6 +	0.04931 C ₃ H ₈ +	0.02708	nC ₄ H ₁₀ +	0.02628 N ₂	
Р	D	Т	MW	RKM	HS	CELL	CS
2.214	24.4562	115.00	20.0706	.01	.01	.03	02
2.874	24.1119	120.00	20.0706	.00	*	.04	01
3.768	23.7507	125.00	20.0706	.02	*	.02	05
4.793	23.3954	130.00	20.0706	02	-3.67	.07	03
	ſ	MIXTURE	NO 55 (Hiza and	d Haynes	[15])		
0.79090	CH ₄ + 0.05600	^C 2 ^H 6 +	$0.05000 C_{3}H_{8} +$	0.04770	${}^{\rm nC}{}_{4}{}^{\rm H}{}_{10}$ +	0.05540 N ₂	
1.933	24.8080	105.00	20.9017	.04	.10	.12	.05
2.530	24.4664	110.00	20.9017	.02	.02	.03	02
	ĩ	1IXTURE	NO 56 (Miller	and Hiza	[25])		
0.79054	CH ₄ + 0.05597	^C 2 ^H 6 +	$0.04996 C_{3}H_{8} +$	0.04762	^{nC} 4 ^H 10 +	0.05591 N ₂	
2.158	24.8354	105.03	20.9029	.15	.21	.23	.15
		MI)	(TURE NO 57 (Hag	ynes [9])		
0.80940	$CH_4 + 0.04542$	^C 2 ^H 6 +	$0.05050 C_{3}H_{8} +$	0.04667	^{iC} 4 ^H 10 +	0.04801 N ₂	
3.005	24.1487	115.00	20.6355	•02	02	03	04
3.863	23.8075	120.00	20.6355	14	*	•00	03
4.874	23.4518	125.00	20.6355	12	*	.01	05
6.125	23.0893	130.00	20.6355	18	-5.06	•05	- •08
	1	1IXTURE	NO 58 (Hiza and	d Haynes	L15J)		
0.80600	$CH_4 + 0.04680$	^C 2 ^H 6 ⁺	0.04820 C ₃ H ₈ +	0.05000	^{1C} 4 ^H 10 ⁺	0.04900 N ₂	
2.039	24.7803	105.00	20.7423	03	.08	.03	.01
2.550	24.4327	110.00	20.7423	09	02	06	06
3.135	24.1039	115.00	20.7423	.06	.00	02	02
3.790	23.7707	120.00	20.7423	10	*	01	02
			10 50 (
	N	TIXTURE	NU 59 (Miller a	and Hiza	[25])	0.04065	
0.80545	CH ₄ + 0.04671	^C 2 ^H 6 ⁺	0.04817 C ₃ H ₈ +	0.04998	^{1C} 4 ^H 10 +	0.04969 N ₂	
2.273	24.7831	105.06	20.7476	.00	.10	.05	.03

 \star The hard sphere solution for the density of N_{2} failed.

MIXTURE NO 60 (Haynes [9])									
0.90613	CH ₄ + 0.06026 + 0.00601	^C 2 ^H 6 + N2	0.02154 C ₃ H ₈ +	0.00306	nC ₄ H ₁₀ +	0.00300 i	^C 4 ^H 10		
Р	D	T	MW	RKM	HS	CELL	CS		
1.478	25.3834	115.00	17.8195	.03	01	.01	01		
2.043	24.9894	120.00	17.8195	.08	.00	.05	.02		
2.785	24.5702	125.00	17.8195	.04	.00	.03	02		
3.722	24.1578	130.00	17.8195	.06	-1.08	.11	.02		
		МТУ	TURE NO 61 (Hay	mas [9]					
0 88225	CH + 0.07259	сн +		0 00492	и пСН +	0 00490 i	~ н		
0.00225	+ 0.00973	[°] 2''6 ['] ^N 2	0.02301 0318	0.00452	¹¹⁰ 4 ¹¹ 10	0.00450 10	² 4''10		
1.639	25.2023	115.00	18.3094	.09	.04	.07	•04		
2.247	24.8047	120.00	18.3094	•06	.00	•04	.00		
3.022	24.4022	125.00	18.3094	.04	•00	.03	03		
		MI)	(TURE NO 62 (Ha	ynes [9]))				
0.85934	CH ₄ + 0.08477	C ₂ H ₆ +	0.02980 C ₃ H ₈ +	0.00707	$nC_{4}H_{10} +$	0.00519 i			
	+ 0.01383	N ₂	3.0		4 10		4 10		
1.812	25.0384	115.00	18.7496	.12	.06	.09	.06		
2.441	24.6661	120.00	18.7496	.12	*	.11	.07		
3.223	24.2880	125.00	18.7496	.19	•00	.16	.09		
4.222	23.8981	130.00	18.7496	.17	-2.12	.20	.10		
	Ν		NO 63 (Hiza and	Havnos	Г15 <u>7</u>)				
0 81300	сн + 0 04750	CH +	0 04870 C H +		n H +	0 02410 i	ън		
0.01300	+ 0.04250	[°] 2''6 [']	0.04070 0318	0.02420	1 ¹⁰ 4 ¹¹ 10	0.02410 10	² 4''10		
1.834	24.8496	105.00	20.6168	.03	.12	.10	.05		
2.807	24.5159	110.00	20.6168	.02	.08	.06	.03		
3.384	24.1783	115.00	20.6168	•09	•06	.05	.03		
6.039	23.8577	120.00	20.6168	.04	*	.11	•08		
		MIX	(TURE NO 64 (Ha	vnes [9]))				
0.85341	$CH_4 + 0.07898 + 0.00089$	^C 2 ^H 6 +	0.04729 C ₃ H ₈ + + 0.00097 iC_H	0.00992	nC ₄ H ₁₀ +	0.00854 i	^C 4 ^H 10		
.787	25.0063	5 12	19.3588	.01	.02	.02	01		
1.172	24.6566	115.00	19.3588	.00	01	01	03		
1.686	24.3079	120.00	19.3588	.02	.00	.00	02		
2.351	23.9525	125.00	19.3588	.05	.01	.03	01		
3.210	23.5883	130.00	19.3588	.06	.02	.06	.00		

 \star The hard sphere solution for the density of $N_{\mbox{\scriptsize 2}}$ failed.

MIXTURE NO 65 (Haynes [9])

 $\begin{array}{r} 0.75442 \ \text{CH}_4 \ + \ 0.15401 \ \text{C}_2\text{H}_6 \ + \ 0.06950 \ \text{C}_3\text{H}_8 \ + \ 0.01057 \ \text{nC}_4\text{H}_{10} \ + \ 0.00978 \ \text{iC}_4\text{H}_{10} \\ + \ 0.00083 \ \text{nC}_5\text{H}_{12} \ + \ 0.00089 \ \text{iC}_5\text{H}_{12} \end{array}$

		5 IZ	5	12			
Р	D	Т	MW	RKM	HS	CELL	CS
.723	24.2529	110.00	21.1060	02	.00	01	04
1.081	23.9619	115.00	21.1060	.04	.04	.03	.01
1.549	23.6535	120.00	21.1060	.07	.04	.02	.01
2.153	23.3351	125.00	21.1060	.04	.01	.00	01

MIXTURE NO 66 (Haynes [9])

0.75713 CH ₄	+	0.13585	C2H6	; +	0.0674	42 C ₃ H ₈	+	0.01326	^{nC} 4 ^H 10	+	0.01336	iC4 ^H 10	
	+	0.00859	N2 +	- 0	.00216	^{nC} 5 ^H 12	+	0.00223	iC ₅ H ₁₂				

			0 12		~ + -		
1.155	24.1809	110.00	21.3094	.09	.07	•08	.04
1.595	23.8731	115.00	21.3094	.12	.05	.05	.02
2.155	23.5709	120.00	21.3094	.12	.00	.08	.05
2.873	23.2644	125.00	21.3094	.15	.00	.12	.08
3.744	22.9514	130.00	21.3094	•22	-1.42	.16	.11

MIXTURE NO 67 (Haynes [9])

0.74275	$CH_4 + 0.16505$	$C_2H_6 + 0.$	06547 C ₃ H ₈ +	0.00893	^{nC} 4 ^H 10 +	0.00843 iC4H10	
	+ 0.00801	$N_2 + 0.00$	067 nC ₅ H ₁₂ +	0.00069	iС ₅ Н ₁₂		
1.158	24.3141	110.00	21.0976	.02	02	.00	05
1.584	24.0160	115.00	21.0976	.09	.01	•02	01
2.093	23.6937	120.00	21.0976	.03	.00	03	06
2.853	23.3804	125.00	21.0976	.05	.00	01	05

MIXTURE NO 68 (Haynes [9])

0.90068	CH ₄ +	0.06537	^C 2 ^H 6 ⁺	+ 0.02200 C ₃	$_{3}^{H_{8}} + 0.00284$	^{4 nC} 4 ^H 10 ⁺	0.00291 iC	4 ^H 10
	+	0.00599	N ₂ + (0.00011 nC ₅ H	12 + 0.0001	0 iC ₅ H ₁₂		
1.456	25.3	600	115.00) 17.902	.05	.01	.03	.01
2.024	24.9	656	120.00	17.902	.08	.00	.06	.03
2.762	24.5	450	125.00) 17.902	.03	.00	.03	03
3.698	24.1	289	130.00) 17.902	.02	-1.13	.07	02

Appendix B. Computer Program and Equation Parameters for the

Extended Corresponding States Model

The program listings in Appendix F include the extended corresponding states method described in section 2. To use the program in its present form one must make one of the two possible calls to SUBROUTINE PDMIX(P,D,T,X) (lines LNG 1 through LNG 9). The two possible calls are:

CALL PDMIX(P,D,T,X)

or

CALL PMIX(P,D,T,X)

When the call to PDMIX(P,D,T,X) is made the input variables are: P (pressure in bars); T (temperature in kelvin); and X which is a matrix of the mole fraction of the components of the mixture in the following order:

- X(1) = mole fraction of methane
- X(2) = mole fraction of ethane
- X(3) = mole fraction of propane
- X(4) = mole fraction of normal butane
- X(5) = mole fraction of isobutane
- X(6) = mole fraction of nitrogen
- X(7) = mole fraction of normal pentane
- X(8) = mole fraction of isopentane

No other components are allowed and if one or more of the above components are absent, a zero should be inserted in the appropriate matrix element. The program then calculates a density and it is returned in the argument list as D (density in moles/liter).

When a call to PMIX(P,D,T,X) is made all of the above are the same except that the roles of P and D are interchanged, i.e., D is an input variable and P is calculated by the program.

The range of the program is 90 to 150 kelvin for the saturated liquid phase of any of the pure components of CH_4 , C_2H_6 , C_3H_8 , nC_4H_{10} , iC_4H_{10} , N_2 , nC_4H_{12} or iC_4H_{12} or any mixture of those fluids. The program will extrapolate to higher pressures (higher than saturation pressure) but the user is reminded that such a calculation is an extrapolation and should be used with caution.

Other subprograms required:

SUBROUTINE MIX DATA, line LNG 95, Appendix F SUBROUTINE DATA CH4, line LNG 162, Appendix F FUNCTION FINDM, line LNG 217, Appendix F FUNCTION SATL, line LNG 236, Appendix F SUBROUTINE PROPS, line LNG 248, Appendix F

The equation of state from which Z_0 and G_0 by eqs (1) and (2) may be derived is:

$$P = \rho RT + \rho^{2} (N_{1}T + N_{2}T^{1/2} + N_{3} + N_{4}/T + N_{5}/T^{2}) + \rho^{3} (N_{6}T + N_{7} + N_{8}/T + N_{9}/T^{2}) + \rho^{4} (N_{10}T + N_{11} + N_{12}/T) + \rho^{5} (N_{13}) + \rho^{6} (N_{14}/T + N_{15}/T^{2}) + \rho^{7} (N_{16}/T) + \rho^{8} (N_{17}/T + N_{18}/T^{2}) + \rho^{9} (N_{19}/T^{2}) + \rho^{3} (N_{20}/T^{2} + N_{21}/T^{3}) \exp(-\gamma\rho^{2}) + \rho^{5} (N_{22}/T^{2} + N_{23}/T^{4}) \exp(-\gamma\rho^{2}) + \rho^{7} (N_{24}/T^{2} + N_{25}/T^{3}) \exp(-\gamma\rho^{2}) + \rho^{9} (N_{26}/T^{2} + N_{27}/T^{4}) \exp(-\gamma\rho^{2}) + \rho^{11} (N_{28}/T^{2} + N_{29}/T^{3}) \exp(-\gamma\rho^{2}) + \rho^{13} (N_{30}/T^{2} + N_{31}/T^{3} + N_{32}/T^{4}) \exp(-\gamma\rho^{2})$$

The computer subroutine PROPS(PP,DD,TT), lines "LNG 248 through LNG 371 in Appendix F" are the FORTRAN statements for eq (B-1) and the derivative $(\partial P/\partial \rho)_{T}$.

The parameters for eq (B-1) as applied to methane are given in table 2 and in the FORTRAN SUBROUTINE DATA CH4, lines LNG 162 through LNG 216, Appendix F.

The parameters for eqs (5) and (6), (9) and (10) are given in table 3 and 4 and in the FORTRAN SUBROUTINE MIX DATA (IBASE), lines LNG 95 through LNG 161, Appendix F.

Table 2. Methane Coefficients $N_{\ensuremath{\text{i}}}$ for Eq B-1.

R	=	0.08205616	N ₁₆	=	-0.529609525984	х	10-3
γ	=	0.0096	N ₁₇	-=	0.152264286004	х	10 ⁻⁴
N_1	=	-0.187027997685 x 10 ⁻¹	^N 18	=	-0.109952182842	х	10 ⁻¹
N ₂	=	0.103387108009 x 10	N ₁₉	=	0.191395549929	х	10 ⁻³
N ₃	=	-0.155387625619 x 10 ²	N ₂₀	=	0.386470003746	х	10 ⁵
N ₄	=	0.772311478564 x 10 ³	N ₂₁	=	-0.157930582612	х	10 ⁷
N ₅	=	-0.377103300895 x 10 ⁵	N ₂₂	=	0.195270144401	х	10 ³
N ₆	=	$0.846818843475 \times 10^{-3}$	N ₂₃	=	0.165996081629	х	10 ⁷
N ₇	=	-0.496415884529	N ₂₄	=	0.603051146711		
N ₈	=	0.869909352414 × 10 ²	N ₂₅	=	0.376485162808	х	10 ²
N ₉	=	-0.322821592493 × 10 ⁵	N ₂₆	=	0.125593680622	x	10 ⁻²
N ₁₀	=	$-0.395843026318 \times 10^{-4}$	N ₂₇	=	-0.343570032513	х	10 ²
N ₁₁	=	$0.266772318035 \times 10^{-1}$	N ₂₈	=	-0.540945094139	х	10 ⁻⁵
N ₁₂	=	-0.304010057839 x 10	N ₂₉	=	0.185622284663	х	10 ⁻²
N ₁₃	=	$0.191584507536 \times 10^{-3}$	N ₃₀	=	0.770786979245	х	10 ⁻⁸
N ₁₄	=	$-0.195587933458 \times 10^{-3}$	N ₃₁	=	-0.286868318650	х	10 ⁻⁵
N ₁₅	=	0.607479967879 x 10	N ₃₂	=	0.372376961647	х	10 ⁻⁴

		Table 3. Coef	ficients f	for Eqs 5 and 6.		
	r	-0.10949	5	$n_4 = -4.14192$		
	r	2 = 0.91945	4	n ₅ = 0.44485	0	
	n	-4.01525				
	r	e = 0.35680	8	n ₈ = 0.89332	3	
	n	7 = 1.02619		n ₉ = 0.76153	3	
		P [*] c	т _с	۷ _c		Fluid
	w	(bar)	(K)	(cm ³ /mol)	М	No.
CH4	0.0109	45.956967	190.555	98.522	16.04303	1
^C 2 ^H 6	0.110427	48.60314	305.5	146.2	30.07012	2
C3H8	0.154837	42.445123	370.	200.	44.09721	3
^{nC} 4 ^H 10	0.176372	38.295398	425.	251.62	58.1243	4
^{iC} 4 ^H 10	0.150115	36.88998	408.1	263.	58.1243	5
N ₂	0.0291791	33.542557	126.2	89.827	28.0134	6
^{nC} 5 ^H 12	0.234320	33.812152	469.6	304.	72.15139	7
iC ₅ H ₁₂	0.288886	31.988302	460.39	306.	72.15139	8

*Note: The large number of significant figures given for critical pressure is necessary to reproduce the $Z_c (Z_c = P_c V_c / RT_c)$ in the least squares fit of the data. P_c 's have been converted to bar from atmospheres.

	8	1.06	1.02	1.01	1.0	1.0	1.0	1.0	1		8	0.98	0.99	0.99	0.99	0.99	0.99	1.0	-
	7	1.06	1.02	1.01	1.0	1.0	1.0	1			7	0.98	0.99	0.99	0.99	0.99	0.99	1	
	9	1.01009	1.02127	1.04606	1.20955	1.13889	1				9	0.953430	0.939622	0.912209	0.849200	0.857310	1		
	5	1 .05048	1.02369	1.01140	0.997114	1					ى	0.986978	0.998886	1.03099	0.976416	1			
۲1	4	1 .04243	1.01616	1.00172	1					įj	4	0.983130	0.97223	0.985547	1				
	3	1.01922	1.00599	1							m	0.988608	0.999961	1					
	2	1.00514	1								2	1.01127	1						
	1	1									1	1							
		1	2	n	4	5	6	7	8		ت	1	2	ო	4	പ	6	7	ω

Table 4. Binary Interaction Coefficients for Eqs 9 and 10. Fluid numbers are given in table 3.

Table 5.	Values for Checking Calculations U States Equations.*	Jsing Corresponding
0.6975 CH ₄	+ 0.156 C_2H_6 + 0.092 C_3H_8 + 0.029 + 0.0115 N_2	$nC_4H_{10} + 0.014 iC_4H_{10}$
Temperature	Density in moles/liter	Pressure, bar
К		
95	24.333	1
100	24.067	1.1
105	23.796	1.2

* Included for check purposes only; these values are calculated from the corresponding states model and are not experimental data.

Appendix C. Computer Program and Equation Parameters for the Hard Sphere Model

The program listing that follows is for the hard sphere model described in section 3. To use the program in its present form one must make the following reference to the computer program:

DEN = RODEN(P,T,X)

where DEN is density in moles/liter, P is pressure in bars, T is temperature in kelvin, and X is a matrix of the mole fractions of the components of the mixture in the following order:

X(1)	=	mole	fraction	of	methane
X(2)	=	mole	fraction	of	ethane
X(3)	=	mole	fraction	of	propane
X(4)	=	mole	fraction	of	normal butane
X(5)	=	mole	fraction	of	isobutane
X(6)	=	mole	fraction	of	nitrogen
X(7)	=	mole	fraction	of	normal pentane
X(8)	=	mole	fraction	of	isopentane

Note: the inclusion of the pentanes is due to Rodosevich and Miller [33] and no optimization of parameters has been included in this work for mixtures with pentane as a component.

The range of the program is 90 to 150 kelvin for the saturated liquid phase of mixtures of CH_4 , C_2H_6 , C_3H_8 , nC_4H_{10} , iC_4H_{10} , N_2 , nC_5H_{12} and iC_5H_{12} . The program will calculate densities of any of the pure components but they will be from a different model (i.e., some from an equation of state $(CH_4 \text{ and } N_2)$ and some from the equations for saturated liquid densities. Therefore in its present form, extrapolation to higher pressures is possible but the reliability of the results is questionable.

Other subprograms required:

Sê

SUBROUTINE FM, lines LNG 435 to 529, Appendix F SUBROUTINE ZERO, lines LNG 617 to 623, Appendix F FUNCTION FIND V1, lines LNG 530 to 548, Appendix F FUNCTION FIND G1, lines LNG 549 to 560, Appendix F FUNCTION EXCESS, lines LNG 561 to 616, Appendix F FUNCTION FIND M, lines LNG 217 to 234, Appendix F SUBROUTINE PROPS, lines LNG 248 to 371, Appendix F SUBROUTINE DATA CH4, lines LNG 162 to 216, Appendix F

The parameters for eq (11), section 3 are given in table 6, and in lines LNG 462 through LNG 466 in Appendix F.

The binary interaction parameters j_{ij} and k_{ij} in eqs (15) and (16), section 3 are given in table 7 and in lines LNG 447 through LNG 461 in Appendix F. Table 6. Coefficients for Eq 11.

Fluid	^a i	s _i	°i	Fluid No.
CH ₄	2.755 × 10 ⁵	3.676×10^{-8}	1.00	1
^C 2 ^H 6	7.773 × 10 ⁵	4.158×10^{-8}	1.50	2
с ₃ н ₈	14.165 × 10 ⁵	4.644×10^{-8}	1.67	3
^{nC} 4 ^H 10	22.733 × 10 ⁵	5.051×10^{-8}	1.83	4
iC ₄ H ₁₀	21.279 × 10 ⁵	5.056×10^{-8}	1.79	5
N ₂	1.718 × 10 ⁵	3.546×10^{-8}	1.03	6
$^{nC}5^{H}12$	30.550 × 10 ⁵	5.389 x 10 ⁻⁸	1.91	7
iC ₅ H ₁₂	42.946 x 10 ⁵	5.706×10^{-8}	2.11	8

 $b_i = (2)(3.14159)(6.025 \times 10^{23})S_i^3/3$

					j _{ij}			
ک	1	2	3	4	5	6	7	8
-	0	-0.388616×10^{-2}	-0.120932×10^{-1}	-0.231577×10^{-1}	-0.238349×10^{-1}	-0.997547×10^{-2}	-0.326×10^{-1}	0.458×10^{-1}
2		0	-0.2162 × 10 ⁻²	-0.400910×10^{-2}	-0.812712 × 10 ⁻²	-0.143976 × 10 ⁻¹	-0.3×10^{-2}	-0.4 × 10 ⁻²
e			0	0.761571×10^{-3}	-0.383743×10^{-2}	-0.24014×10^{-1}	0.0	0.0
4				0	0.222150×10^{-2}	-0.576043×10^{-1}	0.0	0.0
2					0	-0.576043 × 10 ⁻¹	0.0	0.0
9						0	0.4×10^{-1}	0.5×10^{-1}
7							0.0	0*0
ω								0.0
					k _{ij}			
	1	2	£	4	Ъ	9	7	ø
1	0	0.298830×10^{-2}	0.597378 × 10 ⁻¹	0.110893	0.100298	0.197290×10^{-1}	0.14	0.1745
2		0	0.14527×10^{-1}	0.67703×10^{-1}	0.346632×10^{-1}	0.529034×10^{-1}	0.2×10^{-1}	0.3×10^{-1}
e			0	0.249291×10^{-1}	-0.838212×10^{-2}	0.14719	0.0	0.0
4				0	0.199213×10^{-1}	0.154365	0.0	0*0
ъ		*			0	0.154365	0°0	0*0
9						0	0.15	0.18
7								0.0
ω								

Table 7. Binary Interaction Parameters for Eqs 15 and 16.

Appendix D. Computer Program and Parameters for the Revised Klosek and McKinley Model

The program listing and tables that follow are for the Revised Klosek and McKinley model described in section 4. The method may be used in two ways. First using the equation:

$$V_{mix} = \sum X_i V_i - [k_1 + (k_2 - k_1) X_{N_2} / 0.0425] X_{CH_4}$$
(D-1)

The V_i, k₁ and k₂ may be obtained from tables 8, 9 and 10 and the volume of the mixture calculated. For example given the mixture of 0.8130 CH₄ + 0.0475 C_2H_6 + 0.0487 C_3H_8 + 0.0242 nC_4H_{10} + 0.0241 iC_4H_{10} + 0.0425 N₂ and a temperature of 105 kelvin.

The
$$\sum X_i V_i$$
 and $X_i W_i$ are obtained from table 8.
 $\sum X_i V_i = (.8130)(.037113) + (.0475)(.047267) + (.0487)(.061766)$
 $+ (.0242)(.076100) + (.0241)(.077538) + (.0425)(.042565)$
 $= 0.0409453$
Then the $\sum X_i W_i = (.8130)(16.04303) + (.0475)(30.07012) + (.0487)(44.09721)$
 $+ (.0242)(58.1243) + (.0241)(58.1243) + (.0425)(28.0143)$
 $= 20.6168$ the molecular weight of the mixture
from table 9 $k_1 = .697 \times 10^{-3}$
from table 10 $k_2 = .849 \times 10^{-3}$
olugging all this into eq (D-1) gives

$$V_{mix} = .040255$$

 $1/V_{mix} = \rho_{mix} = 24.842$ moles/liter

This compares to the experimental value of 24.850 (Appendix A, mixture No. 63) to within 0.03%.

The same result may be obtained by using the computer program in the following way:

D = FMKM(T,X)

where T is temperature in kelvin and X is a matrix of mole fractions of the components in the following order:

- X(1) = mole fraction of methane
- X(2) = mole fraction of ethane
- X(3) = mole fraction of propane
- X(4) = mole fraction of normal butane
- X(5) = mole fraction of isobutane
- X(6) = mole fraction of nitrogen
- X(7) = mole fraction of normal pentane
- X(8) = mole fraction of isopentane

for the example: T = 105., X(1) = .8130, X(2) = .0475, X(3) = .0487,

X(4) = .0242, X(5) = .0241 and X(6) = .0425.

Other subprograms required:

te

FUNCTION VIDEAL, lines LNG 709 through 732, Appendix F

FUNCTION SAT, lines LNG 733 through 762, Appendix F

in
Components
Pure
the
of
Liquid
Saturated
of
Volumes
ole 8.
Tat

Liters/mole.

iC ₅ H ₁₂	.089243	.089454	.089666	.089878	.090091	.090304	.090518	.090733	.090948	.091163	•091379	.091596	.091814	.092032	.092251	.092470	.092690	.092911	.093133	.093355	.093578	72.15139	
nC ₅ H ₁₂	.089173	.089379	.089586	•089793	000060*	.090208	.090416	.090624	•090833	.091042	.091252	.091462	.091673	.091884	•092095	.092307	.092520	.092733	.092947	.093161	.093376	72.15139	
N2	.037543	.038081	.038650	.039254	.039897	.040586	.041327	.042128	.043002	.043963	.045031	.046231	.047602	.049179	.050885	.052714	.054679	.056797	.059085	.061565	.064263	28.0143	
iC4H10	.076084	.076274	.076466	.076659	.076853	.077047	.077243	.077440	.077637	.077836	.078035	.078236	.078438	.078640	.078844	.079049	.079255	.079462	.079671	.079880	.080091	58.1243	
$^{nC_4}H_{10}$.074708	.074891	.075075	.075259	.075445	.075631	.075818	.076006	.076194	.076384	.076574	.076765	.076957	.077150	.077344	•077539	.077734	.077931	.078128	•078327	.078526	58.1243	
с ₃ н ₈	.060461	.060632	.060804	.060977	•061151	•061325	.061501	.061677	.061855	•062033	.062212	.062392	.062574	.062756	.062939	.063124	•063309	.063496	.063684	.063873	.064063	44.09721	
c ₂ H ₆	.046081	.046235	.046390	.046547	.046704	.046863	.047023	.047185	.047348	.047512	.047678	.047845	.048014	.048184	.048356	.048529	.048704	.048881	.049059	.049239	.049421	30.07012	
CH4	.035441	.035649	.035861	.036077	.036298	.036524	.036755	.036992	.037234	.037481	•037735	.037995	.038262	.038536	.038817	.039106	.039404	.039710	.040025	.040350	.040685	r 16.04303	
Т, К	• 06	92.	94.	.96	.98	100.	102.	104.	106.	108.	110.	112.	114.	116.	118.	120.	122.	124.	126.	128.	130.	molecula	weight*

· 0 *

	25	.795	.885	066*	1.120	1.245	1.380	1.550	1.750	1.990	2.272			25	.95	1.14	1.27	1.45	1.71	2.00	2.45	2.90	3.52	4.23			
	24	.725	.810	.910	1.045	1.155	1.280	1.450	1.640	1.860	2.105			24	•86	1.05	1.17	1.33	1.52	1.65	2.30	2.75	3.32	3 .99			
	23	•660	.740	.830	.920	1.055	1.180	1.330	1.525	1.715	1.950			23	.78	•94	1.08	1.19	1.37	1.45	2.08	2.48	3.00	3.77			
10 ³ .	22	.595	.665	.755	.840	.950	1.065	1.205	1.385	1.555	1.300	103	•	22	•69	•83	.94	1.05	1.22	1.3	1.85	2.23	2 •68	3.40			
actor kl x	21	.515	.590	.675	.735	.835	.945	1.055	1.210	1.370	1.590	actor ko	actor vZ v	21	•60	.71	•79	.91	1.07	1.22	1.63	1.98	2.42	3.00			
rrection F	20	.430	.500	.575	.635	.725	.810	.920	1.035	1.200	1.390	rvaction E		20	•50	•59	•64	•75	.92	1.15	1.43	1.73	2.20	2.60			
ble 9. Co	19	.340	.380	.425	.475	.535	.610	•695	•795	.920	1.060	10 L0	• • • •	19	•35	.43	.49	.61	.77	•95	1.23	1.48	1.92	2.40			
Tal	18	.220	.260	•300	.340	.375	.440	•500	.590	•700	.825	Tah	- 40	18	.22	•28	.34	.42	•59	.72	.91	1.13	1.46	2.00			
	17	.120	.135	.150	.165	.180	.220	.250	.295	.345	.400						17	.10	.12	.16	.24	.32	.41	•60	.71	•95	1.30
	16	- •005	- • 006	- •007	- • 007	- • 008	-•009	01	013	- •015	017			16	004	- • 005	- • 007	01	- •015	024	- • 032	- •043	- • 058	- • 075			
	T/W	06	95	100	105	110	115	120	125	130	135			T/W	06	96	100	105	110	115	120	125	130	135			

53

weight*

Appendix E. Computer Program for the Cell Model

The program listings for the cell model start at line LNG 763 and continue on to the end of Appendix F. As is mentioned in section 4, no details of the model are given here only the program listing. To use the program in its present form one must make the following reference to the computer program:

CALL ECKNON(P,D,T,X)

where P is input pressure in bars, D is the output density in moles/liter, T is the input temperature in kelvins and X is a matrix of the mole fractions of the components of the mixture in the following order:

X(1)	=	mole	fraction	of	methane
X(2)	=	mole	fraction	of	ethane
X(3)	=	mole	fraction	of	propane
X(4)	=	mole	fraction	of	normal butane
X(5)	=	mole	fraction	of	isobutane
X(6)	=	mole	fraction	of	nitrogen
X(7)	=	mole	fraction	of	normal pentane
X(8)	=	mole	fraction	of	isopentane

Appendix F. Computer Programs

Listing of computer programs for all four models. See the sections on the individual models for a list of subprograms needed for each model.

The programs are written in FORTRAN IV and are operational on a CDC 6600 computer.

	SUBROUTINE PDMIX(P,D,T,X)	LNG	1
C	FOR A CALL TO PDMIX, P,I AND X ARE INPUT. P IS IN BAR,T IS IN	LNG	2
C C	KELVIN AND D IS OUTPUT IN THE UNITS OF MOLES/LITEK		3
c	INITE ADE THE CAME		4 5
c c	THE Y MATDLY MUST CONTAIN THE MOLEDACTION OF THE ALLOWARLE FLUIDS.		5
ĉ	IN THE FOLLOWING OPDED 1=C1 2=C2 3=C3 A =NCA 5=ICA 6=N2 7=NC5 8=IC5		7
r r	DIACE A 7EDO IN THE ELEMENTS OF Y WHEDE THAT DADITION AD CAS IS NOT		2 2
r	DESCRIT		0
C	DIMENSION 74TA(10, 10) ATA(10, 10) TC(10) VC(10) 7C(10) AC(10) W(10)		10
	1 PC(10) CF(0)	LNG	11
	DIMENSION THETA(10 10) TH(10 10) PHI(10 10) PH(10 10) $E(10 10)$ EH	LNG	12
	1(10, 10) + H(10, 10) + H(10, 10) + R(10, 10) + R(10	LNG	13
	COMMON/DATA M/7ATA ATA TC.VC W.TCO.VCO ACO ZCO RR.R.OMEGO AC ZC N	LNG	14
	1.PC.CF	ING	15
	DATA(IF=0)	LNG	16
	D=0.0 \$ PI=P/1.01325	LNG	17
	GO TO 4	LNG	18
	ENTRY PMIX	LNG	19
	P=0.0	LNG	20
	IP=1	LNG	21
	GO TO 5	LNG	22
	4 IP=0	LNG	23
	5 CONTINUE	LNG	24
	IF(IE.GT.O)GO TO 6	LNG	25
	IE=1	LNG	26
	CALL DATA CH4	LNG	27
	IBASE=L=1	LNG	28
	CALL MIX DATA(IBASE)	LNG	29
	6 CONTINUE	LNG	30
	DO = I = I, N	LNG	31
	$\Gamma(1,1)=\Pi(1,1)=1$		32
	INCIA(1,1)-1.		2/
	DO 30 .1=1 30		35
	HX=FXHX=0.0	LNG	36
	DO 10 I=1.N	ING	37
	FH(I,I)=F(I,I)	LNG	38
	HH(I,I)=H(I,I)	LNG	39
	IF(X(I).LT0001)G0 T 0 10	LNG	40
	F(I,I)=(TC(I)/TC(L))*THETA(I,I)	LNG	41
	H(I,I)=(VC(I)/VC(L))*PHI(I,I)	LNG	42
1	O CONTINUE	LNG	43
	DO 11 IA=1,N	LNG	44
	DO 11 IB=1,N	LNG	45
	IF(X(IA).LT0001)G0 T0 11	LNG	46
	IF(X(IB),LI,.0001)GU U II	LNG	4/
	$FAB=ZA(IA, IB)^{(IA, IA)^{(IB, IA)^{(IB, IB)}^{(10, IB)}^{(10, IB)}}$	LNG	48
	ΠΑΟ-ΑΙΑ(ΙΑ,ΙΟ)"(.3"Π(ΙΑ,ΙΑ)""(Ι./3.)".5"Π(ΙΟ,ΙΟ)""(Ι./3.))""3 UY-UY-Y/TA)*Y/TO)*UAD		49 60
	$FXHX=FXHX+X(TA) \times (TB) \times HAB \times FAB$	LNG	51
1	1 CONTINUE	LNG	52
-	FX=FXHX/HX	LNG	53
	PRO=PI*HX/FX	LNG	54
	TRO=T/FX	LNG	55
	DEN=D*HX	LNG	56
	IF(IP.EQ.1)GO TO 8	LNG	57
	DD=SATL(TR0)*1000.+1.	LNG	58
	9 DEN=FIND M(PRO,TRO,DD)	LNG	59
		LNG	60
	IF(UEN.LE.U.U) GU IU 33	LNG	62
			62
		LING	05

	IF(X(I).LT0001)G0 T0 12	LNG	64
	VR(I,I)=VRO*PHI(I,I)/VCO	LNG	65
	TR(I,I)=TRO*THETA(I,I)/TCO	LNG	66
	IF(VR(I,I).GT.2.)VR(I,I)=2.	LNG	67
	IF(VR(I,I).LT5)VR(I,I)=.5	LNG	68
	TH(I,I)=THETA(I,I)	LNG	69
	THETA(I,I)=1.+(AC(I)-OMEGO)*(CF(1)-CF(2)*ALOG(TR(I,I))+(CF(3)-CF(4))	LNG	70
	1)/TR(I,I))*(VR(I,I)-CF(5)))	LNG	71
	PH(I,I)=PHI(I,I)	LNG	72
	PHI(I,I)=(1.+(AC(I)-OMEGO)*(CF(6)*(VR(I,I)-CF(7))-CF(8)*(VR(I,I)	LNG	73
	1-CF(9))*ALOG(TR(I,I))))*ZCO/ZC(I)	LNG	74
12	CONTINUE	LNG	75
	DO 13 I=1,N	LNG	76
	IF(X(I).LT0001)G0 TO 13	LNG	77
	IF(ABS ((FH(I,I)-F(I,I))/F(I,I)).GT001)G0 TO 30	LNG	78
	IF(ABS ((HH(I,I)-H(I,I))/H(I,I)).GT001)G0 TO 30	LNG	79
	IF(ABS ((TH(I,I)-THETA(I,I))/THETA(I,I)).GT001)GO TO 30	LNG	80
	IF(ABS ((PH(I,I)-PHI(I,I))/PHI(I,I)).GT001)G0 TO 30	LNG	81
13	CONTINUE	LNG	82
	GO TO 31	LNG	83
30	CONTINUE	LNG	84
33	PRINT 100, P, DEN, T	LNG	85
00	FORMAT(* ITTERATION FAILED AT*,3F10.4)	LNG	86
	STOP	LNG	87
31	D=DEN/HX	LNG	88
	THC=THETA(6,6)	LNG	89
	IF(IP.EQ.0)GO TO 32	LNG	90
	CALL PRESS(P,DEN,TRO)	LNG	91
	PI=1.01325*P*FX/HX	LNG	92
32	RETURN	LNG	93
	END	LNG	94
	SUBROUTINE MIX DATA(IBASE)	LNG	95
	DIMENSION ZATA(10,10), ATA(10,10), TC(10), VC(10), ZC(10), AC(10), W(10)	LNG	96
	1,PC(10),CF(9)	LNG	97
	COMMON/DATA M/ZATA, ATA, TC, VC, W, TCO, VCO, ACO, ZCO, RR, R, OMEGO, AC, ZC, N	LNG	98
	1,PC,CF	LNG	99
	DATA(PC=45.356,47.96757,41.89008,37.79462,36.40758,33.10393)	LNG	100
	DATA(TC=190.555,305.5,370.,425.,408.1,126.2)	LNG	101
	DATA(W=16.04303,30.07012,44.09721,58.1243,58.1243,28.0134)	LNG	102
	DATA(VC=98.522,146.2,200.,251.62,263.00,89.827)	LNG	103
	DATA(AC=.0109,.110427,.154837,.176372,.150115,.0291791)	LNG	104
	DATA(R=82.05606),(RR=8.3144),(N=6)	LNG	105
	DATA(CF=109495,.919454,-4.01525,-4.14192,.444850,.356808,	LNG	106
	11.02619,.893323,.761533)	LNG	107
	DATA(ATA(1,2)=1.00514),(ATA(1,3)=1.01922),(ATA(1,4)=1.04243),	LNG	108
	1(ATA(1,5)=1.05048),(ATA(1,6)=1.01009),	LNG	109
	A(ATA(2,3)=1.00599),(ATA(2,4)=1.01616),	LNG	110
	2(ATA(2,5)=1.02369),(ATA(2,6)=1.02127),(ATA(3,4)=1.00172),	LNG	111
	3(ATA(3,5)=1.01140),(ATA(3,6)=1.04606),(ATA(4,5)=.997114),	LNG	112
	4(ATA(4,6)=1.20955),(ATA(5,6)=1.13889)	LNG	113
	DATA(ZATA(1,2)=1.01127),(ZATA(1,3)=.988608),(ZATA(1,4)=.983130),	LNG	114
	1(ZATA(1,5)=.986978),(ZATA(1,6)=.953430),(ZATA(2,3)=.999961),	LNG	115
	2(ZATA(2,4)=.972223),(ZATA(2,5)=.998886),(ZATA(2,6)=.939622),	LNG	116
	3(2ATA(3,4)=.98554/), (ZATA(3,5)=1.03099), (ZATA(3,6)=.912209),	LNG	117
	4(ZATA(4,5)=.976416),(ZATA(4,6)=.849200),(ZATA(5,6)=.857310)	LNG	118
	L=IBASE	LNG	119
	N=8	LNG	120
		LNG	121
	PC(7)=33.37	LNG	122
	PC(8)=31.57	LNG	123
	TC(/)=469.6	LNG	124
	TC(8)=460.39	LNG	125
	VC(7)=304.	LNG	126

	VC(8)=306.	LNG 127
	W(7)=72.15139	LNG 128
	W(8)=72.15139	LNG 129
	AC(7)=.234320	LNG 130
	AC(8)=.288886	LNG 131
	ATA(1,7)=ATA(1,8)=1.06	LNG 132
	ATA(2,7) = ATA(2,8) = 1.02	LNG 133
	ATA(3,7)=ATA(3,8)=1.01	LNG 134
	ATA(4,7) = ATA(4,8) = 1.	LNG 135
	ATA(5,7)=ATA(5,8)=1.	LNG 136
	ATA(6,7) = ATA(6,8) = 1.	LNG 137
	ATA(7.8)=1.	LNG 138
	ZATA(1,7) = ZATA(1,8) = .98	LNG 139
	ZATA(2,7) = ZATA(2,8) = .99	LNG 140
	7ATA(3,7) = 7ATA(3,8) = .99	ING 141
	ZATA(4,7) = ZATA(4,8) = .99	LNG 142
	7ATA(5,7) = 7ATA(5,8) = .99	ING 143
	7ATA(6,7) = 7ATA(6,8) = .99	LNG 144
	7ATA(7,8)=1.	LNG 145
	$DO_{3,1}=1.N1$	LNG 146
	.11=]+1	LNG 147
	DO 3 K=.11 N	LNG 148
	$7 \Delta T \Delta (K, I) = 7 \Delta T \Delta (I, K)$	LNG 149
ર	$\Delta T \Delta (K, J) = \Delta T \Delta (J K)$	LNG 150
3	DO A T=1 N	LNG 151
л	$\Delta T \Delta (I I) = 7 \Delta T \Delta (I I) = 1$	LNG 151
7	DCO-DC(1)	LNG 152
c	20/J 1-1,N 70/J)-pc/J)+Vc/J)/Tc/J)/p	
5		
	INITIALIZES THE CONSTANTS TO METHANE	
	DIMENSION C(32) VD(0) CI(11)	
	COMMON / DATA / C D CAMMA VD DTD	
	DIMENSION A(10)	
	COMMON /SATC /A	
	P = 0205616	
	CAMMA=_ 0006	
	$\Lambda(1) = 100.555$	
	A(2) = 10.22	
	A(2) = 10.23 A(2) = 10.4156472	
	A(3) = 10.404130472 A(4) = 7.2400021512	
	A(4) = 7.5490921012 A(5) = 1.40101600000	
	A(5) = -1.4313100833 A(5) = A(7) = 0.0	LNG 174
	A(0) - A(7) - 0.0	
	G(1) =10/02/99/000E = 01	LNG 170
	G(2) = -10330/100009ET01	
	$C(A) = -772211A70ECAE \pm 02$	
	G(4) =772311470304ETU3	
	C(-6) = -0.69199.00000000000000000000000000000000	
	C(7) = .0400100434752-03	
	C(9) = 96000035271175402	LNG 102
	C(0) = -2000302414CT0Z	LNG 103
	C(10) = 3050430263195 04	LNG 184
	G(10) = .333043020310E = 04	
	G(11) = -2007/2310035E = 01	LNG 180
	C(12) =504010057636E = 03	LNG 107
	G(13) = -191904907930E = 03	LNG 100
	u(1+/-*·15000/500+00	LNG 109

С

	G(15)= .607479967879E+01	LNO	i 190
	G(16)=529609525984E-03	LNO	i 191
	G(17) = .152264286004E-04	LNG	i 192
	G(18) =109952182842E - 01	LNC	i 193
	G(19) = .191395549929F - 03	LNC	194
	G(20) = .386470003746E+05	LNC	195
	C(21) = 157030582612E+07		106
	$C(22) = 1052701444015 \pm 02$		107
	G(22) = -1552/01444012+05		100
	G(23) = .103990001029ETU/	LINC	190
	G(24) = .003051140/11E+00	LNU	199
	G(25) = .3/6485162808E + 02	LNC	1 200
	G(26) = .125593680622E - 02	LNC	i 201
	G(27) =343570032513E + 02	LNC	i 202
	G(28)=540945094139E-05	LNC	i 203
	G(29) = .185622284663E - 02	LNC	5 204
	G(30) = .770786979245E - 08	LNC	G 205
	G(31)=286868318650E-05	LNC	G 206
	G(32)= .372376961647E-04	LNC	G 207
	VP(1)=4.77748580	LNC	G 208
	VP(2)=1.76065363	LNC	209
	VP(3) =56788894	LNO	3 210
	VP(4) = 1.32786231	LNC	211
	VP(5)=1.5	L-NO	3 212
	VP(6) = .1159	LNC	213
	VP(7) = 90.68	1 NO	214
	VP(8) = 190.555	LM	215
	FND	1 M	216
			210
	COLVES THE EQUATION OF STATE OF METHANE FOR DENSITY CIVEN D AND		210
	SULVES THE EQUATION OF STATE OF METHANE FOR DENSITY GIVEN P AND		210
			219
		LNU	
	DU = 1,50	LNC	2 221
	CALL PRESS(PP, DD, TT)	LNC	
		LNC	i 223
	1F(ABS(P-P2)-1.E-/*P)20, 20, 1	LNO	i 224
1	CALL DPDD(PP,DD,TT)	LNC	i 225
		LNO	i 226
	CORR=(P2-P)/DP	LNC	i 227
	IF(ABS (CORR)-1.E-7*DD)20,20,10	LNO	i 228
10	DD=DD-CORR	LNC	G 229
	FIND M=0	LNO	G 230
	RETURN	LNO	G 231
20	FIND M=DD	LNO	G 232
	RETURN	LNC	G 233
	END	LNO	G 234
	FUNCTION SATL(T)	LNC	G 235
	CALCULATES THE SATURATED LIQUID DENSITY OF METHANE	LNO	G 236
	DIMENSION A(10)	LNO	3 237
	COMMON/SATC/A	LNO	3 238
	IF(T.GT.A(1))GO TO 1	LNO	3 239
	X = (1 - T/A(1))	LNC	240
	SATL=A(2)+A(3)*X**(.35)+A(4)*X+A(5)*X**(4./3.)+A(6)*X**(5./3.	LNC	241
1)+A(7)*X**2	LNO	3 242
	SATL=SATL/1000.	LNC	243
	RETURN	LNO	244
1	SATI =1. F20	LNC	245
-	RETURN	LNC	246
	FND	LM	247
	SUBROUTINE PROPS(PP.DD.TT)	1. M	248
	FOULATION OF STATE FOR METHANE AND NITROGEN	LNC	2/10
	DIMENSION X(33)		245
	DIMENSION R(33) C(32)		250
	FORTVALENCE (R Y)		201
		LN	1 202

С

С

С

	COMMON/DATA/G,R,GAMMA	LNG 253	
	DATA(ID=1)	LNG 254	
	DATA(IZ=1)	LNG 255	
T	CONTINUE	LNG 256	
	D=DD	LNG 257	
		LNG 258	
		LNG 259	
		LNG 260	
	D2-D*D D3-D2*D	LNG 201	
	D3-D2-D D4=D3*D		
	D5=D3 D		
	DS-D4 D D6=D5*D	LNG 265	
	D7=D6*D	LNG 266	
	D8=D7*D	LNG 267	
	D9=D8*D	LNG 268	
	D10=D9*D	LNG 269	
	D11=D10*D	LNG 270	
	D12=D11*D	LNG 271	
	D13=D12*D	LNG 272	
	TS=SQRT (T)	LNG 273	
	T2=T*T	LNG 274	
	T3=T2*T	LNG 275	
	T4=T3*T	LNG 276	
	T5=T4*T	LNG 277	
	F=EXP (GM*D2)	LNG 278	
	GO 10 (100,200),K	LNG 2/9	
	ENTRY PRESS	LNG 280	
		LNG 281	
00		LNG 283	
100	B(1)=D2*T	LNG 284	
	B(2)=D2*TS	LNG 285	
	B(3)=D2	LNG 286	
	B(4) = D2/T	LNG 287	
	B(5)=D2/T2	LNG 288	
	B(6)=D3*T	LNG 289	
	B(7)=D3	LNG 290	
	B(8)=D3/T	LNG 291	
	B(9)=D3/T2	LNG 292	
	B(10)=D4*1	LNG 293	
	B(11)=D4	LNG 294	
	D(12)-D5		
	D(13)-D5/T		
	B(15) = D6/T2	LNG 298	
	B(16) = D7/T	LNG 299	
	B(17) = D8/T	LNG 300	
	B(18)=D8/T2	LNG 301	
	B(19)=D9/T2	LNG 302	
	B(20)=D3*F/T2	LNG 303	
	B(21)=D3*F/T3	LNG 304	
	B(22)=D5*F/T2	LNG 305	
	B(23)=D5*F/T4	LNG 306	
	B(24)=D/*F/12	LNG 307	
	B(25)=D/*F/13	LNG 308	
	B(20)=D3^F/12 D(27)=D0*E/T4	LNG 309	
	D\2/J-U3"F/14 B(28)=D11*F/T2	LNG 310	
	R(29)=D11*F/T3	LNG 312	
	B(30)=D13*F/T2	LNG 313	
	B(31)=D13*F/T3	LNG 314	
	B(32)=D13*F/T4	LNG 315	
	102	P=0	LNG 316
---	-----	---	---------
		D0 101 I=1,32	LNG 317
	101	P=P+B(I)*G(I)	LNG 318
		p=p+K*D*1	LNG 319
			LNG 320
			LNG 321
			LNG 322
			LNG 323
	200		LNG 325
	200	$F1=2$. $\Omega\Omega \times F \times GM \times D$	LNG 326
		$F21=3.000 \times F \times D2 \times F1 \times D3$	LNG 327
		F22=5.000*F*D4 +F1*D5	LNG 328
		F23=7.000*F*D6 +F1*D7	LNG 329
		F24=9.000*F*D8 +F1*D9	LNG 330
		F25=11.00*F*D10+F1*D11	LNG 331
		F26=13.00*F*D12+F1*D13	LNG 332
		B(1)=2.00*D*T	LNG 333
		B(2)=2.00*D*TS	LNG 334
		B(3)=2.00*D	LNG 335
		B(-4)=2.00*D/1	LNG 330
		B(-5)=2.00*D/12	LNG 337
		$D(0) - 3.00^{-}D^{-}(1)$	LNG 330
		R(R)=3.00 DZ	LNG 340
		B(9)=3.00*D2/T2	LNG 341
		B(10)=4.00*D3*T	LNG 342
		B(11)=4.00*D3	LNG 343
		B(12)=4.00*D3/T	LNG 344
		B(13)=5.00*D4	LNG 345
		B(14)=6.00*D5/T	LNG 346
		B(15)=6.00*D5/T2	LNG 347
		B(16)=7.00*D6/T	LNG 348
		B(1/)=8.00*D//1	LNG 349
		$B(18)=8.00^{1}/12$	LNG 350
		R(20)-E21/T2	LNG 351
		R(21) = F21/T3	LNG 352
		B(22) = F22 / T2	LNG 354
		B(23) = F22/T4	LNG 355
		B(24)=F23/T2	LNG 356
		B(25)=F23/T3	LNG 357
		B(26)=F24/T2	LNG 358
		B(27)=F24/T4	LNG 359
		B(28)=F25/T2	LNG 360
		B(29)=F25/13 B(20)=F26/T2	LNG 361
		B(3U)=F2O/IZ P(21)=F2C/T2	LNG 302
		B(32) = F26/TA	
	202	P=0	LNG 365
	202	D0 201 I=1.32	LNG 366
	201	P=P+B(I)*G(I)	LNG 367
		P=P+R*T	LNG 368
		pp=p	LNG 369
		RETURN	LNG 370
		END	LNG 371
~		SUBROUTINE DATA N2	LNG 372
C		INTITALIZES THE EQUATION OF STATE CONSTANTS TO NITROGEN	LNG 373
		DIMENSION $G(32), VP(9), GI(II)$	LNG 3/4
		$P=8.20530F_2$	LNG 3/5
		GAMMA=0056	LNG 370
		G(1) = 0.136224769272827E - 02	LNG 378

G(2) = 0.107032469908591E 00	LNG	379
G(3) = -0.243900721871413E01	LNG	380
G(4) = 0.341007449376470E 02	LNG	381
G(5) = -0.4223/430946616/E 04	LNG	382
G(0) = 0.105098600246494E - 03	LNG	383
G(7) = -0.112594620522061E = 01		205
G(0) = 0.142000789270907E 05		386
G(10) = 0.811140082588776F-07	LNG	387
G(11) = 0.233011645038006F - 02	LNG	388
G(12) = -0.507752586350986E 00	LNG	389
G(13) = 0.485027881931214E-04	LNG	390
G(14) = -0.113656764115364E-02	LNG	391
G(15)= -0.707430273540575E 00	LNG	392
G(16)= 0.751706648852680E-04	LNG	393
G(17) = -0.111614119537424E-05	LNG	394
G(18) = 0.368796562233495E - 03	LNG	395
G(19) = -0.20131/691347/29E-05	LNG	396
G(20) = -0.169/1/444/55949E 05	LNG	397
G(21) = -0.119/19240044192E 00	LNG	398
G(22) = -0.9/52102/2050201E 02	LNG	399
G(23) = -0.179920450443470E 00	LNG	400
G(25) = -0.256582926077184F 01	LNG	401
G(26) = -0.413707715090789F - 03	LNG	403
G(27) = -0.256245415300293E 00	LNG	404
G(28) = -0.124222373740063E-06	LNG	405
G(29)= 0.103556535840165E-04	LNG	406
G(30) = -0.538699166558303E-09	LNG	407
G(31)= -0.757415412839596E-08	LNG	408
G(32) = 0.585367172069521E-07	LNG	409
VP(1)=5.1113192094 \$ VP(2)=6.482667539E-1	LNG	410
VP(3)=-1.5108/30916E-1 \$ VP(4)=7.4028493342E-1	LNG	411
VP(5)=1.5 \$ VP(6)=.123 \$ VP(7)=63.15 \$ VP(8)=126.26	LNG	412
VP(9)=0.0	LNG	413
	LNG	414
EINCTION VON(TT)	LNG	415
CALCULATES THE VAPOR PRESSURE OF BOTH METHANE AND NITROGEN	ING	417
DIMENSION G(32), VP(9)	LNG	418
COMMON/DATA/G.R.GAMMA.VP.DTP	LNG	419
T=TT	LNG	420
X=(1VP(7)/T)/(1VP(7)/VP(8))	LNG	421
VPN=VP(6)*EXP(VP(1)*X+VP(2)*X*X+VP(3)*X**3+VP(9)*X**4+VP(4)*X*	LNG	422
l(1X)**VP(5))	LNG	423
RETURN	LNG	424
	LNG	425
FUNCTION RODEN(P, I, X)	LNG	426
THE HARD SPHERE MODEL, SEE SUBROUTINE FM FUR THE ARGUMENT LIST		42/
	LNG	420
D=28.	LNG	430
V=V+V IDFL (P.D.T.X)	LNG	431
RODEN=1000./V	LNG	432
RETURN	LNG	433
END	LNG	434
SUBROUTINE FM(Q,T,X,V9,G9)	LNG	435
PREDICTION OF EXCESS PROPERTIES WITH LHW POTENTIAL, COMP 1-METH	LNG	436
ANE, COMP 2-ETHANE, COMP 3-PROPANE, COMP 4 N-BUTANE, COMP 5-I-BUT	LNG	437
ANE, CUMP 6-NITROGEN, COMP 7-NORMAL PENTANE, COMP 8-ISOPENTANE	LNG	438
ADV CRYU ENGR. VOL. 19 (19/3)-REPROGRAMED BY R. MCCARTY,2/22/74	LNG	439
AKGUMENIS AKE X-MULE FRACTIONS, I-TEMPERATUKE, V-PRESSUKE, V9-EXCESS	LNG	440
VULUME, WS-EAUESS WIDDS ENERGY, FIRST INKEE ARE INPUT, LAST TWU ARE	LING	441
62		

С

C C C C C C C

	OUTPUT, INPUT IS IN KELVINS AND BAR, DIMENSION A(8), B(8) , S(8), V(8), G(8), C(8,8), D(8,8), K(8,8), 1J(8,8), E(8), Y(8), O(8), X(10)	LNG LNG LNG	442 443 444
	TYPE REAL J,K,N1 DATA(KEY=1) DATA(J(1, 2)=- 00388616) (J(1, 3)=- 0120932) (J(1, 4)=- 0231577)		445 446 447
	A(J(1,5)=0238349), (J(1,6)=00997547), (J(1,7)=0326), (J(1,8)= B0458), (J(2,4)=00400910), (J(2,5)=00812712), (J(2,6)=0143976)		448 449
	(J(3, 4) = .003), (J(2, 8) = .004), (J(3, 4) = .000), (J(3, 8) = 0.0), (J(4, 5) = .002221) (J(3, 6) = .024014), (J(3, 7) = 0.0), (J(3, 8) = 0.0), (J(4, 5) = .002221) (J(4, 7) = .0), (J(4, 8) = .0), (J(5, 6) = .0576043), (J(4, 6) = .0576043),		450 451 452
	F(J(5,7)=.0), (J(5,8)=0.0), (J(6,7)=04), (J(6,8)=05), (J(7,8)=.0) G, (J(2,3)=002162) DATA(K(1,2)=.00298830), (K(1,3)=.0597378), (K(1,4)=.110893), (453 454 455
	AK(1,5)=.100298),(K(1,6)=.0197290),(K(1,7)=.14),(K(1,8)=.1745), B(K(2,4)=.0677703),(K(2,5)=.0346632),(K(2,6)=.0529034),(K(2,7)= C.02),(K(2,8)=.03),(K(3,4)=.0249291),(K(3,5)=00838212),(K(4,5)=.0	LNG LNG	456 457 458
	D199213), $(\dot{K}(4,6)=.154365)$, $(K(4,7)=.0)$, $(K\dot{(4,8)}=.0)$, $(K(5,6)=.154365)$ E, $(K(5,7)=.0)$, $(K(5,8)=.0)$, $(K(6,7)=.15)$, $(K(6,8)=.18)$, $(K(7,8)=0.0)$ F, $(K(2,3)=.014527)$, $(K(3,6)=.14719)$, $(K(3,7)=0.0)$, $(K(3,8)=0.0)$	LNG LNG	459 460 461
	DATA(\$=3.676E-8,4.158E-8,4.644E-8,5.051E-8,5.056E-8,3.546E-8, 15.389E-8,5.706E-8) DATA(A=2.755E+5.7.773E+5.14.165E+5.22.733E+5.21.279E+5.1.718E+5.	LNG LNG	462 463 464
	130.550E+5,42.946E+5) DATA(0=1.,1.5,1.67,1.83,1.79,1.03,1.91,2.11) THESE ARE THE ACENTRICITY FACTORS (FOR MOLECULAR SHAPES FTC.) ***		465 466 467
	DATA(Y=35.,45.,60.,75.,75.,40.,90.,105.) DATA(P1=3.14159),(N1=6.025E+23),(R=8.3143)		468 469 470
	KEY=0 D0 2 I=1,8	LNG	471 472
	K(I,I)=0.0 D0 2 M=I,8		473 474 475
2 1	K(M,I)=J(I,M) K(M,I)=K(I,M) CONTINUE	LNG LNG LNG	476 477 478
	P=Q*.1 IW=8 DO 10 I=1,IW	LNG LNG	479 480 481
10 15	E(I)=O(I) DO 15 I=1,IW B(I)=(2./3.)*P1*N1*S(I)**3	LNG LNG	482 483 484
	DO 20 I=1,IW DO 20 M=1,IW D(I,M) =(((B(I)**(1./3.) + B(M) ** (1./3.))/ 2.)*(1J(I,M)))	LNG LNG	485 486 487
20	1 **3 C(I , M) = (1 K(I, M)) * (A(I)* A(M)) ** (1. / 2.) * 1(D(I, M) **2 / (B(I) * B(M))) ** (1./2.)	LNG LNG	488 489 490
	A2=0 \$ B2=0 E2=0 \$ V2=0 D0 25 I=1,IW	LNG LNG	491 492 493
	V2=V2+X(I)*Y(I) DO 25 M=1,IW E2=E2+X(I)*X(M)*(E(I)+E(M))/2.	LNG LNG	494 495 496
25	A2 = A2 + X(I) * X(M) * C(I, M) B2=B2+X(I)*X(M)*D(I,M) V6=V2	LNG LNG LNG	497 498 499
	DO 30 I = 1, IW A3 = A(I) B3 = B(I)	LNG LNG	500 501 502
	E3 = E(I) $V2 = Y(I)$	LNG	503 504

		V1 = FIND V1(A3, B3, E3, R, V2, P, T)	LNG	505
		G1 = FIND G1(A3, B3, E3, R, V2, P, T)	LNG	506
		V(I) = VI	LNG	507
	30	G(1) = GI	LNG	508
		AJ=AZ	LNG	509
		B3=B2	LNG	510
			LNG	511
		V2-V0 V1-EIND V1/A2 D2 E2 D V2 D T)	LNG	512
c		VI = FIND VI(A3, D3, L3, R, V2, F, T) C1 = FIND C1(A3, R3, F3, P, V2, P, T)		51/
C		V7=V1	LNG	515
		67=61	LNG	516
C		EXCEAS VOLUME AND GIRS ENERGY	ING	517
Ŭ			ING	518
		G9=0	ING	519
		DO 35 I=1.IW	LNG	520
		$V_{9}=V_{9}-X(I)*V(I)$	LNG	521
	35	G9=G9-X(I)*G(I)	LNG	522
		W9 = -V9	LNG	523
		H9 = -G9	LNG	524
		V9=V9+V7	LNG	525
		G9=G9+G7	LNG	526
		VIWW=V(IWW)	LNG	527
		RETURN	LNG	528
		END	LNG	529
		FUNCTION FIND V1(A3, B3, E3,R, V2, P, T)	LNG	530
C		SOLVES THE HARD SPHERE EQUATION OF STATE FOR VOLUME GIVEN P AND T	LNG	531
С		A2 IS THE CONSTANT A, B2 IS THE CONSTANT B, E3 IS THE ACENTRICITY	LNG	532
		INDEX = 0	LNG	533
	1	VI = V2	LNG	534
		XI = B3 / (4. * VI)	LNG	535
	-	$F2 = ((1. + XI + XI^{*}2) / (1 XI)^{**}3) * E3 - A3 / (VI * R * I)$	LNG	530
	-	$L = (T ^ VI) / (K^1)$	LNG	53/
		$F3 = A3 / (R^{1}(V1)^{2}) - P/ (R^{1})$ $F2 = F2 / (//V1)^{2} + V1 + (1 + V1)^{2} + (1 + V1)^{$	LNG	530
	1	$[+ V1] / // 1 = V1 + 2 \cdot X1^{-2} - (1 - X1) + 3^{-} (1 + X1 + X1^{-2})$		539
	1	$(1 \times 1) / ((1 - 1) - 1) - 1) - 1) - 10$		540
		$V_{2} = V_{1} = V_{2} + 3$ TE(ARS((V2 - V1) / V2) T 00001) G0 T0 2	LNG	542
		II(ABS(VZ - VI) / VZ) . LI00001 / 00 10 ZINDEX = INDEX + 1	LNG	542
		IF (INDEX JT. 250) GO TO 1	LNG	544
	2	V1 = V2	LNG	545
	-	FIND V1 = V2	LNG	546
		RETURN	LNG	547
		END	LNG	548
		FUNCTION FIND G1(A3, B3, E3,R, V2, P, T)	LNG	549
С		CALCULATES THE GIBBS FREE ENERGY FOR THE HARD SPHERE EOS	LNG	550
		V1 = V2	LNG	551
		X1 = B3 / (4. * V1)	LNG	552
		G1 = ALOG(1. / (1 X1)) + (3. *X1) / (1 X1) + (3. * X1**2)	LNG	553
	1	L / (2. * (1 X1)**2)	LNG	554
		G1 = G1 - A3 / (E3 * R * T*V1) + (P * V1) / (E3 * R * T) -1.0	LNG	555
	1	L = ALUG(VI)	LNG	556
		$GI = K \cap I \cap ES \cap GI$	LNG	557
		FIND GI = GI		558
				222
			LNG	561
C		CALCULATES THE EXCESS OR IDEAL VOLUM DEPENDING ON THE ENTRY	LNG	562
U		DIMENSION X(10), F(10)	LNG	563
		KR=0	ING	564
		GO TO 1	LNG	565
		ENTRY V IDEL	LNG	566
		KR=1	LNG	567

	1	CONTINUE	LNG 568
		CALL ZERO(F)	LNG 569
		IF(X(1).LE000001)G0 T0 2	LNG 570
		CALL DATA CH4	LNG 5/1
		IF(T.GT.190.555)GO TO 12	LNG 5/2
		PM=VPN(T)+.00001	LNG 5/3
		DELP=P-PM	LNG 5/4
		U=SAI(1,1)	LNG 5/5
		CALL DPDD(DP,D,T)	LNG 5/6
			LNG 577
			LNG 578
		$F(1) = X(1)^{-1}UUU./U$	LNG 579
	12		LNG 581
	12	$TE(D F \cap O)D = 1000$	LNG 582
		F(1)=Y(1)*1000 /D	LNG 583
	2	IE(X(2)) IE 000001) GO TO 3	LNG 584
	2	$F(2)=X(2)\times 1000$, (SAT(T, 2))	LNG 585
	3	IE(X(3), IE, 000001)G0 T0 4	LNG 586
	Ŭ	$F(3) = X(3) \times 1000 \cdot (SAT(T,3))$	LNG 587
	4	IF(X(4), LE, 00001)G0 T0 5	LNG 588
		$F(4) = X(4) \times 1000$, $SAT(T, 4)$	LNG 589
	5	IF(X(5), LE, 00001)GO TO 6	LNG 590
	-	$F(5) = X(5) \times 1000./SAT(T.5)$	LNG 591
	6	IF(X(7).LE00001)G0 TO 61	LNG 592
		$F(7) = X(7) \times 1000./SAT(T,7)$	LNG 593
	61	IF(X(8).LE00001)G0 TO 62	LNG 594
		F(8)=X(8)*1000./SAT(T,8)	LNG 595
	62	IF(X(6).LE00001)GO TO 8	LNG 596
		CALL DATA N2	LNG 597
		IF(T.GT.126.6)GO TO 7	LNG 598
		PN=VPN(T)+.000001	LNG 599
		DELP=P-PN	LNG 600
		D=SAT(T,6)	LNG 601
		CALL DPDD(DP,D,T)	LNG 602
		F(6)=X(6)*1000./(D+DELP/DP)	LNG 603
	7		LNG 604
	/	U=FIND M(P, I, DD)	LNG 605
		F(D,LE,U,U) = 1000. $F(S) = Y(S) \pm 1000$ /D	LNG 600
	0	V-1000 /D	
	0	V-1000.700	
		$D_{0} 21 T = 1.8$	LNG 610
	21	$V \leq V \leq F(1)$	LNG 611
		FXCFSS=V-VS	LNG 612
		IF(KR.GT.0)EXCESS=VS	LNG 613
		CALL DATA CH4	LNG 614
		RETURN	LNG 615
		END	LNG 616
		SUBROUTINE ZERO(X)	LNG 617
С		INITIALIZES THE COMPONENT MATRIX TO O	LNG 618
		DIMENSION X(10)	LNG 619
		DO 1 I=1,10	LNG 620
	1	X(I)=0.0	LNG 621
		RETURN	LNG 622
		END	LNG 623
~		FUNCTION FMKM(T,X)	LNG 624
C		THE REVISED KLOSEK AND MCKINLEY METHOD, THE INPUT IS TEMPERATURE	LNG 625
C		AND THE COMPONENT MATRIX. TEMPERATURE IS IN KELVIN, OUTPUT IS	LNG 626
C		DENSITY IN MULES PER LITER. THE ALLOWABLE COMPONENTS ARE C1,C2,C3	LNG 627
C		FOR MIXTURES WITH LESS THAN 60% METHANE OF FOR MIXTURES CONTATION	LNG 628
c		MODE THAN AN NITEDOCEN OF MODE THAN AN EACH OF NOA OF TOA OF MODE	LNG 620
0		HORE THAN TO WITHOUS ON FORE THAN TO EACH OF NOT ON ICT OR FORE	LING 050

65

THAN 2% TOTAL OF NC5 AND IC5. LNG 631 DIMENSION TM(100), TN(100), X(10), Q(8) LNG 632 DATA(Q=16.04303,30.07012,44.09721,58.1243,58.1243,28.0134,72.1513 LNG 633 19,72.15139) LNG 634 DATA((TM(I),I=1,10)=-.005,.12,.22,.34,.43,.515,.595,.66,.725,.795) LNG 635 DATA((TM(I),I=11,20)=-.006,.135,.26,.38,.5,.59,.665,.74,.81,.885) LNG 636 DATA((TM(I),I=21,30)=-.007,.15,.3,.425,.575,.675,.755,.83,.91,.99) LNG 637 DATA((TM(I),I=31,40)=-.007,.165,.34,.475,.635,.735,.84,.92,1.045, LNG 638 A1.12) LNG 639 DATA((TM(I), I=41,50)=-.008,.19,.375,.535,.725,.835,.95,1.055,1.155 LNG 640 A.1.245) LNG 641 DATA((TM(I), I=51,60)=-.009,.22,.44,.61,.81,.945,1.065,1.18,1.28, LNG 642 LNG 643 A1.38) DATA((TM(I),I=61,70)=-.01,.25,.5,.695,.92,1.055,1.205,1.33,1.45, LNG 644 A1.55) LNG 645 DATA((TM(I), I=71,80)=-.013,.295,.59,.795,1.035,1.21,1.385,1.525, LNG 646 LNG 647 11.64, 1.75DATA((TM(I), I=81,90)=-.015,.345,.7,.92,1.2,1.37,1.555,1.715, LNG 648 LNG 649 A1.86,1.99) DATA((TM(I),I=91,100)=-.017,.4,.825,1.06,1.39,1.59,1.8,1.95, LNG 650 LNG 651 A2.105,2.272) DATA((TN(I), I=1,10)=-.004,.1,.22,.35,.5,.6,.69,.78,.86,.95) LNG 652 DATA((TN(I), I=11,20)=-.005,.12,.28,.43,.59,.71,.83,.94,1.05,1.14) LNG 653 DATA((TN(I),I=21,30)=-.007,.16,.34,.49,.64,.79,.94,1.08,1.17,1.27) LNG 654 DATA((TN(I),I=31,40)=-.01,.24,.42,.61,.75,.91,1.05,1.19,1.33,1.45) LNG 655 DATA((TN(I), I=41,50)=-.015,.32,.59,.77,.92,1.07,1.22,1.37,1.52, LNG 656 LNG 657 11.71 DATA((TN(I),I=51,60)=-.024,.41,.72,.95,1.15,1.22,1.3,1.45,1.65,2.) LNG 658 DATA((TN(I),I=61,70)=-.032,.6,.91,1.23,1.43,1.63,1.85,2.08,2.3, LNG 659 12.45)LNG 660 DATA((TN(I),I=71,80)=-.043,.71,1.13,1.48,1.73,1.98,2.23,2.48,2.75 LNG 661 1, 2.9LNG 662 DATA((TN(I), I=81, 90)=-.058,.95,1.46,1.92,2.2,2.42,2.68,3., LNG 663 A3.32,3.52) LNG 664 DATA((TN(I), I=91,100)=-.075,1.3,2.,2.4,2.6,3.,3.4,3.77, LNG 665 LNG 666 A3.99,4.23) IF(X(1).LT..00001)G0 T0 20 LNG 667 AW=0.0 LNG 668 DO 1 I=1,8 LNG 669 1 AW = AW + X(I) * Q(I)LNG 670 VI=VIDEAL(T,X) LNG 671 J=1 LNG 672 IF(T.GE.95.)J=11 LNG 673 IF(T.GE.100.)J=21 LNG 674 IF(T.GE.105.)J=31 LNG 675 IF(T.GE.110.)J=41 LNG 676 IF(T.GE.115.)J=51 LNG 677 LNG 678 IF(T.GE.120.)J=61 IF(T.GE.125.)J=71 LNG 679 IF(T.GE.130.)J=81 LNG 680 JJ=J+9LNG 681 W=15. LNG 682 DO 5 I=J,JJ LNG 683 LNG 684 W=W+1. IF(AW.GT.W)GO TO 5 LNG 685 GO TO 6 LNG 686 5 CONTINUE LNG 687 I=JJ LNG 688 6 DIF1=AW-W LNG 689 J=I-1 LNG 690 FK = (TM(I) - TM(J)) * DIF1 + TM(I)LNG 691 FK1=(TM(I+10)-TM(J+10))*DIF1+TM(I+10)LNG 692 IT = (T + .00001)/5.LNG 693

66

	DIF2=T-IT*5	LNG	694
	IF(T.GE.135.)DIF2=T-130.	LNG	695
	IF(T.LT.90.)DIF2=T-90.	LNG	696
	FK=FK+(FK1-FK)*DIF2/5.	LNG	697
	IF(X(6).LT0001)G0 T0 17	LNG	698
	FKN=(TN(I)-TN(J))*DIF1+TN(I)	LNG	699
	FK1=(TN(I+10)-TN(J+10))*DIF1+TN(I+10)	LNG	700
	FKN=FKN+(FK1-FKN)*DIF2/5.	LNG	701
	FK=FK+(FKN-FK)*X(6)/.0425	LNG	702
	17 FK=FK/1000.	LNG	703
	FMKM=1./(VI-FK*X(1))	LNG	704
	RETURN	LNG	705
	20 FMKM=0.0	LNG	706
	RETURN	LNG	707
	END	LNG	708
	FUNCTION V IDEAL(T,X)	LNG	709
С	CALCULATES THE IDEAL VOLUME OF A MIXTURE FOR THE K AND M METHOD	LNG	710
	DIMENSION X(10)	LNG	711
	V=0	LNG	712
		LNG	/13
	IF(X(6).GT0001.AND.T.GT.115.)J=1	LNG	/14
	$00 \ 10 \ 1=1,8$	LNG	/15
	IF(X(I).LE000001)G0 10 10	LNG	/16
	IF(J.GI.U.AND.I.EQ.6)GU IU IU	LNG	/1/
	V = V + X(1) / SA((1,1))	LNG	/18
	$\frac{10 \text{ CONTINUE}}{10 \text{ CONTINUE}}$	LNG	/19
	$IF(J \cdot EU \cdot I) V = V + X(O) / SAINZ(I)$	LNG	720
		LNG	721
	RE I UKN	LNG	722
		LNG	123
~	FUNCTION SAINZ(I)	LNG	724
C	LALUULATES A PSEUDU SATURATED LIQUID DENSITT FUR NZ ADUVE IIS K		725
			720
	DELI=(I=110.) CATNO=CAT(1166) + DELT*(CAT(116066)) CAT(114066)) / 1		720
	SAINZ-SAI(115.,0)TUELI"(SAI(115.05,0)-SAI(114.95,0))/.1		720
	REIURN 1 CATNO-CAT(T 6)		720
			730
			732
	EUNCTION SAT(T I)	LNG	732
r	CALCUALTES THE DUDE ELUTE DENSITIES FOR THE K AND M METHOD	LNG	734
č	INITS APE DEG K AND MOLES/LITER	LNG	735
C	DIMENSION A(7.8)	LNG	736
	DATA((A(T) T=1.7)=190.555.10.16.18.65812322.6.712030737	LNG	737
	19472019702.0.0.0.0)	LNG	738
	DATA((A(T), T=8, 14)=305, 33,	LNG	739
	1 6.86.12.55205121.13.4328437319.00461066.11.07715985.0.0)	LNG	740
	DATA((A(I), I=15,21)=369.82,5,8,684458671,18,04085714,-29,462613	56 LNG	741
	1,16,43559114,0.0)	LNG	742
	DATA((A(I), I=22, 28)=425, 16, 3, 92,	LNG	743
	1 7.286062567,11.96307859,-19.87591962,	LNG	744
	211.60211932,0.0)	LNG	745
	DATA((A(I), I=29, 35)=408.13, 3.8,	LNG	746
	1 7.657535400,8.145251283,-13.10582462,	LNG	747
	28.145894091,0.0)	LNG	748
	DATA((A(I), I=36,42)=126.2,11.21,19.39216835,26.01408462,-39.4975	37 LNG	749
	191,23.32977312,0.0)	LNG	750
	DATA((A(I),I=43,49)=469.6,3.285,0362004993,59.00202990,	LNG	751
	1-93.44193819,43.66780833,0.0)	LNG	752
	DATA((A(I),I=50,56)=460.39,3.271,2.946310456,35.50770979,	LNG	753
	1-57.41242993,28.15898339,0.0)	LNG	754
	IF(T.GT.A(1,I))GO TO 1	LNG	755
	X=(1T/A(1,I))	LNG	756

SAT=(A(2,I)+A(3,I)*X**(.35)+A(4,I)*X+A(5,I)*X**(4./3.)	LNG	757
1+A(6,I)*X**(5./3.))	LNG	758
RETURN	LNG	/59
RETURN	LNG	760
END	LNG	762
SUBROUTINE ECKNON(PIN,DOUT,TIN,Q)	LNG	763
MAIN: ECKERT-RENON DENSITY MODEL	LNG	764
	LNG	765
THIS DOCCOM IS DESIGNED FOR THE CALCULATION OF	LNG	767
ING LIGHTD DESIGNED FOR THE CALCULATION OF	LNG	768
COMPUTE DENSITIES ABOVE 160 K.	LNG	769
	LNG	770
	LNG	771
INTS PROGRAM IS CALIBRATED SOLELY AGAINST DATA		773
UNITED STATES DEPARTMENT OF COMMERCE	LNG	774
NATIONAL BUREAU OF STANDARDS	LNG	775
CRYOGENICS LABORATORY	LNG	776
BOULDER, COLORADO	LNG	777
	LNG	770
	LNG	780
	LNG	781
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	LNG	782
NO WARRANTY IS MADE OR IMPLIED AS TO THE ACCURACY	LNG	783
OF DENSITIES CALCULATED BY USE OF THIS MODEL.	LNG	784
USERS ARE AT THEIR OWN RISK IN THE USE OF THIS PROGRAM.	LNG	786
	LNG	787
	LNG	788
	LNG	789
COMPONENT ID NUMBERS ARE		/90
1 METHANE 2 FTHANE	LNG	791
3 PROPANE	LNG	793
4 N-BUTANE	LNG	794
5 I-BUTANE	LNG	795
6 NITRUGEN 7 N DENTANE	LNG	796
7 N-PENTANE 8 I-PENTANE	LNG	798
	LNG	799
	LNG	800
	LNG	801
	LNG	802
PIN=PRESSURE IN BAR	LNG	804
TIN=TEMPERATURE IN K	LNG	805
Q=MATRIX OF MOLE FPRACTIONS OF COMPONENTS	LNG	806
OUTPUT VARIABLE IS	LNG	807
DUUT=DENSITY IN MULES/LITER		808
TYPE INTEGER CNT1.CNT2.SWITCH	LNG	810
TYPE REAL MWM, INCR, KIJ, MW, MOL, LAM, LAMB	LNG	811
COMMON /RUN/ID(12),X(12),NAM(2,12),C12(12,12),R(12),Z(12),S(12),VS	LNG	812
1(12), IS(12), US(12), SG(12), EP(12), LAM(12), NC, MW(12), AIJ(12, 12), PST(LNG	813
COMMON /DAT/TBI(12) VBI(12) TRIM(12) VRIM(12) C(12) SCIM(12) SIM(1		815
12), EPIM(12), PIM(12), SIN(12), VSIM(12), USIM(12), TSIM(12), DVBIM(12), F	LNG	816
2D(12), PV(12), RHO(12), VBIMP(12), TTM(12), MWM, CNT1, CNT2, TOLD(12), INCF	LNG	817
3(12), SWITCH, JPC, JPCS, JMIX, DENS, VEX, HEX, GEX, TMP, VMP, TP	LNG	818
COMMON/PAR/KIJ(8, 8),AJI(8, 8)	LNG	819

LNG 820 COMMON/UNITS/ITC, IPC, T, TMAX, DT, P, PMAX, DP, PS LNG 821 SWITCH = 01 CALL ZERO1 LNG 822 THE NEXT VALUES ARE SET TO PREVENT UNDER/OVER FLOWS LNG 823 LNG 824 TMAX = 100.0LNG 825 DT = 100.0LNG 826 PMAX = 100.0LNG 827 DP = 100.0LNG 828 PS = 100.0LNG 829 CALL INPUT(Q) LNG 830 CODE=0 LNG 831 LNG 832 ITC=0 LNG 833 IPC=0 P=PIN/1.01325 LNG 834 LNG 835 T=TIN LNG 836 IF(T.GT.(160.)) GO TO 19 8 CALL PZERO(CTMX) LNG 837 LNG 838 MWM = 0DO 9 I = 1.NCLNG 839 MWM = MWM + (X(I) * MW(I))LNG 840 9 CONTINUE LNG 841 10 D0 11 I = 1, NCLNG 842 TBI(I) = T / TS(I)LNG 843 CALL VOLUME(TBI(I), VBI(I), JPUR, NC) LNG 844 LNG 845 TBIM(I) = T / TSIM(I)CALL VOLUME(TBIM(I), VBIM(I), JMIX, NC) LNG 846 **11 CONTINUE** LNG 847 VM = 0.0LNG 848 DO 12 I = 1, NCLNG 849 VM = VM + (X(I)*VBIM(I)*VSIM(I))LNG 850 **12 CONTINUE** LNG 851 TMP = (T * 1.8) - (459.67)LNG 852 DO 13 I = 1, NCLNG 853 VHOLD(I) = VBI(I)LNG 854 VPHOLD(I) = VBIM(I)LNG 855 PP = (P*TS(I))/US(I)LNG 856 VBIMP(I) = VBI(I)LNG 857 CALL PRES(PP, VBIMP(I), TBI(I), NC) LNG 858 VBI(I) = VBIMP(I)LNG 859 PP = (P * TSIM(I)) / USIM(I)LNG 860 VBIMP(I) = VBIM(I)LNG 861 CALL PRES(PP, VBIMP(I), TBIM(I), NC) LNG 862 VBIM(I) = VBIMP(I)LNG 863 **13 CONTINUE** LNG 864 VMP = 0.0LNG 865 LNG 866 DO 14 I = 1, NCVMP = VMP + (X(I)*VBIMP(I)*VSIM(I))LNG 867 PD(I) = VBIMP(I) * VSIM(I)LNG 868 **14 CONTINUE** LNG 869 DENS=MWM/VMP LNG 870 DOUT=DENS*1000./MWM LNG 871 RETURN LNG 872 19 DOUT=0.0 LNG 873 RETURN LNG 874 END LNG 875 SUBROUTINE ZERO1 LNG 876 COMMON /RUN/A(361) LNG 877 COMMON /DAT/B(224) LNG 878 $DO \ 1 \ I = 1,361$ LNG 879 1 A(I) = 0.0LNG 880 DO 2 I = 1,224LNG 881 2 B(I) = 0.0LNG 882

C

RETURN	LNG	883
END	LNG	884
SUBROUTINE INPUT(Q)	LNG	885
DIMENSION NNO(8), SIGM(8), EPSI(8), LAMB(8), NAME(2, 8), SNO(8), MO	LNG	886
1L(8),CT(8),TCH(8),VCH(8),ECH(8),AR(8),AZ(8),Q(8)	LNG	887
TYPE INTEGER CNT1, CNT2, SWITCH	LNG	888
IYPE REAL MWM, INCR, KIJ, MW, MOL, LAM, LAMB	LNG	889
UMMUN / RUN/1U(12), X(12), NAM(2,12), U2(12,12), K(12), Z(12), S(12), V5	LNG	890
1(12), 15(12), 05(12), 50(12), EP(12), LAM(12), NU, MW(12), AIJ(12, 12), PSI(2), TCT(12)	LNG	891
COMMON / DAT / TRI(12) VRI(12) TRIM(12) VRIM(12) C(12) CCIM(12) CIM(12) CIM(LNG	803
12) FDIM (12) FDIM (12) ,	LNG	804
2D(12), $PV(12)$, $RHO(12)$, $VBIMP(12)$, $TTM(12)$, MWM , $CNT1$, $CNT2$, $TOLD(12)$, $INCR$	ING	895
3(12), SWITCH, JPC, JPCS, JMIX, DENS, VEX, HEX, GEX, TMP, VMP, TP	LNG	896
COMMON/PAR/KIJ(8,8),AJI(8,8)	LNG	897
DATA SIGM/	LNG	898
*0.991000,1.029000,1.155000,1.278000,1.388752,1.392995,	LNG	899
*1.47162,1.47217/	LNG	900
DATA EPSI/	LNG	901
*0.640000,0.909000,1.69800,2.237000,2.705262,2.545907,	LNG	902
*3./6195,3.68336/	LNG	903
UAIA LAMB/ *1 052004 0 000225 1 227117 1 400510 1 472246 1 461676	LNG	904
^1.053604,0.986325,1.22/11/,1.408519,1.4/3346,1.4016/6, *1.609700,1.605012/	LNG	905
	LNG	900
*28 01600 16 04200 30 06800 44 09400 58 12000 58 12000	LNG	907
*72.146000 72.146000/	ING	909
DATA SNO/	LNG	910
*10.00000,10.00000,10.00000,10.00000,10.00000,10.00000,	LNG	911
*10.00000,10.00000/	LNG	912
DATA CT/	LNG	913
*126.0600,190.5600,305.4300,369.8200,425.1600,408.0300,	LNG	914
*469.65,460.39/	LNG	915
DATA TCH/	LNG	916
*112./699,1/0.9645,256.8311,294./255,340./86/,322.6109,	LNG	91/
^411.0100,403.3200/	LNG	918
*26 01846 29 04010 40 88188 54 60301 68 72075 69 44272		919
*84_90197_84_99830/	ING	921
DATA ECH/	LNG	922
*1393.000.1977.000.3695.000.4867.000.5886.652.5539.895.	LNG	923
*8186.000,8015.000/	LNG	924
DATA AR/	LNG	925
*1.000000,1.000000,1.000000,1.000000,1.000000,	LNG	926
*1.000000,1.000000/	LNG	927
DATA AZ/	LNG	928
*10.00000,10.00000,10.00000,10.00000,10.00000,10.00000,	LNG	929
	LNG	930
V(T) = O(T, 1)		931
X(1)=O(6)		932
X(T) = O(T)	ING	934
X(8) = O(8)	LNG	935
NC=0	LNG	936
DO 1 I=1,8	LNG	937
IF(X(I).LE.0.0)GO TO 1	LNG	938
NC=NC+1	LNG	939
X(NC) = X(I)	LNG	940
	LNG	941
DO 2 I = 1 NC		942
J = ID(I)		943
R(I) = AR(J)	LNG	945

	Z(I) = AZ(J)	LNG 946
	S(I) = SNO(J)	LNG 947
	TS(I) = TCH(J)	LNG 948
	US(I) = ECH(J)	LNG 949
	SG(I) = SIGM(J)	LNG 950
	TCT(I) = CT(J)	LNG 951
	EP(I) = EPSI(J)	LNG 952
	IAM(T) = IAMB(T)	LNG 953
	VS(I) = VCH(I)	LNG 954
	MW(T) = MOL(T)	LNG 955
2		LNG 956
۷	DO 2 I - 1 NC	LNC 057
	DO[3] = 1, NC	
	DUSU = 1, NU	
	M = ID(I)	LNG 959
	L = ID(J)	LNG 960
	CI2(I,J) = KIJ(M,L)	LNG 961
	C12(J,I) = KIJ(L,M)	LNG 962
	AIJ(I,J) = AJI(M,L)	LNG 963
	AIJ(J,I) = AJI(L,M)	LNG 964
3	CONTINUE	LNG 965
	RETURN	LNG 966
	END	LNG 967
	END	LNG 968
	SUBROUTINE PZERO(TRT)	LNG 969
	TYPE INTEGER CNT1.CNT2.SWITCH	LNG 970
	TYPE REAL MWM. INCR. KIJ. MW. MOL. LAM. LAMB	LNG 971
	COMMON /RUN/ID(12),X(12),NAM(2,12),C12(12,12),R(12),Z(12),S(12),VS	LNG 972
	(12), TS(12), US(12), SG(12), FP(12), LAM(12), NC, MW(12), ALJ(12, 12), PST(LNG 973
-	(12), TCT(12)	LNG 974
	COMMON /DAT/TRI(12) VRI(12) TRIM(12) VRIM(12) C(12) SGIM(12) SIM(1	LNG 975
	(12) $FPIM(12) PIM(12) SIN(12) VSIM(12) USIM(12) TSIM(12) DVRIM(12) P$	LNG 976
	(12) $PV(12)$ $PHO(12)$ $VRIMD(12)$ $TTM(12)$ MUM CNT1 CNT2 TOLD(12) INCP	LNG 977
	2/12) SHITCH IDC IDCS IMIV DENS VEV HEV CEV THE VHD TO	
1	(12), $SWITCH, UFC, UFCS, UPIN, UENS, VLA, MEA, UEA, MF, VMF, TF, TF, COMMON / DAD / VII / O O) AIT / O O)$	
	COMMON /INITC/ITC IDC T TMAY DT D DMAY DD DC	
	$\frac{1}{1000} = \frac{1}{1000} = 1$	LNG 980
	IF(NC,EU,I) IRI = I/ICI(I)	LNG 981
	IF(NC.GT.1) CALL ICM(IRI)	LNG 982
	IF(NU,GI,I) IKI = I/IKI	LNG 983
	IF(NC.EQ.I) CALL PURE(IRI,IRI,R(I),RXX)	LNG 984
	$DO \ 1 \ 1 = 1, NC$	LNG 985
	TCXX = T/TCT(I)	LNG 986
	IF(NC.GT.1) CALL PURE(TCXX,TRT,R(I),RTR)	LNG 987
	JPC = 0	LNG 988
	IF(TRT.GT.(.87)) JPC = 2	LNG 989
	IF(TRT.GT.(1.0)) JPC = 1	LNG 990
	IF(NC.EQ.1) RTR = RXX	LNG 991
	THERE ARE SEVERAL OTHER FORMS OF THESE EQUATIONS	LNG 992
	REFER TO ORIGINAL ARTICLES FOR VALUES TO USE	LNG 993
	S(I) = RTR * Z(I) - 2 * RTR + 2	LNG 994
	SIM(I) = S(I)	LNG 995
		LNG 996
	SG(I) = (VS(I)/RTR) **(1,/3)	LNG 997
	EP(I) = US(I) / S(I)	LNG 998
	C(I) = IAM(I) * (2176./((185.6)*(1.98726)))	ING 999
	TTM(1) = TS(1)	LNG1000
	TO(D(I) = TS(I)	LNC1001
	IOLD(1) = (3(1)) IN(D(1) = (20, 0)	
1		
1		LNG1003
		LNG1004
		LNG1005
		LNG1006
~	JMIX = 0	LNG1007
2	DEN = O	LNG1008

C C

```
DO 3 I = 1,NC
                                                                            LNG1009
   DEN = DEN + (X(I) * SIM(I))
                                                                            LNG1010
 3 CONTINUE
                                                                            LNG1011
   DO \ 4 \ I = 1.NC
                                                                            LNG1012
   PIM(I) = (X(I) * SIM(I)) / DEN
                                                                            LNG1013
 4 CONTINUE
                                                                            LNG1014
   D0 6 I = 1, NC
                                                                            LNG1015
   SGIM(I) = 0.0
                                                                            LNG1016
   DO \ 6 \ J = 1.NC
                                                                            LNG1017
   M = I
                                                                            LNG1018
   N = J
                                                                            LNG1019
   IF(I.GT.J) M = J
                                                                            LNG1020
   IF(I.GT.J) N = I
                                                                            LNG1021
   IF(I.EQ.J) GO TO 5
                                                                            LNG1022
   TRUDX = (AIJ(N,M)/(T/TTM(I)))
                                                                            LNG1023
   IF(TRUDX.LT.(-180.0)) GO TO 5
                                                                            LNG1024
   SGIM(I) = SGIM(I) + ((PIM(J) * (((SG(I) * (1./3.) + SG(J) * (1./3.)))))
                                                                            LNG1025
  1/(2.0)) **3))* (AIJ(M,N) * EXP(AIJ(N,M)/(T/TTM(I)))))
                                                                            LNG1026
   GO TO 6
                                                                            LNG1027
 5 \text{ SGIM}(I) = \text{SGIM}(I) + (\text{PIM}(J) * (((SG(I)) * (1./3.)) + SG(J) * (1./3.)))
                                                                            LNG1028
  1/(2.0)) **3)
                                                                            LNG1029
 6 CONTINUE
                                                                            LNG1030
   DEN = 0.0
                                                                            LNG1031
   DO 7 I = 1, NC
                                                                            LNG1032
   DEN = DEN + (PIM(I) * SGIM(I) * SGIM(I))
                                                                            LNG1033
 7 CONTINUE
                                                                            LNG1034
   DO 8 I = 1, NC
                                                                            LNG1035
   SIN(I) = (S(I) * (SGIM(I) * (2.))) / DEN
                                                                            LNG1036
8 CONTINUE
                                                                            LNG1037
                                                                            LNG1038
   DO 9 I = 1, NC
                                                                            LNG1039
   TEST = (1.0) - (SIM(I) / SIN(I))
                                                                            LNG1040
   TEST = ABS (TEST)
                                                                            LNG1041
   IF(TEST.GT.(0.00001)) GO TO 10
                                                                            LNG1042
 9 CONTINUE
                                                                            LNG1043
   GO TO 12
                                                                            LNG1044
10 DO 11 I = 1, NC
                                                                            LNG1045
   SIM(I) = (SIM(I) + SIN(I)) / (2.0)
                                                                            LNG1046
11 CONTINUE
                                                                            LNG1047
   CNT1 = CNT1 + 1
                                                                            LNG1048
   IF(CNT1.GT.250) GO TO 12
                                                                            LNG1049
   GO TO 2
                                                                            LNG1050
12 \text{ DO } 14 \text{ I} = 1, \text{NC}
                                                                            LNG1051
   SIM(I) = SIN(I)
                                                                            LNG1052
   EPIM(I) = 0.0
                                                                            LNG1053
   DO 14 J = 1,NC
                                                                            LNG1054
   K = I
                                                                            LNG1055
   L = J
                                                                            LNG1056
   IF(J.LT.I) K = J
                                                                            LNG1057
   IF(J.LT.I) L = I
                                                                            LNG1058
   IF(I.EQ.J) GO TO 13
                                                                            LNG1059
   TRUDX = C12(L,K) / (T/TTM(I))
                                                                            LNG1060
   IF(TRUDX.LT.(-180.0)) GO TO 13
                                                                            LNG1061
   EPIM(I) = EPIM(I) + ((PIM(J) * SQRT(EP(I)*EP(J)))*
                                                                            LNG1062
  1(C12(K,L) * EXP((C12(L,K) /(T/TTM(I)))))
                                                                           LNG1063
   GO TO 14
                                                                           LNG1064
13 EPIM(I) = EPIM(I) + (PIM(J) * SORT(EP(I) * EP(J)))
                                                                           LNG1065
14 CONTINUE
                                                                           LNG1066
   ASSUME NUMBER OF MOLS OF MIXTURE = 1.0
                                                                           LNG1067
   DO 15 I = 1,NC
                                                                           LNG1068
   VSIM(I) = R(I) * (SGIM(I) * (3.0))
                                                                            LNG1069
   USIM(I) = SIM(I) * EPIM(I)
                                                                           LNG1070
   TSIM(I) = USIM(I) / ((1.98726) * C(I))
                                                                           LNG1071
```

```
LNG1072
15 CONTINUE
   DO 16 I = 1,NC
                                                                           LNG1073
   TEST = (1.0) - (TSIM(I)/TTM(I))
                                                                           LNG1074
   TEST = ABS(TEST)
                                                                           LNG1075
   IF(TEST.GT.(0.00001)) G0 T0 17
                                                                           LNG1076
16 CONTINUE
                                                                           LNG1077
   RETURN
                                                                           LNG1078
17 D0 20 I = 1, NC
                                                                           LNG1079
                                                                           LNG1080
   IF(TSIM(I) - TTM(I))18,20,19
                                                                           LNG1081
18 \text{ TNEW} = \text{TTM}(I) - \text{INCR}(I)
                                                                           LNG1082
   IF(TNEW.EQ.TOLD(I)) INCR(I) = INCR(I)/(2.0)
                                                                           LNG1083
   IF(TNEW.EQ.TOLD(I)) GO TO 18
                                                                           LNG1084
   TOLD(I) = TTM(I)
                                                                           LNG1085
   TTM(I) = TNEW
                                                                           LNG1086
   GO TO 20
                                                                           LNG1087
19 \text{ TNEW} = \text{TTM}(I) + \text{INCR}(I)
                                                                           LNG1088
   IF(TNEW.EQ.TOLD(I)) INCR(I) = INCR(I) / (2.0)
                                                                           LNG1089
   IF(TNEW.EQ.TOLD(I)) GO TO 19
                                                                           LNG1090
   TOLD(I) = TTM(I)
                                                                           LNG1091
   TTM(I) = TNEW
                                                                           LNG1092
20 CONTINUE
                                                                           LNG1093
   CNT2 = CNT2 + 1
                                                                           LNG1094
   IF(CNT2.GT.250) RETURN
                                                                           LNG1095
   GO TO 2
                                                                           LNG1096
   END
                                                                           LNG1097
   SUBROUTINE PURE(TZ,T,Z,R)
                                                                           LNG1098
   DIMENSION A(15)
                                                                           LNG1099
   IF(TZ.LT.(.8653525)) R = Z
                                                                           LNG1100
   IF(TZ.LT.(.8653525)) GO TO 2
                                                                           LNG1101
   IF(T.LT.(.8653525)) R = Z
                                                                           LNG1102
   IF(T.LT.(.8653525)) GO TO 2
                                                                           LNG1103
   IF(T.GT.(1.0)) TA = 1.0
                                                                           LNG1104
   IF(T.LE.(1.0)) TA = T
                                                                           LNG1105
  DATA A/.9184780,-.1530647,-.1090050,.8073883,1.441803,
                                                                           LNG1106
  1-10.85944, -6.041687, 51.26758, .9062500, -108.9805, 28.88672,
                                                                           LNG1107
  2106.1406, -45.78125, -38.43750, 20.56250/
                                                                           LNG1108
   R = 0.0
                                                                           LNG1109
   TT = (TA - (.9267292)) / (.7267517E-01)
                                                                           LNG1110
   D0 1 K = 1.14
                                                                           LNG1111
   R = R + A(16-K)
                                                                           LNG1112
   R = R * TT
                                                                           LNG1113
 1 CONTINUE
                                                                           LNG1114
   R = R + A(1)
                                                                           LNG1115
 2 RETURN
                                                                           LNG1116
   END
                                                                           LNG1117
   SUBROUTINE VOLUME(T,V,J,NC)
                                                                           LNG1118
   TR = T
                                                                           LNG1119
   IF(TR.GT.(1.00)) GO TO 4
                                                                           LNG1120
   V = 0.5
                                                                           LNG1121
                                                                           LNG1122
 1 VT = (1.0) + (0.1*TR*V**(4.0))
                                                                           LNG1123
   ERR = (1.0) - (V/VT)
                                                                           LNG1124
   TEST = ABS(ERR)
                                                                           LNG1125
   IF(TEST.LE.(0.00001)) G0 T0 2
                                                                           LNG1126
   V = VT
                                                                           LNG1127
   GO TO 1
                                                                           LNG1128
 2 V = V^{**}(3.0)
                                                                           LNG1129
 3 RETURN
                                                                           LNG1130
 4 V = ((((((10.06600 *TR)-24.79837)*TR)+23.260722)*TR)-6.686880))
                                                                           LNG1131
   GO TO 3
                                                                           LNG1132
   FND
                                                                           LNG1133
   SUBROUTINE BETA(P, DV, T, V, KK)
                                                                           LNG1134
```

```
TYPE REAL AF, BF, CF, DF, EF, AG, BG, CG, DG, P, DV, T, V, F, F1, G, G1, DEN, EG
                                                                        LNG1135
  TYPE REAL C, B1, B2, B3
                                                                        LNG1136
  DIMENSION C(11)
                                                                        LNG1137
  DATA AF/0.11566564E+02/,BF/-0.53510144E+01/,CF/-0.74598207E-01/,
                                                                        LNG1138
 1DF/0.67068653E+00/,EF/-0.11939887E+00/,AG/0.62721813E+01/,
                                                                        LNG1139
 2BG/0.47698365E+00/,CG/-0.16023080E+01/,DG/0.49837746E+00/,
                                                                        LNG1140
 3EG/-0.42639183E-01/
                                                                        LNG1141
  F = AF + (BF*V) + (CF*V*V) + (DF*V*V*V) + (EF*V*V*V)
                                                                        LNG1142
  IF(F.LT.(0.0)) GO TO 1
                                                                        LNG1143
  F1 = (BF+(CF*V*2.E+00)+(DF*V*V*3.E+00)+(EF*V*V*4.E+00))*
                                                                        LNG1144
 1T * EXP(F)
                                                                        LNG1145
  G = AG+(BG*V)+(CG*V*V)+(DG*V*V*V)+(EG*V*V*V)
                                                                        LNG1146
  IF(G.LT.(0.00)) GO TO 1
                                                                        LNG1147
  G1 = (BG+(CG*V*2.E+00)+(DG*V*V*3.E+00+(EG*V*V*V*4.E+00))) * EXP(G LNG1148)
 1)
                                                                        LNG1149
  G1 = -G1
                                                                        LNG1150
  DEN = F1 + G1
                                                                        LNG1151
  DV = (1.E+00) / DEN
                                                                        LNG1152
  IF(DV.GT.(0.0).OR.DV.LT.(-1.0E+00)) GO TO 1
                                                                        LNG1153
  GO TO 2
                                                                        LNG1154
  DATA C/-.118659822E+02,-.5509099E+00,.4172102E+01,-.8996686E+00,
                                                                        LNG1155
 1-.1500376E+01,-.1958324E+00,-.2788988E+01,.5195283E+00,
                                                                        LNG1156
 2.3734878E+01,.1361904E+00,.4671948E-01/
                                                                        LNG1157
1 B1 = C(1) + C(2)*T + C(3)*V
                                                                        LNG1158
  B2 = C(4)*((V+C(5))**(2))*EXP((C(6))*((T+C(7))**(2)))
                                                                        LNG1159
  B3 = C(11) * (V+C(8))**(C(9))/(T**(C(10)))
                                                                        LNG1160
  DV = B1 + B2 + B3
                                                                        LNG1161
  DV = EXP(DV)
                                                                        LNG1162
  DV = - DV
                                                                        LNG1163
2 RETURN
                                                                        LNG1164
  END
                                                                        LNG1165
                                                                        LNG1166
  SUBROUTINE PRES(A,B,C,NC)
  TYPE REAL H,P,V,T,K1,K2,K3,K4,VT,PT
                                                                        LNG1167
  P = A
                                                                        LNG1168
  V = B
                                                                        LNG1169
  T = C
                                                                        LNG1170
  H = 1.E - 02
                                                                        LNG1171
  IF(H.GT.P) H = P
                                                                        LNG1172
  ASSIGN 3 TO KK
                                                                        LNG1173
1 CALL BETA(P,K1,T,V,NC)
                                                                        LNG1174
  K1 = H * K1
                                                                        LNG1175
  VT = V + ((0.5E+00) *K1)
                                                                        LNG1176
  PT = P + ((0.5E+00)*H)
                                                                        LNG1177
  CALL BETA(PT,K2,T,VT,NC)
                                                                        LNG1178
  K2 = K2 * H
                                                                        LNG1179
  VT = V + ((0.5E+00) * K2)
                                                                        LNG1180
  CALL BETA(PT,K3,T,VT,NC)
                                                                        LNG1181
  K3 = K3 * H
                                                                        LNG1182
  PT = P + H
                                                                        LNG1183
  VT = V + (
             K3)
                                                                        LNG1184
  CALL BETA(PT,K4,T,VT,NC)
                                                                        LNG1185
  K4 = K4 * H
                                                                        LNG1186
  V = V + (((K1 + (2.E+00*K2) + (2.E+00*K3) + K4) / (6.E+00)))
                                                                  LNG1187
  P = P - H
                                                                        LNG1188
  IF(P.EO.(0.0)) GO TO 4
                                                                        LNG1189
  IF(P.LT.(0.0)) GO TO 2
                                                                        LNG1190
  GO TO 1
                                                                        LNG1191
2 GO TO KK , (3,4)
                                                                        LNG1192
3 P = P + H
                                                                        LNG1193
  H = P
                                                                        LNG1194
  ASSIGN 4 TO KK
                                                                        LNG1195
  GO TO 1
                                                                        LNG1196
4 A = P
                                                                        LNG1197
```

	B = V	LNG1198
		LNG1199
	RE LUKN	LNGI200
		LNGIZUI
		LNG1202
	TYPE INTEGER CNT1. CNT2. SWITCH	LNG1203
	TYPE REAL MWM. INCR. KIJ. MW. MOL. LAM. LAMB	LNG1205
	DIMENSION VCI(6),TH(12)	LNG1206
	COMMON /RUN/ID(12),X(12),NAM(2,12),C12(12,12),R(12),Z(12),S(12),VS	LNG1207
	1(12), TS(12), US(12), SG(12), EP(12), LAM(12), NC, MW(12), AIJ(12, 12), PST(LNG1208
	212),TCT(12)	LNG1209
	COMMON /DAT/TBI(12),VBI(12),TBIM(12),VBIM(12),C(12),SGIM(12),SIM(1	LNG1210
5	12), EPIM(12), PIM(12), SIN(12), VSIM(12), USIM(12), TSIM(12), DVBIM(12), P	LNG1211
-	20(12), PV(12), KH0(12), VBIMP(12), IIM(12), MWM, UNII, UNI2, IULD(12), INUK	LNGI212
`	COMMON/DAD/VII(9,9) AIT(9,9)	LNG1213
	COMMON/PAR/RIO(0, 0), AUI(0, 0) COMMON/HNITS/ITC IDC T TMAY DT D DMAY DD DS	LNG1214
	DATA VCI/ 1.44.1.59.2.27.3.18.4.03.4.21/	LNG1216
	DO 1 I = $1.NC$	LNG1217
	J = ID(I)	LNG1218
	V = VCI(J) ** (2./3.)	LNG1219
_	$TH(\mathbf{I}) = X(\mathbf{I}) * V$	LNG1220
1	CONTINUE	LNG1221
	Z = 0.0	LNGIZZZ
	$UU \ge I = I, NU$ TT7 = TT7 + TU(I)	LNG1223
2	CONTINUE	LNG1224
-	DO 3 I = 1.NC	LNG1226
	TH(I) = TH(I) / TTZ	LNG1227
3	CONTINUE	LNG1228
	SUM1 = 0.0	LNG1229
	SUM2 = 0.0	LNG1230
	K = NU - I	LNG1231
	J = I + 1	LNG1232
	DO 4 J = L NC	LNG1234
	TTZ = (TCT(I) - TCT(J)) / (TCT(I) + TCT(J))	LNG1235
	TTZ= ABS(TTZ)	LNG1236
	T12 = ((((((TTZ*(-3.038))+(5.443))*TTZ)+(-1.343))*TTZ)	LNG1237
1	$L + (0.287) \times TTZ - (.0076)$	LNG1238
	$ 12 = 12^{*}(C (1) + C (J)) * (0.9)$	LNG1239
л	$SUMZ = SUMZ + ((Z_{*})^{H}(I)^{H}(J)^{I}Z)$	LNG1240
4	SUM1 = SUM1 + (TH(I) * TCT(I) * (1.8))	LNG1241
5	CONTINUE	LNG1242
	TMC = SUM1 + SUM2 + (TH(NC)*TCT(NC)*(1.8))	LNG1244
	V = 0.0	LNG1245
	DO 6 I = 1, NC	LNG1246
		LNG1247
	J = IU(I)	LNG1248
	$H(1) = X(1) \wedge V(1(0))$ V = V + TH(T)	LNG1249
6	CONTINUE	LNG1250
Ĭ	DO 7 I = 1, NC	LNG1252
	TH(I) = TH(I) / V	LNG1253
7	CONTINUE	LNG1254
	TMM = 0.0	LNG1255
	D0.9.1 = 1.00	LNG1256
	M = ID(I)	LNG125/
	N = ID(J)	LNG1250
	NUM = (VCI(M) ** (1./3.)) * (VCI(N) ** (1./3.))	LNG1260

NUM = SORT(NUM)LNG1261 DEN = (0.5)*((VCI(M)**(1./3.))+(VCI(N)**(1./3.)))LNG1262 NUM = NUM / DEN LNG1263 NUM = NUM * (3.)LNG1264 AKIJ = (1.0) - NUMLNG1265 TCIJ = (1.0 - AKIJ) * SQRT(TCT(I)*TCT(J)*1.8*1.8)LNG1266 TMM = TMM + TH(I) * TH(J) * TCIJLNG1267 8 CONTINUE LNG1268 9 CONTINUE LNG1269 TCMP = TMM + (10.0)LNG1270 ICT = 0LNG1271 TPO = TMM + (10.0)LNG1272 10 TR = (T*1.8)/TCMPLNG1273 NUM = (2901.01) - ((5738.92)*TR) + ((2849.85)*TR*TR)LNG1274 1 + ((1.74127)/(1.01 - TR))LNG1275 NUM = NUM * (TR - (1.0))LNG1276 IF(NUM.LT.(-180.)) DD = 0LNG1277 IF(NUM.LT.(-180.)) GO TO 11 LNG1278 DD = EXP(NUM)LNG1279 THE STATEMENT ABOVE MAY RESULT IN AN UNDERFLOW SENSE LIGHT LNG1280 ON SOME OPERATING SYSTEMS WHEN THE NUMBER NUM IS A LARGE LNG1281 NEGATIVE NUMBER. THE LARGE NEGATIVE VALUE IS PROPER AND LNG1282 THE CORRECT ANSWER FOR DD IS ZERO. LNG1283 11 TCMP = TMM + ((TMC-TMM)*DD)LNG1284 TEST = (1.0) - (TCMP/TPO)LNG1285 TEST = ABS(TEST)LNG1286 IF(TEST.LT.(.0001)) GO TO 12 LNG1287 ICT = ICT + 1LNG1288 LNG1289 IF(ICT.GT.250) GO TO 12 LNG1290 TPO = TCMPLNG1291 LNG1292 GO TO 10 12 TMC = TCMP/(1.8)LNG1293 RETURN LNG1294 END LNG1295 SUBROUTINE BLOCK LNG1296 TYPE REAL KIJ, AJI LNG1297 DIMENSION KIJ(8,8),AJI(8,8) LNG1298 COMMON /PAR/ KIJ, AJI LNG1299 LNG1300 DATA KIJ/ *0.000000,.293E-07,.911E-06,.0030498,0.001000,0.001000,0.001000, LNG1301 *0.001000,1.088608,0.000000,.188E-10,.463E-06,.462E-08,.120E-03, LNG1302 *0.001000,0.001000,1.098880,1.078910,0.000000,.517E-06,.535E-06, LNG1303 *.188E-10,0.001000,0.001000,.8578232,1.146026,1.009559,0.000000, LNG1304 *.546E-06,.136E-05,0.001000,0.001000,0.995000,1.287762,.9868486, LNG1305 *.9690485,0.000000,.541E-06,0.001000,0.001000,1.178993,1.266327, LNG1306 *1.016231,.9976706,.9435714,0.000000,0.001000,0.001000,0.950000, LNG1307 *1.000000,1.000000,1.000000,1.000000,1.000000,0.000000,0.001000, LNG1308 *0.995000,1.000000,1.000000,1.000000,1.000000,1.000000,1.000000, LNG1309 *0.000000/ LNG1310 DATA AJI/ LNG1311 *0.000000,.161E-04,.257E-06,.0003462,0.001000,0.001000,0.001000, LNG1312 *0.001000,1.014967,0.000000,.188E-10,.197E-06,.184E-05,.335E-06, LNG1313 *0.001000,0.001000,1.008061,1.004105,0.000000,.142E-06,.103E-04, LNG1314 *.188E-10,0.001000,0.001000,.9863463,1.011399,1.001862,0.000000, LNG1315 *.105E-04,.119E-05,0.001000,0.001000,0.995000,1.024894,1.003289, LNG1316 *.9987221,0.000000,.119E-05,0.001000,0.001000,.9566020,1.025269, LNG1317 *1.005949,1.001225,.9968984,0.000000,0.001000,0.001000,0.995000, LNG1318 *1.000000,1.000000,1.000000,1.000000,1.000000,0.000000,0.001000, LNG1319 *0.995000,1.000000,1.000000,1.000000,1.000000,1.000000,1.000000, LNG1320 LNG1321 *0.000000/ LNG1322 END

С

С

С

С

76

U.S. DEPT. OF COMM.	1. PUBLICATION OR	2. Performing Organ. Report No	. 3. Publication Date			
BIBLIOGRAPHIC DATA	REPORT NO.					
SHEET (See instructions)	NBS TN-1030		December 1980			
A TITLE AND SUBTITLE	L	· · · · · · · · · · · · · · · · · · ·				
FOID MATHEMATICAT	MODELS FOR THE PREDIC	TTON OF LNG DENSTTIES				
FOOR FAILEFAILCAL	HODELD FOR THE TREDTO	FION OF THE DEMOLITED				
1						
5. AUTHOR(S)						
Robert D. McCarty						
		· · · · · · · · · · · · · · · · · · ·				
6. PERFORMING ORGANIZA	TION (If joint or other than NBS)	, see instructions)	7. Contract/Grant No.			
NATIONAL BUREAU OF	ZANDARDS					
DEPARTMENT OF COMMI	A Type of Report & Period Covered					
WASHINGTON D.C. 2023	4		a. Type of Report a Ferror Covered			
A SPONSORING ORGANIZAT	NAME AND COMPLETE A	DDRESS (Street City State 715				
J. SPUNSOKING OKGANIZAT	TOR NAME AND COMPLETE A	DDRESS (Street, City, State, ZIP	/			
American Gas Assoc	iation, Inc. (see pag	e 1).				
040 110000	,, fug					
10. SUPPLEMENTARY NOTE	S					
*						
Document describes a	computer program: SF-185, FIP	S Software Summary, is attached.				
11. ABSTRACT (A 200-word o	r less factual summary of most s	significant information. If docum	ent includes a significant			
bibliography of fiterature s	survey, mention it here)					
Four mathematical	models of the equation	n of state for LNG lik	ke mixtures are			
presented. The fo	ur models include an	extended corresponding	states model, a cell			
modol a hard apho	are model and a rewise	d Vlocok and MaVinlow	model Each of the			
model, a nard spne	re model and a revise	a klosek and Mckiniey	Model. Each of the			
models has been op	timized to the same e	xperimental data set w	which included data for			
pure nitrogen, met	hane, ethane, propane	, iso and normal butar	ne, iso and normal			
pentane and mixtur	es thereof. For LNG	like mixtures (mixture	es of the orthobaric			
liquid state at te	mperatures of 120 K o	r less and containing	at least 60% methane,			
less than 4% nitro	gen, less than 4% eac	h of iso and normal bu	tane and less than 2%			
total of iso and n	ormal pentane) all o	f the models are estin	nated to predict densi-			
ties to within 0.1	" of the true welve	The movies are estim	d McKiplow model is			
volid entre Con d	% of the true value.	The revised klosek at	Id MCRIIILEY MOdel 15			
valid only for mix	tures within the rang	e of temperature and c	composition specified			
above while the of	her three models are	valid tor a breader rar	<i>c</i> .			
		valid for a bloader far	nge of pressure, tempera-			
ture and compositi	on. Ine experimental	PVTx data set used in	nge of pressure, tempera- n the optimization			
ture and compositi together with comp	arisons are given and	PVTx data set used in listings of computer	nge of pressure, tempera- n the optimization programs for each of			
ture and compositi together with comp the models are inc	on. The experimental parisons are given and luded.	PVTx data set used in listings of computer	nge of pressure, tempera- n the optimization programs for each of			
ture and compositi together with comp the models are inc	on. The experimental parisons are given and luded.	PVTx data set used in listings of computer	nge of pressure, tempera- n the optimization programs for each of			
ture and compositi together with comp the models are inc	on. The experimental parisons are given and luded.	PVTx data set used in listings of computer	nge of pressure, tempera- n the optimization programs for each of			
ture and compositi together with comp the models are inc	on. The experimental parisons are given and luded.	PVTx data set used in listings of computer	nge of pressure, tempera- n the optimization programs for each of			
ture and compositi together with comp the models are inc	on. The experimental parisons are given and luded.	PVTx data set used in listings of computer	nge of pressure, tempera- n the optimization programs for each of			
ture and compositi together with comp the models are inc	e entries: alphabetical order: ca	PVTx data set used in listings of computer	nge of pressure, tempera- n the optimization programs for each of			
ture and compositi together with comp the models are inc	e entries; alphabetical order; car	PVTx data set used in listings of computer	nge of pressure, tempera- n the optimization programs for each of separate key words by semicolons)			
ture and compositi together with comp the models are inc 2. KEY WORDS (Six to twelve Cell model; compar hard sphere: LNC:	e entries; alphabetical order; cap 'isons; computer progr	PVTx data set used in listings of computer distings of computer distalize only proper names; and s ams; corresponding sta	nge of pressure, tempera- n the optimization programs for each of eparate key words by semicolons) ates; equation of state;			
ture and compositi together with comp the models are inc 2. KEY WORDS (Six to twelve Cell model; compar hard sphere; LNG;	e entries; alphabetical order; ca nisons; computer progr mixtures; PVTx data;	PVTx data set used in listings of computer pitalize only proper names; and s ams; corresponding sta revised Kosek and McKi	nge of pressure, tempera- n the optimization programs for each of separate key words by semicolons) ates; equation of state; inley.			
ture and compositi together with comp the models are inc 2. KEY WORDS (Six to twelve Cell model; compar hard sphere; LNG;	e entries; alphabetical order; cap mixtures; PVTx data;	PVTx data set used in listings of computer bitalize only proper names; and s ams; corresponding sta revised Kosek and McKi	nge of pressure, tempera- n the optimization programs for each of separate key words by semicolons) ates; equation of state; inley.			
<pre>ture and compositi together with comp the models are inc 2. KEY WORDS (Six to twelve Cell model; compar hard sphere; LNG; 3. AVAILABILITY</pre>	e entries; alphabetical order; cap mixtures; PVTx data;	PVTx data set used in listings of computer bitalize only proper names; and s ams; corresponding sta revised Kosek and McKi	nge of pressure, tempera- n the optimization programs for each of separate key words by semicolons) ates; equation of state; inley. 14. NO. OF			
 ture and compositi together with comp the models are inc 2. KEY WORDS (Six to twelven Cell model; compar hard sphere; LNG; 3. AVAILABILITY [X] Unlimited 	on. The experimental parisons are given and cluded. e entries; alphabetical order; cap risons; computer progr mixtures; PVTx data;	PVTx data set used in listings of computer bitalize only proper names; and s ams; corresponding sta revised Kosek and McKi	nge of pressure, tempera- n the optimization programs for each of separate key words by semicolons) ates; equation of state; inley. 14. NO. OF PRINTED PAGES			
 ture and compositi together with comp the models are inc 2. KEY WORDS (Six to twelven Cell model; compar hard sphere; LNG; 3. AVAILABILITY X Unlimited 	e entries; alphabetical order; cap risons; computer progr mixtures; PVTx data;	PVTx data set used in listings of computer pitalize only proper names; and s ams; corresponding sta revised Kosek and McKi	nge of pressure, tempera- n the optimization programs for each of separate key words by semicolons) ates; equation of state; inley. 14. NO. OF PRINTED PAGES			
<pre>ture and compositi together with comp the models are inc 2. KEY WORDS (Six to twelve Cell model; compar hard sphere; LNG; 3. AVAILABILITY X Unlimited For Official Distributi X Order 5</pre>	on. Do Not Release to NTIS	PVTx data set used in listings of computer pitalize only proper names; and s ams; corresponding sta revised Kosek and McKi	nge of pressure, tempera- n the optimization programs for each of separate key words by semicolons) ates; equation of state; inley. 14. NO. OF PRINTED PAGES 84			
<pre>ture and compositi together with comp the models are inc 2. KEY WORDS (Six to twelve Cell model; compar hard sphere; LNG; 3. AVAILABILITY X Unlimited For Official Distributi X Order From Superinten 20402</pre>	on. Ine experimental parisons are given and cluded. e entries; alphabetical order; cap risons; computer progr mixtures; PVTx data; on. Do Not Release to NTIS dent of Documents, U.S. Govern	PVTx data set used in listings of computer pitalize only proper names; and s ams; corresponding sta revised Kosek and McKi	nge of pressure, tempera- n the optimization programs for each of separate key words by semicolons) ates; equation of state; inley. 14. NO. OF PRINTED PAGES 84 . D.C. 15. Price			
<pre>ture and compositi together with comp the models are inc</pre>	on. Ine experimental parisons are given and cluded. e entries; alphabetical order; cap risons; computer progr mixtures; PVTx data; on. Do Not Release to NTIS dent of Documents, U.S. Governi	PVTx data set used in listings of computer pitalize only proper names; and s ams; corresponding sta revised Kosek and McKi	nge of pressure, tempera- n the optimization programs for each of separate key words by semicolons) ates; equation of state; inley. 14. NO. OF PRINTED PAGES 84 . D.C. 15. Price			

QU.S. GOVERNMENT PRINTING OFFICE: 1081-0-777-002/1212

USCOMM-DC 6043-PRO

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs. As a special service to subscribers each issue contains complete citations to all recent Bureau publications in both NBS and non-NBS media. Issued six times a year. Annual subscription: domestic \$13; foreign \$16.25. Single copy, \$3 domestic; \$3.75 foreign.

NOTE: The Journal was formerly published in two sections: Section A "Physics and Chemistry" and Section B "Mathematical Sciences."

DIMENSIONS/NBS—This monthly magazine is published to inform scientists, engineers, business and industry leaders, teachers, students, and consumers of the latest advances in science and technology, with primary emphasis on work at NBS. The magazine highlights and reviews such issues as energy research, fire protection, building technology, metric conversion, pollution abatement, health and safety, and consumer product performance. In addition, it reports the results of Bureau programs in measurement standards and techniques, properties of matter and materials, engineering standards and services, instrumentation, and automatic data processing. Annual subscription: domestic \$11; foreign \$13.75.

NONPERIODICALS

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide program coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396). NOTE: The principal publication outlet for the foregoing data is the Journal of Physical and Chemical Reference Data (JPCRD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

Order the **above** NBS publications from: Superintendent of Documents, Government Printing Office, Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR's—from the National Technical Information Services, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collectively constitute the Federal Information Processing Standards Register. The Register serves as the official source of information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Services, Springfield, VA 22161, in paper copy or microfiche form.

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Washington, D.C. 20234

OFFICIAL BUSINESS

Penalty for Private Use, \$300

POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE COM-215

SPECIAL FOURTH-CLASS RATE BOOK