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FOURIER TRANSFORMATION OF THE NONLINEAR VOR
MODEL TO APPROXIMATE LINEAR FORM

by

Dominic F. Vecchia

This technical note describes a method for transforming a

particular nonlinear regression model to a form which is approxi-
mately linear in the unknown parameters. The technique involves
computation of the Fourier coefficients for a set of sample data
and uses phase variables to estimate the parameters. The phase
spectrum transformation is employed to obtain bearing angle esti-
mates for a model associated with the Very-High-Frequency Omni-
Directional Range (VOR) aircraft navigation system. The trans-
formation provides a model linear in relevant phase parameters.
Thus, estimation of VOR bearing angle utilizes existing
statistical theory. Finally, it is shown that certain generaliza-
tions of the VOR model also are reduced to approximate linear form
by the phase spectrum transformation.

Key Words: Fourier coefficients; linear model; nonlinear model;
phase spectrum transformation; spectrum; VOR aircraft navigation
system; white noise.

1. INTRODUCTION

There are many different reasons for making a transformation of variables
in the statistical analysis of data. This technical note discusses an unusual
type of transformation useful in connection with a particular nonlinear
regression model for audiofrequency signals from the Very-High-Frequency
Omni-Directional Range (VOR) air navigation system. The model, which is

considered in a more general form than the VOR requires, is intrinsically
nonlinear in the unknown parameters. By intrinsically nonlinear we mean that
a single observation cannot be transformed into linear form. For example,
consider the two models

Y = exp(B]_ + 62x + £ )

Y = [e 1 /(S 1
-6

2 > ] [exp(-B2x) - exp(-BlX)] + e
,

where 3} and $2 are unknown parameters, x is an independent variable, and e

is a random error term. Both models are nonlinear in &\ and 32 , but the first
is intrinsically linear because the transformed variable lnY is linear in $1

and 32 « However, the second model is intrinsically nonlinear because it is

impossible to convert the model into a form linear in the parameters. For a

discussion of these concepts see reference [1].

Usually, it is not useful to transform a model of the second type because
it remains nonlinear whatever transformation is applied. The transformation
introduced in this paper is unusual because it involves computation of the



Fourier coefficients of the sample data and uses phase variables to estimate
parameters. For this reason the procedure to be described is called the phase
spectrum transformation . The method will be demonstrated for the model
specific to the VOR air navigation system.

The VOR is a fundamental component of the present-day air navigation
system. A feature of the VOR system which provides much versatility for
defining controlled airways is that the facility emits an infinite number of

radial courses providing aircraft bearing information. This information is

contained in the phase angles of two 30 Hz audiofrequency signals. The first
has a constant phase at all points around a VOR station and is called the
reference signal. The other, called the variable signal, has a phase equal to

the bearing angle to (or from) the VOR transmitter. In the aircraft, bearing
information is determined by measuring the phase difference between the two

component signals.

The importance of the accuracy of bearing angle estimation devices can-

not, of course, be overstated. At present, measurement accuracy for VOR test
instruments depends upon calibration with commercial equipment designed for

that purpose. As system requirements become more severe because of increasing
traffic in the air lanes, it is clear that both the accuracy and precision of

present VOR calibration equipment will require additional scrutiny. Hope-
fully, this will increase the safety and efficiency of aircraft operations.
For a general discussion of the VOR system, see [2].

This paper presents a statistical technique for estimation of VOR bearing
angle and gives the corresponding precision of the estimated angle. The
general method is based on regression analysis of samples taken by a sample-
and-hold amplifier and an analog-to-digital converter. The method provides a

linear model in relevant phase parameters. Thus, the bearing angle estimation
utilizes existing statistical theory.

In section 3 of this technical note, the nonlinear regression model is

represented in continuous time. Fourier coefficients are obtained for the

noise-free signal, and results for the special case of the VOR signal are
stated. The results for the VOR application are extended without proof to the

discrete time sample model in section 4. The spectrum for the VOR model with
noise is derived and the phase spectrum transformation is defined. In section
5 the approximate linear model for transformed variables is used to estimate

unknown parameters and the usefulness of the transformed model is discussed.

Section 6 is a limited discussion concerning the properties of estimators if

some assumptions specific to the VOR model are invalid.

2. NOTATION

For X, a random variable with probability density f (x) , we denote the
mean and variance of X by E[X] and Var[X] , and the covariance between X and a

random variable Y is denoted by Cov[X,Y].

Vectors and matrices are denoted by underlined letters, for example, _9

and _V. If 9 denotes a vector, then 9' will denote the transpose of _9. An
estimator of 9 will be denoted by 9.



3. CONTINUOUS TIME NONLINEAR MODEL

The nonlinear model considered in this report will be represented, ini-
tially, as a continuous function of time. In a later section the mathematical
results obtained for the continuous time model are extended to the case where
the data are equally spaced observations from the continuous signal.

To represent the deterministic component of the model requires two peri-
odic functions described below in (3.0.1). These functions are added to

obtain the expected (ideal) value of the output signal in a nonlinear regres-
sion model. The two component functions are

v(t;M) = «! cosUTTf^t+fi) + <b { ]

and (3.0.1)

s(t;S,J>) = a2 cos[2TTf
2 (t+6) + <j>2

+ 6 sin[2irf^t+6) + <j>3 ] ] .

The waveform generated by the sum of v(t;S,<J>) and s(t;<5,<f>)> with some param-
eters assumed known, may be used to represent the ideal audiofrequency signal
for the VOR aircraft navigation system. In this context, v(t;6,_^) is called
the variable phase signal , and s(t;<5,_<J>) is the frequency modulated subcarrier
signal . The frequency modulating sinusoid, contained in the argument of

s(t;6,j0, is called the reference phase signal . Equations for the component
signals have been presented in a more general form than the VOR application
requires. However, the above terminology is used throughout this paper. Fol-
lowing are descriptions of the model parameters:

o^ = amplitude of variable phase signal;

a2 = amplitude of subcarrier signal;

ll = variable (and reference) signal frequency;

f 2 = subcarrier frequency;

3 = modulation index;

<5 = arbitrary fixed time offset;

<J>1
= phase angle of variable phase signal;

<J>2
- phase angle of subcarrier signal;

<j>3 = phase angle of reference phase signal.

The fixed time offset, 6, is included in (3.0.1) because the output signal
will be observed and sampled from an unknown starting point in the waveform.
We cannot, in general, be assured that observation of the signal begins at a

zero crossing on the time axis.

Realistically, measurement of the composite signal involves random
measurement error in some form. In this paper the random error process, e(t),
is assumed to be additive white noise [3], and the resulting process Y(t) can



be represented by

Y(t) = V + v(t;6,_£) + s(t;M) + e(t)
, (3.0.2)

where P is a fixed but unknown offset. Unless otherwise specified, e(t) is

not assumed to be Gaussian white noise. However, for the distributional
result obtained in the appendix, we require normality and independence of the
discrete time error series to be as described in subsection 4.1.

In subsection 3.2, a form of the model specific to VOR navigation system
is discussed. For this application some of the parameters in the general form
of the model are assumed to be fixed, known values. On this basis a

statistical method for VOR bearing angle estimation will be derived. Because
the relevant angle for the VOR application is C 4*1 — 4>3 ) » it is sufficient to

consider a reparameterized form of the model where we define new parameters _8

by

©1 =
4>l

— <t>3

9
2

= 2TTf
L
6 +

<f>3

83 = 27rf2 6 + <j>2 .

For this parameterization the general model becomes

Y(t) = u + v(t;_6) + s(t;_6) + e(t) (3.0.3)

where

v(t;_6) = <xi cos[2Trf
1 t + 9j + 2 ]

and

s(t;_9) = ot2 cos[2irf2 t + 83 + 3 sin[2irf
1 t + 8

2 ] ] .

In the following section, we obtain the Fourier sine and cosine transforms of

E[Y(t)]=y+v(t;_8)+s(t;j3) under the assumption that f 2=mfi« Hence, E[Y(t)] is

periodic with period (1/fj). Utilizing the general result, the specific
transform for the VOR signal is determined in subsection 3.2.

3.1 Fourier Representation of General Model

Let y(t;_8) denote the expected value of Y(t). The deterministic function
y(t;_8) is given by

y(t;_8) = v + v(t;_8) + s(t;_8).

Suppose that the frequencies f^ and f 2 in the definition of v(t;_8) and s(t;_8)

are such that f 2=mf^ for some positive integer m. Thus, y(t;_6) is periodic
with period (1/f^). Under this assumption, the Fourier coefficients of y(t;_8)

can be obtained from the real and imaginary parts of the complex integral



l/2f
1

sk = 2fj / y(t;_8) exp[i2uf
1
kt] dt, k=0,±l,±2, ...

-l/2fj

Let ak and b^. denote the real and imaginary parts of sk , so that sk = a^+ib^.
That is, ak and b^ are the Fourier cosine and sine transforms, respectively,
of y(t;_8). In the appendix, it is shown that the Fourier coefficients ak and
bk for k=0,l,..., are

and

r
V , k=0

ak
=

"S
a
l

cos [8^+62] + a
2 ak (s) , k=l

^ a2 ak (s) , k>2

'0
, k=0

-o^ sin[ 8^+62] - a2 b^Cs) , k=l

(3.1.1)

bk =<

v.-a2 t^Cs) , k>2

where, for k>l,

ak(s) = Jk_m(B)cos[83 + (k-m)82 ] + J_k_m ( B)cos [ 83 - (k+m)82 ]

and

b^s) = Jk_n(B)sin[8 3 + (k-m)82 ] + J-k_m ( B)sin[ 83 - (k+m)82 ]

The notation Jn(z) denotes a Bessel function of the first kind [4],

Equations (3.1.1) represent the Fourier coefficients for the mean value
function of the general continuous time model where the subcarrier frequency
f2 is an integer multiple of fj, the frequency of the variable phase signal.

For the VOR model, where some parameters in the general model are assumed
known, we will see that the Fourier coefficients can be greatly simplified.
The form of the coefficients for this special case will suggest a method for
estimating the unknown parameters.

3.2 Fourier Representation of VOR Signal

The VOR audio frequency waveform consists of a 30 Hz variable phase
signal linearly added to a frequency modulated 9960 Hz subcarrier signal. The
modulation index for the reference phase signal is assumed to be fixed and
known, as are the amplitudes of each signal. Specifically, parameter values
assumed to be known are:



u =

<*! = 2
1/2

a2 = 2^ 2

f x
= 30

f 2 = 9960 (so ra = f 2 /fi - 332)

3 = 16 .

These specifications define the VOR model

Y(t) = y(t;_6) + e(t)

where

y(t;_9) = 2
1/2 {cos[2iT30t + B

l
+ 9

2 ]

+ cos[2Tr9960t + G3 + 16sin[2Tr30t + 9
2 ]]}.

Noting that y(t;9) is nonlinear in the unknown parameters 9"=[ 8^,

9

2 ,

9

3 ] , we
will show in section 4 that the spectrum of Y(t) can be used to transform a

set of sample data to new observations satisfying a model approximately
linear in 8. The transformation to linearity will depend on the simplified
form of the Fourier coefficients for y(t;9) when known values of parameters in

the VOR model are substituted in the general equations (3.1.1).

Substituting known values in the expressions for ak(s) and ty^s), we

obtain for k>l,

ak (s)
= Jk_3 32 (16)cos[93+(k-332)e2 ] + J_k_332 ( 16)cos [

9

3-(k+332)

9

2 ]

and

bk (s)
= Jk_332 (16)sin[93+(k-332)92 ] + J_k_332 ( 16) cos [

8

3-(k+332)

9

2 ]

.

We need the following results for Bessel functions of the first kind.

Lemma 3.1 ; [4, page 358] For integer n, Jn (z) satisfies

J_n(z) = (-l)n Jn (z) .

Lemma 3.2 ; [4, page 365] For fixed z, as n-*-
00 through real positive values,

Jn (z) S (2Tin)- 1/2 (ez/2n) n .



From lemmas 3.1 and 3.2, it follows that

J_k_332 (16) = (-l)k+332Jk+332 (16)

= (-l)k+332 [2ir(k+332)]- 1/2 [16e/2(k+332)] k+332

=

Clearly, the value of Jk+33 2(16) i- s immeasurably small. Note, for example,
333that if k=l, Jk+332 (16) ~ • 02 (

*

065 ) • Similarly, for small k, we have that

Jk-332 - °-

Using the above results, we get

and

ak (s) =

, k=l

Jk_332 (16)cos[e3 + (k-332)92 ] , k^2

T>k(s) =

, k=l

Jk_332 (16)sin[63
+ (k-332)92 ] , k>2

Substituting in the general expressions (3.1.1), the approximate Fourier
coefficients for y(t;9) in the VOR model become

and

r o

ak M 1/2
2
i/z cos[e

1
+ e

2 ]

k=0

, k=l

^_ 2
i/z Jk_332 (16)cos[63 + (k-332)G2 ] , k>2

r

1/2bk 2< -2 W/ sintSj + 92 ]

, k=0

, k-1

v -2
1/2 Jk_332 (16)sin[63 + (k-332)G2 ] , k>2.

Because omitted terms are negligible, in the following sections we consider
the Fourier coefficients to be exact.



DISCRETE TIME NONLINEAR MODEL

The general model and corresponding Fourier transforms introduced in

section 3 will facilitate a later discussion about errors in assumptions for

the VOR model. Because the approximations discussed in the previous section
depend on the particular values of some parameters in the general model, the

phase spectrum transformation will be developed only for the VOR
specifications. In subsection 4.1 we consider the discrete time analogs of

the VOR model and corresponding Fourier coefficients, since a digital phase
estimation technique is desired.

4.1 Fourier Coefficients of VOR Signal

Let Y-;, j=l,...,N, be N equally spaced observations from one period of

the continuous time VOR series. For convenience, N is assumed to be even in

the results to follow. The sample model for VOR applications can be written

Yj = yjd) + ej I

_ > J»k=l,...,N
E[ej]=0; Var[e-j]=a 2

; E[ejek ]=0 if j*k J

where

yj(_9) = 2
1/2 {cos[2tt(j-1)/N + d

1
+ 62 ]

+ cos[2tt332(j-1)/N + 93 + 16sin[2ir( j-l)/N + 62 ] ]}.

2
The ei's denote un correlated random error terms with unknown variance a .

The Fourier coefficients (sk = a^+ib^) for yj(_9) are given by

N

sk = (2/N) I yi (_6) exp[i2TTk(j-l)/N] .

J-l

The ak and b^ follow directly from the continuous time model. Excluding the

coefficients for k=0, which are not useful to estimate _9, equations for ak and

bk are

ak

2 1/2 cos [6! + 82 ] , k=l

2
1/2 Jk_3 32 (16)cos[e3 + (k-332)92 ], k=2,3, . . . ,N/2,

and (4.1.1)

f
-2 1/2 sinlSj + e

2 ] , k=l

. -2 1/2 Jk_332 (16)sin[e3 + (k-332)62 ], k=2,3, . . .
,N/2-l .

K

Recall that these coefficients can reasonably be considered exact expressions

because omitted terms are negligible. The interesting feature of the

equations for ak and bj^ is the form of the phase of the kth harmonic. If we

let q represent the phase at a chosen harmonic, then the basic equation for

8



q is tan(q)=-b/a. For convenience, we have dropped the subscripts on q, b,

and a. Because Arctan(-b/a) gives the same value for -b and -a as for b and
a, the full solution for q in the interval (-t,tt] is the following

[5, page 12] :

r

i* = <

Arctan(-b/a) , a>0

Arctan(-b/a)-ir, a<0, b>0

Arctan(-b/a)+iT, a<0, b<0 (4.1.2)

-tt/2
, a=0, b>0

tt/2
, a=0, b<0

arbitrary , a=0, b=0

The notation Arctan(x) is used to denote the principal value, so that
-ir/2<Ar ctan(x)<iT/2. If arctan(x) denotes any angle whose tangent is x, then
it follows that

arctan(-b/a) = q* + j2ir (4.1.3)

where j is an arbitrary integer. From (4.1.3) and the expressions for a^ and

b^, it then follows that there exist integers Y^ such that qk(_9)
=q^*+Yic

2'T is

given by

qk <_8) =
»1 + 92 , k=l

(k-332)9 2
+ 9

3 ,
|k-332|<K ,

(4.1.4)

where K is a constant chosen to assure that Jk-332^-'-^) ^ s non-negligible. A
zero value for the Bessel function leads to an arbitrary phase because
ak

=kk=0* Table 1 lists the values of Jn (16) for n=0,...,24. In a later
section it will be shown that a value of K^IO is sufficient for the proposed
estimation of 9.

Table 1. Bessel Functions

n Jn (16) n Jn (16)

1

2

3

4

5

6

7

8

9

10

11

12

-.1748990739
.0903971756
.1861987209
-.0438474954
-.2026415317
-.0574732704
.1667207377
.1825138237
-.0070211419
-.1895349656
-.2062056944
-.0682221523
.1124002349

13 .2368225047
14 .2724363352
15 .2399410820
16 .1774531934
17 .1149653049
18 .0668480795
19 .0354428740
20 .0173287462
21 .0078789915
22 .0033536066
23 .0013434266
24 .0005087450



The multiples of 2ir indexed by Y in the expression for q^(_9) are
necessary to adjust the qk * from the interval ( — tt, tt] to the interval (- 00

,
00 ).

Because the 9's will represent unknown parameters, the Y's are not known in
general. If we assume, however, that 02^0, it is clear from (4.1.4) that the

Y's must satisfy

qj
* + Yj2tt < qj * + Y± 2tt , j<i ; i*l*j

,

so (4.1.5)

(Yj " Yi)2TT < q ±
* -

qj
*

, j<i ; i*l#j .

This implies that for |
k—332 | <K, the Y^'s can be uniquely determined if, for

example, the following conditions are assumed:

-ir<9
1
+9

2
<TT

6
2
>0

-TT<e3
<TT .

With these constraints Yi
=Y332= and successive values of Yk near k=332

are determined from (4.1.5). For the extension of the results to the VOR
signal with error we will assume that the Y's are known.

4.2 Spectrum of VOR Noise Model

In the previous subsection Fourier coefficients were obtained for the
deterministic component of the VOR process. For the nonlinear VOR regression
model:

Yj = yj (_e_) + ej 1

2 > J,k=l,...,N
E[e-j]=0; Var[ej]=a ; E[ejek ]=0 if j*k J

the Fourier coefficients of y i(®) , represented by s^a^+ib^, were shown to

have phase values linear in _6. In this section we prove that random phase
variables derived from Fourier transformation of Y-j, j=l , . . . ,N are appropri-
ately represented by a regression model linear in 9.

Letting the random variables S^=A^+iB}
c , k=l , . . . ,N/2-1 , represent the

Fourier coefficients of Y-j, we have

N
Sk = (2/N) I Yj exp[i2irk(j-l)/N]

j=l

N
= (2/N) I (y i

(_9)+e
i
)exp[i2TTk(j-l)/NJ

j-l

N
= sk + (2/N) I ej exp[i2irk(j-l)/N]

j=l

10



where sic=aic+ibjc are the Fourier coefficients for y-j(_9) given in (4.1.1). If

we let the transform of the random error sequence be denoted by

N

gk + ihk = (2/N) I eA exp[i2irk(j-l)/N]
,

j=l

it is well known [6, page 110] that the random variables gk and hk ,

k=l , . .
.

,N/2-1 are mutually un correlated and

E[gk ] = E[hk ] =

Var[gk ] = Var[hk ] = (2/N)</
k=l,... ,N/2-1

It therefore follows that the Ak and Bk are uncorrelated and satisfy regres-
sion models

Ak
= ak + §k

Bk = bk + hk

k=l,... ,N/2-1

Linearity of ar ctan(-bk/ak ) in _6 suggests that we consider the phase spectrum
of Yj to estimate _9. In the next section it is shown that the expected values
of phase variables are approximately linear in 8.

4.3 Phase Spectrum Transformation

The definition of phase random variables parallels the description of the
phase qk (_9) for the deterministic component y ^ (_9 ) • Phase variables will be

denoted by Qk and initially are defined using principal values in the interval
( — 7T , tt] . Define

0^.* = Arctan[-Bk/Ak ] , k=l , . . . ,N/2-l . (4.3.1)

In the appendix the distribution of the (\* , k=l , . .
.

,N/2-1 is determined when
the errors are Gaussian. The expected value of 0^.* is not obtained, but the
complexity of the distribution illustrates the usefulness of approximate
moments of Q^* which result from a suitable propagation of errors formula.

To conclude this subsection we obtain approximate formulas for the mean
and variance of Qk*« These results are the basis for the linear models used
to estimate _9 in Section 5. As defined, Ak and Bk appearing in (4.3.1)
satisfy:

E[Ak ]
= ak ; E[Bk ] = bk

Var[Ak ]
= Var[Bk ]

= (2/N)a'

Cov[Ak ,Bj] = all j,k

~\

V k,j=l,...,N/2-l

11



For values of k such that a^O^b^., it can be shown [7, page 333] that, to order
N , Qk* has approximate mean and variance given by:

E[Qk*] = Arctan[-bk/ak ]

Var[Qk*] 3 (2/N)rk
_2

a 2

where

(4.3.2)

2 2 2
rk = ak + bk

2 , k=l

2J
2
k_3 32 (16), |k-332|<K .

The value of K is chosen to assure that Jk-332(16) is nonzero. Note that
E[Qk*]-qk *, where the solution for qk* in the interval ( — it

,
tt] was given in

(4.1.2). Based on the discussion following (4.1.2) we can define Qk
=Qk*+Yk2T

where the Yk 's are (generally) unknown integers such that

E[Qk ] = qk (_9)

Var[Qk ] = (2/N)rk
_2

a 2

where

(4.3.3)

The method of estimating _9 to be outlined in Section 5 is based on the
above results. To the chosen degree of approximation , the important features
are:

1. E[Qk ] is linear in _6 for all permissible k.

2. Var[Qk ] is proportional to a 2 with known constant of proportionality.

3. For all permissible k, the Qk 's are mutually uncorrelated (assuming
white noise errors in the original model).

Because the linear model of Section 5 requires that Qk be an observable random
variable, it will be necessary to assume that the Yk 's are known integers.
The Yk 's are used to adjust the computed values of the arctan function to
satisfy inequalities implied by (4.3.3). Though it is not obvious that this
correction can be accomplished with the C^, which are subject to error,
computer simulations indicate that the adjustment is possible if the
measurement error variance, a2 , is small. Values used for a 2 are thought to
be representative of measurement precision for a new system designed to obtain
sample values Y^, j=l,...,N.

12



5. LINEAR MODEL FOR PHASE SPECTRUM

In the previous section approximate formulas for the means of phase
random variables for the nonlinear VOR model were shown to be linear in the
unknown parameters _9. Corresponding variance approximations are unequal at

the harmonics and proportional to a , but do not depend on other unknown
parameters. The additional observation that phase random variables are
uncorrelated suggests that 9 and a may be estimated using a linear model in

with known error covariances. For the description to follow the reader is

reminded that expressions for the mean and variance of Q^ are not stated as

approximations.

Consider the n=2+2K equations

r Q
1
+ 8

2 + e
1 , k=l

Qk =
\
I (k-332)9 2 + 63 + ek , k=332-K, ... ,331,332,333, ... ,332+K

where e^ represents a random error term such that

E[ek ]=0 ; Var[ek ]=(2/N)rk
- 2 2

;

Cov[ek ,£j]=0 if k*j ;

and where

(1) the Qk are observable random variables;

(2) the r^ are known constants.

2
(3) 9^, 9

2 , 93, and a are unknown parameters.

The model can be represented as a single matrix equation

Q = X9 + e E[e] = Cov[ e]=o V (5.0.1)

where the vectors and matrices are

Qi

Q332-K

Q = Q331
Q332
Q333

Q332+K

x =

1

-K

-1

1

K

13



e =

e332-K

e331
e332
e333

E332+K

V = (1/N)

1

[J_K (16)]-
2

• • •

[J (16)
1-2

[JKU6)]-
2

For these specifications of the linear model, unbiased estimators of 9 and a

are given by [8, page 207]

:

-lv\-lv "m-^-i= (X'\I~ lX)~ lX'V~ L

Q

» 2
a = J_ Q'[v~ 1-V" 1X(X'V~ 1 X)~ 1 X'V~ 1

]q
n-3

(5.0.2)

Variances and covariances of the 9's can be estimated by substituting the
estimator of c 2 in

Cov[9] = o 2 (X'V
_1

X)- 1 (5.0.3)

The quantities listed above are those needed for point estimation and
confidence intervals involving 9 and a 2 .

5.1 VOR Bearing Angle Estimator

According to the reparameterization of the original nonlinear model, the
relevant phase angle for VOR applications is 9^ . The estimator of 9^ can be

obtained by algebraic expansion of the matrix equation in (5.0.2), and its

corresponding variance is the first element of the square matrix in (5.0.3).
The estimator of VOR bearing angle and its estimated variance are

where

K

h = Ql " Ck I j Jj 2
(16)[Q3 32+j -

Q332-J

Vad^] = (l/N)(l+CK )a
2

K
CK = [2 I j

2Jj 2 (16)]- 1

j=l

(5.1.1)

14



Note that the variance of the bearing angle estimator depends on the selected
number of phase values through C^. Because the Bessel function J-j(16)

approaches zero as j increases, it is clear that C^, and hence Var[ 9jJ ,

approaches a lower bound as K increases. In practice, computational speed
and/or memory constraints may require that only a few phase observations be

used to estimate 9j . Values of C
-j
listed in Table 2 suggest that K=10 is

sufficient to minimize C^ .

Table 2. Bessel Functions and Weights

Jj 2
(16) ;2 T 2

J
ZJ/(16)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

0.0305896861
0.0081716494
0.0346699637
0.0019226029
0.0410635904
0.0033031768
0.0277958044
0.0333112958
0.0000492964
0.0359235032
0.0425207884
0.0046542621
0.0126338128
0.0560848988
0.0742215568
0.0575717228
0.0314896359
0.0132170213
0.0044686657
0.0012561973
0.0003002854
0.0000620785
0.0000112467
0.0000018048
0.0000002588

0.0000000000
0.0081716494
0.1386798547
0.0173034257
0.6570174461
0.0825794204
1.0006489577
1.6322534965
0.0031549718
2.9098037600
4.2520788410
0.5631657107
1.8192690450
9.4783478893
14.5474251288
12.9536376362
8.0613467818
3.8197191653
1.4478476965
0.4534872292
0.1201141759
0.0273766197
0.0054433896
0.0009547344
0.0001490789

61.2080
3.4032
3.0448
.5872
.5360
.2800
.1264
.1264
.0752
.0240
.0240
.0240
.0240
.0240
.0240
.0240
.0240
.0240
.0240
.0240
.0240
.0240
.0240
.0240

However, the apparent gain from using using only a few phase variates is

balanced by a corresponding loss in precision for estimating a^ . According
to the specifications for equipment designed to provide the sample values from
a VOR signal, it is likely that K=10 will provide adequate precision for
estimating 8^ .

The procedure described above can be used to achieve acceptable precision
bounds using only a few lines in the phase spectrum of the observed VOR
signal. An alternative method, which may require fewer observations, is to

obtain an estimate of Q\ from a few phase variables not adjacent to Q332 • To

15



illustrate this approach, values of j J.;
2
(16) that appear in CK are listed in

Table 2. The maximum value of this quantity occurs if j = 14, corresponding to

phase observations at k=318 and k=346. Clearly, to minimize the variance of

an estimator of 8^ based on nonadjacent Q^'s, one should add observations in

order of decreasing values on j J -s (16). Thus, phase variate pairs would be

included in the order j=14, 15, 13, 16, etc., corresponding to k=(318,346),
(317, 347), (319, 345) ,(316,348) , etc. It is easy to show that the multiplier
analogous to Cj^ is already near the lower bound of Table 2 after only four

phase pairs are included to estimate 9^ . Hence, if estimation of a 2 is not

severely affected, a significant saving in computational requirements is

achieved using phase variables nonadjacent to Q332 • Assuming that N is

moderately large, the gain is especially desirable if Discrete Fourier
Transforms are used to obtain the Q^.

5.2 Discussion

It can be argued that a transformation of the nonlinear model to linear
form is unnecessary because suitable nonlinear least squares methods can be

applied directly to the sample data. These methods are iterative and require
initial estimates of the unknown phase angles. However, for VOR applications,
software for estimating unknown angles will be implemented on desktop
computers, which will also serve as controllers in VOR calibration systems.
In this case, the phase spectrum transformation and subsequent estimation of

phase angles using the linear models approach is computationally efficient and
is to be preferred if there are no serious deficiencies in the technique.

From a mathematical standpoint, estimation of _8 using the phase spectrum
transformation depends on two related assumptions. First, it was implicitly
assumed that formulas for the mean and variance of phase random variables
approximate the true mean and variance to the extent that departures from the

correct values are negligible. A second assumption, which requires further
study, concerns the adjustment of computed values of the Arctan function.
Recall that Qk^Qk*"^^ 71

' where Q^* is an observable random variable in the

interval (
—

tt , tt] . In the derivation of the estimators of _9 and a2 , it was
assumed that the integers (Y^} can be determined from the data. If the Y^'s

are not known, then 8 and a 2 in (5.0.2) are not estimators because they are
not observable.

A computer simulation of the VOR signal with independent Gaussian errors

was used to determine if the assumptions described above severely limit

applicability of the phase spectrum transformation. Results of this

investigation indicate that linearity of the mean and the ability to adjust
the Arctan function depend, primarily, on variability in measurement errors.

The technique was applied consistently for values of less than .001. For

somewhat greater values of a 2 , straightforward determination of the Y's is

usually successful, and indications are that the method can be refined,

perhaps by developing a search technique for the Y's. Analyses were conducted

with N=1024 time samples.

It should be emphasized that values of o^ used in computer simulations
are believed to be representative of expected variability of measurement
errors for a VOR audiofrequency generator currently being constructed.

Computations based on simulated data were used to affirm the mathematical
results of previous sections and are not reported here.

16



To conclude this section we remark that hardware specifications for VOR
generators and the method for sampling the continuous time signal will togeth-

er determine the accuracy and reliability of specified values for frequency,
amplitude, offset, and modulation index. Because properties of measurement
errors, such as stability and independence, can be affected by hardware and
software specifications, examination of estimated residuals for the time

samples can be useful to validate assumptions about sampling errors.
Estimated residuals for the VOR model are given by

s
j

= Y
j

" y
j

(i }
» j=i »---»N

•

Plots of residuals and/or tests for serial correlation can be expected to

reveal inconsistent or unusual properties of a particular VOR measurement
system. Detection of a problem may require redesign of the system or a

modification of the estimation method developed in this report.

6. ROBUSTNESS OF ASSUMPTIONS

In this section, two generalizations of the VOR model are examined to

understand the consequences if values of some parameters assumed to be known
are in error. To facilitate the discussion, we state a modification of the
VOR model which is sufficient for the generalizations considered in this
section:

Y(t) = v(t;6) + s(t;9) + e (t)

where

and
v(t;_9) = 04 cos[2Tr30t + Q]_ + 6

2 ]

s(t;_6) = ct2 cos[2T:9960t + 16sin[2ir30t + 62 ] ]

1/9Recall that for VOR applications we assumed that aj_ = a2=2
1

' .

6. 1 Signal Offset

Let Y(t) denote a signal with a^=a
2
=2 1/2

. Suppose that instead of Y(t)
we observe Y(t)+M where M*0. The Fourier transform of the observed process
is:

1/60
60 / JY(t) + u]exp[i2Tr30kt] dt

-1/60

, k=0

, k*0

where S^. is the transform of Y(t). Therefore, signal offset does not affect
the previous results because S was not used tQ estimate _9.

17



6.2 Signal Amplitude

In subsection 3.1 we obtained the Fourier coefficients of a signal more
general than the VOR requires. The derivation of essential results that
followed in no way depended on the particular values of the amplitude
parameters a^ and o^. If y(t ;_9)=v(t ;_9)+s(t ;_9) denotes a VOR signal with o^

and oi2 unspecified, and s^a^+ib^ denotes the corresponding transform of

y(t;9), then it is easily shown that

ak

and

bk =

• aj Cos[e
1
+ e

2 ] ,
k=i

-
a2 Jk-332( 16 ) cos [

Q
3
+ ( k"332 ) e2]» k>2

-o^ sin[6
1
+ 82 ] ,

k=l

-a2 Jk_332(16)sin[63+(k-332)e2], k>2

Clearly, phase computations using tan(q^)=-bj
c
/a|

c , which are fundamental to the
estimation method, are invariant with respect to particular values of oij and
c*2, even if otj^o^ .
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APPENDIX

The appendix presents the derivation of Fourier coefficients in equation
(3.1.1), and obtains the distribution of phase variables when errors in the
VOR model are Gaussian.

A. 1 Derivation of Fourier Coefficients

In this section we determine the Fourier coefficients for the function

y(t;_6) = P + v(t;_6) + s(t;_9) (A.l.l)

where

v(t;_8) = a
x
cos^^t + 9

X
+ 2 ]

and

s(t;_9) = a2 cos^irmfx + 9
3 + 3 sin[2Trf

1
+ 9

2 ] ]

The following results and trigonometric identities are needed in the

derivation:

l/2f f l/2f , j=k*0

/ cos(2TTfjt)cos(2Trfkt)dt =< (A.1.2)
l/2f lO ,

j^k

l/2f

/ cos(2Trfjt)sin(2irfkt)dt = 0, all j,k (A.1.3)
•l/2f

cos((*f3) = cos a cos 3 - sin a sin 3 (A. 1.4)

cos a cos 3 = (1/2) [cos(a-3) + cos(oH-3)] (A. 1.5)

IT

/cos(nt - z sin t)dt = TfJn(z) . (A.1.6)

The Fourier coefficients of y(t;_9) are obtained from the complex integral

l/2f
x

ak + i\ = 2fj_ / y(t;_e)exp[i2Trf
1
kt]dt

-l/2f!
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where aj. and b^ can be represented by

ak
= ak( y )

+ ak^ v )
+ ak^ s ) 1

\ k=0,±l,±2,'".
bk = bk (y) + bk(v) + bk (s) J

The components of ak and b^ represent Fourier coefficients of respective terms

in (A. 1.1). Since p is a constant, it is clear that

f
2p , k=0

ak(M) =

I , k*0

and

bk (y) , all k

Following is a derivation of ak(v) and ak(s). The corresponding Fourier sine
transforms, bk (v) and ty^Cs), are easily deduced from these results.

For non-negative integer values of k, we have

l/2f
x

ak(v) = 2f
: / a

x
cos[2Trf

1
t + 9^ 6 2 ]cos(2Trf

x
kt)dt

-l/2fj

l/2f
!

= 2f
1
a
1

cos(9
1
+ 2 ) / cos(2irf

1
t)cos(2TTf

1
kt)dt

-l/2fi

l/2fi
- 2f

1
a

1
sin(e

1
+ 9

2 ) / sin(2irf
1
t)cos(2uf

x
kt)dt

-l/2f
1

r a
x

cos(6
1
+ 92 ) , k=l

I , k*l

where we have used (A. 1.2) to (A. 1.4). Similarly,

r -a
x
sin(9

1
+ 9

2 ) , k=l

bk (v) =

I , k*l

The Fourier coefficients ak(s) are given by

l/2f
x

ak (s) = 2f
x / 02 cos[2Trmf

1
t + 93 + 3 sin[2irf

1
t + 9

2 ] ]cos(2Trf 1
kt)dt.

-l/2f
x
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Substituting u=27rf
1 t+92, so dt=(2irfi) 1

t
we get

IT

ak (s) = ff
-1

a2 / cos[mu - m92 +63+3 sin u]cos(ku - k82 ) du,
-Tf

where the limits -Tf+0
2
<u<Tf+82 can be replaced by -Tr<u<TT because the

integrand has period 2tt. Furthermore, using the identity (A. 1.5), we obtain

TT

ak(s) = (2ir)
-1

a2 / cos[(m-k)u - (m-k)62 +63 + 6 sin u]du
-Tf

+ / cos[(m+k)u - (m+k)62 +63+3 sin u]du,
-TT

and using (A. 1.4) we get

Tf

ak (s) = (2Tf)
-1

a2 cos[03 - (m-k)82 J J cos[(m-k)u + 3 sin ujdu
-Tf

Tf

- sin[03 - (m-k)82J J sin[(m-k)u + 3 sin ujdu
-Tf

Tf

+ cos [83 - (m+k)82J / cos[(m+k)u + 3 sin ujdu
-Tf

Tf

- sin[83 - (m+k)62J J sin[(m+k)u + 3 sin ujdu.
-Tf

The second and fourth integrals are zero because the integrands are odd

functions with period 2tt. Since the first and third integrands are even
functions, it follows from (A. 1.6) that

ak (s)
= a

2 {jm_k (3)cos[83-(m-k)82 ] + Jmhk ( 3)cos [e
3-(m+k)

8

2 ]
} .

Similarly,

bk (s)
= -a

2 {jm_k(3)sin[83-(m-k)8 2 ]
- Jm+k ( 3)sin [

3
-(m+k)

8

2 ]
} .
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We have proved that the Fourier coefficients of y(t;_9) are

r
v , k=0

ak
=

"S
a

l
cos [

Q
l
+ e 2^ + a2 ak^ s ^ »

k=1

^ a
2 ak (s) , k>2

and

^
, k=0

bk
=^~ a

l
sin [

e
l
+ e2^ ~ a2 bk( s ) >

k=1

vr«2 bk( s )

where a^Cs) and b^Cs) are defined above.

, k>2

A. 2 Distribution of Phase Random Variables

A justification for using approximate formulas for the mean and variance
of phase random variables is the complexity of the exact distribution of the

Qk* ' s even when errors are assumed to be Gaussian. For completeness, the

distribution of Ar ctanf-B^/A^] is derived in this section. The subscript is

dropped in the derivation.

If errors are Gaussian, then A and B are independent Gaussian random
variables and

E[A]=a; E[B]=b; a 2+b 2=r 2
;

Var[A]=Var[B]=(2/N)a 2
.

Particular values of a and b are given by (4.1.1). The joint distribution of

A and B is

fA)B (u,v) =(N/4na
2 )exp{-(N/4a 2 )[(u-a) 2+(v-b) 2

]}, -°°<u,v<°°.

Let X=A and Y=Ar ctan[-B/A] . Then because u=x and v=-x tan y, the Jacobian of

the transformation is J=|x|sec y, and the joint distribution of X and Y is

given by

f(x,y) =(N/4a 2
) |x|sec

2
y exp {-(N/4a 2

) [(x-a)
2+(x tan y+b) 2

]}, -°°<x<«>,-7r/2<y<TT/2.

Expanding the exponent and completing the square, we obtain

1/9
f(x,y) = (Nsec2y/4iTa 2 ) exp {(N/4a 2

) [ (a-b tan y)
2 cos 2y-r 2

] }

1/9 9
• |x| (Nsec2y/4ira2 ) exp {(-N/4a 2)sec2

y [x-(a-b tan y)cos 2
y] }

= K(y)«|x| <f>[x:(a-b tan y )cos
2
y, (2/N) a 2 cos 2

y]

where <|>[z:5,t ] denotes the probability density function of a Gaussian
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distribution with mean £ and variance t
' . Integration of f(x,y) over x to

obtain the distribution of Y shows that f (y )=K(y)E [ |x|
] , where X is Gaussian

with mean (a-b tan y)cos y and variance (2/N)o cos y.

If Z is a Gaussian random variable with mean £ and variance i , then

°°

E[|Z|] = - /ztf)[z:C,T 2 ]dz + Jz<f.[z:?,T
2 ]dz

-00

00

= .-£ + 2/z<f>[z:£,T 2 ]dz.

Integration by parts gives

E[|Z|] = ?-(l-2$[-C/x:?,x 2
]) + (2T 2 /7T)

1/2
exp {-? 2/2T 2

}.

w
where $(w: ?, t 2 )=/<J>[z: £, T 2 ]dz. It follows that the distribution of

— 00

Y=Arctan[-B/A] is given by f(y)=K(y)E [ |Z
|

] with £=(a-b tan y)cos 2
y and

t -(2/N)o cos y. Substition of these values above gives the following
distribution for a phase random variable:

1 / 9

f(y) = exp(-Nr 2 /4a2 ){iT~ 1+(Ncos 2y/4TTa 2 ) (a-b tan y)

•(l-$[-(Ncos 2y/2a 2
)

1/2
(a-b tan y):?,x 2

])

•exp[(Ncos 2y/4a2)(a-b tan y) ]}, -TT/2<y<Tr/2,

where £ and t^ are defined above.
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citations to all recent Bureau publications in both NBS and non-

NBS media. Issued six times a year. Annual subscription: domestic

$17; foreign $21.25. Single copy, $3 domestic; $3.75 foreign.

NOTE: The Journal was formerly published in two sections: Sec-

tion A "Physics and Chemistry" and Section B "Mathematical

Sciences."

DIMENSIONS/NBS—This monthly magazine is published to in-

form scientists, engineers, business and industry leaders, teachers,

students, and consumers of the latest advances in science and
technology, with primary emphasis on work at NBS. The magazine

highlights and reviews such issues as energy research, fire protec-

tion, building technology, metric conversion, pollution abatement,

health and safety, and consumer product performance. In addi-

tion, it reports the results of Bureau programs in measurement

standards and techniques, properties of matter and materials,

engineering standards and services, instrumentation, and

automatic data processing. Annual subscription: domestic $11;

foreign $13.75.

NONPERIODICALS

Monographs— Major contributions to the technical literature on

various subjects related to the Bureau's scientific and technical ac-

tivities.

Handbooks—Recommended codes of engineering and industrial

practice (including safety codes) developed in cooperation with in-

terested industries, professional organizations, and regulatory

bodies.

Special Publications— Include proceedings of conferences spon-

sored by NBS, NBS annual reports, and other special publications

appropriate to this grouping such as wall charts, pocket cards, and
bibliographies.

Applied Mathematics Series— Mathematical tables, manuals, and
studies of special interest to physicists, engineers, chemists,

biologists, mathematicians, computer programmers, and others

engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative

data on the physical and chemical properties of materials, com-
piled from the world's literature and critically evaluated.

Developed under a worldwide program coordinated by NBS under

the authority of the National Standard Data Act (Public Law
90-396).

NOTE: The principal publication outlet for the foregoing data is

the Journal of Physical and Chemical Reference Data (JPCRD)
published quarterly for NBS by the American Chemical Society

(ACS) and the American Institute of Physics (AIP). Subscriptions,

reprints, and supplements available from ACS, 1 155 Sixteenth St.,

NW, Washington, DC 20056.

Building Science Series—Disseminates technical information

developed at the Bureau on building materials, components,

systems, and whole structures. The series presents research results,

test methods, and performance criteria related to the structural and
environmental functions and the durability and safety charac-

teristics of building elements and systems.

Technical Notes—Studies or reports which are complete in them-

selves but restrictive in their treatment of a subject. Analogous to

monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final

reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards— Developed under procedures

published by the Department of Commerce in Part 10, Title 15, of

the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all

concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a

supplement to the activities of the private sector standardizing

organizations.

Consumer Information Series— Practical information, based on

NBS research and experience, covering areas of interest to the con-

sumer. Easily understandable language and illustrations provide

useful background knowledge for shopping in today's tech-

nological marketplace.

Order the above NBS publications from: Superintendent of Docu-

ments, Government Printing Office, Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR's—from
the National Technical Information Services, Springfield, VA 22161

.

Federal Information Processing Standards Publications (FIPS

PUB)— Publications in this series collectively constitute the

Federal Information Processing Standards Register. The Register

serves as the official source of information in the Federal Govern-

ment regarding standards issued by NBS pursuant to the Federal

Property and Administrative Services Act of 1949 as amended,

Public Law 89-306 (79 Stat. 1127), and as implemented by Ex-

ecutive Order 11717(38 FR 12315, dated May 11, 1973) and Part 6

of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or

final reports on work performed by NBS for outside sponsors

(both government and non-government). In general, initial dis-

tribution is handled by the sponsor; public distribution is by the

National Technical Information Services, Springfield, VA 22161,

in paper copy or microfiche form.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibliographies

are issued periodically by the Bureau:

Cryogenic Data Center Current Awareness Service. A literature sur-

vey issued biweekly. Annual subscription: domestic $25; foreign

$30.

Liquefied Natural Gas. A literature survey issued quarterly. Annual

subscription: $20.

Superconducting Devices and Materials. A literature survey issued

quarterly. Annual subscription: $30. Please send subscription or-

ders and remittances for the preceding bibliographic services to the

National Bureau of Standards, Cryogenic Data Center (736)

Boulder, CO 80303.
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