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LASER FAR-FIELD BEAM-PROFILE MEASUREMENTS
BY THE FOCAL PLANE TECHNIQUE

An analysis of laser far-field beam-profile measurements by the focal plane
technique is given. Particular attention is paid to systems at '^^lpm wavelength
and having apertures up to 10 cm. The basic mathematics is reviewed and approx-
imations are evaluated. Using geometrical optics techniques, it is shown that an
f/20 plano-convex lens is an appropriate choice for the focusing element. For
two arbitrarily chosen laser beam profiles the errors associated with the choice
of this lens are discussed through the use of computed far-field and focal-
plane irradiance distributions. Experimental procedures including methods of

testing the optical elements are also given.

Key words: Beam divergence; beam profile; lasers; optical propagation.

1. INTRODUCTION

The accelerating use of pulsed lasers for ranging, target designation, and similar
applications where maximizing the radiation on a distant target is desired leads to the need
for methods of accurately characterizing beam profiles. The Q-switched Nd:YAG laser emitting
intense 1.06 ym wavelength pulses of 20-30 ns duration and low repetition rate ('^' 10 Hz) is

typical of the sources used in these applications. Beam profiles at the source are generally
complex and vary from pulse to pulse. Moderately large optics ('^ 10 cm) are used to obtain

-4 -2
beam divergence in the range of 10 to 10 radians.

For such a source the far-field pattern is only observed beyond several thousand meters
from the source. Thus direct measurement is not generally possible, and some form of near-
field to far-field transformation technique must be applied. By transformation technique we
mean a method whereby the far-field patterns can be determined by measurements taken
relatively close to the source.

Given the complex amplitude distribution of the field across a plane near the source,
one can, in principle, compute the far-field distribution from diffraction theory. The
relationship, as shown in a later section, is essentially that of a Fourier transform."

In antenna measurements, where similar problems arise in obtaining far-field patterns,
it is common to measure the complex field amplitude and compute the far-field pattern using
fast Fourier transform algorithms. At optical wavelengths, however, two problems make this
approach difficult. First, experimental determination of the complex amplitude distribution
is difficult in this region of the spectrum, especially for pulsed sources. Second, the

amount of data required (that is, the grid spacing over which data are taken) is inversely
related to the wavelength. At optical wavelengths the volume of data processing becomes
prohibitive.

A second approach is to use the fact that the field distribution in the focal plane of

a lens or mirror is related to the far-field distribution. It is useful to think of the

focusing element as simply a means of information processing analogous to that described in

the preceding paragraph. An analysis of this technique and its experimental implementation
are the primary subjects of this document. The mathematical background is reviewed in

section 2 with attention to necessary approximations. Section 3 discusses some questions of

definition, relative to beam characterization. Sections 4 and 5 analyze the limitations of

the technique from both a geometrical and physical optics perspective. Section 6 deals with
experimental implementation and section 7 with possible extensions of the technique.

It should be pointed out here that in most cases determining the intrinsic propagation
characteristics of a laser is only the first step in determining the actual irradiance
distribution on a distant target. If propagation is through the atmosphere, the beam may be
disturbed by turbulence, scattering, thermal defocusing (blooming) and other effects.



Determining the intrinsic propagation characteristics is, however, a necessary first step

and should aid an investigation of the complete propagation problem.

2. BASIC RELATIONSHIPS

2. 1 Propagation Laws

The purpose of this section is to draw together some of the basic expressions governing

the propagation of electromagnetic radiation and observe their application to the specific
problem of determining the propagation characteristics of laser radiation. The basic problem
is that given a field distribution over some surface in space (usually a plane) , one wishes

to learn the field distribution over a second surface a distance away. Each polarization is

assumed to be independent and is characterized by a complex scalar amplitude function.

It has become popular to proceed [1,2,3] by recognizing that the source distribution

can be represented as a linear superposition of plane wave solutions to the scalar wave
equation. Through the use of the Fourier transform, the source distribution is decomposed
into plane wave components, each of which is assumed to propagate independently to the

observation plane where they are recombined. Such a procedure is fully analogous to frequency
domain solutions of electronic circuit problems.

The mechanics of the procedure are as follows:

1. The two-dimensional Fourier transform of a complex source distribution, U-,, is

given by
oo

U^CCn) = F{U^(x^,y-L)} = // U^(x^,y^)e"^2^^^1^+yi^) dx^ dy^ (2-1)
— 00

where x, and y, are the spatial variables in the source plane and E, and n are the

transform variables.

2. The Fourier transform is recognized as a decomposition of U-, (x^,y,) into plane
wave components of the form

^-1277 (f t-£;x-ny-?z)

The time dependence is normally dropped and propagation nominally along the z

direction is assumed. The z dependence is then understood from the relation

?2 + n2 + ?2 = 1^ .

This leaves

i27r(gx+riy)
e

with values of E, and t\ (called spatial frequencies) giving the direction of
propagation of the component through

^ sin 6 sin A

where 6 and (^ are the angles between the direction of propagation of the plane
wave component and the y-z and x-z planes, respectively. Note that E, and n

take values from -1/A to +1/X. The Fourier transform of the function U(x,y) is

thus commonly called its plane wave spectrum.



In propagating a distance, d, along the z axis through free space each plane wave

undergoes a phase shift of the form

^ikd(l-A252_^2^2)^ (2-2)

as shown in figure 2-1.

Thus if one multiplies the plane wave spectrum (2-1) in the x, ,y-, plane by the

propagati

at z = d.

ikd(l-X252_x2^2)^2.

propagation factor (2-2) one obtains the plane wave spectrum in the x„,y- plane

U2(?,n) = U^(?,n) e

5. The resulting amplitude function is then given by the inverse transform

U2(x2,y2) = F"''"{U2(5,n)}

= // U2(?.n)e+"^("25+y2n) ^^ ^^^

Analysis of this form leads to a derivation of the Fresnel-Kirchhof f diffraction
integral

, - exp{ik[d2+(x -X )2+(y -y )2]^}

U2(x2,y2) =
IX / / U,(x^,y,) — — dx^ dy^. (2-3)

x-|^,yj^ [d^+(x2-Xj^)^+(y2-y3^)'^]

The steps leading to this expression are somewhat mathematically complex and are summarized
in the appendix.

It is common to consider cases where x and y are small enough relative to d that the
exponential term can be written as exp(ikd) exp{ik[ (x„-x, )2 + (y~-y, )2] /2d} which leads to

ik

2j. 2
^2+^2

,, , , 1 ikd 2d
U2(x2,y2) =J^e e

x^+y^ x^X2+y.^y2

xk^^ ^^
d

X // U^(x^,y^)e e dx^ dy^. (2-4)

If X-. and y, are so small relative to d such that the first exponential term within

the integral may be neglected, the expression (2-4) becomes:

ik

2^ 2
X2+y2

IT c ^ 1 ikd 2d

x^x2+y^y2
-ik

X // U^(x^,y^)e dx^ dy^. (2-5)



^z

Figure 2-1. Propagation of a plane wave component a distance d In the
\,

z direction occurs for propagation a distance d(l-sln^0)

^

along the wave normal. The phase shift undergone by each
J- 3-

component Is exp Ikd(l-X^C^) ^ or exp Ikd(l-X^C^-A^ri^) ^ In

three dimensions.



That region where expression (2-4) is appropriate is commonly called the Fresnel

region while the region where (2-5) applies is called the far-field or Fraunhofer region.

The transition between these regions is generally taken to be about d = t— where D is the

diameter over which U-, is non-zero. At this distance, d, the maximum on axis phase error
-4

from neglecting this term is A/8. For a 10 cm diameter source at 10 cm wavelength,
4

expression (2-5) applies by this definition for distances greater than 10 meters.

Examination of (2-5) shows that except for the phase and scaling factors preceding the

integral it simply represents a Fourier transform of the source function. The transform
X2 y2

variables are identified as -rr and y-r- The phase factors imply that the transform lies on

a spherical surface of radius d, rather than a plane at z = d. This distinction is not

generally significant and disappears completely when intensity measurements (that is UU*)

are made.

2. 2 Transform Properties of a Focusing Element

As stated in the Introduction it is possible to observe the far-field distribution
much closer to the source through the use of a focusing element. In order to indicate the

conditions under which this is true, we provide the following analysis [4]

.

Consider figure 2-2, which shows a lens inserted between the source plane and the

observation plane, at distances d, and d„, respectively, from the two planes. For present

purposes we assume that the lens introduces a phase factor of

P(x,y) = e

and that it is sufficiently large that its aperture is not important.

Using the Fresnel approximation (2-4) the complex amplitude function in the plane of

the lens is

"2(^2^2^ =
iXd^^'"''^'

h(x2,y2;d^)

X // U^(x-|^,y^) h(x^,yj^;dj^)exp[ik(x^X2+y-,^y2)/2d^] dx^ dy^ (2-6)

ik
x-^+y

where the notation h(x,y;d) = e is used for simplicity.

The distribution U„(x„,y„) is given in terms of U„(x„,y„) as

^ikd2

X
// U2(x2,y2)P(x2,y2)h(x2'^2''^l^

"3^^3'y3^ = lAdT h(x3,y3;d2)

-ik(x2X2+y2y3)

^^
dx2 dy2. (2-7)
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V

Figure 2-2. Geometry for demonstrating the Fourier transforming properties

of lenses. The lens is assumed to have zero thickness and a

2 2
phase factor exp -ik(x2 + j^)/2l, where the y^^, y^ plane is

that of the lens.



Substituting (2-6) into (2-7), changing the order of integration, and evaluating the

integral over X2 and 72 yields

U,(x,,y,) = 7TJ-^i- exp^l^ (x^ + y^) (l - j-]3' 3'-^3' iXd^d2

fik
// U^(x^,y^)exp[^|^ (x^ + yj (l -

f-]

exp -ik(x^X3 + y^y3] ^J dx^ dy^ (2-8)

where

w = d3_ d2 "
f •

By specializing to the case where w = d^ , which gives d„ = f, we find a Fourier transform

! and the x„,y_ plan

||(x^ + y2) (1 _ J:.]

X // U^(x^,y3^) exp|-ik

relationship between the x, ,y, plane and the x„,y_ plane

"3^^3y3) = iXf
^^p

x^X3 y^y3

I
dx^ dy^ (2-9)

The transform variables are seen to be — and — . The phase factor preceding the integral

disappears for d, = f, that is, the Fourier transform thus derived contains no phase error

if the source and observation planes are each located one focal length from the focusing
element. If this condition is not satisfied, the transform contains a spherical phase
error. In experiments where only intensity, UU*, is detected the phase error, as in the

case of the far-field expression, is of no consequence.

2. 3 Approximations

It is important to summarize, at this point, the approximations made in reaching
equation (2-9). In addition to the use of scalar theory we have assumed the following:

1. That the approximations leading to the Fresnel form of the diffraction integral

are valid. Essentially this means that terms like [d^ + (x.-x )2 + (y--y,)^]^

can be approximated by d + [(x2-x,)^ + (y2-y-| ) ^] /2d, even in exponentials where
the approximation represents a phase error.

2. That the effect of the focusing element can be adequately represented by the

phase factor exp -ik[ (x2+y^)/2f ] . This basically implies that the focusing
element converts plane wavefronts into parabolic wavefronts instead of spherical
wavafronts which would be obtained if the phase factor of a perfect lens,

exp -ik[(f2+x2472) 2 - f]^ were used.



For the wavelength and dimensions we expect to use here, these approximations can be shown

to be marginally valid. However, due to the fact that these terms appear with opposite
sign In exponents the combined effect of the two approximations is much less than either
alone. This is verified by numerical computation in section 5.

2.4 Equivalence

Acceptance of equation (2-9) and a comparison of it with expression (2-5) form the
basis for the use of a focusing element to obtain far-field distributions. The intensity
functions calculated from the two equations are identical if the appropriate scaling

X X
factor is applied. Since the transform variables are of the form -r-^ and -r-r, respectively,

Ar Ad
we see that the focal plane distribution is compressed relative to the far-field distribu-

tion by the factor -j. For example, the distribution in the focal plane of a 1 m focal
4

length lens is identical in shape but 10 times smaller (and more Intense) than the dlstrl-
4

bution 10 m from the source.

It is generally more convenient to express the far-field distribution in terms of

angle. If we Interpret x/d In the far-field as an angle (-r = tan Q - d) , the equivalent

point in the focal plane distribution is x- = f9. Using the 1 m focal length lens as an

example again, the field amplitude (U) or Irradlance (UU*) occurring at a far-field angle

of 1 mrad will occur in the focal plane a distance of 1 mm from the axis. (Consistent
normalization is required if absolute rather than relative values are to be obtained.)

3. THE QUESTION OF DEFINITION

Manufacturers' specifications of laser beam characteristics are often vague and
Inadequate. The problem arises both from inappropriate definitions and from lack of

precision in describing the chosen definition.

3.1 Single Transverse Modes

For a laser emitting radiation in certain well characterized modes a single quantity,
precisely but somewhat arbitrarily defined, can convey complete Information about the beam
propagation. Specifically, for a TEM (Gaussian) mode given by [5,6]

U(x,y) =
f ^ exp -Ik

x^+y^
2R

exp _ x^+y^^

where w^ = vj^[l + (Az/ttw^)^]
o o

R = z[l + (Trw2/Az)2]

and w is the minimum 1/e^ (intensity) radius,

it is conventional to define "beam divergence" as that far-field half-cone angle (envelope)
Inside of which the irradlance is greater than 1/e^ of its peak value. This angle is
determined from the above equations to be A/ttw , and Is shown graphically in figure 3-1.

The selection of the l/e^ intensity points is totally arbitrary, but for the Gaussian is

convenient. Integration shows that 86% of the energy in the beam is encompassed by that
cone angle. Thus simple measurement of fractional energy through a known aperture along
with the known wavelength is sufficient to fully characterize the propagation of the beam.



Figure 3-1. Propagation of a Gaussian beam. A single measurement of far-

field divergence completely characterizes beam propagation.



Similar techniques [6,7] can in principle be used to characterize higher order modes,

for if the mode order TEM is known, the propagation laws can be described analytically

and related to measurements of energy through an aperture.

3.2 Multimode Beams

Many lasers do not emit in a single transverse mode but rather in a combination of

modes often distorted by non-uniform thermal effects. It is for this class of lasers that

the specification of beam characteristics by a single parameter becomes difficult if not
inappropriate and also for which transformation procedures are most important.

It is common practice with multimode lasers to follow a procedure similar to that for

single mode lasers and to specify that half-cone envelope containing some arbitrarily
chosen (often 90%) fraction of the energy. This is obtained by placing a series of aper-
tures in the equivalent far-field, the focal plane, and applying the scaling factor given
in the previous section. Placement of the aperture is usually for maximum transmission.

For sources emitting nominally circular beams with nominally central maxima and for

applications where the primary concern is the shape of the beam near the centroid such

a procedure may be adequate. A certain precision of definition is required, and we there-

fore use the notation

to denote that half-cone angle containing fraction f of the energy of a single pulse.

Later, we will also use the notation

to denote divergence measured in the x-z plane. In this case f is defined as though there

were no variation of the beam in the y-z plane.

Two principal problems arise with this form of measurement.

1. The output of a Q switched solid-state laser is often grossly as3mimetric. It is

frequently elliptical and may have multiple maxima, well displaced from the centroid.

2. Both the propagation direction (of, say, the centroid) and/or the profile may

vary from pulse to pulse.

If problem 1 is severe, any form of envelope measurements may yield little information

of use to the designer, the manufacturer, or the user. In this case it is probable that

one should proceed to use a means of obtaining spatially resolved measurements.

If problem 2 is severe, a relatively crude solution is to define an average
divergence

V2,ave(^)

where the conditions of the average (e.g., first 10 pulses, 50th to 100th pulses, etc.)

should be clearly specified.

A greatly superior solution to both problems 1 and 2 is to replace the focal plane
aperture with an imaging device such as a videcon, CCD, or detector array, possibly with
some additional optics for magnification. This has the advantage of providing information
on both complex beam profiles and beam wander. A later section is devoted to a more thorough
discussion of these possibilities.
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4. SELECTION OF FOCUSING ELEMENT

In choosing a focusing element to provide accurate near-field to far-field transforms

and to perhaps satisfy other requirements (e.g., power handling capability) one faces a

variety of element types and an infinite selection of parameters. Some guidance can be

obtained from optics texts on minimizing aberration. Additional information may be obtained

by employing computer-generated spot diagrams. In this section we use the spot diagram
method to illustrate the merits of some possible choices.

To use the spot diagram technique we assume that a circular bundle of parallel rays

strikes the focusing element at a specified angle. By employing the rules of geometrical
optics, each ray is traced through the focusing element to the focal plane and the inter-

section of each ray with the focal plane is plotted. If this spot diagram is smaller than

the spot size calculated to result from diffraction (Airy disc) the performance of the

focusing element is expected to approach that of an ideal element. Further calculations
(section 5) can then be undertaken to estimate the errors in the transform.

4.1 Refracting Elements

4.1.1 Single Element Lenses

Lens selection involves not only a choice of size and focal length, but also of shape

and to some extent index of refraction. We consider here single element thin lenses with
spherical or plane surfaces. For such lenses (properly aligned) the principal defect is

spherical aberration.

Analysis [8] shows that to minimize spherical aberration in a lens designed to focus

nearly collimated light (i.e., an infinite conjugate ratio) a shape factor, q, of '^ +0.71
should be chosen (n=1.5). The shape factor is defined as

q =
^2 + ^1

v^ - r^

where r^ and r2 are the radii of the first and second lens surfaces, respectively. Plano-

convex lenses with the plane surface nearer the focus (q = +1.0) are sufficiently near the

optimum that they are frequently used to meet the condition. This shape factor is also
near optimum for minimizing coma, so that such a lens should not be particularly sensitive
to alignment.

[It is of great importance that the lens be used with the plane side nearer the focus.

A good rule of thumb is that the rays should undergo equal bending at the two surfaces for
minimum aberration.]

Figure 4-1 shows spot diagrams for an f/20 plano-convex lens (n = 1.5). In each case
the spot diagram is compared with the diffraction limited spot (Airy disc), which for a

10 cm dia aperture at X = 1.0 ym corresponds to a far-field half-angle of 1.2 x 10 rad.

For on-axis illumination the spot diagram suggests that the lens is essentially diffraction
limited. Coma resulting from misalignment is also small for misalignments up to about
one degree.

An f/10 lens shows significantly more spherical aberration than the f/20 lens (figure
4-2 (a) compared to figure 4-1 (a)) and more coma. A further problem arises from the presence
of spherical aberration. The outer zones of the lens focus inside the paraxial focal plane
with the result that the location of the minimum spot size depends on how much of the lens
is illuminated. For a 1.0 m focal length f/10 lens the ambiguity (longitudinal spherical
aberration) is about 2 mm, which can be significant (see section 5.4).

From analysis of this type we conclude that at a wavelength of 1.0 ym a simple plano-
convex lens with an f-number of 20 or greater is a good candidate for transform measure-
ments if reasonable care is taken in alignment. Quantitative assessments of such a choice

11



(a)

(b)

Figure 4-1. Focal plane and spot diagrams for an f/20 plano-convex lens,

Circles represent the diffraction limit (Airy disc) which
corresponds to a far-field half-angle of 1.2 x 10"-* rad for

a 10 cm dia aperture and wavelength of 1.0 ym,

(a) on axis; (b) 0.5 degree misaligned.
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(c)

(d)

Figure 4-1. Continued
(c) 1.0 degree misaligned; (d) 2.0 degrees misaligned,
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(a)

(b)

Figure 4-2. Spot diagrams for an f/10 plano-convex lens. Circles
represent the diffraction limit (Airy disc) which cor-

responds to a far-field half-angle of 1.2 x 10 rad
for a 10 cm dia aperture and wavelength of 1.0 ym.

(a) at the paraxial focus; (b) 0.9985 f.

14
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(c)

(d)

Figure 4-2 . Continued
(c) 0.998 f; (d) 0.9955 f

15



will be presented in section 5. At wavelengths shorter than 1.0 ym, the spot diagram
analysis indicates that the f/20 lens will cease to be diffraction limited and some other
choice should perhaps be made.

4,1.2 Multi-element and Aspheric Lenses

If one wishes to use a low f-number system for transform measurements, more sophis-
ticated lens designs may be utilized. This may also be necessary at short wavelengths.
Spherical aberration can be completely eliminated from a single element by correcting the

shape (aspherizing) . Alternately, both spherical aberration and coma can be greatly re-
duced by using a two element lens composed entirely of spherical surfaces. No analysis of
such systems is presented here because the single element high f-number lens provides the
presently required performance and is, as well, more generally available. The techniques
employed in this section are, however, directly applicable to more sophisticated systems
and could be used to select from various designs.

4.2 Reflecting Elements

In some measurement systems it may be desirable to consider the use of a mirror as the

focusing element. A mirror may withstand higher power densities; its focal length is

independent of wavelength and may therefore be more easily measurable; and it may result in

a more compact measurement system. Mirrors may be analyzed by the same type of geometrical
optics approach used for lenses.

4.2.1 Parabolic Mirrors

Among mirrors, the most likely candidate is an off-axis paraboloid, which lacks
primary spherical aberration. The geometry of such a system is shown in figure 4-3. By
operating off-axis, it is possible to examine the focal plane distribution without disturbing
the input beam.

Figures 4-4 and 4-5 show spot diagrams for f/20 and,f/10 paraboloids. For an input

parallel to the parabolic axis the spot diagrams consist of a single point (no spherical
aberration), but for slight misalignment substantial coma appears. The notation of the

figures is that of figure 4-3 with a denoting misalignment in the tangential plane (the

plane of the figure) and 3 denoting misalignment in the saggital plane (perpendicular to

the figure). Dq. is given in units of the focal length. As before, for a 10 cm dia

aperture at A = 1.0 ym the diffraction limit is 1.2 x 10 rad.

From figure 4-4 we see that for an f/20 reflector a misalignment of 0.5° produces a

comatic focal plane spot which is significantly larger than the diffraction limit. For an

f/10 reflector (figure 4-5) the coma is about a factor of four greater than for an f/20

reflector.

Stated in a more useful form, analysis of this type shows that to be diffraction
limited an f/20 off-axis paraboloid must be aligned to better than about 0.3° (tangential
plane) and an f/10 paraboloid must be aligned to better than about 0.07°. Alignment in the

saggital plane is less critical. Given the greater difficulty of aligning an off-axis
reflector compared to a lens (procedures for both cases are discussed in section 6), the

above results seem to favor the use of a lens rather than a reflector. Accordingly, the

quantitative analysis presented in section 5 assumes the use of a long focal length lens.

4.2.2 Spherical Mirrors

For beam divergence measurements, spherical mirrors must be used off-axis (input not
parallel to radius) so that the focal spot is located outside the input beam. This results

in substantial aberrations except where very high f-numbers are used. To assess this problem
more quantitatively, we have generated spot diagrams for spherical mirrors with various
f-numbers and angles of incidence. The results are summarized in the following table.
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/

MIRROR /

Figure 4-3. The use of an off-axis parabolic mirror for focusing laser

radiation.



(a)

(b)

Figure 4-4. Focal plane spot diagram for an f/10 off-axis paraboloid.
D = 0.1; (a) a = 0.5°, g = 0.0°; (b) a = 0.5°, 3 = 2.0°

Circles represent equivalent far-field half-angles. The
diffraction limit for a 10 cm dia lens at A = 1.0 ym

corresponds to 1.2 x 10 rad.
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(a)

(b)

Figure 4-5 Focal plane spot diagrams for an f/20 off-axis paraboloid,

Dq^ = 0.05; (a) a = 0.5°, 3 = 0.0°; (b) a = 0.5°, 3 = 2.0'

Circles represent equivalent far-field half angles. The

diffraction limit for a 10 cm dia lens at A = 1.0 ym

corresponds to 1.2 x 10~ rad.
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5 3 X 10"
-4

6 7 X 10'
-5

3 4 X lO"
-5

1 9 X 10'
-5

8 4 X lO'
-6

4 3 X lO'
-6

f# Angle of Incidence Max Spot Dimension/Focal Length

20 6.0 degrees

40 3.0 degrees

50 2,4 degrees

60 2.0 degrees

80 1.5 degrees

100 1.2 degrees

The angle of incidence is defined as the angle between the direction of beam propagation
and the normal to the center of the mirror (radius) . Angles listed above are reasonable
minimums for each f-number. For a diffraction limited 10 cm diameter beam (X = 1.0 ym)

the Airy disc diameter divided by the focal length is 2.4 x 10 . Thus we expect that
those combinations in the above table which yield smaller spot dimensions should be
essentially diffraction limited cases for which aberrations are not significant.

5. ESTIMATION OF CERTAIN ERROR SOURCES

5.1 Computational Technique

It would be impossible to provide an error analysis which would incorporate all pos-
sible measurement configurations and beam profiles. We therefore resort to the device of
attempting to define a typical measurement system and a typical beam profile within the

limits of common laser behavior.

Our measurement system is a plano-convex lens, illuminated from the convex side. The
diameter is 10 cm and the focal length 200 cm (i.e., an f/20 lens). This choice is based
on the analysis of section 4, and the fact that certain systems of interest have apertures
this large.

Our "typical" beam profile is chosen more arbitrarily. It consists of a linear combina-
tion of several TEM modes having the irradiance distribution shown in figure 5-1 (a). A

wavefront curvature is applied such that the far-field divergence is about

^1/2 x^"^^-^
~ ^'^ ™ rad, within the range of 0.1 to 10 m rad typical for systems of interest.

Application of wavefront curvature is equivalent in an analytical sense to experimentally
defocusing the laser collimator. In addition we also define an "extreme" case. Most of the

error sources become more severe when the input beam is larger and when the divergence is

smaller. The "extreme" beam is therefore taken to have the same shape as the "typical" beam,

but has a larger cross section (figure 5-1 (b)) and has a far-field divergence of about

0.13 m rad.

The computations are performed numerically using the approach described in section 1.

1. For the beam under consideration, the far-field distribution is computed.

2. The same distribution is assumed to occur at the input of the lens described
above. An appropriate phase factor for the lens is applied along with the

appropriate phase factor for propagation to the focal plane. The resulting
distribution is then scaled to correspond to the far-field.

3. The irradiance distributions computed from 1 and 2 above are compared to estimate

the quantitative error from various sources.

20



Lens
Diameter
10 cm

Figure 5-1. Irradiance distributions for two cases examined in this
section. In both cases the distribution is formed by a

linear combination of TEM laser cavity modes . Phase
nm

curvature is applied to each case to set the far-field
divergence at desired levels. (a) "typical" case,

(.9) - 1.3 m rad; (b) "extreme" case, (a) distribu-
1/2,

X

tion expanded.
1/2,

X

(.9) ^ 0.13 m rad,
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A fast Fourier transform (FFT) algorithm is used in each of these computations. The

primary source of error for this application of the FFT is aliasing due to insufficiently
close spatial sampling. This is avoided by application of the sampling theorem, but for

the relatively large (in terms of wavelengths) apertures considered here the result is

'^ 10 pieces of data in each dimension ('^ 10 in two dimensions) . For low divergence
beams fewer samples can be taken, but the volume of data still prohibits routine calcula-
tions of this form in two dimensions; we therefore resort to single dimension analysis.

If all functions involved were separable in rectangular coordinates, the above restric-
tion would be of no great consequence. In fact, most beam profiles are not separable at

least without approximation. The plane wave propagation factor is separable in the Fresnel
approximation as is the phase factor of a lens in the parabolic approximation. When, in
the analysis below, extensions from one-dimensional divergence St/o (^ ) to two-dimensional

^1/2^^ ) are made, it should be understood that certain assumptions of symmetry as lust

outlined are being made. However, even when this symmetry is not present, error estimates
thus obtained should be approximately correct.

5. 2 The Fresnel Approximation

In section 2.3 we pointed out that in the derivation of the focal-plane/far-field
equivalence the Fresnel approximation, though only marginally valid by itself, is largely
compensated by the assumption of a non-ideal phase factor for the focusing element. To

verify this argument, we can compute numerically, as described above, the focal plane
distribution without the Fresnel approximation and with the ideal lens phase factor.

We expect this result, properly scaled, to closely coincide with the computed far-field
patterns for our test cases. The result for our "extreme" case is shown in figure 5-2.

Any difference between the two curves is comparable to or less than the width of the line.

We therefore set the following limit to the residual error:

"typical" extreme

'h/lj''^ < 0.1%
^9l/2,x^-^)

< 0.1%

5.3 Lens Aberration

Having shown that the focal-plane/far-field equivalence using an ideal lens is quite
good, we now seek to determine the effect of the non-ideal character of our real lens.

For our chosen lens we expect spherical aberration to be the dominant defect. Using
equation (4.50) of Klein [9] and the additional data that the lens is 1 cm thick and has

an index of refraction of 1.5, we compute a distortion to the ideal phase factor of
-8 4

-3.65 X 10 X . The phase factor for our real lens is thus taken to be:

exp -ik[(d^+x^)^ - d + 3.65 X 10"^x^].

Tl'e resulting error in S-i /^ (f ) depends significantly (in both sign and magnitude) on

f , the fraction of energy encompassed,
extreme case.

This is illustrated in figure 5-3 for our

For the two examples used here, we find

"typical" "extreme"

AQi /o (.9) < 0.1%
1/2,

X

^V2,x(-7)
=+7.0%

^«l/2,x(-9)
=-0-2^

Ae,/2,,(.95) -3.0%
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-0.1 0.1 0.2 m rad

Figure 5-2. Error due to using the Fresnel approximation. The directly
computed far-field irradiance pattern for the extreme case
is super-imposed upon the scaled focal plane distribution
computed without the Fresnel approximation and with the
ideal phase factor for a lens.
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-0.2 -0.1 0.0 0.1 0.2 m rad

Figure 5-3. Effect of spherical aberration, "extreme" case, f/20 lens,

10 cm dia, (a) directly computed far-field distribution;

(b) scaled focal plane distribution with spherical

aberration present.
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The fact that the error is minimum when the fraction of energy encompassed is 0.9 is purely

coincidental and a consequence of the beam shape chosen as an example.

We will not treat coma in this section for two reasons. First, we believe that for

any reasonable alignment of the lens, spherical aberration should be the dominant aber-

ration. Secondly, the wavefront aberration of coma is not separable in rectangular coordi-

nates, and thus not readily tractable in our one-dimensional analysis. Coma in the tangential
plane could be examined, but the results would be of limited usefulness.

5.4 The Position of the Observation Plane

Perhaps the largest quantitative errors result from an improper determination of the

focal length and errors in the location of the observation plane. For small errors these

effects can be separated.

Since the scaling of the focal plane distribution relative to the far-field is propor-
tional to the focal length, an error in its numerical value propagates directly in one

dimension. Thus, for a 1% error in determination

^\,2j.9) = 1%.

Appropriate means for establishing the numeric value of the focal length will be discussed
in section 6.

The error resulting from improper placement of the observation depends critically on

the magnitude of the divergence. For the case of a slightly defocused laser beam such as

we have been using for test purposes this fact is illustrated in figure 5-4. Specific
calculations yield the following results:

1% misplacement (2 cm)

"typical" "extreme"

"^l/2,x(-9) = * 1-7^
"V2,x(-^) = - f^^t°^ °^ 5

0.05% misplacement (0.1 cm)

"typical" "extreme"

Ae, /„ (.9) < 0.1% Ae,,„ (.9) = ± 6.6%
l/i,x 1/2,

x

Figure 5-5 shows irradiance computations for the extreme case.

These results point out the great importance of determining the focal plane properly
and properly placing the observation device. In the infrared, these tasks are more difficult
than in the visible. Further discussion of proper procedures is contained in section 6.

It should also be noted that for beams with relatively low divergence it is possible
to under estimate very substantially the divergence by placing the observation device too
far from the lens.
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LENS

PLANE OBSERVATION
PLANE

LARGE DIVERGENCE
CASE

FOCAL
PLANE

LOW DIVERGENCE
CASE

Figure 5-4. Effect of incorrectly placed observation plane in the

geometrical approximation. For the same error, A, in

the placement of the observation plane, the error in

spot size becomes much greater for low divergence beams
C A

That is ^ » g .
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l.OOOSf

-0.2 0.2 m rad

Figure 5-5. Effect of misplacement of observation plane,

"Extreme case."
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5.5 Summary of Computations

The results of computations in this section are tabulated as follows;

Errors in AO, ,„ (f )
1/2, X x^

(f =0.9 unless specified)

Source "typical" extreme

Fresnel < 0.1% < 1%
Approximation

Spherical (0.7) + 7.0%
Aberration < 0.1% (0.9) - 0.2%

(0.95) - 3.0%

Observation Plane A = ± 1% A = ± 0.05% A = ± 1% A = ± 0.

Location:

Scale factor ±1% ± 0.05% ± 1% ± 0.05%

Location ± 1.7% < 0.01% ± X5 ± 6.6%

It is important to remember the difference between the definitions of 6, ,„(f) and

^1/2 x^^x^*
^^^ former is defined as a cone angle (a plane angle of revolution) while

6-| /2 (f ) is defined from the profile cross section in the x-z plane only. For beams

which are generally circular, 9-L/2(f) ^^d 9, , (f ) are comparable [Ex: Gaussian

beam - 6^ ,„(.86) = -^
1/2 TTO)

3, ,„ (.86) = 1.045 ] and therefore Ae-,,„(f)
1/2,

X

TTco 1/2
o

'hnj'^ If,

instead, the beam is substantially elongated in one dimension, 6, /„(f) approaches the one

dimensional value for the larger dimension.

Any generalization of the error sources in a measurement process into a single esti-
mate of uncertainty is hazardous. This is particularly true when, as in this case, the

contributions of each error source depend, often critically, on the details of the source
to be measured. The philosophy of this analysis has, therefore, been to examine specific
cases and to observe the error contributions and their sensitivity to the parameters of the

measurement system and to some of the parameters of the source. The extent to which these

chosen cases are typical or worst cases cannot be established. If we nevertheless assume
that what we have called a "typical" case is representative of 1 ym wavelength beams of

several centimeters diameter and nominal divergence of 1 m rad, the above analysis suggests
that measurements of 6-, /«(.9) to uncertainties of 2-3% should be possible with reasonable

care. Further, if our "extreme" case is, in fact, typical of sources nearly filling a

10 cm diameter aperture and having nominal divergence of 0.1 m rad, the above analysis

suggests that very careful attention to detail may be necessary to achieve uncertainties of

less than 10%.

Some improvement in accuracy may be obtainable by employing a lens which is corrected

for spherical aberration, though in most cases this will not be worth the additional cost.

The principal source of error will likely remain the positioning of the observation plane.
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6. EXPERIMENTAL IMPLEMENTATION

6.1 Characterizing the Focusing Element

We turn now to measurements and tests on the focusing element which must be made prior
to use. Of critical Importance Is the numeric value of the focal length and the position
of the focal plane at the wavelength of Interest . In addition, It Is desirable to check
for unexpected aberrations and to appropriately align the element with the optical bench or

test facility to be used. Many techniques for these purposes can be found In the literature.
In this section we describe some of the more simple tests and their adaptation to present

I
needs.

6.1.1 Lenses

When accurately specifying the focal length of a lens It Is usually necessary to use

i
thick lens terminology. For a more complete discussion of this terminology see chapter 5

of reference [8]

.

The focal length of a lens is properly measured from the secondary principal plane of

the lens, which is defined in a geometrical optics sense as the plane of Intersections
between parallel input rays (extended) and the bundle of rays (extended) which converge to
the focal point (figure 6.1). This "focal length" is to be distinguished from the "back
focal length" which is measured from the back surface of the lens.

When the index of refraction on each side of the lens is the same, the secondary
[principal plane contains the secondary nodal point (figure 6.1). The secondary nodal point
[has the useful property that when the lens is rotated through small angles about it as
center the focus does not move laterally. This forms the basis for the nodal slide technique
of focal length determination.

The nodal slide is simply a device which allows the lens to be rotated about any point
on its axis. It can be used in conjunction with a high quality collimator (figure 6.2(a))
or more simply in auto-collimatlon (figure 6.2(b)). In the latter case a source at the

appropriate wavelength (perhaps a cw laser) is focused through a pinhole. Using the test
lens and a high quality flat mirror as shown, the image of the pinhole is located along
side the pinhole (as close as reasonably possible) . By successive translation and rotation
an axis of rotation is found which results in no lateral movement of the image. This axis
contains the secondary nodal point and the focal length is measured from this axis to the
pinhole.

As one check on this procedure, the location of the secondary principal plane can be

computed knowing the shape and index of refraction of the lens. The procedure is given in

reference [8], chapter 5. For a 2 m focal length lens (R, = 1 m, R2 = °°, n = 1.5,

I

thickness = 1 cm) the secondary principal plane is found to lie Inside the lens 6.7 mm from

the plane surface.

The nodal slide also provides a means of aligning the lens with the optical bench.
With the lens center and the pinhole both centered on the bench, and the same distance
above it, the lens can be rotated a few degrees in each direction until a small amount of

coma appears in the image. By symmetry the best orientation of the lens can be determined.

Using this method it is convenient to align the lens described in the previous paragraph to

better than one degree.

A second, complementary, approach to evaluating a lens is the use of wave-front
shearing interf erometry. This technique provides a convenient cross-check of focal length
measurements made with a nodal slide. It also provides information about aberrations
present in the system. The setup for this measurement is shown in figure 6.3. As with the

I

nodal slide, a pinhole source is placed near the focal plane of the test lens. A shearing

iplate, typically a piece of high quality optical glass or other transparent material having
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Figure 6-1. Parameters of a thick lens,
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ROTATION

COLLIMATOR
TRANSLATION

(a) SCREEN

ROTATION

(b)

FLAT

MIRROR TRANSLATION

SCREEN WITH
PINHOLE

Figure 6-2. The use of a nodal slide to determine the focal length

of a lens. (a) Using a collimated source; (b) in

autocollimation.
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SHEARING
PLATE

PINHOLE

SCREEN

Figure 6-3. The use of a wavefront shearing, plate to determine

the focal length of a lens.
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flat and nearly parallel faces, is placed in the collimated beam at an angle to the direc-

tion of propagation. Interference fringes are produced on a screen by the reflections from

the front and back faces.

If the pinhole is not in the focal plane of the lens the interference pattern is that

of two offset spherical waves, and consists of linear fringes. As the radius of the spherical
wavefronts increases (the pinhole is moved closer to the focal plane) the spacing of the

fringes increases. For plane wavefronts (pinhole in focal plane) and exactly parallel
faces on the shearing plate the fringe spacing becomes large compared to the beam diameter.

Increased precision can be obtained by polishing the faces of the shearing plate with
a slight wedge. If the apex of the wedge is parallel to the shearing plane (the plane of

the paper in figure 6.3) the fringe spacing does not approach infinity as the pinhole is

passed through the focal plane, but reaches a limit determined by the wedge angle, while
the orientation rotates through 180°. For plane wavefronts, the fringes are parallel to

the shearing plane.

This is illustrated in figure 6.4 which shows computer simulated fringes for a 2 m
focal length plane convex lens at 632.8 ym. When the pinhole is at the focal plane, the

fringes at the center of the interference pattern are seen to be parallel to the shearing

plane, while spherical aberration causes slight curvature to the fringes at the edge.

Since the fringe separation corresponds to one wavelength of phase deviation, we see that

the maximum phase error is about X/5.

Figure 6.5 shows the experimental equivalent of figure 6.4. Comparison of the two

figures suggests that the lens used is slightly corrected for spherical aberration. Both
figures indicate that a precision of ± 1 mm (± .05%) in determining the focal length of

such a lens is possible by this technique. It should be noted, however, that it is the

focal plane which is found in this manner, and computation (as indicated previously) is

required to get the actual focal length.

The computed and experimental patterns of figures 6.4 and 6.5 were produced at a

wavelength of 0.63 ym for ease of illustration. At a wavelength near 1 ym the same results

will hold, except that the fringe spacing will be proportionately larger and the phase
error proportionately smaller.

To conclude this discussion on lens evaluation we present below a summary of data on a

single lens of the type described in this and previous sections.

Method

Nodal slide

Wavefront shearing

X = . 63ym

198.84 cm

198.93 cm

Focal length

A = 1.06ym

202.19 cm

202.19 cm

^1.06^^.63

1.0168

1.0164

Based on dispersion data for the glass (BK7) used in the lens we expect the ratio of focal

lengths to be 1.0167. These results further suggest that, with a small loss in confidence
one may perform the focal length determination at some known, available source wavelength
and extrapolate from dispersion data to the desired wavelength.

6.1.2 Mirrors

One advantage of using reflective elements, especially for infrared systems, is that

they can be characterized at any convenient wavelength. In the case of the off-axis
paraboloid, this is offset significantly by the problem of locating the parabolic axis.

For the paraboloid, a simple approach is to use a wavefront shearing plate as shown in

figure 6.6(a). The mirror is moved relative to the pinhole until the interference pattern
consists of straight lines parallel to the shearing plane. At this point, the pinhole is

located at the focal point on the parabolic axis and the collimated beam is parallel to the
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SCREEN

PINHOLE

(b)

FLAT
MIRROR

IFE EDGE

PINHOLE

(c)

IFE EDGE

Figure 6-6. Techniques for determining the focal length of a mirror.
(a) A shearing plate used with a parabolic mirror; (b) the

knife edge technique for a parabolic mirror; (c) the
knife edge technique for a spherical mirror.

36



axis. As with a lens, residual curvature in the fringes is a measure of the aberrations
introduced by the mirror.

It should be possible to use this same technique to examine a spherical mirror. In

this case the least aberration is obtained as near the collimated beam as possible.

As an alternate means of determining the focal length of a mirror, one can employ the
Foucault (knife edge) test. This is illustrated for a parabolic mirror in figure 6.6(b).
The apparatus consists of a pinhole which is co-planar with a moveable knife edge. If the
pinhole is located in the focal plane, the observer will see the mirror darken suddenly and
uniformly as the knife edge is passed through the image of the pinhole. If the pinhole is
located in front or in back of the focal plane, the image will not lie in the plane of the
knife edge. Consequently, when scanning, the observer will see the mirror darken gradually
and non-uniformly.

Imperfections in the lens can be thought of as regions of different focal length.
Thus the uniformity with which the mirror darkens is a measure of mirror quality. Simple
geometric optics suggests that for a 200 cm focal length mirror, deviations in the mirror
of the order of 0.1 pm can be detected.

The Foucault test can also be applied to spherical mirrors, either in a manner like
that of figure 6.6(b) or by placing the pinhole and knife edge at the center of curvature
(figure 6.6(c)). This is possible because the image of an object at the center also lies at
the center of curvature.

6. 2 Other Experimental Considerations

In this section we wish to point out some experimental problems which may arise in
performing envelope divergence measurements. Typical setups are indicated in figure 6.7.

The laser under test must first be aligned collinear with the optic axis of the system
as defined by the lens/mirror axis, the aperture, and the optical bench. Procedures for

performing this will depend greatly on the type and characteristics of the laser under test
and are therefore not discussed further here.

It is desirable that the focusing element be placed as far as possible from the laser
to minimize the collection of scattered light and (if the light is unfiltered) of light from
the pumping source. In the case of the lens, this will also help minimize feedback into the

laser. (A high efficiency anti-reflection coating on the lens should also be employed for

this purpose if expected power densities will allow it.)

In selecting apertures, size and damage resistance are important considerations. The
required determination of aperture dimensions is generally within the capability of a machine
shop although for small apertures some uncertainty may be introduced. An inaccuracy of

0.001 inch in the diameter of a 1 mm aperture results in an inaccuracy in area of 5%.

Optical damage at the edge of the aperture may result in the emission of radiation (which

will be detected along with laser radiation) as well as dimensional changes. If levels high
enough to produce damage are expected, it is well to use apertures of a reflective or damage
resistant material.

Since the data of interest is the ratio of power/energy transmitted through a known
aperture to the total power/energy, calibration accuracy of the monitor is of little concern
as is linearity since the quantities typically differ by only 10-20%. Other factors affecting
precision, for example, spatial uniformity of response, are of much greater importance in

selecting an instrument.

In many cases the reproducibility of the laser, in amplitude, in profile, and in direc-
tion of propagation, will set the limit to measurement quality. Variations in amplitude can

be compensated by the use of a beamsplitter and monitor (figure 6.7). Several difficulties
arise with this approach:

(1) The beamsplitter must be wedged to avoid interference effects; this deviates the beam
and makes alignment difficult.
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(2) The reflection coefficient is polarization sensitive; if the laser is randomly polarized
and the angle of incidence is more than a few degrees, the ratio of transmission to

reflection will show significant scatter.

(3) The beamsplitter may modify the transmitted beam through phase distortion or multiple
reflections.

Variations in beam deviation can be examined to some degree by mounting the aperture on

a translation stage allowing motion perpendicular to the system axis.

Variations in profile from pulse to pulse are not usefully examined with envelope
measurements. Some possible approaches to this problem are discussed in the next section.

7. SPATIALLY RESOLVED MEASUREMENTS

In the preceding sections we have indicated the deficiencies of envelope divergence
measurements for complex beam profiles and where variations with time occur. An obvious
question is whether detailed beam profiles can be obtained with good resolution and accuracy
from the focal plane transform measurement system. Beyond the approximations of the transform
discussed in this document, the answer rests with the technology of imaging devices.

For beams exhibiting no time dependence, scanning a small detector across the focal
plane distribution may yield sufficient spatial information. In general, however, an array
or imaging device might be placed in the focal plane or in an equivalent image plane to
provide magnification (figure 7-1). Introduction of additional optics should not neces-
sarily add additional inaccuracy because, as in a telescope, the quality of the transform
lens (objective) will normally have the dominant effect on image quality.

A suitable image device should be linear over 2 to 3 decades of irradiance and be
simultaneously uniform over its surface. Resolution requirements will depend on the particu-
lar application but even as few as 10 elements across a typical beam diameter would provide
substantial improvement over envelope measurements. A suitable storage mechanism must be

employed to observe waveforms of pulsed sources. Exploratory work must be performed to

determine whether the above conditions can be met and the extent to which the quality of the

imaging device will effect the complete measurement process.

In the visible and near infrared portions of the spectrum, the most likely candidates
will be among tubes designed for television-type applications. Conventional vidicons do

not, in general, provide either sufficient linearity or uniformity; however, silicon diode
array tubes do show apparently sufficient linearity and may be sufficiently uniform at wave-
lengths significantly shorter than the band gap [10]. CCD vidicons may provide still better
linearity and uniformity but at some loss in resolution with present commercial tubes. A wide
variety of image processing hardware (readout, storage, analog and digital processing) is

commercially available to be used with such tubes thus making automated measurement techniques
immediately feasible.

At longer wavelengths the choices are less clear. Some image tubes are presently
available but less is known about their performance capabilities. Arrays of individual
detectors should also be considered.
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Figure 7-1. Image recording with the focal plane transform technique.
With a second lens, the focal plane irradiance distribution
is imaged with magnification on a suitable recording device.
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8. SUMMARY

The preceding sections represent an attempt to illuminate the problem of far-field laser

beam profile measurements from the point of view of measurement quality. They are not

intended to dictate measurement technique or define parameters. Rather, we hope to have

made clear the fact that measurement requirements evaluated with a knowledge of various

trade-offs must determine the details of the measurement system and, accordingly, the

quality of measurement.

To improve our ability to make such judgments, we have examined in some detail the

consequences of a particular choice of measurement parameters for a particular quality to

be measured. The results show that for this particular set of conditions measurements of

generally acceptable accuracy (less than "^ 10%) are possible with reasonable care. We

urge caution, however, in applying this result to measurement systems with different

parameters or to beams with substantially different characteristics. This specific analysis

should be used, instead, to illustrate the nature of parameter choices and their effect.

The greatest advantage of using focal plane measurements to obtain far-field charac-

teristics is simplicity. We can suggest no comparably simple technique of any sort. The

greatest disadvantage of this technique is the possibility that, without sufficient care,

substantially erroneous measurements can be obtained.

9 . REFERENCES

[I] Goodman, J. W., Introduction to Fourier Optics (McGraw-Hill Book Co., Inc., New York,

N.Y., 1968).

[2] Cathey, W. T., Optical Information Processing and Holography (John Wiley, New York,

N.Y., 1974).

[3] Collier, R. J., Burckhardt, C. B., and Lin, L. H., Optical Holography (Academic Press,

New York, N.Y. , 1971).

[4] See Chapter 5 of Reference [2] for greater detail.

[5] Siegman, A. E. , An Introduction to Laser and Masers, Chapter 8 (McGraw-Hill Book Co.,

Inc., New York, N.Y. , 1971).

[6] Yariv, A., Quantum Electronics, Chapter 14 (John Wiley, New York, N.Y., 1967).

[7] Kruger, J. S. Beam Divergence for Various Transverse Laser Modes, Harry Diamond Labora-

tories Report HDL-TM-71-11, AD 729 299 (1971).

[8] Jenkins, F. A. and White H. E., Fundamentals of Optics, 4th Edition (McGraw Hill Book

Co., Inc., New York, N.Y. , 1976).

[9] Klein, M. V., Optics (John Wiley, New York, N.Y., 1970).

[10] Bieberman, L. M. and Nudelman, S., Editors, Photoelectronic Imaging Devices, Vol. 2

(Plenum Press, 1971).

[II] Jahnke, E. and Emde, F. , Tables of Functions with Formulae and Curves, p. 149, 4th Ed.

(Dover, New York, N.Y., 1945).

[12] Erdelyi, A., Higher Transcendental Functions, Eq. (52), p. 95, Vol. 2 (McGraw-Hill Book

Co., Inc., New York, N.Y., 1953).

41



10. ACKNOWLEDGMENT

This work was supported by the Air Force Guidance and Metrology Center, Newark

Air Force Station, Ohio, and by the Department of Defense Calibration Coordination

Group through its Laser and Infrared Working Group.

42



APPENDIX

In the field of optics, when Fourier transform techniques are applied to obtain dif-

fraction relations, approximations are usually made which lead to expressions valid in the

Fresnel region and beyond. As a background to section 2, we present here a derivation of

the Fresnel-Kirchhoff diffraction integral (2-3) using the Fourier transform approach

without any small angle approximations. The approach is essentially that of

Collier, et al. [3]

.

Using the notation of section 2.1 we write

U2(x2,y2) = F"^{U^(5,Ti)exp[ikz(l-x252_x2^2)^]}

= U^(x^,y^) x F"-'-{exp[ikz(l-A252_x2Ti )^]}

where x denotes convolution.

The inverse transform can be written

00

F"-'-{} =
/ / exp[ikz(l-A252_x2f^2)'2]exp[l2Tr(Cx+ny)]d? dn.
—00

Making the transforms

5 = p cos a x = r cos <{)

ri = p sin a y = r sin ij)

we obtain

-1 °° h
'^^

F { } = / exp[ikz(l-A2p2) pdp j exp[i27rpr cos(a-(j)) ]doi.

o o

The integral over a is evaluated using the formula [11]

.-n 2Tr
L

271

T / \ i "
7 iz cos d) ind) ,, / n\J (z) = J— J

e ^ e ^ d()) (n=0)

o

yielding

00

F"-'-{ } = 277 / exp[ikz(l-x2p2)'5]j (27rpr)pdp.

o

The integral over p is evaluated using the formula [12]

00

/ J^Cbt) exp[-a(t2-y2)'2](t2-y2)-'5 tdt
o

= exp[-iy(a2+b2)'^](a2+b2)"'^
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which is differentiated with respect to a to obtain

00

/ J (bt)exp[-a(t2-y2)'5]tdt

= exp[-ly(a'^+b'^) ]

The inverse transfoirm can then be written

^a2 + b2

,24.^2^'5^p-lr , _ -ikz exp[-ik(z^+r^) ]

(z^+r^)

^(a2 + b2)'

1 +

+ iy

ik(d2+r2)''J

For d greater than a few wavelengths, the second term in brackets is clearly much less than

one so the transform becomes

r~l/ rjT /I -i2r2 a2 2\ 11 -ikz exp[-ik(z2+r2) ]F {exp[ikz(l-A^C'^-X^Ti ) ]> = -^— —'^ ^^ ^—^ •

^^ c 2j_ 2\

Now performing the convolution indicated above and writing r explicitly in terms of x and

y, we have

U2(x2,y2) =J^!! U^(x^,y^)
exp[-ik(z2 + (X„-Xj2 + (y -y )2)'5]

2 "1' '2 ^1^

[z2 + (x2-x^)2 + (y^-Yj)^]

dx^ dy^^

which is the diffraction integral we set out to obtain.

44



S.114A (REV. 7-73)

U.S. DEPT. OF COMM.
BIBLIOGRAPHIC DATA

SHEET

1. PUI fATION OR REPORT NO.

NBS-TN-1001

2. Gov't Acce;
No.

3. Recipient's Accession No.

TITLE AND SUBTITLE

Laser Far-Field Beam-Profile Measurements by the

Focal Plane Technique

5. Publication Date

March 1978

6. Performing Organization Code

276.01

AUTHOR(S)
G. W. Day and C. F. Stubenrauch

8. Performing Organ. Report No.

PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

10. Project/Task/Work Unit No.

2761171
11. Contract/Grant No.

Sponsoring Organization Name and Complete Address (Street, City, State, ZIP)

Air Force Guidance and Metrology Center,

Newark Air Force Station, Ohio and

Department of Defense
CCG, Laser and Infrared Working Group

13. Type of Report & Period
Covered

14. Sponsoring Agency Code

SUPPLEMENTARY NOTES

ABSTRACT (A 200-word or less (actual summary of most si^iticant information. If document includes a significant

bibliography or literature survey, mention it here.)

An analysis of laser far-field beam-profile measurements by the focal plane
technique is given. Particular attention is paid to systems at A/lym wavelength
aua having apertures up to 10 cm. The basic mathematics is reviewed and approx-
imations are evaluated. Using geometrical optics techniques, it is shown that
an f/20 plano-convex lens is an appropriate choice for the focusing element.
For two arbitrarily chosen laser beam profiles the errors associated with the
choice of this lens are discussed through the use of computed far-field and
focal-plane irradiance distributions. Experimental procedures including methods
of testing the optical elements are also given.

KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper

name; separated by semicolons)

Beam divergence; beam profile; lasers; optical propagation.

AVAILABILITY Unlimited

1 I

For Official Distribution. Do Not Release to NTIS

[Xj Order From Sup. of Doc, U.S. Government Prmting Office
Washington, D.C. 20402, SD Cat. No. C13. A6 :1D01

I I
Order From National Technical Information Service (NTIS)
Springfield, Virginia 22I5I

19. SECURITY CLASS
(THIS REPORT)

UNCLASSIFIED

20. SECURITY CLASS
(THIS PAGE)

UNCLASSIFIED

21. NO. OF PAGES

52

22. Price

$2.20

USCOMM-DC 29042-P74

*U.S. Government Printing Office: 19 78-7 77-06 7/12 3 5 Regions





NBS TECHNICAL PUBLICATIONS

PERIODICALS
)URNAL OF RESEARCH—The Journal of Research

of the National Bureau of Standards reports NBS research

and development in those disciplines of the physical and
engineering sciences in which the Bureau is active. These
include physics, chemistry, engineering, mathematics, and
computer sciences. Papers cover a broad range of subjects,

with major emphasis on measurement methodology, and
the basic technology underlying standardization. Also in-

cluded from time to time are survey articles on topics closely

related to the Bureau's technical and scientific programs. As
a special service to subscribers each issue contains complete
citations to all recent NBS publications in NBS and non-
NBS media. Issued six times a year. Annual subscription:

domestic $17.00; foreign $21.25. Single copy, $3.00 domestic;

$3.75 foreign.

Note: The Journal was formerly published in two sections:

Section A "Physics and Chemistry" and Section B "Mathe-
matical Sciences."

DIMENSIONS/NBS
This monthly magazine is published to inform scientists,

engineers, businessmen, industry, teachers, students, and
consumers of the latest advances in science and technology,

with primary emphasis on the work at NBS. The magazine
highlights and reviews such issues as energy research, fire

protection, building technology, metric conversion, pollution

abatement, health and safety, and consumer product per-

formance. In addition, it reports the results of Bureau pro-

grams in measurement standards and techniques, properties

of matter and materials, engineering standards and services,

instrumentation, and automatic data processing.

Annual subscription: Domestic, $12.50; Foreign $15.65.

NONPERIODICALS
Monographs—Major contributions to the technical liter-

ature on various subjects related to the Bureau's scientific

and technical activities.

Handbooks—Recommended codes of engineering and indus-

trial practice (including safety codes) developed in coopera-

tion with interested industries, professional organizations,

and regulatory bodies.

Special Publications—Include proceedings of conferences

sponsored by NBS, NBS annual reports, and other special

publications appropriate to this grouping such as wall charts,

pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, man-
uals, and studies of special interest to physicists, engineers,

chemists, biologists, mathematicians, computer programmers,
and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quanti-

tative data on the physical and chemical properties of

materials, compiled from the world's literature and criticaUy

evaluated. Developed under a world-wide program co-

ordinated by NBS. Program under authority of National
Standard Data Act (Public Law 90-396).

NOTE: At present the principal publication outlet for these

data is the Journal of Physical and Chemical Reference
Data (JPC'RD) published quarterly for NBS ' *e Ameri-
can Chemical Society (ACS) and the American Institute of

Physics (AIP). Subscriptions, reprints, and supplements
available from ACS, 1155 Sixteenth St. N.W.^ Wash., D.C.
20056.

Building Science Series—Disseminates technical information

developed at the Bureau on building materials, components,
systems, and whole structures. The series presents research

results, test methods, and performance criteria related to the

structural and environmental functions and the durability

and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in

themselves but restrictive in their treatment of a subject.

Analogous to monographs but not so comprehensive in

scope or definitive in treatment of the subject area. Often
serve as a vehicle for final reports of work performed at

NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures

published by the Department of Commerce in Part 10,

Title 15, of the Code of Federal Regulations. The purpose

of the standards is to establish nationally recognized require-

ments for products, and to provide all concerned interests

with a basis for common understanding of the characteristics

of the products. NBS administers this program as a supple-

ment to the activities of the private sector standardizing

organizations.

Consumer Information Series—Practical information, based

on NBS research and experience, covering areas of interest

to the consumer. Easily understandable language and

illustrations provide useful background knowledge for shop-

ping in today's technological marketplace.

Order above NBS publications from: Superintendent of

Documents, Government Printing Office, Washington, D.C.
20402.

Order following NBS publications—NBSIR's and FIPS from
the National Technical Information Services, Springfield,

Va. 22161.

Federal Information Processing Standards Publications

(FIPS PUB)—Publications in this series collectively consti-

tute the Federal Information Processing Standards Register.

Register serves as the official source of information in the

Federal Government regarding standards issued by NBS
pursuant to the Federal Property and Administrative Serv-

ices Act of 1949 as amended. Public Law 89-306 (79 Stat.

1127), and as implemented by Executive Order 11717

(38 FR 12315, dated May 11, 1973) and Part 6 of Title 15

CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of

interim or final reports on work performed by NBS for

outside sponsors (both govenmient and non-govenmient).

In general, initial distribution is handled by the sponsor;

public distribution is by the National Technical Information

Services (Springfield, Va. 22161) in paper copy or microfiche

form.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibli-

ographies are issued periodically by the Bureau:
Cryogenic Data Center Current Awareness Service. A litera-

ture survey issued biweekly. Annual subscription: Domes-
tic, $25.00; Foreign, $30.00.

Liquified Natural Gas. A literature survey issued quarterly.

Annual subscription: $20.00.

Superconducting Devices and Materials. A literature survey

issued quarterly. Annual subscription: $30.00. Send subscrip-

tion orders and remittances for the preceding bibliographic

services to National Bureau of Standards, Cryogenic Data

Center (275.02) Boulder, Colorado 80302.



U.S. OEPARTMENT OF COMMERCE
National Buraau of Standards
Washington. O.C. S0S34

OFFICIAL BUSINESS

Penalty for Private Use, S30Q

POSTAGE ANO FEES PAID
U.S. DEPARTMENT OF COMMERCE

COM.215

SPECIAL FOURTH-CLASS RATE
BOOK


