

Archived NIST Technical Series Publication

The attached publication has been archived (withdrawn), and is provided solely for historical purposes.
It may have been superseded by another publication (indicated below).

Archived Publication

Series/Number:

Title:

Publication Date(s):

Withdrawal Date:

Withdrawal Note:

Superseding Publication(s)

The attached publication has been superseded by the following publication(s):

Series/Number:

Title:

Author(s):

Publication Date(s):

URL/DOI:

Additional Information (if applicable)

Contact:

Latest revision of the

attached publication:

Related information:

Withdrawal
announcement (link):

Date updated: June 9, 2015

NIST Special Publication 800-6

Automated Tools for Testing Computer System Vulnerability

December 1992

Computer Security Division (Information Technology Lab)

http://csrc.nist.gov/

NIST Special Publication 800-6

U.S. DEPARTMENT OF
COMMERCE
Technology Administration

National Institute of Standards

and Technology

Automated Tools for

Testing Computer
System Vulnerability

W. Timothy Polk

NAT L INST. OF STAND » TECH R.I.C.

I IIIIIHII Hill II I

A111D3 TllEtfi

m
PUBLICATIONS

COMPUTER SECURITY

7he National Institute of Standards and Technology was established in 1988 by Congress to "assist

industry in the development of technology . . . needed to improve product quality, to modernize

manufacturing processes, to ensure product reliability . . . and to facilitate rapid commercialization ... of

products based on new scientific discoveries."

NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S.

industry's competitiveness; advance science and engineering; and improve public health, safety, and the

environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national

standards of measurement, and provide the means and methods for comparing standards used in science,

engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized

by the Federal Government.

As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic

and applied research in the physical sciences and engineering and performs related services. The Institute

does generic and precompetitive work on new and advanced technologies. NIST's research facilities are

located at Gaithersburg, MD 20899, and at Boulder, CO 80303. Major technical operating units and their

principal activities are listed below. For more information contact the Public Inquiries Desk, 301-975-3058.

Technology Services
• Manufacturing Technology Centers Program
• Standards Services

• Technology Commercialization

• Measurement Services

• Technology Evaluation and Assessment
• Information Services

Electronics and Electrical Engineering
Laboratory
• Microelectronics

• Law Enforcement Standards

• Electricity

• Semiconductor Electronics

• Electromagnetic Fields'

• Electromagnetic Technology'

Chemical Science and Technology
Laboratory
• Biotechnology

• Chemical Engineering'

• Chemical Kinetics and Thermodynamics
• Inorganic Analytical Research
• Organic Analytical Research

• Process Measurements
• Surface and Microanalysis Science

• Thermophysics^

Physics Laboratory
• Electron and Optical Physics

• Atomic Physics

• Molecular Physics

• Radiometric Physics

• Quantum Metrology

• Ionizing Radiation

• Time and Frequency'
• Quantum Physics'

Manufacturing Engineering Laboratory
• Precision Engineering

• Automated Production Technology
• Robot Systems

• Factory Automation
• Fabrication Technology

Materials Science and Engineering
Laboratory
• Intelligent Processing of Materials

• Ceramics

• Materials Reliability'

• Polymers

• Metallurgy

• Reactor Radiation

Building and Fire Research Laboratory
• Structures

• Building Materials

• Building Environment
• Fire Science and Engineering

• Fire Measurement and Research

Computer Systems Laboratory
• Information Systems Engineering

• Systems and Software Technology

• Computer Security

• Systems and Network Architecture

• Advanced Systems

Computing and Applied Mathematics
Laboratory
• Applied and Computational Mathematics^

• Statistical Engineering^

• Scientific Computing Environments^
• Computer Services^

• Computer Systems and Communications^
• Information Systems

'At Boulder, CO 80303.

^Some elements at Boulder, CO 80303.

ioi>

NIST Special Publication 800-6 Automated Tools for
. ^5

7

Testing Computer P^'^^

System Vulnerability '

W. Timothy Polk

COMPUTER SECURITY

Computer Systems Laboratory

National Institute of Standards

and Technology

Gaithersburg, MD 20899

December 1992

U.S. DEPARTMENT OF COMMERCE
Barbara Hackman Franklin, Secretary

Technology Administration

Robert M. White, Under Secretary for Technology

National Institute of Standards and Technology

John W. Lyons, Director

Reports on Computer Systems Technology

The National Institute of Standards and Technology (NIST) has a unique responsibility for computer

systems technology within the Federal Government. NIST's Computer Systems Laboratory (CSL) devel-

ops standards and guidelines, provides technical assistance, and conducts research for computers and
related telecommunications systems to achieve more effective utilization of Federal information technol-

ogy resources. CSL's responsibilities include development of technical, management, physical, and ad-

ministrative standards and guidelines for the cost-effective security and privacy of sensitive unclassified

information processed in Federal computers. CSL assists agencies in developing security plans and in

improving computer security awareness training. This Special Publication 800 series reports CSL re-

search and guidelines to Federal agencies as well as to organizations in industry, government, and
academia.

National Institute of Standards and Technology Special Publication 800-6
Natl. Inst. Stand. Technol. Spec. Publ. 800-6, 40 pages (Dec. 1992)

CODEN: NSPUE2

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1992

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402

Contents

1 Introduction 1

1.1 Intended Audience 2

1.2 How To Use This Document 3

2 Vulnerability Testing Objectives 5

2.1 Stand-Alone Systems 6

2.1.1 Password Mechanisms 7

2.1.2 User Files 8

2.1.3 System Files 8

2.2 Network Hosts 8

2.3 Summary 10

3 Vulnerability Testing Methods 11

3.1 Active and Passive Testing 11

3.2 Scope 12

3.3 Local, Network, and Distributed Testing 13

3.4 Reporting Methodology 13

3.5 Summary 14

4 Vulnerability Testing Techniques 15

4.1 Configuration Review Tests 15

4.2 File Content and Protection 15

4.3 Bug Fixes 16

4.4 Change Detection Tests 17

•

111

4.5 System- Specific Testing 18

4.6 Distributed Communications 18

4.7 Artificial Intelligence 19

4.8 Summary 19

5 Policy and Procedures 21

5.1 Testing Procedures and Responsibilities 21

5.2 Developing a Toolkit 23

5.3 Distribution of Tools 25

5.4 Summary 27

A References 29

B Primary Tools Reviewed 31

iv

Abstract

Computer security "incidents" occur with alarming frequency. The incidents range

from direct attacks by both hackers and insiders to automated attacks such as network

worms. Weak system controls are frequently cited as the cause, but many of these

incidents are the result of improper use of existing control mechanisms. For example,

improper access control specifications for key system files could open the entire system

to unauthorized access. Moreover, many computer systems are delivered with default

settings that, if left unchanged, leave the system exposed.

This document discusses automated tools for testing computer system vulnerability.

By analyzing factors affecting the security of a computer system, a system manager

can identify common vulnerabilities stemming from administrative errors. Using au-

tomated tools, this process may examine the content and protections of hundreds

of files on a multi-user system and identify subtle vulnerabilities. By acting on this

information, system administrators can significantly reduce their systems' security

exposure.

Automated vulnerability testing tools are available for a wide variety of systems.

Some tools are commercially available; others are available from other system ad-

ministrators. Additional tools may be developed to address specific concerns for an

organization's computer systems. This document examines basic requirements for vul-

nerability testing tools and describes the different functional classes of tools. Finally,

the document offers general recommendations about the selection and distribution of

such tools.

V

1 Introduction

Most modern computer systems have effective controls for implementing computer

security. However, many systems achieve considerably less security than their controls

could offer due to improper use of those controls or errors in system configuration.

The existence of these controls presents an illusion of security to management and

users who assume the controls are properly configured. Thus, they maintain sensitive

data and applications on the system as if it offered real security.

Many computer security incidents result directly from such improper use. A General

Accounting Office report describes one example:

The hackers exploited well-known security weaknesses - many of which

were exploited in the past by other hacker groups. These weaknesses per-

sist because of inadequate attention to computer security, such as pass-

word management, and the lack of expertise on the part of some system

administrators... [1]

Other highly publicized incidents, such as the Internet worm in November, 1988 [2],

and the DECnet worms (four cases in 1988 and 1989,) [3] [4] [5], exploited similar

weaknesses.^

This problem is not necessarily due to incompetence; even the most expert admin-

istrator may make errors due to the size and complexity of computer systems. The
average system supports a wide range of services and a large number of files. The
security mechanisms used to control access to services and files must be flexible to ad-

dress a wide variety of requirements. This flexibility enables users and administrators

alike to heighten or degrade the security of the computer system.

To ensure that an acceptable level of security is achieved, the administrator should

utiUze automated tools to regularly perform system vulnerability tests. The tests

examine a system for vulnerabilities that can result from improper use of controls or

mismanagement. Examples of such vulnerabilities include:

• easily guessed passwords;

• improperly protected system files;

• opportunities for planting Trojan horses; and

• failure to install security-relevant bug fixes.

^The Internet worm also exploited errors in the code of the operating system itself.

1

To identify such vulnerabilities, the testing process analyzes the content of various

files in the system and the attributes associated with those files. The number of

programs and sheer magnitude of data make it difficult for a system administrator

to assess a system's security. An extremely large number of tests and checks may
be required. As a result, that review may be feasible only with the assistance of the

computer itself.

Software tools are available to aid the system administrator in this task. These tools

use the power of the system itself to perform the large number of tests required. These

tools will be referred to as automated vulnerability testing tools.

The goal of vulnerability testing is to achieve the greatest degree of security possible,

given a particular system. This process focuses on the current state of that system

to determine if common vulnerabilities exist.

1.1 Intended Audience

This document addresses concerns of system administrators, security practitioners

and information resource managers. It provides guidance on the implementation,

selection, utilization, and distribution of vulnerability testing tools.

The primary audience for this document is composed of system administrators and

system auditors who are responsible for evaluating the security of systems. These

tools provide the means to perform that task. This document assists this audience

by providing guidance in the selection of appropriate tools and the analysis of the

output.

The secondary audience for this document includes security officers and ADP man-

agers who are responsible for implementing organizational security policy. For this

audience, computer system vulnerability testing may be a facet of organizational pol-

icy, and a means to verify compliance with policy. The information contained in this

document will assist them in the development and evaluation of organizational policy

based on these tools.

Finally, this document may prove useful to programmers who are developing vulner-

ability testing software. It includes a basic list of objects^ to review and some hints

about applying the list to particular systems. A number of common techniques for

implementing vulnerability testing are also described.

'An object is an abstraction for anything that holds data. The most common object is the file.

Other examples can be directories, devices, etc.

2

1.2 How To Use This Document

This document provides guidance on how to:

• determine the types of vulnerabilities that should be considered;

• determine what objects on a system should be reviewed;

• determine how to test those objects; and

• implement a vulnerability testing policy for an organization.

Section 2, Vulnerability Testing Objectives, describes the types of vulnerabilities that

can be addressed. Applying these objectives to a particular system is reasonably

straightforward; each objective will relate to a set of programs or configuration files.

Section 3, Vulnerability Testing Methods, describes how vulnerability testing may be

performed. The appropriate methodology depends upon who performs the testing

and the test objectives. Testing a single computer is different from testing a net-

work of computers. Testing performed by the system administrator will also differ

from tests performed by the organization's security officer. There are several general

vulnerability testing "methodologies"; each applies to certain scenarios.

Section 4, Vulnerability Testing Techniques, describes and classifies common tech-

niques for the implementation of computer system vulnerability tests. These tech-

niques can implement a variety of testing methodologies. These techniques use general

computing concepts and apply to a wide variety of systems.

Section 5, Policy and Procedures, includes a variety of recommendations regarding

the implementation of a vulnerability testing program within an organization. Rec-

ommendations focus upon the selection, distribution, and use of computer system

vulnerability tests.

The document is best read in its entirety. However, the relative importance of certain

sections will depend upon the reader. The organizational security officer or informa-

tion resource manager who is developing policy may wish to skip the implementation

details in Section 4. Auditors and system administrators will find the policy discus-

sions in Section 5 less relevant than the remainder of the document. Programmers

will find Sections 3 and 4 most informative.

3

2 Vulnerability Testing Objectives

The technical strength of the security in a computer system is a function of the design

of its hardware and software. However, the actual security achieved is a function of

the way the machine is used. Security is affected by the actions of both the users

and the system administrators. Users may leave their files open to attack; the system

administrator may leave the system open to attack by insiders or outsiders.

The features used (or misused) frequently involve system or user environment config-

uration. Two examples are:

• A password system provides some degree of potential security. Users may neg-

atively affect security by using a null password, selecting an easily guessed

password, or taping the password to their terminals.

• The discretionary access controls associated with a typical operating system pro-

vide some degree of potential security. For convenience, configuration files set

system and user defaults for the file protection attributes. This frees users from

specifying the protections assigned for every file created. However, the security

achieved will be minimal if a user's default file protections are "read/write/execute

by ANYONE."

In each of these cases, little actual security is achieved. If a user makes these mistakes,

the damage is confined to portions of the system that the user can access. If that

user is the system administrator, the entire system is at risk.

In combination, these errors place the system at greater risk than either error alone.

If the system administrator's default access control settings allow anyone to alter files,

non-privileged users can replace common system executables with Trojan horses.

If a user also has a "joe account" (where the userid and password are identical),

an unauthorized person might guess the password and gain access to the system.

The unauthorized user could install a Trojan horse and gain system administrator

privileges.

In each of these cases, the system was vulnerable due to misuse of the system's

features. These mistakes occur with alarming frequency. Fortunately, it is simple to

identify many common errors using vulnerability testing tools. These tools search for

vulnerabilities that arise from common administrator and user errors.

Vulnerability testing tools analyze the current state of the system. This is different

from activity monitoring or intrusion detection. Monitors and intrusion detection

systems analyze events as they occur. Vulnerability testing tools review the objects

5

in a system, searching for anomalies that might indicate vulnerabiHties which could

allow an attacker to:

• plant Trojan horses;

• masquerade as another user; or

• circumvent organizational security policy.

Anomalies might be the unexpected modification of files, "suspicious" content in

certain files, or successful performance of forbidden operations. These anomalies may
indicate the presence of a Trojan horse or an opportunity to plant one. The anomalies

may also indicate an opportunity to masquerade as another user.

There are basic rules for system security that address these concerns. These rules

apply to most computer systems. Automated tools can review the system to verify

compliance to these rules. The following sub-sections describe some basic rules. The
first proposes rules for stand-alone systems; the second identifies additional rules for

systems connected to networks.

2.1 Stand-Alone Systems

To identify vulnerabilities on a stand-alone system, vulnerability testing tools review

executables shared among users, and security controls that:

• restrict system access (passwords, smart cards, etc.);

• set the system configuration; or

• set a user's configuration.

Vulnerabilities in the system access controls may allow one user to masquerade as

another. The configuration files and shared binaries are attractive ways to install

a Trojan horse. Finally, the configuration files set default mechanisms that should

reflect your organization's security policy.

It is difficult and time-consuming to review all of these objects by hand. However, a

vulnerability testing package can quickly and accurately perform such a review. The

typical system has several areas where vulnerability testing tools may be applied.

These include:

6

• identification and authentication systems (especially password systems);

• content and protection of critical system files, such as system configuration files;

• content and protection of critical user files, such as session start-up and config-

uration files; and

• prevention and detection of changes in system binaries.

In this document, the term critical file refers to files whose modification or disclosure

could result in circumventing system controls. That is, their modification may allow

a user to gain unauthorized access to a system (or resource) or plant Trojan horses.

The following sections develop more specific objectives for the application of vulner-

ability testing tools to password mechanisms, user files, and system files respectively.

These can be applied to a particular system to identify specific vulnerabilities for

review.

2.1.1 Password Mechanisms

FIPS Pub 112, Password Usage, contains a basic set of rules for password-based

identification and authentication systems. [6] FIPS Pub 112 describes ten factors which

"must be considered, specified and controlled when ... operating a password system."

Of these factors, four are candidates for automated vulnerability testing:

• length: Short passwords are easily broken by exhaustive attempts.

• hfetime: Passwords have a limited lifetime. They should be changed regularly

or whenever they may have been compromised.

• source: Passwords that are not randomly selected may be guessed or discovered

by a dictionary attack.

• storage: Passwords stored in a computer should be protected to prevent disclo-

sure or unauthorized modification.

Note that the six remaining factors are not candidates for vulnerability testing. For

instance, ownership is the set of individuals who are authorized to use a password.

FIPS Pub 112 states that "Personal passwords used to authenticate identity shall

be owned (i.e., known) only by the individual having that identity." Vulnerability

testing cannot ensure that individuals have not disclosed their passwords.

2.1.2 User Files

The basic rules for the content and protection of User Files are derived by consid-

ering the testing objectives. User files must not permit the installation of Trojan

horse programs. Users must restrict access to objects they create according to the

organization's security policy. The following rules support these goals:

• Protect personal start-up files from modification by others. (These files are

ideal candidates for planting Trojan horses since they are ALWAYS executed.)

• Do not specify personal or shared directories before system-provided directories

in executable search paths. (This invites the installation of Trojan horses.)

• Default protections assigned at file creation should meet system standards.

• Limit write access in a user's personal file space (by appropriate protection of

user directories).

2.1.3 System Files

The rules for System Files are developed in a similar fashion. The system configu-

ration files and shared binaries must be protected against Trojan horses and audit

trails must be protected against undesired modification. The following rules support

these goals:

• Restrict modification privileges for system binaries to systems staff.

• Review the content of system binaries for unexpected changes.

• Restrict modification of system start-up scripts to systems staff.

• Review content of system start-up scripts to ensure that secure defaults are

specified and programs executed are not candidates for Trojan horse conversion.

• Protect audit trail log files from unauthorized modification.

2.2 Network Hosts

In computer networks, systems typically share data and other resources. This com-

plicates the problem of unauthorized access by adding two new variables: the identity

of the remote system; and the relationship between the identities of the users of the

8

two systems. The networking software creates additional avenues for access to the

system. The security mechanisms controlling these access paths must be reviewed for

vulnerabilities.

Networking software can allow a user or system to access a system or its resources.

The original list of vulnerability test objectives must be enhanced to reflect the ad-

ditional threats. On a network host, the test objectives are to identify vulnerabilities

which would allow:

• a user to masquerade as another user or a system to masquerade as another

system;

• installation of Trojan horses or penetration by network worms; and

• circumvention of security policy by users of remote systems.

A network host will have all of the potential vulnerabilities of a stand-alone system,

as well as the vulnerabilities contained in the network services. Reviewing the config-

uration of the network will require additional tests, but these tests address the same

issues as an audit of a stand-alone system. To extend the stand-alone rules for net-

work hosts, examine the added services with these concerns in mind. The particular

additions will depend upon the types of services offered and used by the system.

For instance, a network host may perform all authentications locally. (In this case,

the password is transmitted across the network.) Then the testing would include all

the identification and authentication rules for the stand-alone system. One additional

requirement is needed: network access should not allow users access to the password

file beyond that provided in stand-alone mode.

In network environments, many systems rely upon the remote authentication of a

user. In this case, the problem is entirely different. The local host relies upon the

remote system to authenticate users. The result of the authentication is only reliable

if:

• the remote system is known to the system; and

• the remote system's identification and authentication database correlates accu-

rately with the local system's database.

That is, it is important to know the remote users and their system.^

^This does not rule out vulnerabilities related to spoofing of network hosts; this is a function of

the network protocols employed.

9

The concerns for user files are similarly augmented according to services provided.

If the users can define remote access capabilities for themselves, the content and

protection of those files should be reviewed.'* For system files, the critical files are

any file modifying remote access capabilities and system binaries used in network

communication. Vulnerability testing software can review the configuration files,

verify that binaries have not been modified, and may even verify the correlation of

identification databases.

2.3 Summary

The generic rules presented in Section 2.1 provide a basis for testing any system.

The particular rules applied in the testing process reflect the specific features of the

system in question. There may be vulnerabilities associated with every resource (such

as electronic mail or virtual disk) that the system provides. Examine each resource

to determine if additional identification and authentication tests are required or if

critical user or system files exist.

These rules extend the basic vulnerability testing objectives to address specific fea-

tures of the system. If the host supports additional resources, such as a database

management system, or maintains a relationship of trust with connected devices, the

testing rules must be enhanced to reflect this.

The absence of controls on a system can reduce the set of testing rules. For example,

personal computers frequently lack identification and authentication mechanisms or

file-level access control. For those systems, the identification and authentication rules

do not apply.

Note that many additional security rules are not candidates for review by vulnera-

bility testing tools. For example, a software audit can not detect passwords taped to

terminals; this is external to the system. However, software can determine if a user

can copy the password file.

^This is true for certain implementations of the Berkeley Software Distribution (BSD) network

utilities, such as rsh, rlogin, and rep.

10

3 Vulnerability Testing Methods

Depending upon the objective, vulnerability tests may implement a variety of methods

to assess security. Tests may mimic an attacker or simply browse through the system

in more typical auditing fashion. Tests may run on the system undergoing audit or

may execute on a remote system. Tests may view the system narrowly or broadly.

This section describes several different classifications for vulnerability test programs.

Tests are classified according to:

• passive or active testing;

• scope;

• local, network, or distributed testing; and

• reporting methodology.

The following sections define and describe these classifications and suggest appropri-

ate applications.^

3.1 Active and Passive Testing

Tests may be classified as passive or active. Active tests are intrusive in nature; they

identify vulnerabilities by exploiting them. Passive tests only examine the system;

they infer the existence of vulnerabilities from the state of the system.

Consider the example of a password-based identification and authentication system.

A password testing program might actually attempt to login with a small set of

"easy" passwords. When successful, the program might mail or write a notification

of this success to the system administrator. This is an active test. A passive test

might involve checking the password file protection, or copying the file and performing

off-line encryption and comparison of encrypted strings.

Both types of tests are useful. Where the password file is unprotected, an off-line test

is more efficient, more realistic, and more thorough. Active testing may be the only

possible method if the test program cannot gain access to the encrypted data.

^Note that these classification are not mutually exclusive. For example, passive tests may eilso

be local tests.

11

However, active tests are more dangerous than passive tests. Active tests can fre-

quently be transformed into a Trojan horse (or network worm) with only minor mod-
ifications. Passive tests are usually less volatile. However, both types are useful to

an attacker, as in the two types of password tests.

3.2 Scope

Test programs may be classified according to scope. Test programs may examine

a single vulnerability or examine the vulnerability of an entire system. The single

vulnerability tests have a narrow scope; the system vulnerability tests exhibit a broad

scope.

The simplest vulnerability testing programs test for a single specific vulnerability. For

example, a test might simply check for unprotected start-up files. By using a series

of such tests, it is possible to identify common vulnerabilities. However, such tests

do not consider the complete ramifications of the vulnerabilities.

The cumulative effect of a vulnerability may be far greater than it appears. For

example, unprotected start-up files allow users to plant Trojan horses. If user X's

start-up files are unprotected, and X can modify the password file, any user may
masquerade as any other user. This is a simple example; more realistic scenarios can

become much more complex.

A single vulnerability test would identify the unprotected start-up files. Another

single vulnerability test might report that X was among users who could modify the

password file. A system vulnerability test performs many single vulnerability tests,

considers the system's access control rules, and determines the complete ramifications

for system security.

System vulnerability testing is more useful than a collection of single vulnerability

tests. It is not always possible to correct every specific item flagged by vulnerability

testing. A system vulnerability test will assist the administrator in determining the

total risk (to the system) posed by a specific vulnerability.^

®For example, an application might require permission to access sensitive files. A system vulner-

ability test could help the system administrator evaluate and limit the vulnerability of the system.

If the vulnerability was too great, the administrator might wish to disable the application or isolate

it on another host.

12

3.3 Local, Network, and Distributed Testing

Tests may be designed for local testing of a single system, network testing, or dis-

tributed testing. Local tests examine the system where they execute. Network tests

use communication links to examine the state of a remote system. Distributed tests

execute different tasks on each system, according to the system's role.

Most tests are designed for local execution on a single machine. These tests are

restricted to the examination of the (virtual) system. They can examine the content

and protection of local objects, and remote objects that are available on virtual

devices. They cannot examine objects strictly local to remote systems.

Network tests examine the state of remote systems, using communication links to

access various services and objects. This type of test permits network security man-

agers to assess comphance with security directives. For example, a network test could

determine if insecure network services were enabled by actively probing systems.

This may be sufficient for network hosts that do not trust other network hosts. How-

ever, if the host is a member of a distributed system, a remote system performs

authentication or access control of local objects. In this case, security-relevant con-

trols and information are distributed among the systems. The testing must analyze

components from each host to adequately assess the vulnerability of the distributed

system.

To ensure synchronization of controls, distributed tests are needed to compare the

configurations of the "related" hosts. Tests that perform this task must consider each

host's role in the system and analyze the appropriate components. Accessing the

appropriate components often requires local execution, so the tests themselves must

be distributed in nature.

3.4 Reporting Methodology

In most cases, test reports are generated for the local system administrators. Test

reports might also be returned to a central site for auditing purposes. There is a

great difference in the two methods. In the former, the test is a tool for the system

administrator. In the latter, the tests are intended to identify systems that pose an

unacceptable risk to the network.

As an example, an international network was attacked several times by network worms
that exploited the same vulnerability. The network security administrator had issued

an edict requiring correction of this vulnerability after the first incident. A network

test with centralized reporting would have assisted the network administration in the

13

identification of non-compliant systems. In combination with administrative proce-

dures (to disable network connections of non-compliant systems), such testing might

have reduced the networks vulnerability to subsequent attacks.

3.5 Summary

To summarize the most important points of this section:

• Restrict the use of active tests to circumstances requiring their unique charac-

teristics. Active tests can test any vulnerability, but are dangerously close to a

Trojan horse or worm. Passive test programs effectively perform most vulner-

ability testing tasks and are relatively difficult to convert to Trojan horses or

worms.

• Active testing techniques are closely coupled with the specific system. A variety

of passive techniques are available; they may be appHed to any system.

• System vulnerability tests analyze multiple vulnerabilities and attempt to deter-

mine the cumulative effect. This is superior to a battery of single vulnerability

tests in which each addresses a specific vulnerability.

• Local testing is employed to determine the vulnerability of a stand-alone system,

or network hosts that do not "trust" other hosts.

• Network testing is employed by network security officers to examine the use of

"dangerous" services. These are often active tests.

• Distributed testing is required for systems that "trust" other hosts to enforce

access control or perform identification and authentication.

• VulnerabiUty testing tools use local reporting when employed to assist a local

system administrator. The tools may use remote reporting when someone other

than the local system administrator (e.g., the network security administrator or

an auditor) is analyzing security. Remote reporting is also useful when a single

system administrator runs multiple machines on a single network.

14

4 Vulnerability Testing Techniques

This section describes the various techniques which may be used to ensure confor-

mance with the generic testing rules. A single rule may require several different tests,

regardless of the testing methodology employed. Each test would employ a different

technique to examine a particular aspect of the problem.

4.1 Configuration Review Tests

Modern computer systems are highly configurable, reflecting the flexibility of con-

trols and range of security policies that must be implemented. The relative security

of the diiferent configurations can also vary widely. In many cases, a system runs

in an undesired and insecure system configuration. This often occurs because that

configuration may be the default or the simplest to implement. In other cases, the

complexity of the configuration file results in an unintended (and insecure) configu-

ration. Configuration review tests read and interpret the files which represent system

configuration information, searching for evidence of vulnerabilities.

Insecure configurations may exist for longer periods of time than most system con-

figuration errors. If a system configuration error results in system failure or impacts

performance, users will insist that the error be identified and corrected in a reasonable

time frame. Configuration errors degrading security may not be identified until the

machine is successfully attacked. Configuration review tests are a reliable method for

detecting these errors before a system is attacked.

An example of an insecure configuration is uncontrolled sharing of resources by a

network host (e.g., sharing disk partitions with any system on the network). Few
scenarios justify uncontrolled remote disk access. However, if the installation scripts

default to "export to world," many systems' configuration will never be corrected.

This type of configuration problem can be detected by analyzing the content of net-

work configuration files with configuration review tests.

4.2 File Content and Protection

Command files (especially start-up scripts) and system utilities are attractive targets

for the insertion of Trojan horses. The integrity of these processes must be protected.

A test is required to ensure that no one but the rightful owner can modify the start-up

procedure. This is not a simple task, since each process may execute others and these

must be protected as well.

15

Verification of access control settings is the first step in assessing the security of these

files. This process is often complicated by the fact that many systems support several

access control systems and their interactions are not always clear. In addition, testing

the permissions associated with a file may be insufficient.

To be more complete, it is necessary to verify that all programs the command file

executes are also appropriately protected. As an example, a UNIX^ test program

might confirm that reboot is owned by root and protected from modification by all

other users. This is insufficient; if any program executed by reboot is not owned by

root and similarly protected from modification, that program is a potential Trojan

horse. This type of testing requires reviewing the content of the file, and identifying

called programs.

Users can also create vulnerabilities by assigning inappropriate values to user- controlled

configuration parameters or environmental variables. In these cases, the content is

examined to determine the values assigned to user-controlled variables. This value is

evaluated and flagged if insecure.

A simple example is the default file protection attribute that is assigned when a

user creates a file. If this value is weak, such as "modify by anyone,^^ confldentiahty

and integrity may suffer. A program could trace through the start-up procedures to

determine the value assigned to this variable.

In a more complex example, UNIX systems typically specify the set of trusted hosts

for accessing BSD networking utilities (rlogin, rsh, and rep) in a configuration file.

Users can modify this list by placing entries in their own network configuration files.

The degree of security provided by the system is directly affected by these settings.

A program could read and analyze the content to evaluate the security level.

4.3 Bug Fixes

Operating system bugs can also be a security vulnerability in a system. Some highly

publicized attacks, including the Internet worm, have exploited these vulnerabilities to

gain access to systems. As a result of these incidents, vendors are making a concerted

effort to develop and distribute patches to correct these bugs. However, many system

administrators do not keep their systems current by installing the appropriate patches.

The security advisories which announce the availability of the security patch describe

simple procedures to determine if the patch is required. These procedures usually

"^UNIX is a registered trademark of AT&T.

16

involve verifying sizes, version numbers, or checksums associated with the executables.

The appropriate patch(es) can be obtained from the vendor.®

This process can be automated with a program that reviews system binaries to verify

the installation of security bug fixes. These tests may be active or passive in nature.

Active tests attempt to exploit the bug; passive tests use checksums, file sizes, and

version numbers to determine if the patch is in place.

The passive tests are extremely limited in nature; they apply to a particular hardware

platform and a range of software versions. For example, a passive program which

confirms that the UNIX fingerd binary is secure might only work on SunOS version

3.x for the SUN-3 series of computers.

The active tests are more flexible. An active program testing the fingerd bug could

be recompiled and executed on any UNIX system. However, the test program could

also be transformed into a worm or Trojan horse with only minor modifications. As

with all active tests, distribution must be carefully considered.

4.4 Change Detection Tests

Change detection tests are a class of passive audit tests. These tests are performed

to verify that files have not changed since some baseline was established. These

tests ignore date and time stamps, which may be faked or corrupted, and rely on

cyclic redundancy checks (CRCs) or encryption-based algorithms such as the Data

Authentication Algorithm (DAA) [7], which utilizes the Data Encryption Standard

(DES) [8]. These tests cannot prevent change or determine what has changed, but are

reliable for determining if change has occurred. This sort of test may be performed

to ensure that a system program has not been replaced with a Trojan horse.

Change detection tests are sometimes used in a reverse fashion to verify that an update

has been installed; if the CRC generated is X, the patch has not been installed. Note

that the result of change detection tests will be different for binaries of the same

program on different hardware platforms. Application of such tests will be limited to

particular hardware/ software combinations.

Enhanced techniques are required to review self-modifying executables. In such a

case, a "map" specifying the constant portions of the program and the corresponding

checksums are required.

Change detection testing can be very effective, but is more demanding procedurally

than file content or configuration review tests. The degree of assurance corresponds

^Several vendors actually distribute patches via anonymous ftp on the Internet.

17

directly to the protection of the baseUne. It is best to store checksums off-line.

Another option is to store the checksums in an encrypted form.

4.5 System-Specific Testing

In some cases, generic testing must be discarded in favor of system-specific testing.

Tests must be designed to target specific features of a system when generic techniques

are not useful. For example, a review of "industry-standard" passwords would be

targeted towards specific account-password combinations unique to each particular

operating system.

As a general rule, active tests will be system-specific. They will attempt to exploit

specific vulnerabilities by executing system-level or resource-level commands. Con-

figuration review tests are also system-specific. They will test for particular insecure

configurations of this particular operating system.

In contrast, change detection tests are entirely generic. The algorithm utilized to

create checksums is not related to the system.

4.6 Distributed Communications

Centrally reported tests are a managerial device, designed to assist personnel who
manage or audit a large number of systems. However, this device is also vulnera-

ble to eavesdropping when executed on typical networks. Eavesdroppers can "listen

promiscuously" and obtain access to confidential vulnerability test reports. These

reports may go so far as identifying the vulnerabilities for the attacker.

Results of vulnerability testing should always be secured if central reporting is per-

formed. If the system has any vulnerabilities, the complete results of vulnerability

testing will describe them in detail. There are two basic methods for protecting this

information.

First, reports can be "sanitized" by reducing the information reported to a simple

numeric score. Secondly, public-key encryption techniques can be used to assure

confidentiality. These techniques can, of course, be used in combination.

18

4.7 Artificial Intelligence

Artificial intelligence techniques can be employed when evaluating system vulnerabil-

ity. Identifying a basic vulnerability in a system is relatively easy. The ramifications

of the exploitation of a particular vulnerability are not always so obvious, though.

For example, suppose a user has a null password. Clearly, anyone can now masquerade

as that user. The threat is even greater if that user can modify system configuration

files. That would let anyone plant a Trojan horse, and so execute programs with other

users' authorizations. That makes the null password much more serious. This is a

relatively simple example, requiring only two steps. More realistic examples might

require a longer series of steps.

To recognize the full ramifications of a vulnerability, a system must be able to identify

a series of actions that could be exploited to obtain access or information that could

not be achieved by exploiting any single vulnerability. This task is well suited to

rule-based artificial intelligence tools. Given the rules for system access, such a tool

can quickly determine the "maximum" vulnerability.

4.8 Summary

To summarize the most important points of this section:

• Passive tests are usually sufficient; active tests are dangerously close to a Trojan

horse and should be used only in special circumstances.

• Network testing is useful when configuration files on more than one machine

must be synchronized or for active testing of critical system access problems.

• Tests which analyze multiple specific vulnerabilities and attempt to determine

the cumulative effect are superior to a large number of tests which address only

a specific vulnerability.

• Local reporting is used when auditing to assist a local system administrator;

remote reporting is used when the network security administrator wishes to

analyze the security of the network. (Remote reporting is also useful when a

single system administrator runs multiple machines on a single network.)

• There are many techniques for auditing; these techniques may be used in concert

to address all facets of a potential security flaw. Most techniques look for a clear

"problem"; others look for unexpected change in a system.

19

When passive testing is insufficient, generic techniques must be abeindoned cis

well. The basic nature of active testing targets system-specific vulnerabilities.

As a result, all active tests will be custom software.

Centrally reported tests are vulnerable to eavesdropping when executed on pub-

lic networks. Developers should draw upon the field of secure communications

to ensure confidentiality. Failing that, remove sensitive information so that the

eavesdropper does not learn of specific vulnerabilities.

System vulnerability testing is a complex task. It can be implemented by aug-

menting other testing techniques with rule-based analysis techniques. (Other

artificial intelHgence techniques, such as neural nets, may also be apphcable.)

5 Policy and Procedures

An effective vulnerability testing program can increase the level of computer security

throughout an organization. Vulnerability testing is intended primarily to help system

managers achieve the maximum security with available tools. Vulnerability testing

is also a management tool, underscoring the management commitment to security.

Realizing the potential requires that guidelines are in place and adequate tools are

provided to the appropriate personnel.

The formulation of guidelines is generally the responsibility of the organization's

security officer. Guidehnes should specify the procedures for use and distribution of

vulnerability testing tools and the responsibihties of organization personnel in the

program.

Development or procurement of appropriate tools must also fall to the security officer,

perhaps with the assistance of system managers. This process begins by reviewing

the organization's systems and developing vulnerability testing requirements in ac-

cordance with system functionality. The next step is to develop specific requirements

for each type of system. From the specific requirements, the available software can

be analyzed for suitability. Remaining holes may be addressed by custom software.

Ultimate success or failure will rest with the system administrator. A vulnerability

testing program's primary goal is getting the most security from the available con-

trols. The system administrator must perform the tests and address the indicated

vulnerabilities.

5.1 Testing Procedures and Responsibilities

Management should establish systems procedures to ensure that:

• vulnerability testing is a regular procedure;

• vulnerability testing tools are available and complete; and

• vulnerability testing tools that pose a risk to the system are adequately pro-

tected from misuse.

This section presents basic concepts for the formulation of vulnerability testing guide-

lines.

21

Require regular vulnerability testing of systems.

System managers should perform vulnerability testing on a regular basis (monthly

or weekly) and at several critical milestones. The critical moments are: installation

or upgrade of system software; modification of user privileges; and an attack (or

suspected attack) on a system. Whenever system software is installed, permissions

and contents should be reviewed. Installation of new software will also make the

baseline for change detection obsolete. When user privileges are modified (such as

introduction of new users or adding users to a new group), the system may be put at

risk. Finally, whenever an attack has occurred, there is a chance that Trojan horses

have been left behind.

Provide vulnerability testing tools to all appropriate personnel.

System managers are the primary beneficiaries of testing tools. However, other mem-
bers of an organization may also use these tools. Network managers may benefit

from these tools; auditors can also use these tools to judge the security posture of

systems. The organization's security officer should identify personnel with security

responsibilities and take their needs into account in the toolkit development process.

Ensure that adequate tools are available for the most common systems.

Provide access to adequate software for common agency systems through an organi-

zational vulnerability testing toolkit. This toolkit may include:

• locally developed software;

• public domain tools; and

• commercial vulnerability testing packages.

Internet archive sites and system-specific users' groups are good sources for public

domain software. These packages are usually distributed in source code, and can be

ported to new OS releases. When commercial packages are selected, the purchase of

site licenses is a good plan. In any case, supplying the tools from a central site will

encourage use of these tools. Requirements for vulnerability testing may be ignored

if tools are expensive or difficult to locate.

22

Develop checklists where vulnerability testing tools are not applicable.

Some items noted in Section 2 cannot be assessed on all platforms. This may be

due to a lack of controls or the variety of hardware platforms. For example, an

organization might have a dozen types of PC-compatible computers. Many of these

systems will lack identification and authentication; those which support it may do so

in a non-standard manner.

Most organizational security guidelines address selection of passwords, and vulnera-

bility testing of multi-user systems should examine compliance to those guidelines.

However, PC passwords are an example where compliance cannot be assessed. In this

case, the vulnerability testing process would include a checklist that would remind

the user of the guidehnes. The user would simply check the appropriate boxes to

verify compliance. For PC passwords, the checklist might appear as follows:

Password is at least six characters in length, and is mixed case or in-

cludes a digit.

Password is not the name of a person or place.

Location is physically secured when authorized personnel are not present.

Increase depth of analysis for critical nodes.

Some systems are more important to the organization than others. The tests should

reflect this fact. For example, a UNIX-based network gateway is probably more

important than a UNIX-based system configured as a single user workstation. The

gateway should be subjected to more intensive vulnerability testing techniques. The
organization's security officer should identify these critical nodes and determine the

level of testing required.

5.2 Developing a Toolkit

The primary tasks involved in the development of an organization's vulnerability

testing toolkit are to ensure that the vulnerability tests are complete and the tests

themselves do not pose a risk to the system.

23

There are a number of concrete steps which may be taken to obtain adequate tests.

• Review the organization's systems and develop vulnerabihty testing require-

ments in accordance with system functionahty. This process is based upon the

generic rules presented in Section 2.

• Select appropriate methodologies for each class of personnel (e.g., system man-
agers and network security managers) that will use these tests. This process is

based on the information presented in Section 3.

• Develop specific test requirements for each type of system.

• Analyze the available software against the specific requirements (developed in

the previous step) for suitability.

• Address unfilled requirements by developing or procuring custom software. (De-

veloping these tests requires considerable knowledge about security but does not

require extraordinarily difficult software techniques.)

The following common-sense points should be considered in this process.

Vulnerability testing tools should be comprehensive.

Any single hole in system security can place an entire system at risk. Thorough

testing of identification and authentication controls without testing the content and

protection of system configuration files will only perpetuate the illusion of security.

Computer system vulnerability testing tools should address every applicable item

from the generic rules list presented in Section 2.

Active tools should only be used v^^here passive tools are inadequate.

Passive tools are preferable, because of the similarity of active testing tools and

automated attack tools. However, active tools may be required to verify compliance

in critical cases. Critical cases would include known vulnerabilities which have been

or are currently being exploited.

As an example, a network security administrator might use active tools to ensure

that critical security vulnerabilities have been closed. These vulnerabilities might

have been exploited by known network worms or hackers currently targeting an orga-

nization. In such a case, the network administrator may use an active tool to identify

systems that have not closed the security hole.

24

Note that any active network testing tool must be written to execute locally, "probing"

the remote systems. The risks of a "good" worm being trapped and modified by

hackers would outweigh any possible improvement in security. The worm could be

trapped, and simple modifications to the executable would quickly generate a very

dangerous attack mechanism.

Borrow from organizations with an established vulnerability testing

program.

If an organization has a small number of systems of a particular type, it should look to

organizations with a large computing base of this type for assistance. This assistance

may include development of vulnerability testing requirements, analysis of available

tools, or sharing agency-developed tools.

5.3 Distribution of Tools

There are two viewpoints on the use and distribution of vulnerability testing software.

The software can assist a conscientious system administrator in the maintenance of a

secure configuration. It can also be used as a tool to assist to a malicious individual

attempting to penetrate a system. Those who emphasize its positive potential tend

to support wide distribution of such software. Those who emphasize its negative

potential are often proponents of limited distribution.

The potential of vulnerability testing tools cannot be achieved unless they are in the

hands of the appropriate personnel. This section provides basic guidelines concerning

the distribution of vulnerability testing tools.

Distribute passive tools widely.

Passive tools for system administrators should receive wide distribution within the

organization. These tools are worthless to an organization if they are not in the hands

of the system administrators. Properly used, these tests guard against the type of

common mistakes which can lead to simple manual attacks or worm attacks. Many
similar tools, and in some cases these exact tools, are believed to be available in

the hacker community. Wide distribution of these tools is necessary to place system

administrators on an even footing with their adversaries.

However, active tools developed for network or organizational security administrators

should be tightly controlled. Whether in source or binary form, such tests represent

a serious threat to the organization. Distribution of active tools is an invitation for

automated attacks, especially in networked environments.

25

Source code distribution is usually preferable for passive tools.

Locally developed or public domain vulnerability testing tools can be distributed as

source code or in binary form. (Commercially available tools will usually be avail-

able in binary only.) The most appropriate form depends upon the organization's

computing systems and the personnel who administer the systems.

Source code distributions allow the system administrator to locally compile or inter-

pret the tests on a wide range of systems. This is the simplest way to address the

myriad of hardware and software combinations in open systems. Binary distributions

would require too much maintenance for most organizations.

However, source distribution has its drawbacks. Source distributions provide a nice,

readable description of the security vulnerabilities reviewed. Source code can poten-

tially be modified for use as an automated attack technique. Finally, the systems

administrators need to be able to modify and compile the software.

In an organization with homogeneous computing systems, tools can be distributed in

binary form. This may be preferable. If the users will be system administrators and

auditors with minimal experience, binary distribution may be required.

Secure the distribution process.

The security of the distribution process itself is another important consideration. The

distribution process should ensure both integrity and confidentiality of the delivered

tools. The distribution process may involve transfer of physical media or may be

performed electronically.

If the distribution process involves physical media, security begins with physical con-

trol. Registered mail (or similar) delivery can provide assurance that the media

reaches appropriate personnel. This is sufficient for some classified information; it is

probably good enough for many types of tools.

If this level of security is insufficient (e.g., active tools), encryption becomes the

primary method for securing the distribution process. Encryption can be used to

provide both integrity and confidentiality. It is critical that the key and software are

dehvered via different paths.

If electronic distribution is employed, the transfers should be performed from a single,

protected server. Several alternatives are available to secure this type of distribution.

The server may require identification and authentication (pre-authorized passwords)

of users for access. Encryption can protect end-to-end security. CRC techniques can

be used to verify integrity. These methods can be used in combination.

26

If passwords are to be used for authentication, distribution of passwords with a limited

life span to system administrators who request the information via e-mail would

provide a hmited audit trail. Telephone distribution of passwords (rather than e-

mail) would provide additional confidence in the authentication.

Protect the software after distribution.

Security measures should not end with the distribution process. Guidelines for safe

use should be provided with the software. Similarly, the possible ramifications of

unprotected tests should be explained. System administrators should be required

to protect the executable files (binary files or command files) and delete the source

programs for compiled code.

Address bug fixes.

Central distribution of security-relevant "bug fixes" is appropriate if the organization

has a homogeneous computing base. Bug fixes can be archived or distributed via

electronic mailing lists. Distribution of security patches should be protected in the

same manner as vulnerability testing tools.

Distribution of relevant "bug fixes" to appropriate systems can be very difficult in

a large organization with a mixed computing base. The relevance of the bug fix

depends on the system's current hardware and software configuration. If the agency

has access to a major network, simply provide information regarding system-specific

mailing lists where such patches are regularly announced. The administrators of the

systems would be responsible for obtaining the appropriate security patches.

5.4 Summary

The organization's security officer should:

• determine the level of testing required for the "typical" system and the frequency

with which it is required;

• determine who should have access to security access tools and the testing

methodologies they should employ;

• identify critical systems that will require more rigorous testing;

27

• ensure that adequate tools are available for the most common systems; and

• ensure that appropriate guidelines are in place where testing is unusable.

Possible sources for toolkits are public domain tools, local development, and pro-

curement of commercial tools. Toolkits should emphasize passive tools; they are

adequate for the great majority of testing scenarios. The distribution process should

be as secure as possible, but wide distribution is imperative. If active testing tools

are required, they must be tightly controlled. Finally, procedures for distribution of

security-relevant bug fixes must be developed.

The ultimate success or failure of a vulnerability testing program depends upon the

system managers, auditors, and resource managers who receive the tools. They must

use these tools to realize any benefit. Equally important, managers must act upon

the data these tools provide. If they do, the level of computer security achieved by

an organization can be increased greatly.

28

A References

[1] Brock, Jack L. Jr., Computer Security: Hackers Penetrate DOD Computer Sys-

tems, GAO/T-IMTEC-92-5.

[2] SpafFord, Eugene, The Internet Worm Program: An Analysis Technical Report

CSD-TR-823. Department of Computer Science, Purdue University, November, 1988.

[3] Green, James L. and Sisson, Patricia L., The "Father Christmas Worm," in the

12th National Computer Security Conference Proceedings, 1989.

[4] Longstaff, Thomas A. and Schultz, Eugene E., Beyond Preliminary Analysis of

the WANK and OILZ Worms: A Case Study of Malicious Code in the Proceedings

of the Third Workshop on Computer Security Incident Handling, 1991.

[5] StoU, Cliff, An Epidemiology of Viruses & Network Worms, in the 12th National

Computer Security Conference Proceedings, 1989.

[6] FIPS PUB 112 Password Usage, May 30, 1985.

[7] FIPS PUB 113 Computer Data Authentication, May 30, 1985.

[8] FIPS PUB 46 Data Encryption Standard, January 15, 1977.

29

i

B Primary Tools Reviewed

A number of tools were examined while performing research for this paper.® The
majority of these tools were designed for UNIX or VMS systemis, although tools

exist for personal computers and mainframes as well. This section provides a brief

description and references for the major tools or toolkits reviewed.

Note that newer versions have been released for most of these packages. Many other

tools have also been developed, but were not reviewed for this project. Information

about vulnerability testing software that is currently available for your system may
be obtained from your vendor, user groups, or various electronic mailing lists.

COPS 1.3

COPS, or the Computer Oracle Predictor System, is a collection of configuration

review tests, file protection tests, password tests, audit trail analyzers, and a CRC-
based checksum program for detection of change. COPS is composed primarily of

single vulnerability tests, but it also includes a rule-based system vulnerability ana-

lyzer. COPS is in the public domain and source can be obtained from a number of

ftp sites on the Internet or comp.sources.unix.

The original COPS paper, "The COPS Security Checker System" by Dan Farmer and

Eugene H. Spafford, can be found in the Proceedings of the Summer 1990 USENIX
Conference.

Clyde Digital Security Toolkif^

Clyde Digital's Security Toolkit is a commercial software security package for VAX
systems using VMS.^^ Security Toolkit is designed "to assess the security of VAX/VMS
computer systems." Security Toolkit is a collection of locally reported passive audit

tests. A variety of targets are audited, including:

• user access authorizations;

• capabilities and rights analysis;

• object access, controls and protections;

^Inclusion or omission of a particular tool does not imply endorsement or recommendation by

the National Institute of Standards and Technology. These examples are cited to credit developers

of these tools and to present examples of cictual vulnerability testing tools.

^°Clyde Digital is now part of RaxCo; the Security Toolkit and Security Baseline products have

been renamed appropriately.

^^VAX and VMS are registered trademarks of Digital Equipment Corporation.

31

• network security and remote access authorization (proxy log-in; protection of

network objects; security of network executor);

• VMS audit and sysgen reporting; and

• prior period comparisons.

Clyde Digital's Security Baseline System is available as an option for the Security

Toolkit security package for VAX/VMS. Security Baseline is designed to "locate and

report discrepancies between current system characteristics and site- defined security

standards."

The system consists of three components: Templates; Tests; and Baselines. The
Template defines the correct attributes for a set of system entities. The types of

entities are pre-defined. Tests are used for the comparison of system-specific entities

against a template. Baselines are logical groupings of tests which may be executed

interactively or in batch mode.

UNIX-CAATS

NIST and the Department of Energy developed the UNIX-CAATS software package

for use by auditors from the Department of Energy Inspector General's Office. This

package included a password checker by Dr. Matt Bishop (formerly of NASA/Ames),
and a variety of passive, single vulnerability tests. The single vulnerability tests

included system and user configuration review tests, network configuration tests,

and access control review tests. It also included a file permission verifier similar

to SPI/UNIX's File Permission Inspector.

The NIST/DoE toolkit lacked CRC testing and complex file protection tests (which

would read files and determine other programs and files which would be executed).

UNIX-CAATS is no longer supported; its functionality has been superseded by COPS.

SPAN Toolkit

The SPAN Toolkit includes NASA developed software for VMS vulnerability testing.

This toolkit is available to all VMS systems connected to the NASA Science Internet

(NSI). The primary security test components include:

• captive account auditing;

• file-based checksum calculation and comparison;

• directory-based differencing for on-line backup disks;

• dictionary-based password checking;

32

• a security alarm extractor;

• a terminal timeout and resource control monitor;

• a utility for identifying high-risk accounts; and a

• pronounceable password generator.

The system lacks tools for examining the contents of system configuration files. It

may not be obvious which combinations of privileges present an unacceptable risk.

The system does not examine capabilities and rights, or object access authorization.

When misused, these VMS features may result in unexpected access privileges.

The Security Profile Inspector for UNIX

The Security Profile Inspector for UNIX (SPI/UNIX) is a software package developed

by Lawrence Livermore National Laboratory for vulnerability testing of VMS systems.

The package is available for distribution within the Department of Energy. (Other

agencies may also be able to obtain the package. Contact the Computer Incident

Advisory Capability, or CIAC, for further information.) SPI/UNIX is a set of three

passive tests which perform the following functions:

• test for easily guessed passwords;

• generate and verify checksums of critical files; and

• save and verify current access permissions associated with critical files;

SPI/UNIX does not review protections of programs called within critical shell scripts

or review the content of configuration files.

The Security Profile Inspector for VMS

The Security Profile Inspector for VMS (SPI/VMS) is a software package developed

by Lawrence Livermore National Laboratory for vulnerability testing of VMS systems.

The package is available for distribution within DoE, and is similar in nature to the

SPI/UNIX package. (Other government agencies may be able to obtain the package

as well.)

The SPI/VMS package consists of four programs which:

• check for trivial passwords, such as user names, dictionary words, and null

entries;

33

• store, retrieve and verify checksums and time stamps associated with critical

system files;

• identify all users who have access to a specified file or files; and

• check a specified list of files for a particular identifier, or for identifiers in general.

Like SPI/UNIX, the package does not concern itself with the content of files. Errors

in network or system configuration are not explicitly identified. The system only

identifies modifications in content or access parameters of critical files.

34

I

Index

active testing, 11

active tools, 24

distribution of, 25

artificial intelligence, 19

bug fixes

verify installation of, 16

central reporting, 13

command files

content of, 16

protection of, 16

configuration review, 8, 9, 15

CRC codes, 17, 26

Data Authentication Algorithm, 17

Data Encryption Standard, 17

distributed systems testing, 13

encryption, 17, 26

local reporting, 13

local system testing, 13

network testing, 13

passive testing, 11

passive tools, 24

distribution of, 25

passwords, 26

policy

testing procedures, 21

public-key encryption, 18

single vulnerabiUty tests, 12

source code distribution, 26

system bugs

active testing of, 17

bug fixes, 27

passive testing of, 17

system vulnerability tests, 12

Trojan horses, 6, 8

4. TITLE AND SUBTITLE

Automated Tools for Testing Computer System Vulnerability

5. AUTHOR(S)

W. Timothy Polk

6. PERFORMING ORQANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MD 20898

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED
Final

NIST-114A

(REV. 3-90)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1. PUBUCATION OR REPORT NUMBER

NIST/SP-800/6
2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBUCATION DATE
December 1992

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE. ZIP)

Same as item #6

10. SUPPLEMENTARY NOTES

11. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION.
UTERATURE SURVEY, MENTION IT HERE.)

IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOGRAPHY OR

Computer security "incidents" occur with alarming frequency. The incidents range

from direct attacks by both hackers and insiders to automated attacks such as network

worms. Weak system controls are frequently cited as the cause, but many of these

incidents are the result of improper use of existing control mechanisms. For example,

improper access control specifications for key system files could open the entire system

to unauthorized access. Moreover, many computer systems are dehvered with default

settings that, if left unchanged, leave the system exposed.

This document discusses automated tools for testing computer system vulnerability.

By cmalyzing factors afiFecting the security of a computer system, a system manager

can identify common vulnerabilities stemming from administrative errors. Using au-

tomated tools, this process may examine the content and protections of hundreds

of files on a multi-user system and identify subtle vulnerabilities. By acting on this

information, system administrators can significantly reduce their systems' security

exposure.

Automated vulnerability testing tools are available for a wide variety of systems.

Some tools are commercially available; others are available from other system ad-

ministrators. Additional tools may be developed to address specific concerns for an

organization's computer systems. This document examines basic requirements for vul-

nerabiUty testing tools cind describes the different functional classes of tools. Finally,

the docimient offers general recommendations about the selection and distribution of

such tools.

1^ KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITAUZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

change detection; computer security; configuration review; identification of
vulnerabilities; secure audit; Trojan horse detection; vulnerability testing

13. AVAILABIUTY

Y

X

UNUNITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS). SPRINGFIELD,VA 22161.

14. NUMBER OF PRINTED PAGES

40

15. PRICE

ELECTRONIC FORM

* U.S. G.P.0.:1992-341-832:6007Z

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SECURITY

Superintendent of Documents
Government Printing Office

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Institute of Standards and Technology Special Publication 800-.

Name

Company
,

Address

City State Zip Code

(Notification key N-503)

lylJ.kjJL Technical Publications

Periodical

Journal of Research of the National Institute of Standards and Technology— Reports NIST
research and development in those disciplines of the physical and engineering sciences in which
the Institute is active. These include physics, chemistry, engineering, mathematics, and computer
sciences. Papers cover a broad range of subjects, with major emphasis on measurement
methodology and the basic technology underlying standardization. Also included from time to time

are survey articles on topics closely related to the Institute's technical and scientific programs.
Issued six times a year.

Nonperiodicals

Monographs — Major contributions to the technical literature on various subjects related to the
Institute's scientific and technical activities.

Handbooks— Recommended codes of engineering and industrial practice (including safeW codes)
developed in cooperation with interested industries, professional organizations, and regulatory

bodies.

Special Publications — Include proceedings of conferences sponsored by NIST, NIST annual
reports, and other special publications appropriate to this grouping such as wall charts, pocket
cards, and bibliographies.

Applied Mathematics Series — Mathematical tables, manuals, and studies of special interest to

physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others

engaged in scientific and technical work.

National Standard Reference Data Series — Provides quantitative data on the physical and chemical
properties of materials, compiled from the world's literature and critically evaluated. Developed
under a worldwide program coordinated by NIST under the authority of the National Standard
Data Act (Public Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data
(JPCRD) is published bimonthly for NIST by the American Chemical Society (ACS) and the

American Institute of Physics (AIP). Subscriptions, reprints, and supplements are available from
ACS, 1155 Sixteenth St., NW., Washington, DC 20056.

Building Science Series — Disseminates technical information developed at the Institute on building

materials, components, systems, and whole structures. The series presents research results, test

methods, and performance criteria related to the structural and environmental functions and the

durability and safety characteristics of building elements and systems.

Technical Notes — Studies or reports which are complete in themselves but restrictive in their

treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive

in treatment of the subject area. Often serve as a vehicle for final reports of work performed at

NIST under the sponsorship of other government agencies.

Voluntary Product Standards — Developed under procedures published by the Department of
Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all concerned interests with a basis

for common understanding of the characteristics of the products. NIST administers this program
in support of the efforts of private-sector standardizing organizations.

Consumer Information Series — Practical information, based on NIST research and experience,
covering areas of interest to the consumer. Easily understandable language and illustrations

provide useful background knowledge for shopping in today's technological marketplace.
Order the above NIST publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NIST publications— FIPS and NISTIRs—from the National Technical Information
Service, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB) —Publications in this series

collectively constitute the Federal Information Processing Standards Register. The Register serves
as the official source of information in the Federal Government regarding standards issued by
NIST pursuant to the Federal Property and Administrative Services Act of 1949 as amended.
Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315,
dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NIST Interagency Reports (NISTIR) —A special series of interim or final reports on work
performed by NIST for outside sponsors (ooth government and non-government). In general,
initial distribution is handled by the sponsor; public distribution is by the National Technical
Information Service, Springfield, VA 22161, in paper copy or microfiche form.

a;
uU in

E S

11

. o

ON

00o

Q

o .

C 3^ X)

^ s -a

oo
ro

D

.S D-

CQ £

O Q-

	SP800-6
	nistspecialpublication800-6

