
Date updated: September 13, 2021 

Withdrawn NIST Technical Series Publication 
 
 

Warning Notice 
 

The attached publication has been withdrawn (archived), and is provided solely for historical purposes. 
It may have been superseded by another publication (indicated below). 
 

Withdrawn Publication 

Series/Number NIST Special Publication 800-15 
Title MISPC Minimum Interoperability Specification for PKI Components, Version 1 
Publication Date(s) January 1998 
Withdrawal Date September 13, 2021 
Withdrawal Note SP 800-15 is withdrawn in its entirety. 

Superseding Publication(s) (if applicable) 

The attached publication has been superseded by the following publication(s): 

Series/Number  
Title  
Author(s)  
Publication Date(s)  
URL/DOI  

Additional Information (if applicable) 

Contact Computer Security Division (Information Technology Laboratory) 
Latest revision of the 
attached publication 

N/A 

Related Information https://csrc.nist.gov/projects/crypto-publication-review-project 
https://csrc.nist.gov/publications/detail/sp/800-15/archive/1998-01-01  

Withdrawal 
Announcement Link 

https://csrc.nist.gov/news/2021/withdrawal-of-nist-special-pubs-800-15-25-
and-32  

 

https://csrc.nist.gov/projects/crypto-publication-review-project
https://csrc.nist.gov/publications/detail/sp/800-15/archive/1998-01-01
https://csrc.nist.gov/news/2021/withdrawal-of-nist-special-pubs-800-15-25-and-32
https://csrc.nist.gov/news/2021/withdrawal-of-nist-special-pubs-800-15-25-and-32


MIST
NATL INST. OF STAND & TECH R.I.C.

I III 111 1 1 ill II III II III II
^

'

PUBIJCATIONS '

AlllDS 3S3MTQ J
NIST Special Publication 800-15

U.S. DEPARTMENT OF
COMMERCE
Technology Administration

National Institute of Standards

and Technology

Minimum Interoperability

Specification for PKI
Components (MISPC),
Version 1

William Burr, Donna Etodson, Noel Nazario, and W. Timothy Polk

COMPUTER SECURITY

Qc NiSF
100

U57

0.800-15

998



rhe National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in

the development of technology . . . needed to improve product quality, to modernize manufacturing processes,

to ensure product reliability . . . and to facilitate rapid commercialization ... of products based on new scientific

discoveries."

NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's

competitiveness; advance science and engineering; and improve public health, safety, and the environment. One

of the agency's basic functions is to develop, maintain, and retain custody of the national standards of

measurement, and provide the means and methods for comparing standards used in science, engineering,

manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal

Government.

As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and

applied research in the physical sciences and engineering, and develops measurement techniques, test

methods, standards, and related services. The Institute does generic and precompetitive work on new and

advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303.

Major technical operating units and their principal activities are listed below. For more information contact the

Publications and Program Inquiries Desk, 301-975-3058.

Office of the Director
• National Quality Program

• International and Academic Affairs

Technology Services
• Standards Services

• Technology Partnerships

• Measurement Services

• Technology Innovation

• Information Services

Advanced Technology Program
• Economic Assessment

• Information Technology and Applications

• Chemical and Biomedical Technology

• Materials and Manufacturing Technology

• Electronics and Photonics Technology

Manufacturing Extension Partnership
Program
• Regional Programs

• National Programs

• Program Development

Electronics and Electrical Engineering
Laboratory
• Microelectronics

• Law Enforcement Standards

• Electricity

• Semiconductor Electronics

• Electromagnetic Fields'

• Electromagnetic Technology'

• Optoelectronics'

Chemical Science and Technology
Laboratory
• Biotechnology

• Physical and Chemical Properties^

• Analytical Chemistry

• Process Measurements

• Surface and Microanalysis Science

Physics Laboratory
• Electron and Optical Physics

• Atomic Physics

• Optical Technology

• Ionizing Radiation

• Time and Frequency'

• Quantum Physics'

Materials Science and Engineering
Laboratory
• Intelligent Processing of Materials

• Ceramics

• Materials Reliability'

• Polymers

• Metallurgy

• NIST Center for Neutron Research

Manufacturing Engineering
Laboratory
• Precision Engineering

• Automated Production Technology

• Intelligent Systems

• Fabrication Technology

• Manufacturing Systems Integration

Building and Fire Research
Laboratory
• Structures

• Building Materials

• Building Environment

• Fire Safety Engineering

• Fire Science

Information Technology Laboratory
• Mathematical and Computational Sciences^

• Advanced Network Technologies

• Computer Security

• Information Access and User Interfaces

• High Performance Systems and Services

• Distributed Computing and Information Services

• Software Diagnostics and Conformance Testing

'At Boulder, CO 80303.

^Some elements at Boulder, CO.



NisT Special Publication 800-15 Minimum Interoperability

Specification for PKI

Components (MISPC),

Version 1

William Burr, Donna Dodson, Noel Nazario, and W. Timothy Polk

COMPUTER SECURITY

Information Tfechnology Laboratory

National Institute of Standards

and Technology

Gaithersburg, MD 20899-0001

January 1998

U.S. Department of Commerce

William M. Daley, Secretary

Technology Administration

Gary R. Bachula, Acting Under Secretary for Technology

National Institute of Standards and Technology

Raymond G. Kammer, Director



Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology

(NIST) pronnotes the U.S. economy and public welfare by providing technical leadership for the Nation's

measurement and standards infrastructure for information technology. ITL develops tests, test methods,

reference data, proof of concept implementations and technical analyses to advance the development and

productive use of information technology. ITL's responsibilities include the development of technical, phys-

ical, administrative, and management standards and guidelines for the cost-effective security and privacy

of sensitive unclassified information in federal computer systems. This Special Publication 800 series

reports on ITL's research, guidance, and outreach efforts in computer security, and its collaborative

activities with industry, government, and academic organizations.

National Institute of Standards and Technology Special Publication 800-15
Natl. Inst. Stand. Technol. Spec. Publ. 800-15, 91 pages (Jan. 1998)

CODEN: NSPUE2

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1998

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402



Table of Contents

ACKNOWLEDGEMENTS jy

1. INTRODUCTION j.j

1.1 Purpose
j.l

1.2 Scope
^

"
j.j

1.3 Approach 1.3

1.4 Assumptions I.3

1.5 Definitions, Terms, and Acronyms 1-4

2. INFRASTRUCTURE COMPONENT SPECIFICATIONS 2-1

2.1 Certification Authority (CA) 2-1

2.7.7 Interoperability-Relevant CA Functional Specifications 2-1

2.1.2 Electronic Transaction Set. 2-3

2.2 Organizational Registration Authority (ORA) 2-5

2.27 Interoperability-Relevant ORA Functional Specifications 2-6

2.2.2 Transaction Set 2-6

2.3 Certificate Holder Specifications 2-7

2.3.1 Interoperability-Relevant PKI Certificate Holders Functional Specifications 2-7

2.3.2 Certificate Holders Transaction Set 2-8

2.4 Client Specifications 2-9

2.'^.7 Interoperability-Relevant PKI Client Functional Specifications 2-9

2.4.2 PKI Client Transaction Set 2-70

3. DATA FORMATS 3-1

3.1 Certificate Format 3-1

i.7.7 Certificate Fields 3-1

3.1.2 Cryptographic Algorithms 3-4

3.1.3 Certificate Extensions 3-10

3.2 Certificate Revocation List (CRL) 3-17

3.2.7 CRL Fields 3-17

3.2.2 CRL Extensions 3-18

3.2.3 CRL Entry Extensions i-27

3.3 Certification Path Validation 3-23

3.4 Transaction Message Formats 3-24

3.4.1 Overall PKIMessage Components 3-24

3.4.2 Common Data Structures 3-26

3.4.3 Operation-Specific Data Structures 3-29

3.5 PKI Transactions 3-32

3.5.1 ORA-Generated Registration Requests 3-32

3.5.2 Certificate Renewal Request 3-35

3.5.3 Self-Registration Request 3-38

3.5.4 PKCS #10 Self-Registration Request 3-41

3.5.5 Request Revocation 3-43

3.5.6 Request Certificatefrom a Repository 3-46

3.5. 7 Request CRLfrom a Repository 3-46

4. REFERENCES 4-1

APPENDIX A - X.509 V3 CERTIFICATE ASN.l A-1

APPENDIX B - CERTIFICATE AND CRL EXTENSIONS ASN.l B-1

APPENDIX C - ASN.l MODULE FOR TRANSACTIONS C-1

iii



Acknowledgements

This document was produced by NIST in cooperation with ten industry partners through

Cooperative Research and Development Agreements (CRADAs.) The participating companies

were:

• AT&T;
• BBN;
• Certicom;

• Cyhnk;

• DynCorp;

• Northern Telecom;

• IRE;

• Motorola;

• Spyrus, Inc.; and

• Verisign, Inc.

The authors wish to acknowledge the important contributions of our CRADA partners. Their

insight in both technical and business issues was invaluable to this project. Without their

assistance, this document would not exist.

The authors also wish to acknowledge the contribution of Nelson Hastings, who performed a

thorough and detailed review of this specification.

iv



Minimum Interoperability Specification for PKI Components

1. Introduction

1.1 Purpose

The Minimum Interoperability Specification for PKI Components (MISPC) provides a basis for

interoperation between public key infrastructure (PKI) components from different vendors. This

specification will be available to companies interested in offering interoperable PKI components,

to Federal agencies developing procurement specifications, and to other interested parties. It will

be the basis for a NIST reference implementation and an initial root CA for the Federal PKI. A
test suite for conformance to this specification is also planned.

1.2 Scope

This specification supports interoperability for a large scale PKI that issues, revokes and manages

digital signature public key certificates, to allow the use of those signatures to replace

handwritten signatures in government services, commerce, and legal proceedings, and to allow

distant parties, who have no previous relationship, to reliably authenticate each other and conduct

business. Such a PKI, and the certificates it requires, may be excessive for some applications, and

other more streamlined certificates and protocols may be more appropriate for more specialized

and restricted applications.

It is recognized that the PKI will simultaneously support certificates for confidentiality key

management, however that is outside the scope of this specification. A sound digital signature

PKI should provide the basic foundation needed for issuing any kind of public key certificate,

including key management certificates, and it is anticipated that confidentiality key management

will be addressed in a future revision.

The MISPC addresses:

• public key certificate generation, renewal, and revocation;

• signature generation and verification; and,

• certificate and certification path validation.

The specification consists primarily of a profile of certificate and CRL extensions and a set of

transactions. The transactions include: certification requests, certificate renewal, certificate

revocation, and retrieval of certificates and CRLs from repositories.

The MISPC focuses primarily on the aspects ofPKI interoperation most apparent to end users,

that is how to request and be issued a certificate, how to sign documents, how to retrieve the

certificates of others, and how to validate signatures. Some aspects of the "internal" operation of

a PKI, as outlined below, have not reached sufficent stability at this point, and are therefore not

specified.

In this specification a PKI is broken into five components:

• Certification Authorities (CAs) that issue and revoke certificates;

1-1



• Organizational Registration Authorities (ORAs) that vouch for the binding between public

keys and certificate holder identities and other attributes;

• Certificate holders that are issued certificates and can sign digital documents;

• Clients that validate digital signatures and their certification paths from a known public key
of a trusted CA;

• Repositories that store and make available certificates and Certificate Revocation Lists

(CRLs).

Many entities will include certificate holder and client functionality. CAs and ORAs will include

both certificate holder and client functionality. End-entity certificate holders will generally also

have client functionality. There may be some clients, however, that are not also certificate

holders.

Repositories are not necessarily certificate holders and may not include client functionality. This

interoperability specification addresses only one aspect of repositories, the protocol used by

clients to request certificates and CRLs from the repository. This is because the precise concept,

role and business model of repositories is unsettled. The X.509 certificate standard [IS094-8]

itself assumes the existence of an X.500 directory, to satisfy repository requirements, however

X.500 directories, while available for some time, have not been, and do not appear to be going to

be widely used.

The MISPC specifies the Lightweight Directory Access Protocol (LDAP) version 2 as the vehicle

for client access of repositories, primarily because it appears to be the most generally accepted

and broadly implemented alternative. This choice does not address, for example, standardized

protocols for CAs to use to update repositories, nor does it address protocols for repositories to

automatically shadow one another, both of which may be desirable. The former can be addressed

on a case by case base between CAs and their repositories, and the latter may not be necessary.

In the conventional approach to certificate status confirmation (which the MISPC follows),

repositories are not trusted entities, rather it is the CA's signature on a CRL that validates the

revocation status of certificates. On-line mechanisms for real-time certificate status confirmation

would require that repositories themselves be trusted entities and that they authenticate

themselves to clients. Standardized protocols for such certificate status confirmation are not yet

available. Therefore such protocols are outside the scope of this specification, but, since real-

time certificate status confirmation may be needed for some applications, this subject may be

addressed in a later revision.

The MISPC does not include a protocol for repositories to authenticate users, which would be

needed to implement access by access billing for repository use. Although that may become an

important business model for repositories, there does not currently appear to be enough

agreement on such a business model and the supporting protocol to make this subject ripe for

inclusion in a minimum interoperability specification. This subject may also be addressed in a

later revision.

1-2



In some cases, out-of-band exchanges must be performed as part of the transactions defined by
this specification. The format and contents of such out-of-band transactions are generally outside

of the scope of this specification.'

1.3 Approach

The MISPC is based on X.509 version 3 certificates and version 2 CRTs. To the extent possible,

this document adopts data formats and transaction sets defined in existing and evolving standards

such as ITU-T X.509 [IS094-8], ANSI [X9.55], [X9.57], and [X9.62] and the lETF's PKIX
working documents [PKIXl], [PKIX3]. In drafting this document, whenever the stability of an

evolving standard used in this document has come to question, NIST has made an educated guess

regarding the direction to be followed. These issues were reviewed by industry collaborators

prior to the release of this specification and represented vigorously within the appropriate

standards groups to minimize departure fi-om the stable version of the standards.

1.4 Assumptions

The MISPC assumes that CAs, ORAs, and certificate holders are physically separated. Where
these entities are physically collocated, support for specified interfaces is not required. In

particular, a PKI component that includes both ORA and CA fiinctionality is not required to

support the MISPC message formats for transactions between these components. However, if

that system includes a CA that supports remote ORAs in addition to the local ORA function, it

must support the MISPC transactions for the remote ORAs.

The MISPC considers CAs and ORAs as functional entities in a PKI. The internal design of

these entities is outside the scope of this specification.

The MISPC identifies three important digital signature algorithms for which suitable approved or

mature draft standards exist. New algorithms could easily be incorporated as they are introduced

in standards.

The MISPC supports both hierarchical and networked trust models [CONOPS]. In hierarchical

models, trust is delegated by a CA when it certifies a subordinate CA. Trust delegation starts at a

root CA that is trusted by every node in the infi"astructure. In network models, trust is

established between any two CAs in peer relationships (cross-certification), thus allowing the

possibility of multiple trust paths between any two CAs. The MISPC assumes that X.509 v3

extensions, such as basicConstraints, nameConstraints, keyUsage, and certificatePolicy, will be

included in certificates to explicitly manage trust relationships.

The MISPC assumes that certificates and certificate revocation lists (CRLs) will be available in a

repository for retrieval without authentication. MISPC clients will perform path validation by

obtaining the necessary certificates and CRLs fi-om the appropriate repositories. The repository

may be an X.500 directory or some other type accessible by using Universal Resource Identifier

(URI) notation. Repositories are expected to support the Lightweight Directory Access Protocol

(LDAP) [RFC 1777], therefore compliant products are required to support this protocol.

' The format and content of the electronic data provided to an ORA when requesting a certificate "in-person" is the

exception to this rule. See section 3.5.1, ORA-Generated Registration Requests

1-3



These repositories need not be linked together and other protocols may be used to retrieve

certificates and CRLs. The specification requires explicit identification of the certificate

repositories used and retrieval mechanisms for the issuer's certificate(s) and CRLs within the

certificate.^

Certificate Revocation Lists (CRLs) are expected to be a widely implemented mechanism for

revoking and validating the status of unexpired certificates. While the use of CRLs for this

purpose may not be universal, and some CAs may choose to provide an on-line mechanism for

validating certificate status in real time, CRL generation will be necessary for interoperability

with users of other CAs. In addition to current checks of certificate validity, CRLs provide an

important mechanism for documenting the historical revocation status of certificates. That is, a

dated signature may be presumed to be valid if the signature date were within the validity period

of the certificate, and the current CRL of the issuing CA at that date did not show the certificate

to be revoked.^

Therefore, the MISPC assumes that CA products will be able to generate CRLs, and that clients

will be able to use CRLs when validating certificates.

1.5 Definitions, Terms, and Acronyms

Abstract Syntax Notation 1 (ASN.l): an abstract notation for structuring complex data objects.

accredit: recognize an entity or person to perform a specific action; CAs accredit ORAs to act as

their intermediary (see organizational registration authority below).

certificate (orpublic key certificate): A digitally signed data structure defined in the X.509

standard [IS094-8] that binds the identity of a certificate holder (or subject) to a public key.

certificate holder: An entity that is named as the subject of a valid certificate.

certificate policy: A named set of rules that indicates the applicability of a certificate to a

particular community and/or class of application with common security requirements. For

example, a particular certificate policy might indicate applicability of a type of certificate to the

authentication of electronic data interchange transactions for the trading of goods within a given

price range.

certificate user: An entity that uses certificates to know, with certainty, the public key of another

entity.

certificate-using system: An implementation of those functions defined in the X.509 standard

[IS094-8] that are used by a certificate user. This term is defined in the Draft Amendments to

X.509 [DAM] and equivalent to the term "client" used in this interoperability specification.

Certification Authority (CA): A trusted entity that issues certificates to end entities and other

CAs. CAs issue CRLs periodically, and post certificates and CRLs to a repository.

^ As a consequence of this assumption, the distmguished name of the subject is not sufficient to retrieve a certificate.

MISPC clients must obtain the signer's certificate, or distinguished name of the subject and the identity of the

repository, from the signer.

^ This assumes you can accept the date attached to the signature on the basis of a trusted archive or notarization,

which are outside the scope of this specification.

1-4



certification path: An ordered sequence of certificates, leading from a certificate whose public

key is known by a client, to a certificate whose public key is to be validated by the client.

Certification Practice Statement: A statement of the practices which a Certification Authority

employs in issuing certificates.

CRL distribution point: A directory entry or other distribution source for CRLs; a CRL
distributed through a CRL distribution point may contain revocation entries for only a subset of
the full set of certificates issued by one CA or may contain revocation entries for multiple CAs.

certificate revocation list (CRL): a list of revoked but unexpired certificates issued by a CA.

certijy: the act of issuing a certificate.

client (or PKI client): A function that uses the PKI to obtain certificates and validate certificates

and signatures. Client functions are present in CAs and end entities. Client functions may also be
present in entities that are not certificate holders. That is, a system or user that verifies signatures

and validation paths is a client, even if it does not hold a certificate itself See section 2.4.

delta-CRL: A partial CRL indicating only changes since a prior CRL issue.

DES: The symmetric encryption algorithm defined by the Data Encryption Standard (FIPS 46-2).

DESMAC: An algorithm for generating a message authentication code (MAC) using the

symmetric encryption algorithm DES.

Distinguished Encoding Rules (DER): rules for encoding ASN.l objects which give a consistent

encoding for each ASN. 1 value. Implementations conforming to this specification shall encode

ASN.l objects using the DER.

digital signature: a data unit that allows a recipient of a message to verify the identity of the

signatory and integrity of the message.

Digital Signature Algorithm (DSA): the digital signature algorithm specified in FIPS PUB 186.

directory service (DS): a distributed database service capable of storing information, such as

certificates and CRLs, in various nodes or servers distributed across a network.

end entity: A certificate subject which uses its private key for purposes other than signing

certificates.

Elliptic Curve Digital Signature Algorithm (ECDSA): a digital signature algorithm that is an

analog ofDSA using elliptic curve mathematics and specified in ANSI draft standard X9.62

[X9.62].

hash: a function which maps strings of bits to fixed-length strings of bits, satisfying the

following two properties: it is computationally infeasible to find for a given output an input

which maps to this output; and it is computationally infeasible to find for a given input a second

input which maps to the same output.

hash code: The string of bits which is the output of a hash function

LDAP: The Lightweight Directory Access Protocol, or LDAP, is a directory access protocol. In

this document, LDAP refers to the protocol defined by RFC 1 777, which is also known as LDAP
V2. LDAP V2 describes unauthenticated retrieval mechanisms.

1-5



message authentication code: a data authenticator generated from the message, usually through

cryptographic techniques. In general, a cryptographic key is also required as an input.

message digest: the fixed size result of hashing a message.

Organizational Registration Authority (ORA): an entity that acts an intermediary between the CA
and a prospective certificate subject; the CA trusts the ORA to verify the subject's identity and
that the subject possesses the private key corresponding to the public key to be bound to that

identity in a certificate. Note that equivalent functions are referred to as Local Registration

Authority (LRAs) or Registration Authorities (RAs) in some documents.

out ofband: Some transactions between PKI components will be performed through physical

procedures rather than implemented electronically. Such transactions are described as out-of-

band transactions.

policy mapping: Recognizing that, when a CA in one domain certifies a CA in another domain, a

particular certificate policy in the second domain may be considered by the authority of the first

domain to be equivalent (but not necessarily identical in all respects) to a particular certificate

policy in the first domain.

repository: a. database service capable of storing information, such as certificates and CRLs,

allowing unauthenticated information retrieval. Repositories include, but are not limited to,

directory services.

RSA: For the purposes of this specification, RSA is a public-key signature algorithm specified by

PKCS #1 [PKCS#1]. As a reversible public-key algorithm, it may also be used for encryption.

URI: A uniform resource identifier, or URI, is a short string containing a name or address which

refers to an object in the "web."

URL: A uniform resource locator, or URL, is a short string containing an address which refers to

an object in the "web." URLs are a subset of URIs.

Well Known X.500 Directory: In some environments, an X.500 service may be widely available

and used throughout an organization. If such a directory service is used to distribute certificates

and CRLs issued by that organization, such information need not be included in the certificate.

1-6



2. Infrastructure Component Specifications

This section specifies a minimal set of functions and transactions required for the interoperation

of PKI components. It includes specifications for CAs, ORAs, and PKI Clients.

2.1 Certification Authority (CA)

CAs generate, revoke, publish, and archive certificates. They rely upon a repository to make

certificates and CRLs available to all certificate users.

To enable CAs to join existing hierarchically managed infrastructures, they shall be able to

request certificates fi"om a parent CA. CAs shall also be able to generate cross certificates, to

support cross-certification with other CAs as allowed by their policies.

CAs accredit ORAs, which vouch for the identity and other attributes of users requesting

certificates. This accreditation is an off-line decision to accept ORA-generated certification

requests fi-om that ORA. CAs identify certificate holders using X.500 distinguished names.

Distinguished names uniquely identify certificate holders.

CAs themselves include both a certificate holder function to request, revoke and renew

certificates issued by other CAs (see sec. 2.3) and a client function to retrieve certificates and

CRLs, and validate certification paths (see sec. 2.4).

2.1.1 Interoperability-Relevant CA Functional Specifications

CAs perform the following functions:

• Issue and deliver subordinate and cross certificates;

• Accept revocation requests from certificate holders and ORAs for certificates it issued;

• Post certificates and CRLs to the repository; and

• Request CA certificates.

Issuing Certificates

CAs support three types of certification requests: self-registration, ORA-generated registration,

and renewal!' CAs authenticate the identity of the certificate's subject differently for each type of

request. The prospective certificate holder supplies an authenticator in a self-registration request;

the authenticator is derived from a secret obtained from an ORA. ORAs generate and sign ORA-
generated registration requests, vouching for the identity of the subject, when the subject

physically attends the ORA. The subjects of currently valid certificates can vouch for their own
identity in a renewal request by signing with their current private key.

In an ORA-generated registration request, the ORA vouches for the prospective certificate

holder's identity and the binding to the public key. When CAs receive certification requests from

accredited ORAs, they shall process the requests and, if accepted, generate new certificates, post

the certificates to a repository^ and send them to the requesting ORAs. CAs may also send the

" CAs may be configurable to reject one or more classes of certification requests if the certificate policy prohibits

such transactions.

^ Conforming CAs shall be able to post the certificates they issue to a repository. However, it is not necessary to post

end-entity certificates, since the certificate holder may provide the certificate with the signed document.

2-1



new certificate to the certificate holders. CAs shall reject ORA-generated certification requests

that do not come from a recognized ORA, that have invalid signatures, or that contain unmatched

information. If a CA rejects an ORA-generated certification request, it shall report the failure to

the ORA stating the reason.

In a self-registration request, the ORA provides a secret message to the prospective certificate

holder. The entity generates its own key pair, forms a certification request, signs it with the

corresponding private key material, and includes authentication information based on the secret

provided by the ORA.^ The CA receives the request, verifies the requester's identity through the

authentication information and verifies the entity holds the corresponding private key material.

If accepted, the CA will generate a new certificate, post the certificate to the repository, and send

it to the certificate holder. The CA may reject self-registration requests if the authentication

information does not verify, the signature is invalid, or fields contain unmatched information. If a

CA rejects a self-registration request, it shall report the failure to the requester stating the reason.

In a renewal request, the established identity of the requester is perpetuated with the request.

Certificate renewals are initiated by the certificate holder and sent directly to the CA. CAs
process the renewals and, if correct, send the new certificates to the certificate holders and post

the new certificates to the repository. CAs may reject certificate renewal requests with invalid

signatures, requests from entities not currently certified, and renewal requests that are not

allowed by the CA's certification practice statement or the certificate policy. If a CA rejects a

certificate renewal request, it shall report the failure to the requesting entity stating the reason.

Cross Certification

CAs may issue certificates to other CAs with appropriate constraints. The decision to cross-

certify is made out-of-band and involves examination of Certification Practice Statements and

certificate policies. Each CA determines the appropriate constraints for path validation by their

users. After obtaining the other CA's public key, the CA generates the certificate and posts it to

the repository.

Optionally, cross-certifying CAs may exchange certificates, construct certificate-pairs, and post

them to the repository.^

Revoking Certificates

CAs shall be capable of generating and issuing certificate revocation lists (CRTs). CAs shall be

able to issue CRLs that contain all revoked certificates that they issued and have not expired.

Optionally, CAs may also issue indirect and delta CRLs. The types of CRLs issued will be

determined by the CA's certification practice statement.

In those cases where a CA issues a single CRL for all revoked certificates it has issued:

• When a new CRL is generated, all revoked unexpired certificates from the previous CRL
shall be carried over to the new CRL, and any certificates with approved pending certificate

^ Where the CA and ORA are not co-located, this also requires an exchange of secrets between the CA and ORA.
Details of this exchange are outside the scope of this specification.
'' A CA may issue a certificate to another CA even if that latter refuses to issue a certificate to the former. In this

case, the CA could (optionally) construct a cross certificate pair containing only the reverseCertificate.

2-2



revocation requests shall be added to the new CRL. Certificates on the previous CRL with a

reason code of certificateHold may be carried over to the new CRL, revoked on the new CRL,
or omitted from the new CRL. Omission from the new CRL indicates the CA will vouch for

the binding between the subject and public key. A certificate with an approved pending

certificate revocation request shall be included in the next CRL even if it expires before the

CRL is issued.

• In this case, CAs shall only revoke certificates they issued.* The signer of the revocation

request must either be the certificate holder or an authorized entity (such as an accredited

ORA) acting on behalf of the certificate holder or the certificate holder's organization. CAs
shall validate revocation requests prior to including a certificate in a CRL. Validation of a

revocation request shall include validation of the signature on the request. Out-of-band

validation of revocation requests signed by ORAs may optionally be required by the

certificate policy.

CAs shall issue X.509 version 2 CRLs.^ The fields and extensions utilized, and the values

assigned to them, shall be in accordance with section 3.2.1. After generating and signing a CRL,

CAs shall send it to the repository.

Post Certificates. Cross Certificates, and CRLs

CAs shall be capable of posting certificates, cross certificate pairs, and CRLs for retrieval by PKJ

clients. CAs shall always post CA certificates, cross certificate pairs, and CRLs. Posting of end-

entity certificates is optional. The mechanisms used to update directories is beyond the scope of

this specification.

Request CA Certificates

CAs shall be capable of requesting certificates from hierarchically superior CAs to support PKIs

based on the hierarchical trust model. This request is supported as described in section 3.5.1.

The certificate request shall identify the entity as a CA through the basicConstraints extension as

described in section 3.1.3.3.

2.1.2 Electronic Transaction Set.

Table 2-1 summarizes electronic transactions used in providing certificate management services.

These transactions enable:

• processing of certification requests and certificate revocation requests for end entity

certificates;

• posting of certificates and CRLs on the repository;

• the retrieval of certificates and CRLs from the repository for signature validation.

Revocation may be initiated by receipt of a signed request, or by the CA's own procedures. This specification does

not address revocations initiated by the CA.
' Version 2 CRLs correspond to the Version 3 certificate; the Version 2 certificate definition did not result in

creation of a new CRL format.

2-3



CAs shall process ORA-generated certification requests in the form of CertReq messages.'^

CertReq messages are signed by the ORA in the PKIProtection structure. By signing requests,

ORAs vouch for the identity of the certificate holder and confirm that requesting certificate

holders are in possession of the corresponding private keys. CAs respond to the ORAs or

certificate holders with CertRep messages. If a request was accepted, the CertRep message

contains the new certificate. If the request was rejected, the message contains the error code (see

sec. 3.5.1).

CAs shall also support the self-registration request, where users who are not current certificate

holders sign their own certificate request. The CA shall require the entity to generate

authentication information based on out-of-band interaction with an ORA. This information

substitutes for ORA signature to vouch for the requester's identity. To request a certificate

without appearing before an ORA, the entity obtains some information out-of-band from the

ORA. This information might be a symmetric key for use in generation of a MAC or keyed hash.

The entity generates a CertReq message and signs it with the entity's new private key. This

message is then protected with the information obtained out-of-band as directed by the ORA. The

CA generates a CertRep message; if the request was fulfilled the message contains the new
certificate. If the request was rejected, the message contains error codes. This transaction is

described in detail in section 3.5.3.^^

CAs shall process certificate renewal requests in the form of CertReq messages. These messages

are sent to a CA by the entity requesting the certificate. The message shall include the certificate

holder's distinguished name, the serial number of their current certificate, and the new public key.

The message may optionally include a proposed validity period and a proposed key id. The

message shall be signed with the private key corresponding to the certificate holder's unexpired,

unrevoked certificate and the new private key, as described in section 3.5.2. CAs shall respond to

the requester in the form of an CertRep message. This message shall contain either a new
certificate or a failure code. If issued, the certificate shall include the certificate holder's

distinguished name and the new public key. CAs are free to modify the validity period proposed

in the request. CAs shall generate a key identifier if the message did not include one.

CAs shall receive RevReq messages from ORAs or certificate holders. The RevReq message

shall include the certificate serial number or the certificate holder's distinguished name and the

key identifier. CAs shall respond with a RevRep message. This message shall include status and

failure information, and may include additional details about the revoked certificate.

CAs shall post CA certificates, cross certificate pairs, and CRLs that it issues to a repository.

CAs may optionally be capable of posting end entity certificates to a repository.

This section refers to CertReq, CertRep, RevReq and RevRep messages. The precise structure and content of

these messages is defined in section 3.4.
'

' An alternative syntax for this transaction is specified in section 3.5.4.

Posting of end entity certificates is not strictly required, since the originator of a signature can supply their own
certificate.

2-4



Table 2-1 CA Electronic Transaction Set

Transaction Description From To

OR A

Generated

Registration

Request (see

sec. 3.5.1)

ORA submits a certificate request on behalf of an

authenticated entity

ORA CA

CA returns signed certificate or error message CA ORA and

optionally,

certificate

holder

Certificate

Revocation

(sec. 3.5.5)

ORA or certificate holder requests revocation of a

certificate

ORA or

certificate

holder

Issuer CA

CA responds with acceptance or rejection of the

revocation request

Issuer CA ORA or

certificate

holder

Self-

Registration

Request

(sees. 3.5.3

and 3.5.4)

message signed with new public key encapsulates

certificate request with ORA-directed protection

value

client Issuer CA

CA returns signed certificate and CA's certificate or

an error message

Issuer CA client

Certificate

Renewal

Request

(sec. 3.5.2)

certificate request containing new public key with

proof of possession and current certificate serial

number; signed with current private key

certificate

holder

CA

CA returns signed certificate or error message CA certificate

holder

2.2 Organizational Registration Autiiority (ORA)

ORAs vouch for the identity of entities requesting certification. ORAs may verify that identity

by requiring the requesting entity to attend the ORA physically with a physical token, or through

out-of-band mechanisms. Where the entity physically attends the ORA, the ORA also verifies

their possession of private key material corresponding to the public key by verifying a signed

message (as described in sec. 3.5.1).

The format for a certificate request on behalf of an entity in physical attendance appears in

section 3.5.1. ORAs shall verify the entity possesses a complete key pair. After the key pair and

the entity's identity are verified, an ORA signs and sends an electronic certificate request to the

appropriate CA.

2-5



Certificate requests on behalf of a user who does not physically attend the ORA require that the

ORA provide authentication information to the entity. This information is used by the entity to

authenticate itself to the CA in a self-registration request as defined in section 3.5.3. This

specification does not define the content or format of the out-of-band exchange(s) required to

implement self-registration requests.

ORAs may request certificate revocation for end-entity certificates issued by CAs that have

accredited them. The format of the RevReq is presented in section 3.5.5. The ORA function

may be collocated with the CA or performed at a separate facility.

ORAs themselves include both a certificate holder fiinction to request, revoke and renew

certificates (where it is the subject) issued by CAs (see sec. 2.3) and a client fiinction to retrieve

certificates and CRLs and validate certification paths (see sec. 2.4).

2.2.1 Interoperability-Relevant ORA Functional Specifications

ORAs shall perform the following functions:

• Accept and validate certification requests;

• Send certification requests to the CA;

• Retrieve certificates and CRLs fi"om the repository; and

• Generate certificate revocation requests.

The ORA shall be able to pass the newly signed certificate on to the certificate holder, along with

the CA's certificate.

ORAs shall generate and sign certificate revocation requests on behalf of certificate holders who
1 ^

no longer possess their private key and suspect compromise. If permitted by the CA's

certification practice statement, ORAs shall also generate and sign certificate revocation requests

on behalf of the certificate holder's organization. Revocation requests are signed by the ORA
which then sends them to the issuing CA.

2.2.2 Transaction Set

Table 2-2 gives the subset of electronic transactions used by ORAs. These transactions enable

request, delivery, and revocation of end entity certificates, and the retrieval of certificates and

CRLs from the repository for signature validation. The following text provides an overview of

these transactions; they are described more fijlly in section 3.5.

ORAs receive certification requests fi"om prospective certificate holders in the form of CertReq

messages. The CertReq message is signed by the prospective certificate holder in the

PKIProtection structure. After reviewing the requester's credentials and confirming that the

prospective certificate holder is in possession of the corresponding private key, ORAs extract the

public key information, and create a new CertReq message with the ORA's name and signature.

ORAs send this message to a CA. ORAs shall provide certificate holders with the CA's

certificate.

Signature keys lost but not believed compromised are not necessarily revoked; this is determined by policy. Note

that confidentiality keys which are lost must be revoked regardless, or a sending party may encrypt and transmit

messages the receiver could never decrypt.

2-6



Table 2-2 ORA Electronic Transaction Set

Transaction Description From To

OR A-

Generated

Registration

Request

\SiQC J.J.L

)

User (or system administrator) submits

digitally signed certificate request to ORA
with proof of identity

client ORA

ORA submits a certificate request on behalf of

an duincniicaicu pruspeciive ceruiicdie noicier

ORA CA

CA returns signed certificate or error message CA ORA

Certificate

Revocation

(sec. 3.5.5)

ORA requests revocation of a certificate ORA Issuer CA

CA responds with acceptance or rejection of

revocation request

Issuer CA ORA

ORAs may receive CertRep messages from the CA. If a certification request is rejected, the

ORA will review the error code fi-om the CA and may submit a new request. If a certification

request is accepted, the ORA may provide the new certificate to the certificate holder.

ORAs shall generate revocation requests upon request of certificate holders who no longer

possess their private key or the certificate holder's organization. By signing the request, the ORA
is vouching for the identity of the requester. ORAs shall generate RevReq messages, including

the certificate serial number or the certificate holder's distinguished name and the key identifier.

The RevReq message shall be signed by an ORA. The CA shall respond to the ORA with a

RevReq message.

This message shall include status and failure information, and may include additional details

about the revoked certificate. If the certificate is revoked, the ORA shall provide this

information to the requester. If the request is rejected, the ORA will review the error code and

may re-formulate the request.

2.3 Certificate Holder Specifications

The PKI provides certificate management fiinctions for certificate holders. Certificate holders

include CAs, ORAs and other end entities. End entities may include persons and computing

systems (e.g., routers and firewalls) or applications (in addition to CAs and ORAs).

PKI certificate holders generate signatures and support PKI transactions to obtain, revoke and

renew their certificates.

2.3.1 Interoperability-Relevant PKI Certificate Holders Functional Specifications

Certificate holders shall be able to:

• generate signatures;

• generate certificate requests;

2-7



• request certificate revocation;

• request certificate renewal (optional).

Certificate holders are also PKI clients, and must also meet the specifications defined in section

2.4.

2.3.2 Certificate Holders Transaction Set

Table 2-3 gives the summary of transactions used by certificate holders. These transactions

enable certificate holders to obtain certificates and CRLs from the directory service, request

revocation of certificates held by the certificate holder (if any) for whom the client acts, and

request new certificates. All client transactions are performed with the CA that issued the

certificate the client uses, an ORA accredited by that CA, and repositories.

Certificate holders shall be able to request revocation of their own certificates. This transacfion is

performed with the CA and permits certificate holders to sign their own certificate revocation

requests. Certificate holders generate a RevReq message for each certificate they wish to revoke

and transmit to the issuing CA. The RevReq message shall include the reason for revocation.

The CA generates a RevRep message for each request and transmits it to the certificate holder.

This transaction is described in detail in section 3.5.5.

Certificate holders shall be able to generate a CertReq message to present to an ORA for in-

person authenticated certificate requests. The certificate holder constructs and signs the CertReq

message, so the ORA can verify the requester holds corresponding private key material.

Certificate holders may also implement the Certificate Renewal Request. This transaction is

performed with the CA and permits a certificate holder to sign their own certificate request (i.e.,

without an ORA verification of identity). CAs shall support this transaction, but its use is

determined by the certificate policy. To request a new certificate without appearing before an

ORA, the certificate holder generates a CertReq message and signs it with both the new and

current private keys. The CA generates a CertRep message; if the request was fulfilled the

message contains the new certificate. If the request was rejected, the message contains error

codes. This transaction is described in detail in section 3.5.2.

Certificate holders may also implement the self-registration request to request a certificate when
they are not current certificate holders. This transaction is performed with the CA and permits a

certificate holder to sign their own certificate request. The CA shall require the entity to generate

or include information based on out-of-band interaction with an ORA. This information

substitutes for ORA verification of identity. CAs shall support this transaction, but its use is

determined by the certificate policy. To request a certificate without appearing before an ORA,
the entity obtains some information out-of-band from the ORA. This information might be a

secret key for use in MAC generation or a signed message that will simply be included in the

request. The entity generates a CertReq message and signs it with the entity's new private key.

The entity attaches appropriate protection information to the signed message as directed by the

ORA. The CA generates a CertRep message; if the request was fulfilled the message contains the

2-8



Table 2-3 Certificate Holders Electronic Transaction Set

Transaction Description From To

ORA-
Generated

Registration

(see sec.

3.5.1)

TT<;pr Tor <;v<;tpm flHmini<;tratnr^ QiihmitQ HicfitallvV.^ Owl OVOL^lll £11.111111X1011 dlv/l 1 OULriilllO vllglldliy

signed certificate request to ORA with proof of

identity

rlipntwiiwiii ORA

Certificate

Revocation

(sec. 3.5.5)

certificate holder requests revocation of a

PfrtifiratpVwl LlllVdl-w

certificate Issuer CA

CA responds with acceptance or rejection of

rpvnratinn rpniipst1 w V VJ^CIL1\J11 l^VJU^Ol-

Issuer CA certificate

Self-

Registration

Request

(sees. 3.5.3

and 3.5.4)

message signed with new public key encapsulates

certificate request with ORA-directed protection

VctlUC

client Issuer CA

CA returns signed certificate and CA's certificate Issuer CA client

Certificate

Renewal

Request

(sec. 3.5.2)

certificate request containing new public key

with proof of possession and current certificate

serial number; signed with current private key

certificate

holder

Issuer CA

CA returns signed certificate and CA's certificate

or an error message

Issuer CA certificate

holder

new certificate. If the request was rejected, the message contains error codes. This transaction is

described in detail in section 3.5.3.'"*

2.4 Client Specifications

PKI Clients use the PKI to provide certificate processing functions for certificate holders and

certificate users, including CAs and other end entities. End entities may also include ORAs,
persons and computing systems (e.g., routers and firewalls).

At a minimum, PKI Clients validate signatures, obtain certificates and CRLs, and validate

certification paths. PKI Clients that serve certificate holders also generate signatures and may
support PKI transactions to revoke or renew their certificates.

2.4.1 Interoperability-Relevant PKI Client Functional Specifications

At a minimum, clients shall be able to:

• verify signatures;

''^ An alternative syntax for this transaction is presented in section 3.5.4.

2-9



• obtain certificates and CRLs from a repository; and

• validate certification paths.

2.4.2 PKI Client Transaction Set

Table 2-4 gives the summary of transactions used by clients. These transactions enable clients to

obtain certificates and CRLs from the repository. All client transactions are performed with the

certificate repository. All clients shall support the following transactions:

• Retrieve certificates - this transaction permits a user to bind to the directory service or a

specified repository using LDAP and retrieve one or more certificate(s) according to:

— subject name; or

— certificate serial number and issuer's name.

• Retrieve a CRL - This transaction permits a user to bind to the directory service or a specified

repository using LDAP and retrieve the current CRL for a particular CA, or a specifically

identified CRL.

At a minimum, retrieval of certificates and CRLs using the Lightweight Directory Access

Protocol (LDAP) shall be supported by all compliant clients. These transactions are described

fiirther in [RFC1777].

Table 2-4 Client Electronic Transaction Set

Transaction Description From To

Retrieve

Certificate

(see sec.

3.5.6)

Query repository or specified repository for an

entity's certificate(s)

client repository

return certificate or error message to requester repository client

Retrieve CRL
(sec. 3.5.7)

Query repository or specified repository for

latest CRL issued by a particular CA
client repository

return CRL to requester repository client

2-10



3. Data Formats

Basic data formats must be defined for interoperability ofPKJ components. The data formats
include certificate, CRL, and transaction formats. These specifications include data formats for

all transactions between infi-astructure components, and between PKI clients and infi-astructure

components.

3.1 Certificate Format

The X.509 V3 certificate format shall be used. Although the revision to ITU-T Recommendation
X.509 that specifies the version 3 format is not yet published, the version 3 format has been
widely adopted and is specified in American National Standards Institute X9.55-1995 [X9.55],

and the Internet Engineering Task Force's Internet Public Key Infi-astructure working document
[PKIXl]. The X.509 version 3 certificate includes the following:

Version

Serial Number
Issuer Signature Algorithm

Issuer Distinguished Name
Validity Period

Subject Distinguished Name
Subject Public Key Information

Issuer Unique Identifier (optional)

Subject Unique Identifier (optional)

Extensions (optional)

Issuer's Signature on all the above fields

3.1.1 Certificate Fields

The Abstract Syntax Notation One (ASN.l) definition of the X.509 certificate syntax is stated in

Appendix A. For signature calculation, the certificate is encoded under the ASN. 1

Distinguished Encoding Rules (DER). ASN, 1 DER encoding is a tag, length, value encoding

system for each element.[IS025-l]

The following items specify the use of the X.509 v3 certificate. With the exception of the

optional subjectUniquelD and the issuerUniquelD fields, CAs shall generate these fields and

clients shall be capable of processing them in accordance with the X.509 standard. CAs shall not

issue certificates containing the optional subjectUniquelD and the issuerUniquelD fields. Clients

are not required to process subjectUniquelD and the issuerUniquelD fields; however, they shall

reject certificates containing these fields if they do not process them.

Version

The version field describes the version of the encoded certificate. The value of this field shall be

2, signifying a version 3 certificate.

3-1



Serial number

The serialNumber is an integer assigned by the CA to each certificate. It shall be unique for each
certificate issued by a given CA (i.e., the issuer name and serial number identify a unique
certificate).

Signature

The signature field contains the algorithm identifier for the algorithm used to sign the certificate.

The signature field includes an algorithmldentifier, which, in principle may be used to pass

parameters. Certificates conforming to this interoperability specification shall be signed with

either the DSS, RSA or ECDSA algorithms, and the contents of the algorithmldentifier field shall

be as specified in section 3.1.2.1. Certificates shall not use the signature field to pass parameters

(see Subject Public Key Information below) since this field is not protected by the issuer's

signature.'^

Issuer Name

The issuer field provides a globally unique identifier of the authority signing the certificate. The

syntax of the issuer name is an X.500 distinguished name. The distinguished name is composed

of AttributeType - AttributeValue pairs. In general, the AttributeType will be defined by the

X.500 series of recommendations; AttributeValue will be of type DirectoryString.

DirectoryString is a choice of PrintableString, TeletexString, and UniversalString.

PrintableString is a basic Latin character set supporting upper and lowercase letters, digits, and a

handful of special characters. TeletexString is a superset of PrintableString, adding Latin

characters with accents and Japanese characters. UniversalString is a multi-octet character set

including all the major character sets.

Conforming CAs shall always use the most restrictive choice when constructing a

DirectoryString. That is, an AttributeValue which requires only basic Latin characters shall

always be represented as PrintableString. An AttributeValue that includes accented Latin

characters shall be represented as TeletexString. UniversalString shall only be used if the

character set for TeletexString is insufficient.

Alternative names may be supplied in the issuerAltName extension and some users ofX.509

certificates apparently contemplate a null issuer field. However, certificates conforming to this

interoperability specification shall contain the X.500 distinguished name of the certificate issuer

in this field.

Validity

The validity field indicates the dates on which the certificate becomes valid (notBefore) and on

which the certificate ceases to be valid (notAfter). The validity field may represent dates in

UTCTIme or GeneralizedTime. For this specification, the validity field shall always use UTCTime.

See "A Security Flaw in the X.509 Standard," available from http://www.cygnacom.com/docfiles/dsaflaw.zip, for

the rationale for excluding parameters from this field.

3-2



The UTCTime (Coordinated Universal Time) values included in this field shall be expressed in

Greenwich Mean Time (Zulu) and shall express granularity to the second. Seconds shall be

explicitly stated, even if zero. UTCTime shall be expressed as YYMMDDHHMMSSZ. The year

field shall be interpreted as follows:

• ifYY is equal to or greater than 50, the year shall be 19YY; and

• ifYY is less than 50, the year shall be 20YY.

Subject Name

The purpose of the subject field is to provide a unique identifier of the subject of the certificate.

The syntax of the subject name shall be an X.500 distinguished name. As described for issuer

names, conforming CAs shall use the most restrictive choice when constructing DirectoryStrings.

Alternative names may be supplied in the subjectAltName extension and some users of X.509

certificates apparently contemplate a null subject field. However, certificates conforming to this

interoperability specification shall contain the subject's X.500 distinguished name in this field.

Subject Public Key Information

The subjectPublicKeyinfo field is used to carry the public key and identify the algorithm with

which the key is used. It includes the subjectPublicKey field and an algorithmldentifier field with

algorithm and parameters subfields. Certificates conforming to this interoperability specification

shall use either the DSS, RSA or ECDSA algorithms, and the contents of the algorithmldentifier

field shall be as specified in section 3. 1 .2. 1 . The parameters subfield of the subjectPublicKeyinfo

field shall be the only method used to pass or obtain DSS or ECDSA parameters.

Unique Identifiers

The subjectUniqueldentifier and issuerUniqueldentifier fields are present in the certificate to

handle the possibility of reuse of subject and/or issuer names over time. Compliant CAs shall

not issue certificates that include these unique identifiers. Compliant PKI clients are not required

to process certificates that include these unique identifiers. However, if they do not process these

fields, they are required to reject certificates that include these fields.

Extension

The addition of the extension field is the principal change introduced to X.509 v3 certificates.

Extensions have three components: extnid, that names the extension, critical, the criticality flag

that specifies that the extension is critical or noncritical, and extnValue, the extension value. A
certificate may contain any number of extensions, including locally defined extensions. If the

criticality flag is set, a client shall either be able to process that extension, or shall not validate

the certificate.

A set of standardized extensions has been developed in an amendment to the X.509 standard

[DAM]. The use of these standardized extensions in conforming implementations is specified in

section 3.1.3 below.

3-3



Issuer's Signature

The actual signature on the certificate is defined by the use of the SIGNED parameterized type,

which expands to a SEQUENCE of the data being signed (i.e., the certificate), an algorithm

identifier, and a BIT STRING which is the actual signature. The algorlthmldentlfler that identifies

the algorithm used to sign the certificate. Although this algorithlmldentlfler field includes a

parameters field that can, in principle, be used to pass the parameters used by the signature

algorithm (see sec. 3.1.2.1), it is not itself a signed object. The parameters field of the certificate

signature shall not be used to pass parameters. When parameters are used to validate a signature,

they shall be obtained from the subjectPublicKeylnfo field of the issuing CA's certificate.

3.1.2 Cryptographic Algorithms

This document specifies two classes of cryptographic algorithms; digital signature algorithms

and message authentication algorithms. Digital signature algorithms are always identified with a

secure hash algorithm.

At a minimum, a conforming PKI component shall implement one of the identified digital

signature algorithms.

3. 1. 2. 1 Digital Signature AIgorithms

X.509 certificates specify both the algorithm used to sign the certificate (in the signature field)

and the algorithm of the subject's public key (in the subjectPublicKeylnfo field). The two

algorithms may be different. CAs shall be able to sign certificates and Certificate Revocation

Lists (CRLs) using at least one of the three algorithms as specified below. End entities shall be

able to sign with at least one of the three algorithms listed below. Clients shall be able to validate

signatures of at least one of the types specified below. To achieve maximum interoperability, it is

recommended that clients be capable of validating signatures for all three of the algorithms

specified below.

RSA

The RSA signature algorithm is defined in PKCS #1 [PKCS#1]. Although RSA can be used with

several hash algorithms, the only variant used to sign certificates and CRLs conforming to this

interoperability specification is RSA with the SHA-1 hash algorithm specified in FIPS 180-1

[FIPS 180]. For this specification, the following ASN.l object identifier is used to identify RSA
with SHA-1:

sha-IWIthRSAEncryption OBJECT IDENTIFIER ::= {

iso(1) identjfied-organizatlon(3) oiw(14)

secslg(3) algorithm(2) 29 }

This object identifier shall appear in the parameterized type SIGNED and the signature field in

both certificate or CRL signed with RSA. Whenever this object identifier appears as the value

for algorlthmldentlfler, the parameters component shall be NULL.

When a certificate or CRL is signed with RSA and SHA- 1 , the signature shall be generated and

encoded as follows:

3-4



The certificate or CRL is ASN.l DER encoded, and is used as the input to the SHA-1

hash function. The SHA-1 output value is ASN.l encoded as an OCTET STRING and the

result is encrypted with the RSA algorithms to form the signed quantity. When signing,

the RSA algorithm generates an integer y. This signature value is then ASN. 1 encoded as

a BIT STRING, such that the most significant bit in y is the first bit in the bit string and the

least significant bit in y is the last bit in the bit string, and included in the Certificate or

CertificateList (in the signature field).

(In general the conversion to a bit string occurs in two steps. The integer y is converted to

an octet string such that the first octet has the most significance and the last octet has the

least significance. The octet string is converted into a bit string such that the most

significant bit of the first octet shall become the first bit in the bit string, and the least

significant bit of the last octet is the last bit in the BIT STRING.)

When a conforming CA issues a certificate whose subjectPublicKeylnfo field contains an RSA
public key, the object identifier rsaEncryption shall appear as the algoritlimldentifier in the

subjectPublickeylnfo field to identify the key as an RSA public key.

pkcs-1 OBJECT IDENTIFIER ::= { iso(1) member-body(2) US(840)

rsadsi(113549) pkcs(1) 1 }

rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1}

Whenever the rsaEncryption object identifier is used in the algorithm field of a value of type

Algorithmldentifier, the parameters field shall have ASN.l type NULL.

The rsa public key shall be encoded using the ASN. 1 type RSAPublicKey:

RSAPublicKey SEQUENCE {

modulus INTEGER, - n

publicExponent INTEGER -e
}

where modulus is the modulus n, and publicExponent is the public exponent e. The DER
encoded RSAPublicKey is the value of the BIT STRING subjectPublicKey.

This object identifier is used in public key certificates for both RSA signature keys and RSA
encryption keys. The intended application for the key may be indicated in the key usage field (see

sec. 4.2. 1 .3). The use of a single key for both signature and encryption purposes is not

recommended, but is not forbidden.

DSS

The Digital Signature Algorithm is defined in FIPS 186 [FIPS186]. The ASN.l object identifier

used to identify DSS public keys shall be:

id-dsa ID ::= { iso(1) member-body(2) us(840) x9-57(10040) x9cm(4) dsa(1)

}

The Digital Signature Standard (DSS) [FIPS 186] specifies that DSA shall be used with the SHA-
1 hash algorithm. The ASN.l object identifier used to identify DSS signatures shall be:

id-dsa-with-sha1 ID ::= {

iso(1) member-body(2) us(840) x9-57(10040) x9cm(4) id-dsa-with-sha1(3)

}

3-5



The Algorithmldentifier within subjectPublicKeylnfo is the only place within a certificate where
id-dsa shall be used. The id-dsa algorithm syntax includes optional parameters. These
parameters are commonly referred to as p, q, and g. If the DSA algorithm parameters are absent

from the subjectPublicKeylnfo Algorithmldentifier and the CA signed the subject certificate using

DSA, then the certificate issuer's DSA parameters apply to the subject's DSA key. If the DSA
algorithm parameters are absent from the subjectPublicKeylnfo Algorithmldentifier and the CA
signed the certificate using a signature algorithm other than DSA, then clients shall not validate

the certificate. The parameters are included using the following ASN.l structure:

DSAParameters SEQUENCE {

primel INTEGER, -- modulus p
prime2 INTEGER, - modulus q
base INTEGER }-baseg

The id-dsa-with-sha1 algorithm identifier shall be used in the SIGNED parameterized type (e.g., in

the signature on a certificate or CRL) and the signature fields of certificates and CRLs. The id-

dsa-with-sha1 algorithm syntax has NULL parameters. The DSA parameters in the certificate of

the issuer shall apply to the verification of the signature.

The DSA pubhc key shall be ASN.l encoded as an INTEGER; this encoding shall be used as the

contents (i.e., the value) of the subjectPublicKey component (a BIT STRING) of the

SubjectPublicKeylnfo data element.

DSAPublicKey ::= INTEGER -- public key Y

When signing, the DSA algorithm generates two values. These values are commonly referred to

as r and s. To easily transfer these two values as one signature, they shall be ASN.l encoded

using the following ASN. 1 structure:

Dss-Sig-Value ::= SEQUENCE {

r INTEGER,
s INTEGER }

The encoded signature is conveyed as the value of the BIT STRING in the SIGNED parameterized

type in a certificate or CertificateList.

ECDSA

The Elliptic Curve Digital Signature Algorithm (ECDSA) is defined in the draft ANSI X9.62

standard [X9.62]. The ASN.l object identifier used to identify the ECDSA algorithm shall be:

ansi-X9-62 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840) 10045 }

When used to sign certificates, CRLs, or PKI messages, the ECDSA shall be used with the SHA-
1 hash algorithm. The ASN.l object identifier used to identify the ECDSA algorithm with SHA-
1 shall be:

ecdsa-with-SHA1 OBJECT IDENTIFIER ::= { ansi-X9-62 1 }

When the ecdsa-with-SHA1 algorithm identifier is used in the SIGNED parameterized TYPE
(e.g., in the signature on a certificate or CRL) it shall have NULL parameters. The ECDSA
parameters in the certificate of the issuer shall apply to the verification of the signature.

3-6



When signing, the ECDSA algorithm generates two values. These values are commonly referred

to as r and s. To easily transfer these two values as one signature, they shall be ASN.l encoded

using the following ASN.l structure:

Ecdsa-Sig-Value ::= SEQUENCE {

r INTEGER,
s INTEGER }

When certificates contain an ECDSA public key, the Id-ecPubllcKey algorithm identifier shall be

used. The id-ecPublicKey algorithm identifier is defined as follows:

Id-public-key-type OBJECT IDENTIFIER ::= { ansi-X9.62 2 }

id-ecPublicKey OBJECT IDENTIFIER ::= { Id-publicKeyType 1 }

The elliptic curve public key (an ECPoint which is an OCTET STRING) is mapped to a

subjectPublicKey (a BIT STRING) as follows: the most significant bit of the OCTET STRING

becomes the most significant bit of the BIT STRING, etc.; the least significant bit of the OCTET
STRING becomes the least significant bit of the BIT STRING.

ECDSA requires use of certain parameters with the public key. The parameters may be included

in the certificate using the following ASN.l structure:

ECParameters ::= SEQUENCE {

version INTEGER

fieldID FieldID

curve

base

order

cofactor

Curve,

ECPoint,

INTEGER,
INTEGER,

{ecpVer1(1)} (ecpVerl),

~ version is always 1

{ {FieldTypes} },

~ identifies the finite field over
" which the curve is defined
~ coefficients a and b of the elliptic curve
~ specifies the base point P
~ on the elliptic curve
~ the order n of the base point

}

FieldElement ::= OCTET STRING
Curve ::= SEQUENCE {

a FieldElement,

b FieldElement,

seed BIT STRING OPTIONAL
}

ECPoint ::= OCTET STRING

The components of type ECParameters have the following meanings:

• version specifies the version number of the elliptic curve parameters. It

shall have the value 1 for this version of the Standard. The notation above

creates an INTEGER named ecpVerl and gives it a value of one. It is used

to constrain version to a single value.

3-7



• fieldID identifies the finite field over which the elliptic curve is defined.

Finite fields are represented by values of the parameterized type FieldID,

constrained to the values of the objects defined in the information object

set FieldTypes. Additional detail regarding fleldID is provided below.

• curve specifies the coefficients a and b of the elliptic curve E. Each

coefficient shall be represented as a value of type FieldElement, an OCTET
STRING, seed is an optional parameter used to derive the coefficients of a

randomly generated elliptic curve.

• base specifies the base point P on the elliptic curve. The base point shall

be represented as a value of type ECPoint, an OCTET STRING

.

• order specifies the order n of the base point.

• cofactor is the integer h = #E{Fg)/n.

The Algorithmldentifier within subjectPublicKeylnfo is the only place within a certificate where

the parameters may be used. If the ECDSA algorithm parameters are absent from the

subjectPublicKeylnfo Algorithmldentifier and the CA signed the subject certificate using ECDSA,
then the certificate issuer's ECDSA parameters apply to the subject's ECDSA key. If the ECDSA
algorithm parameters are absent from the subjectPublicKeylnfo Algorithmldentifier and the CA
signed the certificate using a signature algorithm other than ECDSA, then clients shall not

validate the certificate.

FieldID { FIELD-ID:IOSet } ::= SEQUENCE {

fieldType FIELD-ID.&id({IOSet}),

parameters FIELD-ID.&Type({IOSet}{@fieldType}) OPTIONAL

}

FieldTypes FIELD-ID ::= {

{ Prime-p IDENTIFIED BY prime-field } |

{ Characteristic-two IDENTIFIED BY characteristic-two-field },

}

FIELD-ID ::= TYPE-IDENTIFIER

FieldID is a parameterized type composed of two components, fieldType and parameters.

These components are specified by the fields &id and &Type, which form a template for

defining sets of information objects, instances of the class FIELD-ID. This class is based on the

usefijl information object class TYPE-IDENTIFIER, described in X.681 Annex A. In an instance

of FieldID, "fieldType" will contain an object identifier value that uniquely identifies the type

contained in "parameters." The effect of referencing "fieldType" in both components of the

fieldID sequence is to tightly bind the object identifier and its type.

The information object set FieldTypes is used as the single parameter in a reference to type

FieldID. FieldTypes contains two objects followed by the extension marker ("...")• Each object.

3-8



which represents a finite field, contains a unique object identifier and its associated type. The
values of these objects define all of the valid values that may appear in an instance of fieldlD.

The extension marker allows backward compatibility with future versions of this standard

which may define objects to represent additional kinds of finite fields.

The object identifier id-fieldType represents the root of a tree containing the object identifiers

of each field type. It has the following value:

id-fieldType OBJECT IDENTIFIER ::= { ansi-X9-62 fieldType(l)

}

The object identifiers prime-field and characteristic-two-field name the two kinds of fields

defined in this Standard. They have the following values:

prime-field OBJECT IDENTIFIER ::= { id-fleldType 1 }

characteristic-two-field OBJECT IDENTIFIER ::= { id-fieldType 2 }

Prime-p ::= INTEGER ~ Field size p

Characteristic-two ::= SEQUENCE {

m INTEGER, ~ Field size 2'^m

basis CHARACTERISTIC-TWO.&id({BasisTypes}),
parameters CHARACTERISTIC-TWO.&Type({BasisTypes}{@basis})

}

BasisTypes CHARACTERISTIC-TWO::= {

{ NULL IDENTIFIED BY onBasis } |

{ Trinomial IDENTIFIED BY tpBasis } \

{ Pentanomial IDENTIFIED BY ppBasis },

}

Trinomial ::= INTEGER
Pentanomial SEQUENCE {

k1 INTEGER,
k2 INTEGER,
k3 INTEGER

}

CHARACTERISTIC-TWO ::= TYPE-IDENTIFIER

The object identifier id-characteristic-two-basis represents the root of a tree containing the

object identifiers for each type of basis for the characteristic-two finite fields. It has the

following value:

id-characteristic-two-basis OBJECT IDENTIFIER {

characteristic-two-field basisType(l)

}

The object identifiers onBasis, tpBasis and ppBasis name the three kinds of basis for

characteristic-two finite fields defined by [X9.62]. They have the following values:

onBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 1 }

tpBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 2 }

ppBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 3 }

3-9



3. 1. 2.2 Message Authentication AIgorithms

The following message authentication algorithm OIDS are recognized:

DES-MAC OBJECT IDENTIFIER ::= {

[so(1) identlfied-organizatlon(3) olw(14) secsig(3) algorlthm(2) 10
-- carries length in bits of the MAC as
- an INTEGER parameter, constrained to 32
- for this specification

}

This algorithm provides integrity by computing a DES MAC (as specified by [TIPS- 1 13]) on

data. The length of the MAC shall be 32 bits for this specification.

3.1.3 Certificate Extensions

A set of standardized extensions has been developed and is specified in an amendment to X.509

[DAM]. Extensions have three components: extension name, criticality flag, and extension

value. As specified in the amendment to X.509 [DAM], clients shall not validate certificates that

contain an extension with the criticality flag set, unless the client can process that extension.

The standardized extensions that have been defined may be divided into four categories: key and

policy information; subject and issuer attributes; certification path constraints; and CRL
identification extensions.

3.1.3.1 Key and Policy Information

These extensions provide information to identify a particular public key and certificate. They can

be used to identify a particular public key/certificate for a CA which has several certificates.

This may help a client to find the particular CA certificate needed to establish a certification

path. These extensions may restrict the purposes for which a key may be used, and provide

information in CA certificates about equivalent policies.

Authority Key Identifier

The authorityKeyldentifier extension provides a means of identifying the particular private key

used to sign a certificate. The identification can be based on either the key identifier or on the

issuer name and serial number. The key identifier method shall be used in certificates

conforming to this interoperability specification. This extension is used where an issuer has

multiple signing keys (either due to multiple concurrent key pairs or due to changeover). CAs
shall be capable of generating this extension, and clients shall be capable of finding and

validating certification paths where the issuing CA has several digital signature keys. It is

recommended that clients be able to process either the key identifier or the certificate issuer plus

certificate serial number form of key identifier to help find certification paths.

Subject Key Identifier

This field enables differentiation of keys held by a subject. This field shall be included in every

certificate issued. This extension shall be noncritical.

3-10



Key Usage

The keyUsage extension defines restrictions on the use of the key contained in the certificate

based on pohcy and/or usage (e.g., signature, encryption). CAs shall support the generation of

this extension and clients shall be capable of processing it. While KeyUsage is defined as a BIT

STRING, conforming CAs shall set only one value within this string in end-entity certificates. For

example, KeyUsage shall not be both digitalSignature and dataEncipherment in an end-entity

certificate. This extension shall be set to critical.

Private Key Usage Period

The privateKeyUsagePeriod extension applies only to digital signature keys. A signature on a

document that purports to be dated outside the private key usage period is not valid. CAs may
generate certificates containing this extension but conforming clients are not required to process

it.

Extended Key Usage

The extendedKeyUsage extension defines application-specific restrictions on the use of keys

contained in a certificate. When this extension is used, interoperability is not a factor.

Conforming PKI components are not required to support this extension.

Certificate Policies

The certiflcatePolicies extension contains one or more object identifiers (OIDs). Each OID
indicates a policy under v^hich the certificate has been issued. CAs shall be able to generate

certificates with one or more instances of policyldentlfier.

Clients shall be capable of processing policyldentlfier fields against a list of acceptable policies.

(The list of policies is dependent upon on application requirements.) Clients shall compare the

policy identifier(s) in the certificate to that list. Clients shall validate the certification path only if

at least one of the policy OIDs in the certiflcatePolicies field in each certificate in the path

matches one of the policies in the list of acceptable policies.

Conforming components are required to process the policyQualifiers subfield of

certiflcatePolicies if present, and shall support the policy qualifiers id-pkix-cps and id-pkix-

unotice (see [PKIXl].) Conforming CAs need not be able to generate this subfield.

Policy Mapping

This noncritical extension is used in CA certificates. It lists pairs of object identifiers; each pair

includes an issuerDomainPolicy and a subjectDomainPolicy. The pairing indicates that the

issuing CA considers its IssuerDomainPolicy equivalent to the subject CA's

subjectDomainPolicy. CAs shall be capable of generating the policyMappings extension. Clients

shall be capable of processing this extension.

Note that verification of time associated with a signature implies use of a notary or trusted timestamp. Both are

outside the scope of this specification.

3-11



3. 1.3.2 Certificate Subject and Issuer Attributes

The subjectAltName, issuerAltName and subjectDirectoryAttributes are all noncritical

extensions. They provide additional information about other names and attributes of the subject

and issuer.

Alternative Name

The subjectAltName and issuerAltName extensions allow additional identities to be bound to the

subject and issuer of the certificate. Defined options include an RFC822 [RFC 822] name
(electronic mail address), a DNS name, and a uniform resource identifier (URI.) Multiple

instances may be included. Whenever such identities are to be bound in a certificate, the

subjectAltName or issuerAltName fields shall be used.'

The subjectAltName and IssuerAltName extensions are normally noncritical in certificates

conforming to this interoperability specification. An implementation which recognizes these

extensions need not be able to process all the alternatives of the choice. If the alternative used is

not supported by the implementation, the extension field is ignored.

This specification defines the semantics with associated with an IssuerAltName field containing a

URI. The URI specifies the location of the issuer's certificate(s) which contain the public key

material corresponding to the private key used to sign the certificate. The semantics associated

with other classes of identities, or any subjectAltName entries, are not defined in this

specification.

If a CA's certificates are not available from a well-known X.500 directory service, the CA shall

include URI alternative names specifying the location of the issuer's certificate(s). Clients are

required to process the URI alternative name format and must recognize the LDAP URL
[RFC 195 9]. Clients are not required to recognize any other URI formats.

Subject Director/ Attributes

The subjectDirectoryAttributes extension may hold any information about the subject where that

information has a defined X.500 Directory attribute. This extension is always noncritical.

Implementation and use of this extension is optional.

3.1.3.3 Certification Path Constraints

The basicConstraints, nameConstraints and policyConstraints all apply restrictions to valid

certification paths.

Basic Constraints

The basicConstrairits extension tells whether the subject of the certificate is a CA through the cA

component and the lengths of certification paths through the pathLenConstraint component. CAs
shall support the generation of the basicConstraints extension in certificates and clients shall be

X.509 allows null certificate subject or issuer field accompanied by a critical subjectAltName or

IssuerAltName giving the name in an alternative format. Such certificates are not supported by this

interoperability specification.

3-12



capable of processing it. The pathLenConstraint component is meaningful only if cA is set to

TRUE.

The baslcConstraints extension shall be included in all certificates. End entity certificates shall

contain a basicConstraints extension with an empty SEQUENCE value. CA certificates shall

contain a basicConstraints extension the cA component set to TRUE. The basicConstraints

extension shall be marked as critical in all certificates issued to CAs.

Name Constraints

The nameConstraints field applies only to CA certificates. It indicates a name space in which all

subsequent certificates in a certification path must be located. CAs shall be capable of including

this field in certificates and clients shall be capable ofprocessing it. If used, it shall be critical.

Policy Constraints

The policyConstraints extension serves two functions. It can require that a specific policy apply

to all or to a portion of the CA path. It can also inhibit policy mapping for all or a selected

portion of the certification path. CAs shall be capable of supporting the issuance of certificates

with this extension, and clients shall be capable of processing this extension. If used, it shall be

critical.

3.1.3,4 CRL Identification Extensions

These extensions include information in a certificate about where to obtain the Certificate

Revocation List (CRL) that applies to that certificate. They facilitate the division of a CA's

potentially large CRL into several shorter CRLs, by identifying in the certificate which CRL
applies to a certificate and give the name of the CRL issuer (which may be a CA other than the

CA that issued the certificate).

CRL Distribution Points

The cRLDistributionPoints extension identifies the CRL distribution point or points to which

clients should refer to ascertain if a certificate has been revoked. This field has three component

fields: distributionPoint, reasons and cRLIssuer.

• The distributionPoint component identifies the location from which the CRL can be obtained.

If this field is absent, the CRL distribution point name defaults to the issuer name. This

extension provides a mechanism to divide the CRL into manageable pieces if the CA has a

large constituency.

• The reasons component identifies the reasons for revocation covered by the CRL issued by

the corresponding distributionPoint. If the reasons component is absent, the corresponding

distributionPoint distributes a CRL which will contain an entry for this certificate, if it has

been revoked for any reason. Clients are not required to process the reasons component.

• The cRLIssuer component identifies the authority that issues and signs the CRL. If this

component is absent, the CRL issuer name defaults to the certificate issuer name. One use

for this component is to allow the construction of consolidated CRLs, that include certificates

issued by more than one CA.

3-13



CAs shall include the cRLDistributionPoints extension with a distributionPoint component. If a

CA's CRLs are not available from a well-known X.500 directory service, the CA shall include

URI alternative names specifying the location of the current CRL for this certificate in the

distributionPoint component. Clients shall be able process the cRLDistributionPoints extension;

they must recognize the URI format and process at a minimum the LDAP URI. Clients shall be

able to use distribution point CRLs and validate CRLs where the cRLIssuer component is used.

See section 3.2.2 below for a further discussion of distribution points.

3-14



Table 3-1 Summary of Standardized Certificate Extensions

Extension Used

By
Use Critical

Key and Policy Information

ksyldsntifisr allall identifies the key used to sign this certificate (the

signing CA may have several keys)

No

authorityKeyldentifier all unique with respect to authority.

all identifies issuing authority of CA's certificate;

alternative to key identifier

auiiiuriiyv^criocrlainuinucr all used with authorityCertlssuer
d il^io/^tl^A%fl/lAntiflArsuujcciixcyiQcniiTicr all enables dirierentiation of different keys for same

subject. Must be unique for subject.

No

KcyusKiyc all derines allowed purposes for use of key (e.g., digital

signature, key agreement...)

Yes*

extendedKeyUsage all defmes application-specific purposes for keys No*
privateKeyUsagePeriod all digital signature keys only. Signatures on

documents that purport to be dated outside the

period are invalid.

No*

certificatePolicies all policy identifiers and qualifiers that identify and

qualify policies applying to the certificate

No*

policyldentifiers all the OID of a policy.

policyQualifiers all more information about the policy

policyMappings CA indicates equivalent policies No

Certificate Subject andIssuer Attributes
subjectAltName all used to list alternative names (e.g., rfc822 name,

X.400 address, IP address...)

No*

issuerAltName all used to list alternative names No*
subjectDirectoryAttributes all any attributes (e.g., supported algorithms) No

Certification Path Constraints

basicConstraints all constraints on subject's role & path lengths Yes*

cA all distinguish CA from end entity cert.

pathLenConstraint CA max. number of following CAs in cert, path; 0

indicates that CA only issues end entity certs.

nameConstraints CA limits subsequent CA cert. Name space. Yes*

permittedSubtrees CA names outside indicated subtrees are forbidden

excludedSubtrees CA indicates disallowed subtrees

policyConstraints all constrains certs. Issued by subsequent CAs Yes*

requireExplicitPolicy all All certs, followmg in the cert, path must contain an

acceptable policy identifier

inhibitPolicyMapping all prevent policy mapping in following certs.

CRL Identification

crlDistributionPoints all divides long CRL into shorter lists No*
distributionPoint all location from which CRL can be obtained

reasons all reasons for cert, inclusion in CRL
cRLIssuer all name of component that issues CRL.

NOTES:
* Standard allows either critical or noncritical. Indication is for use in interoperable implementations.

3-15



Table 3-2 Use of Standardized Certificates by the MISPC

Extension Certificate Client

Key and Policy Information
Ai ithoritul^ovlHontifior

Ck\ ithnrit\/l^o\#IHontifiorauiiiwi Hyrxcyiudiiiiid to be included in all certs issued: a

random number large enough to

generally be globally unique

optional - may be used to help fmd
cert, paths where issuer has

multiple certs. (1)

authorityCertlssuer not used optional - used to fmd cert, paths

where issuer has multiple certs. (1)
SI ithoritur^i^rtQAriAlhii imhArQUIMVI liy Vi/V7l IwCrl iCIII^LIIIBIiilwl not used

ei ihiA/^tl^ovlHontifioi*ouujwOiiwy luoiiiiiici to be included in all certs issued: a

random number large enough to

generally be globally unique

optional: used with CRLs to

identify revoked certificates.

keyUsage supported supported

extendedKeyUsage not used not used

privateKeyUsagePeriod supported optional

certificatePolicies

policyldentifiers supported supported; compared during cert,

path validation with a list of

acceptable policies

policyQualifiers used only in CA certificates supported (see 3.1.3.1)

policyMappings supported supported

Certificate Subject and Issuer Attributes

subjectAltName supported not used

issuerAltName supported not used

subjectDirectoryAttributes not used not used

Certification Path Constraints

basicConstraints

cA used in all certificates supported

pathLenConstraint supported supported

nameConstraints

permittedSubtrees supported supported

excludedSubtrees supported supported

policyConstraints

requireExplicitPolicy supported supported

inhibitPolicyMapping supported supported

CRL Identification

cRLDistributionPoints

distributionPoint supported supported

reasons supported supported

cRLIssuer supported supported

NOTES:
For Certificates, "supported" means that CAs shall be able to issue certificates that contain this extension. For

clients, "supported" means that the client shall be capable of processing this extension.

(1) Clients shall be capable of fmding certification paths where CAs have multiple certificates, whether or not

they use this extension to do so.

3-16



3.1.3.5 Summaty of Certificate Extension Use

Table 3-1 summarizes the standardized certificate extensions, while Table 3-2 summarizes the

use by the MISPC of standardized extensions for certificates and clients.

3.2 Certificate Revocation List (CRL)

Certificate Revocation Lists (CRL) are used to list unexpired certificates that have been revoked

or placed on "hold." Certificates may be revoked for a variety of reasons, ranging from routine

administrative revocations, (when the certificate's subject leaves the issuing organization, or

when responsibilities and certificate attributes change), to situations where the private key is

compromised. A "hold" indicates the CA will not vouch for the binding of the certificate subject

and public key at this time.

The X.509 v2 certificate revocation list format is augmented by several optional extensions,

similar in concept to those defined for certificates. CAs shall be able to generate X.509 v2 CRLs
as specified below, and clients shall be capable of processing them when validating certification

paths. The CA that issues a CRL is not necessarily the CA that issued the revoked certificate,

and some CAs may issue only CRLs. The X.509 v2 CRL includes the following:

Version

Issuer Signature Algorithm

Issuer Distinguished Name
This Update

Next Update

Revoked Certificates, a sequence of zero or more of the following sequence:

Certificate Serial Number
Revocation Date

CRL Entry Extensions (optional)

CRL Extensions (optional)

Issuer's Signature on all the above listed fields

3.2.1 CRL Fields

The X.509 v2 CRL ASN.l syntax is given in Appendix B. For signature calculation, the data

that is to be signed is ASN.l DER encoded. ASN.l DER encoding is a tag, length, value

encoding system for each element.

The following items describe the use of the X.509 v2 CRL.

Version

This field describes the version of the encoded CRL. The value of this field shall be 1, indicating

a v2 CRL.

Signature <

The signature field contains the algorithm identifier for the algorithm used to sign the CRL. The

contents are identical to the contents of the certificate signature field. Refer to Signature in

section 3.1.1 for information about this field. The CRL may be signed with any of the algorithms

3-17



identified in section 3.1.2.1; in general, the CA should sign the CRL with the same algorithm

used to sign the certificates. Refer to section 3. 1 .2. 1 for the signature algorithm object

identifiers. The parameters subfield of the CRL signature field shall not be used to pass DSS
parameters; rather DSS parameters shall be obtained from the subjectPublicKeylnfo field of the

certificate of the issuing CA.

Issuer Name

The issuer field provides a globally unique identifier of the CA signing the CRL. The issuer

name is an X.500 distinguished name. CRL issuer names with empty sequences are not

supported by implementations conforming to this interoperability specification.

This Update

The thIsUpdate field indicates the date of the CRL. This field may be represented as UTCTIme or

GeneralizedTime. For this specification, thisUpdate shall always be represented as UTCTime

(Coordinated Universal Time) and shall follow the rules for the certificate validity field (see sec.

3.1.1 above).

Next Update

The nextUpdate field indicates the date by which the next CRL will be issued. The next CRL
could be issued before the indicated date, but it will not be issued any later than the indicated

date. This field may be represented as UTCTIme or GeneralizedTime. For this specification,

nextUpdate shall always be represented as UTCTime (Coordinated Universal Time) and shall

follow the rules for the certificate validity field (see sec. 3.1.1 above).

Revoked Certificates

The revokedCertlflcates field is a list of the certificates that have been revoked. Each revoked

certificate listed contains:

• the certificate serial number, stated in the userCertificate field. This element contains the

value of serialNumber of the revoked certificate. This must be used in conjunction with the

name of the issuing CA to identify an unexpired certificate that has been revoked.

• the revocationDate field that contains the date of the revocation in UTCTime format. The

UTCTIme (Coordinated Universal Time) value included in this field shall follow the rules for

the certificate validity field (see sec. 3.1.1 above).

• optional CRL entry extensions, that are specified in section 3.2.3 below. The CRL entry

extensions may give the reason that the certificate was revoked, state the date that the

invalidity is believed to have occurred, and may state the name of the CA that issued the

revoked certificate, which may be a different CA from the CA issuing the CRL. Note that

the CA that issued the CRL is assumed to be the CA that issued the revoked certificate unless

the certlflcatelssuer CRL entry extension is included.

3.2.2 CRL Extensions

The extensions defined by ISO/ITU for X.509 v2 CRLs provide methods for associating

additional attributes with entire CRLs. Each CRL extension may be designated as critical or

3-18



noncritical. A CRL validation shall fail if a client encounters a critical extension that it cannot

process.

This section describes CRL extensions that shall be supported. A CRL extension is supported

when: the CA is able to generate the extensions in a CRL and the clients are able to process the

extension.

Authority Key Identifier

The authorityKeyldentifier is a noncritical CRL extension that identifies the CA's key used to sign

the CRL. This extension is useful when a CA uses more than one key; it allows distinct keys

differentiated (e.g., as key updating occurs). The identification can be based on either the key

identifier or on the issuer name and serial number. The key identifier method shall be used, and

the keyldentifier shall be generated for all CRLs. This extension is useful where an issuer has

multiple signing keys (either due to multiple concurrent key pairs or due to changeover). This

extension shall be included in all CRLs, and clients shall be able to find and validate CRL
certification paths where the issuing CA has multiple signing keys. Clients shall be able to

process either the key identifier or the certificate issuer plus serial number form of

authorityKeyldentifier if they use this extension to find certification paths.

Issuer Alternative Name

The IssuerAltName is a noncritical CRL extension that contains one or more alternative CA
names. Whenever such alternative names are present in a CRL, they shall be placed in the issuer

alternative name field. Implementations which recognize this extension need not be able to

process all the alternative name formats. Unrecognized alternative name formats may be

ignored by an implementation. CAs shall be capable of generating this extension in CRLs,

however clients are not required to process it.

CRL Number

The cRLNumber field is a noncritical CRL extension which conveys a monotonically increasing

sequence number for each CRL issued by a given CA through a specific CA directory entry or

CRL distribution point. This extension can be used to alert certificate users to unscheduled

issuance of full CRLs, or easily determine when a particular delete CRL supersedes another

CRL. This extension shall be included in CRLs.

Issuing Distribution Point

The issulngDIstributionPoInt field is a critical CRL extension that identifies the CRL
distribution point for this particular CRL. A distribution point is a directory entry that may be

used to retrieve a CRL, and that may differ from the directory entry of the issuing CA. The CRL
is signed by the CA's key. CRL distribution points do not have their own key pairs.

In addition, the IssuingDistributlonPoInt field specifies CRLs that may contain only end entity

certificates, or only CA certificates, or only certificates that have been revoked for a particular

reason. Finally, this extension can identify an "indirect CRL," that is a CRL that is issued by a

different CA than the CA(s) that issued the revoked certificate. It contains the following

components:

3-19



• distributionPoint, which gives the name of the distribution point name. If used,

distributionPoint shall be an X.500 distinguished name;

• onlyContainsUserCerts, a Boolean value that indicates that the CRL contains only end entity

certificates;

• onlyContainsCACerts, a Boolean value that indicates that the CRL contains only CA
certificates;

• onlySomeReasons, a ReasonsFlag bit string that indicates the reasons for which certificates

are listed in the CRL. Only the following reason flags shall be included in CRLs:

— keyCompromise shall be used to indicate compromise or suspected compromise;

— cACompromise shall be used to indicate that the certificate has been revoked because of a

CA key compromise. It shall only be used to revoke CA certificates;

— affiliationChanged shall be used to indicate that the certificate was revoked because of a

change of affiliation of the certificate subject;

— superseded shall be used to indicate that the certificate has been superseded ;

— cessationOfOperation shall be used to indicate that the certificate is no longer needed for

the purpose for which it was issued, but there is no reason to suspect that the private key

has been compromised.

• indirectCRL, a Boolean value that indicates that this is an indirect CRL.

Clients shall be able to process this field.

Delta CRL Indicator

The deltaCRLIndicator is a critical CRL extension that identifies a delta-CRL. The use of delta-

CRLs can significantly improve processing time for applications which store revocation

information in a format other than the CRL structure. This allows changes to be added to the

local database while ignoring unchanged information that is already in the local database.

The value of BaseCRLNumber identifies the CRL number of the base CRL that was used as the

starting point in the generation of this delta-CRL. The delta-CRL contains the changes between

the base CRL and the current CRL. A delta-CRL is not issued by itself; if a delta-CRL is issued

a complete current CRL is also issued. It is the decision of a CA as to whether to provide delta-

CRLs. A delta-CRL shall not be issued without a corresponding base CRL. The value ofCRL
number for both the delta-CRL and the corresponding base CRL shall be identical.

A client constructing a locally held CRL from delta-CRLs shall consider the constructed CRL
incomplete and unusable if the CRL number of the received delta-CRL is more that one greater

that the CRL number of the delta-CRL last processed.'^ Support of delta-CRLs by clients and

CAs is optional.

Summary of CRL Extension Use

Table 3-3 summarizes the standardized CRL extensions, while Table 3-4 summarizes the use of

the standardized CRL extensions for the MISPC.

Note that use of delta CRLs imposes an additional security requirement on clients; they must be capable of

securely maintaining the composite CRL.

3-20



Table 3-3 Summary of CRL Extensions

Extension Use
authorityKeyldentifier identifies the CA kev used tn sipn CRT No

keyldentifier unique key identifier; alternative to certlssuer &
authorityCertSerialNumber

certlssuer name of CA's cert, issuer

authorityCertSerialNumber used with certlssuer; combination must be unique

issuerAltName alternate name ofCRL issuer No*
cRLNumber sequence number for CRL No
issuingDisthbutionPoint name ofCRL distribution point; also gives reasons

for revocations contained in CRL.
Yes

deltaCRLIndicator indicates delta CRL (lists certificates, revoked since

last full CRL) & gives sequence number

Yes

NOTES:
* Standard allows either critical or noncritical. Indication is for use in interoperable implementations.

3.2.3 CRL Entry Extensions

The CRL entry extensions defined for X.509 v2 CRLs provide methods for associating additional

attributes with CRL entries. Each extension in a CRL entry is designated as critical or noncritical.

A CRL validation shall fail if it encounters a critical CRL entry extension which it does not know
how to process. However, an unrecognized noncritical CRL entry extension may be ignored.

Table 3-4 Summary of CRL Extensions and their use in the MISPC

Extension CRL Clients

authorityKeyldentifier

keyldentifier included in all CRLs issued optional - used to help find correct

CA certificate to validate CRL (1)

certlssuer not generated optional - issuer/serial number parr

used to help find correct authority

certificate to validate CRL (1)

certSerialNumber not generated

issuerAltName supported optional

cRLNumber supported: included in all CRLs optional

issuingDistributionPoint supported supported

deltaCRLIndicator optional optional

NOTES:

• For CRLs, "supported" means that the CA is capable of issuing CRLs that contain this extension.

• For Clients, "supported" means that the client is capable of processing this extension in CRLs.

(1) Clients shall be capable of fmding the certificate used to sign a CRL, when the CA has multiple

certificates, and the certificates are accessible in the appropriate directory, whether or not they use this

extension to do so, and whether or not the CRL contains this extension.

3-21



Reason Code

The reasonCode is a noncritical CRL entry extension that identifies the reason for the certificate

revocation. CAs shall be capable of generating this extension in CRL entries. Processing of the

reasonCode extension by clients is optional, that is clients shall not validate a certificate if any

certificate in the certification path is listed in a current CRL, regardless of the reasonCode, and

need not provide operator information about the reason for failure. The following enumerated

reasonCode values are defined:

• unspecified; this value shall not be used;

• keyCompromise indicates compromise or suspected compromise;

• cACompromise indicates that the certificate has been revoked because of a CA key

compromise. It shall only be used to revoke CA certificates;

• affillationChanged indicates that the certificate was revoked because of a change of affiliation

of the certificate subject;

• superseded indicates that the certificate has been replaced by a more recent certificate ;

• cessationOfOperation indicates that the certificate is no longer needed for the purpose for

which it was issued, but there is no reason to suspect that the private key has been

compromised.

• certlficateHold indicates that the certificate shall not be used at this time. When clients

process a certificate that is listed in a CRL with a reasonCode of certificateHold, they shall

fail to validate the certification path.

• removeFromCRL, which is used only with delta-CRLs and indicates that an existing CRL
entry should be removed.

Expiration Date

The expiratlonDate is a noncritical CRL entry extension that indicates the expirafion of a hold

entry in a CRL. This extension shall not be used in CRLs or by clients.

Instruction Code

The instructionCode is a noncritical CRL entry extension that provides a registered instruction

identifier which indicates the action to be taken after encountering a certificate that has been

placed on hold. This extension shall not be used in CRLs.

Invalidity Date

The InvalidityDate is a noncritical CRL entry extension that provides the date on which it is

known or suspected that the private key was compromised or that the certificate otherwise

became invalid. This date may be earlier than the revocation date in the CRL entry. The

revocation date in the CRL entry specifies the date that the CA revoked the certificate.

Whenever this information is available, CAs are encouraged to share it with CRL users. CAs
shall be capable of generating this extension in CRLs. This value is represented as

GeneralizedTime.

3-22



Certificate Issuer

The certificatelssuer CRL entry extension is used with an indirect CRL (a CRL that has the

indirectCRL indicator set in its issuingDistributionPoint extension). If this extension is not

present in the first entry of an indirect CRL, the certificate issuer defaults to the CRL issuer. In

subsequent entries in an indirect CRL, when the certificatelssuer extension is not present, the

certificate issuer is the same as the issuer of the preceding CRL entry.

Summary ofCRL Entry Extension Use

Table 3-5 summarizes the CRL entry extensions while Table 3-6 summarizes the use ofCRL
entry extensions for the MISPC.

Table 3-5 Summary of CRL Entry Extensions

Extension Use Critical

reasonCode identifies the reason for the revocation of this

certificate

No

instructionCode used with certificateHold reasonCode;

indicates action to be taken when encountering a

held certificate

No

invalidityDate date certificate became invalid No
certificatelssuer Issuer of revoked certificate in an indirect CRL Yes

Table 3-6 Summary of CRL Entry Extensions Use for MISPC

Extension CRL Clients

reasonCode supported; included for all

entries

optional - may be used to provide

information about validation

failure

instructionCode not used optional

invalidityDate supported optional - may be used to provide

information about validation

failure

certificatelssuer optional optional - necessary to support

processing of indirect CRLs

NOTES
For CRLs, "supported" means that CAs are capable of issuing CRLs that contain this CRL entry extension.

For clients, "supported" means that the client is capable of processing this entry extension in CRLs.

3.3 Certification Path Validation

The procedure specified in section 12.4.3 of the DAM [DAM], Certification path processing

procedure, shall be adopted by clients.

3-23



3.4 Transaction Message Formats

This section presents a set of message formats to support the minimal set of PKI transactions.

Systems that implement these transactions shall support these message formats, generating and
recognizing them as appropriate. The message formats are specified in ASN. 1 ;

messages shall be

encoded and transmitted using the Distinguished Encoding Rules (DER).

These message formats are used to implement transactions described in section 3.5.

3.4.1 Overall PKI Message Components

PKI Message

Each message has three components

PKIMessage SEQUENCE {

header PKIHeader,

body PKIBody,

protection [0] PKIProtection OPTIONAL,
extraCerts [1] SEQUENCE OF Certificate OPTIONAL

}

The extraCerts field is not used within this specification.

PKI Message Header

All PKI messages require some header information for addressing and transaction identification.

Some of this information will also be present in a transport specific envelope, however, if the

PKI message is signed then this information is also protected (i.e., we make no assumption about

secure transport).

The following data structure is used to contain this information:

PKIHeader ::= SEQUENCE {

pvno INTEGER { fpkl-version1 (0) },

sender GeneralName, Identifies the sender

recipient GeneralName, -- identifies the intended recipient

messageTime [0] GeneralizedTime OPTIONAL,
time of production of this message (used when sender)

that the time will still be meaningful upon receipt)

protectionAlg [1] Algorithmldentifier OPTIONAL,
- algorithm used for calculation of protection bits

senderKID [2] Keyldentifier OPTIONAL,
recipKID [3] Keyldentifier OPTIONAL,
- to identify specific keys used for protection

transactionID [4] OCTET STRING OPTIONAL,
- identifies the transaction, i.e., this will be the same in corresponding
- request, response and confirmation messages
senderNonce [5] OCTET STRING OPTIONAL,
recipNonce [6] OCTET STRING OPTIONAL,
- nonces used to provide replay protection, senderNonce is inserted by the creator

-- of this message; recipNonce is a nonce previously inserted in a related message by
- the intended recipient of this message
freeText [7] PKIFreeText OPTIONAL

3-24



- this may be used to indicate context-specific instructions (this field is intended for

-- human consumption)

}

PKIFreeText ::= CHOICE {

iASString [0] lASString,

bMPString [1] BMPString)

}

The transactionID field within the message header allows the recipient of a response message to

correlate this with the request. In the case of an ORA there may be many requests "outstanding"

at a given moment. The value of this field should be unique from the sender's perspective in

order to be useful.

The messageTime field indicates the time the message was generated. The value included in this

field shall be expressed Greenwich Mean Time (Zulu) and shall include seconds (i.e., times are

YYYYMMDDHHMMSSZ), even where the number of seconds is zero. The messageTime values

shall not include fi^actional seconds.

The sender and recipient fields within the message header are defined as GeneralName. Systems

are required to support X.500 distinguished names and RFC 822 (Internet electronic mail) names.

The freetext field is defined as PKIFreeText, which may be an lASString (basically, ASCII) or

BMPString. For this specification, PKIFreeText will always be an IA5 String.

The protectlonAlg is required for all signed messages. The senderNonce, recipNonce, senderKID,

and recipKID fields are not required to implement this specification.

PKI Message Body

PKIBody ::= CHOICE {

-- message-specific body elements

cr [2] CertReqContent,

cp [3] CertRepContent,

p10cr 14] PKCSIOCertReqContent,

rr [11] RevReqContent,

rp [12] RevRepContent,

conf [19] PKIConfirmContent,

}

Additional message-specific body elements are defined by [PKIX3]. The additional elements are

not required to implement this specificadon, so they were omitted for clarity. The complete list

of message-specific body elements appears in Appendix C.

Other sections of this document refer to CertReq, CertRep, RevReq, and RevRep messages.

These terms refer to PKIMessages with body elements cr, cp, rr, and rp, respectively. A PKCS
#10 request refers to a message with a plOcr body element. A confirmation message will have

body element conf.

3-25



PKI Message Protection

All PKI messages will be protected for integrity using the following structure:

PKIProtection ::= BIT STRING

The input to the calculation of the PKIProtection is the DER encoding of the following data

structure:

ProtectedPart ::= SEQUENCE {

header PKIHeader,

body PKIBody}

In most cases, the PKIProtection field will contain a digital signature and the protectionAlg field

in the PKIHeader will contain an Algorlthmldentifier specifying the digital signature algorithm

(e.g., dsaWithSha-1) used to protect the message.

In some cases, such as key update, it may be necessary to attach multiple signatures. In this case,

signed messages are nested - each signed message becomes a PKIBody element nested; the next

signature is applied to this message. This process is repeated until all signatures have been

applied.

Where symmetric techniques are needed for message authentication, the algorithm id shall be one

of those identified in section 3. 1 .2.2 and the protectionBits value shall contain the message

authentication code using the DER encoded header and body as input (and the shared secret as

the DES key.) The PKIHeader will contain an Algorlthmldentifier specifying a message

authentication code algorithm (e.g., DES-MAC).

3.4.2 Common Data Structures

The following data types are common to several message formats.

Certificate Templates

In various PKI management messages, the originator may provide certain values to identify an

existing certificate or request certain values be used in the generation of a certificate. The

CertTemplate structure allows entities to indicate those values. CertTemplate includes all the

same information as a certificate.

CertTemplate ::= SEQUENCE {

version [0] Version OPTIONAL,
-- used to ask for a particular syntax version

serial [1] INTEGER OPTIONAL,
-- used to ask for a particular serial number or to indicate request

-- is on behalf of a previous certificate holder

signingAlg [2] Algorlthmldentifier OPTIONAL,
subject [3] Name OPTIONAL,
validity [4] OptionalValidity OPTIONAL, -policy

issuer [5] Name OPTIONAL,
publicKey [6] SubjectPublicKeylnfo OPTIONAL, -- required

issuerUID [7] Uniqueldentifier OPTIONAL, - not supported

subjectUID [8] Uniqueldentifier OPTIONAL, - not supported

extensions [9] Extensions OPTIONAL,

3-26



- contains the extensions which the requester
would like in the cert.

}

OptionalValidity ::= SEQUENCE {

notBefore [0] UTCTime OPTIONAL,
notAfter [1] UTCTime OPTIONAL

}

CertTemplates ::= SEQUENCE OF CertTemplate

If it appears, the validity field contains the requested issuance date (in the notBefore field) and

expiration date (notAfter) for the requested certificate. The UTCTime values in the CertTemplate

validity field shall be interpreted as specified for the certificate validity field (see sec. 3.1.1).

Proving Possesion of a new Signature Key

Conforming CAs verity that the prospective subject of a certificate request holds the private key

corresponding to the public key provided in a certificate request. This is performed with the

following POPOSigningKey structure. This structure includes input data, an algorithm identifier,

and a signature. The input data is constrained to match the data in the certificate request, and

includes the public key itself

POPOSigningKey ::= SEQUENCE {

poposklnput POPOSKInput,

alg Algorithmldentifier,

signature BIT STRING
- the signature (using "alg") on the DER-encoded
- value of poposklnput

}

POPOSKInput ::= CHOICE {

popoSigningKeylnput [0] POPOSigningKeylnput,

certificatlonRequestlnfo CertificationRequestlnfo

- imported from [PKCS10] (note that If this choice is used,

- POPOSigningKey is simply a standard PKCS #10 request; this

- allows a bare PKCS #10 request to be augmented with other

- desired information in the FullCertTemplate before being

-- sent to the CA/RA)

}

POPOSigningKeylnput ::= SEQUENCE {

authlnfo CHOICE {

sender [0] GeneralName,
- from PKIHeader (used only if an authenticated identity

~ has been established for the sender (e.g., a DN from a

- previously-issued and currently-valid certificate)

publicKeyMAC [1] BIT STRING
- used if no authenticated GeneralName currently exists for

- the sender; publicKeyMAC contains a password-based MAC
- (using the protectionAlg Algid from PKIHeader) on the

- DER-encoded value of publicKey

},

publicKey SubjectPublicKeylnfo ~ from CertTemplate

3-27



}

FullCertTemplates

The FullCertTemplate augments the CertTemplate structure with a certificate request id and four

optional fields. The optional fields are not used within this specification.

The FullCertTemplates structure is a sequence of a FullCertTemplate. This structure permits

"batch processing" of requests in a single transaction. Since this may also be performed through

a series of transactions, this feature is not supported in this specification. FullCertTemplates may
be considered a sequence of exactly one FullCertTemplate wherever it appears.

FullCertTemplates ::= SEQUENCE OF FullCertTemplate

FullCertTemplate ::= SEQUENCE {

certReqId INTEGER,
-- to match this request with corresponding response
-- (note: must be unique over all FullCertReqs In this message)

CertTemplate CertTemplate,

popoSigningKey [0] POPOSigningKey OPTIONAL,
archiveOptions [1] PKIArchiveOptions OPTIONAL, -- not used in this specification

publicationlnfo [2] PKIPublicationlnfo OPTIONAL, - not used in this specification

oldCertId [3] CertId OPTIONAL
- id. of cert, which is being updated by this one

}

Status codes for PKI messages

All response messages will include some status information. The following values are defined:

PKIStatus ::= INTEGER {

granted (0),

-- request granted without change
grantedWithMods (1),

-- request granted, with modifications; the requester
-- is responsible for ascertaining the differences

rejection (2),

- request rejected

waiting (3),

-- the request has been received but has not been processed,
-- an additional response will follow after processing

revocationWarning (4),

-- this message contains a warning that a revocation has
-- been requested and is under consideration

revocationNotification (5),

-- notification that a revocation has occurred

keyUpdateWarning (6)

}

This specification does not use the status code keyUpdateWarning.

Failure Information

Responders use the following syntax to provide more information about failure cases.

3-28



badAlg (0),

badMessageCheck (1),
-

oaanequest (2),

badTime (3), -

badCertId (4), -

badPoP (5)

- need more failure information

PKIFailurelnfo ::= BIT STRING { -- since we can fail in more than
-- one way!

unrecognized or unsupported algorithm identifier

integrity check failed (e.g., signature did not verify)

transaction not permitted or supported
messageTime field was not sufficiently close
to the system time, as defined by local policy
no certificate could be identified matching the
provided criteria

proof of possession field did not verify
- neeo more failure information

}

PKIStatuslnfo ::= SEQUENCE {

status PKIStatus,

statusString PKIFreeText OPTIONAL,
faillnfo PKIFailurelnfo OPTIONAL

}

Protocol Confirmation

Confirmation messages shall carry all the required information in the PKIHeader. As a result, this

data structure has a NULL content.

PKIConfirmContent ::= NULL

Certificate Identification

In order to identify particular certificates the Certid structure is used.

Certid ::= SEQUENCE {

issuer GeneralName,

serialNumber INTEGER

}

Out-of-band Information

To convey a CA's public key out of band, OOBCert structure is used. OOBCert is simply the

CA's certificate.

OOBCert ::= Certificate

3.4.3 Operation-Specific Data Structures

Registration/Certification Request

Registration/Certification request message (cr) contains a CertReqContent data structure which

specifies values for one or more requested certificates.

CertReqContent ::= FullCertTemplates

The certificate request body shall include the prospective certificate holder's distinguished name

and public key in the subject and publicKey fields.

3-29



Registration/Certification Response

A registration response message (CertRep) contains a CertRepContent structure which is an

optional CA pubHc key and a response. The response is a sequence of CertResponse; for the

purposes of this specification, response is considered a sequence of exactly one CertResponse.

The CertResponse includes a request id, status information and optionally a CertifiedKeyPair.

The CertifiedKeyPair is a sequence of four optional fields: a certificate, an encrypted certificate,

an encrypted private key, and publication information. In this specification, the certificate field

will always appear in CertifiedKeyPair but the other fields are never present.

CertRepContent ::= SEQUENCE {

caPub [1] Certificate OPTIONAL,
response SEQUENCE OF CertResponse

}

CertResponse ::= SEQUENCE {

certReqId INTEGER, -- to match this response with corresponding request

certRepStatus PKIStatuslnfo,

CertifiedKeyPair CertifiedKeyPair OPTIONAL - present if status is granted
- or grantedWithMods

}

CertifiedKeyPair ::= SEQUENCE {

certificate [0] Certificate OPTIONAL, - required for this specification

encryptedCert [1] EncryptedValue OPTIONAL, - not used in this specification

privateKey [2] EncPrivKey OPTIONAL, - not used in this specification

publicationlnfo [3] PKIPublicationlnfo OPTIONAL - not used in this specification

}

If certRepStatus contains a faillnfo field, the CertResponse shall not include a CertifiedKeyPair

and the value in the certRepStatus field shall be rejection on the value of status. For the status

value waiting none of the optional fields may be present. The status values revocationWarning

and revocationNotification should not appear in this message.

The caPub field is not required, and may be ignored if present. This interoperability specification

does not use the encryptedCert, privateKey, and encryptedCert fields in CertifiedKeyPair.

Revocation Request Content

When requesting revocation of a certificate the following data structure is used. The name of the

requester is present in the PKIHeader structure.

RevReqContent ::= SEQUENCE OF RevDetails

RevDetails ::= SEQUENCE OF {

certDetails CertTemplate,
-- allows requester to specify as much as they can about
- the cert, for which revocation is requested
-- (e.g. for case serialNumber not available)

revocationReason ReasonFlags,
-- from the DAM, so that CA knows which Dist. point to use

badSlnceDate GeneralizedTime OPTIONAL,
-- indicates best knowledge of sender

crIEntryDetails Extensions}

3-30



- requested criEntryExtensions

ReasonFlags are defined in Appendix B. but are reproduced here for clarity.

ReasonFlags ::= BIT STRING {

unused (0),

keyCompromise (1),

caCompromlse (2),

afflliationChanged (3),

superseded (4),

cessationOfOperation (5),

certlficateHold (6),

removeFromCRL (8)}

Revocation Response Content

The response to the above message. Ifproduced this is sent to the requester of the revocation.

RevRepContent ::= SEQUENCE {

status PKIStatuslnfo,

revCerts [0] SEQUENCE OF Certid OPTIONAL,
- Identifies the cert for which revocation

was requested

cris [1] SEQUENCE OF CertlflcateLlst OPTIONAL}
-- the resulting CRL

For the purposes of this specification, revCerts shall be a SEQUNCE of one Certid, and the crls

field does not appear.

PKCS #10 Certification Request

This alternative certification request syntax is defined in [PKCS#10]. It is reproduced here for

clarity.

PKCSIOCertReqContent ::= SEQUENCE {

certlficationRequestlnfo CertlflcatlonRequestlnfo

signatureAlgorlthm SignatureAlgorlthmldentlfler,

signature Signature

}

SignatureAlgorlthmldentlfler ::= Algorithmldentifier

Signature ::= BIT STRING

CertlficationRequestlnfo: := SEQUENCE {

version Version,

subject Name,
subjectPublicKeylnfo SubjectPubllcKeylnfo,

attributes [0] IMPLICIT Attributes

}

Version ::= INTEGER

Attributes ::= SET OF Attribute

3-31



Attributes are specified in [PKCS#9]. Support for attributes is optional for conforming
implementations. If present, they may be ignored.

3.5 PKI Transactions

This section describes PKI specific functions to request, renew, or revoke certificates. This

section also provides a brief description of transactions for accessing the directory service.

Compliant CAs shall implement all of the transactions identified in this section. Compliant

ORAs shall implement the ORA-Generated Registration (sec. 3.5.1) and Request Revocation

(sec. 3.5.5) transactions. Compliant certificate holders shall implement the Request Revocation

(sec. 3.5.5) and ORA-Generated Registration (sec. 3.5.1) transactions. Self Registration (sees.

3.5.3 and 3.5.4) and Certificate Renewal (sec. 3.5.2) transactions are optional for certificate

holders.

3.5.1 ORA-Generated Registration Requests

An ORA may request that a CA issue a certificate for an end entity. This transaction is performed

in three steps. In the first step, the end entity provides a public key to the ORA in a signed

message in an out-of-band transaction (e.g., by physically presenting a diskette). In the second

step, the ORA requests a certificate from the CA in a signed message. The CA replies to the

ORA with a signed message containing either a certificate or an error message. The ORA
provides the end entity with the CA's public key out-of-band. The end entity may receive the

certificate from the ORA out-of-band, or from the CA electronically.

Certificate Request from an End Entity to the ORA

The end entity creates a PKIMessage with PKIBody element cr. The PKIHeader includes the

following information:

• pvno is zero;

• messageTime is the current time with a granularity of seconds;

• sender is the distinguished name of the end entity, or null;

• recipient is the distinguished name of the ORA, or null; and

• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

The message body is CertReqContent, which is a sequence of one or more FullCertTemplate. For

these specifications, CertReqContent is a sequence of one FullCertTemplate. The

FullCertTemplate will include the following information:

• certReqID is any integer;

• certTempiate is a CertTemplate including, at a minimum, the publicKey field which provides

the public key for the new certificate; and

• popoSigningKey provides proof of possession of the private key for the new certificate.

Optionally, oldCertID identifies a current or expired certificate for this subject issued by the same

CA. If the OldCertID field is omitted, this indicates that the end entity has not previously held a

certificate issued by this CA. If it appears, the oldCertID identifies a certificate previously issued

3-32



to this entity by recipient. In this case, that certificate's subject distinguished name should be
used as the subject of the new certificate.

The following information may be included in the CertTemplate:

• signingAlg specifies the preferred signature algorithm;

• subject specifies the distinguished name for the prospective certificate holder;

The popoSigningKey field shall be generated using the private key corresponding to the public
key in the publicKey field.

If the end entity is a current certificate holder, the PKIProtection field contains the end entity's

signature, calculated on the DER encoded sequence of the header and body with private key
material corresponding to the current certificate. If the end entity is not a current certificate

holder, the PKIProtection field shall be an empty string..

Certificate Request from ORA to CA

The ORA creates a PKIMessage with PKIBody element cr. The PKIHeader includes the following

information:

• pvno is zero;

• transaction!D is an integer unique to this transaction for this ORA;
• messagelime is the current time with a granularity of seconds;

• sender is the distinguished name of the ORA;
• recipient is the distinguished name of the CA; and

• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

The message body is CertReqContent, which is a sequence of one or more FullCertTemplate. For

these specifications, CertReqContent is a sequence of one FullCertTemplate. The

FullCertTemplate will include the following information:

• certReqID is an integer;

• CertTemplate is a CertTemplate (a SEQUENCE whose contents are described below); and

• popoSigningKey provides proof of possession of the private key for the new certificate.

Optionally, oldCertID identifies a current or expired certificate for this subject issued by the same

CA. If the OldCertID field is omitted, this indicates that the end entity has not previously held a

certificate issued by this CA. If it appears, the oldCertID identifies a certificate previously issued

to this entity by recipient. In this case, that certificate's subject distinguished name should be

used as the subject of the new certificate.

The CertTemplate will include the following information:

• version is v3 (2);

• publicKey provides the public key for the new certificate; and

• extensions specifies, at a minimum, the certificate policy OID to be associated with the

certificate.

The following information may be included in the CertTemplate:

3-33



• signingAlg specifies the preferred signature algorithm;

• subject specifies the distinguished name for the prospective certificate holder;

If SigningAlg does not appear, the CA should sign with the algorithm corresponding to the

entity's public key.

The request shall not include the following information:

• issuerUID; and

• subjectUID.

The popoSigningKey field shall be the same as provided in the request delivered to the ORA.

The PKIProtection field contains the ORA's signature, calculated on the DER encoded sequence

of the header and body.

Certificate Response from CA to ORA

The CA will return a PKII\/lessage with PKIBody element cp to the ORA.

The PKIHeader includes the following information:

• pvno is zero;

• transactionID is the same as the transactionID field in the cr message;

• messagellme is the current time with a granularity of seconds;

• sender is the distinguished name of the CA;

• recipient is the distinguished name of the OEIA; and

• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

If a senderNonce was supplied in the certificate request message, the header of the response shall

include it as reclpNonce.

The PKIBody element cp is of type CertRepContent. If the CA issued a certificate, the body will

contain the following information:

• status will be granted or grantedWIthMods; and

• certificate will contain the X.509 version 3 certificate.

The certificate must meet the following properties:

• version number shall be v3 (2);

• The publlcKey field shall be the same as in the certificate request;

• the subject distinguished name shall be the same as in the certificate request;

• the issuer name shall be the CA's distinguished name;

• if notBefore was present in the certificate request, the certificate shall be valid from the

issuance date or the notBefore date, whichever is later; and

• if notAfter was present in the certificate request, the certificate shall expire on or before that

date.

The certificate shall contain the following extensions:

• a subjectKeyldentifier field;

3-34



• at least one certificate policy OID in the certificatePolicies field; and
• an authority key identifier including a Keyldentifier field.

If a specific key identifier was specified in the certificate request message, the certificate shall

contain that key identifier as the subjectKeyidentifler field. If no key identifier was supplied, the

CA shall use the 160-bit SHA-1 hash of the subject public key as the keyidentifier in the

subjectKeyldentlfier field. The hash shall be calculated over the value (excluding tag and length)

of the subject public key field in the certificate.

The certificate shall include URLs in the issuerAltName extension and distributionPoint field of
the CRLDistributionPoints extension if the issuer's certificates or CRLs are not available from a

well known X.500 directory.

The falllnfo field may not be present if status is granted or grantedWithMods.

If the CA rejected the request, the body shall include the following information:

• status will be rejected; and

• faillnfo will contain the appropriate failure codes:

- badAlg indicates that the CA cannot validate the signature because the algorithm

identifier is unrecognized or unsupported;

- badMessageCheck indicates that the signature in the PKIProtection field was checked but

did not match;

- badPoP indicates that the signature in the popoSigningKey field was checked but did not

match;

— badRequest indicates that the responder does not permit or support the transaction;

— badlime indicates that the messagelime field in the message header was not sufficiently

close to the responder's system time;'^ and

— badCertId indicates that no certificate could be identified matching the nonzero serial

field, or that the certificate was not issued by this CA.

The certificate field may not be present if status is rejected.

The PKIProtection field contains the CA's signature, calculated on the DER encoded sequence of

the header and body.

3.5.2 Certificate Renewal Request

An entity that is a current certificate holder may request issuance of a new certificate directly

fi-om the CA that issued the current certificate. The requesting entity creates a PKI cr (certificate

request) message requesting a certificate and includes proof of possession of the private key

corresponding to the public key in the certificate request. The entity then signs the message with

the private key corresponding to the entity's unexpired, unrevoked certificate.

This error code assumes a locally defined window of time for responding to a PKI message. The MISPC does not

require such a policy, but defmes this error code to support such policies.

3-35



If the CA's Certificate Practice Statement permits certificate renewal,^^ it will return a cp
(certificate response) message to the certificate holder. This message will contain the certificate

or a reason code for the transaction failure.

Certificate Renewal Request from Certificate Holder to CA

The certificate holder creates a key update request: a PKIMessage with PKIBody element cr. The
PKIHeader includes the following information:

• pvno is zero;

• messageJime is the current time with a granularity of seconds;

• sender is the distinguished name of the certificate holder;

• recipient is the distinguished name of the CA; and

• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

The message body is CertReqContent, which is a sequence of one or more FullCertTemplate. For

these specifications, CertReqContent is a sequence of one FullCertTemplate. The

FullCertTemplate will include the following information:

• certReqID is an integer;

• certTemplate is a CertTemplate (a SEQUENCE whose contents are described below);

• popoSigningKey provides proof of possession of the private key for the new certificate; and

• oldCertID identifies a current certificate for this subject issued by the same CA.

The CertTemplate will include the following information:

• version is v3 (2); and

• publicKey provides the public key for the new certificate.

The following information may be included in the CertTemplate:

• signingAlg specifies the preferred signature algorithm;

• subject specifies the distinguished name for the prospective certificate holder;

If SigningAlg does not appear, the CA should sign with the algorithm corresponding to the

entity's public key.

The request shall not include the following information:

• issuerUID; and

• subjectUID.

The PKIProtection field contains a signature generated using the private key associated with the

current unexpired, unrevoked certificate and calculated upon the DER encoded sequence of the

header and body.

Conforming CA implementations shall support certificate renewal. However, a particular CA may choose not to

support this transaction as a matter of policy.

3-36



Certificate Renewal Response from CA to Certificate Holder

The CA will return a key update response (a PKIMessage with PKIBody element cp) message to
the certificate holder.

The PKIHeader includes the following information:

• pvno is zero;

• messageTime is the current time with a granularity of seconds;

• sender is the distinguished name of the CA;

• recipient is the distinguished name of the certificate holder and the sender of the cr message;
and

• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

If a transactionID was supplied in cr message, the header of the response will include the same
transactionlD. If a senderNonce was supplied in the senderNonce message, the header of the

response shall include it as recipNonce.

The PKIBody is the element cp and is of type CertRepContent. If the CA issued a certificate, the

body will contain the following information:

• status will be granted or grantedWitliMods; and

• certificate will contain the new X.509 version 3 certificate.

The certificate shall contain the following extensions:

• a subjectKeyldentifier field;

• at least one certificate policy OID in the certificatePolicies field; and

• an authority key identifier including a Keyldentifier field.

The certificatePolicies extension shall be identical to that found in the certificate identified in the

cr message's oldCertID field. If a specific key identifier was specified in the cr message, the

certificate shall contain that key identifier as the subjectKeyldentifier field. If no key identifier

was supplied, the CA shall use the 160-bit SHA-1 hash of the subject public key as the

keyldentifier in the subjectKeyldentifier field. The hash shall be calculated over the value

(excluding tag and length) of the subject public key field in the certificate.

If the cr message included extensions other than the subjectKeyldentifier, the CA may modify or

ignore the requested extensions.

The certificate shall include URLs in the issuerAltName extension and distributionPoint field of

the CRLDistributionPoints extension if the issuer's certificates or CRLs are not available from a

well known X.500 directory.

The faillnfo field may not be present if status is granted or grantedWjthl\1ods.

If the CA rejected the request, the body shall include the following information:

• status will be rejected; and

• faillnfo will contain the appropriate failure codes:

3-37



- badAlg indicates that the CA cannot vahdate the signature because the algorithm

identifier is unrecognized or unsupported;

- badPoP indicates the signature in the popoSlgnlngKey field was checked but did not

match;

- badMessageCheck indicates that the signature in the PKIProtection field was checked but

did not match;

- badRequest indicates that the responder does not permit or support the transaction;

- badTime indicates that the messageTime field in the message header was not sufficiently

close to the responder' s system time; and

- badCertId indicates that no certificate could be identified matching the nonzero serial

field.

The certificate field may not be present if status is rejected.

The PKIProtection field contains the CA's signature, calculated on the DER encoded sequence of

the header and body.

3.5.3 Self-Registration Request

An entity that is not a current certificate holder may request issuance of a new certificate directly

from the CA that issued the current certificate. The requesting entity creates a PKIIVIessage cr

requesting a certificate and include proof of possession of the private key corresponding to the

public key in the certificate request. The entity protects the message with a DES-MAC using a

secret key provided by the ORA.

If the CA supports certificate renewal, it will return a cp message to the certificate holder. This

message will contain the certificate or a reason code for the transaction failure.

ORA-Entity Out-of-Band Transaction

The self-registration request for a certificate begins with exchange of a secret known to the ORA
to the entity requesting a certificate. This information will allow the entity to authendcate

themselves to the CA through generation of a message authentication code fi*om the shared

secret.

The precise content and format of this out-of-band transaction are not specified. However, it

should be noted that both the secret key and the public key material for the trusted CA must be

conveyed to the entity in a trusted fashion. So, this transaction should include authentication

information for the CA ofwhom the certificate will be requested and the public key material for

the trusted CA.

Self-Registration Request from Certificate Holder to CA

The requester creates a PKIMessage with a PKIBody element cr. The PKIHeader includes the

following information:

• pvno is zero;

• messageTime is the current time with a granularity of seconds;

3-38



• sender is the (proposed) distinguished name of the requester or an electronic mail address;

• recipient is the distinguished name of the CA; and

• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

The message body is CertReqContent, which is a sequence of one or more FullCertTemplate. For
these specifications, CertReqContent is a sequence of one FullCertTemplate. The
FullCertTemplate will include the following information:

• certReqID is an integer;

• certTemplate is a CertTemplate (a SEQUENCE whose contents are described below); and
• popoSigningKey provides proof ofpossession of the private key for the new certificate.

Optionally, oldCertID identifies a current or expired certificate for this subject issued by the same
CA. If the OldCertID field is omitted, this indicates that the end entity has not previously held a

certificate issued by this CA. If it appears, the oldCertID identifies a certificate previously issued

to this entity by recipient."' In this case, that certificate's subject distinguished name should be
used as the subject of the new certificate.

The CertTemplate will include the following information:

• version is v3 (2); and

• publicKey provides the public key for the new certificate.

The following information may be included in the CertTemplate:

• signingAlg specifies the preferred signature algorithm;

• subject is present if and only if serial equals zero, and specifies the distinguished name for

the prospective certificate holder; and

• extensions requests a particular certificate policy OID be specified in the certificate.

The request shall not include the following information:

• issuerUID; and

• subjectUID.

The PKIProtection field contains a value that is generated by the requester using the secret value

obtained fi^om the ORA. The entity generates a 32 bit DES-MAC using the secret key provided

by the ORA. The protectionAlg field shall be set to DES-MAC, and the value of PKIprotection

shall be the 32 bit message authentication code. The input to the calculation of the PKIprotection

is the DER encoding of the following data structure:

ProtectedPart ::= SEQUENCE {

PKIHeader,

PKIBody}

^' If serial is nonzero, the entity is renewing their certificate but was not permitted to request the new certificate

directly. This may be because ofCA policy or because the entity's certificate was expired or revoked.

3-39



Self-Registration Request Response from CA to Certificate Requester

The CA will return a PKIMessage with a PKIBody element cp to the certificate holder.

The PKIHeader includes the following information:

• pvno is zero;

• messagelime is the current time with a granularity of seconds;

• sender is the distinguished name of the CA;

• recipient is the value of sender in the certificate request header; and

• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

If a transactionID was supplied in cr message, the header of the response will include the same
transactionlD. If a senderNonce was supplied in the senderNonce message, the header of the

response shall include it as recipNonce.

The PKIBody is a cp element and is of type CertRepContent. If the CA issued a certificate, the

body will contain the following information:

• status will be granted or grantedWithl\/lods; and

• certificate will contain the new X.509 version 3 certificate; >

The faillnfo field may not be present if status is granted or grantedWithl\1ods.

If the CA rejected the request, the body shall include the following information:

• status will be rejected; and

• faillnfo will contain the appropriate failure codes:

— badAlg indicates that the CA cannot validate the signature because the algorithm

identifier is unrecognized or unsupported;

— badPoP indicates the signature in the popoSigningKey field was checked but did not

match;

— badMessageCheck indicates the MAC in the PKIProtection field was rejected;

— badRequest indicates that the responder does not permit or support the transaction;

— badlime indicates that the messagelime field in the message header was not sufficiently

close to the responder' s system time; and

— badCertId indicates that no certificate could be identified matching the nonzero serial

field.

The certificate field may not be present if status is rejected. If present, the certificate shall

conform to the profile presented in section 3.1.1.

The certificate shall contain the following extensions:

• a subjectKeyldentifier field;

• at least one certificate policy OID in the certificatePolicies field; and

• an authority key identifier including a Keyldentifier field.

If a specific key identifier was specified in the cr message, the certificate shall contain that key

identifier as the subjectKeyldentifier field. If no key identifier was supplied, the CA shall use the

3-40



160-bit SHA-1 hash of the subject public key as the keyidentifier in the subjectKeyldentifier field.

The hash shall be calculated over the value (excluding tag and length) of the subject public key
field in the certificate.

If the cr message included extensions other than the subjectKeyldentifier, the CA may modify or

ignore the requested extensions.

The certificate shall include URLs in the issuerAltName extension and distributionPoint field of
the CRLDistributionPoints extension if the issuer's certificates or CRTs are not available from a

well known X.500 directory.

If a specific key identifier was specified in the cr message, the certificate shall contain that key
identifier. If no key identifier was supplied the CA shall use the 160-bit SHA-1 hash of the

subject public key shall be used as the keyidentifier in the subjectKeyldentifier. The hash shall be
calculated over the value (excluding tag and length) of the subject public key field in the

certificate.

The PKIProtection field contains the CA's signature, calculated on the DER encoded sequence of

the header and body.

3.5.4 PKCS #10 Self-Registration Request

An entity that is not a current certificate holder may request issuance of a certificate directly fi"om

the CA using the certificate request syntax defined in PKCS #10. The requesting entity creates a

PKIMessage of type PKCSReq requesting a certificate and includes proof of possession of the

private key corresponding to the public key in the body of the certificate request, and protects the

PKIMessage using a secret key provided by the ORA in an out-of-band transaction.

The CA will return a certificate request response message to the certificate requester. This

message will contain the certificate or a reason code for the transaction failure.

The out-of-band transaction with the ORA and the CA response are identical to the

corresponding steps in the Self-Registration Request defined in section 3.5.3.

Self registration Request from Certificate Holder to CA

The requester creates a PKIMessage with a PKIBody element p10cr. The PKIHeader includes the

following information:

• pvno is zero;

• messageJime is the current time with a granularity of seconds;

• sender is the (proposed) distinguished name of the requester or an electronic mail address;

• recipient is the distinguished name of the CA; and

• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

The PKIBody is a PKIBody element p10cr which is of type PKCSIOCertReqContent. This type is a

sequence of a certificationRequestlnfo, a signatureAlgorithm and a signature. The

certificationRequestlnfo will include the following information:

3-41



• version is v3 (2);

• subject is present if and only if serial equals zero, and specifies the distinguished name for

the prospective certificate holder; and

• subjectPublicKeylnfo provides the public key and corresponding algorithm identifier for the

new certificate.

The signatureAlgorithm field contains the algorithm identifier associated with the private key

used to generate the signature field; the signature is generated using the DER-encoded
certificationRequestlnfo as input.

The PKIProtection field contains a value that is generated by the requester using the secret value

obtained from the ORA. The entity generates a 32 bit DES-MAC using the secret key provided

by the ORA. The protectionAlg field shall be set to DES-MAC, and the value of PKIProtection

shall be the 32 bit message authentication code. The input to the calculation of the PKIProtection

is the DER encoding of the following data structure:

ProtectedPart ::= SEQUENCE {

header PKIHeader,

body PKIBody}

PKCS Certificate Request Response from CA to Certificate Requester

The CA will return a PKIIVIessage with a PKIBody element cp to the certificate holder.

The PKIHeader includes the following information:

• pvno is zero;

• messageTlme is the current time with a granularity of seconds;

• sender is the distinguished name of the CA;

• recipient is the value of sender in the certificate request header; and

• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

If a transaction!D was supplied in PKCSReq message, the header of the response will include the

same transactlonlD.

The PKIBody element is a cp, which is of type CertRepContent. If the CA issued a certificate, the

body will contain the following information:

• status will be granted or grantedWithMods; and

• certificate will contain the new X.509 version 3 certificate.

If a specific key identifier was specified in the cr message, the certificate shall contain that key

identifier. If no key identifier was supplied the CA shall use the 1 60-bit SHA- 1 hash of the

subject public key shall be used as the keyldentifier in the subjectKeyidentifier. The hash shall be

calculated over the value (excluding tag and length) of the subject public key field in the

certificate.

The faillnfo field may not be present if status is granted or grantedWithMods.

If the CA rejected the request, the body shall include the following information:

3-42



• status will be rejected; and

• faillnfo will contain the appropriate failure codes:

- badAlg indicates that the CA cannot validate the signature because the algorithm

identifier is unrecognized or unsupported;

- badPoP indicates the signature in the pklOcr's signature field was checked but did not

match;

- badMessageCheck indicates the MAC in the PKIMessage's PKIProtection field was
rejected;

- badRequest indicates that the responder does not permit or support the transaction; and

- badTime indicates that the messageTime field in the message header was not sufficiently

close to the responder's system time.

The certificate field shall not be present if status is rejected.

The certificate shall contain the following extensions:

• a subjectKeyldentifier field;

• at least one certificate policy OID in the certificatePolicies field; and

• an authority key identifier including a Keyldentifier field.

If a specific key identifier was specified in the cr message, the certificate shall contain that key

identifier as the subjectKeyldentifier field. If no key identifier was supplied, the CA shall use the

160-bit SHA-1 hash of the subject public key as the keyidentifier in the subjectKeyldentifier field.

The hash shall be calculated over the value (excluding tag and length) of the subject public key

field in the certificate.

If the cr message included extensions other than the subjectKeyldentifier, the CA may modify or

ignore the requested extensions.

The certificate shall include URLs in the IssuerAltName extension and distributionPoint field of

the CRLDistributionPoints extension if the issuer's certificates or CRLs are not available from a

well known X.500 directory.

The PKIProtection field contains the CA's signature, calculated on the DER encoded sequence of

the header and body.

3.5.5 Request Revocation

Certificate holders may request revocation of their own certificates. To perform this function the

certificate holder generates a RevReq message, signs it with the private key corresponding to the

certificate to be revoked, and sends it to the CA. The RevReq message shall identify the

certificate(s) to be revoked and the reason for the revocation. The CA responds with a RevRep

message.

ORAs may request revocation of a certificate issued to an entity on behalf of the certificate

holder or the certificate holder's organization. To perform this function, the ORA generates a

RevReq message, signs it with the ORA's private key, and sends it to the CA. The ORA shall

generate a pseudo-random number and shall place it in the transactionID field. The RevReq

3-43



message shall include, at a minimum, the certificate serial number in the serial field of

certDetaiis and a revocation reason code in the revocationReason field.

The CA will respond to the revocation requester with an rp (RevRep) message. If the rr (RevReq)

message included a transaction! D, the CA shall include its contents as the transaction!D in the rp

message. The rp message shall contain, at a minimum, the status of the request in the status field

and identify the certificate for which revocation is requested in the revDetaiis field.

Revocation Request from ORA or Certificate Holder to CA

The ORA or the certificate holder creates a PKIMessage with a PKIBody element rr. The
PKIHeader includes the following information:

« pvno is zero;

• transactionID is an integer unique to this transaction for this ORA or any integer for the end

entity;

• messagelime is the current time with a granularity of seconds;

• sender is the distinguished name of the ORA or the certificate holder;

• recipient is the distinguished name of the CA; and

• protectlonAlg is the algorithm identifier for the signature algorithm used to protect the

message.

The PKIBody is RevReqContent, which is a sequence of RevDetaiis. RevDetaiis is a sequence of

CertDetaiis, reason flags, and date and time of compromise or loss. CertDetaiis is defined as a

CertTemplate. For this interoperability specification, RevReqContent is a sequence of one

RevDetaiis. CertDetaiis, at a minimum, includes the following information:

• serial, which contains the serial number of the certificate; and

• issuer, which contains the distinguished name of the certificate issuer,

or

• subject, which contains the distinguished name of the certificate holder; and

• issuer, which contains the distinguished name of the certificate issuer.

CertDetaiis may also include a subjectKeyidentifier in the extensions field.

The RevDetaiis shall also include a reason code, and may include badSinceDate to specify the

time after which the certificate should not be trusted. The reason code may not be

removeFromCRL.

The PKIProtection field contains the requester's signature, calculated on the DER encoded

sequence of the header and body.

Revocation Response from CA to Requester

22
The CA will return a PKIMessage with a PKIBody element rr to the requester.

The PKIHeader includes the following information:

• pvno is zero;

If the requester is an ORA, the CA may optionally send the RevRep message to the certificate holder as well.

3-44



• transactionID is the same as the transactionID field in the CertReq message;

• messageTime is the current time with a granularity of seconds;

• sender is the distinguished name of the CA;

• recipient is the distinguished name of the ORA; and

• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

If a senderNonce was supplied in the senderNonce message, the header of the response shall

include it as recipNonce.

The PKIBody is RpContent. If the CA revoked the certificate, the body will contain the following

information:

• status will be granted or grantedWithMods; and

• revDetails will contain the Certld(s) of the revoked certificate(s);

The failinfo field may not be present if status is granted or grantedWithMods.

If the CA rejected the request, the body shall include the following information:

• status will be rejected; and

• failinfo will contain the appropriate failure codes:

— badAlg indicates that the CA carmot validate the signature because the algorithm

identifier is unrecognized or unsupported;

— badMessageChecl< indicates that the signature in the PKIProtectlon fields was checked but

did not match;

— badRequest indicates that the responder does not permit or support the transaction;

— badJime indicates that the messageTime field in the message header was not sufficiently

close to the responder's system time; or

— badCertId indicates that the information in latestCerts did not identify an unexpired,

unrevoked certificate.

If the certificate in question can be determined, revDetails will contain the Certid of the certificate

whose revocation was rejected.

The PKIProtectlon field shall contain the CA's signature, calculated on the DER encoded

sequence of the header and body.

If the CA generates CRLs, and the revocation request was accepted, the CRL entry shall have the

following values:

• the serial number of the revoked certificate in the userCertificate field;

• the revocationDate shall be the day and time the revocation request was received;

• the crIEntryExtensions shall be present and include:

— the reasonCode shall be the reasonCode found in the RevDetails field;

— optionally, the InvalidityDate extension may be the badSinceDate found in the RevDetails

field, if provided;

3-45



3.5.6 Request Certificate from a Repository

Entities may request certificates from a repository using LDAP [RFC 1777]. When using LDAP,
the entity may request certificates from a repository service using the certificate pair match rule,

as defined in [DAM] or as specified in a given LDAP URL [RFC 1959] (e.g., the issuerAltName

field.)

3.5.7 Request CRL from a Repository

Entities may request CRLs from a repository using LDAP, the certificate list match rule, and the

algorithm identifier match rule, as defined in [DAM]. Entities may request CRLs from a

repository using LDAP [RFC 1777]. When using LDAP, the entity may request CRLs from a

repository service using the certificate pair match rule, as defined in [DAM] or as specified in a

given LDAP URL [RFC 1959] (e.g., the distributionPoint field in the cRLDistributionPoints

extension.)

3-46



4. References

[CONOPS] Public Key Infrastructure Technical Specification: Part C - Concept of
Operations, William E. Burr. Available from http://csrc.nist.gov/pki

[COR95] ISO/IEC JTC 1/SC 21, Technical Corrigendum 2 to ISO/IEC 9594-8 : 1990 &
1993 (1995:E). July 1995.

[DAM] ISO/IEC JTC 1/SC 2 1 , Draft Amendments DAM 4 to ISO/IEC 9594-2, DAM 2 to

ISO/IEC 9594-6, DAM 1 to ISO/IEC 9594-7, and DAM 1 to ISO/IEC 9594-8 on
Certificate Extensions, June 30, 1996.

[FIPS 113] FIPS PUB 113, Computer Data Authentication, NIST, May 1 985

.

[FIPS 1 80] FIPS PUB 180-1, Secure Hash Standard, NIST, April 1 995

.

[FIPS 1 86] FIPS PUB 1 86, Digital Signature Standard, NIST, May 1 994.

[FIPS46] FIPS PUB 46-2, Data Encryption Standard, December 1 993

.

[IS094-8] ISO/IEC 9594-8 ( 1 994), Open Systems Interconnection - The Directory:

Authentication Framework. 1994. The 1994 edition of this document has been

amended by the Draft Amendments [DAM] and a Technical Corrigendum

[COR95].

[IS025- 1 ] ISO/IEC 8825- 1 ( 1 994), Information Technology - ASN. 1 Encoding Rules -

Specification ofBasic Encoding Rules (BER), Canonical Encoding Rules (CER)

and Distinguished Encoding Rules (DER). 1994.

[PKCS#1] PKCS #1: RSA Encryption Standard, Version 1.4, RSA Data Security, Inc., 3

June 1991. available at: http://www.rsa.com/pub/pkcs/

[PKCS#9] PKCS #9: Selected Attribute Types, Version 1.1, RSA Data Security, Inc., 1

November, 1993. available at: http://www.rsa.COm/pub/pkcs/

[PKCS#1 0] PKCS #10: Certification Request Syntax Standard, Version 1 .0, RSA Data

Security, Inc., 1 November, 1993. available at: http://www.rsa.com/pub/pkcs/

[PKIX 1 ] Internet Draft, Internet Public Key Infrastructure Part I: X. 509 Certificate and

CRL Profile, R Housley, W. Ford and D. Solo, July 1997. working draft "in

progress" available at: ftp://ds.internic.net/internet-drafts/draft-ietf-pkix-ipki-part1-

04.txt

[PKIX3] Internet Draft, Internet Public Key Infrastructure Part III: Certificate

Management Protocols, C. Adams and S. Farrell, June 1997. working draft "in

progress" available at: ftp://ds.internic.net/internet-drafts/draft-ietf-pkix-ipki3cmp-

02.txt

[RFC822] RFC 822, Standardfor the Format ofARPA Internet Text Messages, David H.

Crocker, August 13, 1982.

[RFC 1 777] RFC 1 777, Lightweight Directory Access Protocol, Ed Yeoung, Howes, and

Killie. March 1995.

4-1



[RFC1959] RFC 1959, An LDAP URL Format, T Howes, and M.Smith. June 1996.

[STAB95] OIW, Stable Implementation Agreementsfor Open Systems Interconnection

Protocols: Part 12 - OS Security. June 1995.

[X9.55] Draft American National Standard X9.55- 1 995, Public Key Cryptographyfor the

Financial Services Industry: Extensions to Public Key Certificates and Certificate

Revocation Lists, ^ov. 11, 1995

[X9.57] Working Draft American National Standard X9.57-1 99x, Public Key

Cryptographyfor the Financial Services Industry: Certificate Management, June

21, 1996

[X9.62] Working Draft American National Standard X9.62- 1 99x, Public Key

Cryptographyfor the Financial Services Industry: The Elliptic Curve Digital

Signature Algorithm, June 21, 1996

4-2



Appendix A - X.509 v3 Certificate ASN.1

AuthenticationFramework {joint-iso-ccitt ds(5) modules(1) authenticationFramework(7) 2}

DEFINITIONS ::=

BEGIN

- EXPORTS All --

-- The types and values defined in this module are exported for use in the other ASN. 1

-- modules contained within the Directory Specifications, and for the use of other applications

-- which will use them to access Directory services. Other applications may use them for

-- their own purposes, but this will not constrain extensions and modifications needed to

-- maintain or improve the Directory service.

IMPORTS
id-at, InformationFramework, upperBounds selectedAttrlbuteTypes, basicAccessControl

FROM UsefulDefinltions {joint-iso-ccitt ds(5) modules(1) usefulDefinitions(O) 2}

Name, ATTRIBUTE
FROM InformationFramework InformationFramework

ub-user-password
FROM UpperBounds upperBounds

AuthenticationLevel

FROM BasicAccessControl basicAccessControl

Uniqueldentifier

FROM SelectedAttrlbuteTypes selectedAttrlbuteTypes
;

-- types -

Certificate SIGNED {SEQUENCE{
version

serialNumber

signature

issuer

validity

subject

subjectPublicKeylnfo

IssuerUniqueldentifier

subjectUniqueidentifier

extensions

[0] Version DEFAULT v1,

CertificateSerialNumber,

Algorithmldentifier,

Name,
Validity,

Name,
SubjectPublicKeylnfo}

[1 ] IMPLICIT Uniqueldentifier OPTIONAL,
—if present, version must be v1 or v2--

[2] IMPLICIT Uniqueldentifier OPTIONAL,
—if present, version must be v1 or v2--

[3] Extensions Optional

--// present, version must be v3--} }

Version ::= INTEGER {v1(0), v2(1), v3(2)

}

CertificateSerialNumber ::= INTEGER
Algorithmidentifier ::= SEQUENCE{

algorithm ALGORITHM.&id({SupportedAlgorithms}),

parameters ALGORITHM.&Type ({SupportedAlgorithms}{ @algorithm}) OPTIONAL }

Definition of the following information object is deferred, perhaps to standardized

profiles of to protocol implementation conformance statements. This set is required to

A-1



specify a table constraint on ttie Parameters component Algorithmidentifier.

SupportedAlgorithms ALGORITHM ::= { ...|...

}

Validity SEQUENCE{
notBefore

notAfter

ChoiceOfTime,

ChoiceOfTlme

}

ChoiceOfTime ::= CHOICE {

utcTime

generalTime

SubjectPublicKeylnfo

algorithm

subjectPublicKey

Extensions ::=

UTCTime,
GeneralizedTime

}

::= SEQUENCE{
Algorithmldentifier,

BIT STRING}

SEQUENCE OF Extension

Extension

extnid

critical

extnValue

::= SEQUENCE {

EXTENSION.&id ({ExtensionSet}),

BOOLEAN DEFAULT FALSE,
OCTET STRING
-- contains a DER encoding of a value of type &ExtnType for the
-- extension object identified by extnid --

-- Definition of the following information object set is deferred, perfiaps to

-- standardized profiles or to protocol implementation conformance statements.

-- The set is required to specify a table constraint on the critical component
" of Extension.

ExtensionSet EXTENSION ::= { ...
I

...

}

EXTENSION ::=

{

&id

&ExtnType

}

WITH SYNTAX
{

SYNTAX
IDENTIFIED BY

}

Certificates ::=

certificate

certificationPath

ForwardCertificationPath

CertificationPath

userCertificate

theCACertificates

CrossCertlficates

CLASS

OBJECT IDENTIFIER UNIQUE,

&ExtnType
&ld

SEQUENCE

{

Certificate,

ForwardCertificationPath OPTIONAL}

SEQUENCE OF CrossCertlficates

SEQUENCE

{

Certificate,

SEQUENCE OF CertificatePair OPTIONAL}

SET OF Certificate

A-2



CertificateList ::=

version

signature

issuer

thisUpdate

nextUpdate

revoltedCertificates

userCertificate

revocationDate

crIEntryExtensions

crIExtensions [0]

SIGNED { SEQUENCE {

Version OPTIONAL, if present, must be v2
Aigorithmldentifier,

Name,
ChoiceOfTime,

ChoiceOfTime OPTIONAL,
SEQUENCE OF SEQUENCE {

CertificateSerialNumber,

ChoiceOfTime,

Extensions OPTIONAL } OPTIONAL,
Extensions OPTIONAL }}

CertificatePair

forward

reverse

-- attribute types-

[01

[1]

SEQUENCE

{

Certificate OPTIONAL,
Certificate OPTIONAL
-- at least one of the pair shall be present --

)

userPassword ATTRIBUTE ::= {

WITH SYNTAX OCTET STRING (SIZE (O..ub-user-password))

EQUALITY MATCHING RULE octetStringMatch

ID id-at-userPassword

}

userCertificate ATTRIBUTE :.- {

WITH SYNTAX Certificate

ID id-at-userCertificate

}

cACertiflcate ATTRIBUTE ::= {

WITH SYNTAX Certificate

ID id-at-cACertificate

}

authorityRevocationList

WITH SYNTAX
ID

certificateRevocationList

WITH SYNTAX
ID

ATTRIBUTE {

CertificateList

id-at-authorityRevocationList

}

ATTRIBUTE ::= {

CertificateList

id-at-certifIcateRevocationList

}

crossCertificatePair ATTRIBUTE ::= {

WITH SYNTAX CertificatePair

ID id-at-crossCertIficatePair

}

- information object classes -

ALGORITHM ::= TYPE-IDENTIFIER

- Parameterized Types -

HASHED {ToBeHashed} ::= OCTET STRING ( CONSTRAINED-BY {

-must be the result of applying a hashing procedure to the -

-DER-encoded octets of a value of -- ToBeHashed })

ENCRYPTED { To\BeEnclphered} BIT STRING ( CONSTRAINED BY {

A-3



-must be the result of applying an encipherment procedure to the -

-BER-encoded octets of a value of -- ToBeEnciphered })

SIGNED { ToBeSigned } ::= SEQUENCE{
ToBeSigned,
COMPONENTS OF SIGNATURE { ToBeSigned }),

SIGNATURE { OfSignature } ::= SEQUENCE {

Algorlthmldentifier,

ENCRYPTED { HASHED { OfSignature }}}

-- object identifier assignments --

Id-at-userPassword

id-at-userCertiflcate

Id-at-cAcertiflcate

Id-at-authorityRevocatlonLlst

Id-at-certificateRevocatlonLlst

Id-at-crossCertlflcatePair

Id-at-supportedAlgorlthms

Id-at-deltaRevocatlonLlst

END

OBJECT IDENTIFIER ::= {Id-at35}

OBJECT IDENTIFIER {Id-at36}

OBJECT IDENTIFIER ::= {jd-at37}

OBJECT IDENTIFIER ::= {Id-at38}

OBJECT IDENTIFIER ::= {id-at39}

OBJECT IDENTIFIER {id-at 40}

OBJECT IDENTIFIER ::= {id-at 52}

OBJECT IDENTIFIER ::= {id-at 53}

A-4



Appendix B - Certificate and CRL Extensions ASN.1

CertificateExtensions {joint-iso-ccitt ds(5) module(1) certiflcateExtensions(26) 0}
DEFINITIONS IMPLICIT TAGS ::=

BEGIN

- EXPORTS ALL -

IMPORTS
id-at, id-ce, Id-mr, informationFramework, authenticationFramework,

selectedAttributeTypes, upperBounds
FROM UsefulDeflnitlons {joint-iso-ccitt ds(5) module(1)
usefulDefinitions(O) 2}

Name, RelativeDistlnguishedName, ATTRIBUTE, Attribute,

MATCHING-RULE FROM InformationFramework informationFramework
CertificateSerialNumber, CertificateList, Algorithmldentifier,

EXTENSION
FROM AuthenticationFramework authenticationFramework

DirectoryString

FROM SelectedAttributeTypes selectedAttributeTypes

ub-name
FROM UpperBounds upperBounds

ORAddress
FROM MTSAbstractService {joint-iso-ccitt mhs(6) mts(3)

modules(O) mts-abstract-service(1} version-1994 (0) }

;

~ Unless explicitly noted otherwise, there is no significance to the ordering

- of components of a SEQUENCE OF construct in this specification.

- Key and policy information extensions -

authorityKeyldentifier EXTENSION ::= {

SYNTAX AuthorityKeyldentifier

IDENTIFIED BY { id-ce 35 }

}

AuthorityKeyldentifier SEQUENCE {

keyldentifier [0] Keyldentifier OPTIONAL,
authorltyCertlssuer [1] GeneralNames OPTIONAL,
authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL

}

( WITH COMPONENTS {..., authorltyCertlssuer PRESENT,
authorityCertSerialNumber PRESENT}

|

WITH COMPONENTS {..., authorltyCertlssuer ABSENT,
authorityCertSerialNumber ABSENT}

)

Keyldentifier ::= OCTET STRING

subjectKeyIdentifier EXTENSION {

SYNTAX SubjectKeyldentifier

IDENTIFIED BY { id-ce 14 }

}

SubjectKeyldentifier ::= Keyldentifier

keyUsage EXTENSION ::= {

B-1



SYNTAX KeyUsage
IDENTIFIED BY { Id-ce 15 }

}

KeyUsage ::= BIT STRING {

digitalSignature (0),

nonRepudiation (1),

keyEncipherment (2),

dataEncipherment (3),

keyAgreement (4),

keyCertSign (5),

cRLSign (6)}

prIvateKeyUsagePeriod EXTENSION ::= {

SYNTAX PrIvateKeyUsagePeriod

IDENTIFIED BY {id-ce 16}}

PrIvateKeyUsagePeriod ::= SEQUENCE {

notBefore [0] GeneralizedTime OPTIONAL,
notAfter [1] GeneralizedTime OPTIONAL

}

( WITH COMPONENTS {..., notBefore PRESENT}
|

WITH COMPONENTS {..., notAfter PRESENT}

)

certificatePolicies EXTENSION ::= {

SYNTAX CertificatePoliciesSyntax

IDENTIFIED BY { id-ce 32 }

}

CertificatePoliciesSyntax ::= SEQUENCE SIZE (1..MAX) OF Policylnformation

Policylnformation ::= SEQUENCE {

policyldentifier CertPolicyld,

policyQualifiers SEQUENCE SIZE (1..MAX) OF
PolicyQualifierlnfo OPTIONAL

}

CertPolicyld ::= OBJECT IDENTIFIER

PolicyQualifierlnfo ::= SEQUENCE {

policyQualifierld CERT-POLICY-QUALIFIER.&id
({SupportedPolicyQualifiers}),

qualifier CERT-POLICY-QUALIFIER.&Qualifier

({SupportedPolicyQualifiers}{@policyQualifierld})

OPTIONAL

}

SupportedPolicyQualifiers CERT-POLICY-QUALIFIER ::= { ...

}

CERT-POLICY-QUALIFIER ::= CLASS {

&id OBJECT IDENTIFIER UNIQUE,
&Qualifier OPTIONAL

}

WITH SYNTAX {

POLICY-QUALIFIER-ID&id
[QUALIFIER-TYPE &Qualifier]

}

policyMappings EXTENSION ::=
{

SYNTAX PolicyMappingsSyntax

IDENTIFIED BY { id-ce 33 }

}

B-2



PolicyMappingsSyntax ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {

issuerDomainPolicy CertPolicyld,

subjectDomainPolicy CertPolicyld

}

supportedAlgorlthms ATTRIBUTE ::= {

WITH SYNTAX SupportedAlgorithm

EQUALITY MATCHING RULE algorithmldentlflerMatch

ID { id-at 52 }

}

SupportedAlgorithm SEQUENCE {

algorithmldentifier Algorithmldentifier,

intendedUsage [0] KeyUsage OPTIONAL,
intendedCertificatePolicies [1] CertificatePoliciesSyntax OPTIONAL }

- Certificate subject and certificate issuer attributes extensions --

subjectAltName EXTENSION ::= {

SYNTAX GeneralNames
IDENTIFIED BY{id-ce17}}

GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

GeneralName CHOICE {

otherName [0] INSTANCE OF OTHER-NAME,
rfc822Name [1] lASString,

dNSName [2] lASString,

x400Address [3] ORAddress,
directoryName [4] Name,
ediPartyName [5] EDIPartyName,

uniformResourceldentifier [6] lASString,

iPAddress [7] OCTET STRING,
registeredID [8] OBJECT IDENTIFIER

}

OTHER-NAME ::= TYPE-IDENTIFIER

EDIPartyName SEQUENCE {

nameAssigner [0] DirectoryString {ub-name} OPTIONAL,
partyName [1] DirectoryString {ub-name}

}

issuerAltName EXTENSION {

SYNTAX GeneralNames
IDENTIFIED BY { id-ce 18 } }

subjectDirectoryAttributes EXTENSION ::= {

SYNTAX AttributesSyntax

IDENTIFIED BY { id-ce 9 }

}

AttributesSyntax ::= SEQUENCE SIZE (1..MAX) OF Attribute

~ Certification path constraints extensions -

basicConstraints EXTENSION ::= {

B-3



SYNTAX BasicConstraintsSyntax
IDENTIFIED BY { id-ce 19 }

}

BasicConstraintsSyntax ::= SEQUENCE {

cA BOOLEAN DEFAULT FALSE,
pathLenConstraint INTEGER (O..MAX) OPTIONAL }

nameConstraints EXTENSION ::= {

SYNTAX NameConstraintsSyntax
IDENTIFIED BY { id-ce 30 }

}

NameConstraintsSyntax ::= SEQUENCE {

permittedSubtrees [0] GeneralSubtrees OPTIONAL,
excludedSubtrees [1] GeneralSubtrees OPTIONAL

}

GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree

GeneralSubtree ::= SEQUENCE {

base GeneralName,
minimum [0] BaseDistance DEFAULT 0,

maximum [1] BaseDistance OPTIONAL

}

BaseDistance ::= INTEGER (O..MAX)

policyConstraints EXTENSION ::= {

SYNTAX PolicyConstraintsSyntax

IDENTIFIED BY { id-ce 36 }

}

PolicyConstraints Syntax ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {

requireExplicitPolicy [0] SkipCerts OPTIONAL,
inhibitPolicyMapping [1] SkipCerts OPTIONAL }

SkipCerts ::= INTEGER (O..MAX)

-- Basic CRL extensions --

cRLNumber EXTENSION ::= {

SYNTAX CRLNumber
IDENTIFIED BY { id-ce 20 }

}

CRLNumber ::= INTEGER (O..MAX)

reasonCode EXTENSION ::= {

SYNTAX CRLReason
IDENTIFIED BY { id-ce 21 }

}

CRLReason ::= ENUMERATED {

unspecified (0),

keyCompromise (1),

cACompromise (2),

affiliationChanged (3),

superseded (4),

cessationOfOperation (5),

certificateHold (6),

B-4



removeFromCRL (8)}

InstructionCode EXTENSION ::= {

SYNTAX Holdlnstruction

IDENTIFIED BY { id-ce 23 }

}

Holdlnstruction ::= OBJECT IDENTIFIER

InvalldityDate EXTENSION ::= {

SYNTAX GenerallzedTlme

IDENTIFIED BY { id-ce 24 }

}

-- CRL distribution points and delta-CRL extensions --

cRLDistributionPoints EXTENSION ::= {

SYNTAX CRLDistPointsSyntax

IDENTIFIED BY { id-ce 31 }

}

CRLDistPointsSyntax ::= SEQUENCE SIZE (1..MAX) OF DistributionPoint

DistributionPoint ::= SEQUENCE {

distributionPoint [0]

reasons [1]

cRLIssuer [2]

DistributlonPointName ::= CHOICE {

fullName

nameRelativeToCRLIssuer

DistributlonPointName OPTIONAL,
ReasonFlags OPTIONAL,
GeneralNames OPTIONAL

}

[0] GeneralNames,

[1] RelativeDistinguishedName

}

ReasonFlags ::= BIT STRING {

unused (0),

keyCompromlse (1),

caCompromise (2),

affiliationChanged (3),

superseded (4),

cessationOfOperation (5),

certificateHold (6)

}

IssuingDistributionPoint EXTENSION ::= {

SYNTAX IssuingDistPointSyntax

IDENTIFIED BY { id-ce 28 }

}

IssuingDistPointSyntax ::= SEQUENCE {

distributionPoint

onlyContainsUserCerts

onlyContainsCACerts

onlySomeReasons
IndirectCRL

[0] DistributlonPointName OPTIONAL,
[1] BOOLEAN DEFAULT FALSE,

[2] BOOLEAN DEFAULT FALSE,

[3] ReasonFlags OPTIONAL,

[4] BOOLEAN DEFAULT FALSE }

certificatelssuer EXTENSION ::= {

SYNTAX GeneralNames
IDENTIFIED BY { id-ce 29 }

}

B-5



deltaCRLIndicator EXTENSION ::= {

SYNTAX BaseCRLNumber
IDENTIFIED BY { id-ce 27 }

}

BaseCRLNumber ::= CRLNumber

deltaRevocatlonList ATTRIBUTE ::= {

WITH SYNTAX CertlflcateList

EQUALITY MATCHING RULE certlficateListExactMatch

ID {id-at 53 }

}

-- Matching rules --

certlflcateExactMatch MATCHING-RULE ::= {

SYNTAX CertlflcateExactAssertlon

ID id-mr-certlficateExactMatch

}

CertificateExactAssertion ::= SEQUENCE {

serialNumber CertlficateSerialNumber,

Issuer Name

}

certificateMatch MATCHING-RULE ::= {

SYNTAX CertiflcateAssertlon

ID id-mr-certificateMatch

}

CertiflcateAssertlon ::= SEQUENCE {

serialNumber [0] CertlficateSerialNumber OPTIONAL,
issuer [1] Name OPTIONAL,
subjectKeyldentifier [2] SubjectKeyldentifier OPTIONAL,
authorityKeyldentifier [3] AuthorityKeyldentifier OPTIONAL,
certificateValid [4] UTCTime OPTIONAL,
privateKeyValid [5] GeneralizedTime OPTIONAL,
subjectPublicKeyAlgID [6] OBJECT IDENTIFIER OPTIONAL,
keyUsage [7] KeyUsage OPTIONAL,
subjectAltName [8] AitNameType OPTIONAL,
policy [9] CertPolicySet OPTIONAL,
pathToName [10] Name OPTIONAL

}

AitNameType ::= CHOICE {

builtinNameForm ENUMERATED {

rfc822Name (1),

dNSName (2),

x400Address (3),

directoryName (4),

ediPartyName (5),

unlformResourceldentifier (6),

iPAddress (7),

registeredid (8) },

otherNameForm OBJECT IDENTIFIER

}

B-6



certificatePairExactMatch MATCHING-RULE ::= {

SYNTAX CertificatePairExactAssertion

ID id-mr-certificatePairExactMatch

}

CertificatePairExactAssertion ::= SEQUENCE {

forwardAssertion [0] CertificateExactAssertion OPTIONAL,
reverseAssertion [1] CertificateExactAssertion OPTIONAL }

( WITH COMPONENTS {..., forwardAssertion PRESENT}
|

WITH COMPONENTS {..., reverseAssertion PRESENT}

)

certificatePairMatch MATCHING-RULE {

SYNTAX CertificatePairAssertion

ID id-mr-certificatePairMatch

}

CertificatePairAssertion ::= SEQUENCE {

forwardAssertion [0] CertificateAssertion OPTIONAL,
reverseAssertion [1] CertificateAssertion OPTIONAL }

( WITH COMPONENTS {..., forwardAssertion PRESENT}
|

WITH COMPONENTS {..., reverseAssertion PRESENT}

)

certificateListExactMatch MATCHING-RULE ::= {

SYNTAX CertificateListExactAssertion

ID id-mr-certificateListExactMatch

}

CertificateListExactAssertion ::= SEQUENCE {

issuer Name,
thisUpdate UTCTime,
distributionPoint DistributionPointName OPTIONAL

}

certificateListMatch MATCHING-RULE ::= {

SYNTAX CertificateListAssertion

ID Id-mr-certificateListMatch

}

CertificateListAssertion ::= SEQUENCE {

issuer Name OPTIONAL,
minCRLNumber [0] CRLNumber OPTIONAL,
maxCRLNumber [1] CRLNumber OPTIONAL,
reasonFlags ReasonFlags OPTIONAL,
dateAndTime UTCTime OPTIONAL,
distributionPoint [2] DistributionPointName OPTIONAL

}

algorithmldentifierMatch MATCHING-RULE ::= {

SYNTAX Algorithmldentifier

ID id-mr-algorithmldentifierMatch

}

-- Object identifier assignments --

id-at-supportedAlgorithms OBJECT IDENTIFIER ::= {id-at52}

Id-at-deltaRevocationList OBJECT IDENTIFIER {id-at53}

id-ce-subjectDirectoryAttributes OBJECT IDENTIFIER ::= {id-ce9}

id-ce-subjectKeyldentifier OBJECT IDENTIFIER ::= {id-ce14}

id-ce-l<eyUsage OBJECT IDENTIFIER ::= {id-ce15}

id-ce-privateKeyUsagePeriod OBJECT IDENTIFIER ::= {id-ce16}

B-7



id-ce-subjectAltName OBJECT IDENTIFIER ::= firi-f*p 171

id-ce-issuerAltName OBJECT IDENTIFIER ::= lid-CP 181

id-ce-basicConstraints OBJECT IDENTIFIER ::= {id-ce 19}
id-ce-cRLNumber OBJECT IDENTIFIER ::= lld-ce 201IIVI WW ^wf
id-ce-reasonCode OBJECT IDENTIFIER ::= {Id-ce 21}
id-ce-instructionCode OBJECT IDENTIFIER ::= lld-ce 231

id-ce-invalidityDate OBJECT IDENTIFIER ::= {Id-ce 24}
id-ce-deltaCRLIndicator OBJECT IDENTIFIER ::= {id-ce 27}
id-ce-issuingDistributionPoint OBJECT IDENTIFIER ::= {id-ce 28}
id-ce-certificatelssuer OBJECT IDENTIFIER ::= {id-ce 29}

id-ce-nameConstraints OBJECT IDENTIFIER ::= {id-ce 30}
id-ce-cRLDistributionPoints OBJECT IDENTIFIER ::= {id-ce 31}
id-ce-certificatePolicies OBJECT IDENTIFIER ::= fid-ce 321

id-ce-policyMappings OBJECT IDENTIFIER ::= /id-ce 331

id-ce-policyConstraints OBJECT IDENTIFIER ::= lid-ce 3411 W\^ wt

id-ce-authorityKeyldentifier OBJECT IDENTIFIER ::= {id-ce 35}

id-mr-certificateExactMatch OBJECT IDENTIFIER ::= {id-mr 34}

id-mr-certificateMatch OBJECT IDENTIFIER ::= {id-mr 35}

id-mr-certificatePairExactMatch OBJECT IDENTIFIER ::= {id-mr 36}

id-mr-certificatePairMatch OBJECT IDENTIFIER ::= {Id-mr 37}

id-mr-certificateListExactMatch OBJECT IDENTIFIER ::= {id-mr 38}

id-mr-certificateListMatch OBJECT IDENTIFIER ::= {id-mr 39}

id-mr-algorithmldentifierMatch OBJECT IDENTIFIER ::= {id-mr 40}

~ The following OBJECT IDENTIFIERS are not used by this specification:

~ {id-ce 2}, {id-ce 3}, {id-ce 4}, {id-ce 5}, {id-ce 6}, {id-ce 7},

~ {id-ce 8}, {id-ce 10}, {id-ce 11}, {id-ce 12}, {id-ce 13},

~ {id-ce 22}, {id-ce 25}, {id-ce 26}

END

B-8



Appendix C - ASN.1 Module for transactions

The following section contains the complete ASN.l module from PKIX Part 3. Only a small

subset of the messages defined in PKIX Part 3 are required to implement this specification. The
entire module is provided for completeness. Information about messages defined by this ASN.l
module but not used in the MISPC may be found in [PKIX3].

PKIX3
DEFINITIONS IMPLICIT TAGS ::=

BEGIN

PKIMessage ::

header

body
protection

extraCerts

}

: SEQUENCE

{

PKIHeader,

PKIBody,

[0] PKIProtection OPTIONAL,

[1] SEQUENCE OF Certificate OPTIONAL

PKIHeader ::= SEQUENCE {

pvno INTEGER { ietf-version1 (0) },

sender GeneralName,
-- identifies the sender

recipient GeneralName,
- identifies the intended recipient

messageTime [0] GeneralizedTime OPTIONAL,
- time of production of this message (used when sender
-- believes that the transport will be "suitable"; i.e.,

- that the time will still be meaningful upon receipt)

protectionAlg [1] Algorithmldentifier OPTIONAL,
- algorithm used for calculation of protection bits

senderKID [2] Keyldentifier OPTIONAL,
recipKID [3] Keyldentifier OPTIONAL,
- to identify specific keys used for protection

transactionID [4] OCTET STRING OPTIONAL,
- identifies the transaction, i.e., this will be the same in

-- corresponding request, response and confirmation messages
senderNonce [5] OCTET STRING OPTIONAL,
reclpNonce [6] OCTET STRING OPTIONAL,
-- nonces used to provide replay protection, senderNonce
- is inserted by the creator of this message; recipNonce
~ is a nonce previously inserted in a related message by
- the intended recipient of this message
freeText [7] PKIFreeText OPTIONAL
-- this may be used to indicate context-specific

- instructions (this field is intended for human
- consumption)

}

PKIFreeText ::= CHOICE {

lASString [0] lASString,

bMPString [1] BMPString

}

C-1



PKIBody ::= CHOICE { -- message-specific body elements
ir [0] InitReqContent,

ID [1] InitRepContent,

cr [2] CertReqContent,

CD [3] CertRepContent,

p10cr [41 PKCSIOCertReaContent, - imDorted from fPKCSIOl
popdecc [5] POPODecKeyChallContent,
popdecr [6] POPODecKeyRespContent,
kur [7] KeyUpdReqContent,
kup [8] KeyUpdRepContent,
krr [9] KeyRecReqContent,
krn noi KevRerReoContent

rr ri11 RevReaContent
ri21 RpvRpDContent
n*?! nrn^^nprtRpaContpnt
1 1 wj wl iriCUwwl lid llj

ccp ri41 CrossCertReoContent.

ckuann ri51 CAKevUDdAnnContent
cann ri61 CertAnnContent.

rann [17] RevAnnContent,
criann [18] CRLAnnContent,
conf [19] PKIConfirmContent,

nested [20] NestedMessageContent,
infer [21] PKIInfoReqContent,

infop [22] PKIInfoRepContent,

error [23] ErrorMsgContent

}

PKIProtection ::= BIT STRING

ProtectedPart ::= SEQUENCE {

header PKIHeader,

body PKIBody

}

PasswordBasedMac ::= OBJECT IDENTIFIER

PBMParameter ::= SEQUENCE {

salt OCTET STRING,
owf Algorithmldentifier,

-- Algid for a One-Way Function (SHA-1 recommended)
iterationCount INTEGER,
" number of times the OWF is applied

mac Algorithmldentifier

~ the MAC Algid (e.g., DES-MAC or Triple-DES-MAC [PKCS #11])

}

DHBasedMac ::= OBJECT IDENTIFIER

DHBMParameter ::= SEQUENCE {

owf Algorithmldentifier,

- Algid for a One-Way Function (SHA-1 recommended)
mac Algorithmldentifier

- the MAC Algid (e.g., DES-MAC or Triple-DES-MAC [PKCS #11])

C-2



}

NestedMessageContent ::= ANY
- This will be a PKIMessage

CertTemplate ::= SEQUENCE {

version [0] Version OPTIONAL,
- used to ask for a particular syntax version

serial [1] INTEGER OPTIONAL,
- used to ask for a particular serial number
signingAlg [2] Algorithmldentifier OPTIONAL,
" used to ask the CA to use this alg. for signing the cert

subject [3] Name OPTIONAL,
validity [4] OptionalValidity OPTIONAL,
issuer [5] Name OPTIONAL,
publicKey [6] SubjectPublicKeylnfo OPTIONAL,
issuerUID [7] Uniqueldentifier OPTIONAL,
subjectUID [8] Uniqueldentifier OPTIONAL,
extensions [9] Extensions OPTIONAL
- the extensions which the requester would like in the cert.

}

OptionalValidity ::= SEQUENCE {

notBefore [0] UTCTime OPTIONAL,
notAfter [1] UTCTime OPTIONAL

}

EncryptedValue ::= SEQUENCE {

encValue BIT STRING,
-- the encrypted value itself

intendedAlg [0] Algorithmldentifier OPTIONAL,
-- the intended algorithm for which the value will be used
symmAlg [1] Algorithmldentifier OPTIONAL,
-- the symmetric algorithm used to encrypt the value

encSymmKey [2] BIT STRING OPTIONAL,
-- the (encrypted) symmetric key used to encrypt the value

keyAlg [3] Algorithmldentifier OPTIONAL
- algorithm used to encrypt the symmetric key

}

PKIStatus ::= INTEGER {

granted (0),

-- you got exactly what you asked for

grantedWithMods (1),

- you got something like what you asked for; the

- requester is responsible for ascertaining the differences

rejection (2),

- you don't get it, more information elsewhere in the message
waiting (3),

-- the request body part has not yet been processed,
- expect to hear more later

revocationWarning (4),

~ this message contains a warning that a revocation is

C-3



-- imminent

revocationNotification (5),

-- notification that a revocation has occurred
l(eyUpdateWarning (6)

-- update already done for the oldCertId specified in

- FullCertTemplate

}

PKIFailurelnfo ::= BIT STRING {

since we can fail in more than one way!
badAlg (0), -- unrecognized or unsupported algorithm identifier

badMessageCheck (1), -- integrity check failed (e.g., signature did not verify)

badRequest (2), - transaction not permitted or supported
badTime (3), - messageTime field was not sufficiently close

-- to the system time, as defined by local policy

badCertId (4), - no certificate could be identified matching the
-- provided criteria

badPoP (5) - proof of possession field did not verify

-- more TBS

PKIStatuslnfo ::= SEQUENCE {

status PKIStatus,

statusString PKIFreeText OPTIONAL,
faillnfo PKIFailurelnfo OPTIONAL

}

Certid ::= SEQUENCE {

issuer GeneralName,
serialNumber INTEGER

}

OOBCert ::= Certificate

OOBCertHash ::= SEQUENCE {

hashAlg [0] Algorlthmldentifier OPTIONAL,
certid [1] Certid OPTIONAL,
hashVal BIT STRING
-- hashVal is calculated over DER encoding of the

-- subjectPublicKey field of the corresponding cert.

}

PKIArchiveOptions ::= CHOICE {

encryptedPrivKey [0] EncryptedValue,
-- the actual value of the private key

keyGenParameters [1] KeyGenParameters,
~ parameters which allow the private key to be re-generated

archlveRemGenPrivKey [2] BOOLEAN
- set to TRUE if sender wishes receiver to archive the private

~ key of a key pair which the receiver generates in response to

- this request; set to FALSE if no archival is desired.

}

KeyGenParameters ::= OCTET STRING

C-4



- actual syntax is «TBS»
- an alternative to sending the key is to send the information
- about how to re-generate the key (e.g. for many RSA
- Implementations one could send the first random number tested
-- for primality)

PKIPublicationlnfo ::= SEQUENCE {

action INTEGER {

dontPublish (0),

pleasePublish (1)

},

publnfos SEQUENCE OF SinglePublnfo OPTIONAL
- publnfos must not be present if action is "dontPublish"
- (if action is "pleasePublish" and publnfos is omitted,
-- "dontCare" is assumed)

SinglePublnfo ::= SEQUENCE {

pubMethod INTEGER {

dontCare (0),

x500 (1),

web (2)

}.

pubLocation GeneralName OPTIONAL

}

FullCertTemplates ::= SEQUENCE OF FullCertTemplate

FullCertTemplate ::= SEQUENCE {

certReqId INTEGER,
- to match this request with corresponding response
- (note: must be unique over all FullCertReqs in this message)
certTemplate CertTemplate,

popoSigningKey [0] POPOSigningKey OPTIONAL,
archiveOptions [1] PKIArchiveOptions OPTIONAL,
publicationlnfo [2] PKIPublicationlnfo OPTIONAL,
oldCertId [3] Certid OPTIONAL
- id. of cert, which is being updated by this one

}

POPOSigningKey ::= SEQUENCE {

poposklnput POPOSKInput,
alg Algorithmldentifier,

signature BIT STRING
-- the signature (using "alg") on the DER-encoded
- value of poposklnput

}

POPOSKInput ::= CHOICE {

popoSigningKeylnput [0] POPOSigningKeylnput,

certificationRequestlnfo CertificationRequestlnfo

- imported from [PKCS10] (note that if this choice is used,
-- POPOSigningKey is simply a standard PKCS #10 request; this

- allows a bare PKCS #10 request to be augmented with other

C-5



desired information in the FullCertTemplate before being
-- sent to the CA/RA)

}

POPOSigningKeylnput ::= SEQUENCE {

authlnfo CHOICE {

sender [0] GeneralName,
-- from PKIHeader (used only if an authenticated identity

-- has been established for the sender (e.g., a DN from a

- previously-issued and currently-valid certificate)

publlcKeyMAC [1 ] BIT STRING
-- used if no authenticated GeneralName currently exists for

- the sender; publicKeyMAC contains a password-based MAC
~ (using the protectionAlg Algid from PKIHeader) on the
~ DER-encoded value of publicKey

},

publicKey SubjectPublicKeylnfo ~ from CertTemplate

}

InitReqContent ::= SEQUENCE {

protocolEncKey [0] SubjectPublicKeylnfo OPTIONAL,
fullCertTemplates FullCertTemplates

}

InitRepContent ::= CertRepContent

CertReqContent ::= CHOICE {

fullCertTemplates [0] FullCertTemplates,

pkcslOCertReqContent [1] PKCSIOCertReqContent

}

POPODecKeyChallContent ::= SEQUENCE OF Challenge
~ One Challenge per encryption key certification request (in the

~ same order as these requests appear in FullCertTemplates).

Challenge ::= SEQUENCE {

owf Algorithmldentifier OPTIONAL,
" must be present in the first Challenge; may be omitted in any
~ subsequent Challenge in POPODecKeyChallContent (if omitted,

~ then the owf used in the immediately preceding Challenge is

~ to be used).

witness OCTET STRING,
- the result of applying the one-way function (owf) to a

~ randomly-generated INTEGER, A. [Note that a different

" INTEGER must be used for each Challenge.]

challenge OCTET STRING
" the encryption (under the public key for which the cert.

- request is being made) of Rand, where Rand is specified as
~ Rand ::= SEQUENCE!
- int INTEGER,

- the randomly-generated INTEGER A (above)

sender GeneralName
- the sender's name (as included in PKIHeader)

- }

C-6



}

POPODecKeyRespContent ::= SEQUENCE OF INTEGER
-- One INTEGER per encryption key certification request (in the

- same order as these requests appear In FullCertTemplates). The
- retrieved INTEGER A (above) is returned to the sender of the
-- corresponding Challenge.

CertRepContent ::= SEQUENCE {

caPub [1] Certificate OPTIONAL,
response SEQUENCE OF CertResponse

}

CertResponse ::= SEQUENCE {

certReqId INTEGER,
- to match this response with corresponding request

status PKIStatuslnfo,

certifiedKeyPair CertifiedKeyPair OPTIONAL

}

CertifiedKeyPair ::= SEQUENCE {

certificate [0] Certificate OPTIONAL,
encryptedCert [1] EncryptedValue OPTIONAL,
privateKey [2] EncryptedValue OPTIONAL,
publicationlnfo [3] PKIPublicationlnfo OPTIONAL

}

KeyUpdReqContent ::= SEQUENCE {

protocolEncKey [0] SubjectPublicKeylnfo OPTIONAL,
fullCertTemplates [1] FullCertTemplates OPTIONAL

}

KeyUpdRepContent ::= InitRepContent

KeyRecReqContent ::= InitReqContent

KeyRecRepContent ::= SEQUENCE {

status PKIStatuslnfo,

newSigCert [0] Certificate OPTIONAL,
caCerts [1] SEQUENCE OF Certificate OPTIONAL,
keyPairHist [2] SEQUENCE OF CertifiedKeyPair OPTIONAL

RevReqContent ::= SEQUENCE OF RevDetalls

RevDetails ::= SEQUENCE {

certDetails CertTemplate,
-- allows requester to specify as much as they can about
- the cert, for which revocation is requested
-- (e.g. for cases in which serialNumber is not available)

revocationReason ReasonFlags,
- from the DAM, so that CA knows which Dist. point to use

badSinceDate GeneralizedTime OPTIONAL,
-- indicates best knowledge of sender

C-7



crIEntryDetails Extensions
-- requested criEntryExtensions

}

RevRepContent ::= SEQUENCE {

status PKIStatuslnfo,

revCerts [0] SEQUENCE OF Certid OPTIONAL,
- identifies the certs for which revocation was requested

crIs [1] SEQUENCE OF CertificateList OPTIONAL
- the resulting CRLs (there may be more than one)

}

CrossCertReqContent ::= CertReqContent

CrossCertRepContent ::= CertRepContent

CAKeyUpdAnnContent ::= SEQUENCE {

oldWithNew Certificate, - old pub signed with new priv

newWithOld Certificate, - new pub signed with old priv

newWithNew Certificate - new pub signed with new priv

}

CertAnnContent ::= Certificate

RevAnnContent ::= SEQUENCE {

status PKIStatus,

certid Certid,

willBeRevokedAt GeneralizedTime,

badSinceDate GeneralizedTime,

crIDetails Extensions OPTIONAL
- extra CRL details(e.g., crI number, reason, location, etc.)

CRLAnnContent ::= SEQUENCE OF CertificateList

PKIConfirmContent ::= NULL

InfoTypeAndValue ::= SEQUENCE {

infoType OBJECT IDENTIFIER,

infoValue ANY DEFINED BY infoType OPTIONAL

}

Example InfoTypeAndValue contents include, but are not limited to:

{ CAProtEncCert = { xx }, Certificate }

{ SignKeyPairTypes = { xx }, SEQUENCE OF Algorithmldentifier

}

{ EncKeyPairTypes = { xx }, SEQUENCE OF Algorithmldentifier

}

{ PreferredSymmAlg = { xx }, Algorithmldentifier }

{ CAKeyUpdatelnfo = { xx }, CAKeyUpdAnnContent }

{ CurrentCRL = { xx }, CertificateList }

PKIInfoReqContent ::= SET OF InfoTypeAndValue

The OPTIONAL infoValue parameter of InfoTypeAndValue is unused.
-- The CA is free to ignore any contained OBJ. IDs that it does not

-- recognize.

C-8



~ The empty set indicates tliat the CA may send any/all information

- that it wishes.

PKIInfoRepContent ::= SET OF InfoTypeAndValue
-- The end-entity is free to ignore any contained OBJ. IDs that it

- does not recognize.

ErrorlWsgContent ::= SEQUENCE {

pKIStatuslnfo PKIStatuslnfo,

errorCode INTEGER OPTIONAL,
- implementation-specific error codes
errorDetails PKIFreeText OPTIONAL
- implementation-specific error details

}

C-9





ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SECURITY

Superintendent of Documents

Government Printing Office

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Institute of Standards and Technology Special Publication 800-.

Name

Company

Address

City State Zip Code

(Notification key N-503)





Technical Publications

Periodical

Journal of Research of the National Institute of Standards and Technology—Reports NIST research

and development in those disciplines of the physical and engineering sciences in which the Institute is

active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a

broad range of subjects, with major emphasis on measurement methodology and the basic technology

underlying standardization. Also included from time to time are survey articles on topics closely related to

the Institute's technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the

Institute's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) devel-

oped in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NIST, NIST annual reports, and

other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

National Standard Reference Data Series—^Provides quantitative data on the physical and chemical

properties of materials, compiled from the world's literature and critically evaluated. Developed under a

worldwide program coordinated by NIST under the authority of the National Standard Data Act (Public

Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published

bimonthly for NIST by the American Chemical Society (ACS) and the American Institute of Physics (AIP).

Subscriptions, reprints, and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, DC
20056.

Building Science Series—Disseminates technical information developed at the Institute on building

materials, components, systems, and whole strucmres. The series presents research results, test methods, and

performance criteria related to the structural and environmental functions and the durability and safety

characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of

a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the

subject area. Often serve as a vehicle for final reports of work performed at NIST under the sponsorship of

other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce
in Part 10, Title 15, of die Code of Federal Regulations. The standards establish nationally recognized

requirements for products, and provide all concerned interests with a basis for common understanding of

the characteristics of the products. NIST administers this program in support of the efforts of private-sector

standardizing organizations.

Order the following NIST publications—FIPS and NISTIRs-^om the National Technical Information

Service, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—^Publications in this series

collectively constitute the Federal Information Processing Standards Register. The Register serves as the

official source of information in the Federal Goveriunent regarding standards issued by NIST pursuant to

die Federal Property and Administrative Services Act of 1949 as amended. Public Law 89-306 (79 Stat.

1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of

Title 15 CFR (Code of Federal Regulations).

NIST Interagency Reports (NISTIR)—A special series of interim or final reports on work performed by

NIST for outside sponsors (both government and nongovernment). In general, initial distribution is handled

by the sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161,

in paper copy or microfiche form.



h
O c3

© on

8
ON
ON
00o

.ts 00
L. S O

a.— c« — j=

3 Z §

3


