
 NIST Special Publication 500-264

Proceedings of Defining the State of the
Art in Software Security Tools Workshop

Paul E. Black (workshop chair)

Elizabeth Fong (editor)

Information Technology Laboratory
National Institute of Standards & Technology

Gaithersburg MD 20899

September 2005

U.S. Department of Commerce
Carlos M. Gutierrez. Secretary

Technology Administration

Phillip Bond, Under Secretary of Commerce for Technology

National Institute of Standards and Technology
William Jeffrey, Director

Disclaimer: Any commercial product mentioned is for information only; it does not
imply recommendation or endorsement by NIST nor does it imply that the products
mentioned are necessarily the best available for the purpose.

Defining the State of the Art in Software Security Tools (SoftSecTools’05 Proceedings)
ISBN # 1-59593-179-1/05/08

 2

Proceedings of

Defining the State of the Art in Software Security Tools
 Workshop

Paul E. Black (workshop chair)
Elizabeth Fong (editor)

Information Technology Laboratory
National Institute of Standards and Technology

Gaithersburg, MD 20899

ABSTRACT

This proceeding is the result of a workshop held on August 10 and 11, 2005 hosted by the
Software Diagnostics and Conformance Testing Division, Information Technology
Laboratory, at the National Institute of Standards and Technology. The workshop,
“Defining the State of the Art in Software Security Tools,” is one of a series in the NIST
Software Assurance Measurement and Tool Evaluation (SAMATE) project, which is partially
funded by DHS to help identify and enhance software security assurance (SSA) tools. The goal
of this workshop is to understand the state of the art of SSA tools that detect security
flaws and vulnerabilities and develop a standard reference dataset of programs with
known flaws. Forty-five people from outside NIST attended, including representatives
from the federal government (NSF, FDA, NSA, DoD, and DHS), seven universities,
more than a dozen tool vendors and service providers, and many research companies.

Keywords: Software assessment tools; software assurance; software metrics;
software security; reference dataset; vulnerability

 3

Foreword

The workshop on “Defining the State of the Art in Software Security Tools” was held 10-
11 August 2005 at the National Institute of Standards and Technology in Gaithersburg,
Maryland. Forty-five people from outside NIST attended, including people from
government, universities, tool vendors and service providers, and research companies.

For this workshop, members of the workshop committee introduced each session with a
brief orientation, then led a discussion among the attendees. The discussions ranged from
whether tools and services are commercially viable to if there was enough academic
interest and research to how best to encourage more secure software (in both sense) to be
developed.

The goals of this workshop were to

• move toward a shared taxonomy of software security flaws and vulnerabilities,
• outline a shared taxonomy of software security assurance (SSA) functions,
• understand the state of the art of SSA tools embodying those functions,
• discuss possible metrics to evaluate the effectiveness of SSA tools, and
• find, collect, and develop a set of flawed and "clean" software to be a standard

reference dataset.

Several groups that have been developing taxonomies of security flaws and
vulnerabilities exchanged notes and agreed to work together to develop standard
nomenclature. Many volunteered to help work toward a standard reference dataset.

These proceedings have five main parts:

• introduction, agenda, etc.,
• position statements and background information from participants,
• discussion material developed by NIST employees,
• extensive notes of the discussions, including the orientations, and
• other material submitted by participants.

Position statements precede the associated participant's background material (the Think-
Tank approach) so you can consider the position statement first, discover the source, then
reconsider the statement, if warranted.

We thank those who worked to organize this workshop, particularly Elizabeth Fong, who
handled much of the correspondence. We are grateful to NIST, especially the Software
Diagnostics and Conformance Testing division, for providing the facilities and
organizers' time. Special thanks go to Dr. William Spees, FDA, for a very thorough
review of the minutes. On behalf of the program committee and the whole SAMATE
team, thanks to everyone for taking their time and resources to join us.

Dr. Paul E. Black

 4

Table of Contents

Summary... 6
Workshop Announcement .. 7
Workshop Agenda .. 9
Attendees .. 10
Position Statements and Background Information............................ 13

Discussion Material.. 46

Survey of SA Tools by Categories.. 46
The State of the Art in SA Tools and their Functions... 50
Classes of Software Security Flaws and Vulnerabilities .. 52
Possible Metrics to Evaluate SA Security Tools .. 58
Reference Dataset ... 60

Workshop Minutes ... 63

Welcome (Shashi Phoha).. 63
Scope and Introduction (Paul Black) .. 64
Tools Survey and Categorization (Elizabeth Fong).. 67
Taxonomy of Software Assurance Functions (Michael Kass) 71
Recommended Best Practices, or, State of the Art in SA Tools (Brad Martin) 75
Software Assurance Vulnerability List &Taxonomy (Mike Koo) 79
Security metrics for Software and Tools (Paul Black) ... 83
Reference Dataset (Mike Sindelar)... 85
Next Step(s) (Paul Black) ... 89
Develop Consensus on Workshop Report (Paul Black) ... 90
Conclusions... 93

Submitted Material ... 94

Michael Zhivich, Tim Leek, & Richard Lippmann, “Dynamic Buffer Overflow
Detection.”

Kendra Kratkiewicz & Richard Lippmann, “Using a Diagnostic Corpus of C

Programs to Evaluate Buffer Overflow Detection by Static Analysis Tools.”

Thomas W. Reps, Tim Teitelbaum, Paul Anderson, & David Melski, “Static

Analysis of Binary Executable Code.”

 5

Summary

This is the proceeding of the workshop on Defining the State of the Art in Software
Security Tools held on August 10 and 11, 2005. It was hosted by the Software
Diagnostics and Conformance Testing Division, Information Technology Laboratory, at
the National Institute of Standards and Technology (NIST) in Gaithersburg, MD, USA.

The workshop is one of a series in the NIST Software Assurance Measurement and Tool
Evaluation (SAMATE) project, home page http://samate.nist.gov/ Before the workshop
the SAMATE team posted discussion material. The workshop consisted of eight sessions:

- Tools survey and categorization
- Taxonomy of software assurance functions
- Recommended best practices, or, state of the art in software assurance tools
- Software assurance (SA) vulnerability list and taxonomy
- Software assurance (SA) tool metrics
- Reference dataset
- Next steps
- Develop consensus of workshop report

Each session had a facilitator who presented orientation material. The pre-workshop
discussion material, orientation material for each session, and workshop minutes are
included in these proceedings. Here are summaries of the discussions:

- The scope of the tools surveyed was too narrowly focused on just security
coding tools and needs to expand to assurance tools which are used in the
requirements and design phase of software development life cycle.

- In the session on software assurance functions, discussions centered around
the fact the tools do not do the same thing and it is difficult to compare tools.
However, most agreed that a specification of tool functions (e.g., detecting
buffer overflow) is useful.

- The state of the art of software assurance tools was considered not mature due
to lack of knowledge in education and lack of research in how to produce
secure software.

- A taxonomy of vulnerabilities is important, however, it will be difficult to
achieve “a taxonomy” with properties that everyone will agree on.

- Software metrics and tool metrics are difficult areas and more research is
required to develop a set of attributes for measurements.

- There were general consensus that establishing a set of test cases, or reference
dataset, was a good idea. Many volunteered to help establish it.

- The workshop concluded with identifying working groups in several areas to
begin the process of defining the requirements of SA tool functions and a
vulnerability taxonomy, and populating the SAMATE reference dataset.

 6

http://samate.nist.gov/

Workshop Announcement

Defining the State of the Art in Software Security Tools

10 - 11 August 2005, Gaithersburg, Maryland, USA

http://samate.nist.gov/softSecToolsSOA

Organized by the U.S.
National Institute of Standards and Technology (NIST)

Software assurance (SA) tools can help software developers produce software with fewer
known security flaws or vulnerabilities. They can also help identify malicious code and
poor coding practices that lead to vulnerabilities. There are more than a dozen source
code scanners alone, in addition to dozens of other software security tools and services.
Reference datasets of clean code and code with security flaws, along with metrics, can
help advance the state of the art in software security tools. These metrics and reference
datasets can also help purchasers confirm tool vendors' claims. To help develop metrics
and reference datasets, the Information Technology Laboratory of the U.S. National
Institute of Standards and Technology (NIST) is planning a workshop. One goal of the
workshop is to understand the state of the art of SA tools that detect security flaws and
vulnerabilities. Participants will also discuss

• possible metrics to evaluate the effectiveness of SA security tools and
• finding, collecting, or developing a set of flawed and "clean" software to be

reference code for such evaluation.

As a result of the workshop, we will publish a report on classes of known software
security vulnerabilities and the state of the art of security SA tools.

By mid-July, we will publish references to, rough drafts, preliminary versions, or
sketches of the following to help generate discussion and comment:

• classes of software security flaws and vulnerabilities,
• a survey of SA security tools and companies,
• the state of the art in SA security tools,
• possible metrics to evaluate SA security tools, and
• a reference set of flawed and "clean" software.

 7

ATTENDANCE and REGISTRATION:

To help us plan the workshop, please send a brief position statement and professional
background information. The position statement should address one or more issues in the
workshop purpose. The background information should describe your experience this
area and your interest, for instance whether you are a vendor, a user, or a researcher of
SA security tools. So that we can get you a NIST visitor pass, please include your full
name and country of citizenship. If you are not a U.S. citizen, also include your title
(e.g., CEO, Program Mgr.), employer/sponsor, and address.

We invite those who develop, use, purchase, or review software security evaluation tools.
Academicians who are working in the area of semi- or completely automated tools to
review or assess the security properties of software are especially welcome. We are
looking for participation from researchers, students, developers, and users in industry,
government, and universities.

Send plain text or PDF submissions to Liz Fong <efong@nist.gov>. Your submission
constitutes permission for us to publish your position statement and identifying
information in workshop proceedings.

SCHEDULE:
 18 June 2005 - Deadline for submission of position statements.
 11 July 2005 - Agenda and references, drafts, sketches, etc. published.
 10-11 August 2005 - Workshop.
 23 September 2005 - Report and proceedings published.

Workshop Chair: Paul E. Black
Program Committee: John Barkely, Elizabeth Fong, Michael Kass, Michael Koo, Brad Martin,
 and Carl Landwehr

 8

Workshop Agenda

August 10, 2005

9:00 am Welcoming Remarks Shashi Phoha, Director,
NIST ITL

9:10 am Round Robin Introductions and Workshop Goals Paul Black

9:30 am Tools Survey and Categorization Facilitator: Elizabeth Fong

10:15 am Break

10:25 am Taxonomy of Software Assurance Functions Facilitator: Mike Kass

11:30 am Lunch

1:00 pm Recommended Best Practices, or, State of the Art
in SA Tools

Facilitator: Brad Martin

2:00 pm Software Assurance Vulnerability List and
Taxonomy

Facilitator: Mike Koo

3:30 pm Break

3:45 pm Software Assurance Tool Metrics Facilitator: Paul Black

5:00 pm End of Day 1

August 11, 2005

9:00 am Recap of Previous Day Paul Black

9:15 am Reference Dataset Facilitator: Mike Sindelar

10:45 am Break

11:00 am Next Step Facilitator: Paul Black

11:30 am Develop Consensus on Workshop Report Facilitator: Paul Black

12:30pm End of Workshop

 9

Attendees

Paul Anderson
GrammaTech, Inc.
paul@grammatech.com

John Barkley
NIST
John.barkley@nist.gov

Sean Barnum
Cigital, Inc
sbarnum@cigital.com

Ryan Berg
Ounce Labs
Ryan.Berg@ouncelabs.com

Joseph I Bergmann
The Open Group
j.bergmann@opengroup.org

Paul E. Black
NIST
Paul.black@nist.gov

Djenana Campara
Klocwork
djenana@klocwork.com

Dave Clauson
Reflective Corporation
dclauson@reflectivecorp.com

Pravir Chandra
Secure Software
Pravir.chandra@securesoftware.org

Brian Chess
Fortify Software
brian@fortifysoftware.com

Steve M. Christey
Mitre Corporation
coley@mitre.org

Patricia Costa
Fraunhofer Center for Experimental
Software Engineering,
pcosta@fc-md.umd.edu

Eric Dalci
NIST
Eric.dalci@nist.gov

Mark Fallon
Oracle Corporation
mark.L.fallon@oracle.com

Brett Fleisch
National Science Foundation
 bfleisch@nsf.gov

Elizabeth Fong
NIST
efong@nist.gov

Karen Mercedes Goertzel
Booz Allen Hamilton
goertzel_karen@bah.com

 Doug Gooden
CTC Corporation
goodin@ctc.com

Michael W. Hicks
University of Maryland, College Park
mwh@cs.umd.edu

David Jackson
QinetiQ
dmjackson@QinetiQ.com

Joe Jarzombek
Department of Homeland Security
Joe.jarzombek@dhs.gov

 10

mailto:paul@grammatech.com
mailto:John.barkley@nist.gov
mailto:sbarnum@cigital.com
mailto:Ryan.Berg@ouncelabs.com
mailto:j.bergmann@opengroup.org
mailto:Paul.black@nist.gov
mailto:djenana@klocwork.com
mailto:dclauson@reflectivecorp.com
mailto:Pravir.chandra@securesoftware.org
mailto:brian@fortifysoftware.com
mailto:coley@mitre.org
mailto:pcosta@fc-md.umd.edu
mailto:Eric.dalci@nist.gov
mailto:mark.L.fallon@oracle.com
mailto:bfleisch@nsf.gov
mailto:efong@nist.gov
mailto:goertzel_karen@bah.com
mailto:gooden@ctc.com
mailto:mwh@cs.umd.edu
mailto:dmjackson@QinetQ.com
mailto:Joe.jarzombek@dhs.gov

Tobie Jones
Booz Allen Hamilton
jones_tobie@bah.com

Michael Kass
NIST
Michael.kass@nist.gov

Michael Koo
NIST
Michael.koo@nist.gov

Richard Lippmann
MIT, Lincoln Laboratory
lippmann@ll.mit.edu

Benjamin Livshits
Stanford Univeresity
livshits@cs.stanford.edu

Brad Martin
NSA
wbmarti@tarius.tycho.ncsc.mil

Robert A. Martin
Mitre Corporation
 ramartin@mitre.org

Gary McGraw
 Cigital
 gem@cigital.com

David Melski
GrammTech, Inc.
melski@grammatech.com

Prateek Mishra
Oracle
Prateek.mishra@oracle.com

Hank Morris
CTC Corporation
morrish@ctc.com

James W. Nash
Nash Laboratories, Inc.
jwn@nashlabs.com

Don O'Neill
Center for National Software Studies
OneillDon@aol.com

Joseph Pamula
George Mason University
Center for Secure Information System
jpamula@gmu.edu

John Peyton
Ounce Labs
John.Peyton@ouncelabs.com

Cody Pierce
Citadel Security Software, Inc.
cpierce@citadel.com

William Worthington Pugh Jr.
University of Maryland, College Park
pugh@cs.umd.edu

Samuel Redwine
James Madison University
redwinst@CISAT.JMU.EDU

Michael Sindelar
NIST
michael.sindelar@nist.gov

William S. Spees
USA CDRH (FDA)
wss@cdrh.fda.gov

Pedro Vales
Concurrent Technologies
valesp@ctc.com

Larry D. Wagoner
DOD
l.wagone@radium.ncsc.mil

Andrew White
National Security Agency
awhite@empire.eclipse.ncsc.mil

 11

mailto:jones_tobie@bah.com
mailto:Michael.kass@nist.gov
mailto:Michael.koo@nist.gov
mailto:lippmann@ll.mit.edu
mailto:livshits@cs.stanford.edu
mailto:wbmarti@tarius.tycho.ncsc.mil
mailto:ramartin@mitre.org
mailto:gem@cigital.com
mailto:melski@grammatech.com
mailto:Prateek.mishra@oracle.com
mailto:morrish@ctc.com
mailto:jwn@.nashlabs.com
mailto:OneillDon@aol.com
mailto:jpamula@gmu.edu
mailto:John.Peyton@ouncelabs.com
mailto:cpierce@citadel.com
mailto:pugh@cs.umd.edu
mailto:redwinst@CISAT.JMU.EDU
mailto:michael.sindelar@nist.gov
mailto:wss@cdrh.fda.gov
mailto:valesp@ctc.com
mailto:l.wagone@radium.ncsc.mil
mailto:awhite@empire.eclipse.ncsc.mil

Chris Wysopal Dave Wichers
Symantec Corporation Aspect Security

Dave.wichers@aspectsecurity.com cwysopal@gmail.com

Theodore Winograd Kenneth R. van Wyk
Booz Allen Hamilton Krvw Associates
winograd_theodore@bah.com ken@krvw.com

Stan Wisseman, CISP, CISM Marvin Zelkowitz
Booz Allen Hamilton University of Maryland and

Fraunhofer Center for Experimental
Software Engineering, MD

wisseman_stan@bah.com

 marv@zelkowitz.com

 12

mailto:Dave.wichers@aspectsecurity.com
mailto:WINOGRAD_THEODORE@bah.com
mailto:wisseman_stan@bah.com
mailto:cwysopal@gmail.com
mailto:ken@krvw.com
mailto:marv@zelkowitz.com

Position Statements and Background Information

This section contains the position statements and background information that have been
submitted by the workshop participants. Some participants did not submit position
statements or biographical information and, therefore, these are omitted. Some
submitted materials but did not attend the workshop; their materials are included in this
document. Some also submitted papers; and these are included in the section “Submitted
Material”.

Position Statement 1

Present software security state-of-the-art can be divided into existing commercial tools,
existing research efforts (near-term-future tools), and practices & procedures. Of these
three, the first currently focuses largely on signature-based "unsafe function" detection
(e.g. the much-reviled sprintf() with its lack of boundary checking), with a secondary
emphasis on tracking the flow of "tainted" data. These are effective at identifying a
subset of vulnerabilities, particularly those of certain buffer overflows and SQL injection
attacks, but are subject to significant false-positive reporting and miss nearly identical
vulnerabilities where a signed function is written by hand, or where taint-checking
functions are flawed but trusted by the tools. The second category of efforts, current
research, again focus largely on buffer and stack overflows; practices & procedures offer
a wider scope of checking with human intelligence in a code review (whether an audit
committee, or a lighter review system such as the "extreme programming" buddy system
or open-source model "approver" role), as well as managerial visibility in tracking and
trending statistics. The practices & procedures are slowly moving from state-of-art to
state-of-practice, led largely by open-source and small-practice consulting teams; tools
are being adopted but yet more slowly, and typically by larger, more affluent
organizations.

These are positive measures, and can be shown to help reduce large classes of defects of
the sort that have been exploited by hackers and worm-writers. However, considering the
full spectrum of possible software attack, these are effective only in closing a portion of
the "accidental vulnerability" set, and many are effectively only with access to source
code. Thus, end customers remain largely ignorant of the vulnerability status of products
they buy, and integrators may be ignorant of vulnerabilities in binary components (e.g.
software libraries) they use in their products. Moreover, "deliberate vulnerabilities"---
whether back doors designed benignly for debugging and maintenance, or more
maliciously constructed functions---cannot be detected, because today's tools cannot
differentiate those mis-features from legitimate functionality.

This suggests the need for an emphasis on binary code analysis and/or decompilation for
analysis, accessible even to informed end-users without source code, and on the need for
tools that cross-check implementation against the designed intent of software.

 13

Recognizing that both are very hard problems, there will otherwise be large classes of
vulnerabilities that cannot be detected, and less external incentive for vendors to ensure
that their products pass testing.

Mr. Freeland Abbott
Georgia Tech Research Institute
Freeland.Abbott@gtri.gatech.edu

Mr. Freeland Abbott is a research scientist at the Georgia Tech Research Institute, with a
degree in computer science & engineering from MIT. He has been a professional
developer of several complex software systems for about 15 years. At GTRI, under
contract to the Joint Systems Integration Command, he recently conducted an analysis
source code assessment tools, and smaller "quick look" assessments of related products,
which has re-energized his earlier interest in compilers, debuggers, and verification tools.
As a software engineer, Mr. Abbott has interest and background in techniques and
processes for software design and quality assurance generally, as well as security and
vulnerability minimization specifically.

Position Statement 2

The Context. A substantial percentage of all US coding jobs will be outsourced to China,
Israel, Russia, the E.U., and India in the coming decade. On top of the trend toward
outsourcing, there is increasing deployment of COTS software—for which source code is
often unavailable—in presumably secure national and DoD information systems.
Moreover, legacy code—for which design documents are usually out-of-date, and for
which source code is sometimes unavailable and sometimes non-existent—will continue
to be left deployed.

The Problem. What is needed are ways to determine whether third-party and legacy
application programs can perform malicious operations (or can be induced to perform
malicious operations), and to be able to make such judgments in the absence of source
code.

 (A full paper by Thomas W. Reps, Tim Teitelbaum, Paul Anderson, and David Melski,
entitled “Static Analysis of Binary Executable Code,” is included in this document under
the section called Submitted Material.)

Dr. Paul Anderson and Dr. David Melski
GrammaTech, Inc.
paul@grammatech.com
melski@grammatech.com

Dr. Anderson is a Senior Software Scientist at GrammaTech. He received his B.Sc. from
Kings College, University of London in 1985 and his Ph.D. from City University London

 14

mailto:melski@grammatech.com

in 1991. Anderson has been a Senior Software Engineer at GrammaTech since July 1991,
where he has been responsible for both the design of GrammaTech's commercial
products and conducting government sponsored research. Part of his responsibilities
includes lead product developer for CodeSurfer (a code-understanding tool based on
program analysis) and CodeSonar (a program analysis tool for finding software flaws).
Anderson was the principle investigator for the Phase-II SBIR "Detecting Malicious
Code in Firmware," that leads to the development of CodeSurfer/x86, the premier
machine-code analysis tool. He is currently principle investigator of an SBIR project on,
"Sanitizing Software of Malicious and Unauthorized Code." Dr. Anderson's research has
been reported in numerous articles, journal publications, book chapters, and international
conferences.

Dr. Melski is a Senior Software Scientist at GrammaTech. Melski graduated summa cum
laude from the University of Wisconsin in 1994 with a B.S. in Computer Sciences and
Russian Studies. He received his Ph.D. in Computer Sciences from the University of
Wisconsin in 2002. Melski was the principle investigator on the Phase-II SBIR, "Source
Code Vulnerability Detection," that lead to the development of CodeSonar and the Path
Inspector (a software model checker). He has been involved in the development of
CodeSurfer/x86, and is the principle investigator on several projects related to
CodeSurfer/x86, including: "Modernization of Legacy Software" (decompilation),
"Defenses Against Reverse Engineering," and "Defenses Against Malicious Code". He is
the principle investigator on a NASA-funded project on "Practical Model Checking to
Enforce Domain-Specific Interfaces and Requirements," and a technical lead on an
HSARPA-funded project on, "Model Checking Software Binaries."

Position Statement 3

The next great wave in software development is sure to be in the area of software
security. As reliability, scalability, maintainability and the other -ilities have now
become de rigueur considerations for development professionals, security in the software
world has long been considered a network or deployed application level issue rather than
a core systemic one. Today, the ever-growing complexity of software systems combined
with the rising business impact of failure of these systems from a security perspective, is
pushing software security considerations from the perimeter into the center of software
development considerations. It is no longer adequate to worry about security issues after
the fact. Rather, building security into the software as part of the underlying SDLC from
beginning to end is quickly becoming a fundamental assumption. Part of this awakening
of security as part of the SDLC has been the growing emergence of new and powerful
tools to support security assurance as a first-tier consideration in software development.

As Software Assurance tools become more and more capable and prevalent, it is
important to note that all of these tools are only as valuable as the pool of knowledge that
they are applying, validating and automating. A primary example of this is the case of
static code analysis tools and the sets of security rules that they check for. The two key
differentiators between tools in this space are the nature of scanning they are capable of

 15

(simple lexical scanning, constructive parsing, data flow analysis, etc.) and the breadth
and depth of rules that they scan for. If you performed a comprehensive analysis of the
rule sets for all the tools available today, you would quickly discover a substantial level
of overlap from tool to tool. It is a key concern of mine to work toward a consensus
understanding of what these security rules are and how they fit into the broader security
knowledge architecture, and to gain standardization of an internal schematic structure for
rules and an independent, portable method of representing rules for tool consumption.
Through such efforts at consensus and standardization, we move the field of software
security forward in a unified manner, ensure more appropriate levels of tool
interoperability and reduce the burden for software development professionals to truly
adopt and embrace the practices of software security.

Sean Barnum
Director of Knowledge Management
Cigital, Inc
sbarnum@cigital.com

Sean Barnum is a management professional with over eighteen years of experience in the
software and broader technology industries. In that time, his experience has covered a
wide range of technical domains from consumer oriented software development to
telecommunications embedded systems to business and IT consulting. Throughout these
experiences his consistent passion has been in the practice of continuous improvement.
This passion has fueled his involvement in Software QA, Enterprise Quality
Management, Process Management & Improvement and most recently into Knowledge
Management which he believes forms the tie that binds all the rest together. Barnum is
currently Director of Knowledge Management for Cigital, a leading software consulting
firm specializing in designing and implementing software security and quality delivery
improvement programs and enterprise application management solutions. This role gives
him direct responsibility for company process improvement, collaboration and enterprise
information management including the definition and implementation of knowledge
architectures and catalogs to support the company's primary domains of expertise:
Software Security, Software Quality and Software Development Process Improvement.
His current interests and activities include software security knowledge & practices, risk
management, software quality and process improvement, and collaborative technologies
among others. Barnum has a BS in computer science from Portland State University. He
is a member of the IEEE Computer Society and OASIS, and is involved in numerous
knowledge standards-defining efforts.

Position Statement 4

In our work at Ounce Labs, and we believe in the work ahead in this workshop, it is
vitally important to consider the issue of software vulnerabilities from a risk management
perspective. While zero vulnerabilities would be of course ideal, the preponderance of
legacy code and the pressures of budgets, development schedules, and deliverables mean
we must provide specific, measurable, repeatable ways for the user community and

 16

mailto:sbarnum@cigital.com

management to make informed, reasonable risk management decisions about their
software vulnerability, both inside the development lifecycle and in production. This
implies that deriving a usable vulnerability metric is vitally important to provide a
standard benchmark for evaluation and trends analysis. It also implies that tools and
processes must consider vulnerabilities in their fullest sense; that is, not only the
vulnerabilities introduced through coding errors, but also design flaws and violations of
policy that result in insufficient protections and monitoring in code, such as encryption,
access control, and the like.

We must, while striving for the ideal, provide concrete, measurable, consistent steps to
help professionals understand the risk within their organization, prioritize response, and
measure progress. Ultimately, arriving at a common vocabulary for identifying,
describing, and addressing this total range of vulnerabilities will help the wider
community most effectively and efficiently address their overall software risk.

Ryan Berg, Co-Founder and Lead Security Architect
Ounce Labs, Inc.
Ryan.berg@ouncelabs.com

John Peyton, Co-Founder and Principal Architect
Ounce Labs, Inc
john.peyton@ouncelabs.com

Ryan Berg is a Co-Founder and Lead Security Architect of Ounce Labs, Inc., innovator
of software vulnerability risk management solutions, based in Waltham, MA. Prior to
Ounce, Ryan co-founded Qiave Technologies, a pioneer in kernel-level security, which
later sold to WatchGuard Technologies in October of 2000. Ryan also served as a Senior
Software Engineer at GTE Internetworking, leading the architecture and implementation
of new managed firewall services. Ryan holds patents and patents pending in, multi-
language security assessment, intermediary security assessment language,
communication protocols, and security management systems.

John Peyton is a Software Engineer and Architect of Ounce Labs, Inc., innovator of
software security assurance solutions, based in Waltham, MA. Prior to Ounce, John was
a Design Architect for language independent intermediate representation, targeting highly
optimizing compilers for Hewlett-Packard. John also served as a representative to the
ANSI C committee for Apollo Computer and Hewlett-Packard. With more than 18 years
industry experience in compiler development, John is a joint patent-holder for advanced
optimization techniques across large program regions, as well as co-author of “A C
User’s Guide to ANSI C”.

Position Statement 5

Within the RTES Forum we have two activities that might be of interest to you and your
colleagues --1) Security for RTES and 2) High Assurance in Safety Critical

 17

Environments. Under number 1 we have a Generic Protection Profile at the NSA for
review at EAL 6 Plus. This is a collaborative work with the OMG and others.

Joseph Bergmann
The Open Group
j.Bergmann@opengroup.org

I am the Director of Real-time and Embedded Systems Forum of The Open Group.

Position Statement 6

The best benchmarks serve non-experts by producing simple, easy-to-compare results
regardless of the complexity of the solution. I propose the following three principles for
creating a benchmark for bug detection:

1) Take the user's perspective. A bug detection benchmark should measure the following
properties of a tool above all else:

• Ability to detect an explicit set of bugs that the community deems important.
• Ability to produce output that can be consumed efficiently (often expressed as

"give me few false alarms").
• Performance (both capacity and execution time).

2) Name the scenario. Consider the TPC-C benchmark, the most widely used standard for
evaluating database performance: In the TPC-C business model, a wholesale parts
supplier (called the Company below) operates out of a number of warehouses and their
associated sales districts. Each warehouse in the TPC- C model must supply ten sales
districts, and each district serves three thousand customers. An operator from a sales
district can select, at any time, one of the five operations or transactions offered by the
Company's order-entry system. (From http://www.tpc.org/tpcc/detail.asp)

For bug detection tools, interesting scenarios might include:

• A network server that speaks a standard protocol (http, ftp, smtp, etc.)
• A set of device drivers
• A web-based enterprise application
• A privileged system utility.

3) Start with documented bugs (and their solutions). The body of open source
applications is large enough and rich enough that a bug detection benchmark should
never suffer the complaint that the included bugs do not represent realistic practices or
coding styles. The benchmark code need not be drawn verbatim from open source
applications, but the pedigree of a each bug should be documented as part of the
benchmark. Because false alarms are such a concern, the benchmark should include code
that represents both a bug and the fix for the bug.

 18

Creating a benchmark is hard. It requires making value judgments about what is
important, what is less important, and what can be altogether elided. These judgments
are harder still for people who value precision, since computing a benchmark result will
invariably require throwing some precision away. We should not expect to get it all right
the first time. Any successful benchmark will inevitably evolve in scope, content, and
methodology. The best thing we can do is making a start.

Dr. Brian Chess
Chief Scientist, Fortify Software
brian@fortifysoftware.com

Brian's research focuses on methods for identifying security vulnerabilities in software.
He received his Ph.D. from the University of California at Santa Cruz, where he began
applying his work in integrated circuit test and verification to the problem of software
security. His efforts culminated in the development of Eau Claire, a framework for
detecting and eliminating security vulnerabilities in software. In addition to being a
published researcher, Brian has delivered in the commercial software arena, having led
development efforts at Hewlett Packard and NetLedger.

Position Statement 7

Regardless of the technology used to improve software security, the biggest barrier to
successful developer adoption of these tools is communication. The communication gap
between those who are creating security policies for their product development teams or
IT organizations and those who must ultimately implement that policy - the software
developers - is difficult to overcome. In order to close this gap, organizations must
communicate to developers in a language they understand and in an environment that
they use everyday. Klocwork believes the use of a 'security compiler' that sits on the
developer desktop, and which communicates and enforces security policy is the best
method to leverage automated analysis to meet the organization's security goals.

Djenana Campara
CTO, Chairwoman of the Board, Klocwork
"Djenana Campara" <djenana@klocwork.com>

Djenana founded Klocwork in 2001 after successfully spinning it out of Nortel Networks
and establishing it as an independent company. As a pioneer in static software code
analysis, Djenana brings 19 years of software experience to the role of CTO at Klocwork,
and has been awarded four US patents for her groundbreaking software development
work in creating Klocwork inSight. Ms.Campara co-chairs the Object Management
Group (OMG) Architecture-Driven Modernization Task Force, and serves as a board
member on the Canadian Consortium of Software Engineering Research (CSER). She has
published several papers on software transformations, has been quoted in publications,

 19

including The Economist, and has participated in Fortune Magazine's "Brainstorm 2003,"
an international conference of the world's most creative leaders.

Position Statement 8

Reflective is a software security and code quality assurance provider. As a company, we
are focusing a great deal of energy on software quality metrics particularly as they relate
to security issues. As such, the focus of this workshop would be very interesting for us
and relevant to our customer needs. While we did not submit a position paper, our
experience with customers such as ISS, Narus and Siebel has given us a wealth of
customer insight into the issues surrounding software security and the use of metrics in
establishing baselines for code quality and security. We would look forward to being an
active participant in the discussions.

Dave Clauson
Reflective Corporation
Carriage House
1444 Fairview Road
Atlanta, GA 30306-4012
dclauson@reflectivecorp.com

With a background that includes over twenty-five years of experience in development
and deployment of technology-driven products and services, Dave Clauson combines the
discipline of market-driven thinking together with a passion for breakthrough ideas.
Seeing the move towards outsourced application development and the need for new
technology for checking source code, Dave founded Reflective, the first company to
provide an automated source code security test and management system. As Founder and
CEO of Reflective, Dave’s mission is to rewrite the rules for how companies protect, test
and manage one of their most critical business assets – their source code.

Prior to joining Reflective, Dave was a co-founder of two security technology companies.
CloudShield developed the first optical network packet processor - a breakthrough
product with significant applications in high speed network security. Dave was also the
first Chief Marketing Officer for ArcSight, a leading risk management software provider
for companies seeking to prioritize security event correlation. Both start-ups were
developed by SVIC, a Silicon Valley venture capital firm that Dave helped start.

Clauson, an honors graduate of UCLA, has advised the 4A’s, the CTIA and the NAB on
technology issues and legislation that might impact the marketing of technology goods
and services. He has testified as an expert witness before the Federal Trade Commission
on privacy and the Internet and served as an advisor to the President’s Council on the
Internet.

Regardless of where technology goes, expect Dave to be working hard to develop new
ideas and companies that will help generate value from it.

 20

mailto:dclauson@reflectivecorp.com

Position Statement 9

Oracle is an advocate for software industry use of security assurance tools as part of a
defense-in-depth strategy to develop products more securely. A government procurement
requirement for use of these tools would greatly improve the assurance of commercial
software, provided that these tools are mature enough and usable (e.g. with very low false
positive rates and high scalability). We recommend a formal certification process to
validate effectiveness and usability.

Mark Fallon
Oracle Corporation
mark.fallon@oracle.com

Mark Fallon is a senior release manager at Oracle and is primarily responsible for Oracle
Database. In this role, he helps drive secure development initiatives within Oracle’s
Server Technologies division. Mr. Fallon has been with Oracle for six years, starting
with porting of Oracle Real Application Clusters, then managing the JavaVM, pre-
compiler porting group, and later release managing all the Unix-based database ports,
finally moving to the release management group in base development.

Prior to joining Oracle, Mr. Fallon, was a researcher at Hitachi's Dublin
Laboratory, working in the parallel computing area. He represented Hitachi to the MPI
Standard Forum, and later worked with National Institute of Science and Technology on
interoperableMPI

Mr. Fallon has a Bachelor of Arts, Moderatorship and Master of Science in Computer
Science from Trinity College, Dublin.

Position Statement 10

Need to establish software assurance for tools development: Software assurance issues
are just as relevant for the tools being used to test software security as they are for the
software being tested. The ability to trust the output of a security testing tools is directly
proportional to the ability to establish the assurance of the integrity of that tool, in terms
of its non-subversion either by its supplier before delivery or by a malicious tester or
third-party attacker after deployment.

• Need multiple tools/techniques for adequate coverage: No single tool can provide
enough coverage to be effective in assessing the security flaws or vulnerabilities
of a whole software system, an individual component, or even a single module. A
combination of both "white box" (source code analysis) and "black box" (binary
executable testing/assessment) techniques, and tools to support those techniques,
is needed to achieve adequate coverage.

 21

mailto:mark.fallon@oracle.com

• Code analysis has noteworthy limitations: Code analysis only covers a very small

piece of the overall software security testing objective. It is constrained because:

a. It presumes the source code is available to be analyzed.

b. The analysis technique is static, and limited to identifying known syntactical
flaws and, to a limited extent, implementation flaws in interfaces/interactions
within a single source code module.

c. It does not enable the tester to observe the software's behavior, particularly in
terms of its interactions with other entities, handling of environment inputs, etc.

d. Its quality is highly dependent on the expertise, meticulousness, and stamina of
the analyst. Automated tools help only to the extent that they can help point the
analyst to "suspicious" parts of code, and thus possibly help reduce level of effort.

• "Black box" test tools are more versatile than "white box" test tools: The security

testing/assessment tools for binary software are also useful for compiled source
code. The reverse is not true: source code analysis tools are useless when the
software to be assessed is a binary executable, e.g., a COTS component. For this
reason, more future research should focus on improving the range and quality of
black box tools.

• Penetration testing should be augmented by other black box techniques:
Penetration testing, the most "established" binary assessment technique, with or
without tools, is only as good as the expertise, imagination, and stamina of the
testers, and the tools, resources, and time available to the them. Pen testing
should be augmented (not replaced) by other "black box" security testing
techniques, such as security fault injection and automated vulnerability scanning.

• Emerging tools only scratch the surface of what is still needed for comprehensive

software security testing: There are a number of interesting emerging tools
designed to fill in the gaps in test coverage, these only add a few more pieces to
the jigsaw puzzle. If tools are to be relied on to automate most security testing,
much more is needed.

• Need standard evaluation criteria and techniques for tools selection:

Comprehensive standard set of evaluation criteria - technical and non-technical -
so that tools suppliers could know in advance minimum requirements for their
tools. In addition, a standard set of tools rating metrics for use by evaluators, and
a set of "best practices" outlining robust techniques for evaluation of testing tools.

• Need tools to automate test planning: Tools are needed to help automate creation

of test/misuse cases, test scenarios, test oracles, etc.

 22

• Need methodology for determining best combination of tools/techniques:
Methodology would first determine the best combination of techniques to achieve
necessary coverage, based on an analysis of the known characteristics of the
software to be tested and the test environment. Methodology would then map
appropriate combination of tools to those techniques. Methodology would then
refine list of tools/techniques based on known time, resource, tester expertise, and
other key constraints.

• Need a range of tools and middleware to enable correlation and fusion of test

results: This is needed to support analysis of test results cross whole software
systems, and for larger objectives of integrated "security situational awareness"
and risk management.

• Need a graphical tool to depict fused test results: A tool that can capture the

results from multiple test tools, correlate and plot those results on a graphical
software architecture "map" so testers can easily see the points throughout the
software system where flaws/vulnerabilities have been detected.

• Need a translation tool to support easy tester comprehension of results across

tools: Translator would produce a fused test report including a table expressing
each test tool result in multiple standard and common proprietary
flaw/vulnerability description languages (e.g., AVDL, OVAL, proprietary), thus
alleviating the tester's need to learn multiple description language syntaxes, and
also providing a basis for correlating outputs from different test tools/techniques
as the basis for defining a standard for test tool output format and syntax.

• Need a "super repository" of known flaws/vulnerabilities: Need to establish
(through data mining?) an extensive, comprehensive Super Repository of software
security flaws/vulnerabilities that collects and correlates the flaws/vulnerabilities
stored across multiple recognized vulnerability and flaw databases, such as CVE,
Bugtraq, etc.

• Need to determine how tools from other software disciplines can be applied:

Research how tools from the QA, safety, and fault-tolerance communities can be
applied to security testing, in order to expand the coverage and nature of tests.

• Need methodology for dealing with false positive/false negatives in tools results:

Development of algorithm-based methodology to analyze test results collected
over time from a single tool, in order to trends in the rates of false positives and
false negatives for each finding type. This will enable (1) the tool supplier to
improve the accuracy of the tool; (2) testers who analyze results from the tool to
refined those results as necessary to compensate for predictable inaccuracies.

• Need middleware to automate series of tests using multiple tools: Tools

middleware to establish linkages among security test tools in order to automate an
entire test scenario that combines use of multiple tools.

 23

• Need interfaces to risk analysis, intrusion detection, configuration management,
etc.: Middleware providing interfaces to refine (reformat, etc.) and "feed" tools
output into risk analysis tool repositories, configuration management repositories,
intrusion detection/sensor databases, etc., in support of a wider vision of
"integrated security situational awareness".

• Need "historical database" of test results for trends analysis: Capability for

archiving test results into a repository in a format that will be meaningful to later
analysts (i.e., not requiring direct involvement with the tests for comprehension).
Along with this repository is needed a tool that can analyze the results collected
over time, and produce metrics of observed trends, for example differences in test
results of a module before and after flaw remediation, differences between
component versions, etc. Such metrics can be used to directly inform the risk
management process.

• Need tools to support patch and update risk management: Tools to support

automated post-update impact analysis and patch security regression testing.

Karen Goertzel, CISSP
Booz Allen Hamilton - H5061
goertzel_karen@bah.com

Theodore Winograd
Booz Allen Hamilton
WINOGRAD_THEODORE@bah.com

Tobie Jones
Booz Allen Hamilton
<jones_tobie@bah.com>

Ms. Goertzel has over 23 years of experience in analysis, research, systems engineering,
and technical writing. Her main area of technical expertise is information assurance, with
specializations in software assurance and cross-domain solutions. In addition to a wide
range of other activities in this area, Ms. Goertzel acts as the software security subject
matter expert in support of the Director of the Department of Homeland Security
Software Assurance Initiative. From 2002-2004, Ms. Goertzel was the technical program
manager and lead contributor for the Defense Information Systems Agency's Application
Security Project, in which she led a team analysts and software developers in the creation
and ongoing enhancement of guidance documents defining process improvements,
methodologies, and techniques for ensuring that software security was considered when
defining, procuring, developing, and deploying software components and systems. The
DISA project also defined a software security testing/vulnerability assessment tools
taxonomy, and selection criteria for evaluating candidate tools. These criteria were then
used to evaluate and select a set of security code scanners, application vulnerability

 24

mailto:WINOGRAD_THEODORE@bah.com

scanners, and security fault injection tools, to be combined into a toolkit; a methodology
for use of the toolkit in performing software security assessments was also developed.
Before joining Booz Allen Hamilton, Ms. Goertzel was a technical
consultant/requirements analyst in the area of cross-domain solutions and high-assurance
trusted systems for Honeywell Federal Systems/HFSI/Wang Federal/Getronics
Government Solutions (now BAE/DigitalNet). Before joining Honeywell, Ms. Goertzel
was a technical writer for Cellular Radio Corporation, Omnicom, GuideStar,
Perceptronics, C.I.T. Alcatel, Input/Ouput Computer Systems (IOCS), and Young &
Associates.

Mr. Winograd's main area of expertise is in information assurance with a specialization in
software assurance. In 2004, under the Defense Information Systems Agency's
Application Security Project, Mr. Winograd created and enhanced guidance for properly
implementing software security techniques, methodologies, and mechanisms in the
development of software applications. Additionally, Mr. Winograd led the effort to
select and evaluate a variety of software assurance tools for inclusion in a toolkit. To that
end, he aided in the definition of the evaluation criteria and methodology. Additionally,
he developed methodologies for using the tools when performing software security
assessments. His interests lie in the analysis of tools, development of mechanisms, and
provision of guidance.

Ms. Jones has over six years of software development experience in industry as well as
invaluable experience and knowledge of software engineering processes and
methodologies gained in post-secondary education and on-the-job performance. Her
primary functions are in the area of information assurance, specializing in software
assurance. In 2004, she was the lead analyst performing a secure code review for the
DoD Defense Personnel Records Imaging System (DPRIS) Web interface. Additionally,
under the Defense Information Systems Agency's Application Security Project, Ms. Jones
provided analysis, research and technical writing in support of development of guidance
for secure software implementation, acquisition, testing and deployment. Ms. Jones'
other work and professional interests in software security encompass a range of activities
including technical writing and research, analysis, design and development.

Position Statement 11

It is my belief that software analysis tools can be of significant benefit in improving the
security and reliability of software. Many tools have already been developed that detect
security vulnerabilities, such as buffer overruns, "time-of-check-to-time-of-use"
violations, and leaks of possibility sensitive information. Other tools detect security-
relevant bugs, like deadlocks, race conditions, dangling pointer dereferences, memory
leaks and others. All of these problems can be quite difficult to discover though manual
analysis or testing, and so using automated tools seems a promising approach.

To make progress in developing tools of use to a wide clientele, we need to develop
metrics and benchmarks with which to evaluate software analysis tools. An important

 25

tradeoff of all software analysis tools is soundness vs. completeness. A sound tool will
report all *possible* violations of a given property, but some warnings will be false
alarms. On the other hand, a complete tool will report only *actual* violations, but may
fail to report all possible problems. Since software analysis in general cannot be both
sound and complete (due to Rice's theorem), tool designers are faced with an important
tradeoff: a sound tool that reports too many warnings is of little use, because the process
of sifting through the warnings quickly degenerates into a tedious form of code review.
But an unsound tool will miss violations, meaning that the program could still contain
important vulnerabilities.

The question of soundness vs. completeness is one metric of expressiveness: how well
can a tool discover a particular problem?

There are other important metrics as well, such usability, scalability (will it work for
large programs?), customizability, and others. I believe an important outcome of the
workshop will be to (1) identify security problems for which tools seem like a good
approach, and (2) list metrics by which we might evaluate and compare such tools.

Once the metrics have been established, and tradeoffs have been identified between them
for particular problems, we need ways to evaluate how well tools satisfy the relevant
metrics. A useful way to do this is to establish benchmark suites of software that contain
known vulnerabilities, to see how effectively tools discover those vulnerabilities. For
example, are all the vulnerabilities reported?

How many false alarms are there? How fast does the tool run (if at all)? How quickly
can a trained user find problems, or suppress false alarms, when using the tool? The
important challenge in coming up with benchmarks is that security holes are hard to find!
That is, while we may know of some security holes in programs, there may be problems
yet to be discovered. Another problem is obtaining source code for important programs
for those tools that need it. While there is much open source code available now, there
may not be an open source version of a particular category of program.

Michael W. Hicks
Assistant Professor
Department of Computer Science and Institute of Advanced Computer Studies
University of Maryland, College Park
Michael Hicks <mwh@cs.umd.edu>

My main research interest is in developing new languages or language analyses to
improve the quality of software. I am a principal designer and developer of the
programming language Cyclone, which is a variant of the popular language C, but
designed to be "safe." Cyclone prevents the possibility of common security holes like
buffer overruns, while still providing the high degree of programmer control familiar to C
programmers but not available in languages like Java. I have also developed tools to
statically detect interface transparency violations in Java programs, and to discover data

 26

races in C programs (via static analysis) and Java programs (via dynamic and static
analysis in combination). I have recently started to explore means to prove that programs
exhibit certain security properties, like confidentiality and integrity. In all my work, I use
semantic techniques to theoretically model programming languages and their relevant
properties, and then build tools to analyze actual programs to see how well the theory
translates to practice.

Position Statement 12

The QinetiQ Systems Assurance Group has at least a 25 year history in the research of
technology to support software and systems assurance. This goes back to days when this
part of QinetiQ was the Royal Signals and Radar Establishment (RSRE), a research
organisation forming part of the UK Ministry of Defence. As part of RSRE this group
had an interest in computer security and sound software construction, international
collaborations in this area were part of The Technical Co-Operation Programme, TTCP,
through a group led by Carl Landwehr. Since then, work has been targeted at Safety
Critical Software with the development of tools to analyse a wide range of languages,
including Ada, C and 68000. These tools have been used to provide safety certification
evidence for military systems such as a missile decoy system and the European Fighter
Aircraft. The tools are now being exploited in new domains including security and
reliability; for example, the Apache web server has been analysed for security
vulnerabilities. Research and early tool development is expanding into the assurance of
systems of systems and the composition of tools to provide scalable system wide
assurance.

This work is complemented by the security health check service also within QTIM; this
service examines clients’ systems for any security vulnerabilities and, as part of this
service, it maintains a list of known security vulnerabilities. Our long involvement in the
security of defence systems has led to the ‘Domain Based Security’ model, adopted by
the UK Ministry of Defence, for expressing and realizing security requirements; this has
inspired a collection of system components (SyBard) to help in the realisation of those
requirements.

His recent activities (whilst working for Praxis HIS Ltd) include leading a study into the
application of tools to Common Criteria software assessment. The study included a
survey of tool categories, assessment of potential benefits for developers and evaluators,
and proposals for changes to working practices and assurance approaches. (A summary
of the results of the study is available at
http://www.cesg.gov.uk/site/iacs/itsec/media/techniques_tools/eval4_study.pdf)

David has almost twenty years’ experience in high-quality software engineering
technical consultancy and project management, with a particular focus on the definition
and development of high-integrity systems. He has worked in the aerospace,
telecommunications, automotive, rail, nuclear, and healthcare industries; his clients have

 27

included major manufacturers, system developers, regulators and government agencies,
in the UK, mainland Europe and the USA.

David Jackson
QinetiQ Systems
dmjackson@qinetiq.com

David Jackson is a Senior Consultant with QinetiQ Trusted Information Management
(QTIM) Systems Assurance Group. His professional interests include development and
application of tools for building and assuring high-integrity security & safety systems,
rigorous development methods, and techniques for managing the risk of system
engineering programmes.

Position Statement 13

We plan to attend the NIST Software Security Tools workshop and have recently finished
evaluations of static analysis tools (Polyspace, SPLINT, ARCHER, UNO, BOON) and
dynamic test/instrumentation tools (CCured, CRED, Insure++, ProPolice, TinyCC,
Chaperon, Valgrind) that detect buffer overflows. We have two 6-10 page summaries of
these evaluations and could submit them as position papers. These papers describe
corpora that were developed, how the evaluations were performed, a taxonomy that can
be used to describe buffer overflows, and the performance of different tools.

(2 papers were received from Lippmann and are included in this document under the
section called Submitted Material.)

Dr. Richard Lippmann
MIT, Lincoln Laboratory
lippmann@ll.mit.edu

I am a Senior Staff member at MIT Lincoln Laboratory performing research on detecting
and eliminating vulnerabilites in Internet software. Recent studies at Lincoln Laboratory
have created two databases to evaluate the ability of commercial and open source static
analysis and dynamic testing tools to find buffer overflows in C Internet server software.
One database is available from http://www.ll.mit.edu/IST/corpora.html and a second is
available by sending email to Kendra Kratkiewicz (kendra@ll.mit.edu). Results of
studies performed using these databases are presented in the two papers submitted to this
workshop. It was found that most static analysis tools cannot be applied to large Internet
server C source code and that most have high false alarm rates and/or low detection rates.
Dynamic testing tools perform better, but require test cases to reveal buffer overflows.
We are currently exploring approaches to combine the advantages of dynamic testing and
static analysis.

 28

mailto:kendra@ll.mit.edu

Position Statement 14

A recent explosion in the number of security vulnerabilities being discovered every
day motivated a great deal of interest in tools that attempt to address this problem. While
buffer overruns have been plaguing C programs for years, application-level
vulnerabilities such as SQL injections, cross-site scripting, and path traversal attacks have
become increasingly common in the last year. Looking at a daily snapshot of Security-
Focus vulnerabilities reveals that upwards of 60% of all exploits are due to application
vulnerabilities such as the ones listed above.

While the number of commercially available and open-source tools that claim to address
these issues is on the rise, there is generally no approach that would validate the claims
made by the tool makers. We believe that there is a need for a set of universally accepted
benchmarks that can be used as a validation test bed for security tools. Putting together
such a set of realistic benchmarks is challenging because many if not most applications
suffering from application-level vulnerabilities are closed-source proprietary software
deployed at banks, medical centers, etc. While some attempts have been made at
constructing artificial benchmarks [1, 4], we believe that real-life programs are much
better suited for testing security tools.

In the course of our research in application security [3] at Stanford, our group has
developed a suite of benchmarks called STANFORD SECURIBENCH [2]. Thus far it
consists of 8 real-life open-source Web-based applications written in Java and developed
on top of J2EE. Most programs are medium-sized, with the larger ones consisting
of almost 200,000 lines of code. We have identified about 30 vulnerabilities in these
programs and there are probably more that can be found with appropriate static and
dynamic tools.

We are making these benchmarks publicly available in hopes of fostering collaboration
between researchers. These benchmarks can serve as test cases for researchers and
industry practitioners working in this area.

References
[1] Foundstone, Inc. Hacme books, test application for Web security.
http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&subcontent=/r
esources/oddesc/hacmebooks.htm.
[2] Benjamin Livshits. Stanford SecuriBench. http://suif.stanford.edu/_livshits/
securibench/, 2005.
[3] V. Benjamin Livshits and Monica S. Lam. Finding security errors in Java programs
with static analysis. In Proceedings of the 2005 Usenix Security Conference, 2005.
[4] The Open Web Application Security Project. WebGoat Project.
http://www.owasp.org/software/webgoat.html.

Benjamin Livshits
Stanford Univeresity
livshits@cs.stanford.edu

 29

http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&subcontent=/resources/oddesc/hacmebooks.htm
http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&subcontent=/resources/oddesc/hacmebooks.htm
http://www.owasp.org/software/webgoat.html

Benjamin Livshits is a Ph.D. candidate in computer science at Stanford University.
Benjamin graduated summa cum laude with a B.A. degree in computer science and math
from Cornell University in 1999. He obtained an M.S. from Stanford University in 2002.

Benjamin's general research area is compilers and program analysis. His research
interests include applications of static and dynamic analysis techniques to finding errors
in programs. Lately he has focused on techniques for finding buffer overruns in C
programs and a variety of security vulnerabilities in Web-based applications written in
Java. Benjamin has authored several papers on program analysis for security and other
uses, including finding memory errors, violated API-specific patterns, software pattern
mining, etc.

Position Statement 15

Through research and collaboration with industry and academia, I and my co-workers are
working to establish a formal set of Common Flaw Types for the entire collection of over
12,000 publicly known CVE Names, which continues to grow 70-100 each week. We
are interested in working with the community to create definitions and descriptions of
these Common Flaw Types, and we will be exploring what type of code exemplars
(patterns, code snippets, etc.) would be needed to allow tools to be trained to identify the
Common Flaw Types in source code, and finally we will be exploring verification
methods to determine appropriate methods and mechanisms for verifying the
effectiveness of these types of source code assessment tools.

Robert Alan Martin
Mitre Corporation
"Robert A. Martin" ramartin@mitre.org

Steve M. Christey
Mitre Corporation
coley@mitre.org

Robert Martin is the primary point of contact for the Common Vulnerabilities and
Exposures (CVE) Compatibility efforts, a member of the Open Vulnerability and
Assessment Language (OVAL) team, and a Principal Engineer in MITRE's Information
Technologies Directorate. For the past five years, Robert's efforts have been focused on
the interplay of cyber security, critical infrastructure protection, and the use of software-
based technologies and services. Prior to these efforts, Robert developed a standardized
software quality assessment process that is still being used to help MITRE's Air Force,
Army, and FAA customers improve their software acquisition methods as well as the
quality, cost, and timeliness of their delivered software products. To-date, over 121
projects have been assessed through Robert's Software Quality Assessment Exercise
(SQAE). Robert joined the MITRE Corporation in 1981 after earning a bachelor's degree

 30

mailto:ramartin@mitre.org
mailto:coley@mitre.org

and a master's degree in electrical engineering from Rensselaer Polytechnic Institute,
subsequently he earned a master's of business degree from Babson College. He is a
member of the ACM, AFCEA, IEEE, and the IEEE Computer Society.

Steve M. Christey is the editor of the Common Vulnerabilities and Exposures (CVE) list
and the Chair of the CVE Editorial Board. His operational experience is in vulnerability
scanning and incident response. His research interests include automated vulnerability
analysis of source code, reverse engineering of malicious executable code, and
responsible vulnerability disclosure practices. He is a Principal INFOSEC Engineer in
MITRE's Security and Information Operations Division. He holds a B.S. in Computer
Science from Hobart College.

Position Statement 16

Paper entitled “Software Security” by Gary McGraw published in IEEE Computer
Society, IEEE Security and Privacy, March/April 2004.

Dr. Gary McGraw
CTO, Cigital
"Gary McGraw" gem@cigital.com

Gary McGraw, Cigital, Inc.'s CTO, researches software security and sets technical vision
in the area of Software Quality Management. Dr. McGraw is co-author of five best
selling books: Exploiting Software (Addison-Wesley, 2004), Building Secure Software
(Addison-Wesley, 2001), Software Fault Injection (Wiley 1998), Securing Java (Wiley,
1999), and Java Security (Wiley, 1996). A noted authority on software and application
security, Dr. McGraw consults with major software producers and consumers. Dr.
McGraw has written over sixty peer-reviewed technical publications and functions as
principal investigator on grants from Air Force Research Labs, DARPA, National
Science Foundation, and NIST’s Advanced Technology Program. He serves on Advisory
Boards of Authentica, Counterpane, and Fortify Software, as well as advising the CS
Department at UC Davis. Dr. McGraw holds a dual PhD in Cognitive Science and
Computer Science from Indiana University and a BA in Philosophy from UVa. He
writes a monthly security column for Network magazine, is the editor of Building
Security In for IEEE Security & Privacy magazine, and is often quoted in national press
articles.

Position Statement 17

Many enterprises have invested in infra-structure for managing user identities and
credentials as well as systems for providing access control to web applications. However,
criteria for evaluating the quality of such systems as well as tools and tests that can
investigate and report on these criteria have not been available. As a result, many

 31

mailto:gem@cigital.com

enterprises only learn about weaknesses of their IAM systems after they have been
hacked.

Principal Identity is developing a checklist of criteria relevant to IAM infrastructure. A
set of tools (IAMscan) for analyzing enterprise infrastructure are also under development.

Prateek Mishra
CTO,Principal identity
<pmishra@principalidentity.com>

Prateek Mishra is CTO with a startup called Principal identity and we are creating some
innovative security tools in the identity and access control space.

Position Statement 18

Detecting security issues in software source code is not dissimilar from the problem of
detecting software defects through source analysis. Both problems are "NP hard" in the
general case, but at the same time offer tremendous benefit for even partial solutions.

An interesting approach to both problems is to shift the focus from the absolute detection
of the security issue or defect, to the identification of risk, by source code analysis
combined with other data sources. By combining many different analyses and metrics of
the source with statistical analysis engines, tools may identify the areas of the source
code most likely to have defects and security issues, if indeed they exist.

James W. Nash
Nash Laboratories, Inc.
jwn@.nashlabs.com

Solidware Technologies (www.solidwaretechnologies.com) is an emerging company
specializing in tools to manage software verification, validation, and risk. James W. Nash
is a Principal with Solidware, and has been an active software developer, manager, and
executive for more than 25 years. Nash received a BS in Computer Science from
Michigan State University, and was certified as a Six Sigma Master Black Belt by the
General Electric Company. Nash holds current certifications as a CMMI Lead Appraiser
and Instructor from the Software Engineering Institute at Carnegie-Mellon, an as a
Software Quality Engineer from the American Society for Quality.

Position Statement 19

My interest in NIST's workshop on "Defining the State of the Art in Software Security
Tools" is threefold:

 32

1. As the Executive Vice President of the Center for National Software Studies (CNSS), I
am involved in "Software 2015: A National Software Strategy to Ensure U.S. Security
and Competitiveness" designed to achieve the goal of being able to routinely develop and
deploy trustworthy software products and systems by the year 2015 while ensuring the
continued competitiveness of the U.S. software industry. One of its four programs calls
for improving software trustworthiness, and one of the initiatives in achieving this is to
develop measurement methods for a National Software Quality Index (NSQI). The report
can be found at http://www.CNsoftware.org

2. In collaboration with the Council on Competitiveness, the CNSS conducted a
workshop on "Competitiveness and Security". The knowledge required in this trade off
revolves around the practices and factors that embrace both competitiveness and security
and those that embrace one at the expense of the other. Three types of practices and
factors are used to frame the issue including trustworthiness, cost effectiveness, and
survivability. Leading indicators are identified for each practice. A web-based scoring
and analysis tool is used to analyze the impact of trustworthiness, cost effectiveness, and
survivability practices and factors on competitiveness and security. While both are
essential, it is clear that competitiveness and security travel on separate paths that do
crisscross and overlap at certain points. The competitiveness versus security trade off
may be tilted towards competitiveness, thereby, exposing the national's critical software
infrastructure to predictable security threats. My contribution to the workshop is the
"Competitiveness Versus Security Tradeoff" fully discussed at
http://members.aol.com/ONeillDon2/competitor5-6.html

3. As an Independent Consultant and director of the National Software Quality
Experiment (NSQE), I have shared NSQE results with NIST's HISSA project which
continues to link to them from the NIST web site. The centerpiece of the experiment is
the Software Inspection Lab where data collection procedures, product checklists, and
participant behaviors are packaged for operational project use. The uniform application of
the experiment and the collection of consistent measurements are guaranteed through
rigorous training of each participant. Thousands of participants from dozens of
organizations are populating the experiment database with thousands of defects of all
types along with pertinent information needed to pinpoint their root causes. The
measurements taken in the lab and the derived metrics are organized along several
dimensions including year, software process maturity level, organization type, product
type, programming language, global region, and industry type. The NSQE results can be
viewed at http://members.aol.com/ONeillDon/nsqe-results.html

Don O'Neill
Executive Vice President, Center for National Software Studies (CNSS)
OneillDon@aol.com

O’Neill is an independent consultant and Executive Vice President of the Center for
National Software Studies (CNSS). He is also the director of the National Software
Quality Experiment (NSQE).

 33

mailto:OneillDon@aol.com

Position Statement 20

Penetration testers routinely use attack graphs to help them understand a network’s
weaknesses. Roughly speaking, attack graph nodes represent network states, and attack
graph edges represent the application of an exploit that transforms one network state into
another, more compromised, network state. The terminal state of the attack graph
represents a network state in which the attacker has achieved his or her goal. At the
research level, methods have been proposed to construct attack graphs based on data
provided by commercial vulnerability scanning tools. The salient observation is that
attack graphs quickly become unmanageably large as network complexity grows past a
few machines. One way out of this computational quagmire is to go back to the
penetration tester’s perspective and ask what structure short of the entire attack graph
would nonetheless be useful. The answer is that penetration testers often think in terms of
the maximal level of penetration possible with respect to a given host, and push the
details of how to achieve this level to the background.

Our approach only retains the highest level of access that can be achieved between hosts.
This allows our model to scale better than complete attack graphs in realistic size
networks. This is because our host–centric model grows polynomially with the number of
hosts, but the attack graph model grows exponentially. The approach can be used to
provide near real–time early warning of potential attacks, to identify the network policy
rules violations, and to conduct analysis on the potential impacts of giving different
permissions or credentials to users (i.e., modeling insider attacks).

A working prototype tool has been implemented. It constructs an access graph with a
node for each host. A directed edge from h1 to h2 in the access graph represents the
access available on h2 from h1. The model to construct such a graph consists of two
steps: 1) initialization and 2) calculating maximal level of access. The goal of
initialization is to establish the initial trust relationships between hosts in absence of
applying any exploits (obtained from existing trust relationships from network rules and
configuration). The maximal level access is then calculated between all the hosts in the
network by using each host’s known exploits.

We have put together a companion website which describes our tool’s usage by walking
the reader through an example. It shows the tool’s screenshots at different stages of
access graph construction and analysis. The website address is:
http://ise.gmu.edu/_jpamula/nist-workshop/host-based.html. To further demonstrate that
our approach runs in reasonable time for realistic networks, we ran our tool on a network
comprised of 87 hosts. The experiment was conducted on an Intel Pentium 4 (2.0 GHz)
with 512 MBytes of RAM running on Fedora Core 3 (Linux 2.6.9). In our approach,
there are as many nodes, as there are hosts in the network. Each host pair is analyzed,
hence making 872 = 7569 edges in the resulting access graph. Out of these edges, 2088
had level of access higher than connectivity. The open source graph visualization
program, graphviz, was used to generate graphs for closer analysis and visualization.
Before populating the system with existing trust relationships, the system first needs to be

 34

initialized with the network’s topology/configuration. The tool reads-in this information
from couple of files: “H.txt”—set of host nodes, “T.txt”—set of trust relationships
between hosts, “X.txt”—set of available network exploits, “V.txt”—set of vulnerabilities
present at each host in the network, and “F.txt”—set of firewall rules. This took 1.527
seconds to complete. To establish the initial trust relationships between hosts in absence
of applying any exploits took 0.107 seconds. Then, 1.571 seconds took to calculate
maximal accesses between all the hosts in the network using each host’s known exploits.
The graphviz tool was then used to generate access graph for visualization and analysis
purposes.

Joseph Pamula
Student and Research Assistant at George Mason University
jpamula@gmu.edu

Joseph Pamula is a PhD student and a member of Center for Secure Information systems
group at George Mason University. His current research interests include vulnerability
analysis, penetration testing, intrusion detection, and network security. Joseph Pamula
received his B.Sc. in Computer Science with honors from McGill University, Canada, in
2001. Contact him at jpamula@gmu.edu.

Position Statement 21

There is significant interest in tools for finding software defects, particularly defects that
pose security vulnerabilities. Developing a set of metrics and reference benchmarks for
evaluating such tools will be a difficult process. There is already substantial academic
interest in developing software defect benchmarks for academic research (see the
Workshop on Software Defect Detection Tools). One important goal for the NIST
workshop should be to ensure that whatever benchmark, licensing terms and frameworks
are developed are suitable for academic research and do not duplicate effort in the
academic community. A particular problem is that many of the companies selling
commercial defect detection tools now consider the abilities of their tools trade secrets.
While companies such as Coverity used to post detailed listings of the warnings they
generated on open source software, they no longer do so since they believe it gives their
competitors a commercial advantage. This is a real business concern for these companies,
and solutions will need to be found. However, any solution that prevents an open analysis
by academic researchers of defects found or not found by various tools will hamper
research in this area and be detrimental to the long term progress of the field. Another
issue is that any attempt to develop a standard fixed set of benchmarks will, over the long
term, do more harm that good. A fixed set of benchmarks will lead to companies focusing
on those benchmarks rather than the problems that people are actually encountering.
What we need is something much closer to the TREC (Text Retrieval Conference)
competitions, where each year there is a new benchmark.

 35

mailto:jpamula@gmu.edu

William Worthington Pugh Junior
 Dept. of Computer Science, University of Maryland, College Park, MD 20742
pugh@cs.umd.edu

Professor William Pugh’s current major research area involves software defect tools for
Java. He is a lead contributor to the FindBugs project, an open source static defect tool
for Java; FindBugs has been downloaded more than 100,000 times from SourceForge.
Professor Pugh was also a co-chair of the 2005 ACM SIGPLAN Workshop on Software
Defect Detection Tools. He has also conducted research on concurrency, detection of
near-duplicate web pages, Java classfile compression and loading and analysis of
scientific programs for execution on supercomputers.

Position Statement 22

When I think of the current state-of-the-art of security analysis tools, I think of the
following statement that I made over a decade ago when assessing testing tools “a fool
with a tool is still a fool.” Tools provide you limited information if you don’t have a
framework for using it. For the past four years, we have been trying to fill this void
especially in the field of applications security where we have been developing tools and
techniques to cope with software piracy, tampering and reverse engineering. The
framework that we developed under SBIR Phase I contract W9113M-04-P-0122 is risk
based. It identifies 34 categories of attack and 28 defense methods, some of which have
been automated via tools. As part of the effort we have developed simple models for risk
assessment and performed a preliminary gap analysis. Should we be invited to the
workshop, we will share the results of this analysis with the community. Hopefully, it
will serve as one of the pillars that DOD, NBS, NFS and other sponsors will use to
perform their tools analysis.

Donald J. Reifer, President
Reifer Consultants, Inc.
d.reifer@ieee.org

Donald J. Reifer is one of the leading figures in the field of software engineering and
management with over thirty-five years of progressive experience in the field. Mr. Reifer

 36

mailto:pugh@cs.umd.edu

has been a successful businessman, entrepreneur, software management consultant,
government official, author and teacher. During the past eight years, he has focused his
energy on software protection issues. He developed innovative algorithms for real-time
response to intrusions that has been adopted for use within intrusion detection systems
and holds a patent on “a method to protect applications software from reverse
engineering and tampering.” He has published five books and over one hundred papers
including several dealing with malicious code protection. He holds many awards and
prizes including the Secretary of Defense’s Medal for Outstanding Public Service, the
NASA Exceptional Service Medal, the Frieman Award and the AIAA Software
Engineering Award.

Position Statement 23

While "attackers do not attack abstractions", much of what ensures a software system has
the emergent security properties required occurs before coding in the establishment of
security requirements, creation of a formal security policy, specification of external
behavior, and design - plus the creation of the assurance arguments that they are
consistent and functionality does not exceed specifications. According to one report,
during one period half the security vulnerabilities discovered by Microsoft were the result
of design (including, one presumes, bad requirements' impacts on design).

While some are better than one might expect, tools in this area need considerable
improvement. The enabling technologies available in theorem provers such as PVS and
model checkers such as SPIN are actually in many ways quite powerful. Combinations of
such enabling technology with specification or design notations exist with Z (e.g.
Z/EVES), CSP (e.g. FDR), and UML including formal notations (e.g. in the work of Jan
Jurgens). These, however, often do not use the most powerful enabling technology
available.

As users of such tools, we find them quite useful but with significant shortcomings. Many
are under funded or research vehicles. This state of affairs is, of course, in part a function
of low usage. Experts also seem to have a surprising willing to put up with poor usability.
This characteristic, however, is a barrier to wider usage.

Two areas where wider usage does exist are in verification of protocols and hardware.
The hardware area appears to have examples of making tools so advanced they are simple
with the details of formal analysis hidden from the user, a characteristic that greatly aids
in achieving wide usage.

A more important barrier to wider usage is the lack of awareness, skill, and readiness in
the workforce and their management and customers. While the underlying mathematical
knowledge needed by the user can be quite simple (e.g. in Z or model checkers), for most
obtaining the proper mindset and skill in usage requires serious effort. On the other hand,
we need to through good design, automation, and other means find ways for fewer (and
better) people to be writing software where security is relevant.

 37

The use of formal methods has been more extensive in systems where safety was a
primary concern than where security was the driver. In safety the assurance argument is a
central issue and artifact. The same must be true in security. The system must not only be
secure, but one must have evidence justifying confidence this is so, and tools are needed
to facilitate this.

Reference
Redwine, Samuel T., Jr., and Noopur Davis (Editors). Processes for Producing Secure
Software: Towards Secure Software. Volumes I and II. Washington D.C.: National Cyber
Security Partnership, 2004.

Samuel Redwine
James Madison University
redwinst@CISAT.JMU.EDU

An Associate Professor of Computer Science at James Madison University, Samuel T.
Redwine, Jr. was lead editor of recent National Cyber Security Partnership’s Processes
for Producing Secure Software. He is General Chair of the upcoming Workshop on
Secure Software Engineering Education and Training and the IEEE International
Symposium on Secure Software Engineering. He is leading the DHS/DoD Software
Assurance Initiatives’ effort to produce a body of knowledge description for the
knowledge required to produce secure software. Mr. Redwine has worked in industry and
consulting for more than 30 years including time at Mitre, Institute for Defense Analyses,
and the Software Productivity Consortium and been an Adjunct Professor at George
Mason University and Virginia Tech. He has B. S. and M. S. degrees from M. I. T. and is
a member of IEEE, ACM, and the American Society for Quality (ASQ). He is a former
ASQ Certified Software Quality Engineer. Mr. Redwine has been a Distinguished
Visiting Speaker for the IEEE Computer Society.

Position Statement 24

(Position Statement not received).

William Stanton Spees
USA CDRH (FDA)
wss@cdrh.fda.gov

I have been a developer of compilers and interpreters for twenty-five years, and am
interested in exploring classes of security weaknesses that I might be able to avoid
generating. I also develop ad hoc metric tools, occasionally and would be curious about
conventional techniques by which they might be able to spot flaws.

After working in C and C++ from the 1970s until 1999, I am 100% pure Java. I finished
my computer science Ph.D. in 2001, and have worked as a software consultant, college

 38

mailto:wss@cdrh.fda.gov

professor, and medical instrument software developer before joining the Center for
Devices and Radiological Health (FDA) as a Senior Staff Fellow, earlier this year.

Position Statement 25

I am working with Mike Kass and Paul Black to leverage a project that we (National
Security Agency (NSA) are conducting with the work being conducted under SAMATE.
In discussions with Mike and Paul, we are considering having NIST focus on source code
analysis tools and NSA focus on binary analysis tools. We have also discussed with them
the leveraging/development of a reference set of software for test purposes. As I am
working on the same types of problems (all areas of the workshop) for DoD, I look
forward to this workshop.

Larry Don Wagoner
DOD
"Wagoner, Larry D." l.wagone@radium.ncsc.mil

I am working as the Information Assurance Directorate Technical Lead for Software
Assurance at NSA and the co-leader of the Science and Technology Bin as part of the
DoD Tiger Team for Software Assurance. I have worked in the area of vulnerability
discovery and software analysis for many years.

Position Statement 26

1) Tools are useful to identify potential vulnerabilities quickly. However, false positives
can have a negative impact and waste time.
2) It's unclear how to select the best tool with the least amount of false positives without
using in the field.
3) Source code analysis is a more efficient means of detecting root causes. SCA tools are
beneficial.
4) The costs of SCA tools can make them prohibitive for most assessment efforts.
5) Use of SCA tools in the development process by developers is optimal for minimizing
vulnerabilities.

Stan Wisseman, CISP, CISM
Senior Associate, Booz | Allen | Hamilton
wisseman_stan@bah.com

1) 21 years in computer security.
2) I've led software security consulting practices for 3 years.

 39

Position Statement 27

Static analysis tools are an important technology for the improvement of software
security. They fill the role of an expert security code reviewer that never tires and
performs accurately and repeatably. Most static analysis tools have taken the approach of
analyzing source code, which requires the complete source code (including linked
libraries) and an analyzer that can model the transformations a compiler makes
accurately. A different static analysis approach that doesn't rely on having complete
source code and looks at the compiler output directly is binary static analysis. Binary
analysis' strength of complete program coverage and its analysis of the final executable
makes it ideal for quality assurance testing, analyzing long completed legacy
applications, and the acceptance testing of purchased code.

As part the development lifecycle, source and binary static analyzers are complementary
security technologies. Fast, intraprocedural static analysis can be built into compilers that
process one source file at a time. This approach catches insecure coding at the earliest
point in the development cycle and gives immediate feedback to the developer. Binary
analysis' deeper, interprocedural, whole program approach takes more modeling time. It
can fit in at build time much like traditional automated testing does. Just as unit testing
complements and doesn't replace final QA testing, source code analysis does not replace
the need to perform a security analysis of the complete program executing the way it will
when the program is in production.

Binary analysis' efficacy shines when it is difficult or impossible to obtain the complete
source code for a program. Enterprise developers typically write a small percentage of a
program's overall functional code. They produce business logic and use libraries for
presentation, transaction processing, authorization, and database access. Binary analysis
enables these developers to analyze the interaction of their source code with the libraries
they use to understand the complete risk of a program. For legacy applications and
purchased code, complete source code is not always available or easy to obtain. Binary
analysis can give a view of a programs risk without a source code requirement.

There is a real need for organizations to understand the risks of deploying off-the-shelf
applications they purchase. Riskier applications translate into a higher cost of ownership
though increased patching and incident response costs. Organizations that can afford it
conduct penetration testing, or hire security consultants to do it, as part their acceptance
testing process prior to deploying new software. Binary analysis can bring the
consistency and cost savings that static analysis brings to the development process to the
acceptance testing process.

Chris Wysopal
Director, Development Symantec Corporation
cwysopal@gmail.com

 40

mailto:cwysopal@gmail.com

I have been involved in software security research since the mid 90's. In 1996, as a
security researcher at L0pht Heavy Industries, I published the first advisory for a
vulnerability in a commercial web application, Lotus Domino. The advisory contains the
first description of authorization bypass and session management problems in a web
application. These are security issues that are still common today. I later published
advisories on vulnerabilities I discovered in Microsoft IIS, Windows 95, NT and 2000.
While at L0pht Heavy Industries I co-authored L0phtCrack, the first commercial
Windows password auditor, and in 1998 I testified before the US Senate Committee on
Governmental Affairs on the topic of "Weak Computer Security in Government".

In 1999, I co-founded @stake, a computer security research and consulting company that
specialized in application security services. While consulting at Microsoft in 2002, I
helped develop their threat modeling process, which is widely used throughout the
industry today. I managed @stake's world class research team and @stake's process of
working with vendors to disclose security vulnerabilities responsibly. In 2002, along
with 10 other companies, I founded the Organization for Internet Safety, an organization
dedicated to promoting guidelines for responsible vulnerability disclosure. In 2003, I
testified before the US House of Representatives, Subcommittee on Technology,
Information Policy, Intergovernmental Relations and the Census, on the topic of
vulnerability research.

For the last 5 years at @stake (now Symantec), we have been researching the static
analysis of binaries to find security flaws. We have developed technology that can take a
binary compiled from C or C++ source code for Windows or Solaris and generate a list of
security vulnerabilities. We have undergone comparisons with other static analyzers
internally and at customer locations and have found our depth of analysis and false
positive rate to be state of the art. I am interested in developing standards for the classes
of application vulnerabilities that security tools test for and standardized metrics for
quantifying the risk in applications.

Position Statement 28

As a security practitioner, I am actively involved in various aspects of software security
in my consulting and training roles. Although I've been in the information security field
for over 20 years, I've been particularly interested in software security for the past 5-7
years, as I've become increasingly disillusioned with the status quo, point solution (e.g.,
firewall, IDS, IPS, anti-virus...) attitudes that are so pervasive throughout the information
security industry today.

Clearly, the security and software development communities need to pay far more than
simple lip service to software security. Continuously improving the product solutions
that are available to help software security professionals do their jobs more effectively is
a vital aspect of that.

 41

I eagerly welcome opportunities to better understand the software security product space
and, to the extent that I am able to, help guide its future directions.

Kenneth R. van Wyk
Principal Consultant
ken@krvw.com

Kenneth R. van Wyk, CERT® Certified Computer Security Incident Handler, is an
internationally recognized information security expert and author of the recent O’Reilly
and Associates books, Incident Response and Secure Coding: Principles and Practices, as
well as a monthly columnist for eSecurityPlanet. Ken is also a Visiting Scientist at the
Software Engineering Institute of Carnegie Mellon University, where he is a course
instructor and consultant to the CERT® Coordination Center.

Ken has previously held senior information security technologist roles at Tekmark's
Technology Risk Management practice, Para-Protect Services, Inc., and Science
Applications International Corporation (SAIC). Ken was also the Operations Chief for
the U.S. Defense Information Systems Agency's DoD-CERT incident response team, as
well as a founding employee of the CERT® Coordination Center at Carnegie Mellon
University's Software Engineering Institute.

Ken has served as the Chairman and as a member of the Steering Committee for the
Forum of Incident Response and Security Teams (FIRST) organization. He is a CERT®
Certified Computer Security Incident Handler and holds an engineering degree from
Lehigh University and is a frequent speaker at technical conferences, and has presented
papers and speeches for CSI, ISF, USENIX, FIRST, and others.

Position Statement 29

In our research, a taxonomy is proposed for addressing the level of security in a
networked-based system. The 3-A attributes of attacks, architecture, and administration
are measured by a set of 7 easily obtainable tools. Using these measurements, a study was
made of a small technological company, leading to the results that such tools are useful
for uncovering hidden vulnerabilities, and that users are usually unaware of such
vulnerabilities.

The security of a system is usually described in terms of the CIA attributes of security:
Confidentiality (the ability to only allow those with a proper need to access information),
Integrity (the ability to ensure that the information is not changed improperly), and
Availability (the ability to ensure that the information is available when needed). Within
a data communications network such as the Internet, this is achieved via four general
processes:

1. Authentication - Ensuring that the user is the correct individual.

 42

2. Authorization - Ensuring that the individual has the ability to access the necessary
information.

3. Data integrity - Ensuring that the data has not been altered in some way.
4. Data privacy - Ensuring that the data has not been compromised or seen by others.

In our research we see security more effectively measured by our own taxonomy, which
we call the AAA attributes of security:

1. Attacks. Attacks are the results of conscious attempts to break into a system.
Intrusion detection systems (IDS) are software products (e.g., snort) that
monitor a system's performance and indicate when outsiders are trying to
infiltrate. Tools like tripwire determine if attacks have occurred. If attacks
never occur, then there would be no need for security measures, much like the
case in small towns where the risk of burglary is small. Doors often stay
unlocked and yet little gets stolen.

2. Architecture. Architecture represents those features of a system that prevent
successful attacks. Tools like Nessus use a database of over 1000 known
vulnerabilities (e.g., the CVE library) to see if any of those vulnerabilities are
present in a given system.

3. Administration. A major source of insecurity is the administration of a
computer system. Using weak passwords or no password is a major cause of
intrusions. Not protecting files, sharing files or running services like ftp
servers without proper configuration are another source of vulnerability.

Therefore, if we want to measure the degree of security, or conversely, the risk of a
successful attack, we have to monitor and measure these three attributes of attacks,
architecture, and administration so that appropriate measures can be taken in order to
make networked computer systems more predictable and less vulnerable to attacks.

We ran a small case study of 13 machines at the Fraunhofer Center Maryland (FC-MD)
to see if we could identify vulnerabilities. We chose 7 inexpensive or free tools to
measure the AAA attributes: Snort, NeWT (Nessus for Windows), Norton Anti-Virus
software, FPort for checking open ports, Ad-Aware for malicious browser plugins,
Microsoft Security Base Analyzer for detecting missing software updates and a manual
check on specific registry entries looking for malicious programs. Our preliminary AAA
measurement model so far is (Attacks [Snort], Architecture [MBSA], Administration
[Norton, Ad-Aware, Registry, FPorts]) where X[Y] indicates that Y is a measure of
attribute X.

Some preliminary results of our study are:

• Malicious applications in the start-up process of the machines. Most of the
applications that were in the start-up keys of the registry were superfluous. Even
though they don't cause any damage to the system, they can impede performance
of the computer. When asked about the applications installed, most users didn't
know about most of these. In addition, the set of applications on start-up registry
keys related to software and hardware vendors was not the same in all machines,

 43

even though they were running roughly the same hardware and software
applications.

• When we looked at the ports that were open at a given time in each of the
machines, the running processes were not malicious. Even though these
applications are not necessarily dangerous we identified a need to educate users
not to accept file transfer from untrustworthy sources. Another problem is that
users use different types of instant messengers and rarely do they update their
software; therefore, existing flaws in older versions can be exploited.

• NeWT identified several problems. NeWT classifies issues as note, info or hole.
Note and info indicate situations that may be sources of exploitations, but are not
problems in and of themselves. Systems administrators should be aware of them.

Even though we found several additional problems in these machines, FC-MD has a
firewall that protects the network so many of the problems we uncovered, while
potentially harmful, were benign The main concern is traffic that is initiated from the
machines to the outside Internet, for example from plugins, and other tools used by users
like instant messengers.

It is clear most people are unaware of all that is running on their machines and worse, it is
not easy to find out. The tools we used were helpful, but still requires much knowledge
about security to understand its results and what actions to take. We understood that the
reason the configuration of the machines were so different was mainly due to different
behavior of the different users. Understanding the different types of users is an important
issue to figure out the appropriate security measures that are needed to protect a computer
network.

Our preliminary case study had the following general conclusions:

1. Being behind a firewall has probably saved FC-MD from security problems,
but we know that a firewall is not totally secure, so additional steps to
minimize future problems need to be taken.

2. Two of the 13 machines studied were laptops. Laptops proved harder to keep
up to date since they were disconnected from the network for long periods of
time and were not automatically updated.

3. It is unclear why every machine, all used in a similar way, have such different
configurations when they reboot (e.g., vastly different startup registry entries).

From our feasibility study, it is clear that users need a measurement plan that takes into
account their security vulnerabilities beyond those of the relatively common email virus
scanner so that they can understand how (in)secure they are. The fact that the
configuration of the machines was so different led us to believe that the user behavior is
an important variable in the measurement of security. Identifying what users can be
expected to understand concerning security and how their behavior makes a vulnerability
more or less dangerous can be an important factor to take into account when establishing
a security policy for a computer network.

 44

Marvin Zelkowitz
Department of Computer Science, University of Maryland and
Fraunhofer Center for Experimental Software Engineering, MD
marv@zelkowitz.com

Patricia Costa
Fraunhofer Center for Experimental Software Engineering,
pcosta@fc-md.umd.edu

Marvin Zelkowitz is a professor of Computer Science at the University of Maryland,
College Park, Maryland since 1971 and is Chief Scientist of the Fraunhofer Center
Maryland, which he joined in 1998. Previously he had a part-time faculty appointment
with the Information Technology Laboratory (and its predecessors) of NIST from 1976
through 1997. His research interest is technology transfer, emphasizing experimental
validation of new software technology.

Patricia Costa has been a scientist with the Fraunhofer Center Maryland, since 2000. She
has a masters degree in Computer Science and a masters degree in Telecommunications
Management.

 45

Discussion Material

Here is discussion material that was developed by the NIST employees as starting points
for discussion. These are rough drafts, preliminary versions, or sketches of the following
to help generate discussion and comment:

• survey of SA security tools by categories,
• the state of the art in SA security tools,
• classes of software security flaws and vulnerabilities,
• possible metrics to evaluate SA security tools, and
• reference dataset.

Survey of SA Tools by Categories

Disclaimer

Any commercial product mentioned is for information only; it does not imply
recommendation or endorsement by NIST nor does it imply that the products mentioned
are necessarily the best available for the purpose.

This survey gathers information on tools and companies from web search engines,
research papers, and product assessment reports. This initial list of tools and companies
reflect a preliminary examination of the tool and its major types. The collection of tools
is created and maintained in a database at NIST. Only a few tools have been obtained for
hands-on investigation and executed with the reference dataset. We welcome
contributions to add, delete, or modify the list.

Introduction

In order to survey the types of tools the SAMATE project is interested in, we must first
distinguish between software quality versus software security assurance. In a simplified
way, they are defined as follows:

• Software Quality Assurance tools help developers produce quality software
• Software Security Assurance tools help detect flaws anywhere in the software

development lifecycle that lead to security vulnerabilities.

This survey gathers information on software security assurance tools and companies from
web search engines, research papers, and product assessment reports. This initial list of
tools and companies reflects a preliminary examination of the tool and its major types.
This information is maintained in a database at NIST. Only a few tools have been
obtained for hands-on investigation and examined.

 46

 Discussion Points

There are many software assurance (SA) tools in the market place. Some are
commercially available, others are open source. Some tools are designed to be used
during particular system development life cycle. Tools also support varieties of features.
The purpose of the tool survey is to help answer the following questions:

• What are the common features among tools of the same type?
• Where are the gaps in capabilities among the same types of tools?
• How would someone purchasing a tool know which one is the right one for their

level of software security assurance?
• Should tools provide some kind of "assurance label" to their product that define

what their tool can and cannot do?
• What might an "assurance label" look like (for example, on the back of a source

code scanner software package)?

Classifying Tools

 There are many ways to classify software assurance tools. One classification is "where"
in the software development life cycle the tool is used:

• Requirements capture, design, specification tools
• Software design/modeling verification tools
• Implementation or production testing tools
• Operational testing tools

In an effort to scope the project, and due to limited resources, our survey focuses on SA
tools used during software implementation and production.

Some tools specialize in identifying vulnerabilities within a specific type of application.
The taxonomy used for this survey of SA tools is taken from Defense Information
Systems Agency's (DISA) "Application Security Assessment Tool Market Survey,"
Version 3.0, July 29, 2004 [1]. This taxonomy is also used to identify SA functions. See
discussion material "The State of the Art in SA Tools and Their Functions."

Web Application Tools: Web application scanner tools are a more specialized class of
SA tool that focuses specifically on web applications only, and are not considered
generalized network scanners.

Examples of this type of tool and company are as:

• AppScan DE by Watchfire, Inc.
• N-Stealth by N-Stalker
• NTOSpider by NTObjectives
• Spike Proxy by Immunity
• TestMaker by pushtotest

 47

• WebScarab by OWASP

Web Service Tools: Web service scanner tools are a relatively new class of SA tool
whose purpose is the analysis of web service applications.

Examples of this type of tool and company include:

• SOAPscope by Mindreef
• SOA Test by Parasoft

Database Tools : Database Scanner tools are a specialized tool used specifically to
identify vulnerabilities in database applications. In addition to performing some
"external" functions like "password cracking", the tools also examine the internal
configuration of the database for possible exploitable vulnerabilities.

Examples of this type of tool and company include:

• AppDetective by Application Security Inc.

Developer Tools: Developer tools are used to identify software vulnerability during
development or after deployment. This is the main focus of the SAMATE project. These
tools consist of static source code analysis tool, disassembler debugger decompiler,
binary code/byte code analysis tool, and dynamic run-time analysis tools.

 Examples of Static Source Code Analysis Tools include:

• BOON by D. Wagner
• BoundsChecker, Dev Partner by Compuware
• Code Assure by Secure Software Inc.
• CodeSurfer, CodeSonar by GrammaTech, Inc.
• Eau Claire by Brian Chess
• Prevent/Extend by Coverity
• Cqual by Jeff Foster
• Flawfinder by David Wheeler
• Fortify Source Code Analysis by Fortify
• ITS4 by Cigital
• K7 by Klocworks
• Jtest by Parasoft
• PolySpace by PolySpace Technologies
• Prexis by Ounce Labs, Inc.
• RATS by Secure Software
• RSM Source code by Msquared Technologies
• Splint by U. of Virginia
• SPIdynamics
• Jlint by Artho.com
• PMD by InfoEther, Inc.

 48

• UNO by Bell Labs
• xg++ by Stanford

Examples of Disassembler, Debugger, Decompiler tools include:

• IDA PRO by DataRescue Inc.
• VmWare Vitual Infrastructure by VmWare
• Boomerang by Boomerang Open Source Community Project
• Hindsight by Virtutech
• Fakebust by Michal Zalewski

Examples of Binary/Bytecode Analyzer include:

• AspectCheck by Aspect Security
• FindBugs by University of Maryland
• BugScan by LogicLab
• BEAST Binary Executable Analysis by Security Innovation
• Object Code Buffer Overflow Engine (OBOE) by ZelTech

Examples of Dynamic Analysis tools include:

• Holodeck by Security Innovation
• Rational Purify by IBM

General Purpose and Network Security Tools: - These tools scan networks and
systems for potential security weaknesses and recommend fixes. Examples of this type of
tool include:

• NESSUS by Tenable Security
• ELLIOTT by Open Source
• Enterprise Security Manager by Symantec
• Foundstone Professional TL by Found Stone
• Vulnerability Manager by NetIQ

The above listed are obtained from references and we welcome any additions, deletions
or modifications.

Reference:

[1] Defense Information Systems Agency, “Application Security Assessment
Tool Market Survey,” Version 3.0, July 29, 2004.
[2] Concurrent Technology Corporation, “Code Assessment Methodology
Project, Software Selection Report,” Version 1.1, Prepared for: Maryland
Procurement Office MDA904-03-C-1107, May 27, 2005
[3] Arian J. Evans, “Tools of the Trade: AppSec Assessment Tools” Presentation
viewgraph from OWASP AppSec Europe 2005.

 49

[4] Freeland Abbott and Joseph Saur, “Product Evaluation Report: A Comparison
of Code Checker Technologies for Software Vulnerability Evaluation,” Joint
Systems Integration Command Report, 25 April 2005 (limited distribution for
official use only).
[5] Jos Azario, “Source Code Scanners for Better Code,” in Linux Journal.
http://www.linuxjournal.com/article/5673.

The State of the Art in SA Tools and their Functions

Introduction

A definition of Software Assurance (SA) is: ... the planned and systematic set of activities
that ensures that software processes and products conform to requirements, standards,
and procedures. As defined by NASA [2]. Inherent in that definition is the assurance that
products conform to software security requirements, standards and procedures. One of
the goals of the SAMATE project is to determine the start of the art in software security
tools that assist in assuring security compliance.

In order to begin this process, a taxonomy of SA tool classes and their functions is
needed. The taxonomy below is a start at defining tool classes and functions. It is a
hierarchical taxonomy, based upon the types of tools used at the various points in the
software development lifecycle (SLDC). Much of the information used to construct this
taxonomy is taken from Defense Information Systems Agency;s (DISA) Application
Security Assessment Tool Market Survey, a document whose content will be posted
publicly as a Security Techical Implementation Guide (STIG). Additionally, Secure
Software Inc.'s CLASP v1.1 Training Manual provided much of the information for the
proposed functional taxonomy of static code analysis tools.

 Questions that need to be answered in order to complete the SA Tool/Function
taxonomy include:

Regarding Tool Classes

• What classes of tools are currently used to identify potential vulnerabilities in
applications today?

• What is the order of importance of those tools (which have the highest impact in
of identifying/preventing application vulnerabilities)?

• What tool classes are most mature?
• What tool classes are most common?
• What are the gaps in capabilities amongst tools of the same class?
• What are the gaps in capabilities for a tool class in general?
• What classes of tools are missing from the taxonomy of SA tools below?

 50

http://www.linuxjournal.com/article/5673

Regarding Tool Functions

• What are the functions that define a particular tool class?
• What functions are essential/required for a particular class of tool?
• What is the domain for each function?
• How would each function be described in a functional specification for that SA

tool?
• What functions are missing from the taxonomy of SA tools below?

A Taxonomy of Tools and Functions

The taxonomy below is "hierarchical" in the sense that tools are classified as either
"external" or "internal". External tools do not have access to application software code
and/or configuration and audit data (such as network scanners or black-box testing tools).
Internal tools (such as system, source code or binary code scanners) do. Additionally,
some tools can be classified as both internal and external. An example of a possible SA
tool taxonomy is: (much of the taxonomy content is borrowed from DISA [3], Secure
Software [4] and NASA [5]).

External

• Network Scanners
• Web Application Scanners
• Web Services Network Scanners
• Dynamic Analysis Tools

Internal

• Software Requirements Verification Tools
• Software Design/Modeling Verification Tools
• Source Code Scanning Tools
• Byte Code Scanning Tools
• Binary Code Scanning Tools

Both Internal/External

• Database Scanning Tools
• General Network/System Security Scanners

References

[1] Defense Information Systems Agency, Application Security Assessment Tool Market
Survey, Version 3.0, July 29, 2004.
[2] http://satc.gsfc.nasa.gov/assure/assurepage.html Software Assurance Guidebook and
Standard page (17 Nov 2004).

 51

http://satc.gsfc.nasa.gov/assure/assurepage.html

[3] DISA Application Security Assessment Tool Survey, V3.0, July 29, 2004 (to be
published as a STIG).
[4] http://www.securesoftware.com/solutions/clasp.html , CLASP Reference Guide,
Volume 1.1 Training Manual, John Viega, Secure Software Inc., 2005.
[5] http://satc.gsfc.nasa.gov/tools/index.html Home page for the NASA Automated
Requirement Measurement Tool.

Classes of Software Security Flaws and Vulnerabilities

• Software security flaws - software defects, inadvertently or intentionally
introduced, that violate the desired security properties of a computer or network
system, such as confidentiality, integrity and availability.

• Vulnerabilities - flaws in a software product that can be exploited to compromise
the security of computer or network system.

Motivation for Classes of Software Security Flaws & Vulnerabilities

• For Systematic Study – classify security problems in software into categories that
one can dissect for systematic study.

• For SSA Tools Developing - a taxonomy of security vulnerability that the SA
community would agree upon will be essential for evaluating Software Security
Assurance (SSA) tools and classifying SSA functions.

• For SRD Developing - Classes of software security flaws and vulnerabilities is
one of resources to drive a standard reference dataset, which, in simply put, is a
benchmark test suite for Software Security Assurance tools.

Characteristics of Satisfactory Taxonomies [1]

• mutually exclusive - classifying in one category excludes all others because
categories do not overlap,

• exhaustive - taken together, the categories include all possibilities,
• unambiguous - clear and precise so that classification is not uncertain, regardless

of who is classifying,
• accepted - logical and intuitive so that they could become generally approved,
• Useful - can be used to gain insight into the field of inquiry.

These characteristics can be used to evaluate possible taxonomies. It should be
expected, however, for a satisfactory taxonomy to be limited in some of these
characteristics. A taxonomy is an approximation of reality that is used to gain greater
understanding in a field of study. Because it is an approximation, it will fall short in
some characteristics.

 52

http://www.securesoftware.com/solutions/clasp.html
http://satc.gsfc.nasa.gov/tools/index.html

[1] Edward G. Amoroso, Fundamentals of Computer Security Technology, Prentice-Hall
PTR, Upper Saddle River, NJ, 1994.

Examples of Computer & Network Security Taxonomies

• List of Vulnerabilities
 Frederick B. Cohen, Protection and Security on the Information

Superhighway, John Wiley & Sons, New York, 1995.
• List of Categories of Vulnerabilities

 William R. Cheswick and Steven M. Bellovin, Firewalls and Internet
Security: Repelling the Wily Hacker, Addison-Wesley Publishing
Company, Reading, MA, 1994.

• List of Categories of Results
 Deborah Russell and G. T. Gangemi, Sr., Computer Security Basics,

O'Reilly & Associates, Inc., Sebastopol, CA, 1991.
• Matrices

 T. Perry and P. Wallich, "Can Computer Crime Be Stopped?," IEEE
Spectrum, Vol. 21, No. 5.

 Operators Programmers
Data
Entry Internal Outside Intruders

Physical
Destruction

Bombing
Short
circuits

Information
Destruction

Erasing
Disks

Malicious
software Malicious

software
Via

modem
Data

Diddling Malicious
software

False data
entry

Theft of
Services Theft as user Unauthorized

action
Via

modem

Browsing Theft of
media Unauthorized

access
Via

modem

Theft of
Information Unauthorized

access
Via

modem

• Tree Structure

 Carl E. Landwehr, Alan R. Bull, John P. McDermott, and William S.
Choi, "A Taxonomy of Computer Security Flaws," ACM Computing
Surveys, Vol. 26, No. 3, September, 1994, pp. 211-254.

 53

 Non-
Replicating

 Trojan Horse Replicating
(virus)

 Malicious Trapdoor
 Intentional Logic/Time Bomb
 Storage

 Non-
Malicious

Covert
Channel Timing

Genesis Other
 Validation Error (Incomplete/Inconsistent)

Domain Error (Including Object Re-use,

Residuals,
and Exposed Representation Errors)

 Inadvertent Serialization/aliasing
 Identification/Authentication Inadequate

Boundary Condition Violation (Including

Resource
Exhaustion and Violable Constraint Errors)

 Other Exploitable Logic Error

• Multiple Dimensions
 John Howard, “An Analysis of Security Incidents on the Internet 1989-

1995,” PhD dissertation in Engineering and Public Policy, Carnegie
Mellon University, 1997.

Attackers Tools Access Results Objectives

Hackers User
Command Implementation

Vulnerability Unauthorized
Access Files

Corruption
of

Information
Challenge,

Status

Spies
Script or
Program

Design
Vulnerability

Unauthorized
Use Processes

Data
in

Transit

Disclosure
of

Information Political Gain

Terrorists Autonomous
Agent Configuration

Vulnerability Theft of
Service Financial Gain

Corporate
Raiders Toolkit Denial-of-

service Damage
Professional

Criminals Distributed
Tool

Vandals Data Tap

 Secure Software, Inc. “CLASP”, 2005.
 Three axes: Problem Type, Consequence, Exposure Period.

 54

Possible Goals of Classifying Software Security Flaws & Vulnerabilities

• A taxonomy that has classification categories with the satisfactory characteristics
as possible.

• Incorporate commonly used terms in security vulnerabilities that occurred in
modern days.

• Consensus from the SA community.

Taxonomy Scope

• Including vulnerabilities in server applications and client applications, e.g.
UNIX programs (sendmail, BIND, etc), server-type program (ftp, http, irc,
finger, etc.), mail clients (MS Outlook, Netscape mail, etc.), COTS, etc.

• Not including vulnerabilities related to network, computer system
environment, configuration, system design, system access validation, etc.

• Each class of vulnerability may have a collection of subclasses. Each subclass
is a variation of the class. The whole collection of subclass does not intend to
fully represent that class.

• Each attack may exhibit any combination of the vulnerability classes and/or
subclasses.

Initial Draft

Input Validation Error

Input passed to an application is not properly validated such that vulnerability can be
exploited by a certain input sequence.

Boundary Overflow
Input exceeds an assumed boundary thereby causing vulnerability. For example, the
application may run out of memory, a variable might reach its maximum value and
roll over to its minimum value, etc.

Buffer Overflow
A special case of Boundary Overflow, where the bounds checking on the size of
input being stored in a buffer array is not performed or in error. This type of
vulnerability comes with different flavors, include:

Upper/Lower Bound
Upper or lower bound is violated.

Data Type
Buffer of all data types (character, integer, floating point, wide character, pointer,
unsigned character, and unsigned integer) may be overflowed. The attacker may
use different technique for different data type to exploit the buffer overflow
vulnerability.

 55

Memory Location
Buffer may reside in different locations (stack, heap, data region, BSS, shared
memory, etc.). The attacker may use different technique for different memory
location to exploit the buffer overflow vulnerability.

Malformed Input
Input passed to a procedure call in an application is not properly checked such
that vulnerability can be exploited by a certain input sequence.
Tainted Input to Call-Out Resources

Command Injection
Input passed to a command isn't properly sanitized before being used in a
command execution call such as “system ()", “exec()” or “popen()”. This can be
exploited to inject arbitrary shell commands.

SQL Injection
Input passed to SQL query of an application, mostly found within webpages with
dynamic content, isn't properly sanitized before being used. This can be exploited
to cause computer security breach.

Format String
Hostile input passed as the format string for a variable arguments routine such as
printf, the attacker can write arbitrary values to memory. The %n directive is
particularly susceptible to attack.

Cross-Site Scripting
A web site may inadvertently include malicious HTML tags or script in a
dynamically generated page based on unvalidated input from untrustworthy
sources. This can be a problem when a web server does not adequately ensure
that generated pages are properly encoded to prevent unintended execution of
scripts, and when input is not validated to prevent malicious HTML from being
presented to the user.

Directory Traversal
Directory traversal is an exploit that performs malicious activities such as
accessing restricted directories, executing commands and viewing data outside the
normal server directory where the application content is stored. Commonly, this
vulnerability occurs when the web server software fails to validate input received
from browsers.

Exceptional Condition Handling Error
The handling (or mishandling) of the exception by the application enables a vulnerability.

Symlink Problem
When temporary file being created insecurely, it can be exploited via symlink attacks to

 56

create and overwrite arbitrary files with the privileges of the user running the affected
script.

Insecure Access Control – Application level
Access control mechanism is faulty; bad permission.

Privilege Escalations
Unauthorized users gain escalated privileges.

Improper Database Access
Database server improperly sets the access control for its clients. The client might
be able to run arbitrary code on the server.

Cryptographic Error – Application level
Cryptographic service is faulty.

Random Number
A random number vulnerability occurs when a program uses a method of generating
random numbers is predictable, e.g. rand(), random().

Race Conditions
A race condition occurs when multiple processes access and manipulate the same data
concurrently, and the outcome of the execution depends on the particular order in which
the access takes place. A race condition is of interest to a hacker when the race condition
can be utilized to gain privileged system access.

Memory Leak
A flaw in a program that prevents it from freeing up memory that it no longer needs. As
a result, the program grabs more and more memory until it finally crashes because there
is no more memory left.

Null Pointer Dereference
Under some circumstances, a null pointer may be dereferenced during a memory
allocation.

Backdoor/Input Sensitivity
Some specific input triggers malicious code.

Other
It is estimated that approximately 21% of CVE vulnerability entries are not classified.

 57

Possible Metrics to Evaluate SA Security Tools

How can one determine that a tool does (or will do) what a user wants, in this case, find
security vulnerabilities in programs? How can the strengths of different tools be assessed
to determine which one or combination is good for what situation? This page has an
initial draft of possible answers.

This also presents a initial list of features for code scanning tools. In the future, these
features will be elaborated with testable assertions and a detailed test plan will be
developed.

This page has an initial draft. One purpose of matter here is to be a starting point for
discussion. Please read and consider this before the workshop. Be prepared to talk about
your critiques, concerns, issues, suggestions, references, alternatives, etc.

 Tool Metrics

Many of these metrics implicitly include the question of what dataset should be used.
This question is addressed in the reference dataset. The ideas here come from many
sources, for instance, the works of Abbott, Almazan, Foster, Kratkiewicz, Leek, Li,
Lippmann, Lu, Qin, Rutar, Saur, Tan, Zhivich, Zhou, and Zitser. These metrics may not
be very applicable to completely different classes of SA security tools, such as verifiers,
requirements capture and validation tools, etc.

• Completeness

Did the tool find everything, or more specifically, everything in the class of
vulnerabilities it was designed for? Like "recall" in text retrieval.

A common metric is number of correctly flagged vulnerabilities - total number
of vulnerabilities.

Called detection rate in, e.g., Kratkiewicz & Lippmann, and Zhivich, Leek, &
Lippmann.

• Report Granularity

How much information is given for each vulnerability flagged? Some kinds of
information are:

 o Location of vulnerability

Lu, et. al. call the space (for static analysis) or time (for dynamic analysis)
between the occurrence and the flag the "detection latency".

 o Severity

 58

 o Class, vulnerability, or error

 It is more helpful to say "buffer overflow at line 626" than just "line 626".

 o Likelihood of really being a vulnerability

• Soundness

Did the tool only report actual vulnerabilities, that is, no false alarms? Like
"precision" in text retrieval.

 A common metric is number of false alarms / total number of vulnerabilities.

Called false alarm rate in, e.g., Kratkiewicz & Lippmann, and Zhivich, Leek, &
Lippmann.

• Scalability

What is the growth in time or space for input size? This is used to give one
indication of whether the tool can handle large pieces of software.

A metric might be complexity (big-O notation), determined experimentally or by
algorithm analysis. Another metric might be the size of the biggest piece of
software it can handle (or has handled).

• Speed

How fast is it? Complexity gives the shape of the curve, this gives the constants.

For static analysis, this is the time taken. For dynamic analysis this is the start up
or one shot analysis time and the execution slow down.

• Breadth

 How widely can this be used?

 o What languages or binaries does it work with?
 o What platforms does it work on?

• Ease of Use Metrics

These are often vital for specific determinations and have been used in surveys
and comparisons. However, since these tend to be even more subjective than the
above, we do not plan to consider them.

 59

 o Is a special set-up needed? For instance, special hardware.

 o Ease of installation

 o Updates & maintenance frequency and ease of updates

 o Support and helpfulness of the vendor or developer

 o Cost

 o User learning time

 o Annotation or preparation time. How much time does it take to prepare to a piece
of software? Dynamic analysis may need test cases, if appropriate tests are not already
available.

Reference Dataset

Goals

The purpose of the reference dataset is to provide researchers, developers, and consumers
with a database of known bugs and vulnerabilities and fixes for them. This will allow
developers to test their methods and consumers to evaluate a tool when considering it for
purchase. The dataset should encompass a wide variety of possible vulnerabilities,
languages, platforms, and compilers. We would like the dataset to become a large-scale
effort, gathering examples from many sources.

Dataset Composition

How should the test suite cases be written? Should we construct artificial test cases to
cover a wide range of exploits, or should test cases be sampled from “in the wild” source
code? Would a mixture of multiple sources be most appropriate? What will provide
more useful feedback?

Code Sources

“Artificial” Code
Constructing code samples that illustrate possible bugs and vulnerabilities would be one
effective way of creating reference dataset. By selecting elements from a taxonomy of
vulnerabilities, one could code examples and quickly produce a set that covers a wide
range of bugs. Would performance on these “artificial” cases reflect a tools ability to
perform on real code? How can we ensure that they are sufficiently complex? What are
some effective methods for generating test cases without having to write them
individually?

 60

“Wild” Code
Sampling code from known bugs available in industry and open source software would
allow us to construct a test set that encompasses real bugs that are found in software. By
using the version of the code with the known vulnerability and comparing it to the
“patched” version we can generate a correct and buggy example. Several studies have
used open source software to compare error detection rates of leading SA tools. Is the
size of the program prohibitive, and if so how much time is required to extract the buggy
components and the corresponding fixed components? What licensing restrictions apply?
Is it appropriate for the distribution of bugs in the test suite to correspond to the
distribution of actual bugs found in software, or should more focus be put on covering as
many types of bugs as possible? If we are only sampling from vulnerabilities that
survived an internal debugging process, would they be valid for evaluating a tools ability
to catch all bugs or simply the “hardest”?

“Academic” Code
Bill Pugh has constructed MARMOSET, a dataset consisting of code samples from
introductory computer science courses at the University of Maryland. By sampling code
from undergraduate course work, one is able to construct a large dataset of similar
programs, which can be useful as a source of multiple correct and buggy programs.
These could be extremely useful analyzing false positive, since they will provide many
correct code samples that vary in structure. We must consider whether this code will
provide an accurate means for evaluating SA tools. Are the errors and bugs introduced in
undergraduate work the same as those in professionally produced software? Is the course
work sufficiently complex to be used to evaluate tools that are intended for industry
software? What range of concepts (threads, networking, cryptography, etc) does the
course work cover compared to “real” software?

Code Size
What is an appropriate size for a test case? Should test cases be short and simple
illustrate the vulnerability (i.e. an off-by-one index for a buffer), or should they be longer
and more complex? Should the code be longer? How obfuscated should the bugs be?
Would using whole application such as Mozilla or Apache be useful? What is reasonable
or unreasonable for current tools?

Flawed and Fixed Samples
Our test suite should encompass a variety of flawed code, but also corresponding fixed
code for each test case (that could be used to test false-positive rates). In most cases there
will be many different possible solutions. How many different solutions would be
appropriate? How complex should solutions be? Some solutions could fix the code, but
in the process make it very convoluted. How complex/simple would solutions have to
be? How should the fixed and buggy versions be linked to each other? If there are many
different buggy versions and fixed versions should they all be linked together in the
database?

Types of Vulnerabilities
What types of vulnerabilities should be selected? What languages should be the primary

 61

focus? What compilers, platforms, and applications (servers, browsers, etc) would be
most useful for testing purposes? If a piece of code is buggy only on certain compilers,
should it be included or should errors introduced by a compiler be ignored?

Dataset Structure
How should the reference dataset be stored and structured? What is an appropriate way
to organize it and make it easily distributable?

Database Format
How should the reference dataset be stored and structured? What is an appropriate
database system for storing and organizing this information? Should it be stored as an
XML document or in a relational database? What are the strengths and weaknesses of
each approach, and what would be easiest for the community to use?

Important Features
What are some important features that need to be present in the dataset? How should
pieces of code be label and categorized? What metadata should be necessary for an entry
in the dataset? The source of the code, the name of the person who discovered it, the
language, platform and compiler all seem like necessary fields. A classification of the
vulnerability, based on the taxonomy, also seems important, as well as an example of
input that will exploit the vulnerability or cause buggy behavior. What are some other
useful features for searching the database? LOC? cyclomatic complexity? keywords?
other code metrics?

Maintenance
How should test cases be added and how should they be verified? Who should be
authorized to add new elements? Who should be able to add new class of bugs as they
are discovered? How can we efficiently distribute the reference dataset and its updates to
companies, universities, and researchers? What are some appropriate methods for
version control? Where should it be hosted and how should it be mirrored?

 62

Workshop Minutes

This section contains the viewgraphs used by the facilitators followed by attributed and
unattributed discussions which occurred during the workshop. Although we attempted to
capture all the discussion points and correctly attribute them, the transcription provide
failed to capture much information. So much points are missing. The views expressed
by all participants are strictly their own and do not necessarily reflect those of their
respective affiliated institutions, if any, nor the sponsors of this workshop.

Paul Black: Welcome to our workshop on the state of the art in software security tools.
We originally expected about 25 to 30 people, but the response is overwhelming. We
have Dr. Shashi Phoha, director of Information Technology Laboratory. She was head of
the department at Penn State and research laboratories. So we are delighted to have Dr
Phoha as the head of ITL at NIST.

Welcome (Shashi Phoha)

63

S
d
I
i
i
h
o
t
t
v
f
w
a
r

S

hashi Phoha: I'm very pleased to be here. I bel
oing here is the heart of our mission. I'll try to r
t is a very important area that we are dealing wit
nnovation so that machines can be compatible, to
mprove quality, and create jobs. I think this foru
ow to support the areas for today. The standards
n the message of scientific enquiry. Can we hav
he answer is yes, and that this group can find it. T
he right track. You really have to understand the
ulnerability and what features can be present in
eatures that will point out there is likely a securit
hich must be present in making this happen. So

 series sponsored by the Department of Homelan
esponded.

cope and Introduction (Paul Blac

64
ieve very strongly that what you're
elate some of my views about this work.
h. The goal of NIST is to create
 refacilitate trade, enhance safety,
m is living proof of how to do it and
 we have set enable me to concentrate
e more reliable systems? I believe that
here are many challenges; you're on

 nature of security flaws and
security flaws. You can identify certain
y flaw. Then comes the automatic tools
 I appreciate this inaugural workshop to
d Security. The community has

k)

P
w
o
s
w
I

F
O
r
w

O
p
A
a
y
m
u

aul Black: We appreciate your taking time out o
ork hard. This workshop is going to be differen
ther. Our format is going to be different. It's goi
everal sessions where a facilitator is going to pre
as on the web as orientation information, and th

t will require cooperation on everyone's part. It's

lexible agenda
ur agenda is going to be flexible. We will have

easonable, but if we find that one area is exhaust
ill just continue on.

ur agenda is more of a diagram. If we need to h
eople about a critical issue that we want to discu
ll the material that we present is preliminary. W

pproaching this with not as much experience as
ears in your field. So we are not saying this is th
aterial that we put together to be a basis. So ple

se - things are going to be the wrong way". Thes

65
f your busy schedules to come and
t: we're going to be talking with each
ng to be an open discussion. We'll have
sent the same discussion material which
en we'll have an open discussion.
 going to be a different experience.

an outline of an agenda which I think is
ed and no one has anything to say, we

ave a breakout session with 12-15
ss now, then we can do that!
e have worked hard on it, but we are

most of you. Many of you have spent
e end-all be-all of the universe. This is
ase don't look at this and say, "It's no
e are preliminary ideas.

Round-robin introductions

Please state your name, what you represent and why you are here. (Introductions from
everyone.)

Scope
"Security is not only code, it's also design, process, etc."

Paul E. Black: Scope of this workshop includes design, software development, the
operating environment (OS, connections, services, libraries, etc.), and the operation.
Software security tool effectiveness is one family of metrics. How much security do you
get if you get it to comply with a certain tool? What sort of messages make sense to
people about security, vulnerability, passwords, etc. Some people need the line of code.
In additional to the proceedings, there will be a scientific article. Our goal for writing the
article is about Mid-September.

Thoughts on the Reference Dataset

William Pugh: I see similarity to parallel computing back in the 90's. I saw the damage
that was done to that field by inappropriate benchmarks. I'm happy that there were
people, rather than trying to write to the benchmarks, that did a better job of getting
parallelism.

John Barkley: I can refer to line 150 of the benchmark when establishing the tool
necessary for reference data sets.

William Pugh: [Some benchmarks are] a lot of single dimensions where security is
inherently multi-dimensional.

John Barkley: I think that's a very good point, there is no reason that the reference data
has to be single dimensional. It could very well be multi-dimensional, indeed.

Brian Chess: My only concern about that is if you don't get benchmarks, some people
will only do one thing very well and totally forget about the other stuff. We're looking at
an upper level and a minimal level. Our challenge will always be to raise the bar.

William Pugh: I'm not saying there is nothing that can be done. You need to be careful.
A benchmark may be bad because people have a tendency to build to the benchmark,
even if that doesn't make real progress or even impedes progress.

John Barkley: They're constantly updated. We want to identify the main aspects of the
reference datasets. People will run the same comparisons over and over, which will be
useless. What you're trying to figure out is the best thing you can do.

 66

Tools Survey and Categorization (Elizabeth Fong)

 67

 68

E
t
d
T

S

J
m
i

D
“

B

D
t

lizabeth Fong: I want to do some scoping of th
oday . The subject is very broad and we want to
efining tool categories. I want to start by lookin
he tools being considered first for this workshop

cope of tools to be included in the survey

oe Jarzombek: Not all tools are listed by Liz’ s
odeling, server configuration flaws). Scope sho

tself to tools that “just examine code”.

jenana Compara: You can’t do security assur

intertwined”.

rian Chess: We need to start somewhere, howe

avid Wichers: My question is on scope. Are y

he operational environment that the software run

69
e topic that we should be focusing on
 do some preliminary warming up of
g at the tools that are out on the market.
are software security tools.

cope statement (requirements,
uld include all SA tools, and not limit

ance without quality assurance. They are

ver.

ou focusing toally on the software, or
s?

Elizabeth Fong: To narrow the scope, we should say that we are focusing on tools
which have a security focus.

Paul Black: We will, in longer term, be going to look at all tools for software security
assurance.

Ryan Berg: I completely agree that we need to limit the scope somehow. We need to
decide to set some boundaries.

Joe Jarzombek: But that’s an inadequate boundary.

Sam Redwine: I don’t mind if you say the scope is narrow. This slide is all software
security coding tools.

Attributes for categorization

Elizabeth Fong: It is difficult to classify some tools into certain categories, because
these are like cherries and lemons.

John Peyton: We should differentiate between techniques and products (for instance
code slicing is a technique, etc.). The language which the tool handles is an attribute, not
a category.

Gary McGraw: We can ignore some of these tools, but the attackers won't ignore them.

Unattributed:

• Other attributes are cost, effort invested, how easy it is to install and use, and if it
is only available as (used by) a service. Also some tools are open source versus
commercial license.

• We should not categorize the tool by open source versus commercial license (the

majority of the community).

• “Services” should be included in the survey, because services bring more value
than a tool alone.

• What about “home grown tools”? Should that be in scope? How can you survey a

tool that is not public?

William Pugh: Obviously we need to reduce scope of the survey to do anything
worthwhile. Thre are too many classes of tools.

Paul Black: We have a larger program where we will be looking into other categories of
tools.

 70

What are outside of scope?

• The tool FXCop (http://www.gotdotnet.com/team/fxcop/) from Microsoft is a
Binary Scanner. There are a lot more Dynamic Analyzers: Fuzzer, Purify.

• How about tools for real-time system?
• Network Scanners, firewalls, virus scanners, are all out of scope, and therefore

should not be listed in the survey.

Elizabeth Fong: This categorization is based upon the Defense Information Systems
Agency (DISA) report that is not publicly available. Instead of reinventing the wheel, we
took the DISA report.

Tobie Jones: This report is not publicly available yet.

Taxonomy of Software Assurance Functions (Michael Kass)

71

http://www.gotdotnet.com/team/fxcop/

 72

73

Michael Kass: Jeff Foster made a survey com
Christian B. Almazan, and Jeffrey S. Foster -
for Java” The 15th IEEE International Sympo
Engineering (ISSRE'04). Saint-Malo, Bretagn

Djenana Compara: We should not go by the
of the tools. We should focus on "what" (Wha

William Pugh: This is scary because all tool
create a chart for comparing tools would be d

Unattributed: Classify/compare tools on thei
checking boxes <<of what they do or don't do

Unattributed: The list of internal tools shoul

David Jackson: We should drive <<software
requirements <<not from finding flaws>>

Stan Wisseman: Drive functional specificati
Profiles.

Paul Black: Software Assurance Requiremen
domain of SA Common Body of Knowledge.

Unattributed: How do tools contribute to an

Joe Jarzombek: It would be great if EAL2 le
evaluation only"

Sam Redwine: <<We should take>> a preven
stance. That is, concentrate on education, goo

 74
paring three tools. Nick Rutar,
”A Comparison of Bug Finding Tools
sium on Software Reliability
e, France. November 2004.

 technology limitation ("How to do it")
t are the vulnerabilities).

s do not do the same thing. Trying to
ifficult.

r performance on a dataset, not by
>>.

d also include compilers and editors.

 security>> from assurance

ons from Common Criteria Protection

ts driven tool analaysis is more in the

assurance argument?

vel of Common Criteria could be a "tool

tion (proactive) vs. detection (reactive)
d design, etc. to write secure software in

the first place, instead of concentrating on how to detect problems after the software
is "done".

Unattributed:

• The majority think that a specification of what is buffer overflow is useful.
• Add code and design verification tools to Tool Functional Taxonomy (they are

already in there)
• Code understanding tools or functions are important. <<For instance, debuggers,

slicers, what functions calls this one, and what functions do I call.>>
• Slicing is more a technique than a tool.
• <<A tool that finds a flaw should>>

o explain what the vulnerability is
o give background and say is it exploitable
o explain the reasoning, ie, why that is actually a vulnerability, eg, tainted

data from function Q, still may have permissions through function Z, etc.
• The tool has to explain the vulnerability (undestand it). "How exploitable is it?"
• The last bullet (permit annotation of code) should be split into:

o flags to interact with tool
o annotation to improve the code

Recommended Best Practices, or, State of the Art in SA Tools
(Brad Martin)

 75

76

B

E

S
E
g

S
E
t
n
a

J
T
s
a
t
b

D
m
l

D

J
s

D
S

rad Martin: My name is Brad Martin. I work for National Security Agency.

ducation/Research

am Redwine: (Referring to Brad Martin’s first slide on “Software Security
ducation/Research) We need to identify all additional knowledge one needs to produce
ood software.

teve Christey: (Referring to Brad Martin’s second slide on “Software Security
ducation/Research, last bullet: “Is a new academic discipline in secure software needed

o provide our nation with graduates capable of producing secure software?) Security is
ot a new academic discipline. Our education process should roll-in security into
cademic discipline

oe Jarzombak: Currently there are 60 – 80 centers of excellence through DHS, NSF.
he software engineering common body of knowledge is another knowledge area. We
till lack a computer science department that does not really view security as
cademically interesting, and the few computer science majors coming out do not meet
he needs of the nation. However, we are getting some out of medical schools and
usiness management department.

on O’Neill: There is a difference between software product engineering and software
anagement engineering. The object of the former is a good product. The object of the

atter is cost, delivery date, etc.

iscussion about terms

oe Jarzombak: We are trying to make sure that software assurance is embedded in the
oftware. Some effort to get the definition out should be done by the community.

jenana Campara: (Referring to term “Software defect” and “Software vulnerability)
oftware has weakness and symptoms.

77

Sam Redwine: We should distinguish between probability – chances of a breach, and
possibility – is there a possible breach.

Processes and Practices for Producing Secure software

Gary McGraw: Quality is finding its way into software. This is because over the last
few years, business extended out to produce more software. People come to understand
how critical software is. Examples are Wall Street applications and cell phones.

James Nash: I’ve built safety related products, and it is still a probability that some
code is unsafe. How can you say that software is safe?

Sam Redwine: There seems to be number of people that believe that having really good
people will get you secure software. They’ve said a lot of airplanes fall out of the sky.

Michael Hicks: If you can solve the software problem, you can also solve the security
problem.

Joe Jarzombek: (Referring to Brad Martin’s second slide on “Processes and Practices
for Producing Secure Software? First bullet: “Do existing CMMs adequately address
software security?) The answer is no! The CMM’s are not applicable to “small,
shareware” software.

Choice of Programming Languages

Dave Wichers: (Referring to Brad Martin’s third slide on “Process and Practices for
Producing Secure Software? On Programming Languages). Let’s talk about the benefits
of adopting different languages to encourage people to move towards languages that are
more secure.

Joe Jarzombek: By moving to different languages you are just moving to different sets
of vulnerabilities. I would like a comparison that would compare this language to that
language.

Steve Christey: The thesis behind what I am trying to say is any programming language
that is out there now still has fundamental problems.

Joe Jarzombek: I agree. My point is for the languages that are out there, some quick
summary that says what are the benefits of using one to the other. So for those who have
the luxury of choosing a language, they can make a smarter choice. A lot of people
don’t have the luxury because they have legacy code.

Mark Fallon: Let’s just rewrite all our network data and communication infrastructure
in Java. Here are the business reasons of why people use the language. We are looking
for developers to help build that product and when I try to bring in people it is all Java
now.

 78

Software Assurance Vulnerability List &Taxonomy (Mike
Koo)

 79

80

• Most vulnerabilities are composed with m
difficult to deal with (examples : authentic

• Terminology (purportedly from Software
(SWEBOK) We should be using this (Mc

o a flaw is a defect
o a vulnerability is a security proble
o a threat is a "bad actor", not a vuln

• Some of the proporties of the taxonomy w
the flaws cannot be identified by tools tod

 81
any factors => mutual exlusion will be
ation problem, canonisation problem)
Engineering Body of Knowledge
Graw)

m
erability
ill be difficult to achieve (i.e. some of
ay)

• To have a taxonomy is important for the users and vendors.
• A taxonomy can serve as reference, resource “Common Body of Knowledge

(CBK)”.
• Need to be able to include backdoors.
• Design problems: RSA may be defect-free, but still vulnerable.
• Terminology: software weakness, software symptom should be used. (Djenana

Campara)
• Program vulnerabilties are usually combinations of flaws.
• Taxonomy is to help us determine which tools or techniques could find or prevent

certain flaws or classes of flaws.

• CVE's PLOVER taxonomy was introduced as a possible starting point
o PLOVER structure – there will never be a “mutually exclusive” flaw

taxonomy (e.g. is it an “authentication flaw” or a “logic flaw”?)
o Does PLOVER fit the bill as a taxonomy? - PLOVER is a classification

scheme and does not follow as a taxonomy.
o What about CLASP? (CLASP uses different terminology, but PLOVER

includes the same flaws)
o Comment: 219 flaws is "too many"
o CLASP/PLOVER may contain “unfindable” flaws… but is that any

reason not to include them in a flaw taxonomy?

• Should classification be driven “top-down” (i.e. CC/PP requirements driven) or
“bottom-up” (definition of flaws, then create test cases based upon those
definitions)?

• Who has a taxonomy, Who wants to contribute to the taxonomy effort ?
o Cigital/DHS (G. McGraw)
o SEI/Cigital -> DISA <<same as above? Paul Black>>
o PLOVER, Mitre (Steve Christey)
o Ounce Lab
o Klockwork
o CLASP, Secure Software (J. Viega)
o Fortify
o OWASP - starting a project to rewrite "Top Ten." The granularity should

not be overly small so that we have to handle over 200 flaw classes.

• For providing analysis of an application, both tool and service should be needed.
• It was suggested that a couple of examples (real vulnerability and false positive

or “bad” and “fixed”) be used in the reference dataset.

• => Action to do : The Samate Yahoo Group can host the different proposals of
taxonomy.

• Terminology: threat vs. flaw vs. risk vs. ...
• Each <<entry>> should have code showing

 82

o (true) flaw
o fixed code
o false positive

the last two may be the same

• Suggestion: both “bugs” and “flaws” should be in the taxonomy.

Security metrics for Software and Tools (Paul Black)

Sam Redwine: Who is the audience for the metri
Security Metrics for Software.

Paul E. Black: Metric must be multi-dimensiona

Djenana Campara: Don’t “grade” code results:
Sometimes they would stubbornly argue that som
though it was, just to get the grade up. So tool de
software reports. It just lists flaws and vulnerabili

Joe Jarzombek: Confidence in tools should be h
2 should be a “tool-level application review”.

 83
cs?

l.

it threatens code developers in shops.
ething was not a vulnerability, even
velopers dropped “grades” from its
ties.

igh enough that Common Criteria EAL

Unattributed:

• Tool vendors are leery of “pass/fail reporting” on a potential government.
contractor application results. They can be “sued” if that contractor loses a
contract.

• Tools could measure for an applications’s effective “countermeasures” (e.g.
canaries to check for buffer overflow), or could use “resiliency” as a metric.

• Once you get to a certain point, you can’t tell the difference between good code
and great code. The metrics become too complex.

• There are no good "global metrics", that are, right for every need. Metrics can be
local to a reviewing community’s needs.

• An interesting study would be comparing actual security incidents with a metric
as a way of providing validity to that metric.

• Granularity is hard to have with metrics. You might have "good" or "bad", but
between is hard to define.

• Example of metrics : Number of "strcpy" call per 1000 lines of codes.

Metrics for Software Security Assessment Tools

First, one can ask, what (software) metrics does it generate?

David Melski: Look at medical lab tests for metric attributes, like specificity (precision),
sensitivity (recall), accuracy, and positive predictive value.

Unattributed:

• Issue on the definition of soundness. Soundness is the number or possibility of
false negatives. The notion of a "sound" tool or technique reverses if you're
looking for flaws or freedom from flaws.

• Complexity may be a poor measure of scalability. The real item of interest is how
fast it runs in practice. There was an algorithm that had 2^2^n run time, but ran
very fast in practice. Maybe just give its speed for a number of cases, eg, small
(1,000 LOC), medium (100K LOC), and big (1M LOC).

• Cost could be considered as attribute for a tool. Although reporting the cost in
absolute dollars is tough because of different licensing agreements with different
types of entities, changes in prices, etc., a simple quantizing might work: $
(cheap/free), $$ (moderate: hundreds of $), $$$ (expensive: thousands of dollars).

• Some tools provide aids to the user to fix the vulnerability (remediation)? Should
that be a feature of all tools? Can it even be lumped in as a function with "flaw
finding"?

• Should the tool explain the problem with descriptions, examples, flow traces,
slices, etc.? Sometimes its hard to figure out why a tool thinks something is a
flaw.

• Ease of use in terms of integration with IDE (Eclipse), make files, ANT
• Should workload (use of memory) be a tool metric?
• Soundness as a tool metric?

 84

• Sensitivity as a too metric?
• Positive predictability as a tool metric?
• Completeness – what number of total flaws it detects

Reference Dataset (Mike Sindelar)

85

• Test Server or Testbed => people could ru
• If so, how would access to the testbed be
• Testing legacy software on “new” platform

argument for a testbed.
• Should a testbed be put behind firewall? O
• A testbed is a big maintenance issue. We

out/restore virtual environments easily.
• Need sample configuration environment (

Reference Data Set (RDS) (Karen Goertz
• What is the purpose of the testbed? For ve
• We need version control on the code.
• Code (examples) should be added, never c

represented, xref to CVE, etc.) might chan
• There should be dynamic, as well as static

examined by running it.
• Use of virtual machine could be a good id

initial settings) (Sandbox, contained envir

 86
n their dynamic scanner against it?
controlled/accessed?

s is very difficult. Hence another

r limited to particular IP addresses?
need to be able to set up/wipe

or a typical environment) to run
el).
ndors? For users?

hanged. The "meta-data" (flaws
ge, but not the piece of code itself.
, examples. That is, code to be

ea (with possibility to reset it to its
onment).

• Maybe there should be a "National Network Testbed" with known vulnerabilities
that people could try their tools against. ("Network" because some vulnerabilities
occur because of routers and other components)

o We could configure a firewall to only allow access to certain IP addresses
for certain. That way, you're never open to the whole world.

o Run VMware (http://www.vmware.com/) images: they are easy to reload if
one is crashed or corrupted.

o Some tools would be installed (and run) within the testbed. Although they
claim to run remotely, they do not.

• The product "SplashSuite" (used for shared memory applications) was
mentioned.

• We should see what the antivirus community does in terms of testbeds.
• Others tools :

o OWASP WebGoat
o Foundstone (http://www.foundstone.com/) (The

HacmeBook (http://www.foundstone.com/index.htm?subnav=resources/na
vigation.htm&subcontent=/resources/proddesc/hacmebook.htm) and the
HacmeBank (http://www.foundstone.com/index.htm?subnav=resources/na
vigation.htm&subcontent=/resources/proddesc/hacmebank.htm)

o Trade magazine test suites are another potential source of test material.

• The CVE can be a good start to build test (CVEs related to Open Source Project -
code available).

• Issue : What do we do if new vulnerabilities are found in the test set ?
• Issue : Shall we annotate the test set code.

o Adding annotations means changing the source code, therefore changing
the lines of code.

o We could have pairs (code with associated comment in 2 different files).
o Using XML could give use a better documentation.
o It's a bad idea to put annotations in the code (comment).
o Code version number is essential.
o Compiler version number would be a good thing.
o Platform information as well.

• Wild code makes a "stronger case" for/against a tool than "manufactured code".
(comment)

• Wild code will have to be a "community effort".
• Real-life examples should come from open source, widely used (so flaws are

discovered), have a long history. Suggestion: sendmail.
• Can we get complexity in "manufactured code"?

 87

http://www.vmware.com/
http://www.foundstone.com/
http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&subcontent=/resources/proddesc/hacmebank.htm
http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&subcontent=/resources/proddesc/hacmebank.htm

• Some complex examples (requiring dataflow analysis) may have to be constructed
"by hand".

• Will a CVS repository be enough? (not resolved).
• Issue : Test case coverage => completness. Do I cover all the type of buffer

overflow?
• Complexity of certain type of code (industry code, etc.).
• How could we have a collaborative work on the test set ?

o We could have a community front end (interface for contributors), where
user decide if one piece of code is a vulnerability.

o Editorial control should be given to trusted users only. We need
moderators.

o The code should go through a review process, then after examination it
can be accepted as a full part of the dataset.

o Have an “unverified” reference dataset next to a “verified” one.
o Require a “common build script” that all submissions must use.
o Who decide if a piece of code has a vulnerability ?
o Rating of the code (star system, the more star it has the more confident we

are that it's a vulnerability, like eBay or SlashDot karma).
o Platform, compiler,... information about the code.
o Consensus should be used to determine changes to reference dataset.
o The security aspect should be considered (virus in dataset code) (Karen

Goertzel).

• We should have a binary version of the data set for binary scanner and also for the
purpose of running it on the corresponding platform (dynamic tools).

• We should keep the binaries, rather than depending on being able to recreate them
from source, since compilers, etc. change.

• Need a strong sandbox/testbed for binary submissions.
• We need a “caveat emptor” (buyer beware) for any testbed code (source or

binary).

Submission Process - How do people contribute RDS? Need some standard process or
format.

• Maintenance of RDS can be a huge job.
• We can indicate RDS with levels: unverified/verified/reviewed/official.

 88

Next Step(s) (Paul Black)

• There should be discussion groups for
o taxonomy of flaws, about 8 people
o reference dataset, about 10 people
o software metrics

• We need to clearly identify who the users
etc. are.

Elizaebth Fong: The workshop did not have any

Paul E. Black: Bring in more “users” to the next
including SCADA community, business, insuranc

Unattributed:

• We need to engage/invite people from the
community, manufacturing community.

• Shall we involve other community? bad id
this time, start small, since our project is s

Karen Goertzel: On the other hand having users
path.

There was some discussion of the marketplace.

• Broadest: need (for more secure software)
o state of the art (what is commercia

 state of the practice is a sub

• Boomerang is the only reverse compiler to

 89
 were interested in helping
 were interested in helping

 (customers) of the dataset, taxonomy,

body from the user community.

 workshop (Long Beach in November)
e, manufacturing, industry, etc.

 high assurance community, safety

ea. It is better to scope our audience at
o broad to begin with.

 prevents us from going down the wrong

lly available) is a subset of that
set of SoA

ol

Develop Consensus on Workshop Report (Paul Black)

 90

U

• The Semantic Web or Ontology tools might be used to align PLOVER, CLASP,
etc. taxonomies. It would require annotation of HTML/XML to do this.

nattributed:

• We should have fixed and broken version of code in the dataset. We should tell
how to correct the vulnerability.

• How much assurance do I need? Or, given my risks, what assurance/tools do I
need to give/use?

• Suggestion: If you can find 3 vendors who will support a Taxonomy of Flaws and
and Reference Dataset, then go with it.

• State of the art in tools
o sophistication of tools
o technology assessment

• The code scanning tools vendors and users are still new at this.
o Comparaison state of the art versus state of the practice.
o Issue: the commercial tools are very proprietary (opaque). Vendors don't

share with us what they can find.
o Are companies "just" doing security assessments (or selling SSA tools) to

motivate consumers to buy their real product, eg, firewall? consensus
seemed to be, no.

o Is the trend to "one stop shopping", eg, vendors that can assess your
software, sell SSA tools, provide process stuff, and products (firewall,
turn-key solutions)? Market is “converging” - multi-service companies are
absorbing “point solution” companies (e.g Sanctum purchased Watchfire,
Symantec purchased @stake). Still too early to tell.

• Are there more service companies than tool companies?
• Are the tools (or services) commercially viable?

o Services are building the tools, then selling their service.
• Make the project more international: it's good to know what others are doing.
• Is lack of academic research due to funding or simply lack of interest?

91

o Research – is not being done in academia.. It is a lot cheaper to make it a
“consulting project” than to “advertise it” as research projects.

o Academic community “forks off” a company, hence an “entrepreneurial
function” takes over.

o Dawson Engler’s example is an exception to the rule. Most academic
projects (tools) are small, generate papers, and disappear.

o In the academic world, don’t expect plugNplay tools. Expect long time
period of development (5 years).

o There IS a lot of research in academia. In contrast, research by companies
is “behind closed doors”

• The taxonomy should have code samples or maybe associated exploits. Although
exploits would be difficult to match with code. We should focus on the taxonomy
(priority).

• Number of false positive is important to consider (overwhelming noise). False
negative are important as well.

• Maturity of audience/user.
• A reference dataset MAY give us an idea how these companies fare against

academic research projects.
• What is the start of the art of Software Assurance in overseas?

o China, Russia, India? (SAMATE group needs to reach out beyond North
America)

• Comment: Best chance of success is to “Keep It Simple”. Start with taxonomy,
work on descriptions of flaws, eventually create the exploit. (Begin with
demonstrative examples, work toward compilable examples).

Metrics for tools:

o False positives are the primary reason people don’t use tools
o Standardized reporting format would help (lots of noise in reports)
o High/Medium/Low serverity is fairly meaningless.. what does it really

mean?
o False positives/useability issues are well understood
o False negative (tool missing flaws) could be helped by a reference dataset

Action to do :

o Send email asking who wants to participate to the workgroups.
(Taxonomy, datasets, metrics)

 92

Conclusions

This workshop generated many consensus, which are:

- The majority think that a shared reference dataset is a good idea. Through the
SAMATE email list, volunteers will begin the process of defining the
requirements and populating the SAMATE reference dataset, beginning with a
small set of tests to demonstrate an “achievable” goal of testing and measuring the
capabilities of SA tools.

- There were consensus that a common taxonomy of flaws is useful to users and
vendors. Again, through the SAMATE email list, volunteers will begin to define
the requirements of a software flaw and vulnerability taxonomy that all SA tool
developers can agree upon and use as a reference for defining their tool's
capabilities.

- All agreed that metrics for software and metrics for software assurance tool
effectiveness will be a good idea, but did not reach consensus as to how to
approach this challenge. This area will be discussed further in the SAMATE
email list.

 93

Submitted Material

 94

Dynamic Buffer Overflow Detection ∗

Michael Zhivich
MIT Lincoln Laboratory

244 Wood Street
Lexington, MA 02420

mzhivich@ll.mit.edu

Tim Leek
MIT Lincoln Laboratory

244 Wood Street
Lexington, MA 02420

tleek@ll.mit.edu

Richard Lippmann
MIT Lincoln Laboratory

244 Wood Street
Lexington, MA 02420

lippmann@ll.mit.edu

ABSTRACT
The capabilities of seven dynamic buffer overflow detec-
tion tools (Chaperon, Valgrind, CCured, CRED, Insure++,
ProPolice and TinyCC) are evaluated in this paper. These
tools employ different approaches to runtime buffer over-
flow detection and range from commercial products to open-
source gcc-enhancements. A comprehensive testsuite was
developed consisting of specifically-designed test cases and
model programs containing real-world vulnerabilities. In-
sure++, CCured and CRED provide the highest buffer over-
flow detection rates, but only CRED provides an open-source,
extensible and scalable solution to detecting buffer over-
flows. Other tools did not detect off-by-one errors, did not
scale to large programs, or performed poorly on complex
programs.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication; D.2.5 [Software Engineering]: Testing and De-
bugging; K.4.4 [Computers and Society]: Electronic Com-
merce Security

General Terms
Measurement, Performance, Security, Verification

∗This work was sponsored by the Advanced Research and
Development Activity under Air Force Contract F19628-
00-C-0002. Opinions, interpretations, conclusions, and
recommendations are those of the authors and are not
necessarily endorsed by the United States Government.

2005 NIST Workshop on Defining the State of the Art in
Software Security Tools, 2005 August 10-11, Gaithersburg,
MD

.

0

2

4

6

8

10

12

14

16

18

20

1/3/96 1/2/98 1/2/00 1/1/02 1/1/04

Exploit Date in ICAT Database

C
u

m
u

la
ti

v
e

 E
x

p
lo

it
s

BIND

Apache

Sendmail

WU-FTP

IIS

CodeRed

Welchia

Gaobot

Lion

Figure 1: Cumulative exploits in commonly used
server software.

Keywords
Security, buffer overflow, dynamic testing, evaluation, ex-
ploit, test, detection, source code

1. INTRODUCTION
Today’s server software is under constant scrutiny and

attack, whether for fun or for profit. Figure 1 shows the cu-
mulative number of exploits found in commonly used server
software, such as IIS, BIND, Apache, sendmail, and wu-ftpd.
The stars indicate appearances of major worms, such as
Lion, CodeRed and Welchia. As the data demonstrates, new
vulnerabilities are still found, even in code that has been
used and tested for years. A recent analysis by Rescorla [18]
agrees with this observation, as it shows that vulnerabilities
continue to be discovered at a constant rate in many types
of software.

Buffer overflows enable a large fraction of exploits tar-
geted at today’s software. Such exploits range from arbi-
trary code execution on the victim’s computer to denial of
service (DoS) attacks. For 2004, CERT lists 3,780 vulnera-
bilities [3], while NIST reports that 75% of vulnerabilities in
its ICAT database are remotely exploitable, of which 21%
are due to buffer overflows [15]. Detecting and eliminating
buffer overflows would thus make existing software far more
secure.

There are several different approaches for finding and pre-

venting buffer overflows. These include enforcing secure
coding practices, statically analyzing source code, halting
exploits via operating system support, and detecting buffer
overflows at runtime [5]. Each approach has its advantages;
however, each also suffers from limitations. Code reviews, no
matter how thorough, will miss bugs. Static analysis seems
like an attractive alternative, since the code is examined
automatically and no test cases are required. However, cur-
rent static analysis tools have unacceptably high false alarm
rates and insufficient detection rates [24]. Operating system
patches, such as marking stack memory non-executable, can
only protect against a few types of exploits.

Dynamic buffer overflow detection and prevention is an
attractive approach, because fundamentally there can be
no false alarms. Tools that provide dynamic buffer over-
flow detection can be used for a variety of purposes, such
as preventing buffer overflows at runtime, testing code for
overflows, and finding the root cause of segfault behavior.

One disadvantage of using this approach to find errors in
source code is that an input revealing the overflow is re-
quired, and the input space is generally very large. There-
fore, dynamic buffer overflow detection makes the most sense
as part of a system that can generate these revealing inputs.
This evaluation is part of a project to create a grammar-
based dynamic program testing system that enables buffer
overflow detection in server software before deployment. Such
a testing system will use the dynamic buffer overflow detec-
tion tool to find buffer overflows on a range of automatically-
generated inputs. This will enable a developer to find and
eliminate buffer overflows before the faults can be exploited
on a production system. A similar testing approach is used
in the PROTOS project at the University of Oulu [13].

This paper focuses on evaluating the effectiveness of cur-
rent dynamic buffer overflow detection tools. A similar eval-
uation has been conducted by Wilander et al. [22], but it
focused on a limited number of artificial exploits which only
targeted buffers on the stack and in the bss section of the
program. Our evaluation reviews a wider range of tools and
approaches to dynamic buffer overflow detection and con-
tains a more comprehensive test corpus.

The test corpus consists of two different testsuites. Sec-
tion 3 presents the results for variable-overflow testsuite,
which consists of 55 small test cases with variable amounts
overflow, specifically designed to test each tool’s ability to
detect small and large overflows in different memory regions.
Section 4 presents the results for 14 model programs con-
taining remotely exploitable buffer overflows extracted from
bind, wu-ftpd and sendmail.

The rest of the paper is organized as follows: Section 2
presents an overview of the tools tested in this evaluation,
Sections 3 and 4 present descriptions and results for two dif-
ferent testsuites, Section 5 describes performance overhead
incurred by the tools in this evaluation, and Section 6 sum-
marizes and discusses our findings.

2. DYNAMIC BUFFER OVERFLOW
DETECTION TOOLS

This evaluation tests modern runtime buffer overflow de-
tection tools including those that insert instrumentation at
compile-time and others that wrap the binary executable
directly. This section presents a short description of each
tool, focusing on its strengths and weaknesses.

A summary of tool characteristics is presented in Table 1.
A tool is considered to include fine-grained bounds checking
if it can detect small (off-by-one) overflows. A tool compiles
large programs if it can be used as a drop-in replacement for
gcc and no changes to source code are needed to build the
executable; however, minimal changes to the makefile are
acceptable. The time of error reporting specifies whether
the error report is generated when the error occurs or when
the program terminates. Since program state is likely to
become corrupted during an overflow, continuing execution
after the first error may result in incorrect errors being re-
ported. Instrumentation may also be corrupted, causing
failures in error checking and reporting. If a tool can pro-
tect the program state by intercepting out-of-bounds writes
before they happen and discarding them, reporting errors at
termination may provide a more complete error summary.

2.1 Executable Monitoring Tools
Chaperon [16] is part of the commercial Insure toolset

from Parasoft. Chaperon works directly with binary exe-
cutables and thus can be used when source code is not avail-
able. It intercepts calls to malloc and free and checks heap
accesses for validity. It also detects memory leaks and read-
before-write errors. One limitation of Chaperon is that fine-
grained bounds checking is provided only for heap buffers.
Monitoring of buffers on the stack is very coarse. Some
overflows are reported incorrectly because instrumentation
can become corrupted by overflows. Like all products in the
Insure toolset, it is closed-source which makes extensions
difficult.

Valgrind [12] is an open-source alternative to Chaperon.
It simulates code execution on a virtual x86 processor, and
like Chaperon, intercepts calls to malloc and free that allow
for fine-grained buffer overflow detection on the heap. After
the program in simulation crashes, the error is reported and
the simulator exits gracefully. Like Chaperon, Valgrind suf-
fers from coarse stack monitoring. Also, testing is very slow
(25 – 50 times slower than running the executable compiled
with gcc [12]), since the execution is simulated on a virtual
processor.

2.2 Compiler-based Tools
CCured [14] works by performing static analysis to de-

termine the type of each pointer (SAFE, SEQ, or WILD). SAFE
pointers can be dereferenced, but are not subject to pointer
arithmetic or type casts. SEQ pointers can be used in pointer
arithmetic, but cannot be cast to other pointer types, while
WILD pointers can be used in a cast. Each pointer is in-
strumented to carry appropriate metadata at runtime - SEQ
pointers include upper and lower bounds of the array they
reference, and WILD pointers carry type tags. Appropriate
checks are inserted into the executable based on pointer
type. SAFE pointers are cheapest since they require only
a NULL check, while WILD pointers are the most expensive,
since they require type verification at runtime.

The main disadvantage of CCured is that the programmer
may be required to annotate the code to help CCured de-
termine pointer types in complex programs. Since CCured
requires pointers to carry metadata, wrappers are needed to
strip metadata from pointers when they pass to uninstru-
mented code and create metadata when pointers are received
from uninstrumented code. While wrappers for commonly-
used C library functions are provided with CCured, the de-

Tool Version OS Requires
Source

Open
Source

Fine-grained
Bounds
Checking

Compiles
Large
Programs

Time of Error
Reporting

Wait for
segfault

N/A Any No Yes No Yes Termination

gcc 3.3.2 Linux No Yes No Yes Termination
Chaperon 2.0 Linux No No No* Yes Occurrence
Valgrind 2.0.0 Linux No Yes No* Yes Termination

CCured 1.2.1 Linux Yes Yes Yes No Occurrence
CRED 3.3.2 Linux Yes Yes Yes Yes Occurrence
Insure++ 6.1.3 Linux Yes No Yes Yes Occurrence
ProPolice 2.9.5 Linux Yes Yes No Yes Termination
TinyCC 0.9.20 Linux Yes Yes Yes No Termination

Table 1: Summary of Tool Characteristics (* = fine-grained bounds checking on heap only)

veloper will have to create wrappers to interoperate with
other uninstrumented code. These wrappers introduce an-
other source of mistakes, as wrappers for sscanf and fscanf

were incorrect in the version of CCured tested in this eval-
uation; however, they appear to be fixed in the currently-
available version (v1.3.2).

C Range Error Detector (CRED) [19] has been de-
veloped by Ruwase and Lam, and builds on the Jones and
Kelly “referent object” approach [11]. An object tree, con-
taining the memory range occupied by all objects (i.e. ar-
rays, structs and unions) in the program, is maintained dur-
ing execution. When an object is created, it is added to
the tree and when it is destroyed or goes out of scope, it is
removed from the tree. All operations that involve point-
ers first locate the “referent object” – an object in the tree
to which the pointer currently refers. A pointer operation
is considered illegal if it results in a pointer or references
memory outside said “referent object.” CRED’s major im-
provement is adhering to a more relaxed definition of the
C standard – out-of-bounds pointers are allowed in pointer
arithmetic. That is, an out-of-bounds pointer can be used
in a comparison or to calculate and access an in-bounds ad-
dress. This addition fixes false alarms that were generated in
several programs compiled with Jones and Kelly’s compiler,
as pointers are frequently tested against an out-of-bounds
pointer to determine a termination condition. CRED does
not change the representation of pointers, and thus instru-
mented code can interoperate with unchecked code.

Two main limitations of CRED are unchecked accesses
within library functions and treatment of structs and arrays
as single memory blocks. The former issue is partially mit-
igated through wrappers of C library functions. The latter
is a fundamental issue with the C standard, as casting from
a struct pointer to a char pointer is allowed. When type
information is readily available at compile time (i.e. the
buffer enclosed in a struct is accessed via s.buffer[i] or
s ptr->buffer[i]), CRED detects overflows that overwrite
other members within the struct. However, when the buffer
inside a struct is accessed via an alias or through a type
cast, the overflow remains undetected until the boundary of
the structure is reached. These problems are common to
all compiler-based tools, and are described further in Sec-
tion 2.3.

Insure++ [16] is a commercial product from Parasoft
and is closed-source, so we do not know about its inter-
nal workings. Insure++ examines source code and inserts
instrumentation to check for memory corruption, memory

leaks, memory allocation errors and pointer errors, among
other things. The resulting code is executed, and errors are
reported when they occur. Insure’s major fault is its perfor-
mance overhead, resulting in slowdown factor of up to 250
as compared to gcc. Like all tools, Insure’s other limitation
stems from the C standard, as it treats structs and arrays
as single memory blocks. Since the product is closed-source,
extensions are difficult.

ProPolice [8] is similar to StackGuard [6], and outper-
formed it on artificial exploits [22]. It works by inserting
a “canary” value between the local variables and the stack
frame whenever a function is called. It also inserts appro-
priate code to check that the “canary” is unaltered upon
return from this function. The “canary” value is picked
randomly at compile time, and extra care is taken to re-
order local variables such that pointers are stored lower in
memory than stack buffers.

The “canary” approach provides protection against the
classic “stack smashing attack” [1]. It does not protect
against overflows on the stack that consist of a single out-
of-bounds write at some offset from the buffer, or against
overflows on the heap. Since ProPolice only notices the er-
ror when the “canary” has changed, it does not detect read
overflows or underflows. The version of ProPolice tested dur-
ing this evaluation protected only functions that contained
a character buffer, thus leaving overflows in buffers of other
types undetected; this problem has been fixed in later ver-
sions by including -fstack-protector-all flag that forces
a “canary” to be inserted for each function call.

Tiny C compiler (TinyCC) [2] is a small and fast C
compiler developed by Fabrice Bellard. TinyCC works by
inserting code to check buffer accesses at compile time; how-
ever, the representation of pointers is unchanged, so code
compiled with TinyCC can interoperate with unchecked code
compiled with gcc. Like CRED, TinyCC utilizes the “ref-
erent object” approach [11], but without CRED’s improve-
ments. While TinyCC provides fine-grained bounds check-
ing of buffer accesses, it is much more limited than gcc in
its capabilities. It failed to compile large programs such as
Apache with the default makefile. It also does not detect
read overflows, and terminates with a segfault whenever an
overflow is encountered, without providing an error report.

2.3 Common Limitations of Compiler-based
Tools

There are two issues that appear in all of the compiler-
based tools – unchecked accesses within library functions

and treatment of structs and arrays as single memory blocks.
The former problem is partially mitigated by creating wrap-
pers for C library functions or completely reimplementing
them. Creating these wrappers is error-prone, and many
functions (such as File I/0) cannot be wrapped.

The latter problem is a fundamental issue with the C stan-
dard of addressing memory in arrays and structs. According
to the C standard, a pointer to any object type can be cast
to a pointer to any other object type. The result is defined
by implementation, unless the original pointer is suitably
aligned to use as a resultant pointer [17]. This allows the
program to re-interpret the boundaries between struct mem-
bers or array elements; thus, the only way to handle the
situation correctly is to treat structs and arrays as single
memory objects. Unfortunately, overflowing a buffer inside
a struct can be exploited in a variety of attacks, as the same
struct may contain a number of exploitable targets, such as
a function pointer, a pointer to a longjmp buffer or a flag
that controls some aspect of program flow.

3. VARIABLE-OVERFLOW TESTSUITE
EVALUATION

The variable-overflow testsuite evaluation is the first of
two evaluations included in this paper. This testsuite is a
collection of 55 small C programs that contain buffer over-
flows and underflows, adapted from Misha Zitser’s evalua-
tion of static analysis tools [24]. Each test case contains
either a discrete or a continuous overflow. A discrete buffer
overflow is defined as an out-of-bounds write that results
from a single buffer access, which may affect up to 8 bytes
of memory, depending on buffer type. A continuous buffer
overflow is defined as an overflow resulting from multiple
consecutive writes, one or more of which is out-of-bounds.
Such an overflow may affect an arbitrary amount of mem-
ory (up to 4096 bytes in this testsuite), depending on buffer
type and length of overflow.

Each test case in the variable-overflow testsuite contains
a 200-element buffer. The overflow amount is controlled at
runtime via a command-line parameter and ranges from 0
to 4096 bytes. Many characteristics of buffer overflows vary.
Buffers differ in type (char, int, float, func *, char *)
and location (stack, heap, data, bss). Some are in contain-
ers (struct, array, union, array of structs) and elements are
accessed in a variety of ways (index, pointer, function, array,
linear and non-linear expression). Some test cases include
runtime dependencies caused by file I/O and reading from
environment variables. Several common C library functions
((f)gets, (fs)scanf, fread, fwrite, sprintf, str(n)cpy,
str(n)cat, and memcpy) are also used in test cases.

3.1 Test Procedure
Each test case was compiled with each tool, when re-

quired, and then executed with overflows ranging from 0
to 4096 bytes. A 0-byte overflow is used to verify a lack of
false alarms, while the others test the tool’s ability to detect
small and large overflows. The size of a memory page on the
Linux system used for testing is 4096 bytes, so an overflow
of this size ensures a read or write off the stack page, which
should segfault if not caught properly. Whenever the test
required it, an appropriately sized file, input stream or envi-
ronment variable was provided by the testing script. There
are three possible outcomes of a test. A detection signifies

that the tool recognized the overflow and returned an error
message. A segfault indicates an illegal read or write (or an
overflow detection in TinyCC). Finally, a miss signifies that
the program returned as if no overflow occurred.

Table 1 describes the versions of tools tested in our eval-
uation. All tests were performed on a Red Hat Linux re-
lease 9 (Shrike) system with dual 2.66GHz Xeon CPUs.
The standard Red Hat Linux kernel was modified to en-
sure that the location of the stack with respect to stacktop
address (0xC0000000) remained unchanged between execu-
tions. This modification was necessary to ensure consistent
segfault behavior due to large overflows.

3.2 Variable-overflow Testsuite Results
This section presents a summary of the results obtained

with the variable-overflow testsuite. The graph in Figure 2
shows the fraction of test cases in the variable-overflow test-
suite with a non-miss (detection or segfault) outcome for
each amount of overflow. Higher fractions represents better
performance. All test cases, with the exception of the 4 un-
derflow test cases, are included on this graph even though
the proportional composition of the testsuite is not repre-
sentative of existing exploits. Nonetheless, the graph gives
a good indication of tool performance. Fine-grained bounds
checking tools are highlighted by the “fine-grained” box at
the top of the graph.

The top performing tools are Insure++, CCured and CRED,
which can detect small and large overflows in different mem-
ory locations. TinyCC also performs well on both heap and
stack-based overflows, while ProPolice only detects contin-
uous overflows and small discrete overflows on the stack.
Since the proportion of stack-based overflows is larger than
that of heap-based overflows in our testsuite, ProPolice is
shown to have a relatively high fraction of detections. Chap-
eron and Valgrind follow the same shape as gcc, since these
tools only provide fine-grained detection of overflows on the
heap. This ability accounts for their separation from gcc on
the graph.

As the graph demonstrates, only tools with fine-grained
bounds checking, such as Insure++, CCured and CRED
are able to detect small overflows, including off-by-one over-
flows, which can still be exploitable. For tools with coarse
stack monitoring, a large increase in detections/segfaults oc-
curs at the overflow of 21 bytes, which corresponds to over-
writing the return instruction pointer. The drop after the
next 4 bytes corresponds to the discrete overflow test cases,
as they no longer cause a segfault behavior. ProPolice ex-
hibits the same behavior for overflows of 9–12 bytes due
to a slightly different stack layout. Tools with fine-grained
bounds checking also perform better in detecting discrete
overflows and thus do not exhibit these fluctuations. For
very large overflows, all tools either detect the overflow or
segfault, which results in fraction of non-miss outcomes close
to 1, as shown on the far right side of the graph.

4. REAL EXPLOIT EVALUATION
Previously, we evaluated the ability of a variety of tools

employing static analysis to detect buffer overflows [25].
These tools ranged from simple lexical analyzers to abstract
interpreters [9, 10, 20, 21, 23]. We chose to test these tools
against fourteen historic vulnerabilities in the popular In-
ternet servers bind, sendmail, and wu-ftpd. Many of the
detectors were unable to process the entire source for these

Figure 2: Combined fraction of detections and segfaults vs the amount of overflow in bytes. A box highlights
tools with fine-grained bounds checking capabilities.

programs. We thus created models of a few hundred lines
that reproduced most of the complexity present in the orig-
inal. Further, for each model, we created a patched copy in
which we verified that the overflow did not exist for a test
input that triggered the error in the unpatched version. In
that evaluation, we found that current static analysis tools
either missed too many of these vulnerable buffer overflows
or signaled too many false alarms to be useful. Here, we
report results for seven dynamic overflow detectors on that
same set of fourteen models of historic vulnerabilities. This
provides a prediction of their performance on real overflows
that occur in open-source servers.

4.1 Test Procedure
During testing, each unpatched model program was com-

piled with the tool (if necessary) and executed on an input
that is known to trigger the overflow. A detection signifies
that the tool reported an overflow, while a miss indicates
that the program executed as if no overflow occurred. A
patched version of the model program was then executed on
the same input. A false alarm was recorded if the instru-
mented program still reported a buffer overflow.

4.2 Real Exploit Results
Table 2 presents the results of this evaluation, which agree

well with those on the variable-overflow testsuite. Three
of the dynamic overflow detectors that provide fine-grained
bounds checking, CCured, CRED, and TinyCC, work ex-
tremely well, detecting about 90% of the overflows whilst
raising only one false alarm each. The commercial program
Insure, which also checks bounds violations rigorously, fares
somewhat worse with both fewer detections and more false
alarms. Notice that misses and false alarms for these tools
are errors in the implementation, and are in no way a fun-
damental limitation of dynamic approaches. For example,
in the case of CRED the misses are due to an incorrect
memcpy wrapper; there are no misses once this wrapper is

corrected. The CRED false alarm is the result of overly ag-
gressive string length checks included in the wrappers for
string manipulation functions such as strchr. None of the
tools are given credit for a segmentation fault as a signal of
buffer overflow (except TinyCC and gcc as this is the only
signal provided). This is why, for instance, ProPolice ap-
pears to perform worse than gcc. As a final comment, it is
worth considering the performance of gcc alone. If provided
with the right input, the program itself detects almost half
of these real overflows, indicating that input generation may
be a fruitful area of future research.

5. PERFORMANCE OVERHEAD
The goals of the performance overhead evaluation are two-

fold. One is to quantify the slowdown caused by using dy-
namic buffer overflow detection tools instead of gcc when
executing some commonly used programs. The other is to
test each tool’s ability to compile and monitor a complex
program. In addition, this evaluation shows whether the
tool can be used as a drop-in replacement for gcc, without
requiring changes to the source code. Minimal modifications
to the makefile are allowed, however, to accommodate the
necessary options for the compilation process.

Our evaluation tests overhead on two common utility pro-
grams (gzip and tar), an encryption library (OpenSSL) and
a webserver (Apache). For OpenSSL and tar, the testsuites
included in the distribution were used. The test for gzip

consisted of compressing a tar archive of the source code
package for glibc (around 17MB in size). The test for Apache
consisted of downloading a 6MB file 1,000 times on a loop-
back connection. The overhead was determined by timing
the execution using time and comparing it to executing the
test when the program is compiled with gcc. The results are
summarized in Table 3. Programs compiled with gcc exe-
cuted the tests in 7.2s (gzip), 5.0s (tar), 16.9s (OpenSSL)
and 38.8s (Apache).

Chaperon Valgrind CCured CRED gcc Insure++ ProPolice TinyCC
b1 d d d d
b2 d d d d
b3 d d d d d d
b4 df df d d d df d df
f1 d d d d
f2 d df df d
f3 d d d d
s1 d d d d
s2 d d df d
s3 d d d
s4 d d d
s5 d d d df d d
s6 df d d
s7 d d d d d d
P (det) 0.14 0.29 0.93 0.86 0.43 0.71 0.21 0.93
P (fa) 0.07 0.07 0.07 0.07 0 0.29 0 0.07

Table 2: Dynamic buffer overflow detection in 14 models of real vulnerabilities in open source server code.
There are four bind models (b1–b4), three wu-ftpd models (f1–f3), and seven sendmail models (s1–s7). A
‘d’ indicates a tool detected a historic overflow, while an ‘f ’ means the tool generated a false alarm on the
patched version. P (det) and P (fa) are the fraction of model programs for which a tool signals a detection or
false alarm, respectively.

Tool gzip tar OpenSSL Apache

Chaperon 75.6 61.8
Valgrind 18.6 73.1 44.8
CCured
CRED 16.6 1.4 29.3 1.1
Insure++ 250.4 4.7 116.6
ProPolice 1.2 1.0 1.1 1.0
TinyCC

Table 3: Instrumentation overhead for commonly
used programs as a multiple of gcc execution time.
The blank entries indicate that the program could
not be compiled or executed with the corresponding
tool.

Compiling and running Apache presented the most prob-
lems. Chaperon requires a separate license for multi-threaded
programs, so we were unable to evaluate its overhead. Val-
grind claims to support multi-threaded programs but failed
to run due to a missing library. Insure++ failed on the
configuration step of the makefile and thus was unable to
compile Apache. CCured likewise failed at configuration,
while TinyCC failed in parsing one of the source files during
the compilation step.

The performance overhead results demonstrate some im-
portant limitations of dynamic buffer overflow detection tools.
Insure++ is among the best performers on the variable-
overflow testsuite; however, it incurs very high overhead.
CCured and TinyCC, which performed well on both the
variable-overflow testsuite and the model programs, can-
not compile these programs without modifications to source
code. CCured requires the programmer to annotate sec-
tions of the source code to resolve constraints involving what
the tools considers “bad casts,” while TinyCC includes a C
parser that is likely incomplete or incorrect.

While CRED incurs large overhead on programs that in-
volve many buffer manipulations, it has the smallest over-
head for a fine-grained bounds checking tool. CRED can
be used as a drop-in replacement for gcc, as it requires

no changes to the source code in order to compile these
programs. Only minimal changes to the makefile were re-
quired to enable bounds-checking and turn off optimizations.
CRED’s high detection rate, ease of use and relatively small
overhead make it the best candidate for use in a comprehen-
sive solution for dynamic buffer overflow detection.

6. DISCUSSION
The three top-performing tools in our evaluation are In-

sure++, CCured and CRED. Insure++ performs well on
test cases, but not on model programs. It adds a large per-
formance overhead, and the closed-source nature of the tool
inhibits extensions. CCured shows a high detection rate and
is open-source; however, it requires rewriting 1–2% of code
to compile complicated programs [4]. CRED also offers a
high detection rate, and it is open-source, easily extensible
and has fairly low performance overhead (10% slowdown for
simple Apache loopback test). Its main disadvantage is lack
of overflow detection in library functions compiled without
bounds-checking. Like all compiler-based tools, CRED does
not detect overflows within structs in a general case; how-
ever, if the buffer enclosed in a struct is referenced directly,
then CRED detects the overflow.

As this study demonstrates, several features are crucial
to the success of a dynamic buffer overflow detection tool.
Memory monitoring must be done on a fine-grained basis,
as this is the only way to ensure that discrete writes and
off-by-one overflows are caught. Buffer overflows in library
functions, especially file I/O, often go undetected. Some
tools solve this problem by creating wrappers for library
functions, which is a difficult and tedious task. Recompil-
ing libraries with the bounds-checking tool may be a better
alternative, even if it should entail a significant slowdown.
Error reporting is likewise essential in determining the cause
of the problem because segfaults alone provide little informa-
tion. Since instrumentation and messages can get corrupted
by large overflows, the error should be reported immediately
after the overflow occurs.

Of all the tools surveyed, CRED shows the most promise

as a part of a comprehensive dynamic testing solution. It
offers fine-grained bounds checking, provides comprehensive
error reports, compiles large programs and incurs reasonable
performance overhead. It is also open-source and thus easily
extensible. CRED is likewise useful for regression testing to
find latent buffer overflows and for determining the cause of
segfault behavior.

7. REFERENCES
[1] AlephOne. Smashing the stack for fun and profit.

Phrack Magazine, 7(47), 1998.

[2] F. Bellard. TCC: Tiny C compiler.
http://www.tinycc.org, Oct. 2003.

[3] CERT. CERT/CC statistics.
http://www.cert.org/stats/cert stats.html, Feb. 2005.

[4] J. Condit, M. Harren, S. McPeak, G. C. Necula, and
W. Weimer. CCured in the real world. In Proceedings
of the ACM SIGPLAN 2003 conference on
Programming language design and implementation,
pages 232–244. ACM Press, 2003.

[5] C. Cowan. Software security for open-source systems.
IEEE Security & Privacy, 1(1):38–45, 2003.

[6] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, Q. Zhang, and
H. Hinton. Stackguard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In
Proceedings of the 7th USENIX Security Conference,
pages 63–78, San Antonio, Texas, Jan. 1998.

[7] N. Delgado, A. Q. Gates, and S. Roach. A taxonomy
and catalog of runtime software-fault monitoring
tools. IEEE Transactions on Software Engineering,
30(12):859–872, Dec. 2004.

[8] H. Etoh. GCC extension for protecting applications
from stack smashing attacks.
http://www.trl.ibm.com/projects/security/ssp/, Dec.
2003.

[9] D. Evans and D. Larochelle. Improving security using
extensible lightweight static analysis. IEEE Softw.,
19(1):42–51, 2002.

[10] G. Holzmann. Static source code checking for
user-defined properties. In Proc. IDPT 2002,
Pasadena, CA, USA, June 2002.

[11] R. W. M. Jones and P. H. J. Kelly.
Backwards-compatible bounds checking for arrays and
pointers in C programs. In Automated and
Algorithmic Debugging, pages 13–25, 1997.

[12] N. N. Julian Seward and J. Fitzhardinge. Valgrind: A
GPL’d system for debugging and profiling x86-linux
programs. http://valgrind.kde.org, 2004.

[13] R. Kaksonen. A functional method for assessing
protocol implementation security. Publication 448,
VTT Electronics, Telecommunication Systems,
Kaitoväylä 1, PO Box 1100, FIN-90571, Oulu,
Finland, Oct. 2001.

[14] G. C. Necula, S. McPeak, and W. Weimer. CCured:
Type-safe retrofitting of legacy code. In Proceedings of
Symposium on Principles of Programming Languages,
pages 128–139, 2002.

[15] NIST. ICAT vulnerability statistics.
http://icat.nist.gov/icat.cfm?function=statistics, Feb.
2005.

[16] Parasoft. Insure++: Automatic runtime error
detection. http://www.parasoft.com, 2004.

[17] P. Plauger and J. Brodie. Standard C. PTR Prentice
Hall, Englewood Cliffs, NJ, 1996.

[18] E. Rescorla. Is finding security holes a good idea?
IEEE Security & Privacy, 3(1):14–19, 2005.

[19] O. Ruwase and M. Lam. A practical dynamic buffer
overflow detector. In Proceedings of Network and
Distributed System Security Symposium, pages
159–169, 2004.

[20] P. Technologies. PolySpace C verifier.
http://www.polyspace.com/c.htm, Sept. 2001.

[21] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken.
A first step towards automated detection of buffer
overrun vulnerabilities. In Network and Distributed
System Security Symposium, pages 3–17, San Diego,
CA, Feb. 2000.

[22] J. Wilander and M. Kamkar. A comparison of publicly
available tools for dynamic buffer overflow prevention.
In Proceedings of the 10th Network and Distributed
System Security Symposium, pages 149–162, Feb. 2003.

[23] Y. Xie, A. Chou, and D. Engler. Archer: using
symbolic, path-sensitive analysis to detect memory
access errors. In Proceedings of the 10th ACM
SIGSOFT international symposium on Foundations of
software engineering, pages 327–336. ACM Press,
2003.

[24] M. Zitser. Securing software: An evaluation of static
source code analyzers. Master’s thesis, Massachusetts
Institute of Technology, Department of Electrical
Engineering and Computer Science, Aug. 2003.

[25] M. Zitser, R. Lippmann, and T. Leek. Testing static
analysis tools using exploitable buffer overflows from
open source code. SIGSOFT Softw. Eng. Notes,
29(6):97–106, 2004.

Using a Diagnostic Corpus of C Programs to Evaluate
Buffer Overflow Detection by Static Analysis Tools*

Kendra Kratkiewicz
MIT Lincoln Laboratory

244 Wood Street
Lexington, MA 02420-9108

Phone: 781-981-2931
Email: KENDRA@LL.MIT.EDU

Richard Lippmann
MIT Lincoln Laboratory

244 Wood Street
Lexington, MA 02420-9108

Phone: 781-981-2711
Email: LIPPMANN@LL.MIT.EDU

ABSTRACT
A corpus of 291 small C-program test cases was developed to
evaluate static and dynamic analysis tools designed to detect
buffer overflows. The corpus was designed and labeled using a
new, comprehensive buffer overflow taxonomy. It provides a
benchmark to measure detection, false alarm, and confusion rates
of tools, and also suggests areas for tool enhancement.
Experiments with five tools demonstrate that some modern static
analysis tools can accurately detect overflows in simple test cases
but that others have serious limitations. For example, PolySpace
demonstrated a superior detection rate, missing only one
detection. Its performance could be enhanced if extremely long
run times were reduced, and false alarms were eliminated for
some C library functions. ARCHER performed well with no false
alarms whatsoever. It could be enhanced by improving inter-
procedural analysis and handling of C library functions. Splint
detected significantly fewer overflows and exhibited the highest
false alarm rate. Improvements in loop handling and reductions
in false alarm rate would make it a much more useful tool. UNO
had no false alarms, but missed overflows in roughly half of all
test cases. It would need improvement in many areas to become a
useful tool. BOON provided the worst performance. It did not
detect overflows well in string functions, even though this was a
design goal.

Categories and Subject Descriptors
D.2.4 [Software Engineering] Software/Program Verification,
D.2.5 [Software Engineering] Testing and Debugging, K.4.4
[Computers and Society] Electronic Commerce Security.

General Terms
Measurement, Performance, Security, Verification.

Keywords
Security, buffer overflow, static analysis, evaluation, exploit, test,
detection, false alarm, source code.

1. INTRODUCTION
Ideally, developers would discover and fix errors in programs
before they are released. This, however, is an extremely difficult
task. Among the many approaches to finding and fixing errors,
static analysis is one of the most attractive. The goal of static

analysis is to automatically process source code and analyze all
code paths without requiring the large numbers of test cases used
in dynamic testing. Over the past few years, static analysis tools
have been developed to discover buffer overflows in C code.

Buffer overflows are of particular interest as they are potentially
exploitable by malicious users, and have historically accounted
for a significant percentage of the software vulnerabilities
published each year [18, 20], such as in NIST’s ICAT Metabase
[9], CERT advisories [1], Bugtraq [17], and other security forums.
Buffer overflows have also been the basis for many damaging
exploits, such as the Sapphire/Slammer [13] and Blaster [15]
worms.

A buffer overflow vulnerability occurs when data can be written
outside the memory allocated for a buffer, either past the end or
before the beginning. Buffer overflows may occur on the stack,
on the heap, in the data segment, or the BSS segment (the
memory area a program uses for uninitialized global data), and
may overwrite from one to many bytes of memory outside the
buffer. Even a one-byte overflow can be enough to allow an
exploit [10]. Buffer overflows have been described at length in
many papers, including [20], and many descriptions of exploiting
buffer overflows can be found online.

This paper focuses on understanding the capabilities of static
analysis tools designed to detect buffer overflows in C code. It
extends a study by Zitser [20, 21] that evaluated the ability of
several static analysis tools to detect fourteen known, historical
vulnerabilities (all buffer overflows) in open-source software.
The Zitser study first found that only one of the tools could
analyze large, open-source C programs. To permit an evaluation,
short, but often complex, model programs were extracted from the
C programs and used instead of the original, much longer
programs. Five static analysis tools were run on model programs
with and without overflows: ARCHER [19], BOON [18], Splint
[6, 12], UNO [8], and PolySpace C Verifier [14]. All use static
analysis techniques, including symbolic analysis, abstract
interpretation, model checking, integer range analysis, and inter-
procedural analysis. Results were not encouraging. Only one of
the five tools performed statistically better than random guessing.
Not only did the tools fail to detect a significant number of
overflows, but they also produced a large number of false alarms,
indicating overflows where none actually existed. Equally
discouraging were the confusion rates, reflecting the number of
cases where a tool reports an error in both the vulnerable and
patched versions of a program.

2005 NIST Workshop on Defining the State of the Art in Software Security
Tools, 2005, August 10-11, Gaithersburg, MD.

*This work was sponsored by the Advanced Research and Development
Activity under Force Contract F19628-00-C-0002. Opinions, interpretations,
conclusions, and recommendations are those of the authors and are not
necessarily endorsed by the United States Government.

mailto:KENDRA@LL.MIT.EDU

Given the small number of model programs, and the fact that
buffer overflows were embedded in complex code, it is difficult to
draw conclusions concerning why the tools performed poorly.
This paper describes a follow-on analysis of the five tools
evaluated in the previous study. It’s simpler but broader, and
more diagnostic test cases are designed to determine specific
strengths and weaknesses of tools. Although this research
evaluated only static analysis tools, it provides a taxonomy and
test suite useful for evaluating dynamic analysis tools as well.

2. BUFFER OVERFLOW TAXONOMY
Using a comprehensive taxonomy makes it possible to develop
test cases that cover a wide range of buffer overflows and make
diagnostic tool assessments. Zitser developed a taxonomy
containing thirteen attributes [20]. This taxonomy was modified
and expanded to address problems encountered with its
application, while still attempting to keep it small and simple
enough for practical application. The new taxonomy consists of
twenty-two attributes listed in Table 1.

Table 1. Buffer Overflow Taxonomy Attributes

Attribute N ttribute Name umber A
1 Write/Read
2 Upper/Lower Bound
3 Data Type
4 Memory Location
5 Scope
6 Container
7 Pointer
8 Index Complexity
9 Address Complexity
10 Length/Limit Complexity
11 Alias of Buffer Address
12 Alias of Buffer Index
13 Local Control Flow
14 Secondary Control Flow
15 Loop Structure
16 Loop Complexity
17 Asynchrony
18 Taint
19 Runtime Environment Dependence
20 Magnitude
21 Continuous/Discrete
22 Signed/Unsigned Mismatch

Details on the p ble values for each attribute are available in
[11], and are sum arized below. For each attribute, the possible
values are listed in ascending order (i.e. the 0 value first).

Write/Read: des the type of memory access (write, read).
While detecting illegal writes is probably of more interest in
preventing buffer overflow exploits, it is possible that illegal
reads could allow unauthorized access to information or could
constitute one operation in a multi-step exploit.

pper/Lower Bound: describes which buffer bound is violated
the term “buffer overflow” suggests an

ers; buffers of all

ffers (e.g., those allocated by calling a malloc

 and

 scope describes a buffer that is

t it is possible to use a pointer

expression,

ossi
m

cribes

U
(upper, lower). While
access beyond the upper bound of a buffer, it is equally possible
to underflow a buffer, or access below its lower bound (e.g.
buf[-1]).

Data Type: indicates the type of data stored in the buffer
(character, integer, floating point, wide character, pointer,
unsigned character, unsigned integer). Character buffers are often
manipulated with unsafe string functions in C, and some tools
may focus on detecting overflows of those buff
types may be overflowed, however, and should be analyzed.

Memory Location: indicates where the buffer resides (stack,
heap, data region, BSS, shared memory). Non-static variables
defined locally to a function are on the stack, while dynamically
allocated bu
function) are on the heap. The data region holds initialized global
or static variables, while the BSS region contains uninitialized
global or static variables. Shared memory is typically allocated,
mapped into and out of a program’s address space, and released
via operating system specific functions. While a typical buffer
overflow exploit may strive to overwrite a function return value
on the stack, buffers in other locations have been exploited
should be considered as well.

Scope: describes the difference between where the buffer is
allocated and where it is overrun (same, inter-procedural, global,
inter-file/inter-procedural, inter-file/global). The scope is the
same if the buffer is allocated and overrun within the same
function. Inter-procedural scope describes a buffer that is
allocated in one function and overrun in another function within
the same file. Global scope indicates that the buffer is allocated
as a global variable, and is overrun in a function within the same
file. The scope is inter-file/inter-procedural if the buffer is
allocated in a function in one file, and overrun in a function in
another file. Inter-file/global
allocated as a global in one file, and overrun in a function in
another file. Any scope other than “same” may involve passing
the buffer address as an argument to another function; in this case,
the Alias of Buffer Address attribute must also be set accordingly.
Note that the test suite used in this evaluation does not contain an
example for “inter-file/global.”

Container: indicates whether the buffer resides in some type of
container (no, array, struct, union, array of structs, array of
unions). The ability of static analysis tools to detect overflows
within containers (e.g., overrunning one array element into the
next, or one structure field into the next) and beyond container
boundaries (i.e., beyond the memory allocated for the container as
a whole) may vary according to how the tools model these
containers and their contents.

Pointer: indicates whether the buffer access uses a pointer
dereference (no, yes). Note tha
dereference with or without an array index (e.g. *pBuf or
(*pBuf)[10]); the Index Complexity attribute must be set
accordingly. In order to know if the memory location referred to
by a dereferenced pointer is within buffer bounds, a code analysis
tool must keep track of what pointers point to; this points-to
analysis is a significant challenge.

Index Complexity: indicates the complexity of the array index
(constant, variable, linear expression, non-linear
function return value, array contents, N/A). This attribute applies
only to the user program, and is not used to describe how buffer
accesses are performed inside C library functions.

Address Complexity: describes the complexity of the address or
pointer computation (constant, variable, linear expression, non-
linear expression, function return value, array contents). Again,
this attribute is used to describe the user program only, and is not

 “N/A” is used

 that if a C library function

hat pointers point to is a

e, and those within recursive functions

des the overflow

to directly containing the

 > 10)

Only cts whether or not the overflow occurs
is cl s, if a preceding control flow construct
has no bearing on whether or not the subsequent overflow occurs,
it is not considered to be secondary control flow, and this attribute
would be assigned the value “none.”

The rates nested control flow. The inner
if s s the overflow, and we assign the
valu ontrol Flow attribute. The outer if
statement represents secondary control flow, and we assign the
valu Secondary Control Flow attribute as well.

Som -sensitive analyses, and
som ing
approximations in order to keep the problem tractable and the

applied to C library function internals.

Length/Limit Complexity: indicates the complexity of the length
or limit passed to a C library function that overruns the buffer
(N/A, none, constant, variable, linear expression, non-linear
expression, function return value, array contents).
when the test case does not call a C library function to overflow
the buffer, whereas “none” applies when a C library function
overflows the buffer, but the function does not take a length or
limit parameter (e.g. strcpy). The remaining attribute values
apply to the use of C library functions that do take a length or
limit parameter (e.g. strncpy). Note
overflows the buffer, the overflow is by definition inter-file/inter-
procedural in scope, and involves at least one alias of the buffer
address. In this case, the Scope and Alias of Buffer Address
attributes must be set accordingly. Code analysis tools may need
to provide their own wrappers for or models of C library functions
in order to perform a complete analysis.

Alias of Buffer Address: indicates if the buffer is accessed
directly or through one or two levels of aliasing (no, one, two).
Assigning the original buffer address to a second variable and
subsequently using the second variable to access the buffer
constitutes one level of aliasing, as does passing the original
buffer address to a second function. Similarly, assigning the
second variable to a third and accessing the buffer through the
third variable would be classified as two levels of aliasing, as
would passing the buffer address to a third function from the
second. Keeping track of aliases and w
significant challenge for code analysis tools.

Alias of Buffer Index: indicates whether or not the index is
aliased (no, one, two, N/A). If the index is a constant or the
results of a computation or function call, or if the index is a
variable to which is directly assigned a constant value or the
results of a computation or function call, then there is no aliasing
of the index. If, however, the index is a variable to which the
value of a second variable is assigned, then there is one level of
aliasing. Adding a third variable assignment increases the level of
aliasing to two. If no index is used in the buffer access, then this
attribute is not applicable.

Local Control Flow: describes what kind of program control
flow most immediately surrounds or affects the overflow (none,
if, switch, cond, goto/label, setjmp/longjmp, function pointer,
recursion). For the values “if”, “switch”, and “cond”, the buffer
overflow is located within the conditional construct. “Goto/label”
signifies that the overflow occurs at or after the target label of a
goto statement. Similarly, “setjmp/longjmp” means that the
overflow is at or after a longjmp address. Buffer overflows that
occur within functions reached via function pointers are assigned
the “function pointer” valu
receive the value “recursion”. The values “function pointer” and
“recursion” necessarily imply a global or inter-procedural scope,
and may involve an address alias. The Scope and Alias of Buffer
Address attributes should be set accordingly.

Control flow involves either branching or jumping to another
context within the program; hence, only path-sensitive code

analysis can determine whether or not the overflow is actually
reachable. A code analysis tool must be able to follow function
pointers and have techniques for handling recursive functions in
order to detect buffer overflows with the last two values for this
attribute.

Secondary Control Flow: has the same values as Local Control
Flow, the difference being the location of the control flow
construct. Secondary Control Flow either prece
or contains nested, local control flow. Some types of secondary
control flow may occur without any local control flow, but some
may not. The Local Control Flow attribute should be set
accordingly.

The following example illustrates an if statement that precedes
the overflow and affects whether or not it occurs. Because it
precedes the overflow, as opposed
overflow, it is labeled as secondary, not local, control flow.

int main(int argc, char *argv[])
{
 char buf[10];
 int i = 10;

 if (i
 {
 return 0;
 }

 /* BAD */
 buf[i] = 'A';

 return 0;
}

ntrol flow that affe co
assified. In other word

following example illust
ement directly containtat

e “if” to the Local C

e “if” to the

int main(int argc, char *argv[])
{
 char buf[10];
 int i = 10;

 if (sizeof buf <= 10)
 {
 if (i <= 10)
 {
 /* BAD */
 buf[i] = 'A';
 }
}

 return 0;
 }

e code analysis tools perform path
e do not. Even those that do often must make simplify

solu y mean throwing away some
infor ng precision, at points in the
prog Test cases containing
seco ntrol flow may highlight the capabilities or
limitations of these varying techniques.

Loo ribes the type of loop construct within
which the overflow occurs (none, standard for, standard do-while,

 i++;
(i<11);

Standard

’;
;

 buf[i++] = ‘A’;

itate secondary control flow (such
as additional if s e cases, the Secondary Control

tr ngly. Any value other than
“none” for this attribute requires that the Loop Complexity
attribute be set to something other than “not applicable.”

of iteratio ia that depend on runtime
ible or impractical for

Different tools have different methods for handling loops; for

The functions that may be used

 influenced

aintable.” These may be the most crucial

n an off-by-

 overflow sizes were chosen with

 rely

tion scalable. This ma
mation, and thereby sacrifici

e previous branches rejoin. ram wher
condary

p Structure: desc

standard while, non-standard for, non-standard do-while, non-
standard while). A “standard” loop is one that has an
initialization, a loop exit test, and an increment or decrement of a
loop variable, all in typical format and locations. A “non-
standard” loop deviates from the standard loop in one or more of
these areas. Examples of standard for, do-while, and while
loops are shown below, along with one non-standard for loop
example:

Standard for loop:
for (i=0; i<11; i++)
{

 buf[i] = ‘A’;
}

Standard do-while loop:
i=0;
do
{

 buf[i] = ‘A’;

} while

while loop:
 i=0;

ile (i<11) wh
{

 buf[i] = ‘A
i++

}

A non-standard for loop:
 i<11;) for (i=0;

{

}

Non-standard loops may necess
tatements). In thes

Flow at ibute should be set accordi

Loops may execute for a large number or even an infinite number
 or may have exit criterns,

conditions; therefore, it may be imposs
static ana or analyze loops to completion. lysis tools to simulate

example, some may attempt to simulate a loop for a fixed number
of iterations, while others may employ heuristics to recognize and
handle common loop constructs. The approach taken will likely
affect a tool’s capabilities to detect overflows that occur within
various loop structures.

Loop Complexity: indicates how many loop components
(initialization, test, increment) are more complex than the
standard baseline of initializing to a constant, testing against a
constant, and incrementing or decrementing by one (N/A, none,

one, two, three). Of interest here is whether or not the tools
handle loops with varying complexity in general, rather than
which particular loop components are handled or not.

Asynchrony: indicates if the buffer overflow is potentially
obfuscated by an asynchronous program construct (no, threads,
forked process, signal handler).
to realize these constructs are often operating system specific (e.g.
on Linux, pthread functions; fork, wait, and exit; and
signal). A code analysis tool may need detailed, embedded
knowledge of these constructs and the O/S-specific functions in
order to properly detect overflows that occur only under these
special circumstances.

Taint: describes whether a buffer overflow may be
externally (no, argc/argv, environment variables, file read or
stdin, socket, process environment). The occurrence of a buffer
overflow may depend on command line or stdin input from a user,
the value of environment variables (e.g. getenv), file contents
(e.g. fgets, fread, or read), data received through a socket or
service (e.g. recv), or properties of the process environment,
such as the current working directory (e.g. getcwd). All of these
can be influenced by users external to the program, and are
therefore considered “t
overflows to detect, as it is ultimately the ability of the external
user to influence program operation that makes exploits possible.
As with asynchronous constructs, code analysis tools may require
detailed modeling of O/S-specific functions in order to properly
detect related overflows. Note that the test suite used in this
evaluation does not contain an example for “socket.”

Runtime Environment Dependence: indicates whether or not
the occurrence of the overrun depends on something determined
at runtime (no, yes). If the overrun is certain to occur on every
execution of the program, it is not dependent on the runtime
environment; otherwise, it is.

Magnitude: indicates the size of the overflow (none, 1 byte, 8
bytes, 4096 bytes). “None” is used to classify the “OK” or
patched versions of programs that contain overflows. One would
expect static analysis tools to detect buffer overflows without
regard to the size of the overflow, unless they contai
one error in their modeling of library functions. The same is not
true of dynamic analysis tools that use runtime instrumentation to
detect memory violations; different methods may be sensitive to
different sizes of overflows, which may or may not breach page
boundaries, etc. The various
future dynamic tool evaluations in mind. Overflows of one byte
test both the accuracy of static analysis modeling, and the
sensitivity of dynamic instrumentation. Eight and 4096 byte
overflows are aimed more exclusively at dynamic tool testing,
and are designed to cross word-aligned and page boundaries.

Continuous/Discrete: indicates whether the buffer overflow
jumps directly out of the buffer (discrete) or accesses consecutive
elements within the buffer before overflowing past the bounds
(continuous). Loop constructs are likely candidates for containing
continuous overflows. C library functions that overflow a buffer
while copying memory or string contents into it demonstrate
continuous overflows. An overflow labeled as continuous should
have the loop-related attributes or the Length Complexity
attribute (indicating the complexity of the length or limit passed
to a C library function) set accordingly. Some dynamic tools

on “canaries” at buffer boundaries to detect continuous overflows
[5], and therefore may miss discrete overflows.

Signed/Unsigned Mismatch: indicates if the buffer overflow is
caused by using a signed or unsigned value where the opposite is
expected (no, yes). Typically, a signed value is used where an
unsigned value is expected, and gets interpreted as a very large
unsigned or positive value, causing an enormous buffer overflow.

This taxonomy is specifically designed for developing simple
diagnostic test cases. It may not fully characterize complex buffer
overflows that occur in real code, and specifically omits complex
details related to the overflow context.

For each attribute (except for Magnitude), the zero value is
assigned to the simplest or “baseline” buffer overflow, shown
below:

int main(int argc, char *argv[])
{
 char buf[10];
 /* BAD */
 buf[10] = 'A';
 return 0;
}

Each test case includes a comment line as shown with the word
“BAD”
line where an overflow m

or “OK.” This comment is placed on the line before the
an

over program is
a w he upper bound of a stack-based
character buffer that is defined and overflowed within the same
func t lie within another container, is
addr xed with a constant. No C library
func ess the buffer, the overflow is not within
any ditional or complicated control flows or asynchronous

y Classification: 0000000000000000000000 */

 ADDRESS COMPLEXITY 0 constant
LENGTH COMPLEXITY 0 N/A

S

ROL OW
L FL 0

RUCTURE
EXIT

NY

 0
erflow

 te

Whi a airs co ting of a bad
prog rogram evaluation
uses ur sions of each test case
correspond to the four possible values of the Magnitude attribute;
one no flow), while
the r ov lows o and
4096 u and la ows.

3. ST SUITE

Ideally, the test suite would have at least one instance of each
that could be described by the taxonomy.

t cases.

s were also corrected based on initial

ight occur and it indicates whether
 does occur. The buffer access in the baselineflow

rite operation beyond t

tion. The buffer does no
 is indeessed directly, and

 is used to acction
nco

program constructs, and does not depend on the runtime
environment. The overflow writes to a discrete location one byte
beyond the buffer boundary, and cannot be manipulated by an
external user. Finally, it does not involve a signed vs. unsigned
type mismatch.

Appending the value digits for each of the twenty-two attributes
forms a string that classifies a buffer overflow, which can be
referred to during results analysis. For example, the sample
program shown above is classified as
“0000000000000000000100.” The single “1” in this string
represents a “Magnitude” attribute indicating a one-byte
overflow. This classification information appears in comments at
the top of each test case file, as shown in the example below:

/* Taxonom

/*
 * WRITE/READ 0 write
 * WHICH BOUND 0 upper
 * DATA TYPE 0 char
 * MEMORY LOCATION 0 stack
 * SCOPE 0 same
 * CONTAINER 0 no
 * POINTER 0 no
 * INDEX COMPLEXITY 0 constant
 *
 *

 * ADDRESS ALIA 0 none
 * INDEX ALIAS 0 none
 * LOCAL CONT FL 0 none
 * SECONDARY CONTRO OW none
 * LOOP ST 0 no
 * LOOP COMPL Y 0 N/A
 * ASYNCHRO 0 no
 * TAINT 0 no
 * RUNTIME ENV. DEPENDENCE no
 * MAGNITUDE 0 no ov
 * CONTINUOUS/DISCRETE 0 discre
 * SIGNEDNESS 0 no
 */

le the Zitser test cases were progr m p nsis
ram and a corresponding patched p , this
 program quadruplets. The fo ver

of these represents the patched program (over
remaining three indicate buffe erf f one, eight,
 bytes denoted as minimum, medi m, rge overfl

TE
A full discussion of design considerations in creating test cases is
provided in [11]. Goals included avoiding tool bias; providing
samples that cover the taxonomy; measuring detections, false
alarms, and confusions; naming and documenting test cases to
facilitate automated scoring and encourage reuse; and maintaining
consistency in programming style and use of programming
idioms.

possible buffer overflow
Unfortunately, this is completely impractical. Instead, a “basic”
set of test cases was built by first choosing a simple, baseline
example of a buffer overflow, and then varying its characteristics
one at a time. This strategy results in taxonomy coverage that is
heavily weighted toward the baseline attribute values. Variations
were added by automated code-generation software that produces
C code for the test cases to help insure consistency and make it
easier to add tes

Four versions of 291 different test cases were generated with no
overflow and with minimum, medium, and large overflows. Each
test case was compiled with gcc, the GNU C compiler [7], on
Linux to verify that the programs compiled without warnings or
errors (with the exception of one test case that produces an
unavoidable warning). Overflows were verified using CRED, a
fine-grained bounds-checking extension to gcc that detects
overflows at run time [16], or by verifying that the large overflow
caused a segfault. A few problems with test cases that involved
complex loop condition
results produced by the PolySpace tool.

4. TEST PROCEDURES
The evaluation consisted of analyzing each test case (291
quadruplets), one at a time using the five static analysis tools
(ARCHER, BOON, PolySpace, Splint, and UNO), and collecting
tool outputs. Tool-specific Perl programs parsed the output and
determined whether a buffer overflow was detected on the line
immediately following the comment in each test case. Details of

the test procedures are provided in [11]. No annotations were
added and no modifications were made to the source code for any
tool.

 numbers for the errors,

overflow occurs in a C library function. PolySpace reports

s, while the false alarm rate
in the patched

w well a tool can

 test cases where tool reports overflow

As seen i ection
rates exc ion rate is nearly

ctions.
s ARCHER

roduced none. Splint and UNO each detected roughly half of the
overflows ber of
false alarms, while a

 cases
in

confusion rate was

Since BOON does not report line
automated tabulation cannot validate that the reported error
corresponds to the commented buffer access in the test case file.
Instead, it assumes that any reported error is a valid detection.
Therefore, BOON detections and false alarms were further
inspected manually to verify their accuracy, and some were
dismissed (two detections and two false alarms) since they did not
refer to the buffer access in question.

Special handling was required for PolySpace in cases where the
buffer
the error in the library function itself, rather than on the line in the
test case file where the function is called. Therefore, the results
tabulator looks for errors reported in the called library function
and counts those detections irrespective of the associated line
number. Additionally, one test case involving wide characters
required additional command-line options to work around errors
reported when processing wctype.h.

5. RESULTS AND ANALYSIS
All five static analysis tools performed the same regardless of
overflow size (this would not necessarily hold for dynamic
analysis). To simplify the discussion, results for the three
magnitudes of overflows are thus reported as results for “bad” test
cases as a whole.
Table 2 shows the performance metrics computed for each tool.
The detection rate indicates how well a tool detects the known
buffer overflows in the bad program
indicates how often a tool reports a buffer overflow
programs. The confusion rate indicates ho
distinguish between the bad and patched programs. When a tool
reports a detection in both the patched and bad versions of a test
case, the tool has demonstrated “confusion.” The formulas used
to compute these three metrics are shown below:

 #
 in bad version

detection rate = --
 # test cases tool evaluated

 # test cases where tool reports overflow
 in patched version

false alarm rate = --
 # of test cases tool evaluated

 # test cases where tool reports overflow
ed version in both bad and patch

confusion rate = ---
verflow # test cases where tool reports o

 in bad version

n Table 2, ARCHER and PolySpace both have det
eeding 90%. PolySpace’s detect

perfect, missing only one out of the 291 possible dete
PolySpace produced seven false alarms, wherea
p

. Splint, however, produced a substantial num
 UNO produced none. Splint also exhibited

fairly high confusion rate. In over twenty percent of the
where it properly detected an overflow, it also reported an error
the patched program. PolySpace’s
substantially lower, while the other three tools had no confusions.
BOON’s detection rate across the test suite was extremely low.

Table 2. Overall Performance on Basic Test Suite (291 cases)

Tool
Detection
Rate

False Alarm
Rate

Confusion
Rate

ARCHER 90.7% 0.0% 0.0%
BOON 0.7% 0.0% 0.0%
PolySpace 99.7% 2.4% 2.4%
Splint 56.4% 12.0% 21.3%
UNO 51.9% 0.0% 0.0%

It is important to note that it was not necessarily
tool to possible buffer overflow. BOON, for

ly on the e of string manipulation
nd is not ex to detect ot rflows.

 impor realize tha performanc
predictive of how the tools would perform on buffer
n a leased code. The basic test ed in

aluation signed fo ostic purp d the
my coverage exhibited is resentative which

ould be seen in real-world buffer overflows.

 guesser line at the

 the design goal
of each
example, focus

detect every
es on misus

functions, a therefore pected her ove
It is also tant to t these e rates are not
necessarily
overflows i ctual, re suite us

oses, anthis ev was de r diagn
taxono not rep of that
w

Figure 1 presents a plot of detection rate vs. false alarm rate for
each tool. Each tool’s performance is plotted with a single data
point representing detection and false alarm percentages. The
diagonal line represents the hypothetical performance of a random
guesser that decides with equal probability if each commented
buffer access in the test programs results in an overflow or not.
The difference between a tool’s detection rate and the random
guesser’s is only statistically significant if it lies more than two
standard deviations (roughly 6 percentage points when the
detection rate is 50%) away from the random
same false alarm rate. In this evaluation, every tool except
BOON performs significantly better than a random guesser. In
Zitser’s evaluation [20], only PolySpace was significantly better.
This difference in performance reflects the simplicity of the
diagnostic test cases.

Archer

PolySpace

Splint
Uno

40%

60%

80%

100%

De
te

ct
io

n
Ra

te
 (%

)

Boon0%

20%

0% 20% 40% 60% 80% 100%

False Alarm Rate (%)

Figure 1. False Alarm and Detection Rates per Tool

Since PolySpace missed only one detection, and three of the other
tools did detect the overflow in that test case, one could obtain
perfect detection across the evaluation test suite by using
PolySpace as the primary authority, and using one of the other
tool’s results only when PolySpace did not detect an overflow.
ARCHER or UNO would be the best choice for this, as neither
adds false alarms.

Similarly combining ARCHER and Splint would produce a
detection rate of ninety-eight percent. ARCHER missed twenty-
seven detections, and Splint detected all but five of those.
Unfortunately, using Splint would also add thirty-five false
alarms.

Table 3. Tool Execution Times

Tool

Average
Time per Test

 Total Time (secs) Case (secs)
ARCHER 288 0.247
BOON 73 0.063
PolySpace 200,820 (56 hrs) 172.526
Splint 24 0.021
UNO 27 0.023

Execution times for the five tools were measured as the total time

 BOON’s slightly longer execution
time did not resu

Some general observations can be made from inspecting the
as a whole. M d d to

If one
ar test c lly some of
 For f es, only

not m the ams. No
sets and no individual test cases have perfect detections

attribute sets contain no false
at all (Upper/L ound, Data Ty ter, Alias of

l’s performance in

ot
fects analysis and has a

 limited to

l. Most of its twenty-seven missed detections are

e

N will not detect

to run each test case, including tool startup time, and are provided
in Table 3. PolySpace’s high detection rate comes at the cost of
dramatically long execution times. ARCHER demonstrated both
the second highest detection rate and the second highest execution
time. Splint and UNO, with intermediate detection rates, had the
two fastest execution times.

lt in a higher detection rate.

results issed detections an
nd follow logical patterns.

false alarms ten
group in certain attribute sets a
tool missed a detection on a particul ase, usua
the other tools missed it as well. ive test cas
PolySpace did iss detections in bad progr
attribute
across all five tools, but eight
larms a ower B pe, Poin

Buffer Index, Loop Structure, Loop Complexity, Asynchrony, and
Signed/Unsigned Mismatch). Without the BOON results, looking
exclusively at the results of the other four tools, three of the
attribute sets (Write/Read, Data Type, and Alias of Buffer Index)
and 108 individual test cases had perfect detections across the
four tools. Complete and detailed results are presented in [11].

6. Detailed Tool Diagnostics
The following paragraphs discuss each too
detail, especially compared to the tools’ design goals.

ARCHER’s strategy is to detect as many bugs as possible while
minimizing the number of false alarms. It is designed to be inter-
procedural, path-sensitive, context-sensitive, and aware of pointer
aliases. It performs a fully-symbolic, bottom-up data flow
analysis, while maintaining symbolic constraints between
variables (handled by a linear constraint solver). ARCHER
checks array accesses, pointer dereferences, and function calls

that take a pointer and size. It is hard-coded to recognize and
handle a small number of memory-related functions, such as
malloc [19].

The authors discuss many limitations of the current version of
ARCHER. It does not handle function pointers, and imposes a
five second limit on the analysis of any particular function.
Furthermore, it loses precision after function calls, as it does n
perform a proper inter-procedural side ef
very simple alias analysis. It does not understand C library string
functions, nor does it keep track of null pointers or the length of
null-terminated strings. Its linear constraint solver is
handling at most two non-linearly related variables. Finally,
some of the techniques it uses to reduce false alarms will
necessarily result in missed detections. For instance, if no bounds
information is known about a variable used as an array index,
ARCHER assumes the array access is trusted and does not issue a
warning. Similarly, it only performs a bounds check on the length
and offset of a pointer dereference if bounds information is
available; otherwise it remains quiet and issues no warning [19].

With close to a 91% detection rate and no false alarms, ARCHER
performs wel
easily explained by its limitations. Twenty of these were inter-
procedural, and this seems to be ARCHER’s main weakness. The
twenty inter-procedural misses include fourteen cases that call C
library functions. While the authors admit to ignoring string
functions, one might have expected memcpy() to be one of the
few hard-coded for special handling. The other inter-procedural
misses include cases involving shared memory, function pointers,
recursion, and simple cases of passing a buffer address through
one or two functions. Of the remaining seven misses, three
involve function return values, two depend on array contents, and
two involve function pointers and recursion.

While some of the missed detections occurred on cases whose
features may not be widespread in real code (such as recursion),
the use of C library functions and other inter-procedural
mechanisms are surely prevalent. Indeed, ARCHER’s poor
performance in [20] is directly attributable to the preponderanc
of these features. ARCHER detected only one overflow in this
prior evaluation, which was based on overflows in real code. Of
the thirteen programs for which ARCHER reported no overflows,
twelve contained buffer overflows that would be classified
according to this evaluation’s taxonomy as having inter-
procedural scope, and nine of those involve calls to C library
functions. To perform well against a body of real code, ARCHER
needs to handle C library functions and other inter-procedural
buffer overflows correctly.

BOON’s analysis is flow-insensitive and context-insensitive for
scalability and simplicity. It focuses exclusively on the misuse of
string manipulation functions, and the authors intentionally
sacrificed precision for scalability. BOO
overflows caused by using primitive pointer operations, and
ignores pointer dereferencing, pointer aliasing, arrays of pointers,
function pointers, and unions. The authors expect a high false
alarm rate due to the loss of precision resulting from the
compromises made for scalability [18].

In this evaluation, BOON properly detected only two out of
fourteen string function overflows, with no false alarms. The two
detected overflows involve the use of strcpy() and fgets(). BOON

failed to detect the second case that calls strcpy(), all six cases
that call strncpy(), the case that calls getcwd, and all four cases
that call memcpy(). Despite the heavy use of C library string
functions in [20], BOON achieved only two detections in that
evaluation as well.

PolySpace is the only commercial tool included in this

sis tractable.

 not too surprising, as it is impractical for a

 static analysis and heuristics that

larm rates in the developers’ own tests [6, 12].

ty-five false alarms are attributable to

and all

ith the loss of precision leading to

program. It appears

tants and scalars, but not computed

e, but did miss

evaluation. Details of its methods and implementation are
proprietary. We do know, however, that its approach uses
techniques described in several published works, including:
symbolic analysis, or abstract interpretation [2]; escape analysis,
for determining inter-procedural side effects [4]; and inter-
procedural alias analysis for pointers [3]. It can detect dead or
unreachable code. Like other tools, it may lose precision at
junctions in code where previously branched paths rejoin, a
compromise necessary to keep the analy

PolySpace missed only one detection in this evaluation, which
was a case involving a signal handler. The PolySpace output for
this test case labeled the signal handler function with the code
“UNP,” meaning “unreachable procedure.” PolySpace reported
seven false alarms across the test suite. These included all four of
the taint cases, shared memory, using array contents for the buffer
address, and one of the calls to strcpy(). The false alarm on the
array contents case is
tool to track the contents of every location in memory. PolySpace
does not, however, report a false alarm on the other two cases
involving array contents. The other six false alarms are on test
cases that in some way involve calls to C library or O/S-specific
function calls. Not all such cases produced false alarms, however.
For instance, only one out of the two strcpy() cases produced a
false alarm: the one that copies directly from a constant string
(e.g., “AAAA”). Without more insight into the PolySpace
implementation, it is difficult to explain why these particular
cases produced false alarms.

PolySpace did not perform as well in Zitser’s evaluation [20].
Again, without more knowledge of the tool’s internals, it is
difficult to know why its detection rate was lower. Presumably
the additional complexity of real code led to approximations to
keep the problem tractable, but at the expense of precision. The
majority of the false alarms it reported in Zitser’s evaluation were
on overflows similar to those for which it reported false alarms in
this evaluation: those involving memory contents and C library
functions.

PolySpace’s performance comes with additional cost in money
and in time. The four other tools were open source when this
evaluation was performed, and completed their analyses across
the entire corpus in seconds or minutes. PolySpace is a
commercial program and ran for nearly two days and eight hours,
averaging close to three minutes of analysis time per test case file.
This long execution time may make it difficult to incorporate into
a code development cycle.

Splint employs “lightweight”
are practical, but neither sound nor complete. Like many other
tools, it trades off precision for scalability. It implements limited
flow-sensitive control flow, merging possible paths at branch
points. Splint uses heuristics to recognize loop idioms and
determine loop bounds without resorting to more costly and
accurate abstract evaluation. An annotated C library is provided,
but the tool relies on the user to properly annotate all other

functions to support inter-procedural analysis. Splint exhibited
high false a

The basis test suite used in this evaluation was not annotated for
Splint for two reasons. First, it is a more fair comparison of the
tools to run them all against the same source code, with no special
accommodations for any particular tool. Second, expecting
developers to completely and correctly annotate their programs
for Splint seems unrealistic.

Not surprisingly, Splint exhibited the highest false alarm rate of
any tool. Many of the thir
inter-procedural cases; cases involving increased complexity of
the index, address, or length; and more complex containers and
flow control constructs. The vast majority, 120 out of 127, of
missed detections are attributable to loops. Detections were
missed in all of the non-standard for() loop cases (both discrete
and continuous), as well as in most of the other continuous loop
cases. The only continuous loop cases handled correctly are the
standard for loops, and it also produces false alarms on nearly all
of those. In addition, it misses the lower bound case, the “cond”
case of local flow control, the taint case that calls getcwd,
four of the signed/unsigned mismatch cases.

While Splint’s detection rate was similar in this evaluation and
the Zitser evaluation [20], its false alarm rate was much higher in
the latter. Again, this is presumably because code that is more
complex results in more situations where precision is sacrificed in
the interest of scalability, w
increased false alarms.

Splint’s weakest area is loop handling. Enhancing loop heuristics
to more accurately recognize and handle non-standard for loops,
as well as continuous loops of all varieties, would significantly
improve performance. The high confusion rate may be a source
of frustration to developers, and may act as a deterrent to Splint’s
use. Improvements in this area are also important.

UNO is an acronym for uninitialized variables, null-pointer
dereferencing, and out-of-bounds array indexing, which are the
three types of problems it is designed to address. UNO
implements a two-pass analysis; the first pass performs intra-
procedural analysis within each function, while the second pass
performs a global analysis across the entire
that the second pass focuses only on global pointer dereferencing,
in order to detect null pointer usage; therefore, UNO would not
seem to be inter-procedural with respect to out-of-bounds array
indexing. UNO determines path infeasibility, and uses this
information to suppress warnings and take shortcuts in its
searches. It handles cons
indices (expressions on variables, or function calls), and easily
loses precision on conservatively-computed value ranges. It does
not handle function pointers, nor does it attempt to compute
possible function return values. Lastly, UNO does not handle the
setjmp/longjmp construct [8].

UNO produced no false alarms in the basic test suit
nearly half of the possible detections (140 out of 291), most of
which would be expected based on the tool’s description. This
included every inter-procedural case, every container case, nearly
every index complexity case (the only one it detected was the
simple variable), every address and length complexity case, every
address alias case, the function and recursion cases, every

signed/unsigned mismatch, nearly every continuous loop, and a
small assortment of others. It performed well on the various data
types, index aliasing, and discrete loops. Given the broad variety
of detections missed in the basic test suite, it is not surprising that
UNO exhibited the poorest performance in Zitser’s evaluation
[20].

7. CONCLUSIONS
A corpus of 291 small C-program test cases was developed to
evaluate static and dynamic analysis tools that detect buffer
overflows. The corpus was designed and labeled using a new,

.

oped can serve as a type of litmus

that a tool doesn’t provide some assistance when

comprehensive buffer overflow taxonomy. It provides a
benchmark to measure detection, false alarm, and confusion rates
of tools, and can be used to find areas for tool enhancement.
Evaluations of five tools validate the utility of this corpus and
provide diagnostic results that demonstrate the strengths and
weaknesses of these tools. Some tools provide very good
detection rates (e.g. ARCHER and PolySpace) while others fall
short of their specified design goals, even for simple
uncomplicated source code. Diagnostic results provide specific
suggestions to improve tool performance (e.g. for Splint, improve
modeling of complex loop structures; for ARCHER, improve
inter-procedural analysis). They also demonstrate that the false
alarm and confusion rates of some tools (e.g. Splint) need to be
reduced

The test cases we have devel
test for tools. Good performance on test cases that fall within the
design goals of a tool is a prerequisite for good performance on
actual, complex code. Additional code complexity in actual code
often exposes weaknesses of the tools that result in inaccuracies,
but rarely improves tool performance. This is evident when
comparing test case results obtained in this study to results
obtained by Zitser [20] with more complex model programs.
Detection rates in these two studies are shown in Table 4. As can
be seen, the two systems that provided the best detection rates on
the model programs (PolySpace and Splint) also had high
detection rates on test cases. The other three tools performed
poorly on model programs and either poorly (BOON) or well
(ARCHER and UNO) on test cases. Good performance on test
cases (at least on the test cases within the tool design goals) is a
necessary but not sufficient condition for good performance on
actual code. Finally, poor performance on our test corpus does not
indicate
searching for buffer overflows. Even a tool with a low detection
rate will eventually detect some errors when used to analyze
many thousands of lines of code.

Table 4. Comparison of detection rates with 291 test cases and
with 14 more complex model programs in Zitser [20].

Tool
Test Case
Detection

Model
Program
Detection [20]

ARCHER 90.7% 1%
BOON 0.7% 5%
PolySpace 99.7% 87%
Splint 56.4% 57%
UNO 51.9% 0.0%

The test corpus could be improved by adding test cases to cover
attribute values currently underrepresented, such as string
functions. It may also be used to evaluate the performance of
dynamic analysis approaches. Anyone wishing to use the test

8.
We would like to thank Rob Cunningham and Tim Leek for
discussions, and Tim
running also than ans for his help with Splint,
David W nsw estions about BOON, Yichen Xie
and Dawson Engler for their help with ARCHER, and Chris Hote
and Vince Hopson for answering questions about C-Verifier and
providing a temporary l

9. RE ENCE
] CERT (2004). CERT Coordination Center Advisories,

corpus should send email to the authors.

ACKNOWLEDGMENTS

for help with getting tools installed and
k David Ev. We

agner for a ering qu

icense.

FER S
[1

http://www.cert.org/advisories/, Carnegie Mellon University,
Software Engineering Institute, Pittsburgh, PA

[2] Cousot, P. and Cousot, R. (1976). Static determination of
dynamic properties of programs, Proceedings of the 2nd
International Symposium on Programming, Paris, France,

xtension for protecting applications

106--130
[3] Deutsch, A. (1994). Interprocedural may-alias analysis for

pointers: beyond k-limiting, Proceedings of the ACM
SIGPLAN'94 Conference on Programming Language Design
and Implementation, Orlando, Florida, 230--241

[4] Deutsch, A. (1997). On the complexity of escape analysis,
Proceedings of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Paris,
France, 358--371

[5] Etoh, H. (2004). GCC e
from stack smashing attacks,
http://www.trl.ibm.com/projects/security/ssp/
Evans, D. and Larochelle, D. (2002). Improving[6] security

, using extensible lightweight static analysis, IEEE Software
19 (1), 42--51
GCC Home Page (2004). Free Software Foundation, Bosto
MA,

[7] n,
/gcc.gnu.org/http:/

r
ell

[9]

[8] Holzmann, G. (2002). UNO: Static source code checking fo
user-defined properties, Bell Labs Technical Report, B
Laboratories, Murray Hill, NJ, 27 pages
ICAT (2004). The ICAT Metabase,
http://icat.nist.gov/icat.cfm, National Institute of Standards
and Technology, Computer Security Division, Gait
MD

 klog (1999). The f

hersburg,

[10] rame pointer overwrite, Phrack Magazine,
9 (55), http://www.tegatai.com/~jbl/overflow-papers/P55-08

[11] lysis Tools for
’s Thesis,

[12]
erflow vulnerabilities, Proceedings of the

 Kratkiewicz, K. (2005). Evaluating Static Ana
Detecting Buffer Overflows in C Code, Master
Harvard University, Cambridge, MA, 285 pages

 Larochelle, D. and Evans, D. (2001). Statically detecting
likely buffer ov
10th USENIX Security Symposium, Washington, DC, 177--
190

http://www.cert.org/advisories/
http://www.trl.ibm.com/projects/security/ssp/

[13] Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford,
S., and Weaver, N. (2003). The Spread of the
Sapphire/Slammer Worm,

s/2003/sapphire/sapphirhttp://www.caida.org/outreach/paper
e.html

 PolySpace Technologies (2003). PolySpace C Developer
Editio

[14]
n, http://www.polyspace.com/datasheets/c_psde.htm,

[15]
Paris, France
PSS Security Response Team (2003). PSS Security Response
Team Alert - New Worm: W32.Blaster.worm,
http://www.microsoft.com/technet/treeview/default.asp?url=/
technet/security/alerts/msblaster.asp, Microsoft Corporation,

er

,

Redmond, WA
[16] Ruwase, O. and Lam, M. (2004). A practical dynamic buff

overflow detector, Proceedings of the 11th Annual Network
and Distributed System Security Symposium, San Diego, CA
159--169

[17] Security Focus (2004). The Bugtraq mailing list,
http://www.securityfocus.com/archive/1, Security
Semantec Corporation, Cupertino, CA

Focus,

 System Security Symposium, San Diego, CA, 3--

[19] g
ct memory access

l

[20] er, M. (2003). Securing Software: An Evaluation of

0

[21]
open-

he 12 ACM SIGSOFT

[18] Wagner, D., Foster, J.S., Brewer, E.A., and Aiken, A.
(2000). A first step towards automated detection of buffer
overrun vulnerabilities, Proceedings of the Network and
Distributed
17

 Xie, Y., Chou, A., and Engler, D. (2003). ARCHER: Usin
symbolic, path-sensitive analysis to dete
errors, Proceedings of the 9th European Software
Engineering Conference/10th ACM SIGSOFT Internationa
Symposium on Foundations of Software Engineering,
Helsinki, Finland, 327--336

 Zits
Static Source Code Analyzers, Master’s Thesis,
Massachusetts Institute of Technology, Cambridge, MA, 13
pages

 Zitser, M., Lippmann, R., and Leek, T. (2004). Testing static
analysis tools using exploitable buffer overflows from
source code, Proceedings of t th

International Symposium on Foundations of Software
Engineering, Newport Beach, CA, 97--106

http://icat.nist.gov/icat.cfm
http://icat.nist.gov/icat.cfm
http://www.caida.org/outreach/papers/2003/sapphire/sapphire.html

Static Analysis of Binary Executable Code
Thomas W. Reps1,2, Tim Teitelbaum1,3, Paul Anderson1, and David Melski1

1 GrammaTech, Inc.
2 University of Wisconsin

3 Cornell University

The Context. A substantial percentage of all US coding jobs will be outsourced to
China, Israel, Russia, the E.U., and India in the coming decade. On top of the trend
toward outsourcing, there is increasing deployment of COTS software—for which source
code is often unavailable—in presumably secure national and DoD information systems.
Moreover, legacy code—for which design documents are usually out-of-date, and for
which source code is sometimes unavailable and sometimes non-existent—will continue
to be left deployed.

The Problem. What is needed are ways to determine whether third-party and legacy
application programs can perform malicious operations (or can be induced to perform
malicious operations), and to be able to make such judgments in the absence of source
code.

Our Vision. We aim to advance the state of the art in software assurance—in particular,
to address the problem of finding bugs and security vulnerabilities in programs when
source code is unavailable. Our goal is to create a platform, CodeSurfer/x86 [2, 3] that
carries out static analysis on executables and provides information that an analyst can use
to understand the workings of potentially malicious code, such as COTS components,
plugins, mobile code, and DLLs. A second goal is to use this platform to create tools [4]
that an analyst can employ to determine such information as

• whether a program contains inadvertent security vulnerabilities

• whether a program contains deliberate security vulnerabilities, such as back doors,
time bombs, or logic bombs. If so, the goal is to provide information about
activation mechanisms, payloads, and latencies.

Recent research in programming languages, software engineering, and computer security
has led to new kinds of tools for analyzing code for bugs and security vulnerabilities [4-7,
9-14]. In these tools, static analysis is used to determine a conservative answer to the
question “Can the program reach a bad state?” In principle, such tools would be of great
help to an analyst trying to detect malicious code hidden in software, except for one
important detail: the aforementioned tools all focus on analyzing source code written in a
high-level language; as will be discussed shortly, there are a number of reasons why
analyses that start from source code do not provide the right level of detail for checking
certain kinds of properties, which can cause bugs, security vulnerabilities, and malicious
behavior to be invisible to such tools.

In contrast, there are many advantages to analyzing executables:

• An executable contains the actual instructions that will be executed, and hence
provides information that reveals the actual behavior that arises during program
execution. This information includes

o memory-layout details, such as (i) the positions (i.e., offsets) of variables
in the run-time stack's activation records, and (ii) padding between fields
of a struct.

o register usage

o execution order (e.g., of actual parameters)

o optimizations performed

o artifacts of compiler bugs

Access to such information can be crucial; for instance, many security exploits
depend on platform-specific features, such as the structure of activation records.
Vulnerabilities can escape notice when a tool does not have information about
adjacency relationships among variables. In contrast, such information is hidden
from tools that work on intermediate representations (IRs) that are built directly
from the source code.

• By analyzing executables, the entire program can be analyzed---including
libraries that are linked to the program. Because library code can be analyzed
directly, it is not necessary to rely on the potentially unsound models of library
functions that are typically used when analyzing source code.

• An executable may have been modified subsequent to compilation, e.g., to insert
malicious code. Such modifications are not visible to tools that analyze source
code.

• Source-code-analysis tools are only applicable when source code is available,
which limits their usefulness in security applications (e.g., to analyzing code from
open-source projects).

• The source code may have been written in more than one language. This
complicates the life of designers of tools that analyze source code because
multiple languages must be supported, each with their own quirks. A tool that
analyzes executables only needs to support one language.

• Even if the source code is primarily written in one high-level language, it may
contain inlined assembly code in selected places. Source-level tools typically
either skip over inlined assembly code [8] or do not push the analysis beyond sites
of inlined assembly code [1].

We have embarked on the creation of a new generation of software-analysis and
software-assurance tools based on analyzing executables. Such tools can reap the
aforementioned benefits of analyzing executables to provide a level of precision that
would not otherwise be possible.

References
[1] PREfast with driver-specific rules, October 2004.
http://www.microsoft.com/whdc/devtools/tools/PREfast-drv.mspx.

[2] G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables. In Comp.
Construct., pages 5–23, 2004.

[3] Balakrishnan, G., Gruian, R., Reps, T., and Teitelbaum, T., CodeSurfer/x86 – A platform for
analyzing x86 executables, (tool demonstration paper). To appear in Proc. Int. Conf. on Compiler
Construction, April 2005.

[4] Balakrishnan, G., Reps, T., Kidd, N., Lal, A., Lim, J., Melski, D., Gruian, R., Yong, S., Chen,
C.-H., and Teitelbaum, T., Model checking x86 executables with CodeSurfer/x86 and WPDS++,
(tool-demonstration paper). In Proc. Computer-Aided Verification, 2005.

[4] T. Ball and S.K. Rajamani. The SLAM toolkit. In Computer Aided Verif., volume 2102 of
Lec. Notes in Comp. Sci., pages 260–264, 2001.

[5] W. Bush, J. Pincus, and D. Sielaff. A static analyzer for finding dynamic programming errors.
Software--Practice&Experience, 30:775–802, 2000.

[6] H. Chen, D. Dean, and D. Wagner. Model checking one million lines of C code. In Network
and Dist. Syst. Security, 2004.

[7] H. Chen and D. Wagner. MOPS: An infrastructure for examining security properties of
software. In Conf. on Comp. and Commun. Sec., pages 235–244, November 2002.

[8] CodeSurfer, GrammaTech, Inc., http://www.grammatech.com/products/codesurfer/.

[9] J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, C.S. Pasareanu, Robby, and H. Zheng.
Bandera: Extracting finite-state models from Java source code. In Int. Conf. on Softw. Eng.,
pages 439–448, 2000.

[10] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program verification in polynomial
time. In Prog. Lang. Design and Impl., pages 57–68, New York, NY, 2002. ACM Press.

[11] D.R. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using
system-specific, programmer-written compiler extensions. In Op. Syst. Design and Impl., pages
1–16, 2000.

[12] K. Havelund and T. Pressburger. Model checking Java programs using Java PathFinder.
Softw. Tools for Tech. Transfer, 2(4), 2000.

[13] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Princ. of Prog.
Lang., pages 58–70, 2002.

 [14] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first step towards automated detection of
buffer overrun vulnerabilities. In Network and Dist. Syst. Security, February 2000.

	NIST Special Publication 500-264isbn.pdf
	Summary
	Workshop Announcement
	Workshop Agenda
	Attendees
	Position Statements and Background Information
	Discussion Material
	Survey of SA Tools by Categories
	The State of the Art in SA Tools and their Functions
	Classes of Software Security Flaws and Vulnerabilities
	Possible Metrics to Evaluate SA Security Tools
	Reference Dataset

	Workshop Minutes
	Welcome (Shashi Phoha)
	Scope and Introduction (Paul Black)
	Tools Survey and Categorization (Elizabeth Fong)
	Taxonomy of Software Assurance Functions (Michael Kass)
	Recommended Best Practices, or, State of the Art in SA Tools
	Software Assurance Vulnerability List &Taxonomy (Mike Koo)
	Security metrics for Software and Tools (Paul Black)
	Reference Dataset (Mike Sindelar)
	Next Step(s) (Paul Black)
	Develop Consensus on Workshop Report (Paul Black)
	Conclusions

	Submitted Material

	Kratkiewicz-Lippmann-08-2005-NIST-ToolsWorkshop.pdf
	INTRODUCTION
	BUFFER OVERFLOW TAXONOMY
	TEST SUITE
	TEST PROCEDURES
	RESULTS AND ANALYSIS
	Detailed Tool Diagnostics
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

