
 NIST Special Publication 500-262

Proceedings of the Static Analysis Summit

Paul E. Black, Helen Gill, and W. Bradley Martin (co-chairs)
Elizabeth Fong (editor)

Information Technology Laboratory

National Institute of Standards & Technology
Gaithersburg MD 20899

 July 2006

U.S. Department of Commerce
Carlos M. Gutierrez. Secretary

National Institute of Standards and Technology
William Jeffrey, Director

1

Disclaimer: Any commercial product mentioned is for information only; it does not
imply recommendation or endorsement by NIST nor does it imply that the products
mentioned are necessarily the best available for the purpose.

 2

2

Proceedings of the Static Analysis Summit

Paul E. Black, Helen Gill, and W. Bradley Martin (co-chairs)

 Elizabeth Fong (editor)
Information Technology Laboratory

National Institute of Standards and Technology
Gaithersburg, MD 20899

ABSTRACT

These are the proceedings of a summit held in June 2006 at the National Institute of
Standards and Technology (NIST). This Static Analysis Summit is one of a series of
meetings in the NIST Software Assurance Measurement and Tool Evaluation (SAMATE)
project. This summit convened researchers, developers, and government and industrial
users to explore the state of the art in software static analysis tools and techniques with an
emphasis on software security. It is also served as a prelude to an international summit in
Spring 2007. This proceeding includes the ten papers presented, the keynote
presentation, and discussion of a next summit.

Keywords: Software assessment tools; software assurance; software metrics; software
security; source code analysis, static analysis, vulnerability.

 3

3

Foreword

These are the proceedings of the Static Analysis Summit held June 29, 2006, at the
National Institute of Standards and Technology (NIST), Gaithersburg, Maryland, USA.
The summit was organized in part by the Software Diagnostics and Conformance Testing
Division, in NIST's Information Technology Laboratory. These proceedings have four
main parts:

• Call for Papers,
• Summit Agenda,
• Presentation Accompanying Keynote Address, and
• Papers

This summit is one of a series of meetings in conjunction with the NIST Software
Assurance Measurement and Tool Evaluation (SAMATE) project http://samate.nist.gov/
The SAMATE project is partially funded by DHS to help identify and enhance software
security assurance tools. Two previous workshops were conducted: first, “Defining the
State of the Art in Software Security Tools,” held in August 2005 at NIST in
Gaithersburg, Maryland, and second, “Software Security Assurance Tools, Techniques,
and Metrics,” held in November 2005 in Long Beach, California, USA.

The goal of this summit is to convene researchers, developers, and government and
industrial users to explore the state of the art in software static analysis tools and
techniques with an emphasis on software security. It is also to serve as a prelude to an
international summit in Spring 2007.

The call for papers resulted in ten accepted papers, which were presented at the summit.
Professor Dawson Engler, Stanford, gave a keynote address. Sixty people attended from
government, universities, tool vendors and service providers, research companies, and
industry. Attendees from outside the USA came from the UK and Canada.

The final session discussed future summit meetings. The sentiment was that this summit
is too short. The next one should be at least two days long, possibly with breakout
groups by language or level for more focused discussions. The next summit should have
more people from outside the USA. It should also include mission critical groups, the
safety community, and more academicians.

We are especially grateful to Prof. Dawson Engler for his enlightening keynote address. I
thank those who worked to organize this summit, particularly my two co-chairs: Helen
Gill, NSF and W. Bradley Martin, NSA. We appreciate the program committee for their
efforts in reviewing the papers. Many thanks are due to NIST, especially the Software
Diagnostics and Conformance Testing division, for providing the organizers' time. On
behalf of the program committee and the whole SAMATE team, thanks to everyone for
taking their time and resources to join us.

Dr. Paul E. Black
18 July 2006

 4

4

Table of Contents

Call For Papers ……………..…..…………………………………………………………6

Summit Agenda………..………………………………………………………………….8

Keynote Presentation

Dawson Engler ……………………….. ……………………………………….…9

Secure Coding Standards

Robert C. Seacord………………………………...……………………………...14

Language Design for Verification

Rod Chapman and Peter Amey………………………………………………….17

Automated Calculation of Software Behavior with Function Extraction (FX) for
Trustworthy and Predictable Execution

Richard C. Linger, Stacy J. Prowell, and Mark Pleszkoch………………………22

Support for Whole-Program Analysis and the Verification of the One-Definition Rule in
C++

Dan Quinlan, Richard Vuduc, Thomas Panas, Jochen Hardtlein, and Andreas
Saebjornsen………………………………………………………………………27

Towards the Industrial Scale Development of Custom Static Analyzers

John Anton, Eric Bush, Allen Goldberg, Klaus Havelund, Doug Smith and
Arnaud Venet……...……………………………………………………………..36

Verification Tools for Software Security Bugs

Frederic Michaud and Frederic Painchaud …….………………………………..41

A Framework for Creating Custom Rules for Static Analysis Tools

Eric Dalci and John Steven …………………………….………………………..49

High Fidelity Static Analysis for Secure Enterprise Software Requires Platform
Knowledge

Nikolai Mansourov, Djenana Campara, Norman Rajala, and Sumeet
Malhotra…………………………………………………..……………………...55

A Status Update: The Common Weakness Enumeration

Robert A. Martin and Sean Barnum ……………………………. …………...…62

A Proposed Functional Specification for Source Code Analysis Tools

Mickael Kass, Michael Koo, Paul E. Black, and Vadim Okun………………….65

 5

5

CALL FOR PAPERS

National Institute of Standards and Technology (NIST)
Software Assurance Metrics and Tool Evaluation (SAMATE) Project

Static Analysis Summit

29 June 2006

http://samate.nist.gov/SAS
Gaithersburg, MD, USA

--

"Black-box" software testing cannot realistically find maliciously implanted Trojan horses or
subtle errors which have many preconditions. For maximum reliability and assurance, static
analysis must be applied to all levels of software artifacts, from models to source code to byte
code to binaries. The goal of this workshop is to convene researchers, developers, and
government and industrial users to explore the state of the art in software static analysis tools and
techniques with an emphasis on software security.

We solicit contributions describing basic research, novel applications, experience, and proposals
relevant to static analysis tools, techniques, and their evaluation. Topics of particular interest are:

• What is possible with today's techniques?
• What is feasible with today's tools?
• What is NOT possible or feasible with current tools or techniques?
• Where are the gaps that further research might fill?
• What is the minimum performance bar for a source code analyzer?
• Static analysis' contribution to software security assurance
• Flaw catching effectiveness of methods, techniques, or tools
• Benchmarks or reference datasets
• Software security assurance metrics
• How can users, developers, or researchers evaluate the performance of static analysis

tools?
• User experience drawing useful lessons or comparisons.

SUBMISSIONS:

Papers should be from 1 to 8 pages long. Papers exceeding eight pages will not be reviewed.
All submissions should clearly identify their novel contributions.

Submit papers electronically in PDF or ASCII text by 20 May 2006 to Liz Fong
<efong@nist.gov>. Your submission constitutes permission for us to publish it in workshop
proceedings.

We will notify submitters of acceptance by 1 June 2006.

 6

6

PUBLICATION:

Accepted papers, along with workshop presentations where possible, will be published in the
workshop proceedings as a NIST Special Publication.

IMPORTANT DATES:

20 May: Paper submission deadline
 1 June: Author notification
13 June: Final camera-ready copy due
29 June: Workshop

ORANIZERS:
Co-Chairs: Paul Black NIST, paul.black@nist.gov
 Helen Gill NSF, hgill@nsf.gov
 W. Bradley Martin NSA, wbmarti@tycho.nsa.gov

PROGRAM COMMITTEE:

Freeland Abbott Georgia Tech Paul Ammann George Mason U.
Paul Anderson GrammaTech John Anton Kestrel
Ira Baxter Semantic Designs Rogier Boon Itsec Security
Djenana Campara KDM Analytics Pravir Chandra Secure Software
Ben Chelf Coverity Brain Chess Fortify
Jack Danahy Ounce Labs Elizabeth Fong NIST
Larry Johnsen Parasoft Michael Kass NIST
Michael Koo NIST Robert E. Lee GMRI
Robert A. Martin MITRE Corp. Vadim Okun NIST
Daniel J. Quinlan LLNL Ioana Rus Fraunhofer USA
Ravi Sandhu George Mason U. Robert C. Seacord CERT/CC

LOCAL ARRANGEMENTS:

Elizabeth Fong NIST, efong@nist.gov

 7

7

mailto:paul.black@nist.gov
mailto:hgill@nsf.gov
mailto:wbmarti@tycho.nsa.gov
mailto:efong@nist.gov

Summit Agenda

8:30 - 9:00 : Registration

9:00 - 9:30 : Welcome - Cita Furlani, Director, Information Technology Laboratory, NIST
 * Program Presentation and Charge to Attendees - Paul E. Black

9:30 - 10:20 :
 * Secure Coding Standards - Robert C. Seacord
 * Language Design for Verification - Rod Chapman and Peter Amey

10:20 - 10:45 : Break

10:45 - 12:00:

* Automated Calculation of Software Behavior with Function Extraction (FX) for
Trustworthy and Predictable Execution - Richard C. Linger, Stacy J. Prowell, and Mark
Pleszkoch
* Support for Whole-Program Analysis and the Verification of the One-Definition Rule
in C++ - Dan Quinlan, Richard Vuduc, Thomas Panas, Jochen Härdtlein, and Andreas
Sæbjørnsen
* Towards the Industrial Scale Development of Custom Static Analyzers - John Anton,
Eric Bush, Allen Goldberg, Klaus Havelund, Doug Smith, and Arnaud Venet

12:00 - 1:00 : Lunch

1:00 - 1:30 : Keynote: Dawson Engler

1:30 - 2:45 :

 * Verification Tools for Software Security Bugs - Frédéric Michaud and Frédéric
Painchaud
* A Framework for Creating Custom Rules for Static Analysis Tools - Eric Dalci and
John Steven
* High Fidelity Static Analysis for Secure Enterprise Software Requires Platform
Knowledge - Nikolai Mansourov, Djenana Campara, Norman Rajala, and Sumeet
Malhotra

2:45 - 3:10 : Break

3:10 - 4:00 :

* A Status Update: The Common Weakness Enumeration - Robert A. Martin and Sean
Barnum
 * A Source Code Analysis Tool Specification - Michael Kass and Michael Koo

4:00 - 4:30 :

*The next, international meeting: Where? When? Who else should be invited?

 8

8

Keynote Presentation – Dawson Engler

9

10

11

12

13

Secure Coding Standards

Robert C. Seacord
CERT/CC

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213 USA

+1-412-228-7608
rcs@cert.org

ABSTRACT

Secure coding standards define rules and recommendations to
guide the development of secure software systems. Establishing
secure coding standards provides a basis for secure system
development as well as a common set of criteria that can be used
to measure and evaluate software development efforts and
software development tools and processes. This paper describes
plans by the CERT/Coordination Center at the Software
Engineering Institute at Carnegie Mellon University to establish,
through a coordinated community effort, a set of secure coding
standards for commonly used programming languages.

Keywords
Security, Standardization, Programming languages.

1. INTRODUCTION
Society’s increased dependency on networked software systems
has been matched by an increase in the number of attacks aimed
at these systems. These attacks—directed at governments,
corporations, educational institutions, and individuals—have
resulted in loss and compromise of sensitive data, system damage,
lost productivity, and financial loss [19].
Software vulnerability reports continue to grow at an alarming
rate [1] and a significant number of them result in technical alerts
[2]. To address this growing threat, the introduction of software
vulnerabilities during software development and ongoing
maintenance must be significantly curtailed.
An essential element of secure software development is well
documented and enforceable coding standards. Coding standards
encourage programmers to follow a uniform set of rules and
guidelines determined by the requirements of the project and
organization, rather than by the programmer’s familiarity or
preference. Once established, these standards can be used as a
metric to evaluate source code (using manual or automated
processes) to determine compliance with the standard.
There are numerous available sources, both online and in print,
containing coding guidelines, best practices, suggestions, and tips.
For example, the following books have been published containing

C/C++ programming languages rules and guidelines:

• C++ Coding Standards: 101 Rules, Guidelines, and Best
Practices [21]

• Effective C++ : 55 Specific Ways to Improve Your Programs
and Designs (3rd Edition) [10]

• More Effective C++: 35 New Ways to Improve Your
Programs and Designs [11]

• Effective STL: 50 Specific Ways to Improve Your Use of the
Standard Template Library [12]

• C++ Programming Guidelines [16]

• C Programming Guidelines [17]
Industry-specific standards such as the Motor Industry Software
Reliability Association (MISRA) Guidelines for the use of the C
language in critical systems [13] have also been published.
Additionally, many companies have internal coding standards.
An example of a publicly released coding standard is the Joint
Strike Fighter Air Vehicle C++ Coding Standards [9].
Many online sources of coding practices and coding rules also
exist, including the Build Security In web site [4] sponsored by
the U.S. Department of Homeland Security (DHS) National
Cyber Security Division. The SAMATE Reference Dataset
(SRD), maintained by NIST [15], provides a set of programs with
known weaknesses in code, design, or architecture that can lead to
exploitable vulnerabilities. The Common Weaknesses
Enumeration (CWE), maintained by MITRE, is a dictionary of
known security weaknesses in code, design, and architecture that
can lead to exploitable vulnerabilities [14].
With all these sources of information, it might seem that a secure
coding standard for these languages would be unnecessary.
However, none of these sources provides a prescriptive set of
secure coding standards that can be uniformly applied in the
development of a software system. This conclusion is reinforced
by the Secure Software Assurance Common Body of Knowledge
[18] published by the U.S. Department of Homeland Security,
which laments the “lack of public standards as such for secure
programming.”

2. SCOPE
At one extreme, a secure coding standard can be developed for a
particular release of a compiler from a particular vendor. At the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.

14

other extreme, the standards can be designed to be not only
compiler independent but also language independent.
A coding standard for a particular compiler release has the largest
possible benefit to the smallest group of users. Targeting a
particular compiler allows for the definition of rules and
guidelines that deal specifically with the peculiarities of that
implementation, including defects in the implementation and non-
standard extensions. At the other extreme, a language-
independent coding standard has the least possible benefit to the
largest possible group of users, as the rules and guidelines
specified at this level of abstraction are largely notional.
The secure coding standards proposed by CERT are based on
documented standard language versions as defined by official or
de facto standards organizations. For example, secure coding
standards are planned for the following languages:

• C programming language (ISO/IEC 9899:1999) [5]

• C++ programming language (ISO/IEC 9899:1999) [6]

• Sun Microsystems’ Java2 Platform Standard Edition 5.0 API
Specification [20]

• C# programming language (ISO/IEC 23270:2003) [7]
Applicable technical corrigenda and documented language
extensions such as the ISO/IEC TR 24731 extensions to the C
library [8] will also be considered.
The scope allows specific guidance to be provided to broad
classes of users. Programming language standards, like those
created by ISO/IEC, are primarily intended for compiler
implementers. Secure coding standards are ancillary documents
that provide rules and guidance directly to developers who
program languages defined by these standards.

3. GOALS
The goal of each coding standard is to define a set of rules that are
necessary (but not sufficient) to ensure the security of software
systems developing in the respective programming languages.
A secure coding standard consists of rules and recommendations.
Coding practices are defined to be rules when all of the following
conditions are met
1. Violation of the coding practice will result in a security flaw

that may result in an exploitable vulnerability.
2. There is an enumerable set of exceptional conditions (or no

such conditions) where violating the coding practice is
necessary to ensure the correct behavior for the program.

3. Conformance to the coding practice can be verified.
Rules must be followed to claim compliance with a standard
unless an exceptional condition exists. If an exceptional
condition is claimed, the exception must correspond to a pre-
defined exceptional condition and the application of this
exception must be documented in the source code.
Recommendations are guidelines or suggestions. Coding practices
are defined to be recommendations when all of the following
conditions are met
1. Application of the coding practice is likely to improve

system security.

2. One or more of the requirements necessary for a coding
practice to be considered a rule cannot be met.

Compliance with recommendations is not necessary to claim
compliance with a coding standard. It is possible, however, to
claim compliance with one or more verifiable guidelines. The set
of recommendations that a particular development effort adopts
depends on the security requirements of the final software
product. Projects with high-security requirements can dedicate
more resources to security, and are thus likely to adopt a larger set
of recommendations.

4. DEVELOPMENT PROCESS
The development of a secure coding standard for any
programming language is a difficult undertaking that requires
significant community involvement. To produce standards of the
highest possible quality, CERT is implementing the following
development process:
1. Rules and recommendations for a coding standard are

solicited from the communities involved in the development
and application of each programming language, including the
formal or de facto standard bodies responsible for the
documented standard.

2. These rules and recommendations are edited by senior
members of the CERT technical staff for content and style
and placed in the Secure Coding area of CERT web site for
comment and review [3].

3. The user community may then comment on the publically
posted content using threaded discussions and other
communication tools. Once a consensus develops that the
rule or recommendation is appropriate and correct the final
rule is incorporated into the coding standard.

Various groups, including the ISO/IEC JTC1/SC22/WG14
international standardization working group for the C
programming language have expressed an interest in supporting
this model.

5. USAGE
These rules may be extended with organization-specific rules.
However, the rules contained in a standard must be obeyed to
claim compliance with the standard.
Training may be developed to educate software professionals
regarding the appropriate application of secure coding standards.
After passing an examination, these trained programmers may
also be certified as secure coding professionals.
Once a secure coding standard has been established, tools can be
developed or modified to determine compliance with the standard.
One of the conditions for a coding practice to be considered a rule
is that conformance can be verified. Verification can be
performed manually or automated. Manual verification can be
labour intensive and error prone. Tool verification is also
problematic in that the ability of a static analysis tool to detect all
violations of a rule must be proven for each product release, to
detect regression errors. Even with these challenges, automated
validation may be the only economically scalable solution to
validate conformance with the coding standard.
Software analysis tools may be certified as being able to verify
compliance with the secure coding standard. Compliant software

15

systems may be certified as compliant by a properly authorized
certification body by the application of certified tools.

6. SYSTEM QUALITIES
Security is one of many system attributes that must be considered
in the selection and application of a coding standard. Other
attributes of interest include safety, portability, reliability,
availability, maintainability, readability, and performance.
Many of these attributes are interrelated in interesting ways. For
example, readability is an attribute of maintainability; both are
important for limiting the introduction of defects during
maintenance that could result in security flaws or reliability
issues. Reliability and availability require proper resources
management, which contributes also to the safety and security of
the system. System attributes such as performance and security
are often in conflict requiring tradeoffs to be considered.
The purpose of the secure coding standard is to promote software
security. However, because of the relationship between security
and other system attributes, the coding standards may provide
recommendations that deal primarily with some other system
attribute that also has a significant impact on security. The dual
nature of these recommendations will be noted in the standard.

7. CONCLUSIONS
The development of secure coding standards is a necessary step to
stem the ever-increasing threat from software vulnerabilities.
Establishing secure coding standards allows for a common set of
criteria that can be used to measure and evaluate software
development efforts and software development tools and
processes. Once established, secure coding standards can be
incrementally improved, as a common understanding of existing
problems and solutions allows for the development of more
advanced security solutions.

8. ACKNOWLEDGMENTS
Thanks to Thomas Plum for suggesting this idea, John Benito for
supporting this effort, and Hal Burch for his insights. Thanks to
Jason Rafail, Jeff Gennari, Allen Householder, Chad Dougherty,
and Claire Dixon for their review and thoughtful comments.

9. REFERENCES
[1] CERT/CC. See http://www.cert.org/stats/cert_stats.html for

current statistics.
[2] CERT/CC. US-CERT's Technical Cyber Security Alerts.

http://www.us-cert.gov/cas/techalerts/index.html
[3] CERT/CC. Secure Coding web site.

http://www.cert.org/secure-coding/

[4] DHS. Build Security In web site. See
https://buildsecurityin.us-cert.gov/

[5] INCITS/ISO/IEC 9899-1999. Programming Languages — C,
Second Edition, 1999.

[6] INCITS/ISO/IEC 14882-2003. Programming Languages —
C++, Second Edition, 2003.

[7] INCITS/ISO/IEC 23270-2003. Information technology - C#
Language Specification ,2003.

[8] ISO/IEC WDTR 24731. Specification for Secure C Library
Functions, 2004.

[9] Lockheed Martin. Joint Strike Fighter Air Vehicle C++
Coding Standards for the System Development and
Demonstration Program. Document Number 2RDU00001
Rev C. December 2005.

[10] Meyers, Scott. Effective C++ : 55 Specific Ways to Improve
Your Programs and Designs (3rd Edition). Addison-Wesley
Professional. (September 2, 1997)

[11] Meyers, Scott. More Effective C++: 35 New Ways to
Improve Your Programs and Designs. Addison-Wesley
Professional. (December 29, 1995)

[12] Meyers, Scott. Effective STL: 50 Specific Ways to Improve
Your Use of the Standard Template Library. Addison-
Wesley Professional. (June 6, 2001)

[13] MISRA C: 2004 Guidelines for the use of the C language in
critical systems. MIRA Limited. Warwickshire, UK. October
2004. ISBN 0 9524156 4

[14] MITRE. Common Weaknesses Enumeration (CWE). See
http://cve.mitre.org/cwe/

[15] NIST. SAMATE Reference Dataset (SRD). See
http://samate.nist.gov/SRD/srdFiles/

[16] Plum, Thomas. C Programming Guidelines. Plum Hall; 2nd
edition (June 1989). ISBN: 0911537074.

[17] Plum, Thomas. C++ Programming. Plum Hall (November
1991) ISBN: 0911537104.

[18] Redwine, Jr. Samuel T, Editor. Secure Software Assurance:
A Guide to the Common Body of Knowledge to Produce,
Acquire, and Sustain Secure Software Draft Version 0.9.
January 2006.

[19] Seacord, R. Secure Coding in C and C++. Addison-Wesley,
2005. See http://www.cert.org/books/secure-coding for news
and errata.

[20] Sun Microsystems. Java2 Platform Standard Edition 5.0 API
Specification, 2004.
http://java.sun.com/j2se/1.5.0/docs/api/index.html

[21] Sutter, Herb. Alexandrescu, Andrei. C++ Coding Standards:
101 Rules, Guidelines, and Best Practices. Addison-Wesley
Professional (October 25, 2004). ISBN: 0321113586.

16

Language Design for Verification

Rod Chapman, Peter Amey

 Praxis High Integrity Systems
20 Manvers Street,

Bath BA1 1PX
UK.

sparkinfo@praxis-his.com

Abstract. This position paper offers a brief summary of our experience in de-
signing high-integrity programming languages and their associated verification
tools, particularly in relation to SPARK—an annotated, pure subset of Ada95.
We also consider the fundamental features of Ada that make SPARK possible
in the first place, and address the question why we can’t do “SPARK for X”
(where X is one of today’s current favorite languages). Our experience suggests
that simple, small languages can offer a depth and soundness of static verifica-
tion that is unachievable with today’s standard languages.

1 Design goals for a program verification system

A programming language and verification system that aim to be suitable for high-
integrity systems might have the follo wing design goals:
• Soundness – the system must not give a false-negative result. This is the case

where the tool says “Your program has no bugs” when actually it does – generally
considered to be a bad thing.

• Completeness – the system should issue as few false-positive results (aka “false
alarms”) as possible. Too many such false alarms rapidly lead users to ignore the
results of a tool, or to (perhaps more importantly) ignore the one really serious is-
sue buried in a torrent of warnings.

• Depth – the verification system should be able to verify useful and non-trivial
properties of our programs.

• Efficiency – the system must be fast enough to enable constructive and interactive
use. If it takes all night to verify anything useful, then no-one will use it! Ideally,
the system should be so fast as to wean programmers away from the lure of comp i-
lation and test.

• Composition – “separate verification” (somewhat akin to “separate compilation”)
must be possible. Addition of new program units must not invalidate the verifica-
tion of existing units.

• Expressive Power – the language must be large enough for use on industrial-scale
projects. (It’s easy to meet the first five goals for a toy language that no-one else
uses…)

17

These six goals are in a subtle balance, and the mix that can be achieved crucially de-
pends on the programming language under analysis, for example:
• Soundness and efficiency are often traded. In C, C++ and Ada, for example, ex-

pression evaluation order is unspecified (i.e. a compiler can choose right-to-left or
left-to-right order at its own whim, and is under no obligation to be consistent or to
document its behavior). A static analysis tools, for efficiency, might choose to ana-
lyze only left-to-right order. This is efficient, but possibly unsound if the tool’s
choice disagrees with that made by the compiler. The unspecified or undefined lan-
guage features are a plague on the efforts of the static analysis tool, yet contemp o-
rary languages are riddled with them.

• Analysis for any interesting deep property (e.g. “does my program have any buffer
overflows?”) is always inherently incomplete to some extent.

• Some language features require deep analysis, such as the analysis of pointers and
aliasing, which would be too slow for constructive use. Efficiency can be achieved
at the expense of soundness or completeness (or both…).

2 Language design trends

Historically, programming languages were designed as experiments in either ex-
pressive power (i.e. the addition of “OO” to C to get C++) or in compiler design.
Languages were principally designed by compiler writers, not by people concerned
with the provision of verification tools.

From the perspective of verification, much of the development of programming
languages seems to have gone the wrong way—the addition of features that are harder
and harder to analyze, such as OO (in particular dynamic dispatch of methods), gener-
ics, templates, call-backs, threads or tasks, and so on.

Only recently have we seen the trend reversed a little—it could be argued that Java
and C# represent a simplification of C++, for instance, but as we will see, many of the
central problems remain.

3 High integrity languages, subset and dialects

In the field of safety-critical systems, work on this problem has been going on since
the mid 1980s at least. We can identify four broad approaches:
1. Work with the “whole language”. In this approach, we try to build the “best effort”

verification tool for a whole, unsubsetted standard language such as C, C++, or
Ada. This is attractive to the tool vendor, because it creates a broad market for the
tool. The costs are in efficiency, depth, soundness and completeness of the analysis.
It is also attractive to the customer, because no real change in behavior, process or
discipline is needed.

2. Work with a totally new language. There have been a few attempts at this ap-
proach, including LUCOL, NewSpeak, Euclid, and Eiffel. Of these, only Eiffel has
achieved any real industrial impact.

18

3. Work with dialects. A “dialect” is a language with the unspecified features re-
solved by a known compiler and/or target computer – e.g. “C as compiled by Mi-
crosoft C version X.Y.X at optimization level Z”. This approach improves preci-
sion and efficiency of analysis, at the cost of “lock in” to that particular compiler
and language.1 Significant results have been achieved, though, using this ap-
proach—examples including the Microsoft Static Driver Verifier[2], Cousot’s
ASTREE system[3], and C0[4].

4. High-integrity (annotated) subsets. This approach attempts to design a pure subset
language, based on an existing industrially accepted language, but that eliminates
unspecified or undefined behavior, so that analyses are valid for any compiler that
implements the parent language. Some languages add annotations to strengthen the
language beyond that achievable by subsetting alone. This approach is illustrated
by SPARK[1].

4 SPARK for X?

We are often asked if we could do “SPARK for X” where X is C, C++, Java or what-
ever. We have to enquire further what the questioner actually means by this. If they
are asking “can a best-effort, retrospective analysis tool be constructed for X that per-
haps uses some annotations to improve things” then the answer is “Yes, but that’s not
our business”. There is a wide (and growing) crop of such tools already available.

If the question is “Can you develop a verification system for a possibly-annotated
subset of X which is sound, complete, efficient, deep, constructive and expressive
enough for real industrial projects?” then that’s a different matter. The answer is al-
most unavoidably “No.”

Why is this? What makes SPARK different? Why is SPARK based in Ada in the
first place? On reflection, we find three very basic features of Ada (and therefore
SPARK) are crucial:
• Separation of specification (contract) from body (implementation). Ada’s

“package” mechanism strictly (and physically) separates the specification and body
of a program unit. This was originally intended to facilitate separate compilation
and development of large programs, but it has a huge impact on the verification
system. Firstly, it gives us somewhere to put the contracts for a unit, such as the
global variable list, pre-condition, post-condition and so on. Secondly, when a unit
P references a unit Q in SPARK, only the specification of Q is ever consulted, and
all the information we need is right there where we need it. The body of Q is never
consulted. This means the system achieves efficiency and composition of analysis.
Note that such a facility has been present in nearly all “Pascal-family” languages,
such as Modula-1,2, or 3, Oberon, Eiffel and so on.

• Scalar subtypes. This may seem a totally innocuous feature of Ada, yet it remains
core to SPARK’s type system and verification approach. For those unfamiliar with
the concept, this gives the programmer the ability to specify a (sub-)range of values

1 Ironically, this “language lock-in” problem was cited in about 1975 as one of the big issues in

the “software crisis” in the DoD that led to the Steelman requirements for the language that
became Ada…

19

for a scalar type, recognizing that the world doesn’t conveniently come in signed 2-
complement “int” quantities. For example:

type Engine_ID is range 1 .. 4;

These types allow the programmer to express their intent in terms of real-world
limits and quantities. Secondly, such types are a form of specification information
that can be cross-checked and used for verification. Finally, they are used by the
verification system to show that a program can never raise an exception resulting
from an arithmetic overflow, range violation, buffer overflow, division by zero and
so on. In teaching students embedded systems programming, McCormick reports
scalar types as the single most influential language feature when comparing stu-
dents’ work completed in C versus Ada[9].

• Pointers (lack thereof…) SPARK manages to get by without the explicit use of
pointer types at all. Firstly, Ada gives us parameter passing “modes” that do not
depend on the explicit use of pointers.2 Secondly, constrained (i.e. size known at
compile-time) arrays are first-class types in SPARK, so you can pass them around
as parameters, return them from functions with no recourse to pointers at all.
Thirdly, Ada gives us its “chapter 13” for low-level programming, mapping objects
to particular memory locations and so on. Finally, we come to linked data struc-
tures, for which we simply use arrays and array index values as “references”—the
only catch being that you need to decide how big your “heap” is in advance. The
impact of all this is dramatic—aliasing analysis is trivial (and sound…) so that gets
us to the point where we can implement a full-blown verification system based on
Hoare-logic and theorem-proving.

So, what about “SPARK for C, C++, C#, Java etc. etc” Considering the first two
points above, we find the lack of separation of spec/body and the lack of scalar sub-
types in such languages to be show-stopping weaknesses. Furthermore, these are
hardly difficulties that can be “subsetted away” or “annotated back in” to such lan-
guages. Finally, these languages are so pointer-centric that it seems unlikely that a
usefully expressive subset could be achieved that solved the “aliasing problem” to our
satisfaction. We actually attempted a design study for “SPADE C” in the early
1990s—the result was so poor in expressive power and needed so much annotation
that the project was not pursued any further.

5 Future and on-going work

SPARK is very much in the “raise the ceiling” mode, trying to push the high-end of
static analysis, with the (non-trivial) catch that we require users to actually learn and
use an entirely new language and to have the discipline and process to use it effec-
tively. SPARK has grown significantly over the years, adding OO support, Ravenscar
tasking, modular types and so on from Ada95, without sacrificing the soundness of

2 A compiler can use pass-by-reference mechanism, but that’s its business, and can’t affect the

semantics of SPARK.

20

the verification system. We are currently working on the next major expansion of the
language: the adoption of a subset of Ada’s generics facility. We may even be able to
pick up some of the new features of Ada2005[5] if they prove useful.

The “raise the floor” community has also made substantial progress—the current

crop of “whole language” analysis tools offer a sophistication of analysis that was un-
dreamt of a few years ago, and these are having a significant impact on a much larger
group of engineers and projects than SPARK probably ever will.

There are also signs of life in the research community. The needs of the security-

critical market have prompted a real renaissance in static analysis. We find (much to
our amusement) that “annotations” are fashionable and embodied in systems such as
ESC/Java2, Microsoft’s PreFast and Spec#[6] and so on. Finally, new languages de-
signed from scratch are making a come-back. For example, Microsoft have Sing#[7],
and the Coyotos project at JHU[8] is a language (BitC), verification environment and
operating system that have been developed from scratch for high-integrity applica-
tions.

References

1. Barnes, J.: High Integrity Software: The SPARK Approach to Safety and Security. Addison
Wesley, April 2003. ISBN 0-321-13616-0.

2. Static Driver Verifier – Finding Driver Bugs at Compile Time. Microsoft.
http://www.microsoft.com/whdc/devtools/tools/sdv.mspx

3. The ASTRÉE Static Analyzer. Patrick Cousot et al. http://www.astree.ens.fr/
4. Verisoft Consortium. The Verisoft Project. See http://www.verisoft.de/ and

www.verisoft.de/.rsrc/PublikationSeite/PaulVSTTE05-final.pdf
5. Rationale for. Ada 2005. John Barnes. John Barnes Informatics.

http://www.gnat.com/home/ada_answers/ada_2005
6. Righting Software. Jim Larus et al. IEEE Software, May/June 2004.

http://research.microsoft.com/~larus/
7. An Overview of the Singularity Project. Galen Hunt et al. Microsoft Research Technical

Report MSR-TR-2005-135. Also at http://research.microsoft.com/~larus/
8. The Coyotos Secure Operating System. Jonathan Shapiro et al. John Hopkins University.

See http://www.coyotos.org/
9. Software Engineering Education: On the Right Track. John McCormick, University of

Northern Iowa. CrossTalk Journal, August 2000.
http://www.stsc.hill.af.mil/crossTalk/2000/08/mccormick.html

21

Automated Calculation of Software Behavior with Function Extraction (FX)
for Trustworthy and Predictable Execution

Richard C. Linger, Stacy J. Prowell, and Mark Pleszkoch

CERT STAR*Lab
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA

rlinger@sei.cmu.edu, sprowell@cert.org, mpleszko@cert.org

Abstract

CERT STAR*Lab at the SEI is developing function
extraction (FX) technology to compute the behavior of
software to the maximum extent possible. FX capitalizes
on a view of programs as mathematical functions or
relations that illuminates methods for behavior
calculation. While behavior calculation is a very difficult
problem, routine availability of computed behavior could
have substantial impact on software engineering in
general and software assurance in particular. As a first
application of function extraction technology, STAR*Lab
is developing the Function Extraction for Malicious Code
(FX/MC) system to analyze the behavior of malicious
code expressed in the Intel instruction set. FX technology
provides foundations for automated security attribute
analysis, correctness verification, and component
composition.

1. Computing Software Behavior

The ever-increasing complexity of software systems
places extraordinary demands on human comprehension.
Traditional code reading and inspection methods are
subject to human fallibility and can be overwhelmed by
the sheer size of programs, and software tools generally
provide only partial views of program behavior. In
today’s state of art, no practical means exists to answer
the straightforward question of what programs do in all
circumstances of use. The resulting loss of intellectual
control has been a persistent problem in software
development, leading to unpleasant surprises from
unforeseen behavior despite best efforts. What is needed
is an “all cases of behavior” view for complete analysis.

It is well understood that the problem of computing
program behavior is extremely difficult; however, the
substantial value of such a capability motivates a closer
look at what can be achieved. CERT STAR*Lab at the
SEI is developing the emerging technology of function
extraction (FX), with the objective of computing the
behavior of software to the maximum extent possible.

The starting point for behavior computation is a precise
definition of the functional semantics of instructions in
the language of interest, together with rules for their
combination. Sequential logic is expressible in terms of
fundamental control structures, namely, sequences,
alternations, and iterations (loops), whose functional
semantics define the rules of combination. Thus, a
required preliminary step is automated transformation of
programs under analysis into structured form based on the
constructive proof of a structure theorem. This
transformation creates an algebraic framework for
stepwise traversal and accumulation of program behavior.
For sequence structures, the rule of combination is
ordinary function composition. Behavior computation for
sequence structures thus requires composing individual
instructions to derive their net functional effect in the
procedure-free form of concurrent assignments of inputs
to outputs. Behavior computation for alternation
structures is carried out in terms of case analysis to derive
procedure-free conditional rules that organize the effects
of true and false branch operations in terms of concurrent
assignments. It is fortunate that the behavior of sequence
and alternation structures, which typically comprise the
bulk of sequential logic, can be computed in such a
straightforward manner. Because no general theory for
loop behavior computation can exist, engineering
solutions are being developed.

2. FX Treats Programs Like Equations

Short of an impractical expenditure of time and
effort, programmers have no means to determine the full
behavior of programs. Despite best efforts, programs are
routinely fielded with unknown behavior that may contain
errors, vulnerabilities, or malicious code. The totality of
large program behavior is difficult to understand because
it is distributed across a virtually infinite number of
possible execution paths. Testing selects paths from this
set and so cannot reveal full behavior. However, large
programs are at the same time composed of a finite
number of control structures, each of which makes a
finite contribution to overall behavior.

 1

22

mailto:rlinger@sei.cmu.edu
mailto:sprowell@cert.org
mailto:mpleszko@cert.org

The function-theoretic view focuses not on program
paths, but rather on control structures and mathematical
foundations for their refinement, abstraction, and
verification [1]. In this view, control structures are treated
as rules for mathematical functions or relations, that is,
mappings from domains to ranges, no matter what subject
matter they may address. In particular, function-theoretic
foundations prescribe procedure-free equations that
represent net effects on data of common control structures
and provide a starting point for behavior extraction.
These equations are expressed in terms of function
composition, case analysis, and, for iteration structures, a
recursive expression based on an equivalence of iteration
and alternation structures. Representative equations are
given below for control structures labeled P, data
operations g and h, predicate p, and program function f.

The program function of a sequence control structure
(P: g; h) can be given by

f = [P] = [g; h] = [h] o [g]

where square brackets denote the program function and
“o” denotes the composition operator. That is, the
program function of a sequence can be calculated by
ordinary function composition of its constituent parts.
The program function of an alternation control structure
(P: if p then g else h endif) can be given by

f = [P] = [if p then g else h endif]
 = ([p] = true [g] | [p] = false [h])

where | is the “or” symbol. That is, the program function
is given by a case analysis of the true and false branches,
and the possibility of abstracting them to a single case.
The program function of a terminating iteration control
structure (P: while p do g enddo) can be expressed as

f = [P] = [while p do g enddo]
 = [if p then g; while p do g enddo endif]
 = [if p then g; f endif]

and f must therefore satisfy

f = ([p] = true [f] o [g] | [p] = false I)

These equations define an algebra of functions that
can be applied bottom up to the control structure
hierarchy of a program in a stepwise function extraction
process. This process propagates and preserves the net
effect of control structures through successive levels of
abstraction while leaving behind complexities of local
computations and data not required for expressing
behavior at higher levels. Additional methods are
required to simplify and reduce intermediate expressions
and to analyze loop operations, as well as to present
behavior catalogs to users in appropriate forms.

In notional illustration, consider the following
miniature sequence that operates on logical variables and
the question of deriving its behavior, which is not

immediately obvious (∨ represents the “exclusive or”
operation):

do
 x := x ∨ z
 z := x ∨ z
 x := x ∨ z
 y := x ∨ y
 x := x ∨ y
 y := x ∨ y
enddo

The behavior can be computed in a trace table that
accumulates intermediate compositions to arrive at net
effects the intentional variables x, y, and z (I for identity):

Operation x y z
x := x ∨ z

X = x ∨ z I I

z := x ∨ z I I z = (x∨z)∨z
= x

x := x ∨ z x = (x∨z)∨x
= z

I I

y := x ∨ y

I y = z ∨ y I

x := x ∨ y

x = z∨(z∨y)
= y

I I

y := x ∨ y

I y = y∨(z∨y)
= z

I

Thus, the functional behavior is given by a sequence-free
concurrent assignment of initial values to final values

x, y, z := y, z, x

that is, the effect of the programmed sequence of
operations is to rotate the truth values of the three
variables. Such behavior computations are readily
automated in the function extraction process. In this case,
the calculations involve logical variables and their rules
of combination, but any data types and structures can be
accommodated. While the behavior of this simple
sequence is defined by a concurrent assignment, the
general form of behavior definitions is necessarily a non-
procedural conditional concurrent assignment (CCA)

predicate
 assignment 1
 assignment 2
 …
 assignment n

where if the predicate on program input values is true, the
assignments are carried out concurrently. For larger and
more complex programs, the function extraction process
produces behavior catalogs containing sets of disjoint
CCAs that together define program behavior for all cases.

 2

23

The conditional concurrent assignment is the principal
statement in the behavior expression language of function
extraction.

3. FX Improves Software Comprehension

STAR*Lab has developed a proof-of-concept
function extractor prototype that calculates the behavior
of programs expressed in a small subset of the Java
programming language and presents it to users in the
form of behavior catalogs. The catalogs contain
procedure-free CCAs that define the net functional effect
of programs from input to output in all circumstances of
use.

The prototype was employed in a rigorous
experiment to compare traditional methods of program
reading and inspection with FX-based methods. Twenty-
six experienced programmers were divided into a control
group using traditional methods and an experimental
group using the FX prototype. Each group was required
to answer questions dealing with comprehension and
verification of three Java programs. The experiment
produced the following results [2]:

• The experimental group using the FX prototype

reduced the time required to derive the functional
behavior of the programs by several orders of
magnitude compared to the control group.

• For the most difficult program, the experimental
group was about four times better at providing
correct answers to the comprehension and
verification questions, and required a fourth of the
time to do so, a productivity improvement of a factor
of 15 over the control group.

• The experimental group achieved these results with
45 minutes of instruction on use of the function
extractor, compared to years of training and
experience for the control group.

4. FX Impacts the Software Lifecycle

Function extraction technology can be applied to any
programming language environment, and has potential to
impact many aspects of the software engineering
lifecycle. To better understand this impact, STAR*Lab
conducted a comprehensive study with a major aerospace
corporation to determine how FX could improve
engineering operations in activities ranging from software
specification and design to implementation and testing
[3]. This study produced guidance for FX evolution from
experienced software developers:

• Development of FX automation for assembly

language should be a priority.

• FX automation should be developed for correctness
verification of software.

• FX automation should be developed for high-level
languages starting with Java.

• Research on FX automation for specification and
architecture should be initiated.

5. Development of the Function Extraction for
Malicious Code System

CERT STAR*Lab has initiated development of the
first application of FX technology in the Function
Extraction for Malicious Code (FX/MC) system [4]. The
goal of FX/MC is to compute the behavior of malicious
code expressed in Intel assembly language, to enable
security analysts to quickly determine intruder objectives
and develop countermeasures. The initial version applies
a structure theorem to transform intentionally obfuscated,
spaghetti-logic control flow into readable structured form,
and computes the behavior of sequence and alternation
structures.

In miniature illustration of FX/MC capabilities,
consider the following assembly language fragment that
gives the appearance of being intentionally obfuscated:

 xor ebx, ebx
 mov edx, dword [ebp+4*ebx+50]
 xor eax, eax
 jmp loc_800002B
loc_800000D:
 inc ebx
 sub eax, edx
 mov edx, dword [ebp+4*ebx+50]
 sub eax, edx
 jmp loc_8000028
loc_800001B:
 xor edx, edx
 sub edx, eax
 mov eax, edx
 xor edx, edx
 jmp near ptr 8000034h
loc_8000028:
 inc ebx
 jmp short loc_800001B
loc_800002B:
 sub eax, edx
 inc ebx
 mov edx, dword [ebp+4*ebx+50]
 jmp short loc_800000D

The first step in FX/MC processing transforms the

logic to function-equivalent structured form; in this case,
the arbitrary branching (jmp instructions) is eliminated
and the control flow reduces to a simple sequence of
operations with no jumps present:

 3

24

do
 xor ebx, ebx
 mov edx, dword [ebp+4*ebx+50]
 xor eax, eax
 sub eax, edx
 inc ebx
 mov edx, dword [ebp+4*ebx+50]
 inc ebx
 sub eax, edx
 mov edx, dword [ebp+4*ebx+50]
 sub eax, edx
 inc ebx
 xor edx, edx
 sub edx, eax
 mov eax, edx
 xor edx, edx
enddo

The behavior is then computed, resulting in the

following concurrent assignments to registers EAX, EBX,
and EDX, and to the zero flag (ZF), sign flag (SF), parity
flag (PF), carry flag (CF), overflow flag (OF), and
auxiliary carry flag (AF), which Intel semantics leave as
undefined (arbitrary_value_bool). The +d symbol
represents a doubleword addition:

[EAX := M_dword(50 +d EBP)
 +d M_dword(54 +d EBP)
 +d M_dword(58 +d EBP)
: EBX := 3
: EDX := 0
: ZF := true
: SF := false
: PF := true
: CF := false
: OF := false
: AF := arbitrary_value_bool()
]

Thus, the computed behavior shows that the program

sums up three consecutive doublewords starting at
address EBP+50 and assigns the result to EAX, behavior
that is not immediately obvious from inspecting the
original code.

FX/MC is a substantial development effort; simply
processing the Intel instruction set requires definition of
the functional semantics of over a thousand opcodes.
While the target of interest is malicious code, the system
will extract the behavior of any programs expressed in
assembly language. The technology developed for
FX/MC can also be applied to function extractor
development for other languages such as Java, C, and
C++.

6. FX for Automated Security Attribute
Analysis

In the current state of practice, security properties of
software systems are typically assessed through
subjective, labor-intensive human evaluation. STAR*Lab
is investigating science foundations and engineering
automation for fast and precise calculation of security
properties both during system development and operation.
The Computational Security Attributes (CSA) project is
developing technology for augmenting human analysis of
security properties with automated computational
analysis. The emergence of function extraction
technology, unavailable to previous researchers, provides
the critical first step by deriving the functional behavior
of software as a starting point for security analysis.

Security attributes are often referred to as non-
functional properties, but they are in fact fully functional
and dependent on the execution behavior of software.
Desired security attributes can themselves be specified in
functional terms, permitting software to be evaluated for
conformance or not through comparison with the
behavior catalogs generated by the function extraction
process. Thus, computational security analysis requires
defining the functional behavior required to satisfy the
attributes of interest.

For example, consider the non-repudiation attribute
and its definition in functional terms. Non-repudiation of
changes to a dataset requires ensuring that the means for
authentication of changes cannot later be refuted, which
can be expressed, for example, as the following
fundamental behavioral requirement

• If the dataset is changed during the execution of the

software, a specified variable that identifies the user
making the change is always associated with the
dataset.

from which specific requirements can be derived:

• User binding: There exists a trusted function to
identify the user making the change to the dataset
which is invoked for every data change of interest.

• Atomic operations: The user binding and the dataset
change are handled as a single atomic operation
within the boundary of the software of interest.

• Traceability: Every change to the dataset is preceded
by a definition of the change and identification that
binds the change to the user, and every change is
audited.

These requirements express the non-repudiation

attribute in terms of data items and constraints on their
processing. The processing can be expressed in

 4

25

appropriate forms, for example, as logical or quantified
expressions or even conditional concurrent assignments,
which can be mechanically checked against the FX-
generated behavior catalogs of the software of interest for
conformance or not.

7. FX for Automated Correctness Verification

In functional terms, software should do what it is
designed to do and nothing more. In security terms,
defective software cannot be secure. These quality and
trustworthiness properties are essential but often
problematic in software systems. The function extraction
process derives the as-built specification of software, that
is, the behavior that has actually been implemented. This
derived behavior can be compared to requirements and
specifications to determine if the software is indeed a
correct implementation. This comparison is based on a
Correctness Theorem that defines conditions required for
correctness [1]. In addition, FX technology prescribes
effective means to create and record specifications, with
the corresponding specification task itself amenable to
automated support. Automated correctness verification
would be especially valuable during system development,
to check on the behavior of partial implementations and
find and fix errors and vulnerabilities along the way. It
would also permit a new level of rigor in acquisition and
acceptance of systems by requiring provision of behavior
catalogs for all delivered code.

8. FX for Automated Component Composition

Function extractors must provide substantial
composition capabilities because behavior calculation is
essentially a compositional task. Creating function
extractors to compose software components in systems is
thus a question of scale, not of method. Given behavior
catalogs for each component and the intended structure of
their interaction, the composition process requires
calculating the net functional effects of the combined
component behaviors. As a step in this direction,
STAR*Lab has conducted research on flow structures,
which provide mathematical foundations and engineering
techniques for analyzing and designing component
compositions to satisfy mission objectives at the network
architecture level [5,6,7]. Capabilities for automated
composition would provide support for construction and
integration of entire systems. Significant research will be
required in interface ontologies and subject-matter
abstractions to augment the component composition
process.

9. References

[1] Prowell, S., Trammell, C., Linger, R., and Poore, J.,
Cleanroom Software Engineering: Technology and
Process, SEI Series in Software Engineering, Addison
Wesley Longman, Reading, MA, 1999.

[2] Collins, R., Walton, G., Hevner, A., and Linger, R., The
CERT Function Extraction Experiment: Quantifying FX
Impact on Software Comprehension and Verification,
(CMU/SEI-2005-TN-047), Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, 2005.

[3] Hevner, A., Linger, R., Collins, R., Pleszkoch, M., Prowell,
S., and Walton, G., The Impact of Function Extraction
Technology on Next-Generation Software Engineering,
(CMU/SEI-2005-TR-015), Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, 2005.

[4] Pleszkoch M., and Linger, R., “Improving Network System
Security with Function Extraction Technology for
Automated Calculation of Program Behavior,” Proceedings
of 37th Hawaii International Conference on System
Sciences, Hawaii, January, 2004, IEEE Computer Society
Press, Los Alamitos, CA, 2004

[5] Hevner, A., Linger, R., Sobel, A., and Walton, G.,
“Specifying Large-Scale, Adaptive Systems with Flow-
Service-Quality (FSQ) Objects,” Proceedings of the 10th
OOPSLA Workshop on Behavioral Semantics, Tampa, FL,
October, 2001, ACM Press, New York, 2001.

[6] Hevner, A, Linger, R., Sobel, A., and Walton, G., “The
Flow-Service-Quality Framework: Unified Engineering for
Large-Scale, Adaptive Systems,” Proceedings of the 35th
Annual Hawaii International Conference on System
Sciences, Hawaii, January 7-10, 2002, IEEE Computer
Society Press, Los Alamitos, CA, 2002.

[7] Linger, R., Pleszkoch, M., Walton, G., and Hevner, A.,
Flow-Service-Quality (FSQ) Engineering: Foundations for
Network System Analysis and Design, (CMU-SEI-2002-
TN-019), Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, 2002.

 5

26

Support for Whole-Program Analysis and the Verification of
the One-Definition Rule in C++

Dan Quinlan1, Richard Vuduc1, Thomas Panas1, Jochen Härdtlein2, and Andreas Sæbjørnsen3

1Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
{dquinlan,richie,panas2}@llnl.gov

2Department of Computer Science, University of Erlangen-Nuremberg, Germany, haerdtlein@cs.fau.de
3Department of Physics, University of Oslo, Norway, andsebjo@student.matnat.uio.no

Abstract

We present a compact and accurate representation of
a whole-program abstract syntax tree, and use it to
detect a specific security vulnerability in C++ pro-
grams known as a One-Definition Rule (ODR) viola-
tion. The ODR states that types and functions ap-
pearing in multiple compilation units must be de-
fined identically. However, no current compiler can
enforce ODR because doing so requires the ability to
see the full application source at once; where ODR
is violated, the program is incorrect. Moreover, a
lack of ODR enforcement makes a program vulnera-
ble to the so-called VPTR exploit, in which an object’s
virtual function table is replaced by malicious code.
Our representation of the whole program preserves
all features of the source for analysis and transfor-
mation, and permits a million-line application to fit
entirely in the memory of a workstation with 1 GB
of RAM.

1 Introduction

Most whole-program analyses use some form of
summarization, at the loss of analysis precision,
since analysis time complexity is often super-linear.
The traditional unit to analyze and summarize is a
procedure since it does not require the compiler to
see the full source at once [33]. However, suppose
we provide the compiler with a complete view of
the entire program. Then, the compiler may freely
choose any convenient unit regardless of procedure
or module boundaries, and thereby control the size,
contents, and context of the program fragment to an-
alyze [19, 35, 24]. Such techniques permit focused
and efficient analyses of customizable precision. For
software security assurance, improvements in preci-
sion raise the level of assurance we can guarantee.

We describe a scalable whole-program analysis
that requires the full source to verify a fundamen-
tal assumption that all C++ compilers make but no
compiler checks. This assumption is the One Defi-
nition Rule (ODR) [4], which essentially states that
a C++ program is only legal if type and function
definitions appearing in multiple source files are de-
fined identically (Section 2). Code violating ODR is
not legal and may not be translated to a correct exe-
cutable. Nevertheless, no compiler verifies ODR be-
cause each compiles only a subset of an entire pro-
gram at one time, under separate compilation; as it
happens, only a whole-program analysis of the full
source can be used to verify ODR.

A lack of ODR enforcement enables the VPTR ex-
ploit, a virtual function table attack [31]. Though not
yet widely used, this exploit can be implemented as
a simple insider attack, particularly in collaborative
or open-source projects [29] (Section 3). Its use is ex-
pected to grow as defenses against stack smashing
techniques mature [28]. Checking ODR is an essen-
tial preventative measure.

We implement basic support for whole-program
analysis in the form of a compact and accurate
abstract-syntax tree representation of an entire pro-
gram (Section 4). We can store a million-line appli-
cation in the memory of a single workstation having
1 GB of RAM without losing any of the information
present in the original source. We achieve memory-
efficiency for C and C++ programs by merging
common declarations (typically appearing in header
files) that might otherwise be stored redundantly
for each source file. Our representation comple-
ments existing whole-program analyses by provid-
ing a simple, high-level view of the complete source
from which those analyses can be derived.

We are developing this work using ROSE, an open
infrastructure for building compiler-based source-

1

27

mailto:dquinlan@llnl.gov
mailto:richie@llnl.gov
mailto:panas2@llnl.gov
mailto:haerdtlein@cs.fau.de
mailto:andsebjo@student.matnat.uio.no

to-source analysis and transformation tools [32]
(Section 4). For C and C++, ROSE fully supports
all language features, preserves all source informa-
tion for use in analysis, and permits arbitrarily com-
plex source-level translation via its rewrite system.
Although research in the ROSE project emphasizes
performance optimization, ROSE contains many of
the components common to any compiler infrastruc-
ture, and thus supports the development of gen-
eral source-based analysis and transformation tools.
This paper summarizes aspects of ROSE especially
relevant to security analysis research (Section 5).

2 One-Definition Rule (ODR)

This section summarizes the essential features of the
one-definition rule (ODR). The ODR states that tem-
plates, types, functions, and certain entities can only
be defined “once,” in a sense made precise in the
ANSI/ISO C++ Standard [4, Sec. 3.2, pp. 23–24].
Three of the main conditions of the ODR are:

1. Within a single translation unit (a source file
and its headers), there may be at most one defi-
nition of any variable, function, class type, enu-
meration type, or template.1 All compilers ver-
ify this condition.

2. Within the entire program, there may only be
one definition of every non-inline function or ob-
ject; an inline function must be defined in every
translation unit in which it is used, with all such
definitions being identical as described in Con-
dition 3 below. Because compilers typically pro-
cess only one translation unit at a time, the C++
standard does not require that compilers check
this condition.

3. Some entities, including class types, enumera-
tion types, inline functions with external link-
age, and various template entities, may be de-
fined in more than one translation unit pro-
vided the definitions are “identical.” The C++
standard lays out the meaning of identical pre-
cisely; one notable property is that two defi-
nitions must “consist of the same sequence of
tokens” to be considered the same [4, p. 24].
We use this token-based property in our ODR
checker. Like Condition 2 above, compilers typ-
ically do not or cannot verify whether multiple
definitions are identical as laid out by the C++
standard.

1There may, however, be multiple non-defining declarations,
such as function prototypes, “extern” variable declarations, for-
ward class declarations.

Listing 1: main.cc–A simple program
1 int main () {

extern void runModule (void); // Module to call
3 runModule ();

return 0;
5 }

A legal C++ program must obey the ODR. How-
ever, because the standard assumes that a compiler
will see only one translation unit at a time (Condi-
tion 1), it does not require that a compiler detects
violations across translation units.

The linker can partially verify ODR by detecting,
for instance, multiple definitions of non-inline func-
tions and global variables (Condition 2). However,
inline function ODR violations cannot be detected;
these violations require a whole-program analysis.

3 VPTR Exploit

The VPTR exploit replaces an object’s virtual func-
tion table pointer (“VPTR”) with one containing ma-
licious code [31]. The simplest technique redefines
the existing definition of an inline virtual function;
since a typical compiler does not see the whole pro-
gram, it cannot enforce the ODR to catch instances
of this exploit. This form is most easily imple-
mented as an insider attack, which could occur in
a collaborative software development environment
as demonstrated by the 2003 Linux kernel back-
door [29]. Moreover, the exploit is an instance of
more general pointer subterfuge attacks [28].

Listings 1–3 show a program containing the vul-
nerability. In Listing 1 at line 3, the program executes
a routine defined in an external module. That rou-
tine creates two stack-allocated objects, a and b, both
of type Derived, at line 13 of Listing 3. The Derived
type inherits from an abstract base class (Base), im-
plements the virtual method, Derived::run , at line
7, and declares a 1-byte datum at line 8. How-
ever, because the run method is virtual and defined
as (implicitly) inline, we must redefine the method
in every translation unit in which it is used, albeit
with the same definition (see Condition 3 in Sec-
tion 2). If the compiler cannot enforce this condition,
an attacker can re-implement the method in another
translation unit to execute arbitrarily different code.

We implement a basic VPTR exploit in Listing 4.
This code is a separate module that defines another
malicious version of Derived::run() in lines 6–9.
Most compilers, including GCC, assume ODR holds

2

28

Listing 2: Base.hh–An abstract base class
1 class Base {
public:

3 virtual ˜Base (void) {}
virtual void run (void) = 0;

5 };

Listing 3: Module.cc–An innocuous module
1 #include "Base.hh"

3 // Derived class, intended to be private to this module.
class Derived : public Base {

5 public:
Derived (void) { buf [0] = ’a’ ; }

7 void run (void) { buf [0] = ’z’ ; }
char buf [1];

9 };

11 // Public interface to this module.
void runModule (void) {

13 Derived a, b; // Two instances on the stack
Base ∗pa = &a, ∗pb = &b;

15 pb−>run (); // Expect b.buf [0] == ’z’
pa−>run (); // Expect a.buf [0] == ’z’

17 }

and simply choose the first one encountered at link-
time. That is, when compiling with

g++ main.o Module.o ViolateODR.o ...

the compiler chooses Derived::run() from List-
ing 3, whereas in

g++ main.o ViolateODR.o Module.o ...

it chooses the implementation from Listing 4. More-
over, if the application uses shared or dynamically-
loaded libraries, the malicious module need only ap-
pear first in the shared library path to be executed.

VPTR exploits have more sophisticated forms, as
shown in Listing 5. This example builds on the basic
exploit in Listing 4 by violating ODR and then us-
ing buffer-overrun techniques to rewrite the VPTR
directly. The first step on line 15 of this alternative
Derived::run() has the same behavior as Listing 3
at line 7, perhaps to make the code appear to behave
safely. However, it then executes additional mali-
cious code in lines 16–17.

These additional lines use the fact that a derived
object often stores not just its data, but the VPTR ap-
propriate for that object’s type. For example, the a
and b stack-allocated instances of Derived declared

Listing 4: ViolateODR.cc–Basic VPTR exploit
1 #include <iostream>

#include "Base.hh"
3

class Derived : public Base { // Class violating ODR
5 public:

void run (void) {
7 std :: cout << "*** Hostile takeover ***"

<< std::endl;
9 }
};

11

Derived d; // Instantiate to get malicious ’Derived’

on line 13 of Listing 3 might appear on the stack
as shown in the left-half of Figure 1. Each object
has its 1-byte datum, buf [0] , plus a hidden 4-byte
VPTR. When line 15 of Listing 3 invokes our mali-
cious run() , it does so on data allocated and laid
out according to the definition of Derived in List-
ing 3. Lines 16–17 of Listing 5 use platform-specific
knowledge of how this data is laid out to write be-
yond the bounds of the data and, in this case, into the
VPTR of the next object on the stack, as illustrated in
the right-half of Figure 1. The new VPTR is simply
the address of a compatible VPTR for the Attacker
class defined in Listing 5. The Attacker class con-
tains another malicious implementation of run() .
This additional form of the VPTR exploit builds on
the ODR violation, so checking ODR helps defend
against VPTR exploits generally.

...

VPTR

VPTR

...

Stack

Derived a;

Derived b;

buf_[0]

buf_[12] Malicious overwrite

buf_[0]

buf_[0]

Figure 1: VPTR exploit. The attacker implements
the alternative version of Derived::run() shown
in Listing 5 such that executing b.run() overwrites
a’s VPTR.

3

29

Listing 5: Attacker.cc–A malicious module
#include <iostream>

2 #include "Base.hh"

4 class Attacker : public Base { // More malicious code
public: void run (void) {

6 std :: cout << "*** vtable overwritten! ***"
<< std::endl;

8 // ... Do malicious things here ...
}

10 };

12 class Derived : public Base { // Class violating ODR
public:

14 void run (void) {
buf [0] = ’z’ ; // Looks normal, but see below...

16 Attacker x; // Instantiate to get a vtable to inject
∗((unsigned ∗)(buf +12)) = ∗((const unsigned ∗)(&x));

18 }
char buf [16]; // Buffer used to overwrite vtable

20 } d; // Instantiate to get malicious ’Derived’

4 A Whole-Program Analysis to
Detect ODR Violations

Whole-program analysis is typically implemented
using procedure summaries or by embedding infor-
mation into the object files to use whole-program
context at link-time. Summarization is necessary
to mitigate the impact of super-linear analysis time
costs, and procedures are a convenient unit. How-
ever, a compiler or analysis tool should be free to
analyze any useful, arbitrarily partitioned unit of the
program, given a complete and accurate view of pro-
gram context [35, 36, 24]. This need motivates our
whole-program abstract syntax tree representation.

Below, we describe this representation as imple-
mented in ROSE, an open and extensible infrastruc-
ture for building customized source-to-source anal-
ysis and transformation tools. A typical ROSE-based
tool looks like a traditional compiler, with a front-
end that generates an object-oriented abstract syntax
tree (AST), a “mid-end” performing custom analy-
ses and/or transformations to the AST, and a back-
end to unparse the possibly modified AST back into
source code. This section outlines recent work to ex-
tend the AST to allow the creation of a single, com-
pact AST for the entire program. ODR violations
appear during the construction of such a whole-
program AST. For more information on the complete
ROSE architecture, including features relevant to se-
curity analysis, see Section 5.

4.1 Overview of the whole-program rep-
resentation and ODR test

ROSE’s intermediate representation (IR), SAGEIII,
stores all high-level information from the source
code, sufficient to reproduce the original source code
completely. The IR is space-efficient by design since
we target large-scale physics applications of 100
KLOC per file and up. Current workstation mem-
ory capacities are also quite large (commonly 2–4 GB
and greater), and so are better able to support repre-
sentations of applications consisting of hundreds of
files. For greater space savings, we share parts of the
AST (subtrees) that are determined to be identical.
This test for matching subtrees is where we check
ODR, since identical definitions will by construction
be shared across multiple files in the AST.

ROSE routinely compiles million-line applications
file-by-file. In round numbers, these applications
have on the order of 1000 files containing 75K lines
contributed from header files and 1K lines of source
code in the source file. The effective 76K lines of
code generates an AST with about 500K IR nodes.
Merging the 75K lines over each of the 1000 files
thus saves 75 million lines of code from being rep-
resented redundantly in the AST. Using a 250 KLOC
program, we have estimated that a million-line ap-
plication will fit into approximately 400 MB of mem-
ory after merging header files. The AST holding
the million-line application can also be saved to and
loaded from disk using a custom ROSE-specific bi-
nary file format; on current single-processor desktop
machines, writing one of these binary files to disk
takes roughly 30 sec and reading less than a minute.
Simple traversals of the whole AST in memory take
only a few seconds. Thus, the representation is com-
pact and efficient to operate on once constructed.

We perform the ODR test by unparsing candidate
subtrees and verifying an exact match. Since ROSE
can optionally normalize whitespace and optionally
strip comments and preprocessor directives, simple
string matching verifies token-by-token equivalence
of the original code as required by ODR.

4.2 Whole-program AST construction

Given the ASTs from separate translation units, we
merge them as follows:

1. Build an extended mangled name map
The matching process is based on an extended
form of name mangling that is common for
handling C++ types, variables, and functions.
In short, we traverse all declarations in the
global scope and all namespace scopes, and for

4

30

each declaration, generate and store each dec-
laration’s unique name (i.e., extended mangled
name) into an STL map. The map’s key is the
unique name, and its value is a pointer to the
associated IR node. (There are a number of de-
tails that we omit for simplicity.)

2. Build a replacement multimap
The AST is traversed a second time to match the
unique names generated from declarations with
keys in the mangled name map. All matches are
recorded, and a map of pairs of IR node pointers
is generated (the IR node of the match and the
IR node associated with the matching key from
the mangled name map). The ODR test (see end
of Section 4.1) is applied and must pass to be
included in the replacement multimap.

3. Fixup AST and build the subtree delete list
Using the replacement mutimap we traverse the
AST again and find all pointers to IR nodes and
using the pointer to the IR node as a key we
look them up in the replacement multimap. If
found, we replace the pointer to the key with
the pointer to the value obtained from the mul-
timap using the key and the replaced pointer
value is added to the subtree delete list. All IR
nodes that are shared via the merge process are
explicitly marked as shared in the AST.

4. Delete redundant subtrees
To save space we cannot remove redundant
subtrees in the modified AST; we iterate over
the delete list (which points to redundant sub-
trees) and remove all the nodes in each subtree.

4.3 Merged AST example

Figure 2 (top) shows the AST for the three source
files shown in Listings 1, 3, and 5, with AST sub-
trees colored by file. The ASTs from the files are not
shared. Figure 2 (middle) shows the AST after the
merge process, here the diamond shaped IR nodes
of the AST indicate that those IR nodes are shared.
To be shared, the declaration at the root of the sub-
trees had to generate the same internal name (in C++
this includes standard name mangling plus a num-
ber of other language specific details) and the sub-
trees had to pass the ODR test of equivalence. Fig-
ure 2 (bottom) shows the parts of the AST which had
the same internal name, but which failed the ODR
test. These pairs of subtrees represent the ODR vio-
lation that enables a successful VPTR exploit.

5 The ROSE Infrastructure

We are implementing our security analysis work
within ROSE, a U.S. Department of Energy (DOE)
project to develop an open-source compiler infras-
tructure for optimizing large-scale (1 MLOC or
more) DOE applications [32]. The ROSE framework
enables tool builders who do not necessarily have a
compiler background to build their own source-to-
source translators. The current ROSE infrastructure
can process C and C++ applications, and we are ex-
tending it to support Fortran90.

ROSE provides several components to build
source code analyzers and source-to-source trans-
lators. The C++ front-end generates an object-
oriented abstract syntax tree (AST) as an intermedi-
ate representation. The AST preserves the high-level
C++ language representation so that no information
about the structure of the original application (in-
cluding comments and templates) is lost. This fea-
ture permits accurate analysis and the ability to re-
generate the original source from the AST. The back-
end unparses the AST into source code. The ROSE
tool builder creates a “mid-end” to analyze or trans-
form the AST; ROSE assists by providing a number of
mid-end components, including graph visualization
tools, a predefined traversal mechanism, an attribute
evaluation mechanism, transformation operators to
restructure the AST, program analysis support, and
a number of performance optimizing transforma-
tions. ROSE also provides support for annotations
whether they be contained in pragmas, comments,
or separate annotation files.

Though the traditional emphasis in the ROSE
project is on performance optimization, these basic
components are well-suited to building software se-
curity analysis tools. A recent position paper dis-
cusses how ROSE supports the related area of auto-
mated program testing and debugging [30].

5.1 Front-end

We use the Edison Design Group C++ front-end
(EDG) [13] to parse C and C++ programs. EDG
generates an AST and fully evaluates all types. We
translate the EDG AST into our own object-oriented
AST, SAGEIII, based on Sage II and Sage++ [7].
SAGEIII is used by the mid-end as an intermedi-
ate representation. Full template support permits
all templates to be instantiated in the AST. The AST
passed to the mid-end represents the program and
all the included header files. SAGEIII has 240 types
of IR nodes, as required to represent the original
structure of the application fully.

5

31

6:7
SgFunctionParameterList

0xb47c1008

10:11
SgNullStatement

0x81c7508

9:12
SgBasicBlock
0x81bd7b8

*[0]

8:13
SgFunctionDefinition

0x81adc10

body

14:15
SgCtorInitializerList

0xb4788008

5:16
SgMemberFunctionDeclaration

~Base
0xb47fa008

parameterList definition CtorInitializerList

18:19
SgFunctionParameterList

0xb47c10f0

20:21
SgCtorInitializerList

0xb47880f0

17:22
SgMemberFunctionDeclaration

run
0xb47fa164

parameterList CtorInitializerList definition

4:23
SgClassDefinition

0x816edf0

*[0] *[1]

3:24
SgClassDeclaration

Base
0xb484f008

definition

28:29
SgInitializedName

0x81ea610

initptr

27:30
SgVariableDeclaration

0xb474d008

*[0]

32:33
SgFunctionParameterList

0xb47c11d8

36:37
SgNullStatement

0x81c7528

35:38
SgBasicBlock
0x81bd7e0

*[0]

34:39
SgFunctionDefinition

0x81adc38

body

43:44
SgCharVal
0x82159c8

valueExpressionTree

42:45
SgAssignInitializer

0x8208ea0

operand_i

41:46
SgInitializedName

0x81ea660

initptr

40:47
SgCtorInitializerList

0xb47881d8

*[0]

31:48
SgMemberFunctionDeclaration

Derived
0xb47fa2c0

parameterList definition CtorInitializerList

50:51
SgFunctionParameterList

0xb47c12c0

58:59
SgThisExp
0x8221ee8

60:61
SgVarRefExp
0x822da90

57:62
SgArrowExp
0x82386c8

lhs_operand_i rhs_operand_i

63:64
SgCharVal
0x82159f8

valueExpressionTree

56:65
SgAssignOp
0x8245240

lhs_operand_i rhs_operand_i

55:66
SgExpressionRoot

0x825aa10

operand_i

54:67
SgExprStatement

0x8251d68

expression_root

68:69
SgNullStatement

0x81c7548

53:70
SgBasicBlock
0x81bd808

*[0] *[1]

52:71
SgFunctionDefinition

0x81adc60

body

72:73
SgCtorInitializerList

0xb47882c0

49:74
SgMemberFunctionDeclaration

run
0xb47fa41c

parameterList definition CtorInitializerList

26:75
SgClassDefinition

0x816ee1c

*[0] *[1] *[2]

25:76
SgClassDeclaration

Derived
0xb484f458

definition

78:79
SgFunctionParameterList

0xb47c13a8

85:86
SgExprListExp

0x827bcb0

84:87
SgConstructorInitializer

0x8286898

args

83:88
SgInitializedName

0x81ea6b0

initptr

82:89
SgVariableDeclaration

0xb474d0f8

*[0]

93:94
SgExprListExp

0x827bcdc

92:95
SgConstructorInitializer

0x82868d4

args

91:96
SgInitializedName

0x81ea700

initptr

90:97
SgVariableDeclaration

0xb474d1e8

*[0]

103:104
SgVarRefExp
0x822dabc

102:105
SgAddressOfOp

0x82ae140

operand_i

101:106
SgCastExp
0x82a0588

operand_i

100:107
SgAssignInitializer

0x8208ed4

operand_i

99:108
SgInitializedName

0x81ea750

initptr

98:109
SgVariableDeclaration

0xb474d2d8

*[0]

115:116
SgVarRefExp
0x822dae8

114:117
SgAddressOfOp

0x82ae174

operand_i

113:118
SgCastExp
0x82a05c0

operand_i

112:119
SgAssignInitializer

0x8208f08

operand_i

111:120
SgInitializedName

0x81ea7a0

initptr

110:121
SgVariableDeclaration

0xb474d3c8

*[0]

126:127
SgVarRefExp
0x822db14

128:129
SgMemberFunctionRefExp

0x82bc1c0

125:130
SgArrowExp
0x82386fc

lhs_operand_i rhs_operand_i

131:132
SgExprListExp

0x827bd08

124:133
SgFunctionCallExp

0x82c9c88

function args

123:134
SgExpressionRoot

0x825aa44

operand_i

122:135
SgExprStatement

0x8251d8c

expression_root

140:141
SgVarRefExp
0x822db40

142:143
SgMemberFunctionRefExp

0x82bc1f8

139:144
SgArrowExp
0x8238730

lhs_operand_i rhs_operand_i

145:146
SgExprListExp

0x827bd34

138:147
SgFunctionCallExp

0x82c9cbc

function args

137:148
SgExpressionRoot

0x825aa78

operand_i

136:149
SgExprStatement

0x8251db0

expression_root

150:151
SgNullStatement

0x81c7568

81:152
SgBasicBlock
0x81bd830

*[0] *[1] *[2] *[3] *[4] *[5] *[6]

80:153
SgFunctionDefinition

0x81adc88

body

77:154
SgFunctionDeclaration

runModule
0xb46bf008

parameterList definition

2:155
SgGlobal

0x80eb000

*[0] *[1] *[2]

1:156
SgFile

0x80c9cb0

root

162:163
SgFunctionParameterList

0xb47c1490

166:167
SgNullStatement

0x81c7588

165:168
SgBasicBlock
0x81bd858

*[0]

164:169
SgFunctionDefinition

0x81adcb0

body

170:171
SgCtorInitializerList

0xb47883a8

161:172
SgMemberFunctionDeclaration

~Base
0xb47fa578

parameterList definition CtorInitializerList

174:175
SgFunctionParameterList

0xb47c1578

176:177
SgCtorInitializerList

0xb4788490

173:178
SgMemberFunctionDeclaration

run
0xb47fa6d4

parameterList CtorInitializerList definition

160:179
SgClassDefinition

0x816ee48

*[0] *[1]

159:180
SgClassDeclaration

Base
0xb484ff20

definition

184:185
SgFunctionParameterList

0xb47c1660

188:189
SgNullStatement

0x81c75a8

187:190
SgBasicBlock
0x81bd880

*[0]

186:191
SgFunctionDefinition

0x81adcd8

body

192:193
SgCtorInitializerList

0xb4788578

183:194
SgMemberFunctionDeclaration

run
0xb47fa830

parameterList definition CtorInitializerList

182:195
SgClassDefinition

0x816ee74

*[0]

181:196
SgClassDeclaration

Attacker
0xb4850370

definition

200:201
SgInitializedName

0x81ea7f0

initptr

199:202
SgVariableDeclaration

0xb474d4b8

*[0]

204:205
SgFunctionParameterList

0xb47c1748

208:209
SgNullStatement

0x81c75c8

207:210
SgBasicBlock
0x81bd8a8

*[0]

206:211
SgFunctionDefinition

0x81add00

body

212:213
SgCtorInitializerList

0xb4788660

203:214
SgMemberFunctionDeclaration

Derived
0xb47fa98c

parameterList definition CtorInitializerList

216:217
SgFunctionParameterList

0xb47c1830

223:224
SgExprListExp

0x827bd60

222:225
SgConstructorInitializer

0x8286910

args

221:226
SgInitializedName

0x81ea840

initptr

220:227
SgVariableDeclaration

0xb474d5a8

*[0]

235:236
SgThisExp
0x8221f18

237:238
SgVarRefExp
0x822db6c

234:239
SgArrowExp
0x8238764

lhs_operand_i rhs_operand_i

240:241
SgIntVal

0x837e1d8

valueExpressionTree

233:242
SgAddOp

0x838a830

lhs_operand_i rhs_operand_i

232:243
SgCastExp
0x82a05f8

operand_i

231:244
SgPointerDerefExp

0x8397358

operand_i

246:247
SgVarRefExp
0x822db98

245:248
SgCastExp
0x82a0630

operand_i

230:249
SgAssignOp
0x8245274

lhs_operand_i rhs_operand_i

229:250
SgExpressionRoot

0x825aaac

operand_i

228:251
SgExprStatement

0x8251dd4

expression_root

252:253
SgNullStatement

0x81c75e8

219:254
SgBasicBlock
0x81bd8d0

*[0] *[1] *[2]

218:255
SgFunctionDefinition

0x81add28

body

256:257
SgCtorInitializerList

0xb4788748

215:258
SgMemberFunctionDeclaration

run
0xb47faae8

parameterList definition CtorInitializerList

198:259
SgClassDefinition

0x816eea0

*[0] *[1] *[2]

197:260
SgClassDeclaration

Derived
0xb48506ac

definition

264:265
SgExprListExp

0x827bd8c

263:266
SgConstructorInitializer

0x828694c

args

262:267
SgInitializedName

0x81ea890

initptr

261:268
SgVariableDeclaration

0xb474d698

*[0]

158:269
SgGlobal

0x80eb028

*[0] *[1] *[2] *[3]

157:270
SgFile

0x80c9d0c

root

274:275
SgFunctionParameterList

0xb47c1a00

279:280
SgFunctionParameterList

0xb47c1ae8

278:281
SgFunctionDeclaration

runModule
0xb46bf2b8

parameterList definition

285:286
SgFunctionRefExp

0x840c3b0

287:288
SgExprListExp

0x827bdb8

284:289
SgFunctionCallExp

0x82c9cf0

function args

283:290
SgExpressionRoot

0x825aae0

operand_i

282:291
SgExprStatement

0x8251df8

expression_root

294:295
SgIntVal

0x837e208

valueExpressionTree

293:296
SgExpressionRoot

0x825ab14

operand_i

292:297
SgReturnStmt

0x8417f38

expression_root

298:299
SgNullStatement

0x81c7608

277:300
SgBasicBlock

0x81bd8f8

*[0] *[1] *[2] *[3]

276:301
SgFunctionDefinition

0x81add50

body

273:302
SgFunctionDeclaration

main
0xb46bf160

parameterList definition

272:303
SgGlobal

0x80eb050

*[0]

271:304
SgFile

0x80c9d68

root

0:305
SgProject

0x80b08a8

*[0] *[1] *[2]

162:163
SgFunctionParameterList

0xb47c1008

166:167
SgNullStatement

0x81c7508

165:168
SgBasicBlock
0x81bd7b8

*[0] *[0]

164:169
SgFunctionDefinition

0x81adc10

body body

170:171
SgCtorInitializerList

0xb4788008

161:172
SgMemberFunctionDeclaration

~Base
0xb47fa008

parameterList parameterList definition definition CtorInitializerList CtorInitializerList

174:175
SgFunctionParameterList

0xb47c10f0

176:177
SgCtorInitializerList

0xb47880f0

173:178
SgMemberFunctionDeclaration

run
0xb47fa164

parameterList parameterList CtorInitializerList CtorInitializerList definition definition

160:179
SgClassDefinition

0x816edf0

*[0] *[0] *[1]*[1]

159:180
SgClassDeclaration

Base
0xb484f008

definition definition

28:29
SgInitializedName

0x81ea610

initptr

27:30
SgVariableDeclaration

0xb474d008

*[0]

32:33
SgFunctionParameterList

0xb47c11d8

36:37
SgNullStatement

0x81c7528

35:38
SgBasicBlock
0x81bd7e0

*[0]

34:39
SgFunctionDefinition

0x81adc38

body

43:44
SgCharVal
0x82159c8

valueExpressionTree

42:45
SgAssignInitializer

0x8208ea0

operand_i

41:46
SgInitializedName

0x81ea660

initptr

40:47
SgCtorInitializerList

0xb47881d8

*[0]

31:48
SgMemberFunctionDeclaration

Derived
0xb47fa2c0

parameterList definition CtorInitializerList

50:51
SgFunctionParameterList

0xb47c12c0

58:59
SgThisExp
0x8221ee8

60:61
SgVarRefExp
0x822da90

57:62
SgArrowExp
0x82386c8

lhs_operand_i rhs_operand_i

63:64
SgCharVal
0x82159f8

valueExpressionTree

56:65
SgAssignOp
0x8245240

lhs_operand_i rhs_operand_i

55:66
SgExpressionRoot

0x825aa10

operand_i

54:67
SgExprStatement

0x8251d68

expression_root

68:69
SgNullStatement

0x81c7548

53:70
SgBasicBlock
0x81bd808

*[0] *[1]

52:71
SgFunctionDefinition

0x81adc60

body

72:73
SgCtorInitializerList

0xb47882c0

49:74
SgMemberFunctionDeclaration

run
0xb47fa41c

parameterList definition CtorInitializerList

26:75
SgClassDefinition

0x816ee1c

*[0] *[1] *[2]

25:76
SgClassDeclaration

Derived
0xb484f458

definition

78:79
SgFunctionParameterList

0xb47c13a8

85:86
SgExprListExp

0x827bcb0

84:87
SgConstructorInitializer

0x8286898

args

83:88
SgInitializedName

0x81ea6b0

initptr

82:89
SgVariableDeclaration

0xb474d0f8

*[0]

93:94
SgExprListExp

0x827bcdc

92:95
SgConstructorInitializer

0x82868d4

args

91:96
SgInitializedName

0x81ea700

initptr

90:97
SgVariableDeclaration

0xb474d1e8

*[0]

103:104
SgVarRefExp
0x822dabc

102:105
SgAddressOfOp

0x82ae140

operand_i

101:106
SgCastExp
0x82a0588

operand_i

100:107
SgAssignInitializer

0x8208ed4

operand_i

99:108
SgInitializedName

0x81ea750

initptr

98:109
SgVariableDeclaration

0xb474d2d8

*[0]

115:116
SgVarRefExp
0x822dae8

114:117
SgAddressOfOp

0x82ae174

operand_i

113:118
SgCastExp
0x82a05c0

operand_i

112:119
SgAssignInitializer

0x8208f08

operand_i

111:120
SgInitializedName

0x81ea7a0

initptr

110:121
SgVariableDeclaration

0xb474d3c8

*[0]

126:127
SgVarRefExp
0x822db14

128:129
SgMemberFunctionRefExp

0x82bc1c0

125:130
SgArrowExp
0x82386fc

lhs_operand_i rhs_operand_i

131:132
SgExprListExp

0x827bd08

124:133
SgFunctionCallExp

0x82c9c88

function args

123:134
SgExpressionRoot

0x825aa44

operand_i

122:135
SgExprStatement

0x8251d8c

expression_root

140:141
SgVarRefExp
0x822db40

142:143
SgMemberFunctionRefExp

0x82bc1f8

139:144
SgArrowExp
0x8238730

lhs_operand_i rhs_operand_i

145:146
SgExprListExp

0x827bd34

138:147
SgFunctionCallExp

0x82c9cbc

function args

137:148
SgExpressionRoot

0x825aa78

operand_i

136:149
SgExprStatement

0x8251db0

expression_root

150:151
SgNullStatement

0x81c7568

81:152
SgBasicBlock
0x81bd830

*[0] *[1] *[2] *[3] *[4] *[5] *[6]

80:153
SgFunctionDefinition

0x81adc88

body

77:154
SgFunctionDeclaration

runModule
0xb46bf008

parameterList definition

2:155
SgGlobal

0x80eb000

*[0] *[1] *[2]

1:156
SgFile

0x80c9cb0

root

184:185
SgFunctionParameterList

0xb47c1660

188:189
SgNullStatement

0x81c75a8

187:190
SgBasicBlock
0x81bd880

*[0]

186:191
SgFunctionDefinition

0x81adcd8

body

192:193
SgCtorInitializerList

0xb4788578

183:194
SgMemberFunctionDeclaration

run
0xb47fa830

parameterList definition CtorInitializerList

182:195
SgClassDefinition

0x816ee74

*[0]

181:196
SgClassDeclaration

Attacker
0xb4850370

definition

200:201
SgInitializedName

0x81ea7f0

initptr

199:202
SgVariableDeclaration

0xb474d4b8

*[0]

204:205
SgFunctionParameterList

0xb47c1748

208:209
SgNullStatement

0x81c75c8

207:210
SgBasicBlock
0x81bd8a8

*[0]

206:211
SgFunctionDefinition

0x81add00

body

212:213
SgCtorInitializerList

0xb4788660

203:214
SgMemberFunctionDeclaration

Derived
0xb47fa98c

parameterList definition CtorInitializerList

216:217
SgFunctionParameterList

0xb47c1830

223:224
SgExprListExp

0x827bd60

222:225
SgConstructorInitializer

0x8286910

args

221:226
SgInitializedName

0x81ea840

initptr

220:227
SgVariableDeclaration

0xb474d5a8

*[0]

235:236
SgThisExp
0x8221f18

237:238
SgVarRefExp
0x822db6c

234:239
SgArrowExp
0x8238764

lhs_operand_i rhs_operand_i

240:241
SgIntVal

0x837e1d8

valueExpressionTree

233:242
SgAddOp

0x838a830

lhs_operand_i rhs_operand_i

232:243
SgCastExp
0x82a05f8

operand_i

231:244
SgPointerDerefExp

0x8397358

operand_i

246:247
SgVarRefExp
0x822db98

245:248
SgCastExp
0x82a0630

operand_i

230:249
SgAssignOp
0x8245274

lhs_operand_i rhs_operand_i

229:250
SgExpressionRoot

0x825aaac

operand_i

228:251
SgExprStatement

0x8251dd4

expression_root

252:253
SgNullStatement

0x81c75e8

219:254
SgBasicBlock
0x81bd8d0

*[0] *[1] *[2]

218:255
SgFunctionDefinition

0x81add28

body

256:257
SgCtorInitializerList

0xb4788748

215:258
SgMemberFunctionDeclaration

run
0xb47faae8

parameterList definition CtorInitializerList

198:259
SgClassDefinition

0x816eea0

*[0] *[1] *[2]

197:260
SgClassDeclaration

Derived
0xb48506ac

definition

264:265
SgExprListExp

0x827bd8c

263:266
SgConstructorInitializer

0x828694c

args

262:267
SgInitializedName

0x81ea890

initptr

261:268
SgVariableDeclaration

0xb474d698

*[0]

158:269
SgGlobal

0x80eb028

*[0] *[1] *[2] *[3]

157:270
SgFile

0x80c9d0c

root

274:275
SgFunctionParameterList

0xb47c1a00

279:280
SgFunctionParameterList

0xb47c1ae8

278:281
SgFunctionDeclaration

runModule
0xb46bf2b8

parameterList definition

285:286
SgFunctionRefExp

0x840c3b0

287:288
SgExprListExp

0x827bdb8

284:289
SgFunctionCallExp

0x82c9cf0

function args

283:290
SgExpressionRoot

0x825aae0

operand_i

282:291
SgExprStatement

0x8251df8

expression_root

294:295
SgIntVal

0x837e208

valueExpressionTree

293:296
SgExpressionRoot

0x825ab14

operand_i

292:297
SgReturnStmt

0x8417f38

expression_root

298:299
SgNullStatement

0x81c7608

277:300
SgBasicBlock

0x81bd8f8

*[0] *[1] *[2] *[3]

276:301
SgFunctionDefinition

0x81add50

body

273:302
SgFunctionDeclaration

main
0xb46bf160

parameterList definition

272:303
SgGlobal

0x80eb050

*[0]

271:304
SgFile

0x80c9d68

root

0:305
SgProject

0x80b08a8

*[0] *[1] *[2]

162:163
SgFunctionParameterList

0xb47c1008

166:167
SgNullStatement

0x81c7508

165:168
SgBasicBlock
0x81bd7b8

*[0] *[0]

164:169
SgFunctionDefinition

0x81adc10

body body

170:171
SgCtorInitializerList

0xb4788008

161:172
SgMemberFunctionDeclaration

~Base
0xb47fa008

parameterList parameterList definition definition CtorInitializerList CtorInitializerList

174:175
SgFunctionParameterList

0xb47c10f0

176:177
SgCtorInitializerList

0xb47880f0

173:178
SgMemberFunctionDeclaration

run
0xb47fa164

parameterList parameterList CtorInitializerList CtorInitializerList definition definition

160:179
SgClassDefinition

0x816edf0

*[0] *[0] *[1] *[1]

159:180
SgClassDeclaration

Base
0xb484f008

definition definition

28:29
SgInitializedName

0x81ea610

initptr

27:30
SgVariableDeclaration

0xb474d008

*[0]

32:33
SgFunctionParameterList

0xb47c11d8

36:37
SgNullStatement

0x81c7528

35:38
SgBasicBlock
0x81bd7e0

*[0]

34:39
SgFunctionDefinition

0x81adc38

body

43:44
SgCharVal
0x82159c8

valueExpressionTree

42:45
SgAssignInitializer

0x8208ea0

operand_i

41:46
SgInitializedName

0x81ea660

initptr

40:47
SgCtorInitializerList

0xb47881d8

*[0]

31:48
SgMemberFunctionDeclaration

Derived
0xb47fa2c0

parameterList definition CtorInitializerList

50:51
SgFunctionParameterList

0xb47c12c0

58:59
SgThisExp
0x8221ee8

60:61
SgVarRefExp
0x822da90

57:62
SgArrowExp
0x82386c8

lhs_operand_i rhs_operand_i

63:64
SgCharVal
0x82159f8

valueExpressionTree

56:65
SgAssignOp
0x8245240

lhs_operand_i rhs_operand_i

55:66
SgExpressionRoot

0x825aa10

operand_i

54:67
SgExprStatement

0x8251d68

expression_root

68:69
SgNullStatement

0x81c7548

53:70
SgBasicBlock
0x81bd808

*[0] *[1]

52:71
SgFunctionDefinition

0x81adc60

body

72:73
SgCtorInitializerList

0xb47882c0

49:74
SgMemberFunctionDeclaration

run
0xb47fa41c

parameterList definition CtorInitializerList

26:75
SgClassDefinition

0x816ee1c

*[0] *[1] *[2]

25:76
SgClassDeclaration

Derived
0xb484f458

definition

78:79
SgFunctionParameterList

0xb47c13a8

85:86
SgExprListExp

0x827bcb0

84:87
SgConstructorInitializer

0x8286898

args

83:88
SgInitializedName

0x81ea6b0

initptr

82:89
SgVariableDeclaration

0xb474d0f8

*[0]

93:94
SgExprListExp

0x827bcdc

92:95
SgConstructorInitializer

0x82868d4

args

91:96
SgInitializedName

0x81ea700

initptr

90:97
SgVariableDeclaration

0xb474d1e8

*[0]

103:104
SgVarRefExp
0x822dabc

102:105
SgAddressOfOp

0x82ae140

operand_i

101:106
SgCastExp
0x82a0588

operand_i

100:107
SgAssignInitializer

0x8208ed4

operand_i

99:108
SgInitializedName

0x81ea750

initptr

98:109
SgVariableDeclaration

0xb474d2d8

*[0]

115:116
SgVarRefExp
0x822dae8

114:117
SgAddressOfOp

0x82ae174

operand_i

113:118
SgCastExp
0x82a05c0

operand_i

112:119
SgAssignInitializer

0x8208f08

operand_i

111:120
SgInitializedName

0x81ea7a0

initptr

110:121
SgVariableDeclaration

0xb474d3c8

*[0]

126:127
SgVarRefExp
0x822db14

128:129
SgMemberFunctionRefExp

0x82bc1c0

125:130
SgArrowExp
0x82386fc

lhs_operand_i rhs_operand_i

131:132
SgExprListExp

0x827bd08

124:133
SgFunctionCallExp

0x82c9c88

function args

123:134
SgExpressionRoot

0x825aa44

operand_i

122:135
SgExprStatement

0x8251d8c

expression_root

140:141
SgVarRefExp
0x822db40

142:143
SgMemberFunctionRefExp

0x82bc1f8

139:144
SgArrowExp
0x8238730

lhs_operand_i rhs_operand_i

145:146
SgExprListExp

0x827bd34

138:147
SgFunctionCallExp

0x82c9cbc

function args

137:148
SgExpressionRoot

0x825aa78

operand_i

136:149
SgExprStatement

0x8251db0

expression_root

150:151
SgNullStatement

0x81c7568

81:152
SgBasicBlock
0x81bd830

*[0] *[1] *[2] *[3] *[4] *[5] *[6]

80:153
SgFunctionDefinition

0x81adc88

body

77:154
SgFunctionDeclaration

runModule
0xb46bf008

parameterList definition

2:155
SgGlobal

0x80eb000

*[0] *[1] *[2]

1:156
SgFile

0x80c9cb0

root

184:185
SgFunctionParameterList

0xb47c1660

188:189
SgNullStatement

0x81c75a8

187:190
SgBasicBlock
0x81bd880

*[0]

186:191
SgFunctionDefinition

0x81adcd8

body

192:193
SgCtorInitializerList

0xb4788578

183:194
SgMemberFunctionDeclaration

run
0xb47fa830

parameterList definition CtorInitializerList

182:195
SgClassDefinition

0x816ee74

*[0]

181:196
SgClassDeclaration

Attacker
0xb4850370

definition

200:201
SgInitializedName

0x81ea7f0

initptr

199:202
SgVariableDeclaration

0xb474d4b8

*[0]

204:205
SgFunctionParameterList

0xb47c1748

208:209
SgNullStatement

0x81c75c8

207:210
SgBasicBlock
0x81bd8a8

*[0]

206:211
SgFunctionDefinition

0x81add00

body

212:213
SgCtorInitializerList

0xb4788660

203:214
SgMemberFunctionDeclaration

Derived
0xb47fa98c

parameterList definition CtorInitializerList

216:217
SgFunctionParameterList

0xb47c1830

223:224
SgExprListExp

0x827bd60

222:225
SgConstructorInitializer

0x8286910

args

221:226
SgInitializedName

0x81ea840

initptr

220:227
SgVariableDeclaration

0xb474d5a8

*[0]

235:236
SgThisExp
0x8221f18

237:238
SgVarRefExp
0x822db6c

234:239
SgArrowExp
0x8238764

lhs_operand_i rhs_operand_i

240:241
SgIntVal

0x837e1d8

valueExpressionTree

233:242
SgAddOp

0x838a830

lhs_operand_i rhs_operand_i

232:243
SgCastExp
0x82a05f8

operand_i

231:244
SgPointerDerefExp

0x8397358

operand_i

246:247
SgVarRefExp
0x822db98

245:248
SgCastExp
0x82a0630

operand_i

230:249
SgAssignOp
0x8245274

lhs_operand_i rhs_operand_i

229:250
SgExpressionRoot

0x825aaac

operand_i

228:251
SgExprStatement

0x8251dd4

expression_root

252:253
SgNullStatement

0x81c75e8

219:254
SgBasicBlock
0x81bd8d0

*[0] *[1] *[2]

218:255
SgFunctionDefinition

0x81add28

body

256:257
SgCtorInitializerList

0xb4788748

215:258
SgMemberFunctionDeclaration

run
0xb47faae8

parameterList definition CtorInitializerList

198:259
SgClassDefinition

0x816eea0

*[0] *[1] *[2]

197:260
SgClassDeclaration

Derived
0xb48506ac

definition

264:265
SgExprListExp

0x827bd8c

263:266
SgConstructorInitializer

0x828694c

args

262:267
SgInitializedName

0x81ea890

initptr

261:268
SgVariableDeclaration

0xb474d698

*[0]

158:269
SgGlobal

0x80eb028

*[0] *[1] *[2] *[3]

157:270
SgFile

0x80c9d0c

root

274:275
SgFunctionParameterList

0xb47c1a00

279:280
SgFunctionParameterList

0xb47c1ae8

278:281
SgFunctionDeclaration

runModule
0xb46bf2b8

parameterList definition

285:286
SgFunctionRefExp

0x840c3b0

287:288
SgExprListExp

0x827bdb8

284:289
SgFunctionCallExp

0x82c9cf0

function args

283:290
SgExpressionRoot

0x825aae0

operand_i

282:291
SgExprStatement

0x8251df8

expression_root

294:295
SgIntVal

0x837e208

valueExpressionTree

293:296
SgExpressionRoot

0x825ab14

operand_i

292:297
SgReturnStmt

0x8417f38

expression_root

298:299
SgNullStatement

0x81c7608

277:300
SgBasicBlock

0x81bd8f8

*[0] *[1] *[2] *[3]

276:301
SgFunctionDefinition

0x81add50

body

273:302
SgFunctionDeclaration

main
0xb46bf160

parameterList definition

272:303
SgGlobal

0x80eb050

*[0]

271:304
SgFile

0x80c9d68

root

0:305
SgProject

0x80b08a8

*[0] *[1] *[2]

Figure 2: (Top) The AST before merging Listings 1 (right-most subtree in light green), 3 (left-most subtree
in red), and 5 (middle subtree in blue). (Middle) The AST after merging. The Base class definition, included
by Listings 3 and 5, is shared, as indicated by the magenta subtree with double-edges between diamond-
shaped nodes. (Bottom) The merged AST, with the two Derived class definitions that violate the ODR
shown by the subtrees with black circular nodes.

6

32

5.2 Mid-end

The mid-end permits analysis and arbitrary restruc-
turing of the AST. Results of program analysis are
accessible from AST nodes. The AST processing
mechanism computes inherited and synthesized at-
tributes on the AST. An AST restructuring operation
specifies a location in the AST where code should be
inserted, deleted, or replaced. Transformation oper-
ators can be built using the AST processing mecha-
nism with AST restructuring operations.

ROSE internally implements a number of forms
of procedural and inter-procedural analysis, withm
uch of this work in current development. ROSE cur-
rently includes support for dependence, call graph,
and control flow analysis. In collaboration with aca-
demic groups, we are extending the analysis infras-
tructure to interface with general analysis tools, in-
cluding PAG [2] OpenAnalysis [34], as well as anal-
ysis tools specifically for automated debugging and
security, such as Osprey for measurement unit val-
idation [22], MOPS for finite state machine-based
temporal specification checking [9], and coverage
analysis tools [12].

To support whole-program analysis, ROSE has ad-
ditional mechanisms to store analysis results persis-
tently in a database (e.g., SQLite), to store ASTs in
binary files, and to merge multiple ASTs from the
compilation of different source files into a single AST
(without losing project, file and directory structure).

ROSE also provides debugging facilities, such as
AST traversals and coloring, and may be used with
visualization tools to aid reverse-engineering [25].

5.3 Back-end

The back-end unparses the AST and generates C++
source code. Either all included (header) files or only
source files may be unparsed; this feature is impor-
tant when transforming user-defined data types, for
example, when adding generated methods. Com-
ments are attached to AST nodes (within the ROSE
front-end) and unparsed by the back-end. Full tem-
plate handling is included with any transformed
templates output in the generated source code.

6 Related Work

Whole-program analysis has traditionally been ap-
plied in performance optimization contexts [5, 35],
but has recently also been used to find bugs and
detect security flaws using global dataflow analy-
ses [6, 18, 20, 14]. Our techniques complement ear-
lier work by providing the basic infrastructure for

accurately representing the source of an entire pro-
gram, from which we could implement these other
analyses. In the case of C++, this representation al-
lows us to verify compliance with ODR, an impor-
tant but never fully-enforced correctness condition.

Our whole-program AST is closest in spirit to the
whole-program control flow graph representation
proposed by Triantafyllis, et al. [35]. However, we
essentially unify the source itself; a whole-program
CFG could be easily constructed from this represen-
tation.

Atkinson and Griswold advocate on-demand gen-
eration of any representations needed for a particu-
lar analysis [5]. By contrast, we assume the exponen-
tial trends in workstation memory capacity [1] and
the need for source-to-source transformation to jus-
tify generating and storing the whole-program AST.

A number of compiler infrastructures can or do
perform whole-program analyses. GCC develop-
ers are adding unified cross-module representations
and precompiled header support in order to pro-
vide inter-module analysis, particularly for C pro-
grams [23, 8]. Our AST merge and file I/O mecha-
nisms are similar in spirit, though we currently pro-
vide full support for C and C++, as well as an in-
termediate representation that accurately represents
the source. Among other open C or C++ infras-
tructures [16, 3, 10] and C++ static analysis infras-
tructures [37, 17], our complete source-level whole-
program representation is unique.

7 Conclusions and Future Work

Our basic support for whole-program analysis en-
ables any number of security analyses with complete
context. The analysis we present for checking com-
pliance with ODR to avoid VPTR exploits is just one
example; the basic mechanisms permit any number
of other global analyses, including whole-program
pattern matching [15], region formation [35], and
hybrid static/dynamic whole-program path analy-
ses [24], among others. We will develop analyses for
additional problems in collaboration with other re-
search groups (e.g., the SAMATE project [26]).

An important issue in software security analysis is
how to present analysis results to users [21]. A sim-
ple textual representation of security issues is often
insufficient because it is difficult to understand the
context to the problem under investigation. We are
investigating this problem using flexible and unique
visualization techniques [27, 25].

We show an example of a program visualization
in Figure 3. The program is an 80 KLOC scien-

7

33

Figure 3: Visualizing security problems in source code.

tific C code, and we plot each function (shown by
a sphere) according to its mathematical operations
complexity, i.e., the number of floating-point oper-
ations along the y-axis and the number of integer
operations along the x-axis. The size of each func-
tion is equivalent to the relative size of each sphere.
Furthermore, the McCabe’s Cyclomatic complexity
measure [11] is represented on the z-axis.

The application-specific vulnerabilities are shown
by green boxes, which indicate possible program
overflow problems. These vulnerable functions do
not appear along either the x- or y-axis. Thus, we
can infer that these vulnerable functions do not oc-
cur within the essential scientific kernels, i.e., within
functions that make heavy use of floating-point or
integer calculations. Indeed, the problem areas
for this program occur entirely within the program
setup. We are pursuing this and other techniques
to help users better understand security analysis re-
sults.

References
[1] International Technology Roadmap for Semiconduc-

tors, 2005. public.itrs.net.

[2] AbsInt, Inc. PAG: The Program Analysis Generator,
2006. absint.com/pag.

[3] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and
C. W. Tseng. The SUIF Compiler for Scalable Parallel

Machines. In Proc. SIAM Conference on Parallel Pro-
cessing for Scientific Computing, Feb 1995.

[4] ANSI/ISO. The C++ Standard: Incorporating Technical
Corrigendum 1, volume BS ISO/IEC 14882:2003. John
Wiley and Sons, 2nd edition, 2003.

[5] D. C. Atkinson and W. G. Griswold. The design of
whole-program analysis tools. In Proc. International
Conference on Software Engineering, Berlin, Germany,
March 1996.

[6] T. A. Ball and S. K. Rajamani. The SLAM project:
Debugging system software via static analysis. In
Proc. Principles of Programming Languages, January
2002.

[7] F. Bodin, P. Beckman, D. Gannon, J. Gotwals,
S. Narayana, S. Srinivas, and B. Winnicka. Sage++:
An Object-Oriented Toolkit and Class Library for
Building Fortran and C++ Restructuring Tools. In
Proceedings. OONSKI ’94, Oregon, 1994.

[8] P. Bothner. GCC compile server. In Proc. GCC Summit,
2003.

[9] H. Chen, D. Dean, and D. Wagner. Model checking
one million lines of C code. In Proc. Network and Dis-
tributed System Security Symposium, San Diego, CA,
USA, February 2004.

[10] S. Chiba. Macro processing in object-oriented lan-
guages. In TOOLS Pacific ’98, Technology of Object-
Oriented Languages and Systems, 1998.

[11] S. Chidamber and C. Kemerer. A metrics suite for
object-oriented design. IEEE Transactions on Software
Engineering, 20(6), 1994.

8

34

http://public.itrs.net
http://www.absint.com/pag/
http://suif.stanford.edu/papers/siam95a.ps
http://suif.stanford.edu/papers/siam95a.ps
http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/
http://www.cse.scu.edu/~atkinson/papers/icse-96.pdf
http://www.cse.scu.edu/~atkinson/papers/icse-96.pdf
http://research.microsoft.com/slam/papers/popl02.pdf
http://research.microsoft.com/slam/papers/popl02.pdf
http://www.cica.indiana.edu/sage/sagexx_ug/sagexx_ug.html
http://www.cica.indiana.edu/sage/sagexx_ug/sagexx_ug.html
http://www.cica.indiana.edu/sage/sagexx_ug/sagexx_ug.html
http://per.bothner.com/papers/GccSummit03/gcc-server.pdf
http://www.cs.ucdavis.edu/~hchen/paper/ndss04.pdf
http://www.cs.ucdavis.edu/~hchen/paper/ndss04.pdf
http://www.pitt.edu/~ckemerer/CK%20research%20papers/MetricForOOD_ChidamberKemerer94.pdf
http://www.pitt.edu/~ckemerer/CK%20research%20papers/MetricForOOD_ChidamberKemerer94.pdf

[12] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby,
and S. Ur. Framework for testing multi-threaded Java
programs. Concurrency and Computation: Practice and
Experience, 15(3–5):485–499, 2003.

[13] Edison Design Group. EDG front-end. edg.com.

[14] D. Engler and M. Musuvathi. Static analysis ver-
sus software model checking for bug finding. In
Proc.International Conference on Verification, Model
Checking, and Abstract Interpretation, Venice, Italy,
2004.

[15] E. Farchi and B. R. Harrington. Assisting the
code review process using simple pattern recogni-
tion. In Proc. IBM Verification Conference, Haifa, Israel,
November 2005.

[16] F. S. Foundation. GNU Compiler Collection, 2005.
gcc.gnu.org.

[17] D. Gregor and S. Schupp. Making the usage of STL
safe. In J. Gibbons and J. Jeuring, editors, Generic
Programming, IFIP TC2/WG2.1 Working Conference on
Generic Programming, volume 243 of IFIP Conference
Proceedings, pages 127–140. Kluwer, July 2002.

[18] S. Z. Guyer, E. D. Berger, and C. Lin. Detecting errors
with configurable whole-program dataflow analysis.
In Proc. Conference on Programming Language Design
and Implementation, Berlin, Germany, 2002.

[19] R. E. Hank, W. mei W. Hwu, and B. R. Rau. Region-
based compilation: An introduction and motivation.
November 1995.

[20] D. L. Heine and M. S. Lam. A practical flow-sensitive
and context-sensitive C and C++ memory leak detec-
tor. In Proc. Conference on Programming Language De-
sign and Implementation, pages 168–181, June 2003.

[21] D. Hovemeyer and W. Pugh. Finding bugs is easy.
SIGPLAN Notices (Proceedings of Onward! at OOPSLA
2004), December 2004.

[22] L. Jiang and Z. Su. Osprey: A practical type system
for validating the correctness of measurement units
in C programs. In Proc. International Conference on
Software Engineering, Shanghai, China, May 2006.

[23] G. Keating. Inter-module analysis in GCC. In
Proc. GCC Developers’ Summit, Ottowa, Canada, June
2005.

[24] J. R. Larus. Whole program paths. In Proc. Conference
on Programming Language Design and Implementation,
Atlanta, GA, USA, May 1999.

[25] W. Löwe and T. Panas. Rapid construction of soft-
ware comprehension tools. Intl. Journal of Software
Engineering and Knowledge Engineering: Special Issue
on Maturing the Practice of Software Artefacts Compre-
hension, 12(54), 2005.

[26] National Institute of Standards and Technology.
SAMATE–Software Assurance Metrics and Tool
Evaluation, 2006. samate.nist.gov.

[27] T. Panas. A framework for reverse engineering. PhD the-
sis, December 2005.

[28] J. Pincus and B. Baker. Beyond stack smashing: Re-
cent advances in exploiting buffer overruns. IEEE Se-
curity and Privacy, August 2004.

[29] K. Poulsen. Thwarted linux backdoor hints
at smarter hacks, November 2003. securityfo-
cus.com/news/7388.

[30] D. Quinlan, S. Ur, and R. Vuduc. An extensible
open-source compiler infrastructure for testing. In
Proc. IBM Haifa Verification Conference, volume LNCS
3875, pages 116–133, Haifa, Israel, November 2005.

[31] Rix. Smashing C++ VPTRs. Phrack, May 2000.
phrack.org/show.php?p=56&a=8.

[32] M. Schordan and D. Quinlan. A source-to-source
architecture for user-defined optimizations. In
Proc. Joint Modular Languages Conference, 2003.

[33] M. Sharir and A. Pnueli. Two approaches to interproce-
dural data flow analysis, pages 189–234. 1981.

[34] M. M. Strout, J. Mellor-Crummey, and P. D. Hovland.
Representation-independent program analysis. In
Proc. ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, September
2005.

[35] S. Triantafyllis, M. J. Bridges, E. Raman, G. Ottoni,
and D. I. August. A framework for unrestricted
whole-program optimization. In Proc. Conference on
Programming Language Design and Implementation, Ot-
towa, Canada, June 2006.

[36] T. Way, B. Breech, and L. Pollock. Region forma-
tion analysis with demand-driven inlining for region-
based optimization. In Proc. Conference on Parallel
Architectures and Compilation Techniques, pages 24–33,
Philadelphia, PA, USA, September 2000.

[37] D. Wilkerson. OINK: A collection of compos-
able C++ static analysis tools, 2005. fresh-
meat.net/projects/oink.

9

35

http://www.haifa.ibm.com/projects/verification/contest/publications.html
http://www.haifa.ibm.com/projects/verification/contest/publications.html
http://www.edg.com
http://www.stanford.edu/~engler/softmc03-talk.pdf
http://www.stanford.edu/~engler/softmc03-talk.pdf
http://www.informatik.uni-trier.de/~ley/db/conf/hvc/hvc2005.html
http://www.informatik.uni-trier.de/~ley/db/conf/hvc/hvc2005.html
http://www.informatik.uni-trier.de/~ley/db/conf/hvc/hvc2005.html
http://gcc.gnu.org
http://www.osl.iu.edu/publications/prints/2002/GrSc02.pdf
http://www.osl.iu.edu/publications/prints/2002/GrSc02.pdf
http://www.cs.utexas.edu/~lin/papers/detecting02.pdf
http://www.cs.utexas.edu/~lin/papers/detecting02.pdf
http://www.crhc.uiuc.edu/IMPACT/ftp/conference/micro-95-region.pdf
http://www.crhc.uiuc.edu/IMPACT/ftp/conference/micro-95-region.pdf
http://suif.stanford.edu/papers/pldi03d.pdf
http://suif.stanford.edu/papers/pldi03d.pdf
http://suif.stanford.edu/papers/pldi03d.pdf
http://findbugs.sourceforge.net/docs/oopsla2004.pdf
http://wwwcsif.cs.ucdavis.edu/~jiangl/papers/uc-icse06.pdf
http://wwwcsif.cs.ucdavis.edu/~jiangl/papers/uc-icse06.pdf
http://wwwcsif.cs.ucdavis.edu/~jiangl/papers/uc-icse06.pdf
http://www.gccsummit.org/2005/view_abstract.php?content_key=25
http://research.microsoft.com/~larus/Papers/pldi99_wpp.pdf
http://www.arisa.se/files/LP-05.pdf
http://www.arisa.se/files/LP-05.pdf
http://samate.nist.gov
http://www.vxu.se/avhandlingar/thomas_panas.xml
http://research.microsoft.com/users/jpincus/beyond-stack-smashing.pdf
http://research.microsoft.com/users/jpincus/beyond-stack-smashing.pdf
http://www.securityfocus.com/news/7388
http://www.securityfocus.com/news/7388
http://dx.doi.org/10.1007/11678779_9
http://dx.doi.org/10.1007/11678779_9
http://www.phrack.org/show.php?p=56&a=8
http://www.springerlink.com/index/GLT4PLWFA74PTY0B.pdf
http://www.springerlink.com/index/GLT4PLWFA74PTY0B.pdf
http://www.cs.colostate.edu/~mstrout/Papers/strout-paste05.pdf
http://liberty.princeton.edu/Publications/pldi06_pbe.pdf
http://liberty.princeton.edu/Publications/pldi06_pbe.pdf
http://www.csc.villanova.edu/~tway/publications/wayPACT00.pdf
http://www.csc.villanova.edu/~tway/publications/wayPACT00.pdf
http://www.csc.villanova.edu/~tway/publications/wayPACT00.pdf
http://freshmeat.net/projects/oink
http://freshmeat.net/projects/oink

Towards the Industrial Scale Development of
Custom Static Analyzers

John Anton, Eric Bush, Allen Goldberg, Klaus Havelund, DougSmith, Arnaud Venet
Kestrel Technology LLC

4984 El Camino Real #230
Los Altos, CA 94022

{anton,ericbush,goldberg,havelund,smith,arnaud}@kestreltechnology.com

http://www.kestreltechnology.com

Abstract— This paper presents a high level overview of a tech-
nology called CodeHawk whose purpose is to support verifi-
cation of software properties. Today’s commercially available
static analysis tools identify potential runtime and vulnerability
problems based on properties described in the semantics of
the programming language. While CodeHawk will detect those
classes of problems, it is distinguished by the user’s ability to
generate high performance static analyzers for the verification
of application-specific properties. Today’s static analyzers may
also trade off assurance and flexibility for speed in handling
very large code sets. Our goal with CodeHawk is to handle
industrial sized code sets with the highest speed in the industry
among those offering 100% verification assurance. CodeHawk’s
customizability opens up additional uses of the core technology
beyond detecting runtime or vulnerability exposures. In this
paper we describe one such use, namely static analysis in support
of optimized dynamic analysis.

I. I NTRODUCTION

In this paper we present our approach to static analysis of large
software systems using a platform enabling the rapid devel-
opment of custom static analyzers: CodeHawk. Unlike some
static analysis approaches that are optimized to identify bugs,
but not prove the absence of bugs, our objective is to achieve
full code coverage so that there are no false negatives with
respect to a set of well-defined properties. This is appropriate
for high assurance systems, particularly those that must pass
a rigorous certification process. In particular CodeHawk can
prove properties of a C program’s memory accesses that are
sufficient for 100% assurance of the absence of buffer overflow
errors. Insuring there are no false negatives together withan
acceptably low rate of false positives raises a challenging
scaling problem. Our approach to achieving scalability is to
customize the analysis to the application domain, and to use
algorithms engineered for high performance.

CodeHawk is a component of a larger system that combines
static analysis with dynamic analysis. Dynamic analysis refers
to monitoring the execution of a program for conformance
with a set of properties. Static and dynamic analysis interact
in two ways. First, static analysis can either establish that a
property holds, establish that it does not, or fail to come to
any conclusion. Dynamic checks may be inserted in the code
to assist this process. Second, checking of dynamic properties

may be optimized by static analysis. Within our framework
dynamic properties are complex temporal properties expressed
in a rich specification notation and the validity of such a
property may depend on establishing relatedsub-properties
at many different program points. Static analysis may verify
these sub-properties.

The remainder of this paper is organized as follows. The
next section overviews abstract interpretation, the theory on
which CodeHawk is based. This is followed by an overview
of CodeHawk. The next section describes how domain-specific
properties are incorporated into CodeHawk through motivating
examples. Then we discuss dynamic analysis and its integra-
tion with static analysis. The final section states conclusions.

II. A BSTRACT INTERPRETATION

Static analysis is a generic term encompassing a variety
of techniques that vary greatly in scope and nature (type
checking, coding style analysis, model checking, dataflow
analysis, statistical pattern inference, pointer analysis, etc.).
Abstract Interpretation [5], [6] is a theoretical framework
enabling the systematic construction ofsoundstatic analyzers.
By soundness, we mean thatall possible execution paths are
taken into account in the analysis. Hence, the properties of
the program discovered by such an analyzer are guaranteed to
hold in any configuration of the program. Formal verification
of program properties can thus be achieved by Abstract
Interpretation. A precise description of Abstract Interpretation
is beyond the scope of this paper. We rather give the main
intuitions underpinning the theory.

The behavior of a program is described by the set of its
execution traces under all possible inputs. Execution traces
can be formally described using a mathematical modeling
technique calledoperational semantics[3]. Abstract Interpre-
tation allows us to build a finite machine-computable model
of the operational semantics of a program using two tools:
partitioning andabstraction. Partitioning consists of grouping
program configurations into a finite number of disjoint sets as
illustrated in Fig. 1. For example, we can partition program
configurations with respect to program control points, i.e., two
configurations are in the same partition iff they reach the same

36

Execution Traces Abstract Interpretation

Fig. 1. Partitioning of program configurations

statement in the program. Abstraction consists of defining a
single finite representation of all configurations in a partition.
For example, if all the program variables are integer-valued, a
possible abstraction consists of assigning an interval to each
variable that contains all possible values of the variable in any
configuration of the partition [4].

The abstraction process may cause the representation to denote
program configurations that never occur in real executions.For
example, if we have two configurations in a partition where
i = 2 andi = 4, variablei is represented by the interval
[2, 4], denoting the spurious configuration wherei = 3.
This explains the existence offalse positivesin program veri-
fication by Abstract Interpretation. A property may very well
hold for all program executions, however the static analyzer
cannot verify this is true, because it is violated for spurious
configurations resulting from the abstraction employed. Note
that we cannot havefalse negatives, i.e., a property cannot
deemed true by the analyzer, even though it is violated in
some executions. This is becauseall program configurations
are covered by the abstraction.

Without entering in too much detail, we will just say that Ab-
stract Interpretation provides a methodology and a collection
of techniques that allow us to construct anabstract semantic
model M of the program, that is a machine-representable
structure representing the program dynamics on the abstract
partitioning of configurations. The abstract semantic model is
usually defined by induction on the syntax of the program
and can be automatically generated by a proper translator. The
envelope ofM, denoting the set of all possible configurations
of the program, can be computed iteratively using well-
studied fixpoint algorithms [2]. This structure can then be
used to conduct automatic verification of the desired program
properties.

We illustrate the abstract interpretation process on a small ex-
ample. Consider the following piece of C code that initializes
an array of double-precision floating point numbers:

1: double a[10];
2: int i;
3:

4: for(i = 0; i < 10; i++) {
5: a[i] = 1.0;
6: }
7: a[i] = 3.0;

Now, assume that we are interested in assessing the correctness
of all array accesses. In the example, this translates into
verifying the property0 ≤ i < 10 at lines5 and7. The ab-
stract semantic model defines the level of abstraction at which
the analysis algorithms will operate. For example, one can
choose to ignore all information stored in data structures.This
makes sense for applications like embedded systems where
the control structure is essentially driven by local variables,
as described in [10]. This abstraction may be inappropriate
for other families of programs. Once the abstract semantic
model has been determined, abstract interpretation algorithms
compute an envelope of all possible values for the program
variables. If we choose an abstraction of numerical variables
based on intervals, the analysis will automatically infer that the
range of variablei is [0, 9] at program point5, and [10, 10]
at program point7. Then, the computed ranges are used to
check the safety properties for array access.

III. C ODEHAWK TECHNOLOGY

The Abstract Interpretation approach to static analysis looks
attractive, but it presents major hurdles. Building a static
analyzer based on Abstract Interpretation is a complex en-
gineering task that can require substantial domain expertise.
Designing the abstract semantic modelM and writing the
translator that takes the program text and producesM is
the most time-consuming part of the process. Moreover, the
abstract semantic model is specially designed to support the
verification of a small number of program properties (usually
one). Scaling to large code-bases has been proven possible
by tailoring the abstract semantic model toward the particular
structure of the software analyzed [10], [7]. All these factors
lead to large, complex, monolithic static analyzers that are
able to deal only with a handful of program properties. This
approach is impractical for all but a few critical applications,
and then only those blessed with a large V&V budget.

37

The purpose of the CodeHawk technology precisely con-
sists of bringing the Abstract Interpretation approach to a
practical production level. CodeHawk is built on top of the
Specware [8] formal specification environment developed by
Kestrel Institute. The main capability offered by CodeHawkis
that of building a fully functional and efficient static analyzer
by assembling components drawn from a library of prede-
fined abstractions. The Specware environment is particularly
supportive of that activity. In particular, the code of the
whole analysis engine can be automatically generated from
the specification of the analyzer. A static analyzer checking
for a certain class of properties and tailored for a specific
class of software can be rapidly specified and generated using
CodeHawk.

CodeHawk’s precursor, CGS [10] is a static array-bound
checker tailored for NASA’s flight mission software. It can
scale up to half a million lines of C code, with a false
positive rate< 20%. CGS is written in C and has a mono-
lithic architecture. Modifying the tool in order to have it
analyze specific constructs of flight software more precisely
is a complex and time consuming task. We found that the
remaining20% false positives were essentially due to array
bounds transmitted between threads through message queues.
Modifying the abstract semantic model in order to track this
information precisely was not difficult in theory, but the impact
on the implementation was enormous. This basically stopped
us from further specializing the analyzer. CodeHawk aims at
simplifying this specialization process by generating analyzers
that have a flexible and tunable architecture.

Building an abstract semantic model from scratch is facilitated
by CodeHawk, but still remains the job of an expert. We
are currently working toward a specification environment built
on top of CodeHawk that offers the capability of specifying
custom program properties to verify and generate the corre-
sponding analyzer. This specification environment will provide
a high-level interface to CodeHawk that is accessible to the
non-specialist and enable the construction of static analyzers
for a broad spectrum of properties. The SAMATE database [9]
will provide the basis for studying the specification language.

IV. STATIC ANALYSIS FROM NUMERICAL SPECIFICATIONS

In this section we illustrate the concept of a specification
environment men- tioned above on two examples: a string copy
function and a communication application using ”nonces”.
These examples rely on the core capability currently imple-
mented in CodeHawk: the analysis of numerical computations.
They show analyzers for vulnerable use of the programmming
language itself, resp. an application-specific property.

A. Buffer Overflow Violations

Consider the functiontest defined below:

void test(char *str){
char buf[10];

memccpy(buf, str, 0, 10);
printf("results: %s\n", buf);

}

which is an extract of example 000-001-314 in [9]. The
function takes as argument a string and prints it out, although
in an unnecessarily complicated, and subsequently unsafe,
manner, that embodies a potential for a buffer overflow. The
function declares an arraybuf of size10. This array is then
filled up with the text string. This is done by a call of the
function:

void *memccpy(void *s1, const void *s2,
int c, size_t n);

the description of which is:

memccpy copies bytes from memory area s2 into
s1, stopping after the first occurrence of c has been
copied, or after n bytes have been copied, whichever
comes first.

The problem occurs whenstrlen(str) (the length of the
string) is bigger than or equal to the size of the array it is
copied to (here10), since in this case a final ’0’ is not copied
into buf, and hence ifbuf is now used as a string the end
of this string will not be clearly marked. We want to enforce
the policy that the length of the copied string is strictly less
than the size of the array. Then are we sure that a final ’0’ is
copied in.

In order to detect such an error statically, a specialized
algorithm can be programmed that performs a numerical
abstraction of the program and analyzes this abstraction with
respect to a desired property. In this specific case the ab-
straction keeps track of sizes of arrays and sizes of strings,
and the specification states that any call ofmemccpy should
copy a string with a smaller size than the size of the target
array. The alternative to hard coding a static analyzer for
this specific problem is to apply our generic approach and
synthesize a static analyzer from an abstraction specification
and a property specification stating a property to be checked
over the abstraction.

Theproperty specificationnow states the desired property, i.e.,
that calls ofmemccpy copy fitting strings:

check NoBufferOverflow =
always(memccpy(arr, str, 0, N)

-> size(str) < size(arr))

Of course this property can also be checked dynamically
during program execution, and this might be a solution in
case the property cannot be checked statically.

B. Nonce Repetition Violations

The above example illustrated the detection of runtime errors
in the form of buffer overflows. The following example

38

illustrates a security problem concerned with uniqueness of
authentification keys callednonces. Nonces are used for ex-
ample in authentication protocols as a means of preventing
replay attacks. A nonce is a “number used once”. That is, the
creator of the nonce should insure that it has not been used in
previous runs of the protocol and that it is not guessable by
an attacker.

Typically, randomly generated numbers are used as nonces.
The SAMATE database [9] includes test cases (for example
example test case 000-000-054) asserting that nonces should
be used for the present occasion and only once. Here we
consider how static and dynamic analysis can be used to assure
correct uses on nonces. We assume a protocol is implemented
by a collection of procedure calls, and that if a step in the
protocol requires a nonce it is a parameter to a specific
proceduresendNonce.

The abstraction specification would in this case define an
abstract state that maps each nonce to an integer indicating
how many times it has been used. It will also state how this
abstract state is updated as a result of execution of program
statements. The property specification will state that the integer
associated to a nonce should never go beyond 1. Static analysis
can also be used to check that the source of the value of the
nonce parameter is a random variable library function.

However, if that cannot be statically validated, dynamic analy-
sis can check that the nonce parameter is distinct at each
invocation. This property can be expressed in our EAGLE

monitoring language [1] as:

monitor NonceOnlyOnce =
always(sendNonce(x) -> NonceNotSeen(x))

rule NonceNotSeen(int x) =
previously(sendNonce(y) -> x != y)

V. COMBINING STATIC AND DYNAMIC ANALYSIS

Above it was mentioned that properties can be specified in
a formal specification language and then checked statically.
In case the static analysis cannot demonstrate the property,
the whole property, or the part of the property that cannot
be checked statically, can be checked dynamically during
program execution using runtime monitoring techniques. A
different way of thinking about this is to regard static analy-
sis as a technique to optimize runtime monitoring: given
a property to be monitored during execution, optimize the
monitoring as much as possible in order to minimize the
impact on execution time and memory consumption. In reality
these are two views of the same problem, but from different
perspectives.

These ideas can be brought even further by observing a
current trend within Aspect Oriented Programming (AOP):
the extension of pointcut languages with tracecuts (predicates
on execution traces). In a traditional AOP language such as
AspectJ an aspect contains advices of the form: “when this

piece of code is encountered, execute this other piece of code”.
With tracecuts it is possible to state properties even more
succinctly: “when thistemporal property is true about the
execution trace, execute this other piece of code”. Such a
framework can furthermore be supported by static analysis in
the sense that static analysis statically attempts to determine
when the tracecuts are true in the program and hence the new
code can be inserted. In case it cannot be determined, monitors
must be inserted in the code, which trigger the new code when
reaching specific states.

The MODE system currently under development at Kestrel
Technology combines static and dynamic analysis in such
an AOP framework with tracecuts, in MODE called policies.
MODE focuses on (1) a policy language based on state ma-
chines for expressing system safety and information assurance
constraints, (2) static analysis mechanisms for detectingpolicy
applicability in a program, and (3) enforcement mechanisms
and associated assurance arguments and evidence. An over-
arching objective is to lower the cost of producing certified
software.

MODE uses fast static analysis algorithms provided by Code-
Hawk to match each policy against the program. The engineer
can specify whether to check a policy or enforce a policy. For
each location in the program where static analysis determines
that a policy applies, MODE either checks that it holds
(generating a diagnostic message when it fails to hold) or
automatically generates enforcement code for insertion atthat
location. MODE outputs a program that is consistent with the
original program and that is guaranteed to satisfy the enforced
policy.

VI. CONCLUSION

Static analysis for 100% verification of runtime, safety and
security properties, is important. But to be practical, it must
satisfy two requirements. First, it must scale to application
code sizes used in industry. Second, it must support verifica-
tion of properties that include those better defined in terms
of the application’s objectives, in addition to today’s focus on
those defined in terms of a programming language’s usage.
We have introduced a technology platform called CodeHawk
that can meet those requirements.

REFERENCES

[1] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-Based
Runtime Verification. InProceedings of Fifth International VMCAI
conference (VMCAI’04), volume 2937 ofLNCS. Springer, January 2004.

[2] F. Bourdoncle. Efficient chaotic iteration strategies with widenings.
Lecture Notes in Computer Science, 735, 1993.

[3] P. Cousot. Semantic foundations of program analysis. InS.S. Muchnick
and N.D. Jones, editors,Program Flow Analysis: Theory and Applica-
tions, chapter 10, pages 303–342. Prentice-Hall, Inc., Englewood Cliffs,
1981.

[4] P. Cousot and R. Cousot. Static determination of dynamicproperties
of programs. InProceedings of the Second International Symposium on
Programming, pages 106–130. Dunod, Paris, France, 1976.

39

[5] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. In Proceedings of the 4th Symposium on Principles of
Programming Languages, pages 238–353, 1977.

[6] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. InConference Record of the Sixth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
269–282. ACM Press, New York, NY, 1979.

[7] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D.Monniaux,
and X. Rival. The ASTŔEE Analyser. InProceedings of the European
Symposium on Programming (ESOP’05), volume 3444 ofLecture Notes
in Computer Science, pages 21–30, 2005.

[8] Kestrel. Specware System and documentation, 2003.
http://www.specware.org/.

[9] NIST SAMATE Reference Dataset Project. Soft-
ware Assurance Metrics and Tool Evaluation, NIST.
http://samate.nist.gov/SRD/srdFiles/index.php.

[10] A. Venet and G. Brat. Precise and efficient static array bound checking
for large embedded C programs. InProceedings of the International
Conference on Programming Language Design and Implementation,
pages 231–242, 2004.

40

Verification Tools for Software Security Bugs

Frédéric Michaud Frédéric Painchaud
Defence Research and Development Canada – Valcartier

2459 Pie-XI Blvd North
Québec, QC

Canada G3J 1X5

June 29th, 2006

Abstract

We investigated errors and vulnerabilities that emerge from software defects in C/C++ and Java
programs. This allowed us to create a meaningful testbench in order to evaluate best-of-breed automatic
source code verification tools. Our results show that current static tools cannot significantly reduce the
risk associated with confidential data processing in a military context. Dynamic tools should be used in
conjunction in order to provide the necessary assurance level.

1 Introduction

Developing reliable and secure software has become a very challenging task, mainly because of the unmanage-
able complexity of the software systems we build today. Software flaws have many causes but our observations
show that they mostly come from two broad sources: design (e.g., a backdoor) and implementation (e.g., a
buffer overflow).

To address these problems, our research group at DRDC Valcartier first worked on design issues. A
prototype of a UML design verifier was built [1]. Our approach was successful, but we faced two difficulties:
specifying interesting security properties at the design level and scalability of the verification process. Building
on this experience, we studied design patterns for the implementation of security mechanisms [3]. The output
was a security design pattern catalog that can help software architects choose mature and proven designs
instead of constantly trying to reinvent the wheel [4].

This paper addresses the implementation issues. We have evaluated automatic source code verifiers that
search for program sanity and security bugs. After section 2 that specifies the context of our study, section
3 defines the terminology that we use. Then, section 4 gives the major language design shortcomings that
make C/C++ programs so prone to security problems. Finally, sections 5 and 6 present an overview of the
evaluated tools and the results of this evaluation, respectively.

2 Context

The assurance level required for executing applications depends on their execution context. Our context is
military, in which confidential data is processed by sensitive applications running on widespread operating
systems, such as Windows and Linux, and programmed in C/C++ and Java.

Our primary goal was to get rid of common security problems using automated source code verification
tools for C++ and Java. To do so, we first investigated errors and vulnerabilities emerging from software
defects. This allowed us to create meaningful tests in order to evaluate the detection performance and
usability of these tools.

3 Defects, Errors, and Vulnerabilities

In our investigation of common software security problems, we observed that most of them do not come
from the failure of security mechanisms but from failures at a lower level, which we call program sanity
problems. Security mechanisms ensure high level properties, such as confidentiality, integrity, and availability,

1

41

and are mostly related to design. Access control frameworks, intrusion prevention systems, and firewalls are
all examples of security mechanisms. Program sanity problems are related to protected memory, valid control
and data flow, and correct management of resources like memory, files, and network connections. Because
these problems are many-sorted, a terminology is necessary to classify them.

The following definitions are based on [2]. An error is closely related to the execution of a program. It
occurs when the behavior of a program diverges from “what it should be”, from its specification. A defect lies
in the code, it is a set of program instructions that causes an error. It can also be the lack of something, such
as the lack of data validation. Finally, a vulnerability is a defect that causes an error that can be triggered
by a malicious user to corrupt program execution.

We focused on defects, errors, and vulnerabilities that can have an impact on security. To be as general
as possible, we wanted them to be application-independent. We defined 25 kinds of defects (6 categories), 5
errors, and 3 vulnerabilities, as shown in figure 1.

Memory Write
Out of Bounds

Memory Read Out
of Bounds Resource Leak Program Crash Program Hang

Denial of ServiceUnauthorized
Access

Arbitrary Code
Execution

Memory
Management

Faults

Overrun and
Underrun

Faults

Pointer
Faults

Cast
Faults

Incorrect
Arithmetic

Faults
Misc. Faults

Defects

Errors

Vulnerabilities

Figure 1: Defects, Errors, and Vulnerabilities

3.1 Defects

Most defects are not always “on”; they will not always generate errors for every execution of the program.
Complex conditions have to be met for the error to happen and input values play an important role. Fur-
thermore, many defects are composite and cannot be attributed to only one program instruction.

The following is a list of all defects we used to create our tests.

Memory Management Faults: Problems related to memory allocation, deallocation, and copy from one
buffer to another.

1. Reading freed memory

2. Underallocated memory for a given type

3. Call of free () with an invalid pointer

4. Incorrect C++ array deletion

5. Call of memcpy() with overlapping memory regions

6. Reading uninitialized variables

7. Omitting to call non-virtual destructor of derived class

Overrun and Underrun Faults: Problems related to the overrun or underrun of an array or a C++
iterator.

1. Overrun or underrun of an array

2. Dereferencing a C++ iterator that is past the end

2

42

3. Dereferencing an erased C++ iterator

4. Incorrect size parameter to a buffer function

5. Using negative array index or size

6. Reading a string of arbitrary length without limit

7. Reading a non null-terminated string

Pointer Faults: Problems related to incorrect pointer usage.

1. Return of a pointer to a local variable

2. Incorrect pointer arithmetic

3. Dereferencing a null pointer

4. Losing resource reference

Incorrect Arithmetic Faults: Problems related to incorrect arithmetic computations.

1. Division by zero

2. Integer overflow or underflow

3. Bit shift bigger than integral type or negative

Cast Faults: Problems related to the incorrect cast of one type into another.

1. Integer sign lost because of implicit unsigned cast

2. Integer precision lost because of bad cast

Miscellaneous Faults: Problems that do not fit into any other category.

1. Unspecified format string

2. Endless loop

3.2 Errors

The list of possible low-level errors that can happen when a program is executed is very long. Since we had
no interest in the correctness of computations with respect to specifications, we focused on errors that can
interfere with correct memory management, control flow, and resource allocation.

Memory Write Out of Bounds A valid region of memory is overwritten. Impacts depend on what is
overwritten, but this kind of error can lead to the most serious vulnerabilities since it can allow an
attacker to modify the program state. The causes are generally bad pointer arithmetic and array
walking with a bad index value.

Memory Read Out of Bounds A region of invalid memory is read. Impacts will mostly be errors in
computations, but sensitive values could be read. The main causes are reading of a string not terminated
by a null and array walking with a bad index.

Resource Leak A discardable resource (e.g., memory, file handle, network connection) is not returned to
the available pool. Of course, impacts depend on the kind of resource. However, this will generally lead
to a slowdown or crash of the resource-starved program. The main causes are losing a reference to a
resource because of pointer reuse and the programmer simply forgetting to free the resource.

Program Hang The program is in an infinite loop or wait state, which generally lead to a denial of service.
The main causes of this kind of error are never reaching a condition to exit a loop and threads in a
deadlock state.

Program Crash An unrecoverable error condition happens and the execution of the program is stopped.
Of course, this leads to a denial of service. The main causes are dereferencing an invalid pointer (e.g.,
page fault), an uncaught exception, and a division by zero.

3

43

3.3 Vulnerabilities

Errors in general are undesirable, but the real problem is vulnerabilities, especially remotely-exploitable ones.
We observed that almost all dangerous vulnerabilities are associated with memory reads or writes out of
bounds.

Denial of Service Allows an attacker to prevent users from getting appropriate service. It is usually done
by creating an unrecoverable error condition or by exploiting a resource leak.

Unauthorized Access Allows an attacker to access functionalities or data without the required authoriza-
tion. It is usually done by bypassing the control mechanism by modifying it in memory or by reading
sensitive values in memory and using them to get access.

Arbitrary Code Execution Allows an attacker to take control of a process by redirecting its execution to
a given instruction. It is usually done via a buffer overflow that overwrites a function pointer with the
address of the injected code to execute. The return address on the execution stack is a frequent target,
but any function pointer that will be called in the future is could work.

4 Why Are C/C++ Programs So Prone to Security Problems?

Many defects and errors are possible because of bad design choices made when C and C++ were created. These
languages require too much “micro-management” of the program’s behavior (e.g., memory management), are
error-prone (e.g., pointer arithmetic), and induce serious consequences to seemingly benign errors (e.g., buffer
overflows). A short list of the major C/C++ design shortcomings follows.

Lack of Type Safety: Type safety helps enforce the execution model by ensuring values assigned to vari-
ables are sound with respect to operations performed on them. Because of this, type-safe programs are
fail-fast ; their execution is stopped immediately when an error occurs. Non type-safe languages like C
and C++ let the execution of erratic programs continue and many security exploits use this fact (e.g.,
buffer overflows).

Pointer Arithmetic: Gives the ability to a programmer to change the value of a pointer without restriction.
It is then possible to read and write anywhere in the process memory space, which often lead to very
obscure bugs. Furthermore, pointer arithmetic makes program verification a lot more difficult.

Static Buffers: Buffers in C/C++ cannot grow to accommodate data, buffer accesses are not checked for
bounds, and overflows can overwrite memory.

C Lack of Robust String Type: C has no native type for character strings. Static buffers with overflow
problems are used instead. Besides, the size of a string is indicated by a null character at the end. This
is very fragile: if the null is not there, an overflow is likely to occur. C++ programs can use the string
type in the Standard Template Library, but our observations show that this is rarely the case.

Creators of modern languages, such as Java, had these problems in mind and got rid of them. Indeed,
Java is immune to C/C++ program sanity problems because runtime checks throw an exception if an error
occurs (e.g., array access out of bounds). However, many program sanity checks throw unchecked exceptions
and these are rarely caught by programmers. Many problems become denial-of-service vulnerabilities since
uncaught exceptions crash the program.

5 Tools Overview

We evaluated 27 tools for C/C++ and 37 for Java. All these tools were categorized into 3 families: program
conformance checkers, runtime testers, and advanced static analyzers.

Program conformance checkers perform a lightweight analysis based on syntax to find common defects.
Because of this unsophisticated analysis, they perform poorly, except for a few defects that can be detected
by simple syntax analysis (e.g., format string vulnerabilities). Many free tools were in this category.

Runtime testers look for errors while the program is running by instrumenting the code with various checks.
This provides a fine-grained analysis with excellent scalability that can be very helpful when the program’s
behavior cannot be computed statically (e.g., because of values that are not known before runtime).

4

44

Advanced static analyzers work on program semantics instead of syntax. They generally use formal
methods, such as abstract interpretation or model-checking, which often lead to scalability problems. The
code must be compiled into a model and this is usually a lot more complex than it seems with C/C++
because of code portability problems between compilers (e.g., makefiles).

For C/C++, commercial tools are by far the best. For Java, however, there are many good free tools.
Since Java is immune to most program sanity problems that plague C/C++, there are no exact equivalents
to C/C++ tools in Java. The focus of Java tools is on good practices and high level (design) problems, such
as deadlock detection. Since our goal was to detect program sanity problems, we focused on tools for C/C++
during our evaluation.

For our evaluation, our criteria were precision (flaws detected vs. false positives), scalability (small to
large programs), coverage (inspection of every possible execution), and the quality of the diagnostic (report
usefulness for problem correction).

6 Tools Evaluation

Preliminary tests showed that only 3 tools for C/C++ had the potential to help us achieve our goal: Coverity
Prevent, PolySpace for C++, and Parasoft Insure++. We tested these tools in two ways. First, over real
code in production that, to the best of our knowledge, worked well but was a bit buggy and then over many
small ad-hoc pieces of code containing specific programming defects (synthetic tests).

Some tools detect errors (Insure++) and others, defects (Coverity and PolySpace). To be able to compare
these tools, all results had to be converted to errors or defects. For synthetic tests, defects and the errors they
cause were known in advance so it was easy to convert everything to defects. However, for code in production,
nothing was known in advance, so we decided to use the best result as a baseline. Since Insure++ was the
best performer, all results were converted to errors.

6.1 Synthetic Tests

A test framework with a C++ class for every kind of defect was created and integrated into a small, high-
quality open-source application built with the Microsoft Foundation Classes (MFC) framework. Defects were
called from the main() of the application, after initialization but before the program started to answer user
queries. Defects that would lead to program crash or hang were deactivated for Insure++, since we wanted
to run all tests in a single pass.

Applications built with MFC do not have a concrete main(). Instead, the program starts when the
application object is created. This is a problem for PolySpace, which cannot handle that kind of main().
Therefore, it had to be used in a class-by-class analysis mode instead of a whole-program analysis. Our
defects were thus designed to be detectable even without full inter-procedural analysis.

6.1.1 Results

The results of our synthetic tests are shown in figures 2, 3, and 4. No tool is totally complete and tries to
detect every kind of defect or error. However, all together, tools detected all but four problems. There were
no false positives, except for PolySpace that only had a few. Coverity and Insure++ focus more or less on
the same kind of problems, but PolySpace, with its thorough analysis, was able to detect arithmetic and cast
faults.

6.2 Code in Production Tests

The code used was a numerical analysis application of about 10K lines of code that had been in production
for many years. The code was functional but a bit buggy and not very well designed (e.g., a “C+” design). As
an example, we found many cut-and-pasted segments of code that could have been refactored into a method.

6.2.1 Results

The results are shown in table 1. We can clearly see that static analysis tools need good quality code to
perform well. Furthermore, pointer arithmetic used to read from and write to complex data structures renders
static analysis extremely difficult.

5

45

3

7

0

5

4

0

3

2

0

0

5

0

0

2

0

0

2

0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Memory
Management

Faults

Overrun and
Underrun Faults

Pointer Faults Incorrect
Arithmetic

Faults

Cast Faults Miscellaneous
Faults

False Positives
False Negatives
Faults Found

Figure 2: Coverity Prevent Results

4

6

0

5

4

3

1

4

1

5

00

2

00

1

1

0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Memory
Management

Faults

Overrun and
Underrun Faults

Pointer Faults Incorrect
Arithmetic

Faults

Cast Faults Miscellaneous
Faults

False Positives
False Negatives
Faults Found

Figure 3: PolySpace for C++ Results

8

2

0

6

3

0

3

2

0

1

4

0

0

2

0

0

2

0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Memory
Management

Faults

Overrun and
Underrun Faults

Pointer Faults Incorrect
Arithmetic

Faults

Cast Faults Miscellaneous
Faults

False Positives
False Negatives
Faults Found

Figure 4: Parasoft Insure++ Results

6

46

Errors Coverity Insure++ PolySpace*
Memory Write Out of Bounds 0 42 2
Memory Read Out of Bounds 1 114 0
Resource Leak 2 10 0
Program Crash 2 0 0

Table 1: Code in Production Results
* Over 300 false positives after 16 hours of computation.

6.3 Code Portability and Makefile Problems

Static verification tools abstract programs by computing a model. From a user point of view, they can be
seen as special compilers. However, making these compilers work on C/C++ code is not as easy as it sounds
because C/C++ suffers from the classic code portability problem. Many C/C++ programs are compiled
using makefiles, which are scripts for the make utility. We found that makefiles are often show-stoppers
for many reasons. First, buggy makefiles are everywhere and to debug them can be a very tedious task.
Furthermore, makefiles for large programs are often complex and depend on many utilities which must be
configured in a very specific way. One little mistake there and nothing works. Also, when verifying large
programs, one often wants to analyze only a single module or class. However, most makefiles do not offer
this granularity.

Another big problem are compiler-specific extensions to C/C++. Almost all compilers support some
non-standard extensions to the language and these are used a lot. The best tools have a partial support for
some of them, but often, tools cannot even parse the program when these extensions are used.

When a makefile is not working properly, there is the possibility of simulating its execution. However,
knowing exactly what is given to the compiler can be very hard for many reasons. First, conditional compila-
tion using preprocessor directives is used a lot and directives often come from a mix of environment variables,
configuration files, parameters to make, and so on. In this case, the probability of verifying a different pro-
gram than the one that will be used is very high. Then, there are header file (.h) problems. Many of these
files are created or moved by the makefile while it is running (e.g., .h files created by the IDL compiler on
Windows). Finally, there are often many different header files with the same name, but at different locations.
Knowing which one to use and when is not trivial.

We found that having the verification tool parse the program correctly is by far the biggest part of the
job, and often a show-stopper unless one has unlimited time on his hands. Java is not problematic because
it has no preprocessor and no conditional compilation. It has been designed to be standard and portable.

6.4 Tool Limitations and Best Usage Scenario

We found that current static verification tools suffer from what we have called the “black box problem”.
Indeed, for reactive applications and heterogenous systems, execution does not always take place in available
application code. For instance, in reaction to a mouse click, a reactive application can start executing in
kernel code to pass the event over and around the operating system. This part of its execution can rarely be
analyzed and therefore, static analysis tools can hardly determine what type of data comes out of these calls.
Thus, this prevents true inter-procedural analysis.

Scalability is also a problem for static tools that have to consider all possible executions (path coverage).
Dynamic tools have the opposite problem: very scalable but poor coverage. However, if you consider the
number of tests needed to cover all possible executions with dynamic tools, scalability is still a problem.

6.4.1 Coverity Prevent

The best usage scenario for Coverity Prevent is when the whole application needs to be analyzed and it
is compiled using a working makefile. The application code size can be over 500K lines of C++ without
problems. Coverity has many good points: very good integration with makefiles, uses the Edison compiler
front-end that can read code that contains compiler-specific extensions from almost every big compiler in the
industry (it even simulates compiler bugs!), very scalable, excellent diagnostic with execution traces that are
easy to understand and very helpful to correct problems, and uses an innovative, but proprietary analysis
based on statistical code analysis and heuristics. Its down sides are its primitive web interface that can be
slow and the fact that it has no integration with Visual Studio projects on Windows.

7

47

6.4.2 PolySpace for C++

The best usage scenario for PolySpace for C++ is to analyze small segments of critical code in applications
where runtime exceptions should never happen. The application code size must stay under 20K lines of C++.
It uses a very thorough analysis based on abstract interpretation, with which it can detect runtime errors
statically. It has a nice graphical interface, especially the Viewer module which is used to analyze the report
and navigate in the source code. However, it lacks a good diagnostic because sometimes, it is impossible to
understand the defect found. Moreover, it is sometimes necessary to modify the analyzed source code to have
a correct model (e.g., reactive applications wait for user inputs so you have to simulate them to analyze the
reactions). Its analysis stops after critical errors and the command to override this behavior is undocumented,
and finally, it is slow and memory hungry, but this is expected with such a thorough analysis.

6.4.3 Parasoft Insure++

The best usage scenario for Parasoft Insure++ is to test hybrid systems based on many heterogeneous
components. To consider code coverage, it should always be integrated into test case harnesses. Since
Insure++ is a dynamic tool, there is no limit to the application code size and bad quality code has no effect
on detection performance. Insure++ has a very good diagnostic with call stack and memory diagrams that
show exactly what was overwritten. However, test cases have to be carefully specified with a good coverage
strategy.

7 Conclusion

Security problems generally do not come from the failure of security mechanisms. The failure occurs at a lower
level, because of program sanity problems. C/C++ are especially problematic because they enforce almost
no restriction on the execution of programs and they are prone to vulnerabilities with serious consequences,
such as buffer overflows. However, modern languages, such as Java, are immune to C/C++ problems and
are not prone to any serious vulnerability.

Verifying C/C++ programs is a huge challenge. These languages are very difficult to analyze because of
many undefined or non-standard semantics, pointer arithmetic, compiler-specific extensions to the language,
etc. We have found no currently-available verification tool that can reduce the risk significantly enough for
sensitive applications (please refer to section 2). We highly recommend the use of modern programming
languages such as Java or C#, which nullify program sanity problems. However, if the use of C/C++ is
mandatory, we recommend to restrict its usage (e.g., no pointer arithmetic, use of robust string type only,
etc.) and of course to do serious test cases and use verification tools.

References

[1] Robert Charpentier and Martin Salois, Security Modeling for C2IS in UML/OCL, UNC, International
Command & Control Research & Technology, 8th Symposium, SL 2003-067, June 2003 (18 pages).

[2] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr, Basic Concepts and Taxon-
omy of Dependable and Secure Computing, IEEE Transactions on Dependable and Secure Computing,
Vol. 1, No. 1, January-March 2004 (23 pages).

[3] Bin Chen, François Guibault, Sébastien Laflamme, Marie-Gabrielle Vallet, Yun Wang, Secure Design
Patterns: State-of-the-Art, Software Defects and Patterns Specification, Technical Report, École Poly-
technique de Montréal, December 2004 (102 pages).

[4] Bin Chen, François Guibault, Sébastien Laflamme, Marie-Gabrielle Vallet, Yun Wang, Security Oriented
Design Patterns Catalog, Technical Report, École Polytechnique de Montréal, December 2004 (208 pages).

8

48

 1

A framework for creating custom rules for static
analysis tools

Eric Dalci John Steven
Cigital Inc.

21351 Ridgetop Circle, Suite 400
Dulles VA 20166
(703) 404-9293

{edalci,jsteven}@cigital.com

Abstract

Code analysis tools have only a limited standard set
of rule they enforce out of the box. Some code
analysis tools have built in extension capabilities in
the form of rule customization. Companies adopting
code analysis tools gain their full benefit only
through customization. This paper describes
experiences with custom rules written for the Fortify
Software Source Code Analyzer [1]. We explain a
process that we followed to achieve reasonable
accuracy and coverage. The process we describe is
�tool agnostic;� we believe that it can be adopted for
other code analysis tools as long as they offer a
customization mechanism.

1- Introduction

Code analysis tools scan source code for
implementation bugs without actually executing the
source code, unlike penetration testing tools. In
addition to enforcing a set of core rules out of the box
some code analysis tools offer the capability to look
for additional security vulnerabilities by writing
custom rules. Every organization has its own specific
corporate security standards. Every organization also
possesses a wealth of incident data in its operations
department. Both corporate standards and incident
data represent essential custom rules to be created.
Because of how organization-specific these data
points are, tool vendors are very unlikely to create
these rules as they iterate their tool. This paper
introduces a testing framework for custom rules that
we have created and used during a custom rule
creation process for Java source code. This
framework possesses three benefits. First, it improves
the instances of a particular vulnerability a rule
identifies, since a rule violation may appear with
different code constructs within a source code�
increasing true positive results. Second, the

framework improves the accuracy of the rules�
reducing false positives. Finally, this framework
helps identify the limitations of the tool and provide
new insights for the code reviews�identifying false
negatives.

2- The need for custom rules

The majority of code analysis tools are based on rules
that describe desirable or undesirable characteristics
for a piece of software. Tool vendors will likely
continue to provide updates to their set of predefined
rules over time. For example the new rules may test
for newly discovered software vulnerabilities. A
company�s own penetration testing and incident
response data may be an excellent place to look for
such new vulnerabilities. These breaches are pulled
from one�s own systems. There is automatically an
applicability, feasibility, and high priority to
detecting these same findings earlier.

As the tools� analysis capabilities become more
mature, organizations expect more from them.
Central to that expectation is customization and
extension. Custom rules may be used to enforce
corporate standards�which like incidents are to a
certain extent necessarily different from organization
to organization. Every organization seems to have a
corporate standard for use and configuration of a
particular set of strong cryptographic algorithms. It is
unlikely that tool vendors will ever include such rules
in their core set because they are not in the business
of taking a stance on what is sufficient�like
corporate security groups are.

3- Creating the rule, from the idea to the battle

field

This section describes, step by step, our test-driven
framework for creating custom code analysis rules.

49

 2

Rules can be expressed at different levels of
abstraction. They can be made so specific that they
contain the exact code that constitutes a violation, but
highly specific rules can be cumbersome and they
may not even work well since the same vulnerability
may manifest itself in many different ways,
depending on who wrote the code.

At the opposite end of the spectrum, highly general
rules may be violated by any suspicious use of a
method. The typical example of this is a semantic
rule flagging any occurrence of a potentially
dangerous method, but without having constraints on
the input and output parameters. An overly general
rule typically causes an unmanageable number of
false alarms (i.e., signaling security vulnerabilities
where none exist). Such rules still require extensive
human effort to ferret out the genuine issues and
separate them from the false alarms.

In addition to that, there are different types of rules.
Some rules simply look at simple semantics, and
define a C function such �gets()� as unsafe. Other
rules demand analysis of data flow, control flow, or
configuration files. More complex code analysis
tools can express rules as state machines and some
can even create �partial models� of how code might
execute that allow for more powerful and accurate
statements about vulnerability.

Step one of rule creation involves documenting a
vulnerability that can found statically. It greatly helps
this first step if the performer is familiar with the
custom rule creation features of the code analysis tool
because there are limits to what�s feasibly identified
statically by each code analysis tool.

The rule can originate from multiple sources such as
programmers' bug repository, corporate coding
standards, incident�s, published best practices, and
other sources. A cryptographic rule defined in step
(a) is used to illustrate our step by step process.

a. Scoping the rule.

The first step is to define and scope the rule that we
want the tool to enforce. This first definition will be
conceptual and not tied to a particular code construct.
However the rule should be specific enough to check
itself against a source code implementation.
For instance a security policy may mandate the use of
strong cryptographic algorithms for secure data
transmission. At the implementation level, we want
to enforce the use of AES (CBC mode) and 3DES
(CBC-EDE3 mode) regardless of the language,
toolkit, or platform being used. Any use of
unapproved algorithms would violate our rule.

b. Drafting high level axioms (optional)

The second step is to express the rule using a high
level description language. Our previous
cryptographic rule (described in step (a)) can be
expressed with axioms that cover the different
implementations that a programmer may write. The
high level axioms for our rule might be as in Listing
1.

If [Cipher.instance]
and (

[used_Cipher != AES(CBC mode)] and
[used_Cipher != 3DES(CBC-EDE3 mode)]
)

Then
 Issue_Alarm(“CipherMisused”);

Listing 1

The rules created in this stage are just preliminary
drafts; writing complete and well defined axioms will
require some further exploratory work. In particular,
these rules will need to be revisited after writing a
first set of test cases. In fact, it may be difficult or
impossible to write any axioms at all without having
some test cases on hand already. In such cases, the
first step may have to be omitted entirely.

c. Packaging of the test cases

To test a code analysis rule, we use code fragments
which either contain rule violations (to test detection
ability) or correct code (to test for false alarms). The
test cases need to be organized consistently. We
package the test cases within an Abstract Class or an
Interface containing the java methods illustrated in
Listing 2.

void trueNegativeExamples();
void truePositiveExamples();
void falsePositiveExamples();
void falseNegativeExamples();

Listing 2

The method trueNegativeExamples() will host the
true negatives test cases. The method
truePositiveExamples() will host the true positive
test cases. Before the first round of testing, the
content of these two first methods are hypothetical.
For example, when testing a rule that scans for
unauthorized cryptographic methods
trueNegativeExamples() might contain uses of
authorized cryptographic algorithms, which should

50

 3

not generate any violations. At the same time,
truePositiveExamples() might contain uses of
unauthorized algorithms which should lead to
violations if the rule is working correctly.. The last
two methods, falsePositiveExamples() and
falseNegativeExamples(), are initially empty
because their content is tool dependent and therefore
not predictable before a code scan. Indeed, two
different code analysis tools may not report the same
false positives and false negatives. Identifying false
negatives can be a difficult subtle game, but it is an
important one. Actually catching vulnerabilities
classified in our test suite, as false negatives will
require manual code review, dynamic testing, or
some combination. Failing to identify false negatives
means you are missing vulnerabilities present in the
code.

d. Writing test cases

The next step is to write test cases which will
implement the correct and incorrect way to
implement the rule. If an axiom has been written in
the previous step, the test cases writing will be
facilitated. To illustrate this step we wrote test cases
for our previous example in step (a). In Java, there
are many possible source code constructs to
implement the use of allowed cryptographic
algorithm. Therefore we can start to list all the
possible correct ways to implement the use of the
permissible algorithms. In the Java Cryptographic
Extension (JCE) framework [2], in order to use
cryptographic algorithm we should get an instance of
the Cipher Object. The following code samples in
Listing 3 are all valid implementations.

public void trueNegativeExamples()
{
// true negative #1
// Use of AES (CBC mode)
Cipher.getInstance("AES/CBC/PKCS5Padding");

// true negative #2
// Use of 3DES (CBC-EDE3 mode)
Cipher.getInstance("DESede/CBC/PKCS5Padding");

// true negative #3
// Use of String parameters
String cipherSpec1="DESede/CBC/PKCS5Padding";
Cipher.getInstance(cipherSpec1);

// true negative #4
// Load the algorithm name from a property file
which has an authorized algorithm
Properties p = new Properties();
p.loadFromXML(new
FileInputStream(PROPERTIES_FILE));

cipherSpec2 = p.getProperty("cipherSpec");
Cipher.getInstance(cipherSpec2);

// true negative #5

String cipherSpec3="DESede/CBC/PKCS5Padding";

if (cipherSpec1.startsWith("DES"))
{
cipherSpec3 = cipherSpec1.replaceFirst("DES",
"DESede");
}
Cipher.getInstance(cipherSpec3);

// true negative #N
// etc.
}

Listing 3

From a static analysis perspective (with Fortify�s
Source Analyzer), the previous examples are
considered true negatives. The code analysis tool
should not report them as findings because they are
all valid implementation respecting the corporate
mandate on cryptographic algorithm.

Similarly, we have to list all the possible violations of
the rule that we are trying to enforce. That list will be
our list of true positives, the ones that the tool should
recognize as violating our authorized algorithms rule.

Writing these two lists may require imagination and
experience. Most of the time programmers are
thinking about the right way to program things.
Almost oppositely, writing test cases requires to
come up with, not strictly speaking abuse case, but
data (in this case source code) that will cause the
code analysis tool to fail. In essence, we are stress-
testing the tool. For instance, the use of an
unauthorized algorithm would violate the rule as
illustrated by the following code Listing 4.

private String cipherSpec1;

void init()
{
//unauthorized algorithm
cipherSpec1 = "DES/CBC/PKCS5Padding";
}
…
public void truePositiveExamples()
{
String cipherSpec2 = "AES/ECB/PKCS5Padding";

// true positive #1
// interprocedural
Cipher.getInstance(cipherSpec1);

// true positive #2
Cipher.getInstance(cipherSpec2);

// true positive #3
// concatenating Strings
StringBuffer cipherSpec3 = new
StringBuffer("IDEA");
cipherSpec3.append("/CBC/ISO10126Padding");

51

 4

Cipher.getInstance(cipherSpec3.toString());

// true positive #4
// from a system property which has an
// unauthorized algorithm value.
cipherSpec3 = System.getProperty("cipherSpec");

// true positive #N
// etc.
}

Listing 4

The goal of having multiple test cases with similar
effects is to try to cover all the different
implementation variants. It bears clarifying: here we
are talking about variations in syntax that might trick
the code analysis tool rather than purely alternative
implementations of a code construct. For instance the
true positive test case #1 and #2 have the same result,
their Cipher Object take an unauthorized algorithm as
parameter, but the parameter passing is done
differently. Specifically, one tests the tool�s
interprocedural parameter modeling.

Some of the test cases are intentionally too complex
for the tool to recognize as true positives or true
negatives, but they represent control or data flow that
might occur in real application�s source code in a less
contrived form. For instance true positive #4 takes an
environment variable which has an unauthorized
algorithm as value. Static analysis tools face
tremendous difficulty identifying examples like #4
because an environment variable can be resolved
deterministically only at runtime. This test case can
have its true negative counterpart which would take
an authorized algorithm as environment variable, but
again it is unlikely for the tool to be accurate unless
the tool�s user can provide it hints during analysis.
While some vendors� tools allow such �hints�,
Fortify�s product does not currently.

Maturity of test cases gradually elevates as the tester
can define more complex code constructs that define
the tool�s limits. We did not use a quantitative scale
for evaluating the complexity of the test case.
Instead, we relied on several years of static analysis
experience. For instance we know that some code
analysis tools have no inter-procedural analysis
checks. Therefore we can add a test case that hides a
vulnerability using an inter-procedural call.

The list of false negatives and false positives should
now permit us to write well defined axioms
specifying the rule at the source code level.

e. Writing/Revisiting the source code level axioms.

Iterating test cases allows us to iteratively refine the
accuracy of axioms that will specify what code
constructs would violate our custom rule. An
accurate axiom would typically describe the rule
constraints so the rate of false positives is reduced. In
order to expedite rule writing, we used a common
grammar for axiom writing. We defined the syntax of
this common grammar as pseudo code similar to the
specification language through which one writes
certain types of custom rules for the Fortify product
to facilitate translation. But ideally we would want to
have larger common grammar that could cleanly
express rules that rely heavily on other analysis such
as control flow, data flow, or state machine
specification. The axiom corresponding to the
cryptographic rule in step (a) is mapping to the code
construct in Listing 5.

// true negative #1
// Use of AES (CBC mode)
Cipher.getInstance("AES/CBC/PKCS5Padding");

Listing 5

For our cryptographic example, the Java source code
axiom would look like the following Listing 6.

FunctionCall:

function.name == "getInstance"
and
function.parameters.length != 0
and
function.enclosingClass.supers contains [Class
name == "javax.crypto.Cipher"]
and
function parameters[0].type=="java.lang.String"
and
not(
arguments[0].constantValue is [String:
startsWith "AES/CBC"] or

arguments[0].constantValue is [String:
startsWith "DESede/CBC"]
)

Listing 6

Translation into axioms crucially maps the high level
requirements of a security standard to possible
implementations in a particular language�s source
code. It is necessary to ensure that all the rule
constraints are captured properly and no constraints
are lost during this translation phase.

f. Implementing the axioms using the tool extension

mechanism

52

 5

Next, the rule writer implements a rule by translating
axioms into whatever form the tool-specific
extension mechanism requires. Some code analysis
tools use a proprietary rule description language;
others use programming languages as extension
mechanism (C++, python, etc.)

g. Running the static analysis tool against the test

cases.

The code analysis tool should take the new custom
rules as input and be run against all the true positives
and true negatives that we have constructed. In our
experiments, this was done in a loop, iteratively, and
we used our test cases as well as code �from the
wild� to collect measurements on our ability to find
additional true positive results and increase a rule�s
accuracy through reducing false positives. We
believe it is reasonable to expect a 100% increase in
both measures when customizing a tool�s existing
core rule.

h. Analyzing the results

The test scan creates two new expected categories of
test cases: the false negatives and false positives (see
Figure 1). One of the goals of code analysis is to
minimize the number of findings in those two new
categories. False positives create noise and require
time consuming verification. This is only tolerable if
the number of false positives is low. But on the
opposite we want to avoid false negatives. In this
case, false negatives are true rule violations that the
tool missed.

True Positives
+ + + + + + + +

True Negatives
- - - - - - - - - - -

True Positives
+ + + + +

True Negatives
- - - - - - - -

False Negatives
- - -

False Posit ives
+ + +

Static Analysis Tool Scan

Figure 1

We can therefore reclassify the test cases according
to the tool�s findings. We move those test cases
belonging to the new categories to their respective
methods falsePositiveExamples() and

falseNegativeExamples() from the true negatives
and true positives methods.

At this point it is useful to try to understand what
confused the tool. Why did the tool report the false
positives? Why did it not catch the false negatives?
Errors may be caused by the tool itself or by the
implementation of the custom rule. The tool has
limitations, for instance in our previous example the
tool may not be capable of recognizing the value of
the String input parameter which represents an
authorized algorithm. Usually the tool user does not
have much control of the tool�s implementation
limitations (this applies to commercial tools, where
source code is not available). However, the user has
control of the custom rule implementation which uses
the tool�s extension mechanism. Problems caused by
faulty rules can be fixed, and fixing them is the
purpose of the next step.

i. Feedback loop, return to step one (axioms) and

stop when low false positive and false negative
residuals

One of the goals of this framework is to have the
static analysis tool reporting all true positives and
have a low rate of false positives and false negatives.
Therefore after the first iteration, the scan result may
not be satisfactory. At a higher level the axioms can
be incorrect and may need to be revised. The process
may need multiple iterations before being accepted
by the user with tolerable error levels.

It is useful to note that some code constructs are more
frequently used than others, and reporting the most
frequently used code constructs first will lead to the
fastest results. This property is illustrated in the
following Java code (Listing 7).

private String cipherSpec1;

void init()
{
//unauthorized algorithm
cipherSpec1 = "DES/CBC/PKCS5Padding";
}
…
public void truePositiveExamples()
{
String cipherSpec2 = "AES/ECB/PKCS5Padding";

// true positive #1
// interprocedural
Cipher.getInstance(cipherSpec1);

// true positive #2
Cipher.getInstance(cipherSpec2);

}

53

 6

Listing 7

The previous Listing 7 demonstrates that there are
many ways to violate the rule. The tool is supposed to
catch all true positives, but the test cases that we
really care about are the first two test cases (#1 and
#2). The remaining true positives test cases (Listing
4) are less a concern because they are unlikely to
occur but we still desire that the tool covers them. We
assume here that most of the programmers would use
the case #1 and #2 in a real application. Trying to
cover the most likely code constructs for a rule
violation can be a wise choice when the possible code
constructs are too numerous.

j. Integration with other process

As mentioned earlier, false negatives provide
valuable insight into other security activities. False
negatives represent what the tool does not find as rule
violation, but should ideally. Other techniques can be
used to find those false negatives depending on their
severity. False negatives should feed manual code
review standards, security testing efforts, and in some
cases, may guide application deployment or
penetration testing efforts.

Custom rules can be further tested by running them
against wild code to find out if they behave as
predicted in the test framework. The rules can be
continually fine-tuned to achieve greater efficiency.

Conclusion

We have described a step by step test methodology
that we have used to write efficient custom rules for
automated software scanning. This test-driven
approach has several benefits. It can expand the state
of the art of static tool analysis. Identifying the
undesired residual results such as false negatives and
false positives can be used to improve the accuracy
and coverage of existing tools. The false negatives
test the tool�s limits and create new technical
challenges for tool providers. Being able to isolate
the false negatives and positives is also crucial
knowledge for the scan results reviews and manual
reviews.

References

[1] Fortify Software
http://www.fortifysoftware.com/

[2] Java Cryptography Extension (JCE),
http://java.sun.com/products/jce/

[3] SAMATE NIST Project
http://samate.nist.gov

[4] McGraw G. Software Security: Building Security
In, Addison-Wesley Professional, 1st Edition 2006

54

High fidelity static analysis for secure enterprise software
requires platform knowledge

Nikolai Mansourov1,2, Djenana Campara1, Norman Rajala1, Sumeet Malhotra3

1 KDM Analytics,
2 corresponding author, nick@kdmanalytics.com

3 Unisys corp

Abstract. Static analysis methods and automatic tools that scan for security vulnerabilities offer significant advan-
tages over manual reviews and audits. However, there are several common misconceptions about the nature and the
scope of static analysis that limits its usability in certain contexts. We demonstrate that in order to perform high fidel-
ity security analysis of entire enterprise systems the scope of static analysis needs to be increased. Lack of knowledge
of the operating environment of the software may result in significant amount of false positive reports produced by a
static analysis tool. This paper defines high-fidelity static analysis, discusses its limiting factors, the need to extend
static analysis models with the representation of the operating environment of software and gives a brief overview of
the Object Management Group (OMG) approach to a common representation suitable for high fidelity static analysis
for security of entire enterprise systems.

1. Introduction

Automatic static analysis is positioned as an alternative to a manual code review [1]. Indeed, static analysis methods
supported by automatic tools that scan for security vulnerabilities offer significant advantages over manual audits. Ad-
vantages of tool supported security analysis include consistency of a scanning tool (a scanning tool uses a certain for-
malization of security vulnerability patterns, and can be trusted to systematically explore all known possibilities), poten-
tially broad coverage of vulnerability patterns (security scanner tool can use a library of vulnerability patterns created
by security experts, which can in many cases exceed the expertise of an auditor), potentially broad coverage of the code,
and speed of the analysis.

However, it is a well-known fact that in practice the fidelity of automatic static analysis is still quite low. This paper
attempts to define high-fidelity static analysis, examines its limiting factors, and offers some insight as to why fidelity
of a static analysis tool depends on the type of application. We discuss requirements for high fidelity security analysis
or enterprise systems. The objective of this paper is to demonstrate that high fidelity static analysis of enterprise systems
requires extensions to traditional program representations, inspired by compilers. At the end we give a brief introduc-
tion into the new Object Management Group (OMG) foundation for high-fidelity static analysis of entire enterprise sys-
tems, the Knowledge Discovery Metamodel (KDM) [2].

2. High fidelity static analysis and its limiting factors

Fidelity (of something copied or reported) is defined as truthfulness, closeness in sound, facts, color, etc. to the origi-
nal1. Fidelity of the automatic static analysis is therefore directly related to its accuracy. Accuracy can be defined as the
degree of absence of false positives reports and the soundness of the analysis, or the absence of false negative reports.
On the other hand, the power of the automatic static analysis is directly related to the set of security vulnerability pat-
terns, the thoroughness and the speed of the analysis. So far, this distinction allows us to separate high power but low
fidelity tools (broad coverage of vulnerability patterns, but large number of false positives), and low power high fidelity
tools (accurately reporting a limited number of vulnerabilities).

However, the definition of fidelity includes more than just accuracy. Fidelity of static analysis is related to how the
reports that are produced by the automatic static analysis tool are close to the intended model used by developers.
Therefore, fidelity is related to the representation used by the tool for analysis, and the differences of this representation
from the model used by developers. In other words, fidelity of a static analysis tool is how close are the results to the
ones that can be potentially produced during the manual inspection. This introduces a new distinction between an
“bluntly“ inaccurate report (one that is not likely to be produced during a manual review, but can be produced in large
numbers by an automatic tool), and an “interesting” report, that was considered worth investigating, even if it was con-
sidered false at the end. The first is a characteristic of a low fidelity static analysis, where there is a significant discon-
nect between the model used by the tool, and the model used by the developers.

1 Longman Dictionary of Contemporary English

55

Let’s look at the limitations to high fidelity static analysis. Firstly, application code is not self-contained, and is sel-
dom determined by a programming language alone. On the surface, all source code artifacts are expressed in a certain
programming language. However, application code is developed for a certain technical platform, which significantly
determines both the architecture and the control and data flow structures of the code. As the result, in most cases it is
not sufficient to understand the particular programming language in order to understand the code. Consider the follow-
ing simple example [3].

Figure 1. Example of the application code involving a technical platform

This code is written in C. The example above consists of two files, each of which defines a function called “main”.
The first function defines a static buffer, copies a string “ABC” into this buffer, and then uses a macro “EXEC CICS
LINK” and returns. The second function defines a pointer to a buffer, then uses macro “EXEC CICS ADDRESS” and
checks if the buffer contains the string “ABC”. Function “main” is usually known to be the entry point into a program.
However, this alone is not sufficient to understand this code. In fact, the snippet is taken from the CICS programming
manual. To fully understand the behavior of this code (in order to perform high fidelity vulnerability detection), it is
important to extend the model. In addition to such concepts as “file”, “function”, “main” function, “buffer”, “usage of a
macro definition” and “system call”, and the capability to analyze control and data flows through statements within one
procedure as well as interprocedurally, a high fidelity model for this example should also include the following con-
cepts:

• CICS transaction
• CICS commarea
• CICS configuration

In addition to building an internal representation determined by the C language, a high fidelity static analyzer capable
of processing the above example should include the capability to parse CICS configuration files, and the capability to
analyze control and data flows in the extended model, where the second program is registered with CICS as a transac-
tion with name “PROG2”, and the first program invokes the second program through CICS by performing an “EXEC
CICS LINK” command, and that the contents of the “field” buffer defined in the first program are made available to the
second program (via the CICS commarea mechanism).

Static analysis that does not take such information into account will be low fidelity.

Related factors that may limit fidelity of static analysis (in no particular order), include the following:

• Dynamic structures (processes, threads, etc.)
• Calls via pointers
• Virtual functions
• Application frameworks
• Event-driven systems
• Reflexion
• Dynamically linked modules

Specific challenge of high fidelity static analysis is to utilize additional information about the technical platform of
the software in order to complete control- and data flow paths. This is illustrated at Figure 2. It shows an execution path
that consists of three segments: {1,2,3}. The path spans two components and involves control- and data flow, deter-
mined by the technical platform (segment 2). Segment 1 of the execution path starts at function “a”, goes into function
“b” of the same component, and returns to function “a”. Segment 3 starts at function “c”, goes into function “d”, then
into function “e”, returns to function “d”, goes into function “e”, returns to “d”, then to “c” and finishes. Let’s assume

56

that a certain security vulnerability (for example, an unchecked access to a buffer) is detected at function “c” in compo-
nent B, and the data flow required to validate this vulnerability involves function “b” in component The technical plat-
form determines control- and data flow, by providing some function “X” (for example, an event manager,) that calls
function “a” of component A, then calls function “c” of component B. This information is not explicitly present in the
source code of either component. At Figure 2 the missing information is represented by dashed lines.

 Traditional representations focus on components A and B as they are determined by the programming language.
Therefore they are not sufficient for high-fidelity static analysis of this example. As a side note, segments 1 and 3 in iso-
lation involve different binding times than segment 2. Segments 1 and 3 involve the so-called compile- and link- time
binding, while segment 2 is provided by the technical platform which involves at least deployment time binding, or ini-
tialization time binding or in some cases even a pure runtime binding. By definition, language processing tools only
deal with compile time bindings. Further discussion of binding times is outside of the scope of this paper. High fidelity
static analysis will increase the scope of analysis to include the knowledge of the technical platform in order to com-
plete the execution path {1,2,3} and analyze an entire application.

There are further limitations to high-fidelity static analysis. Let’s consider the differences in representations used by

the tool and by developers in more detail.
The starting point is the source code as it is written by the application programmer. During the application building

and integration this code undergoes multiple transformations to produce the product, which usually involves several bi-
nary deployable components. The product is then deployed (or installed). Then the product runs on the target technical
platform. At runtime, it may be beneficial to distinguish between the initialization phase during which the semi-
permanent dynamic structures are created, and the execution phase, which may involve creation of more on-demand
dynamic structures, for example, using reflexion, dynamic process creation, virtual function, callbacks, etc. Some of
these techniques may be entirely user-driven. By “structures” we mean certain entities and relations between them (fol-
lowing the terminology recommended in [2]). Control flow and data flow relations are fully determined by these struc-
tures. Static analysis examines these structures, applies security vulnerability patterns to detect potential vulnerabilities
and validates control and data flow to either confirm of reject the vulnerability. Usually, when vulnerability is con-
firmed, a static analysis tool is capable of identifying some sort of an execution path leading to the vulnerability. In
some cases, the information produced by a static analysis tool may be sufficient to figure out the actual exploit (from
the black box testing perspective).

At this level, several additional mismatches with the intended models used by developers can occur. A typical exam-
ple involves the usage of the preprocessor (macrodefinitions, conditional compilation, include files). Representation for
static analysis usually involves preprocessed code, however the developer works with the original code before the pre-
processing. Loss of fidelity can occur in this situation, since, for example, a buffer overflow is reported only for a cer-
tain configuration (as determined by conditional compilation settings), but is not reported for other configurations. A
more dramatic loss of fidelity may occur when different compilation settings are used for building the product then for
static analysis.

The loss of fidelity in current tools may be caused by several common misconceptions about the scope of static

analysis. Traditionally static analysis has been developed as an extension of compiler construction techniques. There-
fore, typical representations used by static analysis tools focus on artifacts that are located in source files, and that are
determined by a programming language. The representations may include text, lexical tokens, syntax trees, abstract syn-
tax trees, abstract syntax graphs, and specialized program analysis representations (in the order of increasing fidelity).
Analysis may involve different scope: local, module-level, or global. Indeed, these are the representations that have
been proven useful in the area of compiler construction. The goal of the compiler is to translate these entities into some
sort of binary representation. Therefore, the compiler does not involve any models of the operating environment of each

Figure 2. Platform knowledge is required to complete the execution path

b

a c

d
e

f

1

2

3

x

platform

Component A

Component B

57

module. However, the need to represent entire enterprise systems, as well as other mismatches with the models used by
developers, require more information to available to the static analyzer, going beyond traditional compiler models.

3. Enterprise systems and their operating environments

 In this section we will consider the landscape of applications and discuss the reasons why the same static
analysis tool may provide high fidelity results in some situations and low fidelity results in others.

Let’s first define the term “platform”. The history of computing can be characterized by the invention of more
and more powerful programming platforms for developing applications. First applications were programmed for a
physical machine. Then an operating system was invented, and applications were programmed for a particular operating
system. A virtual machine was invented, which added another layer in the technical platform. Further, business applica-
tions involved the usage of network systems, database management systems, and transaction systems. Further, the tech-
nical platform involved middleware and component based environments. Traditional business applications are pro-
grammed for a technical platform that involves most of the above elements (see Figure 3). Often, a business application
will also involve a specific application framework.

Enterprise systems involve enterprise application integration (EAI) layer. A composite enterprise application
uses application platform, rather than a technical platform. Modern business applications use the Service-Oriented Ar-
chitecture (SOA) to define a service enablement layer. The motivation for using powerful platforms is to close the gap
between the physical machine and the business process domain of the application. We use the term “operating environ-
ment” to refer to the entire business process platform of an enterprise application [4] (see Figure 3).

A typical scenario through an enterprise application crosses the boundaries of composite application code, “service”
applications in the application platform, and parts of the technical platform of each “service” application. In a low-
fidelity code-centric approach, the explicitly visible portions of an interesting scenario may be fragmented (see Figure
3).

Enterprise systems usually integrate multiple “service” applications, which involve multiple technologies as parts of
the technical platform[5]. “Service” applications usually involve multiple programming languages as well as various
configuration files for describing integration, deployment, and installation. In order to perform high-fidelity analysis of
enterprise applications, knowledge representations should extend well beyond specific programming languages to in-
clude the entire business process platform, while still performing control- and data flow analysis determined by the pro-
gramming language statements. Pragmatically, this means that the challenge of high-fidelity static analysis of entire en-

Figure 3. Operating environments of modern enterprise applications

Operating System / VM

Machine

DBMS Network
Systems

Transaction
Systems

Business
Process
Platform

Traditional Applications

Custom business
processes & analytics

Application
Platform

Technical
Platform

Middleware

Reusable, Executable
Services

Composite Applications

Service Enablement Layer
Reusable, Executable Services

Operating System / VM

Machine

DBMS Network
Systems

Transaction
Systems

Business
Process
Platform

Traditional Applications

Custom business
processes & analytics

Application
Platform

Technical
Platform

Middleware

Reusable, Executable
Services

Composite Applications

Service Enablement Layer
Reusable, Executable Services

scenarioscenario

© SAP AG and D. Frankel, 2005

58

terprise applications is best addressed by multiple static analysis tools, some of which specialize in extracting language
specific models for particular programming languages, others specialize in extracting platform-specific information.
Coordination between static analysis tools requires exchange of information based on a common representation. The
rest of the paper will introduce the work done in OMG to standardize such common representation [2].

In the overall landscape of applications (for example, each box at Figure 3), some applications are more self-
contained then others. For example, system programming applications, like the implementation of a DBMS, operating
system code, or a network driver will only use few parts of the overall technical platform. Therefore, a static analysis
tool, when applied to a system programming type of application, such as Linux kernel code, may appear high fidelity,
while the same tool may show lower fidelity results for a traditional business application, and will be perceived as low
fidelity for higher-end applications that use an application-specific frameworks and enterprise application integration.

4. Common representation of platform knowledge for high-fidelity static analysis

This section provides an overview of a common representation of platform knowledge that can facilitate exchange of
information between different static analysis tools and can lead to high-fidelity static analysis involving entire enterprise
systems.

What are the commonalities between various technical platforms?
• platform provides resources to application code
• platform provides services that are related to resources
• application code invokes platform services to manage the life-cycle of resources
• platform provides component deployment mechanism
• platform defines control and data flow between application components
• platform provides error handling across application components
• platform provides integration of application components

The purpose of a platform is to simplify application development by closing the gap between the application domain
and the facilities that are available to application programmers. These facilities are referred to as platform resources.
Examples of platform resources include the following: Posix File, Posix IO Stream, Posix socket, Posix Process, Posix
thread, AWT widget, CICS File, CICS transaction, UNIX semaphore, UNIX shared memory segment, OS/390 VSAM
file, JDBC connection, HTTP session, HTTP request, UNIX memory block, CICS commarea, COBOL file.

Usually, major platforms provide a mechanism for deploying functionality. A unit of deployment for a particular plat-
form is further referred to as deployment component. Deployment component is a replaceable unit of an application.
Packaging and deployment scheme usually includes configuration facility that supports assembling systems from de-
ployment components. Configuration can occur at Deployment time, Initialization time, or at Run time. Examples of
application unit include the following: DLL, shared library, COM component, Ecipse plugin, Executable,, Jar file, War
file for Tomcat, SQL Stored procedure, CORBA module, EJB, JavaBean, Jakarta Struts Action, Jakarta Struts Form,
Event handler, Interrupt handler.

Major platform elements support componentization by “reversing” some of the control flows. “Reversed” control
flows reduce coupling between components (but not necessarily eliminate it). Deployment components are usually
plugins into the platform. Control flow starts from inside of the platform. Platform activates application components
through various kinds of call-back mechanisms. Knowledge of platform-specific activations is essential for understand-
ing an enterprise software system. Examples of platform-specific activations include the following: CICS program link-
ing, CICS transaction flow (RETURN), Unix interrupt handling, Eclipse plugin invocation, AWT event listner, CORBA
method invocation, UNIX main(), WINDOWS winmain(), Servlet invocation, Jakarta Struts action::run(), Java thread
run() method.

Error handling may be considered as part of inter-component control flow supported by the platform, but this is such
an important aspect of application development, that it deserves a special category. Examples of platform-specific error
handling includes the following: Java exception mechanism, C++ exception mechanism, COM HRESULT, CICS
ABEND.

Some resources are designed to be shared between application components so that components can exchange infor-
mation (data and events). Interprocess communication aspects of runtime platforms are related both to data resources,
and to control-flow, as inter-component communication usually implies an indirect flow of control between components
(invocation of the receiver component by the platform as the result of initiating communication by the sender compo-
nent). Examples of interprocess communication mechanisms include the following: CICS commarea, CORBA message,
Java RMI message, MQSeries message, HTTP request parameters, Windows event, UNIX message queue , Database
notification via callback, UNIX semaphore, UNIX shared memory segment

When separation of concerns between application code and runtime platform is considered, it is important to be clear
about the so-called bindings and various mechanisms to achieve a binding (or delay it). A binding is a common way of
referring to a certain irrevocable implementation decision. Too much binding is often referred to as “hardcoding”. This
often results in systems that are difficult to maintain and reuse. They are often also difficult to understand. Too little

59

binding leads to dynamic systems, where everything is resolved at run time (as late as possible). This often results in
systems that are difficult to understand and error-prone. Modern platforms excel in ingenious ways to manage binding
time. Usually binding is managed at deployment time. Large number of software development methodologies support
efficient management of binding time, for example, portable adaptors, code generation, and model-driven architecture.
Efficient management of binding time is often referred to as “platform independence”.

5. The new OMG foundation for high fidelity static analysis of enterprise systems

The Object Management Group (OMG) has specified the new foundation for high-fidelity static analysis of entire en-
terprise representations called the Knowledge Discovery Metamodel (KDM) [2]. KDM is designed as the OMG founda-
tion for software assurance and modernization. KDM provides a common standard way of representing and exchanging
models of existing enterprise systems and their operating environments. KDM is designed as a common language and
platform independent model with a powerful extension mechanism that can address language-, platform- and vendor-
specific requirements. KDM is a metamodel defined in OMG Meta Object Facility (MOF). KDM specifies the common
repository format, an XML-based standard exchange format (KDM XMI), and a complete API to KDM models.

KDM is aligned with a well-known architecture view approach [6]. It follows the separation of concerns principle to
provide a collection of models each of which defines a common language and platform independent view of an enter-
prise system. The basis of KDM includes high-fidelity Code Model that represents common program elements such as
procedure, variable, etc., and the Action Model that represents execution statements, and thus can be used for basic con-
trol and data flow analysis. The second level of KDM includes several models that use the primitive information cap-
tured in the Code and Action Models and represent additional information, which is not explicitly present in the source
code. This level includes the Platforms & Runtime Models that provide a common way of representing the platform
knowledge, according to the outline given in the previous section.

The second level of KDM also includes the following models:
• Data Model, that captures persistent data management aspects of enterprise systems,
• Build Model that captures engineering view and engineering supply chain,
• Structure Model that captures subsystems and layers of the system
• UI and Event Model that capture the user interface and presentation aspects
• Conceptual and Behaviour Models that capture domain-specific information and can be used for example

for business rules mining, for representing meaningful scenarios across the system, etc.

Figure 4 KDM facilitates the new ecosystem of software assurance and modernization tools

Language & platform
footprint

extractorextractor

modelmodel

extractorextractor

modelmodel

extractorextractor

modelmodel

reportingreporting

extractorextractor

modelmodel

reporting

analysis

reporting

integration

analysis

reportingreportingreporting

analysisanalysis

Traditional tools

KDM modelintegrationintegration

Language & platform
footprint

extractorextractor

modelmodel

analysisanalysis

reportingreporting

integrationintegration

extractorextractor

modelmodel

analysisanalysis

reportingreporting

integrationintegration

extractorextractor

modelmodel

analysisanalysis

reportingreporting

KDM ecosystem tools

60

KDM leverages the collective experience of building static analysis, program understanding and modernization tools
from such companies, like IBM, EDS, Unisys, ASG, and others [2]. There already exist a large industry of software
tools for software assurance and modernization. However, until recently each tool is build as a stand-alone “silo”, with a
proprietary extractor that determines the programming language “footprint” of the tool, a proprietary analysis engine,
some visualization, etc. (Figure 4, left side). Some proprietary extractors may include hardcoded knowledge of some
specific platforms. Each tool includes a proprietary model with different degrees of fidelity. Currently, the exchange of
information between static analysis and modernization tools is ad hoc and point-to-point, usually driven by larger soft-
ware integrator companies that use these tools to perform assessment and modernization of enterprise systems (Figure
4, left side).

KDM facilitates information exchange between existing static analysis and modernization tools, as well as develop-
ment of the next generation high fidelity static analysis tools. Integration between existing static analysis tools can be
done by providing KDM adaptors to existing models, performing export and import of models using the standard KDM
XMI representation. Next generation software assurance and modernization tools can leverage KDM API, defined in
the OMG KDM standard, and the corresponding framework, SDK, and repository.

KDM facilitates the new ecosystem of software assurance and modernization tools, which emphasizes specialization
in high-fidelity components that can be easily integrated into the overall framework as well as standard-based exchange
of information between tools (Figure 4, right side).

6. Conclusions

High fidelity static analysis of entire enterprise systems requires significant improvements in internal representations
used by traditional static analysis tools. Enterprise systems usually integrate multiple applications, involve multiple
technologies that collectively comprise the business process platform. An enterprise system usually involves multiple
programming languages as well as various configuration files for describing integration, deployment, and installation.
In order to perform high-fidelity analysis of enterprise software, knowledge representation should extend well beyond
specific programming languages to include business process platforms as well as business domain concerns, while still
performing control- and data flow analysis determined by the programming language statements. Pragmatically, this
means that the challenge of high-fidelity static analysis of entire enterprise software is best addressed by a consortium
of multiple static analysis tools, some of which specialize in extracting language specific models for a particular pro-
gramming languages, others specialize in extracting platform-specific information, yet other tools specialize in perform-
ing control and data flow analysis, and others – in security vulnerability patterns. Coordination between static analysis
tools requires exchange of information based on a common representation.

The Object Management Group (OMG) has recently standardized such common representation, called Knowledge
Discovery Metamodel (KDM) designed as the common language-, platform- independent and vendor-neutral founda-
tion for high fidelity static analysis of enterprise systems. KDM includes two levels of models: the traditional compiler-
like internal representation, and derivative layer, representing information that is essential for correct understanding of
an entire enterprise system, but that is not explicitly available in source code. In particular, the KDM model involves a
common representation of platform knowledge related to business process platforms, which is required for high fidelity
static analysis of entire enterprise systems.

7. References

1. Brian Chess, Gary McGraw, Static Analysis for Security, IEEE Security & Privacy, pp 32-35, 2004
2. OMG Knowledge Discovery Metamodel, draft adopted specification, omg document amdtf/06-03-01
3. Horswill, Designing and Programming CICS Appications, O’Reilly, 2000
4. D. Frankel, Model-Driven Architecture: Applying MDA to enterprise computing, Addison-Wesley, 2004
5. Hohpe, Woolf,Enterprise Integration Patterns, Addison-Wesley, 2004
6. Hofmeister, Nord, Soni, Applied Software Architecture, Addison-Wesley, 2000

61

A Status Update: The Common Weaknesses Enumeration
Robert A. Martin
MITRE Corporation
202 Burlington Road
Bedford, MA 01730

1-781-271-3001

ramartin@mitre.org

Sean Barnum
Cigital, Inc.

21351 Ridgetop Circle, Suite 400
Sterling, VA 20166

1-703-404-5762
sbarnum@cigital.com

ABSTRACT
This paper is a status update on the Common Weaknesses
Enumeration (CWE) initiative, one of the efforts focused on
improving the utility and effectiveness of code-based security
assessment technology. It is hoped that the CWE initiative will
help to dramatically accelerate the use of tool-based assurance
arguments in reviewing software systems for security issues.

1. INTRODUCTION
More and more organizations want assurance that the software
products they acquire and develop are free of known types of
security weaknesses. High quality tools and services for finding
security weaknesses in code are new. The question of which
tool/service is appropriate/better for a particular job is hard to
answer given the lack of structure and definition in the software
product assessment industry.

There are several efforts currently ongoing to begin to resolve
some of these shortcomings including the Department of
Homeland Security (DHS) National Cyber Security Division
(NCSD) sponsored Software Assurance Metrics and Tool
Evaluation (SAMATE) project [1] being led by the National
Institute of Standards and Technology (NIST), and the Object
Management Group (OMG) Software Assurance (SwA) Special
Interest Group (SIG) [2], among others. While these efforts are
well placed, timely in their objectives and will surely yield high
value in the end, they both require a common description of the
underlying security weaknesses that can lead to exploitable
vulnerabilities in software that they are targeted to resolve.
Without such a common description, many of these efforts cannot
move forward in a meaningful fashion or be aligned and
integrated with each other to provide strategic value.

As part of their participation in the SAMATE project, MITRE has
helped lead the creation of a community of partners from industry,
academia, and government to develop, review, use, and support a
common weaknesses dictionary/encyclopedia that can be used by
those looking for weaknesses in code, design, or architecture as
well as those teaching and training software developers about the
code, design, or architecture weaknesses that they should avoid
due to the security problems they can have on applications,
systems, and networks.

2. FIRST STEPS
The initial steps of the CWE work entailed collecting and re-
viewing past efforts in organizing and itemizing security weak-
nesses and identifying those concepts, constructs and lessons that
could be used to create the CWE dictionary. Lauren Davis, from
the Johns Hopkins University Applied Physics Laboratory, facili-
tated this work. At the same time we started establishing the foun-

dations of a web site design to hold the materials, ideas, and
documents that would come out of the CWE initiative. An im-
portant element of the CWE initiative is to be transparent to all on
what we are doing, how we are doing it, and what we used to
develop the CWE List. We believe this transparency is important
both during the initial creation of the CWE List so that all of the
participants in the CWE Community will feel comfortable with
the end result and won’t be hesitant about incorporating CWE into
what they do. However, the transparency must also include those
that will come after the CWE creation activities are complete and
should be provided the opportunity to review and learn about how
the CWE List was created. To this end we will be making sure
that copies of all of the source documents of publicly available
information used in creating CWE List are available on the web
site [3].

3. PRIMING THE PUMP
To start the creation of the CWE List we brought together as
much public content as possible, using three primary sources:

• the Preliminary List of Vulnerability Examples for
Researchers (PLOVER) collection [4] which identified
over 300 weakness types created by determining the
root issues behind 1,400 of the vulnerabilities in
Common Vulnerabilities and Exposures (CVE) List [5];

• the Comprehensive, Lightweight Application Security
Process (CLASP) from Secure Software. which yielded
over 90 weakness concepts [6], and

• the issues contained in Fortify’s Seven Pernicious
Kingdoms papers, which contributed over 110 weakness
concepts [7]

Working from these collections as well as those contained in the
other thirteen information sources listed on the CWE web site
“Sources” page we developed the current draft of the CWE List,
which entails almost 500 separate weaknesses.

The CWE List content is provided in several formats and will
have additional formats and views into its contents added as the
CWE initiative proceeds. Currently one pane of the main CWE
page contains an expanding/contracting hierarchical
“taxonometric” view along with an alphabetic dictionary pane.
The end items in the hierarchical view are hyper-linked to their
respective dictionary entries in the second pane. Graphical
depictions of CWE content, as well as the contributing sources,
are also available on the site. Finally, the xml and xsd for the
CWE List are provided for those who wish to do their own
analysis/review with other tools. Dot notation representations of
this material will be added in the future.

62

4. EXPANDING CWE
With the current draft of CWE List as a baseline/reference point,
we are now gathering in the specific details and descriptions of 13
organizations that have agreed to contribute their intellectual
property to the CWE initative. Under Non-Disclosure
Agreements with MITRE, which allow the merged collection of
their individual contributions to be publicly shared in the CWE
List, Cenzec, Core Security, Coverity, Fortify, Interoperability
Clearinghouse, Klocwork, Ounce Labs, Parasoft, proServices
Corporation, Secure Software, SPI Dynamics, Veracode, and
Watchfire are all contributing.

In addition to these sources, we will also leverage the work, ideas,
and contributions of researchers at Carnegie Mellon’s CERT/CC,
IBM, KDM Analytics, Kestrel Technology, MIT Lincoln Labs,
North Carolina State University, Oracle, the Open Web Applica-
tion Security Project (OWASP), Security Institute, UNISYS, the
Web Application Security Consortium (WASC), Whitehat
Security, and any other interested parties that wish to contribute.

We expect the merging and combining of the contributed
materials will take most of the summer and result in an updated
CWE List that will be ready for community comments and
refinement as we move forward. A major part of this will be
refining and defining the required attributes of CWE elements into
a more formal schema defining the metadata structure necessary
to support the various uses of CWE List. This schema will also be
driven by our need to align with and support the SAMATE and
OMG SwA SIG efforts that are developing software metrics,
software security tool metrics, the software security tool survey,
the methodology for validating software security tool claims, and
the reference datasets.

5. CURRENT THOUGHTS ON IMPACT
AND TRANSITION OPPORTUNITIES
As stated in the concept paper that laid out the case for developing
the CWE List [8], the completion of this effort will yield
consequences of three types: direct impact and value, alignment
with and support of other existing efforts, and enabling of new
follow-on efforts to provide value that is not currently being
pursued.

Following is a list of the direct impacts this effort will yield. Each
impact could be the topic of much deeper and ongoing discussion.

1. Provide a common language of discourse for discussing,
finding and dealing with the causes of software security
vulnerabilities as they are manifested in code, design, or
architecture.

2. Allow software security tool vendors and service providers to
make clear and consistent claims of the security weaknesses
that they cover to their potential user communities in terms
of the CWEs that they look for in a particular code language.
Additionally, a new “CWE Compatibility” will be developed
to allow security tool and service providers to publicly
declare their capability's coverage of CWEs.

3. Allow purchasers to compare, evaluate and select software
security tools and services that are most appropriate to their
needs including having some level of assurance of the level
of CWEs that a given tool would find. Software purchasers
would be able to compare coverage of tool and service

offerings against the list of CWEs and the programming
languages that are used in the software they are acquiring.

4. Enable the verification of coverage claims made by software
security tool vendors and service providers (this is supported
through CWE metadata and alignment with the SAMATE
reference dataset).

5. Enable government and industry to leverage this
standardization in the contractual terms and conditions.

Following is a list of alignment opportunities with existing efforts
that are provided by the results of this effort. Again, each of these
items could be the topic of much deeper ongoing discussion.

1. Mapping of CWEs to CVEs. This mapping will help bridge
the gap between the potential sources of vulnerabilities and
examples of their observed instances providing concrete
information for better understanding the CWEs and
providing some validation of the CWEs themselves.

2. Bidirectional alignment between the common weaknesses
enumeration and the SAMATE metrics effort.

3. Any tool/service capability measurement framework that
uses the tests provided by the SAMATE Reference Dataset
would be able to leverage this common weakness dictionary
as the core layer of the framework. This framework effort is
not an explicitly called out item in the SAMATE charter but
is implied as necessary to meet the project’s other objectives.

4. The SAMATE software security tool and services survey
effort would be able to leverage this common weaknesses
dictionary as part of the capability framework to effectively
and unambiguously describe various tools and services in a
consistent apples-to-apples fashion.

5. There should be bidirectional alignment between this source
of common weaknesses and the SAMATE reference dataset
effort such that CWEs could reference supporting reference
dataset entries as code examples of that particular CWE for
explanatory purposes and reference dataset entries could
reference the associated CWEs that they are intended to
demonstrate for validation purposes. Further, by working
with industry, an appropriate method could be developed for
collecting, abstracting, and sharing code samples from the
code of the products that the CVE names are assigned to with
the goal of gathering these code samples from industry
researchers and academia so that they could be shared as part
of the reference dataset and aligned with the vulnerability
taxonomy. These samples would then be available as
tailoring and enhancement aides to the developers of
software assessment security tools. We could actively engage
closed source and open source development organizations
that work with the CVE initiative to assign CVE names to
vulnerabilities to identify an approach that would protect the
source of the samples while still allowing us to share them
with others. By using the CVE-based relationships with
these organizations, we should be able to create a high-
quality collection of samples while also improving the
accuracy of the software product security assessment tools
that are available to the software development groups to use
in vetting their own product's code.

6. Any validation framework for tool/service vendor claims,
whether used by the purchasers themselves or through a 3rd

63

party validation service, would rely heavily on this common
weakness dictionary as its basis of analysis. To support this,
we would work with researchers to define the mechanisms
used to exploit the various CWEs for the purposes of helping
to clarify the CWE groupings and as a possible verification
method for validating the effectiveness of the tools that
identify the presence of CWEs in code by exploring the use
of several testing approaches on the executable version of the
reviewed code. The effectiveness of these test approaches
could be explored with the goal of identifying a method or
methods that are effective and economical to apply to the
validation process.

7. Bidirectional mapping between CWEs and Coding Rules,
such as those deployed as part of the DHS NCSD “Build
Security In” (BSI) website [9], used by tools and in manual
code inspections to identify common weaknesses in software.

8. Leveraging of the OMG technologies to articulate formal,
machine parsable definitions of the CWEs to support analysis
of applications within the OMG standards-based tools and
models.

Following is a list of new, unpursued follow-on opportunities for
creating added value to the software security industry.

1. Expansion of the Coding Rules Catalog on the DHS BSI
website to include full mapping against the CWEs for all
relevant technical domains.

2. Identification and definition of specific domains (language,
platform, functionality, etc.) and relevant protection profiles
based on coverage of CWEs. These domains and profiles
could provide a valuable tool to security testing strategy and
planning efforts.

With this fairly quick research and refinement effort, this work
should be able to help shape and mature this new code security
assessment industry, and dramatically accelerate the use and

utility of these capabilities for organizations and the software
systems they acquire, develop, and use.

6. ACKNOWLEDGMENTS
The work contained in this paper was funded by DHS NCSD.

7. REFERENCES
[1] “The Software Assurance Metrics and Tool Evaluation

(SAMATE) project,” National Institute of Science and
Technology (NIST), (http://samate.nist.gov).

[2] “The OMG Software Assurance (SwA) Special Interest
Group,” (http://swa.omg.org).

[3] “The Common Weaknesses Enumeration (CWE) Initiative,”
MITRE Corporation, (http://cve.mitre.org/cwe/).

[4] “The Preliminary List Of Vulnerability Examples for
Researchers (PLOVER),” MITRE Corporation,
(http://cve.mitre.org/docs/plover/).

[5] “The Common Vulnerabilities and Exposures (CVE)
Initiative,” MITRE Corporation, (http://cve.mitre.org).

[6] Viega, J., The CLASP Application Security Process, Secure
Software, Inc., http://www.securesoftware.com, 2005.

[7] McGraw, G., Chess, B., Tsipenyuk, K., “Seven Pernicious
Kingdoms: A Taxonomy of Software Security Errors”.
“NIST Workshop on Software Security Assurance Tools,
Techniques, and Metrics,” November, 2005 Long Beach,
CA.

[8] Martin, R. A., Christey, S., Jarzombek, J., “The Case for
Common Flaw Enumeration”. “NIST Workshop on Software
Security Assurance Tools, Techniques, and Metrics,”
November, 2005 Long Beach, CA.

[9] Department of Homeland Security National Cyber Security
Division’s “Build Security In” (BSI) web site,
(http://buildsecurityin.us-cert.gov).

64

A Proposed Functional Specification for Source Code Analysis
Tools

Michael Kass, Michael Koo, Paul E. Black, Vadim Okun
National Institute of Standards and Technology

100 Bureau Drive, Mail Stop 897
Gaithersburg MD, 20899

Abstract:

Software assurance tools are a fundamental resource for providing an assurance argument
for today’s software applications throughout the software development lifecycle (SDLC).
Software requirements, design models, implementation code and executable code are
analyzed by tools to determine if an application is truly secure. This document specifies
the functional behavior of one class of software assurance tool: the source code analyzer.
Because the majority of software weaknesses today are introduced at implementation, a
specification that defines a “baseline” source code analysis tool capability can help
software professionals select a tool that will meet their software assurance needs.

1. Introduction:

This section gives some technical background, defines terms we use in this specification,
explains how concepts designated by those terms are related, and details some challenges
in source code analysis for security assurance.

No amount of analysis and patching can imbue software with high levels of security or
quality or correctness or other important properties. Such properties must be designed in
and built in. Good choice of language, platform, and discipline are worth orders of
magnitude more than reactive efforts. Nevertheless testing or examination of code has
benefits in some situations.

Code must be analyzed to determine how different methods or processes affect the
quality of the resultant code. If the origin of code has limited visibility, testing or static
analysis are the only ways to gain higher assurance. Existing, legacy code must be
examined to assess its quality and determine what, if any, remediation is needed.

Testing, or dynamic analysis, has the advantage of examining the behavior of software in
operation. In contrast, only static analysis can be expected to find malicious trapdoors.
Analysis of binary or executable code, including "bytecode," avoids assumptions about
compilation or source code semantics. Only the binary may be available for libraries or
purchased software. However, source code analysis can give developers feedback on
better practices. Remediation is often done in source code. Analysis of higher level
constructs, such as models, designs, use cases, or requirements documents, is possible,

65

too. However, these higher level artifacts often lack rigor and rarely reflect all the critical
detail in source code implementations. Thus static analysis of source code is a reasonable
place to work for higher software assurance.

Often, different terms are used to refer to the same concept in software assurance and
security literature. Different authors may use the same term to refer to different
concepts. For clarity we give our definitions. To begin any event which is a violation of
a particular system's explicit (or implicit) security policy is a security failure, or simply,
failure. For example, if an unauthorized person gains "root" or "admin" privileges or if
Social Security numbers can be read through the World Wide Web by unauthorized
people, security has failed.

A vulnerability is a property of system security requirements, design, implementation, or
operation that could be accidentally triggered or intentionally exploited and result in a
security failure. (After [NIST SP 800-27]) In our model the source of any failure is a
latent vulnerability. If there is a failure, there must have been a vulnerability. A
vulnerability is the result of one or more weaknesses in requirements, design,
implementation, or operation.

In the unauthorized privileges example above, the combination of the two weaknesses of
allowing weak passwords and of not locking out an account after repeated password
mismatches allow the vulnerability. This vulnerability can be exploited by a brute force
attack to cause the failure of an unauthorized person gaining elevated privileges. An
SQL injection vulnerability might be exploited several different ways to produce
different failures, such as dropping a table or revealing all its contents. If spyware can
steal a user's password, it is a vulnerability. But it may be hard to attribute the
vulnerability to particular weaknesses in software that can be "fixed." Spyware typically
exploits system weaknesses, which require changes at the system level.

Sometimes a weakness cannot result in a failure, in which case it is not exploitable and
not a vulnerability. Such a weakness may be masked by another part of the software or it
may only cause a failure in combination with another weakness. Thus we use the term
"weakness" instead of "flaw" or "defect."

A source code analysis tool examines software and reports weaknesses or vulnerabilities
it finds. They may be graded according to severity, potential for exploit, certainty that
they are result in vulnerabilities, etc. Ultimately people must use the reports to decide

• which reported items are not true vulnerabilities,
• which items are acceptable risks and will not be mitigated, and
• which items to mitigate, and how to mitigate them.

The report may even lead the user to reject a piece of software altogether as insufficiently
secure to use or as needing to be discarded and written from scratch.

For several reasons no tool can correctly determine in every conceivable case whether or

66

not a piece of code has a vulnerability. First, a weakness may result in a vulnerability in
one environment, but not in another. Second, Rice proved that no algorithm can correctly
decide whether or not a piece of code has a property, such as a weakness, in every case.
Third, practical analysis algorithms have limits because of performance and intellectual
investment. Some vulnerabilities can only be identified if a tool performs inter-file, inter-
procedural, or flow-sensitive analysis of the code. Deliberate obfuscation with complex
code structures make the analysis even harder. Fourth, a tool may not have "rules" to
find all known vulnerabilities. This is even harder since new exploits and vulnerabilities
are being invented all the time.

Since no tool can be perfect, a tool may be biased on the side of caution and report
questionable constructs. Some of those may turn out to be false alarms or false positives.
To reduce time wasted on false alarms, a tool may be biased on the side of certainty and
only report constructs which are (almost) certainly vulnerabilities. In this case it may
miss some vulnerabilities. A missed vulnerability is called a false negative. Changing
the threshold of certainty to report a construct as a vulnerability trades fewer false
negatives for more false alarms and vice versa. The ideal would be a tool that reports
every real vulnerability (no false negatives) with no false alarms. Even though this is
theoretically impossible, utility requires some metric for the tradeoff between false
alarms and false negatives.

2. Functional Requirements for Source Code Analysis Tools

In this section we first give a high-level description of the functional requirements for
source code analysis tools, and then detail the mandatory and optional requirements.

High Level View

A baseline level of functionality is required in order for a source code analysis tool to be
considered compliant with this specification. In its “simplest” sense, a source code
analysis tool must be able to (at a minimum):

• Identify a select set of software security weaknesses in source code.
• Generate a text report of the security weaknesses that it finds, indicating the source

file name and line number(s) where those weaknesses are located.

Requirements for Mandatory Features

In order to meet this baseline capability, all source code analysis tools must be able to
accomplish the tasks described in the mandatory requirements listed below. If the tool
under test supports the applicable feature, then optional requirements can be tested as
well. If a specific tool does not provide the capabilities of a particular optional
requirement, then the tool is not tested for that optional requirement. This means that a
specific tool might provide none of the capabilities described under optional
requirements. The following requirements are mandatory and shall be met by all source
code analysis tools.

67

SCA-RM-1: The tool shall identify any code security weakness that is listed in appendix
A.
SCA-RM-2: The tool shall generate a text report identifying all security weaknesses that
it finds.
SCA-RM-3: The tool shall identify a weakness by its proper Common Weakness
Enumeration [CWE] identifier.
SCA-RM-4: The tool shall specify the location of a weakness by providing the directory
path, file name and line number.
SCA-RM-5: The tool shall be capable of detecting weaknesses within the coding
constructs listed in appendix B.
SCA-RM-6: The tool shall generate an acceptably low “false-positive” ratio.

Requirements for Optional Features

The following requirements define optional tool features. If a tool provides the capability
defined, the tool is tested as if the requirement were mandatory. If the tool does not
provide the capability defined, the requirement does not apply.

SCA-RO-1: The tool shall produce an XML-formatted report.
SCA-RO-2: The tool shall have a “suppression system” that permits the user to identify
and flag lines of code such that subsequent scans of the same (or modified) code will not
generate the same report of a weakness.

Appendix A: Source Code Weaknesses

The source code weaknesses listed in this table represent a “base set” of code weaknesses
that a source code analysis tool (or combination of source code analysis tools) should be
able to identify if they support the analysis of the language in which the weakness exists.
Criteria for selection of weaknesses include:

Found in real code today – The weaknesses listed below are found in real software
applications.
Recognized by tools today - Tools today are able to identify these weaknesses in source
code and identify their associated file names and line numbers.
Likelihood of exploit is medium to high – The weakness is fairly easy for a malicious
user to recognize and to exploit.

Because the body of known software weaknesses is evolving (with new ones discovered
every day), this list will grow. Additionally, as source code analysis tools mature in their
capabilities and are able to identify more software weaknesses, those weaknesses will be
added to this list. The names and descriptions in this list are found in [CWE].

68

Name Description Language(s)
Data Handling.Input Validation.Pathname Traversal and Equivalence Errors. Path
Equivalence.

Path Manipulation
Allowing user input to control paths used by
the application may enable an attacker to
access otherwise protected files.

C, C++, Java, other

Data Handling.Input Validation.Injection.

Command Injection

Command injection problems are a subset of
injection problem, in which the process is
tricked into calling external processes of the
attacker’s choice through the injection of
control-plane data into the data plane.

C, C++, Java, other

Cross Site
Scripting.Basic XSS

'Basic' XSS involves a complete lack of
cleansing of any special characters, including
the most fundamental XSS elements such as
"<", ">", and "&".

C,C++, Java, other

Resource Injection

 Allowing user input to control resource
identifiers might enable an attacker to access
or modify otherwise protected system
resources.

C, C++, Java, other

Data Handling.Input Validation.Injection.Command Injection.

OS Command
Injection

Command injection problems are a subset of
injection problem, in which the process is
tricked into calling external processes of the
attacker’s choice through the injection of
control-plane data into the data plane. Also
called “shell injection”.

C, C++, Java, other

SQL Injection

SQL injection attacks are another instantiation
of injection attack, in which SQL commands
are injected into data-plane input in order to
effect the execution of predefined SQL
commands.

C, C++, Java, other

Data Handling.Range Errors.Buffer Errors.Unbounded Transfer ('classic overflow').

Stack overflow

A stack overflow condition is a buffer
overflow condition, where the buffer being
overwritten is allocated on the stack (i.e., is a
local variable or, rarely, a parameter to a
function).

C, C++

Heap overflow

A heap overflow condition is a buffer
overflow, where the buffer that can be
overwritten is allocated in the heap portion of
memory, generally meaning that the buffer

C, C++

69

was allocated using a routine such as the
POSIX malloc() call.

Write-what-where
condition

Any condition where the attacker has the
ability to write an arbitrary value to an
arbitrary location, often as the result of a
buffer overflow.

C, C++

Format string
vulnerability

Format string problems occur when a user has
the ability to control or write completely the
format string used to format data in the printf
style family of C/C++ functions.

C, C++

Improper Null
Termination

The product does not properly terminate a
string or array with a null character or
equivalent terminator. Null termination errors
frequently occur in two different ways. An
off-by-one error could cause a null to be
written out of bounds, leading to an overflow.
Or, a program could use a strncpy() function
call incorrectly, which prevents a null
terminator from being added at all. Other
scenarios are possible.

C, C++

API Abuse.

Heap Inspection

Using realloc() to resize buffers that store
sensitive information can leave the sensitive
information exposed to attack because it is not
removed from memory.

C, C++

Often Misused:
String Management

Functions that manipulate strings encourage
buffer overflows.

C, C++

Security Features.Password Management.
Hard-Coded
Password

Storing a password in plaintext may result in
a system compromise.

C/C++, Java

Time and State.Race Conditions.

Time-of-check Time-
of-use race condition

Time-of-check, time-of-use race conditions
occur when between the time in which a
given resource (or its reference) is checked,
and the time that resource is used, a change
occurs in the resource to invalidate the results
of the check.

C, C++, Java, other

Error Handling.

Unchecked Error
Condition

Ignoring exceptions and other error conditions
may allow an attacker to induce unexpected
behavior unnoticed.

C, C++, Java, other

Code Quality.

70

Memory leak

Most memory leaks result in general software
reliability problems, but if an attacker can
intentionally trigger a memory leak, the
attacker might be able to launch a denial of
service attack (by crashing the program) or
take advantage of other unexpected program
behavior resulting from a low memory
condition .

C, C++

Unrestricted Critical
Resource Lock

A critical resource can be locked or controlled
by an attacker, indefinitely, in a way that
prevents access to that resource by others, e.g.
by obtaining an exclusive lock or mutex, or
modifying the permissions of a shared
resource. Inconsistent locking discipline can
lead to deadlock.

C, C++, Java, other

Double Free Calling free() twice on the same value can
lead to a buffer overflow.

C, C++

Use After Free Use after free errors sometimes have no effect
and other times cause a program to crash.

C, C++

Code Quality.Channel and Path Errors.Untrusted Search Path.

Uninitialized variable

Most uninitialized variable issues result in
general software reliability problems, but if
attackers can intentionally trigger the use of
an uninitialized variable, they might be able
to launch a denial of service attack by
crashing the program.

C, C++

Illegal Pointer Value

This function can return a pointer to memory
outside of the buffer to be searched.
Subsequent operations on the pointer may
have unintended consequences.

C, C++

Use of sizeof() on a
pointer type

Running sizeof() on a malloced pointer type
will always return the wordsize/8.

C, C++

Unintentional pointer
scaling

In C and C++, one may often accidentally
refer to the wrong memory due to the
semantics of when math operations are
implicitly scaled.

C, C++

Improper pointer
subtraction

The subtraction of one pointer from another in
order to determine size is dependant on the
assumption that both pointers exist in the
same memory chunk.

C, C++

Unsafe Reflection
By leveraging reflection capabilities, an
attacker may be able to create unexpected
control flow paths through the application,

Java

71

potentially bypassing security checks.

Null Dereference
Using the NULL value of a dereferenced
pointer as though it were a valid memory
address

C, C++

Encapsulation.
Private Array-Typed
Field Returned From
A Public Method

The contents of a private array may be altered
unexpectedly through a reference returned
from a public method.

Java, C++

Public Data Assigned
to Private Array-
Typed Field

Assigning public data to a private array is
equivalent giving public access to the array.

Java, C++

Overflow of static
internal buffer

A non-final static field can be viewed and
edited in dangerous ways.

Java, C++

Leftover Debug Code Debug code can create unintended entry
points in an application.

C, C++, Java, other

Appendix B: Code Complexity Variations

In addition to having the capability to locate and identify source code weaknesses listed
in appendix A, a source code analysis tool must be able to find those weaknesses within
complex coding structures. A general list of these types of structures, adopted and
modified from [MIT] is provided below. Some of the enumerated values are language
specific (e.g. the use of pointers in C, C++), however, most are general types of
constructs that exist across C/C++ and Java. Equivalent constructs in other languages
will be added as tools for those languages are included in this specification.

Complexity Description Enumeration
address alias level level of “indirection” of buffer

alias using variable(s)
containing the address

1,2

array address complexity level of complexity of the
address value of an array buffer

constant, variable, linear expression,
nonlinear expression, function return
value, array content value

array index complexity level of complexity of the index
value of an array buffer using
variable assignment

constant, variable, linear expression,
nonlinear expression, function return
value, array content value

array length/limit
complexity

level of complexity of array
length or limit value

constant, variable, linear expression,
nonlinear expression, function return
value, array content value

container containing data structure array, struct, union, array of structs,
array of unions, class

72

local control flow type of control flow around
weakness

if,switch,cond,goto/label,setjmp,longj
mp, function pointer, recursion

data type type of data read or written character,integer,floating point,wide
character,pointer,unsigned
character,unsigned integer

asynchronous asynchronous coding construct threads, forked process, signal
handler

index alias level level of buffer index alias
indirection

1,2

loop structure type of loop construct in which
weakness is embedded

standard for,standard do while,
standard while, non standard for, non
standard do while, non standard while

loop complexity component of loop that is
complex

initialization, test, increment

memory access type of memory access related
to weakness

read, write

memory location type of memory location related
to weakness

heap, stack, data region, BSS, shared
memory

pointer pointer used for a buffer address yes,no
scope scope of control flow related to

weakness
same, inter-procedural, global,inter-
file/inter-procedural, inter-file/global

taint type of tainting to input data argc/argv, environment variables, file
or stdin, socket, process environment

Appendix C: References

[CWE] Common Weakness Enumeration, The MITRE Corporation, web site
http://cve.mitre.org/cwe/index.html#tree

[MIT] Kendra Kratkiewicz and Richard Lippmann, A Taxonomy of Buffer Overflow for
Evaluating Static and Dynamic Software Testing Tools. In Proceedings of Workshop on
Software Security Assurance Tools, Techniques and Metrics. NIST SP500-256. Feb.
2006.

[SP800-27] Engineering Principles for Information Technology Security
(A Baseline for Achieving Security), NIST SP 800-27, Revision A, June
2004. Available at http://csrc.nist.gov/publications/nistpubs/

73

http://csrc.nist.gov/publications/nistpubs/

	NIST Sp.pdf
	July 2006

	allpapers.pdf
	Linger.pdf
	Linger.pdf
	1. Computing Software Behavior
	2. FX Treats Programs Like Equations
	3. FX Improves Software Comprehension
	4. FX Impacts the Software Lifecycle
	5. Development of the Function Extraction for Malicious Code System
	6. FX for Automated Security Attribute Analysis
	7. FX for Automated Correctness Verification
	8. FX for Automated Component Composition
	9. References

	Quinlan.pdf
	1 Introduction
	2 One-Definition Rule (ODR)
	3 VPTR Exploit
	4 A Whole-Program Analysis to Detect ODR Violations
	4.1 Overview of the whole-program representation and ODR test
	4.2 Whole-program AST construction
	4.3 Merged AST example

	5 The Rose Infrastructure
	5.1 Front-end
	5.2 Mid-end
	5.3 Back-end

	6 Related Work
	7 Conclusions and Future Work

	kass.pdf
	A Proposed Functional Specification for Source Code Analysis
	High Level View
	Requirements for Mandatory Features
	Requirements for Optional Features

