

A Model-based Analysis of First-
Generation Service Discovery Systems

Christopher Dabrowski
 Kevin L. Mills

 Stephen Quirolgico

NIST Special Publication 500-260

 NIST Special Publication 500-260

A Model-based Analysis of First-
Generation Service Discovery Systems

Christopher Dabrowski
 Kevin L. Mills

 Stephen Quirolgico
Information Technology Laboratory

October 2005

U.S. Department of Commerce
Carlos M. Gutierrez, Secretary

Technology Administration

Phillip J. Bond, Under Secretary for Technology

National Institute of Standards and Technology
William A. Jeffrey, Director

Certain commercial entities, equipment, or materials may be identified in this
document in order to describe an experimental procedure or concept adequately. Such

identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply that the
entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Special Publication 500-260
Natl. Inst. Stand. Technol. Spec. Publ. 500-260, 110 pages (October 2005)

CODEN: NSPUE2

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 2005

For sale by the Superintendent of Documents, U.S. Government Printing Office
Internet: bookstore.gpo.gov — Phone: (202) 512-1800 — Fax: (202) 512-2250

Mail: Stop SSOP, Washington, DC 20402-0001

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico iii NIST SP 500-260

Acknowledgements

The authors wish to thank their many colleagues who contributed to the research, analysis, and experimentation leading
up to this special publication. The foundation for this work began in 1999 when a small group of researchers at NIST
met to share their individual analyses of specific service discovery systems proposed by industry. The initial group
included Chris Dabrowski, Olivier Mathieu, Kevin Mills, Doug Montgomery, and Scott Rose. Over the duration of the
research leading up to this publication a range of others contributed, including Kevin Bowers, Mackenzie Britton, Jesse
Elder, Stephen Quirolgico, Andrew Rukhin, Vasughi Sundramoorthy, and Ceryen Tan. Without the many contributions
from these dedicated and curious researchers, this publication would not exist. Thanks are also due to the many
reviewers, both inside and outside of NIST, who provided helpful suggestions to improve the various ideas
incorporated in this publication. We also must not ignore the significant contributions made by the designers,
specification writers, and implementers who developed the proposed technologies for service discovery, which formed
the basis for the analyses reported here. Without the imagination and resources of these industrial contributors, we
would not be in a position to provide the knowledge we gained by studying the designs for various service discovery
systems. A select few individuals who had the foresight to provide funding to support the research reported here
provided a final, but key, contribution to this work. Funding was provided by: Susan Zevin, as acting director of the
NIST Information Technology Laboratory, Douglas Maughan, as manager of the Defense Advanced Research Projects
Agency (DARPA) Fault-Tolerant Networks Program, John Salasin, as manager of the DARPA program in Dynamic
Assembly for System Adaptability, Dependability and Assurance, and James Puffenbarger of the Advanced Research
and Development Activity (ARDA).

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico iv NIST SP 500-260

EXECUTIVE SUMMARY

Information technology is undergoing a paradigm shift from desktop computing, where isolated workstations connect
to shared servers across a network, to pervasive computing, where myriad portable, embedded, and networked
information appliances continuously reconfigure themselves individually and collectively to support the information
requirements of mobile workers and work teams. This shift will not occur overnight, nor will it be achieved without
solving a range of new technical and social problems. Still, this inexorable change should yield many economic
opportunities for the global information technology industry, and for the increasing swath of businesses that depend on
information. The potential value of pervasive computing motivated the NIST Information Technology Laboratory
(ITL) to establish a five-year program of research to help the information technology industry identify and solve some
looming technical roadblocks that seemed likely to slow development and acceptance of the new paradigm. The ITL
Pervasive Computing program addressed three general areas: human-computer interaction, programming models, and
networking. Service discovery systems, which reside in an intersection between programming models and networking,
cover a key aspect of pervasive computing. For this reason, researchers in ITL decided to study various industry
designs for service discovery systems that could play a key part in future technology to enable pervasive computing
applications. This special publication provides an analysis of a first generation of designs for service discovery
systems.

Over the period from about 1998 to 2000, industry developed a first generation of competing architectures and
protocols for device and service discovery. Such a plethora of incompatible approaches might impede the
interoperability required by a market for pervasive computing. Is the existence of so many different service discovery
systems justified? NIST researchers analyzed various technical approaches and developed a model to unify the
features, functions, and processes provided. The goal of this modeling effort was threefold: (1) to understand the
essential service-discovery functionality provided by the industry, (2) to reveal any technical deficiencies in existing
service-discovery specifications, and (3) to define the technical bounds achievable from this first-generation of service-
discovery systems. The result of this modeling effort is reported in this special publication.

The fact that numerous competing designs have appeared indicates a substantial industry interest in using
dynamic service discovery as a means to deploy and evolve component-based systems. But why have so many different
designs appeared? Are the designs sufficiently different to warrant multiple solutions? What elements are contained
within the various designs? What problems should service discovery systems solve? What are the shortcomings of the
first-generation of service discovery systems? What open issues do first-generation designs for service discovery
systems leave for implementers to solve? These are the questions that motivate the work reported in this publication.

Based on careful analyses of selected specifications for service discovery architectures and protocols, we
present a generic model that represents the key elements, relationships, and behaviors of a service discovery system.
Our model consists of two parts: a meta-model that defines the context in which service discovery systems operate and
a generic, object-oriented model that represents the fundamental structure and behavior of service discovery systems.
We also identify some open issues or limitations in existing designs for first-generation service discovery systems. We
demonstrate how our generic model can be used to represent specific service discovery systems.

Beyond an analysis of the structure and behavior of first-generation service discovery systems, we consider
two other problems. First, the current generation of service discovery systems can lead to some system-wide
performance issues, unless implementers and users exercise due care. We identify three classes of performance issues
that might arise, and we suggest a range of solutions that implementers might adopt to solve each issue. A second
problem relates to service guarantees. None of the service discovery systems we analyzed defined any expectations
about the guarantees, or even the goals, that the design aimed to satisfy. We propose a set of service guarantees that we
believe service discovery systems should aim to achieve, and we explain the qualifications associated with such
guarantees. In other work, we have used our proposed service guarantees to assess the performance and correctness of
specific designs for service discovery systems.

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico v NIST SP 500-260

In summary, this special publication makes three specific contributions – intended to inform a future
generation of designs and to improve the performance of implementations for the current generation of designs. First,
we provide a generic model of the structure and behavior of first-generation service discovery systems, and we show
how our model can represent the designs for several, specific service discovery systems. Our model unifies the
common elements and behaviors in modern service discovery systems. Should an industry standards group choose to
develop a unified specification for service discovery, our model could provide helpful input to the process. We also
identify issues that designers should attempt to resolve in the next generation of service discovery systems. Second, we
propose a set of service guarantees that we believe service discovery systems should strive to satisfy, along with an
analysis of the factors that might interfere with meeting service guarantees. Such service guarantees could be cast into
test assertions that serve to evaluate the behavior or measure the performance of designs and implementations of
service discovery systems. Third, we identify and suggest possible solutions to performance issues that can arise in
dynamic service discovery systems. Identifying possible performance issues can alert users to the potential for
unexpected behavior when service discovery technology is deployed at large scale. Further, implementers of service
discovery systems can consider our suggested solutions when developing software to embody related processes in a
service discovery system. Our three contributions should help to improve the quality of the next generation of service
discovery systems on which the service-oriented architectures of tomorrow appear likely to depend.

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, and Quirolgico vi NIST SP 500-260

Table of Contents

1. Introduction…………………………………………………………………..…………1
2. Modeling First-Generation Service Discovery Architectures…………….…………….3
 2.1 Informal Description of Service Discovery Systems………………………….3
 2.2 Overview of Selected First-Generation Service Discovery
 Systems…………………………………………………………..……………5
 2.2.1 UPnP…………………..…………………………………………….5
 2.2.2 Jini…………………………………………..……………………….6
 2.2.3 SLP…………..……………………………..………………………..6
 2.3 Example Service Discovery Architectures……………………………………7
 2.4 Formal Architectural Model……………..…………………………………..10
 2.5 Specializing Service Discovery Entities through Service
 Discovery Roles……………………………..……………………………….11

 2.6 Integrating with Service Discovery Applications…………….…………….12
3. An Object-Oriented Model of Service Discovery Systems…….……………………..14
 3.1 Discoverable Items…………………………….……………………………..14
 3.1.1 Service Descriptions…………………………………..…….……..14
 3.1.2 Repository Descriptions…………………………………….….…..17
 3.1.3 Administrative Scopes……………………………………………..17
 3.1.4 Service Types…………………………………………………..…..18
 3.2 Configuration Discovery and Monitoring……………………………………18
 3.2.1 Lazy Discovery…………………………………………………….22
 3.2.2 Aggressive Discovery……………..…………………………….…23
 3.2.3 Directed Discovery……………..…………………..…….………..25
 3.2.4 Monitoring Discoveries………………………………………..…..26
 3.3 Registrations and Extension…………………………………………………27
 3.3.1 Registration Types…………………………………………………27
 3.3.2 Registration Process……………………………..…………….…..29
 3.3.3 Extension Process……………….………………………….……...31
 3.4 Service-Description Discovery and Monitoring…………………….……….33
 3.4.1 Service-Description Discovery with Repositories………….….…..33
 3.4.2 Service-Description Monitoring with Repositories………….…….35
 3.4.2.1 Notification……………………………………….….…..35
 3.4.2.2 Polling……………………………………………………36
 3.4.3 Service-Description Discovery without Repositories…..…….……37
 3.4.4 Service-Description Monitoring without Repositories…..…….…..37
 3.5 Variable Discovery and Monitoring…………………………………………37
 3.6 Limitations and Open Issues…………………………………………………39
 3.6.1 Limited Scalability…………………………………….…………..40
 3.6.2 Incomplete Design of Logical Partitioning Schemes……….……..40
 3.6.3 Unsupported Notification of Changes to Repository
 Descriptions…….……………………..…………………….……..41
 3.6.4 Underspecified Interactions between Service Providers

 and Service Discovery Entities……………….……………………41

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, and Quirolgico vii NIST SP 500-260

3.6.5 Insufficient Specification of Relationship between
 Service Description and Eventable Variables……………….….….42
3.6.6 Failure to Consider Resource-Constrained Devices….…………....42

4. Performance Considerations………………………………….…………………….…44
 4.1 Multicast Implosion Avoidance………………….………………….……….44
 4.1.1 Probabilistic Response…………………………………….……….44
 4.1.2 Timed Response……………………………………………………47
 4.1.2.1 Random Response Strategy…………………….………..47
 4.1.2.2 Scheduled Response Strategy…………….….……..……49
 4.2 Extension Policy…………………………………………….….……………51
 4.2.1 Fixed Assignment………………………….…..……….………….52
 4.2.2 Random Assignment…………………….…………….…..……….54
 4.2.3 Requested Assignment………………………………………..……54
 4.2.4 Adaptive Assignment………….………..………………………….54
 4.2.5 Priority Assignment…………….…………………….……..……..55
 4.3 Replica Selection………………………………………………….…..……..56
 4.3.1 Greedy Scheme………………….…………..…………..…………58
 4.3.2 Partition Scheme……………..….……………..…………………..59
 4.3.3 Weighted Scheme…………….……………….……………..…….60
 4.3.4 Balanced Scheme………………………..…………….….……..…61
 4.3.5 Balanced-Partition Scheme……………………………...…………62
5. Service Guarantees………………..…………………………………….…………….64
 5.1 Kinds of Service Guarantees………………………………………..……….65
 5.1.1 Discovery Guarantees………………………………….…………..65
 5.1.1.1 Primary Discovery……………………………………….65
 5.1.1.2 Secondary Discovery…………………………………….66
 5.1.2 Registration Guarantee……………..………………………………66
 5.1.3 Update Guarantees…….………………………….………………..67
 5.1.4 Discard Guarantees……………………………………….……….68
 5.1.4.1 Discovery Discard…………….……..…………..………68
 5.1.4.2 Description Discard………….……………………..……69
 5.1.4.3 Registration Discard……………………………..………70
 5.2 Formalizing Service Guarantees……………………………….…………….71
 5.2.1 Consistency Conditions………………………..………..…………71
 5.2.2 Reachability…………………………………….……….…………72
 5.3 Discovery Consistency………………………………………………………73
 5. 3.1 Primary Discovery……………………………..…….……………73
 5. 3.2 Secondary Discovery………………………………….…………..76
 5.4 Registration Consistency……………………………….……………………79
 5.5 Update Consistency……………………….………………..………………..82
 5.6 Discard Consistency……………………….……………..………………….83
 5.6.1 Discovery Discard……………….…………………………………83
 5.6.2 Description Discard…………….……….…………………..……..84
 5.6.3 Registration Discard………………………………………………..85
6. Representing Specific Service Discovery Systems…………….…….………………..87
 6.1 UPnP………………………….…………………………….………..………87

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, and Quirolgico viii NIST SP 500-260

 6.1.1 UPnP Discovery……………………………………………………87
 6.1.2 Service Description Monitoring Through

 Variable Monitoring………………………………….……...…….89
 6.2 Jini…………………………………………………………………..……….89
 6.2.1 Jini Discovery………………………………………….….……….89
 6.2.2 Service and Notification Request Registration…….……..………..91
 6.2.3 Service Description Monitoring………………….…….….……….92
 6.3 SLP…………………………………………………………….….………….92
 6.3.1 SLP Discovery………………………………………….………….92
 6.3.2 Service Registration……………………………….……………….95
 6.3.3 Service Description Monitoring………………….…..…………….96

6.4 Web Services Discovery……………………………………….…………….96
 6.4.1 WS-Discovery without Discovery Proxies….….…….……………96
 6.4.2 Discovery Proxies……………….…………….…..……………….98

 6.5 Globus MDS………………………..……………………….……………….98
 6.5.1 Repository Discovery…………………………….………………..99
 6.5.2 Service Registration and Extension……….……..……………….100
 6.5.3 Service Description Retrieval…………….…………..…………..101
7. Conclusions………………………….……………………………………………….104
8. References……………………………………………………………………………105
Appendix A. Function Sets, Functions, and Roles……….…………………………….108

1. Introduction

Software systems are evolving toward a form where applications can be composed
dynamically from distributed components. A key part of such a paradigm is the ability for
clients to discover services that fulfill specific requirements. Over the past five or six
years, various designs have been proposed for service discovery systems [1-11] that can
help clients and services to rendezvous in a distributed system. We characterize such
designs as first-generation service discovery systems, based on our belief that experience
with these systems will lead to future, improved designs.

The fact that numerous competing designs have appeared indicates a substantial industry
interest in using dynamic service discovery as a means to deploy and evolve component-
based systems. But why have so many different designs appeared? Are the designs
sufficiently different to warrant multiple solutions? What elements are contained within
the various designs? What problems should service discovery systems solve? What are
the shortcomings of the first-generation of service discovery systems? What open issues
do first-generation designs for service discovery systems leave for implementers to
solve? These are the questions that motivate the work reported in this paper.

A few previous papers [12-16] have compared various service discovery systems at a
functional or programming level. In general, these previous comparisons exhibit some
significant shortcomings. First, most extant comparisons fail to consider the deeper
design issues underlying service discovery systems. Second, most comparisons discuss
various designs using concepts and terminology adopted from the related specifications,
which makes it difficult for readers to draw comparisons among similar or distinct ideas.

In this paper, we adopt a different approach to analyzing first-generation service
discovery systems. Based on a careful analysis of some specifications [1,3,5] for service
discovery architectures and protocols, we developed a generic model that represents the
key elements, relationships, and behaviors of a service discovery system. Our model
consists of two parts: a meta-model (see Section 2) that defines the context in which
service discovery systems operate and a generic, object-oriented model (see Section 3)
that represents the fundamental structure and behavior of service discovery systems. We
also identify some open issues or limitations (Section 3.6) in existing designs for first-
generation service discovery systems. In a later section (Section 6), we show how our
generic model can be used to represent specific service discovery systems, including the
three – Universal Plug-and-Play (UPnP), Jini, and the Service Location Protocol (SLP) –
we analyzed in creating our model, but also including two service discovery systems –
the Web Services Dynamic Discovery [9] and the Globus Monitoring and Discovery
Service (MDS) [10] – that we did not analyze when creating our model.

Beyond an analysis of the structure and behavior of first-generation service discovery
systems, we also consider two other problems. First, the current generation of service
discovery systems can lead to some system-wide performance issues, unless
implementers and users exercise due care. We identify (see Section 4) three classes of
performance issues that might arise, and we suggest a range of solutions that
implementers might adopt to solve each issue. A second problem relates to service

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 1 NIST SP 500-260

guarantees. None of the service discovery systems we analyzed defined any expectations
about the guarantees, or even the goals, that the design aimed to satisfy. We propose (see
Section 5) a set of service guarantees that we believe service discovery systems should
aim to achieve, and we explain the qualifications associated with such guarantees. In
other work [17-21], we have used our proposed service guarantees to assess the
performance and correctness of specific designs for service discovery systems.

We can summarize the contributions of this paper along several lines. First, we provide a
generic model of the structure and behavior of first-generation service discovery systems,
and we show how our model can represent the designs for several, specific service
discovery systems. Our model provides a deep analysis of the common elements and
behaviors in modern service discovery systems. Further, should an industry standards
group choose to develop a unified specification for service discovery, our model should
provide helpful input to the process. We also identify issues that designers should attempt
to resolve in the next generation of service discovery systems. Second, we propose a set
of service goals that we believe service discovery systems should strive to satisfy, along
with an analysis of the factors that might interfere with meeting service goals. Such
service goals could be cast into test assertions that serve to evaluate the behavior or
measure the performance of designs and implementations of service discovery systems.
Finally, we identify and suggest possible solutions to performance issues that can arise in
dynamic service discovery systems. Identifying possible performance issues can alert
users to the potential for unexpected behavior when service discovery technology is
deployed at large scale. Further, implementers of service discovery systems can consider
our suggested solutions when developing software to embody related processes in a
service discovery system. All of our contributions can help to improve the quality of the
next generation of service discovery systems on which the service-oriented architectures
of tomorrow appear likely to depend.

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 2 NIST SP 500-260

2. Modeling First-Generation Service Discovery Architectures

In subsequent sections of this paper, we define a generic model that captures the
fundamental structural and behavioral design choices embodied in many of the current,
first-generation, service discovery systems. In this section, we present a rigorous
architectural framework in which to ground our generic model. We begin with a general
overview of service discovery systems, accompanied by a summary of selected first-
generation service discovery systems, and then we become more formal.

2.1 Informal Description of Service Discovery Systems. Service discovery systems enable
distributed components (i.e., software objects executing on different computer nodes in a
network) to: (1) discover each other without prior arrangement, (2) describe opportunities
for collaboration, (3) compose themselves into topologies that cooperate to meet
application needs, and (4) detect and adapt to topology changes. To achieve these
objectives, service discovery systems rely on architectures where distributed components
exchange messages in accordance with behaviors defined by service discovery protocols.
In the simplest service discovery system, a client might seek to discover a list of services
(e.g., printers, calendars, mail servers, web servers) available on a network and display
the list through a graphical-user interface (GUI); thus, this architecture consists of two
parties: client and service. The service discovery protocol that supports such a two-party
architecture (see Figure 2-1) might allow a client to send a query for any service to a
network multicast group, where all services would be required to listen. Upon receiving a
multicast query for any service, the protocol might require that a service send a
description of itself directly to the client.

Node S1 Node S2

Node C1

DESCRIPTION
OF SERVICE A CLIENT

SERVICE A SERVICE B

QUERY
FOR
SERVICES

NETWORK MULTICAST GROUP

DESCRIPTION
OF SERVICE B

Figure 2-1. A Sample Two-Party Service Discovery Architecture with
One Client and Two Services

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 3 NIST SP 500-260

In a more complex service discovery system, a client might seek to discover a set of
directories and then to query one of those directories to obtain a list of services known by
the directory; thus, this architecture consists of three parties: client, directory, and service.
The service discovery protocol that supports such a three-party architecture (see Figure 2-
2) might require a service to send a query for any directory to a network multicast group,
where every directory would be required to listen. In addition, directories might be
required to announce their presence periodically, which implies that directories might be
discovered either by listening for multicast directory announcements or by sending
multicast queries to directories.

 Node S1

Node C1

 Node S2

NETWORK MULTICAST GROUP

QUERY FOR
DIRECTORIES

QUERY FOR
DIRECTORIES

QUERY FOR
DIRECTORIES

Node D1

CLIENT

DIRECTORY

SERVICE A SERVICE B

DIRECTORY
ANNOUCEMENTS

QUERY FOR
SERVICES

DIRECTORY
DESCRIPTION

MATCHING
SERVICES

DIRECTORY
DESCRIPTION

QUERY FOR
DIRECTORY

DIRECTORY
DESCRIPTION

QUERY FOR
DIRECTORY

DIRECTORY
DESCRIPTION

DIRECTORY
DESCRIPTION REGISTER

SERVICE

REGISTER
SERVICE

Figure 2-2. A Sample Three-Party Architecture with
One Client, One Directory, and Two Services

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 4 NIST SP 500-260

The supporting protocol might require that a client or service, after learning of a directory
through a multicast announcement, query a directory directly to obtain a description of
the directory. The protocol might also require that a directory, upon receiving a multicast
query for any directory, send a description of itself directly to the querying client or
service. The protocol might require the service, upon receiving a directory description, to
send a description of itself directly to the directory. The protocol might allow a client that
learns of a directory to send a query directly to the directory to request a list of the
services known by the directory. The directory would likely be required to return a list of
relevant services.

2.2 Overview of Selected First-Generation Service Discovery Systems. In what follows,
we briefly describe a two-party (Universal-Plug-and-Play, or UPnP), three-party (Jini
Networking Technology), and adaptive (Service-Location Protocol, or SLP) service
discovery system. SLP operates as a three-party system, but adapts to a two-party system
when necessary. As discussed later, the properties and behavior of these first-generation
discovery systems will form the basis for a general service discovery model.

2.2.1 UPnP. UPnP defines an architecture that enables control points (clients) to discover
root devices (which contain devices and services) without a directory. In UPnP, root
devices are service containers, which may include a hierarchical set of subordinate
devices and services; thus, one can view each root device as a top-level service that
describes itself and its subordinate services. Upon startup, each control point (CP) and
root device (RD) engages in a discovery process. In a lazy-discovery process, each RD
periodically announces its services over a multicast group. Upon receiving these
announcements, CPs with matching requirements use a HTTP/TCP (HyperText Transfer
Protocol/transmission-control protocol) unicast link to request, directly from the RD,
descriptions of relevant services. The CP stores copies of service descriptions in a local
cache. Alternatively, the CP may engage in an aggressive-discovery process, where the
CP transmits its service requirements as queries on a multicast group. Any RD containing
a service with matching requirements may use a HTTP/UDP (user-datagram protocol)
unicast link to respond (after a jitter delay) directly to the CP. For each device or service
of interest, the CP uses a HTTP/TCP unicast link to request a copy of the relevant
descriptions, caching them locally. To maintain a service description in its local cache, a
CP expects to receive periodic announcements from the relevant RD, which announces
the existence of service descriptions at a specified interval, known as a Time-to-Live, or
TTL. Each announcement specifies the TTL value. If the CP does not receive an
announcement from the RD within the TTL, then the CP may discard the discovered
service description.

UPnP service descriptions may identify state variables that can be monitored on behalf of
CPs. Interested CPs send a subscribe request, and the RD responds by either accepting
the subscription, or denying the request. The subscription, if accepted, is retained for a
TTL, which may be refreshed with subsequent subscribe requests from the CP. Whenever
the state of a monitored variable changes, the monitor announces the change by sending
events to all subscribed CPs.

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 5 NIST SP 500-260

2.2.2 Jini. Jini defines an architecture that enables clients and services to rendezvous
through a third party, known as a lookup service (Jini terminology for a directory). Upon
startup, a Jini component (client, service, or lookup service) engages in a discovery
process to locate other, relevant Jini components within the network neighborhood. Jini
encompasses two discovery modes, multicast and unicast, where multicast discovery is
supported by two discovery processes, which we call aggressive and lazy. Upon
initiation, a Jini component enters aggressive discovery by transmitting discovery
messages (probes) at a fixed interval for a specified period, or until discovering a
sufficient number of lookup services. Each probe contains a list of lookup services
previously discovered in order to allow potential responders to suppress duplicate replies.
Upon cessation of aggressive discovery, a component enters lazy discovery, listening for
announcements sent at intervals by lookup services. Once a relevant lookup service is
discovered, the discovering component requests an application-programming interface
(API) that enables the component to interact with the lookup service.

Unicast discovery operates differently from multicast discovery. In unicast discovery,
each Jini component may be given a specific list of lookup services to discover. For each
lookup service on the list, a Jini component establishes a TCP connection and requests an
API. Should the lookup service prove unavailable, the component can continue to retry
connecting.

A Jini service registers a description of itself with each discovered lookup service. A Jini
client may register a request to be notified by a lookup service of arriving or departing
services of interest, or of changes in the attributes describing services of interest. A
registering component (client or service) requests registration for a duration, which may
be accepted for a granted lease period. To extend registration beyond the granted lease
period, registering components must renew the lease before it expires; otherwise,
registration is revoked. This cycle continues until a Jini component cancels or fails to
renew a lease. While a granted lease may not be revoked, lookup services may deny any
lease request.

2.2.3 SLP. The Service Location Protocol (SLP) defines an architecture that enables
clients, called user agents (UAs), and services, called service agents (SAs), to rendezvous
through a third party, known as a directory agent (DA). The SLP architecture can be
considered a hybrid because it allows UAs to discover SAs directly (two-party
architecture) when a relevant DA (third party) cannot be found. The main discovery
mechanism in SLP is an aggressive form of discovery, where UAs and SAs seek DAs by
sending a specified number of probes on a multicast group at a designated interval. A UA
is first required to probe for DAs. If no DAs are found during the probing period, then the
UA may probe for SAs. SAs probe only for DAs. Each multicast probe contains a list of
previous responders in order to allow potential responders to suppress duplicate replies.
A SLP component periodically repeats the probing for DAs and SAs. Optionally, a SLP
component may be provided a list of DAs to contact. Should a DA prove unavailable, a
component can retry contacting the DA at a suitable interval. SLP also supports a form of
lazy discovery because DAs and SAs periodically announce themselves; however, the
announcement interval is configured by default to be rather large (about three hours),
which makes SLP lazy announcement rather ineffective as a discovery mechanism.

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 6 NIST SP 500-260

A SLP SA registers a description of itself with each discovered DA. A SA requests
registration for a TTL, which may be accepted by a DA. To extend registration, the
registering SA must renew the registration prior to expiration of the TTL; otherwise, the
DA revokes the registration. This cycle continues until the SA cancels or fails to refresh a
registration. While an accepted registration may not be revoked prior to expiration of the
TTL, a DA may deny any registration request. A UA may query any discovered DAs to
find services of interest and to obtain attributes that describe services. If a UA cannot find
any DAs, then the UA can issue a multicast search to find SAs, or to query SAs for
available services. Unlike Jini, SLP provides no built-in means to allow a client (UA) to
receive notification about service arrivals and departures or about changes in service
descriptions. For this reason, SLP UAs must query DAs or SAs periodically to learn such
information.

2.3 Example Service Discovery Architecture. In what follows, we take properties and
concepts from existing SDP architectures as described in the previous section to derive a
single coherent architectural framework necessary to understand subsequent sections of
the paper. First, though, we introduce Figures 2-3 and 2-4 to describe a few concepts that
must be encompassed by our formal model. Figure 2-3 extends the sample instance of a
two-party service discovery architecture described above as Figure 2-1. The figure
represents three network nodes (C1, S1, and S2), where each node executes one or more
components. Node C1 contains two components: a client GUI component and a client
service discovery entity (SDE). Node S1 and S2 each implement two components: a
service provider and a ServiceProxy SDE. The service provider is the component that
actually implements services offered to other components on the network, while the
ServiceProxy SDE is the component the participates in the service discovery system on
behalf of the service provider. (Note that a single ServiceProxy SDE might well act on
behalf of multiple service providers.)

We denote a component as a SDE whenever it participates as a party in a service
discovery system. Each SDE implements one or more roles associated with a service
discovery function that defines a behavior, or series of action(s), intended to achieve an
objective of a service discovery system, such as discovering directories or retrieving
services. (We discuss specific service discovery roles and functions fully in section three
and provide a simplified discussion here for illustrative purposes.) In our model, each
function has two roles that complement each other. Roles identify initiators and recipients
of messages; roles also identify the specific behaviors that cause messages to be sent and
that occur in response to receiving messages. For example, Figure 2-3 illustrates a two-
party service discovery system, where a client seeks services directly by issuing a query
to a network multicast group. The client SDE implements one role (Service Seeker) to
issue queries for services, while the ServiceProxy SDE implements a corresponding role
(Advertiser) to respond to service queries issued by clients by returning a description of
the service to the client.

SDEs participate in message exchanges either in (network-multicast) group form, such as
when clients issue queries in Figure 2-3, or in direct form, which may be unidirectional,

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 7 NIST SP 500-260

as shown in Figure 2-3, when service advertisers reply by sending service descriptions to
clients. (Message exchanges may also be bi-directional as shown in Figure 2-4 when
services or clients send a query to a directory that then replies with a directory
description.) Group communication implies that any one of a set of allowed senders may
transmit a message to be received by all of a set of subscribed receivers. Figure 2-3
illustrates a group that has one sender (C1: Service Seeker) and two receivers (S1:
Advertiser and S2: Advertiser.) Figure 2-3 also includes two unidirectional direct
message paths that allow the S1: Advertiser and the S2: Advertiser to each send a service
description to the C1: Service Seeker.

Figure 2-4, which extends the sample instance of a three-party architecture shown
previously as Figure 2-2, illustrates how the complexity of a service discovery system can
increase as parties, and associated functions and roles, are added to the design. For
example, a three-party architecture requires that clients discover services through
directories, which necessitates three distinct functions: repository discovery, followed by
service registration and service retrieval. To perform these functions, the Directory SDE,
located in node D1, is constructed with three roles: serving as a repository Advertiser in
the repository-discovery function, acting as a Service Registry to allow services to be
registered, and providing a service Repository from which services can be retrieved. The
Advertiser sends directory announcements periodically on the network multicast group
and listens for multicast queries for directories. The Advertiser must also listen for
queries for directories sent directly from the complementary Repository Seeker roles,

Figure 2-3. A Sample Two-Party Service Discovery Architecture with
Distributed Components, Service Discovery Entities, and Service Discovery Roles

Node S1 Node S2

Node C1

NETWORK MULTICAST GROUP

DESCRIPTION
OF SERVICE B

Client GUI

Advertiser

ServiceProxy SDE

Service A
Provider

Service B
Provider

Client SDE
Service Seeker

QUERY
FOR

SERVICES

DESCRIPTION
OF SERVICE A

Advertiser

ServiceProxy SDE

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 8 NIST SP 500-260

which are implemented in the Client SDE in node C1 and the ServiceProxy SDEs in
nodes S1 and S2. Each Repository Seeker may issue multicast queries for directories and
may send queries for directories to the Advertiser on any directory that announces itself
on the multicast group. After obtaining a directory description, a ServiceProxy SDE
initiates service registration by activating a Service Registration Requester to register a
description of the service through the Service Registry associated with the discovered
directory. A Client SDE initiates service retrieval after obtaining a directory description.
The Client SDE activates a Service Seeker to query a Repository associated with the
discovered directory. As will become clear in Section 3, SDEs may be composed of
additional roles to implement further functions. As explained in Section 6, nodes may
also implement multiple SDEs to act as various parties in a service discovery system.

Figure 2-4. A Sample Three-Party Service Discovery Architecture with
Distributed Components, Service Discovery Entities, and Service Discovery Roles

QUERY FOR
DIRECTORY

 Node S1

Node C1

 Node S2

NETWORK MULTICAST GROUP

QUERY FOR
DIRECTORIES

QUERY FOR
DIRECTORIES

QUERY FOR
DIRECTORIES

Node D1

DIRECTORY
ANNOUCEMENTS

QUERY FOR
SERVICES

DIRECTORY
DESCRIPTION

MATCHING
SERVICES

DIRECTORY
DESCRIPTION

DIRECTORY
DESCRIPTION

QUERY FOR
DIRECTORY

DIRECTORY
DESCRIPTION

DIRECTORY
DESCRIPTION

Repository

Repository Seeker
Service

Registration
Requester

ServiceProxy SDE

Service Provider

Repository Seeker
Service

Registration
Requester

Service Provider

REGISTER
SERVICE

REGISTER
SERVICE

Client GUI

Client SDE

Repository Seeker

Service Seeker

QUERY FOR
DIRECTORY

DIRECTORY
DESCRIPTION

Directory SDE

Advertiser

Service Registry

ServiceProxy SDE

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 9 NIST SP 500-260

2.4 Formal Architectural Model. We represent the high-level concepts of our model as
the UML diagram depicted in Figure 2-5. The model represents a service discovery
system as an aggregation of SDEs; however, all SDEs need not be present. This
highlights one challenging trait of the environment assumed by service discovery
systems, that is, components participating in such systems can be present or absent at any
time. This trait arises from the fact that SDEs are distributed components that execute on
network nodes. Our model reflects this fact by representing each SDE as a subclass of
DistributedComponent and by showing that each component executes on one
network node, while a network node can support the execution of zero or more
components. Our model assumes that a network node maintains three attributes: one
describing node status and two describing the state of the node’s network interface. The
node itself may be either up or down, where down implies that none of the components
supported by the node can execute; thus, are unreachable from components on other
nodes. A node’s transmitter and receiver may each individually be either up or down.
When a node’s transmitter is down, then all messages sent by components executing on
the node will be lost. Similarly, when a node’s receiver is down, all messages destined for
components executing on the node will be lost. Since no specific component need be
present on a network node, our model can also represent situations where some
components on a node are unreachable while others are reachable.

Path
LinkStatus : Availability
MessageLossProbability : Real

Up()

Message
MessageName : String

Process
InProgress() : Boolean

NetworkNode
NodeStatus : Availability
TransmitterStatus : Availability
RecieverStatus : Availability

DistributedComponent

FunctionSet

1..*

1..*

*

**

*

1

11..* 1

11..* 1

0..*0..*

1

ServiceDiscoverySystem

1..2

2

Role
ConsistencyCondition

ServiceDiscoveryFunction

1..*1..*

11

ServiceDiscoveryApplication

ServiceDiscoveryEntity

<<implements>>

0..*

11

0..*

<<Instantiates>>

Figure 2-5. Top-Level Architectural Framework for
Generic Model of Service Discovery Systems

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 10 NIST SP 500-260

In our model, pairs of distributed components participate in processes that communicate
over a path. A path, represented as the class Path in Figure 2-5, is a connection between
exactly two instances of the class DistributedComponent. Figure 2-5 also shows
that each DistributedComponent may participate in multiple paths. In addition,
multiple processes, each comprising a set of messages, can coexist on a path. Each
Process sends Messages on a path to execute a function, such as service discovery,
service retrieval, or registration. The process type is defined by (1) the function it is
executing and (2) the type of discoverable item for which the function is being
performed, such as discovery of repositories or discovery of services. The Boolean
Path.up() method returns TRUE if: (1) both sender and receiver exist, (2) the path
between sender and receiver is operating, (3) the nodes containing sender and receiver are
operating, and (4) all transmitters and receivers required for the process are operating.
The Boolean Process.inProgress() takes arguments for a process and a path and
returns TRUE if that process is active on the path.

The architectural examples shown in Figures 2-1 through 2-4 indicate that service
discovery systems may rely on three different types of communication channels
(multicast, unidirectional unicast, and bi-directional unicast) that we represent using the
Path concept. Each instance of Path can represent two unidirectional unicast channels,
and thus a bi-directional unicast channel. In our model, messages sent over a unicast
channel flow directly from one specific sender to one specific receiver. Our model
represents each multicast channel as a set of Path instances that may include any
number of distributed components arrayed in any required configuration, such as a single
sender and an arbitrary number of recipients. In our model, messages sent over a
multicast channel flow from one specific sender to a set of one or more receivers.

Our model permits distributed components to be specialized as SDEs, where a SDE
implements one or more service discovery roles, such as Advertiser, Repository Seeker,
and Service Seeker. SDEs that implement roles exchange messages and thus participate in
processes. Our model represents service discovery roles as UML (Unified Modeling
Language) classes and relationships; messages correspond to class operation names. A set
of operations and the behavior specified in the related methods compose a service
discovery function, such as aggressive discovery, service registration, or change service.
In our model, the messages and behavior associated with service discovery functions are
modeled in UML sequence diagrams. In addition, related service discovery functions can
be grouped into function sets, such as discovery, registration, or service retrieval. Our
model represents function sets as UML packages. Section 3 describes the service
discovery functions and roles contained within our model.

2.5 Specializing Service Discovery Entities through Service Discovery Roles. Our generic
model can be used to represent specific service discovery systems. To do so, one
represents the parties in a specific service discovery system as specializations of
ServiceDiscoveryEntity (SDE) and then selects specific roles that each
specialization will implement. For example, Figure 2-6 illustrates how this can be done to
model the specific service discovery system shown in Figure 2-4.

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 11 NIST SP 500-260

Figure 2-6 shows three specialized SDEs: Directory SDE, ServiceProxy SDE, and Client
SDE. Each specialized SDE implements the service discovery roles necessary to
participate in selected service discovery functions; for example, the Client SDE
implements two roles, Repository Seeker and Service Seeker, which allow the client to
participate in the discovery of repositories and services. Implementing a particular service
discovery role requires implementation of some mandatory classes and relationships (see
Section 3), and may also allow implementation of some optional classes and
relationships. Further, implemented classes may be subjected to normal object-oriented
transformations, such as overriding and overloading methods. For example, a Client SDE
that intends only to implement aggressive discovery would override (and nullify)
methods associated with lazy discovery and directed discovery. Section 6 shows how to
apply our generic model to represent selected service discovery systems.

2.6 Integrating with Service Discovery Applications. As represented in our generic
model, SDEs provide support to service discovery applications (SDAs), which are also
subclasses of DistributedComponent. For example, a Client SDE might discover
repositories on behalf of a Client SDA, which could subsequently use a service-retrieval
function implemented by the Client SDE to query discovered repositories. This pattern
implies that SDEs cannot function alone, but instead must be linked to SDAs. Our model
represents linkage among SDAs and SDEs using class methods (see Section 3.2.4). In
some cases, a class method implemented by the SDE allows a SDA to initiate service
discovery functions, while in other cases a class method must be implemented by a SDA
to allow asynchronous notifications from the SDE. Typically, the linkage between SDE
and SDA allows the SDA to detect dynamic changes within the topology of a service
discovery system.

A SDA might wish to learn about the arrival and departure of repositories and services
meeting specified criteria. A SDA might also wish to learn about changes in the criteria
describing services and repositories previously discovered. In general, service discovery

ServiceDiscovery
Entity

Directory
SDE

Advertiser Service
Registry

Repository

ServiceDiscovery
Entity

Client
SDE

Repository
Seeker

Service
Seeker

ServiceDiscovery
Entity

ServiceProxy
SDE

Service
Registration
Requester

Repository
Seeker

Figure 2-6. Model of Three-Party Service Discovery System Shown in Figure 2-4

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 12 NIST SP 500-260

systems can adopt one (or both) of two mechanisms to detect such changes. One
mechanism, notification, enables a SDE to emit an event to a SDA whenever: (1) a new
description is discovered, (2) a known description is altered, or (3) a known description is
deleted. To support notification, a SDA must inform a SDE of events of interest and
provide a class method to receive notification when such events occur. A second
mechanism, polling, requires a SDA to cache descriptions of interest, collected through
SDE-provided methods, and then to periodically collect new copies of the descriptions.
The SDA must compare the newly obtained descriptions with the previously cached
copies in order to detect arrivals, departures, and changes. Selected SDAs may also use
notification and polling provided by SDEs in order to detect changes in the state of
variables maintained by service providers.

Change detection in service discovery systems is essential, not only because services can
start and stop themselves gracefully, but also because nodes on which SDEs operate
might crash and paths among SDEs might fail and then again become available. Due to
the distributed and dynamic nature of service discovery systems, SDEs and SDAs might
hold inconsistent information about available services and service state. For that reason,
we define consistency conditions for roles associated with particular service discovery
functions. Consistency conditions define basic requirements that service discovery
systems should aim to satisfy in order to maintain consistent information about available
services under dynamic conditions. These conditions also take into consideration that
SDEs and SDAs may temporarily hold inconsistent information due to the effect of
delays associated with failure detection and mitigation procedures, transmission latencies,
and system deployment decisions. In Section 5, we use formal logic to specify the
consistency bounds associated with our generic model. We argue that specifications for
service discovery protocols would be improved if they included definitions of
consistency bounds.

The continuous change and associated uncertainty that may exist in service discovery
systems could present some performance problems. For example, issuing a query on a
network multicast group that has an unknown population of potential respondents could
initiate an implosion of responses that overrun the capacity of the query issuer. In a
second example, an unknown population of components could attempt to register
information with a directory and then renew those registrations at a frequency that
overwhelms the capacity of the directory. In a third example, a large population of clients
could discover a number of directory replicas against which to issue queries. Depending
upon decisions taken by each client, some of the discovered directory replicas could be
overwhelmed with queries, while others could remain under used. Among the service
discovery systems we analyzed, these important, potential performance problems were
not addressed. In Section 4, we discuss these problems and describe some algorithms that
implementers of service discovery systems could adopt to improve performance. We also
extend our UML model to represent the algorithms and supporting parameters.

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 13 NIST SP 500-260

3. An Object-Oriented Model of Service Discovery Systems

In this section, we describe and discuss key concepts, relationships, and behaviors
composing our object-oriented, generic model of service discovery systems. We
developed our model from analyses of selected, first-generation, service discovery
protocols [1-7]. Our model expands on the architectural framework (including functions
and roles) presented in Section 2 by providing: (1) class definitions to represent essential
concepts and (2) sequence diagrams to depict key behaviors. Appendix A provides a full
accounting of the function sets in our model. Each function set comprises specific, related
functions. For each function, Appendix A identifies associated function roles and
delineates model classes that must be implemented by each function role. Appendix A
also indicates methods in specific model classes that are associated with particular
functions. A full, machine-readable UML (Unified Modeling Language [26]) version of
our model may be obtained by contacting us.

In what follows, we outline the fundamental elements of our UML model. A key feature
of our model is separation between: (1) descriptions of different kinds of items that can
be discovered and (2) various functions for discovering and monitoring those items. This
separation means that, in principle, any of the discovery functions in our model can be
used to find any of the discoverable items, though in practice specific discovery systems
usually present more limited options. We begin by describing (in Section 3.1) the items
within our model that can be found using discovery functions, and then we present (in
Section 3.2) the three discovery functions our model provides to find items. To focus our
description, we use an example of the discovery and monitoring of system-configuration
information, as supported by selected first-generation service discovery systems. Third,
we describe (in Section 3.3) how our model represents information registration, and
permits extension of registrations. Fourth, we relate (in Section 3.4) procedures to
discover and monitor service descriptions, the main discoverable item within our model,
and the ultimate goal of service discovery protocols. Fifth, we discuss (in Section 3.5)
how our model allows the discovery and monitoring of service variables. Finally, we
identify (in Section 3.6) some design issues that appear inadequately addressed by the
current, first-generation of service discovery systems.

3.1 Discoverable Items. In the following, we discuss the main discoverable items
included in our model: service descriptions, repository descriptions, administrative
scopes, and service types. We begin with service descriptions.

3.1.1 Service Descriptions. The main goal of a service discovery system is to locate a
machine-interpretable characterization of services available on a network. We call such
characterizations service descriptions (SDs), and represent them in our model by the class
ServiceDescription. (See Figure 3-1 for a complete depiction of discoverable
items as classes.) Each service description in our model encompasses a set of mandatory
elements, and may also include a set of optional elements. Elements associated with a
service description have two main purposes: (1) to enable discovery of services
possessing particular characteristics and (2) to specify information necessary to invoke
functionality provided by discovered services. Some elements in a service description

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 14 NIST SP 500-260

also help to prevent the spread of stale information. In what follows, we assume the
existence of SD:ServiceDescription, an instance of a service description.

Every service has an identifier (SD.serviceID) that enables the service to be
distinguished from all other services. In general, service identifiers should be unique over
a global space and time. We assume that each service identifier refers to one or more
service providers, each of which can create service instances if necessary. Our model
allows service identifiers to be augmented with a version number (SD.SIDversion) to
permit deployment of successive versions of the same service without need to assign a
new service identifier. Service descriptions may include a list of administrative scopes
(SD.scopeList) that restrict the visibility of services. (More on administrative scopes
in a few paragraphs.) Every service also has an associated type (SD.serviceType)
and optional version (SD.STversion), which uniquely identify attributes used to
describe the service, i.e., that must or may be included in the service description.
(Including a service-type version allows service-type names to be reused when revising
the attributes associated with a service type.) For the list of included attributes
(SD.attributes), the service description contains associated element-value pairs for
each list item.

.

DiscoverableItem

ServiceType
STversion : Integer

MetaDataDescription
descriptionBody : Text

ServiceAttributeName

1..*

0..*

1..*

0..*

+serviceAttributeType

ServiceAttributeMembership
obligation : Obligation

<<Association Class>>

RepositoryDescription
serviceType : RepositoryType

<<Local>> matches?()

RepositoryType
ServiceRepository
ServiceRegistry
FullRegistry

<<Enumeration>>

ServiceInvocationAddress
address : UniqueAddress

GUIretrievalAddress
address : UniqueAddress

ServiceAPIDescription

ServiceVariableDescription

SD ElementValuePair
name : String
value : Type +eventableList

+notEventableList

AdministrativeScope
body : String

ScopeList

0..* +scopeName0..*

ServiceDescription
<<Opt>> availableUntil : Time
<<Opt>> validUntil : Time
<<Opt>> sequenceNo : Integer
<<Opt>> versionNumber : Integer
SIDVersion : Integer
STversion : Integer
serviceID : UniqueIdentifier
serviceType : ServiceType

1..*

+serviceInvocation
AddressList

1..*

0..10..1

0..10..1

0..*

+attributes

0..*

0..1

+scopeList

0..1

0..10..1

Figure 3-1. Class Diagram Depicting Discoverable Items

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 15 NIST SP 500-260

Our model allows each service description to include three pieces of information about
the likely validity of the description. A sequence number (SD.sequenceNo)
distinguishes among copies of the service description, which permits rejection of
outdated copies and replacement of existing copies with newer copies. A validity
timestamp (SD.validUntil) indicates the time after which a more recent copy of the
service description should be sought, or alternatively a time after which the current copy
may be discarded. An availability timestamp (SD.availableUntil) defines the
intended closing time of the described service. The service should be available until the
specified closing time. All the service discovery protocols that we studied confound these
two concepts, description validity and service availability, into a single time-to-live field;
however, we believe that the concepts should be distinguished because the validity of a
service description is quite distinct from the intended availability of a service.

The remaining elements in our service description provide information necessary for a
discovering entity to access the described service. Most important, each service
description must include a list of one or more addresses
(SD.serviceInvocationAddressList) through which client programs may
invoke service methods. Many service discovery systems assume that service type
implicates a description of service methods. Some service discovery systems permit
service descriptions to include a list of method signatures. Our model provides an
optional element (SD.serviceAPIdescription) in the service description to allow
a service to include its method signatures. Selected services may provide a graphical user
interface (GUI) in order to allow human users to access and interact with the service.
Descriptions for such services might include an address
(SD.GUIretrievalAddress) through which client programs can retrieve the GUI
code; thus, our model includes this as an optional element.

Some services may expose a set of service variables that client programs can monitor. (In
our model, service variables are distinct from service attributes, which change
infrequently.) Each service variable in our model comes in one of two forms: (1)
eventable and (2) non-eventable. Eventable service variables allow client programs to
request notification of significant changes (events) related to variable value. Non-
eventable service variables only permit client programs to query for variable values. Our
model reflects the possibility that service variables can be described using one of two
techniques. In one technique, a service provider can implement methods to retrieve lists
of any eventable and non-eventable service variables offered by the provider, and to
allow related event registration and notification and variable querying. In this case, the
method descriptions are obtained in a manner similar to other methods offered by the
service provider. In an alternate technique, a service provider may include lists of any
eventable and non-eventable service variables directly in the service description. This
alternate technique assumes that each service in the service discovery system provides
standard methods to access and manipulate eventable and non-eventable variables. To
allow for this alternate description, our model includes an optional element
(SD.serviceVariableDescription) in our formulation of service description. A
description of service variables includes a list of any eventable variables and a list of any
non-eventable variables.

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 16 NIST SP 500-260

 When fully specified with all options included, a service description in our model can
become rather large. A similar situation arises in various service discovery systems. To
better manage description size, some service discovery systems permit references (such
as uniform resource locators, URLs) to be substituted for selected portions of a service
description. Each substituted reference may be used by a discovering entity to retrieve the
relevant missing portion of the service description. While not explicitly addressed in our
model, we do not intend to exclude such substitutions. Specifically, we imagine that the
following portions of our service description may be replaced by references to: (1)
service attributes, (2) service method signatures, and (3) service variable descriptions.
Designers of specific service discovery systems must consider the consequences of
dividing an integral service description into pieces. Such a strategy has various pros and
cons. To avoid discussing these tangential issues, we do not explicitly include
substitutions in our formulation of service descriptions.

3.1.2 Repository Descriptions. While service descriptions encompass the main
discoverable information in a service discovery system, a range of ancillary information
might also be discoverable in order to support system configuration. For example, several
service discovery systems allow clients and services to rendezvous through a third party,
which we call a repository. In such systems, the first order of business for a client or
service is to discover the existence of any repositories, which may contain collections of
service descriptions. Discovering available repositories establishes the physical extent of
a service discovery system. For this reason, our model includes a discoverable item
repository description, represented as a subclass (RespositoryDescription) of
ServiceDescription. Our model permits a repository description to contain any
elements of a service description, but restricts the service type to be one of three values:
ServiceRepository, ServiceRegistry, or FullRegistry. In our model, a
service repository can only contain service descriptions related to services provided on
the same (local) node that hosts the repository. Our model allows a repository that is a
service registry to accept service descriptions for services hosted on other (remote)
nodes. When extended from service registry to full registry, our model permits a
repository to also accept client requests for notification of arrivals, departures, and
changes of service descriptions. (We discuss service-description change monitoring in
Section 3.4.)

3.1.3 Administrative Scopes. A number of other discoverable items relate to configuring
the logical extent of a service discovery system. One such item, administrative scope, can
be used to configure service discovery entities (SDEs) into distinct logical partitions,
where each partition is defined by a scope name. When administrative scoping is
employed, each SDE is assigned (or discovers) a list (ScopeList) of one or more scope
names in which to participate. Our model interprets an empty list of scope names to
designate any available scopes. Subsequent discovery messages (see Section 3.2)
exchanged among SDEs include the list of scope names. Message recipients compare
their own list of scope names with the list in each incoming discovery message. If the
lists intersect, then the message can be processed; otherwise, the message must be
discarded.

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 17 NIST SP 500-260

 3.1.4 Service Types. Another discoverable item, service type, allows SDEs to discover
the types (and versions) of any services available on a network (or within a logical
partition of a network). A SDE can present the list of available service types to a user, or
can use the list of available service types to formulate subsequent queries to find
instances of services with specific attribute values (see Section 3.4). Recall that in our
model (as in many service discovery systems) a service type is defined in terms of its
mandatory and optional attributes, and attribute types. Formulating attribute-based
queries relies on this relationship between service type and attributes. Most service
discovery systems provide specifications that define the attributes associated with
particular service types. In many cases, programmers of SDEs, and related service
discovery applications (SDAs), encode the definition of service attributes, and their types,
directly into application software. This approach limits a program to issue queries that
include only mandatory attributes associated with a given service type, because services
of the specified type need not implement any optional attributes. Some service discovery
systems allow increased flexibility by supporting the discovery of service attributes (and
service-attribute types) available for a given service type. This permits a SDE to discover
what optional attributes, if any, are provided by available services that implement a
specific service type. Once discovered, the optional attributes may be used within
subsequent queries for services on the network. Our model supports the discovery of
service attributes (ServiceAttributeName) and attribute types
(serviceAttributeType) for a given service type. Our model also indicates
whether an attribute is mandatory or optional (ServiceAttributeMembership),
and allows each attribute type to refer to meta-data (MetaDataDescription). In this
way, programs can discover the definition of attribute types. At a minimum, such
definitions may be provided to human users to facilitate the construction of effective ad
hoc queries. A further justification for including service types among the set of
discoverable items is that the definitions of service types can change over time; thus, a
dynamic means is needed to discover the most current version (and associated definition)
for a service type.

3.2 Configuration Discovery and Monitoring. Upon initiation, SDEs need to understand
the current configuration (i.e., the available, administrative scopes, service types, and
repositories) of any service discovery system that might already be operating on the
network. For systems that support administrative scopes, the first order of business for a
SDE is to configure itself to use an appropriate set of scopes. Our model allows SDEs to
use any of three approaches to configure scopes: (1) use a NULL scope list (denoting any
scope), (2) use a locally configured scope list, and (3) use one of three primary discovery
processes (explained below) to find administrative scopes available on the network.
Primary discovery processes may be used in the absence of locally configured scopes, or
to extend locally configured scopes. Once a SDE has configured its administrative
scopes, the second order of business is to find any repositories that already exist on the
network within those configured scopes. If no relevant repositories can be found, a SDE
might then attempt to discover service types (and related attributes and types) in order to
formulate queries that can be used to seek services directly (see Section 3.4).

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 18 NIST SP 500-260

Figure 3-2. Classes and Associations Related to Seeking Discoverable Items

Our model provides three, complementary, primary discovery processes: (1) lazy
discovery, (2) aggressive discovery, and (3) directed discovery. Any of these discovery
processes may by used to seek any discoverable item (i.e., administrative scope, service
type, repository description, and service description). In lazy discovery, a SDE listens for
announcements that may be multicast periodically to advertise descriptions of
discoverable items. In aggressive discovery, a SDE sends multicast probes to solicit
descriptions of discoverable items. In directed discovery, a SDE sends unicast probes to
designated addresses to solicit descriptions of discoverable items. A SDE may use any or
all of these discovery processes in combination, either simultaneously or serially, to seek
administrative scopes, repositories, service types (and related attributes and types), as
well as services. Figure 3-2 depicts some of the key model classes associated with
seeking discoverable items.

ServiceTypeRequirement
previouslyFoundServiceTypes : ListO...

<<Local>> matches?()

ScopeRequirement
previouslyFoundScopes : ListOfSco...

<<Local>> matches?()

ScopeSeeker
discoveries : ListOfScopes

<<Local>> processDiscovery()

ServiceSeeker
discoveries : SetOfServiceDescriptions

<<Local>> processDiscovery()

ServiceTypeSeeker
discoveries : ListOfServiceTypeNames

<<Local>> processDiscovery()

RepositorySeeker
discoveries : SetOfRepositoryDescriptions

<<Local>> processDiscovery()

ServiceAttributeTypeRequirement
requiredServiceTypes : ListOfServiceTypeNames
requestedAttributes : ListOfSDElementNames

<<Local>> matches?()

ServiceAttributeSeeker
discoveries : ListOfElementMetaData

<<Local>> processDiscovery()

SeekerProxy
discoveryRequirement : DiscoveryRequirement

CallbackServer
localCallbacks : ListOfAddresses

<<Local>> issueLocalCallbacks()
<<Local>> registerLocalCallbacks()

DiscoveryRequirement
numberNeeded : Integer

Seeker
discoveries : ListOfDiscoverableItems
requirement : DiscoveryRequirement

<<Local>> processDiscovery()
<<constructor>> Seeker(requirement : Dis...

1

0..1

+Seeker1

0..1

ServiceRequirement
requiredUniqueD : UniqueIdentifier
requiredServiceType : ServiceType
attributeValueRequirement : AttributeValueRequirement

<<Local>> matches?()

RepositoryRequirement
<<Opt>> repositoryIDList : ListOfRepositoryID...
repositoryTypes : ListOfRepositoryTypes

<<Local>> matches?()

RequiredScopes
scopes : ListOfScopes

0..10..10..10..1

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 19 NIST SP 500-260

Figure 3-3. Classes and Associations Related to Seeking Repositories

.
TtlModel

None
Correlated
Independent

<<Enumeration>>

RequiredScopes
scopes : ListOfScopes

RepositoryRequirement
<<Opt>> repositoryIDList : ListOfRepositoryIDs
repositoryTypes : ListOfRepositoryTypes

0..10..1

RepositorySeeker
discoveries : SetOfRepositoryDescriptions

<<Local>> discoveryWithdrawal()
<<Local>> processDiscovery()

RepositoryDescription
serviceType : RepositoryType

<<Local>> matches?()

+satisfiedBy

SeekerProxy
callBackAddress : UniqueAddress
discoveryRequirement : DiscoveryRequirement
listening : Boolean

<<Local>> contactAdvertiser()
<<Local>> listenForDiscovery()
<<Local>> seekDiscovery()
<<Remote>> aggressiveResponse()
<<Remote>> directedResponse()
<<Remote>> discoveryWithdrawal()
<<Remote>> lazyAnnouncement()

1

+Seeker

1

SupportAutoWithdrawal
autoWithdrawalDelay : Time

<<Local>> withdrawDiscovery()

ServiceRepository
serviceCache : SetOfServiceDescriptions

<<Remote>> findService()

11

Advertiser
ttlModel : TtlModel = None
advertiserAddress : UniqueAddress
nextAnnouncementTime : Time

<<Local>> announce()
<<Remote>> aggressiveProbe()
<<Remote>> directedProbe()

0..*0..* 0..*0..*

0..10..1

<<optional>>

ServiceInvocationAddress
address : UniqueAddress

11 11

ScopeList

ServiceDescription
<<Opt>> availableUntil : Time
<<Opt>> sequenceNo : Integer
<<Opt>> validUntil : Time
serviceID : UniqueIdentifier

11

1..*1..*

0..10..1
TimeToLive

/ TTL : Duration

<<Local>> getTtl()

0..10..1

Our model includes an abstract class (Seeker) to initiate and control discovery
processes, which are transient behaviors implemented by instances of another model class
(SeekerProxy). Each instance of SeekerProxy can execute any of the discovery
processes (either lazy, aggressive, or directed) with specified parameters, as supplied in
related methods calls: listenForDiscovery(), seekDiscovery(), and
contactAdvertiser(). Seeker provides processDiscovery(), an abstract
method, which a SeekerProxy calls to convey detection of a discoverable item.
Seeker includes a CallbackServer class that enables SDAs to register for
notification of arrivals, departures, and changes to discoverable items. The
CallbackServer class also enables the Seeker to issue notifications to registered
SDAs. Seeker must be specialized to seek one type of discoverable item
(RepositorySeeker, ServiceTypeSeeker, ServiceAttributeSeeker,
ScopeSeeker, or ServiceSeeker). The specialization must include an appropriate
override of processDiscovery(). Specializations of Seeker are constructed with
a DiscoveryRequirement, which must be specialized to coincide with the particular
subclass of Seeker that is instantiated. For example, a RepositorySeeker must be
instantiated with a RepositoryRequirement, which can indicate a list of specific
repository identifiers or repository types of interest and which can be optionally
constrained to operate within specified scopes. For any DiscoveryRequirement, a
Seeker may be constrained to find only a limited number of discoverable items
matching the requirement. In what follows, we focus on repository discovery.

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 20 NIST SP 500-260

Figure 3-3 illustrates the key model classes related to repository discovery. The right-
hand side of the figure depicts relevant seeker classes, while the left-hand side of the
figure introduces classes associated with a repository advertiser. In our model, an
advertiser is responsible for announcing discoverable items (lazy discovery), and for
responding to multicast (aggressive discovery) and unicast (directed discovery) probes
from seekers. Advertisers in our model can be configured to reveal any of a range of
discoverable items: a repository description, a list of administrative scopes associated
with a repository, and a list of service identifiers or service types derived from service
descriptions contained in a repository. In principle, a repository advertiser could also be
configured to advertise administrative scopes derived from service descriptions contained
in the repository; however, our model does not currently support this behavior because
none of the discovery systems we analyzed properly handle the complex design issues
related to overlapping administrative scopes (see Section 3.6.2). The model fragment
shown in Figure 3-3 corresponds solely to advertisement of repository descriptions.

SDEs seek to discover repositories in order to query them for any cached service
descriptions. As shown in Figure 3-3, a repository description describes a service
repository that consists of a collection of service descriptions that can be accessed using
the ServiceRepository.findService() method (see Section 3.4) at the
invocation address contained in the repository description. The repository description
(subclass of ServiceDescription) has an associated Advertiser class, an
optional scope list, and an expiration time (validUntil) that denotes an absolute time
after which the description may be outdated. Typically, clocks among distributed nodes
are unsynchronized; thus, some service discovery systems communicate expiration times
as a duration, or time-to-live (TTL), which can be computed by subtracting a node’s local
time from the expiration time. Upon receiving a TTL, the duration can be converted (by
adding TTL to the local time) to an absolute expiration time aligned with the receiving
node’s clock. Our model represents TTL as an optional class (TimeToLive) that may
be associated with service descriptions.

Our analysis of existing service discovery protocols uncovered various treatments of
TTL. We included three treatments in our model. When conveyed in repository
advertisements, a TTL indicates a duration after which the repository description might
be outdated. In our model, RepositoryDescription.validUntil is used
together with a specific algorithm to compute, using method
TimeToLive.getTTL(), a TTL value to attach to repository descriptions in outgoing
announcements. The method TimeToLive.getTTL()includes the following
parameters: time of the next scheduled announcement (if any) and the TTL-computation
algorithm (either independent, correlated, or none). The independent algorithm, which
assigns TTL values unrelated to any planned periodic announcements of the repository
description, computes the TTL value by subtracting the current time from
RepositoryDescription.validUntil. Using this approach, repository seekers
can continue to consider a repository description to be valid up until a locally computed
(TTL added to current time) version of validUntil, even in the absence of periodic
repository announcements. The correlated algorithm, which assigns TTL values to
correspond with planned periodic repository announcements, computes the TTL value by

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 21 NIST SP 500-260

subtracting the current time from the time the next repository announcement is due.
Using this approach, repository seekers will invalidate cached copies of repository
descriptions when anticipated periodic announcements are missed. If the algorithm is
none, then a zero value is assigned for TTL. Given a TTL value of zero, a repository
seeker must adopt local SDA policies to decide when to invalidate cached copies of
repository descriptions.

3.2.1 Lazy Discovery. The UML sequence diagram given as Figure 3-4 illustrates how a
repository seeker can detect a repository description using lazy discovery. In the
advertiser, lazy announcement is initiated by a call to the <<local>>1 method
Advertiser.announce()with arguments that define: startup delay, announcement
periodicity and distance, and, optionally, automatic withdrawal delay. An advertiser may
send its lazy announcement messages over a specified distance (e.g., number of multicast
hops). An advertiser may also be asked to delay for a time before beginning
announcements. Once initiated, announcement occurs in cycles, where each cycle is
separated by an announcement interval. Within each cycle, an advertiser may issue one or
more multicast announcement messages, where each message is separated by an inter-
message gap. Announcements may continue for a finite number of cycles or until
availability ends (RepositoryDescription.availableUntil) for the
repository description being announced. If the advertiser supports automatic withdrawal
and the Advertiser.announce() method invocation includes an automatic
withdrawal delay, then the advertiser will delay the specified time after the
announcement cycle ends and issue an explicit withdrawal message to invalidate any
cached copies of the advertised repository description. The example in Figure 3-4 shows
invocation of the Advertiser.announce() method at a time T = 1000. After a 10s
delay (at T=1010), two announcement cycles occur, one every 100s. Each announcement
cycle consists of three announcement messages, each separated by 2s. Each lazy
announcement message extends over 15 multicast hops. No automatic withdrawal delay
is used.

The advertiser in Figure 3-4 uses a correlated TTL algorithm; thus, announcement
messages include in the repository description a TTL correlated with the next anticipated
announcement. Since only two announcement cycles are requested, repository seekers
that cache copies of the announced repository description should invalidate those copies
when an anticipated lazy announcement message fails to arrive at time 1210.

In Figure 3-4 each instance of a lazy announcement message invokes a <<remote>>
method, SeekerProxy.lazyAnnouncement(), on every seeker proxy listening for
lazy announcements about repositories. The method invocation conveys a repository
description. In order to accept lazy announcements a seeker proxy must be enabled for
listening. To start and stop listening for lazy announcements a seeker invokes the
<<local>> method SeekerProxy.listenForDiscovery(). If listening is
enabled, then for each incoming lazy announcement a seeker proxy invokes

1 Our model uses the <<local>> stereotype to tag methods invoked from within the same SDE or SDE-
SDA combination. We use the <<remote>> stereotype to tag methods exchanged among SDEs. In
essence, <<remote>> methods model messages sent among objects via network protocols.

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 22 NIST SP 500-260

Seeker.processDiscovery(), where the disposition of the announcement is
determined. If the (optional) sequence number in the repository description indicates stale
information, then the announcement is discarded; otherwise, if the seeker has not
previously discovered the repository and the quota for repositories is not satisfied and the
repository description in the announcement matches the seeker’s repository requirement,
then the seeker adds the repository description to its cache. If the seeker has previously
discovered the repository and the repository description still matches the seeker’s
repository requirement and the repository description includes a TTL, then the seeker
updates its cached copy of RepositoryDescription.validUntil to reflect the
new TTL value. If the seeker has previously discovered the repository and the current
description no longer matches the seeker’s repository requirement, then the seeker purges
the cached repository description.

3.2.2 Aggressive Discovery. The UML sequence diagram given as Figure 3-5 illustrates
how a repository seeker can detect a repository description using aggressive discovery.
During construction, a seeker proxy is provided with a discovery requirement that
specifies characteristics of the discoverable item being sought. The seeker proxy will use
this discovery requirement across all its possible discovery processes (i.e., lazy,
aggressive, and directed). A seeker with multiple discovery requirements must construct
multiple seeker proxies. In a seeker proxy, aggressive probing is initiated when a seeker
calls the <<local>> method SeekerProxy.seekDiscovery()with arguments

Figure 3-4. UML Sequence Diagram for a Lazy Discovery Example: Two announce
cycles occur 100 s apart, with three announcements in each cycle. After initial
caching, repository discovery is refreshed once, and then purged. The advertiser
withdraws the repository after 1200 seconds of announcements.

:Advertiser
(for repository)

lazyAnnouncement (<001,…., 100s >)

announceDiscovery (10s, 100s, 2, 3, 2s)

:SeekerProxy

processDiscovery
(<001,…., 100s >)

2s

10s

Result: Added to
Seeker.discoveries.
validUntil set T=1110s.

T=1000s

2s

lazyAnnouncement (<001, ….. 100s>)
2s
2s

T=1110s

process_Discovery
(<001,…., 100s >)

Result: validUntil set
to T=1210s.

100s

100s

T=1010s

Result: Purge T >=
1210 succeeds.

100s

Optionally, activation continues
until T=1210 when discovery
Withdrawal is multicast.

100s

:Repository
Seeker

:Repository
Seeker

100s

100s

listenForDiscovery ()

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 23 NIST SP 500-260

that define the probing periodicity, the probe distance (i.e., how far each probe should
proceed before being removed from the network) and increase strategy, and the multicast
response suppression and scheduling strategy (if any). Before commencing aggressive
discovery, the seeker proxy checks the count of cached discoverable items. Discovery
will be started only if the cache contains fewer entries than the seeker desires. Once
initiated, probing occurs in cycles, where each cycle is separated by a cycle interval.
Probing continues for a finite number of cycles, or until sufficient discoverable items are
cached. Within each cycle, a seeker proxy may issue one or more multicast probe
messages, where each message is separated by an inter-message gap. The probe distance
indicates how far (in multicast hops) the first probe message should progress in the
network. The increase strategy consists of (1) the number of additional hops to be added
to the probe distance for each probe message and (2) the number of additional hops to be
added to the probe distance for each probe cycle. Increasing probe distance over time
permits a seeker to implement an expanding-ring multicast search, a strategy often
adopted by discovery systems that prefer to find nearer discoverable items first.

Figure 3-5. Using Aggressive Discovery to Seek a Repository with a Unique ID of
001. Two announce cycles occur 100 s apart, with three aggressive probes in each
cycle. The :Advertiser for repository 001 responds, granting a TTL (=500 s),
correlated to the lazy-announce cycle in which the next announcement occurs at
T=1500 s. After initial caching, the discovery is refreshed by a subsequent
announcement. The discovery may later be purged or withdrawn.

:Advertiser
(for repository 001)

aggressiveProbe (<{001, 002}, {},{} >, <002>) seekDiscovery (2, 100s, 3, 2s)

:SeekerProxy

processDiscovery (<001,…>)
2s

Result: Added to
Seeker.discoveries.
validUntil set T=1500s.
Previous responder list
updated to be <001, 002>.

T=1000s

2s

T=1100s

Result: No further
discovery. Previous
response made and
requirement satisfied.

Result: validUntil set
to T=2500s.

100s

:Repository
Seeker

:Repository
Seeker

aggressiveResponse (<001, ….., 500s >)

2s

2s

aggressiveProbe (<{001,002}, {},{} >, <001,002>)

T=1500s

lazyAnnouncement (<001, ….. ,1000s >)
processDiscovery (<001,…>)

500s

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 24 NIST SP 500-260

As illustrated in Figure 3-5 each instance of a multicast probe message invokes a
<<remote>> method, Advertiser.aggressiveProbe(), on every advertiser
listening for multicast probes. The method invocation conveys the following information
associated with the current probe: the repository discovery requirement (which includes
either a list of repository identifiers or a combination of repository types and scopes), and
(an optional) list of already discovered items matching the discovery requirement. (The
probe may also include some multicast response suppression or scheduling parameters, as
discussed in Section 4.1.) The list of already discovered items allows a seeker proxy to
convey the identity of items already found, which enables advertisers to suppress
duplicate responses to successive multicast probes with identical discovery requirements.
Upon receiving an aggressive probe, an advertiser will examine the list of already
discovered items. If the advertiser has nothing to add, then no further action is required.

Next, an advertiser will compare its own characteristics against the discovery
requirement; a match requires the advertiser to send a response to the return address
(unless the availability of the discoverable item has expired). We represent the response
message as a <<remote>> method, SeekerProxy.aggressiveResponse(),
which includes the same parameters (recall 3.2.1) that the advertiser includes in lazy
announcements of the discoverable item. Upon receiving the response, the seeker proxy
applies the same processing as applied to incoming lazy announcements. If the response
contains a newly discovered item, then the identity of the item will be included on the list
of already discovered items (if used) in subsequent multicast probes sent by the seeker
proxy. If the newly discovered item includes a TTL, then the seeker applies a purge
policy to invalidate the cached item at the appropriate time. The seeker typically relies on
lazy announcements (if used) to extend the TTL of cached items. The seeker is also free
to initiate aggressive discovery in an effort to extend the TTL of cached items. If a
cached item is purged, then the seeker is free to initiate aggressive discovery in an effort
to find a replacement.

3.2.3 Directed Discovery. Directed discovery, which allows a seeker proxy to contact a
pre-configured list of advertisers, uses unicast message transmission in place of multicast
transmission. This approach might be necessary when operating on networks that do not
support multicast routing or when attempting to discover advertisers at (administrative or
physical) distances greater than can be reached through multicast. Directed discovery
might also be advantageous when attempting to establish a wide-area topology of
advertisers. As shown in Figure 3-6, directed discovery is initiated when a seeker calls
the <<local>> method SeekerProxy.contactAdvertiser()with the list of
advertiser addresses to contact, a retry interval, and (optionally) a maximum number of
retries. The seeker proxy makes one attempt to contact each listed advertiser, removing
any advertisers that were contacted successfully. If advertisers remain on the list, then,
after the retry interval elapses, the seeker proxy makes another attempt to contact those
advertisers. Retries continue until the maximum (if any) number of retries is reached,
then the proxy seeker ceases attempting to contact advertisers.

For each advertiser that can be contacted, the seeker proxy invokes the <<remote>>
method Adverstiser.directedProbe()with two parameters: (1) a return address

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 25 NIST SP 500-260

to which responses can be sent and (2) a discovery requirement, against which the
advertiser compares its own characteristics. If a match exists, then the advertiser invokes
<<remote>> method SeekerProxy.directedResponse() with the same
parameters that the advertiser includes in lazy announcements of the discoverable item.
Upon receiving the response, the seeker proxy applies the same processing used for
incoming lazy announcements. If the discoverable item is cached with a TTL, then the
seeker exercises its local purge policy, which may include extending the TTL of the
cached item as specified in any subsequent lazy announcements for the item. Of course,
the seeker can be out of multicast range and fail to receive lazy announcements. For this
reason, the seeker is free to initiate directed discovery as needed to extend TTLs and to
recover purged items.

3.2.4 Monitoring Discoveries. Discovery processes include a monitoring aspect. As new
discoverable items arrive on the network, the discovery processes result in additions to
the caches maintained by SDEs. Such new discoveries will be conveyed by a seeker,
using the method CallbackServer.issueLocalCallbacks(), as arrival events

Figure 3-6. Using Directed Discovery to Seek a Repository at Address 1.1.1.1.
Directed discovery is invoked to send up to three directed probes 30 s apart to the
related Advertiser. Response to the first attempt fails due to network disruption.
The Advertiser responds to the second attempt with a TTL (= 500 s) correlated to
the lazy-announce cycle. After initial caching, the discovery is refreshed by a lazy
announcement. The discovery may later be purged or withdrawn.

:Advertiser
(for repository 001
at address1.1.1.1)

directedProbe (1.1.1.1, <1, {001}, {}, {} >)

contactAdvertiser
(<1.1.1.1>, 30s,3)

:SeekerProxy

processDiscovery (<001,…>)

Result: Response to first
probe fails. Response to
retry succeeds. Added to
Seeker.discoveries.
validUntil set T=1500s.

T=1000s

T=1030s

Result: lazy announcement
succeeds. validUntil set to
T=2500s.

30s

:Repository
Seeker

:Repository
Seeker

directedResponse (< 001, … , 500s >)

T=1500s
(lazyAnnouncement (<001, …. , 1000s.>) processDiscovery (<001,…>)

directedResponse (< 001, … , 500s >)

directedProbe (1.1.1.1, <1, {001}, {}, {} >)

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 26 NIST SP 500-260

to all SDAs registered with the seeker to receive notification of new discoverable items.
Similarly, previously cached discoverable items may be purged from SDE caches, either
because a TTL expires, or because a withdrawal message
(SeekerProxy.discoveryWithdrawal()) arrives, or because the SDE cannot
obtain a later copy of the item. In any of these cases, the seeker issues departure events,
as callbacks, to all SDAs registered to receive them. SDAs may also register with seekers
to receive notification of changes to discoverable items. For example, a repository
description might be cached with a specified set of administrative scopes. A subsequent
lazy announcement of the same repository description could contain an altered scope list.
In such a case, the seeker uses callbacks to issue change events to all SDAs registered to
receive them. SDAs that do not register with a seeker to receive notice of arrivals or
departures or changes can only learn about them by inspecting the SDE cache.

3.3 Registrations and Extension. After discovering a repository, a SDE might, depending
upon repository type, be able to deposit information in the repository. For example, a
service could deposit its service description, allowing other SDEs that discover the
repository to also discover the service description. Clients could deposit notification
requests to express the desire to be informed about changes to service descriptions
contained within a repository. In addition, a SDE that discovers a service that provides
eventable variables could deposit with the service a request for notification about changes
in variable state.

Our model includes a registration process that enables SDEs to deposit information,
which we call registrations, in a remote registry. The type of information that may be
deposited depends upon the registry type: (1) service descriptions can be registered in
service registries or full registries and (2) notification requests can be registered only in
full registries. (A service repository does not accept remote registrations.) The
registration process in our model is also used to register notification requests with
services that provide eventable variables. Registration of service descriptions (and
associated notification requests) supports a service discovery and monitoring process (see
Section 3.4), while registration of requests for notification of changes to variable state
supports a variable-monitoring process (see Section 3.5). In our model, registrations can
occur for a limited duration, which may be extended periodically. This approach permits
registries to detect failure of registering SDEs, and then to purge associated registrations;
thus, limiting the period during which invalid information is disseminated to other SDEs
in a service discovery system. In what follows we first describe our model of registrations
and then discuss the registration process, followed by the extension process.

3.3.1 Registration Types. Figure 3-7 illustrates how our model represents registrations as
classes. An abstract class (Registration) defines attributes common to all
registrations, while concrete subclasses add additional information pertaining to specific
types of registrations, including service descriptions (ServiceRegistration) and
notification requests (NotificationRegistration) and requests for notification
of changes in variable state (ServiceVariableRegistration). Each concrete
class includes an association with a registration-request class that provides some of the
attributes associated with the registration and that can be conveyed in registration-request

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 27 NIST SP 500-260

messages (see Section 3.3.2). Registration-request messages also contain a request
identifier (uniquely assigned by a registration requester to distinguish instances of
registration requests) represented in our model as an attribute in an abstract class
(RegistrationRequest). We take this approach as a convenient way to represent
information that is included both in registrations and in messages (registration requests)
that convey the registrations to registries.

Every registration includes a unique identifier (assigned by the accepting registry) that
can be exchanged among relevant classes to denote a specific registration instance. Each
registration may also have a time of expiration used by registries in making purge
decisions. Beyond these common attributes, a service registration includes only the
service description being registered, while a notification registration includes the
following information: (1) a list of notification types (i.e., service arrivals, departures,
and changes) of interest to the registrant (an empty list denotes interest in any activity),
(2) an address to which notifications should be sent, (3) an optional list of service
attributes to include in notifications (if the list is empty, then an entire service description
will be conveyed in each notification), (4) an optional set of notification queries, and (5)
the sequence number assigned to the most recent notification sent about this registration.
When a set of notification queries is present, each query restricts the terms of interest
associated with a notification request. When the set is absent, a default query (which
matches anything) is assumed. Some service discovery systems support a rather rich set
of capabilities for expressing queries, while others restrict queries to service type or

Figure 3-7. Class Diagram for Registration and Registration Requests

RegistrationRequest
requestID : Integer
<<Opt>> requestedDuration : Duration

Registration
registrationID : UniqueIdentifier
timeOfExpiration : Time
extendable : Boolean

ServiceVariableRegistration
currentSequenceNumber : Integer

VariableRegistrationRequest
eventedServiceVariables : ListOfServiceVariableNames
eventReciever : UniqueAddress

11

NotificationRegistration
currentSequenceNumber : Integer = 0

NotificationQuery
serviceID : UniqueIdentifier
serviceType : ServiceType
attributeCriteria : ListOfAttributeQueries

NotificationRegistrationRequest
notificationTypes : ListOfNotificationTypes
notificationAddress : UniqueAddress
<<Opt>> attributesToReport : ListOfSDElementNames

11

1..*
+NotificationScope

1..*

ServiceRegistration

ServiceRegistrationRequest

11

ServiceDescription

11

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 28 NIST SP 500-260

service identifier only. Our model allows each notification request to include a set of
distinct queries, where each query in the set is logically connected together with
disjunctions. For example, a registrant might be interested in a specific service type, in a
specific service identifier, and in a service type that contains selected attributes (or
selected attributes with some bounded range of values). In our model, these interests
would be expressed as a set of three notification queries, where a match against any one
(or more) of the queries would lead to a related notification. Notification requests
associated with eventable variables are somewhat less complicated, including the
common attributes (registration identifier and time of expiration), an address to which
notifications should be sent, the sequence number of the most recent notification
associated with the registration, and a list containing the specific eventable variables of
interest to the registrant (an empty list denotes interest in all eventable variables offered
by a service).

3.3.2 Registration Process. Our model includes an abstract class (Registry) that
defines methods that must be implemented by classes wishing to accept registrations. Our
model also provides the abstract class RegistrationRequester, which must be
specialized by classes wishing to request specific types of registrations. Figure 3-8
depicts these abstractions, along with specific concrete classes and interfaces defined in
our model to support registration of service descriptions and notification requests (for
both services and variables). Each concrete class overrides the abstract methods as
necessary to process a specific type of registration. Here, we define the abstract behavior
(shown in Figure 3-9) associated with the registration process included in our model.

NotificationRegistrationRequester
registrationRequests : ListOfNotificationRequests

ServiceRegistrationRequester
registrationRequests : ListOfServiceRegistrationRequests

<<Remote>> changeConfirmed()
<<Remote>> changeFailed()

ServiceRegistry
registrations : SetOfServiceRegistrations

<<Remote>> register()

FullRegistry

EventRegistrationRequester
registrationRequests : ListOfVariableRegistrationRequests

<<Remote>> addDenied()

RegistrationRequester
registrationRequests : ListOfRegistrationRequests

<<Remote>> addConfirmed()
<<Remote>> addDenied()

Registry
registrations : SetOfRegistrations

<<Remote>> cancel()
register()

0..*

0..*

+RegisteredBy

0..*

0..*

NotificationRequestRegistry
registrations : SetOfNotificationRegistrations

<<Remote>> register()

NotificationReceiver
<<Remote>> notification()

+Notification Source

VariableEventRegistry
registrations : SetOfEventRegistrations

<<Remote>> register()

EventReceiver
<<Remote>> eventNotice()

+EventSource

Figure 3-8. Class Diagram for Registries and Registration Requesters

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 29 NIST SP 500-260

To initiate the registration process, a registration requester invokes the <<remote>>
method Registry.register() with input parameters: RegistrationRequest
and (optional) requested duration. (Some service discovery systems implement default
registration durations and, so, do not include a requested duration in registration
requests.) Subject to capacity constraints, the register() method assigns a
registration identifier and adds the registration to the registry. As part of this process, an
extension granter is consulted (see Section 3.3.3) to assign an expiration time to the new
registration. A registry will periodically check its set of registrations, purging those that
have expired. If a registration is successfully added, then the registry invokes a
<<remote>> method RegistrationRequester.addConfirmed(), conveying
the associated request identifier, the newly assigned registration identifier, a granted
time-to-live (TTL) for the registration, and the address of an extension granter through
which to request extensions to the granted TTL. If a registry chooses to reject a
registration request, then the requester is notified through a <<remote>> method

:RegistrationRequester

register (<Req01,……. >, 1500s)

Result Registration granted
at T=100 for 500s.
Extension process initiated.

T=100s

:Registry

addConfirmed (Req01, Reg01, 500s, 1.2.3.4)

T=1100s

:ExtensionGranter

commence (<Reg01,……. >, 1500s)
return (500s)

commence (Reg01, 1,2,3,4, 500s, 1000s)

refresh (Reg01,1000s)T=600s
confirm (Reg01,500s, “Additive”)

refresh (Reg01, 500s)
confirm (Reg01,500s, “Additive”)

T=1600s T=1610s
checkForPurge (Reg01) Result: Registration is

purged at T > 1600.

No further refresh operations
at T = 1600.

Figure 3-9. Abstract Behavior for Registration and Extension. An initial registration
requesting 1500 s is granted for a period of 500 s. Since the granted time is less than
the requested time, the RegistrationRequester, which implements the
ExtensionRequester interface, requests and obtains two additional extensions
for the remaining time using the additive strategy (see below). After expiration of the
second extension, the Registry purges the registration.

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 30 NIST SP 500-260

RegistrationRequester.addDenied(), which conveys the associated request
identifier and a reason for denying registration. By invoking a <<remote>> method
Registry.cancel()with the registration identifier, a registration requester can
cancel a confirmed registration prior to expiration of a granted TTL.

3.3.3 Extension Process. In many situations, a registrant may wish a registration to be
valid for an extended period of time. On the other hand, a registry might desire to detect
registrant failure as soon as possible in order to reclaim space from registrations
associated with failed registrants and to limit the time during which the registry supplies
invalid information to other entities in a service discovery system. Thus, registries are
likely to grant registrations with shorter TTL than requested. Our model includes classes
(see Figure 3-10) implementing an extension process that can be used to resolve
differences between requested and granted TTL.

To obtain an initial granted TTL for a registration, a registry invokes a <<local>>
method ExtensionGranter.commence() with an input registration identifier and
a requested TTL (if any). A granted TTL, computed by <<local>> method
ExtensionGranter.getTTL(), is used to update the expiration time of the
associated registration, and is returned to the registry. The registry passes the granted
TTL (and the address of the extension granter) to the registration requester as part of the
message confirming registration.

To extend a granted TTL (see UML sequence diagram Figure 3-9), a registration
requester must implement an interface, ExtensionRequester, which provides
methods to interact with a remote class, ExtensionGranter, associated with a

Figure 3-10. Class Diagram for Registration Extension

ExtensionStrategy
Additive
Assignment

<<Enumeration>>

RegistrationRequester
registrationRequests : ListOfRegistrationRequests
registrationType : Registration

<<Remote>> addConfirmed()
<<Remote>> addDenied()

ExtensionRequester
<<Remote>> confirm()
<<Remote>> refreshDenied()
<<Local>> commence()
<<Local>> cease()

<<Interface>>

<<implements>>

ExtensionGranter
extensionStrategy : ExtensionStrategy
maximumTTL : Duration
minimumTTL : Duration

<<Remote>> refresh()
<<Local>> commence()
<<Local>> cease()
<<Local>> getTTL()

Registry
registrations : SetOfRegistrations

register()
<<Local>> capacity()
<<Local>> checkForPurge()
<<Remote>> cancel()
acceptsRegistrationType()

0..10..1

Registration
registrationID : UniqueIdentifier
timeOfExpiration : Time
extendable : Boolean

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 31 NIST SP 500-260

registry. Upon receiving an initial granted TTL, a registration requester can compute the
difference from the requested TTL. If the computed difference exceeds zero, then the
registration requester can invoke ExtensionRequester.commence(), a
<<local>> method with input parameters: registration identifier, address of an
extension granter, the granted TTL, and the additional requested TTL. Prior to expiration
of the granted TTL, the extension requester invokes a <<remote>> method
ExtensionGranter.refresh()with parameters: registration identifier and
requested extension duration. The registration granter calculates a TTL extension, if any,
and updates the expiration time of the associated registration, returning the extended TTL
via <<remote>> method ExtensionRequester.confirm(), which has
parameters registration identifier, granted TTL duration, and extension strategy (either
additive or assignment). When updating the expiration time of a registration, an extension
granter may use one of two strategies. An additive strategy adds the extended TTL to the
current expiration time associated with the registration. An assignment strategy adds the
extended TTL to the current time and then overwrites the previous expiration time
associated with the registration. The strategy used by the extension granter must be
conveyed to the extension requester in order to properly use the granted TTL duration. If
an extension refresh is not requested (or not granted), then a registry will eventually
purge the expired registration.

Service discovery systems can employ various algorithms to determine how much TTL
extension to grant for each request. Our model accommodates such variations by
encapsulating the specific algorithms in an abstract <<local>> method,
ExtensionGranter.getTTL(), which, given a requested TTL, returns a granted
TTL extension. The class ExtensionGranter includes some attributes that bound the
(minimum and maximum) TTL to grant. In a subsequent section (see Section 4.2) on
performance considerations, we describe alternate algorithms for computing the TTL.

Upon receiving an extended TTL, the extension requester determines if additional
extension is required, then, if necessary, schedules another call to
ExtensionGranter.refresh()just prior to the expiration time computed from the
granted TTL and extension strategy. In general, an extension granter need not honor
requests to extend a registration TTL; the <<remote>> method
ExtensionRequester.refreshDenied()is invoked to convey the negative
decision for an associated registration identifier and giving an optional reason for the
denial. For example, a request for extension might arrive too late at the extension granter,
which will find no corresponding registration because the registry may already have
purged the record. In this case, the extension granter calls a <<remote>> method
ExtensionRequester.refreshDenied() with the registration identifier and
with unknown_registration as the reason for denying the requested extension.

Registration extension should be halted whenever an associated registration is
invalidated, which occurs when a registry receives a request to cancel, or decides to
purge, a registration. Upon deciding to cancel a registration, a registration requester
should invoke ExtensionRequester.cease()with the associated registration

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 32 NIST SP 500-260

identifier. A registry invokes ExtensionGranter.cease() with a specific
registration identifier to halt granting extensions for the registration.

3.4 Service-Description Discovery and Monitoring. Given that the main task of clients in
service discovery systems is to find and monitor service descriptions, the specific
discovery and monitoring techniques available depend upon whether or not repositories
can be discovered. If repositories are found, then clients and services can interact through
repositories; otherwise, clients and services must interact directly. In what follows, we
discuss how our model supports the discovery and monitoring of service descriptions
under these two different conditions. First, we describe how our model supports service-
description discovery and monitoring with repositories. Second, we consider how our
model represents service-description discovery and monitoring without repositories.

3.4.1 Service-Description Discovery with Repositories. Previous sections described how
services and clients could discover repositories (see Section 3.2) and how services could
deposit service descriptions (see Section 3.3.2) with discovered repositories. In this
section, we focus on our model for clients to retrieve service descriptions from
repositories. We call this secondary discovery, because first a repository is found (using
primary discovery processes) and then the repository is queried for service descriptions.
As shown in Figure 3-11, our model includes an abstract class, ServiceSeeker,
which provides several attributes: service requirement, an indication of whether service
requirements are compared and filtered (i.e., matched) remotely (on the repository) or
locally (on the service seeker), and a cache for service descriptions matching the service
requirement. A ServiceRequirement (subclass of DiscoveryRequirement)
specifies the traits in service descriptions of interest to a service seeker. Service
requirements may specify a service identifier or a service type and optional set of service
attributes (and possibly ranges of values for each attribute). Service descriptions may be
compared against the traits of a service seeker’s service requirement; matching service
descriptions are retained in the service seeker’s local cache. In our model, a service
seeker has only one service requirement; thus, to look for service descriptions matching
multiple service requirements a client must start additional service seekers.
ServiceSeeker includes an abstract <<local>> method,
processDiscovery(), which must be implemented to cache newly discovered
service descriptions. If local matching is used, then processDiscovery()must first
compare an input service description for a match against the local service requirement.

To retrieve service descriptions from repositories, ServiceSeeker is specialized to a
class, UnicastServiceSeeker, which provides a <<local>> method,
issueFindService(), to initiate the sending of unicast queries to known
repositories that have been discovered previously. In our model, <<remote>> method
ServiceRepository.findService() represents a unicast query arriving at a
repository with parameters: a service requirement, an address to receive any matching
service descriptions, an optional set of requested attributes (used to restrict the contents of
any service descriptions returned to the service seeker), and an optional limit on the
number of matching service descriptions to be returned. When a service seeker wishes to
filter locally for matching service descriptions, then the findService()includes a

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 33 NIST SP 500-260

NULL service requirement (matching any service description). To return matching
service descriptions to the service seeker, a repository invokes a <<remote>> method
serviceFound()provided by the UnicastServiceSeeker. The method is
invoked with the following parameters: a set of service descriptions (each optionally
including a TTL) that match any restrictions included in the find-service query, the
repository identifier returning the service descriptions, and an optional number of
additional matching service descriptions not returned by the repository. Using this last
parameter, a service seeker may decide to issue another query to gather additional
matching service descriptions. Service descriptions that have a TTL (calculated as
discussed previously in Section 3.2) advise a service seeker to establish a local time after
which to seek an updated copy of cached service descriptions that may be outdated.
Absent a TTL, the service seeker must use a local policy to decide when to update (or
purge) cached copies of service descriptions.

Whether or not any matching service descriptions are found on a repository, a client
might be allowed to register (see Sections 3.3.1 and 3.3.2) a request with the repository to
be notified if any service descriptions matching the requirement arrive at the repository.
In this case, the service requirement is included as part of the notification request. Note
that notification requests permit service requirements to be aggregated together. Also
note that clients in service discovery systems should issue a find-service request to a

ServiceSeeker
discoveries : SetOfServiceDescriptions
matchLocation : MatchLocation
requirement : ServiceRequirement

ServiceRepository
serviceCache : SetOfServiceDescriptions

<<Remote>> findService()

UnicastServiceSeeker
knownRepositories : ListOfRepositoryIDs

<<Local>> issueFindService()
<<Local>> pollServiceDescription()
<<Local>> processDiscovery()
<<Remote>> serviceFound()

+unicast
QuerySource

SERVICE REQUIREMENT:
 (requiredServiceID =- NULL)
OR
 ((requiredServiceType = NULL)
 AND
 attributeValueRequirement = NULL))

MatchLocation
AtRepository
AtSeeker

<<Enumeration>>

ServiceRequirement
requiredUniqueD : UniqueIdentifier
requiredServiceType : ServiceType
attributeValueRequirement : AttributeValueRequirement

SetOfServiceDescriptions

ServiceDescription
serviceID : UniqueIdentifier
serviceType : ServiceType

+satisfiedBy

+members

SD ElementValuePair
name : String
value : Type

0..* +attributes0..*

Figure 3-11. Class Diagram for Service Retrieval with Repositories

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 34 NIST SP 500-260

repository following registration of a request for notification of service arrivals. This
permits detection of service arrivals that occur over the interval during which the
registration is being processed.

3.4.2 Service-Description Monitoring with Repositories. Repositories may be monitored
to detect changes in, or departures of, previously discovered service descriptions. Our
model supports two change-detection techniques: notification and polling. Below, we
discuss each of these in turn.

 3.4.2.1 Notification. In previous sections (see Sections 3.3.2 and 3.3.3), we described
how service descriptions might be purged from repositories when a TTL expires or when
cancelled by a service. Here, we discuss how repositories can notify clients of such
departures, as well as changes to the content of registered service descriptions. First,
though, we describe how our model allows a service to change the content of a service
description already registered with a repository.

Figure 3-8 illustrates the classes and relationships in our model related to service
registration: abstract classes Registry and RegistrationRequester are
specialized as ServiceRegistry and ServiceRegistrationRequester,
respectively. Service registry includes changeServiceDescription(), a
<<remote>> method invoked to update a service description previously deposited on a
registry. Our model allows attributes to be added and deleted from registered service
descriptions, and also allows the values of attributes to be changed. Any of these
alterations amount to a change to a registered service description. Requests to change a
service description include the following parameters: the address of an object
(implementing the service-registration requester methods) that will accept results, a
registration identifier (to indicate the relevant service description), a change identifier
(which is a sequence number to ensure that stale changes are not allowed to overwrite
more recent information), an action (add, delete, or change), and a list of attributes to
alter (which include attribute values when the action is add or change). Our model
restricts each invocation of the change-service method to convey only a single type of
action; thus, more complicated alterations to a service description must be represented as
a sequence of operations. Upon successfully completing a requested change-service
operation, a service registry invokes <<remote>> method changeConfirmed() on
the indicated address, returning the registration and change identifiers and any delay until
the change becomes effective. If a service registry cannot successfully complete the
requested change to a service description, then it invokes <<remote>> method
changeFailed() on the indicated address, returning the registration and change
identifiers and a reason for the failure.

Successful completion of a change-service request leads a service registry to attempt to
notify any (and all) objects registered to receive such information. Recall (Section 3.3.2)
that objects may register to receive notification of arrivals, changes, and departures
involving service descriptions. Figure 3-12 provides a UML sequence diagram that
portrays events related to an initial service registration, notification of the service arrival,
a subsequent change-service request, and related notification of the change to the service

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 35 NIST SP 500-260

description. Similar event sequences (not shown) occur when cancellation of a service
registration leads to notification of the service departure.

3.4.2.2 Polling. Some service discovery systems do not include mechanisms to notify
interested parties about arrivals, departures, and changes to service descriptions on
repositories. In such systems, clients may only detect arrivals, departures, and changes by
periodically polling for service descriptions. Typically, a client will periodically query
(using a unicast find-service request) a repository to discover a service description of
interest. After retrieving and caching a service description, a client can then periodically
query a repository for the latest copy of the service description, comparing the new copy
with the previously cached version to detect any attribute changes. If a client can no
longer obtain a copy of a previously cached service description, then the client could
infer that the repository no longer holds the description. While these polling procedures
are application-programming decisions taken by a client SDE, our model of the class
UnicastServiceSeeker provides pollServiceDescription(), a
<<local>> method to initiate a polling process on behalf of a client. The method
includes input parameters: repository identifier (to poll), service identifier (of the service
description of interest), an optional list of requested attributes (if not provided, then the

Figure 3-12. Registration and Notification: A RegistrationRequester registers
with a FullRegistry for notification of arrival and change of
ServiceDescription 001, denoted by {A, C}. Another
RegistrationRequester subsequently registers this service description, and the
registry issues an arrival notification() to the NotificationReceiver
designated at address 1.2.3.4. The RegistrationRequester for the service
description subsequently issues a changeServiceDescription(), which
triggers a change notification to the NotificationReceiver. Optionally,
if departure notification had been requested, purge of ServiceDescription 001
would also trigger a notification.

:RegistrationRequester
(for Notification Request)

:RegistrationRequester
(for Service Description)

:FullRegistry

Result Notification registration
succeeds at T=100. Service
registrations succeeds at
T=130, triggering notification.

T=130s

T=100s

changeServiceDescription
(Reg02, Ch01, change, <001, …>,1,2,3,5)

notification (arrival, 01, Reg01, 001)

changeConfirmed (Reg02,Ch01,2ms)
T=200s

T=130s

T=200s

Result Change Service
succeeds at T=200, triggering
notification.

register (Req01, <001,… >, 500s)

addConfirmed(Req01,Reg02,500s,1.2.3.4)

register (Req01,<{A,C},001,1.2.3.4>, 500s)

addConfirmed (Req01,Reg01, 500s, 1.2.3.4)

notification (change, 02, Reg01, 001)

:RegistrationReceiver
(address 1.2.3.4)

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 36 NIST SP 500-260

whole service description is retrieved), a polling interval, and the number of polls to
attempt. The method must also annotate the cached service description of the indicated
service identifier to record the fact that polling operations are underway. In our model,
the method ServiceSeeker.processDiscovery() must also be overridden to
consult the polling indicator associated with the incoming service identifier and then, if
necessary, to compare an incoming service description with a previously cached copy to
detect any attribute changes. Since multiple repositories may have been discovered, a
seeker has the option of querying only one repository with each poll. In Section 4.3 we
describe some approaches that a seeker may use to select a target for each poll.

3.4.3 Service-Description Discovery without Repositories. Some service discovery
systems do not permit repositories. Even when permitted, repositories might be
unavailable. For these reasons, some service discovery systems provide mechanisms
through which clients can attempt to discover services directly through multicast queries.
Our model permits ServiceSeeker to be specialized as
MulticastServiceSeeker, which uses aggressive discovery procedures to issue
multicast queries containing a service requirement and which also uses lazy discovery
procedures to listen for any announcements of service descriptions. We found no service
discovery protocols that issue multicast announcements containing a full service
description; however, we did find a few service discovery protocols that issue multicast
announcements of service identifiers and service types, where each announcement
contains an address where a full service description may be obtained. The procedures
described previously for aggressive and lazy discovery (recall Sections 3.2.1 and 3.2.2)
are the same procedures used in our model to represent multicast queries and
announcements associated with discovery of service descriptions.

3.4.4 Service-Description Monitoring without Repositories. Absent a repository,
departure of service descriptions can be detected in the same way as departure of other
discoverable items. Service descriptions might have an associated TTL, which will lead a
client to purge the service description if a new announcement does not arrive in time to
extend the TTL (see Section 3.2.1). Alternately, a MulticastServiceSeeker might
receive an indication, discoveryWithdrawal(), when a service is withdrawn. Of
course, a client might also use a local policy (such as repeated failure to connect) to purge
a cached service description. Absent repositories, detecting change in the attributes of
previously discovered service descriptions depends upon clients implementing a polling
scheme along the lines described in Section 3.4.2.2, but polling the provider of the
service description instead of a third-party repository holding registered service
descriptions. Of course, a service provider is free to implement methods or variables that
might provide indication of changes in service-description attributes.

3.5 Variable Discovery and Monitoring. Some service discovery systems include specific
procedures for service providers to make variables, both eventable and non-eventable,
available to clients. For this reason, we decided to include such procedures as an option
within our model. Figure 3-13 contains key classes associated with variable discovery
and monitoring in our model. A service provider must implement an optional class,
VariableProvider, to make variables accessible to clients. The class provides two

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 37 NIST SP 500-260

<<remote>> methods, getEventableVariables()and
getMonitorableVariables(), which enable a client to retrieve a list of the
eventable and non-eventable variables, respectively. Each method includes only one
parameter, an object address to which variable lists should be returned. To receive
variable lists, a client must implement the class VariableAccessor, which includes
<<remote>> methods to receive asynchronous results from the list queries. These
methods are called by a variable provider to return a list of non-eventable variables
(monitorableVariablesFound()) or a list of eventable variables
(eventableVariablesFound()).

The variable-list retrieval methods are optional for a variable provider because some
service discovery systems include a list of the eventable and non-eventable variables (see
Section 3.1) in the service description. For service discovery systems that do not include
service variables in the service description, variable-list retrieval methods permit a client
to obtain a list of available service variables in each category (eventable and non-
eventable). Our model, then, includes two alternate approaches to find service variables:
by discovering a service description or by getting lists of service variables directly from a
service provider. Once found, service variables may be monitored using queries (for non-
eventable variables) or notifications (for eventable variables). We first discuss queries
and then notifications.

A mandatory <<remote>> method, getVariableValues(), implemented by a
variable provider, enables a client to submit a list of variables for which values are
requested to be returned to a designated address. The input variable list represents a one-

ServiceProvider

VariableAccessor
localVariableCache : ListOfSDElementValuePairs

<<Remote>> monitorableVariablesFound()
<<Remote>> variableValuesFound()
<<Remote>> eventableVariablesFound()
<<Local>> pollVariableValues()

VariableProvider
<<Remote>> getMonitorableVariables()
<<Remote>> getVariableValues()
<<Remote>> getEvemtab;eVariables() +querySource

<<implements>>

ServiceVariableDescription

1..* +serviceVariable1..*

SD ElementValuePair
name : String
value : Type

+eventableList

+notEventableList

Figure 3-13. Class Diagram for Variable Monitoring

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 38 NIST SP 500-260

time query for the current values of the variables on the list. To receive the variable
values, a client must implement <<remote>> method, variableValuesFound(),
which is called by a variable provider to convey a list of variable values. A client may use
periodic queries (as discussed in Section 3.4.4.2) to monitor variable values. The
VariableAccessor class includes a <<local>> method, pollVariables(),
to initiate a period of variable polling. When polling, a client must provide local logic to
cache variable values and to compare newly received values to previously cached values
to detect when the value of a variable changes.

When a service provider offers eventable variables, a client has the option to register for
notification of changes in variable state. In our model, these procedures build on the
registration, extension, and notification processes discussed previously. Figure 3-8
identities the classes and relationships included in our model to represent eventable-
variable registration and notification. As shown, the abstract Registry class is
specialized by a concrete class, VariableEventRegistry, which overrides the
abstract registration methods to handle an appropriate kind of registration request,
VariableRegistrationRequest, which specializes the abstract class
RegistrationRequest. Variable-registration requests include a list of eventable
variables that a client is interested in monitoring and the address of an
EventReceiver to notify when a change occurs in the state of one or more of the
designated variables. Our model makes no statement about what constitutes a change in
variable state. To convey an event, a variable-event registry invokes a <<remote>>
method EventReceiver.eventNotice() with the following parameters:
registration identifier, service identifier, sequence number, and a list of eventable
variables (and their current values) that have changed. When an event occurs, the
variable-event registry attempts to inform any (and all) event receivers registered for
event notices.

To register for notice of variable events, in our model a client must implement a concrete
class, EventRegistrationRequester, which inherits from abstract class
RegistrationRequester and overrides registration-result methods as necessary.
One required override adds a reason, requested_variable_not_monitorable,
to the list of reasons that can be used to deny a registration. In our model, variable-event
registration uses the optional extension process (see Section 3.3) to continue registrations
beyond an initially granted duration.

3.6 Limitations and Open Issues. The set of first-generation service discovery systems we
analyzed exhibited some limitations that lead directly to six open issues in our model.
First, our model reflects the fact that first-generation service discovery systems are
designed for use at limited scale. Second, our model reflects the fact that first-generation
service discovery systems provide an incomplete design for logical partitioning. Third,
our model reflects the fact that first-generation service discovery systems do not support
notification about changes in repository descriptions. Fourth, our model reflects the fact
that first-generation service discovery systems do not clearly distinguish between the role
of a service provider and the role of a proxy that participates in service discovery
processes on behalf of the service provider. Fifth, our model reflects the fact that first-

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 39 NIST SP 500-260

generation service discovery systems do not define eventable variables with sufficient
detail. Sixth, our model reflects the fact the first-generation service discovery systems do
not consider deployment on resource-constrained devices. We address each of these
issues in turn.

3.6.1 Limited Scalability. In the first-generation of service discovery systems that we
analyzed, clients and services could discover a set of repositories through which to
rendezvous. Unfortunately, none of the service discovery systems we examined define
any relationship (save replication and partition) among the multiple repositories that
might exist. This means that in a global system, a service and client may rendezvous only
by discovering the same repository (or one of its replicas). This design places severe
restrictions on the ability of a discovery system to reach a global scale. Either clients or
services must be capable of discovering every repository in a global network, or
repositories must be capable of discovering each other and organizing into topologies.
The current generation of service discovery protocols provides only two approaches to
accomplish this feat: (1) use lazy or aggressive multicast discovery to find repositories
and (2) use directed discovery to find a set of known repositories. The multicast approach
can lead to dissemination of an excessive number of multicast messages in a large
network, because multicast lazy announcements must extend throughout the entire
network, reaching every available client and service. If aggressive discovery adopts an
expanding ring multicast search and stops at the first discovered repository, then the
population of services and clients will form into numerous geographically partitioned
collections, which would not enable global service discovery. To avoid such partitions,
aggressive discovery multicast messages must also extend throughout the entire global
network. On the other hand, each client or service could be given a list of all (or most) of
the repositories available in the network and then contact them directly and interact with
each of them. Of course, this approach exhibits some significant practical problems. First,
how is the list of repositories accumulated and provided to each client or service in the
global network? Second, how is the list updated as new repositories arise? Third, how can
every client or service interact with every repository in the global network without
placing undue processing load on the client or service and repository? Our current model
reflects these scalability limitations inherent in first-generation service discovery systems.
On-going research [27-32] in future service discovery systems investigates techniques
that permit repositories to self-organize into topologies that support wide-area search, so
that a client or service need only discover one repository to obtain access to the global set
of services offered throughout the network. Such self-organizing wide-area search
systems also aim to support reorganization with changes in the population of services and
repositories.

3.6.2 Incomplete Design of Logical Partitioning Schemes. Of the service discovery
systems that we analyzed only two support logical partitioning schemes, which enable
components to be classified into distinct collections based upon administrative scopes. In
effect, each component may be assigned membership in one or more administrative
scopes, and then components may only discover each other when their administrative-
scope membership intersects. To this extent, we include administrative scoping in our
model of first-generation service discovery systems. One of the protocols we analyzed

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 40 NIST SP 500-260

supports this limited form of administrative scoping by requiring that each component
establish its scope list at startup and then not change scope membership during the
component’s lifetime.

Another of the protocols we analyzed provides the ability for a component to change
scope membership dynamically during execution, which could allow clients and services
that acquire additional administrative scopes to initiate aggressive or directed discovery
to find related repositories. Similarly, repositories that acquire additional scopes could
announce this change to potential repository seekers. The specification we analyzed
requires clients and services to deregister notification requests and service descriptions,
respectively, from repositories that fall out of scope. In cases where scope membership is
reduced, the service discovery system that supports Unfortunately, the specification does
not require a repository to associate registered service descriptions and notification
requests with specific administrative scopes; thus, when the scope membership of a
repository is reduced no direct action can be taken to remove service descriptions and
notification requests that fall out of scope, or to notify registrants about the scope
reduction. Of course, a later announcement from the repository might lead repository
seekers to discard the associated repository description, should the repository fall out of
scope. In effect, approach limits administrative scoping to discovery processes only,
whereas a more complete design would associate administrative scoping with registration
as well.

We decided to exclude dynamic scope changes from our model, because only one of the
service discovery systems we analyzed allowed such behavior and that system did not
fully realize a complete design that associates registrations with administrative scopes.
We believe that a complete design for administrative scoping could empower scope
changes to dynamically reorganize the logical topology of executing service discovery
systems. To accomplish this would require associating administrative scopes not only
with discovery processes but also with registration processes. A complete design would
also require defining appropriate behaviors to be taken by repositories, clients, and
services in reaction to changes in local administrative scope. Since none of the service
discovery systems we analyzed provided a complete design for dynamic changes of
administrative scope, we omitted such functionality from our model.

3.6.3 Unsupported Notification of Changes to Repository Descriptions. Our model
represents repository descriptions as a subclass of service description. Given such
representation, one would expect that repository seekers could register for notification
about updates to a repository description. Such updates might include changes in: scope,
repository capabilities (e.g., ServiceRegistry or FullRegistry), or invocation
address (as might occur in mobile networks). None of the service discovery systems that
we analyzed supports dynamic change and notification for repository descriptions. For
this reason, we omitted such beneficial functionality from our model.

3.6.4 Underspecified Interactions Between Service Provider and Service Discovery
Entities. Among the service discovery systems that we analyzed, only one specified
interactions between a service provider and a SDE. In this case, the specification defines

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 41 NIST SP 500-260

an application-programming interface (API) that permits a service provider to interact
with a local proxy the implements the functions of a SDE. The specification exhibits two
limitations: (1) each SDE supports only a single service provider and (2) a cooperating
service provider and SDE operate on the same node. Service discovery systems could be
designed to support more flexible arrangements. For example, one SDE might proxy on
behalf of multiple service providers or service providers might operate independently on
separate nodes from a proxy SDE. Such arrangements would benefit from definition of
protocol elements to allow a service provider to convey to a SDE the status and
description of the associated service, to withdraw the service if necessary, and to ensure
appropriate notification of failures between the service provider and SDE. Most of the
service discovery systems we analyzed rely on proprietary APIs for interaction between a
service provider and SDE. In these cases, the associated interactions fall outside the
scope of the service discovery system. Based on this state of affairs, we opted to exclude
from our model any description of interactions between service providers and SDEs.

3.6.5 Insufficient Specification of Relationship between Service Description and
Eventable Variables. Though one of the service discovery systems that we analyzed
includes eventable variables within its scope, no system that we analyzed provided a clear
specification of the relationship between service descriptions and eventable service
variables. All of the specifications we analyzed included a concept of service attributes,
often expressed as a list of keyword-value pairs intended to describe the essential
characteristics of a service. Typically, service attributes appear intended to change
infrequently. For example, the resolution of a printer would not usually change without a
hardware alteration and a software driver update. On the other hand, a service description
could include attributes that change more frequently. For example, the number of jobs
queued at a printer would fluctuate with demand. Most service discovery systems we
analyzed do not distinguish among attributes based on likely update frequency. Lacking
such a distinction, the same update procedures must be applied whenever a service
attribute changes, no matter how frequently. Some service discovery systems only
support updating of service descriptions through complete overwriting, while some
systems support partial updating of only selected attribute values. No matter how service
descriptions might be updated, all the service discovery systems that we analyzed permit
a client to register for notification about any of multiple changes to a service description;
however, resulting notifications do not necessarily detail the changes. This implies that,
upon learning of a change, a client might need to retrieve a current copy of a service
description and then compare it to a previously cached copy in order to determine the
precise nature of any changes.

Unfortunately, the one specification we analyzed that did include eventable variables
only indicated the existence of such variables in its service descriptions; the variables
themselves are supplied directly by a service provider. Upon learning about the existence
of eventable variables, a client needs to subscribe with the service provider to receive any
related events. The specification does not include the concept of repositories, and thus
does not specify procedures for a service provider to relay (to a repository) any changes
in eventable variables. Further, the specification: (1) does not define what constitutes a

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 42 NIST SP 500-260

significant change (and thus warrants sending an event) and (2) does not include
mechanisms for rate control to ensure receivers do not emit events at unsustainable rates.

For these reasons, our model allows eventable variables to be included optionally in a
service description (recall ServiceVariableDescription in Figure 3-1) and to be
provided optionally by a service provider (recall ServiceVariableDescription
in Figure 3-13). Further, our model allows a service provider to update eventable
variables stored in a service description on a repository (see Section 3.4.2.1) as well as to
update such variables directly within the service provider (see Section 3.5). Our model
neither defines nor constrains how these mechanisms may be used to indicate the
transient state of eventable variables. Our model also does not define what constitutes a
significant event and does not include any mechanisms to control the rate at which events
may be generated.

3.6.6 Failure to Consider Resource-Constrained Devices. None of the service discovery
systems that we analyzed makes specific accommodations for resource-constrained
devices. In fact, all assume availability of Internet networking software and consider
system devices to be of fairly equal capability, at the level of a desktop or notebook
computer. For these reasons, our model defines components that may be deployed on any
device within a service discovery system. We can easily imagine resource-constrained
devices incapable of hosting such components. Some researchers [e.g., 33] are
investigating designs that explicitly accommodate variation in the capability of devices
within a service discovery system.

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 43 NIST SP 500-260

4. Performance Considerations.

Service discovery protocols must work in environments of uncertain scale, which can
present performance difficulties under some conditions. Most of the first-generation
service discovery systems that we analyzed did not address such design considerations,
instead leaving it to implementers to identify potential problems and provide suitable
solutions. To guide implementers, we identify three classes of performance problems that
could arise in deployments of service discovery systems, and we propose some solutions
that might be adopted. One type of performance problem arises from the potential for
multicast response implosion, which can occur whenever an unexpectedly large number
of respondents inundate the issuer of a multicast query with too many messages. A
second type of performance problem can occur when registrants overwhelm a registry
with extension requests arriving too frequently. A third type of performance problem can
appear when a large number of polling clients target an inappropriate subset of available
repository replicas. Below, we discuss each of these performance issues and possible
solutions, and we describe how our model accommodates the various solutions that we
suggest.

4.1 Multicast Implosion Avoidance. All of the service discovery systems that we analyzed
permit a component to issue multicast queries into networks with an unknown population
of potential respondents. This could lead to response implosion, where a large number of
replies descend on the query issuer. To mitigate response implosion, our model allows
multicast queries to include an optional list of already discovered entities. This eliminates
the need for known respondents to issue duplicate replies. Of course, a first query, which
includes an empty list of previous responders, could still elicit a response implosion. Our
model includes some optional algorithms to spread responses to multicast queries over a
period of time. One class of algorithm requires potential respondents to reply only with
some probability. A second class of algorithm requires potential respondents to compute
a time to respond. In describing the various algorithms, we use some variables, listed and
defined in Table 4-1, which also shows how the variables map to our UML model.

4.1.1 Probabilistic Response. One strategy to dampen multicast response implosion is to
ensure that only a subset of potential respondents reply to a given query. On the surface,
this strategy appears to reduce the likelihood of discovering all available components;
however, if multicast queries are issued repeatedly over some time period, then the
probability of discovering each component increases with time. To support a probabilistic
response strategy, our model allows cyclic multicast queries (recall Section 3.2.2), where
each query could include a parameter, M, denoting the number of queries that compose
the cycle. Upon receiving a query message, each potential respondent can check the
previous-responders list (if present), and then, if not on the list, the respondent can send a
reply with probability 1/M. Figure 4-1 illustrates the operation of this algorithm when a
seeker of some discoverable items sends a multicast probe to a set of advertisers.

This algorithm would tend to reduce the volume of the response implosion; however, two
problems remain. First, since replies are probabilistic, some potential respondents might
not be discovered (though persistent recurrence of multicast queries will ultimately

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 44 NIST SP 500-260

overcome this). Second, if M is small with respect to the population, P, of potential
respondents, then the number of respondents to any particular multicast query could still
prove quite large. To overcome these issues, we observe that the population of potential
respondents is likely to have been observing multicast network traffic (e.g., probes and
announcements) for a period of time. Given this, each potential respondent, i, likely has
an estimate, Pi, of the population. When Pi is significantly larger than M, a potential
respondent could choose to respond with probability 1/Pi instead of 1/M. Further,
response messages could convey Pi; thus, allowing the query issuer to receive estimates
of population size, which could be used to determine the number of multicast queries to
issue (and a better choice for M), to estimate memory requirements for a receiver’s cache,
and to decide when a multicast query issuer has discovered all members of the
population. Figure 4-2 illustrates the operation of this algorithm in a context comparable
to that of Figure 4-1.

Table 4-1. Key Variables Used in Multicast Implosion Avoidance Algorithms

To support a multicast-response suppression strategy, we augment our model as shown in
Figure 4-3. (Table 4-1 shows the mapping between variables in our multicast-response
implosion avoidance algorithms and elements of our UML model of service discovery
systems.) First, we include an optional ReplySuppressionParameter (this is M)
as part of configuring a SeekerProxy. Second, we include an optional
PopulationEstimate (this is Pi) as part of configuring an advertiser. We also
extend the <<remote>> method Advertiser.aggressiveProbe() to convey
the ReplySuppressionParameter from the SeekerProxy. Finally, we extend

Estimated response rate (messages/sec) for
respondent n

estimatedResponseRateRespondentEstimateXn

Estimated number of messages for
respondent n

numMsgsForRespondentRespondentEstimateNn

Address for potential respondent nRespondentAddressRespondentEstimateAn

Time for advertiser i to respondgetResponseTime()MulticastResponseSchedulingTi

Average response rate (messages/sec) per
potential respondent, as estimated by
advertiser i

averageResponseRateMulticastResponseSchedulingXi

Average number of messages per potential
respondent, as estimated by advertiser i

averageNumMsgsPerRespondentMulticastResponseSchedulingNi

Number of potential respondents with a
lower address, as estimated by advertiser i

numRespWithLowerAddressMulticastResponseSchedulingAi

Rate (messages/sec) at which a respondent
should send responses

getResponseRate()ResponseRateR

The time limit after which potential
respondents should not respond

getUpperBound()ResponseUpperBoundL

Number of potential respondents, as
estimated by advertiser i

populationEstimateMulticastResponseSuppressionPi

Number of messages in a multicast
announcement cycle

expectedNumberOfProbes
parameter in

aggressiveProbe()
AdvertiserM

Definition
UML Model Designation

Class Attribute or MethodVariable

Estimated response rate (messages/sec) for
respondent n

estimatedResponseRateRespondentEstimateXn

Estimated number of messages for
respondent n

numMsgsForRespondentRespondentEstimateNn

Address for potential respondent nRespondentAddressRespondentEstimateAn

Time for advertiser i to respondgetResponseTime()MulticastResponseSchedulingTi

Average response rate (messages/sec) per
potential respondent, as estimated by
advertiser i

averageResponseRateMulticastResponseSchedulingXi

Average number of messages per potential
respondent, as estimated by advertiser i

averageNumMsgsPerRespondentMulticastResponseSchedulingNi

Number of potential respondents with a
lower address, as estimated by advertiser i

numRespWithLowerAddressMulticastResponseSchedulingAi

Rate (messages/sec) at which a respondent
should send responses

getResponseRate()ResponseRateR

The time limit after which potential
respondents should not respond

getUpperBound()ResponseUpperBoundL

Number of potential respondents, as
estimated by advertiser i

populationEstimateMulticastResponseSuppressionPi

Number of messages in a multicast
announcement cycle

expectedNumberOfProbes
parameter in

aggressiveProbe()
AdvertiserM

Definition
UML Model Designation

Class Attribute or MethodVariable

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 45 NIST SP 500-260

the <<remote>> method SeekerProxy.aggressiveResponse() to accept the
PopuluationEstimate from each advertiser.

Figure 4-1. Using Probabilistic Response to Combat Response Implosion

Figure 4-2. Using Probabilistic Response with Population Estimation to Combat

Response Implosion

Seeker

Advertiser1

Advertisern

if not a previous responder
then send a unicast
response with probability
1/M

if not a previous responder
then send a unicast
response with probability
1/M

MulticastProbe(previous
responders, M)

Probabilistic Response without Population Estimation

UnicastResponse()

Seeker

Advertiser1

Advertisern

if not a previous responder
then if Pn >> M
then send a unicast response with
probability 1/Pn
else send a unicast response with
probability 1/M

if not a previous responder
then if P1 >> M
then send a unicast response with
probability 1/P1
else send a unicast response with
probability 1/M

MulticastProbe(previous
responders, M)

Probabilistic Response with Population Estimation

UnicastResponse(Pn)

Listen for announcements
and build a population

estimate P1

Listen for announcements
and build a population

estimate Pn

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 46 NIST SP 500-260

Figure 4-3. Class Diagram augmentations Supporting Multicast-response Suppression

4.1.2 Timed Response. As an alternative (or supplement) to multicast-response
suppression, our model permits some optional algorithms for multicast-response
scheduling. Here, the goal is to allow all potential respondents to reply to any given
multicast query, but in a form that limits response implosion. Our optional algorithms
have two dimensions: (1) when to reply (random or scheduled) and (2) how fast to reply
(burst or paced). The dimensions can be combined to support four possible response
strategies: (1) random burst (RB), (2) random paced (RP), (3) scheduled burst (SB), or
(4) scheduled paced (SP). To accommodate these strategies, we augmented our model
with some additional classes and associations, as shown in Figure 4-4.

4.1.2.1 Random Response Strategy. When supporting a random-response strategy, each
multicast query includes a time limit, L, and each respondent selects a random time,
uniformly distributed over 0…L, to issue its response messages (see Figure 4-5). Where a
respondent issues more than one message in response to a query, which can occur in
selected service discovery protocols, the messages may be sent (for the random burst
strategy) as fast as possible, or (for the random paced strategy) at a rate, R, conveyed in
the multicast query (see Figure 4-6). Including R in each multicast query allows a query
issuer to denote the rate (in messages per second) at which replies can be consumed. In
Figure 4-4, the method getUpperBound() in the optional class
ResponseUpperBound is used to obtain a value for L, which is conveyed in
invocations of <<remote>> method Advertiser.aggressiveProbe(). When
response messages are to be paced, the rate parameter (R) is also conveyed in invocations
of aggressiveProbe().

ReplySuppressionParameter

SeekerProxy
<<Local>> seekDiscovery()
<<Remote>> aggressiveResponse() 0..10..1<<optional>>

MulticastResponseSuppression
populationEstimate : Integer

Advertiser
<<Remote>> aggressiveProbe()

0..*

0..*

+Seeker0..*

+Found0..*

0..10..1
<<optional>>

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 47 NIST SP 500-260

Figure 4-5. Using a Random-Burst Algorithm to Combat Response Implosion

Figure 4-4. Class Diagram Augmentations to Support Multicast-response Scheduling

if not a previous responder
then select a uniformly distributed
time Tn between 0 and L to send a
response

Seeker

Advertiser1

Advertisern

if not a previous responder
then select a uniformly distributed
time T1 between 0 and L to send a
response

MulticastProbe(previous
responders, L)

Random Burst Strategy

at time Tn: UnicastResponse()

at time T1: UnicastResponse()

RespondentEstimate
respondentAddress : UniqueAddress
estimatedNumMsgsPerResp : Integer
estimatedResponseRate : Integer

ListOfRespndentEstmates

1..*1..*

Context MulticastResponseScheduling

XOR AverageNumMsgsPerRespondent
 PopulationEstimate

ResponseUpperBound
DefaultReplyDelay : Duration

getUpperBound()

MulticastResponseScheduling
numRespWithLowerAddress : Integer
averageNumMsgsPerRespondant : Integer = <<op...
populationMap : ListOfRespndentEstmates = <<op...
populationEstimate : Integer
averageResponseRate : Integer

getResponseTime()

Advertiser
replyTimeStrategy : ReplyTimeStrategy

<<Remote>> aggressiveProbe() 0..10..1

ReplyTimeStrategy
Random
Scheduled

<<Enumeration>>
ReplyRateStrategy

Burst
Paced

<<Enumeration>>

SeekerProxy
replyRateStrategy : ReplyRateStrategy

<<Local>> seekDiscovery()
<<Remote>> aggressiveResponse()

0..10..1

0..*

0..*

+Seeker0..*

+Found0..*

ResponseRate
getResponseRate()

0..10..1

Context Response Rate

SeekerProxy.
replyRateStrategy = Paced

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 48 NIST SP 500-260

Figure 4-6. Using a Random-Paced Algorithm to Combat Response Implosion

4.1.2.2 Scheduled Response Strategy. In a scheduled response strategy, each potential
respondent computes a time to send response messages. The goal is to compute a time
different from other potential respondents. Using a scheduled response strategy relies on
each potential respondent, i, to observe multicast traffic for a period of time and develop
some estimate, Ai, of the number of potential respondents with a lower address. Further,
each potential respondent must form an estimate, Ni, of the average number of response
messages to be sent by a population member. Assuming that potential respondents reply
in ascending address order and that respondents send response messages at some
estimated pace, Xi, then given Ni, Xi, Ai, a respondent can select a time, Ti, to respond,
where Ti = Ai (Ni/Xi). Note that a vector of estimates can replace the averages Ni and Xi
for each potential respondent. For example, if S is the set of respondents with a lower
address than potential respondent i, then ∑=

=
||

1
)/(S

n nni XNT , where n denotes a respondent
in the set S, Nn denotes the number of response messages expected to be sent by
respondent n and Xn denotes the rate at which respondent n is expected to send messages.
Using a vector provides a more accurate Ti at the cost of additional memory and
computation. Regardless of how Ti is computed, if Ti > L, then the potential respondent
should not respond, because the scheduled response would occur after the time limit
included in the multicast query. If Ti < L, then the potential respondent should send any
response messages starting at time Ti. If a scheduled burst policy (see Figure 4-7) is in
effect, then the messages should be sent as fast as possible; however, if a scheduled paced
policy (see Figure 4-8) is in effect, then the messages should be sent at rate R, as
specified in the query message, and Xi = R (for the average case) or Xn = R (for the vector
case) should be used when computing Ti. Given that each respondent has a population

Seeker

Advertiser1

Advertisern

if not a previous responder
then select a uniformly distributed
time Tn between 0 and L to send a
response

if not a previous responder
then select a uniformly distributed
time T1 between 0 and L to send a
response

MulticastProbe(previous
responders, L, R)

Random Paced Strategy

at time Tn: send UnicastResponse() at rate R

at time T1: send UnicastResponse() at rate R

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 49 NIST SP 500-260

estimate, Pi, each response message should include Pi, so that the query issuer can
consider a new value for L, which could allow a longer period over which to receive
query replies. Elsewhere [22], we outline the performance of the four algorithms for
multicast response scheduling, as applied to a specific service discovery protocol.

Figure 4-7. Using a Scheduled-Burst Algorithm to Combat Response Implosion.

Figure 4-8. Using a Scheduled-Paced Algorithm to Combat Response Implosion

if not a previous responder
then estimate the time Tn after which
all advertisers with a lower address
will have responded;
If Tn > L
then do not send a response
else send a response at timeTn

Seeker

Advertiser1

Advertisern

if not a previous responder
then estimate the time T1 after which
all advertisers with a lower address
will have responded;
If T1 > L
then do not send a response
else send a response at time T1MulticastProbe(previous

responders, L)

Scheduled Burst Strategy

at time Tn: UnicastResponse(Pn)

at time T1: UnicastResponse(P1)

Listen for announcements and build a population
estimate (P1) and an average population profile

(A1, N1, X1) over all advertisers with address < #1
(or a population vector (An, Nn, Xn) for advertisers

#1 to #n)

Listen for announcements and build a population
estimate (Pn) and an average population profile

(An, Nn, Xn) over all advertisers with address < #n
(or a population vector (An, Nn, Xn) for advertisers

#1 to #n)

if not a previous responder
then using R estimate the time Tn
after which all advertisers with a lower
address will have responded;
If Tn > L
then do not send a response
else send a response at timeTn

Seeker

Advertiser1

Advertisern

if not a previous responder
then using R estimate the time T1
after which all advertisers with a
lower address will have responded;
If T1 > L
then do not send a response
else send a response at time T1MulticastProbe(previous

responders, L, R)

Scheduled Paced Strategy

at time Tn: send UnicastResponse(Pn) at rate R

at time T1: send UnicastResponse(P1) at rate R

Listen for announcements and build a population
estimate (P1) and an average population profile

(A1, N1) over all advertisers with address < #1 (or a
population vector (An, Nn) for advertisers #1 to #n)

Listen for announcements and build a population
estimate (Pn) and an average population profile

(An, Nn) over all advertisers with address < #n (or a
population vector (An, Nn) for advertisers #1 to #n)

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 50 NIST SP 500-260

To support a scheduled response strategy, we augment our model (recall Figure 4-4) to
associate an optional class, MulticastResponseScheduling, with advertisers.
The class includes a method, getResponseTime(), to compute a Ti for the associated
advertiser. To support computation of Ti based on averages, the optional class includes
parameters: NumRespWithLowerAddress (Ai), AverageResponseRate (Xi), and
AverageNumMsgsPerRespondent (Ni). To support computation of Ti based on a
vector, the optional class includes a population map that represents the address of, and the
estimated number of messages to be sent by, each known potential respondent. The
population map should be maintained in increasing order of respondent address. The
optional class also includes a population estimate (Pi) that is conveyed back to the query
source in invocations of the <<remote>> method aggressiveResponse().

4.2 Extension Policy. Many service discovery systems support the concept of registries
that can accept registrations of service descriptions and, possibly, notification requests.
Typically, to maintain registration beyond an initial granted period, registrants must
contact registries periodically. Usually, registries have a maximum capacity (based on
available storage space) to accept registrations, and may need to limit the capacity (based
on available processor time) to process renewal requests. Renewal processing limits have
performance implications, which we explore here. Our discussion refers to some
variables, listed and defined in Table 4-2, which also shows the mapping of the variables
to elements of the UML model.

Table 4-2. Key Variables Used in Various Extension Algorithms

Requested priority when requesting an
extension under priority assignment

refresh()PriorityExtensionGranterPR

Count of registrations currently maintained
by a registry

registrations->
count(Registration)

RegistryN

An extension duration granted when using
priority assignment

getTTL()PriorityExtensionGranterHP

Duration that may be assigned for each
priority slot under priority assignment

prioritySlotSizePriorityExtensionGranterPS

Number of priority classes supported under
priority assignment

nukmberOfPriorityClassesPriorityExtensionGranterPC

An extension duration granted when using
adaptive assignment

getTTL()AdaptiveExtensionGranterHA

An extension duration granted when using
requested assignment

getTTL()RequestedExtensionGranterHR

An extension duration requested when
using requested assignment

refresh()RequestedExtensionGranterHQ

Maximum number of extensions that may
be granted by an extension granter using
fixed- or random-assignment

maxNumberExtensionsAllowed
FixedExtensionGranter
RandomExtensionGranterNMAX

Extension assigned by an extension granter
using fixed-assignment

fixedTTLFixedExtensionGranterH

Maximum extension that an extension
granter may assign

maximumTTLExtensionGranterHMAX

Minimum extension that an extension
granter may assign

minimumTTLExtensionGranterHMIN

Maximum number of extensions/sec that an
extension granter can process

maxExtensionsPerSecondExtensionGranterC

Definition
UML Model Designation

Class Attribute or MethodVariable

Requested priority when requesting an
extension under priority assignment

refresh()PriorityExtensionGranterPR

Count of registrations currently maintained
by a registry

registrations->
count(Registration)

RegistryN

An extension duration granted when using
priority assignment

getTTL()PriorityExtensionGranterHP

Duration that may be assigned for each
priority slot under priority assignment

prioritySlotSizePriorityExtensionGranterPS

Number of priority classes supported under
priority assignment

nukmberOfPriorityClassesPriorityExtensionGranterPC

An extension duration granted when using
adaptive assignment

getTTL()AdaptiveExtensionGranterHA

An extension duration granted when using
requested assignment

getTTL()RequestedExtensionGranterHR

An extension duration requested when
using requested assignment

refresh()RequestedExtensionGranterHQ

Maximum number of extensions that may
be granted by an extension granter using
fixed- or random-assignment

maxNumberExtensionsAllowed
FixedExtensionGranter
RandomExtensionGranterNMAX

Extension assigned by an extension granter
using fixed-assignment

fixedTTLFixedExtensionGranterH

Maximum extension that an extension
granter may assign

maximumTTLExtensionGranterHMAX

Minimum extension that an extension
granter may assign

minimumTTLExtensionGranterHMIN

Maximum number of extensions/sec that an
extension granter can process

maxExtensionsPerSecondExtensionGranterC

Definition
UML Model Designation

Class Attribute or MethodVariable

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 51 NIST SP 500-260

Assume each request requires P seconds to process. If unbounded, then the amount of
processing time (T) devoted to renewal requests would grow with the number of
registrations, N, according to PNT ⋅= . In general, the platform hosting a registry may
also host other services that require processor time; thus, it seems likely that the platform
would desire to limit the amount of processor time available to each of its services. For
this reason, we assume that a platform hosting a registry will define a maximum capacity,
C renewals per second, to devote to processing renewal requests. This suggests that to
accommodate a growing population of registrations, while respecting the available
capacity, the time between renewals must increase. In general, given N registrations that
can be renewed at rate C, then the period between renewals, H, must be H = N/C. When
a renewal is requested, some means must exist for the extension granter to select a time-
to-live (TTL) value to assign to the extension. One could simply assign H as the TTL;
however, as N increases the value of H increases, which has implications for failure-
detection latency (i.e., the delay between failure of a component and detection of the
failure by other components). Assuming uniformly distributed failure times and an
average TTL value, HTTL, failure-detection latency will be HTTL/2 on average. Assigning
higher TTL values, leads to higher failure-detection latency, while assigning lower TTL
values, leads to lower failure-detection latency. A given extension granter may wish to
limit failure-detection latency, which implies that H must not exceed an upper bound,
HMAX, and thus, since C is fixed, there must be an upper bound, NMAX, on the number of
registrants. Further, if an extension granter assigns small TTL values, then the extension
requester could be required to renew quite frequently, which might place an excessive
renewal load on platforms hosting extension requesters. For this reason, one could place a
lower bound, HMIN, on granted TTLs. Given these factors, one could devise numerous
policies for assigning TTL values. Here, we describe five.

Figure 4-9 shows a class diagram augmented to support the optional extension policies
that we include in our model. (Table 4-2 relates elements from Figure 4-9 to variables
used in the extension algorithms we explain below.) We augment the abstract class
ExtensionGranter to include attributes: maxExtensionsPerSecond (C),
minimumTTL (HMIN), and maximumTTL (HMAX). We assume that the current number of
registrations, N, can be determined by consulting the set of registrations maintained by
the associated registry. To determine a TTL value (H), the ExtensionGranter class
provides a method, getTTL(), which must be overridden by specializations.
ExtensionGranter can be specialized to employ one of five TTL assignment polices
(Fixed, Random, Requested, Adaptive, or Priority). Some specializations also include
additional attributes to support the algorithm encapsulated in the getTTL()method.
Below, we discuss each assignment policy in turn.

4.2.1 Fixed Assignment. In a fixed-assignment scheme (see Figure 4-9,
FixedExtensionGranter) each request for extension is given a fixed TTL value, H
(fixedTTL), to derive a maximum number (maxNumberExtensionsAllowed),
NMAX = C.H, of extensions that can be granted. The value chosen for H must fall between
the inherited (or overridden) minimum, HMIN, and maximum, HMAX, TTL values that may
be granted. An extension granter must deny any request for an extension that would cause

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 52 NIST SP 500-260

NMAX to be exceeded. The scheme, illustrated in Figure 4-10, leads to a fixed failure-
detection latency, and presents a known workload to extension requesters.

Figure 4-10. Using a Fixed-Assignment Algorithm to Grant Extensions.

FixedExtensionGranter
fixedTTL : Duration
/ maxNumberExtensionsAllowed : Integer

getTTL()

RandomExtensionGranterr
/ maxNumberExtensionsAllowed : Integer

getTTL()

ExtensionRequester
<<Remote>> confirm()
<<Remote>> refreshDenied()
<<Local>> commence()
<<Local>> cease()

<<Interface>>

ExtensionGranter
extensionStrategy : ExtensionStrategy
maxExtensionsPerSecond : Double
minimumTTL : Duration
maximumTTL : Duration

<<Remote>> refresh()
<<Local>> commence()
<<Local>> cease()
<<Local>> getTTL()

Registry
registrations : SetOfRegistrations

<<Local>> capacity()
register()
<<Local>> checkForPurge()
<<Remote>> cancel()

0..10..1

RequestedExtensionGranter
getTTL()

AdaptiveExtensionGranter
getTTL()

PriorityExtensionGranterr
NumberOfPriorityClasses : Integer
/ PrioritySlotSize

getTTL()

Registration
registrationID : UniqueIdentifier
timeOfExpiration : Time
extendable : Boolean

Figure 4- 9. Class Diagram Augmented to Support Optional Extension Polices

refresh() method
if N = NMAX then deny extension
else confirm extension of duration H
and increment NExtension

Granter

Extension
Requestorn

EXTENSION GRANTER STATE
C -- maximum extensions/sec
HMIN -- minimum extension to grant
HMAX -- maximum extension to grant
H -- fixed extension duration HMIN < H < HMAX
NMAX := C * H
N -- number of extensions granted

Fixed Assignment

Extension
Requestor1

refresh()

confirm(H)

confirm(H)

refresh()

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 53 NIST SP 500-260

4.2.2 Random Assignment. In a random-assignment scheme, (see Figure 4-9,
RandomExtensionGranter) each extension request is assigned a TTL value, H,
which is selected randomly from a uniform distribution ranging over HMIN to HMAX. The
extension granter must deny requests for an extension whenever granting the request
would exceed the derived attributed (maxNumberExtensionsAllowed) NMAX = C
(HMIN + HMAX)/2. This scheme, illustrated in Figure 4-11, causes extension requesters to
receive varying levels of failure-detection latency, and presents a variable workload to
extension requesters.

Figure 4-11. Using a Random-Assignment Algorithm to Grant Extensions.

4.2.3 Requested Assignment. In a requested-assignment scheme, (see Figure 4-9,
RequestedExtensionGranter) each extension request includes a requested TTL
value, HQ. If HMIN < HQ < HMAX, then the extension granter assigns a TTL, HR = HQ. If HQ
< HMIN, then the extension granter assigns a TTL, HR = HMIN. If HMAX < HQ, then the
extension granter assigns a TTL, HR = HMAX. The extension granter must tally the current
number, N, of granted extensions and the sum, HSUM, over all assigned TTL values, i.e.,

∑ =
=

N

i iRSUM HH
1

)(. The extension granter must deny requests for an extension whenever
granting the request would lead to N/HSUM > C. This scheme, illustrated in Figure 4-12,
allows extension requesters to receive the requested TTL, as long as the request falls
within the permitted bounds.

4.2.4 Adaptive Assignment. In an adaptive-assignment scheme, the extension granter (see
Figure 4-9, AdaptiveExtensionGranter) must use the current number, N, of
granted extensions to assign a TTL, HA = N/C. If the assigned TTL exceeds the maximum
(i.e., HA > HMAX), then the extension request must be denied. If the assigned TTL falls
below the minimum (i.e., HA < HMIN), then the minimum TTL is assigned (i.e., HA =
HMIN). This scheme, illustrated in Figure 4-13, ensures the extension requester will
receive the lowest possible TTL, given the current number of granted extensions and a
maximum capacity to process extensions; thus, the failure-detection latency is maintained
at the lowest possible level, at the cost of increasing workload for extension requesters.

refresh() method
if N + 1 > NMAX then deny extension
else select extension duration H
uniformly distributed between HMIN
and HMAX, confirm extension of
duration H, and increment N

Extension
Granter

Extension
Requestorn

EXTENSION GRANTER STATE
C -- maximum extensions/sec
HMIN -- minimum extension to grant
HMAX -- maximum extension to grant
NMAX := C * (HMIN + HMAX)/2
N -- number of extensions granted

Random Assignment

Extension
Requestor1

refresh()

confirm(H)

confirm(H)

refresh()

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 54 NIST SP 500-260

Elsewhere [23], we report on the performance of this versatile adaptive-assignment
algorithm when applied in various service discovery systems.

Figure 4-12. Using a Requested-Assignment Algorithm to Grant Extensions.

Figure 4-13. Using an Adaptive-Assignment Algorithm to Grant Extensions.

4.2.5 Priority Assignment. In a priority-assignment scheme, (see Figure 4-9,
PriorityExtensionGranter) extension requesters can be classified according to
their priority with respect to failure-detection latency, allowing those in need of lower
failure-detection latencies to receive lower TTL values, while those with less stringent
requirements may receive higher TTL values. The priority-assignment scheme requires
one additional parameter (NumberOfPriorityClasses): the number, PC, of priority
classes, which permits calculation of a priority slot size (PrioritySlotSize), PS =
(HMAX - HMIN)/(PC - 1). Each extension request includes a requested priority, PR, such that
0 < PR < PC. The extension granter assigns a TTL value, HP = HMIN + (PS) PR. The

refresh() method
if HQ < HMIN then HR := HMIN
elseif HQ > HMAX then HR :=HMAX
else HR := HQ ;
if (N + 1)/(HSUM + HR) > C
then deny extension
else confirm extension of duration HR
and increment N

Extension
Granter

Extension
Requestorn

EXTENSION GRANTER STATE
C -- maximum extensions/sec
HMIN -- minimum extension to grant
HMAX -- maximum extension to grant
N -- number of extensions granted
HSUM := sum of HRi for i = 1 to N

Requested Assignment

Extension
Requestor1

refresh(HQ)

confirm(HR)

confirm(HR)

refresh(HQ)

refresh() method
HA := (N + 1)/C
if HA > HMAX
then deny extension
elseif HA < HMIN then HA := HMIN ;
confirm extension of duration HA
and increment N

Extension
Granter

Extension
Requestorn

EXTENSION GRANTER STATE
C -- maximum extensions/sec
HMIN -- minimum extension to grant
HMAX -- maximum extension to grant
N -- number of extensions granted

Adaptive Assignment

Extension
Requestor1

refresh()

confirm(HA)

confirm(HA)

refresh()

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 55 NIST SP 500-260

extension granter must tally the current number, N, of granted extensions and the sum,
HSUM, over all assigned TTL values, i.e., ∑ =

=
N

i iPSUM HH
1

)(. The extension granter must
deny requests for an extension whenever granting the request would lead to N/HSUM > C.

The first-come, first-served nature of this scheme, illustrated in Figure 4-14, could permit
starvation among various priority classes depending upon the order in which extension
requests arrive. For example, given a sufficient number of requests for lower priority
extensions (i.e., those with higher priority class numbers), a later extension request with
higher priority could be denied because no capacity remains. To circumvent possible
starvation, we recommend assigning separate capacity, CP, to each priority class, and
then tracking utilization separately for each priority class. Alternatively, separate capacity
could be allocated for each priority class, and any one of the other assignment schemes
could be used for each of the priority classes. More sophisticated schemes seem possible.
For example, capacity may be shared among all priority classes, but then reclaimed as
necessary to support the demands of higher priority classes. We leave these more
sophisticated schemes, which could require small changes to our model, for future work.

Figure 4-14. Using the Priority-Assignment Algorithm to Grant Extensions.

4.3 Replica Selection. Most of the service discovery systems we analyzed allow multiple
repository replicas to exist, so that clients and services can still rendezvous when
component failures prevent access to a given repository. The service discovery systems
that we analyzed create replicas by requiring services to discover and register with all
repositories found to have administrative scopes that intersect with those of the service.
Given a set of replicated repositories, clients are free to query any discovered repository
because all repositories with intersecting scopes should have similar information. This
repository replication arrangement implies that clients could discover several replicas in a
given scope, and then choose one of the replicas against which to issue any given query.
This approach could be particularly useful in service discovery systems that do not

refresh() method
HP := HMIN + PS * PR
if (N + 1)/(HSUM + HP) > C
then deny extension
else confirm extension of duration HP
and increment N

Extension
Granter

Extension
Requestorn

EXTENSION GRANTER STATE
C -- maximum extensions/sec
HMIN -- minimum extension to grant
HMAX -- maximum extension to grant
PC -- number of available priority classes
PS := (HMAX - HMIN)/(PC - 1) -- priority slot size
N -- number of extensions granted
HSUM := sum of HPi for i = 1 to N

Priority Assignment

Extension
Requestor1

refresh(PR)

confirm(HP)

confirm(HP)

refresh(PR)

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 56 NIST SP 500-260

support notification, but that instead require clients to periodically poll repositories to
learn about service arrivals and departures, and about changes to service descriptions.

Given a population C of clients and R of repository replicas, where each client intends to
issue repeated queries to poll repositories, a means must exist for each client to select a
replica as target for each query. Absent any additional information, each client should
probably select one of the replicas randomly with a uniform distribution. Random
selection will spread the workload across the set of replicas, and should also provide
similar average response time for each client. Unfortunately, each replica may be hosted
on a computer platform of differing capacity and with time-varying background
workload. For this reason, random query selection might not provide the best overall
performance. On the other hand, since repositories in discovery systems periodically
announce their status, one can imagine exploiting those announcements to transmit
information about the varying capacity and current workload of each repository.

We define a query processing rate, G, to represent the capacity (in queries per second) of
a repository to process queries. The value of G, which may vary over time, depends on
the fixed processing rate of the computer executing the repository code and the size of the
most likely path through that code, as well as on the varying percentage of the fixed
processing rate that a computer can devote to processing repository queries. For example,
imagine a system administrator assigns a minimum, GMIN, and maximum, GMAX, rate for
processing repository queries. One can envision that a lightly loaded computer might be
able to process GMAX queries per second. As the computer becomes more heavily loaded,
a smaller proportion of processing cycles can be devoted to handle repository queries,
and so the transaction rate decreases (G < GMAX). When the computer becomes even more
loaded, then the transaction rate to process repository queries decreases toward G = GMIN.
As computational resources again become available, then the query processing rate can
increase toward G = GMAX. Variation in the value of G can affect the number, N, of
backlogged queries waiting to be processed, and can also cause variation in the response
times (N/G) provided by a given repository. Variation in the number of queries sent to a
repository will also affect the value of N. The goal of a replica-selection algorithm is to
direct queries to replicas in a fashion that will provide clients with the best response times
and that will not cause repositories to become overloaded with queries.

In what follows, we describe five decentralized algorithms a client could use to select a
target replica to query. Each algorithm (see Table 4-3 for definitions of key algorithm
variables) assumes that repositories include in their announcements the following two
parameters: (1) the number, N, of backlogged queries waiting to be processed and (2) the
rate, G, at which the repository can currently process queries. (One could select alternate
measures, such as the number of queries that arrived and the number of queries that
departed since the previous announcement.) We assume that N and G represent
instantaneous values at the time of the announcement; however, one could substitute
alternate formulations, such as averages over the interval since the previous
announcement. Given values N and G for a specific repository, r, i.e., Nr and Gr, a client
can readily estimate the time required, TQr = Nr/Gr, for the repository to clear its backlog
of queries. TQr estimates the latency before repository r begins to process a new query

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 57 NIST SP 500-260

from a client. We define a bound, TQMAX, such that a repository is considered overloaded
when TQr > TQMAX.

Table 4-3. Key Variables Used in Various Replica-Selection Algorithms

Figure 4-15 shows a class diagram augmented to support the optional replica-selection
algorithms that we include in our model. We define two optional element-value pairs,
NumberQueriesPending and CurrentQueryProcessingRate, to represent,
respectively, the number of backlogged queries (Nr) and the current query-processing rate
(Gr) associated with a repository (r). When supporting one of our optional replica
selection algorithms, repositories must include the current values of these two optional
elements in each announcement message. We add <<local>> method,
selectRepository()to the class UnicastServiceSeeker. This default
method returns one repository, selected randomly (using a uniform distribution) from the
set R of known repositories (see Figure 4-16). To implement one of our optional replica
selection algorithms, the UnicastServiceSeeker class must be specialized, so that
the default method selectRepository()can be overridden appropriately, to
implement the desired selection scheme (greedy, partition, weighted, balanced, or
balanced partition). Elsewhere [24], we provide detailed simulation results highlighting
relative performance differences among these algorithms. Below, we explain the
algorithms.

4.3.1 Greedy Scheme. In a greedy scheme (Figure 4-15 GreedySchemePoller), each
client computes TQ for each repository and then queries the repository with the lowest TQ.
In simulation experiments with this scheme, which causes all clients to descend on the
repository promising lowest delay, we find that average system response time improves
significantly when compared with random selection. In addition, when compared with
random selection, the greedy algorithm, illustrated in Figure 4-17, results in a
significantly lower overload rate among repositories. On the other hand, the oscillatory

Current rate at which repository r can
process queries

aggressiveResponse()
directedResponse()
lazyAnnouncement()

SeekerProxyGr

Estimated latency (Nr/Gr) for repository r
to clear its backlog of queries

knownRepositoriesUnicastServiceSeekerTQr

Number of queries required for the latency
of repository r to reach TQREF

selectRepository()BalancedSchemePollerNDr

A target value for repository latency,
selected as the maximum TQr over all
repositories

knownRepositoriesBalancedSchemePollerTQREF

Probability of selecting repository rselectRepository()
WeightedSchemePoller
BalancedSchemePollerPr

A repository r is considered overloaded if
TQr > TQMAX

limitOverloadTQMAX

Current number of queries waiting at
repository r

aggressiveResponse()
directedResponse()
lazyAnnouncement()

SeekerProxyNr

Definition
UML Model Designation

Class Attribute or MethodVariable

Current rate at which repository r can
process queries

aggressiveResponse()
directedResponse()
lazyAnnouncement()

SeekerProxyGr

Estimated latency (Nr/Gr) for repository r
to clear its backlog of queries

knownRepositoriesUnicastServiceSeekerTQr

Number of queries required for the latency
of repository r to reach TQREF

selectRepository()BalancedSchemePollerNDr

A target value for repository latency,
selected as the maximum TQr over all
repositories

knownRepositoriesBalancedSchemePollerTQREF

Probability of selecting repository rselectRepository()
WeightedSchemePoller
BalancedSchemePollerPr

A repository r is considered overloaded if
TQr > TQMAX

limitOverloadTQMAX

Current number of queries waiting at
repository r

aggressiveResponse()
directedResponse()
lazyAnnouncement()

SeekerProxyNr

Definition
UML Model Designation

Class Attribute or MethodVariable

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 58 NIST SP 500-260

nature of the greedy scheme causes repositories to exhibit significantly higher variance in
response time, as compared with random selection.

4.3.2 Partition Scheme. In a partition scheme (Figure 4-15 ClassSchemePoller),
each client computes TQ for each repository and then partitions repositories into two
classes (e.g., available or overloaded) based on whether TQ < TQMAX. Each client then
randomly chooses a repository to query from among the available class. In simulation
experiments, the partition scheme yields significantly lower response time and overload
rate (and also reduced variance), when compared against the greedy and random
schemes. The partition scheme, illustrated in Figure 4-18, does, however, exhibit some
behavioral issues. For example, as total system workload increases, repositories slowly
migrate toward the overloaded class, leaving clients fewer repositories to target in the
available class. As repositories in the overloaded class reduce the backlog of work and
became more lightly loaded, clients learn of these changes only when receiving new
announcements. This delay in information dissemination leads to periods of
underutilization (TQ = 0) for repositories. Further, while the overall system workload
remains constant, the number of available repositories oscillates, which leads to periods
when the few available repositories are more likely to become overloaded.

Figure 4-15. Class Diagram Augmented to Support Optional Replica Selection
Algorithms

CurrentQueryProcesingRate

NumbeQueriesPending

GreedySchemePoller
<<Local>> selectRepositoriy()

WeightedSchemePoller
<<Local>> selectRepositoriy()

BalancedSchemePoller
<<Local>> selectRepositoriy()

ServiceVariableDescriptionSD ElementValuePair

+eventableList

+notEventableList

ServiceDescription

0..10..1
0..* +attributes0..*

UnicastServiceSeeker
knownRepositories : ListOfReposi...

<<Local>> issueFindService()
<<Local>> selectRepositoriy()
<<Remote>> serviceFound()

ServiceRepository
serviceCache : SetOfServiceDescriptions

<<Remote>> findService()+unicast QuerySource

RepositoryDescription
serviceType : RepositoryType

1

+Description

1

BalancedPartitionSchemePoller
<<Local>> selectRepositoriy()

PartitionSchemePoller
<<Local>> selectRepositoriy()

Overload
limit : Duration

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 59 NIST SP 500-260

Figure 4-16. Using Random Selection to Identify a Replica to Query.

Figure 4-17. Using a Greedy Algorithm to Select a Replica to Query.

4.3.3 Weighted Scheme. In a weighted scheme (WeightedSchemePoller in Figure
4-15), each client computes TQr for each repository (i.e., TQr is TQ for repository r) and
then assigns a repository weight (1/TQr). The client then sums the weights for all
repositories (the set R) and divides each individual weight by the sum to assign a

Client1

Repository
ReplicaR

CLIENT STATE
R -- known repositories

Random Selection

Repository
Replica1

announce()

findService()

ClientC
announce()

findService()

selectRepository() method
selection := one member selected

from R with uniform probability
send query to selection

CLIENT STATE
R -- known repositories

selectRepository() method
selection := one member selected

from R with uniform probability
send query to selection

selectRepository() method
selection := min(Nr/Gr) for r in R
send query to selectionClient1

Repository
ReplicaR

CLIENT STATE
Nr -- number of queries at repository r
Gr -- processing rate (queries/sec) at repository r
R -- known repositories

Greedy Selection

Repository
Replica1

announce(N1, G1)

findService()

ClientC
announce(NR, GR)

findService()

CLIENT STATE
Nr -- number of queries at repository r
Gr -- processing rate (queries/sec) at repository r
R -- known repositories

selectRepository() method
selection := min(Nr/Gr) for r in R
send query to selection

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 60 NIST SP 500-260

probability,)/1/)/1(||

1∑=
=

R

i QiQrr TTP , proportional to the weight. These probabilities are
arranged in a distribution dividing the unit interval. The client then selects a uniformly
distributed random fraction (between 0 and 1) to index the probability distribution,
selecting one repository to query. Simulation experiments with this weighted scheme,
which causes repositories to receive queries based on their estimated processing latencies,
gives substantially lower response time, overload rate, and variance, when compared with
the partition scheme. The weighted scheme, illustrated in Figure 4-19, does, however,
exhibit one shortcoming. Since TQ is computed as N/G, repositories can show similar
values of TQ even though some repositories have a larger capacity (G) than others. The
weighted scheme directs a similar number of queries to repositories with similar TQ
values, even though some repositories may have the capacity to process many more
queries per second than others.

Figure 4-18. Using a Partition Algorithm to Select a Replica to Query.

4.3.4 Balanced Scheme. In a balanced scheme (BalancedSchemePoller in Figure 4-
15), each client computes TQr = Nr/Gr for each repository, and selects the largest as a
reference value, TQREF. Each client then determines the number, NDr, of queries that must
be added to each repository in order to match the reference value, i.e., NDr = Gr (TQREF) –
Nr. The client uses NDr to compute a probability, ∑=

=
||

1
/ R

i DiDrr NNP , for each repository
(in the set R of known repositories), and arranges the probabilities in a distribution
apportioning the unit interval. The client then selects a uniformly distributed random
fraction (between 0 and 1) to index the probability distribution, selecting one repository
to query. Simulation experiments reveal that the balanced scheme yields significantly
lower response time, overload rate, and variance then the weighted scheme. The balanced

Client1

Repository
ReplicaR

CLIENT STATE
Nr -- number of queries at repository r
Gr -- processing rate (queries/sec) at repository r
R -- known repositories
TQMAX -- overload threshold for repositories

Partitioned Selection

Repository
Replica1

announce(N1, G1)

findService()

ClientC
announce(NR, GR)

findService()

CLIENT STATE
Nr -- number of queries at repository r
Gr -- processing rate (queries/sec) at repository r
R -- known repositories
TQMAX -- overload threshold for repositories

selectRepository() method
candidates := set of repositories such that

Nr/Gr < TQMAX
selection := one member selected from

candidates with uniform probability
send query to selection

selectRepository() method
candidates := set of repositories such that

Nr/Gr < TQMAX
selection := one member selected from

candidates with uniform probability
send query to selection

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 61 NIST SP 500-260

scheme, illustrated in Figure 4-20, exhibits stable behavior because queries are directed
toward repositories based on ability to absorb them. The algorithm does, however, allow
overloaded repositories (TQr > TQMAX) to receive queries because TQREF might exceed
TQMAX.

Figure 4-19. Using a Weighted Algorithm to Select a Replica to Query.

4.3.5 Balanced-Partition Scheme. In a balanced-partition scheme (Figure 4-15
BalancedClassSchemePoller), each client computes TQr = Nr/Gr for each
repository, and selects as a reference value the largest TQr below TQMAX, i.e., TQREF = max
(TQr) < TQMAX. The client then partitions repositories into two classes: overloaded (TQr >
TQMAX) and available (TQr < TQMAX) and applies the balanced scheme to all repositories in
the available class. If the available class is empty, then the client applies the balanced
scheme to repositories in the overloaded class. This balanced-partition scheme, illustrated
in Figure 4-21, divides repositories into available and overloaded classes, and then directs
queries effectively among repositories in the available class. When all repositories are
overloaded, the balanced-partition scheme reverts to the balanced scheme. As system
load increases, more repositories are pushed into the overloaded class; however, more
capable repositories (with larger Gr) tend to remain longer in the available class, allowing
system workload to be apportioned more effectively. Once all repositories become
overloaded, system workload continues to be apportioned based on the ability of
individual repositories to absorb queries. Simulation results show that the balanced
algorithm outperforms the balanced-partition algorithm, because (prior to system
overload) partitioning reduces the number of repositories to which queries may be
assigned.

Client1

Repository
ReplicaR

CLIENT STATE
Nr -- number of queries at repository r
Gr -- processing rate (queries/sec) at repository r
R -- known repositories
K := sum (Gr/Nr) for r in R -- max weight
Pr := (Gr/Nr)/K -- probability of selecting repository r

Weighted Selection

Repository
Replica1

announce(N1, G1)

findService()

ClientC
announce(NR, GR)

findService()

selectRepository() method
selection := one member selected from R with

probability distributed according
to Pr for r in R

send query to selection

CLIENT STATE
Nr -- number of queries at repository r
Gr -- processing rate (queries/sec) at repository r
R -- known repositories
K := sum (Gr/Nr) for r in R -- max weight
Pr := (Gr/Nr)/K -- probability of selecting repository r

selectRepository() method
selection := one member selected from R with

probability distributed according
to Pr for r in R

send query to selection

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 62 NIST SP 500-260

Figure 4-20. Using a Balanced Algorithm to Select a Replica to Query.

Figure 4-21. Using a Balanced-Partition Algorithm to Select a Replica to Query.

Client1

Repository
ReplicaR

CLIENT STATE
Nr -- number of queries at repository r
Gr -- processing rate (queries/sec) at repository r
R -- known repositories
TQREF := max(Nr/Gr) for r in R -- latency of most

loaded repository
NDr := Gr * TQREF - Nr -- queries needed for

 repository r to reach TQREF
K := sum (NDr) for r in R -- max weight
Pr := (NDr)/K -- probability of selecting repository r

Balanced Selection

Repository
Replica1

announce(N1, G1)

findService()

ClientC
announce(NR, GR)

findService()

selectRepository() method
selection := one member selected from R

with probability distributed
according to Pr for r in R

send query to selection

CLIENT STATE
Nr -- number of queries at repository r
Gr -- processing rate (queries/sec) at repository r
R -- known repositories
TQREF := max(Nr/Gr) for r in R -- latency of most

loaded repository
NDr := Gr * TQREF - Nr -- queries needed for
 repository r to reach TQREF
K := sum (NDr) for r in R -- max weight
Pr := (NDr)/K -- probability of selecting repository r

selectRepository() method
selection := one member selected from R

with probability distributed
according to Pr for r in R

send query to selection

Client1

Repository
ReplicaR

Balanced-Partitioned Selection

Repository
Replica1

announce(N1, G1)

findService()

ClientC
announce(NR, GR)

findService()

selectRepository() method
selection := one member selected from R

with probability distributed
according to Pr for r in R

send query to selection

CLIENT STATE
Nr -- number of queries at repository r
Gr -- processing rate (queries/sec) at repository r
TQMAX -- threshold for repository overload
R -- known repositories where Nr/Gr < TQMAX
TQREF := max(Nr/Gr) for r in R -- latency of most

loaded repository
NDr := Gr * TQREF - Nr -- queries needed for

 repository r to reach TQREF
K := sum (NDr) for r in R -- max weight
Pr := (NDr)/K -- probability of selecting repository r

selectRepository() method
selection := one member selected from R

with probability distributed
according to Pr for r in R

send query to selection

CLIENT STATE
Nr -- number of queries at repository r
Gr -- processing rate (queries/sec) at repository r
TQMAX -- threshold for repository overload
R -- known repositories where Nr/Gr < TQMAX
TQREF := max(Nr/Gr) for r in R -- latency of most

loaded repository
NDr := Gr * TQREF - Nr -- queries needed for

 repository r to reach TQREF
K := sum (NDr) for r in R -- max weight
Pr := (NDr)/K -- probability of selecting repository r

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 63 NIST SP 500-260

 5. Service Guarantees

None of the first-generation discovery systems that we examined includes a definition of
service guarantees. In this section, we exploit our model to define (both informally and
formally) a set of qualified, service guarantees that we believe discovery systems should
attempt to satisfy. We formulate each guarantee as a consistent state that a service
discovery system should attempt to achieve. For example, new information should be
conveyed to all participants, and all participants should purge stale information. We
cannot formulate such guarantees without two qualifications. First, protocol designs,
configuration parameters, and network delays typically introduce some latency before
information can be propagated; thus, service discovery systems can exhibit inconsistent
states, which should, however, be bounded in time. Further, service discovery systems
operate in dynamic environments, where service availability may vary, where application
needs may change, and where nodes and links may fail. Due to such uncertainties, the
definition of consistent state changes over time as a service discovery system operates.
Subject to these qualifications, we believe that discovery systems should seek to provide
specified guarantees, as we define below. We also discuss the confounding influences
that can delay or interfere with service guarantees.

We begin with an informal discussion of our proposed service guarantees. Broadly, we
conceive service guarantees in four categories: (1) discovery guarantees, (2) registration
guarantees, (3) update guarantees, and (4) discard guarantees. Discovery guarantees
(Section 5.1) specify the conditions under which seekers should be able to obtain
discoverable items they require. Registration guarantees (Section 5.2) specify the
conditions under which information should be deposited successfully in a registry.
Update guarantees (Section 5.3) specify the conditions under which participating entities
should receive changes to existing discoverable items. Discard guarantees (Section 5.4)
specify the conditions under which participating entities should discard discoveries.

After the informal discussion, we formalize (Section 5.5) our service guarantees as
consistency conditions, that is, a set of consistent states that discovery systems should
strive to achieve under specified circumstances. In general, we conceive our consistency
conditions in the following form: while specified conditions (the antecedent) hold, then a
particular consistent state (the consequent) should be achieved, eventually. We use the
qualification of eventually because inconsistent states may exist temporarily as
information dissemination incurs a propagation delay. Of course, the antecedent leading
to the consequent might change during the time its takes to disseminate information; thus,
the eventually clause is subject to a qualification that the antecedent must continue to
hold during the transient period of inconsistency. If the antecedent fails to hold for a
sufficient duration, then one should not expect the consequent to be achieved.

Formalizing our service guarantees enables us to represent them readily in computer
programs. For example, we added our consistency conditions into simulation models [17-
21] and used them to evaluate the ability of particular discovery systems to provide
service guarantees. We have uncovered situations where a consistency condition remains
unsatisfied for an unbounded time, indicating a likely design error in a service discovery
system. We have also used our consistency conditions to measure the delay incurred in

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 64 NIST SP 500-260

achieving consistent states. Further, we have used our consistency conditions to
distinguish between latency associated with failure detection and latency due to failure
restoration. Other researchers [34] have used our consistency conditions together with a
model-checking program to verify a system design. These results indicate the value of
formalizing service guarantees.

5.1 Kinds of Service Guarantees. Below, we provide a high-level description of the
categories of service guarantees, which include Discovery, Registration, Update, and
Discard guarantees.

5.1.1 Discovery Guarantees. The main goal of service discovery systems is to ensure that
components become aware of information maintained by other components throughout a
distributed system. In our model, this means that as new discoverable items become
available, seekers of such items should be able to discover them. Our model supports
discovery in two forms: primary discovery (using the discovery functions described in
section 3.2) and secondary discovery (using the discovery functions described in section
3.4.1). We define a service guarantee for each form of discovery.

5.1.1.1 Primary Discovery. Primary discovery applies to items (i.e., administrative
scopes, repository descriptions, service descriptions, and service types) that a seeker can
discover directly. In general, an item is considered discoverable by a given seeker under
the following conditions: (1) the seeker has a requirement for the item, (2) some
advertiser is providing the item, (3) the seeker and advertiser can communicate through
an active discovery function along an operational path, and (4) the seeker has not already
found the item. Because a given seeker could potentially find multiple (m) instances of a
discoverable item, our model allows a seeker to constrain the number (n) of discoverable
items sought to satisfy a particular requirement. Given a set of m instances of some
discoverable item and a seeker with a requirement for n instances of that item, a seeker
should be guaranteed to discover the minimum of m or n instances of the discoverable
item. We call this the Primary Discovery guarantee.

While a service discovery system should satisfy the Primary Discovery guarantee, a
range of uncertainties can interfere. For example, information propagation may be
delayed by network conditions (transmission delays and message loss) and by use of
algorithms to avoid multicast-response implosion (as described in Section 4.1). In most
situations, such factors cause a finite period of delay, during which the system is in an
inconsistent state temporarily, but after which the Primary Discovery guarantee is
achieved. In other circumstances, paths may transition between operational and non-
operational states, affecting the ability of seekers and advertisers to communicate. If a
path is not operational, the guarantee cannot be satisfied. Further, the number m of
discoverable items can vary over time, and seekers may freely change the number n of
discoverable items sought. For this reason, the Primary Discovery guarantee must be
reconsidered with variations in n and m. Other factors may delay or prevent successful
satisfaction of the Primary Discovery guarantee. For example, if various transmission
intervals associated with discovery processes (i.e., lazy, aggressive, and directed) are
configured to be too large, then discovery may be delayed beyond a useful time.

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 65 NIST SP 500-260

Similarly, discontinuing discovery processes prematurely can prevent discovery of some
otherwise discoverable items.

5.1.1.2 Secondary Discovery. Secondary discovery applies only to (non-repository)
service descriptions that a seeker may discover by querying a previously discovered
repository. We assume that some seeker has acquired access (through primary discovery)
to a repository, and aims to obtain service descriptions matching some requirement. In
general, a service description is considered to be retrievable by a given seeker under the
following conditions: (1) the seeker has a requirement for the service description, (2) the
service description is contained in the repository, (3) the seeker and repository can
communicate and a service retrieval process is active on an operational path, and (4) the
seeker has not already retrieved the service description. Because a repository may contain
multiple (m) retrievable service descriptions, our model allows a seeker to constrain the
number (n) of service descriptions sought to satisfy a particular requirement. Given a set
of m retrievable service descriptions and a seeker with a requirement for n instances of
such descriptions, a seeker should be guaranteed to retrieve the minimum of m or n
service descriptions from the repository. We call this the Secondary Discovery guarantee.

The Secondary Discovery guarantee is subject to the same qualifications as the Primary
Discovery guarantee. One additional factor arises, however, because our model assumes
that a path is either operational or not, whereas real communications paths can operate
temporarily in a degraded state, where messages may be lost in transmission. To counter
such degraded paths, most of the service discovery protocols that we studied depend on a
reliable transport service to send unicast messages and to receive replies. If unable to
deliver a specific message within a bounded time, a reliable transport service will issue a
remote exception. In such circumstances, an otherwise retrievable service description will
not be obtained, unless a seeker retries the retrieval message persistently until successful.

5.1.2 Registration Guarantee. Service discovery systems that support repositories may
allow services to deposit service descriptions on those repositories, which service seekers
may query. In addition, some service discovery systems provide the option for service
seekers to deposit standing queries (i.e., requests for notification) about changes in the
state of service descriptions of interest. Similarly, some service discovery systems permit
registration to receive events emitted to reflect changes in the state of selected variables.
Registration is the act of depositing into a registry either: service descriptions, queries for
service descriptions, or requests to receive variable events. We specify a Registration
guarantee to define the circumstances under which such registration should succeed.

Assuming a registrant wishes to place a registration of a specified class (i.e., service
descriptions, notification requests, or variable-event requests) into a registry, the
registration can be considered to be feasible under the following conditions: (1) the
registrant has discovered the registry, (2) the registry is capable of accepting registrations
of the specified type, (3) the registration is not in the registry, and (4) the registrant and
registry can communicate through a registration process active on an operational path.
Given multiple (n) registrants that each wishes to place some number (rn) of feasible
registrations into the same registry, the total population of feasible registrations (p) for

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 66 NIST SP 500-260

the registry is the sum of rn over the n registrants. Assuming that the registry has the
capacity to accept only m registrations, then eventually the number of registrations in the
registry should be guaranteed to be the minimum of m or p. We call this the Registration
guarantee, which is subject to the same qualifications as the Indirect Discovery guarantee.

5.1.3 Update Guarantees. From time to time, service descriptions (including repository
descriptions) change; thus, service discovery systems must ensure that such changes are
disseminated to all relevant parties. For this reason, we expect that, given a change in a
service description, all seekers holding a previous copy of the service description will
eventually achieve one of the following outcomes: (1) the updated service description
replaces the earlier copy of the description or (2) the earlier copy of the description is
purged. Our model requires each service description to include a service identifier and a
sequence number. For a given service identifier, increasing sequence numbers indicate
more recent copies of the associated service description. Assuming that a seeker holds a
copy of a service description when another copy becomes available with the same service
identifier and a larger sequence number, then the seeker should be guaranteed to
eventually obtain the more recent copy (that has the larger sequence number) or to
discard the outdated copy (that has the smaller sequence number). We call this the
Update guarantee.

Most service discovery systems we examined include mechanisms that attempt to ensure
satisfaction of this Update guarantee; however, procedures differ markedly with
differences in the type of description being updated and in system architecture. For
repository descriptions, a repository first locally updates the description; then, the
advertiser is responsible for disseminating the update (as described in Section 3.2). For
service descriptions, the service proxy updates the description locally, after which
dissemination procedures differ with system architecture. In two-party architectures, the
service proxy disseminates the update directly to seekers (as described in Section 3.4.4).
In three-party architectures, the service proxy first propagates the update to relevant
repositories, which then relay the change to seekers (as described in Section 3.4.2). Since
the Update guarantee is subject to the same qualifications as the Service Description
Retrieval guarantee, it is conceivable that a given seeker could fail to receive a specific
update to a service description. In such situations, we would expect one of the discard
guarantees (see Section 5.6 below) to apply; thus, the Update guarantee allows that one
possible means to achieve consistency is simply to discard an outdated copy of a service
description, relying on some later rediscovery action to acquire a current copy.

We have found that under certain circumstances some service discovery systems do not
satisfy the Update guarantee. For example, when a seeker relies on a repository to issue
notifications about an updated service description, temporary degradation of the
communications path (between seeker and repository) can cause the notification to fail
[18, 19]. Most service discovery protocols, which depend on a reliable transport service
to deliver notifications, do not persist with attempts to deliver a notification after
receiving an exception from the transport service. Instead, such systems seem to assume
that subsequent attempts by a repository advertiser to deliver (discovery-related) lazy
announcements (to the seeker) will also fail, leading the seeker to discard the repository

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 67 NIST SP 500-260

description, and any related service descriptions. We have found circumstances where
notifications fail due to temporary communications degradation, which does not impede a
subsequent lazy announcement. In such circumstances, a seeker can continue to possess
an outdated copy of a service description without being aware that a later copy exists. We
have found instances of such behavior in both two-party and three-party architectures.

Before moving on to consider discard guarantees, we need to make some final points
about the Update guarantee. As currently specified, the Update guarantee applies only to
service descriptions (which include repository descriptions). The Update guarantee does
not apply to administrative scopes because our model assumes these to be atomic names
that may be added to or deleted from a set. Scope changes, then, can be detected under
the terms of our Discovery guarantee (for scope additions) and our Discovery Discard
guarantee (for scope deletions). Also, recall (Section 3.1) that our model allows service
types to have attribute-based descriptions, much like service descriptions, which could
lead to inconsistencies where a service description (which has a specified service type) is
interpreted against an outdated service-type description. While our Update guarantee
does not address this situation, we could define an additional guarantee that would look
similar to the Update guarantee, except that the service description is replaced by a
service-type description and a service-type identifier replaces the service identifier.
Finally, a seeker could receive an updated service description that no longer satisfies its
service requirements; in this case, the seeker should not accept the updated service
description, but the outdated version should still be discarded from the seeker’s cache.

5.1.4 Discard Guarantees. A secondary goal of service discovery systems is to detect and
react to the loss of service availability, whether due to voluntary withdrawal or due to
failures. In cases of service withdrawal, a service discovery system should seek to restore
consistency by ensuring that all service seekers eventually learn that the withdrawn
service is no longer available. In cases of failure, where a component is no longer
accessible, affected parties should eventually detect such inaccessibility and discard
information associated with the inaccessible component. We previously defined service
guarantees related to acquisition of three types of information: discoverable items
(including repository descriptions) found directly, without aid from a repository, service
descriptions discovered indirectly, with aid from a repository, and registrations deposited
on a registry. Below, we specify three service guarantees, each of which defines the
circumstances under which an information holder should discard a related type of
information, that is, a discoverable item, a service description obtained from a repository,
or a registration deposited on a repository.

5.1.4.1 Discovery Discard. A seeker should discard information about a discoverable
item upon learning that the item is no longer advertised or that the seeker can no longer
communicate with the advertiser (for the item). We call this the Discovery Discard
guarantee.

Due to various latencies inherent in a service discovery system, seekers may hold invalid
information about a discoverable item during some period of inconsistency, whose
duration depends upon the mechanism used to detect the inconsistency. Some service

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 68 NIST SP 500-260

discovery systems include the capability for an advertiser to voluntarily withdraw a
discoverable item (recall Section 3.2.4). Under voluntary withdrawal, inconsistency could
last for the time it takes an advertiser to propagate the withdrawal message to a particular
seeker. Of course, failure on a communication path between advertiser and seeker could
result in failure to receive a withdrawal message–causing fallback to one of the remaining
mechanisms: (1) soft-state or (2) application-level persistence. The soft-state mechanism
requires that advertiser announcements for a discoverable item carry a time-to-live (TTL)
that informs a seeker when to discard information associated with the item. The seeker
then purges the information at the indicated time, unless another announcement arrives to
extend the TTL. The soft-state mechanism ensures that the inconsistency will not extend
beyond the TTL. Alternatively, using application-level persistence, a component could
place an upper bound (UB) on the time during which it fails to communicate with a
corresponding component. Information associated with the corresponding component
would be discarded after reaching the UB. For example, a seeker who previously
discovered a repository might reach the UB while attempting to query the repository for
services or to renew registrations. The application-level persistence mechanism ensures
any inconsistency will be remedied by the UB. When employing soft-state and
application-level persistence in combination, any inconsistency should last for only the
minimum of either the TTL or the UB.

Some of the service discovery systems we examined provide for voluntary withdrawal of
discoverable items. All service discovery systems we examined support some form of the
soft-state mechanism, and provide recommended TTL values that define the maximum
period of inconsistency. When such systems are reconfigured (or deployed) with shorter
or longer TTL values the periods of inconsistency will change accordingly. The
application-level persistence mechanism is outside the scope of service discovery
protocols; however, service discovery systems that use reliable transport services, which
issue remote exceptions, can readily support the mechanism. When implementing
application-level persistence the UB defines the period of inconsistency; however, the
UB can be superceded when the service discovery system also includes a soft-state
mechanism with TTL < UB. Finally, we note that the Discovery Discard guarantee
applies only to SDEs; SDAs (service discovery applications) may take independent
action with respect to the accessibility of the service provider. That is, since service
providers and advertisers do not necessarily operate on the same node, it is conceivable
that an advertiser could advertise a service description for a service provider that a
discovering SDA cannot contact (see Section 3.6.4).

5.1.4.2 Description Discard. When service descriptions are discovered directly, without a
repository, then the Discovery Discard guarantee applies; however, when service
descriptions are discovered indirectly, from a repository, we must specify a separate
guarantee to define the circumstances under which a service description should be
discarded. Informally, this guarantee states that if a service seeker is holding a service
description that is no longer maintained by a repository, or is maintained by a repository
the seeker can no longer contact, then the seeker should eventually discard the service
description. We call this the Description Discard guarantee.

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 69 NIST SP 500-260

Various latencies can lead to periods when the information held by service seekers is
inconsistent with the information held by a repository. The duration of inconsistency
depends upon the same factors described for the Discovery Discard guarantee. In our
model, a service seeker may notify a supported SDA when a service description is
discarded. The SDA may then take independent action to investigate the status of the
service provider associated with the service description. That is, since service providers
and repositories do not necessarily operate on the same node, it is conceivable that a
service seeker could discard a service description for a service provider that a SDA can
still contact (see Section 3.6.4).

5.1.4.3 Registration Discard. We define a Registration Discard guarantee: when a
registrant and a registry cannot communicate about a registration, then the registration
should be discarded eventually. A typical requirement for communication is that a
registrant must periodically renew interest in a registration (recall Section 3.3); however,
other forms of interaction might also be possible. For example, a registrant could choose
to cancel a registration before a registry would otherwise discard it. Further, a registrant
might update a registered service description (recall Section 3.4.2.1). Similarly, a registry
might attempt to send notifications related to the registrations (recall Section 3.4.2.1 for
service descriptions and Section 3.5 for variable events). The Registration Discard
guarantee encompasses all forms of communication related to a particular registration,
registrant, and registry. Of course, communication comes with a latency that could permit
periods where registrant and registry hold an inconsistent view of a registration.

The duration of inconsistency depends upon the same factors as we discussed for the
Discovery Discard guarantee, except that here the TTL is determined and granted by the
registry (in cooperation with a related extension granter) when accepting a registration,
and then updated by an extension granter with each request (from an extension requester)
to renew the registration. The granted TTL competes with an upper bound (UB) that the
registry might assign for other forms of interaction (e.g., attempting to send notifications
or to grant extensions); thus, the inconsistency should last for the minimum of the TTL or
the UB. For example, if a registrant registers with a registry to receive notification
requests and subsequently the registry attempts unsuccessfully to issue a notification to
the registrant, then the registry might have an UB for retrying failed notification attempts.
If the UB is reached before the TTL, then the registry might choose to discard the related
registration without waiting for an expected renewal. Of course, the registry might also
choose to wait for the TTL to expire. Some service discovery systems we examined
specify when to purge a registration, while other service discovery systems allow the
flexibility for implementers to adopt their own policies. In addition, some service
discovery systems specify different discard policies for different types of registrations.

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 70 NIST SP 500-260

5.2 Formalizing Service Guarantees. While an intuitive understanding of our proposed
service guarantees can be quite informative, a more formal description is needed to
encode the guarantees into a a form suitable for testing and measurement. Our UML
model provides a suitable basis for such formalization. In what follows, we express our
proposed service guarantees as consistency conditions, formalized in relationship to our
UML model. The consistency conditions we define provide a means to concretely test
operational systems to determine satisfaction of service guarantees. We have used these
consistency conditions in several applications [17-21]. We expect that designers of
service discovery protocols might be able to use these (or similar) consistency conditions
to evaluate the correctness and performance of protocol designs.

We begin by describing our general notion of consistency condition. We then define the
concept of reachability (used within several of our consistency conditions) in terms our
UML model. Subsequently, we define consistency conditions related to discovery,
registration, update, and discard guarantees.

5.2.1 Consistency Conditions. We express consistency conditions using first-order logic
(FOL), extended with temporal logic [25]. We use FOL to express logical relationships
between classes, attributes, operations and methods between our UML models. We
occasionally employ standard mathematical functions to represent relations among
quantities. We limit our use of temporal logic to the EVENTUALLY and
HENCEFORTH operators, on which we place some qualifications.

We formulate consistency conditions along the following lines. Given a predicate P and
some state S, S [P] represents the value of P in state S. When S [P] is true, P is said to
hold in S. Given a predicate Q, a consistency condition is an implication of the form

QP → , which means that when P holds, then Q must also hold for the condition to be
satisfied. Satisfaction of a condition in state S occurs iff S [P & Q], indicating the system
is consistent in state S. In contrast, when S [P & ~Q], then the condition is not satisfied
and the system is inconsistent in S. To define consistency conditions temporally, we use
the EVENTUALLY operator to specify the value of a predicate at some future state of
the system. Given predicates P and Q, the formula QP EVENTUALLY→ holds
iff []PSi and for some future state jS , []QS j , where j > i. During the operation of an actual
system, satisfying the condition and reaching the consistent state jS can be delayed by
factors such as network failures, transmission delays, message losses, and algorithmic
delays. During such delays, inconsistency persists temporarily prior to jS .

The existence of delays implies that a predicate P could fail to hold long enough for
predicate Q to be achieved, in which case the protocol cannot be expected to guarantee Q.
However, if P continues to hold, the guarantee should be fulfilled eventually. To define
the conditions under which success should be achieved, we use the temporal operator
HENCEFORTH to specify that []PS j holds for all future states, j > i. We express our
consistency conditions in the form: HENCEFORTH QP EVENTUALLY→ . This
formulation denotes the fact that if predicate P continues to hold, eventually Q will be
achieved. In practical terms, this means that as long as P is true, a discovery system

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 71 NIST SP 500-260

should strive to achieve Q; but once P no longer holds, then the system should not be
expected to guarantee Q. Discovery protocols, when properly designed and deployed,
should strive to ensure that: (1) the consistent state eventually becomes true and (2) the
inconsistent state is bounded to as short an interval as possible. For a given service
discovery protocol, if P does not hold long enough for Q to be achieved, then either: (1) a
configuration error exists in a specific deployment, (2) user needs change at an
unsupportable rate, or (3) the operating environment lacks sufficient stability (i.e.,
failures prevent the discovery protocol from achieving a consistent state). On the other
hand, a design error likely exists if Q cannot be achieved even when P holds indefinitely.

5.2.2 Reachability. The concept of reachability is fundamental to our consistency
conditions. Two SDEs are reachable for some specific function (e.g., discovery, service
registration, or service retrieval) on some class of discoverable item (e.g., service
description) if they are connected, and an appropriate process is active on the connection
(i.e., the SDEs have implemented appropriate roles). Below, we define this concept more
formally, in terms of the architectural framework depicted previously in Figure 2-5.

We say that two SDEs (service discovery entities), e1 and e2 (instances of some
subclass of ServiceDiscoveryEntity) are connected if an operational
communications path p (an instance of the class Path) exists between them, written
e1.p.e2 in UML and p.up() is TRUE. Let t be an instance of the class Process
running on path p, such that p.t.inProgress(). Let process t instantiate a service
discovery function f that operates over some subclass • of discoverable items. To identify
the instantiated service discovery function, we use the UML operation isTypeOf,
which takes the name of the function as a parameter and returns a Boolean. We also
extend the definition of Process given in Section 2.4 to add the attribute
Process.targetDiscoverableItem to identify the subclass of Discoverable
Item operated on by the Process. Reachability between e1 and e2 for processes
instantiating function f over discoverable items of class • is denoted with the predicate
Reachable (e1, e2, f, •), which we define as

For all e1 and e2 if Henceforth
there exists a p such that (e1.p.e2 and p.up()) and
there exists a t such that p.t.inProgress() and
there exists a f such that t.isTypeOf(f) and
there exists a • such that t.targetDiscoverableItem = •

implies Reachable (e1, e2, f, •)

For example, Reachable (e1, e2, Discovery, RepositoryDescription) implies
that SDEs e1 and e2 are reachable for purposes of discovering repository descriptions,
as depicted in Figure 5-1.

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 72 NIST SP 500-260

5.3 Discovery Consistency. We define two consistency conditions related to discovery.
One condition formalizes the Primary Discovery guarantee and the other formalizes the
Secondary Discovery guarantee.

5.3.1 Primary Discovery. Here, we specify conditions under which the seeker of some
subclass of discoverable item should be able to obtain that item. Figure 5-2 provides the
fragment of a related UML class diagram, which depicts two main types of SDEs: one
(SeekerEntity) that assumes a seeker role and one (AdvertiserEntity) that
assumes an advertiser role. For convenience, we define a SeekerEntity, which
implements the class Seeker (specialized for a particular subclass of discoverable item)
and a related SeekerProxy. Similarly, we define an AdvertiserEntity, which
implements an Advertiser to publish a particular subclass of discoverable item. We
define a Primary Discovery consistency condition over SeekerEntity and
AdvertiserEntity.

Let m be the number of advertised discoverable items of class • available in some service
discovery system. The Primary Discovery consistency condition sets forth the
circumstances under which a seeker entity in need of n discoverable items of class •
should eventually obtain the minimum of n and m. We first define the conditions for
discovery of a single discoverable item.

Figure 5-1. Example of Reachability for Discovery of Repository Descriptions

SDE e1

p.t. inProgress ()

t. processType = Discovery
t. targetDiscoverableItem = RepositoryDescription

path p

p.up() = True

process t
SDE e2

(1)

(2)

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 73 NIST SP 500-260

Let s be an instance of SeekerEntity that implements a subclass of Seeker
specialized for discoverable items of class •. Let the discovery requirement for s be r
(denoted by s.requirement). We define r to be an instance of a subclass of
DiscoveryRequirement that is also specialized for a discoverable item of class •
(see section 3.2 and Figure 3.2). Let a be an instance of an AdvertiserEntity for a
discoverable item d of class • (represented by the association role name
advertiserFor in figure 5.2), where r is satisfied by d (represented by the
association role name satisfiedBy). Let s and a be reachable for discovery of items
of class •, represented by the predicate Reachable (s, a, Discovery, •). The
following expression defines the circumstances under which d is discoverable by seeker
entity s and fulfills requirement r.

For all s and a if HENCEFORTH
 there exists a r such that s.requirement = r and
 there exists a d such that d.advertiseFor= a and
 d.isTypeOf(•)= TRUE and
 r.satisfiedBy = d and
 Reachable (s, a, Discovery, •)

 then Discoverable (s, d, r)

That is, if a seeker with a requirement can reach the advertiser for a discoverable item d
of class • and the discoverable item satisfies the requirement r, then the seeker should be

Figure 5-2. Context of Primary Discovery Consistency Condition

ServiceDiscoveryEntity

AdvertiserEntity

RepositorySeeker
discoveries : SetOfRepositoryDescriptions
requirement : RepositoryRequirement

ScopeSeeker
discoveries : ListOfScopes
requirement : ScopeRequirement

ServiceTypeSeeker
discoveries : ListOfServiceTypeNames
requirement : ServiceTypeRequirement

ServiceSeeker
discoveries : SetOfServiceDescriptions
requirement : ServiceRequirement

AdministrativeScope ServiceType

DiscoveryRequirement
numberNeeded : Integer

RepositoryDescription

Seeker
discoveries : ListOfDiscoverableItems
requirement : DiscoveryRequirement

ServiceDescription

DiscoverableItem+satisfiedBy

SeekerProxy
discoveryRequirement : DiscoveryRequirement

0..1

1

0..1

1Advertiser
+advertiserFor

0..*0..* 0..*0..*

<<implements>>

ConsistencyCondition

SeekerEntity

<<implements>> <<implements>>

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 74 NIST SP 500-260

able to obtain the discoverable item. This definition of discoverable is depicted in Figure
5-3.

Whether or not the seeker obtains the discoverable item is also contingent on the
relationship between the number n of discoverable items that the seeker hopes to discover
and the number m of suitable discoverable items available. Let s.discoveries be the
set of discoverable items currently held by s. If d is an undiscovered discoverable item
such that,

Discoverable (s, d, r) ∧ d ∉ s.discoveries,

then the set D of undiscovered discoverable items for seeker s is given by

(){ }iess.discoverdrd,s,d ∉∧= leDiscoverabD : .

Let Dm = , and define the predicate NumberUndiscoveredDiscoverables (s, r, m),
where m is the number of undiscovered discoverable items that satisfy a requirement r of
seeker s. Let s require n discoverable items that satisfy r, given by r.numberNeeded
= n. Then the Primary Discovery consistency condition states

Figure 5-3. Illustrated Definition of Discoverable

Reachable (s, a, Discovery, δ)

Seeker s has
requirement r

A seeker s should be able to discover a discoverable item d of
type δ, if (1) s has a requirement r (2) if d is advertised by an
advertiser a, (3) r is satisfied by d and (4) s and a are reachable
for discovery of items of type δ.

seeker s

(1) (2)
Advertiser a
advertises
discoverable
item d of class δ.

advertiser a

r is satisfied by d
(3)

(4)

Path

Process

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 75 NIST SP 500-260

For all s and r if HENCEFORTH
 there exists a m, such that NumberUndiscoveredDiscoverables (s, r, m) and
 there exists a n such that r.numberNeeded = n
then EVENTUALLY NumberWillDiscover (s, r, MIN(m, n))

where the predicate NumberWillDiscover specifies that seeker s discovers the minimum
of n or m discoverable items that satisfy r. Given nm ≥ , then eventually s should obtain
n discoverable items. Given nm < , then the seeker should be expected to obtain only m
discoverable items. This consistent state is illustrated in Figure 5-4.

5.3.2 Secondary Discovery. Here, we specify conditions under which the seeker of a
service description (for a non-repository service) should be able to discovery (or retrieve)
a service description from a previously discovered repository. Figure 5-5 provides the
fragment of a UML class diagram, which depicts two main types of SDEs: a
ServiceRetrievalEntity, which assumes the unicast service-seeker role and
implements the class UnicastServiceSeeker, and a RepositoryEntity,
which assumes the service-repository role and implements the class
ServiceRepository. We assume that the service retrieval entity has acquired access
(through discovery processes) to the repository entity, and seeks to obtain service
descriptions matching some requirement.

Figure 5-4. Illustration of Consistent State for Primary Discovery

Seeker s has
requirement r
for n discoverable
items of class δ

(1) Seeker s requires n discoverable items that satisfy requirement r, (2)
there are m discoverable items that satisfy r that s has not discovered,
then (3) eventually s discovers the minimum of m and n items.

Seeker s

(1)

Advertisers a1 … am
advertise m discoverable
items d1 …dm. Each di
satisfies
Discoverable(s, di, r) and
each di discoveries(s, δ).

Advertiser a1Advertiser a1

Advertiser amAdvertiser am

…….
…….
…….
.……

(2)

Eventually
(3)

),(cov. nmMINeriesdiss =

∉

Paths by which s is
reachable to a1..am for

discovery of items of
of class δ

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 76 NIST SP 500-260

Let s be an instance of ServiceRetrievalEntity, r be a an instance of
ServiceRequirement that s seeks to satisfy, d be a service description and q be a
an instance of RepositoryEntity with a service cache for service descriptions
(shown in Figure 5.5 as q.serviceCache). Let s and q be reachable for purposes of
retrieving service descriptions. We define the conditions under which a d that satisfies r
will be retrievable by s from q. The UML associations s.requirement and
r.satisfiedBy retain the same meaning as in the consistency condition for Primary
Discovery.

For all s, q, and d if HENCEFORTH
there exists a r such that s.requirement = r and
Reachable (s, q, Retrieval, ServiceDescription) and
 d ∈ q.serviceCache and
r.satisfiedBy = d

 then Retrievable (s, d, r, q)

This definition of retrievable is illustrated in Figure 5-6 below.

Figure 5-5. Context for Description Secondary Discovery Consistency Condition

ServiceDiscoveryEntity

ServiceRetrievalEntityRepositoryEntity

ConsistencyCondition

ServiceSeeker
discoveries : SetOfServiceDescriptions
requirement : ServiceRequirement

ServiceRequirement
requiredUniqueD : UniqueIdentifier
requiredServiceType : ServiceType
attributeValueRequirement : AttributeValueRequireme...

ServiceDescription

+satisfiedBy

ServiceRepository
serviceCache : SetOfServiceDescriptio...

UnicastServiceSeeker
knownRepositories : ListOfRepositoryIDs

<<implements>>

DiscoveryRequirement
numberNeeded : Integer

<<implements>>

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 77 NIST SP 500-260

Assume seeker s discovers a set of n repositories, each with a set Si of service
descriptions such that

(){ }sdiscoveriesdqrds .,,,: ∉∧= eRetrievabldSi .

The available number of service descriptions that s can retrieve is given by

∑
=

=
n

i
Total Sim

1
.

Let s require n service descriptions that satisfy r, given by r.numberNeeded = n, and
the predicate NumberUnretrieved(s, r, ServiceDescription, mTotal) denote that
seeker s with requirement r can retrieve at most mTotal service descriptions. The number
of service descriptions that s should eventually discover is defined by the following
consistency condition.

For all s and r if HENCEFORTH
 there exists a m such that NumberUnretrieved(s, r, ServiceDescription, mTotal)
 there exists a n such that r.numberNeeded = n
 then EVENTUALLY NumberRetrieved (s, ServiceDescription , MIN(n, mTotal))

This consistent state is illustrated in Figure 5-7 below.

Figure 5-6. Illustrated Definition of Retrievable

Reachable (s, q, Retrieval, ServiceDescription)

Service
seeker s has
requirement r
for a service
description

A seeker s should be able to retrieve a service description d from
service repository q if (1) s has a requirement r (2) d is a
member of the service cache of q, (3) r is satisfied by d, and (4)
s and q are reachable for retrieval of service descriptions.

Service
Seeker s

(1) (2)
Service Repository
q contains service
description d

Service
Repository q

r is satisfied by d
(3)

(4)

path

process

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 78 NIST SP 500-260

5.4 Registration Consistency. Here, we specify the circumstances under which a
registrant should successfully deposit a registration on a registry. Figure 5-8 contains the
fragment of a related UML class diagram, which depicts two main types of SDEs: one
RegistrationSeekerEntity that assumes a registration-requester role and
implements the RegistrationRequester class and one RegistryEntity that
implements the registry role and implements the Registry class. As described in
Section 3.3.2, the RegistrationRequester may be specialized as any of the
following subclasses: ServiceRegistrationRequester, Notification
RegistrationRequester and EventRegistrationRequester, depending
upon the type of information to be deposited on the registry. Similarly, Registry may
be specialized as a ServiceRegistry, NotificationRequestRegistry,
FullRegistry, or VariableEvenRegistry according to the type of information
that it will accept. We assume that the registry has been previously discovered (via
discovery of the associated repository) and made available to the registration seeker
entity.

Figure 5-7. Illustration of Consistent State for Secondary Discovery

Service seeker s
has requirement r
for n service
descriptions

(1) Seeker s requires n service descriptions, (2) there are m
retrievable service descriptions that s has not retrieved, then (3)
eventually s retrieves the minimum of m and n items.

Service
Seeker s

(1)

Repositories q1 … qm
contain m service
descriptions d1 … dm.
Each di satisfies
Retrievable(s, di,r, qi) and
each di discoveries(s, d).

Service
Repository q1

…….
…….
…….
.……

(2)

Eventually
(3)

∉

Service
Repository qm

Paths by which s is
reachable to q1.. qm for

service description
retrieval

),(cov. nmMINeriesdiss =

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 79 NIST SP 500-260

Let s be an instance of a RegistrationSeekerEntity and v be an instance of a
RegistryEntity. Let u be an instance of a RegistrationRequest for
registrations of subclass • (either ServiceRegistration, Notification
Registration, or ServiceVariableRegistration), where s holds u (e.g., u
∈ s.registrationRequests, and let v be a registry that accepts registrations of
class • (as indicated by the operation v.acceptsRegistrationType (•)). We

RegistryEntity RegistrationSeekerEntity

ConsistencyCondition

ServiceDiscoveryEntity

ExtensionRequester
<<Remote>> conf irm()

<<Interface>>

RegistrationRequester
registrationRequests : ListOfRegistrationRequests

<<Remote>> addConf irmed()
<<Remote>> addDenied()

<<implements>>

ExtensionGranter
<<Remote>> refresh()

Registry
registrations : SetOfRegistrations

<<Local>> capacity()
acceptsRegistrationType()
register()

0..* 0..*

+RegisteredOn

0..*

+RegisteredBy

0..*

<<implements>>

0..10..1

<<optional>>

<<implements>>

Figure 5-9. Illustrated Definition of Registerable

Figure 5-8. Context for Registration Consistency Condition

Reachable (s, v, Registration, ε)

s has registration
request u for
registration of
class ε

A registration seeker s should be able to register u with registry v if (1) u
is a registration request for registrations of class ε (2) v accepts
registrations of class ε, (3) s has been provided with v as a registry for
registrations of class ε, but s has not yet registered u on v and (4) s and
v are reachable to register registrations of class ε.

Registration
Seeker s

(1) (2)
Registry v accepts
registrations of
class ε

Registry v

s has been provided with
registry v for registration
requests of class ε, but u is
not registered on v.

(3)

(4)

Path

Process

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 80 NIST SP 500-260

assume v has been provided to s for purposes of registration (represented by v ∈
s.knownRegistries. We also assume that s and v are reachable for registration of
requests of class •, and u is not yet registered with v. The circumstances under which s
can attempt to register u with v is formalized as

For all s and v if HENCEFORTH
there exists a u such that u ∈ s.registrationRequests and
u.registrationType = • and
v.acceptsRegistrations(•) and

 v ∈ s.knownRegistries and
 u ∉ s.registrations and
 Reachable (s, v, Registration, •)
 then Registerable (s, v, u)

Informally, if a registration seeker entity s has been given a registration request u (of
class •) and a registry entity v that can accept registration requests (of class •) and if s
and v are reachable for purposes of registration of requests of class • and if u is not yet
registered on v, then s should be able to register u on v. We illustrate this definition of a
registerable registration in Figure 5-9. Of course, we must consider the fact that a registry
entity has a finite capacity to accept registrations.

Let S be the set of all registration seeker entities s for which v is a known registry

{ }triesknownRegissvs .: ∈=S .

Let z be the number of registration requests held by s, or questsonregistratisz Re.= .
We compute the number of (Registrable) registration requests nT pending for v as

∑∑
=

=
S

z

i
iT xn

1

where
()

⎩
⎨
⎧

=
otherwise0

,,,if1 i
i

leRegisterab
x

uvs
.

The predicate TotalNumberRegisterable(v, nT) holds when nT registrations are pending
for registry v across all registration seeker entities in S. Recall in section 3.3 we
introduced the operation v.capacity()to denote that registry v has capacity to accept
m additional registrations. Accordingly, we should expect that

For all v if HENCEFORTH

there exists a nT such that TotalNumberRegisterable (v, nT) and
 there exists a m such that v.capacity = m

 then EVENTUALLY NumberRegistered (v, MIN(nT, m))

where the predicate NumberRegistered(v, x) denotes that registry v contains x
registrations. Informally, given nT qualified registrations for registry v, which has

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 81 NIST SP 500-260

capacity to accept m additional registrations, then eventually the minimum of nT or m
registrations should be deposited with v. This consistent state illustrated in Figure 5-10.

5.5 Update Consistency. Here, we specify the circumstances under which a component
should either: (1) replace outdated information with updated information or (2) discard
the outdated information. Let s be an instance of ServiceSeeker and d be an
instance of ServiceDescription, where the updated successor of d is denoted as
d′ and has an incremented sequence number. We illustrate this consistent state in Figure
5-11.

For all s if
there exists a d such that d∈ s.discoveries and

 HENCEFORTH there exists a d´ such that
 (d´.serviceID = d.serviceID and
 d´.sequenceNumber > d.sequenceNumber)

 then EVENTUALLY
 (d´∈ s.discoveries) and
 d ∉ s.discoveries)
 or
 (d´∉ s.discoveries) and

 d ∉ s.discoveries))

We illustrate this consistent state in Figure 5-11.

Figure 5-10. Illustration of Consistent State for Registration

nT = total number of ui registration
requests held by all registration
seekers that are registerable on v
and satisfy Registerable (sj, ui, v)

(1) The total number of registration requests of all registration
seekers that are registerable on registry v is nT, (2) the capacity
of registry v is m, then (3) eventually the number of requests that
are registered on v is the minimum of m and nT.

Registration
Seeker s1

(1)

Registry v has the capacity
to accept n registrations.

Registry v
…….
…….
…….
.……

(2)
Registration
Seeker sq

Paths by which s1..sq can

reach v to request
registration of each ui.

Eventually, registry v
registers MIN (m, nT)
requests

(3)

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 82 NIST SP 500-260

5.6 Discard Consistency. In what follows, we define a consistency condition to formalize
each discard guarantee: the Discovery Discard guarantee, the Description Discard
guarantee, and the Registration Discard guarantee.

5.6.1 Discovery Discard. Here, we specify the circumstances under which a seeker of
discoverable items should discard previously discovered information. Informally, a
seeker should discard information about a discoverable item when the item is no longer
advertised or when a seeker and advertiser (for the item) can no longer communicate.

Let s be an instance of SeekerEntity, a be an instance of AdvertiserEntity,
and d be an instance of a discoverable item of class •, as defined in section 5.5.3.1.
Discoverable item d should be discarded by s under the following conditions.

For all s and a if
there exists a d such that d ∈ s .discoveries and

 d.isTypeOf(•) and
 HENCEFORTH
 ((there does not exist an a such that d.advertiserFor = a or
 (there exists an a such that d.advertiserFor = a and
 not Reachable (s, a, Discovery, •)))
 then EVENTUALLY d ∉ s .discoveries

Figure 5-11. Illustration of Consistent State for Update

(1) A service seeker s has discovered a service description d, (2) d is updated
to d', then either (3) d' replaces d on s , (i.e. d' s.discoveries and d is
purged by s such that d s.discoveries, or (4) in the update to d' never
arrives and eventually d is purged by s.

Service
Seeker s

(1) Initially, service description
d s.discoveries

∈

(2)
Service description d is updated to d',
where d'.serviceID = d.serviceID
d'.sequenceNumber > d.sequenceNumber

∉

(3) d' s.discoveries and
d s.discoveries

∈

(4)

∉

∈

d' s.discoveries and
d s.discoveries

∉
∉

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 83 NIST SP 500-260

We illustrate this consistent state in Figure 5-12.

5.6.2 Description Discard. When service descriptions are discovered without a
repository, then the Discovery Discard condition applies; however, when service
descriptions are discovered from a repository, we must specify a separate Description
Discard condition to define circumstances under which a service description should be
discarded. Informally, if a seeker is holding a service description that is no longer
maintained by a repository, or is maintained by a repository the seeker can no longer
contact, then the seeker should eventually discard the service description. We specify the
Description Discard condition more formally below.

Let s be an instance of UnicastServiceSeeker, q be an instance of
RepositoryEntity, and d be an instance of ServiceDescription as defined in
section 5.5.3.2.

For all s and q if
there exists a d such that d ∈ s.discoveries and

 HENCEFORTH
 (d ∉ q. serviceCache or

 (d ∈ q. serviceCache and
not Reachable (s, q, Retrieval, ServiceDescription))

 then EVENTUALLY d ∉ s.discoveries

We illustrate this consistent state below in Figure 5-13.

Figure 5-12. Illustration of Consistent State for Discovery Discard

d s.discoveries∈d s.discoveries∈

Eventually
d s.discoveries

(1) Seeker s has discovered a discoverable
item d of type δ, (2) no advertiser that s
can reach advertises d, or (3) all advertisers of d
are unreachable from s (4) eventually s must purge d.

Seeker s

(1) Advertisers a1 … am
do not advertise d.

Advertiser a1

Advertiser am

…….
…….
…….

(2)

(4)

Paths by which s is
reachable to a1..am for

discovery of items of
type δ

Advertiser as

Advertiser az

…….
…….
…….

Advertisers as … az
advertise d, but are
not reachable by s
for discovery of
items of type δ

(3)

No path by which s can
reach a1..am for

discovery of items of
type δ∉

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 84 NIST SP 500-260

5.6.3 Registration Discard. Here, we specify the circumstances under which a registry
should discard information about a registration. Informally, if a registrant and a registry
cannot communicate about a registration, then the registration should be discarded
eventually.

Let s be an instance of RegistrationSeekerEntity, v be an instance of
RegistryEntity, and u be an instance of a Registration as defined in section
5.4. Further, let • be a class of registration requests and g some registration-related
function, constrained as follows. If • is a ServiceRegistration, then g must be
either: a registration extension, cancellation, or service change. If • is a
NotificationRegistration, then g must be either: a registration extension,
cancellation, or notification. If • is a ServiceVariableRegistration, then g
must be either: a registration extension, cancellation, or event notification.

For all s and v if
 there exists a u such that u ∈ v.registrations and

 u.isTypeOf(•) and
 HENCEFORTH not Reachable (s, v, g, •))

 then EVENTUALLY u ∉ v.registrations

We illustrate this consistent state in Figure 5-14 below.

Figure 5-13. Illustration of Consistent State for Description Discard

Eventually
d s.discoveries

No path by which s can
reach qs..qt for service

description retrieval

(1) Seeker s has a service description, (2) any repository that s can
reach does not cache d, (3) no repository that caches d can be
reached from s, (4) eventually s must purge d.

Service
Seeker s

(1)
Repositories q1 … qr
do not contain d in
their service caches

Repository q1

Repository qr

…….
…….
…….

(2)

(4)

∉

Paths by which s is
reachable to q1..qm for

retrieval of service
descriptions

Repository qs

Repository qz

…….
…….
…….

Repositories qs … qt
contain d, but are
not reachable by s
for retrieval of
service descriptions

(3)

d s.discoveries∈d s.discoveries∈

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 85 NIST SP 500-260

Figure 5-14. Illustration of Consistent State for Registration Discard

u v.registrations∈u v.registrations∈

(1) Registration seeker s has previously registered registration request u
of type ε on registry v, (2) v is no longer reachable by s to perform
registration functions g related to registration class ε (3) eventually v must
purge u.

Registration
Seeker s

(1)

(2)

(3)

Registry v
No paths by which s can
reach v for registration-

related function gon
registration class ε.

Registry v performs
registration-related
functions g on
registration type ε,
but is not reachable
by s.

s is registration seeker for
a registration request u for
registration of class ε

Eventually u u.registrations∉

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 86 NIST SP 500-260

6. Representing Specific Service Discovery Systems

As presented to this point our model of service discovery systems is abstract and generic,
that is, we have not represented any specific service discovery systems. In this section,
we illustrate how our model can be used to represent some concrete service discovery
systems. For example, we map UPnP [5] (Section 6.1), Jini [1] (Section 6.2), and SLP [3]
(Section 6.3) to our model. We use our model to represent Web Services Dynamic
Discovery [9] (Section 6.3) and the Globus Monitoring and Discovery Service [10]
(Section 6.4), two discovery systems that were not part of the group we studied as we
developed our generic model.

6.1 UPnP. UPnP embodies a two-party architecture of control points (clients) and root
devices (service proxies). UPnP root devices can contain and advertise a hierarchy of
embedded devices and services. The complex nested structure allows UPnP root devices
to function as a repository for a set of devices or services. To advertise repository
contents, root devices send periodic multicast announcements for the root device itself,
and for each embedded device contained within the root device. Root devices also
announce the types of embedded devices and services. UPnP control points may listen for
announcements, and respond with requests for more detailed information about a device
or service of interest. Control points may also issue multicast queries for specific devices
(root or embedded), services, and service types. Root devices listen for such queries and
respond as appropriate. UPnP also allows control points to subscribe for notification of
changes in the state of variables maintained by services of interest.

6.1.1 UPnP Discovery. UPnP supports discovery of three kinds of discoverable items:
repository descriptions for root devices, service descriptions for embedded devices, and
service type descriptions. In terms of our model (see Figure 6-1), UPnP root devices
(represented as a SeekerProxySDE) implement the advertiser role (Advertiser)
for these items, while control points (represented as a ClientSDE) implement the
seeker roles (RepositorySeeker and SeekerProxy). All root devices also
implement the repository role, but limited to the type ServiceRepository, since
UPnP root devices do not support service registration or notification-request registration.
UPnP does not directly support administrative scopes, though root devices may be used
to achieve de facto scope partitioning. Root devices may advertise, and control points
may seek, embedded devices and service types. Embedded devices have their own
service descriptions; service types have service-attribute descriptions (omitted from
Figure 6-1).

UPnP supports both lazy and aggressive discovery. In lazy discovery, advertisers
broadcast sets of announcements in cycles separated by a minimum of 1800 s. The
announcement cycles continue for the lifetime of the root device. Within each cycle,
advertisers may interleave announcements for the root-device repository with
announcements for embedded devices and service types contained within the repository.
UPnP requires that announcements be replicated (separated by a short interval) as
follows: three announcements for the root-device repository, followed by two
announcements for each embedded device and its device types, and one announcement
for each contained service type. Each announcement consists of a partial description of

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 87 NIST SP 500-260

the related root device, embedded device or service type. Upon receipt, the control point
first caches the root-device repository address on its “discoveries” list. The client must
then initiate a series of HTTP-GET requests using the reliable TCP protocol to obtain the
entire list of service descriptions for the root device, the embedded devices and associated
services, and the service types. The HTTP-GET operation does not permit selective
retrieval; instead the service descriptions for all items within the root device are
transmitted as a formatted text stream, a potential disadvantage if this content is large.
The control point must provide the logic to parse the description and locate needed
services.

Figure 6-1. Class Diagram for UPnP Repository Discovery

Control points hold discoveries for a TTL that is tied to the announcement cycle; hence
UPnP is modeled with the correlated type of TTL-computation algorithm. The advertiser
must issue subsequent announcements prior to the TTL to refresh the discovery;
otherwise, the control point may purge the discovery from its “discoveries” list. The
advertiser also may issue a discoveryWithdrawal() for a root-device repository
and its contents at the end of a scheduled lifetime, or before, if necessary.

ClientSDEServiceProxySDE

SeekerProxy
discoveryRequirement : DiscoveryRequirement

<<Local>> seekDiscovery()
<<Remote>> aggressiveResponse()
<<Remote>> discoveryWithdraw al()
<<Remote>> lazyAnnouncement()

<<implements>>

Advertiser
advertiserAddress : UniqueAddress
ttlModel : TtlModel = None

<<Local>> announce()
<<Remote>> aggressiveProbe()

0...0..*

+Seeker

0...

+Found

0..*

<<implements>>

UPnP RepositoryDescription
serviceType : RepositoryType = Service Repository

TimeToLive
/ TTL : Duration

ServiceDescriptionServiceRepository
serviceCache : SetOfServiceDescriptions

<<implements>>

ServiceInvocationAddress
address : UniqueAddress

1

1

1

1

RepositoryDescription

11+repositoryAddress

RepositorySeeker
Requirement : RepositoryRequirement
discoveries : SetOfRepositoryDescriptions

<<Local>> discoveryWithdraw al()
<<Local>> processDiscovery()

1 +Seeker1

<<implements>>

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 88 NIST SP 500-260

While lazy discovery proceeds for the lifetime of a root-device repository, the control
point may launch aggressive discovery queries on demand, using the local operation
seekDiscovery()in the SeekerProxy. The UPnP aggressiveProbe()
permits specification of selection criteria, allowing the seeker to search for specific root-
device repositories, embedded devices, and service types. The probe is multicast using
the model of periodicity for aggressive discovery described in Section 3.2.2. If the
selection criteria match, an advertiser replies directly (i.e., unicast) to the seeker with an
appropriate subset of the same messages used in lazy announcements. The seeker then
issues HTTP-GET requests to obtain a complete description of the contents held by the
root-device repository.

6.1.2 Service Description Monitoring Through Variable Monitoring. UPnP supports
service-variable monitoring procedures that closely resemble the capabilities described in
Section 3.5, and hence need not be restated here. The variable-query capability supports
polling of service variables that are made available by a service provider for this purpose.
UPnP also permits registration for events that indicate changes to service variables on the
same basis. Though UPnP does not provide specific mechanisms for monitoring service
descriptions, a root device could designate a service variable to indicate when a service
description changes and could make the designated variable available to control points,
either for polling or notification or both. Upon learning of a change, the control point
must send an HTTP-GET to obtain the full service description, and then find the change
by comparing the new service description with a previously cached copy.

6.2 Jini. Jini supports a three-party architecture, where services and clients both seek to
discover lookup services (i.e., repositories). Jini services register service descriptions on
discovered repositories, while Jini clients retrieve service descriptions from discovered
repositories. Clients may submit unicast findService() queries to look for services
and may register for notification about changes in services of interest. Jini allows clients
and services to locate repositories (and also allows repositories to discover each other)
using lazy, aggressive, and directed discovery. While Jini supports administrative scopes,
it provides no inherent mechanisms to discover scopes, service types, and service-
attributes types. For this reason, Jini components (clients, services, and repositories) must
be configured with information about available scopes and service types.

6.2.1 Jini Discovery. A Jini lookup service implements the repository and advertiser
roles, while clients and services implement repository-seeker roles. This is represented in
Figure 6-2 by the ServiceRepository and Advertiser classes for the lookup
service (DirectorySDE) and by the RepositorySeeker and SeekerProxy1 for
client (ClientSDE) and service (ServiceProxySDE). The lookup service also has
an associated RepositoryDescription that includes a list of configured
administrative scopes. Jini lookup services are specialized as full registries that provide
for registration of service descriptions and notification requests (as described below in
Section 6.2.2).

1 To allow lookup services to discover each other, they also implement the RepositorySeeker and
SeekerProxy classes, which we omit from Figure 6-2 to simplify the figure.

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 89 NIST SP 500-260

Figure 6-2. Class Diagram for Jini Repository Discovery

Jini lazy-discovery procedures require repository advertisers to multicast an
announcement message, lazyAnnouncement(), periodically at a recommended
interval of 120 s. These announcements continue for the life of the repository. Each
announcement contains only the advertiser’s callback address and the list of scopes
configured for the repository. Seekers, acting for clients or service proxies, maintain a
RepositoryRequirement with a list of required scopes in which they seek
repositories. Upon receipt of an announcement, a seeker in need of additional repositories
checks for intersection between the scope list in its RepositoryRequirement and
the scope list in the announcement. If the scope lists intersect, the seeker initiates a
unicast TCP connection to the advertiser to obtain the related repository description,
which includes an address for interacting with the repository. In contrast to UPnP, Jini
does not support a repository TTL; however the repository seeker may use subsequent
lazy announcements as a heartbeat mechanism.

Jini aggressive discovery procedures, launched when a seeker (client or service proxy)
invokes seekDiscovery() to send aggressiveProbe() messages to any
reachable advertisers, are initiated upon component startup and may subsequently be

DirectorySDE

ServiceProxySDE

ClientSDE

Advertiser
advertiserAddress : UniqueAddress
ttlModel : TtlModel = None

<<Local>> announce()
<<Remote>> aggressiveProbe()
<<Remote>> directedProbe()

SeekerProxy
callBackAddress : UniqueAddress
discoveryRequirement : DiscoveryRequirement

<<Local>> contactAdvertiser()
<<Local>> seekDiscovery()
<<Remote>> aggressiveResponse()
<<Remote>> directedResponse()
<<Remote>> lazyAnnouncement()

0..*

0..*

0..*

0..*

RepositorySeeker
discoveries : SetOfRepositoryDescriptions

<<Local>> processDiscovery()

1

+Seeker

1

<<implements>> <<implements>>

<<implements>>

RepositoryRequirement
<<Opt>> repositoryIDList : ListOfRepositoryIDs

+Requirement

AdministrativeScope
Body : String

0..*0..* +scopeList

<<implements>>

ServiceRepository
serviceCache : SetOfServiceDescriptions

findService()

RepositoryDescription
11

0..* +requiredScopes0..*

ServiceInvocationAddress
address : UniqueAddress

1

1

1

1

+repositoryAddress

<<implements>>

<<implements>>

Jini RepositoryDescription
serviceType : RepositoryType = Full Registry

SD ElementValuePair
Name : String
Value : Type

0..*0..*

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 90 NIST SP 500-260

invoked on demand. As a recommended default, a Jini aggressive-discovery sequence
consists of seven multicast probes spaced five seconds apart. The initial aggressive-probe
sequence allows a repository seeker to locate available repositories in its locale. Each
probe contains the seeker callback address, a list of target administrative scopes, and a
“previous responders list” to allow advertisers to suppress duplicate responses. If an
advertiser receives a probe from a seeker to which it has not previously responded and
the seeker’s scope requirements intersect with the advertiser’s configured scopes, then the
advertiser initiates a unicast TCP connection to the seeker callback address to convey the
advertiser’s network address. The seeker can then obtain a copy of the associated
repository description.

Jini also provides a directed-discovery process in which the repository seeker invokes a
local method, contactAdvertiser(), to stimulate a TCP connection to each
member of a list of network addresses for advertisers. A contacted advertiser uses the
connection to provide its related repository description to the seeker. Once a repository
description is cached, a seeker can listen for lazy announcements to ensure the repository
remains advertised (and therefore available). Jini does not support discovery withdrawal.

After discovering a repository, a Jini client may search (by sending unicast
findService() messages) within the repository for service descriptions of interest, or
may register to be notified of updates regarding service descriptions of interest. Unlike in
UPnP, Jini queries may specify matching criteria consisting of ServiceIDs for specific
services that are needed, or combinations of desired service types and service description
attribute values. Jini repositories return a set of ServiceDescriptions matching the
query. Jini service descriptions include all information needed to access the service
provider immediately, including a description of the service API, and a service invocation
address, and, optionally, an address to retrieve any associated GUI. Unlike UPnP, the Jini
service description has no TTL; therefore, the client must monitor the status of the
service description through other means (see Section 6.2.2 below).

Jini allows repository seekers to dynamically add and delete scopes to the
RepositoryRequirement. This action may trigger the seeker to search for new
repositories. Deleting a scope will cause the affected repository seeker to purge any
cached discoveries whose scope list no longer intersects the required scope list. This
action then stimulates deregistration of any service or notification-request registrations
made on the registry for the related repository. While the core Jini specification does not
support dynamic scope change for repositories, the Jini code includes an administrative
API that provides a method for this purpose. Jini provides no direct means to notify
repository seekers of such a scope change. To learn of scope changes, seekers listen for
subsequent lazy announcements.

6.2.2 Service and Notification Request Registration. Jini repositories implement the role
of full registries, permitting registration of service descriptions by service proxies and
registration of notification requests by clients. In our model, Jini service proxies
implement the class ServiceRegistrationRequester, while clients implement
the class NotificationRegistrationRequester. Jini implements registration

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 91 NIST SP 500-260

and extension procedures that closely follow Section 3.3. In registration extension, Jini
registries assume the role of extension granters using the additive strategy, while clients
and service proxies assume the role of extension requesters. Jini service proxies are
required to register all service descriptions they manage with each repository they
discover. The registration of notification requests by clients is discretionary. A client may
register to receive notices of “Arrival”, “Departure”, and “Change” events concerning
service descriptions that meet criteria specified in the NotificationScope that
accompanies each registration request. Jini NotificationRequests contain
NotficationTypes and NotificationScopes that closely match descriptions in
Section 3.3, but exclude an administrative scope list. In Jini, if a repository seeker purges
a repository discovery, the related registration requester (for a service or notification
request) must deregister previous registrations from the registry for the repository.

6.2.3 Service Description Monitoring. Jini clients monitor repositories for changes to
service descriptions. To update a service description, a Jini service proxy first sends the
updated information to all repostiories on which the description is registered by means of
unicast changeServiceDescription() messages, described in Section 3.4. If a
client has registered to receive a “Change” notification type for the related service
description, the repository issues a notification to the client. Otherwise the client must be
configured to poll, using findService(), repositories for updates to service
descriptions of interest. Jini does not define any direct communication between client and
service proxy, though service providers that use Jini may support service variable
monitoring (described in Section 3.5). Since Jini service descriptions have no TTL,
clients can learn of service unavailability through one of three methods: (1) by registering
for “Departure” notifications, (2) by queries that indicate that the service description is no
longer cached by the repository, or (3) by unsuccessful attempts to invoke the service.

6.3 SLP. Like Jini, SLP supports a three-party architecture; however, SLP can operate in
a two-party mode when no repositories are available. In the three-party architecture, SLP
Service Agents (service proxies) discover and register service descriptions on Directory
Agents (repositories) and User Agents (clients) discover repositories to query for service
descriptions. SLP does not allow clients to register requests for notification of changes in
services of interest. In the SLP two-party mode, clients discover and query service
proxies. SLP enables discovery of repository descriptions in either three-party (where
repositories represent Directory Agents) or two-party (where repositories represent
Service Agents) operation. The SLP two-party mode also allows discovery of individual
service descriptions, as well as configuration information (such as available scopes,
service types, and service-attribute types). SLP supports lazy, aggressive, and directed
discovery in either the three-party architecture or the two-party mode.

6.3.1 SLP Discovery. To discover repositories in the three-party architecture, both
service proxies and clients implement the repository seeker role, through the
RepositorySeeker and SeekerProxy classes, while repositories implement the
repository and advertiser roles, through the ServiceRepository and Advertiser
classes, respectively. Advertisers operate on behalf of RepositoryDescriptions.
In two-party mode, service proxies implement the advertiser role through the

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 92 NIST SP 500-260

Advertiser class, and may also implement the repository role if they manage one or
more service descriptions. Correspondingly, clients implement the role of repository
seekers in the three-party architecture case but become service seekers in the two-party
mode. Our model of the SLP three-party architecture is shown in Figure 6-3, while Figure
6-4 depicts a two-party configuration (including some service-agent repositories).

Figure 6-3 Class Diagram for SLP Discovery in Three-Party Mode

A SLP service discovery system may be configured to operate exclusively as either a
three- or two-party architecture. SLP may also be configured as a three-party system in
which clients switch to two-party mode when no directory agents are available. Upon
failure to locate at least one directory agent, a client launches an aggressive-discovery
sequence to search for service proxies, and begins listening for lazy announcements from
service proxies. The client caches any discovered service proxies and related service
descriptions, but also continues to search for directory agents. Upon eventually finding a
directory agent, the client discards service-proxy discoveries, but retains previously
cached service descriptions. Subsequently, the client interacts with the directory agent, as
long as it remains available.

RepositoryDescription

DirectorySDE

ServiceProxySDE

ClientSDE

Advertiser
advertiserAddress : UniqueAddress
ttlModel : TtlModel = None

<<Local>> announce()
<<Remote>> aggressiveProbe()
<<Remote>> directedProbe()

SeekerProxy
callBackAddress : UniqueAddress
discoveryRequirement : DiscoveryRequirement

<<Local>> contactAdvertiser()
<<Local>> seekDiscovery()
<<Remote>> aggressiveResponse()
<<Remote>> directedResponse()
<<Remote>> lazyAnnouncement()

RepositorySeeker
discoveries : SetOfRepositoryDescriptions

<<Local>> processDiscovery()

RepositoryRequirement

AdministrativeScope
Body : String

ServiceRepository
serviceCache : SetOfServiceDescriptions

findService()

1

0..*

0..*

<<implements>>

0..*0..*

0..*

<<implements>>

<<implements>>

<<implements>>

+Seeker

11

+Requirement

0..* +scopeList0..*

+requiredScopes0..*

1

SLP Directory Repository Description
serviceType : RepositoryType = Service Registry

SLP RepositoryRequirement

ServiceInvocationAddress
address : UniqueAddress

1

1

1

1

+repositoryAddress

0..1

+listOf InvocationAddresses

<<implements>><<implements>>

0..1

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 93 NIST SP 500-260

Figure 6-4 Class Diagram for SLP Discovery in Two-Party Mode

Like Jini, SLP supports repository descriptions that consist of a Repository ID and a
scope list. SLP directory-agent repositories are of the type “Service Registry”, while
(two-party) service-agent repositories are of the type “Service Repository”. Service
proxies and clients maintain a RepositoryRequirement that specifies desired
Repository IDs or a list of required administrative scopes. SLP designates a default scope
that encompasses all service discovery entities (where partitioning by scope is undesired).
Otherwise, SLP repositories are configured at start-up time with a list of scopes that must
be matched to the scope lists of repository requirements maintained by repository
seekers. In the three-party architecture, service proxies and clients seek directory agents
with intersecting scope lists; in two-party mode, clients seek service agents on the same
basis. Repository descriptions cached by the Seeker consist solely of the repositories’
network address.

RepositoryDescription

ClientSDE

Advertiser
advertiserAddress : UniqueAddress
ttlModel : TtlModel = None

<<Local>> announce()
<<Remote>> aggressiveProbe()
<<Remote>> directedProbe()

SeekerProxy
callBackAddress : UniqueAddress
discoveryRequirement : DiscoveryRequirement

<<Local>> contactAdvertiser()
<<Local>> seekDiscovery()
<<Remote>> aggressiveResponse()
<<Remote>> directedResponse()
<<Remote>> lazyAnnouncement()

RepositorySeeker
discoveries : SetOfRepositoryDescriptions

<<Local>> processDiscovery()

RepositoryRequirement

AdministrativeScope
Body : String

ServiceRepository
serviceCache : SetOfServiceDescriptions

findService()

SLP RepositoryRequirement

ServiceInvocationAddress
address : UniqueAddress

1

0..*

0..*

<<implements>>

0..*0..*

0..*

<<implements>>

+Seeker

11

+Requirement

0..* +scopeList0..*

+requiredScopes0..*

1 1

1

1

1

+repositoryAddress

+listOfInvocationAddresses

0..10..1

SlpServiceProxy

SLP ServiceAgent RepositoryDescription
serviceType : RepositoryType = Service Repository <<implements>> <<implements>>

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 94 NIST SP 500-260

SLP supports lazy and aggressive repository discovery, as well as directed discovery in
the three-party architecture and the two-party mode. In SLP lazy discovery, advertisers
multicast individual announcements periodically at recommended intervals of 10,800 s.
Each announcement contains a list of scopes configured for the repository and a callback
address. In the three-party architecture, a seeker (for a service proxy or client) listens for
announcements when in need of directory agents. If the scope list in an announcement
intersects the scope list in a seeker’s repository requirement, then the seeker caches the
repository description. Each service-agent seeker will immediately register its service
descriptions with each discovered directory agent. User-agent seekers may initiate a
findService()query to a discovered directory agent in order to search for service
descriptions. In the two-party mode, a client that locates a service-agent repository with
an intersecting scope list caches the address through which to query the repository. Like
Jini, SLP does not limit repository lifetime; hence, repository discoveries are retained
until findService() attempts fail or according to some other application-level
policy. SLP does not support repository withdrawal.

In aggressive discovery, seekers call the local seekDiscovery() operation to initiate
a sequence of aggressiveProbe()messages, which consist of six multicast probes
over a 15-s period. In the three-party architecture, this sequence is executed when a
repository seeker first starts up, and is repeated thereafter every 900 s, or as needed to
discover directory agents. SLP also allows seekers to discover administrative scopes,
service types, and service-attribute types by sending aggressive probes; directory agents
and service agents may implement advertisers that listen for, and reply to, such probes.
As in Jini, each SLP probe contains the list of scopes configured for the seeker and a list
of previous responders. A receiving repository, whose scope list intersects with the scope
list in the probe, will respond if not among the previous responders. Upon receiving the
response, a seeker may cache the discovery and initiate appropriate interactions. SLP
supports directed discovery by allowing a repository seeker to obtain (by some external
mechanism) addresses for repository advertisers that should respond if available. Unlike
Jini, SLP does not permit scopes to be added or deleted during operation; and no
mechanisms are provided for dynamic scope change. In two-party mode, clients execute
the aggressive-discovery sequence when attempting to discover service agents.

Like Jini, SLP supports a unicast findService(), directed by clients to directory
agents in the three-party architecture and to service agents in two-party mode. Queries
may be sent as needed after repository discovery. Also like Jini and unlike UPnP, queries
may specify matching criteria consisting of desired ServiceIDs or combinations of
service types and descriptive service-attribute values. SLP repositories return a set of
addresses for services that match the query. The client must then use these addresses to
obtain the full service description, including the location of the service provider; the
details of this process are not defined in the SLP specification.

6.3.2 Service Registration. SLP directory agents implement the service registry role, as
described in Section 3.3, permitting registration of service descriptions by service proxies
who, according to our model, would implement the service registration requester role

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 95 NIST SP 500-260

through the ServiceRegistrationRequester class. Service registrations can be
extended based on the assignment strategy, using procedures described in 3.3 with
directory agents assuming the extension-granter role and service agents assuming the
extension-requester role. As in Jini, SLP service agents are required to register all of their
service descriptions on each directory agent that they discover and cache. SLP does not
support registration of notification requests by clients.

6.3.3 Service Description Monitoring. In the three-party architecture, clients monitor
changes to service descriptions through directory agents. To update a service description
that it previously registered with a directory agent, a service agent invokes the
changeServiceDescription()operation. In SLP, this effectively reregisters the
service description by overwriting the previous registration and assigning a new TTL. A
client must be configured to poll the directory agent for updates of interest using
getAttributeValue(). In two-party mode, the client may be configured to directly
poll service agents. Like Jini and UPnP, service-variable monitoring may be used to
monitor service descriptions. Also like Jini and unlike UPnP, the SLP service description
has no associated TTL. The client can learn of service unavailability through non-
responses to polls, which indicate the service has failed, or through unsuccessful attempts
to use the service.

6.4 Web Services Discovery. The Web Services discovery (WS-Discovery) specification
assumes, as a default, a two-party architecture in which clients rely on lazy and
aggressive discovery to find service proxies, which advertise services. We assume two
SDEs: a ServiceProxy SDE that acts on behalf of a service proxy and a Client SDE that
acts on behalf of a client. Optionally, WS-Discovery supports the use of Discovery
Proxies that act as gateways to external service discovery systems that use protocols
other than WS-Discovery. If a Discovery Proxy announces its availability, a client
employs it as an intermediary to discover services. If proxies are unavailable, the client
reverts to the default two-party model. In addition, WS-Discovery supports complex
service descriptions and administrative scopes. In Figure 6-5, we use our model to
represent WS-Discovery in the default two-party architecture without Discovery Proxies.
The blue boxes are classes we added to accommodate WS-Discovery. As we explain
below, our model can also represent WS-Discovery with Discovery Proxies.

6.4.1 WS-Discovery without Discovery Proxies. In default mode, WS clients discover
service proxies through lazy or aggressive discovery. The ServiceProxy SDE implements
the advertiser role (shown in Figure 6-5 through the UML implements relationship to the
class Advertiser) that acts on behalf of a ServiceDescription. The Client SDE
implements the service seeker role (as represented by the implements relationships with
the classes ServiceSeeker and SeekerProxy). Upon start-up, the service proxy
invokes the advertiser’s local announce operation, which sends a single multicast Hello
message that corresponds to ServiceProxy.lazyAnnouncement().WS-
Discovery does not provide an algorithm for repeating announcements; therefore, we
omit information about announcement cycle. To prevent message storms upon system
restart (or associated with other synchronized behaviors), WS-Discovery requires
announcements to be issued only after a random delay, distributed uniformly up to 500 s.

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 96 NIST SP 500-260

The announcement carries a service description that we represent as a subclass, WS-
DiscoveryServiceDescription. This specialized WS service description inherits
(from the service description in our model) a globally unique service ID and a list of
administrative scopes. The WS service description refines our concept of sequence
number to the more complex formulation required by WS-Discovery, which contains: (1)
an instance identifier that is incremented if the related service has failed, lost state, and
restarted, (2) a sequence identifier that is unique in the context of a particular instance
identifier, and (3) a message number. The version number in the service description
included in our model could represent the WS-Discovery sequence identifier. We to
represent the WS-Discovery message number as a parameter for the announcement,
which is incremented each time an announcement occurs. The WS service description
also replaces the service invocation address from our model with a WS endpoint
reference (EPR), which includes metadata required to establish communications with the
described service. In addition, the WS service description permits a service to have a list
of service type names (rather than the single service type provided in our model). WS-
Discovery permits dynamic changes to the EPR metadata, which must be followed by an
announcement to disseminate the update. WS-Discovery also supports a multicast
discovery withdrawal message, sent by the advertiser.

Figure 6-5. Class Diagram for WS-Discovery – yellow (or light gray) Classes
taken from our Model; blue (or dark gray) Classes Required for WS-Discovery

ClientSDEServiceProxySDE

Advertiser
advertiserAddress : UniqueAddress

<<Local>> announce()
<<Remote>> aggressiveProbe()

AdministrativeScope
Body : String

ScopeList

+scopeName

0..*0..*

ServiceSeeker
discoveries : SetOfServiceDescriptions
requirement : ServiceRequirement

<<Local>> processDiscovery()

SeekerProxy
callBackAddress : UniqueAddress
discoveryRequirement : DiscoveryRequire...

<<Local>> seekDiscovery()
<<Remote>> aggressiveResponse()
<<Remote>> discoveryWithdrawal()
<<Remote>> lazyAnnouncement()

0..*0..*

+Seeker

0..*

+Found

0..*

0..1

11

0..1

ApplicationSequence
InstanceIdentifier : Integer
SequenceIdentifier : Integer

ServiceType
STversion : Integer

<<implements>>
<<implements>>

<<implements>>

WS-DiscoveryServiceDescription
endPointReference : EndpointReference
applicationSequence : ApplicationSequence

1..*1..*

ServiceDescription
serviceID : UniqueIdentifier

11

0..1

+scopeList

0..1

ServiceInvocationAddress
address : UniqueAddress

EndpointReference
SD ElementValuePair

Name : String
Value : Type

**

+metaData

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 97 NIST SP 500-260

WS-Discovery supports an aggressive discovery procedure where a client can issue two
types of multicast messages: probe and resolve. A probe message corresponds to a call to
Advertiser.aggressiveProbe(), but with a discovery requirement that
specifies a combination of desired service types and administrative scopes. A resolve
message corresponds to a multicast aggressive probe with a discovery requirement that
specifies a service ID. This implies WS-Discovery might require two steps in aggressive
discovery: (1) find the service IDs for a set of services with desired types within desired
administrative scopes and (2) find the service description associated with a particular
service ID. Our model directly supports such two-step operations, which are similar to
those required in UPnP. Aggressive probes that match service descriptions are followed
by a unicast aggressive response message from the advertiser, represented in our model
by invoking SeekerProxy.aggressiveResponse(), which conveys the service
description (described above). WS-Discovery does not specify the use of repeated
aggressive probes; therefore we omit any related parameters. Responses to aggressive
probes are issued only after a uniformly distributed random delay.

6.4.2 Discovery Proxies. When deployed, Discovery Proxies participate in both lazy and
aggressive discovery as described above. We would represent Discovery Proxies as a
Discovery Proxy SDE (not shown) that implements the advertiser role. Discovery proxy
advertisers distinguish themselves from regular service proxy advertisers by including a
“discovery proxy” type in their announcements and aggressive probe responses
(presumably as part of the list of service types). Upon receipt, the client is expected to
initiate communications with the discovery proxy using a proxy-specific protocol, which
is assumed to be the service discovery protocol with which the proxy is associated.
Thereafter, the dialogue is specific to this discovery protocol. We assume that the client
could switch to a different Client SDE that implements a seeker role that is specific to the
service discovery protocols being used.

6.5 Globus Monitoring and Directory Service. The Globus Monitoring and Discovery
Service (or Globus MDS) is a hierarchical directory system that allows service proxies to
register information in directories. This information can include service descriptions,
service variable values, and information about computing resources. Clients search
directories to discover services and computing resources that fulfill their requirements,
and then engage these resources to execute grid applications. A key feature of MDS is the
ability to dynamically create an index of aggregated service description information,
including service variable information, for all services and resources registered on
directories within a hierarchy. This index enables higher-level, or parent, directories to
aggregate and display generalized information about groups of resources that are
registered with lower level, or child, directories. References in parent directories to
resource entries in child directories allow more detailed information to be obtained. The
leaf nodes of the tree comprise service proxies that contain the most specific information
about individual services and resources. This provides clients with the ability to first
query for generalized descriptions and then to make further requests for specific
information. Requests for detailed information propagate through the hierarchy to leaf
nodes, which return replies back through the hierarchy to the client. A client may,
however, directly query a service proxy for which a reference is known. In what follows,
we illustrate how our model can be used to represent several Globus MDS functions:

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 98 NIST SP 500-260

repository discovery, service registration, and service discovery (through service
retrieval). We assume three SDEs: a DirectorySDE that acts on behalf of the directory,
together with Service Proxy and Client SDEs that act on behalf of service proxies and
clients, respectively.

6.5.1 Repository Discovery. Globus MDS employs a three-party service discovery
architecture in which clients and service proxies discover directories in a straightforward
way using a simplified version of directed discovery. Globus does not support aggressive
or lazy discovery, though the specification states that other service discovery protocols
may be used by a Globus system to supplement discovery. Globus does not explicitly
support administrative scopes for repositories, though its hierarchical indexing system
can be used to partition a namespace to achieve a similar result.

The Globus service directory is known as the Grid Index Information Service (GIIS). To
model this, the Directory SDE implements the repository and registry roles, represented
in Figure 6-6 through the UML implements relationship to the class GIIS, whose
superclass is ServiceRepository. The Globus GIIS contains a service registry and
index-construction services, represented in our model by the class GIISRegistry. The
behavior of the GIIS is described further below. The Directory SDE also implements the
repository advertiser role, represented by the implements relationship to the class

Figure 6-6. Class Diagram for Globus Discovery – yellow (or light gray) Classes taken
from our Model; blue (or dark gray) Classes required for Globus MDS

ClientSDE

DirectorySDE

ServiceProxySDE

RepositorySeeker
discoveries : SetOfRepositoryDescriptions

<<Local>> processDiscovery()

SeekerProxy
callBackAddress : UniqueAddress
discoveryRequirement : DiscoveryRequirement

<<Local>> contactAdvertiser()
<<Remote>> directedResponse()

1 +Seeker1

ServiceRepository
findService()
<<Self>> searchRepository()

Advertiser
advertiserAddress : UniqueAddress

<<Remote>> directedProbe()

0..*

0..*

+Seeker0..*

+Found0..*

RepositoryDescription11

GlobusClientInterface
<<Interface>>

GIISRegistry
LDAP-Index : Index

GRIS

1..*

1..*

1..*

1..*

GIIS
GIISServiceCache : ListOfServiceDirectoryEntr...

findService()

+ProjectHierarchyRoot
1

*

+Parent

1

+Child

*
<<implements>>

<<implements>>

<<implements>>

<<implements>><<implements>>

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 99 NIST SP 500-260

Advertiser, which accepts directed probes from service proxies and clients. The
advertiser acts on behalf of a simple repository description consisting of the address of
the GIIS. Both the Client and ServiceProxy SDEs are pre-configured with the address of
GIIS SDE directories to contact. In Figure 6-6, the Client SDE and ServiceProxy SDE
both implement the role of repository seeker, represented using UML implements
relationships to RepositorySeeker and SeekerProxy. This enables transmission
(upon start-up) of a directed probe to a designated directory, which if received would be
followed by a directed response indicating availability of the related GIIS.

For clients, the directory serves as an entry point, or project root directory, where queries
are submitted to the MDS hierarchy through a GlobusClientInterface. The
ServiceProxy SDE implements a Grid Resource Information Service (GRIS), represented
by the class GRIS, to receive queries about resources it manages. Each GRIS may
represent a large number of specific resources. Both client and service proxies may be
given multiple directories to contact; thus a client may have multiple project root
directories, while a service proxy may register with more than one GIIS. We note that the
Globus procedure for contacting a GIIS does not specify sending repeated directed
probes, nor describe actions to be taken if the directory cannot be located.

6.5.2 Service Registration and Extension. As shown in Figure 6-7, a Globus Directory
SDE implements a Grid Index Information Service (GIIS), which can aggregate
information from (both local and remote) GIIS registries. We represent a GIIS registry as
a specialization of a service registry from our model. The service registry accepts
registrations and also allows registered service descriptions to be changed. The GIIS
registry specialization of service registry provides support for the Lightweight Directory
Access Protocol (LDAP), which can be used to construct and maintain indices.

To register a service description, the ServiceProxy SDE implements the registration
requestor role, through an indirect route, as shown in Figure 6-7, by implementing the
class GRIS, which contains the MdsRegistrationRequester (a subclass of
ServiceRegistrationRequester). As shown in Figure 6-7, a Globus Directory
SDE may also implement the registration requester role, in order to propagate
registrations to other directories in the MDS hierarchical directory. (The MDS requires
child directories to propagate registrations with related service description information to
the immediate parent GIIS.) Upon registration, the related service description and
variable information is cached as a MDS directory service entry, represented by the class
ServiceDirectoryEntry, and the GIIS index is updated accordingly. At higher
levels in the MDS hierarchy, directory service entries are summarized to aggregate
information about multiple resources. The summarization feature of MDS implies that
information searchers might be required to seek more specific information from lower
level directories. In our Globus model, both the Directory SDE and the ServiceProxy
SDE can also request registration extensions by implementing the
ExtensionRequester interface.

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 100 NIST SP 500-260

To accept registration requests for a service description, the Directory SDE inherits the
Registry.register() operation. In Globus, registration requests do not specify a
requested duration; instead, all registries in a Globus directory hierarchy are pre-
configured to grant a constant duration (15 s by default). These traits are represented in
Figure 6-7, where the Directory SDE implements a GIIS and related GIIS registry, which
specializes a ServiceRegistry that includes a FixedExtensionGranter
(specialization of ExtensionGranter). Globus supports periodic registration
extension through a fixed-assignment strategy. A Globus registry will not purge a
registration until two extension periods past without an extension request (i.e., Globus
supports a default registration TTL of 30 s). Further, a Globus registry need not purge a
registration that is subject of an on-going query (see 6.5.3).

6.5.3 Service Description Retrieval. Once registries have been discovered and services
registered, Globus allows interested parties to search registries to retrieve service
descriptions. Recall that in Globus several parties might wish to retrieve service
descriptions. First, clients (Client SDE) wishing to find and use services may query for
service descriptions. Second, Globus registries (Directory SDE) may need to query lower
level registries to obtain summaries of service descriptions to reflect up the Globus
registry hierarchy or to obtain detailed information to recursively answer a query. Third,
a Globus service proxy (ServiceProxy SDE) may receive queries that require search of

MdsExtensionRequester
RefreshInterval : Time = 15s

GRIS

ServiceProxySDEDirectorySDE

FixedExtensionGranter
fixedTTL : Duration

getTTL()

ExtensionRequester
<<Local>> commence()
<<Remote>> confirm()

<<Interface>>

ServiceRegistrationRequester
registrationRequests : ListOfServiceRegistrationRequests

ExtensionGranter
<<Remote>> refresh()

ServiceRegistry
registrations : SetOfServiceRegistrations

<<Remote>> register()
<<Remote>> changeServiceDescription()

ServiceDescription

ServiceRegistration

ServiceRegistrationRequest

11

11

GIISRegistry
LDAP-Index : Index

AddIndexItem()
DeleteIndexItem()

GIIS
GIISServiceCache : ListOfServiceDirectoryEntries

findService()

1

*

+Parent1

+Child*

MdsRegistrationRequester
gi isToRegisterWith : ListOfAddresses

ServiceDirectoryEntry
keepTo : Time

SD ElementValuePair
Name : String
Value : Type

+attributes

0...0...

<<implements>>

<<implements>>

<<implements>>

<<implements>>

Figure 6-7. Class Diagram for Globus Service Registration

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 101 NIST SP 500-260

lower-level service components represented by the proxy. In this case, the proxy may
need to query the lower level components. All three forms of service description retrieval
are represented in Figure 6-8.

A Client SDE implements the role of a unicast service seeker, which allows the client to
submit queries to an assigned “root directory” within the Globus directory hierarchy.
Thus, each Globus client issues Globus queries (grid-info-search) to the GIIS of
an assigned home directory. We model such queries as GIIS.findService(), a

specialization of ServiceRepository.findService(), which includes: a list of
attributes against which to match service description attributes and service variables, a
maximum number of matches to return, and some Globus-specific parameters, such as
the maximum number of directory hierarchy levels to traverse. Globus queries return
only the location of matching services; to obtain more detail about a service, a client may
be required to submit subsequent queries to traverse additional levels in the hierarchy or
may be required to query a Service Proxy GRIS.

Each leaf-level GRIS has beneath it a number of local information providers (represented
as the class GrisLocalInformationProvider in Figure 6-8) that handle requests
for information about specific resources (such as processors, memory, and complex

 Figure 6-8. Class Diagram for Globus Service Retrieval

ServiceRepository UnicastServiceSeeker
<<Local>> processDiscovery()
<<Remote>> serviceFound()

+unicast QuerySource

GRIS
mdsGridInfoSearch()

GrisLocalInformationProvider
providerOID : UniqueAddress1..*1..*

MdsCompuatingResource

ServiceDirectoryEntry
keepTo : Time

**

+describedComputationalResource

ServiceDescription

0..10..1

ServiceVariableDescription

0..10..1
SD ElementValuePair

Name : String
Value : Type

0..*

+attributes

0..*
0..* +attributes0..*

MdsUnicastServiceSeeker
mdsRequirement : ServiceRequirement

GlobusClientInterface
<<Interface>>

GIIS
GIISServiceCache : ListOfServiceDirectoryEntrie...
cacheTTL : Time = 30s

findService()
1

*

+Parent

1

+Child
* +ProjectHierarchyRoot

ServiceProxySDE

ClientSDE

DirectorySDE

<<implements>>

<<implements>>

<<implements>>

<<implements>>

<<implements>>

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 102 NIST SP 500-260

devices) that the GRIS service proxy advertises to the Globus directory hierarchy. We
model each local information provider as a proxy for an individual resource, where the
proxy has access to a detailed service description specific to the related resource.
Modeled in this way, a GRIS may receive a query that must be decomposed into requests
for information from local providers. The GRIS then must assemble the individual
responses and forward an aggregate response to the query issuer, which is typically a
GIIS seeking to obtain information to store as service directory entries that describe the
attributes and variables associated with a set of available resources. Once deposited in
some GIIS, service directory entries can be obtain by another GIIS and spread throughout
a Globus directory hierarchy, becoming progressively more condensed and aggregated at
higher levels.

When a GIIS receives a query it cannot match, the GIIS propagates the request to (child)
GIIS directories at the next lower level (unless a query has traversed its maximum
number of levels). We model this process (in Figure 6-8) by allowing a Directory SDE to
implement the role of unicast service seeker. In Globus, service description information
propagated upwards as part of a query response is stored temporarily (keepTo, default is
30 s) as a service directory entry in a local GIIS service cache.

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 103 NIST SP 500-260

7. Conclusions

Based on analyses of selected specifications for a first generation of service discovery
systems, we were able to develop a generic model that unified the concepts, structure,
and behavior encompassed in the various designs proposed by industry. Not only can our
generic model represent all of the specific designs that we analyzed in creating the model,
but also we demonstrated that our generic model could represent two service discovery
designs we did not analyze during the creation of our model. Our generic model codifies
and distinguishes fundamental concepts in the domain of service discovery systems,
which enables analysis and comparison of specific designs based on the neutral
terminology we created. As far as we know, our work provides the first domain model for
service discovery systems. We suspect our generic model could provide a point of
departure for vendor-neutral discussions about the possibility of standardizing service
discovery architectures and protocols.

In the process of creating our model, we uncovered some limitations and open issues that
exist with proposed designs for the first generation of service discovery systems. We
suspect that our discussion of these issues may help potential users to understand the
limits of applicability of current designs and may also help designers to improve the next
generation of service discovery systems. Along these lines, we were able to identify three
areas where current designs could exhibit limited performance when deployed at large
scale. Further, we proposed various mechanisms that might be used to extend system
performance and we discussed the ramification of adopting each mechanism. We suspect
that this discussion could help implementers of service discovery systems to include
mechanisms to improve the scalability and performance of first-generation service
discovery systems.

In conducting our analysis, we noted that all designs for first-generation service
discovery systems were silent with respect to service guarantees or goals that the designs
aimed to achieve. To address this notable omission, we conceived service guarantees that
we believe discovery systems should seek to satisfy. We also discussed various reasons
why discovery systems might be unable to satisfy our proposed service guarantees. We
represented our service guarantees in the context of our model and we formalized the
guarantees as consistency conditions that service discovery systems should strive to
maintain. We explained how we have applied our consistency conditions to evaluate the
performance and correctness of designs for specific service discovery systems.

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 104 NIST SP 500-260

8. References

[1] Arnold K. et al. The Jini Specification, V1.0 Addison-Wesley 1999. The latest version

is available on the Web from Sun Microsystems.
[2] Bieber G. and Carpenter J. “Openwings A Service-Oriented Component Architecture

for Self-Forming, Self-Healing, Network-Centric Systems,” from the web site:
http://www.openwings.org/.

[3] Guttman E., Perkins C., Veizades J., and Day M. Service Location Protocol, V.2,
Internet Engineering Task Force (IETF), RFC 2608, June 1999. The latest version is
available on the IETF RFC web site.

[4] Kempf J. and St. Pierre P. Service Location Protocol for Enterprise Networks. Wiley
and Son, Inc. (ISBN # 0-47-3158-7)

[5] Universal Plug and Play Device Architecture, V. 1.0, Microsoft, June 8, 2000. The
latest version is available from the UPnP Forum web site.

[6] Specification of the Home Audio/Video Interoperability (HAVi) Archiecture, V1.1,
HAVi, Inc., May 15, 2001. The latest version is available from the HAVi web site.

[7] Specification of the Bluetooth System, Core, Vol. 1, Version 1.1, the Bluetooth SIG,
Inc., February 22, 2001, 1999. The latest version is available from the Bluetooth
Consortium web site.

[8] Salutation Architecture Specification, V. 2.0c, Salutation Consortium, June 1, 1999.
The latest version is available on the Salutation Consortium web site.

[9] Beatty J. et al. Web Services Dynamic Discovery (WS-Discovery) specification,
February 2004. The latest version can be downloaded from the Web.

[10] The Globus Monitoring and Discovery Service. The latest information should be
available on the Web. Here is one location: http://www-unix.globus.org/toolkit/mds/

[11] UDDI Version 3.0, Published Specification, Dated 19 July 2002. The latest version
should be available from the OASIS web site.

[12] Richard G. “Service Advertisement and Discovery: Enabling Universal Device
Cooperation,” IEEE Internet Computing, September-October 2000, pp. 18-26.

[13] Pascoe B. “Salutation Architectures and the newly defined service discovery
protocols from Microsoft and Sun: How does the Salutation Architecture stack up,”
Salutation Consortium whitepaper, June 6, 1999.

[14] Rekesh J. UPnP, Jini and Salutation - A look at some popular coordination
frameworks for future network devices, Technical Report, California Software Lab,
1999. Available online from http://www.cswl.com/whiteppr/tech/upnp.html.

[15] Bettstetter C. and Renner C. “A Comparison of Service Discovery Protocols and
Implementation of the Service Location Protocol”, Proceedings of the Sixth EUNICE
Open European Summer School: Innovative Internet Applications, EUNICE 2000,
Twente, Netherlands, September, 13-15, 2000.

[16] Miller B. and Pascoe R. Mapping Salutation Architecture APIs to Bluetooth Service
Discovery Layer, Version 1.0, Bluetooth SIG White paper, July 1, 1999.

[17] Dabrowski C. and Mills K. "Analyzing Properties and Behavior of Service
Discovery Protocols using an Architecture-based Approach," in the Proceedings of
Working Conference on Complex and Dynamic Systems Architecture, DARPA-
sponsored, December 2001.

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 105 NIST SP 500-260

[18] Dabrowski C., Mills K., and Elder J. "Understanding Consistency Maintenance in
Service Discovery Architectures during Communication Failure" in the Proceedings
of the 3rd International Workshop on Software Performance, ACM, July 2002, pp.
168-178.

[19] Dabrowski C., Mills K., and Elder J. "Understanding Consistency Maintenance in
Service Discovery Architectures in Response to Message Loss", in the Proceedings
of the 4th International Workshop on Active Middleware Services, IEEE Computer
Society, July 2002, pp. 51-60.

[20] Dabrowski C. and Mills K. "Understanding Self-healing in Service Discovery
Systems" in the Proceedings of the First ACM SigSoft Workshop on Self-healing
Systems (WOSS '02), November 18-19, 2002, Charleston, South Carolina, ACM
Press, pp. 15-20.

[21] Dabrowski C., Mills K., and Rukhin A. “Performance of Service Discovery
Architectures In Response to Node Failure,” in the Proceedings of the International
Conference on Software Engineering Research and Practice (SERP’03), CSREA
Press June 23-26, 2003, pp. 95-101.

[22] Mills K. and Dabrowski C. "Adaptive Jitter Control for UPnP M-Search", in the
Proceedings of ICC 2003, May 11-15, 2003 in Anchorage, Alaska.

[23] Mills K., Rose S., Quirolgico S., Britton M., and Tan C. "An Autonomic Failure-
Detection Algorithm" in the Proceedings of the 4th International Workshop on
Software Performance (WoSP 2004), January 14-16, 2004, San Francisco,
California, ACM Press, p. 79.

[24] Tan C. and Mills K. “Performance Characterization of Decentralized Algorithms for
Replica Selection in Distributed Object Systems”. This paper has not yet been
submitted for publication; however, a copy may be obtained from kmills@nist.gov.

[25] Manna Z. and Pneuli A. The Temporal Logic of Reactive and Concurrent Systems
Specification. Springer-Verlag, New York, 1992.

[26] Rumbaugh J., Jacobson I., and Booch G. The Unified Modeling Language Reference
Manual. Addison-Wesley, Reading, Mass., 1999. The latest version of the UML
specification can be obtained from http://www.uml.org/.

[27] Czerwinski S.E. et al. "An Architecture for a Secure Service Discovery Service,
Proceedings of the Fifth Annual International Conference on Mobile Computing and
Networks (MobiCom '99), ACM, August 1999, pp. 24-35.

[28] Castro M. et al. “One Ring to Rule them All: Service Discovery and Binding in
Structured Peer-to-Peer Overlay Networks”, The Proceedings of the Tenth ACM
SIGOPS European Workshop, ACM, September 22-25, 2002, Saint-Émilion, France.

[29] Verma D. C. et al. “SRIRAM: A scalable resilient autonomic mesh”, IBM SYSTEMS
JOURNAL, VOL 42, NO 1, 2003, pp. 19-28.

[30] Hsiao H-C and King C-T. “Neuron – A Wide-Area Service Discovery
Infrastructure”, Proceedings of the International Conference on Parallel Processing
(ICPP ‘02), August 18-21, 2002, p. 455.

[31] Halepovic E. and Deters R. “JXTA Performance Model”, draft submitted paper
from the Department of Computer Science at the University of Saskatchewan.
http://bistrica.usask.ca/madmuc/Grads/Emir/pub/Halepovic_JXTAPerformanceMode
l-Submitted.pdf

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 106 NIST SP 500-260

[32] Joseph S. “NeuroGrid: Semantically Routing Queries in Peer-to-Peer Networks”,
Proceedings of the 1st International Workshop on Peer-to-Peer Systems (IPTPS'02),
March 7-8, 2002.

[33] Sundramoorthy V. et al. “Service discovery with FRODO”, in Proceedings of the
12th IEEE International Conference on Network Protocols (ICNP), Berlin, Germany,
October 2004, pp. 24-27.

[34] Sundramoorthy V. et al., “Functional principles of registry-based service discovery”,
in Proceedings of the 30th IEEE Conference on Local Computer Networks (LCN),
Sydney, Australia, to appear in November 2005.

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 107 NIST SP 500-260

Appendix A. Function Sets, Functions, Roles, Mandatory Classes, and Role Operations

 Service Retrieval Function Set

Function Role Mandatory classes Operations between roles

Repository

ServiceRepository,
ServiceDescription

ServiceRepository.findService() Service
Search

Service
Seeker

UnicastServiceSeeker,
ServiceRequirement

ServiceSeeker.serviceFound()

Repository

ServiceRepository,
ServiceDescription

ServiceRepository.findService()
(with attribute selection)

Attribute
Query

Service
Seeker

UnicastServiceSeeker,
ServiceDescription

ServiceSeeker.serviceFound()

Discovery Function Set

Function Role Mandatory classes

Operations between roles

Advertiser

Advertiser,
DiscoverableItem*

Advertiser.aggressiveProbe() Aggressive
Discovery

Seeker Seeker*, SeekerProxy,
DiscoveryRequirement*

SeekerProxy.aggressiveResponse()

Advertiser

Advertiser,
DiscoverableItem

 Lazy
Discovery

Seeker Seeker*, SeekerProxy,
DiscoveryRequirement*

SeekerProxy.lazyAnnounce()

Advertiser

Advertiser,
DiscoverableItem

Advertiser.directedProbe() Directed
Discovery

Seeker Seeker*, SeekerProxy,
DiscoveryRequirement*

SeekerProxy.directedResponse()

Advertiser

Advertiser,
DiscoverableItem

 Discovery
Withdrawal

Seeker Seeker*, SeekerProxy,
DiscoveryRequirement*

SeekerProxy.discoveryWithdrawal()

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 108 NIST SP 500-260

 Registration Function Set

Function Role Mandatory classes Operations between roles

Registry Registry,

Registration
Registry.register() Registration

(generic)
Registration
Requester

Registration
Requester

RegistrationRequester.
[addConfirmed(),
 addDenied()]

Registration
Cancellation

Cancellation
Requester

RegistrationRequester ExtensionRequester.cancel()

Service
Registry

ServiceRegistry,
ServiceRegistration,
ServiceDescription

ServiceRegistry.register() Service
Registration

Service
Registration
Requester

ServiceRegistration
Requester,
ServiceDescription

ServiceRegistrationRequester.
[addConfirmed(),
 addDenied()]

Service
Registry

ServiceRegistry,
ServiceRegistration

ServiceRegistry.changeService
Description()

Change
Service

Change
Requester

ServiceRegistration
Requester,
ServiceDescription

ServiceRegistrationRequester.
[changeConfirmed(),changeDenied()]

Full
Registry

FullRegistry,
Notification
Registration

FullRegistry.
register()

Notification
Request
Registration Notification

Registration
Requester

Notification
Registration
Requester,
NotificationScope

NotificationRegistrationRequester.
[addConfirmed(),
 addDenied()]

Notification
Provider

FullRegistry,
Notification

 Notification

Notification
Receiver

NotificationReceiver NotificationReceiver.notification()

VariableEvent
Registry

VariableEvent
Registry

VariableEventRegistry.
Register()

Event
Registration

Event
Registration
Requester

EventRegistration
Requester

EventRegistrationRequester.
[confirmed(),
 denied()]

Event
Provider

EventableVariables,
EventNotice

Event
Receiver

EventReceiver EventReceiver.eventNotice()

Event
Notification

Registry Registry

Registration Extension Function Set

Function Role Mandatory classes Operations between roles

Extension
Requester

ExtensionRequester,
[Service,Notification]
 Registration

ExtensionRequester.
Refresh()

Registration
Extension
(refresh) Extension

Granter
ExtensionGranter,
[Service,Notification]
 Registration

ExtensionGranter.
[confirmed(),
 refreshDenied

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 109 NIST SP 500-260

Service Variable Monitoring

Function Role Mandatory classes Operations between roles

Variable
Provider

VariableProvider,
ServiceVariable
Description

VariableProvider.
GetMonitorableVariables()

Get
Monitorable
Variables Variable

Accessor
VariableAccessor VariableAccessor.

monitorableVariablesFound()

Variable
Provider

VariableProvider,
ServiceVariable
Description

VariableProvider.
getVariableValues()

Get Variable
Information

Variable
Accessor

VariableAccessor VariableAccessor.
variableValuesFound()

A Model-based Analysis of First-Generation Service Discovery Systems

Dabrowski, Mills, & Quirolgico 110 NIST SP 500-260

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

