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RESEARCH OVERVIEW 

 
Information technology is undergoing a paradigm shift from desktop computing, where isolated 
workstations connect to shared servers across a network, to pervasive computing, where myriad portable, 
embedded, and networked information appliances continuously reconfigure themselves individually and 
collectively to support the information requirements of mobile workers and work teams. This shift will 
not occur overnight, nor will it be achieved without solving a range of new technical and social problems. 
Still, this inexorable change should yield many economic opportunities for the global information 
technology industry, and for the increasing swath of businesses that depend on information. The potential 
value of pervasive computing motivated the NIST Information Technology Laboratory (ITL) to establish 
a five-year program of research to help the information technology industry identify and solve some 
looming technical roadblocks that seemed likely to slow development and acceptance of the new 
paradigm. The ITL Pervasive Computing program addressed three general areas: human-computer 
interaction, programming models, and networking. This special publication provides a compendium of 
technical papers published by NIST researchers who investigated networking for pervasive computing. 

Pervasive computing changes the emphasis of networking from the core (or backbone) to the 
edge, where many portable devices will move through a wireless environment. Mobile devices can cause 
unpredictable traffic patterns, or traffic patterns that may be predictable but different from traffic patterns 
arising with conventional desktop computing. Since the network edge will comprise largely wireless 
communications, one may expect sudden crowding of the shared wireless spectrum and also surging 
demands for particular resources, such as wireless access points or configuration servers. Further, network 
protocols will need to dynamically discover and compose resources and services to support changing 
application demands associated with user mobility. Finally, it seems likely that user mobility will imply a 
diverse set of processors, transmission schemes, and protocols, which suggests the need to mediate among 
incompatible rules and descriptions and to allocate, schedule, and control shared, heterogeneous 
resources. From among the changes presaged by pervasive computing, NIST researchers elected to 
investigate two significant areas: (1) wireless personal area networks and (2) service discovery protocols.  

Industry has developed a number of technical standards to provide wireless local-area network 
(WLAN) access and to support wireless personal-area network (WPAN) configurations. Pervasive 
computing will leverage both WLAN and WPAN technology, which operate in shared, unlicensed bands 
of wireless spectrum. Given that myriad wireless devices will operate simultaneously in close proximity, 
it appears possible that interference could compromise the quality of service available to mobile users. 
This concern motivated NIST researchers to ask two questions. First, can we characterize the performance 
of WLAN and WPAN protocols operating in the same network area? Second, can we devise technical 
approaches to mitigate interference and enhance coexistence between competing WLAN and WPAN 
devices? This special publication reprints six technical papers (Paper #1 through Paper #6) investigating 
the effects of interference between WLAN and WPAN protocols. This special publication also reprints 
eight technical papers (Paper #7 through Paper #14) reporting on various techniques to mitigate 
interference between WLAN and WPAN devices. The techniques captured in these eight papers were also 
submitted to the Institute for Electrical and Electronic Engineers (IEEE) technical committee developing 
standards for coexistence among wireless devices sharing unlicensed spectra. Wireless communications 
will provide the underlying infrastructure through which pervasive-computing devices and services can 
discover each other and interact, possibly configuring into collections to support application needs. This 
process of dynamic discovery, configuration, and monitoring provides a second area investigated by 
NIST researchers. 

Over the period from about 1998 to 2000, industry developed a first generation of competing 
architectures and protocols for device and service discovery. Such a plethora of incompatible approaches 
seemed likely to impede the interoperability required by a market for pervasive computing. Is the 
existence of so many different service-discovery systems justified? NIST researchers analyzed the various 
technical approaches and developed a model to unify the features, functions, and processes provided. The 
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goal of this modeling effort was threefold: (1) to understand the essential service-discovery functionality 
defined by the industry, (2) to reveal any technical deficiencies in existing service-discovery 
specifications, and (3) to define the functional and behavioral bounds achievable from this first-generation 
of service-discovery systems. The result of this modeling effort is reported in “A Model-based Analysis 
of First-Generation Service Discovery Systems” a separate NIST special publication – SP 500-260. Here, 
we reprint (as Paper #21) only the executive summary from SP 500-260. A particular goal of service-
discovery systems is to monitor the state of distributed resources in a network so that failed resources can 
be detected and recovery actions can be initiated. Do the various architectures for service-discovery 
systems provide different levels of robustness in the face of selected failure types? This question is 
addressed in part by five research papers (Paper #15 through Paper #19) reprinted in this special 
publication. One paper, “Understanding Failure Response in Service Discovery Systems” (Paper #20), 
provides a comprehensive report on the robustness of the three main service-discovery architectures (two-
party, three-party, and adaptive two-three party) in the face a various types of failure (node failure, 
communication failure, message loss, and power failure). While investigating service-discovery protocols, 
NIST researchers noticed that the performance of some features depended upon adopting appropriate 
parameter settings, but that the most apt parameter settings depended upon the size of the system. This 
dependency caused some concern because, while service-discovery systems are intended to support 
dynamic changes in system composition, none of the protocols investigated provide any requirement to 
monitor system state and then to adjust selected parameter settings (or behavior) to improve system 
performance. This observation led NIST researchers to propose and evaluate some self-adaptive 
techniques that enable service-discovery components to monitor system state and to adjust various 
parameters and behaviors in real time. The related papers are reprinted in this special publication. One 
paper (Paper#22) investigates techniques to mitigate a possible implosion of responses to multicast 
queries. Three papers (Paper #23 through Paper #25) explore algorithms to dynamically adjust the 
duration assigned to leases (or subscriptions), which are often used by service-discovery protocols to 
detect failures among remote components. One paper (Paper #26) shows how a particular algorithm for 
dynamic adjustment of lease periods can be used to support various functions in a number of service-
discovery protocols. Finally, one paper (Paper #27) evaluates distributed algorithms that service-
discovery clients could use to select replicas to query. These research results regarding service-discovery 
systems should: (1) help prospective users to understand the functionality, behavior, and robustness of 
first-generation service-discovery systems, (2) inform implementers about the performance improvements 
possible through various self-adaptive algorithms, and (3) provide designers with ideas for improving the 
next generation of service-discovery systems.  
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INTRODUCTION 

Information technology is undergoing a paradigm shift from desktop computing, where isolated 
workstations connect to shared servers across a network, to pervasive computing, where myriad portable, 
embedded, and networked information appliances continuously reconfigure themselves individually and 
collectively to support the information requirements of mobile workers and work teams. This shift will 
not occur overnight, nor will it be achieved without solving a range of new technical and social problems. 
Still, this inexorable change should yield many economic opportunities for the global information 
technology industry, and for the increasing swath of businesses that depend on information. The potential 
value of pervasive computing motivated the NIST Information Technology Laboratory (ITL) to establish 
a five-year program of research to help the information technology industry identify and solve some 
looming technical roadblocks that seemed likely to slow development and acceptance of the new 
paradigm. The ITL Pervasive Computing program addressed three general areas: human-computer 
interaction, programming models, and networking. This special publication provides a compendium of 
technical papers published by NIST researchers who investigated networking for pervasive computing. 

Pervasive computing changes the emphasis of networking from the core (or backbone) to the 
edge, where many portable devices will move through a wireless environment. Mobile devices can cause 
unpredictable traffic patterns, or traffic patterns that may be predictable but different from traffic patterns 
arising with conventional desktop computing. Since the network edge will comprise largely wireless 
communications, one may expect sudden crowding of the shared wireless spectrum and also surging 
demands for particular resources, such as wireless access points or configuration servers. Further, network 
protocols will need to dynamically discover and compose resources and services to support changing 
application demands associated with user mobility. Finally, it seems likely that user mobility will imply a 
diverse set of processors, transmission schemes, and protocols, which suggests the need to mediate among 
incompatible rules and descriptions and to allocate, schedule, and control shared, heterogeneous 
resources. From among the changes presaged by pervasive computing, NIST researchers elected to 
investigate two significant areas: (1) wireless personal area networks and (2) service discovery protocols. 

Industry has developed a number of technical standards to provide wireless local-area network 
(WLAN) access and to support wireless personal-area network (WPAN) configurations. Pervasive 
computing will leverage both WLAN and WPAN technology, which operate in shared, unlicensed bands 
of wireless spectrum. Given that myriad wireless devices will operate simultaneously in close proximity, 
it appears possible that interference could compromise the quality of service available to mobile users. 
This concern motivated NIST researchers to ask two questions. First, can we characterize the performance 
of WLAN and WPAN protocols operating in the same network area? Second, can we devise technical 
approaches to mitigate interference and enhance coexistence between competing WLAN and WPAN 
devices? The answers found by NIST researchers are reported below in fourteen papers organized in two 
sections: performance characterization and interference mitigation techniques. Overall, the research 
results from NIST regarding mutual interference of WLAN and WPAN devices should: (1) help 
prospective users to understand the limitations of current wireless devices deployed in the unlicensed 2.4 
GHz ISM band, (2) inform standards setters about the performance improvements possible through 
adoption of various co-existence algorithms, and (3) provide designers with ideas for improving the next 
generation of wireless devices. 

While wireless communications provide the underlying infrastructure through which pervasive-
computing devices can discover each other and configure into collections, a similar process of dynamic 
discovery, configuration, and monitoring will occur at a higher level, where software components and 
services cooperate to meet application needs. Over the period from about 1998 to 2000, industry 
developed a first generation of competing architectures and protocols for component and service 
discovery. Such a plethora of incompatible approaches seemed likely to impede the interoperability 
required by a market for pervasive computing. Is the existence of so many different service-discovery 
systems justified?  
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NIST researchers analyzed the extant technical approaches and developed a model to unify the 
features, functions, and processes provided. The modeling effort aimed: (1) to understand the essential 
service-discovery functionality provided by the industry, (2) to reveal any technical deficiencies in 
existing service-discovery specifications, and (3) to define the technical bounds achievable from this first-
generation of service-discovery systems. A particular goal of service-discovery systems is to monitor the 
state of distributed resources in a network so that failed resources can be detected and recovery actions 
can be initiated. Do the various architectures for service-discovery systems provide different levels of 
robustness in the face of selected failure types? NIST researchers address these objectives and questions 
in a collection of seven papers that characterize the behavior and performance of first-generation service-
discovery protocols. Of particular note, one paper, “A Model-based Analysis of First-Generation Service-
Discovery Systems”, provides a comprehensive model of the service-discovery domain and compares 
several specific service-discovery systems with the domain model. 

While investigating service-discovery protocols, NIST researchers noticed that the performance 
of some features depends upon adopting appropriate parameter settings, where the most apt parameter 
settings depend upon the size of the system. This dependency caused some concern because, while 
service-discovery systems are intended to support dynamic changes in system composition, none of the 
protocols investigated provide any requirement to monitor system state and then to adjust selected 
parameter settings (or behavior) to improve system performance. This observation led NIST researchers 
to propose and evaluate some self-adaptive techniques that enable service-discovery components to 
monitor system state and to adjust various parameters and behaviors in real time. Six related papers are 
reprinted here in a section on performance improvement techniques for service-discovery systems. 
Overall, the research results from NIST regarding service-discovery systems should: (1) help prospective 
users to understand the functionality, behavior, and robustness of first-generation service-discovery 
systems, (2) inform implementers about the performance improvements possible through various self-
adaptive algorithms, and (3) provide designers with ideas for improving the next generation of service-
discovery systems.  
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WIRELESS LOCAL AND PERSONAL AREA NETWORKS 

The ITU-T (the telecommunications standards organization of the International Telecommunications 
Union) reserved radio spectrum in selected bands (900 MHz, 2.4 GHz, and 5.8 GHz) throughout the 
world for non-commercial use in support of industrial, scientific, and medical (ISM) endeavors. The free 
availability of these radio-frequency bands led to a number of innovations in wireless local network 
communications. Of specific interest in this publication are wireless local-area network technologies 
(WLAN) that meet the so-called IEEE 802.11 standards and wireless personal-area network (WPAN) 
technologies that meet the Bluetooth specification (and the related IEEE 802.15 standards). WLAN 
technologies are designed to operate in the unlicensed 2.4 GHz ISM spectrum band, providing wireless 
device communication over ranges of tens of meters. WPAN technologies are designed to operate in the 
same ISM band, providing wireless device communication over a range of 1 to 10 meters. WLAN 
technologies provide communications support for computational devices such as laptop and notebook 
computers and personal digital assistants. WPAN technologies aim mainly to provide communications 
support for input/output devices such as microphones, headphones, and video cameras. Both WLAN and 
WPAN technologies appear as likely candidates for combination into systems of computation and 
communication that will support mobile individuals; however, since WLAN and WPAN devices share the 
same spectrum, the possibility arises for mutual interference when operating in close proximity. More 
visionary designs also exist for so-called pervasive computing systems to permit mobile individuals to 
congregate within buildings, conference rooms, and auditoriums that provide wireless access to a rich set 
of local resources that could be deployed on demand to support collaborative work. In these latter cases, 
the wireless spectrum could become quite crowded and mutual interference might prevent realization of 
the pervasive computing vision. 

Two key questions arise when considering the potential for WLAN and WPAN technologies to 
revolutionize workplaces and lifestyles. First, what will be the nature of any mutual interference that 
might arise among WLAN and WPAN devices? Second, what technical approaches might be developed 
and deployed to mitigate mutual interference among WLAN and WPAN devices, and how successful will 
such approaches prove? These questions, which motivated one facet of research in the NIST program on 
networking for pervasive computing, are addressed in the following set of fourteen papers that document 
findings by researchers in the Advanced Network Technologies Division at NIST. The papers divide 
naturally into two sets. Six papers (Papers #1 through #6) assess the nature of mutual interference that can 
arise when WLAN and WPAN devices operate in close proximity (within 15 meters). Eight papers 
(Papers #7 through #8) investigate various technical approaches to mitigate mutual interference in order 
to allow WLAN-WPAN devices to co-existent in close proximity. More detail on these papers appears in 
the introduction to each set. 
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PERFORMANCE CHARACTERIZATION UNDER INTERFERENCE 

The design for WLANS and WPANS share a similar logical structure. A physical layer (PHY) defines 
techniques for framing, encoding, protecting, transmitting, receiving, correcting, and decoding bits 
conveyed over a wireless channel. A media-access control (MAC) layer defines techniques for sharing 
access to the wireless channel, including avoiding, detecting, and recovering from transmissions that 
overlap (collide) in space and time. Transport-layer protocols, such as the transmission control protocol 
(TCP) and the user-datagram protocol (UDP), employ services of the MAC and PHY layers to exchange 
messages related to a variety of applications, including file transfer, web surfing, and audio-video 
communication. Particular combinations of application and transport protocol present a wireless channel 
with data traffic exhibiting different characteristics and requiring different qualities of service. Overall, 
each protocol layer has a complex set of factors that influence its behavior and performance, and the 
combination of four layers (PHY, MAC, transport, and application) must be considered to develop any 
meaningful characterization of system performance. For this reason, while a few papers presented below 
consider only the PHY and MAC layers, most of the papers consider the larger set of four layers. To 
provide some background to better understand the papers, more information is needed about each 
protocol layer. 

The wireless channel space has two facets: (1) physical distance and (2) frequency distance. That 
is, two devices operating near each other, but on different frequencies, do not experience mutual 
interference, while two devices operating on the same frequencies, but out of range from each other, do 
not experience mutual interference. (Of course, other factors, such as noise and channel fading, which 
may cause different frequencies to propagate with different characteristics, can impair a wireless channel 
even in the absence of other interference.) The WLAN (IEEE 802.11) PHY provides for two different 
techniques for nearby devices to share frequencies. One technique, direct sequence spread spectrum 
(DSSS), uses codes that allow each device to transmit over a broad range of frequencies, while placing 
some information about each bit at selected points within the frequency band. A receiver uses the same 
code to extract the transmitted bit information from the frequency band. A second technique, frequency 
hopping spread spectrum (FHSS), configures each device with a set of frequencies and times to transmit 
on those frequencies. A device then sends bits at the designated times on the assigned frequencies. A 
receiver uses the same frequency-time schedule to extract the transmitted bits from the channel. Since 
most deployments of 802.11-compatible WLANS use DSSS, the papers described below model the 
WLAN PHY layer as a DSSS channel. Bluetooth (and IEEE 802.15) use the frequency-hopping technique 
to share the wireless channel; thus, the papers included here model the WPAN PHY layer as a FHSS 
channel. 

The MAC layers differ significantly for 802.11 WLANS and Bluetooth WPANS. WLANS use a 
distributed collision avoidance, detection, and recovery algorithm that requires each device to determine 
when a channel is free for use, to monitor its own transmission, to detect its own collisions, and to 
schedule a future attempt to reacquire the channel. WPANS use a centralized polling scheme that 
designates a single device as a master that organizes and oversees the transmissions of other (slave) 
devices sharing the same channel. Another difference concerns message sizes. WLANS permit all 
transmission to take on a variable length within an allowed range, while WPANS require that messages 
consist of some integral number of fixed-size slots. The papers below model these differences in MAC 
layer procedures. 

Both WLANS and WPANS, as modeled here, employ the same set of transport protocols (TCP 
and UDP). Though WPAN profiles have been specified and implemented to use other transport protocols, 
these other protocols are not investigated in this set of papers. Regarding application traffic, the models 
used in the following papers usually adopt the assumption that WLAN traffic consists of either file 
transfer or web surfing. This is consistent with the most common current usage today. On the other hand, 
since WPANS are designed explicitly to support both data and multimedia traffic, the models investigated 
below use a variety of different application-traffic profiles when simulating WPANS. 
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In Paper #1, “Interference in the 2.4 GHz ISM Band: Impact on Bluetooth Access Control 
Performance”, Golmie and Mouveaux quantify the packet-loss rate of the Bluetooth MAC layer when the 
radio operates in close proximity to a (802.11) WLAN. The paper reports results from two simulation 
experiments. Both experiments model a pair of Bluetooth devices (one master and one slave) separated by 
one meter. The Bluetooth devices may transmit either symmetric voice traffic (64 Kbps each direction) or 
data traffic (at 50% of an available 1 Mbps channel capacity). The experiments also model two WLAN 
devices on a channel, where one device transmits data and the other device receives data and sends 
acknowledgments. The WLAN devices are separated by about 10 meters, with the WLAN data 
transmitter being about 10 meters from the Bluetooth devices and the WLAN acknowledgement 
transmitter within one meter. In the first experiment, the WLAN generates a constant 50% offered load, 
but with varying packet sizes (packet spacing is varied as necessary to maintain a 50% offered load). In 
the second experiment, the WLAN generates a variable offered load (ranging between 5% and 70%) by 
altering spacing of fixed-size packets. Prior to reporting the simulation results, the authors develop an 
analytical model of packet-loss rate under similar assumptions. The simulations found packet-loss rates 
for the Bluetooth MAC to reach 25% for voice traffic and 27% for data traffic. The analytical predictions 
showed similar results. The authors observe that any assessment of interference among wireless devices 
must consider the characteristics (arrival rate and size) of application traffic. The authors conclude that 
WLAN devices can create significant performance degradation for WPAN devices operating in close 
proximity; thus, the cause and properties of such degradation deserve further investigation. 

In Paper #2, “Physical Layer Performance for Coexistence of Bluetooth and IEEE 802.11b”, 
Soltanian and Van Dyck study the bit-error rate performance at the physical layer for Bluetooth and 
802.11b receivers under various combinations of mutual interference, noise, and fading. The study aims 
to inform future investigations of physical-layer techniques that might be employed to reduce mutual 
interference among wireless devices. The paper develops two separate (and detailed) models. One model 
represents a Bluetooth system that can be parameterized with specific noise and fading assumptions and 
that can be subjected to interference by either a WLAN system or another Bluetooth system. Because the 
Bluetooth specification permits multiple Bluetooth networks (called piconets) to share the same channel, 
mutual interference among piconets is a useful situation to consider. The Bluetooth model includes the 
inexpensive receiver filter specified in the related technical standard, but also provides a variant with a 
more sophisticated Viterbi receiver. The second model represents an 802.11b system that can be 
parameterized with specific noise and fading assumptions and that can be subjected to interference by a 
Bluetooth system. The WLAN (802.11b) model can consider either the 1-Mbps or 11-Mbps channel 
capacities supported by the corresponding technical specification. While the models of the physical 
systems are quite detailed, the models of application traffic are rather simple. The WLAN model assumes 
constant transmissions and the WPAN model assumes constant transmissions always synchronized on 
packet boundaries. These amount to worst-case assumptions, where interferers are never idle. The paper 
presents simulation results showing that mutual interference may damage the physical-layer performance 
of both WLAN and WPAN devices. The results also suggest that Bluetooth devices would become more 
resistant to interference and noise if they included (a significantly more expensive) Viterbi receiver. 

In Paper #3, “Performance of the Bluetooth System in Fading Dispersive Channels and 
Interference”, Soltanian and Van Dyck continue their investigation of the WPAN physical layer, focusing 
on the ability of Viterbi receivers to improve the performance of the Bluetooth PHY. Here, the 
researchers study the bit-error and packet-loss rates under fading and interference in Bluetooth systems 
with either a standard (non-coherent limited-discriminator) receiver or a Viterbi receiver, finding that the 
Viterbi receiver provides superior performance. Of course, the Viterbi receiver would add significantly to 
the cost of Bluetooth devices, which have a cost objective as low as $5 per device. The researchers also 
suggest that the technical specification for Bluetooth permits too large a range for the transmitter’s 
modulation index. 

In Paper #4, “Interference of Bluetooth and IEEE 802.11: Simulation Modeling and Performance 
Evaluation”, Golmie, Van Dyck, and Soltanian introduce simulation models of combined MAC and PHY 
layers for both WLAN and WPAN, and use those models to study the effects of interference between 
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Bluetooth and 802.11b wireless networks under several application scenarios. The paper validates that a 
detailed PHY model can be replaced by a pre-computed table lookup in order to achieve accurate results 
with a significant savings in compute time. The paper presents details about the WLAN and WPAN 
simulation models, and then presents four experiments, which all use the same topology of devices. The 
topology consists of two Bluetooth devices (master and slave) separated by 1 meter, and two WLAN 
devices: a fixed access point about 15 meters from the Bluetooth devices and a mobile device that 
changes position, moving within a range of ½ and 5 meters of the Bluetooth devices. One experiment 
considers Bluetooth voice traffic with interference from the mobile WLAN node sending to the access 
point, while a second experiment considers Bluetooth data traffic under the same conditions. A third 
experiment considers WLAN data traffic flowing from access point to mobile device with interference 
from Bluetooth voice traffic. A fourth experiment subjects WLAN data traffic to interference from 
Bluetooth data traffic. The study considers WLANS operating at both 1 and 11 Mbps. The paper finds 
that Bluetooth voice traffic can cause significant packet loss for WLAN devices operating within ½ 
meter: 65% for 1 Mbps WLANS and 30% for 11 Mbps WLANS. In addition, WLAN devices can cause 
8% packet loss for Bluetooth devices operating at the same ½-meter distance. WLANS can also interfere 
with Bluetooth data traffic, causing as much as 14% in packet losses at close range. Bluetooth data traffic 
can induce similar packet losses in WLAN devices. The authors conclude that these significant 
interference problems deserve further study in more complex scenarios involving large topologies and 
including transport protocols. 

In Paper #5, “Interference Evaluation of Bluetooth and IEEE 802.11 Systems”, Golmie, Van 
Dyck, Soltanian, Tonnerre, and Rebala investigate interference effects on Bluetooth and 802.11b wireless 
networks under a range of parameters, such as transmission power, offered load, and traffic profile. 
Further, the paper studies performance of WPAN and WLAN devices in a variety of complex scenarios 
involving multiple Bluetooth piconets and 802.11 devices. The study reveals some interesting findings. 
First, to overcome Bluetooth interference, WLAN devices would have to increase transmission power by 
more than 50 times, which appears impractical. Second, limiting transmission power in WLAN devices 
can help to avoid interference with Bluetooth devices. Third, using a slower frequency-hop rate (than the 
1,600 hops per second specified) for Bluetooth devices may reduce interference with WLAN devices. 
Overall, the authors find that the traffic distribution has the largest affect on mutual interference, which 
suggests that sophisticated control schemes might best be designed as application-dependent – an 
impractical step due to complexity and cost. The findings reported in this paper lead the authors to 
suggest that coexistence mechanisms for WLAN and WPAN devices might be a fruitful direction to 
investigate. 

In Paper #6, “Interference in the 2.4 GHz ISM Band: Challenges and Solutions”, Golmie recounts 
lessons learned from previous studies (see Papers #1 through #5 in this special publication), and suggests 
the outlines for a coexistence framework that might help WLAN and WPAN devices operate in close 
proximity with better performance. In explaining existing interference problems and possible solutions for 
WLAN and WPAN devices, Golmie takes a tutorial approach. The paper gives an overview of several 
coexistence solutions proposed for various interference scenarios, and suggests that forward-error 
correction (where packets include redundant bits that might be used to reconstruct damaged bits) has 
limited benefits in many interference scenarios. The paper also shows that fragmenting packets can 
reduce packet loss between two devices, at the expense of more interference to other devices. In the end, 
Golmie suggests that research on coexistence mechanisms should examine both adaptive frequency 
hopping (AFH) and MAC scheduling. AFH would require Bluetooth masters to detect and map used 
frequencies and then adjust the hopping sequence for the piconet to select only an effective pattern of 
unused frequencies. MAC scheduling would require Bluetooth masters to consult the map of used 
frequencies and postpone transmissions to slaves experiencing used frequencies until an appropriate 
frequency becomes available. The paper outlines some advantages and disadvantages of the two 
approaches, and also considers briefly the idea of time-division scheduling when a WLAN and WPAN 
device operates from the same computer. This approach does not address the general case of interference 
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between independent WLAN and WPAN devices operating in close proximity. Overall, this paper sets the 
framework for investigating interference mitigation techniques, as reported in the next set of papers. 

Networking for Pervasive Computing NIST Special Publication 500-259

7



Interference in the 2.4 GHz ISM Band: Impact on
the Bluetooth Access Control Performance

Nada Golmie and Frederic Mouveaux
National Institute of Standards and Technology
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Email: nada.golmie@nist.gov

Abstract— Bluetooth is a radio technology operating in the 2.4 GHz
ISM frequency band, that is emerging as a low-level and low-power wire-
less communication protocol used for wireless personal area networks
(WPANs) where proximal devices can share information and resources.
In this paper, we quantify the performance of the Bluetooth access con-
trol layer when the radio is operating in close proximity to a WLAN sys-
tem. We use a probability analysis approach to derive the packet error for
Bluetooth. The analytical results are validated using detailed simulation
models for an interference scenario consisting of Bluetooth and WLAN
devices. Packet loss is obtained for voice and data traf c for different in-
terference conditions.
Keywords—WPANs, Bluetooth, Interference.

I. INTRODUCTION

AN increasingly mobile lifestyle is creating the need for
Wireless Personal Area Networks (WPANs) consisting of

ad-hoc communications between portable computing devices
such as laptops, PDAs, pagers, and cellular telephones. What
is emerging today are wireless technologies, including IEEE
802.11 [1], and Bluetooth [2], that promise to out t portable
and embedded devices with high bandwidth, localized wire-
less communication capabilities that can also reach the globally
wired Internet.

Due to its almost global availability, the 2.4 GHz Indus-
try Scienti c and Medical (ISM) unlicensed band constitutes
a popular frequency band suitable to low cost radios. New pro-
posed solutions for WPANs such as IEEE 802.15 and Bluetooth
plan to operate in the 2.4 GHz ISM band while IEEE 802.11 [1]
has standards for Wireless Local Area Networks operating in
this band and microwave ovens are a primary user of the band
at 2.45 GHz. Therefore, it is anticipated that some interference
will result from all these technologies operating in the same
environment and frequency space. Furthermore, since IEEE
802.11, and Bluetooth devices may likely come together in a
laptop or may be close together at a desktop, interference may
lead to signi cant performance degradation.

The main goal of this paper is to present our results on the
performance of a Bluetooth access control system when its ra-
dio is operating in close proximity to an IEEE 802.11 system.
The evaluation of interference in the 2.4 GHz band has been
receiving more attention lately. Zurbes et. al. simulate the
impact of 100 co-located sessions on the Bluetooth radio per-
formance [3]. Kamerman reports on tolerable interference lev-
els between Bluetooth and 802.11 devices for various scenarios
and device positions [4]. His analysis is based on a simple path
loss model and Signal to Interference (SIR) requirements for
Bluetooth and 802.11 receivers. Furthermore, the probability

of an 802.11 packet error in the presence of a Bluetooth piconet
has been derived by Ennis [5], then extended by Shellhammer
[6] and Chiasserini and Rao [7].

In this paper, we  rst use a probability analysis approach to
capture the interference environment. Our analytical results are
then validated against simulation results obtained from detailed
simulation models of the Bluetooth and IEEE 802.11 Medium
Access Control (MAC) and Physical (PHY) layers. Our goal
is to give additional insights on the performance of Bluetooth
voice and data traf c under different interference traf c condi-
tions.

This paper is organized as follows. In sections II and III we
give some general insights on the Bluetooth and IEEE 802.11
protocol operation respectively. In section IV, we present our
interference analysis and the probability that a packet contain-
ing error is received at the Bluetooth node. In section V, we
evaluate the impact of WLAN interference on the Bluetooth
performance and present simulation results. Concluding re-
marks are offered in section VI.

II. BLUETOOTH PROTOCOL OVERVIEW

In this section, we give a brief overview of the Bluetooth
technology [2] and discuss the main functionality of its pro-
tocol speci cations which consist of several modules, namely,
the Radio Frequency (RF), Baseband (BB) and Link Manager
(LM). Bluetooth is a short range (0 m - 10 m) wireless link
technology aimed at replacing non-interoperable proprietary
cables that connect phones, laptops, PDAs and other portable
devices together. Bluetooth operates in the ISM frequency
band starting at 2.402 GHz and ending at 2.483 GHz in the
USA, and Europe. 79 RF channels of 1 MHz width are de-
 ned. The air interface is based on an antenna power of 1 mW
(0 dBi gain). The signal is modulated using binary Gaussian
Frequency Shift Keying (GFSK). The raw data rate is de ned
at 1 Mbits/s. A Time Division Multiplexing (TDM) technique
divides the channel into 625 µs slots. Transmission occurs in
packets that occupy an odd number of slots (up to 5). Each
packet is transmitted on a different hop frequency with a max-
imum frequency hopping rate of 1600 hops/s.

Two or more units communicating on the same channel form
a piconet, where one unit operates as a master and the others
(a maximum of seven active at the same time) act as slaves. A
channel is de ned as a unique pseudo-random frequency hop-
ping sequence derived from the master device’s 48-bit address
and its Bluetooth clock value. Slaves in the piconet synchro-
nize their timing and frequency hopping to the master upon
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connection establishment. In the connection mode, the master
controls the access to the channel using a polling scheme where
master and slave transmissions alternate. A slave packet always
follows a master packet transmission as illustrated in Figure 1
that depicts the master’s view of the slotted TX/RX channel.

Frequency
(MHz)

Time (µs)625µs

POLL
to
Slave 1

DATA
from
Slave 1

DATA
to
Slave 6 DATA

from
Slave 6

DATA
Broad
cast

DATA
to
Slave 3

NULL
from
Slave 3

TX RX TX RX TX TX RX

2.
40

2 
M

H
z

2.
48

35
 M

H
z

RX

Fig. 1. Master TX/RX Hopping Sequence

There are two types of link connections that can be
established between a master and a slave: the Syn-
chronous Connection-Oriented (SCO), and the Asynchronous
Connection-Less (ACL) link. The SCO link is a symmetric
point-to-point connection between a master and a slave where
the master sends an SCO packet in one TX slot at regular time
intervals, de ned by TSCO time slots. The slave responds with
an SCO packet in the next TX opportunity. TSCO is set to
either 2, 4 or 6 time slots for HV 1, HV 2, or HV 3 packet for-
mats respectively. All three formats of SCO packets are de ned
to carry 64 Kbits/s of voice traf c and are never retransmitted
in case of packet loss or error. The ACL link, is an asym-
metric point-to-point connection between a master and active
slaves in the piconet. Several packet formats are de ned for
ACL, namely DM1, DM2, and DM3 packets that occupy 1,
3, and 5 time slots respectively. An Automatic Repeat Request
(ARQ) procedure is applied to ACL packets where packets are
retransmitted in case of loss until a positive acknowledgement
(ACK) is received at the source. The ACK is piggy-backed in
the header of the returned packet where an ARQN bit is set
to either 1 or 0 depending on whether the previous packet was
successfully received or not. In addition, a sequence number
(SEQN) bit is used in the packet header in order to provide a
sequential ordering of data packets in a stream and  lter out
retransmissions at the destination. Forward Error Correction
(FEC) is used on some SCO and ACL packets in order to cor-
rect errors and reduce the number of ACL retransmissions.

III. IEEE 802.11 PROTOCOL OVERVIEW

The IEEE 802.11 standard [1] de nes both the physical
(PHY) and medium access control (MAC) layer protocols for
WLANs. In this sequel, we will be using WLAN and 802.11
interchangeably.

The IEEE 802.11 standard calls for three different PHY
speci cations: frequency hopping (FH) spread spectrum, direct
sequence (DS) spread spectrum and infrared (IR). The transmit

power for DS and FH devices is de ned at a maximum of 1 W
and the receiver sensitivity is set to -80 dBm. Antenna gain is
limited to 6 dBi maximum.

Under FH, each station’s signal hops from one modulating
frequency to another in a predetermined pseudo-random se-
quence. Both transmitting and receiving stations are synchro-
nized and follow the same frequency sequence. There are 79
channels de ned in the (2.4000 - 2.4835) GHz region spaced 1
MHz apart. The time each radio dwells on each frequency de-
pends on each individual implementation and government reg-
ulation. The basic access rates of 1 and 2 Mbits/s use multilevel
Gaussian frequency shift keying (GFSK).

A DS transmitter converts the data stream into a symbol
stream where each symbol represents a group of multiple bits to
spread over a relatively wideband channel of 22 MHz. The ba-
sic data rate is 1 Mbits/s encoded with differential binary phase
shift keying (DBPSK) or 2 Mbits/s using differential quadra-
ture phase shift keying (DQPSK). Higher rates of 5.5 and 11
Mbits/s are also available with techniques combining pulse-
position-modulation (PPM) and quadrature amplitude modu-
lation (QAM).

The IEEE 802.11 MAC layer speci cations common to all
PHYs and data rates coordinate the communication between
stations and control the behavior of users who want to access
the network. The Distributed Coordination Function (DCF)
which describes the default MAC protocol operation is based
on a scheme known as carrier-sense, multiple access, collision
avoidance (CSMA/CA). Both the MAC and PHY layers co-
operate in order to implement collision avoidance procedures.
The PHY layer samples the received energy over the medium
transmitting data and uses a clear channel assessment (CCA)
algorithm to determine if the channel is clear. This is accom-
plished by measuring the RF energy at the antenna and deter-
mining the strength of the received signal commonly known as
RSSI, or received signal strength indicator. In addition, car-
rier sense can be used to determine if the channel is available.
This technique is more selective since it veri es that the signal
is the same carrier type as 802.11 transmitters. A virtual car-
rier sense mechanism is also provided at the MAC layer. It uses
the request-to-send (RTS) and clear-to-send (CTS) message ex-
change to make predictions of future traf c on the medium and
updates the network allocation vector (NAV) available in sta-
tions. Communication is established when one of the wire-
less nodes sends a short RTS frame. The receiving station is-
sues a CTS frame that echoes the sender’s address. If the CTS
frame is not received, it is assumed that a collision occurred
and the RTS process starts over. Regardless of whether the vir-
tual carrier sense routine is used or not, the MAC is required
to implement a basic access procedure (depicted in Figure 2)
as follows. If a station has data to send, it waits for the chan-
nel to be idle through the use of the CSMA/CA algorithm. If
the medium is sensed idle for a period greater than a DCF in-
terframe space (DIFS), the station goes into a backoff proce-
dure before it sends its frame. Upon the successful reception
of a frame, the destination station returns an ACK frame after
a Short interframe space (SIFS). The backoff window is based
on a random value uniformly distributed in the interval [0, CW ]
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where CW represents the Contention Window parameter and
is varied between CWmin and CWmax. If the medium is de-
termined busy at any time during the backoff slot, the backoff
procedure is suspended. It is resumed after the medium has
been idle for the duration of the DIFS period. If an ACK is not
received within an ACK timeout interval, the station assumes
that either the data frame or the ACK was lost and needs to re-
transmit its data frame by repeating the basic access procedure.

Source

MBusy MBusyMIdle MIdle

DIFS

MIdle

Backoff

MBusy MIdle

Frame

Destination

SIFS ACK

a) Successful frame transmission

b) Frame retransmission

MBusy = Medium is Busy
MIdle = Medium is Idle

ACK Timeout

Source
MBusy MBusyMIdle MIdle

DIFS

MIdle

Backoff Frame Retransmission

Fig. 2. WLAN Frame Transmission Scheme

IV. INTERFERENCE ANALYSIS

Since we are mainly concerned with evaluating the Blue-
tooth performance in an interference environment, we consider
a Bluetooth receiver node as our reference and derive the proba-
bility that a packet containing errors (at least one error), P(PE),
is received at this node. The interfering signal is assumed to be
from proximally located WLAN devices.

A collision occurs when both the Bluetooth and the inter-
fering packets overlap in time and frequency. This collision is
detected at the Bluetooth receiver in the form of SIR that de-
pends on the power transmitted, the distance traveled, and the
path loss model used. The SIR then translates into a Bit Error
Rate (BER) according to the GFSK carrier modulation and the
Bluetooth receiver implementation used.

TBI

WLAN Packet WLAN Packet

TW TBackoff

Bluetooth
Packet

Bluetooth
Packet

��
��
��
��

Tc

TWI

TB

X

fB1 fB2

fW1 fW2

Fig. 3. Collisions at the Bluetooth Receiver Node

Figure 3 illustrates the timing of the Bluetooth packets with
respect to WLAN packets. Let fB and fW be the frequencies
used to transmit the Bluetooth and WLAN packets respectively.
We denote by TB and TW , the Bluetooth and the WLAN packet
transmission periods respectively. In order to determine the po-
sition of the Bluetooth packet with respect to the WLAN packet
when both systems use the same frequency (fB = fW ), we de-

 ne a variable X that represent the time offset between a Blue-
tooth and a WLAN packet. Let TC represent the time interval
when both WLAN and Bluetooth packets overlap. We denote
by TWI the interval between two WLAN packets including the
packet transmission time TW and a backoff period, TBackoff .
TBackoff is the sum of several variables such as SIFS, DIFS,
the ACK transmission time, and CW . Similarly, we denote by
TBI , the interval between two Bluetooth packet transmissions.
Due to the slotted structure of the Bluetooth channel, a packet
transmission occurs at the boundary of a Bluetooth time slot.
We assume that X is a random variable that is uniformly dis-
tributed between zero and TWI . Note that X is a continuous
random variable, however in this analysis it is quanti ed to the
resolution of a Bluetooth symbol period at the rate of a symbol
(or a bit) per µs.

X ∼ U(0, TWI) (1)
Thus, the probability that a Bluetooth packet overlaps in time

and frequency with a WLAN packet depends on:
• The position of the WLAN packet with respect to the

Bluetooth packet, i.e. X
• The transmission frequencies, fB and fW of the Bluetooth

and WLAN systems respectively
The probability mass function of X is equal to pX(k) =

1
TW I

where k = 1, 2, ..TWI . Both the Bluetooth and WLAN
systems have a frequency hopping span of 79 channels. The
probability that a WLAN system lands on the same frequency
as a Bluetooth system depends on a discrete random variable
fW whose probability mass function is pfW (j) = n

79 where
j varies between 1 and 79 and n determines the number of
overlapping channels. For FH n = 1, while for DS WLAN
systems, n = 22.

Expressing P (PE) as a joint probability of frequency and
packet overlap yields:

P (PE) =
TWI∑
k=0

P (PE | X = k; fW = j)pX(k)pfW (j)

where P (PE | X = k; fW = j) depends on TC and BER.
Thus, we write:

P (PE | X = k; fW = j) = 1 − (1 − BER)TC (2)

Therefore,

P (PE) = (
n

79
)(

1
TWI

)
TWI∑
k=0

(1 − (1 − BER)TC ) (3)

The value of TC depends on X , TW , and TB . We distinguish
three cases.

• TB ≤ TW and TB ≤ TWI -TW

TC =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

TB

if X ≤ TW − TB

TW − X
if TW − TB < X < TW

0
if TW ≤ X ≤ TWI − TB

X + TB − TWI

if TWI − TB < X ≤ TWI

(4)
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• TB ≤ TW and TB > TWI -TW

TC =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

TB

if X < TW − TB

TW − X
if TW − TB ≤ X < TWI − TB

TW + TB − TWI

if TWI − TB ≤ X ≤ TW

X + TB − TWI

if TW < X ≤ TWI

(5)
• TB > TW ;

We let N(X) be the number of WLAN packets that hit a
Bluetooth packet.

N(X) =

⎧⎪⎪⎨
⎪⎪⎩

� TB

TWI
�

if X ≤ TWI� TB

TW I
� − TB

� TB

TWI
� + 1

otherwise

(6)

We also de ne Ti as the interval of time overlap with
WLAN packet i.

Ti =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max(TW − X, 0)
if i = 1

TW

if i = 2, .., N(X)− 1
min(X + TB − (N(X) − 1) × TWI , TW )

if i = N(X)
(7)

In this case TC is basically the sum of all Ti’s over N(X)
colliding WLAN packets.

TC =
N(X)∑
i=1

Ti (8)

V. SIMULATION RESULTS

Our goal in this section is to validate the analytical inter-
ference model presented in section IV. We used OPNET1 to
develop a simulation model for the Bluetooth protocol. We
partially implement the Baseband and L2CAP layer according
to the speci cations [2] and use the con guration and system
parameters shown in Table I. We assume that a connection is
already established between the master and the slave and that
the synchronization process is complete. The connection type
is either SCO for voice or ACL for data traf c. For WLAN we
use the models provided by the OPNET modeler’s library.

For the Bluetooth signal we assume a pair of devices; a mas-
ter and a slave device located at (0,0) and (1,0) meters respec-
tively. Master and slave devices are transmitting either voice or
data traf c. For voice traf c, we consider a symmetric stream
of 64 kbits/s each way. We use HV 1 packets that have a total
size of 366 bits including a header and an access code of 126
bits. HV 1 packets are sent every TSCO = 2 or 1250 µs. HV 1
payload bits are corrected with a 1/3 FEC rate.Since the pay-
load does not have a CRC, errors in the payload do not yield

1OPNET is a trademark of OPNET Technologies Inc.

TABLE I
SIMULATION PARAMETERS

System Parameters Values
Propagation delay 5 µs/km
Length of simulation run 30 seconds
Length of run prior to gathering statistics 10 % of simulated time
Bluetooth Parameters Values
Data Rate 1 Mbits/s
ACL Baseband Packet Encapsulation DM5
SCO Baseband Packet Encapsulation HV1
Number of Devices 2 (1 Master, 1 Slave)
Master Coordinates (1,0) (meters)
Slave Coordinates (0,0) (meters)
Transmitted Power 1 mW
WLAN Parameters
Packet Interarrival Time for 1 Mbits/s 10.56 ms
Packet Interarrival Time for 11 Mbits/s 2.52 ms
Transmitted Power 1 mW
Source Coordinates (0,0.15) (meters)
Sink Coordinates (0,10) (meters)
Packet Header 224 bits
TW includes Packet Header
TW I includes Backoff and TW

Slot Time 2 ∗ 10−5 seconds
SIFS Time 1 ∗ 10−5 seconds
DIFS Time 5 ∗ 10−5 seconds
CWmin 31
CWmax 1023
Fragmentation Threshold None
RTS Threshold None
Short Retry Limit 4
Long Retry Limit 7

to dropping packets. In addition, a 1/3 FEC rate is applied to
the header and a Hamming code (d = 14) is applied to the ac-
cess code. Uncorrected errors in either the header or the access
code lead to dropping packets. For the data traf c, we consider
a LAN access application. Both master and slave devices gen-
erate DM5 type packets every 0.01250 seconds, thus utilizing
50% of the 1 Mbits/s channel. DM5 packets have a total size
of 2871 bits, including a 54-bit header and a 72-bit access code
and occupy 5 Bluetooth slots. A 2/3 FEC rate is used to cor-
rect payload errors, while errors in the header or access code
are corrected with a 1/3 FEC and a Hamming code (d = 14)
respectively. Uncorrected errors in either the packet header or
payload lead to dropping packets.

For the WLAN signal, we use two 802.11 Direct Sequence
devices transmitting at 1 Mbits/s. We assume unidirectional
traf c; a WLAN source transmits packets to a WLAN sink that
returns ACK messages to the source. The WLAN source and
sink devices are located at (0,0.15) and (0,10) meters respec-
tively. Traf c sent from the WLAN source constitute the inter-
ference signal to the Bluetooth slave device.

We present the results from two different simulation exper-
iments that show the impact of interference on Bluetooth de-
vices for different applications, namely voice and data traf c.

Experiment 1- We vary the WLAN packet length, TW , and
the interarrival packet, TWI , while keeping the WLAN offered
load  x ed at 50% of the 1 Mbits/s channel capacity. Thus,
TW and TWI are varied from 500 and 1000 µs to 8000 and
16000 µs respectively. Note that TB and TW denote the packet
length in time and are also equivalent to the packet size in bits
assuming a data rate of 1 MBits/s.

Experiment 2- We  x TW at 1000 µs and vary TWI ac-
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cording to TW

OL where OL is the offered load as a percentage of
the 1 Mbits/s channel capacity.

Table II summarizes the experiments.

TABLE II
VALIDATION EXPERIMENT SUMMARY

Experiment WLAN Offered Load WLAN Traf c
Experiment 1 50% of Channel Capacity TW and TWI variable
Experiment 2 Variable TW = 1000 µs, TWI =

TW
OL

Given that the WLAN source is at a distance, dI = 0.15m
from the Bluetooth slave, while the Bluetooth master is at a
distance, dM = 1m, and assuming that both the WLAN source
and the Bluetooth master device transmit at 1mW, the SIR at
the slave is given by 20log dI

dM
≈ −16 dB 2. The choice of the

BER value corresponding to this SIR is based on the PHY re-
sults of the Bluetooth receiver used [8]. We note that when the
Signal-to-noise ratio (SNR) is above 25 dB and the SIR is be-
low −10 dB, the BER is ∼ 0.3 for Bluetooth frequency offsets
of 10 MHz from the WLAN DS center frequency. Therefore,
we use BER = 0.3 and n = 10 in our analysis. A summary
of the parameters used in the analysis is provided in Table III.

TABLE III
ANALYSIS PARAMETERS

Parameters Values
TB 366 for HV 1 and 2871 for DM5
TW and TWI Variable
n 20
BER 0.3

All simulations are run for 1000 seconds of simulated time
and the  rst 10 % of the data is discarded. The performance
measurements are logged at the slave device. The metric we
use includes the packet loss, PL, and the packet error, PE . The
packet loss is the number of packets discarded due to uncor-
rected errors in the packet divided by the total number of pack-
ets transmitted. While the packet error is the number of packets
received with at least one error (prior to applying error correc-
tion on the packet and deciding whether to keep it or drop it).
Note that Equation 3 captures the probability that a packet
containing at least one error is received at the Bluetooth node.
Since different error correcting schemes are applied on differ-
ent packet types and packet segments, this corresponds to the
packet error metric rather than the packet loss.

The simulation model used for this validation assumes the
following:

• The WLAN CCA is limited to carrier sense functional-
ity capable of detecting other WLAN devices of the same
kind (either FH or DS) but cannot detect the presence of
Bluetooth devices.

• The impact of Bluetooth interference on WLAN is dis-
abled in order not to change the WLAN traf c distribu-
tion. That is interference from Bluetooth does not cause
errors at the WLAN receiver.

2Assuming the logarithmic path loss model given in [4]
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Fig. 4. (a)
(b)

Varying TW and TWI for a 50% WLAN Offered Load (a)

Impact of WLAN Interference on Bluetooth Voice (b) Impact of WLAN
Interference on Bluetooth LAN

• The BER value used in the Bluetooth receiver is computed
according to the receiver’s DSP model and varies accord-
ing to the frequency hop and the signal to interference ra-
tio.

Figure 4 (a) gives the probability of packet error for the
Bluetooth voice traf c for different WLAN packet lengths. We
note that the analytical results closely approximate the simula-
tion results. The probability of packet error varies between ∼
(22% - 13%), while the probability of packet loss remains at ∼
12%. As expected, the packet loss is lower than the packet error
due to the use of different error correction schemes applied on
different segments of the packet. We note that errors occurring
in the payload of HV 1 packets do not lead to dropping pack-
ets. Furthermore, if errors in the header can be corrected the
packet is kept, otherwise the packet is dropped. This explains
the difference between the packet loss and the packet error.

A similar trend applies to the Bluetooth LAN results given in
Figure 4(b). The packet error varies between ∼ (25% - 17%).
The difference between the packet loss and the packet error is
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not as signi cant as in Experiment 1 (a). In fact, the decision to
drop DM5 packets is based on uncorrected errors in either the
header or the payload. Therefore, the packet loss and packet
error measures are very close.

Figure 5(a) and (b) illustrate the effect of varying the WLAN
offered load on the Bluetooth voice and LAN performance re-
spectively. The probability of voice packet error and packet
loss increase proportionally to the WLAN offered load (Figure
5 (a)). We also note that the difference between the packet er-
ror and the packet loss is signi cant (∼10%) at high WLAN
offered loads (65%). Note that only packet header collisions
affect the packet loss. As more interfering packets are trans-
mitted (increase in WLAN offered load), only a small number
of them will ”hit” the header and cause a collision.

The results for the Bluetooth LAN are given in Figure 5(b)).
The increase in packet error levels off at ∼ 25% for WLAN
offered loads greater than 25%. This ”threshold” phenomenon
is a direct effect of having reached an error threshold number
per packet. Additional errors above that threshold do not yield
to more packets being dropped.

VI. CONCLUDING REMARKS

We presented results on the performance of Bluetooth in
the presence of WLAN interference based on a probability of
packet collision in frequency and time overlap at the Bluetooth
receiver. We  rst observe that the probability of packet error
analysis, in the tractable case where mutual interference effects
are not considered and only a particular receiver is studied,
can provide a close approximation to the packet error and the
packet loss measures. Furthermore, the results clearly show
that packet loss due to interference may be signi cant (up to
27% for data traf c and 25% for voice applications) and may
lead to severe performance degradation. In addition, longer
Bluetooth packets (such as DM5 packets) are more prone to
packet loss than shorter packets (HV 1). Note that, although
the packet loss is lower than the packet error for voice traf c,
the quality of the audio channel is likely to be impaired due to
the high number of residual errors in the payload.

More generally, the experiments stress the importance of
de ning accurate traf c models and distributions in the eval-
uation of interference. Both the offered load and the packet
length are necessary parameters in order to completely specify
the interference signal.

Our future work includes investigating simulation scenarios
where both WLAN and Bluetooth interference can be studied
together. This may unravel various intricate effects about the
traf c distribution and the overall system performance of Blue-
tooth and WLAN operating in the 2.4 GHz frequency band.
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in Fading Dispersive Channels and Interference
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Abstract— A noncoherent limiter-discriminator receiver is often con-
sidered for the Bluetooth system because of its simplicity and low cost.
While its performance is more than adequate for some channels, the re-
sults are signi cantly degraded in either an interference-limited environ-
ment or a frequency selective channel. In this paper, we compare the
performance of the traditional limiter-discriminator with integrate and
dump  lter to a more sophisticated Viterbi receiver. We  nd that the
Bluetooth access code is suf cient to be used for channel estimation in the
Viterbi receiver. A comparison is carried out in a Rayleigh fading channel
and in the presence of interference either from another Bluetooth piconet
or an IEEE 802.11b wireless local area network. Performance metrics
include bit error rate and packet loss rate.

I. INTRODUCTION

Bluetooth (BT) works in the 2.4 GHz unlicensed ISM band,
which is also shared by other communication systems includ-
ing 802.11 wireless local area networks (WLANs). The pri-
mary range of operation is 10 meters, but it can be extended
up to 100 meters. In typical indoor applications where the
channel exhibits low delay spread and there is a strong signal
path between the transmitter and the receiver, the noncoherent
limiter-discriminator with integrate and dump  lter (LDI) re-
ceiver achieves reasonable performance [1]. However, it would
be useful to make the radio system more robust so as to max-
imize the quality of service in outdoor and large indoor appli-
cations.

Some experiments have been conducted [2], [3], [4] to eval-
uate the power delay pro le of indoor channels at 2.4 GHz.
The channel is roughly categorized into two major classes: (1)
channels with a line-of-sight (LOS) path and (2) channels with
an obscured path. For an LOS path, Kim et al. [2]  nd that it
can be reasonably approximated by a Rician distribution with�����

, where K is the ratio of the power of the dominant path
to the power of the scattered paths. For a path with obstruc-
tions, the probability density function (pdf) of the amplitude
of the fading signal is Rician with

�����
, which is close to the

Rayleigh distribution. The root-mean-square (rms) average of
the delay spread varies between 75 nsec to 90 nsec. Zhang and
Hwang [4] report an rms delay spread as large as 217 nsec.
Wilkinson [5] studied the channel for the DECT system and
considered a worst case rms delay of 200 and 300 nsec for in-
door and outdoor channels, respectively. Also in this report, a
Rayleigh fading distribution was considered.

Another challenging issue for the Bluetooth system is the
coexistence with other Bluetooth piconets and/or with IEEE
802.11 WLANs. The interference emitted by these radios
may severely degrade the operation of a Bluetooth radio. The
Viterbi receiver may also be a promising substitute for the LDI
receiver in this case.

This paper’s main contribution is to evaluate the Bluetooth
performance in hostile environments. Two scenarios are con-
sidered: (1) a multipath Rayleigh fading channel, and (2) an
interference-limited environment. We show the bit error rate
performance in these scenarios as well as system layer perfor-
mance for Bluetooth voice packets.

II. BLUETOOTH

Bluetooth operates at a channel bit rate of 1 Mbit/sec [6].
The modulation is Gaussian frequency shift keying (GFSK)
with a nominal modulation index of �	� ��
� ��� and a normal-
ized bandwidth of ����� ��
���

, where ��� is the 3 dB Band-
width of the transmitter’s Gaussian low pass  lter , and T is the
bit period. The Bluetooth radio employs a frequency hopping
scheme in order to mitigate the effect of interference and fad-
ing. There are a total of 79 hopping channels, each separated
by 1 MHz, and the hopping frequency is changed on a packet
by packet basis.

A. The GFSK Signal

The GFSK signal can be represented by [7]����������� �! #"%$'& � �)(+*-, �+.0/1������������� (1)

where
 2�43 5�6879 , : � is the energy per data bit,

* ,
is the

carrier frequency, and � is the random input stream, comprised
of the data bits ;=< ; /1�>�����?� is the output phase deviation, given
by [7]/1�>���@��� �!�)( � � AB<DC AFEHGI=J;1<LK ���NMPO � �8. ( � �QARE	G

B<DC EHS ;1< � (2)

The second sum is the accumulated phase of all previous sym-
bols, and it is called the phase state. K ���T� �VU1WE8SYX �>Z��T[�Z ,
where X �>�T� is the impulse response of a Gaussian  lter , and
L is the length of X �>�T� in bit periods. For Bluetooth with� � � �!
��� , we have \ �]� .
B. LDI Receiver

This receiver consists of a pre-detection bandpass  lter ,
a limiter-discriminator, and an integrate and dump  lter as
shown in Fig. 1. Details on the design of the receiver, including
parameter choices, are given in [1].
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Fig. 1. Simulation model for the LDI receiver.

The bandpass  lter has a Gaussian shape with impulse re-
sponse ^ _'`>aTbdcfe g)hi�j g8k _8l�m=n�oqp or s o't nDu8v�w t o)x (3)

In an AWGN channel, the optimum value for kzy|{ c g k _ is
chosen as 1.1 MHz [8],where k _ is the 3 dB bandwidth. The
integrate and dump  lter has a rectangular impulse response
with a length of T. The appropriate sampling time is chosen at
the maximum eye opening.

C. Viterbi Receiver With Equalizer
The Viterbi receiver takes advantage of the phase trellis cre-

ated by the transmitter. For GFSK with modulation index

^	} c�~@�� , � g-� m8� states are required for the Viterbi receiver [7].
Given

^ } c��)�)� and � c g , the total number of phase states
is � c�� , which includes ������� ��� ~ ���� h ���|����'�@���� . Consequently,
the total number of states for the Bluetooth Viterbi receiver is��� g c�� g . This receiver may be too complex for low cost im-
plementations since it requires a lot of signal processing hard-
ware.

One way to simplify the receiver is to remove the effect of
the additional phase states in the decoding trellis. This action
can be done by not only passing the cumulative metrics from
a node to all its successor nodes, but also by passing the infor-
mation about the phase state. In this way, after selecting the
metric with minimum value, the phase state of that metric is
also recorded at the new trellis node. This architecture change
requires adding a little complexity to branch metric calcula-
tions, but it reduces the total number of trellis states from 12 to
2. We do not add any additional states to account for channel
multipath delay. However, if more signal processing is permit-
ted in the receiver design, the memory of the channel could

also be considered as additional states.
Because no equalization is intended in Bluetooth, no train-

ing sequence is explicitly de ned in the standard. We found
that the 64 bit access codes, which are sent in every packet,
show good correlation properties, and so can be used for the
estimation of the channel. This estimation is then used to com-
pensate for the effect of fading and phase rotation in the re-
ceived signal. Also, the correlation function can be used for the
purpose of synchronization. In order to have a fair comparison
with the LDI receiver, the Viterbi receiver front end contains
the same Gaussian  lter to reject out of band interference and
noise. Results for this receiver appear in Section IV.

III. CHANNEL AND INTERFERENCE

Our channel model is a simple Rayleigh fading two ray
model, with variable delay between the two equal average
power paths. If the time delay between the paths is equal to� � , the rms of the delay spread is, � c � x�� � � . This model is
a good approximation for indoor channels, especially for low
rms delay spreads ��� � ��� nsec, but the results for higher de-
lay spreads ��� g �'� nsec are optimistic in comparison to more
accurate models [5]. The fading is assumed to be static for
the duration of the packet length, and the channel coef cients
are sampled at the packet rate. This is a weak assumption,
since the coherence bandwidth of the indoor channels is usu-
ally greater than the frequency separation of the hops [2], [9],
and the fading statistics may not vary for several consecutive
packets.

For the second scenario, we consider the performance of
Bluetooth in the presence of interference. The channel is
AWGN in this case, and the interference may be another Blue-
tooth piconet or an 802.11b system. The 802.11b WLAN
can use either direct sequence spread spectrum (DSSS) at
1 or 2 Mbits/sec, or it can use complementary code key-
ing (CCK) [10] at 5.5 or 11 Mbits/sec. Here, we consider
1 Mbit/sec DSSS. At this bit rate, data bits are spread by a
Barker code with 11 chips per bit, which leads to a rate of 11
Mchips/sec. The modulation is differential BPSK (DBPSK),
which facilitates noncoherent detection. A pulse shaping  lter
may be employed to reduce the out of band emissions, thereby
giving an interference bandwidth of 22 MHz.

Either a Bluetooth or an 802.11b type interference signal can
be represented as  y `�a �T¡ bdc kY¢%£'¤ ` g)h `q¥-¦=§¨¥-©ªb«a�§¬ ~ `>a ��¡ b�b � (4)

where b is the random input data that is independent of a, and¬ ~ depends on the type of the interferer. ¥-© is the frequency dif-
ference between the desired signal and the interference. We as-
sume that the interference signal is always on and exists for the
entire length of the Bluetooth packet. Also, for a pure physical
layer simulation, there is no error correction and retransmis-
sion in the channel. The Bluetooth radio channels are 1 MHz
apart, so ¥ © can take values of ��� � � g¯®%®°® MHz. The bandwidth
of the 802.11b system is 22 MHz, so we carried out simula-
tions for ¥-© � ��� MHz. There are ±�² c´³'³ samples/bit, which
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Fig. 2. Performance in the AWGN channel.

equals 4 samples/chip for the 802.11b system. This sampling
rate is appropriate for µ-¶ up to 22 MHz. A uniform random
delay · ¶�¸0¹ º¼»¾½ and a random phase ¿ ¶�¸Y¹ º�À)Á+½ are applied
to the interferer signal for each packet.

IV. PERFORMANCE RESULTS

A. Physical Layer Performance
As a baseline for the performance comparisons of the two

receivers, we  rst consider the AWGN channel. Fig. 2 shows
that the Viterbi receiver has a gain of 4 dB over the LDI re-
ceiver at a BER of Â ºÃ	Ä . The gain increases to about 5 dB atÂ ºRÃHÅ and nearly 6 dB at Â ºÃ	Æ . Because of the short ranges in-
volved, even for a transmit power of 1 mW, the received Ç�È�É�Ê�Ë
is typically very high. Consequently, if one considers only this
channel, there is no need for the more complex Viterbi receiver.

Simulation results for the LDI receiver in the two ray chan-
nel are presented in Fig. 3(a). For very low delay spreads
where the channel exhibits  at fading, an average Ç�È�ÉÌÊÎÍ level
of 30 dB is required to achieve a BER close to Â ºRÃ	Å . This per-
formance is not maintained as Ï gets higher, and for Ï0ÐfÂ º'º
nsec, even for high values of Ç�È�É�Ê¼Í , the performance is poor.
The Viterbi receiver performance in Fig. 3(b) indicates that
this receiver can tolerate more delay spread, and it achievesÑ ÇÎÒÔÓÕÂ ºÃ	Ä for Ï�ÖØ× º�º nsec. Also, this receiver is insen-
sitive to the sampling time of the signal.

BER measurements for an interference-limited environment
are presented in Figs. 4 and 5; in all cases, the carrier-to-noise
ratio, Ù�Ê#Ò�Ó´× º dB.

In these  gures, µ-¶ is the absolute frequency offset be-
tween the Bluetooth signal and the interference. The carrier-to-
interference ratio (CIR) is de ned as the ratio of the received
signal power to the received interference power, and it is mea-
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Fig. 3. Ú ÛÌÜÚÞÝLÜ Performance as a function of channel delay spread. (a) LDI

receiver. (b) Viterbi receiver. Rayleigh two path channel.

sured at the input to the bandpass  lter . Fig. 4 contains the re-
sults for both Viterbi and LDI receivers experiencing Bluetooth
interference. For the Viterbi receiver, there is a 2 dB improve-
ment for co-channel interference, and about 3 dB improvement
for the adjacent channel. The  gure also shows that the Viterbi
receiver produces more errors than the LDI receiver in the pres-
ence of a strong interferer (low CIR). The main reason is that
the interference reduces the effectiveness of the channel esti-
mator used in the Viterbi receiver. However as the CIR in-
creases, the channel estimator performs better and the overall
BER improves. Other narrowband interference signals withµ�¶ßÐ À MHz are strongly attenuated by the bandpass  lter , and
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Fig. 4. Performance with Bluetooth interference.

they do not produce errors for this range of CIR.
For the 802.11b interference, Figs. 5(a) and (b) show that for

frequency offsets up to 10 MHz, the system is still interference-
limited. This result stems from the fact that the two-sided
bandwidth of the 802.11b WLAN is 22 MHz, which is much
wider than that of Bluetooth.

The LDI receiver needs at least à�á'âäã�å dB in order to
get æ¼ç¼â4èêé�ëRìHí for all frequencies. The degradation forî�ï è!å MHz is the same, since the 802.11b spectrum is  at at
these offsets. In Fig. 5(b), we observe a dramatic enhancement
in performance for the Viterbi receiver over the LDI receiver.
The minimum required CIR is about -4 dB in this case. Since
the 802.11b interferer is more like uncorrelated noise at the
input of this receiver, this level for CIR can also be concluded
by looking at the performance of the Viterbi receiver in the
AWGN channel (Fig. 2). This receiver requires ç�ð|ñ�ò¼ó#ãõô
dB for æ¼çÎâöãöé°ë ì	í . The bandpass  lter has about 12 dB
out-of-band rejection. So, the maximum tolerable CIR at the
input of the receiver is about -4 dB.

B. System Layer Performance

While the results of the previous section strongly suggest
that the Viterbi receiver provides substantially better physical
layer performance, the main question is how does this advan-
tage translate into better system level performance. Four fac-
tors affect this mapping: (1) the frequency hopping pattern of
the BT system, (2) the error detection and correction in the BT
medium access control layer, (3) the BT traf c pattern, and (4)
the traf c pattern of the interferer. These issues are discussed
in much greater detail in [11], where performance results are
provided for a number of scenarios, all using the LDI receiver.

The frequency hopping implies that the probability a BT

 20  15  10  5 0 5 10
10 4

10 3

10 2

10 1

100

CIR (dB)

B
E

R

fd=0,1,2,3,4 MHz
fd=5 MHz        
fd=6 MHz        
fd=7 MHz        
fd=8 MHz        
fd=9 MHz        
fd=10 MHz       
fd=11 MHz       

 22  20  18  16  14  12  10  8  6  4  2
10 4

10 3

10 2

10 1

100

Average CIR (dB)

B
E

R

fd=0 MHZ 
fd=1 MHz 
fd=2 MHz 
fd=3 MHz 
fd=4 MHz 
fd=5 MHz 
fd=6 MHz 
fd=7 MHz 
fd=8 MHz 
fd=9 MHz 
fd=10 MHz

Fig. 5. ÷�øÌù÷ÞúLù Performance with 802.11b interference. (a) LDI receiver. (b)

Viterbi receiver.

packet falls within the interference bandwidth is approximately
22/79. Even then, the BER will depend on the frequency offset
between the two received signals and whether the interferer is
actually transmitting.

We consider a two-way communication between a Bluetooth
master and slave, where each is sending 64 Kbits/sec of HV1
voice packets. These packets contain the BT access code, the
packet header, and the payload. The access code words have
large Hamming distances between each pair, while both the
header and payload are protected by 1/3 rate repetition codes.
The overall packet length is 366 bits. An uncorrected error in
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either the access code or the header leads to the packet being
dropped.

Fig. 6 shows the probability of packet loss versus CIR for
both the LDI and the Viterbi receivers. For the LDI receiver,
a û�ü'ýÿþ�� dB is necessary to get low packet loss. However,
this value decreases to û�ü'ý�þ���� dB for the Viterbi receiver.
In both cases, we use exponentially distributed packet inter-
arrival times for the WLAN, with an offered load of 50%. The
packet length for the WLAN interference is  x ed and equal to��� ���	� bits.

V. CONCLUSIONS

We have investigated the performance of the Bluetooth ra-
dio by employing two different types of receivers: (1) a low
cost LDI and (2) a more sophisticated Viterbi receiver. From
the physical layer simulation results, we conclude that the
Viterbi receiver is superior in both the multipath Rayleigh fad-
ing channel and in interference. This superiority is particu-
larly considerable in the latter case, especially when the inter-
ference comes from an 802.11b WLAN. We have also shown
system level performance for Bluetooth voice packets in an
interference-limited environment. Even though the frequency
hopping and error correction help both receivers, thereby re-
ducing the differences in performance due to the physical layer,
the Viterbi receiver still provides a substantial improvement.

One issue of present concern is the large allowed deviation
in a Bluetooth transmitter’s modulation index. While the nom-
inal value is 0.33, the range is ��
 � � to ��
 �� . For a Viterbi re-
ceiver designed to use this nominal value, we  nd that it is ro-
bust to variations of about ����
 ��� . Although there are methods
that allow one to estimate the modulation index [12], the re-
ceiver architecture, including the number of states, would have

to be changed. Therefore, we suggest that the deviation al-
lowed in the standard be reduced.
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ABSTRACT
The emergence of several radio technologies such as Blue-
tooth, and IEEE 802.11 operating in the 2.4 GHz unlicensed

ISM frequency band may lead to signal interference and re-
sult in signi�cant performance degradation when devices are
co-located in the same environment. The main goal of this
paper is to present a simulation environment for modeling
interference based on detailed MAC and PHY models. This
framework is then used to evaluate the impact of interfer-

ence on the performance of Bluetooth and IEEE 802.11. We
use several simulation scenarios and measure performance in
terms of packet loss, residual number of errors, and access
delay.

Keywords
WPANs, Bluetooth, IEEE 802.11, Interference.

1. INTRODUCTION
The proliferation of mobile computing devices including lap-
tops, personal digital assistants (PDAs), and wearable com-
puters has created a demand for wireless personal area net-
works (WPANs). WPANs allow closely located devices to
share information and resources. A key challenge in the de-

sign of WPANs is, perhaps, the adaptivity to a hostile radio
environment that includes noise, time-varying channels, and
abundant electromagnetic interference. Today, most radio
technologies considered by WPANs (Bluetooth Special In-
terest Group [1], and IEEE 802.15) employ the 2.4 GHz ISM

frequency band. In addition, both WPANs and Wireless
Local Area Networks (WLANs) devices implementing the
IEEE 802.11 standard speci�cations [2] will be sharing the
same frequency band. It is anticipated that some interfer-
ence will result from all these technologies operating in the
same environment. WLAN devices operating in proximity

to WPAN devices may signi�cantly impact the performance
of WPAN and vice versa.

The main goal of this paper is to present a tool for modeling
the interference of Bluetooth and IEEE 802.11. In addition,
we discuss our �ndings on the performance of these systems
when operating in close proximity to each other. Our re-

sults are based on detailed models for the MAC, PHY, and
wireless channel.

Previous performance results on Bluetooth and IEEE 802.11
interference include experimental measurements obtained by
Kamerman [3]. Furthermore, the probability of an 802.11

packet error in the presence of a Bluetooth piconet has been
derived by Zyren [4] and extended by Shellhammer [5]. In
addition, Golmie and Mouveaux [6] study the e�ect of 802.11
on Bluetooth, using a probability analysis approach and val-
idate the analysis with simulation results. They show that
signi�cant packet loss can occur and that access delays for

data traÆc double. Similar results have been obtained by
Lansford et. al. [7] who use simulation and experimen-
tal measurements to quantify the interference resulting from
Bluetooth and IEEE 802.11.

This paper is organized as follows. In section 2, we describe
in great detail our modeling approach for the MAC, PHY
and wireless channel. In section 3, we discuss the accuracy
of our model implementation. In section 4, we evaluate the
impact of interference on both Bluetooth andWLAN perfor-
mance and present simulation results. Concluding remarks

are o�ered in section 5.

2. INTEGRATED SIMULATION MODEL
In this section, we describe the methodology and tools used
to conduct the performance evaluation. The simulation en-
vironment consists of detailed models for the RF channel,
the PHY, and MAC layers developed in C and OPNET (for
the MAC layer). These detailed simulation models will con-
stitute an evaluation framework that is critical to studying

the various intricate e�ects between the MAC and PHY lay-
ers. Although interference is typically associated with the
RF channel modeling and measured at the PHY layer, it
can signi�cantly impact the performance of higher layer ap-
plications including the MAC layer. Similarly, changes in
the behavior of the MAC layer protocol and the associated

data traÆc distribution could play an important factor in
the interference scenario and a�ect the overall system per-
formance.

2.1 Channel Model
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The channel model consists of a geometry-based propagation

model for the signals, as well as a noise model. For the
indoor channel, we apply a propagation model consisting of
two parts: 1.) line-of-sight propagation (free-space) for the
�rst 8 meters, and 2.) a propagation exponent of 3.3 for
distances over 8 meters. Consequently, the path loss in dB
is given by

Lp =

�
32:45 + 20 log(f � d) if d < 8 m

58:3 + 33 log(d=8) otherwise,
(1)

where f is the frequency in GHz, and d is the distance in
meters. This model is similar to the one used by Kamerman
[3]. Assuming unit gain for the transmitter and receiver

antennas and ignoring additional losses, the received power
in dBmW is

PR = PT � Lp; (2)

where PT is the transmitted power also in dBmW. Eq. (2) is
used for calculating the power received at a given point due
to either a Bluetooth or an 802.11 transmitter, since this
equation does not depend on the modulation method.

Additive white Gaussian noise (AWGN) is used to model
the noise at the receivers. At 1 Mb/s any fading would be
frequency non-selective; in this case, the SNR is suÆciently
high so that the system is interference limited. This at
fading assumption is less true for the 11 Mb/s 802.11 data
rate, although the system is still interference limited.

The transmitters, channel, and receivers are implemented
at complex baseband. For a given transmitter, inphase and
quadrature samples are generated at a sampling rate of 44�
106 per second. This rate provides four samples/symbol

for the 11 Mb/s 802.11 mode, enough to implement a good
receiver. It is also high enough to allow digital modulation of
the Bluetooth signal to account for its frequency hopping.
Speci�cally, since the Bluetooth signal is approximately 1
MHz wide, it can be modulated up to almost 22 MHz, which
is more than enough to cover the 11 MHz bandwidth (one-

sided) of the 802.11 signal. The received complex samples
from both the desired transmitter and the interferer(s) are
added together at the receiver.

To complete the channel model, the noise must be added
to the received samples. Consider a �xed transmitter power

and no interference. Then, Eqs (1) and (2) allow one to
compute the received signal power for a given distance. The
SNR is calculated in dB according to

SNR = PR � SR; (3)

where SR is the receiver's sensitivity in dBmW. In an ac-
tual receiver, the sensitivity is determined primarily by the
amount of thermal noise in the electronics; within limits im-
posed by physics, a better design can lead to a higher sensi-
tivity. For our modeling purposes, the situation is somewhat
reversed. One assumes a speci�c (achievable) sensitivity and

uses Eq. (3) to compute the SNR. This quantity is used to set
the variance of the random number generator that provides
the AWGN noise for each inphase and quadrature sample.
Please note that the transmitter and interferer powers can
be changed on a packet by packet basis.

A few comments should be made about the relationship

among the received signal power, the received interference

power, the noise power, and the resulting performance. Anal-
ogously to SNR, one can de�ne the signal-to-interference
ratio (SIR) in dB as

SIR = PR � PI ; (4)

where PI is the interference power at the receiver. In the

absence of interference, the bit error rate (BER) for either
the Bluetooth or WLAN system is almost negligible for the
transmitter powers and ranges under consideration.

2.2 PHY Model
The PHY layer includes detailed models of the signal pro-
cessing in the Bluetooth and the 802.11 transmitters and
receivers. As mentioned before, complex baseband imple-

mentations are used.

Bluetooth The GFSK modulation used in the Bluetooth
system is a type of binary partial response continuous phase
modulation. It is a slight generalization of the GMSK mod-

ulation [8] used in the GSM cellular system, which uses a
modulation index of 0.5; instead, a modulation index of
approximately 0.3 is used in Bluetooth. Because of the
Gaussian-shaped �lter in the transmitter, every data bit is
transmitted over two symbol intervals, causing intersymbol
interference but reducing the required bandwidth. The in-

formation carrying phase is denoted by �(t; ~�), where t desig-
nates time, and ~� represents the data bit vector. The cosine
and sine of �(t; ~�), sampled 44 times per data bit (symbol),
give the inphase and quadrature samples.

While there are a number of possible receiver designs, we

chose to implement the noncoherent limiter-discriminator
(LD) receiver [9] [10]. Its simplicity and relatively low cost
should make it the most common type for many consumer
applications. Details of the actual design are given in [11].

802.11b The 1 Mb/s 1 802.11b system transmits data using

di�erential binary phase shift keying. With DBPSK modu-
lation, the information is conveyed by the phase di�erence
between adjacent transmitted symbols. Thus, it is not nec-
essary to have a coherent phase reference in the receiver. To
provide some interference protection, the modulated signal

is spread using a Barker sequence with code length equal to
eleven [2]. That is, each bit duration is divided into eleven
consecutive segments called chips. During each chip, the
transmitted signal is multiplied by either �1, depending on
the code [12]. Because the chip rate is 11� 106 per second,
the two-sided bandwidth of this signal is approximately 22

MHz. After spreading, the signal is fed into a pulse-shaping
�lter that provides further control on the spectral shape.

To achieve 11 Mb/s in an environment with fading and inter-
ference, a more sophisticated modulation scheme is required
if the bandwidth is to be kept constant. This is done using

a type of coded modulation. The basic idea is that uncoded
quadrature phase shift keying provides two bits per symbol.
If the symbol rate is kept constant at 11 � 106 per second
then a maximum data rate of 22 Mb/s is possible. However,
half of these bits are used to provide a coding gain using

1The symbol rate is the same as the bit rate, since this is a
binary modulation scheme.
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complementary code keying (CCK) [13].

2.3 MAC Model
We usedOPNET to develop a simulation model for the Blue-

tooth and IEEE 802.11 protocols. For the IEEE 802.11 pro-
tocol, we used the model available in the OPNET library.
For Bluetooth, we partially implemented the Baseband and
L2CAP layers according to the speci�cations [1]. We as-
sume that a connection is already established between the
master and the slave and that the synchronization process

is complete. The connection type is either SCO for voice or
ACL for data traÆc.

A MAC protocol generally consists of a collection of com-
ponents, each performing a special function, such as the

support of higher layer traÆc, the synchronization process,
the bandwidth allocation, and contention resolution mecha-
nism. In this sequel, we highlight the features that are the
most relevant to our work on interference, namely, we give
a brief description of the frequency hopping, the interface
to the physical layer, and the error detection and correction

schemes.

Frequency Hopping Frequency usage constitutes another
major component of the protocol model. Bluetooth uses a
frequency hopping mechanism that sweeps 79 channels of
the frequency band available at a maximum rate of 1600

hops/s depending on the packet size. Both master and slave
devices are synchronized and follow the same random fre-
quency hopping sequence. This frequency sequence is de-
rived at the master and slave devices and depends on the
master's clock and its Bluetooth address. The algorithm for
generating the sequence works as follows. Given a window

of 32 contiguous frequencies in the 2:4-2:479 GHz range, a
sequence of 32 frequencies is chosen randomly. Once all 32
frequencies in that set have been visited once, a new window
of 32 frequencies is selected. This new window includes 16
of the frequencies previously visited and 16 new frequencies.
For the IEEE 802.11, we focus in this study on the IEEE

802.11 Direct Sequence mode which uses a �xed frequency
that occupies 22 MHz of the frequency band. The center
frequency is selected among 11 available channels.

Error Detection and Correction Error detection and

correction is an essential component in the interference study.
For IEEE 802.11, errors are detected by checking the Frame
Check Sequence (FCS) that is appended to the packet pay-
load. In case an error is found, the packet is dropped and is
then later retransmitted. Otherwise, a positive ACK noti�es
the source of a correct reception. For Bluetooth, the device

�rst applies the error correction algorithm corresponding to
the packet encapsulation used. The encapsulation of voice
packets such as HV 1 and DM5 is shown in Figure 1. HV 1
packets have a total size packet length of 366 bits includ-
ing a header and an access code of 126 bits. HV 1 packets
use a payload of 80 information bits, a 1/3 FEC rate and

are sent every TSCO = 2 or 1250 �s. In case of an error
occurrence in the payload, the packet is never dropped. A
1/3 FEC is applied to the packet header while a Hamming
code (d = 14) is applied to the access code. Uncorrected
errors in the header and access code lead to a packet drop.
In addition, errors in the payload are corrected using a 1/3

FEC rate.

Figure 1: Bluetooth Packet Format

On the other hand, DM5 packets use a 2/3 rate FEC to
correct payload errors as shown in Figure 1. Errors in the
header or access code are corrected by a 1/3 FEC and a
Hamming code, respectively. Uncorrected errors lead to
dropping packets and the application of the ARQ and SEQN

schemes.

Statistics Collection At the MAC layer, a set of perfor-
mance metrics are de�ned to include access delay, probabil-
ity of packet loss, and residual number of errors in the Blue-

tooth voice packets. The access delay measures the time
it takes to transmit a packet from the time it is passed to
the MAC layer until it is successfully received at the desti-
nation. The access delay for the Bluetooth LAN traÆc is
measured at the L2CAP layer in order to account for re-
transmission delays. Packet loss measures the number of

packets discarded at the MAC layer due to errors in the bit
stream. This measure is calculated after performing error
correction. The residual number of errors in the Bluetooth
voice packets measures the number of errors that remain in
the packet payload after error correction is performed.

2.4 MAC Layer to PHY Layer Interface
The OPNET MAC models were interfaced to the physical
layer models described in the previous section in order to
simulate the overall system.

Figure 2: Packet Collision and Placement of Errors

This interface module is required to capture all changes in
the channel state (mainly in the energy level). Consider the
Bluetooth transmitter-channel-receiver chain of processes.
For a given packet, the transmitter creates a set of signal
samples that are corrupted by the channel and input to the
receiver; interference may be present for all or only speci�c

segments of the packet, as shown in Figure 2. A similar chain
of processing occurs for an 802.11b packet. The interface
module is designed to process a packet at a time.

At the end of each packet transmission, the MAC layer gen-
erates a data structure that contains all the information re-

quired to process the packet. This structure includes a list
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of all the interfering packets with their respective duration,

timing o�set, frequency, and transmitted power. The topol-
ogy of the scenario is also included. The data structure
is then passed to the physical layer along with a stream of
bits representing the packet being transmitted. The physical
layer returns the bit stream after placing the errors resulting
from the interference.

3. SIMULATION MODEL VALIDATION
In order to speed up the simulation process, we replace each
transmitter-channel-receiver process with a table-based ap-
proach combined with a binary symmetric channel. BER
tables for di�erent values of SIR and for di�erent frequency
o�sets were derived. For a segment of a packet where the

interference is stationary, the SNR and SIR are computed
using the transmitters' powers, the topology, and the path
loss model. Thus, using the calculated SIR and the given
frequency o�set of the intended signal with respect to the
interference signal, the average BER can be extracted by a

simple table lookup operation. Errors are then generated
for each bit of the packet segment using the binary symmet-
ric channel with crossover probability equal to the average
BER of the segment. The SNR in these tables is assumed
to be very high (greater than 30 dB), which is the case for
interference-limited environments. Still, the software can

check this assumption by comparing the SIR to this value.

Using tabulated BER values, as opposed to running the
detailed signal processing receiver and channel simulation
models in real-time, gives a speed up factor of about 120.
The main question is the accuracy of this approach; this

topic is discussed below.

3.1 Results Accuracy
Since the implementation of the PHY layer required choos-
ing a number of design parameters, the �rst step in the val-
idation process is comparing the PHY results against theo-
retical results. Complete BER curves of the Bluetooth and

802.11b systems are given in [11]; for the AWGN and at
Rician channels without interference, all the results match
very closely to analytical bounds and other simulation re-
sults. Also, the simulation results for both the MAC and
PHY models were compared and validated against analyti-

cal results for packet loss given di�erent traÆc scenarios [6].

3.2 Table Implementation Accuracy
Figure 3 gives the BER in terms of the SNR for varying
SIR and for co-channel interference. To create the table,
the curves are sampled every 0.5 dB in both SNR and SIR.
A couple of points need to be made: (1) For a �xed level of

SIR, one notices that the change in BER for a 0.5 dB step in
SNR is quite small, even at low SNR. For example, a change
in BER from 0.25 to 0.2 is not particularly important, since
it is still so high that a packet will most likely be lost. (2)
For a �xed SNR, a 0.5 step in SIR also gives a small relative
change in BER, especially for SIRs below 2 dB. As the SIR

goes above 2 dB, the BER drops below 10�2, and the sys-
tem performance becomes increasingly good. For the overall
system performance, it does not really matter if the BER is
10�5, 10�6, or smaller.

The table implementation does not impact the MAC per-

formance results. A sanity check experiment was conducted
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Figure 3: Impact of WLAN Interference on BT; Co-
Channel Interference

to validate the simulation results obtained with the BER
tables and compare them to the results obtained using the
signal processing simulation model. Therefore, we run a set
of two experiments, one with the BER tabulated values and

one with the integrated DSP models, keeping all other sim-
ulation parameters the same. Using tabulated BER values
instead of the simulation model for the DSP receiver does
not a�ect the packet loss metric.

4. SIMULATION RESULTS
We present simulation results to evaluate the performance
of Bluetooth in the presence of WLAN interference and vice
versa. All simulations are run for 30 seconds of simulated
time. The performance measurements are logged at the
slave device for Bluetooth and at the Mobile device for the

WLAN. The mean access delay result is normalized by the
mean delay when no interference is present. We use the
con�guration and system parameters shown in Table 1.

For Bluetooth, we consider two types of application, namely

voice and internet traÆc. For voice, we assume a symmetric
stream of 64 kbits/s each way using HV 1 packet encapsu-
lation. For modeling internet traÆc, we consider a LAN
access application. This is typically a connection between a
PC and an Access Point or between two PCs, and it allows
for exchanging TCP/IP or UDP-like traÆc. Both slave and

master devices generate IP packets according to the distri-
bution presented in Table 2. The packet interarrival time
is exponentially distributed with a mean equal to 29:16ms,
which corresponds to a load of 30 % of the channel capacity
(248 kbits/s for both directions). Packets are encapsulated
with DM5 Baseband packets after the corresponding PPP,

RFCOMM, and L2CAP packet overheads totaling 17 bytes
are added.

For the WLAN, we use the IP traÆc distribution presented
in Table 2. We set the o�ered load to 30% of the chan-
nel capacity, which corresponds to mean packet interarrival

times of 2:52 ms and 10:56 ms for the 11 Mbits/s and the 1
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Table 1: Simulation Parameters

Simulation Parameters Values

Propagation delay 5 �s/km

Length of simulation run 30 seconds

Bluetooth Parameters Values

LAN Packet Interarrival Time 29.16 ms

ACL Baseband Packet Encapsulation DM5

SCO Baseband Packet Encapsulation HV1

Transmitted Power 1 mW

Slave Coordinates (0,0)

Master Coordinates (1,0)

WLAN Parameters

Packet Interarrival Time for 1 Mbits/s 10.56 ms

Packet Interarrival Time for 11 Mbits/s 2.52 ms

Transmitted Power 25 mW

AP Coordinates (0,15)

Mobile Coordinates (0,d)

Packet Header 224 bits

Slot Time 2 � 10�5 seconds

SIFS Time 1 � 10�5 seconds

DIFS Time 5 � 10�5 seconds

CWmin 31

CWmax 1023

Fragmentation Threshold None

RTS Threshold None

Short Retry Limit 4

Long Retry Limit 7

Table 2: IP TraÆc: Message Size Distribution

Message Size (bytes) 64 128 256 512 1024 1518

Probability 0.6 0.06 0.04 0.02 0.25 0.03

Mbits/s systems, respectively.

We present the results from four di�erent simulation ex-
periments that show the impact of WLAN interference on
Bluetooth devices and vice versa for di�erent applications,
namely voice and data traÆc. Table 3 provides a summary

of these four cases, while Figure 4 shows the experimental
topology. Please note that the WLAN access point (AP) is
�xed at (0,15), while the WLANmobile is free to move along
the vertical axis, i.e. its coordinates are (0,d). The Blue-
tooth devices are �xed at the given locations. In the �rst
two experiments, the mobile is the generator of the 802.11

data, while the AP is the sink. In the last two experiments
the traÆc is generated at the AP.

Table 3: Summary of the Experiments

Experiment Desired Interferer WLAN WLAN
Signal AP Mobile

1 BT Voice 802.11 Sink Source
2 BT LAN 802.11 Sink Source

3 802.11 BT Voice Source Sink
4 802.11 BT LAN Source Sink

Figure 4: Experiment Topology

Experiment 1 - We study a voice application generating a
symmetric stream of 64 kbits/s each way between the Blue-

tooth master and slave. The interference is from the mobile
sending data packets to the AP and receiving acknowledg-
ments (ACKs) from it. Since most of the WLAN traÆc is
originating close to the Bluetooth slave, the slave may su�er
from serious interference. Figure 5(a) shows the probability
of Bluetooth voice packet loss at the slave as a function of

the distance to the mobile for interference from both 1 Mb/s
and 11 Mb/s 802.11 WLANs.

Consider the 1 Mb/s case �rst. At one meter, approximately
eight percent of the packets are dropped, due to an error in
either the access code or the packet header. Even when the

packet is accepted, it may still contain a signi�cant number
of residual payload errors as shown in Figure 5(b). These er-
rors are measured after the FEC decoding is applied. While
six errors may not seem to be many, in an eighty bit payload
they will lead to poor voice quality. The packet loss is still
signi�cant even up to a distance of three meters.

The average length of a 1 Mb/s WLAN packet is 3,168 bits.
Thus, its transmission time is on the order of �ve Bluetooth
slots. HV1 packets are being transmitted in every Blue-
tooth slot, but on di�erent frequencies. Since the direct
sequence spreading requires a bandwidth of 22 MHz, there

is a signi�cant probability that a WLAN packet may cause
interference to multiple Bluetooth packets. In other words,
although Bluetooth is hopping to a new frequency for each
slot, the 802.11 interference is present in roughly 22 of the
79 channels. Yet with an average interarrival time for the

WLAN packets of 10.56 ms, many HV1 packets are suc-
cessfully received between the transmissions of the WLAN
packets.

For the 11 Mb/s case, the general trends are similar. How-
ever, the probability of packet loss is slightly lower. Because

both the 1 and 11 Mb/s 802.11 modulations use the same
bandwidth, the time overlap, not the frequency overlap, is
the main factor a�ecting performance. At 11 Mb/s, it takes
only 491 �s, on average, to transmit a packet 2; there-
fore, the Bluetooth and WLAN packets are about the same
length. Thus, a WLAN packet will usually only interfere

with a single Bluetooth one.

2Including the packet header transmitted at 1 Mb/s.
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Experiment 2 - We focus on a LAN access application.

Bluetooth is being used to send data from the master to the
slave, and the mobile is still the source of WLAN packets.
Figure 6(a) shows the probability of Bluetooth LAN packet
loss versus the distance to the mobile, again for both WLAN
data rates. While up to almost fourteen percent of the pack-
ets may be lost, the use of ARQ still allows the system to be

useful. Since a packet sent by the master is acknowledged
(positively or negatively) in the next slot, the access delays
remain quite small, as seen in Figure 6(b). Even at half
a meter with the 11 Mb/s WLAN interference, the access
delay is just doubled.

One observation is that for Bluetooth LAN packets, the ef-
fect of the di�erent 802.11 data rates is reversed. The prob-
ability of packet loss is now higher when the 11 Mb/s system
is the interferer. This result is also due to the traÆc distri-
butions. The Bluetooth LAN packets have a distribution

with an average length that needs two DM5 packets, where
each packet requires 2,871 �s for transmission. Now, the
Bluetooth and 1 Mb/s WLAN packets are approximately
the same length, so it is most likely that a WLAN packet
corrupts no more than one Bluetooth packet. The 11 Mb/s
WLAN packets are much shorter, and so a number of them

can occur during the transmission of the Bluetooth packet.
If the Bluetooth LAN packet is on the same frequency as
any of these WLAN packets, it will probably be corrupted.

Experiment 3 - Next, we are interested in the e�ect of the
Bluetooth voice packets on the 802.11 system. Let the AP

be the source of WLAN data packets and the mobile be the
receiver. Because the data packets are generally longer then
the ACKs, this is a more critical scenario then when the
mobile is the source. Figure 7(a) shows the probability of
WLAN packet loss as a function of distance to the Bluetooth
slave.

For a half meter distance, about sixty �ve percent of the 1
Mb/s packets are lost. This phenomenon occurs despite the
frequency hopping of Bluetooth. The loss rate is so high
due to the relatively long length of an 802.11 packet com-

pared to a Bluetooth one. Since 802.11 does not have any
error correction, all it takes is a single bit error to e�ectively
erase the packet. When transmitting HV1 voice packets, the
Bluetooth system sends many packets during the transmis-
sion time of an 802.11 packet. While there is approximately
a 22/79 chance that a single packet is in the 802.11 band,

this probability must be multiplied by the number of Blue-
tooth slots occurring doing the WLAN packet transmission.
Also, note that the access delay is increased by almost three
orders of magnitude due to the interference, as shown in
Figure 7(b).

Still considering the 1 Mb/s mode, one sees that the per-
formance signi�cantly improves as the distance exceeds two
meters. There appears to be almost a strong \threshold ef-
fect." The cause of this phenomenon is the direct sequence
spreading, which is reasonably robust to a narrow-band in-
terferer such as Bluetooth. Below two meters, the received

interference power, based on the topology and transmitter
powers, is so much that the 802.11 receiver makes many
bit errors. Above this distance, the Barker code correla-
tion e�ectively spreads the Bluetooth interference while de-
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Experiment 1. Bluetooth voice

packets with 802.11 interference. (a) Probability of
packet loss. (b) Residual errors.

spreading the desired signal. Then, the performance of the
1 Mb/s system is better than the 11 Mb/s system.

The 11 Mb/s system has a 0.3 probability of packet loss at
a range of half a meter. This probability drops almost lin-
early to a value near 0.1 for a range of 3.5 meters; the slope
does not increase until after this distance. Thus, there is
not as clear a threshold. Since the 11 Mb/s WLAN packets
are more than six times shorter than the 1 Mb/s ones, there

is a lower probability of overlap in time with the Bluetooth
packet. This accounts for the lower packet loss probabilities
at distances under two meters. However, the CCK modula-
tion is not as robust at the direct sequence spreading. So, it
is unable to provide as low a bit error rate as the DS mod-
ulation for distances in the approximate range of 2.5 to 4.5

meters.

Experiment 4 - Let the mobile be the receiver of the
WLAN packets from the AP, and consider how the Blue-
tooth data packets degrade the WLAN performance. Fig-
ure 8(a) shows that for both data rates, the probability of

an 802.11 packet being lost is much smaller for Bluetooth
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Experiment 2. Bluetooth data pack-
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packet loss. (b) Access delay.

LAN interference than for Bluetooth voice interference (Ex-
periment 3). The main reason for this di�erence is that the
average interarrival time of the Bluetooth packets is now

29.16 ms. Again, we see a distance where the performance
of the 1 Mb/s system becomes better than the 11 Mb/s sys-
tem, both in terms of probability of packet loss and delay.
Beyond four meters, both systems show very little e�ects
from interference, and the higher speed system again be-
comes the preferred choice. It should be noted that depend-

ing on the topology and the transmitter powers, the exact
distance where one data rate becomes better than another
will change. Yet, it is conjectured that these results will
hold for very general scenarios.

Figure 8(b) shows the access delays. At a distance of half a

meter, the 1 Mb/s case requires a delay less than three times
the delay with no interference, while the 11 Mb/s case has
a delay about 1.5 times its optimal value. Please compare
this to the previous experiment, where the delay for the 1
Mb/s case is about 900 times greater, and the delay for the
11 Mb/s is approximately 70 times. Not surprisingly, the

streaming voice packets cause substantially more interfer-
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ence.

5. CONCLUDING REMARKS
We presented results on the performance of Bluetooth and
WLAN operating in the 2.4 GHz ISM band based on detailed
channel, MAC, and PHY layer models for both systems. The
evaluation framework used allows us to study the impact of
interference in a closed loop environment where two systems
are a�ecting each other, and explore the MAC and PHY

layer interactions in each system.

Our results indicate that scenarios using Bluetooth voice
traÆc may be the worst of all interference cases (65% of
packet loss for the WLAN 1 Mbits/s system). Also, we
note that Blutooth voice may be severely impacted by in-

terference with packet loss of � 8%. Moreover, the results
suggest that the data rate in the WLAN system may be a
factor in the performance, and, the recommended rate for
WLAN depends on the topology and the parameters used.
Therefore, one may want to exploit the data rate scaling
algorithm available in the WLAN system for improving per-

formance. Additionally, results could be obtained with the
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WLAN Frequency Hopping systems and compared to the
Direct Sequence system presented here.

Although the results depend on a number of parameters

including traÆc distribution, we believe that similar trends
should apply for most practical scenarios. Still, there may be
some bene�t in looking at more complicated scenarios with
more than two devices of each type and in studying higher
layer traÆc such as TCP/IP. Other future directions include
exploring acquisition mechanisms for WLAN and Bluetooth

and their respective performance in an interference-limited
environment. Finally, we hope that the work presented here
could represent a �rst step in the development of coexistence
mechanisms.
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RÉSUMÉ.

ABSTRACT. Most emerging radio technologies for Wireless Personal Area Networks such as the
Bluetooth protocol are designed to operate in the 2.4 GHz ISM band. Since both Bluetooth
and IEEE 802.11 devices use the same frequency band and may likely come together in a lap-
top or may be close together at a desktop, interference may lead to signi cant performance
degradation. The main goal of this paper is to describe the interference problem and to high-
light a coexistence framework for these technologies to operate in a proximal environment. We
give an overview of several coexistence solutions proposed for various interference scenarios.
We study several factors that may impact interference such as fragmentation and the choice of
packet encapsulation and give simulation results for selected scenarios and con gur ations of
interest.
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KEYWORDS: WPAN, Bluetooth, WLAN, Interference, Coexistence
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1. Introduction

Increasingly people work and live on the move. To support this mobile lifestyle,
especially as work becomes more intensely information-based, companies are pro-
ducing various portable and embedded information devices including PDAs, pagers,
cellular telephones and active badges. At the same time, recent advances in sensor
integration and electronic miniaturization are making it possible to produce sensing
devices equipped with signi cant processing memory and wireless communication
capabilities to create smart environments where scattered sensors could coordinate to
establish a communication network. These wearable computing devices and ad-hoc
smart environments impose unique requirements on the communication protocol de-
sign such as low power consumption, frequent make and break connections, resource
discovery and utilization and have created the need for Wireless Personal Area Net-
works (WPANs).

A WPAN is a wireless ad hoc data communications system that allows a number
of independent devices to communicate. WPAN is distinguished from other types of
wireless networks in both size and scope. Communications in WPAN are normally
con ned to a person or object and extend up to 10 meters in all directions.

This is in contrast to Wireless Local Area Networks (WLANs) that typically cover
a moderately sized geographic area such as a single building, or campus. WLANs ope-
rate in the 100 meter range and are intended to augment rather than replace traditional
wired LANs. They are often used to provide the  nal few feet of connectivity between
the main network and the user. Users can plug into the network without having to
look for a place to link their computer, or having to install expensive components and
wiring.

What is emerging today are wireless technologies, including IEEE 802.11 [802 ],
Bluetooth [GRO a], IrDa [ASS ], and HomeRF [GRO b][K. 00], that promise to out t
portable and embedded devices with high bandwidth, localized wireless communica-
tion capabilities that can also reach the globally wired Internet.

Due to its almost global availability, the 2.4 GHz Industry Scienti c and Medical
(ISM) unlicensed band constitutes a popular frequency band suitable to low cost radio
solutions such as the ones proposed for WPANs and WLANs. This sharing of the
spectrum among various wireless devices that can operate in the same environment
may lead to severe interference and result in signi cant performance degradation.

The main goal of this paper is to describe the interference problem. We give seve-
ral interference scenario examples and provide a qualitative discussion of the perfor-
mance degradation resulting from interference based on several published results in
the literature. We also give an overview of the coexistence framework adopted by the
IEEE 802.15.2 Task Group and discuss some of the coexistence solutions proposed.

The rest of the paper is structured as follows. In section 2, we give some general
insights on the Bluetooth and WLAN device operation. In section 3, we describe the
interference problem and give several interfence scenarios as example. In section 4,
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we present a coexistence framework and in section 5 give some insights on factors
that might impact interference such as the use of Forward Error Correction (FEC), the
choice of the packet size and encapsulation. Our observations are accompanied with
simulation results obtained for an example scenario. Concluding remarks are offered
in section 6.

2. Wireless Technologies in the 2.4 GHz Band

In this section we give an overview of the various radio technologies operating
in the 2.4 GHz unlicensed ISM band. We focus on the Bluetooth and IEEE 802.11
protocols.

2.1. The Bluetooth Specifications

In this section, we give a brief overview of the Bluetooth technology [GRO a] and
discuss the main functionality of its protocol speci cations which consist of several
modules, namely, the Radio Frequency (RF), Baseband (BB) and Link Manager (LM).
Bluetooth is a short range (0 m - 10 m) wireless link technology aimed at replacing
non-interoperable proprietary cables that connect phones, laptops, PDAs and other
portable devices together. Bluetooth operates in the ISM frequency band starting at
2.402 GHz and ending at 2.483 GHz in the USA, and Europe. 79 RF channels of
1 MHz width are de ned. The air interface is based on an antenna power of 1 mW
(0 dBi gain). The signal is modulated using binary Gaussian Frequency Shift Keying
(GFSK). The raw data rate is de ned at 1 Mbits/s. A Time Division Multiplexing
(TDM) technique divides the channel into 625�s slots. Transmission occurs in packets
that occupy an odd number of slots (up to 5). Each packet is transmitted on a different
hop frequency with a maximum frequency hopping rate of 1600 hops/s.

Two or more units communicating on the same channel form a piconet, where one
unit operates as a master and the others (a maximum of seven active at the same time)
act as slaves. A channel is de ned as a unique pseudo-random frequency hopping se-
quence derived from the master device’s 48-bit address and its Bluetooth clock value.
Slaves in the piconet synchronize their timing and frequency hopping to the mas-
ter upon connection establishment. In the connection mode, the master controls the
access to the channel using a polling scheme where master and slave transmissions
alternate. A slave packet always follows a master packet transmission.

There are two types of link connections that can be established between a mas-
ter and a slave : the Synchronous Connection-Oriented (SCO), and the Asynchronous
Connection-Less (ACL) link. The SCO link is a symmetric point-to-point connection
between a master and a slave where the master sends an SCO packet in one TX slot
at regular time intervals, de ned by TSCO time slots. The slave responds with an SCO
packet in the next TX opportunity. TSCO is set to either 2, 4 or 6 time slots for HV 1,
HV 2, orHV 3 packet formats respectively. All three formats of SCO packets are de -
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ned to carry 64 Kbits/s of voice traf c and are never retransmitted in case of packet loss
or error. The ACL link, is an asymmetric point-to-point connection between a master
and active slaves in the piconet. Several packet formats are de ned for ACL, namely
DM1, DM2, and DM3 packets that occupy 1, 3, and 5 time slots respectively. An
Automatic Repeat Request (ARQ) procedure is applied to ACL packets where packets
are retransmitted in case of loss until a positive acknowledgement (ACK) is received
at the source. The ACK is piggy-backed in the header of the returned packet where
an ARQN bit is set to either 1 or 0 depending on whether the previous packet was
successfully received or not. In addition, a sequence number (SEQN) bit is used in the
packet header in order to provide a sequential ordering of data packets in a stream and
 lter out retransmissions at the destination. Forward Error Correction (FEC) is used
on some SCO and ACL packets in order to correct errors and reduce the number of
ACL retransmissions.

2.2. The IEEE 802.11 Specifications

The IEEE 802.11 standard [802 ] de nes both the physical (PHY) and medium
access control (MAC) layer protocols for WLANs. In this sequel, we shall be using
WLAN and 802.11 interchangeably.

The IEEE 802.11 standard calls for three different PHY speci cations : frequency
hopping (FH) spread spectrum, direct sequence (DS) spread spectrum, and infrared
(IR). The transmit power for DS and FH devices is de ned at a maximum of 1 W and
the receiver sensitivity is set to -80 dBmW. Antenna gain is limited to 6 dB maximum.
In this work, we focus on the 802.11b speci cation (DS spread spectrum) since it is in
the same frequency band as Bluetooth and the most commonly deployed.

The basic data rate for the DS system is 1 Mbits/s encoded with differential binary
phase shift keying (DBPSK). Similarly, a 2 Mbits/s rate is provided using differential
quadrature phase shift keying (DQPSK) at the same chip rate. Higher rates of 5.5
and 11 Mbits/s are also available using techniques combining quadrature phase shift
keying and complementary code keying (CCK) ; all of these systems use 22 MHz
channels. Details of the modulation methods are provided in Section III.

The IEEE 802.11 MAC layer speci cations, common to all PHYs and data rates,
coordinate the communication between stations and control the behavior of users who
want to access the network. The Distributed Coordination Function (DCF), which
describes the default MAC protocol operation, is based on a scheme known as carrier-
sense, multiple access, collision avoidance (CSMA/CA). Both the MAC and PHY
layers cooperate in order to implement collision avoidance procedures. The PHY layer
samples the received energy over the medium transmitting data and uses a clear chan-
nel assessment (CCA) algorithm to determine if the channel is clear. This is accom-
plished by measuring the RF energy at the antenna and determining the strength of
the received signal commonly known as RSSI, or received signal strength indicator.
In addition, carrier sense can be used to determine if the channel is available. This
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technique is more selective since it veri es that the signal is the same carrier type as
802.11 transmitters. A virtual carrier sense mechanism is also provided at the MAC
layer. It uses the request-to-send (RTS) and clear-to-send (CTS) message exchange
to make predictions of future traf c on the medium and updates the network alloca-
tion vector (NAV) available in stations. Communication is established when one of
the wireless nodes sends a short RTS frame. The receiving station issues a CTS frame
that echoes the sender’s address. If the CTS frame is not received, it is assumed that a
collision occurred and the RTS process starts over. Regardless of whether the virtual
carrier sense routine is used or not, the MAC is required to implement a basic access
procedure as follows. If a station has data to send, it waits for the channel to be idle
through the use of the CSMA/CA algorithm. If the medium is sensed idle for a period
greater than a DCF interframe space (DIFS), the station goes into a backoff procedure
before it sends its frame. Upon the successful reception of a frame, the destination sta-
tion returns an ACK frame after a Short interframe space (SIFS). The backoff window
is based on a random value uniformly distributed in the interval [CWmin; CWmax],
whereCWmin andCWmax represents the Contention Window parameters. If the me-
dium is determined busy at any time during the backoff slot, the backoff procedure is
suspended. It is resumed after the medium has been idle for the duration of the DIFS
period. If an ACK is not received within an ACK timeout interval, the station assumes
that either the data frame or the ACK was lost and needs to retransmit its data frame
by repeating the basic access procedure.

3. Interference in the 2.4 GHz Band

The 2.4 GHz ISM band allows for primary and secondary uses. Secondary uses
are unlicensed but must follow rules de ned in the Federal Communications Com-
mission Title 47 of the Code for Federal Regulations Part 15 [COM ] relating to total
radiated power and the use of the spread spectrum modulation schemes. Interference
among the various uses is not addressed as long as the rules are followed. Thus, the
major down side of the unlicensed ISM band is that frequencies must be shared and
potential interference tolerated. While the spread spectrum and power rules are fairly
effective in dealing with multiple users in the band, provided the radios are physically
separated, the same is not true for close proximity radios. Multiple users, including
self-interference of multiple users of the same application, have the effect of raising
the noise  oor in the band resulting in a degradation of performance. The impact of
interference may be even more severe, when radios of different applications use the
same band while located in close proximity.

Thus, the interference problem is characterized by a time and frequency overlap
as depicted in Figure 1. In this case, a Bluetooth frequency hopping system occu-
pying 1 MHz of the spectrum is shown to overlap with a WLAN Direct Sequence
Spread Spectrum signal occupying a 22 MHz channel. Note that, the collision overlap
time depends on the frequency hopping pattern and the traf c distribution of both the
Bluetooth and WLAN systems.
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FIG. 1. Time and Frequency Collisions in the 2.4 GHz Band

Moreover, we can classify interferers into two classes based on their usage of the
spectrum. Devices implementing the Direct Sequence Spread Spectrum (DSSS) tech-
nique constitute one class of interferer that utilize a  x ed channel in the band. Ty-
pically this channel is 22 MHz wide, although the width of the signal depends on
the transmitter’s implementation. The second class of interferers is represented by
devices implementing a type of Frequency Hopping (FH) mechanism. Note that the
IEEE 802.11 speci cations include a frequency hopping technique that uses a deter-
ministic frequency pattern. On the other hand, the Bluetooth speci cations de ne a
pseudo-random frequency sequence based on the Bluetooth device address and its in-
ternal clock. While interference among systems from the same type such as Bluetooth
on Bluetooth, or IEEE 802.11 on IEEE 802.11 interference can be signi cant, it is
usually considered early on in the design stages of the protocol. Therefore, the worst
realistic interference scenario consists of a mix of heterogeneous devices (i.e. devices
belonging to different classes). Thus, most results published in the literature today
focus on this worst case scenario.

Recently, there has been several attempts at quantifying the impact of interference
on both the WLAN and the Bluetooth performance. Published results can be classi ed
into at least three categories depending on whether they rely on analysis, simulation,
or experimental measurements. Analytical results based on probability of packet col-
lision were obtained by Shellhammer [S. 00a], Ennis [G. 98], and Zyren [J. 99] for
the WLAN packet loss and by Golmie et. al. [N. 01b] for the Blutooth packet error.
Although, these analytical results can often give a  rst order approximation on the im-
pact of interference and the performance degradation (up to 25 % for Bluetooth packet
loss and close to 70% for WLAN packet loss), they often make a number of assump-
tions concerning the traf c distributions and the operation of the media access protocol
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which can make them less realistic. More importantly, in order for the analysis to be
tractable, mutual interference that can change the traf c distribution for each system
is often ignored. On the other hand, experimental results such as the ones obtained by
Kamerman [A. 00], Howittt et. al [I. 01], and Fumolari [D. 01] can be considered
more accurate at the cost of being too speci c to the implementation tested. Thus, a
third alternative consists of using modeling and simulation to evaluate the impact of
interference. This third approach can provide a more  e xible framework. However,
the accuracy of the results depends on the modeling assumptions made. Zurbes et.
al. [S. 00b] present simulation results for a number of Bluetooth devices located in
a single large room. They show that for 100 concurrent web sessions, performance is
degraded by only  ve percent. Golmie et. al. [N. 01c] use a detailed MAC and PHY
simulation framework to evaluate the impact of interference. Similar results have been
obtained by Lansford et. al. [J. 00a] who use simulation and experimental measure-
ments to quantify the interference resulting from Bluetooth and IEEE 802.11. Their
simulation models are based on a link budget analysis and a Q function calculation for
the channel and PHY models respectively, in addition to the MAC layer behavior.

4. Coexistence Framework

Wireless system designers have always had to contend with interference from both
natural sources and other users of the medium. Thus, the classical wireless commu-
nication design cycle has consisted of measuring or predicting channel impairments,
choosing a modulation method, signal pre-conditioning at the transmitter, and pro-
cessing at the receiver to reliably construct the transmitted information. However,in
contrast to classical techniques to suppress interference such as modulation, channel
coding, interleaving and equalization, most of the techniques proposed for solving the
problem of interference in the 2.4 GHz band focus on adaptive non signal processing
control strategies including power and frequency hopping control, and MAC parame-
ter adjustments and scheduling.

In fact, the are a number of industry led activities focused on coexistence in the
2.4 GHz band. The IEEE 802.15.2 Coexistence Task Group was formed in order to
evaluate the performance of Bluetooth devices interfering with WLAN devices and
develop a model for coexistence which will consist of a set of recommended practices
and possibly modi cations to the Bluetooth and the IEEE 802.11 standard speci ca-
tions [802 ] that allow the proper operation of these protocols in a cooperating way. At
the same time, the Bluetooth Special Interest Group (SIG) formed its own task group
on Coexistence. Both the Bluetooth and the IEEE working groups maintain liaison re-
lations and are looking at similar techniques for alleviating the impact of interference.
The proposals considered by the groups range from collaborative schemes intended
for Bluetooth and IEEE 802.11 protocols to be implemented in the same device to
fully independent solutions that rely on interference detection and estimation.

Collaborative Mechanisms-
Mechanisms for collaborative schemes have been proposed to the IEEE 802.15 Co-
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existence Task Group and are based on a MAC time domain solution that alternates
the transmission of Bluetooth and WLAN packets (assuming both protocols are im-
plemented in the same device and use a common transmitter) [J. 00b]. A priority
of access is given to Bluetooth for transmitting voice packets, while WLAN is given
priority for transmitting data.

Non-Collaborative Mechanisms-
The non-collaborative mechanisms considered range from adaptive frequency hop-
ping [B. 01] to packet scheduling and traf c control [N. 01a]. They all use similar
techniques for detecting the presence of other devices in the band such measuring the
bit or frame error rate, the signal strength or the signal to interference ratio (often
implemented as the Received Signal Indicator Strength (RSSI)). For example, each
device can maintain a bit error rate measurement per frequency used. Frequency hop-
ping devices can then know which frequencies are occupied by other users of the band
and thus modify their frequency hopping pattern. They can even choose not to transmit
on a certain frequency if that frequency is occupied. The  rst technique is known as
adaptive frequency hopping, while the second technique is known as MAC scheduling.
Each technique has advantages and disadvantages. One of the advantages in using a
scheduling policy is that it does not require any changes in the FCC rules. In fact, title
47, part 15 of the FCC rules on radio frequency devices [COM ], allows a frequency
hopping system to recognize the presence of other users within the same spectrum
band so that it adapts its hopsets to avoid hopping on occupied channels. Further-
more, scheduling in the Bluetooth speci cations is vendor implementation speci c.
Therefore, one can easily implement a scheduling policy with the currently available
Bluetooth chip set. On the other hand, adaptive frequency hopping requires changes
to the Bluetooth hopping pattern and therefore a new Bluetooth chip set design. While
both techniques can reduce the Bluetooth packet loss and the impact of interference
on the other system, only the adaptive frequency hopping technique can increase the
Bluetooth throughput by maximizing the spectrum usage.

Figure 2 illustrates the coexistence mechanisms space with respect to the duty
cycle or the device activity and frequency band occupancy. As the number of interfe-
rers increase, each system is forced to transmit less often in order to avoid collisions.
Thus, as the band occupancy increases, the duty cycle is reduced imposing time do-
main solutions. Frequency domain solutions such as adaptive frequency hopping can
only be effective when the band occupancy is low.

5. Factors Impacting Interference

In this section we discuss different factors that may impact interference. Our dis-
cussion is based on performance results obtained from our detailed simulation mode-
ling tool [N. 01c]. The example scenario that we use is based on a four node topology
including two WLAN nodes (1 access point (AP) and one mobile device) and two
Bluetooth nodes (1 master and 1 slave). Data is transmitted from the mobile WLAN
node to the AP that responds with acknowledgement messages upon the successful
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FIG. 2. Coexistence Solution Space

receipt of data packets. In order to better visualize the topology we can think of the
placement of the four wireless devices on a two dimensional grid. The WLAN devices
are located at (0,15) and (0,d) meters for the AP and mobile device respectively. The
Bluetooth devices are placed at (0,0) and (1,0) meters for the slave and master de-
vice respectively. The transmitting power is set to 25 mW and 1 mW for WLAN and
Bluetooth respectively. Statistics are collected at the Bluetooth slave device and the
WLAN mobile node. Note that the distance between the WLAN mobile node and the
Bluetooth slave is varied along the "y" coordinate axis. The WLAN traf c distribution
is set as follows. The offered load is set to 50% of the channel capacity. The packet
size is 8000 bits and the packet interarrival time is set to 1.86 ms. The con guration
and system parameters are summarized in Table 1.

Choice of Bluetooth Voice Encapsulation-
Figure 3 illustrates the effect of chosing different packet encapsulation schemes for
transmitting Bluetooth voice packets in an interference environment. The encapsula-
tion varies from HV 1 that use a 1/3 FEC rate and a TSCO = 2, to HV 2 that use a
2/3 FEC rate and a TSCO = 4, and HV 3 that use no FEC and a TSCO = 6. Note
that there is no difference in the total packet length between the different HV packets.
From Figure 3(a), we observe that the choice of packet encapsulation does not impact
the performance of Bluetooth, in other words the use of additional error correction
does not improve performance. On the other hand, we note from Figure 3(b) that
HV 3 is "friendlier" to WLAN due to a longer TSCO period.

FEC Ef ciency -
We use three types of Bluetooth packet encapsulations, namely, DM1, DM3, and
DM5, that occupy 1, 3 and 5 slots respectively. The offered load for Bluetooth is set
to 30% of the channel capacity which corresponds to a packet interarrival of 2:91 ms,
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Simulation Parameters Values
Propagation delay 5 �s/km
Length of simulation run 30 seconds
Bluetooth Parameters Values
Transmitted Power 1 mW
Slave Coordinates (0,0) meters
Master Coordinates (1,0) meters
WLAN Parameters
Packet Length 8000 bits
Packet Interarrival Time for 11
Mbits/s

1.86 ms

Transmitted Power 25 mW
AP Coordinates (0,15) meters
Mobile Coordinates (0,d) meters
Packet Header 224 bits
Slot Time 2 � 10�5 seconds
SIFS Time 1 � 10�5 seconds
DIFS Time 5 � 10�5 seconds
CWmin 31
CWmax 1023
Fragmentation Threshold None
RTS Threshold None
Short Retry Limit 4
Long Retry Limit 7

TAB. 1. Simulation Parameters

8:75 ms and 14:58 ms for DM1, DM3 and DM5 packets respectively. In this case
we note from Figure 4 that the use of FEC has limited bene ts and can only improve
the performance of Bluetooth for low interference scenarios (i.e. for distances greater
than 3 meters).

Effect of Fragmentation on the Interfering System-
Fragmentation or the transmission of short packets is a well documented technique
to alleviate the impact of interference since a shorter packet has a lower probability
of collision with an interfering system. However, Figure 5 shows that fragmentation
may degrade the performance of the interfering system.

6. Concluding Remarks

In this paper we focus on the problem of interference in the 2.4 GHz unlicensed
band. We  rst de ne the problem and discuss some of the results previously publi-
shed in the literature on the evaluation of interference. We then give an overview of

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 57



0

0.05

0.1

0.15

0.2

0 1 2 3 4 5 6

P
r(

P
ac

ke
t L

os
s)

distance (meters)

Probability of BT Packet Loss vs. Distance to WLAN (11 Mbits/s) Source

HV3 Packets
HV2 Packets
HV1 Packets

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 1 2 3 4 5 6

P
r(

P
ac

ke
t L

os
s)

 

distance (meters)

Probability of WLAN (11 Mbits/s) Packet Loss vs. Distance to BT Slave

HV3 Interference
HV2 Interference
HV1 Interference

FIG. 3. (a) (b) Bluetooth voice packets with 802.11 interference. (a) Probability of
BT packet loss vs. distance to WLAN Source. (b) Probability of WLAN packet loss vs.
distance to BT Slave

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5

P
r(

P
ac

ke
t L

os
s)

distance (meters)

Probability of BT Lan Packet Loss vs. Distance to WLAN (11 Mbits/s) Source

DH1 Packets
DM1 Packets
DH3 Packets
DM3 Packets
DH5 Packets
DM5 Packets

FIG. 4. Probability of BT packet loss vs. distance to WLAN source

the coexistence framework consisting of several techniques proposed to alleviate the
impact of interference. Several factors that can impact the performance of Bluetooth
and WLAN in an interfering environment are explored. We make several observations
regarding the use of FEC, the choice of packet encapsulation and fragmentation and
the effect on performance. Our results indicate that the use of FEC has limited bene-
 t for many interfering scenarios. In addition, applying fragmentation can reduce the
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probability of packet loss at the expense of causing more interference to the "other"
system.
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INTERFERENCE MITIGATION TECHNIQUES 

In preliminary work (recall Papers #5 and #6), NIST researchers eliminated from further consideration 
four possible interference-mitigation techniques. First, increasing WLAN power when needed to 
overcome periods of Bluetooth interference was found to be impractical because the necessary power 
increase would be too large. Second, using forward-error correction was found to have only limited 
benefits in selected interference scenarios. Third, fragmenting packets was found to create additional 
interference for other devices. Fourth, co-scheduling of WPAN and WLAN transmissions was found 
applicable only in the special circumstance where Bluetooth and 802.11 devices operate within the same 
computer node. On the other hand, several potential interference-mitigation techniques appeared worthy 
of further investigation. For WLAN devices, one might use rate scaling, where WLAN devices lower the 
transmission rate (for example, from 11 Mbps to 1 Mbps) during periods of Bluetooth interference. 
WLAN devices might also be re-engineered to reject Bluetooth interference at the PHY layer. For 
Bluetooth devices, one might adaptively adjust transmission power to a larger value during periods of 
WLAN interference, or adjust transmission patterns to avoid WLAN interference. In adjusting 
transmission patterns, one might develop a scheme that permits Bluetooth masters to periodically adapt 
the frequency-hopping schedule for a piconet to account for interference. In another approach to adjust 
transmission patterns, one might develop a scheme to delay selected transmissions during periods of 
interference, and then transmit the information when the interference subsides. These are the techniques 
studied in the papers contained in this section of the special publication. 

In Paper #7, “Rejection of Bluetooth Interference in 802.11 LANs”, Soltanian and Van Dyck 
investigate the use of complex adaptive filters for interference suppression in selected 802.11 systems. 
The fundamental approach studied would use recursive least-squares lattice filters to estimate and cancel 
Bluetooth interference. The paper focuses solely on the 1 Mbps version of 802.11 WLAN transmissions; 
however, argues that the technique might also be applicable in the 2 Mbps model. The simulation results 
presented in the paper show that WLAN packet-loss rates in range of 10-12% (for the standard 802.11 
PHY) could be improved to a range of 1-4% (with the addition of a complex adaptive filter) even in the 
presence of two interfering Bluetooth piconets. The paper leaves for further study the design of a receiver 
for fading channels and for WLAN transmissions at higher speeds (5.5 and 11 Mbps). Adopting an 
adaptive filter would require redesign and deployment of PHY components for existing WLAN receivers. 
Changing the deployed base of WLAN devices would not occur quickly; thus, it makes sense to explore 
techniques that could be adopted more easily, perhaps with software or firmware upgrades. 

In Paper #8, “Techniques to Improve Bluetooth Performance in Interference Environments”, 
Golmie and Chevrollier investigate the possibility of overcoming interference to Bluetooth devices using 
either of two techniques: (1) Bluetooth power control or (2) Bluetooth scheduling. The paper presents 
simulation results based on a topology where a Bluetooth master and slave, separated by 1 meter, operate 
in proximity of a WLAN with a fixed access point about 15 meters from the Bluetooth devices and a 
mobile WLAN device (the interferer) that moves within a range of 0 to 5 meters from the Bluetooth 
devices. The proposed Bluetooth power-control algorithm periodically adjusts transmission power within 
a bounded range to achieve a target signal-to-interference ratio. The paper shows that adaptive power 
control (updating power levels after every 300 packets) reduces packet-loss rate from 18% to 4% when 
the WLAN interferer operates a ½ meter from the Bluetooth devices. Beyond ½ meter, the adaptive-
power control algorithm loses no packets, while the standard Bluetooth transmission algorithm is still 
losing 3% of packets when the WLAN interferer is 5 meters away. The paper also shows that increasing 
Bluetooth transmission power increases interference for the proximal WLAN, at least within the range of 
0 to 2 meters, where packet-loss rate for the WLAN ranges from 17% to 9%; thus, power control has 
limited benefits and is rarely a friendly-neighbor solution. These results suggest that increasing Bluetooth 
transmission power to overcome WLAN interference might have deleterious and unacceptable 
consequences for some WLAN transmissions; thus, the paper also studies a Bluetooth scheduling 
technique to avoid WLAN interference. The scheduling technique requires a Bluetooth master to acquire 
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and maintain (during an interference-estimation phase) a table estimating likely error rate on each of the 
79 frequencies available in a Bluetooth channel. The Bluetooth master then delays initiating a specific 
master-slave interaction when a needed frequency pair is not available. While this technique seems likely 
to increase access delays, the paper finds this to be the case only for small (single-slot) packets, which 
experienced increased delays in the range of 1.6 ms to 2.6 ms. For longer (two- or three-slot) packets, 
access delays actually decreased by as much as 2.6 ms. The paper finds that using a Bluetooth scheduling 
algorithm reduces packet loss to zero for Bluetooth and WLAN devices. Though Bluetooth scheduling 
applies only to data traffic (voice traffic is time sensitive), the potential advantages of the approach 
warrant further investigation. 

In Paper #9, “Interference Aware Bluetooth Packet Scheduling”, Golmie, Chevrollier, and 
ElBakkouri further investigate the performance of the promising Bluetooth interference-aware scheduling 
(BIAS) algorithm first conceived in the previous paper. Here, the researchers provide a rigorous and 
complete description of the BIAS algorithm, including an explanation of how the approach could be 
implemented within the Bluetooth specification. The paper also introduces and proves two properties of 
BIAS: (1) error-free connections will be served at the negotiated rate and (2) error-free channels will be 
shared among error-free and error-prone devices proportional to their assigned rate. The researchers use 
simulation to compare the effectiveness of BIAS against a round-robin scheduling algorithm, given a 
specific mix of traffic: 50% offered load on an 11-Mpbs WLAN and 25% offered load on a competing 
Bluetooth WPAN. The simulation experiments model a topology where a Bluetooth master interacts with 
three Bluetooth slaves, while an interfering WLAN mobile device interacts with a fixed WLAN access 
point. The mobile WLAN device moves within a range of 0 to 11 meters of two of the Bluetooth slaves 
(the master is 3 meters further from the WLAN mobile). The third Bluetooth slave is only ½ meter from 
the master (in a direction away from the WLAN mobile). The paper shows that BIAS yields no packet 
losses for any Bluetooth slave at any distance from the WLAN interferer. BIAS does increase access 
delay (to≈4 ms) over round robin scheduling (at≈2 ms). The simulation results also show that BIAS 
provides fairer access than round robin, which cedes more access to the Bluetooth slave closest to the 
master (and farthest from the interfering WLAN). These promising results motivated the NIST 
researchers to investigate BIAS more fully. 

In Paper #10, “Techniques to Improve the Performance of TCP in a mixed Bluetooth and WLAN 
Environment”, Golmie and Rebala investigate the potential to mitigate the effects of mutual interference 
between a Bluetooth WPAN and 802.11 WLAN using either of two techniques: (1) WLAN rate scaling 
combined with adaptive filtering or (2) BIAS. The researchers also consider combining BIAS and rate 
scaling. The investigation simulates a topology where a Bluetooth master and slave (1-meter apart) 
interact, while a WLAN mobile (ranging over 0 to 10 meters from the Bluetooth devices) communicates 
with a fixed WLAN access point (located 15 meters from the Bluetooth devices). The paper reports three 
scenarios: (1) both WLAN and WPAN devices conduct file transfers, (2) WLAN devices conduct file 
transfers while WPAN devices surf the web, and (3) WLAN devices surf the web while WPAN devices 
conduct file transfers. All devices use TCP as the transport protocol. Packet-loss probability is reported 
for all scenarios, while TCP throughput and delay are reported for file transfer and web surfing, 
respectively. The simulation results indicate that BIAS improves performance (reduces packet loss to 
zero, increases throughput, and decreases delay) for both WPAN and WLAN systems. The improvement 
shown with rate scaling is much lower because the WLAN reduces transmission rate by an order of 
magnitude. Further, adaptive filtering is shown to improve performance for WLAN devices at the expense 
of degrading performance for WPAN devices. 

In Paper #11, “Bluetooth Dynamic Scheduling and Interference Mitigation”, Golmie more fully 
studies BIAS with larger topologies, including multiple Bluetooth piconets, with more diverse traffic 
types, including electronic mail, remote printing, video transmission, and file transfers, and with 
asymmetric packet lengths. The study also considers BIAS performance in reaction to dynamic changes 
in the wireless environment. In addition, the paper investigates two possible extensions: priority 
scheduling in BIAS and mapping quality of service to BIAS parameters. The paper reports results from 
four simulation experiments, where all of the experiments compare round robin scheduling for Bluetooth 
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devices against BIAS in the presence of one or more interfering WLAN systems, each operating at 11 
Mbps with a 60% offered load. One experiment simulates a topology with a Bluetooth master and slave 
separated by 2 meters surrounded by three source-sink pairs of WLAN devices, where each source is 
about 1 meter from the Bluetooth devices and transmits to a sink about 14 meters past the Bluetooth 
devices. The topology is developed incrementally, starting with only the Bluetooth devices and adding 
one WLAN source-sink pair at a time; this presents the Bluetooth devices with dynamically increasing 
interference. Simulation with file transfers between the Bluetooth devices show no packet loss with BIAS 
as the Bluetooth offered load increases from 5% to 80%; this holds across all simulated configurations of 
competing WLAN devices. Round robin scheduling shows packet losses from 10% to 50% as the number 
of competing WLAN devices increases from one to three pairs. BIAS also shows significantly lower 
access delays than round robin when compared in similar interference environments. In a second 
experiment, Golmie studies the effects of dynamically changing interference. Here, the topology is drawn 
from the first experiment, but WLAN interference is limited to a singled source-sink pair that exhibits on-
off periods. Under these conditions, BIAS yields packet-loss rates under 1/10% even with a 100% offered 
Bluetooth load, though access delay increases steeply after 50% offered load for small packets and after 
70% offered load for large packets. In a third experiment, Golmie illustrates how BIAS can be used to 
enforce quality of service requirements for various Bluetooth applications. Here, the topology consists of 
a single Bluetooth master acting in a client role communicating with three Bluetooth slaves: a mail server 
(about ½ meter past the master), a video server, and a print server. The video and print servers are 2 
meters closer than the master to a source of WLAN interference. The WLAN network consists of a fixed 
access point (file-transfer client) about 20 meters from the Bluetooth master and a mobile WLAN device 
(file-transfer server) that ranges from 2 to 13 meters from the Bluetooth video and print servers. BIAS 
keeps the packet-loss rate below ½% for all Bluetooth slaves under all circumstances, while round robin 
yields packet-loss rates ranging from 2% to 15% for the print and video servers. BIAS also provides 
Bluetooth slaves with access delays significantly superior to round robin scheduling. In a final 
experiment, Golmie investigates the use of BIAS given 10 Bluetooth piconets (half with master and slave 
separation of 1 meter and half 2 meters) randomly placed within 15 meters of an interfering WLAN, 
which can convey either file-transfer or web-surfing traffic. Some piconets carry voice traffic, some 
transfer files, and some transmit web surfing traffic. Simulation results show that BIAS (when compared 
to round robin scheduling) leads to the same or lower packet-loss rates for Bluetooth devices under all 
circumstances, with the advantage markedly increased when the interfering WLAN carries file-transfer 
traffic. Further, when Bluetooth devices use BIAS (instead of round robin scheduling), WLAN devices 
also see substantially lowered packet-loss rates. After extensively studying BIAS, NIST researchers 
decided to investigate the performance of BIAS against adaptive frequency hopping (AFH). 

In Paper #12, “Bluetooth Adaptive Techniques to Mitigate Interference”, Golmie and Rebala 
investigate the relative performance of two interference-mitigation techniques (BIAS and AFH) for 
Bluetooth devices as interference from WLAN devices varies and user traffic changes over time. While 
many AFH algorithms can be conceived, Golmie and Rebala propose an algorithm that defines a 
frequency-hop window comprising a fraction of the 79 available Bluetooth frequencies. When a 
frequency in the hop window is “bad” then a “good” frequency is selected from among the remaining 
Bluetooth frequencies. The frequency-hop window is recomputed at some interval, which can be 
configured. The paper compares the performance of AFH against BIAS in four experiments. Two 
experiments simulate a (canonical) topology of a Bluetooth master and slave separated by 1 meter and a 
WLAN (11 Mbps) access point (15 meters from the Bluetooth devices) that communicates with a WLAN 
device that is 1 meter from the Bluetooth devices. The interfering WLAN operates with on-off periods 
and an offered load of 60%, while the Bluetooth offered load varies from 10% to 100%. BIAS provides 
significantly lower packet-loss rates compared to AFH. The researchers repeated the experiment, but this 
time including the TCP as the transport protocol and defining web-surfing and file-transfer traffic 
profiles. Again, BIAS showed significantly lower packet-loss rates and comparable access delays to AFH. 
In a third experiment, the researchers expand the topology to surround a Bluetooth master-slave piconet 
with three WLAN source-sink pairs. In this case, BIAS again provides lower packet-loss rates, but AFH 
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provides lower access delay. In a final experiment, the researchers expand the topology again to add two 
additional Bluetooth master-slave piconets amidst the WLAN interferers. BIAS again out performs AFH 
in terms of packet-loss rate, and also yields lower access delays for large packets. Overall, for the 
experiments reported here, AFH yields lower access delays for short (one-slot) packets, while BIAS 
provides better access delays for long (five-slot packets) and gives much lower packet-loss rates. AFH 
also shows improved throughput over BIAS in selected situations. The mixed results regarding BIAS and 
AFH stimulated NIST researchers to further investigate and compare the two interference-mitigation 
schemes. 

In Paper #13, “Bluetooth Adaptive Frequency Hopping and Scheduling”, Golmie, Rebala, and 
Chevrollier investigate the conditions (interference levels, topologies, scenarios, and applications) under 
which it should prove practical to use AFH and BIAS. Of special interest is studying how fast each 
algorithm can adjust to changes in the inference environment. The paper investigates AFH and BIAS in 
support of four applications: voice streaming, video streaming, web surfing, and file transfer. The 
researchers consider both the AFH defined for the IEEE 802.15 standard (AFH-IEEE) and the AFH that 
they defined (recall Paper #12). The first experiment considers the canonical topology described in Paper 
#12 under conditions where a WPAN file transfer competes with a WLAN file transfer. Simulation results 
show that BIAS provides much lower packet-loss rate, better channel efficiency, and similar access delay 
when compared to either AFH or AFH-IEEE. In a second experiment, the researchers expand the 
topology to include an additional competing WLAN source-sink pair, and consider Bluetooth file 
transfers, web surfing, and video and audio streaming competing against WLAN file transfers. Simulation 
results again show BIAS provides lower packet-loss rate, better channel efficiency, and similar access 
delay for all scenarios when compared with AFH and AFH-IEEE. Given these additional results, NIST 
researchers neared a final set of recommendations regarding interference-mitigation techniques for 
WLAN and WPAN systems. 

In Paper #14, “Bluetooth and WLAN Coexistence: Challenges and Solutions”, Golmie, 
Chevrollier, and Rebala discuss two possible solutions (AFH and BIAS) to mitigate WLAN and WPAN 
interference, providing some conclusions about the relative merits of each approach. AFH requires a 
Bluetooth master to collect from each slave a picture of relative interference, to compute a new hopping 
schedule, and to disseminate that schedule to each slave. This cyclic task might prove very difficult to 
achieve in dynamic environments with fast changing interference patterns. On the other hand, if AFH is 
practical for a given environment (where interference is not too volatile), then a number of performance 
benefits can be obtained. AFH can provide maximum throughput for bandwidth hungry applications, such 
as file transfers, and can give lower access delays for short packets, such as often used in voice 
applications. AFH does not provide much benefit for applications with delay-jitter requirements. BIAS 
provides superior performance for applications that are sensitive to packet loss. Overall, no single 
technique appears to yield the best performance for all interference scenarios and applications. The 
researchers conclude that combining BIAS and AFH might provide the flexibility to address a wider 
range of situations on a case-by-case basis.   
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Abstract—Bluetooth is a radio technology for Wireless Personal Area Net-
works operating in the 2.4 GHz ISM band. Since both Bluetooth and IEEE
802.11 devices use the same frequency band and may likely come together in
a laptop or may be close together at a desktop, interference may lead to sig-
ni cant performance degradation. The main goal of this paper is to propose
solutions to the interference problem consisting of power control adjustments
and scheduling policies to be implemented by the Bluetooth device. Simulation
results are given for selected scenarios and con gur ations of interest.
Keywords—Bluetooth, Interference, Power Control, MAC scheduling

I. INTRODUCTION

The Bluetooth [1] technology is an emerging short range ca-
ble replacement protocol operating in the 2.4 GHz ISM band.
Since both the Bluetooth and the IEEE 802.11 [2] protocols
operate in the 2.4 GHz, it is anticipated that interference may
severely degrade the performance of both systems.

Our goal is to propose solutions to the interference problem
pertaining to the Bluetooth radio operating in proximity to an
IEEE 802.11 network. We assume that the source of interfer-
ence to the Bluetooth system is an IEEE 802.11 system operat-
ing in a direct sequence spread spectrum (DSSS) mode. In the
rest of this sequel, the terms IEEE 802.11 DSSS and WLAN
will be used interchangeably.

We investigate two techniques aimed at alleviating the inter-
ference problem for Bluetooth. One technique is based on con-
trolling the transmitted power and keeping it proportional to the
signal-to-interference ratio (SIR) measured at the receiver. The
other technique takes advantage of the frequency hopping se-
quence of Bluetooth and uses scheduling with the aim of avoid-
ing interference. Simulation results for scenarios of interest are
discussed. Performance is measured in terms of the mean ac-
cess delay, the probability of packet loss, and the transmitted
power.

This paper is organized as follows. In sections II and III,
we describe the distributed power control algorithm and the
scheduling mechanism respectively and give numerical results.
Concluding remarks are offered in section IV.

II. POWER CONTROL

Given that some devices provide the ability to dynamically
modify their transmission power, we would like to investigate
the dynamics of a power control (PC) strategy as a means of
alleviating the impact of interference.

We use a distributed algorithm to implement a PC procedure.
The basic idea is to adjust the interference level in the system to
no more than what is needed. We assume that the receiver does
not have any knowledge of other systems except for the system

it is communicating with. Interference from other systems is
measured in terms of the SIR level at the receiver. Note that SIR
is a wide-spread link quality measure and has been used in many
previous studies for power control and dynamic channel alloca-
tion for interference limited systems [3] [4] [5]. The power
update algorithm works as follows. Initially, P0 = Pmax, then
every update interval U , the power at the transmitter, P (t + 1)

is updated as follows:

P (t+ 1) = min(Pmax;max(Pmin;
�t

SIR(t)
� P (t)) (1)

where �(t) is the target SIR and SIR(t) is based on an av-
erage value over many measurements. The power update rule
takes into consideration the SIR(t) statistic measured at the re-
ceiver side. The receiver can then relay this information to the
transmitter every update interval U .

Implementation Considerations Although the exact details
of a power control algorithm have been left unde ned for the
most part, the Bluetooth speci cations have included the neces-
sary hooks in the protocol in order to implement a power control
algorithm. Furthermore, the Bluetooth speci cations classi es
devices into three power classes as summarized in Table I

TABLE I
BLUETOOTH DEVICE POWER CLASSES

Power Class Maximum Output Power Minimum Output Power
1 100 mW (20 dBm) 1 mW (0 dBm)
2 2.5 mW (4 dBm) 0.25 mW (-6 dBm)
3 1 mW (0 dBm) N/A

Class 1 requires power control limiting the transmitted power
over 0 dBm, while power control is optional for classes 2 and 3.
The speci cations suggest that the transmitted power should be
adjusted based on the received signal strength indicator (RSSI)
measurements at the receiver. Note that in an interference-
limited environment, RSSI corresponds to the the SIR (assum-
ing that noise can be neglected). Furthermore, the speci cations
de ne Link Management Protocol (LMP) messages for adjust-
ing the power control as shown in Table II. The general format
of a Link Manager Protocol (LMP) message is illustrated in Fig-
ure 1.

Both LMP messages, LMP incr pow req and
LMP decr pow req, include one byte of contents reserved for
future use. We propose using this byte to transmit the measured
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TABLE II
LMP POWER CONTROL MESSAGES

Message Op code Contents
LMP incr pow req 31 1 byte- future use
LMP decr pow req 32 1 byte- future use
LMP max power 33 1 byte
LMP min power 34 1 byte

SIR at the receiver in order for the transmitter to implement the
update rule given by Equation 1.

Fig. 1. LMP Message Format

Annother implementation issue to consider is the value of the
update interval, U . Andersin et al. [6] demonstrate that for
a system such as GSM, the SIR can be accurately estimated
within 0.1 to 0.3 seconds. The values are for heavily interfered
system with an interference level 20 dB above the noise  oor .
In our case, the value of SIR depends on the main signal and
the interference spectral shape (i.e. whether the main signal
falls inside or outside of the interfering signal band). Therefore,
given 79 frequency channels, U can be chosen proportionally
to 4 or 5 times 79. There is a trade-off between the value of U
and the amount of signaling traf c required. A small value for
U allows the system to be perhaps more responsive at the cost
of having to exchange additional signaling information.

Numerical Results
We present simulation results to evaluate the effect of the

power control algorithm. We use a 4-node topology as illus-
trated in Figure 2, and the simulation parameters presented in
Table III. We vary the traf c distributions for WLAN and Blue-
tooth as follows.

Fig. 2. Experiment Topology

We assume that the WLAN Mobile device is transmitting
data packets to the AP device which is responding with ACKs.
The WLAN packet payload is set to 7776 bits transmitted at 11
Mbits/s, while the packet header is set to 224 bits transmitted at
1 Mbits/s. We assume that the WLAN packet interarrival rate is

exponentially distributed with a mean of 1:86 ms corresponding
to 50% of the offered load. For Bluetooth, we assume that both
master and slave devices are transmitting DM1 packets with a
mean arrival rate of � where � =

2�0:000625

l
� 2 � 0:000625

seconds, and l = 30 is the offered load in percent of the channel
capacity. Our setup parameters are summarized in Table III.
We measure the probability of packet loss and the mean access
delay measured at the Bluetooth slave device.

TABLE III
ADAPTIVE POWER SIMULATION PARAMETERS

Simulation Parameters Values
Update Interval (U) 300 packets
Bluetooth Parameters Values
ACL Baseband Packet Encapsulation DM1, DM3, DM5
Packet Interarrival Time for DM1 2.91 ms
Packet Interarrival Time for DM3 8.75 ms
Packet Interarrival Time for DM5 15.58 ms
Pmin 1 mW
Pmax 100 mW
Slave Coordinates (0,0)
Master Coordinates (1,0)
WLAN Parameters
Packet Interarrival Time 1.86 ms
Offered Load 50 % of Channel Capacity
Transmitted Power 25 mW
Data Rate 11 Mbits/s
AP Coordinates (0,15)
Mobile Coordinates (0,d)
Packet Header 224 bits
Payload Size 7776 bits

The power update rule given by Equation 1 was implemented
at the Bluetooth master and slave devices. Initially, the power
was set to Pmax = 100 mW, then updated according to the
rule. SIR was measured over an update interval, U, equal to 300
packets. Figure 3 shows the transmitted power (after 5 U) for
the Bluetooth master device versus the distance of Bluetooth
slave from the source of interference. Note that if there is no
change in the interference signal, the transmitted power should
converge to its  nal value in one step, i.e. 1 U.
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Fig. 3. Bluetooth Transmitted Power

As expected the transmitted power in Figure 3 varies be-
tween Pmax and Pmin. Figure 4 (a) and (b) give the packet loss
and the access delay respectively with and without the power
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Effect of Adaptive Power Control on Bluetooth Performance.

(a) Probability of Packet Error vs. Distance. (b) Mean Access Delay vs.
Distance.

control algorithm. Note that the WLAN transmitted power is
 x ed at 25 mW. For distances equal to 0:5 m from the inter-
ference source, increasing the transmitted power leads to lower
packet losses, � 4 % with power control instead of 18% with-
out power control. A similar reasoning applies to the delays
shown in Figure 4(b). However for distances less than 0:5m,
the transmitted power is capped by Pmax and the packet loss
remains higher than � 9%. A couple of observations are in or-
der. We note that the power control algorithm can be effective
in some scenarios; in the case studied here, lower packet losses
and access delays are obtained for distances greater than 0:5m
from the interference source. However, it should be made clear
that this performance gain comes at the cost of increasing the
interference level for other systems. As expected, increasing
the Bluetooth transmitted power, has a negative impact on the
interfering system; in Figure 5 we note a 17% packet loss at the
WLAN AP device, even if it is about 15 meters away from the
Bluetooth devices. As the Bluetooth transmitted power is weak-
ened, the packet loss at the WLAN AP device drops to zero.

In a way, adjusting the power control can only be a partial so-
lution. This may or may not constitute a problem for other sys-
tems depending on the con guration and the parameters used.
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Fig. 5. Impact on the WLAN AP Device

III. MAC SCHEDULING

In this section, we investigate how scheduling techniques can
be used to alleviate the impact of interference. We devise a
mechanism for the Bluetooth MAC scheduler consisting of two
components:

1. Interference Estimation

2. Master Delay Policy

In the Interference Estimation phase, the Bluetooth device
detects the presence of an interfering device occupying a num-
ber of frequencies in the band. In this sequel, interfering de-
vices are assumed to be WLAN DSSS systems. In order to de-
tect the presence of interference, the Bluetooth device maintains
a Frequency Usage Table where a bit error rate measurement,
BERf , is associated to each frequency as shown in Figure 6.
Note that, a frame error rate or a packet loss measure can be
used instead of the bit error rate (BER). Frequencies are clas-
si ed according to a criteria that measures the level of interfer-
ence in the channel and marked used or unused depending on
whether their corresponding BER is above or below a thresh-
old value, BERT , respectively. This Frequency Usage Table
is maintained at each receiver’s side for both master and slave
devices.

Fig. 6. Frequency Usage Table

The Master Delay Policy makes use of the measurements col-
lected during the Interference Estimation phase in order to avoid
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a packet transmission in a ”bad” receiving channel, or a channel
with a high level of interference. The basic idea is to ”wait”
for or choose an unused frequency for the receiver in the fre-
quency hopping pattern. Thus the transmitter needs to consult
the receiver’s Frequency Usage Table before transmitting any
packets. Alternatively, the receiver, can send status updates on
its usage table to the transmitter. In Bluetooth, since the mas-
ter device controls all transmissions in the piconet, the delay
rule has to be implemented only in the master device. Fur-
thermore, since following each master’s transmission, there is
a slave transmission, the master checks both the slave’s receiv-
ing frequency and its own receiving frequency before chosing
to transmit a packet in a given frequency hop as illustrated in
Figure 7.

Fig. 7. Delay Scheduling Policy at Bluetooth Master

The main steps of the scheduling policy are summarized as
follows.

1. Slave’s End.
(a) For every packet received, update BERf which is an

average value of the BER per frequency.
(b) Every update interval, U , refresh the Frequency Usage

Table by marking the frequencies, and
(c) Send a status update message to the Master;

2. Master’s End.
(a) For every packet received, update BERf which is an

average value of the BER per frequency.
(b) Every update interval, U , refresh the Frequency Usage

Table, and
(c) Before sending a packet, check slave’s receiving fre-

quency and master’s following receiving frequency, de-
lay transmission until both master and slave’s receiving
frequencies are available.

Implementation Considerations One of the advantages in
using this scheduling policy is that it does not require any
changes in the FCC rules. In fact, title 47, part 15 of the FCC
rules on radio frequency devices [7], allows a frequency hop-
ping system to recognize the presence of other users within the
same spectrum band so that it adapts its hopsets to avoid hop-
ping on occupied channels. However, coordination among hop-
ping frequency systems in order to avoid simultaneous channel
occupancy is not allowed.

Furthermore, scheduling in the Bluetooth speci cations is
vendor implementation speci c. Therefore, one can easily im-
plement a scheduling policy with the currently available Blue-
tooth chip set. Most importantly, the proposed scheduling algo-
rithm does not require any changes to the Bluetooth frequency
hopping pattern which is implemented in ASICs, and devices

implementing scheduling can easily interoperate with other de-
vices that do not.

Fig. 8. LMP Interference Status PDU

As far as the status update message is concerned, we de ne
an LMP Interference Status PDU as shown in Figure 8.
We use an Op code value of 60 and set the Transition ID to
1 in order to indicate that the message is sent from the slave to
the master. The content  eld uses 10 bytes to encode the slave’s
Frequency Usage Table. In fact, we reserve one bit for future
use, and map the 79 channels in the Frequency Usage Table to
a 79-bit string of 0’s and 1’s indicating the used and unused
receiving frequencies respectively.

Numerical Results We simulate our proposed scheduling
policy. We use the simulation environment, network topology
and parameters described in section II. We use three types of
Bluetooth packet encapsulations, namely, DM1, DM3, and
DM5, that occupy 1, 3 and 5 slots respectively. The offered
load for Bluetooth is set to 30% of the channel capacity which
corresponds to a packet interarrival of 2:91 ms, 8:75 ms and
14:58 ms for DM1, DM3 and DM5 packets respectively. The
transmitted power for Bluetooth and WLAN is  x ed at 1mW
and 25 mW respectively. Simulation parameters are summa-
rized in Table III. Figure 9 (a) and (b) gives the packet loss
and the mean access delay measured at the Bluetooth slave for
varying distances of the interference source from the Bluetooth
receiver. From Figure 9 (a) we observe that using the schedul-
ing policy, leads to a packet loss of zero. We are basically
able to avoid the channels occupied by the interfering system.
When no scheduling policy is used the packet loss is � 24% for
DM5, and DM3, and 19% for and DM1 packets respectively
when the Bluetooth receiver is at a distance of 0:005 meters
from the interference source. As the distance from the interfer-
ence source is increased the packet loss drops to around 2:7%
for DM1 packets. It is still around 6:7% for DM3 and DM5

packets.
For DM1, we observe an increase in delay from 1:6ms to

2:6ms when the scheduling policy is applied. On average the
scheduling policy yields to a delay increase of 1ms (� 1:6 Blue-
tooth slots). On the other hand, the scheduling policy reduces
the delays by 0:8 ms and 2:6 ms for DM3 and DM5 respec-
tively. Thus, delaying transmission to avoid bad channels pays
off for packets occupying more than one slot. Note that, when
bad channels are used, packets are dropped and have to be re-
transmitted which yields large delays. This effect does not apply
to DM1 packets since they occupy only one slot.

In summary, we note that the scheduling policy is effective in
reducing packet loss and delay (especially for multi-slot Blue-
tooth packets). Another advantage worth mentioning, are the
additional savings in the transmitted power since packets are
not transmitted when the channel is bad. Moreover, we note
that by avoiding channels occupied by other devices, we elimi-
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Effect of MAC Scheduling on Bluetooth Performance. (a) Prob-

ability of Packet Error vs. Distance. (b) Mean Access Delay vs. Distance

nate interference on the other system sharing the same spectrum
band. Figure 10 shows the packet loss for the WLAN Mobile
device (receiving ACKs). We note that scheduling reduces the
ACK packet loss to zero. Therefore scheduling can be consid-
ered as a neighbor friendly policy. Note that the packet loss
at the WLAN AP located at (0,15) m is negligible in this case
since the Bluetooth signal is too weak.

Finally, we note that scheduling policy proposed here works
only with data traf c since voice packets need to be sent at  x ed
intervals. However, if the delay variance is constant and the de-
lay can be limited to a slot (as was shown here), it may be worth-
while to use DM packets for voice using the same scheduling
technique proposed here. This will constitute the basis of future
work.

IV. CONCLUDING REMARKS

In this paper we explored two techniques for alleviating the
impact of interference on the Bluetooth performance. While the
power control approach may be useful and simple to use in some
limited scenarios, it can only be a partial solution and thus can
not be considered by itself. Our plan is to test the dynamics of
the power control algorithm simultaneously on both the WLAN
and the Bluetooth systems in order to gain additional insights
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Fig. 10. Impact of MAC Scheduling on the WLAN Mobile Device

on its strengths and limitations in the context of interference.
Conversely, our simulation results indicate that the simple

scheduling technique that we propose to delay the transmis-
sion of Bluetooth data packet once interference is detected can
signi cantly lower the probability of packet loss for Bluetooth
without much increase in the mean access delay.

The performance evaluation results obtained for the Blue-
tooth ACL link seems to be promising. We are currently looking
at additional scenarios, and traf c conditions. We are also inves-
tigating the use of combined approaches such as packet encap-
sulation, scheduling, and ARQ  o w control. Other future direc-
tions consist of exploring the interoperation of the coexistence
techniques developed for Bluetooth and WLAN in dynamically
changing environments in order to unravel their strengths and
limitations.
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Abstract— Bluetooth is a radio technology for Wireless Personal Area
Networks operating in the 2.4 GHz ISM band. Since both Bluetooth and
IEEE 802.11 devices use the same frequency band and may likely come to-
gether in a laptop or may be close together at a desktop, interference may
lead to signi cant performance degradation. The main goal of this paper
is to propose a scheduling algorithm aimed at reducing the impact of in-
terference. This algorithm takes advantage of the fact that devices in the
same piconet will not be subject to the same levels of interference on all
channels of the band. The basic idea is to utilize the Bluetooth frequency
hopping pattern and distribute channels to devices such that to maximize
their throughput while ensuring fairness of access among users. Simulation
results are given for selected scenarios and con gurations of interest.

Keywords— WPANs, Bluetooth, Interference, max-min fairness,
scheduling.

I. INTRODUCTION

An important requirement in the design of a scheduling
mechanism for the Bluetooth technology is the support of het-
erogeneous traf c, a mix of voice and data applications such as
email, ftp, remote login, and video with a wide range of delay,
packet loss and throughput constraints.

Another key challenge in the design of a Bluetooth schedul-
ing algorithm is probably the adaptiveness to a noisy environ-
ment. Today most radio technologies considered by Wireless
Personal Area Network (WPAN) industry consortia and stan-
dard groups including the Bluetooth Special Interest Group [1],
HomeRF [2], and the IEEE 802.15, employ the 2.4 GHz ISM
frequency band. In addition both WPANs and Wireless Local
Area Network (WLAN) devices implementing the IEEE 802.11
standard speci cations [3] will be sharing the same frequency
band. Thus, WLAN devices operating in proximity to Bluetooth
devices can signi cantly impact the performance of Bluetooth
devices and vice versa as shown in [4][5][6].

Our goal in this paper is to propose a fair packet schedul-
ing algorithm for Bluetooth that reduces the impact of inter-
ference. In Bluetooth, the master device controls both down-
stream (master-to-slave), and upstream (slave-to-master) traf-
 c directions. The master can use odd numbered slots to send
data downstream while slaves have to wait to be ”polled” by the
master in order to send data upstream in even numbered slots.
Although in this paper, we do not make a speci c distinction be-
tween upstream and downstream traf c, we focus on a schedul-
ing policy for polling slaves in order to allow them to access
the channel. However our strategy or a similar policy can be
used for either traf c directions. Furthermore, we assume that
the source of interference to the Bluetooth system is an IEEE
802.11 system operating in a Direct Sequence Spread Spectrum
(DSSS) mode. Note that our technique can be adapted to any
other interference environment as well.

Recently, the issue of meeting different quality of service re-
quirements in a wireless environment has been receiving more
attention in the literature.

Fragouli, et. al. [7] proposed a strategy that combines class-
based queuing [8] with channel-state based scheduling [9] that
eliminates the Head of Line problem caused by FIFO queuing
when certain devices suffer from a bad link. In [7], link shar-
ing guidelines are provided to maximize channel utilization and
limit the access of misbehaving sources.

Furthermore, a number of algorithms have been proposed on
fair scheduling [10][11][12]. While there may be some differ-
ences in implementation and complexity, the basic idea in all
these algorithms, is for sources experiencing a bad wireless link
to relinquish the unutilized bandwidth to other sources that can
take advantage of it. Compensation in bandwidth occurs when
the channel conditions improve in order to achieve the so-called
Long Term Fairness objective.

While the problem that we are trying to solve bears some
resemblance with the problem addressed previously ([12] [7]
[11][10]), we are more interested in an instantaneous measure of
fairness rather than a Long Term Fairness objective. The reason
is as follows. All previous work uses a two state Markov chan-
nel model for each link. The transition probabilities between
the good and bad states are in the order of several seconds to ac-
count for periods of fading, multipath and various other wireless
effects. The situation in our case is somewhat different due to
the hopping nature of the Bluetooth device that uses a different
frequency every 625 µs interval. Since different Bluetooth de-
vices in a piconet will be subject to different interference levels
due to parameters such as geometry and transmitted power, not
all frequencies will be equally good to all devices. Therefore,
our goal is to optimally assign frequencies such as to maximize
channel utilization and guarantee fairness among the devices.

This paper is organized as follows. In section II we give some
general insights on the Bluetooth protocol operation. In sections
III and IV, we describe the scheduling mechanism and discuss
its fairness properties respectively. In section V, we give simu-
lation results and concluding remarks are offered in section VI.

II. BLUETOOTH PROTOCOL OVERVIEW

In this section, we give a brief overview of the Bluetooth pro-
tocol [1]. Bluetooth is a short range (0 m - 10 m) wireless link
technology aimed at replacing non-interoperable proprietary ca-
bles that connect phones, laptops, PDAs and other portable de-
vices together. Bluetooth operates in the ISM frequency band
starting at 2.402 GHz and ending at 2.483 GHz in the USA,
and Europe. 79 RF channels of 1 MHz width are de ned. The
raw data rate is de ned at 1 Mbits/s. A Time Division Multi-
plexing (TDM) technique divides the channel into 625 µs slots.
Transmission occurs in packets that occupy an odd number of
slots (up to 5). Each packet is transmitted on a different hop fre-
quency with a maximum frequency hopping rate of 1600 hops/s.

Two or more units communicating on the same channel form
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a piconet, where one unit operates as a master and the others
(a maximum of seven active at the same time) act as slaves. A
channel is de ned as a unique pseudo-random frequency hop-
ping sequence derived from the master device’s 48-bit address
and its Bluetooth clock value. Slaves in the piconet synchronize
their timing and frequency hopping to the master upon connec-
tion establishment. In the connection mode, the master con-
trols the access to the channel using a polling scheme where
master and slave transmissions alternate. The master uses even
numbered slots while odd numbered slots are reserved for slave
transmissions.

There are two types of link connections that can be
established between a master and a slave: the Syn-
chronous Connection-Oriented (SCO), and the Asynchronous
Connection-Less (ACL) link. The SCO link is a symmetric
point-to-point connection between a master and a slave de ned
to carry 64 kbits/s of a voice stream.

In this paper, we focus on a scheduling strategy used for
transmitting data on the ACL link that de nes an asymmetric
point-to-point connection between a master and active slaves in
the piconet. While the master can send data to a slave in the
piconet on any even numbered slots, a slave has to be polled be-
fore it can transmit data. Therefore, the slave to master data rate
is negotiated using Link Manager Protocol (LMP) messages at
connection setup. The negotiated rate is usually de ned in terms
of a poll interval, and a packet length. Additional Quality of Ser-
vice (QOS) parameters can be exchanged in Link Layer Control
Adaptation Protocol (L2CAP) messages and include parameters
such as peak bandwidth, latency and delay variation.

Several packet formats are de ned for ACL, namely DM or
DH packets that occupy either 1, 3, or 5 time slots. DM pack-
ets use Forward Error Correction (FEC) while DH packets do
not have any FEC in the payload. An Automatic Repeat Request
(ARQ) procedure is applied to ACL packets where packets are
retransmitted in case of loss until a positive acknowledgement
(ACK) is received at the source. The ACK is piggy-backed in
the header of the returned packet where an ARQN bit is set
to either 1 or 0 depending on whether the previous packet was
successfully received or not. In addition, a sequence number
(SEQN) bit is used in the packet header in order to provide a
sequential ordering of data packets in a stream and  lter out re-
transmissions at the destination.

In addition to ACL and SCO packets, the master and slave
message exchange includes short POLL and NULL packets.
POLL messages can be sent by the master and require an ACK
while NULL messages can be sent by either the master or the
slave and do not require an ACK.

III. BLUETOOTH INTERFERENCE AWARE SCHEDULING
(BIAS)

In this section, we present the Bluetooth Interference Aware
Scheduling (BIAS) algorithm. Our main objective is to alle-
viate the impact of interference while maintaining fairness and
supporting different Quality of Service (QoS).

In this sequel, we assume that the traf c from slave Si to the
master is characterized by a data rate, ri, equal to li

pi
where li

is the packet length in slots (1, 3 or 5 slots depending on the

packet type), and pi is the poll interval in (master/slave) slot
pairs. In addition, we assume the following transmission rules
for the master and slave.

Master - The master polls slave Si every pi in order to guaran-
tee ri in the upstream direction. A poll message can be either
a data or NULL message. A data packet is sent to slave Si if
there is a packet in the queue for slave Si. This packet con-
tains the ACK of the previous packet received from slave S i. In
case there is no data to transmit and the master needs to ACK
a previous slave transmission, it sends a NULL packet to slave
Si.
Slave Si - Upon receipt of a packet from the master, the slave
can transmit a data packet. This data packet contains the ACK
information of the master to slave packet transmission. In case
the slave does not have any data to send, it sends a NULL packet
in order to ACK the previous packet reception from the master.
No ACK is required for a NULL message from the master.

Our algorithm consists of several components, namely, a chan-
nel estimation procedure, a procedure that assigns weights to
devices in order to determine a channel access priority, and a
resource credit function that allocates bandwidth to each device
according to its service requirements and the state of the chan-
nel.

The estimate channel() procedure is used to detect the pres-
ence of interference in the frequency band. Thus, each Blue-
tooth receiver maintains a Frequency Usage Table where a bit
error rate measurement, BERf , is associated to each frequency
as shown in Figure 1. Frequencies are classi ed according to
a criteria that measure the level of interference in the channel
and are marked used or clear depending on whether their cor-
responding BER is above or below a threshold value, BERT ,
respectively. Note that, other criteria such as frame error rate,
packet loss, or the received signal strength can be used in addi-
tion to the bit error measurement to detect a high level of inter-
ference in a speci c frequency band.

Fig. 1. Frequency Usage Table

Since the master device controls all transmissions in the pi-
conet, the slaves need to send their Frequency Usage Table in
the form of status update messages. The scheduler at the mas-
ter can then make use of the measurements collected during the
Channel Estimation phase in order to optimize the frequency
allocation on each time slot and avoid a packet transmission in
a receiving channel with a high level of interference. Figure 2
illustrates the frequency allocation that occurs at the master. In
this case, frequency 78 is used to communicate with slave S i,
while frequencies 76, 1 and 0 are assigned to slaves Si, Si+1
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and Si+1 in that order. Observe that the pattern of frequencies
corresponds to the receiving frequencies. Thus, an M marks a
receiving slot for the master device while an S is a receiving
frequency for a slave device. Although, the master scheduler
attempts to maximize channel utilization, it intentionally leaves
certain slot pairs empty if either the master or the slave receiv-
ing frequency is used. Thus, in Figure 2, frequencies 16, 2, 7
and 77 are not used since frequencies 2 and 77 are not clear for
the master.

Fig. 2. Master Frequency Allocation Scheduling

The basic idea in the credit system is to control the bandwidth
allocated to each device in order to ensure that no device gets
more than its fair share of the available bandwidth. Thus, de-
vices with a positive credit counter, ci, are allowed to send data.
There can be several ways to compute credits. Our method is
based on the max-min fairness criteria [13]. Given r i, we let ui

be the probability that a pair of slots (master/slave) are clear.
Thus, ui represents the available spectrum to slave i. Therefore,
we write:

ui = P (slave i has a clear receiving frequency)

×P (master has a clear receiving frequency) (1)

where

P (device i has a clear receiving frequency) =

Number of clear Channelsi
Total Number of Channels

(2)

We then de ne µi as

µi = min(ui, ri) (3)

where µi is the minimum guaranteed rate for device i. Thus,
in the case device i has a requested rate ri, such that ri > ui,
but is experiencing interference so it is not able to utilize more
that ui of the spectrum, and its rate is limited to ui. We de ne a
constrained device to be a device that is not able to use the entire
frequency spectrum, such that ri > ui, while an unconstrained
device is such that ri ≤ ui. The next step is to reallocate the
leftover bandwidth that is unused by the constrained devices
and let gi be the actual rate given to device i:

gi =

{
µi +

ri(B−µ)∑
j∈Unconstrained

rj

if ri < ui

µi otherwise
(4)

where µ =
∑

i µi and B = 1 − Number of Used ChannelsF

Total Number of Channels .
Number of Used ChannelsF is the number of frequencies
that are marked used for all devices (in other words frequen-
cies that can not be used by any device in the piconet). In
essence, Equation 4 redistributes the leftover bandwidth to un-
constrained devices proportionally to their service rate as in the
Generalized Processor Scheduling (GPS) [14]. Thus, the com-
pute credits() function consists of computing the credits accord-
ing to:

ci = gi × N (5)

where N is the number of slot pairs considered in the allocation.
The other component of the algorithm is to actually give the

”right of way” or a priority of access to certain devices. We
choose to give devices with fewer number of good channels a
higher priority over other devices that have more channels avail-
able. Thus, in compute weights() we set wi as follows:

wi = min(ε, P (slave i has a used receiving frequency)) (6)

where we de ne

P (slave i has a used receiving frequency) =

Number of used Channelsi
Total Number of Channels

(7)

and assume ε takes on values in ]0, 1
Total Number of Channels ]

in the case all channels are clear. Finally, priority are assigned
according to the ”send factor”, αi, given by:

αi = wi · ci (8)

A. BIAS Pseudocode

The algorithm’s pseudocode is as follows.
Every N slots

estimate channel();
compute weights();
compute credits();
Every Even TSf // Master Transmission Slot
if TSf + 1 is clear // Master can receive in next slot

Af = { set of slaves that can receive on frequency f }
i = maxAf

(αi) // Select device i with the largest send
factor

if ∃ i s.t. qsizei > 0 and αi > 0
ci- -; //decrement credit counter
αi = wi × ci; // update send factor
transmit packet for slave i

Table I summarizes the parameters used in the algorithm and
their de nition.
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TABLE I
DEFINITION OF PARAMETERS USED IN THE SCHEDULING ALGORITHM

Parameters De nition
B available spectrum
ri rate negotiated for device i
wi weight for device i
ci credit for device i
gi rate allocated for device i
αi send factor for device i
ui available frequency usage for device i
µi minimum guaranteed rate for device i
ε weight assigned to devices with ui = 1

B. Numerical Example

Let’s consider the Frequency Usage Table given in Figure
3 as an example. We consider 10 receiving frequencies, f ∈
[0, 9]. In order to keep the discussion simple, we show the fre-
quency pattern for the downstream traf c and assume all 10 fre-
quencies are clear for the master. We assume that there are
3 slaves in the piconet and each slave has a service rate equal
to r1 = r2 = r3 = 1/3 i.e. each slave gets polled every 6
slots. Since frequency 2 is marked used for all 3 slaves, noone
can use it and B = 9/10. We compute ui according to Equa-
tion 1. Slave, S1, can use 2 out the 10 frequencies, therefore
u1 = 2/10. u2 = 7/10 and u3 = 3/10 for S2 and S3 respec-
tively.

Fig. 3. Frequency Allocation Example

Similarly, µ1 = 2/10, µ2 = 1/3 and µ3 = 3/10. µ =∑3
i=1 µi = 25/30. Since S2 is unconstrained, it is a candidate

device for receiving the leftover bandwidth. Therefore, g 1 =
0.2, g2 = µ2 + B − µ = 0.4, and g3 = 0.3. The credits are
c1 = 2, c2 = 4 and c3 = 3 slots for N = 10. The weights
are w1 = 8/10, w2 = 3/10 and w3 = 7/10. At time TS =
0, α1 = 2 ∗ 8/10 = 8/5 while α2 = 4 ∗ 3/10 = 6/5 and
α3 = 3 ∗ 7/10 = 27/10. Therefore, S3 is serviced at time
TS = 0. A similar calculation determines the service order for
S1 on TS = 4, 6 and S2 on TS = 2, 10, 12, 14, and S3 on
TS = 16, 18.

IV. BIAS PROPERTIES

In this section we summarize the features of the BIAS algo-
rithm and highlight some of its fairness properties. Speci cally ,
Theorem 1 states that error-free connections are serviced ac-

cording to their negotiated rate and gives an upper bound deriva-
tion for the initial delay. Theorem 2 says that clear channels are
shared among error-free and error-prone devices according to
their proportional rate.

The BIAS algorithm properties are summarized as follows.
P1. Service guarantees are provided to error-free connections
including delay bounds and throughput. Although, error-prone
connections are given a higher priority of access, interference-
free devices are not affected by the interference conditions sub-
siding on some devices in the piconet.
P2. The scheduling policy is work conserving since no slots will
be left idle if there is at least one device with a positive credit
counter.
P3. Short term max-min fairness is guaranteed since the leftover
bandwidth unused by the error prone sessions is redistributed
to error-free sessions proportionally to their negotiated service
rate.
P4. The sharing of clear channels is proportional to each ses-
sion’s negotiated rate regardless of whether they are error-free
or error-prone.

Theorem 1
The number of slots allocated to an error-free session i over an
interval of N slot pairs is equal to at least ri × N . The initial
delay (in slot pairs), ∆, for an error free session, k, to send its
 rst packet over an interval of 1.25 × Nms is at most equal to:

∆ =
k∑

i=1

min(xi, ci) (9)

where i represents the index of slave i,and c i is the credit given
to device i. xi is de ned as:

xi = �ci · wi − ci−1 · wi−1

wi
� (10)

where wi is the weight of device i, and indices are assigned to
devices such that w1 · c1 > w2 · c2 > wk · ck > ... > wn · cn,
for all n devices in the piconet.

Proof
The minimum number of slots allocated to an error free connec-
tion follows directly from Equation 4. Since error free connec-
tions are not constrained by their spectrum usage, their alloca-
tion is greater or equal to their negotiated service rate, r i.

In order to prove the initial access delay bound, we consider
two devices i and j such that wi · ci > wj · cj . Since αj < αi

(αi = wi · ci), device j will only be allowed to access the chan-
nel after device i has transmitted at least xi = � ci·wi−cj ·wj)

wi
�.

Note that

wi(ci − xi) ≤ wj · ci (11)

and device j is allowed to transmit after device i has transmit-
ted at least xi packets. Also, observe that after the initial ∆ slot
pairs, both devices i and j will be serviced in a Round Robin
(RR) fashion. This represents an upper bound since device i
will keep its priority of access only if all ∆ slot pairs are clear.
In case, a used slot pair is encountered during the  rst ∆ slot
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pairs and it is clear for device j, then j is allowed to transmit.
�

Theorem 2
All devices sharing a set or subset of clear channels are serviced
according to their allocated rate.

Proof
In case the devices sharing a set of clear frequencies have equal
αs, they are serviced according to a RR policy. In the case de-
vices have different αs, the device with the maximum α is ser-
viced  rst. Assuming equal credit counters, and without loss
of generality, a high value for α indicates that the device has
limited usage of the spectrum and is therefore self-constrained.
That is, the device will not be able to use every slot in the set
and thus will not deny service to other devices sharing the same
subset with a smaller value of α. �

V. SIMULATION RESULTS

In this section, we present simulation results to evaluate the
performance of BIAS. The results obtained are compared with
Round Robin (RR) scheduling. Our simulation environment is
based on a detailed simulation environment consisting of the
MAC, PHY and channel models for Bluetooth and IEEE 802.11
(WLAN) as described in [6]. We use the topology illustrated in
Figure 4, and the simulation parameters presented in Table II.

Fig. 4. Experiment Topology

We assume that WLAN is operating in the Direct Sequence
Spread Spectrum (DSSS) mode. We vary the traf c distribu-
tions for WLAN and Bluetooth as follows. We assume that the
WLAN Mobile device is transmitting data packets to the Ac-
cess Point (AP) device which is responding with ACKs. The

WLAN packet payload is set to 7776 bits transmitted at 11
Mbits/s, while the packet header is set to 224 bits transmitted
at 1 Mbits/s. We assume that the WLAN packet interarrival rate
is exponentially distributed with a mean of 1.86 ms correspond-
ing to 50% of the offered load. For Bluetooth, we assume that
the master device is transmitting DM1 packets with a mean ar-
rival rate of λ where λ = 2∗0.000625

l − 2 ∗ 0.000625 seconds,
and l = 25 is the offered load in percent of the channel capacity.
There are 3 slaves in the topology and they are sharing 25% of
the total capacity. Thus, the offered load for each slave is set
to 8.33%. The parameters used in the setup are summarized in
Table II. Statistics are collected at the Bluetooth slave devices.

TABLE II
SIMULATION PARAMETERS

Bluetooth Parameters Values
ACL Baseband Packet Encapsulation DM1 , 366 bits
Packet Interarrival Time for the master 2.91 ms
Transmitted Power 1 mW
Slave 1 Coordinates (0, -3.5)
Slave 2 Coordinates (2,0)
Slave 3 Coordinates (-2,0)
Master Coordinates (0,-3)
WLAN Parameters Values
Packet Interarrival Time 1.86 ms
Offered Load 50 % of Channel Capacity
Transmitted Power 25 mW
Data Rate 11 Mbits/s
AP Coordinates (0,10)
Mobile Coordinates (0,d)
Packet Header 224 bits
Payload Size 7776 bits

The performance metrics that we use include the packet loss,
the mean access delay and the fairness index. The packet loss
is the probability that a packet is dropped at a device due to
interference. The access delay measures the time it takes to
transmit a packet from the time it is passed to the MAC layer
until it is successfully received at the destination.The delay is
measured at the L2CAP layer. We de ne the fairness index
for device i, Fi = Number of Packets Received

Expected Number of Packets Received . The
Number of Packets Received is the number of packets sent
minus the number of packets dropped.

Figure 5 gives the Bluetooth slave packet loss with respect
to d, the y-coordinate of the WLAN transmitter. As the WLAN
transmitter moves further away from the Bluetooth piconet (d
increases), the packet loss measured at each of the slave devices
decreases for RR scheduling and is kept at zero for BIAS. At
d = 0, the WLAN transmitter is 2m away from slaves 2 and 3
and 3 meters away from slave 3, the packet loss is 1%, 17.3%,
and 17.8% for slaves 1, 2 and 3 respectively for RR and 0% for
BIAS. Even when d = 8m (i.e. the WLAN device is at 11.18m
away from slaves 2 and 3, the packet loss is still in the order of
6.7% for slaves 2 and 3 with RR.

Figure 6 gives the mean access delay for servicing the Blue-
tooth slaves. With RR, the mean access delay is around 1.6ms
for d = 0m for all 3 slaves. With BIAS, the delay increases
to ∼ 3.6 ms for slaves 2 and 3 and 5.2ms for slave 1. This in-
crease in delay is expected since there is a trade-off between
packet loss and delay.Thus, in order to bring the packet loss to
zero, bad frequencies are skipped at the expense of increasing
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the mean access delay. We veri ed that this result does not ap-
ply to multi-slot packets where the transmission time represents
a larger fraction in the delay calculation. Therefore, reducing
the packet loss when multi-slot packets are used reduces the
mean access delay as well.

Figure 7 gives the fairness index with RR and BIAS. We
note that all 3 slaves get the same number of packets with BIAS
and their fairness index is 1 regardless of the position of the
WLAN transmitter. For RR, the fairness index is 0.99 for slave
1, while it is 0.92 and 0.93 for slaves 2 and 3 respectively for
d = 0m. Also, note that slaves 2 and 3 experience 17% of
packet loss. Thus, more packets are being sent to slaves 2 and 3
with RR and the channel utilization is as not as ef cient as with
BIAS. As the offered load increases, we expect this effect to be
magni ed and lead to unfairness and degradation in servicing
slave 1, which the error-free device in this case. Also, on the
topic of channel utilization, we observe that with RR scheduling
the number of NULL packets transmitted is 12% higher than
with BIAS. This is mainly due to the packet loss that leads to
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retransmissions and therefore the number of NULL packets to
ACK data transmissions is higher.

VI. CONCLUDING REMARKS

In this paper we present, BIAS, a scheduling technique for
alleviating the impact of interference on the Bluetooth perfor-
mance. This technique attempts to redistribute the bandwidth
unused by the interference-prone sessions to other error-free
connections that can take advantage of it. Our goal is to guar-
antee fairness in scheduling while maximizing the channel uti-
lization.

Our simulation results indicate that BIAS can signi cantly
lower the probability of packet loss for sessions experiencing
interference without much increase in the mean access delay
for the worst case scenario. Furthermore, we demonstrate that
BIAS can provide Short Term Fairness where error-free ses-
sions are still serviced according to their negotiated rate regard-
less of the channel conditions of other devices.

Our current work is focused on extending BIAS and investi-
gating the use of combined approaches such as packet encapsu-
lation and  o w control in order to support QoS in a Bluetooth
environment.
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Abstract—A major challenge for the WLAN technology stems from hav-
ing to share the 2.4 GHz ISM band with other wireless devices such as Blue-
tooth radios. The main goal of this paper is to investigate the use of tech-
niques to mitigate the effects of interference for Bluetooth and WLAN and
discuss the resulting performance trade-offs. We compare the performance
of the Bluetooth and WLAN systems and evaluate how each technique im-
proves or degrades TCP performance. Simulation results for selected sce-
narios and configurations of interest are obtained and the performance of
Bluetooth and WLAN is measured in terms of packet loss, TCP throughput
and delay.

Keywords— WPANs, Bluetooth, Interference, MAC scheduling, TCP
performance.

I. INTRODUCTION

Since the Bluetooth and 802.11b technologies use the 2.4
GHz ISM band, devices operating in close proximity may suffer
from mutual interference and significant performance degrada-
tion in terms of packet loss, lower throughputs and higher de-
lays.

Various techniques and algorithms aimed at reducing the im-
pact of interference have been considered [1]. These techniques
range from collaborative schemes intended for Bluetooth and
IEEE 802.11 protocols to be implemented in the same device
[2] to fully independent solutions that rely on interference de-
tection and estimation [3].

In this paper, we investigate the use of several techniques to
mitigate interference for Bluetooth and WLAN and focus ex-
clusively on schemes that do not require changes to either spec-
ifications. We consider rate scaling in conjunction with adap-
tive filtering for WLAN, and interference aware scheduling for
Bluetooth. We compare the effects of using these techniques
on performance for different scenarios and traffic types. Per-
formance is measured in terms of packet loss, TCP delay and
throughput.

The remainder of this paper is organized as follows. In sec-
tion II, we describe the techniques used to mitigate interference.
In section III, we give simulation results and concluding re-
marks are offered in section IV.

II. TECHNIQUES TO MITIGATE INTERFERENCE

In this section, we present two techniques that can be used
to mitigate the effect of interference. For WLAN, we consider
data rate scaling, which is a common technique used in many
implementations today to reduce the data rate from 11 down
to 1 Mbit/s in a WLAN system. For Bluetooth, we consider a
scheduling algorithm that avoids transmitting data on channels
used by other wireless devices.

A. Bluetooth Interference Avoidance Scheduling

In this subsection, we give a brief overview of the Bluetooth
Interference Aware Scheduling (BIAS) algorithm [4]. BIAS
consists of three main components, namely a channel estima-
tion procedure, a credit function that allocates bandwidth to
each device according to its service requirements, and a pri-
ority scheduling function. Channel estimation can be based on
either explicit or implicit methods. Explicit methods include
BER calculation, packet loss, or frame error rate measurements
performed on each receiver (master and slave device). The
measurements are then collected by the master device at reg-
ular time intervals. Alternatively, implicit methods do not re-
quire the master and the slave to exchange information about
the state of the channel. This information is derived by the mas-
ter upon receipt of a negative ACK. We note that either channel
estimation method allows the master device, which controls all
data transmissions in the piconet, to avoid data transmission to
a slave experiencing a ”bad” frequency. Furthermore, since a
slave transmission always follows a master transmission, using
the same principle, the master avoids receiving data on a ”bad”
frequency, by avoiding a transmission on a frequency preceding
a ”bad” one in the hopping pattern.

This simple scheduling scheme needs only be implemented
in the master device and translates into the following transmis-
sion rule. The master transmits in a slot after it verifies that
both the slave’s receiving frequency and its own receiving fre-
quency are ”good”. Otherwise, the master skips the current
transmission slot and repeats the procedure over again in the
next transmission opportunity.

Additional considerations including bandwdith requirements
and quality of service guarantees for each master/slave connec-
tion in the piconet can also be combined with the channel state
information and mapped into transmission priorities given to
each direction in the master/slave communication. Details on
assigning transmission priorities are given in [5].

The algorithm’s general steps are summarized below.

1: Every Even TSf // Master transmits on frequency f
2: if TSf + ldn is good // Master can receive in next slot
3: {
4: Af

data
= {set of slaves s.t. (( f ”good”) and ( qsize > 0) }

5: if (Af
data

�= ∅)
6: select slave i //according to a priority criteria
7: transmit data packet of size ldn to slave i
8: }

U.S. Government work not protected by U.S. copyright0-7803-7802-4/03/$17.00 © 2003 IEEEU.S. Government work not protected by U.S. copyright
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where ldn is the length of the packet from the master to the
slave (downstream) and TSf is the transmission slot using fre-
quency f.

B. WLAN Rate Scaling

Rate scaling is used in most WLAN implementations in or-
der to optimize the range performance since the 1 Mbit/s Barker
code WLAN receiver performs better than the Complementary
Code Keying (CCK) 11 Mbit/s [6] [7] [8]. The Barker code
correlation effectively spreads noise or the interference signal
while de-spreading the desired signal and leads to lower prob-
ability of bit error (BER) than CCK for the same signal-to-
interference ratio (SIR).

While there is provision in the IEEE 802.11 standards [9] to
implement a rate scaling algorithm, the details remain vendor
implementation specific. In our study, we use a simple two-
level threshold algorithm with some hysteresis margin in order
to avoid unnecessary oscillations.

1: If SIRmeasured ≥ SIRHigh // the interference is low
2: PHY mode = 11 Mbit/s
3: If SIRmeasured < SIRLow // the interference level is high
4: PHY mode = 1 Mbit/s

Basically, SIRmeasured is based on the Received Signal
Strength Indicator (RSSI). The assumption is when the RSSI is
low, the interference level is high (or the desired signal is weak),
and therefore, the receiver reverts to the 1 Mbit/s mode. We set
SIRHigh and SIRLow to 6 and 2 db respectively based on the
BER performance of each receiver. Above 2 dB the BER for
the 11 Mbit/s is below 10−4 [7].

In addition, we use an adpative filter in our 1 Mbit/s WLAN
receiver that is able to estimate and cancel the Bluetooth inter-
ference. This technique is based on recursive least-squares lat-
tice (RLSL) filters and generally more effective for the 1 Mbit/s
WLAN receiver. It is adaptive in the sense that it does not re-
quire an a priori knowledge of the Bluetooth hopping patterns.
Additional details on this method can be found in [10] where
the authors discuss its effectiveness for both the 1 and 11 Mbit/s
WLAN receivers.

III. SIMULATION RESULTS

In this section, we present simulation results to evaluate the
performance of the two techniques discussed in the previous
section. We use a detailed simulation environment consisting of
the MAC, PHY and channel models for Bluetooth and WLAN
as described in [11]. We use the topology illustrated in Figure 1.
The Bluetooth master and slave are placed one meter a part at
(-0.5,0) and (0.5, 0) meters respectively. The WLAN station is
located at (0,15) meters, while the WLAN server is located at
(0,d) meters, where d varies along the y-axis between 0 and 10
meters.

We consider two application profiles, namely, FTP, and
HTTP. We use the TCP/IP stack implemented in the OPNET
library and configure the application profiles as shown in Ta-
ble I. The parameters used in the setup are summarized in Ta-
ble II. The simulations are run for 500 seconds of simulated
time. We run 10 trials using a different random seed for each

(0,15)

WLAN Station

(0,d)

WLAN  Server

Bluetooth
Master

Bluetooth
Slave

(0.5,0)(-0.5,0)

(0,0)

Fig. 1. Experiment Topology

trial. In addition, to plotting the mean value, we verify that that
the statistical variation around the mean values are very small
(less than 1%).

The performance metrics include the packet loss, the average
delay in seconds and the throughput in bytes/s. The packet loss
is the percentage of packets dropped due to interference over
the total number of packets received at the MAC layer. The
average delay, measured at the TCP layer, indicates the time it
takes to transmit a packet from the time it is passed to the TCP
layer until it is successfully received at the destination. The
throughput is the traffic received at the TCP layer and includes
packet retransmissions.

TABLE I

APPLICATION PROFILE PARAMETERS

Parameters Distribution Value
FTP
Percentage of Put/Get 50%
Inter-Request Time (seconds) Exponential 1
File Size (bytes) Constant 2 M
HTTP
Page Interarrival Time (seconds) Exponential 10
Number of Objects per page Constant 2
1st Object Size (bytes) Constant 10000
2nd Object Size (bytes) Uniform (2000, 100000)

TABLE II

SIMULATION PARAMETERS

Bluetooth Parameters Values
ACL Baseband Packet Encapsulation DH5
Transmitted Power 1 mW
Slave Coordinates (-0.5, 0)
Master Coordinates (0.5,0)
WLAN Parameters Values
Transmitted Power 25 mW
Data Rate 11 Mbit/s if not rate scaling
Station Coordinates (0,15)
Server Coordinates (0,d)
PLCP Header 192 bits
Packet Header 224 bits

We run simulations for three different experiments where we
vary the profiles used for the Bluetooth and WLAN applications
as shown in Table III. In experiment 1, both WLAN and Blue-
tooth use the FTP profile, while in experiments 2 and 3, the
WLAN (/Bluetooth) application uses FTP (/HTTP) and HTTP
(/FTP) traffic respectively. Although a large amount of data was
obtained at analyzed, due to space constraints, only a small sub-
set of the results is shown here.

In the next two subsections, we discuss the performance of
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TABLE III

EXPERIMENT SUMMARY

Scenario WLAN Bluetooth
1 FTP FTP
2 FTP HTTP
3 HTTP FTP

TCP over WLAN and Bluetooth in terms of the techniques pro-
posed. We compare the performance of WLAN and Bluetooth
when rate scaling is used for WLAN and scheduling is used for
Bluetooth. For each experiment, we run 4 simulations in or-
der to identify the benefits of each algorithm and its interactions
with other schemes. None refers to the case when no algorithm
is used. Rate Scaling means that WLAN uses the rate scaling
algorithm, while Scheduling means that Bluetooth uses BIAS.
The case where WLAN uses rate scaling and Bluetooth uses
BIAS simultaneously is refered to as Rate Scaling + Schedul-
ing.

A. TCP over WLAN

Figure 2 (a) gives the packet loss with respect to the y-
coordinate of the WLAN server, d, when both WLAN and Blue-
tooth use the FTP profile. When no algorithm is used, the packet
loss can be up to 14% when the WLAN server is close to the
Bluetooth piconet (d=0 meters). As the server moves away from
the Bluetooth piconet, the packet loss drops to zero (d ≥ 5 me-
ters). When rate scaling is used, the packet loss drops to 5%
when d=0 meters. This packet loss observed is due to the inter-
mittent use of the 11 Mbit/s WLAN receiver before the 1 Mbit/s
mode is used. While the adaptive filter used in the 1 Mbit/s re-
ceiver is able to reduce the packet loss to zero, the 11 Mbit/s
receiver is less robust and yields a relatively high packet loss.
Observe that the packet loss is zero when Bluetooth uses BIAS
since the Bluetooth transmitter avoids using the same frequency
used by WLAN.

Figure 2(b) illustrates the throughput of the WLAN server.
When no algorithm is used, the throughput starts at 240 Kbyte/s
when d=0 meters, and goes up to 350 Kbyte/s when d ≥ 5
meters and the packet loss is zero. Observe that when BIAS is
used, the throughput remains around 350 Kbyte/s since no pack-
ets are lost. Since rate scaling involves reducing the WLAN bit
rate from 11 to 1 Mbit/s, this yields to reducing the throughput
to 50 Kbyte/s. As expected, rate scaling can reduce the packet
loss, at the cost of reducing the throughput.

Figure 3(a) and (b) give the WLAN packet loss and delay
respectively for experiment 3. In this case, the WLAN uses the
HTTP profile while the Bluetooth uses the FTP profile. The
packet loss depicted in Figure 3(a)) is slightly less than when
WLAN uses the FTP profile (Figure 2(a)), however it follows
a similar trend. The packet loss with BIAS is around 1% when
d < 4 meters.

An important metric for HTTP is the delay to access data,
therefore in Figure 3(b), we plot the TCP delay. Note that it
is 15 ms when the packet loss is 12% (Figure 3(a)) and drops
down to 2.5 ms when the packet loss is zero. Observe that when
rate scaling is used the delay remains flat at 5 ms. On the other
hand, when Bluetooth uses BIAS, the delay starts at 5 ms and
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Experiment 1. WLAN FTP Performance. (a) Probability of

Packet Loss. (b) TCP Throughput

drops down to 2.5 ms.
Overall, we note that the use of Bluetooth scheduling im-

proves the WLAN performance and brings it closer to the ideal
case when no interference is present. The use of rate scaling
produces interesting but expected trade-offs. While the WLAN
packet loss is reduced, the delay is increased and the throughput
is reduced.

B. TCP over Bluetooth

Figure 4(a) gives the packet loss for the Bluetoth master de-
vice as a function of the WLAN server y coordinate, d. When
no algorithm is used, the packet loss is around 10% for d =0
meters. When 2 ≤ d ≤ 6 meters, we observe a spike with a
peak of 17% at d=4 meters. This is due to the closed loop inter-
ference between the WLAN and Bluetooth systems. To better
understand the interactions, we look at Figure 2(a). Since less
WLAN packets are lost (more WLAN packets are transmitted),
this causes more interference on Bluetooth and thus more packet
loss. This trend is valid until d=5 meters and the WLAN packet
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Experiment 3. WLAN HTTP Performance. (a) Probability of

Packet Loss. (b) TCP Delay

loss is zero. At that point, the Bluetooth packet loss start de-
creasing as the WLAN server moves further away. When rate
scaling is used for the WLAN, we note a packet loss of 12%
for Bluetooth at d=0 meters. The packet loss remains high until
d=10 meters. This is due to the fact that rate scaling causes the
WLAN to transmit packets at a lower rate, occupying more time
in the air and causing more interference on Bluetooth. Note that
when scheduling is used for Bluetooth, the packet loss is re-
duced to zero.

The TCP throughput depicted in Figure 4(b), closely follows
the packet loss curves in Figure 4(a). When no algorithm is
used, the throughput is 38 Kbyte/s when d=0 meters, 35 Kbyte/s
when d=5 meters, and 45 Kbytes/s when d=10 meters, which
clearly reflects a 12%, 17%, and 0% packet loss respectively. As
expected, when rate scaling is used the throughput is about 10%
lower than when scheduling is used reflecting the 10% packet
loss observed in Figure 4(a).

The results for packet loss and delay when Bluetooth uses
the HTTP profile (experiment 2), are illustrated in Figures 5(a)
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Experiment 1. Bluetooth FTP Performance. (a) Probability of

Packet Loss. (b) TCP Throughput

and (b) respectively. The packet loss when rate scaling is used
is slightly higher (11%) than when no algorithm is used (8%).
The packet loss is zero when scheduling is used.

The TCP delay in Figure 5(b) starts at 33 ms when rate scal-
ing is used at d=0 meters. It is 7 ms and 12 ms when scheduling
and no algorithm are used respectively. When no interference
is present (d=10 meters), the delay is around 6 ms. Thus, the
scheduling algorithm yields a slight increase in delay (around 1
ms) while reducing the packet loss to zero.

In summary, the main advantages of using scheduling in
terms of the Bluetooth performance, are to reduce the packet
loss to zero at almost no cost to either thoughput or delay. On
the other hand the use of rate scaling for WLAN leads to higher
packet losses for Bluetooth, including higher delays and lower
throughput.

IV. CONCLUDING REMARKS

In this paper, we study the performance of TCP over Blue-
tooth and WLAN in a mutual interference environment consist-
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Experiment 2. Bluetooth HTTP Performance. (a) Probability of

Packet Loss. (b) TCP Delay

ing of two Bluetooth and two WLAN devices operating at the
same time. We consider two application profiles, namely HTTP
and FTP.

We investigate the use of two techniques to mitigate the ef-
fects of this mutual interference. Both techniques rely on de-
tecting the presence of other wireless systems and adapting to
the interference environment. For Bluetooth, we use a schedul-
ing scheme that consists of avoiding to transmit a packet on a
frequency used by the WLAN system. On the other hand, for
WLAN we use rate scaling which consists of reverting to the
more robust 1 Mbit/s mode. We also include in the 1 Mbit/s
receiver used, an adaptive filter that can notch out the Bluetooth
signal. Both techniques do not require any changes to either the
Bluetooth or the IEEE 802.11 specifications.

Our simulation results indicate that the use of Bluetooth
scheduling improves both the Bluetooth and WLAN systems’
performance. The packet loss is reduced to zero, while the
throughput is increased, and the delay decreased. On the other
hand, the benefits of using rate scaling in the WLAN system

are clearly less pronounced. While the packet loss is reduced
for WLAN due to the the use of a more robust receiver and an
adaptive filter, the performance of Bluetooth is degraded due
to the increase of the WLAN packet transmission. As a result,
the probability of a packet collision in time and frequency is
much higher leading to higher packet loss and delays, and lower
throughputs.

Finally, we note that these observations apply to either FTP
or HTTP traffic. While the exact performance results depend on
the parameters of the application profile used, the general trends
hold in most cases studied.
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Abstract

Bluetooth is a cable replacement technology for Wireless Personal Area Networks. It is designed to support a wide variety of applications such as

voice, streamed audio and video, web browsing, printing, and  le sharing, each imposing a number of quality of service constraints including packet

loss, latency, delay variation, and throughput. In addition to QOS support, another challenge for Bluetooth stems from having to share the 2.4 GHz

ISM band with other wireless devices such as IEEE 802.11. The main goal of this paper is to investigate the use of a dynamic scheduling algorithm that

guarantees QoS while reducing the impact of interference. We propose a mapping between some common QoS parameters such as latency and bit rate

and the parameters used in the algorithm. We study the algorithm’s performance and obtain simulation results for selected scenarios and con guratio ns

of interest.

Keywords
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I. INTRODUCTION

Today most radio technologies considered by Wireless Personal Area Network (WPAN) industry consortia and standard groups

including the Bluetooth Special Interest Group [1], HomeRF [2], and the IEEE 802.15, employ the 2.4 GHz ISM frequency band.

This same frequency band is already in use by microwave ovens and the popular Wireless Local Area Network (WLAN) devices

implementing the IEEE 802.11 standard speci cations [3].

However, instead of competing with WLANs for spectrum and applications, WPANs are intented to augment many of the usage

scenarios and operate in conjunction with WLANs, i.e., come together in the same laptop, or operate in proximity in an of ce or

conference room environment. For example, Bluetooth can be used to connect a headset, or PDA to a desktop computer, that in

turn may be using WLAN to connect to an Access Point placed several meters away.

Thus, an issue of growing concern is the coexistence of WLAN and WPAN in the same environment. Several techniques and

algorithms aimed at reducing the impact of interference have been considered. These techniques range from collaborative schemes
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intended for Bluetooth and IEEE 802.11 protocols to be implemented in the same device to fully independent solutions that rely on

interference detection and estimation. In particular:

• Collaborative Mechanisms-

Mechanisms for collaborative schemes have been proposed to the IEEE 802.15 Coexistence Task Group and are based on a

Time Division Multiple Access (TDMA) solution that alternates the transmission of Bluetooth and WLAN packets (assuming

both protocols are implemented in the same device and use a common transmitter) [4]. A priority of access is given to

Bluetooth for transmitting voice packets, while WLAN is given priority for transmitting data.

• Non-Collaborative Mechanisms-

The non-collaborative mechanisms range from adaptive frequency hopping [5] to packet scheduling and traf c control [6].

They all use similar techniques for detecting the presence of other devices in the band such as measuring the bit or frame

error rate, the signal strength or the signal to interference ratio (often implemented as the Received Signal Indicator Strength

(RSSI)). Frequency hopping devices may be able to detect that some frequencies are used by other devices and thus modify

their frequency hopping pattern. They can also choose not to transmit on ”bad” frequencies. The  rst technique is known as

adaptive frequency hopping, while the second technique is known as MAC scheduling. The main advantage of scheduling is

that it does not require changes to the Bluetooth speci cations.

In this paper we present a Bluetooth Interference Aware Scheduling (BIAS) algorithm to deal with coexistence. This algorithm

takes advantage of the fact that devices in the same piconet will not be subject to the same levels of interference on all channels

of the band. The basic idea is to utilize the Bluetooth frequency hopping pattern and distribute channels to devices such that to

maximize their throughput while ensuring fairness of access among users.

In this paper, we propose several extensions to a preliminary discussion of the the algorithm [7] in order to address (1) priority

scheduling, (2) dynamic changes in the environment, and (3) asymmetric scenarios where packet lengths and data rates are chosen

differently in the upstream (slave to master transmission) and downstream (master to slave transmission) directions. In addition,

we describe how to map commonly used QOS parameters, namely bit rate, and jitter and the parameters used in BIAS. Simulation

results for scenarios and con gurations of interest are presented and performance is measured in terms of packet loss and mean

access delay.

The remainder of this paper is organized as follows. In section II we give some general insights on the Bluetooth interference

environment. In sections III, we describe the scheduling algorithm and discuss the mapping of the QOS parameters. In section IV,

we present simulation results and offer concluding remarks in section V.
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II. INTERFERENCE ENVIRONMENT

Since Bluetooth operates in the 2.4 GHz band along with other wireless technologies such as 802.11, high and low rate WPAN

(802.15.3 and 4), the resulting mutual interference leads to signi cant performance degradation.

In this paper, we assume that interference is caused by an 802.11 spread spectrum network operating in proximity of the Bluetooth

piconet. This represents the worst case interference for Bluetooth. Golmie et al. [8][9] use a detailed MAC and PHY simulation

framework to evaluate the impact of interference for a pair of WLAN devices and a pair of Bluetooth devices. The results indicate

that Bluetooth performance may be severely impacted by interference with packet loss of 8% and 18% for voice and data traf c

respectively. In [9], the authors investigate the effect of several factors, such as transmitted power, offered load, packet size,

hop rate, and error correction on performance. First, they note that power control may have limited bene ts in an interference

environment. Increasing the Bluetooth transmission power even ten times is not suf cient to reduce the Bluetooth packet loss.

Second, using a shorter packet size leads to less packet loss for Bluetooth at the cost of causing more interference on WLAN.

Overall, the results exhibit a strong dependence on the type and characteritics of the traf c distribution used.

Additional analytical [10] [11] and experimentation [12] [13] results con rm these  ndings.

III. BLUETOOTH SCHEDULING ALGORITHM

In this section, we present a Bluetooth Interference Aware Scheduling (BIAS) algorithm that consists of several components,

namely, (i) dynamic channel estimation, (ii) credit computation, and (iii) access priority. A preliminary discussion of BIAS ap-

peared in [7].

In this sequel, we assume that traf c from slave Si to the master (upstream) is characterized by a data rate, γ i
up, equal to

Ni
peak×liup

pi where N i
peak is the number of packets sent back-to-back within a poll interval, p i, and liup is the packet length (1, 3, or

5 slots depending on the packet type). Similarly, the data rate in the downstream (from the master to slave S i) is characterized by

γi
dn equal to Ni

peak×lidn

pi . Note that N i
peak and pi are the same in the upstream and downstream, since every packet in the upstream

corresponds to one in the downstream. In addition, we assume the following transmission rules for the master and slave.

Master - The master polls Si every pi slots in order to guarantee γ i
up in the upstream direction. A poll message can be either a

data or POLL packet. A data packet is sent if there is a packet in the queue destined for S i. This packet contains the ACK of the

previous packet received from Si. In case there is no data to transmit and the master needs to ACK a previous slave transmission,

it sends a NULL packet.

Slave Si - Upon receipt of a packet from the master, the slave can transmit a data packet. This data packet contains the ACK
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information of the master to slave packet transmission. In case the slave does not have any data to send, it sends a NULL packet in

order to ACK the previous packet reception from the master. No ACK is required for a NULL message from the master.

In a nutshell, we propose a method that allows the master device, which controls all data transmissions in the piconet, to avoid

data transmission to a slave experiencing a ”bad” frequency. Furthermore, since a slave transmission always follows a master

transmission, using the same principle, the master avoids receiving data on a ”bad” frequency, by avoiding a transmission on a

frequency preceding a ”bad” one in the hopping pattern.
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Fig. 1. Interference Aware Scheduling

This simple scheduling scheme illustrated in Figure 1 needs only be implemented in the master device and translates into the

following transmission rule. The master transmits in a slot after it veri es that both the slave’s receiving frequency, f s, and its own

receiving frequency, fm, are ”good”. Otherwise, the master skips the current transmission slot and repeats the procedure over

again in the next transmission opportunity.

Figure 2 describes the master’s transmission  o w diagram. In addition, to checking the slave’s and the master’s receiving fre-

quencies pair, (fs,fm), the algorithm incorporates bandwidth requirements, and quality of service guarantees for each master/slave

connection in the piconet. This bandwidth allocation is combined with the channel state information and mapped into transmission

priorities given to each direction in the master/slave communication. It is shown in the ”choose slave” routine in the  o w diagram.

Note that the master invokes the ”choose” routine after serving the retransmission and ACK queues for packets sent by the master

requiring retransmissions and packets received by the master requiring acknowlegments respectively.

In the remainder of this section, we discuss (a) a dynamic channel estimation procedure, (b) a credit allocation function, and (c) a

service priority routine that schedules packet transmissions to devices according to their service requirements and the state of the

channel.
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Fig. 2. Master Packet Transmission Flow Diagram

A. Dynamic Channel Estimation

Estimation is mainly based on measurements conducted on each frequency or channel in order to determine the presence of

interference. Several methods are available ranging from BER, RSSI, packet loss rate, and negative ACKs. In this discussion, the

estimation is based on negative ACKs, which belongs to the class of implicit methods that do not require messages to be exchanged

between the master and the slave devices. First, we de ne two phases in the channel estimate procedure. During the Estimation

Window packets are sent on all frequencies regardless of their classi cation. Note that in case no data traf c is available for

transmission, POLL/NULL packets could be exchanged between the master and the slave in order to probe the channel and collect

measurements. The Estimation Window takes place every estimation interval, EI , and is followed by an Online phase where the

master uses only ”good” frequencies to selectively send data and POLL packets to slaves in the piconet.

Next, we give a lower bound on the Estimation Window and describe how to adjust EI based on the environment’s dynamics.

Estimation Window -

Since the slave does no need to send information to the master about the state of its channel, as soon as a frequency is determined

to be ”bad” it can be classi ed as such right away and skipped at the next hop. A simple rule such as the number of times each

frequency is visited before a frequency is classi ed can be used in order to derive the status of a frequency. Thus, the boundary

between the Estimation Window and the online phase is blurred as illustrated in Figure 3. While the channel estimation procedure

is still performed ever EI , the size of the Estimation Window does not need to be predetermined.

Estimation Interval - How often to update the channel estimation depends on the application and the dynamics of the scenario
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Fig. 3. Implicit Estimation

used. We propose an adaptive procedure to adjust EI , which the interval between two consecutive estimation windows.

First, we let δ, be the percentage of frequencies that change classi cation status (from ”good” to ”bad” or vice versa) during the

previous estimation phase. More formally, let S(f,t) be the status of frequency f at time t.

S(f, t) = 1; if f is ”good”

S(f, t) = 0; otherwise (1)

Using the exclusive ’OR’ (⊗) operation between S(f,t) and S(f, t+1) represents the change of status of frequency f from time t to

t + 1. A change of status leads to a logic ”1” while a no change yields a logic ”0”. Summing over all frequencies and dividing by

the number of frequencies available, which is 79 in this case, leads to the following

δ =
1
79

79∑
f

(S(f, t) ⊗ S(f, t + 1)) (2)

We can then de ne, a procedure for adapting EI . Initially, EI is set to EImin. Then, EI is updated every interval, k, according

to the rationale that if a change were to happen it is likely to happen again in the near future and therefore EI is set to EI min.

Otherwise, the window is doubled.

EIk+1 = max (2 ∗ EIk, EImax); if δ ≤ 0.1

EIk+1 = EImin otherwise (3)

B. Credit Allocation

The credit system controls the bandwidth allocated to each device in order to ensure that no device gets more than its fair share

of the available bandwidth. Thus, devices with a positive credit counter, c i, are allowed to send data. Since the rate in the upstream

can be different from the rate in the downstream, we de ne c i
up and ci

dn for both the upstream and downstream credits. Credits can

be computed according to the upstream and downstream rates negotiated as follows:

ci
up = γi

up × N (4)
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ci
dn = γi

dn × N

where N is the number of slots considered in the allocation and γ i
up/down = liup/down ∗ N i

peak/pi. Credits are decremented by the

number of slots used in each data packet transmission. The transmission of POLL and NULL packets does not affect the credit

count based on the rationale that credits are not required for the transmission of POLL and NULL messages. An interesting question

is how to compute γ or derive it from application QOS parameters such as delay, peak bandwidth, and jitter. Let d (seconds), r

(bits/s), σ (seconds) represent delay, peak bandwidth, and jitter respectively. r is part of the L2CAP QOS parameters and for some

applications is negotiated between the master and the slave at connection setup. r is equal to (N peak × El ∗ 8)/(p × 625 × 10−6)

and γ = (r × l× 625× 10−6)/(El × 8). Note that El is the number of information bytes contained in a packet of length l. Table I

gives El corresponding to the various DH formats.

TABLE I

PACKET ENCAPSULATION RATE FOR DH PACKETS

Packet Type l El (Bytes)

DH1 1 27

DH3 3 183

DH5 5 339

The choice of l depends on the L2CAP packet size, k. When k ≤ E5, Npeak = 1 and l is such that:

1 if 0 < k ≤ 27 (5)

l = 3 if 27 < k ≤ 183

5 if 183 < k ≤ 339

However, when k > E5, higher layer packets (L2CAP) are segmented into Npeak packets. The aim is to  nd Npeak equal to

Npeak = � k

El
� (6)

such as to minimize Npeak × l, or the total number of slots needed. Furthermore, since master and slave transmission alternate,

the end-to-end delay of a packet accounts for the segmentation and the transmission of packets in both directions. Therefore, the

choice of lup and ldn are loosely constrained by the delay requirements as follows:

Npeak × (lup + ldn) ≤ d

625 × 10−6
(7)

where 625 × 10−6 is the length of a slot in seconds. Finally, the choice of p is determined by σ as follows.

2 ≤ p ≤ σ

625 × 10−6
(8)
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where 2 is the minimum value for the poll interval since every other slot is dedicated to a master (or slave) transmission.

In case r, d, and σ cannot be determined from the application QOS, γ can be set to 1− ∑
γi, the leftover bandwidth after having

calculated γ for all other applications with known service rates (
∑

γ).

C. Service Priority

The third component of the algorithm is to give an access priority to devices based on their channel conditions and their allocated

credits.

We let ui be the probability that a pair of master/slave transmission slots are ”good”. Thus, u i represents the available spectrum

to slave Si, and we write:

ui = max((1 − 1/79), P (slave i has a good receiving frequency)

×P (master has a good receiving frequency)) (9)

where

P (device i has a good receiving frequency) =

Number of good Channelsi/Total Number of Channels (10)

We use a two-tier system with high and low priorities, denoted by A, and B respectively. Priority A is used to support delay

constrained applications such as voice, MP3, and video. On the other hand, priority B, is used to support best effort connections

such as ftp, http, print, email. The scheduling routine services priority A devices  rst, and priority B devices second. Also, among

same tier connections, we choose to give devices with fewer number of good channels the right of way over other devices that have

more channels available. The priority access is determined according to a weight factor, w, that is the product of the credits and the

probability of experiencing a bad frequency. w i
up and wi

dn are computed as follows:

wi
up = ci

up × (1 − ui) (11)

wi
dn = ci

dn × (1 − ui)

The master schedules a data transmission for slave i such as to maximize the product of the weights in the up and downstreams.

i = maxf
S(wi

up × wi
dn) (12)

To transmit a POLL packet, the master looks only at the weight function in the upstream:

i = maxf
S(wi

up) (13)

The selection of a slave is restricted over the set of slaves S that can receive on the master’s current transmission frequency, f . Thus,

any slave that experiences a ”bad” channel on the current transmission frequency is not considered. Four sets of slaves are formed,
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Af
data, Af

poll, Bf
data, and Bf

poll. Adata and Apoll represent the set of high priority connections requiring data and POLL packet

transmissions respectively. Similarly, Bdata and Bpoll represent low priority connections. First, the algorithm tries to schedule

a packet to high priority slaves in group A, then a POLL packet, before it moves to group B. The credit counters and weights

are updated accordingly after every master’s transmission. Table II summarizes the parameters used in the algorithm and their

de nition. The algorithm’s pseudocode is given in the appendix.

TABLE II

DEFINITION OF PARAMETERS USED IN THE SCHEDULING ALGORITHM

Parameters De nition

γi
up,dn rate allocated for device i in the upstream and downstream

wi
up,dn weight for device i

ci
up,dn

credit for device i

N Number of slots considered in the allocation

ui available frequency usage for device i

IV. PERFORMANCE EVALUATION

In this section, we present simulation results to evaluate the performance of BIAS. The experiments illustrate the algorithm’s

responsiveness to changes in the environment and the support of QOS. The results obtained are compared with Round Robin

(RR) scheduling. Our simulation environment is based on a detailed MAC, PHY and channel models for Bluetooth and IEEE

802.11 (WLAN) as described in [8]. The parameters used in the setup vary according to the experiment. The common simulation

parameters are summarized in Table III. The simulations are run for 300 seconds of simulated time unless speci ed otherwise. We

run 10 trials using a different random seed for each trial. In addition, to plotting the mean value, we verify that that the statistical

variation around the mean values are very small (less than 1%).

The performance metrics include the packet loss, the mean access delay, and the channel estimation transient time. The

packet loss is the percentage of packets dropped due to interference over the total number of packets received. The access delay

measures the time it takes to transmit a packet from the time it is passed to the MAC layer until it is successfully received at the

destination. The delay is measured at the L2CAP layer. The estimation transient time measures the time it takes a Bluetooth device

to detect the presence of a ”bad” frequency, i.e. from the time a packet loss occurs until the frequency is classi ed ”bad”. This

average is provided on a per frequency basis.
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TABLE III

COMMON SIMULATION PARAMETERS

Bluetooth Parameters Values

ACL Baseband Packet Encapsulation DH5

Transmitted Power 1 mW

WLAN Parameters Values

Packet Interarrival Time 2.172 ms

Offered Load 60 % of Channel Capacity

Transmitted Power 25 mW

Data Rate 11 Mbit/s

PLCP Header 192 bits

Packet Header 224 bits

Payload Size 12000 bits

A. Experiment 1: Base Case

This experiment includes Bluetooth performance results for the reference scenario when no interference is present. It represents

a base case since the effects of BIAS are quanti ed and compared against the reference scenario. It also covers different levels of

interference caused by WLAN systems operating in close proximity. Thus, we examine Bluetooth’s performance when 1, 2, and 3

WLAN interfering systems are operational and compare that to the ideal performance when no interference is present. Note that,

the maximum number of non-overlapping channels for WLAN systems is 3, i.e. there could be up to 3 WLAN networks operating

simultaneously using different non-overlapping channels. In each case, results are obtained with BIAS and RR scheduling. The

bene ts of using BIAS are discussed in terms of packet loss and access delay.

Topology - We use the topology illustrated in Figure 4 that consists of 3 WLAN systems (source-sink pairs), and one Bluetooth

piconet with one master and one slave device. In a  rst step, we record the results of Bluetooth when no WLAN system is present.

Then, we add one WLAN system at a time starting with WLAN (Source/Sink) 1, followed by WLAN (Source/Sink) 2, and 3.

Bluetooth
Master

(0,14)

WLAN Sink 1

Bluetooth
Slave

(1,0)(-1,0) (0,0)

(-20,14)

WLAN Sink 2

(-2,-1)

WLAN  Source 2

(20,14)

WLAN Sink 3

(0,-1)

WLAN  Source 1

(2,-1)

WLAN  Source 3

Fig. 4. Topology for Experiments 1 and 2
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Fig. 5. (a) (b) Experiment 1. Variable Number of WLAN Interfering Systems. (a) Probability of Packet Loss. (b) Mean Access Delay

Traf c - For Bluetooth, a generic source that generates DH5 packets is considered. The packet interarrival mean time in

seconds, tB , is exponentially distributed and is computed according to

tB = 2 × l × 0.000625 × (
1

λ
− 1) (14)

where l is the packet length in slots and λ is the offered load. We assume that WLAN is operating in the Direct Sequence Spread

Spectrum (DSSS) mode. The WLAN source is transmitting data packets to the sink which is responding with ACKs. The WLAN

packet payload is set to 12000 bits transmitted at 11 Mbit/s, while the PLCP header of 192 bits is transmitted at 1 Mbit/s. The

packet interarrival time in seconds, tW , is exponentially distributed and its mean is computed according to

tW = (
192

1000000
+

12224

11000000
)/λ (15)

Results - Figure 5 gives the packet loss (a) and the mean access delay (b) measured at the slave for a variable Bluetooth offered

load (5-80%). Observe that when no WLAN system is present, the packet loss is zero and the access delay remains  at at around 4

ms. This represents a reference measure for the Bluetooth performance when there is no interference. Each WLAN system addition

an increase of 15% in packet loss as shown in Figure 5(a). The packet loss is around 15%, 30% and 45% when one, two, and three

WLAN systems are present respectively. Repeating the same experiments using BIAS, brings the packet loss down to zero for any

number of WLAN systems. The delay trends captured in Figure 5(b) are consistent with the packet loss results. Using BIAS yields

lower delays than when RR is used. When one WLAN system is present, the delay curve with BIAS is  at at 5 ms (a 1 ms increase

compared to the reference case when no interference is present). When 2 WLAN systems are present, the delay curve takes off at

35% with RR, while the curve remains  at until 60% with BIAS. When 3 WLAN systems are present, the delay curve takes off

sharply at 15% with RR, while the knee of the curve remains lower with BIAS (shifted to the right).
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Fig. 6. (a) (b) Experiment 2. Variable Bluetooth Offered Load. (a) Probability of Packet Loss. (b) Mean Access Delay

B. Experiment 2: Dynamic Behavior

In this experiment, we focus on BIAS’s responsiveness to transient effects and sudden changes in the environment. We measure

the channel estimation transient time per frequency and over the entire spectrum. We design an experiment where the WLAN traf c

is turned on and off several times during each simulation run (about 20 times).

Topology - We use the topology of Figure 4 with one WLAN system (Source/Sink 1) and the Bluetooth master/slave pair.

Traf c - The offered load for Bluetooth is varied between 5 and 100%, while for WLAN the offered load is set to 60%. For

Bluetooth, both DH1 (1 slot) and DH5 (5 slots) packets are used in order to compare the difference in transient times. The interar-

rival time is computed according to Equations 14 and 15. In addition, the time the WLAN connection is on, T ON , is exponentially

distributed with a mean equal to 30 seconds, while the time the WLAN connection is off , T OFF , is also exponentially distributed

with mean equal to 60 seconds. Each simulation is run for 1800 seconds. In addition, we set E min = 5 seconds, Emax = 900

seconds, and α = 0.9.

Results - Figure 6(a) and (b) give the packet loss and access delay respectively measured at the Bluetooth slave device. The

packet loss is negligible (less than 0.1%) for both DH1 and DH5 packets. The delay for DH1 packets is lower than the delay for

DH5 packets for offered loads under 40% ( it is around 2 ms for DH1 packets, and 4 ms for DH5 packets). The knee of the curve

for DH5 packets is located around 70% of the offered load while it is at 50% for DH1 packets. Figure 7 gives the time it takes

to estimate a ”bad” frequency using DH1 and DH5 packets. The use of DH5 packets leads to a slower hopping rate and therefore

increases the transient times, up to 7.5 ms while it is around 900 µs for DH1 packets.
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C. Experiment 3: QOS Support

This experiment highlights the support of QOS in an environment where devices experience different levels of interference and

connections have a range of service requirements.

Topology - We use the topology illustrated in Figure 8. Slaves 1 and 2 experience the same level of interference, while slave

3 does not experience any interference. The y-coordinate of the WLAN FTP server is varied along the y-axis in order to vary the

level of interference on the Bluetooth piconet.

Email Server
BT Slave

3

Client BT
Master

(0,d)

(0,15)
WLAN FTP Client

WLAN FTP
Server

Print Server
BT Slave

1

Video Server
BT Slave

2

(0,-5.5)

(2,-2)
(-2,-2)

(0,-5)

(0,0)

Fig. 8. Topology for Experiment 3

Traf c - For Bluetooth, we consider three application pro les, namely, Print, Video, and Email. We use print, video, and email

traf c between slaves 1, 2, 3 and the master respectively. Note that the master is the client process in all three connections. The

pro le parameters are given in Table IV. The WLAN uses the FTP pro le described in Table V.
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TABLE IV

BLUETOOTH APPLICATION PROFILE PARAMETERS

Parameters Distribution Value

Email

Send Interarrival Time (seconds) Exponential 120

Send Group Constant 3

Receive Interarrival Time (secondS) Exponential 60

Receive Group Constant 3

Email Size (bytes) Exponential 1024

Print

Print Requests Interarrival Time (seconds) Exponential 30

File Size Normal (30000,9000000)

Video

Frame Rate Constant 1 Frame/s

Frame Size (bytes) Constant 17280 (128 x 12 pixels)

TABLE V

WLAN APPLICATION PROFILE PARAMETERS

Parameters Distribution Value

FTP

File Interarrival Time (seconds) Exponential 5

File Size (bytes) Exponential 5000000

Percentage of Get 100%

Since the video application uses 475 out of 1600 slots, we set γup = 0.3 and γdn = 0.05. The two other applications, share the

leftover bandwidth (1 − 0.35 = 0.65). Since in a realistic environment it is often dif cult to predict the exact traf c distribution in

the upstream and downstream, 0.65 is divided equally between the upstream and downstream, and each direction gets 0.17.

Results - Figure 9 depicts the results when the WLAN y-coordinate is varied between 0 and 11 meters. In Figure 9 (a), the

packet loss with BIAS is below 0.5% for all three slaves. With RR, slave 1 (Print) and slave 2 (Video) vary between 15% and 2%

of packet loss between 0 and 11 meters respectively. Slave 3 (Email) has a low packet loss with both BIAS and RR since it is far

from the WLAN server.

The access delay for slave 2 (Video) in Figure 9(b) stays around 1.5 ms with BIAS, while it is up to ten times higher with RR

(15 ms). For Print, delays with BIAS are half the delays with RR. The delays for Email are also reduced by half with BIAS (7.5

ms as opposed to 15 ms).
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D. Experiment 4: WLAN and Multi-Bluetooth Piconets Interference

When two or more Bluetooth piconets are proximally located, one expects few collisions when the packets happen to be transmit-

ted on the same frequency. However, the probability of such collisions is low as discussed in [14] since each piconet has a unique

frequency sequence. Given that these packet collisions are random in nature and are already mitigated by frequency hopping, we

do not expect signi cant performance improvements when BIAS is used since the packet loss is already very low. Furthermore,

the fact that frequencies are eliminated due to other Bluetooth piconet interference may even cause delay increases. We illustrate

this particular issue using the following scenario.

Topology - We use the topology illustrated in Figure 10 representing a conference hall environment. It consists of one WLAN

AP located at (0,15) meters, and one WLAN mobile at (0,0) meters. The WLAN mobile is the server device, while the AP is the

client. The distance between the WLAN AP and mobile is dW = 15 meters. There are ten Bluetooth piconets randomly placed,

covering a disk. The center of the disk is located at (0,0) and its radius is r = 10 meters. We de ne d B as the distance between a

Bluetooth master and slave pair. dB = 1 meter for half of the master and slave pairs, while dB = 2 meters for the other half of the

master and slave pairs.

Traf c - We use the application pro les available in the OPNET library and con gure the parameters according to Table VI.

Four piconets use the Voice application, while four other piconets use the FTP pro le. Two piconets use the HTTP pro le. Half of

the Bluetooth piconets have the slave and the master device set one meter apart, while the other half have the slave and the master

device set two meters apart. The WLAN is either using the FTP pro le de ned in Table V, or the HTTP pro le de ned in Table VI.
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Fig. 10. Topology for Experiment 4

TABLE VI

PROFILE PARAMETERS

Parameters Distribution Value

Voice

Encoder G.711

Silence Length (seconds) Exponential 0.65

Talk Spurt (seconds) Exponential 0.352

Bluetooth FTP

Percentage of Put/Get 100%

Inter-Request Time (seconds) Exponential 5

File Size (bytes) Exponential 250000

HTTP

Page Interarrival Time (seconds) Exponential 30

Number of Objects per page Constant 2

Object 1 Size (bytes) Constant 1000

Object 2 Size (bytes) Uniform (2000,100000)

Results - The results for Bluetooth are shown in Table VII and VIII for the packet loss and the access delay respectively. The

results are separated by application category (FTP, HTTP, Voice), and dB , for each of the WLAN pro les.

First, we observe that the packet loss is slightly lower with BIAS for all Bluetooth and WLAN traf c types. Second, the change

is more signi cant when WLAN is set to the FTP pro le, since this latter application transmits more packets and thus causes more

interference on the Bluetooth piconets. In addition, we note that the decrease in packet loss is most noticeable for d B = 2 m. The

packet loss for the Bluetooth FTP application goes from 17% to 8% (for RR and BIAS respectively), while for the Bluetooth voice

application it goes from 16% to 5%.

Observe that when the WLAN HTTP application is used, the Bluetooth packet loss remains the same with BIAS and RR. In this
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TABLE VII

BLUETOOTH PACKET LOSS PROBABILITY FOR EXPERIMENT 4

BT Traf c WLAN Traf c

FTP HTTP

BIAS RR BIAS RR

FTP dB = 1 m 0.0309 0.0410 0.0161 0.029

dB = 2 m 0.0841 0.1705 0.0381 0.045

HTTP dB = 1 m 0.0009 0.0057 0.0024 0.0010

dB = 2 m 0.035 0.0652 0.0291 0.0309

Voice dB = 1 m 0.0023 0.0339 0.0003 0.0009

dB = 2 m 0.0581 0.1627 0.046 0.0373

TABLE VIII

BLUETOOTH MAC DELAY (SECONDS) FOR EXPERIMENT 4

BT Traf c WLAN Traf c

FTP HTTP

BIAS RR BIAS RR

FTP dB = 1 m 0.2905 0.3749 0.1595 0.1480

dB = 2 m 0.5078 1.3942 0.2668 0.1970

HTTP dB = 1 m 0.0890 0.084 0.0829 0.0800

dB = 2 m 0.1087 0.1148 0.1155 0.0770

Voice dB = 1 m 0.0018 0.0014 0.0014 0.0013

dB = 2 m 0.0070 0.0034 0.0050 0.0015

case, the packet loss is mainly due to other piconet interference, which BIAS was not designed to mitigate.

The delays given in Table VIII are consistent with the packet loss results. We note a signi cant delay decrease (by up to  fty

percent) when the WLAN is set to the FTP pro le especially for the the Blueototh FTP and voice applications. The delay remains

unchanged when the WLAN uses the HTTP application.

Table IX and X give the packet loss and the access delay respectively for the WLAN FTP and HTTP pro les. Observe a

signi cant reduction in packet loss with BIAS for both WLAN applications, where the packet loss drops from 60% and 68% to 1%

and 4% for the FTP and HTTP application respectively.

As expected, the access delay shown in Table X is improved by at least an order of magnitude.

In summary, the use of BIAS in a multi-Bluetooth piconet environment leads to performance improvements for Bluetooth when

the WLAN interference is signi cant, and does not affect performance when most of the interference is due to other Bluetooth

piconets. Note that BIAS always improves the performance of the WLAN since Bluetooth packets are no longer transmitted on the
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TABLE IX

WLAN PROBABLITY OF PACKET LOSS FOR EXPERIMENT 4

WLAN Traf c

FTP HTTP

BIAS RR BIAS RR

0.0125 0.6834 0.0450 0.6174

TABLE X

WLAN MAC DELAY (SECONDS) FOR EXPERIMENT 4

WLAN Traf c

FTP HTTP

BIAS RR BIAS RR

0.0011 0.0154 0.000795 0.0127

frequencies used by the WLAN.

V. CONCLUDING REMARKS

In this paper we propose a scheduling technique, BIAS, aimed at eliminating interference on WLAN and alleviating the impact

of interference on the Bluetooth performance. This work addresses the need to adjust to changes in the environment, support

asymmetric traf c in the upstream and downstream, in addition to the use of different scheduling priorities.

The performance results obtained are summarized as follows. First, BIAS eliminates packet loss even in the worst interference

case when more than 3/4 of the spectrum are occupied by other devices. Delay is slightly increased over the reference scenario

(when no interference is present). This increase varies between 1 to 5 ms on average. Furthermore, BIAS is able to rapidly adjusts to

changes in the channel. The channel estimation estimation time is around 7 ms and 900 µs for DH5 and DH1 packets respectively.

Finally, BIAS supports QOS and maintains a low access delay for delay-sensitive traf c such as video applications.

Our future work is aimed at further investigating the performance of BIAS for additional scenarios of interest where connections

with different QOS are set up and torn down over time. Mainly, we focus on studying the results’ dependence on the application

pro le used and the tuning of the algorithm’s QOS parameters.
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Appendix: BIAS Pseudocode

1: Every N Slots

2: estimate channel();

3: compute credits();

4: Every Even TSf // Master Transmission Slot

5: if TSf + ldn is clear // Master can receive in next slot

6: {

7: Af
data

= {set of high priority slaves s.t. (( f ”good”) and ( qsize > 0) and (cdn > 0) }

8: Af
poll

= {set of high priority slaves s.t. (( f ”good”) and (cup > 0)) }

9: Bf
data

= {set of low priority slaves s.t. ((f ”good”) and (qsize > 0)) }

10: Bf
poll

= {set of low priority slaves s.t. ((f ”good”) and (cup × cdn > 0)) }

11: // Service high priority slaves  rst

12: if (Af
data

�= ∅) // transmit data packets

13: {

14: i = max
A

f
data

( wi
up × wi

dn ) // Select device i with the largest weight

15: transmit data packet of size ldn to slave i

16: ci
dn,up = ci

dn,up − lidn,up; //decrement credit counter

17: wi
dn,up

= (1 − ui) × ci
dn,up

; // update weights

18: }

19: else if (Af
poll

�= ∅ ) // transmit polls

20: {

21: i = max
A

f
poll

( wi
up ) // Select device i with the largest weight

22: transmit poll to slave i

23: ci
up = ci

up − liup; //decrement credit counter

24: wi
up = (1 − ui) × ci

up; // update weights

25: }
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26: // Then service low priority slaves

27: else if (Bf
data

�= ∅)

28: {

29: i = max
B

f
data

( wi
up × wi

dn
) // Select device i with the largest weight

30: transmit data packet of size ldn to slave i

31: if (ci
dn

> 0) ci
dn

= ci
dn

− li
dn

; //decrement credit counter

32: else ci
up = ci

up − lidn; //decrement credit counter

33: wi
dn,up = (1 − ui) × ci

dn,up; // update weights

34: }

35: else if (Bf
poll

�= ∅ ) // transmit polls

36: {

37: i = max
B

f
poll

( wi
up ) // Select device i with the largest weight

38: transmit poll to slave i

39: if (cup > 0) ci
up = ci

up − liup; //decrement credit counter

40: else ci
dn = ci

dn − liup; //decrement credit counter

41: wi
dn,up

= (1 − ui) × ci
dn,up

; // update weights

42: }

43: }
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Bluetooth Adaptive Techniques to Mitigate
Interference
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Abstract—In this paper, we investigate the use of adaptive techniques to
mitigate interference for Bluetooth systems in the presence of WLAN direct
sequence spread spectrum devices. We consider two different techniques
that attempt to avoid time and frequency collisions of WLAN and Bluetooth
transmissions. We conduct a comparative analysis of their performance for
several dynamic scenarios where the WLAN interference varies over time
due to either change in user activity or number of non-overlapping WLAN
systems. We discuss the trade-offs involved in terms of delay, packet loss
performance, and synchronization.

I. INTRODUCTION

Recently, there has been a growing number of industry led ac-
tivities focused on the coexistence of wireless devices in the 2.4
GHz band. Both, the IEEE 802.15.2 Coexistence Task Group
and the Bluetooth Special Interest Group (SIG) are looking at
similar techniques for alleviating the impact of interference.
The proposals considered by the groups range from collabo-
rative schemes intended for Bluetooth and IEEE 802.11 pro-
tocols to be implemented in the same device to fully indepen-
dent solutions that rely on interference detection and estima-
tion. Except for a Time Division Multiple Access (TDMA)
technique aimed at time sharing the Bluetooth and 802.11 sig-
nals [1], most mechanisms considered do not require any direct
communication between the protocols. These so-called non-
collaborative mechanisms range from adaptive frequency hop-
ping [2] to packet scheduling and traf c control [3]. The tech-
niques used for detecting the presence of other devices in the
band are based on measuring the bit or frame error rate, and
the signal to interference ratio. For example, each device can
maintain a packet error rate measurement per frequency used.
Frequency hopping devices can then know which frequencies
are occupied by other users of the band and thus modify their
frequency hopping pattern. They can even choose not to trans-
mit on a certain frequency if that frequency is occupied. The
 rst technique is known as adaptive frequency hopping, while
the second technique is known as MAC scheduling or Bluetooth
Interference Aware Scheduling (BIAS).

In this paper, we investigate the use of BIAS and an AFH
technique. Although both techniques rely on similar meth-
ods for estimating the interference environment before a packet
transmission, they differ signicantly in terms of complexity and
performance. Our goal is to bring to light some of the trade-
offs associated with different interference scenarios, applica-
tions, and parameters.

The remainder of this paper is organized as follows. In sec-
tion II, we brie y describe BIAS and an AFH technique. In
section III, we discuss the performance results obtained. In sec-

tion IV, we offer concluding remarks.

II. ADAPTIVE INTERFERENCE MITIGATION TECHNIQUES

Central to most interference mitigation techniques is the abil-
ity to detect the presence of other systems operating in the band.
One method to estimate interference consists of measuring the
percentage of packets dropped, Pr(Ploss), per frequency per re-
ceiver. Thus, given Pr(Ploss) and let’s say a threshold value
of 0.5, frequencies at each receiver are classi ed “good” or
“bad” depending on whether their packet loss rate is less than or
greater than 0.5 respectively. Also, updating Pr(Ploss) may vary
according to the application, the environment, and the level of
accuracy and interference tracking desired. In our simulations,
we use a minimum update interval of 2 and a maximum of 100
seconds. Details on the dynamic procedure used to vary the up-
date interval between this minimum and maximum values are
found in [4].

Since in a Bluetooth piconet, the master device controls all
packet transmission, the measurements collected by the slave
devices are sent to the master (or implied in acknowledgement
packets) that decides to (1) either avoid data transmission to
a slave experiencing a ”bad” frequency in the case of BIAS,
and/or (2) modify the frequency hopping pattern in the case
of AFH. While in the former case the decision remains local
to the master, in the latter case, the master needs to communi-
cate the changes in the hopping sequence to all slaves in the pi-
conet in order to maintain synchronization. Thus, AFH requires
the exchange of Layer Management Protocol (LMP) messages
in order to advertise the new hopping sequence. Observe that
this constitutes one of the major differences between BIAS and
AFH.

A. Interference Aware Scheduling

The basic idea of the so-called Bluetooth Interference Aware
Scheduling (BIAS) is that a data transmission to a slave ex-
periencing a “bad” frequency is postponed until a “good” fre-
quency is found in the hopping pattern. Furthermore, since a
slave transmission always follows a master transmission, using
the same principle, the master avoids receiving data on a “bad”
frequency, by avoiding a transmission on a frequency preceding
a ”bad” one in the hopping pattern. Further details on BIAS are
found in [5].

B. Adaptive Frequency Hopping
From the many AFH algorithms possible, we propose an

AFH algorithm that modi es the original Bluetooth frequency
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hopping scheme as follows.

bad frequency

W 
FH

N
BF
=3

NBF Number of bad frequencies

Bluetooth Segment

Default segment_size = 32

Fig. 1. Resizing the Frequency Hopping Window, WF H

Given a segment of 32 “good” and “bad” frequencies that we
call the Frequency Hopping Window (WFH ), the algorithm vis-
its each “good” frequency exactly once. Each “bad” frequency
in the segment is replaced with a “good” frequency selected
from outside the original segment of 32 as shown in Figure 1.
Thus, WFH is increased by the number of “bad” frequencies,
NBF , in the original segment. Thus, the difference between
AFH and the original Bluetooth hopping sequence algorithm is
in the selection of only “good” frequencies in order to  ll up the
segment size.

Finally, AFH does not preclude additional scheduling tech-
niques to control the transmission (and possibly the retransmis-
sion) of packets on the medium.

III. PERFORMANCE EVALUATION

In this section we present simulation results to evaluate the
performance of the proposed AFH algorithm. We ran several
experiments using different applications, traf c types, and net-
work topologies. Given the lack of space, only a representative
set of the data obtained is discussed in this paper. While the
advantages of AFH may be obvious in terms of mitigating the
interference between Bluetooth and WLAN in a stationary en-
vironment, we focus mainly on its dynamic behavior and its
ability to adjust to time-varying and different interference lev-
els. Although, more dif cult to solve, the scenarios selected are
perhaps more realistic. A summary of the experiments is given
in Table I.

TABLE I
EXPERIMENT SUMMARY

Experiment Traf c Topology
1 ON/OFF Exponential 1
2 FTP/HTTP 1
3 ON/OFF Exponential 2 w/ 1 Bluetooth Piconet
4 ON/OFF Exponential 2 w/ 3 Bluetooth Piconets

A. Experiment 1: Variable Offered Load

We use Topology 1 illustrated in Figure 2 with one WLAN
system (Access Point/Station) and a Bluetooth master/slave
pair. The WLAN access point (AP) is located at (0,15) meters,
and the WLAN station is  x ed at (0,1) meters. The Bluetooth
slave device is  x ed at (0,0) meters and the master is  x ed at
(1,0) meters.

In Experiment 1, we use an on-off traf c generation model
with parameters to characterize burstiness and user activity as
seen at layer 2, such as packet interarrival, and packet size. For
Bluetooth the packet size is  x ed to either 1, or 5 slots using the

Bluetooth Slave

(1,0)(0,0)

Bluetooth Master

(0,d)

(0,15)
WLAN Access Point

WLAN Station

Fig. 2. Topology 1 - Two WLAN devices and one Bluetooth piconet

DH format and the mean interarrival time is computed accord-
ing to

tB = 2 × ns × Ts/λ, (1)

where λ is the offered load, ns is the number of slots occupied
by a packet. For DH5, ns = 5. Ts is the slot size equal to 625
µs.

For WLAN, we  x the packet payload to 12, 000 bits assum-
ing an IP packet of 1500 bytes and compute the mean packet
interarrival time according to

tW = (
192

1, 000, 000
+

12, 224

data rate
)/λ, (2)

where λ is the offered load, 224 is the MAC layer header, 192
is the PLCP header (always sent at 1 Mbit/s). The payload is
transmitted at the data rate of 11 Mbit/s. The offered load for
Bluetooth is varied between 10 and 100%, while the WLAN
offered load is set to 60%. The time the WLAN connection is
ON, TON , is exponentially distributed with a mean equal to 10
seconds, while the time the WLAN connection is OFF, TOFF ,
is also exponentially distributed with mean equal to 20 seconds.
Each simulation is run for 900 seconds. Averages and con -
dence intervals are obtained over 10 simulation runs.

Figure 3(a) gives the packet loss results at the Bluetooth
slave. Observe that with AFH the packet loss is close to 8%
and 4% for DH5 and DH1 packets respectively. These results
are close to the ones obtained when no interference mitigation
technique is used and depend on the frequency of the synchro-
nization messages exchanged between the Bluetooth master and
the slave. Thus there is a trade-off between the communication
overhead and the response to changes in the interference envi-
ronment. A fast responding system will incurr a lower packet
loss at the cost of a higher communication overhead. In this
experiment, synchronization messages are exchanged every 2
seconds, which is also the value used for Emin. On the other
hand, using BIAS without AFH reduces the packet loss to less
than 2% and 0.9% for DH5 and DH1 packets respectively at
10% offered load. As the offered load is increased, the packet
loss even drops further to negligible levels. Since no explicit
message exchange is required for BIAS, the response time to
changes in the interference environment happen within a packet
round trip time. Figure 3(b) illustrates the access delay results.
For DH1 packets, AFH yields lower delays than BIAS. Delay-
ing the transmission of a short packet in the case where the prob-
ability of packet collision is less than 22/79 leads to higher ac-
cess delays. The access delay curve for AFH takes off at around
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70% load. For DH5 packets, the delays obtained with AFH are
comparable to the results obtained with BIAS loads less than
50%. However, as the offered load is increased the access de-
lays obtained with BIAS are lower mainly due to fast response
times and low packet loss.

B. Experiment 2: FTP and HTTP Pro le

In this experiment, we use Topology 1 given in Figure 2. We
consider two application pro les, namely, FTP and HTTP. We
use the TCP/IP stack implemented in the OPNET library and
con gure the application parameters provided. For the FTP
pro le, the parameters are the percentage of put/get, the inter-
request time, and the  le size. The percentage of put/get rep-
resents the number of times the put command is executed in an
FTP connection over the total number of put and get commands,
i.e., a  fty percent indicates that half of the FTP commands ex-
ecuted are put, and the other half are get. The inter-request time
is the interval between two FTP commands, and the  le size rep-
resents the size of the  le requested in bytes. The HTTP pro le
is described by parameters characterizing a web page such as
the page interarrival time, the number of objects in each page
and their size in bytes. Two pro le sets are de ned for each of
the Bluetooth and the WLAN in Table II.

TABLE II
PROFILE PARAMETERS

Parameters Distribution Value
Bluetooth FTP
Percentage of Put/Get 100%
Inter-Request Time (seconds) Exponential 5
File Size (bytes) Constant 2M
WLAN FTP
Percentage of Put/Get 100%
Inter-Request Time (seconds) Exponential 1
File Size (bytes) Constant 2M
HTTP
Page Interarrival Time (seconds) Exponential 5
Number of Objects per page Constant 2
Object 1 Size (bytes) Constant 10K
Object 2 Size (bytes) Uniform (200K,600K)

We ran two simulations where in each case both the WLAN
and Bluetooth devices are using either the HTTP or the FTP
pro le. Table III gives the packet loss using FTP and HTTP
traf c. Observe that the packet loss with BIAS alone is an order
of magnitude lower than with AFH due to the dynamic nature
of the traf c. The packet loss with AFH is comparable to the
packet loss obtained when no algorithm is used.

On the other hand, the FTP access delay with BIAS is slightly
higher than with AFH and None in that order. This increase in
delay can be attributed to the policy of delaying the transmis-
sion of packets on the so-called ”bad” frequencies, although the
probability that a packet collision occurs is less than 22/79 (in

TABLE III
EXPERIMENT 2: BLUETOOTH PROBABILITY OF PACKET LOSS

BIAS AFH None
FTP 0.005 0.037 0.059

HTTP 0.005 0.019 0.021

TABLE IV
EXPERIMENT 2: BLUETOOTH ACCESS DELAY (SECONDS)

BIAS AFH None
FTP 0.0040 0.0033 0.0029

HTTP 0.0026 0.0023 0.0023

fact it is proportional to the offered load and the number of chan-
nels occupied by WLAN divided by the number of frequencies
used by Bluetooth). There is no noticeable difference in delay
for the HTTP application given that it does not generate as much
traf c as the FTP application.

C. Experiment 3: Multi-WLAN Interference

In this experiment, our goal is to study the performance of
AFH in a multi-WLAN environment, where the Bluetooth hop-
ping sequence is close to the minimum number of hops allowed,
which in our case is set to 15. We use Topology 2 illustrated in
Figure 4, consisting of 3 WLAN systems (source-sink pairs). In
this experiment (Experiment 3) we use one Bluetooth piconet,
while in Experiment 4, we use all three Bluetooth piconets. We
use the same traf c parameters described in Experiment 1. Fig-
ure 5 gives the packet loss and access delay measured at the
Bluetooth slave. In this case, there are three WLAN systems
occupying about 9-11 frequencies each. That leaves about 18-
20 frequencies in the band to be used by Bluetooth. With BIAS,
the Bluetooth piconets only transmits on “good” frequencies,
and therefore has to skip approximately 1 in every 4 transmis-
sion opportunity. With AFH, the frequency hopping sequence
is modi ed in order to include only “good” frequencies. There-
fore, we expect signi cant throughput and delay improvements
with AFH. Observe in Figure 5(a) the packet loss with AFH
(DH5) is around 2%. It is negligible with AFH for DH1 pack-
ets, and BIAS for both DH1 and DH5 packets. As expected, the
access delay with AFH, shown in Figure 5(b), is several orders
of magnitude lower than with BIAS. The delay for DH1 packets
stays around 1 ms until an offered load of 70%. The delay for
DH5 packets starts at 10 ms with a steep slope between 10 and
60%. At 60% the delay reaches 100 ms. On the other hand,
the delay with BIAS for DH1 packets is 15 ms at 10% load and
quickly reaches 10 seconds at 20% load. For DH5 packets, the
delay between 10 and 40% load is comparable to the delay ob-
tained with AFH. However, the delay curve takes off sharply at
40%. The delay is around 10 seconds between 40 and 100%
offered load.

D. Experiment 4: Multi-WLANs and Bluetooth Piconets

In this experiment we use Topology 2 illustrated in Figure 4,
with all three Bluetooth piconets (two additional Bluetooth pi-
conets to what was used in Experiment 3) to highlight the per-
formance of AFH in an extreme case of interference where
multi-Bluetooth and WLAN devices are operating in the same
environment. Our goal is to verify that the performance im-
provements observed with AFH in the previous experiment still
apply in this case.

Figure 6 gives the packet loss and access delay measured at
the Bluetooth slaves and averaged over all three slaves. As ex-
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pected in this case, the presence of two more Bluetooth piconets
makes the interference detection more challenging. As a result
the packet loss observed in Figure 6 is higher than in Figure 5.
The packet loss for AFH (8%) is about an order of magnitude
higher than with BIAS (around 1% and 0.8% for DH5 and DH1
packets respectively). The difference in packet loss between
the two schemes is due using a reduced hopping set with AFH
while increasing the number of Bluetooth piconets. Similarly,
the access delay in Figure 6(b) is higher than the delay in Fig-
ure 5(b) for both schemes. The delay with AFH for DH1 packets
is around 2 ms. On the other hand the delay for DH5 packets is
between 20 and 100 ms for offered loads between 10 and 70%.
The delay with BIAS for both types of packets is between 10
and 20 seconds.

IV. CONCLUDING REMARKS

In this paper, we study using adaptive frequency hopping for
Bluetooth devices when operating in close proximity to WLAN
systems. We present the details of an AFH algorithm and com-
pared its performance to BIAS, a delay transmission method
aimed at interference mitigation. A summary of our  ndings is
as follows. In the case of WLAN interference, when the inter-
ference levels vary over time and the channel estimation is per-
formed often, the main advantages of AFH in terms of lowering
the access delay, applies only to short packets (DH1). BIAS
is more effective for longer packets (DH5) and leads to lower
packet loss and comparable access delays. In the case of multi-
WLANs (three non-overlapping systems), AFH keeps the delay
low and doubles the throughput obtained with BIAS. This re-
sult holds even in the presence of two additional Bluetooth pi-
conets. Thus, signi cantly reducing the frequency hopping se-
quence due to WLAN interference, causes only a slight increase
in the probability of packet collisions among the different Blue-
tooth piconets and does not affect performance.
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Abstract— In this paper, we investigate the use of Adaptive Frequency
Hopping (AFH) techniques aimed at modifying the Bluetooth frequency
hopping sequence in the presence of WLAN direct sequence spread spec-
trum devices. We examine the conditions such as the applications, topolo-
gies, and scenarios under which AFH techniques improve performance that
is measured in terms of packet loss, TCP delay, and channel ef ciency . We
also compare the results obtained with AFH to others obtained using a
scheduling technique that consist in delaying the transmission of a Blue-
tooth packet until the medium is ”idle”. Our results show that an obvious
performance improvement with AFH is in terms of delay and throughput.
AFH brings the delay down to the same level than when no interference is
present. On the other hand, AFH is rather slow in responding to changes
in the environment and the packet loss is more signi cant than with the
scheduling. This is probably due to the limitations imposed by the commu-
nication overhead. The main dif culty for AFH is having to dynamically
communicate the changes to all slaves in the piconet in order to keep the
synchronization.

I. INTRODUCTION

The deployment of different wireless devices for mobile,
home, and enterprise networks, all operating in the 2.4 GHz
unlicensed band, is met with growing concerns about signal
interference and performance degradation. To address these
challenges, a number of industry led activities have focused
on the coexistence of these devices in the same environment.
For example, the IEEE 802.15.2 Coexistence Task Group and
the Bluetooth Special Interest Group (SIG) are looking at tech-
niques for alleviating the impact of interference between IEEE
802.11b and Bluetooth devices.

A solution that has gained acceptance in both groups is based
on modifying the frequency hopping sequence of Bluetooth in
order to make it avoid direct sequence spread spectrum devices
such as IEEE 802.11b. This so-called Adaptive Frequency Hop-
ping (AFH) has gained momentum especially after the Fed-
eral Communications Commission, a US government agency in
charge of telecommunication regulations, has relaxed the min-
imum frequency hop requirement to 15 (down from 75). AFH
is expected to be included in the new release of the Bluetooth
speci cations, Version 1.2.

Other proposals considered by the groups range from collab-
orative schemes intended for Bluetooth and IEEE 802.11 proto-
cols to be implemented in the same device to fully independent
solutions that rely on interference detection and estimation. Ex-
cept for a Time Division Multiple Access (TDMA) technique
aimed at time sharing the Bluetooth and 802.11 signals [1],
most mechanisms considered do not require any direct commu-
nication between the protocols. For example, Bluetooth Inter-
ference Aware Scheduling (BIAS) is a MAC scheduling tech-
nique [2] that is aimed at delaying packet transmission if the

medium is used by other devices. Another technique known as
OverLap Avoidance (OLA) [3] uses different Bluetooth encap-
sulations to avoid a frequency collision between Bluetooth and
802.11.

Our goals in this paper are to investigate the use of AFH tech-
niques aimed at modifying the Bluetooth frequency hoping se-
quence in the presence of WLAN direct sequence spread spec-
trum devices. Mainly, under what conditions – i.e., interference
levels, topologies, scenarios, and applications – is it practical to
use either AFH or BIAS? Which mechanisms is more effective
for a given application? How fast can either technique adjust
to changes in the environment? We conduct numerous simula-
tion experiments to evaluate and quantify the operation range of
AFH and BIAS. To answer the question of application sensitiv-
ity, we consider four applications, namely, voice, video, HTTP,
and FTP. We set the application pro les available in the OPNET
library including the details of the entire TCP/IP stack.

In section II, we describe an AFH algorithm implementation.
In section III, we describe BIAS. Section IV discusses channel
estimation techniques and their use with interference mitigation
schemes. In section V, we consider several experiments to eval-
uate the performance of AFH and how it compares to BIAS. In
section VI, we offer concluding remarks.

II. BLUETOOTH ADAPTIVE FREQUENCY HOPPING

We devise an AFH algorithm that modi es the original Blue-
tooth frequency hopping scheme as follows.

bad frequency

W FH

NBF=3 NBF Number of bad frequencies

Bluetooth Segment

Default segment_size = 32

Fig. 1. Resizing the Frequency Hopping Window, WFH

Given a sorted list of odd and even frequencies, and a segment
of 32 frequencies, WFH = 32, including “good” and “bad” fre-
quencies, the algorithm visits each “good” frequency exactly
once. While the segment size is the same as the one used in
the current Bluetooth speci cations [4], in order to  lter out
the so-called “bad” frequencies, the window, WFH , over which
frequencies are selected is increased by the number of “bad”
frequencies, NBF , in WFH . Thus, the main difference between
the scheme we propose and the current Bluetooth speci cations
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is the resizing of the interval over which frequencies are ran-
domly selected for each segment as illustrated in Figure 1.

Note that in order for a frequency to be classi ed “bad”, it has
to be “bad” for at least one device in the piconet. Thus, NBF

represents the union of the sets of “bad” frequencies collected
from of all devices.

1: WFH = segment size; // Initialize the hopping algorithm window size
2: WFH+ = NBF ; // Increase by the number of “bad” frequencies
3: If (WFH > 79)
4: WFH = 79; // limit to the list size
5: NBF = min(NBF ; 79�Hmin)

6: //use at least Hmin different frequencies

After, each “good” frequency is visited once, a new segment
is set including 16 frequencies of the previous segment and 16
new frequencies in the sorted list.

When WFH is greater than 79, the number of “good” fre-
quencies may be less than 32 and therefore there are not enough
“good” frequencies to  ll in the segment. In that case, we al-
low each “good” frequency to be visited more than once, with
the condition to use at least Hmin different frequencies. In
other words, we impose the minimum hop set to be at least
equal to Hmin different frequencies. In our simulations, we
set Hmin = 15.

In summary, the difference between AFH and the original
Bluetooth hopping sequence algorithm is the dynamic resizing
of WFH based on the frequency classi cation status. The other
requirement for AFH is the exchange of LMP messages be-
tween the master and the slaves in the piconet in order to ad-
vertise the new hopping sequence.

Finally, it is worth pointing out that the details presented here
give an example of how ”bad” frequencies can be eliminated
from the Bluetooth hopping sequence. Other variants are also
possible. For example, the IEEE 802.15.2 Task Group on co-
existence considers a more general algorithm that allows one to
choose which ”bad” frequencies to keep and which to eliminate.
However, for all practical scenarios considered, most AFH algo-
rithms will give comparable performance. In fact, this is easily
veri ed by implementing the AFH in [5], denoted by AFH-
IEEE, and comparing the results obtained to the algorithm pro-
posed in this paper.

III. BLUETOOTH INTERFERENCE AWARE SCHEDULING

The Bluetooth Interference Aware Scheduling (BIAS) algo-
rithm [6] is a delay policy implemented at the master device
that postpones the transmission of a packet until a slot asso-
ciated with a ”good” frequency becomes available. The master
device, which controls all data transmissions in the piconet, uses
information about the state of the channel in order to avoid data
transmission to a slave experiencing a ”bad” frequency. Fur-
thermore, since a slave transmission always follows a master
transmission, using the same principle, the master avoids re-
ceiving data on a ”bad” frequency, by avoiding a transmission
on a frequency preceding a ”bad” one in the hopping pattern.

This simple scheduling scheme needs only be implemented
in the master device and translates into the following transmis-
sion rule. The master transmits in a slot after it veri es that

both the slave’s receiving frequency and its own receiving fre-
quency are ”good”. Otherwise, the master skips the current
transmission slot and repeats the procedure over again in the
next transmission opportunity.

Additional considerations including bandwidth requirements
and quality of service guarantees for each master/slave connec-
tion in the piconet can also be combined with the channel state
information and mapped into transmission priorities given to
each direction in the master/slave communication. Details on
assigning transmission priorities are given in [6].

The algorithm’s general steps are summarized below.

1: Every Even TSf // Master transmits on frequency f
2: if TSf + ldn is good // Master can receive in next slot
3: f

4: A
f

data
= fset of slaves s.t. (( f ”good”) and ( qsize > 0) g

5: if (Af
data

6= ;)
6: select slave i //according to a priority criteria
7: transmit data packet of size ldn to slave i
8: g

where ldn is the length of the packet from the master to the
slave and TSf is the transmission slot using frequency f.

IV. CHANNEL ESTIMATION

Channel estimation methods include BER calculation, packet
loss, or frame error rate measurements performed by each re-
ceiver (master and slave device). Since in a Bluetooth piconet,
the master device controls all packet transmission, the measure-
ments collected by the slave devices are sent to the master that
decides to (1) either avoid data transmission to a slave experi-
encing a ”bad” frequency, and/or (2) modify the frequency hop-
ping pattern. While in the former case the decision remains lo-
cal to the master, in the latter case, the master needs to commu-
nicate the change to all slaves in the piconet in order to maintain
synchronization. Also, the former method falls into the schedul-
ing policy category, while the latter is in the AFH category.

Channel estimation is based on measurements conducted on
each frequency in order to determine the presence of interfer-
ence. Although our discussion exclusively focuses on packet
loss, other measurements can be used. In a nutshell, channel
estimation works as follows. Each Bluetooth receiver maintains
a Frequency Status Table (FST) where a percentage of pack-
ets dropped due to errors, Pr(PLoss), is associated to each fre-
quency offset, f , as shown in Figure 2. Frequencies are clas-
si ed “good” or “bad” depending on whether their packet loss
rate is below or above a threshold value respectively. In Figure 2
the threshold value is equal to 0.5. Each slave has its own FST
maintained locally. However, the master has in addition to its
FST, a copy of each slave’s FST.

At regular time intervals each slave updates its FST copy kept
at the master using a status update message that can be de ned
in the Layer Management Protocol (LMP). Alternatively, the
master can derive information about each slave’s FST by keep-
ing track of the ACK bit sent in the slave’s response packet.

First, we de ne two phases in the channel estimate proce-
dure. During the Estimation Window, EW, packets are sent on
all frequencies regardless of their classi cation. EW is followed
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Fig. 2. Frequency Status Table

by an interval, EI, in which slaves have updated their FST at the
master (refer to Figure 3). The master uses the channel informa-
tion collected during EW in order rearrange the frequency hop-
ping pattern in case of AFH and/or selectively avoid to transmit
packets on so-called ”bad” frequencies. In order to avoid hav-
ing to manually compute or pick an arbitrary value for EW, we
use a technique to dynamically adjusts the window based on
the number of times, Nf , each frequency in the band should be
visited. Further details on channel estimation parameter tun-
ing are available in [6]. In our simulations, we use Nf = 1,
EImin = 2s, EImax = 100s.

Estimation Interval, EIEstimtation Window, EW

Estimation Phase Online Phase

Slave sends LMP message to Master
to  update its  FST at Master

Fig. 3. Explicit Estimation

Note that during both phases, Pr(PLoss) is measured and con-
tinuously updated. Although the local FSTs can be updated ev-
ery time a packet is received, the copy of the slave FST kept
at the master is updated either at the end of each EW using an
LMP de ned message, or every time a packet acknowledgement
(ACK) is received by the master. It is important to point out that
for scheduling purposes, the master can make use of the ACK
feedback information as soon as it becomes available. On the
other hand, AFH requires a master to slave message exchange
in order to keep the piconet synchronized. In our study, we as-
sume that updates are based on ACK feedback for BIAS and
LMP messages for AFH sent at the end of each EW.

V. PERFORMANCE EVALUATION

In this section we present simulation results to evaluate the
performance of AFH in a realistic environment. We ran several
experiments using different applications, and network topolo-
gies. We consider four application pro les, namely, FTP, HTTP,
voice, and video. We use the TCP(UDP)/IP stack implemented
in the OPNET library and con gure the application parameters
provided. For the FTP pro le, the parameters are the percentage
of put/get, the inter-request time, and the  le size. The percent-
age of put/get represents the number of times the put command
is executed in an FTP connection over the total number of put
and get commands, i.e., a  fty percent indicates that half of the
FTP commands executed are put, and the other half are get. The
inter-request time is the interval between two FTP commands,
and the  le size represents the size of the  le requested in bytes.

The HTTP pro le is described by parameters characterizing a
web page such as the page interarrival time, the number of ob-
jects in each page and their size in bytes. For the voice applica-
tion, we use the encoding de ned in the G.723.1 speci cations.
The video application uses a 1 Frame/s rate and a frame size
of 17280 bytes. The application pro le parameters are summa-
rized in Table I.

TABLE I
APPLICATION PROFILE PARAMETERS

Parameters Distribution Value
Bluetooth FTP
Percentage of Put/Get 100%
Inter-Request Time (seconds) Exponential 5
File Size (bytes) Constant 2M
Bluetooth HTTP
Page Interarrival Time (seconds) Exponential 5
Number of Objects per page Constant 2
Object 1 Size (bytes) Constant 10K
Object 2 Size (bytes) Uniform (20K,600K)
Bluetooth Voice
Encoder G.723.1
Bluetooth Video
Frame Rate Constant 1 Frame/s
Frame Size (bytes) Constant 17280 (128 x 120 pixels)
WLAN FTP
Percentage of Put/Get 0%
Inter-Request Time (seconds) Exponential 1
File Size (bytes) Constant 2M
Connection Duration (seconds) Exponential 20
Interval between Connections (seconds) Exponential 20

For each network topology considered, we run a set of 16
simulations covering each application and algorithm combina-
tion. None refers to the case when no algorithm is present, while
BIAS and AFH refer to using BIAS and AFH respectively. Note
that AFH-IEEE refers to the AFH algorithm included in the
draft IEEE Recommended Practice on Coexistence [5]. Perfor-
mance is measured in terms of the packet loss, the delay mea-
sured at the TCP layer (in seconds), and the channel ef cienc y.
The channel ef cien y measures the normalized number of data
packets received minus the number of packets lost and pack-
ets ignored in the case of duplicate transmissions. Averages are
obtained and reported for each simulation set consisting of 10
simulation runs. Each simulation is run for 900 seconds. The
packet loss and channel ef cienc y are measured at the applica-
tion client (master device), while the TCP access delay is mea-
sured at the application server (slave device).

A. Experiment 1: WLAN Interference

We use Topology 1 illustrated in Figure 4 with one WLAN
system (Access Point/Station) and a Bluetooth master/slave
pair. The WLAN access point (AP) is located at (0,15) meters,
and the WLAN station is  x ed at (0,1) meters. The Bluetooth
slave device is  x ed at (0,0) meters and the master is  x ed at
(1,0) meters.

In this case, the WLAN station is ”uploading”  les to WLAN
server using the FTP put command. A summary of the applica-
tion pro le is described in Table I.

Table II gives the performance of the Bluetooth FTP applica-
tion. First, observe that the results with AFH and AFH-IEEE
are comparable and therefore in our discussion we will not dis-
tinguish between the two algorithms unless speci ed otherwise.
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Fig. 4. Topology 1 - Two WLAN devices and one Bluetooth piconet

TABLE II
EXPERIMENT 1: BLUETOOTH FTP PERFORMANCE

None BIAS AFH AFH-IEEE
Packet Loss 0.1633 0.0009 0.0748 0.0721

TCP Delay (seconds) 0.0201 0.0178 0.0167 0.0184
Channel Ef cienc y 0.6921 0.9981 0.9306 0.9336

When no interference mitigation algorithm is present, which
represents a base case, the packet loss is around 16%. The ef-
fects of BIAS are summarized in comparison to the base case as
follows. First, we observe a decrease in packet loss to negligible
levels, a decrease of 3 ms in the delay (from 20.1 to 17.8 ms),
and an increase of 30% in the ef cienc y. Similarly the effects of
AFH are characterized by a lower packet loss (to 7%), lower de-
lay (16.7� 18:4ms), and higher ef cienc y (�93%). The delays
observed with BIAS and AFH are almost comparable, while the
difference in ef cienc y is more striking. Although more pack-
ets are sent with AFH, they are more likely due to duplicate
transmissions.

The observations noted for FTP are also consistent with the
HTTP results given in Table III. Similarly, BIAS reduces the
packet loss to zero, the access delay by 6 ms (to 11 ms), and
increases the ef cienc y by 30% (to 99%). On the other hand,
AFH gives a packet loss of 5%, reduces the delay by 3 ms (to
� 10 ms) and increases ef cienc y by 20% (to � 95%).

The results of the video application are shown in Table IV.
Here again, BIAS reduces the packet loss to a negligible level,

TABLE III
EXPERIMENT 1: BLUETOOTH HTTP PERFORMANCE

None BIAS AFH AFH-IEEE
Packet Loss 0.1487 0.0012 0.0585 0.0445

TCP Delay (seconds) 0.0171 0.0112 0.0109 0.0107
Channel Ef cienc y 0.6943 0.9976 0.9453 0.9557

TABLE IV
EXPERIMENT 1: BLUETOOTH VIDEO PERFORMANCE

None BIAS AFH AFH-IEEE
Packet Loss 0.1310 0.0043 0.0455 0.0269

Channel Ef cienc y 0.6974 0.9914 0.9503 0.9611

TABLE V
EXPERIMENT 1: BLUETOOTH VOICE PERFORMANCE

None BIAS AFH AFH-IEEE
Packet Loss 0.1359 0.0091 0.0400 0.0212

Channel Ef cienc y 0.6901 0.9840 0.9631 0.9722

and increases the ef cienc y to 99%. On the other hand, AFH
causes a decrease in packet loss to 4.5% and 2.6% for AFH and
AFH-IEEE respectively (down from 13%).

Table V shows the results of the voice application. We ob-
serve a packet loss of 4 and 2% with AFH and AFH-IEEE re-
spectively compared to 0.9% with BIAS. The channel ef cienc y
is 98%, 96%, and 97% for BIAS, AFH, and AFH-IEEE respec-
tively.

For AFH, the time it takes to estimate the channel and com-
municate the changes is usually longer than for BIAS leading
to a higher packet loss and a lower channel ef cienc y. This sig-
ni es that a number of packets transmitted are due to duplicate
transmissions that end up getting discarded at the destination
and therefore do not lead to a higher goodput. This observa-
tion captures the essence of the performance trade-offs between
AFH and BIAS. AFH increases the total number of packets sent
at the cost of higher packet loss, and lower ef cienc y. This may
be acceptable for some bandwidth hungry applications such as
FTP and HTTP, but perhaps less desirable for real-time appli-
cations such as voice and video. In summary, there are de nite
trade-offs for using AFH versus BIAS depending on the appli-
cation considered.

B. Experiment 2: Multi-WLAN Interference

In this experiment, our goal is to study the performance of
AFH in a multi-WLAN environment, where the Bluetooth hop-
ping sequence is further reduced. We use Topology 2 illustrated
in Figure 5, consisting of 2 WLAN systems (source-sink pairs)
operating on non-overlapping frequencies (each WLAN system
operates on a different center channel). We use the same traf c
parameters described in Table I.

Bluetooth
Master

(1,14)
WLAN
AP 2

Bluetooth
Slave

(1,0)(0,0)

(-15,-1)

WLAN
AP 1

(0,-1)

WLAN
Station 1

(1,-1)

WLAN
Station 2

Fig. 5. Topology 2 - Multi-WLANs and Bluetooth piconets interference

Since there are two WLAN systems occupying about 16 fre-
quencies each, that leaves about 47 frequencies in the band to
be used by Bluetooth. With BIAS, the Bluetooth piconet only
transmits on “good” frequencies, and therefore has to skip ap-
proximately 1 in every 3 transmission opportunities. With AFH,
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TABLE VI
EXPERIMENT 2: BLUETOOTH FTP PERFORMANCE

None BIAS AFH AFH-IEEE
Packet Loss 0.3431 0.0183 0.1524 0.1542

TCP Delay (seconds) 0.0322 0.0213 0.0218 0.0242
Channel Ef cienc y 0.4500 0.9684 0.8486 0.8552

TABLE VII
EXPERIMENT 2: BLUETOOTH HTTP PERFORMANCE

None BIAS AFH AFH-IEEE
Packet Loss 0.2535 0.0169 0.1350 0.1172

TCP Delay (seconds) 0.0181 0.0191 0.0160 0.0152
Channel Ef cienc y 0.4725 0.9705 0.8668 0.8849

the frequency hopping sequence is modi ed in order to include
only “good” frequencies. Therefore, one expects signi cant
throughput and delay improvements with AFH. Our goals in
this experiment are to verify that our previous conclusions about
AFH and BIAS still hold even in the case of severe interference.

Table VI gives the performance results for the Bluetooth FTP
application. The packet loss when no algorithm is present is
around 34% for Bluetooth. Note that it is more than double the
packet loss obtained in Experiment 1. The packet loss is 1.8%,
15.24%, 15.42% with BIAS, AFH, and AFH-IEEE respectively.
Delays with AFH and BIAS are comparable (21 ms). On the
other hand, the channel ef cienc y is only 84% and 85% with
AFH, while it is around 96% with BIAS.

Table VII gives the results for the Bluetooth HTTP applica-
tion. The results are consistent with the FTP results for the most
part. There are additional delay improvements with AFH.

Tables VIII and IX give the results for the video and voice
applications respectively. The general trends observed in Exper-
iment 1 are still valid. In general, BIAS leads to lower packet
loss and higher or equal channel ef cienc y than AFH.

VI. CONCLUDING REMARKS

In this paper, we study using adaptive frequency hopping for
Bluetooth devices when operating in close proximity to WLAN
systems. We present the details of an AFH algorithm and com-
pare its performance to BIAS, a delay transmission method
aimed at interference mitigation.

A summary of our  ndings is as follows. For the applications

TABLE VIII
EXPERIMENT 2: BLUETOOTH VIDEO PERFORMANCE

None BIAS AFH AFH-IEEE
Packet Loss 0.2725 0.0230 0.1070 0.0750

Channel Ef cienc y 0.2079 0.9803 0.8485 0.8878

TABLE IX
EXPERIMENT 2: BLUETOOTH VOICE PERFORMANCE

None BIAS AFH AFH-IEEE
Packet Loss 0.2126 0.0433 0.0940 0.0564

Channel Ef cienc y 0.4543 0.9269 0.9088 0.9300

considered, BIAS leads to a lower packet loss and an equal or
higher channel ef cienc y than AFH. Basically, when the chan-
nel estimation has to be performed often, the synchronization
overhead associated with AFH leads to an additional packet
loss. In fact, our results indicate that this packet loss is often
accompagnied with additional duplicate packet transmissions,
which in turn lead to a lower channel ef cienc y. Thus, the num-
ber of additional packets transmitted with AFH is often offset by
an additional number of packets lost or ignored. In other words,
the adaptive part of AFH is constrained by the channel estima-
tion and how often to synchronize the devices in the piconet.
That in turn determines the response time and the performance.

Having said that, AFH may be more suitable for slow-
changing environments where the same sequence could be used
for a long period of time. On the other hand, in environments
where the interference levels vary more rapidly, BIAS would be
the interference mitigation solution of choice.

An area of future investigations would be combining BIAS
and AFH within the same scenario, where BIAS would be used
to respond quickly to a change in the environment, before an
AFH policy is put in place if the interference persists for a long
period of time.
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Abstract

In this article we discuss solutions to the interference problem caused by the proximity and simultaneous operation of Bluetooth and WLAN
networks. We consider different techniques that attempt to avoid time and frequency collisions of WLAN and Bluetooth transmissions. We conduct a
comparative analysis of their respective performance and discuss the trends and trade-offs they bring for different applications and interference levels.
Performance is measured in terms of packet loss, TCP goodput, delay, and delay jitter.

I. INTRODUCTION

The Bluetooth technology [1] is considered a Wireless Personal Area Network (WPAN) system, intended for cable replacement
and short distance ad hoc connectivity. WPAN is distinguished from other types of wireless networks in both size and scope.
Communications in WPAN are normally con ned to a person or object and extend up to 10 meters in all directions. This is
in contrast to Wireless Local Area Networks (WLANs) employing the IEEE 802.11 speci cations [2] that typically cover a
moderately sized geographic area such as a single building or campus. In this sequel, we will use WLAN and IEEE 802.11
interchangeably. WLANs operate in the 100 meter range and are intended to augment rather than replace traditional wired LANs.
They are often used to provide the  nal few feet of connectivity between the main network and the user.

However, instead of competing with WLANs for applications, WPANs are intended to augment many of the usage scenarios and
operate in conjunction with WLANs, i.e., come together in the same laptop, or operate in proximity in an of ce or conference room
environment. For example, Bluetooth can be used to connect a headset, or PDA to a desktop computer, that in turn may be using
WLAN to connect to an Access Point placed several meters away.

Bluetooth and several cordless phone manufacturers plan to operate in the 2.4 GHz Industry Scienti c and Medical (ISM)
unlicensed band since it is suitable for low cost radio solutions such as the ones proposed for WPANs. In addition, IEEE 802.11 [2]
has standards for WLANs operating in this band as well. However, the major down side of the unlicensed ISM band is that
frequencies must be shared and potential interference tolerated as de ned in the the Federal Communications Commission Title
47 of the Code for Federal Regulations Part 15 [3]. While the spread spectrum and power rules are fairly effective in dealing with
multiple users in the band provided the radios are physically separated, the same is not true for close proximity radios such as IEEE
802.11 and Bluetooth that may likely come together in a laptop or a desktop. An issue of growing interest is the coexistence of
these devices in the same environment.

Recently, there has been a growing number of industry led activities focused on the coexistence of wireless devices in the 2.4
GHz band. Both, the IEEE 802.15.2 Coexistence Task Group [4] and the Bluetooth Special Interest Group (SIG) are looking at
similar techniques for alleviating the impact of interference. The proposals considered by the groups are intended for Bluetooth
and IEEE 802.11 direct sequence spread spectrum protocols. They range from collaborative schemes to be implemented in the
same device to fully independent solutions that rely on interference detection and estimation. Except for a Time Division Multiple
Access (TDMA) technique aimed at time sharing the Bluetooth and 802.11 signals [5], most mechanisms considered do not require
any direct communication between the protocols. These so-called non-collaborative mechanisms are intended mainly for Bluetooth
since it is easier for a frequency hopping system to avoid frequencies occupied by a spread spectrum system such as WLAN. The
techniques considered range from adaptive frequency hopping [6] to packet scheduling and traf c control [7]. The techniques used
for detecting the presence of WLAN devices in the band are based on measuring the bit or frame error rate, the signal strength or
the signal to interference ratio (often implemented as the Received Signal Strength Indicator (RSSI)). For example, each device can
maintain a packet error rate measurement per frequency visited. Frequency hopping devices can then know which frequencies are
occupied by other users of the band and modify their frequency hopping pattern. They can even choose not to transmit on a certain
frequency if that frequency is occupied. The  rs t technique is known as adaptive frequency hopping, while the second technique
is known as Medium Access Control (MAC) scheduling. Other scheduling techniques known as packet encapsulation rules or
OverLap Avoidance (OLA) [8], use the variety of Bluetooth packet lengths to avoid the overlap in frequency between 802.11 and
Bluetooth. In other words, the Bluetooth scheduler knows to use the packet length of proper duration (1, 3 or 5 slots) in order to
skip the so-called ”bad” frequency. This was shown to provide goodput improvements for both 802.11 and Bluetooth data traf c.

In this article, we investigate two solutions to the interference problem, namely, (1) an Adaptive Frequency Hopping (AFH)
mechanism aimed at modifying the Bluetooth frequency hopping sequence in the presence of WLAN direct sequence spread
spectrum devices [9], (2) a Bluetooth Interference Aware Scheduling (BIAS) strategy that postpones the transmission of packets
on so-called “bad” frequencies [7]. Each of these two techniques considered imposes a number of implementation implications.
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For example, the implication with AFH is that the chipset has to be modi ed in order to support a new Bluetooth hopping sequence
that does not contain any frequencies used by WLAN. On the other hand, the backoff strategy applies to the Bluetooth master
device  rmw are that is responsible for transmitting packets on the medium.

The remainder of this article is organized as follows. Section II discusses interference detection methods used to determine the
presence of WLAN interference. In section III and IV, we describe the backoff and AFH procedures respectively. In section V, we
consider realistic scenarios to discuss performance trends and trade-offs. In section VI, we offer some concluding remarks.

II. BLUETOOTH INTERFERENCE ESTIMATION

Central to most interference mitigation techniques is the ability to detect the presence of other systems operating in the band, or
in other words, estimate interference. Techniques that do not require interference estimation belong to the collaborative category
where both the Bluetooth and WLAN protocols are implemented on the same device in order for each protocol to be aware of the
traf c and packet transmissions in both the WLAN and the Bluetooth networks.
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Fig. 1. Interference Estimation and Frequency Classi cation

Interference estimation methods include Signal to Interference Ratios (SIR), Bit Error Rate (BER) calculation, packet loss, or
frame error rate measurements performed by a device receiver. We use packet loss measurements in our performance evaluation
although other measurements can be used as well without affecting the outcome of the experiments studied. In addition, we limit
our discussion to interference estimation for Bluetooth since that pertains to the solutions presented here.

In a nutshell, here is how a Bluetooth receiver detects the presence of a WLAN spread spectrum system. Measurements are col-
lected by each receiver in the piconet since interference depends on the device location and transmitted power. These measurements
consist of a percentage of packets dropped due to errors, Pr(Ploss), that is associated with each frequency in the hopset, f , as shown
in Figure 1(a). Given Pr(Ploss) and a packet loss threshold, frequencies are classi ed “good” or “bad” depending on whether their
packet loss rate is less than or greater than the threshold value respectively. In Figure 1(b), we use a packet loss threshold equals to
0.5.

Since in a Bluetooth piconet, the master device controls all packet transmissions, the measurements collected by the slaves are
mostly useful if available at the master. There are at least two ways of sharing these measurements among the devices of the
piconet. One approach would be for the master and slaves to periodically exchange their measurements via management messages.
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Another method would be for the master to derive information about each slave’s measurements by looking at the ACK bit sent
in the slave’s response packets. Observe that in this latter approach, the master can make use of the ACK feedback information
as soon as it becomes available, and thus speed up the estimation time by few tens to hundreds of milliseconds depending on the
traf c load and packet sizes considered. Scanning the entire frequency band using ACK feedback may take between 0.5 to 1.5
seconds depending on the application and the traf c load considered.

A  nal point of observation is concerned with the classi cation update interval. Since the master uses the packet loss information
collected in order to rearrange the frequency hopping pattern in case of AFH and/or selectively avoid packet transmissions on
so-called ”bad” frequencies, one needs to ask how often should frequencies be classi ed? If the classi cation update period is
relatively short, the classi cation re ects more accurately the state of the channel at a higher communication overhead cost in case
the measurements are distributed via management messages. Also, frequent classi cations may lead to a higher packet loss. On
the other hand, a long classi cation period may not be able to keep up with rapid changes in the interference environment, when
traf c is bursty and users are mobile. A number of techniques can be used in order to make the update interval track changes in the
channel dynamics. In our evaluation, we  x ed the update interval to 4 seconds in order to highlight the effects of synchronization
messages.

III. BLUETOOTH INTERFERENCE AWARE SCHEDULING

Since the interference mitigation approach that we discuss is concerned primarily with packet scheduling and transmission in
Bluetooth, we will  rst give a brief overview of how packets are transmitted in Bluetooth, and we will then show how to modify
the packet scheduler in order to mitigate interference.

The Bluetooth transmission channel is divided into 625 µs slots. Transmission occurs in packets that occupy an odd number of
slots (1, 3, or 5). Each packet is transmitted on a different hop frequency with a maximum frequency hopping rate of 1600 hops/s
in case packets occupy a single slot, and a minimum hopping rate of 320 hops/s in case packets occupy 5 slots. Note that every slot
has a frequency associated with it; however transmission of a packet occupying multiple slots always uses the frequency associated
with the  rst slot.

A slave packet always follows a master packet transmission as illustrated in Figure 2(a), which depicts the master’s view of the
slotted channel. A slave needs to respond to a master’s packet that is speci cally addressed to it. In case it does not have any data
to send, it sends a NULL packet. Moreover, each packet contains the ACK information of the previous packet received.

Since the master is in charge of all transmissions in the piconet and chooses which slave to transmit to, it is easy to envision
a scheduling policy at the master that considers the frequency classi cation information before sending packets on the medium.
The so-called Bluetooth Interference Aware Scheduling (BIAS) [7] is a backoff policy that postpones the transmission of a packet
until a slot associated with a “good” frequency becomes available. Here is how it works. The master continuously classi es each
frequency as either “bad” or “good” based on a prede ned criterion, for example a packet loss threshold as mentioned in section
II. Given a master/slave slot pair and their associated frequencies as illustrated in Figure 2(a), the master transmits in a slot after it
veri es that both the slave’s receiving frequency and its own receiving frequency are ”good”. Thus, the master avoids receiving data
on a “bad” frequency, by avoiding a transmission on a frequency preceding a “bad” one in the hopping pattern. If either frequency
in the pair is “bad”, the master skips the current transmission slot and repeats the procedure over again in the next transmission
opportunity.

Finally, Figure 2(a) shows an example of transmission priority that can be built into the master scheduler. In this case, the
master schedules retransmissions  rst, then data packet, and  nally acknowledgment packets. Note that in all three cases the
pair of frequencies associated with the master and slave slots need to be “good”. Additional considerations including bandwidth
requirements and quality of service guarantees for each master/slave connection in the piconet can also be combined with the
channel state information and mapped into transmission priorities given to each direction in the master/slave communication.
Details on assigning transmission priorities are given in [7].

IV. BLUETOOTH ADAPTIVE FREQUENCY HOPPING

The key idea in BIAS is to wait for a slot associated with a “good” frequency in order to transmit a packet. The question that
comes up is, can the frequency and slot association be modi ed in order to eliminate the so-called “bad” frequencies? In other
words, can “bad” frequencies be replaced with “good” ones so that transmissions need not be postponed? That’s the main idea in
adaptive frequency hopping.

First, we describe the Bluetooth frequency hopping sequence de ned in the Bluetooth speci cations [1] , then we present an
AFH algorithm that modi es it in order to mitigate interference.

Frequency hopping in Bluetooth is achieved as follows. Frequencies are sorted into a list of even and odd frequencies in the
2.402-2.480 GHz range. A segment consisting of the  rst 32 frequencies in the sorted list is chosen. After all 32 frequencies in
that window are visited once in a random order, a new window is set including 16 frequencies of the previous window and 16 new
frequencies in the sorted list. From the many AFH algorithms possible, here is an implementation that eliminates “bad” frequencies
in the sequence.

Given a segment of 32 “good” and “bad” frequencies, the algorithm visits each “good” frequency exactly once. Each “bad”
frequency in the segment is replaced with a “good” frequency selected from outside the original segment of 32 as shown in
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Figure 2(b). Thus, the difference between AFH and the original Bluetooth hopping sequence algorithm is in the selection of only
“good” frequencies in order to  ll up the segment size. Some additional constraints can be imposed on the maximum number of
“bad” frequencies to eliminate if a minimum number of different frequencies is to be kept in the sequence. In their most recent
ruling the FCC recommends using at least 15 different frequencies.

Changing the frequency patterns requires changes in the Bluetooth hardware implementations. Another requirement is the
advertisement of the new hopping pattern among devices in the piconet in order to keep synchronization. This is typically done
using Link Management Protocol (LMP) messages exchanged between the master and the slaves in the piconet in order to advertise
the new hopping sequence. This last requirement imposes some limitations on how often a new hopping pattern should be advertised
and used. Improving performance such as lowering the packet loss, the access delay, and increasing the throughput should outweigh
the communication overhead associated with synchronization. As suggested in section II, the synchronization update interval could
be dynamically adjusted so that it tracks changes in the channel. In our simulations the LMP messages were sent twice in a 4 seconds
update interval. The  rst LMP message was sent when the frequency tables were reset, while the second message was sent about
1.5 seconds later to signify the use of a new hopping pattern.

Finally, AFH does not preclude additional scheduling techniques to control the transmission (and possibly the retransmission)
of packets on the medium.
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V. PERFORMANCE EVALUATION RESULTS

We present simulation results to evaluate the performance of Bluetooth and WLAN and discuss some of the trade-offs associated
with the backoff and the frequency hopping schemes presented earlier. Our simulation environment is based on detailed MAC,
PHY and channel models for Bluetooth and IEEE 802.11 (WLAN) as described in [10]. The channel model consists of a geometry-
based propagation model for the signals, as well as a noise model based on Additive white Gaussian noise (AWGN). For the indoor
channel, we apply a propagation model consisting of two parts: (1) line-of-sight propagation (free-space) for the  rst 8 meters,
and (2) a propagation exponent of 3.3 for distances over 8 meters [11]. The transmitters, channel, and receivers are implemented
at complex baseband. We develop models for the Bluetooth and the IEEE 802.11 access protocols using the OPNET network
simulator and con gure the applications available in the simulator library.

In general, we  nd that performance results vary according to the network con guration, usage scenario and application con-
sidered [10]. In this paper, we vary the application and the interference level considered, as these two factors are most likely to
dominate the performance results.

For Bluetooth, we consider two applications, FTP and voice. FTP is a bandwidth hungry application that stresses the throughput
requirement, while voice has strict delay and jitter requirements. Together, these two applications constitute a representative set
of the application space used in a Bluetooth piconet. For WLAN, we use FTP to upload a large  le (for instance a movie) to a
server. For the FTP pro le, the parameters are the inter-request time and the  le size. The inter-request time is the interval between
two FTP commands, and the  le size represents the size of the  le requested in bytes. For Bluetooth we vary the  le sizes from
200 bytes to 500 Kbytes (every 5 seconds), while for WLAN we use a single  le of 960 Mbytes. The voice application used in
Bluetooth is based on the G.723.1 encoder (with silence). The simulation and pro le parameters are given in Table I.

TABLE I
SIMULATION PARAMETERS

Simulation Parameters Values
Propagation delay 5 µs/km
Length of simulation run 1600 seconds
Bluetooth Parameters
ACL Baseband Packet Encapsulation DH5
Transmitted Power 1 mW
WLAN Parameters
Transmitted Power 25 mW
Packet Header 224 bits
Packet Payload 12,000 bits
Application Pro le Parameters Distribution Values
Bluetooth FTP
Inter-Request Time (seconds) Exponential 5
File Size (Kbytes) varies in [0.2,500]
WLAN FTP
File Size (Mbytes) Constant 960
Bluetooth Voice
Encoder G.723.1
Silence Length (seconds) Exponential 0.65
Talk Spurt (seconds) Exponential 0.352

We use the four-device con guration shown in Figure 3 that is common to some of ce or home environments. It consists of
a laptop computer connected to the Internet via WLAN, while a desktop located at a distance d from it, is also connected to
either a PDA or a wireless headset over a Bluetooth link. By varying d, the level of interference on each of the Bluetooth and
WLAN receivers is effected. For example, as d is increased, the level of interference is decreased. Other usage scenarios can also
be obtained by putting both WLAN and Bluetooth receivers on the same device, for example the laptop computer in this case.
Although some variations in the performance results are to be expected, the differences in the results remain minor.

Now, we discuss the details of two experiments involving a voice and an Ftp application for Bluetooth and an Ftp application
for WLAN. For each experiment we set d=1 and 3 meters. In addition, in experiment 1, we vary the  le size of the Bluetooth FTP
application. Each data point collected is averaged over 15 simulation trials using a different random seed for each trial. In addition
to the mean value, we verify that statistical variation around the mean values are small and fall within a 95% con dence interval.

A. Effects on Bluetooth Data Traf c
In this experiment, we consider the effects of BIAS and the AFH schemes on the performance of a Bluetooth FTP connection

when it is operating in close proximity to a WLAN FTP connection. While the WLAN connection is used to upload a 960 Mbytes
 le to a server, a Bluetooth FTP connection is used to download  les (email, attachment documents) from a PDA to a desktop
computer. This latter operation produces similar traf c characteristics than that of a ”HOT SYNC” even if the  le sharing protocol
used in that case is speci c to the PDA manufacturer.

Figure 4(a) gives the packet loss results at the Bluetooth receiver located on the desktop computer. None refers to the case
when no algorithm is used, while AFH and Scheduling refer to the use of AFH and BIAS respectively. Also, the distance between
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the Bluetooth desktop and the WLAN laptop is either 1 m or 3 m as indicated after the dash. First, observe that the curves are
grouped into 3 distinct pairs according to the scheme used. Also, the packet loss corresponding to 1 m is always higher than the
one corresponding to 3 m. This is expected since the packet loss is higher when the WLAN node is closer to the Bluetooth device.
When no scheme is used the packet loss starts at 12% and 4% for 1 and 3 m respectively. The packet loss for AFH starts at 2% and
increases to 6% as the offered load is increased to 800 Kbit/s. There is less than 1% difference between the packet loss for 1 and 3
m. The packet loss for BIAS is negligible and is at least two orders of magnitude lower than the ones observed for None.

Note that the relatively higher packet loss observed with AFH depends on the frequency of the synchronization messages ex-
changed between the Bluetooth master and the slave. There is a trade-off between the communication overhead and the response to
changes in the interference environment. A fast responding system will incur a lower packet loss at the cost of a higher communi-
cation overhead. In this experiment, synchronization messages are exchanged on average every few seconds (1.5 and 2.5). Since no
explicit message exchange is required for the scheduling algorithm, the response time to changes in the interference environment
happen within a packet round trip time.

Figures 4(c) and (d) illustrate the TCP goodput and delay results respectively. Observe that the goodput is directly proportional
to the offered load until about 480 Kbit/s for all 6 curves. We have computed that about 660 Kbit/s is the maximum application
goodput available considering the choice of the simulation parameters. This includes a 10% overhead for the packet headers of
all layers between the application and the Bluetooth baseband link and assuming a maximum TCP packet payload of 1460 bytes.
Thus, 480 Kbit/s corresponds to 72% of the Bluetooth medium capacity. As the offered load is increased beyond 500 Kbit/s, the
difference between the various schemes becomes more signi cant. The maximum goodput obtained is 600 and 550 Kbit/s with
AFH and BIAS respectively. When no algorithm is used the maximum goodput is 480 Kbit/s.

The TCP  le transfer delay shown in Figure 4(d) is consistent with the goodput results. The  le transfer delay remains below 4
seconds until 500 Kbit/s for AFH and BIAS. It is 2 seconds higher when no algorithm is used. All delay curves take off sharply
when the offered load increased above 500 Kbit/s.

In summary, AFH improves the maximum Bluetooth goodput by 25%, while BIAS brings only a 14% improvement. It is im-
portant to point out that in this experiment the interference level remains the same for several minutes since the WLAN connection
is transmitting during the entire simulation time. Therefore, the throughput advantage brought by AFH can be further increased as
the communication overhead is kept low and the channel update interval is increased to several hundred seconds. Had the WLAN
traf c been more bursty, additional packet loss could have been incurred with AFH, and the throughput advantage may not have
been as signi cant. On the other hand, BIAS produces a lower packet loss due to its ability to avoid frequencies that have become
“bad” within a packet round trip time.

B. Effects on the Bluetooth Voice Application
While in the previous experiment, the objective was to maximize the throughput of an FTP connection, in this experiment the

goal is the minimize the delay and most importantly the delay jitter for a Bluetooth voice connection. We use the same parameters
used in Experiment 1 and replace the Bluetooth FTP connection with a voice connection as shown in Figure 3. Table II gives
the Bluetooth performance results collected on the desktop for d =1 m. The packet loss is 11%, 2.9% and 0.6% with None, AFH
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TABLE II
EXPERIMENT 2: BLUETOOTH VOICE PERFORMANCE

BIAS AFH None
d=1 meter
Probability of Packet Loss 0.0064 0.0294 0.1101
Delay (seconds) 0.0832 0.0014 0.0018
Delay Jitter (seconds) 0.0770 0.0769 0.0767
Goodput (Kbit/s) 2.9096 2.9124 2.9197
d=3 meter
Probability of Packet Loss 0.0064 0.0155 0.0320
Delay (seconds) 0.0836 0.0015 0.0017
Delay Jitter (seconds) 0.0770 0.0764 0.0768
Goodput (Kbit/s) 2.9109 2.9332 2.9189

and BIAS respectively. Note that the delay jitter is around 76 ms with all three schemes. On the other hand, the delay measured
with BIAS is 83 ms, while it is 14 and 18 ms with AFH and None respectively. This result points out the main disadvantage of
BIAS in terms of increasing the access delay while lowering the packet loss. However since the delay jitter obtained with BIAS is
comparable to what is obtained with AFH and None, then BIAS is still a viable option for voice applications.

The results for d=3 meters are consistent with the discussion presented earlier. In this case the packet loss is lower than with d=1
m since the Bluetooth receiver and the WLAN transmitter are further apart.

C. Effects on the WLAN Performance
Although the interference mitigation schemes presented mostly impact the performance of Bluetooth, it is equally important to

consider any effects on the WLAN performance. Before we discuss the effects of the algorithms implemented for Bluetooth on the
WLAN, it is important to keep in mind that in the simulation setup used, the WLAN node that is close to the Bluetooth piconet
is mainly functioning as a transmitter of data packets and not a receiver. Thus, the impact of the Bluetooth interference is not as
signi cant since the WLAN node only receives short ACK packets. Figure 4(b) shows the WLAN packet loss observed on the
WLAN receiver located on the laptop computer. When no interference mitigation algorithm is implemented for Bluetooth, the
packet loss is 17% and 10% at a distance of 1 and 3 meters respectively. The packet loss when AFH is implemented drops to 7%
and 5% at d=1 and 3 m respectively. The packet loss is less than 1% with BIAS. Note that, we expect the packet loss to be more
signi cant with None and AFH (up to 30% and 15% respectively) when the WLAN node is receiving long packets.

In summary, BIAS not only gives the lowest packet loss results for Bluetooth, but is also a neighbor friendly strategy for WLAN.
Since “bad” frequencies can be avoided quickly that reduces the packet loss for both Bluetooth and WLAN.

VI. CONCLUDING REMARKS

In this paper, we study the use of interference mitigation techniques for Bluetooth when operating in close proximity to WLAN
systems. We consider a backoff strategy (BIAS) for Bluetooth that avoids the transmission of packets in the WLAN spectrum.
We also look at adapting the Bluetooth frequency hopping pattern (AFH) in order to avoid the WLAN spectrum. The former
method does not require any changes to the Bluetooth speci cations. On the other hand, changing the frequency hopping pattern
requires changes to the Bluetooth speci cations. The two techniques considered capture the range of solutions considered for the
interference problem in the 2.4 GHz band.

Furthermore, while BIAS can be viewed as an intermediate or a temporary  x to the problem, AFH is expected to be part of
the next generation Bluetooth speci cations and perhaps chipsets if interoperability issues with legacy devices do not hinder its
deployment and rapid market acceptance. However, taking a step back from speculative market analysis and technology hypes, our
goals in this paper are to examine some of the strategies available for users and vendors and discuss the performance implications
and trade-offs they bring.

A summary of our  ndings is as follows. First, an obvious trade-off lies in terms of communication overhead, and perfor-
mance improvement. Although partially explored in this study by imposing a synchronization interval, dynamic scenarios where
the WLAN interference is intermittent may be dif cult to track using AFH. This is probably due to limitations imposed by the
communication overhead. The main dif culty is having to dynamically communicate the changes to all slaves in the piconet in
order to keep the synchronization. Nevertheless, the use of AFH in environments where the level of interference does not change
often, brings additional performance improvements. More speci cally , AFH maximizes the throughput for bandwidth hungry ap-
plications such as FTP, most  le sharing, synchronization applications where the packet loss requirement is not as stringent. On
the other hand, the bene ts of AFH may not be as obvious for delay jitter and packet loss constrained applications such as voice
and video, where packets are never retransmitted and the packet interarrival time is required to be relatively constant. For those
applications, BIAS seems to give better performance results, mainly negligible packet loss and low delay jitters.

Finally, our results strongly suggest that no single technique could optimize performance for all scenarios and applications.
Perhaps, combining BIAS and AFH could lead to widening the solution space and applying an appropriate technique for each
scenario and application considered.
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SUMMARY OF CONTRIBUTIONS TO WLAN-WPAN TECHNOLOGY 

As part of the ITL research program in networking for pervasive computing, NIST researchers published 
an expansive, coherent, and focused evaluation of interference between WLAN and WPAN technology. 
The published results were expansive in the sense that they covered physical, access control, transport, 
and application layers, coherent in the sense that they considered a selected set of topologies likely to 
reveal useful findings, and focused in the sense that they investigated specifications for the most 
commonly deployed WLAN (IEEE 802.11b DSSS) and WPAN (Bluetooth) technologies. NIST 
researchers provided convincing evidence that interference could be quite a problem for proximal WLAN 
and WPAN devices. NIST researchers helped to form and then lead an IEEE 802.15 task group to 
consider possible coexistence strategies for WLAN and WPAN technologies. The interference results 
published by NIST researchers provided insights into a range of techniques for interference mitigation. 
NIST researchers investigated both physical layer approaches (such as receive filtering, adaptive power 
control, and rate scaling) and access-control approaches (such as adaptive frequency hopping and 
interference-aware scheduling) in isolation and combination. The findings from NIST researchers were 
conveyed to the IEEE 802.15 task group that considers wireless coexistence strategies, and variants of 
approaches proposed by NIST researchers were adopted in selected standards. As specific industry 
segments, such as healthcare providers, consider adoption of wireless WLAN and WPAN technologies, 
the evaluation approaches pioneered by NIST researchers could be applied to estimate likely interference 
problems and to investigate the properties of various coexistence strategies. 

Networking for Pervasive Computing NIST Special Publication 500-259

125



 

 

FIRST-GENERATION SERVICE DISCOVERY SYSTEMS 

Software systems are evolving to a so-called network-centric (or net-centric) form, where distributed 
components are composed together dynamically and then cooperate to provide information processing in 
support of application requirements. This mode of operation is projected to occur throughout a pervasive 
computing environment, as software components acting on mobile computing devices communicate over 
a wireless network to rendezvous and configure into component collections in support of user needs. 
Once configured, component collections must monitor themselves, detect component failures, and then 
discover and configure replacement components. Various groups in the information-technology industry 
have conceived of software infrastructures to provide these functions (of discovery, configuration, and 
monitoring) in the form of libraries that can be used generally by distributed components. For example, 
engineers and researchers at Sun Microsystems conceived JiniTM Networking Technology to provide 
service discovery support for Java components. In addition, a team of engineers meeting in the Internet 
Engineering Task Force (IETF) designed and specified the Service Location Protocol (SLP) to provide 
service discovery functionality for Internet applications. Further, a group of designers and engineers from 
Microsoft and Intel devised a set of protocols and description techniques, later standardized under the 
auspices of the Universal Plug-and-Play (UPnP) Forum, to extend plug-and-play technology to 
encompass local-area networks. Several industry groups also develop service discovery technology that is 
more narrowly construed. For example, the Home Audio Video interoperability (HAVi) protocol provides 
service discovery for home entertainment and multimedia applications connected over IEEE 1394 
(Firewire) networks. In addition, the Bluetooth Consortium specified a service discovery protocol that 
operates over top Bluetooth (or IEEE 802.15) wireless networks. Further, the Salutation Consortium 
defined a vertically integrated service discovery system to support office automation and related devices, 
such as copiers and fax machines. The fact that numerous competing designs have appeared indicates a 
substantial industry interest in using dynamic service discovery as a means to deploy and evolve 
component-based technology for pervasive computing. 

Two key questions arise when considering the potential for service discovery technologies to 
revolutionize our ability to deploy and configure components and services in pervasive computing 
applications. First, what behavioral and performance characteristics should users expect from the current 
generation of designs for service discovery systems? Second, what techniques might be used to improve 
the performance of the current generation of service discovery systems? These questions are addressed in 
the following set of thirteen papers that document findings by researchers in the Information Technology 
Laboratory at NIST. The papers divide naturally into two sets. Seven papers (Paper #15 through #21) 
characterize the behavior and performance of designs for the first-generation of service discovery 
protocols. The majority of the papers focus on robustness of the designs while supporting several 
applications (e.g., information dissemination and real-time control) when subjected to various failures, 
such as message loss, communication failure, node failure, and power failure. One paper (#20) aggregates 
all failure-related results, providing a single characterization of failure response for the three major 
designs for service discovery systems. Another paper (#21) provides a complete model-based analysis and 
comparison of the major designs along several dimensions: functionality, structure, scalability, and 
service guarantees. A set of six papers (Paper #22 through #27) investigates various self-adaptive 
algorithms that could be implemented to improve the scalability, responsiveness, and fairness of service 
discovery systems. These algorithms may become key assets in pervasive computing environments, 
where the number of communication components can vary over a wide range within a short time.  
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BEHAVIORAL AND PERFORMANCE CHARACTERIZATION OF DISCOVERY SYSTEMS 

The designs for various service discovery systems share a similar logical structure. All service discovery 
systems encompass at least three component types: a service user (SU) and a service provider (SP) and 
supporting service manager (SM). Component instances communicate via messages exchanged over a 
network. Each SU attempts to discover available SPs. Each SM advertises the availability of a set of one 
or more associated SPs. The primary objective of a service discovery system is to enable a SU with 
specific requirements for some service to rendezvous with any available SP that satisfies those 
requirements. The secondary objective of a service discovery system is to enable all components to 
monitor the availability and characteristics of other available components. This secondary objective 
allows, for example, a SU to determine when a new SP satisfying some requirements arrives, or to learn 
when a previously discovered SP is no longer available or has altered characteristics. 

Designs for service discovery systems generally encompass one of three architectures. In a two-
party architecture a SU can discover an available SP directly from a SM, which acts as a proxy for the SP. 
In a three-party architecture a SU must first discover another component, the service cache manager, or 
SCM, and then query that component for any available SPs. This implies that SMs will also discover 
SCMs on behalf of associated SPs and then deposit and maintain (on the SCMs) descriptions of the SPs. 
In an adaptive architecture the SUs and SMs operate in a three-party mode unless or until no SCMs can 
be discovered, after which the SUs and SMs switch to a two-party mode of operation. In general, when a 
system operates without interfering failures, any of the architectures should offer reasonable robustness. 
On the other hand, will the various architectures offer similar robustness when subjected to failures that 
could arise in a distributed system? 

Numerous types of failure can interfere with the operation of a distributed system. For example, 
message losses could cause processes to exchange only partial information, and might also lead to 
situations where some communicating processes are unsure about the state of the information received by 
corresponding processes. More pernicious results could arise when a partial communication failure, of a 
transmitter or receiver, affects all communicating processes on a node. On the other hand, individual 
nodes could fail, taking down all processes on the node, or individual processes may fail or become 
subverted on particular nodes. Even more routine failures, such as power loss and restoration, present 
challenges for distributed systems. 

Another factor may well complicate the failure response of particular service discovery systems. 
Service discovery systems consist of general middleware functions implemented to support application-
specific logic. This implies that some failures will be resolved, if possible, by the service discovery 
functions, while other failures will be referred to the application software for resolution. For this reason, 
any fair assessment of the robustness of designs for service discovery systems must compare the designs 
not only under identical failure scenarios but also under identical application-specific processing, and 
related assumptions. 

For all service discovery architectures modeled for the work reported in this publication, the 
NIST researchers provide identical failure models and application-specific processing. Further, where 
specifications permit, the researchers strive to configure the various service discovery protocols with 
parameter values that yield similar behavior. In addition, the models incorporate identical assumptions 
about characteristics of the underlying protocols – either the transmission-control protocol (TCP) or the 
unicast and multicast versions of the user datagram protocol (UDP) – used to exchange messages among 
service discovery processes. The goal of this modeling approach is to eliminate behavioral and 
performance differences that could be attributed to differences in failure models, application models, 
protocol configuration, and communication mechanisms. Under this regime, any evident performance 
differences should be due to differences in system architecture and protocol design. 

All the models underlying the results reported in this publication represent multiple, independent 
nodes that execute an application supported by service discovery middleware and also by communication 
protocols. The service discovery middleware is modeled as a collection of independent processes, each 
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supporting some service discovery function. Application-specific logic is modeled as a process separate 
from, but interacting with, the service discovery processes. Processes within each modeled node 
communicate using an appropriate protocol (either TCP or unicast or multicast UDP, depending on the 
particular process and system design) over a communication channel with similar transmission and 
propagation delays. 

Along with developing simulation models for various service discovery systems, applications, 
and supporting communication protocols, the NIST researchers had to devise metrics to compare behavior 
and performance. This required some degree of innovation because the literature did not previously 
contain any comparisons of the behavior and performance of service discovery systems. For this reason, 
each of the following papers defines the specific performance metrics used to compare system behavior. 

In Paper #15, “Analyzing Properties and Behavior of Service Discovery Protocols Using an 
Architecture-Based Approach”, Dabrowski and Mills define a partial set of consistency conditions that 
they believe a service discovery system should strive to achieve, and then they show some scenarios 
under which the design for one service discovery system fails to provide the specified consistency. The 
paper is motivated by the fact that no extant designs for service discovery systems provide a specification 
of consistency goals. By proposing some consistency goals and then showing how a model of a service 
discovery system can be evaluated against those goals, Dabrowski and Mills suggest a concrete approach 
to improve the specification, design, and testability of service discovery systems (and distributed systems 
in general). In this case, the authors uncover some specification ambiguities and omissions that could lead 
to feature interference and race conditions. The researchers also show, using a power-outage-and-restart 
scenario, how the same model used to assess logical properties can be employed to investigate 
performance characteristics, at least for relatively small topologies. Because the results reported in this 
paper were obtained using a model constructed with an architecture-description language (ADL), the 
authors close with a critique of the use of such models. 

In Paper #16, “Understanding Consistency Maintenance in Service Discovery Architectures 
during Communication Failure”, Dabrowski, Mills, and Elder study the ability of selected designs for 
service-discovery protocols to maintain consistency in a distributed system during catastrophic 
communication failure (e.g., jamming). The researchers use an architectural-description language, called 
Rapide, to model two different architectures (two-party and three-party) and two different consistency-
maintenance mechanisms (polling and notification). The paper investigates performance differences 
among combinations of architecture and consistency-maintenance mechanism as communication-failure 
rate increases. The paper reports system performance along three dimensions: (1) update responsiveness 
(How much latency is required to propagate changes?), (2) update effectiveness (What is the probability 
that a node receives a change?), and (3) update efficiency (How many messages must be sent to propagate 
a change throughout the topology?). The paper reveals lower than expected update effectiveness for the 
notification mechanism over failure rates from 5% to 35%. This performance deficiency arises when 
temporary failures block dissemination of notifications, which rely upon retransmission within TCP, 
leading to a remote exception. The service discovery systems investigated do not persist in attempts to 
deliver notifications, but instead seem to assume that the communications failure will be detected and 
recovered by other discovery processes. This assumption proves unwarranted in the 5%-35% range of 
failure rates. 

In Paper #17, “Understanding Consistency Maintenance in Service Discovery Architectures in 
Response to Message Loss”, Dabrowski, Mills, and Elder study the ability of selected designs for service-
discovery protocols to maintain consistency in a distributed system during severe message loss. This 
paper uses the same models and experiment design employed in Paper #16, except that they replace 
communication-failure rate with message-loss rate. Again, the researchers model two different 
architectures (two-party and three-party) and two different consistency-maintenance mechanisms (polling 
and notification). The paper characterizes performance (update responsiveness, effectiveness, and 
efficiency) differences among combinations of architecture and consistency-maintenance mechanism as 
message-loss rate increases. All the systems studied prove remarkably robust, providing substantial 
(>85%) update effectiveness even as the message-loss rate reaches 85%. The paper also finds that update 
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responsiveness is better at lower (<25%) message-loss rates when using notification, but polling proves 
better at higher (>25% and < 85%) message-loss rates. Notification also yields lower update effectiveness 
in the range of 25%-85% message-loss rate. Beyond 85% message-loss rate the performance of all 
architectures and mechanisms diminishes substantially. 

In Paper #18, “Understanding Self-healing in Service-Discovery Systems”, Dabrowski and Mills 
dissect the effectiveness of two failure-recovery mechanisms often embedded in distributed applications 
supported by service discovery systems. The researchers quantify the proportion of update effectiveness 
achieved through soft-state (heartbeat) mechanisms included in service discovery systems against the 
proportion of update effectiveness that can be attributed to application-level persistence (retries). In 
effect, this paper further examines the results reported in Paper #16 for the notification mechanism during 
communication failure. The aim is to better understand when to rely on soft state and when to rely on 
application-level persistence. The results suggest that soft state and application-level persistence provide 
complementary recovery mechanisms when deployed in a two-party architecture. At lower (<30%) failure 
rates, application persistence provides the most value, while soft state contributes most at higher failure 
rates. The results also reveal that soft state and application persistence appear redundant when deployed in 
a three-party architecture. 

In Paper #19, “Performance of Service-Discovery Architectures in Response to Node Failures”, 
Dabrowski, Mills, and Rukhin investigate the ability of selected designs for service-discovery protocols to 
detect and recover from failure of remote services when used to support real-time distributed control 
applications. The researchers model two architectures (two-party and three-party) underlying most 
commercial service-discovery systems, and use simulation to quantify functional effectiveness 
(proportion of time an application is functional) and efficiency achieved by each of the architectures as 
the rate of failure increases among remote services. The results suggest that a two-party architecture 
yields better robustness than a three-party architecture. The paper also decomposes non-functional periods 
into failure-detection latency and restoration latency, which reveals that for the two-party architecture 
80% of non-functional periods are due to failure-detection latency. For the three-party architecture 
failure-detection and restoration latency each compose about 50% of non-functional periods. This occurs 
because the three-party architecture depends upon the presence of SCMs; thus, is unable to recover a lost 
service until at least one SCM is operational. 

In Paper #20, “Failure Response in First-Generation Service Discovery Systems”, Dabrowski, 
Mills, and Quirolgico compile and present a comprehensive collection of simulation results that 
characterize the performance of multiple architectures (two-party, three-party, and adaptive) operating 
under a range of failure scenarios (node failure, communications failure, message loss, and power failure 
and restart) in selected applications (real-time distributed control, information dissemination, and 
configuration recovery). On the one hand, this paper collects results previously reported individually in 
Papers #15, #16, #17, and #19. On the other hand, this paper extends those results in several ways. First, 
the paper includes an adaptive architecture for which no results have been reported previously. The paper 
also reports for the first time the performance of the two-party architecture in the face of power failure 
and restart. Second, the paper increases the number of experiment repetitions significantly to produce 
performance graphs that exhibit much less noise than the graphs published in previous papers. The main 
aim of this paper is to provide an archival set of results characterizing failure response for state-of-the-art 
designs for first-generation service discovery systems. 

In Paper #21, “A Model-based Analysis of First-Generation Service Discovery Systems”, 
Dabrowski, Mills, and Quirolgico compare and contrast state-of-the-art designs for first-generation 
service discovery systems. The approach, unique within existing literature, first constructs a generic 
object-oriented meta-model and model (documented in the Unified Modeling Language, or UML) for the 
domain of service discovery systems. The generic model is based on an analysis of representative 
specifications for first-generation service discovery systems. The authors also identify a set of open issues 
in existing designs. The authors demonstrate how their generic model can be used to represent specific 
service discovery systems, including three – Universal Plug-and-Play (UPnP), Jini, and the Service 
Location Protocol (SLP) –analyzed in creating the model, but also including two service discovery 
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systems – the Web Services Dynamic Discovery and the Globus Monitoring and Discovery Service 
(MDS)  – not analyzed in creating the model. Beyond an analysis of the structure and behavior of first-
generation service discovery systems, the authors consider two other issues. First, the authors identify 
three classes of performance concerns that might arise in first-generation service discovery systems, and 
they suggest a range of solutions that implementers could adopt to solve each issue. Second, the authors 
propose a set of service guarantees that they believe service discovery systems should aim to achieve, and 
they provide a formal specification of those guarantees. The authors also make available a UML 
description for the model described in the paper. 
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Abstract 
 
Current trends suggest that future software systems may 
appear as collections of distributed components that 
combine and recombine dynamically in response to 
changing conditions. Such dynamic environments will 
require new analysis approaches and tools for software 
design. In this paper, we investigate an architecture-
based approach to evaluate and compare designs for 
service discovery protocols operating under network and 
node failures. We elaborate our approach, using Jini as a 
specific example, and show how Jini can be analyzed 
using Rapide, an Architecture Description Language 
(ADL). Our analyses take two forms: property analysis 
and event analysis. We use property analysis to 
investigate robustness to dynamic change, while we use 
event analysis to discern underlying causes of observed 
behavior and performance. We evaluate how well Rapide 
supported our modeling and analyses. We also 
recommend improvements in ADLs to help test and 
analyze designs for distributed systems. 
 
1. Introduction 
 

Numerous trends suggest that future software will 
operate in an environment much more uncertain than 
today’s typical client-server paradigm. Increased 
deployment of wireless communications, implying greater 
user mobility, coupled with proliferation of personal 
digital assistants and other information appliances, 
foretell a future where software components can never be 
quite sure about the network connectivity available, about 
the other software services and components nearby, or 
about the state of the network neighborhood a few 
minutes in the future. In the most extreme situations, as 
found for example in military applications [1], software 
components composing a distributed system may find that 
cooperating components disappear due to physical or 
cyber attacks or due to jamming of communication 
channels or movement of computing platforms beyond 
communications range. Even in less demanding 
circumstances, increased use of computer chips, network 
communications, and software to implement a growing 
range of consumer appliances portends the need for 
simple, self-contained units that, when powered on, can 

discover their technical surroundings and then 
automatically configure themselves into a larger system 
that might already be deployed. Further, as the consumer 
rearranges components in such a system, then the system 
must automatically adapt its configuration as necessary. 
Such environments demand new analysis approaches and 
tools for software design, implementation, and testing.  

Our work considers how one might rigorously assess 
the robustness of distributed software systems in response 
to dynamic change, such as process, node, and link 
failures of both a temporary and permanent nature. More 
particularly we seek techniques to test the behavior and 
resilience of dynamic distributed systems, and to compare 
and contrast various approaches to design such systems. 
As a challenging application we investigate service 
discovery protocols, which provide mechanisms for 
rendezvous and robustness in the face of uncertainty. 
Such mechanisms enable dynamic elements in a network: 
1) to discover each other, 2) to express opportunities for 
collaboration, and 3) to compose themselves into larger 
collections that cooperate to meet an application need. In 
this paper, we limit our analysis to Jini(tm)1 Networking 
Technology, one of at least six service discovery 
protocols [2]-[7] designed to date. Future papers will 
consider additional discovery protocols. 

We wish to address software robustness as early as 
possible in the engineering lifecycle because the earlier a 
design error can be uncovered, the lower the cost to 
repair. For this reason, we use an Architectural 
Description Language (ADL) [12]-[19] to transform 
natural-language specifications into architectural models 
that provide rigorous representation of system structure 
and behavior. Such architectural models, coupled with 
appropriate automated analysis tools, permit designers to 
uncover and correct errors and omissions, and to clarify 
ambiguities that would otherwise lead to incorrect 
behavior, or to performance problems, after a 
specification has been implemented and the resulting 

                                                           
1 Certain commercial products or company names are identified in 

this report to describe our study adequately.  Such identification is not 
intended to imply recommendation or endorsement by the National 
Institute of Standards and Technology, nor is it intended to imply that 
the products or names identified are necessarily the best available for the 
purpose. 
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software deployed. Architectural models also provide 
significant advantages over less formal approaches when 
comparing and contrasting alternate designs for dynamic 
distributed systems, such as service discovery protocols. 

Other authors compare various service discovery 
protocols [8]-[11], [22], [24]. While instructive, these 
comparisons exhibit significant limitations. For example, 
existing comparisons are largely functional in nature and 
informal in presentation. Such comparisons cannot 
capture nor express a deep understanding of the 
behavioral properties of the protocols, nor can these 
comparisons uncover areas of ambiguity, inconsistency, 
and incompleteness within the specifications. Further, 
existing comparisons use concepts and terminology taken 
from individual specifications. Since each specification 
adopts a unique language for describing its design, it 
becomes difficult to compare the designs directly. In 
future work, we aim to contribute a more rigorous 
comparison of three discovery protocols: Jini [4], UPnP 
[3], and SLP [6]. 

The current study serves two purposes: 1) validate our 
approach against the specification for Jini and 2) evaluate 
the suitability of ADLs to model and analyze dynamic 
distributed systems. To perform this study, we examined 
several ADLs [12]-[19], selecting Rapide [12], an ADL 
developed at Stanford University. Rapide specializes in 
modeling architectures for real-time, distributed systems 
and therefore represents behavior in a form suitable to 
investigate discovery protocols. Rapide also comes with 
an accompanying suite of analysis tools that can execute a 
specification and can record and visualize system 
behavior. 

This paper reports our initial results with respect to 
modeling and analyzing the Jini specification. The paper 
is organized as five sections. First, we describe our 
approach to model and analyze discovery protocols. We 
provide a general architecture intended to encompass all 
the protocols we studied. Using Jini as an example, we 
illustrate how this architecture can be used to model a 
specific protocol, and then how the model can be 
converted to an executable specification, described using 
Rapide. In the second section, Analysis Approaches, we 
discuss the application of ADL tools to analyze logical 
properties of our models, and in the process to uncover 
specification deficiencies, and to assess the degree to 
which the model satisfies selected consistency conditions. 
Further, we show how behavior traces from our model 
can be analyzed to produce quantitative metrics. In the 
third section, we report and discuss the results obtained 
from our initial analysis of Jini. We examine how well 
our Jini model satisfies selected consistency conditions, 
and we characterize the behavior and performance of Jini 
with respect to particular scenarios. In the fourth section, 
we assess our experiences using an ADL and related tools 
to model and analyze Jini. We report our positive 

findings, along with recommendations for improvements. 
In the fifth section, we provide our conclusions and 
outline future work. 
 
2. Modeling with an Architecture-based 
Approach 
 

Most extant discovery protocols are specified 
statically, using natural language, and supplemented with 
reference software that provides one presumably 
legitimate implementation of the specification. The static 
specification expresses the appropriate behavior of system 
components in reaction to particular events and 
conditions. The reference implementation contains 
incidental complexity needed to fit the protocol into a 
software framework that includes various supporting 
components. Typically, static specifications cannot be 
used effectively to understand the dynamic behavior of 
distributed systems. Such specifications do not express 
collective behavior very well and often do not define 
consistency conditions against which dynamic behavior 
can be evaluated. Further, natural-language specifications 
usually lack completeness, and suffer from ambiguities 
and inconsistencies. On the other hand, reference 
software includes complexity irrelevant to the 
fundamental requirements of the specification. Further, 
reference software typically will implement one particular 
design choice in cases where a specification may allow 
various alternatives. 

To overcome these shortcomings, we adopted an 
approach that entails the following general steps: 1) 
construct an architectural model of each discovery 
protocol, 2) identify and specify relevant consistency 
conditions that each model should satisfy, 3) define 
appropriate metrics for comparing the behavior of each 
model, 4) construct interesting scenarios to exercise the 
models and to probe for violations of consistency 
conditions, and 5) compare the results from executing 
similar scenarios against each model. Below, we elaborate 
our approach, using Jini as a specific example, and show 
how Jini can be modeled using Rapide, an Architecture 
Description Language (ADL). We also discuss the Rapide 
run-time, which converts our Jini model to an executable 
specification. First, we introduce discovery protocols, and 
define some consistent terminology that we can use to 
build comparable architectural models. 
 
2.1. Discovery Protocols in Essence 
 

Discovery protocols enable software components to 
find each other on a network, and to determine if 
discovered components match their requirements. 
Further, discovery protocols include techniques to detect 
changes in component availability, and to maintain, 
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within some time bounds, a consistent view of 
components in a network. Many diverse industry 
activities explore different approaches to meet such 
requirements; leading to a variety of proposed designs for 
service discovery protocols [2]-[7]. Some industry groups 
approach the problem from a vertically integrated 
perspective, coupled with a narrow application focus. 
Other industry groups propose more widely applicable 
solutions. For example, a team of researchers and 
engineers at Sun designed a general service discovery 
mechanism atop Java(tm), which provides a base of 
portable software technology. The proliferation of service 
discovery protocols motivates deeper analyses of their 
designs. Beyond this, given the level of debate within the 
industry, a comparative analysis can help to assess the 
relative merits of particular protocols. 

To help us compare protocols, we developed a general 
UML (Unified Modeling Language) model, expressed 
with a consistent terminology (see Table 1) that provided 
a basis for the Rapide architectural model. The main 
components in our general model include: 1) service 
manager (SM), 2) service user (SU), and 3) service cache 
manager (SCM), where the service cache manager is an 
optional element not supported by all discovery protocols. 

  
Table 1. Mapping Concepts Among Various Discovery Protocols. 
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Directory Service Agent 
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These components participate in the discovery, 
registration, and consistency maintenance processes that 
comprise dynamic discovery protocols. A service 
manager maintains a database (Service Repository) of 
records (Service Descriptions, or SDs), where each record 
describes the essential characteristics of a particular 
service or device (Service Provider, or SP). Each SD 
contains the identity, type, and attributes that characterize 
a SP. Each SD also provides up to two interfaces (an 
application-programming interface and a graphic-user 
interface) to access a service. Table 1 shows how these 
general concepts map to specific concepts for Jini, UPnP, 
and SLP. Since the paper uses Jini as an example, we 
provide a brief synopsis. 
 
 

2.2. Jini in Brief  
 

Upon startup, a Jini component (SU, SM, or SCM) 
engages in a discovery process to locate other, relevant 
Jini components within the network neighborhood. To 
oversimplify things: 1) SMs attempt to discover relevant 
SCMs with which to register a SD for each SP managed 
and 2) SUs attempt to discover relevant SCMs to query 
for SDs that lead to desired SPs. In other words, SUs and 
SPs rendezvous through SDs registered by SMs with 
particular SCMs, where the SCMs are found through a 
discovery process. 
 2.2.1. Jini Discovery. Jini encompasses two discovery 
modes, multicast and directed, supported by three 
discovery processes, which we call aggressive, lazy, and 
directed. Both aggressive and lazy discovery involve 
multicast communication among Jini components 
participating in two multicast groups. Upon initiation, a 
Jini component enters aggressive discovery, where it 
transmits probes at a fixed interval for a specified period, 
or until it has discovered a sufficient number of SCMs. 
Upon cessation of aggressive discovery, a component 
enters lazy discovery, where it listens for announcements 
sent at intervals by SCMs. This implies that during lazy 
discovery a SCM both listens for announcements by other 
SCMs and sends its own announcements at the required 
intervals. Figure 1 gives a simplified illustration of the 
two Jini discovery modes, and the three supporting 
processes. 

During aggressive discovery, probes sent by Jini 
components identify interest in one or more 
administrative scopes, which Jini calls groups; probes 
also contain a list of SCMs already discovered by the Jini 
component. Each SCM must reply to a probe only when 
the list of groups contained within the probe intersects 
with the SCM’s own list of groups in which it is a 
member, and also provided that the probe does not 
indicate that the SCM has already been discovered. Once 
a relevant SCM is discovered, the discovering component 
requests an application-programming interface (API) that 
enables the component to interact with the SCM. 

Lazy discovery operates similarly. Announcements 
sent by SCMs identity group membership. A Jini 
component requests an API from an announcing SCM 
when the following conditions hold: 1) the group 
membership of the SCM intersects with the groups of 
interest to the component, 2) the component has not 
already discovered the SCM, and 3) the component has 
not already discovered enough SCMs. Receipt of an API 
from the SCM ends the discovery process between the 
component and the SCM. 
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Fig. 1.  Jini has two discovery modes (multicast and directed) that 
encompass three discovery processes. In multicast mode, aggressive 
discovery is initiated on node startup, and then lazy discovery begins 
after aggressive discovery completes. In directed mode, directed 
discovery is used to look for specified SCMs. 
 

Directed discovery operates differently from multicast 
discovery. Each Jini component may be given a specific 
list of SCMs to discover. For each SCM on the list, a Jini 
component establishes a connection and requests an API. 
Should the SCM prove unavailable, the component can 
continue to retry connecting. As explained later, 
ambiguities regarding interaction between directed and 
multicast discovery lead to several problems for the Jini 
specification. 

 Once a Jini component obtains an API from a SCM, the 
component can use the API to access services provided 
by the SCM. To allow the component and the SCM to 
reside on different network nodes, the API must use a 
communication protocol, such as Java Remote Method 
Invocation (RMI)2, which enables the component to 
access SCM services as if they resided within the same 
Java Virtual Machine (JVM). In general, SCM services 
can be classified as registration and consistency 
maintenance, which Jini refers to as leasing. 

2.2.2. Jini Registration. A SM holds a SD for one or 
more SPs. The SM must register each of these SDs with 
each SCM discovered. As part of the registration request, 
the SM asks that the registration remain valid for some 
duration. If the SCM agrees to add the SD to its set of 
registered services, then the SCM grants a lease time (not 
                                                           

2 Jini does not require the use of any particular technique for remote 
procedure calls. In this paper, we use RMI for illustrative purposes.  

more than requested) and returns a service item and lease 
to the SM. Once a SD is registered with a SCM, SUs can 
discover the existence of the related SP by querying the 
SCM, or by receiving notifications from the SCM. Before 
receiving notifications, a SU must register notification 
requests with a SCM. A SU can register a request that a 
SCM notify the SU whenever the SCM adds, deletes, or 
changes a SD of interest. As with service registrations, 
notification requests will be maintained by a SCM only 
for an agreed time (the lease period). 

2.2.3. Jini Consistency Maintenance. In a distributed 
system, new services and devices can be deployed, 
obsolete services and devices can be removed, and nodes, 
processes, and links can fail. These facts imply that 
replicated state, distributed throughout a system, can 
become inconsistent. To time bound such inconsistencies, 
Jini requires each SCM to periodically purge SD 
registrations and notification requests. For this reason, a 
SCM assigns a lease to each registration and notification 
request. The lease indicates when the SCM plans to purge 
the item. To prevent its removal by the SCM, the 
registering component must renew the lease prior to the 
purge time. In this way, if the registering component fails 
(or the network path fails), then the SCM can, within a 
bounded delay, remove reference to the item, and, when 
appropriate, can notify other interested components. Once 
the failure is resolved, the discovery and registration 
processes can be restarted for the failed component, and 
the previous state might be recovered eventually. 

Interactions with SCMs provide another means for Jini 
to maintain consistent state. Each component may register 
some items with a SCM. In addition, leases for these 
registered items must be renewed periodically. Whenever 
a component attempts to invoke a SCM method across a 
network the possibility exists for a remote exception. 
Remote exceptions indicate that the corresponding SCM 
(process or node) might have failed, or that the network 
link between the component and the SCM might have 
failed. A component is free to retry a method invocation, 
and to give up after some period of time. 
 
2.3. Complexity and Uncertainty 
 

The foregoing discussion of Jini, while oversimplified, 
highlights the inherent complexity and uncertainty 
associated with discovery protocols. Complexity arises 
from several sources. The protocol involves multiple 
parties communicating across a network, which 
introduces asynchrony, and which can also introduce 
variable delays. Multiparty interactions can be quite 
difficult to specify and understand. Further, the protocol 
defines various operating modes that could potentially 
interfere with one another, and each protocol entity 
maintains independently operating behavioral threads, 
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which implement features that can interact in 
unanticipated ways. 

Uncertainty also arises because nodes, processes, and 
links can appear and disappear without warning. 
Discovery protocols must include behavior to cope with 
such changes. The coping behavior itself can exhibit 
unexpected interactions with the already complex 
behavior defined to implement multiparty 
communication. Together, this complexity and 
uncertainty discourage protocol designers from 
attempting to specify the properties of a particular 
discovery protocol. Yet, we desire to compare and 
contrast the protocols based on such properties. This 
conundrum led us to the idea of constructing an 
architectural model for each discovery protocol, and 
using the models to investigate various properties. 
 
2.4. An Architectural Model for Jini 
 

Broadly speaking, an architectural model comprises a 
set of components, and the connections among them, 
along with the relationships and interactions among the 
components. In our application, an architectural model 
expresses structure (as components, connections, and 
relations), interfaces (as messages received by 
components), behavior (as actions taken in response to 
messages received, including generation of new 
messages), and consistency conditions (as Boolean 
relations among state variables maintained across 
different components). 

Figure 2 depicts the top level of our Jini architecture 
that was realized in Rapide.  This architecture consists of 
three component types (SU, SM, and SCM) together with 
three connection types: Aggressive Discovery Multicast 
Group (ADMG), Lazy Discovery Multicast Group 
(LDMG), and Remote Method Invocation Unicast Link 
(RMIUL). Only one instance each can exist for the 
LDMG and ADMG but the SU, SM, SCM, and RMIUL 
can be instantiated as multiple instances. Each SU, SM, 
and SCM resides on a network node and participates in 
service discovery, registration, and consistency 
maintenance. To perform these functions, each type of 
Jini component is decomposed into subcomponents (not 
described in this paper due to lack of space). Jini 
components use the ADMG to distribute probes to any 
SCMs listening. SCMs use the LDMG to distribute 
announcements to any Jini component listening. When 
asked to engage in directed discovery, a Jini component 
uses one RMIUL to contact each SCM on its directed-
discovery list. To invoke methods on a specific SCM, a 
Jini component must use an appropriate RMIUL. 

We implement SMs, SCMs, and SUs, as Rapide 
interfaces. We define connections, also implemented as 
Rapide interfaces, to link Jini components that exchange 
events. We use Rapide services to constrain the event 

types allowed on each connection. We model two classes 
of connection: 1) fan-out multicast links (ADMG and 
LDMG) for discovery and 2) unicast links (RMIUL) for 
directed discovery and for remote-method invocation. 
 Modeling connections as Rapide interfaces allows the 
links to encapsulate logic: 1) to control link state (up or 
down) and 2) to send appropriate remote exceptions in 
response to events sent over a failed link. The remote 
exception logic proves significant because some events 
require remote exceptions to be sent in one direction, 
while other events require bi-directional remote 
exceptions. Since nodes may come up or go down at any 
time, our model also includes specific events to start and 
stop nodes. As we discuss later in Section 5, these 
requirements have implications for how ADLs should 
model connections.  
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Fig. 2.  Our top-level architecture models a distributed Jini by using two 
multicast groups and a set of unicast links to connect Jini components 
into a topology. 
 
3. Analysis Approach 
 
 Our specification analyses take two forms: property 
analysis and event analysis. Both depend upon Rapide’s 
ability to execute a specification and to generate events. 
We use property analysis to investigate robustness to 
dynamic change, including network failure. Property 
analysis also provides insight into processes defined in a 
protocol specification, and helps to identify ambiguity, 
inconsistency, incompleteness, and other flaws. Event 
analysis examines Rapide POSETs (partially ordered sets 
of events exchanged among components) to discern 
underlying causes of observed behavior and performance, 
and especially to assess the protocol’s capacity to recover 
from network disruption. We also use event analysis to 
understand circumstances surrounding specific protocol 
design issues, such as race conditions. Property and event 
analysis can be used together to evaluate a protocol’s 
resilience in the face of network failure. We also suspect 
that POSETs can provide a basis for complexity metrics, 
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another dimension along which we expect to compare 
discovery protocols.  Our current work has not developed 
such complexity metrics. Below, we describe our use of 
Rapide to analyze properties and behavior of Jini. 
 
3.1.  Property Analysis 
 
 To implement property analysis we define consistency 
conditions and then use the Rapide constraint language to 
express the negation of each consistency condition. If a 
negation is satisfied, then Rapide has detected an 
inconsistency. We stimulate periodic events, called 
consistency probes, which retrieve values from the 
internal state variables of appropriate components. At 
each probe interval Rapide checks for the presence of an 
inconsistency. In general, discovery protocols attempt to 
guarantee time-bounded inconsistency. Our analysis 
strives to verify such guarantees. We also seek to identify 
unbounded inconsistencies, which persist indefinitely. 
Unbounded inconsistencies suggest areas of a 
specification, or protocol design, which merit further 
attention. Below we give some examples of consistency 
conditions. In Section 4, we discuss circumstances in our 
Jini model where these consistency conditions do not 
hold. 
 We posited the quality of service that users might 
expect from discovery protocols. Then we defined these 
ideas as consistency conditions that specify relationships 
a protocol should strive to maintain among state variables 
across interacting components. In this paper, we define 
selected consistency conditions3 that should hold in the 
absence of failures or other dynamic changes that could 
permit the conditions to be violated for a transient period. 
Several consistency conditions concern the SCM and the 
SM. Analogous conditions could also be defined for the 
SCM and the SU.  For example, a SM can only register a 
service description with a SCM it has discovered. This 
can be expressed as the following consistency condition: 
 
For All (SM, SD, SCM):                                                   (CC1) 
              (SM, SD) IsElementOf SCM registered-services 
               implies SCM IsElementOf SM discovered-SCMs 
 
In our model, we express the negation of this consistency 
condition as a Rapide constraint. Consistency probes 
return the contents of each SM’s list of discovered SCMs 
and of each SCM’s list of registered services. Rapide 
checks various combinations of values for specific pairs 
of SMs and SCMs at each probe time. When the negation 
is true, an inconsistency exists. 
 A second example consistency condition states that if a 
SM has discovered a SCM and the SM has a SD for a 

                                                           
3 Consistency conditions we define here do not necessarily reflect the 

intent of Jini’s designers. 

service that it is managing, then the SM should have 
registered the SD with the SCM. Here, a service is 
managed if the SM is required to advertise its availability. 
This may be expressed as: 
 
For All (SM, SD, SCM):                                                (CC2) 
             SCM IsElementOf SM discovered-SCMs & 
            (SD) IsElementOf SM managed-services 
             implies (SM, SD) IsElementOf SCM registered-services 
 
This consistency condition amounts to an inverse view of 
CC1. This inverse view can catch specification issues that 
CC1 would miss. 
 A third example consistency condition states that if a 
SM has discovered a SCM through multicast discovery 
and has registered its services on that SCM, then there 
should be an intersection between the list of groups the 
SM is to join and at least one group in which the SCM 
holds membership. This can be expressed as: 
 
For All (SM, SD, SCM):                                            (CC3) 
            SCM IsElementOf SM discovered-SCMs & 
           (SM, SD) IsElementOf SCM registered-services &  
            NOT (SCM IsElementOf SM persistent-list)  
            implies Intersection 
                      (SM GroupsToJoin, SCM GroupsMemberOf) 
 
Reference to the absence of membership of the SCM in 
the SM persistent list eliminates SCMs that the SM found 
through directed discovery. 
 
3.2.  Event Analysis 
 
 We use event analysis to understand underlying causes 
for the observed behavior and performance of discovery 
protocols. The general idea is to define a set of usage 
scenarios that can be executed against the models of 
several discovery protocols. Table 2 provides an excerpt 
from a scenario we defined, and provides a sense of the 
stimuli that can be simulated. While executing scenarios, 
the Rapide run-time produces POSETs that provide a 
basis for analyses. POSETs help us to understand 
relationships among events, which trace back to specific 
behavior in components, and to possible issues within a 
specification. The POSETs may also be used to compute 
simple metrics, such as number of events generated or 
time taken by the model to transition between two 
configurations of interest. To support such computation, 
we insert performance probes at key points in the Rapide 
model. Such probes can compute the desired 
measurements, or can place markers in the POSET for 
off-line computation. While event analyses can be applied 
individually to specific protocols, greater value may 
accrue in comparative analysis. Following we give 
examples of some event analyses of interest. 
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Table 2.  Sample Scenario Commands with Parameters and Intended 
Execution Times. 
 

SM4 SCM3 T ATT API GUI 20 30AddService50

SU8 5 1 2 S XYZ ALLFindService10

SM4 GROUP1GroupJoin10

SCM1 SM4LinkFail5

SM4NodeFail5

ParametersCommandTime

SM4 SCM3 T ATT API GUI 20 30AddService50

SU8 5 1 2 S XYZ ALLFindService10

SM4 GROUP1GroupJoin10

SCM1 SM4LinkFail5

SM4NodeFail5

ParametersCommandTime

 
 

 3.2.1. Identifying and Understanding Race 
Conditions. Due to asynchronous processing and 
associated delays in communications among components, 
distributed systems often exhibit race conditions, where 
system behavior can vary depending upon the order in 
which events arrive at cooperating components. Though 
such problems cannot always be eliminated, it remains 
important to identify the existence of specific race 
conditions so that application programmers can adopt 
appropriate safeguards. We can use Rapide to find race 
conditions by asserting and testing consistency 
conditions. For example, consider the following: 
 
For All (SM, SD, SCM, SU, NR):                     (CC4) 
             (SU, NR) IsElementOf SCM requested-notifications &  
             (SM, SD) IsElementOf SCM registered-services & 
             Matches((SM, SD), (SU,NR)) 
             implies (SM, SD) IsElementOf SU matched-services 
 
This consistency condition indicates that if a SU has 
requested notification when a certain service (SM, SD) 
registered at a SCM matches specified criteria, then the 
SU should become aware of the matching service. While 
the Jini specification does not guarantee CC4, we would 
be interested to identify situations where the condition 
does not hold. In such cases, we can analyze the POSET 
to determine specific causes. In this way, we might 
uncover race conditions that require an application 
programmer to take particular care when using Jini’s 
matching mechanisms. 
 3.2.2. Measuring and Understanding Protocol 
Performance. When comparing various discovery 
protocols, we can use Rapide to define and compute 
performance metrics, and then use POSET analysis to 
investigate the underlying behaviors. Of course, 
comparative performance must be considered in light of 
selected scenarios of interest. For example, consider a 
scenario where a major power failure occurs after the 
discovery phase has completed, services and notification 
requests are registered, and SUs have received SDs for 
services that meet their requirements. During the failure, 
most Jini entities lose some internal state: all nodes lose 

discovered SCMs; SUs lose SDs for services previously 
discovered; but SCMs and SMs must retain specified 
persistent information. Upon power restoration, the Jini 
components restart and recover. To assess recovery 
performance we define two metrics, restoration latency 
and restoration overhead, which measure the efficiency of 
recovery in terms of total time and number of messages 
generated before all SUs rediscover their original set of 
SDs. Restoration latency covers node start-up delays, 
transmission times, processor background workload, and 
times for processing transaction data. Restoration 
overhead includes all events exchanged by Jini 
components from power up through complete restoration 
of the desired state. 
 
4. Selected Analysis of the Jini Service 
Discovery Protocol 
 
 In this section we discuss some results obtained 
running scenarios against our Jini architectural model. 
We were able to verify the robustness of Jini’s design in a 
range of failure scenarios that are not presented here due 
to lack of space. However, we found the Jini specification 
unclear regarding interactions between multicast and 
directed discovery. In particular, we could not discern 
whether discovered SCMs should be kept on a single list 
or whether SCMs found by directed discovery should be 
kept on a separate list from SCMs found by multicast 
discovery. We included both interpretations in our Jini 
model, and we ran related scenarios to evaluate CC1 and 
CC2. We also noticed that the Jini reference 
implementation permits administrators to alter the 
operation of a running SCM. We were interested to 
consider if such changes could adversely affect a Jini 
network, so we ran related scenarios to evaluate CC3. 
Further, we discovered an apparent race condition that is 
difficult to discern from reading the Jini specification, so 
we ran scenarios to evaluate CC4. We also executed 
selected scenarios to understand some performance 
characteristics of Jini systems. Here, we discuss restart 
from power failure. While the work described here 
suggests some incompleteness and ambiguity (already 
shared with Sun) in the Jini specification, our purpose is 
to illustrate an architecture-based approach to model, 
analyze, and compare service discovery protocols. 
Regardless of any ambiguity and incompleteness 
discussed here, overall we found Jini to operate as 
specified. 
 
4.1. Interfering Interactions between Directed 
and Multicast Discovery 
 
 The Jini specification permits a Jini component to 
engage simultaneously in two modes of discovery: 
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directed and multicast. However, the specification is 
unclear with respect to issues that arise regarding 
interactions between these two modes. This means that an 
implementer must make some decisions, which can lead 
to various difficulties. We identified decisions that cause 
local interference between independent processes on the 
same Jini node. We also found decisions that cause 
independent processes on the same Jini node to interfere 
with the node’s remote state on discovered SCMs. We 
discuss these situations below. 
 4.1.1. Local Interference. For the following 
discussion, assume that the implementer decides to 
maintain a single list of SCMs discovered by a SM. 
Figure 3 illustrates (using a simplified description) what 
occurs during a scenario where SM4 uses multicast 
discovery to find SCMs in a Jini group (GROUP2).  
 

Scenario SM4 SCM3

GroupJoin GROUP2

Found SCM3 GROUP2Discovered SCMs
(SCM3) Register SM4 SD1 Registered Services

(SM4, SD1)

AddSCM SCM3

GroupLeave GROUP2 Discover SCM3

Cancel SM4 SD1

Registered Services
( )Found SCM3

Cancelled SM4 SD1

Discovered SCMs
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+

+
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- Register SM4 SD1 Registered Services
(SM4, SD1)+
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Registered Services
( )-

Lease Expired
SM4 SD1

Probe SM2 GROUP2

Consistency Restored

No Duplicates Allowed

 
 

Fig. 3. Example of local interference between directed and multicast 
discovery modes. 
 
In this case SM4 discovers SCM3, also a member of 
GROUP2. Shortly after, SM4 is told to discover SCM3 
(AddSCM) through directed discovery, and at the same 
time SM4 is told to drop membership in GROUP2. The 
resulting behavior leads to a time-bounded violation of 
CC1, which states that a SD should not be registered on a 
SCM if the SCM is not on the discovered list of the SM 
managing the SD. The specific behavior follows. 
 Through multicast discovery SM4 finds SCM3 and 
adds it to the list of discovered SCMs. Subsequently, 
SM4 is asked simultaneously to leave GROUP2 and to 
discover SCM3. The group leave causes SM4 to first 
cancel leases for SDs held on SCM3 and then to remove 
SCM3 from its list of discovered SCMs. Between these 
two events, SM4 uses directed discovery to find SCM3 
and then attempts to add SCM3 to its list of discovered 
SCMs. Since our model assumes that probes will be built 

from the list of discovered SCMs, we decided not to 
insert duplicate SCMs in that list.4 This rule is enforced 
by the list maintenance function. Therefore, in Figure 3, 
the second discovery of SCM3 is not added to the list of 
discovered SCMs because it’s already there. Soon 
thereafter, SM4 completes lease cancellation for SDs on 
SCM3 and then removes SCM3 from its list of discovered 
SCMs. In the meantime, the directed discovery process in 
SM4 registers SDs with SCM3. At that point, CC1 is 
violated, and remains so until the leases for the SM4 SDs 
expire on SCM3. 
 4.1.2. Remote Interference. Suppose that an 
implementer decides to maintain SCMs discovered by 
multicast and directed discovery on separate lists? In this 
case, local interference disappears, only to be replaced by 
a form of remote interference, where two discovery 
processes within the same node independently manipulate 
the state of SDs on SCMs. Figure 4 illustrates behavior 
from a scenario that uncovers this problem through 
violation of CC2, which states that services managed by a 
SM must be registered on all discovered SCMs. In the 
scenario, SM4 uses directed discovery to find SCM1. 
Later SM4 is instructed to join GROUP1, which includes 
SCM1. This causes a duplicate service registration, which 
leads SCM1 to abrogate the existing lease for (SM4, 
SD1). Subsequently, SM4 is told to leave GROUP1. In 
the end, this causes SM4 to cancel leases for its SDs held 
on SCM1, resulting in a situation where SCM1 is on the 
list of SCMs discovered directly by SM4 but where the 
SDs from SM4, which were originally registered through 
the directed discovery action, are not now registered on 
SCM1. Assuming that SM4 maintains a single 
registration process, this violation of CC2 is unbounded 
in time. 
 
4.2. Insensitivity to Changes in Group 
Membership by SCMs 
 
 The Jini reference implementation includes an 
interface that permits an administrator to alter parameters 
associated with a running SCM. We mirrored this 
behavior within our Jini model, and then exercised the 
option to change group membership of a running SCM. 
Figure 5 illustrates the relevant subset of a related 
scenario. First, SM4 is instructed to join GROUP1, which 
leads to the multicast discovery of SCM1 (a member of 
GROUP1). 
Subsequently, an administrator removes (AdminDelete 
Group) SCM1 from membership in GROUP1. Once this 
occurs, CC3 is violated because: (1) SM4 has found 
SCM1 with multicast discovery, (2) SDs managed by 
SM4 are registered with SCM1, and yet (3) SM4 and 

                                                           
4 Allowing duplicates on a single list leads to a number of other 

problems, which are beyond the scope of the discussion here. 
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SCM1 have no common group membership. The 
violation of CC3 continues in a time-unbounded form so 
long as SM4 renews leases on SCM1. 
 
 Scenario SM4 SCM1

GroupJoin GROUP1 Probe SM4 GROUP1

Discovered SCMs
MD( )

DD (SCM1)
Register SM4 SD1

Registered Services
(SM4, SD1)

AddSCM SCM1

GroupLeave GROUP1

Discover SCM1

Registered Services
( )

Found SCM1

Cancelled SM4 SD1

Discovered SCMs
MD (SCM1)
DD (SCM1)

Discovered SCMs
MD ( )

DD (SCM1 )

+

+

+

-

-

Register SM4 SD1

Registered Services
(SM4, SD1)+

CC2 Violated

Registered Services
( )-

Found GROUP 1 SCM1

Cancel SM4 SD1

 
 
Fig. 4. Example of remote interference between directed and multicast 
discovery modes 
 
 
 Scenario SM4 SCM1

GroupJoin GROUP1
Probe SM4 GROUP1

Groups To Join
(GROUP1)

Registered Services
(SM4, SD1)AdminDeleteGroup GROUP1

Group Membership
(GROUP1, GROUP2)+

+

Register SM4 SD1
+

CC3 Violated

-

Found GROUP 1 SCM1

Group Membership
(GROUP2)

Discovered SCMs
MD (SCM1)

DD ( )

Groups To Join
(GROUP1)

 
 
Fig. 5. Example of insensitivity to group membership changes by the 
SCM. 
 
 These results suggest that the Jini specification may be 
incomplete with regard to this issue. While an 
administrator can remove group membership from a 
running SCM, the Jini protocol specifies no behavior in 
reaction to this new information. As a SCM continues to 
issue announcements, which contain its current group 
membership, other Jini components are told to ignore 
announcements from SCMs that do not belong to groups 
of interest. As shown in the discussion above, this can 
lead to a situation where SMs (as well as SUs) may 
continue to maintain registration with SCMs no longer 
relevant. This might or might not be the intent of Jini’s 
designers; however, the issue should be addressed in the 
specification. 
 

4.3. Race Conditions 
 
 All distributed systems exhibit the possibility for race 
conditions. Our architectural model permits us to 
investigate how such conditions can arise. Figure 6 
presents a portion of a scenario illustrating a race between 
service registration by SMs and registration of 
notification requests by SUs.  
 
 Scenario SU7 SCM1

Found (none)

Find X

AddSCM SCM1

Notify SCM1 X Added

Discover SCM1

Found SCM1

Request AddedMatched Services
( ) +

Notify SU7 X Added Registered Services
(SM4, SD1, X)+

Requested
Notifications

(SU7, X)

CC4 Violated

SM4

FindService SCM1 X

AddSCM SCM1

Discover SCM1

Found SCM1

Register SM4 SD1 X

 
 
Fig. 6. Example race condition between service registration by an SM 
and notification request registration by an SU. 
 
 In this case, SU7 discovers SCM1 and then queries it 
for a matching service. At the time of the query, SCM1 
does not contain a SD for a matching service and so 
replies without matches. In this particular scenario, SU7 
delays for 10s its request to be notified by SCM1 when a 
SD for a matching service is added to the SCM cache. In 
the interim, SM4 discovers SCM1 and registers a SD for 
a service matching the needs of SU7. Unfortunately, the 
only matching service was registered during the interval 
between the query and the request for notification by 
SU7. In Jini’s definition of matching semantics, SU7 can 
continue to renew leases for its request for notification 
and SM4 can continue to renew leases for its SD and the 
two will never learn of each other. This situation results 
in a time-unbounded violation of CC4, which states that if 
a SCM holds a notification request from a SU, which 
matches a SD also held by the SCM, then the SU should 
know about the matching SD. 
 While this violation of CC4 can be attributed to the 
10s delay before SU7 sends a notification request, a 
number of other situations can lead to similar results. For 
example, network congestion can delay the reply to the 
original query by SU7 or can delay the request by SU7 
for SCM1 to register its notification. Alternatively, 
competing processing within the node supporting SU7 
could delay the generation of its notification requests. To 
account for this, SUs might issue a second query for a 
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matching service after the notification request is 
registered with a SCM. In this way, the SU can detect any 
matching SDs registered by the SCM after the first query 
but before the notification request. 
 
4.4 Restart Performance 
 
 To demonstrate the ability of our architectural model 
to provide insight into performance-related behavior, we 
describe the results of an experiment to investigate the 
restart of a Jini network following recovery from a major 
power failure. The experiment topology consists of nine 
nodes (three of each type: SU, SM, and SCM). We 
partition the nodes into threes, where each partition 
consists of one SU attempting to rendezvous with one SM 
through a SCM. Once all SUs have found their assigned 
SMs, we simulate a major power failure, which causes all 
nodes to crash for 40s. We then restore the power and 
wait for all SUs to rendezvous with their assigned SMs. 
Table 3 gives the values for relevant experiment 
parameters. Upon restart, each Jini node chooses a 
random delay before beginning discovery; we used delays 
uniformly distributed between two and 15s. We also had 
each SU and SM request leases of 30s for notification 
requests and service registrations, and we had each node 
renew the leases for a period of 100s. For each link, we 
introduced variable transmission delays; for each node, 
we introduced variable processing-load delays. We also 
introduced processing delays for manipulating items in 
the discovery databases and the SCM registration 
databases. Since the Jini specification did not address the 
persistence of notification requests upon SCM failure, we 
assumed that this information was purged on failure. 
 
 
Table 3.  Parameter values used in the power-failure restart performance 
experiment. Some values reflect settings of Jini protocol parameters, 
while others reflect assumptions regarding transmission and processing 
delays. 
 

5s (7 times)Probe Interval (and period)

120sAnnounce Interval

2s – 15s uniformNode Restart Delay

Jini
Protocol
Parameters

10 us (discovery DBs)
100 us (SCM cache)

Per Item Processing

10us – 100 us uniformProcessing Load Delay

1us – 10us uniformTransmission Delay
Delays

Purge on SCM FailureNotification Requests

100sTotal Leasing Duration

30sPer Lease Time

ValueParameterParameter Class

5s (7 times)Probe Interval (and period)

120sAnnounce Interval

2s – 15s uniformNode Restart Delay

Jini
Protocol
Parameters

10 us (discovery DBs)
100 us (SCM cache)

Per Item Processing

10us – 100 us uniformProcessing Load Delay

1us – 10us uniformTransmission Delay
Delays

Purge on SCM FailureNotification Requests

100sTotal Leasing Duration

30sPer Lease Time

ValueParameterParameter Class

 
 
 We ran the experiment 30 times, measuring the 
restoration latency and overhead. In this experiment, 
before the original state could be recovered, all nodes had 

to restart. For that reason, the maximum node restart 
delay dominates the restoration delay. For example, for 
our experiment runs, the average maximum node restart 
delay was 12.56s (2.09s variance), and the average 
restoration latency was 14.76s (3.31s variance). The 
restoration overhead in each run depends upon the 
restoration latency, because periodic message exchanges 
associated with Jini discovery and leasing continue 
through the restoration. In this experiment, the restoration 
latencies were relatively close, as were the number of 
messages exchanged, differing only in the number of 
probes sent during aggressive discovery and in the 
subsequent number of discoveries. In our runs, the 
number of messages exchanged to achieve restoration 
ranged approximately between 70 and 90. These results 
demonstrate that the same architectural model can be used 
to investigate both performance and logical properties of 
a distributed system. 
 
4.5 Summary of Findings 
 
 Using our architectural model and usage scenarios we 
were able to verify the robustness of Jini mechanisms in a 
range of failure scenarios. Further, as supported by the 
analyses above, we were able to uncover areas of 
incompleteness and ambiguity in the natural-language 
specification for Jini. While a static, natural-language 
specification, such as Jini’s, contains a reasonable 
description of the behavior of each component in 
response to specific events, such specifications largely 
miss collective behavior arising when various 
components interact together in a distributed system, and 
especially when pieces of the system change state during 
the interactions. In addition, our dynamic, executable 
model of the Jini specification permitted us to explore the 
behavior and performance of Jini systems in various 
realistic scenarios. A static specification cannot hope to 
provide similar insights. 
 
5. Assessment of the Architecture-based 
Approach 
 
 As part of our work, we assessed how well the Rapide 
ADL and analysis tools supported our modeling and 
analyses of Jini, with specific attention to analysis of 
dynamic behavior. We found that the Rapide ADL 
provided valid abstractions to represent and analyze the 
structure and behavior of Jini under conditions of 
dynamic change. Using Rapide interfaces we easily 
represented the major service discovery components, and 
subcomponents (not discussed in this paper). The 
components proved easy to connect into architectures that 
model a network of Jini entities. Our analyses relied upon 
Rapide’s ability to represent dynamic behavior through 
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events, rules, and constraints, and then to analyze the 
resulting POSETs. The ability to represent the behavior of 
individual components and to analyze the collective 
behavior resulting from interactions was key, without 
which this analysis could not have been performed. We 
did identify some suggestions for improving specific 
capabilities that apply generally to all ADLs. Before 
discussing these suggestions, we describe general merits 
of using an architectural model. 
 
5.1. Merits of using an Architectural Model 
 
 Our Rapide model provided benefits for analysis. 
Some of these benefits apply to all ADLs. First, the 
architectural model proved more precise, concise, and 
informative than the natural-language specification. For 
example, the architectural model provided executable 
behavior so that we could discover interactions not 
apparent from the paper specification. As a consequence, 
we were able to identify and address areas of ambiguity, 
inconsistency, and incompleteness. While the Jini 
specification was supported by a reference 
implementation, the architectural model proved easier to 
understand and analyze, and permitted us to focus on the 
essential complexity inherent in the specification. The 
reference implementation entailed incidental complexity 
that interfered with our ability to gain a clear 
understanding of the behavior of the specification. 
Second, a single architectural model can be analyzed for 
behavioral, performance, and logical properties. Using a 
single model limits the errors and inconsistencies that can 
creep in when multiple models must be used to represent 
the same specification. Third, using an architectural 
model enabled us to readily consider alternative 
implementation options, where they were allowed by the 
specification, and to identify specification ambiguities. 
When addressing ambiguities, the architectural model 
enabled us to investigate the ramifications of various 
alternate resolutions. 
 
5.2 Areas for Improvement 
 
 Below, we identify and discuss some suggestions for 
improving ADLs in several areas: domain-specificity, 
simplification through views, representation of structure 
and behavior, and support for analysis. While we discuss 
these suggestions in the context of Rapide, we believe 
they apply more generally to use of ADLs for modeling 
architectures for dynamic systems. 
 5.2.1. Need for customizable domain-specific syntax 
and semantics. Constructing an architectural model 
typically entails a partnership between a domain expert 
and a system architect. The partnership proceeds more 
smoothly when the architecture reflects the terminology 
of the domain, allowing the domain expert to review the 

specification with less help from the architect. For this 
reason, ADLs should support renaming common ADL 
constructs such as interfaces, components, connectors or 
modules to use terms familiar in the domain. This would 
allow the expert to more easily read the specification 
without having to learn the ADL in detail.  The same 
benefit may accrue from allowing customization of 
language syntax to be more familiar to domain 
practitioners, especially with respect to system behavior. 

5.2.2. Improvement to representation of structure. 
Rapide, and other ADLs, connect components to 
subcomponents and pass events in a strictly hierarchical 
manner. One purpose in doing this is to constrain 
communications among subcomponents of different 
hierarchies in order to limit the introduction of errors 
when replacing subcomponents. This requires inter-
component events to propagate through multiple levels in 
two hierarchies, leading to several inefficiencies. First, if 
the same events must be duplicated as a result, an 
unnecessarily large set of events will be created for 
analysis. Second, the architecture entails an increased 
number of connections, resulting in a larger specification, 
which is more difficult to maintain and modify. This 
inhibits revision and evolution of system designs, 
especially important when modeling dynamic systems, 
and also discourages investigation of alternative design 
approaches. Third, the strict hierarchy arrangement does 
not agree with real-world designs in which 
subcomponents of different systems often communicate 
directly. To address these problems, we recommend 
investigating alternative ways to specify connectivity 
between top-level components and subcomponents in an 
architectural model, while preserving correct 
communications. We plan to address this area further in 
future work. 
 Beyond the question of number, connections take on 
importance for modeling reasons. Specifically, we believe 
that connections should be represented as first-class 
entities [17], [20], [21], [23]. Many domains, including 
networking, have numerous, well-known connection 
classes. Such domain-specific knowledge can be encoded 
as taxonomies of connection types, provided that 
connections can be represented as first-class entities 
within the ADL. For example, we found the need to 
specify classes of multicast groups and RMI connections 
in order to represent systems that dynamically “plug-and-
play” with network components, and to simulate transient 
failures, transmission delays, and other network 
characteristics. Using connection types allowed us to 
more easily specify restrictions on events that pass among 
components, and to define constraints on inter-component 
behavior, while associating them directly with appropriate 
places in an architectural model.  Making connections 
first class permits still further semantic distinction 
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between components and connections, thus facilitating 
clear and explicit description of architecture. First class 
connections also encourage designers to define 
constraints for specific connection types and type 
hierarchies, so that formal reasoning about connector 
behavior can be localized. We suspect this may be of 
particular importance for architectures of dynamic 
systems, where connections provide a focal point for 
analysis. 

5.2.3. Improvement to representation of behavior. 
As an adjunct to sending and receiving events, a Rapide 
component encapsulates a set of state variables. To test 
consistency conditions during execution, we needed to 
capture and analyze state variables maintained by 
multiple components. This required us to adopt several 
cumbersome solutions. We believe modeling of 
architectures for dynamic systems is greatly facilitated by 
permitting definition of component state from a subset of 
internal state variables. Component states should be 
selectively exported and recorded along with events. 
Linking events to changes in state [13] then allows 
recording of dependencies for analysis. 

Assuming appropriate state variables are exported, 
further investigation is needed to determine how best to 
define, implement, and evaluate consistency conditions 
that involve the state of two or more components and that 
account for time. ADL constraint representation should 
include rich semantics for this purpose. Further, analyses 
of architectures for dynamic systems benefit greatly when 
ADL run-time environments include support for 
automated evaluation of inter-component consistency 
conditions (as some already do), and especially constraint 
languages and related constraint-analysis engines that 
account for time. 
 
 
6. Conclusions and Future Work 
 
 Our current work illustrates the viability of an 
architecture-based approach to investigate and evaluate 
logical and behavioral properties of discovery protocols 
under conditions of dynamic change. Our results show 
that executable architecture models prove essential to 
understand the collective behavior of distributed systems. 
In this paper, we demonstrated how such models help to 
uncover ambiguity, incompleteness, and other issues in 
static, natural-language specifications. Our demonstration 
contributes to improving the specification for Jini. We 
also argue that a single executable architecture model can 
be used to investigate system performance as well as 
logical properties. Beyond this, we offered some 
recommendations, based on our experience, to improve 

the suitability of ADLs to model and analyze distributed 
systems. 
 In the next phase of our project, we intend to 
demonstrate that using architectural models provides a 
sound basis on which to compare and contrast the 
technical merits of various discovery protocols. The 
results from our analyses should provide industry with 
better understanding of the design and behavior of 
discovery protocols. We will define a generic set of usage 
scenarios to measure interesting events common among 
all protocols. These scenarios will exploit a common 
vocabulary and set of protocol features derived from our 
UML model.  Similarly, we will identify a set of 
consistency conditions, design issues, and performance 
metrics that provide a suitable basis for comparison 
among discovery protocols. We suspect relevant 
consistency conditions and metrics will involve only SMs 
and SUs, because not all protocols require SCMs. 
 The next phase of the project will also provide a 
vehicle for continued appraisal of our architecture-based 
approach to investigate distributed system designs under 
dynamic conditions. We intend to sharpen and refine our 
current assessment. We also hope to make more specific 
recommendations on ADL features to better support 
domain-specific models, to represent connections, and to 
analyze internal state of components. Modeling additional 
discovery protocols also provides an opportunity to 
examine reuse of architectural components as we attempt 
to adapt common functions in architectures for different 
protocols. This work should reveal insights regarding 
ADL features that facilitate reuse. 
 Finally, we suspect, but cannot yet conclude, that the 
nature of dynamism in the service-discovery domain 
differs from other real-time domains. The next phase of 
the project, together with the results of concurrent 
research in dynamic change within the defense software 
research community, should illuminate this issue as well. 
Since automatic component discovery and collaborative 
composition will be essential capabilities of future 
defense systems, early insights gained into this issue will 
likely prove important. 
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ABSTRACT 
Current trends suggest future software systems will comprise 
collections of components that combine and recombine 
dynamically in reaction to changing conditions. Service-discovery 
protocols, which enable software components to locate available 
software services and to adapt to changing system topology, 
provide one foundation for such dynamic behavior. Emerging 
discovery protocols specify alternative architectures and 
behaviors, which motivate a rigorous investigation of the 
properties underlying their designs. Here, we assess the ability of 
selected designs for service-discovery protocols to maintain 
consistency in a distributed system during catastrophic 
communication failure. We use an architecture description 
language, called Rapide, to model two different architectures 
(two-party and three-party) and two different consistency-
maintenance mechanisms (polling and notification). We use our 
models to investigate performance differences among 
combinations of architecture and consistency-maintenance 
mechanism as interface-failure rate increases. We measure system 
performance along three dimensions: (1) update responsiveness 
(How much latency is required to propagate changes?), (2) update 
effectiveness (What is the probability that a node receives a 
change?), and (3) update efficiency (How many messages must be 
sent to propagate a change throughout the topology?). We use 
Rapide to understand how failure-recovery strategies contribute to 
differences in performance. We also recommend improvements to 
architecture description languages. 

Categories and Subject Descriptors 
D.2.1 [Software Engineering]: Requirements/Specifications – 
methodologies and tools.  
D.2.5 [Software Engineering]: Testing and debugging – 
symbolic execution and tracing.  
D.2.8 [Software Engineering]: Metrics – performance measures. 

1. INTRODUCTION 
Growing deployment of wireless communications, implying 
greater user mobility, coupled with proliferation of personal 
digital assistants and other information appliances, foretell a 
future where software components can never be quite sure about 
the network connectivity available, about the other software 
services and components nearby, or about the state of the network 
neighborhood a few minutes in the future. In extreme situations, 
as found for example in military applications [1], software 
components composing a distributed system may find that 
cooperating components disappear due to physical or cyber 
attacks or due to jamming of communication channels or 
movement of nodes beyond communications range. Such 
environments demand new analysis approaches and tools to 
design and test software. 

In this paper, we use architectural models to assess the ability of 
selected designs for service-discovery protocols to maintain 
consistency in a distributed system during catastrophic 
communication failure. Using an architecture description 
language (ADL), we model two different architectures (two-party 
and three-party) and two different consistency-maintenance 
mechanisms (polling and notification). To provide our models 
with realistic behaviors, we incorporate consistency-maintenance 
mechanisms adapted from two specifications: Jini™ Networking 
Technology1 [2] and Universal Plug-and-Play (UPnP) [3]. We use 
our models to investigate performance differences among 
combinations of architecture and consistency-maintenance 
mechanism as interface-failure rate increases. We measure system 
performance along three dimensions: (1) update responsiveness 
(How much latency is required to propagate changes?), (2) update 
effectiveness (What is the probability that a node receives a 
change?), and (3) update efficiency (How many messages must be 
sent to propagate a change throughout the topology?). 

Our modeling and analysis approach builds on earlier work [4] 
where we derived benefits by creating dynamic models from 
specifications for service-discovery protocols. Dynamic models 

                                                                 
1 Certain commercial products or company names are identified in 

this paper to describe our study adequately. Such identification 
is not intended to imply recommendation or endorsement by the 
National Institute of Standards and Technology, nor to imply 
that the products or names identified are necessarily the best 
available for the purpose. 
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Table 1. Mapping concepts among service-discovery systems. 

enable us to understand collective behavior among distributed 
components, and to detect ambiguities, inconsistencies and 
omissions in specifications. In this paper, we apply the same 
method: (1) construct an architectural model of each discovery 
protocol, (2) identify and specify relevant consistency conditions 
that each model should satisfy, (3) define appropriate metrics for 
comparing the behavior of each model, (4) construct relevant 
scenarios to exercise the models and to probe for violations of 
consistency conditions, and (5) compare results from executing 
similar scenarios against each model. To implement the method, 
we rely on Rapide [5], an ADL developed at Stanford University. 
Rapide represents behavior in a form suitable to investigate 
distributed systems, and comes with an accompanying suite of 
analysis tools that can execute a specification and can record and 
visualize system behavior. In this paper, we use Rapide to 
understand how failure-recovery strategies contribute to 
differences in performance. Based on our experiences, we also 
recommend improvements to architecture description languages. 

The remainder of the paper is organized in six sections. We begin, 
in Section 2, by introducing service-discovery protocols and 
architectures, including a description of procedures to maintain 
consistency in replicated information. Section 2 also discusses 
various failures that can interfere with consistency maintenance. 
In Section 3, we outline some techniques, included in our models, 
to recover from failures. Section 4 defines an experiment, and 
related metrics, to compare the performance and overhead 
exhibited by selected pairings of architecture and consistency-
maintenance mechanism while attempting to propagate changes 
during interface failures. In Section 5, we present results from the 
experiment, and we discuss causes underlying some of the results. 
In Section 6, we outline future work to evaluate service-discovery 
architectures and protocols during message loss and node failure. 
We conclude in Section 7. 

2. SERVICE DISCOVERY SYSTEMS 
Service-discovery protocols enable software components in a 
network to discover each other, and to determine if discovered 
components meet specific requirements. Further, discovery 
protocols include consistency-maintenance mechanisms, which 
can be used by applications to detect changes in component 
availability and status, and to maintain, within some time bounds, 
a consistent view of components in a network. Many diverse 
industry activities explore different approaches to meet such 
requirements, leading to a variety of proposed designs for service- 
discovery protocols [2, 3, 6-14]. Some industry groups approach 
the problem from a vertically integrated perspective, coupled with 
a narrow application focus. Other industry groups propose more 
widely applicable solutions. For example, a team of researchers 
and engineers at Sun Microsystems designed Jini Networking 
Technology [2], a general service-discovery mechanism atop 
JavaTM, which provides a base of portable software technology. 
As another example, a group of engineers at Microsoft and Intel 
conceived Universal Plug-and-Play [3] in an attempt to extend 
plug-and-play, an automatic intra-computer device-discovery and 
configuration protocol, to distributed systems. The proliferation of 
service discovery protocols motivates deeper analyses of their 
designs.   

To help us compare designs, we developed a general structural 
model, documented using the UML (Unified Modeling 

Language). Our general model provides a basis for comparative 
analysis of various discovery systems by representing the major 
architectural components with a consistent and neutral 
terminology (see first column in Table 1). The main components 
in our general model include:  (1) service user (SU), (2) service 
manager (SM), and (3) service cache manager (SCM), where the 
SCM is an optional element not supported by all discovery 
protocols. These components participate in the discovery, 
information-propagation, and consistency-maintenance processes 
that comprise discovery protocols.  A SM maintains a database of 
service descriptions, (SDs), each SD encoding the essential 
characteristics of a particular service or device (Service Provider, 
or SP). Each SD contains the identity, type, and attributes that 
characterize a SP. Each SD also includes up to two software 
interfaces (an application-programming interface and a graphic-
user interface) to access a service. A SU seeks SDs maintained by 
SMs that satisfy specific requirements. Where employed, the SCM 
operates as an intermediary, matching advertised SDs of SMs to 
requirements provided by SUs.  Table 1 shows how these general 
concepts map to specific concepts from Jini, UPnP, and the 
Service Location Protocol (SLP) [8]. The behaviors by which SUs 
discover and maintain consistency in desired SDs depend partly 
upon the service-discovery architecture employed. 

2.1 Alternative Architectures 
Broadly speaking, system architecture comprises a set of 
components, and the connections among them, along with the 
relationships and interactions among the components. In our 
application, we represent the architecture of a discovery system 
using an architectural model, which expresses structure (as 
components, connections, and relations), interfaces (as messages 
received by components), behavior (as actions taken in response 
to messages received, including generation of new messages), and 
consistency conditions (as Boolean relations among state 
variables maintained across different components). Our initial 
analysis of six distinct discovery systems revealed that most 
designs use one of two underlying architectures: two-party and 
three-party. 

2.1.1 Two-Party Architectures 
A two-party architecture consists of two major components: SMs 
and SUs. In this study, we use a two-party architecture arranged in 
a simple topology consisting of one SM and five SUs, as depicted 
in Figure 1. To animate the architecture, we chose behaviors for 
discovery, information propagation, and consistency maintenance, 
as described in the specification for UPnP. Upon startup, each SU 
and SM engages in a discovery process to locate other relevant 
components within the network neighborhood. In a lazy-discovery 
process, each SM periodically announces the existence of its SDs 
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Figure 1. Two-party service-discovery architecture 
deployed in a six-node topology: five service users (SUs) 
and one service manager (SM). 

over the UPnP multicast group, used to send messages from a 
source to a group of receivers. Upon receiving these 
announcements, SUs with matching requirements use a 
HTTP/TCP (HyperText Transfer Protocol/transmission-control 
protocol) unicast link (for message exchanges between two 
specific parties) to request, directly from the SM, copies of the 
SDs associated with relevant SPs. The SU stores SD copies in a 
local cache. Alternatively, the SU may engage in an aggressive-
discovery process, where the SU transmits SD requirements, as 
Msearch queries, on the UPnP multicast group. Any SM holding 
a SD with matching requirements may use a HTTP/UDP (user-
datagram protocol) unicast link to respond (after a jitter delay) 
directly to the SU. Whenever a UPnP SM responds to an Msearch 
query (or announces itself), it does so with a train of (3 + 2d + k) 
messages, where d is the number of distinct devices and k is the 
number of unique service types managed by the SM. For each 
appropriate response, the SU uses a HTTP/TCP unicast link to 
request a copy of the relevant SDs, caching them locally. 

To maintain a SD in its local cache, a SU expects to receive 
periodic announcements from the relevant SM. In UPnP, the SM 
announces the existence of SDs at a specified interval, known as a 
Time-to-Live, or TTL. Each announcement specifies the TTL 
value.  If the SU does not receive an announcement from the SM 
within the TTL (or a periodic SU Msearch does not succeed 
within that time), the SU may discard the discovered SD. We 
selected the minimum TTL of 1800 s, as recommended by the 
UPnP specification. (See Tables 2 and 4 for a summary of 
relevant parameter values used in this paper.) 

2.1.2 Three-Party Architectures 
A three-party architecture consists of SMs, SUs, and SCMs, 
where the number of SCMs represents a key variable. In this 
study, we model a three-party architecture with one SM and five 
SUs, as shown in Figure 2. We anticipate that under failure 
conditions, increasing the number of SCMs will increase the 
chance of successful rendezvous among components, leading to 
better propagation of information updates from SMs to SUs. To 
investigate this, we vary the number of SCMs in our three-party 
architectural model. To animate our three-party model, we choose 
behaviors described in the Jini specification. 
In Jini, the discovery process focuses upon discovery by SMs and 
SUs of any intermediary SCMs that exist in the network 
neighborhood. Elsewhere [4], we describe these procedures in 
detail. Here, we simply summarize. Upon initiation, a Jini 
component enters aggressive discovery, where it transmits probes 

on the aggressive-discovery multicast group at a fixed interval (5 s 
recommended) for a specified period (seven times recommended), 
or until it has discovered a sufficient number of SCMs. Upon 
cessation of aggressive discovery, a component enters lazy 
discovery, where it listens on the lazy-discovery multicast group 
for announcements sent at intervals (120 s recommended) by 
SCMs. Our three-party model implements both the aggressive and 
lazy forms of Jini multicast discovery. 

Once discovery occurs, a SM deposits a copy of the SD for each 
of its services on the discovered SCM. The SCM caches this 
deposited state, but only for a specified length of time, or TTL. To 
maintain a SD on the SCM beyond the TTL, a SM must refresh 
the SD. In this way, if the SM fails, then the SCM can purge any 
SDs deposited by the SM. To make behavior as consistent as 
possible across our models for both the two-party and three-party 
architectures, we selected 1800 s as TTL for a SD to be cached by 
a SCM. Using these techniques, SUs and SPs rendezvous through 
SDs registered by SMs with particular SCMs, where the SCMs 
are found through a discovery process. The SCMs match SDs 
provided by SMs to SU requirements, and forward matches to 
SUs, which then access the appropriate SPs. 

2.2 Consistency Maintenance Mechanisms 
After initial discovery and information propagation (through 
SDs), service-discovery protocols provide consistency-
maintenance mechanisms that applications can use to ensure that 
changes to critical information propagate throughout the system. 
Critical information may consist of service availability and 
capacity, or updates to descriptive information about service 
capabilities, which may be necessary for a SU to effectively use a 
discovered service. In our study, we consider two basic 
consistency-maintenance mechanisms, polling and notification, 
along with accompanying mechanisms to propagate new 
information. 

2.2.1 Polling 
In polling, a SU periodically sends queries to obtain up-to-date 
information about a SD that was previously discovered, retrieved, 
and cached locally. In a two-party architecture, the SU issues the 
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query directly to the SM from which the SD was obtained. In this 
study, we use the UPnP HTTP Get request mechanism to poll the 
SM to retrieve a SD associated with a specific URL (uniform-
resource locator). In response, the SM provides a SD containing a 
list of all supported services, including their relevant attributes. 
Polling in a three-party architecture consists of two independent 
processes. In one process, a SM sends a ChangeService request to 
propagate an updated SD to each SCM where the SD was 
originally cached. In the second process, each SU polls relevant 
SCMs by periodically issuing a FindService request, effectively a 
query with a set of desired SD requirements. The SCM replies 
with a MatchFound that contains the relevant information for any 
matching SDs. In our study, we adopt a 180-second interval for 
polling in both architectures. 

2.2.2 Notification 
In notification, immediately after an update occurs, a SM sends 
events that announce a SD has changed. To receive events about a 
SD of interest, a SU must first register for this purpose. In the 
two-party architecture, the SU registers directly with a SM. We 
model this procedure using the UPnP event-subscription 
mechanism, where the SU sends a Subscribe request, and the SM 
responds by either accepting the subscription, or denying the 
request. The subscription, if accepted, is retained for a TTL, 
which may be refreshed with subsequent Subscribe requests from 
the SU. In our experiment, we chose 1800 s as TTL for event 
subscriptions in both architectures. 
In a three-party architecture, a SU registers with a SCM to receive 
events using a procedure analogous to that used by a SM to 
propagate a SD. As with SD propagation, the SCM grants event 
registrations for a TTL, which may be refreshed. When a SD 
update occurs, the SM first issues a ChangeService request to all 
SCMs to which it originally propagated the SD. The SCM then 
issues a MatchFound to propagate the event to all SUs that have 
registered to receive events about the SD. 

2.3 The Nature and Import of Failures 
The foregoing discussion, while oversimplified, highlights the 
complexity inherent in discovery protocols. Additional 
complexity arises from uncertainty, as nodes, processes, and links 
can appear and disappear without warning. Discovery protocols 
must include behavior to cope with such changes. In this section, 
we address the nature of various failures that can arise, and we 
consider the implication of such failures on the behavior of 
discovery protocols, and on the application software that depends 
upon them. 

2.3.1 Classifying Failures 
In our research, we focus particularly on failures that can exist 
within a hostile environment, such as encountered during military 
or emergency-response operations. We can classify such failures 
in two general categories: (1) communication failures and (2) 
process failures. Communication failures can arise due to enemy 
jamming, or other interference, due to congestion, due to physical 
severing of cables, due to improperly configured or sabotaged 
routing tables, or due to multi-path fading as nodes move across a 
terrain. We can subdivide communication failures into three 
classes: interface failures, message loss, and path failures. This 
paper considers only interface failure. A communication interface 
in a node may fail fully (both transmit and receive) or partially 
(either transmit or receive). All outbound messages from an 

interface will be lost when the transmitter fails, while all inbound 
messages will be lost when the receiver fails. Message loss, a less 
severe failure, implies that individual messages may be lost, either 
sporadically or in bursts. Path loss appears as a blocked 
communication route between two nodes, or areas, in the network. 
A path can be blocked in one or both directions. 
Process failures can be caused by enemy bombardments or cyber 
attacks, by programming errors, or by hardware failures. We can 
subdivide process failures into node and thread failures. During a 
catastrophic failure, processing in a node ceases, and the node 
must reinitialize before processing resumes. Some information 
maintained by the node may persist across the failure, while other 
information may be lost. The nature and condition of persistent 
information could prove crucial to a node’s behavior after 
processing resumes. Of course, the node might never reappear. 
Thread failures, while less catastrophic, can be more troublesome 
than node failures. A node might rely on certain long-running 
threads to react to events from other nodes. Failure of selected 
threads can interfere with the operation of the node, as well as 
other nodes in a distributed system. In some cases, a node can 
appear to be present, while being effectively inoperable. 

2.3.2 Failure Recovery in Service Discovery Systems 
In service-discovery systems, failure-recovery responsibilities are 
divided among three parties: (1) lower-layer protocols, (2) 
discovery protocols, and (3) applications. Discovery protocols and 
applications use the services of three classes of lower-layer 
protocols: (1) unreliable unicast protocols, (2) unreliable multicast 
protocols, and (3) reliable unicast protocols. Unreliable protocols, 
whether unicast or multicast, neither recover nor signal lost 
messages; thus, neither source nor destination will learn of a loss. 
Further, multicast protocols exchange messages along a tree of 
receivers. For this reason, a multicast message might be received 
by some nodes, but not by others. A failure near a multicast 
source prevents messages from being received by any node in the 
multicast tree, while a failure near a receiver prevents messages 
from being received by only a single node in the multicast tree. Of 
course, failures at intermediate points in the multicast tree could 
result in messages being lost to subsets of receivers. Since 
unreliable protocols provide no guarantees, recovery must be 
provided by mechanisms at a higher layer. 
Reliable unicast protocols include mechanisms that attempt to 
ensure delivery of messages by detecting and retransmitting lost 
messages. Of course, the reliability schemes may eventually give 
up if too many retransmissions are needed (which might indicate 
node, interface, or path failure). In such cases, the reliable unicast 
protocol will signal to a higher layer that a message could not be 
delivered. Some ambiguity does exist, however, when using 
reliable unicast protocols to send request-response message pairs, 
as is the case for discovery systems. After submitting a request 
through a reliable unicast protocol, a requesting process might 
wait for a corresponding response from a remote process. For 
example, Jini can use Remote Method Invocation (RMI) over 
TCP to invoke a method on a remote object, and to receive a 
response. Similarly, UPnP uses TCP to submit HTTP requests and 
receive HTTP responses. In such cases, the RMI layer or the TCP 
layer can signal a remote exception (REX). The requesting 
process cannot determine whether a REX was caused by failure to 
transmit the request or by failure to receive a response from the 
remote process. The responding process has more information, as 
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it does not receive a REX when an inbound request fails, but does 
receive a REX when its outbound response fails. In essence, while 
reliable unicast protocols attempt to deliver messages in the face 
of various communication failures, ultimately the reliability 
mechanisms might prove insufficient, causing a higher-layer 
process to be notified of the failure. In such cases, the higher-layer 
process is free to determine an appropriate recovery strategy. 

3. MODELING RECOVERY STRATEGIES 
Our architectural models incorporate three classes of failure-
recovery strategies: (1) recovery by lower-layer protocols, (2) 
recovery by discovery protocols, and (3) recovery by application 
software. For each class, we outline the strategies (see Table 2) 
included in our models. 

3.1 Recovery by Lower-Layer Protocols 
Our models operate over two types of channels: unreliable, 
simulating the UDP in both multicast and unicast forms, and 
reliable, simulating the TCP. In UDP simulation, we discard 
messages lost due to transmission errors, and we discard messages 
lost due to path and interface failures. During path failure, 
messages can be discarded in one or both directions. During 
interface failure, we discard all messages sent from a node with a 
failed transmitter, and we discard all messages inbound for a node 
with a failed receiver. Neither sender nor receiver learns the fate 
of lost messages. 
 
In the TCP simulation, our model proves more complex. For 
messages lost to transmission errors, we schedule a retransmission 
(roughly within a round-trip time, or RTT). We increase the RTT 
by about 25% with each successive retransmission. If successive 
retransmissions exceed a threshold (three in the current study), 
then we discard the message and issue a REX. For messages lost 
to interface or path failure, we model TCP connection 
establishment procedures by discarding the message and waiting 
for a period, uniformly distributed between an upper and lower 
bound (30-75 s in the current study), then we signal a REX. When 
discarding a request, we signal a REX to the requester, but when 
discarding a response, we signal a REX to both parties. 

3.2 Recovery by Discovery Protocols 
Discovery protocols include built-in robustness measures to deal 
with the possibilities of UDP message loss and node failure. 
Discovery protocols specify periodic transmission of key 
messages. For example, Jini requires a node to engage in 
aggressive discovery on startup, and then to enter lazy discovery, 
where all SCMs periodically announce their presence. In a similar 
lazy discovery, UPnP requires SMs to periodically announce their 
presence. While not specifying aggressive discovery, UPnP 
permits SUs to issue Msearch queries at any time. To compensate 
for the different announcement intervals recommended for Jini 
and UPnP, we chose to have UPnP SUs issue Msearch queries 
every 120 s, but only after a SU purges a SD from its local cache. 
Once a SU regains its desired SD, the related Msearch queries 
cease. Whenever a UPnP SM announces itself or responds to an 
Msearch query, it sends n copies of each message, where n is a 
retransmission factor (two in the current study) recommended by 
the UPnP specification to compensate for possible UDP message 
loss. In both Jini and UPnP, each announcement includes a TTL. 
Receiving nodes can cache the information in the announcement 
until the TTL expires; then the information must be purged from 
the cache. In this way, each node in the system eliminates residual 
information about failed or unreachable nodes. Our models 
incorporate these failure-recovery behaviors. 

3.3 Recovery by Application Software 
When discovery nodes communicate over a reliable channel, a 
REX may occur. Response to a REX is left to the application. In 
our models, depending on the situation, we implement three 
different strategies: (1) ignore the REX, (2) retry the operation for 
some period, and (3) discard knowledge. The retry strategy 
attempts to recover from transient failures. The discard strategy, 
which occurs following repeated failure of the retry strategy, relies 
upon discovery mechanisms to recover from more persistent 
failures. 

3.3.1 Ignore the Remote Exception 
In many cases, we simply ignore a REX. In general, our models 
ignore a REX received when attempting to respond to a request. A 
SU can ignore a REX received in response to a poll, FindService 
or HTTP Get, because the poll recurs at an interval. The SCM 
(three-party model) or the SM (two-party model) also ignores a 
REX received while attempting to issue a notification. This 
behavior, which is described in both the Jini and UPnP 
specifications, depends upon reliable lower-layer protocols to 
provide robustness for notifications. Notifications include 
sequence numbers that allow a receiving node to determine 
whether or not previous notifications were missed. 

3.3.2 Retry the Operation 
In our models, we retry selected operations in the face of a REX. 
The UPnP specification separates the operation of discovering a 
resource from obtaining a description of the resource (Jini 
combines these operations). Without a description, the resource 
cannot be used. For this reason, in our two-party model, a SU 
must issue a HTTP Get to obtain a description. If no description 
arrives within 180 s, then our model retries the HTTP Get. If 
unsuccessful after three attempts, the SU ceases the retries, but 
sets a flag reminding itself to reissue a HTTP Get when the 
resource is next announced. Our three-party model, based on Jini, 

Table 2. Summary of recovery responsibilities and 
strategies as implemented within our models for two- and 
three-party architectures. 
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Table 3. Experiment combinations. 

also contains a retry strategy, but associated with attempts to 
register or change a SD with a SCM. In these cases, the SM retries 
a ChangeService or ServiceRegistration 120 s after receiving a 
REX. Similarly, when a SU receives a REX (from either a SM or 
SCM) in response to a request to register for notification, the SU 
retries the registration in 120 s. These retries occur until some 
time bounds, after which the SM discards knowledge of the SCM. 

3.3.3 Discard Knowledge 
Both our two-party and three-party models include the possibility 
that an application can discard knowledge of previously 
discovered nodes. In UPnP, after failure to receive 
announcements from the SM within a TTL, a SU discards a SM 
and any related SDs. We implement this behavior in our two-party 
model. In Jini, the specification states that a discovering entity 
may discard a SCM with which it cannot communicate. In our 
three-party model, a SM or SU deletes a SCM if it receives only 
REXs when attempting to communicate with the SCM over a 
540-s interval. After discarding knowledge of a SM (UPnP) or 
SCM (Jini), all operations involving the node cease until it is 
rediscovered, either through lazy discovery (Jini or UPnP 
announcements) or aggressive discovery (UPnP Msearch queries). 

4. EXPERIMENT DESIGN AND METRICS 
In this paper, we investigate the following question: How do 
alternative service-discovery architectures, topologies, and 
consistency-maintenance mechanisms perform under deadline 
during interface failure? To address this question, we deploy a 
two-party and three-party architecture (recall Figures 1 and 2), 
each in a topology that includes one SM and five SUs. In the 
three-party case, we use two topologies, one with one SCM and 
another with two SCMs. To establish initial conditions, we 
exercise each topology until discovery completes, and the initial 
information (a SD) propagates to all SUs. To begin the 
experiment, we introduce a change in the SD at the SM, and we 
establish a deadline, D, before which the change must propagate 
to all SUs. We measure the number of messages exchanged and 
the latency required to propagate the new information, or until D, 
under two different consistency-maintenance mechanisms: polling 
and notification. We repeat this experiment while varying the 
percentage of interface-failure time for each node up to 75% (in 
increments of 5%). We provide further details below. 

4.1 Experiment Combinations 
To compare change propagation in two- and three-party 
architectures, we use our models to combine the architectures with 
different consistency-maintenance mechanisms. Table 3 depicts 
the six combinations. Each experiment runs one combination from 
time zero until D, while introducing failures at each node (see 

4.3). Each experiment aims to restore consistency among the 
changed SD held by the SM and the cached copies of the SD held 
by all of the SUs. 

4.2 Tracking Consistency 
To track consistency in our experiment, we employ property 
analysis [4], using a single consistency condition: service 
attributes for a SD discovered by a SU should have the same 
values as the attributes of the SD being maintained by the SM that 
manages the SD.  More formally, 
 FOR All (SM, SU, SD) 
 (SM, SD [Attributes1]) isElementOf SM managed-services   AND 
 (SM, SD [Attributes2]) isElementOf SU discovered-services 
  implies Attributes1 equals Attributes2 
 
The condition is incorporated directly into our models and 
checked using Rapide procedural code.  We establish an initial 
system state in which this condition holds, and then introduce a 
change in (SM, SD [Attributes1]), which negates the condition for 
all SUs. Then, we monitor updates to (SM, SD) tuples in the set 
of discovered-services maintained by individual SU's to determine 
if the condition becomes true. Note that if a SU discards its (SM, 
SD) tuple, the tuple must be recovered before the condition can be 
satisfied. These consistency checks form the basis for our 
measurements. 

4.3 Generating Interface Failures 
We set aside an interval, up to time Q, to complete initial 
discovery and information propagation. In our experiments, Q = 
100 s and D = 5400 s. We choose a time, randomly distributed on 
the uniform interval Q to D/2, to introduce a change into the SD 
on the SM. We also choose times, randomly distributed on the 
uniform interval Q to [D - (D x F)], for each node to suffer an 
interface failure, where F is the interface-failure rate, which 
defines the duration of failures as follows. Once activated, each 
failure remains in effect for a duration of D x F, after which the 
failure is remedied. We choose interface failures to be of equal 
and increasing length to give a suitable basis for comparative 
analysis. When activating each interface failure, we choose with 
equal likelihood that the transmitter, receiver, or both fail. Table 4 
summarizes most of the relevant parameters and values for our 
experiments. 

4.4 A Sample Run 
Figure 3 shows partial results from a sample run for the three-
party architecture, with two SCMs, using notification as the 
consistency-maintenance mechanism. In this run, F was 0.05, and 
so each failure occurred between 100 and 5130 s [D - (D x F)], 
and lasted for 270 s (D x F). Figure 3 shows the time when each 
interface failed, and recovered. The performance section of the 
figure lists two times for each node: loss of consistency and 
restoration of consistency, or D where inconsistency remains. The 
figure also lists two message counts for each node: messages sent 
to restore consistency and total messages sent. For each SM and 
SCM, the first count includes messages sent while any SU 
remains inconsistent. In this sample run, SUs 1, 2, 4, and 5 and 
both SCMs became consistent quickly, within 0.00109 s, which 
represents the time necessary to propagate the change from the 
SM to at least one SCM, match the changed SD registration to all 
the SU notification requests registered on the SCM, and forward 
the matches. However SU 3, whose receiver failed at an 
inopportune time, never heard the notification and continued in an 
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inconsistent state for the remainder of the run. This illustrates how 
lack of robustness in the notification mechanism can lead to 
prolonged inconsistent states. 

4.5 Metrics 
We use the data collected from experiment runs to compute three 
metrics: update responsiveness, update effectiveness, and update 
efficiency. We define these below. 

4.5.1 Update Responsiveness 
Assuming information is created at a particular time and must be 
propagated by a deadline, then the difference between the 
deadline and the creation time represents available time in which 
to propagate the information. Update Responsiveness, R, 
measures the proportion of the available time remaining after the 
information is propagated. More formally, let D be a deadline by 
which we wish to propagate information to each SU-node n in a 
service discovery topology. Let tC be the creation time of the 

information that we wish to propagate, where tC  < D. Let tU(n) be 
the time that the information is propagated to SU n, where n = 1 
to N, and N is the total number of SUs in a topology. Define 
change-propagation latency (L) for SU n as: Ln = (tU(n) - 
tC)/(max(D, tU(n)) – tC). This is effectively the proportion of 
available time used to propagate the change to SU n. The 
numerator represents the time at which the SU achieved 
consistency after the update occurred. The denominator represents 
the time available to propagate the change. The term max(D, tU(n)) 
accounts for cases where tU(n) > D. Define R for SU n as: Rn = 1 – 
Ln. Rn is the proportion of available time remaining after 
propagating a change to SU n. 

4.5.2 Update Effectiveness 
Update Effectiveness, U, measures the probability that a change 
will propagate successfully for a given SU, i.e., tU(n) < D. More 
formally, assuming definitions from 4.5.1 hold, let X be the 
number of runs (30 here) during which a particular topology is 
observed under identical conditions. Recalling that N is the total 
number of SUs in a topology, define the number of SUs observed 
under identical conditions as: O = X .N. Define U, the probability 
that tU(n) < D, as: U = 1 – P(F), where P(F) = (ΣiΣj (one if Ri,j 
equals 0 and zero otherwise))/O and where i = 1...X and j = 1...N. 

4.5.3 Update Efficiency 
Given a specific service-discovery topology, examination of the 
available architectures (two-party and three-party) and 
consistency-maintenance mechanisms (polling and notification) 
reveals a minimum number of messages, M, that must be sent to 
propagate a change to all SUs. In our topology, M (M = 7) occurs 
when using notification to propagate information in a three-party 
architecture with one SCM. Update Efficiency, E, can be defined 
as the ratio of M to the actual number of messages observed. More 
formally, let S be the number of messages sent while attempting to 
propagate a change from a SM to SUs in a given run. Define 
average E as: Eavg = (Σk(M/Sk))/X, where k = 1..X. 

5. RESULTS AND DISCUSSION 
In this section, after showing results from our experiments, we 
consider the relative performance of our models. We propose 
reasons for performance differences, subject to further analysis 
and verification by on-going research. We also use Rapide to 
examine selected saw-tooth behaviors, and we outline suggestions 
for improving ADLs (based on our experiences with Rapide). 

5.1 Results 
In a series of six graphs, which have identical abscissas (interface-
failure rate, increasing from 0% to 75% in increments of 5%) and 
ordinates (one of the three metrics ranging between 0 and 1), we 
plot selected measurements generated from our models. Each 
graph compares four of the configurations in Table 3 against one 
of the metrics: update responsiveness (median), effectiveness, or 
efficiency (average). We choose the median as a measure of 
update responsiveness because the measured data tend to clump in 
distinct concentrations. Averages proved less representative of the 
data. Figure 4(a) compares responsiveness from our two-party 
model against that from our single-SCM, three-party model, for 
both polling and notification. Figure 4(b) provides a similar 
comparison, but substitutes the results from our dual-SCM, three-
party model in place of results from our one-SCM, three-party 
model. Figures 4(c) and 4(d) compare update effectiveness using 

Rate - 5
Run number - 21

SM 1 OUT Interface       down 365, up 635

SCM 1 OUT Interface       down 2417, up 2687
SCM 2 IN & OUT Interface  down 519, up 789

SU 1  IN Interface     down 2238, up 2508
SU 2  IN Interface    down 3256, up 3526
SU 3  IN Interface   down 207,  up 477
SU 4  OUT Interface down 2876, up 3146
SU 5  IN Interface down 4478, up 4748

Performance:

SM  1 346.00000 346.00000 6 17
SCM 1 346.00000 346.00016 61 102
SCM 2 346.00000 346.00015 61 105
SU  1 346.00000 346.00109 0 11
SU  2 346.00000 346.00109 0 11
SU  3 346.00000 5400.00000 4 11
SU  4 346.00000 346.00109 0 11
SU  5 346.00000 346.00114 0 11

Figure 3. Console output from a sample run: three-party, 
two SCMs, notification, F = 5%, Q =100 s, and D = 5400 s. 

100 us for cache items
10 us for other items

Per-item processing 
delay

10-100 us uniformTCP transmission delay

10 us constantUDP transmission 
delay

Transmission and 
processing delays

5% increments of 5400 s 
from 0 to 75%

Failure duration

Transmitter, receiver, or 
both with equal likelihoodFailure scope

Once per run for each nodeFailure incidence

Interface failure 
parameters

After 540 s with only REXSM or SU purges SCM

120 sAnnounce interval

5 s (7 times)Probe intervalJini-specific 
behavior for three-
party architecture

At TTL expirationSU purges SD

120 sMsearch query interval

1800 sAnnounce intervalUPnP-specific 
behavior for two-
party architecture

120 sTime to retry after 
REX (if applicable)

1800 sRegistration TTL

180 sPolling interval
Behavior in both 
two- and three-
party architectures

ValueParameter

100 us for cache items
10 us for other items

Per-item processing 
delay

10-100 us uniformTCP transmission delay

10 us constantUDP transmission 
delay

Transmission and 
processing delays

5% increments of 5400 s 
from 0 to 75%

Failure duration

Transmitter, receiver, or 
both with equal likelihoodFailure scope

Once per run for each nodeFailure incidence

Interface failure 
parameters

After 540 s with only REXSM or SU purges SCM

120 sAnnounce interval

5 s (7 times)Probe intervalJini-specific 
behavior for three-
party architecture

At TTL expirationSU purges SD

120 sMsearch query interval

1800 sAnnounce intervalUPnP-specific 
behavior for two-
party architecture

120 sTime to retry after 
REX (if applicable)

1800 sRegistration TTL

180 sPolling interval
Behavior in both 
two- and three-
party architectures

ValueParameter

Table 4. Values for relevant parameters. 
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Figure. 4. Graphs comparing combinations of architecture, topology, and consistency-maintenance mechanism. 
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Table 5. Summary statistics (mean across all interface-failure 
rates) computed for each curve given in the graphs shown in 
Figures 4(a) through 4(f). 

Table 6. Depicts upper and lower bounds of the 95% C.I., 
computed using appropriate statistical techniques, for each 
metric and all experiment combinations at selected interface-
failure rates. 

the same combinations. Figures 4(e) and 4(f) use the same 
combinations, but compare update efficiency. The graphs 
reporting measures of responsiveness and effectiveness depict a 
system undergoing a phase-transition from peak performance 
(where changes propagate quickly) to non-performance (where 
changes fail to propagate). Regarding efficiency, the graphs show 
a system that begins at its best efficiency (without interfering 
failures) and then asymptotically approaches zero efficiency as the 
failure rate increases toward 100%. The graphs (particularly those 
showing update effectiveness) also depict several eccentricities, in 
the form of saw-tooth behaviors. Using the analysis and 
visualization tools provided by Rapide, we were able to 
investigate the causes underlying these eccentricities (see 5.3). 
Because the graphs can be difficult to interpret, we compute 
summary statistics (see Table 5) for each of our six combinations. 
Each summary statistic reflects the mean of a particular metric, 
when averaged across all interface-failure rates, for a specified 
configuration. To indicate the uncertainty associated with our 
measurements, we also give (see Table 6) the upper and lower 
bounds (computed using an appropriate standard error formula for 
each metric) associated with selected interface-failure rates (5%, 
40%, and 75%) for each of our curves. 

5.2 Understanding Relative Performance 
Below, we discuss the results for each of our three metrics. The 
reader should note that engineering trade-offs exist among these 
metrics: responsiveness, effectiveness, and efficiency. 

5.2.1 Responsiveness 
Results in Figs. 4(a) and 4(b) and the first column of Table 5 
show that the various combinations of architecture and behavior 
exhibit similar responsiveness, where the mean median ranges 
between 0.663 and 0.530. Table 6, which reports uncertainty in 
the results, confirms a rough similarity in responsiveness. 
Similarity arises because interface failures interfere with both 
polling and notification, requiring nodes to rely on recovery 
mechanisms in the underlying discovery protocols to restore 
consistency. Absent failures, notification proves more responsive 
because change notices are issued to interested parties 
immediately after a change occurs, while polling incurs some lag 
time. The presence of interface failures complicates the situation. 
First, if a required interface is not operating when a notification is 
issued, then an update will be lost. Second, when polls fail for an 
extended period (likely during high interface-failure rates), then 
polling ceases and updates can be missed. Under both (polling 

and notification) mechanisms, restoring consistency depends upon 
the recovery mechanisms in the discovery protocol. 

The recovery mechanisms, as implemented in our models, exhibit 
similar responsiveness: rediscovery of lost nodes will occur within 
120 s after restoration of a failed interface. In the three-party case, 
periodic (120 s) announcements by each SCM (lazy-discovery 
procedures) ensure rediscovery. Similarly, in the two-party model, 
the periodic (120 s) Msearch queries by each SU (aggressive-
discovery procedures) also ensure rediscovery. In this way, 
restoration of a failed interface leads to rediscovery of lost nodes, 
and to restoration of consistency in cached copies of SDs. As the 
interface-failure rate increases beyond 30%, the rediscovery 
machinery tends to dominate the responsiveness results (see 5.4 
for further discussion of recovery mechanisms). 

5.2.2 Effectiveness 
Results in Figs. 4(c) and 4(d) and the second column of Table 5 
show that certain combinations lead to better update effectiveness, 
and Table 6 suggests that these differences could be significant. 
Differences in effectiveness may be partly attributed to 
architecture and topology. For example, each SD copy must 
propagate over either one link (two-party case) or two links 
(three-party case). For this reason, the three-party architecture 
(single SCM) can prove more vulnerable to interface failures (two 
links must be operational). This suggests that a two-party 
architecture will be more effective under severe interface failures, 
and our results support this. On the other hand, the three-party 
architecture allows replication of SCMs, which provides a greater 
number of paths through which information can propagate. This 
suggests (and our results agree) that the three-party architecture 
with the dual SCM should provide superior effectiveness over the 
single-SCM, three-party architecture. Our results also indicate that 
the dual-SCM three-party architecture yields effectiveness close to 
that of the two-party architecture. Adding SCMs will likely 
improve the effectiveness of the three-party architecture by 
increasing path redundancy in the topology. 
Differences in effectiveness may also be attributed in part to 
consistency-maintenance mechanism. In general, polling should 
lead to better effectiveness than notification. Our results support 
this for the two-party architecture and for the three-party 
architecture with a single SCM. Polling has built-in robustness 
from issuing periodic requests. On the contrary, in both two- and 
three-party architectures, each notification is issued only once 
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with no further action by the sender in response to a REX (recall 
Table 2). In two-party notification, effectiveness suffers from 
situations where the notice is lost but the SM is not lost (because 
announcements occur only every 1800 s and thus an interface 
failure can be restored before the next announcement). In these 
situations, rediscovery does not occur and the change will not be 
propagated (see 5.3). 

5.2.3 Efficiency 
For a given combination of architecture and topology, we expect 
that notification would be more efficient than polling. We also 
expect that the two-party architecture would be more efficient 
than the three-party architecture, and that the single-SCM 
topology would be more efficient than the dual-SCM topology. In 
general, our results support these expectations, but with a few 
twists. The three-party, single-SCM architecture with notification 
proves more efficient than the two-party architectures because in 
Jini the SD arrives with the notification, while in UPnP 
notifications indicate only that a change has occurred, requiring a 
SU to exchange a request-response message pair to obtain the 
updated SD. 
In notification, efficiency also decreases as the failure rate 
increases because SUs need to recover from REXs associated with 
refreshing remote registrations. Each SU must periodically refresh 
notification requests deposited on the SM (two-party case) or 
SCM (three-party case). Interface failures lead to REXs during 
refresh attempts. A REX invokes retry procedures: every 120 s 
until 540 s of continuous REX (three-party case) or every 120 s 
until a SM is purged (two-party case). 

5.3 Investigating Saw-Tooth Phenomena 
A number of the curves shown in Figures 4(a)-(f), exhibit saw-
tooth phenomena, most pronounced for update effectiveness, 
particularly for the two-party architecture with notification. Our 
uncertainty calculations suggest that at failure rates above 40% 
these spikes may be attributed to random variations, which might 
be reduced by increasing the number of runs at each failure rate 
(currently 30) and the corresponding number of data points 
(currently 5 SUs x 30 runs = 150). On the other hand, spikes at 
lower failure rates appear more likely due to causal behavior in 
our models. For example, the two-party architecture with 
notification exhibits a significant dip at 15% interface-failure rate. 
Using visualization and analysis tools included with Rapide, we 
examined the partially ordered sets of events (POSETs) that 
display the complete causal behavior of our model. The POSETs 
revealed that at the 15% interface-failure rate a large number of 
notifications were lost when either the SM transmitter was 
inoperable (causing notifications to all SUs to be lost) or when SU 
receivers were inoperable (causing lost notifications to individual 
SUs). Recovery from notification loss depends upon a SU 
discarding a SM, and then rediscovering the SM, and retrieving 
related SDs. A SU discards a SM when it fails to receive an 
announcement from the SM within the specified time. 
Unfortunately, in many cases, a failed interface that caused a 
notification loss was repaired prior to the next SM announcement 
(announcements come every 1800 s). In such cases, the SU does 
not purge the SM, and therefore there is no rediscovery. Without 
rediscovery, there is no mechanism to restore consistency; thus, 
lost notifications lead to inconsistencies that persist to the 
deadline (and beyond). 

Why does this behavior not appear with notification in the three-
party architecture? The three-party architecture requires a SM to 
first propagate a change to a SCM. The SCM then propagates the 
change on to SUs that requested notification. While notification 
from SCM to SU is unprotected, on failure a SM retries change 
propagation to a SCM. An inoperable SCM transmitter leads not 
only to failure to propagate notifications to SUs, but also to 
failure to confirm the change propagated by the SM. Absent 
confirmation, the SM retries the change for up to 540 s, during 
which time the SCM transmitter might be restored. Each repeated 
change that propagates to the SCM also causes notifications to be 
sent to the relevant SUs. Thus for SCM transmitter failures, we 
conclude that robustness in change propagation from SM to SCM 
compensates for lack of robustness in notifications from SCM to 
SU. No equivalent serendipity occurs in the two-party 
architecture. These cases suggest relationships between the timing 
and scope of failures and the role of recovery mechanisms in the 
different architectures. 

5.4 Role of Recovery Mechanisms 
Under hostile conditions, such as those in our experiments, 
recovery mechanisms play a key role in consistency maintenance. 
For example, a detailed analysis of results from our two-party 
architectural model show that at 30% failure rate and below, 
interface failures tend to be restored more frequently within the 
REX retry period associated with HTTP Get requests; thus, 
application recovery contributes substantially to update 
effectiveness. Above 30% failure rate, application recovery tends 
to exhaust its allotted time, leading a SU to discard knowledge of 
the SM. In such cases, update effectiveness depends primarily on 
robustness mechanisms built into the discovery protocol. We plan 
additional analysis to establish the contribution to update 
effectiveness of various recovery strategies in both two- and three-
party architectures. 

5.5 Recommendations for Improving ADLs 
While the Rapide ADL provided useful abstractions to represent 
and analyze the structure and behavior of service-discovery 
protocols under failure, we recommend some improvements that 
apply generally to ADLs. First, this study reinforces our previous 
recommendations [4] that component states should be selectively 
exportable to allow data extraction and recording for analysis. 
Such an export mechanism would also assist in implementing 
techniques to evaluate consistency conditions that involve state 
variables from two or more components and that consider time, 
two important considerations when analyzing component 
interactions. We note that some ADLs include constraint-analysis 
engines that consider time [e.g., 15]. Second, ADLs, and 
especially their tools, must provide representations of behavior 
that can be evaluated efficiently. For example, to bound POSET 
size in this study, we were forced to substitute procedure calls in 
place of Rapide constraint evaluation. Third, we would find it 
convenient if ADL tools supported the same statistical techniques 
available from commercial simulation systems. For example, ADL 
tools might include mechanisms to track and summarize statistics 
about selected state variables. ADLs might also include machinery 
to apply statistical tests to selected variables across experiment 
runs in order to automate halting decisions. We expect to develop 
additional recommendations as our work proceeds. 
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6. FUTURE WORK 
We envision future work along three general directions. First, we 
intend to complete our characterization of performance for various 
combinations of architecture, topology, and behavior during 
failures. We will model the effects of message loss, which appear 
likely to differ significantly from those described in this study, 
and we will assess the ramification of node failure on discovery 
and recovery mechanisms in various architectures and topologies. 
Second, we plan to model and evaluate selected changes to 
improve the performance of discovery architectures and protocols 
in response to failure. Here, our goal is to increase the fault-
tolerance of such systems. We intend to implement and evaluate 
our most promising suggested changes in publicly available 
service-discovery software. Third, we will expand our generic 
structural model of service-discovery architectures to include 
message exchanges and verifiable consistency conditions. 

Along a different dimension, we hope to improve methodologies 
available to design and engineer distributed software systems. At 
present, many publicly available specifications come with one or 
more reference implementations. We hope to demonstrate that 
architectural models lead to better understanding of the properties 
of distributed systems. In addition, we aim to improve ADLs, and 
associated tools, by providing recommendations based on our 
experience. We are also considering developing our own 
modeling and analysis tools especially designed for understanding 
collective behavior in multi-party distributed systems. 

7. CONCLUSIONS 
Emerging service-discovery protocols provide the foundation for 
software components to discover each other, to organize 
themselves into a system, and to adapt to changes in system 
topology. While likely suitable for small-scale commercial 
applications, questions remain regarding the performance of such 
protocols at large scale, and during periods of high volatility and 
duress, such as might exist in military and emergency-response 
applications.  In this paper, we used architectural models to 
characterize the performance of selected combinations of system 
topology and consistency-maintenance mechanism during 
catastrophic communication failure. Further, we used behavioral 
analysis to investigate causes underlying observed performance. 
Our initial investigations show significant differences in update 
effectiveness can be obtained by varying aspects of the design 
(architecture, topology, consistency-maintenance mechanism, and 
recovery strategies). Our results also suggest relationships among 
interface-failure rate, failure timing, and recovery strategies.  
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Abstract 
 
Current trends suggest future software systems will 
comprise collections of components that combine and 
recombine dynamically in reaction to changing 
conditions. Service-discovery protocols, which enable 
software components to locate available software services 
and to adapt to changing system topology, provide one 
foundation for such dynamic behavior. Emerging 
discovery protocols specify alternative architectures and 
behaviors, which motivate a rigorous investigation of the 
properties underlying their designs. Here, we assess the 
ability of selected designs for service-discovery protocols 
to maintain consistency in a distributed system during 
severe message loss. We use an architecture description 
language, called Rapide, to model two different 
architectures (two-party and three-party) and two 
different consistency-maintenance mechanisms (polling 
and notification). We use our models to investigate 
performance differences among combinations of 
architecture and consistency-maintenance mechanism as 
message-loss rate increases. We measure system 
performance along three dimensions: (1) update 
responsiveness (How much latency is required to 
propagate changes?), (2) update effectiveness (What is 
the probability that a node receives a change?), and (3) 
update efficiency (How many messages must be sent to 
propagate a change throughout the topology?).  
 
1. Introduction 
 

Successful deployment of active middleware services, 
which can detect and adapt to changes in topologies of 
distributed components, will depend upon a foundation 
layer of service-discovery software that can monitor the 
state of nearby software services and components and that 
can detect changes in network connectivity. Already, 
military organizations are investigating the applicability of 
commercial service-discovery systems to meet such 
requirements in hostile and volatile environments [1]. In 
military and civil emergency response situations, software 
components in a distributed system may find that 
cooperating components disappear due to physical or 

cyber attacks, to jamming of communication channels or 
to movement of nodes. Such environments demand new 
analysis approaches and tools to design and test software 
that will be used to provide active middleware services. 

In this paper, we use architectural models to assess the 
ability of selected designs for service-discovery protocols 
to maintain consistency in a distributed system during 
severe message loss. (A companion paper investigates 
robustness in the face of interference due to node interface 
failure [2].) Using an architecture description language 
(ADL), we model two different architectures (two-party 
and three-party) and two different consistency-
maintenance mechanisms (polling and notification). To 
provide our models with realistic behaviors, we 
incorporate consistency-maintenance mechanisms adapted 
from two specifications: Jini™ Networking Technology1 
[3] and Universal Plug-and-Play (UPnP) [4]. We use our 
models to investigate performance differences among 
combinations of architecture and consistency-maintenance 
mechanism as message-loss rate increases. We measure 
system performance along three dimensions: (1) update 
responsiveness (How much latency is required to 
propagate changes?), (2) update effectiveness (What is the 
probability that a node receives a change?), and (3) update 
efficiency (How many messages must be sent to propagate 
a change throughout the topology?). 

Our modeling and analysis approach builds on earlier 
work [5] where we derived benefits by creating dynamic 
models from specifications for service-discovery 
protocols. Dynamic models enable us to understand 
collective behavior among distributed components, and to 
detect ambiguities, inconsistencies and omissions in 
specifications. In this paper, we apply the same method: 
(1) construct an architectural model of each discovery 
protocol, (2) identify and specify relevant consistency 
conditions that each model should satisfy, (3) define 
appropriate metrics for comparing the behavior of each 
model, (4) construct relevant scenarios to exercise the 

                                                 
1 Certain commercial products or company names are identified in this 

paper to describe our study adequately. Such identification is not 
intended to imply recommendation or endorsement by the National 
Institute of Standards and Technology, nor to imply that the products 
or names identified are necessarily the best available for the purpose. 
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models and to probe for violations of consistency 
conditions, and (5) compare results from executing similar 
scenarios against each model. To implement the method, 
we rely on Rapide [6], an ADL developed at Stanford 
University. Rapide represents behavior in a form suitable 
to investigate distributed systems, and comes with an 
accompanying suite of analysis tools that can execute a 
specification and can record and visualize system 
behavior. In this paper, we use Rapide to understand how 
failure-recovery strategies contribute to differences in 
performance. 

The remainder of the paper is organized in six sections. 
We begin, in Section 2, by introducing service-discovery 
protocols and architectures, including a description of 
procedures to maintain consistency in replicated 
information. In Section 3, we outline some techniques, 
included in our models, to recover from failures. Section 4 
defines an experiment, and related metrics, to compare the 
performance and overhead exhibited by selected pairings 
of architecture and consistency-maintenance mechanism 
while attempting to propagate changes during message 
loss. In Section 5, we present results from the experiment, 
and we discuss causes underlying some of the results. We 
conclude in Section 6. 
 
2. Service discovery systems 
 

Service-discovery protocols enable software 
components in a network to discover each other, and to 
determine if discovered components meet specific 
requirements. Further, discovery protocols include 
consistency-maintenance mechanisms, which can be used 
by applications to detect changes in component 
availability and status, and to maintain, within some time 
bounds, a consistent view of components in a network. 
Many diverse industry activities explore different 
approaches to meet such requirements, leading to a variety 
of proposed designs for service- discovery protocols [3, 4, 
7-10]. Some industry groups approach the problem from a 
vertically integrated perspective, coupled with a narrow 
application focus. Other industry groups propose more 
widely applicable solutions. For example, a team of 
researchers and engineers at Sun Microsystems designed 
Jini Networking Technology [3], a general service-
discovery mechanism atop JavaTM, which provides a base 
of portable software technology. As another example, a 
group of engineers at Microsoft and Intel conceived 
Universal Plug-and-Play [4] in an attempt to extend plug-
and-play, an automatic intra-computer device-discovery 
and configuration protocol, to distributed systems. The 
proliferation of service-discovery protocols motivates 
deeper analyses of their designs. 

To help us compare designs, we developed a general 
structural model, documented using the UML (Unified 

Modeling Language). Our general model provides a basis 
for comparative analysis of various discovery systems by 
representing the major architectural components with a 
consistent and neutral terminology (see first column in 
Table 1). The main components in our general model 
include:  (1) service user (SU), (2) service manager (SM), 
and (3) service cache manager (SCM). The SCM is an 
optional element not supported by all discovery protocols. 
These components participate in the discovery, 
information-propagation, and consistency-maintenance 
processes that comprise discovery protocols.  A SM 
maintains a database of service descriptions, (SDs), each 
SD encoding the essential characteristics of a particular 
service or device (Service Provider, or SP). Each SD 
contains the identity, type, and attributes that characterize 
a SP. Each SD also includes up to two software interfaces 
(an application-programming interface and a graphical-
user interface) to access a service. A SU seeks SDs 
maintained by SMs that satisfy specific requirements. 
Where employed, the SCM operates as an intermediary, 
matching advertised SDs of SMs to requirements provided 
by SUs.  Table 1 shows how these general concepts map 
to specific concepts from Jini, UPnP, and the Service 
Location Protocol (SLP) [9]. The behaviors by which SUs 
discover and maintain consistency in desired SDs depend 
partly upon the service-discovery architecture employed. 

2.1 Alternative architectures 
Broadly speaking, system architecture comprises a set 

of components, and the connections among them, along 
with the relationships and interactions among the 
components. In our application, we represent the 
architecture of a discovery system using an architectural 
model, which expresses structure (as components, 
connections, and relations), interfaces (as messages 
received by components), behavior (as actions taken in 
response to messages received, including generation of 
new messages), and consistency conditions (as Boolean 
relations among state variables maintained across different 
components). Our initial analysis of six distinct discovery 
systems revealed that most designs use one of two 
underlying architectures: two-party or three-party. 

Service RegistrationDevice/Service DescriptionService ItemService Description (SD)

Directory Service Agent 
(optional)

not applicableLookup ServiceService Cache 
Manager (SCM)

Service URL
Service Type
Service Attributes
Template URL
Template URL

Universal Unique ID
Device/Service Type
Device/Service Schema
Presentation URL
Control/Event URL

Service ID
Service Type
Attribute Set
Service Applet
Service Proxy

Identity
Type
Attributes
User Interface
Program Interface

ServiceDevice or ServiceServiceService Provider (SP)

Service AgentRoot DeviceService or 
Device Proxy 

Service Manager (SM)

User AgentControl PointClientService User (SU)

SLPUPnPJiniGeneric Model
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Manager (SCM)

Service URL
Service Type
Service Attributes
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Template URL
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Device/Service Type
Device/Service Schema
Presentation URL
Control/Event URL

Service ID
Service Type
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Service Applet
Service Proxy

Identity
Type
Attributes
User Interface
Program Interface

ServiceDevice or ServiceServiceService Provider (SP)

Service AgentRoot DeviceService or 
Device Proxy 

Service Manager (SM)

User AgentControl PointClientService User (SU)

SLPUPnPJiniGeneric Model

Table 1. Mapping concepts among service-
discovery systems. 
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2.1.1 Two-party architectures. A two-party 
architecture consists of two major components: SMs and 
SUs. In this study, we use a two-party architecture 
arranged in a simple topology consisting of one SM and 
five SUs, as depicted in Figure 1. To animate the 
architecture, we chose behaviors for discovery, 
information propagation, and consistency maintenance, as 
described in the specification for UPnP. Upon startup, 
each SU and SM engages in a discovery process to locate 
other relevant components within the network 
neighborhood. In a lazy-discovery process, each SM 
periodically announces the existence of its SDs over the 
UPnP multicast group, used to send messages from a 
source to a group of receivers. Upon receiving these 
announcements, SUs with matching requirements use a 
HTTP/TCP (HyperText Transfer Protocol/transmission-
control protocol) unicast link (for message exchanges 
between two specific parties) to request, directly from the 
SM, copies of the SDs associated with relevant SPs. The 
SU stores SD copies in a local cache. Alternatively, the 
SU may engage in an aggressive-discovery process, where 
the SU transmits SD requirements, as Msearch queries, on 
the UPnP multicast group. Any SM holding a SD with 
matching requirements may use a HTTP/UDP (user-
datagram protocol) unicast link to respond (after a jitter 
delay) directly to the SU. Whenever a UPnP SM responds 
to an Msearch query (or announces itself using the lazy 
discovery process), it does so with a train of (3 + 2d + k) 
messages, where d is the number of distinct devices and k 
is the number of unique service types managed by the SM. 
For each appropriate response, the SU uses a HTTP/TCP 
unicast link to request a copy of the relevant SDs, caching 
them locally. 

To maintain a SD in its local cache, a SU expects to 
receive periodic announcements from the relevant SM. In 
UPnP, the SM announces the existence of SDs at a 
specified interval, known as a Time-to-Live, or TTL. Each 
announcement specifies the TTL value.  If the SU does 
not receive an announcement from the SM within the TTL 
(or a periodic SU Msearch does not succeed within that 

time), the SU may discard the discovered SD. We selected 
the minimum TTL of 1800 s, as recommended by the 
UPnP specification. (See Tables 2 and 4 for a summary of 
relevant parameter values used in this paper.) 

2.1.2 Three-party architectures. A three-party 
architecture consists of SMs, SUs, and SCMs, where the 
number of SCMs represents a key variable. In this study, 
we model a three-party architecture with one SM and five 
SUs, as shown in Figure 2. We anticipate that under 
failure conditions, increasing the number of SCMs will 
increase the chance of successful rendezvous among 
components, leading to better propagation of information 
updates from SMs to SUs. To investigate this, we vary the 
number of SCMs in our three-party architectural model. 
To animate our three-party model, we chose behaviors 
described in the Jini specification. 

 
In Jini, the discovery process focuses upon discovery 

by SMs and SUs of any intermediary SCMs that exist in 
the network neighborhood. Elsewhere [5], we describe 
these procedures in detail. Here, we simply summarize. 
Upon initiation, a Jini component enters aggressive 
discovery, where it transmits probes on the aggressive-
discovery multicast group at a fixed interval (5 s 
recommended) for a specified period (seven times 
recommended), or until it has discovered a sufficient 
number of SCMs. Upon cessation of aggressive discovery, 
a component enters lazy discovery, where it listens on the 
lazy-discovery multicast group for announcements sent at 
intervals (120 s recommended) by SCMs. Our three-party 
model implements both the aggressive and lazy forms of 
Jini multicast discovery. Once discovery occurs, a SM 
deposits a copy of the SD for each of its services on the 
discovered SCM. The SCM caches this deposited state, 
but only for a specified length of time, or TTL. To 

HTTP/TCP and HTTP/UDP 
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Service
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Figure 1. Two-party service-discovery 
architecture deployed in a six-node topology: 
five service users (SUs) and one service 
manager (SM). 
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maintain a SD on the SCM beyond the TTL, a SM must 
refresh the SD. In this way, if the SM fails, then the SCM 
can purge any SDs deposited by the SM. To make 
behavior as consistent as possible across our models for 
both the two-party and three-party architectures, we 
selected 1800 s as TTL for a SD to be cached by a SCM. 
Using these techniques, SUs and SPs rendezvous through 
SDs registered by SMs with particular SCMs, where the 
SCMs are found through a discovery process. The SCMs 
match SDs provided by SMs to SU requirements, and 
forward matches to SUs, which then access the 
appropriate SPs. 

 
2.2 Consistency maintenance mechanisms 
 

After initial discovery and information propagation 
(through SDs), service-discovery protocols provide 
consistency-maintenance mechanisms that applications 
can use to ensure that changes to critical information 
propagate throughout the system. Critical information may 
consist of service availability and capacity, or updates to 
descriptions of service capabilities, which may be 
necessary for a SU to effectively use a discovered service. 
In our study, we consider two basic consistency-
maintenance mechanisms, polling and notification, along 
with accompanying mechanisms to propagate updates. 

2.2.1 Polling. In polling, a SU periodically sends 
queries to obtain up-to-date information about a SD that 
was previously discovered, retrieved, and cached locally. 
In a two-party architecture, the SU issues the query 
directly to the SM from which the SD was obtained. In 
this study, we use the UPnP HTTP Get request mechanism 
to poll the SM to retrieve a SD associated with a specific 
URL (uniform resource locator). In response, the SM 
provides a SD containing a list of all supported services, 
including their relevant attributes. 

Polling in a three-party architecture consists of two 
independent processes. In one process, a SM sends a 
ChangeService request to propagate an updated SD to 
each SCM where the SD was originally cached. In the 
second process, each SU polls relevant SCMs by 
periodically issuing a FindService request, effectively a 
query with a set of desired SD requirements. The SCM 
replies with a MatchFound that contains the relevant 
information for any matching SDs. In our study, we adopt 
a 180-s interval for polling in both architectures. 

2.2.2 Notification. In notification, immediately after 
an update occurs, a SM sends events that announce a SD 
has changed. To receive events about a SD of interest, a 
SU must first register for this purpose. In the two-party 
architecture, the SU registers directly with a SM. We 
model this procedure using the UPnP event-subscription 
mechanism, where the SU sends a Subscribe request, and 
the SM responds by either accepting the subscription, or 

denying the request. The subscription, if accepted, is 
retained for a TTL, which may be refreshed with 
subsequent Subscribe requests from the SU. In our 
experiment, we chose 1800 s as TTL for event 
subscriptions in both architectures. 

In a three-party architecture, a SU registers with a 
SCM to receive events using a procedure analogous to 
that used by a SM to propagate a SD. As with SD 
propagation, the SCM grants event registrations for a 
TTL, which may be refreshed. When a SD update occurs, 
the SM first issues a ChangeService request to all SCMs 
to which it originally propagated the SD. The SCM then 
issues a MatchFound to propagate the event to all SUs 
that have registered to receive events about the SD. 
 
3. Modeling recovery strategies 
 

Elsewhere [2], we discuss the classes of network 
failures occurring in hostile environments and describe 
failure-recovery mechanisms of lower-layer protocols in 
more detail. Here we address recovery in response to 
message loss at a more general level. Our architectural 
models incorporate three classes of failure-recovery 
strategies: (1) recovery by lower-layer protocols, (2) 
recovery by discovery protocols, and (3) recovery by 
application software. For each class, we outline the 
strategies (see Table 2) included in our models. 

 
3.1 Recovery by lower layers 
 

Our models operate over two types of channels: 
unreliable, simulating the UDP in both multicast and 
unicast forms, and reliable, simulating the TCP. UDP 
provides no guarantee of message delivery; therefore our 
simulated unreliable channels discard messages lost due to 
transmission errors.  Neither sender nor receiver learns the 
fate of lost messages. 

Table 2. Summary of recovery responsibilities 
and strategies as implemented within our 
models for two- and three-party architectures. 

Three-Party 
Architecture (Jini)

Two-Party 
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Recovery 
Mechanism
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Reliable unicast protocols attempt to ensure delivery of 
messages by detecting and retransmitting lost messages. 
Accordingly in the TCP simulation, our model is more 
complex, including both connection establishment and 
data transfer. During connection establishment, we allow 
up to four attempts to initiate a connection. An attempt 
fails if either the connection request or accept is lost. If no 
accept arrives, then the request is resent in 6 s for the first 
retry, but we wait 24 s for each subsequent retry. If all 
attempts fail, then we signal a REX to the requester. 
During data transfer, messages lost to transmission errors 
are scheduled for retransmission (roughly within a round-
trip time, or RTT). We increase the retransmission 
timeout by 25% with each successive retransmission. We 
place no bound on the number of retransmissions during 
data transfer. 

 
3.2 Recovery by discovery protocols 
 

Discovery protocols include built-in robustness 
measures to deal with the possibilities of UDP message 
loss and node failure. Discovery protocols specify 
periodic transmission of key messages. For example, Jini 
requires a node to engage in aggressive discovery on 
startup, and then to enter lazy discovery, where all SCMs 
periodically announce their presence. In a similar lazy 
discovery, UPnP requires SMs to periodically announce 
their presence. While not specifying aggressive discovery, 
UPnP permits SUs to issue Msearch queries at any time. 
To compensate for the different announcement intervals 
recommended for Jini and UPnP, we chose to have UPnP 
SUs issue Msearch queries every 120 s, but only after a 
SU purges a SD from its local cache. Once a SU regains 
its desired SD, the related Msearch queries cease. 
Whenever a UPnP SM announces itself or responds to an 
Msearch query, it sends n copies of each message, where 
n is a retransmission factor (two in the current study) 
recommended by the UPnP specification to compensate 
for possible UDP message loss. In both Jini and UPnP, 
each lazy announcement recurs periodically. Receiving 
nodes can cache information from the announcements; the 
cached information may be purged if communication fails. 
In this way, each node in the system eliminates residual 
information about failed or unreachable nodes. Our 
models incorporate these failure-recovery behaviors. 
 
3.3 Recovery by application software 
 

When discovery nodes communicate over a reliable 
channel, a REX may occur. Response to a REX is left to 
the application. In our models, depending on the situation, 
we implement three different strategies: (1) ignore the 
REX, (2) retry the operation for some period, and (3) 
discard knowledge. The retry strategy attempts to recover 

from transient failures. The discard strategy, which occurs 
following repeated failure of the retry strategy, relies upon 
discovery mechanisms to recover from more persistent 
failures. 

3.3.1 Ignore REX. In general, our models ignore a 
REX received when attempting to respond to a request. A 
SU can ignore a REX received in response to a poll, 
FindService or HTTP Get, because the poll recurs at an 
interval. The SCM (three-party model) or the SM (two-
party model) also ignores a REX received while 
attempting to issue a notification. This behavior, which is 
described in both the Jini and UPnP specifications, 
depends upon reliable lower-layer protocols to provide 
robustness for notifications. Notifications include 
sequence numbers that allow a receiving node to 
determine if previous notifications were missed. 

3.3.2 Retry the operation. In our models, we retry 
selected operations in the face of a REX. The UPnP 
specification separates the operation of discovering a 
resource from obtaining a description of the resource (Jini 
combines these operations). Without a description, the 
resource cannot be used. For this reason, in our two-party 
model, a SU must issue a HTTP Get to obtain a 
description. If no description arrives within 180 s, then 
our model retries the HTTP Get. If unsuccessful after 
three attempts, the SU ceases the retries, but sets a flag 
reminding itself to reissue a HTTP Get when the resource 
is next announced. Our three-party model, based on Jini, 
also contains a retry strategy, but associated with attempts 
to register or change a SD with a SCM. In these cases, the 
SM retries a ChangeService or ServiceRegistration 120 s 
after receiving a REX. Similarly, when a SU receives a 
REX (from either a SM or SCM) in response to a request 
to register for notification, the SU retries the registration 
in 120 s.  All retries occur until some time bounds, after 
which knowledge of the discovery is discarded. 

3.3.3 Discard knowledge. Both our two-party and 
three-party models include the possibility that an 
application can discard knowledge of previously 
discovered nodes. In UPnP, after failure to receive 
announcements from the SM within a TTL, a SU discards 
a SM and any related SDs. We implement this behavior in 
our two-party model. In Jini, the specification states that a 
discovering entity may discard a SCM with which it 
cannot communicate. In our three-party model, a SM or 
SU deletes a SCM if it receives only REXs when 
attempting to communicate with the SCM over a 540-s 
interval. After discarding knowledge of a SM (UPnP) or 
SCM (Jini), all operations involving the node cease until it 
is rediscovered, either through lazy discovery (Jini or 
UPnP announcements) or aggressive discovery (UPnP 
Msearch queries). 
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4. Experiment design and metrics 
 

In this paper, we investigate the following question: 
How do alternative service-discovery architectures, 
topologies, and consistency-maintenance mechanisms 
perform under deadline during message loss? To address 
this question, we deploy a two-party and three-party 
architecture (recall Figures 1 and 2), each in a topology 
that includes one SM and five SUs. In the three-party 
case, we use two topologies, one with one SCM and 
another with two SCMs. To compare change propagation 
in two- and three-party architectures, we then combine the 
architectures with different consistency-maintenance 
mechanisms. Table 3 depicts the six combinations. To 
establish initial conditions, we exercise each topology 
until discovery completes, and the initial information (a 
SD) propagates to all SUs. To begin the experiment, we 
introduce a change in the SD at the SM, and we establish 
a deadline, D, before which the change must propagate to 
all SUs. We measure the number of messages exchanged 
and the latency required to propagate the new information, 
or until D, under two different consistency-maintenance 
mechanisms: polling and notification. We repeat this 
experiment while varying the message-loss rate up to 95% 
(in increments of 5%). We provide further details below. 

 
4.1. Tracking consistency 
 

To track consistency in our experiment, we employ 
property analysis [5], using a single consistency condition: 
service attributes for a SD discovered by a SU should 
have the same values as the attributes of the SD being 
maintained by the SM that manages the SD, expressed as: 

 
FOR All (SM, SU, SD) 
(SM, SD [Attributes1]) isElementOf SM managed-services & 

 (SM, SD [Attributes2]) isElementOf SU discovered-services 
  implies Attributes1 equals Attributes2 
 
The condition is incorporated directly into our models and 
checked using Rapide procedural code.  We establish an 
initial system state in which this condition holds, and then 
introduce a change in (SM, SD [Attributes1]), which 
negates the condition for all SUs. Then, we monitor 

updates to (SM, SD) tuples in the set of discovered-
services maintained by individual SU's to determine if the 
condition becomes true. Note that if a SU discards its 
(SM, SD) tuple, the tuple must be recovered before the 
condition can be satisfied. These consistency checks form 
the basis for our measurements. 
 
4.2. Generating message loss 
 

We set aside an interval, up to time Q, to complete 
initial discovery and information propagation. In our 
experiments, Q = 100 s and D = 5400 s. We define F as 
the message-lost rate, which represents the independent 
variable in our experiment, ranging from 0.00 to 0.95 in 
increments of 0.05. For each attempt to transmit a data 
message, whether on a reliable or unreliable channel, or to 
retransmit a data message on a reliable channel, or to send 
or retry a connection request or accept message on a 
reliable channel, we select a uniform random number, V, 
from the unit interval 0 to 1. If V < F, we discard the 
message, which in the case of messages sent on the 
reliable channel will stimulate a retransmission after the 
appropriate timeout period (recall 3.1).  Table 4 
summarizes most of the relevant parameters and values for 
our experiments. 

4.3. Metrics 
 
We use the data collected from experiment runs to 

compute three metrics: update responsiveness, update 
effectiveness, and update efficiency.  

Table 3. Experiment combinations. 

Notification (with service registration and 
notification registration on SCM)

JiniThree-Party (Dual SCM)

Polling (with service registration on SCM)JiniThree-Party (Dual SCM)

Notification (with service registration and 
notification registration on SCM)

JiniThree-Party (Single SCM)

Polling (with service registration on SCM)JiniThree-Party (Single SCM)

Notification (with notification registration 
on SM)

UPnPTwo-Party

PollingUPnPTwo-Party

Consistency-Maintenance MechanismProtocol BasisArchitectural Variant

Notification (with service registration and 
notification registration on SCM)

JiniThree-Party (Dual SCM)

Polling (with service registration on SCM)JiniThree-Party (Dual SCM)

Notification (with service registration and 
notification registration on SCM)

JiniThree-Party (Single SCM)

Polling (with service registration on SCM)JiniThree-Party (Single SCM)

Notification (with notification registration 
on SM)

UPnPTwo-Party

PollingUPnPTwo-Party

Consistency-Maintenance MechanismProtocol BasisArchitectural Variant

Table 4. Values for relevant parameters. 

100 us for cache items
10 us for other items

Per-item processing 
delay within node

0.14 – 0.42 s uniform
(range is multiplied by 1+F)

Transmission delay 
without message loss

Connection Establishment -
4 retransmission attempts 
with delays of 6 s, 24 s, 24 
s and 24 s; then REX if 
unsuccessful.
Data Transfer – retransmit 
until success, increasing 
time-out by 25% on each 
retry (first time-out is round-
trip time).

Reliable protocol 
response

Message discarded. No 
retransmission.

Unreliable protocol 
response

Each transmission attempt 
fails with P(F)Loss Probability (F)

Message loss 
parameters and 
protocol response

After 540 s with only REXSM or SU purges SCM

120 sAnnounce interval

5 s (7 times)Probe intervalJini-specific 
behavior for three-
party architecture

At TTL expirationSU purges SD

120 sMsearch query interval

1800 sAnnounce intervalUPnP-specific 
behavior for two-
party architecture

120 sTime to retry after 
REX (if applicable)

1800 sRegistration TTL

180 sPolling interval
Behavior in both 
two- and three-
party architectures

ValueParameter

100 us for cache items
10 us for other items

Per-item processing 
delay within node

0.14 – 0.42 s uniform
(range is multiplied by 1+F)

Transmission delay 
without message loss

Connection Establishment -
4 retransmission attempts 
with delays of 6 s, 24 s, 24 
s and 24 s; then REX if 
unsuccessful.
Data Transfer – retransmit 
until success, increasing 
time-out by 25% on each 
retry (first time-out is round-
trip time).

Reliable protocol 
response

Message discarded. No 
retransmission.

Unreliable protocol 
response

Each transmission attempt 
fails with P(F)Loss Probability (F)

Message loss 
parameters and 
protocol response

After 540 s with only REXSM or SU purges SCM

120 sAnnounce interval

5 s (7 times)Probe intervalJini-specific 
behavior for three-
party architecture

At TTL expirationSU purges SD

120 sMsearch query interval

1800 sAnnounce intervalUPnP-specific 
behavior for two-
party architecture

120 sTime to retry after 
REX (if applicable)

1800 sRegistration TTL

180 sPolling interval
Behavior in both 
two- and three-
party architectures

ValueParameter
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4.3.1 Update Responsiveness. Assuming information 
is created at a particular time and must be propagated by a 
deadline, then the difference between the deadline and the 
creation time represents available time in which to 
propagate the information. Update Responsiveness, R, 
measures the proportion of the available time remaining 
after the information is propagated. More formally, let D 
be a deadline by which we wish to propagate information 
to each SU-node n in a service-discovery topology. Let tC 
be the creation time of the information that we wish to 
propagate, where tC  < D. Let tU(n) be the time that the 
information is propagated to SU n, where n = 1 to N, and 
N is the total number of SUs in a topology. Define 
change-propagation latency (L) for SU n as: Ln = (tU(n) - 
tC)/(max(D, tU(n)) – tC). This is effectively the proportion 
of available time used to propagate the change to SU n. 
The numerator represents the time at which the SU 
achieved consistency after the update occurred. The 
denominator represents the time available to propagate the 
change. The term max(D, tU(n)) accounts for cases where 
tU(n) > D. Define R for SU n as: Rn = 1 – Ln. Rn is the 
proportion of available time remaining after propagating 
a change to SU n. 

4.3.2 Update Effectiveness. Update Effectiveness, U, 
measures the probability that a change will propagate 
successfully for a given SU, i.e., tU(n) < D. More formally, 
assuming definitions from 4.3.1 hold, let X be the number 
of runs (30 here) during which a particular topology is 
observed under identical conditions. Recalling that N is 
the total number of SUs in a topology, define the number 
of SUs observed under identical conditions as: O = X ∗ N. 
Define U, the probability that tU(n) < D, as: U = 1 – P(F), 
where P(F) = (ΣiΣj (one if Ri,j equals 0 and zero 
otherwise))/O and where i = 1...X and j = 1...N. 

4.3.3 Update Efficiency. Given a specific service-
discovery topology, examination of the available 
architectures (two-party and three-party) and consistency-
maintenance mechanisms (polling and notification) 
reveals a minimum number of messages, M, that must be 
sent to propagate a change to all SUs. In our topologies, 
M (M = 7) occurs when using notification to propagate 
information in a three-party architecture with one SCM. 
Update Efficiency, E, can be defined as the ratio of M to 
the actual number of messages observed. More formally, 
let S be the number of messages sent while attempting to 
propagate a change from a SM to SUs in a given run. 
Define average E as: Eavg = (Σk(M/Sk))/X, where k = 1..X. 
 
5. Results and discussion 
 

In this section, after showing results from our 
experiments, we consider the relative performance of our 
models and propose reasons for these differences. 
 

5.1. Results 
 

In a series of six graphs, which have identical abscissas 
(message-loss rate, increasing from 0% to 95% in 
increments of 5%) and ordinates (an appropriate metric 
ranging between 0 and 1), we plot selected measurements 
generated from our models. Each graph compares four of 
the configurations in Table 3 against one of the metrics: 
update responsiveness (average), effectiveness, or 
efficiency (average). Figure 3(a) compares effectiveness 
from our two-party model against that from our single-
SCM, three-party model, for both polling and notification. 
Figure 3(b) provides a similar comparison, but substitutes 
the results from our dual-SCM, three-party model in place 
of results from our one-SCM, three-party model. Figures 
3(c) and 3(d) compare update responsiveness using the 
same combinations. Figures 3(e) and 3(f) use the same 
combinations, but compare update efficiency. The graphs 
reporting measures of effectiveness and responsiveness 
depict a system undergoing a phase transition from peak 
performance (where changes propagate quickly) to non-
performance (where changes fail to propagate). Regarding 
efficiency, the graphs show a system that begins at its best 
efficiency (without interfering message losses) and then 
asymptotically approaches zero efficiency as the message-
loss rate increases toward 100%.  Because the graphs can 
be difficult to interpret, we compute summary statistics 
(see Table 5) for each of our six combinations. Each 
summary statistic reflects the mean of a particular metric, 
when averaged across all message-loss rates, for a 
specified configuration. 
 
5.2. Relative performance 

 
Below, we discuss the results for each of our three 

metrics. The reader should note that engineering trade-offs 
exist among: effectiveness, responsiveness, and efficiency.     

5.2.1 Effectiveness. Figs. 3(a) and 3(b) show that all 
combinations of architecture, topology, and consistency 
maintenance strategy exhibit update effectiveness of 0.85 
or better up to a message-loss rate of 85%, after which 
they decline sharply. This similarity in effectiveness 
among the combinations can be attributed to commonality 
in the recovery behaviors of the discovery protocols, as 
implemented in our models. We require each SU (and the 
SM in the three-party case) to discard discovered 
information after a break in communications (recall Table 
2) and then to initiate rediscovery. In the two-party model, 
periodic (120 s) Msearch queries by each SU (aggressive-
discovery procedures) lead to rediscovery. Similarly, in 
the three-party case, periodic (120 s) announcements by 
each SCM (lazy-discovery procedures) lead to 
rediscovery. 
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Figure 3. Graphs comparing combinations of architecture, topology, and consistency-maintenance 
mechanism. 
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After rediscovering a discarded node, the SU or SM re-
establishes lost registrations, as appropriate for the 
consistency-maintenance strategy: notification registration 
for SUs and service registrations for the SM (three-party 
cases). In the process of restoring this distributed state 
information, each SU may obtain and cache a consistent 
copy of the SD maintained by the SM. As message-loss 
rate increases beyond 50%, this rediscovery machinery 
tends to dominate the effectiveness results.  

Despite rough similarity, certain combinations do show 
slightly better effectiveness than others (see Figs. 3(a) and 
3(b) and the first column of Table 5). We attribute these 
differences to the consistency-maintenance strategy 
(polling or notification), and to differences in the recovery 
actions taken by the application software while 
implementing a particular strategy. Architecture and 
topology play a secondary role. In general, polling should 
lead to better effectiveness than notification, and our 
results support this in all architecture-topology 
combinations. Polling has built-in robustness from issuing 
periodic requests. On the contrary, notifications are issued 
only once with no further action by the sender in response 
to a REX (recall Table 2). Therefore, in notification, 
effectiveness suffers from situations where the notice is 
lost but where the notification registration and the node 
(SM or SCM) discovery are not lost. In these situations, 
there is no opportunity for recovery mechanisms to regain 
a lost node (SM or SCM) and to register for notification. 
Without such recovery, the SU might never obtain a copy 
of a changed SD. However, in three-party notification 
with dual SCMs, the effects of architecture and topology 
also come into play. Here, a replicated SCM provides an 
additional path for the SM to propagate the update, thus 
increasing the effectiveness of notification almost to the 
level of polling. 

Beyond a rough similarity with distinguishable 
differences, the curves for effectiveness in two-party 
notification and in three-party single-SCM notification 

also include some irregularities, where effectiveness first 
drops and then improves as the message-loss rate 
increases. We used Rapide analysis tools to investigate the 
reasons underlying these dips. For both cases, we found 
that as the failure rate increases beyond 40%, the rate of 
recovery of the lost SM and lost registrations also 
increases. Recall that notification has no built-in 
robustness, relying instead on recovery mechanisms in 
TCP. Thus, to regain consistency when TCP recovery 
fails, notification must rely on recovery mechanisms in the 
discovery protocols, which provide opportunities to 
propagate previously lost updates. The higher the 
recovery rates, the greater the number of opportunities to 
regain consistency. As the message-loss rate increases, the 
recovery rate increases, and the effectiveness improves, 
up to a limit. Once the message-loss rate reaches 80%, the 
ability of the discovery protocols to effect recovery 
becomes impaired, leading to an inevitable decline in 
effectiveness. We also note that between 40% and 80% 
message-loss rate one of the notification combinations 
(three-party single-SCM) provides better effectiveness 
than the other (two-party). We suspect this occurs because 
the recovery actions of the SM (regaining the SCM 
discovery and registering the SD) provide additional 
opportunities (not available in the two-party case) to 
propagate the updated SD. Also recall that in Jini (the 
basis for behavior in our three-party models) notification 
includes the SD, while in the two-party case, based on 
UPnP, the SU must invoke separate operations to retrieve 
a copy of the SD. This provides additional opportunities 
for message loss to interfere with the restoration of 
consistency in the two-party case. These somewhat 
surprising dips in the effectiveness curves for notification 
also appear under conditions of node interface failures, 
discussed in a companion paper [2]. 

5.2.2 Responsiveness. Results in Figs. 3(c) and 3(d) 
and the second column of Table 5, show that three 
combinations of architecture and behavior (two-party 
polling, three-party polling with dual SCMs, and three-
party notification with dual SCMs) exhibit similar 
responsiveness. Below 70% message-loss rate, three-party 
polling with a single SCM also exhibits similar 
responsiveness, but then declines more steeply than the 
others. For each architecture-topology combination, Table 
5 shows that polling leads to better overall responsiveness 
than notification. However, Figs. 3(c) and 3(d) show that 
notification is more responsive at lower message-loss 
rates, where the periodicity of polling incurs a greater lag 
time. As message-loss rate increases, polling becomes 
more responsive than notification, which must rely on 
recovery mechanisms in the discovery protocols to 
recover from failure to transfer notifications (recall 5.2.1), 
whereas the built-in robustness of polling overcomes 
failures in lower protocol layers. In the three-party case 
with dual SCMs, notification achieves a similar 

 

0.233 0.887 0.931 Three-Party Polling   
     (Dual SCM) 

0.400 0.881 0.921 Three-Party Notification  
     (Dual SCM) 

0.391 0.846 0.902 Three-Party Polling   
     (Single SCM) 

0.552 0.807 0.870 Three-Party Notification  
     (Single SCM) 

0.525 0.901 0.956 Two-Party Polling 

0.296 0.799 0.867 Two-Party Notification 

Average Update 
Efficiency 

Average Update 
Responsiveness 

Update 
Effectiveness 

 

Mean (across all message-loss rates)  

Table 5. Summary statistics (mean across all 
message-loss rates) computed for each curve in 
the graphs shown in Figures 3(a) through 3(f). 
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responsiveness to polling because notifications are sent 
over redundant paths, which mitigate the effect of 
transmission failures. 

At high message-loss rates, under both polling and 
notification, restoring consistency depends largely upon 
recovery mechanisms in the discovery protocol. For 
responsiveness, as for effectiveness, our models of these 
recovery mechanisms ensure a degree of similarity in the 
results for three cases: two-party polling, three-party 
polling, and three-party notification with dual SCMs. In 
the case of three-party polling with a single SCM, 
responsiveness declines more rapidly at higher message-
loss rates because, lacking a redundant SCM, fewer 
opportunities exist to recover a copy of the updated SD. 
Finally, for reasons already addressed (see 5.2.1), between 
40% and 90% message-loss rates, both two-party 
notification and three-party notification with a single SCM 
prove considerably less responsive than the other 
combinations. 

5.2.3 Efficiency. For a given combination of 
architecture and topology, we expect notification to be 
more efficient than polling. We also expect the two-party 
architecture to be more efficient than the three-party 
architecture, and the single-SCM topology to be more 
efficient than the dual-SCM topology. In general, our 
results support these expectations. However, there are a 
few twists. First, the three-party, single-SCM architecture 
with notification proves more efficient than the two-party 
architectures because in Jini the SD arrives with the 
notification, while in UPnP the notifications indicate only 
that a change has occurred, requiring a SU to exchange a 
request-response message pair to obtain the updated SD. 
Second, each SU must periodically refresh notification 
requests deposited on the SM (two-party case) or SCM 
(three-party case). As the message-loss rate increases, 
failure to transfer refresh messages leads to REXs, which 
stimulate retry procedures: every 120 s until 540 s of 
continuous REX (three-party case) or every 120 s until a 
SM is purged (two-party case). For this reason, efficiency 
decreases for notification as the message-loss rate 
increases. 

 
6. Conclusions 
 

Emerging service-discovery protocols provide the 
foundation for software components to discover each 
other, to organize themselves into a system, and to adapt 
to changes in node connectivity. While likely suitable for 
small-scale commercial applications, questions remain 
regarding the performance of such protocols at large scale, 
and during periods of high volatility and duress, such as 
might exist in military and emergency-response 
applications.  In this paper, we used architectural models 
to characterize the performance of selected combinations 

of system topology and consistency-maintenance 
mechanism during severe message loss. Further, we used 
behavioral analysis to investigate the causes of observed 
performance. Our initial investigations show significant 
differences in performance can be obtained by varying 
aspects of the design (architecture, topology, consistency-
maintenance mechanism, and recovery strategies). 
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ABSTRACT 
 
Service-discovery systems aim to provide consistent views of 
distributed components under varying network conditions. To 
achieve this aim, designers rely upon a variety of self-healing 
strategies, including: architecture and topology, failure-detection 
and recovery techniques, and consistency maintenance 
mechanisms. In previous work, we showed that various 
combinations of self-healing strategies lead to significant 
differences in the ability of service-discovery systems to maintain 
consistency during increasing network failure. Here, we ask 
whether the contribution of individual self-healing strategies can 
be quantified. We give results that quantify the effectiveness of 
selected combinations of architecture-topology and recovery 
techniques. Our results suggest that it should prove feasible to 
quantify the ability of individual self-healing strategies to 
overcome various failures. A full understanding of the interactions 
among self-healing strategies would provide designers of 
distributed systems with the knowledge necessary to build the 
most effective self-healing systems with minimum overhead.   

Categories and Subject Descriptors 
D.1.3 [Concurrent Programming]: Distributed programming 

General Terms 
Algorithms, Measurement, Performance, Design, Reliability, 
Experimentation. 

Keywords 
Architecture, Self-Healing Systems, Self-Repairing Systems, 
Service Discovery.  

 

 

 

 

 

 

 

1. INTRODUCTION 
Growing deployment of wireless communications, implying 
greater user mobility, coupled with proliferation of personal 
digital assistants and other information appliances, foretell a 
future where software components can never be quite sure about 
the network connectivity available, about the other software 
services and components nearby, or about the state of the network 
neighborhood a few minutes in the future. In extreme situations, 
as found for example in military applications [1], software 
components composing a distributed system may find that 
cooperating components disappear due to physical or cyber 
attacks or due to jamming of communication channels or 
movement of nodes beyond communications range. In such 
volatile environments, service discovery protocols enable 
distributed components to rediscover lost components or to find 
other components that provide essential services needed to 
accomplish critical tasks. To do this, service discovery systems 
include self-healing strategies to mitigate, detect, and recover 
from failures. 
Service discovery protocols rely on several self-healing strategies. 
Architecture, which defines the logical components and 
relationships that compose a system, coupled with topology, 
which specifies the number and placement of components in a 
system, can be used in combination to mitigate the effects of 
failures by increasing system redundancy. Failure detection 
techniques, which typically include monitoring of periodic 
announcements and bounded retries (and resulting exceptions), 
allow components to estimate uncertainty regarding the state of 
cooperating components or regarding the intervening network 
path. Recovery techniques, which include application-level 
persistence and soft state, define actions a component can take to 
address suspected failures. Consistency-maintenance mechanisms, 
which include notification and polling, provide a means to 
maintain synchronized state among distributed components by 
propagating state changes to remote components. 
In previous work, we used architectural models to investigate the 
behavior of various service-discovery systems under increasing 
communication failure [6] and message loss [7]. Our 
investigations yielded quantitative measures for the effectiveness, 
responsiveness, and efficiency of alternate system designs. We 
considered various combinations of architecture, topology, and 
consistency-maintenance mechanisms, however we did not vary 
failure recovery techniques.  
In this paper, we extend our approach to quantify the contribution 
of failure recovery techniques in order to provide a more complete 
picture of the actions of individual self-healing strategies within 
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service discovery systems. We focus our investigation on four 
combinations of failure-detection and recovery technique while 
limiting other variables to include only two architecture-topology 
combinations and one consistency-maintenance mechanism. We 
examine system behavior under increasing communication failure. 
We use the same Rapide [4] models of service-discovery systems 
that we used in our previous research. Our models are based on 
two specifications: Jini™ Networking Technology [2] and 
Universal Plug-and-Play [3]. We adapted self-healing strategies 
from these specifications.  
The remainder of the paper is organized as four sections. In the 
first section, we provide an overview of the self-healing strategies 
used in service-discovery systems. The second section gives a 
quantitative summary of the overall effectiveness of various 
combinations of self-healing strategy, when used to maintain 
consistent state among distributed components as the duration of 
communication failures increases. In the third section, we 
investigate and quantify the contribution of failure detection and 
recovery techniques to overall system effectiveness. In the 
conclusions, we discuss the feasibility and desirability of gaining 
a full understanding of the interactions among self-healing 
strategies for adaptive distributed systems. 

2. DISCOVERY SYSTEMS AND SELF-
HEALING 
Service discovery systems enable distributed software components 
to discover each other, and to determine if discovered components 
meet specific requirements. Discovery protocols include 
consistency-maintenance mechanisms, which can be used to 
disseminate changes in component availability and status, and to 
maintain, within some time bounds, a consistent view of 
components in a network. Failure-detection and recovery 
techniques enable components to detect and react to network 
changes by restoring communications with remote components or 
by locating alternate components. A number of different designs 
have been proposed for service-discovery systems. For example, a 
team at Sun Microsystems designed Jini Networking Technology, 
a general service-discovery mechanism atop JavaTM. As another 
example, a group from Microsoft and Intel conceived Universal 
Plug-and-Play (UPnP) to provide plug-and-play components for 
distributed systems. 

2.1 Architecture and Topology 
Our analysis of six distinct discovery systems revealed that most 
designs use one of two underlying architectures: two-party and 
three-party. A two-party architecture consists of two components 
types: service manager (SM) and service user (SU). Figure 1 
shows a two-party architecture deployed in a six-component 
topology: one SM and five SUs. A three-party architecture adds a 
third component type: service cache manager (SCM). The three-
party architecture allows for multiple SCMs to mitigate the effect 
of failures (passive self-healing). Figure 2 shows a three-party 
architecture with one SM, five SUs, and up to two SCMs. A SM 
maintains a database of service descriptions (SDs), where each SD 
encodes the essential characteristics of a particular service. A SU 
seeks SDs maintained by SMs that satisfy specific requirements. 
Where employed, the SCM operates as an intermediary, matching 
advertised SDs of SMs to SD requirements provided by SUs. 

To animate our two-party model, we incorporated behaviors from 
the UPnP specification. Upon startup, each SU and SM seeks to 
discover other, relevant components within the network 
neighborhood. In a lazy-discovery process, each SM periodically 
announces the existence of its SDs over the UPnP multicast 
group. Upon receiving these announcements, SUs with matching 
requirements request copies of the desired SDs from the SM. The 
SU stores SD copies in a local cache. Alternatively, the SU may 
engage in an aggressive-discovery process by transmitting SD 
requirements, as Msearch queries, on the UPnP multicast group. 

Any SM holding a SD with matching requirements may respond 
directly to the SU.  The SU may then request a copy of the 
relevant SDs, caching them locally. To maintain a SD in its local 
cache, a SU expects to receive periodic announcements from the 
relevant SM at a specified interval, known as a Time-to-Live, or 
TTL (or it must receive replies to its Msearchs within the TTL). 
Otherwise, the SU may discard the SD. 
To animate our three-party model, we chose behaviors described 
in the Jini specification. In Jini, the discovery process focuses 
upon discovery by SMs and SUs of any intermediary SCMs that 
exist in the network neighborhood. Upon initiation, a Jini 
component enters aggressive discovery, where it transmits probes 
on the aggressive-discovery multicast group at a fixed interval for 
a specified period or until it has discovered a sufficient number of 
SCMs. Upon cessation of aggressive discovery, a component 
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Figure 2. Three-party service-discovery architecture 
with five service users (SUs), a service manager (SM), a 
service cache manager (SCM), with an optional 2nd

SCM. 

Figure 1. Two-party service-discovery architecture 
with five service users (SUs) and one service manager 
(SM). 
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enters lazy discovery, where it listens for announcements sent at 
intervals by SCMs. Once discovery occurs, a SM deposits a copy 
of the SD for each of its services on the discovered SCM for a 
specified length of time, or TTL. To maintain a SD on the SCM 
beyond the TTL, a SM must refresh the SD; otherwise it is 
purged. The SCMs match SDs provided by SMs to SU 
requirements, and forward matches to SUs. 

2.2 Consistency-Maintenance Mechanisms 
After initial discovery and information propagation (through 
SDs), SUs can use consistency-maintenance mechanisms to obtain 
updates to SDs for discovered services. We consider two basic 
mechanisms: notification and polling. In polling, a SU 
periodically sends queries to obtain up-to-date information about 
a previously discovered SD. In a two-party architecture, the SU 
issues the query directly to the SM from which the SD was 
obtained, and receives a response. In a three-party architecture, 
polling consists of two processes: 1) a SM propagates an updated 
SD to each SCM where the SD was originally cached and 2) each 
SU periodically queries relevant SCMs.  
In notification, immediately after an update occurs, a SM sends 
events that announce a SD has changed. To receive events about a 
SD, a SU must first register for this purpose. In the two-party 
architecture, the SU requests registration with a SM.  The request, 
if accepted, is retained for a TTL, which may be refreshed with 
subsequent requests from the SU. In a three-party architecture, a 
SU registers with a SCM to receive updates. The SCM grants 
event registrations for a TTL, which may be refreshed. When a SD 
is updated, the SM first propagates the update to all SCMs on 
which it deposited the SD; each SCM then forwards the event to 
all SUs registered to receive updates to the SD. 

2.3 Failure-Detection Techniques  
In a hostile military or emergency response environment, faults 
may arise due to enemy jamming or other interference, 
congestion, physical severing of cables, improperly configured or 
sabotaged routing tables, or multi-path fading as nodes move 
across a terrain. In this paper, we consider communication failure. 
Node communication may fail fully (both transmit and receive) or 
partially (either transmit or receive). All outbound messages from 
an interface will be lost when the transmitter fails, while all 
inbound messages will be lost when the receiver fails.  
To detect failures, discovery systems use a combination of two 
techniques: monitoring periodic announcements and bounded 
retries (and resulting exceptions). Discovery protocols specify 
periodic transmission of key messages. Listeners can monitor 
these messages; much in the same way a heartbeat is monitored to 
assess the health of a patient. For example, as described above, 
both Jini and UPnP provide for periodic announcements of the 
availability of essential resources. Failure to receive scheduled 
announcements may indicate that the announcing entity has failed 
or that the network path is blocked. In other situations, software 
components send messages using reliable communication 
protocols, which persistently resend unacknowledged messages 
up to some bound, issuing a remote exception (REX) if the bound 
is exceeded. Failure detection allows components to employ 
recovery techniques. 

2.4 Recovery Techniques  
Discovery systems generally support two recovery techniques: 
soft-state and application-level persistence. Periodic 
announcements convey soft information about essential state, 
which a receiver can cache for a period of time, consistent with 
the expected announcement or heart rate. Each new re-
announcement, or heartbeat, may convey updated state 
information; thus, the receiver overwrites previously cached state 
with state arriving in the latest announcement, or heartbeat. When 
the heartbeat fails, the receiver discards the cached state. When 
the heartbeat resumes, the receiver recovers the latest state. For 
example, upon failure of heartbeat messages sent by Jini SMs to 
refresh SDs cached on SCMs, the SD is discarded. The same 
occurs upon failure of periodic refreshes of notification 
registrations in both Jini and UPnP. Similarly, UPnP SUs may 
commence periodic Msearch queries after failure by a SM to 
refresh a SD within the TTL, which causes the SU to discard 
knowledge of the SM. Once a SU regains its desired SD, the 
related Msearch queries cease. This method is also employed 
when, after an initial aggressive discovery phase, Jini SCMs enter 
lazy discovery where they announce themselves every 120s. This 
ensures rediscovery of the SCM by SMs and SUs within 120s 
after a fault is rectified. 
When failure-detection leads to a REX, discovery systems 
generally expect application software to initiate recovery, guided 
by an application-level persistence policy. In our models, 
depending on the situation, we implement three different 
persistence policies: (1) ignore the REX, (2) retry the operation 
for some period, and (3) discard knowledge. A SU can ignore a 
REX received in response to an attempted poll, because the query 
recurs periodically. In our models, two-party SMs and three-party 
SCMs also ignore a REX received as a result of attempted 
notifications. This behavior, which is described in both the Jini 
and UPnP specifications, depends upon reliable lower-layer 
protocols to provide robustness for events. In other cases, the retry 
policy attempts to recover from transient failures by resending a 
message (for which it has received a REX) after a nominal delay. 
The discard policy, which occurs following repeated failure of a 
retry, relies upon monitoring periodic soft-state announcements to 
recover from more persistent failures. As indicated above, in the 
two-party model, the SU discards the SM and its related SDs after 
failure to receive announcements from the SM within the TTL. In 
Jini, the specification states that a discovering entity may discard a 
SCM with which it cannot communicate. In our three-party 
model, a SM or SU deletes a SCM if it receives only REXs after 
attempting to communicate with the SCM over a 540-s interval. 
After discarding knowledge of a SM (UPnP) or SCM (Jini), all 
operations involving the node cease until it is rediscovered by 
monitoring periodic announcements (through either lazy or 
aggressive discovery). 

3. EFFECTIVENESS OF SELF-HEALING 
In previous work, we investigated the effectiveness of selected 
self-healing strategies when attempting to maintain synchronized 
state among distributed components during communication failure 
[6] and message loss [7]. We compared combinations of two- and 
three-party architectures and topologies (as shown in Figures 1 
and 2), together with different consistency-maintenance 
mechanisms (notification or polling). In each combination, we 
used the same failure-detection (monitoring periodic 
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announcements and bounded-retries) and recovery (soft state and 
application-level persistence) techniques (see Table 1). We 
measured effectiveness (as the probability that a node achieves 
state synchronization) for increasing failure rates. Here we 
summarize our findings for effectiveness in the face of 
communications failure. Figure 3 shows effectiveness for each 
combination as communication-failure rate increases to 75%. 

Our previous papers provided qualitative explanations (based on 
analysis of execution traces) regarding the contributions of each 
self-healing strategy to measured differences in effectiveness. 
Here, we summarize our main findings for communications 
failure. Figure 3 indicates a rough similarity in effectiveness for 
all combinations; however, within these ranges, there are also 
significant differences. We attribute similarity in effectiveness to 
the fact that we employ similar failure-detection and recovery 
techniques in all combinations. The graph contains several 
eccentricities, in the form of saw-tooth behaviors. For example, 
two-party notification suffers a significant drop in effectiveness 
between 5% and 25% failure rate. This occurs because 
notifications rely on underlying reliable communication protocols 
to achieve robustness. When these protocols fail (as would be 
likely in case of communication failure), notifications are lost.  
The application software then relies upon detection of failure of 
periodic announcements (heartbeat) and restoration through 
initiation of recovery actions. Unfortunately, in UPnP the lazy-
discovery announcement occurs no more frequently than every 
1800s. Between 5% and 25% failure rate, there exists a substantial 
likelihood that communication failure is corrected prior to the 
next announcement. In such cases, an aggressive-discovery 
announcement (120-s interval) is not initiated, and state contained 
in the notification remains lost. As the failure rate increases, 
coincidence of announcement failure and notification failure 
becomes more probable, leading to initiation of the aggressive-
discovery announcements, which eventually recovers state 
contained in the lost notification. Jini does not suffer as much 
from this phenomenon for two reasons. First, in Jini the lazy-
discovery announcements occur at a 120-s interval. Second, Jini 
SMs exhibit some persistence when attempting to propagate SDs 
to SCMs. In selected cases, this persistence causes the SCM to 
periodically retry notifications. 
Despite the dominance of failure-detection and recovery 
techniques, our results show that certain combinations of 
architecture, topology, and consistency-maintenance mechanism 
contribute to differences in effectiveness. For instance, each SD 
copy must propagate over either one link (two-party case) or two 

links (three-party case). For this reason, the three-party 
architecture (single SCM) can prove more vulnerable to 
communication failures (two links must be operational). This 
suggests that the two-party architecture will be more effective 
under severe failures, and our results support this. On the other 
hand, the three-party architecture allows replication of SCMs, 
which provides a greater number of paths through which 
information can propagate. This suggests (and our results agree) 
that the three-party architecture with dual SCM provides superior 
effectiveness over the single-SCM, three-party architecture. Our 
results also indicate that the dual-SCM three-party architecture 
yields effectiveness close to that of the two-party architecture. 
Regarding consistency-maintenance mechanism, we conclude that 
polling, with its built-in persistence, should lead to better 
effectiveness than notification, where events are issued only once 
with no further action by the sender in response to a REX. Our 
results support this analysis for the two-party architecture and for 
the three-party architecture with a single SCM.  However, 
notification appears slightly more effective than polling for the 
three-party architecture with dual SCM. We suspect this may be 
because notifications require only that the SCM-to-SU link be 
operational, while polling also requires the SU-to-SCM link. 

4. DISSECTING RECOVERY STRATEGIES  
To further dissect recovery strategies, we decided to factor 
recovery techniques into four cases: 1) no recovery, 2) soft state 
only, 3) application persistence only, and 4) both soft state and 
application persistence.1 We believe that this finer degree of 
factoring will enable us to quantify the contribution of various 
self-healing strategies to overall system effectiveness. Further, we 
expect that such factoring might reveal interactions among self-
healing strategies, and help to identify situations where strategies 
are redundant, complementary, or conflicting. To explore these 

                                                                 
1 When a failure recovery technique is factored out of an experiment, the 

related failure detection technique (see Table 1) is also factored out. 
Eliminating soft state implies that the related heartbeat is ignored, while 
eliminating application-level persistence implies that the related REX 
(after bounded retries) is ignored. 
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Figure 3. Effectiveness for various combinations of 
architecture, topology, and consistency-maintenance 
mechanism, as failure rate increases. 
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ideas, we applied our approach to investigate the contribution of 
recovery techniques, given various architecture-topology 
combinations, in the case of one consistency-maintenance 
mechanism (notification) and one fault type (communication 
failure).  

Figure 4 shows effectiveness for two-party notification as 
communication failure increases to 75%. The curve representing 
the use of all recovery techniques was taken from Figure 3. The 
remaining three curves in Figure 4 depict effectiveness when 
selected recovery techniques are disabled. Where no recovery is 
employed, effectiveness decreases nearly linearly as failure rate 
increases, dropping below 10% when the failure rate reaches 75%. 
When soft-state recovery is enabled alone, effectiveness improves 
significantly. Similarly, when application-persistence is enabled 
alone, effectiveness also improves significantly. Further, Figure 4 
shows that application-persistence contributes more to system 
effectiveness at lower failure rates (30% and below), while soft-
state recovery contributes more at higher failure rates.  For two-
party notification, under communication failure, the two recovery 
techniques appear complementary. 
Figures 5 and 6, which show the contribution of recovery 
techniques for three-party, single-SCM notification and three-
party, dual-SCM notification, yield a different picture. Where all 

recovery techniques are disabled, effectiveness decreases nearly 
linearly as failure rate increases; however, the rate of decrease of 
the three-party dual-SCM architecture appears lower than for the 
two-party architecture, and effectiveness stays above 10% at the 
75% failure rate.  

This suggests that increased robustness from a dual-SCM 
topology slightly mitigates the effects of communication failures. 
The three-party, single-SCM architecture with no recovery 
provides the poorest level of performance, reflecting the need to 
propagate the notification across two links without the alternative 
path provided by the second SCM. Note, however, that once 
either recovery technique is enabled in both variants of the three-
party architecture, effectiveness improves to the level observed 
when both recovery techniques are enabled. This result indicates 
that, for three-party, single and dual-SCM notification, the two 
recovery techniques (soft state and application persistence) are 
redundant. These results shown in figures 4 through 6 are 
summarized in computed summary statistics in Table 2.  

5. CONCLUSIONS 
Our preliminary results (in Figs. 4-6) show the desirability and 
feasibility of dissecting the quantitative contributions to system 
effectiveness of various recovery strategies. Further, our results 
show that interactions (such as redundancy and complementarity) 
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between various recovery techniques can be identified and 
quantified.  
Emerging service-discovery protocols provide the foundation for 
software components to discover each other, to organize 
themselves into a system, and to adapt to changes in system 
topology.  These capabilities can also be used to effect self-
healing in distributed component systems. In this paper, we used 
architectural models to characterize how architecture, topology, 
consistency-maintenance mechanism, and failure-recovery 
strategy each contribute to self-healing during communication 
failure. Further, in the context of communication failure and using 
notification as a consistency-maintenance mechanism, we 
dissected the self-healing properties attributable to recovery 
techniques and to topology. Our results suggest that it should 
prove feasible to quantify the ability of individual self-healing 
strategies to overcome various types of failure. A full 
understanding of the interactions among self-healing strategies 
would provide designers of distributed systems with the 
knowledge necessary to build the most effective self-healing 
systems with minimum overhead. 
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Abstract 
 
   Current trends suggest future software systems will rely 
on service-discovery protocols to combine and recombine 
distributed services dynamically in reaction to changing 
conditions. We investigate the ability of selected designs 
for service-discovery protocols to support real-time 
distributed control applications by detecting and 
recovering from failure of remote services. We model two 
architectures (two-party and three-party) underlying most 
commercial service-discovery systems. We use simulation 
to quantify functional effectiveness achieved by the two 
architectures as the rate of failure increases for remote 
services. We further decompose non-functional periods 
into failure-detection delay and recovery delay. Our 
quantitative measurements suggest that a two-party 
architecture yields better robustness than a three-party 
architecture. We discuss the underlying causes for this 
outcome. 
 
1. Introduction 
 
Designs for distributed systems must consider the 
possibility that failures will arise, and must adopt specific 
failure detection and recovery strategies [1]. Much 
existing research surrounding failures in distributed 
systems focuses on providing fault-tolerant invocation of 
remote methods, either through parallel execution of 
replicated components or through automated checkpoint 
and restart procedures [2-4]. Fault-tolerant remote-
method invocation typically relies upon a layer of 
mechanisms to detect and recover from failures without 
requiring application-specific awareness or action. While 
such application-transparent fault-tolerance appears 
appealing, many current distributed object systems, even 
large systems, employ simpler techniques that detect and 
report failures, requiring applications to decide upon 
appropriate recovery strategies [5-7]. In this paper, we 
investigate one such set of simpler techniques requiring 
application awareness and cooperation. These techniques 
encompass the fundamental failure detection and recovery 
strategies available in service-discovery systems [8-13]. 

In previous work, we investigated the ability of 
various service-discovery systems to propagate updates 
under communication failure [14] and message loss [15]. 
Our investigations yielded quantitative measures for the 
effectiveness, responsiveness, and efficiency of alternate 
system designs. In this paper, we investigate the 
effectiveness, efficiency and latency of service-discovery 
systems in detecting component failure and locating 
replacements. We model specific discovery strategies and 
failure-recovery techniques in combination with two 
major architectural variants found in service-discovery 
systems: two-party, where clients and services 
rendezvous directly, and three-party, where clients and 
services rendezvous through a directory. For the three-
party architecture, we consider topologies that include 
directory replicas. Our models, which adapt discovery 
and recovery strategies from the Jini™1 Networking 
Technology [10] and Universal Plug-and-Play [9] 
specifications, layer a real-time distributed control 
application above each of the discovery systems. We 
model application-level strategies that focus our 
experiments on the fundamental properties of service-
discovery protocols; thus, we exclude a number of 
possible application choices, such as service caching. We 
measure functional effectiveness, defined as the 
proportion of time that a distributed application meets its 
requirements, or more precisely, as the proportion of time 
that a client component possesses an operational set of 
remote services needed to accomplish its task. To provide 
a clear picture of failure response, we also measure both 
failure-detection latency (time required to recognize that a 
remote service used by the client has failed) and failure-
recovery latency (time required for the client to replace a 
failed service). We also measure overhead as the number 
of messages sent. Our models are written using Rapide 
[16], which records complete event traces that permit 

                                                 
1 Certain commercial products or company names are identified in this 
report to describe our study adequately.  Such identification is not 
intended to imply recommendation or endorsement by the National 
Institute of Standards and Technology, nor is it intended to imply that 
the products or names identified are necessarily the best available for the 
purpose. 
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detailed analysis of system behavior, helping us to 
determine causes underlying quantitative performance. 
 
2. Discovery and recovery 
 

Service-discovery protocols enable networked 
components to rendezvous and to combine with 
discovered components into distributed applications 
meeting specific requirements. Discovery protocols 
include failure-detection and recovery techniques that 
enable components within distributed applications to 
detect and react to failures by restoring communications 
with remote components or by locating alternate 
components. A number of different designs have been 
proposed for service-discovery systems. For example, a 
team at Sun Microsystems designed Jini Networking 
Technology, a general service-discovery system atop 
JavaTM. As another example, a group from Microsoft and 
Intel conceived Universal Plug-and-Play (UPnP) to 
provide plug-and-play components for distributed 
systems. 

 
2.1. Service discovery 
 
Our analysis of six discovery systems [8-13] revealed that 
most designs use one of two underlying architectures: 
two-party or three-party. A two-party architecture 
consists of two component types: service manager (SM) 
and service user (SU). The three-party architecture adds a 
third component type, service cache manager (SCM). 
Multiple SCMs can be used to mitigate the effect of SCM 
failure. In both architectures, service discovery occurs 
passively, via multicast announcements, and actively, via 
multicast queries. Each SM maintains a database of 
service descriptions (SDs), where each SD encodes the 
essential characteristics of a particular service provider 
(SP) managed by the SM. Each SU seeks SDs satisfying 
specific requirements.  Where employed, the SCM 
operates as an intermediary, matching advertised SDs of 
SMs to SD requirements provided by SUs.  

In this study, each SM manages one SP from among 
three service types: fast sensor, slow sensor, and actuator. 
Our experiment consists of four instances of each service 
type, whose roles are explained below. Figure 1 shows a 
two-party architecture deployed in our experiment 
topology with 12 SMs and one SU. To animate our two-
party model, we incorporated discovery behaviors from 
the UPnP specification, as described elsewhere  [14, 15]. 
Figure 2 shows the three-party architecture in our 
experimental topology: with 12 SMs, one SU, and up to 
three SCMs. To animate our three-party model, we chose 
discovery behaviors from the Jini specification, as 
described elsewhere [14, 15]. 

 
2.2. Failure-Detection Techniques 
 

To detect failures, applications using discovery 
systems rely on a combination of two techniques: 
monitoring periodic transmissions and retrying ad hoc 
transmissions  (where exceeding a retry bound causes an 
exception). Discovery protocols specify periodic 
transmission of key messages. In addition, components 
employing remote services may maintain regular contact 
to accomplish application-specific tasks. Components can 
listen for these recurring messages, much as a heartbeat 
can be monitored to assess patient health. For example, 
both Jini and UPnP periodically announce resource 
availability. Similarly, a sensor service may periodically 
issue readings to its clients. Failure to receive scheduled 
communications might indicate that the remote service 
has failed, or that the channel between client and service 
is blocked. In other situations, software components send 
messages using reliable communication protocols, which 
persistently resend unacknowledged messages up to some 
bound, issuing a remote exception (REX) if the bound is 
exceeded. For example, a client may attempt to invoke a 
method offered by a remote service that has failed. In the 
three-party architecture, a SU might attempt to query for a 
SD from a failed SCM, only to receive a REX. Failure 

Figure 1. Two-party service-discovery 
architecture with one service user and 12 
service managers 
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detection enables components to employ recovery 
techniques. 
 
2.3. Failure-recovery techniques 
 

Discovery systems generally support two recovery 
techniques: soft-state and application-level persistence. 
Periodic announcements issued by a component convey 
soft information about component state, which a receiver 
can cache for a period of time, consistent with the 
expected announcement rate. Each new announcement 
may convey updated state information; thus, a receiver 
overwrites previously cached state with state from newly 
arriving announcements. When an announcement fails to 
arrive, a receiver discards previously cached state, 
effectively eliminating knowledge about existence of the 
announcing component. When announcements resume, a 
receiver rediscovers the remote component and recovers 
the latest component state. Our application uses a 
modified form of soft state, which allows discarded 
components to be either rediscovered or replaced. For 
example, upon failure of heartbeat messages sent by 
UPnP SMs to refresh cached SDs, a SU discards 
knowledge of the SM and any associated SDs. Similarly, 
a SU may discard knowledge of a SM and SD for a 
remote sensor upon failure to receive sensor updates. To 
effect recovery, UPnP SUs may commence periodic 
multicast (Msearch) queries to search for a new instance 
of a required service. Once the SU regains a SD meeting 
requirements, the related queries cease. In Jini, loss of 
contact with a service may cause the SU to query a SCM 
for a replacement. In addition, service unavailability may 
be indicated by failure of heartbeat messages sent by Jini 
SMs to refresh SDs cached on SCMs, causing the SCM to 
discard the SD and to notify SUs that indicated interest in 
learning about service failures. Periodic announcements 
ensure rediscovery of the SCM by SMs within 120s after 
the SM recovers. The Jini SU can then receive the 
corresponding SD through notification or query. Of 
course, in Jini, SCMs could also fail. SCM startup 
announcements ensure discovery of a new or restarted 
SCM within about 30s. 

When failures lead to a REX, discovery systems 
generally expect application software to initiate recovery, 
guided by an application-level persistence policy. The 
policy may require ignoring the REX, retrying the 
operation for some period, or discarding knowledge of 
the remote component. Since our experiment simulates a 
real-time control application, we chose not to persist after 
a REX, but instead to discard knowledge of the associated 
remote component, relying on periodic announcements 
and soft state to recover. This policy is also used in the 
three-party model when SCM failure is detected through a 
REX in response to a query (SU) or registration refresh 
(SU or SM). After discarding knowledge of a SM (UPnP) 

or SCM (Jini), all operations involving the remote 
component cease. 

 
3. Experiment description 
 

We investigate how effectively the two alternate 
service-discovery architectures, and associated failure 
detection and recovery mechanisms, provide clients with 
required services as nodes hosting the services fail and 
recover.  We model the two- and three-party architectures 
using the four topologies shown in Figures 1 and 2. In all 
topologies, we deploy a single SU and twelve SMs, where 
each SM manages a specific type of SP: “fast” sensor, 
“slow” sensor, or actuator. The twelve SMs include four 
of each SP type. After discovery and activation by the 
SU, a “fast” sensor transmits a reading every two seconds 
and a “slow” sensor transmits a reading every 30 seconds. 
Once discovered and activated by the SU, an actuator can 
be invoked after the SU receives an appropriate 
combination of readings from a “fast” and “slow” sensor. 
In our experiment, we simulate actuation attempts using a 
uniform distribution with a mean of 60s.  When the SU 
holds one SD for a SP of each type (“fast” sensor, “slow” 
sensor, and actuator) and each of the SPs is operational, 
then the application is considered functional.  If the SU 
lacks SDs for one or more SP type or if one or more of 
the SDs held by the SU describes a SP that is not 
operational, then the application is considered non-
functional. The experiment measures accumulated 
functional time in proportion to a duration D during 
which SMs and SCMs periodically fail and recover. To 
establish initial conditions, each topology is exercised 
until discovery completes, and the application becomes 
functional. To focus exclusively on failure detection and 
recovery processes, we do not cache services; the SU 
holds at most one SD for each SP type at any time. In the 
three-party architecture, some additional decisions are 
necessary. For each SD discovered and retained, the SU 
registers with the SCM for notification about failures. The 
SU refreshes notification registrations every 300s. Each 
SM registers with each discovered SCM, and refreshes 
every 60s (slow sensors/actuators) or 300s (fast sensors). 
 
3.1. Failure model 
 

During D, each SM (and SCM in the three-party case) 
fails randomly and independently, although at least one 
service of each type always remains active so that the 
application could become functional. We calculate a 
mean time to failure, MTF, from a failure rate R, varied 
from 0.1 to 0.9 of D in 0.1 increments, where MTF = (1 – 
R) * D. Node failure times are randomly chosen from a 
“stepped” normal distribution with three steps: a 0.15 
probability that failure occurs before (MTF - 0.2 * MTF), 
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a 0.7 probability that failure occurs between (MTF - 0.2 * 
MTF) and (MTF + 0.2 * MTF), and a 0.15 probability that 
failure occurs between (MTF + 0.2 * MTF) and (2 * 
MTF). Failure time is distributed uniformly within each 
step. 

When a SM or SCM fails, affected services become 
unavailable for a time. There are three failure classes, 
each with a different probability, P, and duration.  Short 
failures occur with P = 0.1 for a fixed duration (135s); 
intermediate failures occur with P = 0.7 for a duration 
selected uniformly on the interval 180-300s, long failures 
occur with P = 0.2 selected uniformly on the interval 480-
600s. 
 
3.2. Metrics 
 

We define non-functional time, NF, as accumulated 
time during which an application is in a non-functional 
state. Assuming we can measure NF, over a given 
duration D, then functional effectiveness, F, can be 
quantified as a ratio: F = (D – NF)/D. We define 
consistency conditions to measure NF, as explained 
below 

A client in a distributed application may become non-
functional due to failure of remote components but incur 
a delay before detecting the failure. We call this delay 
failure-detection latency. After detecting a non-functional 
state, the application may incur some delay while 
restoring required services. We call this delay failure-
recovery latency. During periods when a client incurs 
either failure-detection or failure-recovery latency or both 
(the states can overlap when a client requires more than 
one remote service), the distributed application is non-
functional. We accumulate such non-functional periods to 
NF.  

We define two consistency conditions such that 
violation of one corresponds to failure-detection latency 
and violation of the other corresponds to failure-recovery 
latency. The following consistency condition requires 
each SD held by a SU to match a SD managed by a SM.  
More formally, 
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In this condition (CC-1), managedServicesSM denotes the 
database of SD(s) for services managed by a SM and 
discoveredServicesSU denotes the (SM, SD) pairs a SU 
has discovered. CC-1 is violated (and failure-detection 
latency commences) when a SM fails but the SU holds a 
SD provided by the SM. Once the SU discards the SD, or 
the SM recovers, consistency is restored (and failure-

detection latency ends). A second consistency condition 
requires that available SDs matching SU requirements 
should be known to the SU. More formally, 
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This condition (CC-2) is violated (and failure-recovery 
latency begins) after the SU purges a SD for a failed 
service and commences search. Consistency returns (and 
failure-recovery latency ends) when the SU finds a SD 
matching its needs. 
 
4. Results and discussion 
 

For each of four topologies (two-party and three-party 
with one, two, and three SCMs), we set D = 1800s and 
executed multiple repetitions for each value of R using 
the failure model described in 3.1. We conducted separate 
experiment runs for cases where failed nodes (including 
SMs and SCMs) are discarded and replaced by new 
nodes, and for cases where failed nodes restart, 
maintaining persistent information in the manner 
specified by the protocols. For the replacement case, we 
ran a second variant of the experiment where all SMs for 
a resource type may fail. We recorded functional 
effectiveness, detection latency, recovery latency, and the 
total number of protocol messages exchanged in each run. 
 
4.1. Effectiveness and efficiency 
 

Figure 3 shows average functional effectiveness of the 
two-party and three-party architectures for the 
replacement case as R increases, and where one SM for 
each service type is always available (implying that the 
system could be functional for all of D). In examining 
Fig. 3, recall how failure detection occurs. In the two-
party model, the SU may detect service unavailability by 
monitoring cyclical sensor readings or by monitoring 
notification registration refreshes. In the three-party 
model, the SCM notifies the SU if the SM fails to refresh 
service registrations. In both models, the SU may also 
detect unavailability when a REX occurs in response to 
attempted actuations. To become functional again, the SU 
must invoke appropriate recovery mechanisms to regain 
SDs to replace unavailable services.  In the three-party 
architecture, at least one SCM must be operational for 
recovery to succeed. During periods when all SCMs fail, 
the SU is unable to recover needed services, increasing 
non-functional time. 
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Overall, the two-party architecture proves more 

effective above 60% failure rate, allowing the SU to 
remain functional for as much as 80% of D even when the 
failure rate reaches 80% (MTF = 360s). At rates below 
60% the effectiveness of two-party is comparable to 
three-party with two and three SCMs. Fig. 3 also shows 
that effectiveness improves for the three-party 
architecture as the number of SCMs increase, though 
even with 3 SCMs, performance does not equal that of the 
two-party architecture. Adding SCMs improves 
effectiveness by lowering the incidence of concurrent 
failure of all SCMs. 

 
Message counts (Fig. 4) reveal the two-party 

architecture to be significantly more efficient than the 
three-party architecture. Note also that for the three-party 
architecture, total message counts decrease as failure rate 

increases, because SCMs remain down for longer periods; 
thus, requiring fewer registration refresh and SCM 
heartbeat messages. For the two-party model, message 
counts increase slightly at high failure rates because the 
SU invokes active recovery procedures after detecting 
failures. Fundamentally, the three-party architecture relies 
on redundancy of SCMs to improve functional 
effectiveness; thus, exacting a high overhead at low 
failure rates, but permitting overhead to diminish as 
failure rate increases. The two-party architecture relies on 
active recovery invoked by a SU; thus, at low failure rates 
overhead is lower because recovery procedures are not 
invoked often, but overhead increases with failure rate as 
recovery procedures are invoked more often. 
 
4.2. Underlying causes 
 

To better understand differences in effectiveness 
among the alternate architectures, we decomposed non-
functional time to show the estimated proportion 
attributable to failure-detection latency and to failure-
recovery latency. Figure 5 shows that detection latency is 
the dominant (~80%) component of non-functional time 
for the two-party model. Analysis of execution traces 
using the Rapide toolset showed most failures were 
detected through missed sensor readings (2s for fast 
sensors and 30s for slow sensors) or REXs received in 
response to failed actuations. We suspected that in the 
two-party architecture detection latency, and therefore 
non-functional time, could be reduced by increasing 
registration-refresh frequency; thus, decreasing the 
interval between heartbeats. Failed notification refresh 
attempts by the SU would permit detection of SM 
unavailability (and violation of CC-1) before non-receipt 
of slow sensor readings or failed actuation attempts. To 
test this theory, we lowered the registration refresh 
frequency from 300s to 30s in the two-party model, and 
reran the experiment The result was a 49% drop in 
detection latency leading to a 2.6% overall improvement 
in functional effectiveness (an increase in the mean 
effectiveness across all failure rates from 0.908 to 0.932). 
However, efficiency decreased 69%, with a rise in 
message count from an average of 662 to 1116. Similarly 
in the three-party architecture, we suspect increasing 
refresh frequency for service registrations would lead to 
earlier detection by the SCM of SM failure [see 17], and 
to earlier notification for the SU. Of course, increasing 
the heartbeat rate also would decrease efficiency. 

Our data for the three-party architecture show that 
above 60% failure rate the incidence of concurrent failure 
of all SCMs increases steadily. This precludes finding 
available services meeting SU requirements; thus, leaving 
the system in violation of CC-2. To restore consistency 
and achieve operational functionality, a SCM must first 
recover, accept registrations for the SU and available 

Figure 3. Functional effectiveness for four
topologies under increasing R for the
replacement case where at least one SM of
each type is operational (60 reps/point) 
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SMs, and then propagate matching SDs to the SU.  
Lacking an ability to directly discover SMs, the SU 
remains non-functional while awaiting recovery of at 
least one SCM. These effects are evident in Fig. 6, which 
shows the proportion of recovery latency increasing for 
the three-party model (3 SCMs) as the failure rate rises. 
This trend is more marked as the number of SCMs 
decreases (not shown here). We speculate that functional 
effectiveness might improve for the three-party model if 
SUs were permitted to discover SMs directly when no 
SCMs are available. We plan experiments along these 
lines using the Service Location Protocol (SLP) [12], 
which enables switching between the two- and three-party 
architecture as the situation warrants. 

 
4.3. Results for experiment variants 
 

To confirm our findings, we varied the experiment in 
two respects. First, we changed node behavior to allow 
failed nodes to restart rather than be replaced by new 

nodes.  In this case, three-party SCMs that recovered 
were allowed to retain previous, unexpired service 
registrations and notification registrations in accordance 
with the Jini protocol, while two-party SMs were 
permitted to retain notification registrations. The results 
showed no significant differences in performance 
between the restart and replacement cases, the graphs (not 
shown) were almost identical. This occurs in the three-
party case because most of the persistent registrations 
expire by the time a failed SCM restarts. In the two-party 
case, where only notification registrations persist, the SU 
that registered the notification is likely to have discarded 
knowledge of the SM by the time it restarts. Since, in our 
experiment, restarting nodes derive little value from 
persistent information, functional effectiveness is mainly 
influenced by soft-state mechanisms, as in the 
replacement case. 

Second, we varied the experiment to permit all SMs to 
fail, rather than to have at least one SM always available 
for each service type. The results, shown in Fig. 7., 
illustrate functional effectiveness for both the two- and 
three-party models decreases substantially above R = 
60%, as the incidence of concurrent SM failures 
increases, resulting in extended periods when no SMs 
were available for a service type needed by the SU. 
Though the absolute functional effectiveness declined, the 
ranking of the curves remained the same as in the 
previous experiments, with the two-party model proving 
most effective followed by the three-party model with 
three-, two-, and one-SCM topologies, respectively. Thus, 
in all of our experiment variants, the two-party model 
achieved better functional effectiveness than the three-
party model. 
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Figure 6. Detection and recovery latencies
in three-party service-discovery model with
3 SCMs as a proportion of non-functional
time (also shown) (60 reps/point) 
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5. Conclusion 
 

This study provides an initial characterization of the 
performance of service-discovery architectures in 
response to node failures, which complements our 
previous studies of response to communication failures 
and message loss. The present study shows that in 
response to node failure, two-party systems exhibit better 
functional effectiveness and efficiency than three-party 
systems, with three-party SCMs being a potential point of 
vulnerability. Possible solutions to mitigate this 
vulnerability require further study. Similarly, further 
research is needed to verify that registration refresh rates 
or service caching could improve functional 
effectiveness.  Finally, we need to verify that our 
conclusions hold in networks with large numbers of 
services. 
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ABSTRACT 
Service discovery systems enable distributed components to find 
each other without prior arrangement, to express capabilities and 
needs, to aggregate into useful compositions, and to detect and 
adapt to changes. First-generation discovery systems can be 
categorized based on one of three underlying architectures and on 
choice of behaviors for discovery, monitoring, and recovery. This 
paper reports a series of investigations into the robustness of 
designs that underlie selected service discovery systems. The 
paper presents a set of experimental methods for analysis of 
robustness in discovery systems under increasing failure intensity. 
These methods yield quantitative measures for effectiveness, 
responsiveness, and efficiency. Using these methods, we 
characterize robustness of alternate service discovery architectures 
and discuss benefits and costs of various system configurations. 
Overall, we find that first-generation service discovery systems 
can be robust under difficult failure environments. This work 
contributes to better understanding of failure behavior in existing 
discovery systems, allowing potential users to configure 
deployments to obtain the best achievable robustness at the least 
available cost. The work also contributes to design improvements 
for next-generation service discovery systems. 
 
Keywords: Distributed systems, robustness, service discovery 
 
 
1. INTRODUCTION 
 
Various teams designed and implemented a first generation of 
(competing) service discovery systems [1-6] that enable 
distributed components to find each other without prior 
arrangement, to express capabilities and needs, to compose into 
collections, and to detect and adapt to changes. Each specific 
design defines a system structure, along with protocols for 
discovery, monitoring, and recovery. Some designs [5,6] assume a 
specific underlying communication technology, and some designs 
[1,5] focus on one application domain. Three designs [2-4] were 
conceived to operate over Internet protocols and to support many 
applications. 

In this paper, we investigate the architectures and 
behaviors underlying Jini Networking Technology1 [2], Universal 
Plug and Play (UPnP) [3], and the Service Location Protocol 
(SLP) [4] when subjected to various failures. Elsewhere [7], we 

                                                 
1 Certain commercial products or company names are identified in this 
paper to describe our study adequately. Such identification is not intended 
to imply recommendation or endorsement by the National Institute of 
Standards and Technology, nor to imply that the products or names 
identified are necessarily the best available for the purpose. 

present a generic model encompassing the designs of these 
systems and we identify performance issues that could arise. 
While this previous work considers system behavior absent 
failures, here we explore the relative ability of discovery systems 
to cope with different types and intensities of failure. 

We reported preliminary results in various conference 
papers [8-11]; however, this paper improves upon earlier work in 
two ways. First, we extend the scope of our results to cover three 
architectures (two-party, three-party, and adaptive), three failure 
scenarios (configuration restoration, service acquisition and 
maintenance, and consistency maintenance), four failure types 
(power failure and restart, node failure, communication failure, 
and message loss), and a set of failure detection and recovery 
techniques at three levels (transport protocols, discovery 
protocols, and application logic). Second, we increase the amount 
of data collected and analyzed to obtain better estimates for 
performance metrics at high failure rates. 

This paper contributes to the understanding of service 
discovery systems. First, this paper characterizes robustness of 
discovery systems under difficult failure environments. This paper 
further identifies and discusses the most significant design and 
configuration decisions that influence robustness. Second, this 
paper identifies specific design and deployment decisions that 
could lead to diminished robustness. Third, this paper quantifies 
the relative cost associated with specific decisions. Overall, the 
information provided here should contribute to better 
understanding of failure behavior in existing discovery systems, 
allowing potential users to configure deployments to obtain the 
best achievable robustness at the least available cost. Further, 
results and discussions presented here could contribute to design 
improvements in the next generation of discovery systems. 

This paper also contributes experimental methods to study 
robustness in distributed systems. First, we introduce and apply 
metrics to quantify relative robustness and cost at the application 
level for various scenarios. Second, we present a technique to 
decompose aggregate robustness into detection and recovery 
latency. Using this technique, we show how similar robustness 
can be achieved through different behaviors arising from 
particular design choices. Our methods can be adopted, adapted, 
or extended by other researchers to investigate failure response in 
distributed systems – a topic due for increased study. 

We begin (in Section 2) with a synopsis of existing work 
comparing and contrasting service discovery systems. Most 
previous work focuses on functional comparisons [12-19], on 
means for translating among discovery systems [20-26], or on 
improving existing designs [27-37]. Our own related work [7, 38-
42] attempts to unify designs for several existing discovery 
systems, and investigates performance problems arising when 
such systems are deployed at large scale. 
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In Section 3, we survey the design and function of service 
discovery systems. We introduce a model to convey concepts 
across selected systems. Using our model, we describe how 
discovery operates under UPnP (a two-party architecture, where 
clients issue multicast queries to find services), Jini (a three-party 
architecture, where clients consult a directory to find services), 
and SLP (which is a three-party architecture that can adapt to 
become a two-party architecture). We also describe two 
mechanisms (polling and notification) used by discovery systems 
to maintain consistent information among distributed replicas. The 
architectures, discovery procedures, and consistency maintenance 
mechanisms described in Section 3 form the basis for scenarios, 
experiments, and results recounted in later sections. 

In Section 4, we introduce selected types of failure that can 
impede a distributed system and we discuss selected techniques to 
detect and recover at three layers. At the lowest layer, transport 
protocols may include detection and recovery mechanisms (e.g., 
acknowledgments, retransmissions, and exceptions). In the middle 
layer, discovery protocols typically include some detection and 
recovery mechanisms (e.g., heartbeats and soft state). At the top 
layer, applications may take recovery actions in reaction to 
exceptions raised by transport protocols. Interactions among these 
detection and recovery techniques can become quite intricate and 
difficult to understand. 

In Section 5, we describe our experiment methodology, 
consisting of six steps: (1) constructing (simulation) models 
reflecting structure, behavior, and deployments of selected service 
discovery systems, (2) incorporating failure models into the 
simulations (3) devising scenarios and related metrics to quantify 
robustness and cost, (4) simulating scenarios for selected 
configurations over a range of failure rates, (5) collecting, 
analyzing, and plotting data from simulations, and (6) 
investigating unexpected results and anomalies. In Section 6, we 
describe the design and results for our experiments: (1) restart 
after power failure, (2) service acquisition and maintenance 
impeded by node failures, and consistency maintenance impeded 
(3) by communication failures and (4) by message loss. We report 
results from these four experiments, which encompass 30 
configurations. For each experiment, we explain the scenario and 
failure model, define metrics, present results, outline findings, and 
discuss unexpected outcomes. We close in Section 7 with a précis 
of our findings and contributions. 

 
2. RELATED WORK 

 
Emergence of various specifications for service discovery 
systems, coupled with the anticipated importance of discovery 
functionality in future distributed systems, has stimulated 
significant interest in understanding similarities and differences 
among competing designs. Most existing comparisons focus on 
architecture, features, and function. A few comparisons also 
consider programming differences, because most discovery 
systems are conceived as middleware to support distributed 
applications. Bettsletter and Renner [12] compare SLP, Jini, 
UPnP, and Bluetooth with respect to architecture, function, and 
features, and consider underlying requirements for programming 
languages, operating systems, and network protocols. The 
comparison is expressed using concepts and terminology specific 
to each discovery system, although the authors do identify three 
common aspects (support for searching on service attributes, 
inclusion of a directory, and use of leasing) for comparison. 
Richard [13] compares software architectures, along with system 

features and functions, for Jini, Bluetooth, Salutation, SLP, and 
UPnP. Elsewhere [17], Richard expands his comparison to include 
programming considerations by providing source code for clients 
and services in Jini, SLP, UPnP, and Bluetooth. Pascoe [15] 
outlines a brief architectural comparison of Jini, UPnP, and 
Salutation, and Rekesh [14] gives a similar comparison that 
appears to be based on Pascoe’s work. In a subsequent paper [16], 
Pascoe amplifies his architectural comparison to include 
comparison of functions and features. O’Driscoll [18], when 
considering a wide range of home networking technology, 
provides descriptions of Bluetooth, HAVi (the Home Audio-
Video interoperability specification), UPnP, and Jini. Though 
giving no direct comparison, O’Driscoll provides a summary of 
architecture, function, and features from which readers may infer 
a comparison. Olivier [19] provides a detailed description of Jini, 
but also includes a brief description of UPnP and a comparison 
between Jini and SLP. None of these comparisons considers 
performance or robustness. 

Limitations in existing comparisons motivated our own 
work. Elsewhere [7], we provide a unified and general model for 
first-generation discovery systems and then show how our model 
can be used to represent Jini, UPnP, and SLP. Our unified model, 
conceived with neutral terminology, provides a basis for direct 
comparison among architectural, functional, and behavioral 
elements of designs. Our model also reveals limitations and open 
issues in existing designs and specifications, and includes a set of 
service guarantees that we believe discovery systems should 
attempt to satisfy. Further, we identify selected performance 
issues that may arise when deploying discovery systems at large 
scale, and we use our model to outline algorithms that might 
improve performance. While our previous work improves on 
existing comparisons, we did not consider robustness under 
various types of failure. The present paper extends our previous 
work by comparing failure response in the major designs for first-
generation discovery systems (as represented by Jini, UPnP, and 
SLP). 

As a natural extension to functional comparisons, some 
researchers conceive protocol translators in order to achieve 
interoperation among dissimilar service discovery systems. For 
example, the Open Services Gateway Initiative (OSGi) [20, and 
also chapter 17 in 18] defines a layer of middleware to bridge 
among Jini, UPnP, and Bluetooth. Miller and Pascoe [21] show 
how to map between the application-level programming interfaces 
of Salutation and Bluetooth. Allard et al. [22] and Sameh and El-
Kharboutly [23] describe different techniques to bridge between 
Jini and UPnP, while Guttman and Kempf [24] consider 
techniques to bridge between Jini and SLP. Similarly, Yu et al. 
[26] define a software structure for middleware that can bridge 
among a diverse set of service discovery systems and distributed 
object systems. Ponnekanti and Fox [25] take a more general tact 
by defining a framework that clients may use to find candidate 
services and to automatically configure an appropriate set of 
proxies and stubs to allow a client to invoke a selected service. 
Only one [23] of these papers investigates performance, and none 
considers the effects of failures. While our paper does not 
consider translation among discovery systems, researchers could 
use our method to investigate and quantify robustness of various 
designs for bridges and translators. 

Beyond first-generation systems for discovery of services 
operating in close proximity, researchers in industry and academe 
are investigating how to build discovery systems that scale over a 
wide area. An early proposal, known as Universal Description, 
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Discovery and Integration (UDDI) [36], defines well-known, 
web-accessible repositories, where service descriptions may be 
deposited so that clients may query for services of interest. The 
UDDI approach exhibits limited scalability because every service 
in a network must deposit its description with a central directory, 
or else with multiple replicas of a central directory. To overcome 
such limitations, researchers continue to propose a number of 
more flexible approaches. One early idea, E-speak [28], used an 
expanding-ring multicast search to discover directories that 
organized into a federated topology through which service 
descriptions permeated over time. A similar idea is contained in 
JXTA [29], where a peer-to-peer system is used to disseminate 
copies of service descriptions throughout a topology of caches, 
and in Neuron [32], a self-organizing and self-tuning topology of 
caches that can tolerate failures of nodes and communication 
links. Other self-organizing directories have also been proposed, 
including SRIRAM [31], NeuroGrid [34], and the Secure Service 
Discovery Service [27]. A somewhat different approach [30] 
forms a logical ring (based on node addresses) that helps 
individual nodes to bootstrap into various available overlay 
networks, each of which advertises services. Grid researchers 
have also proposed a design for wide-area service discovery [33], 
coupled with the ability to inject and disseminate real-time status 
information [35]. Most of these designs include provisions to 
detect and recover from failures or to mitigate failures; however, 
no comprehensive results exist that compare robustness among 
various designs. While this paper investigates robustness only for 
local discovery, we suspect that our method could be applied to 
quantify and compare robustness among designs for wide-area 
discovery. 

 
3. MODELING SERVICE DISCOVERY SYSTEMS 
 
Service discovery systems enable components in a network to 
discover each other, and to determine if discovered components 
meet specific requirements. Further, discovery systems include 
consistency-maintenance mechanisms, which can be used by 
applications to detect changes in component availability and 
status, and to maintain, within some time bounds, a consistent 
view of distributed components. Many diverse industry activities 
explore different approaches to meet such requirements, leading 
to a variety of proposed designs [1-6]. Some groups approach the 
problem from a vertically integrated perspective, coupled with a 
narrow application focus. Other groups propose more widely 
applicable solutions. For example, a team of researchers and 
engineers at Sun Microsystems designed Jini Networking 
Technology [2], a discovery system atop Java, which provides a 
base of portable software technology. As another example, a 
group of engineers at Microsoft and Intel conceived Universal 
Plug-and-Play (UPnP) [3] to extend plug-and-play from single 
computers to distributed systems. Similarly, the efforts of Sun 
Microsystems and other companies led to the Service Location 
Protocol (SLP) [4], aimed at providing service discovery for the 
Internet.  

While these designs appear quite different, the systems 
share some common traits. First, they all assume availability of 
the Internet protocols as a base. Second, they all provide general 
approaches to describe the capabilities and status of services. 
Third, they all include mechanisms that can be used to detect and 
recover from failures. Jini, UPnP, and SLP differ in architecture, 
in approach to describing services, and in assumptions about how 
to use transport protocols. This interesting combination of 

similarities and differences led us to base our comparative study 
on Jini, UPnP, and SLP. Our main challenge was finding a means 
to clearly understand and represent similarities and differences 
among the three systems. To address this challenge, we developed 
a general model with common terminology and then mapped 
concepts from each specific system into our model. 

 
3.1 A General Model of Service Discovery Systems 
 
Our model provides a basis for comparative analysis of various 
discovery systems by representing major architectural components 
and concepts with a consistent and neutral terminology (see first 
column in Table 1). The main components in our model include: 
(1) service user, (2) service manager, and (3) service cache 
manager.  A service user (SU) is a client in a service discovery 
system.  A SU is concerned with discovering services from 
components within the distributed system, acquiring access to 
discovered services, and using discovered services.  A service 
manager (SM) maintains a database of service descriptions, each 
of which encodes the characteristics of a particular service 
provider (i.e., the provider of the service). Each service 
description (SD) contains the identity, type, and attributes that 
characterize a service provider (SP). Each SD also includes the 
addresses of software interfaces (e.g., an application-
programming interface or graphic user interface) to access a 
service. A SU seeks SDs satisfying specific requirements. A 
service cache manager (SCM) operates as an intermediary, 
matching advertised SDs from SMs to requirements provided by 
SUs. SCMs are optional components supported by some, but not 
all, discovery systems.  Table 1 shows how these general concepts 
map to specific concepts from Jini, UPnP, and SLP. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
The behaviors by which (Jini, UPnP, and SLP) SUs 

discover and maintain consistency in relevant SDs depend in part 
upon the system architecture and design and in part on the 
transport protocols used. Transport protocols are used for two 
kinds of message exchange: (1) multicast, in which transmitted 
messages are conveyed to all receivers that participate in a 
multicast group and (2) unicast, which is point-to-point 
communication directly between a pair of corresponding entities. 
Both Jini and UPnP use the UDP (User Datagram Protocol) for 
exchanging multicast messages and use the TCP (Transmission 
Control Protocol) for exchanging unicast messages. UPnP also 
uses UDP to unicast answers to multicast queries. SLP uses UDP 
for exchanging both multicast and unicast messages. The 
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Table 1. Mapping Concepts among Selected Service Discovery 
Systems.
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differences in transport protocols become significant when 
considering approaches to detect and recover from failures; 
therefore, we defer (until Section 4) a more detailed discussion. 
Here, we focus on behavioral differences arising from variations 
in architecture and design. 

 
 

 

 

 

 

 

 

 

 

 

 
3.2 Modeling Service Discovery Architectures and Protocols 
 
Our analysis of six distinct discovery systems revealed that most 
designs use one of two architectures: two-party or three-party. 
One discovery system we examined uses both architectures 
together. A two-party architecture consists of two major 
component types: SMs and SUs. Figure 1 illustrates a two-party 
architecture (configured for UPnP). Service discovery occurs 
through interactions between these two component types; SUs 
discover SMs and then query them for suitable SDs. A three-party 
architecture adds a third component type, the SCM, which 
contains a directory. Figure 2 illustrates a three-party architecture 
(configured for Jini). In a three-party architecture, both SMs and 
SUs first discover SCMs to serve as intermediaries. SMs deposit 
SDs with SCMs and SUs interact with SCMs to obtain suitable 
SDs. A third architectural variant (supported by SLP) employs 
both the two-party and three-party architecture and is capable of 
switching between them, depending on circumstances. We call 
this an adaptive architecture. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.1 Discovery in Two-Party Architectures. Given a two-
party architecture, we model the behavior of participating SMs 
and SUs. Upon startup, each SU and SM engages in a discovery 
process to locate other relevant components within the network 
neighborhood. We chose behaviors described in the specification 
for UPnP [3]. 

In a lazy-discovery process, each SM periodically 
announces existence of its SDs over a designated UPnP multicast 
group. Upon receiving these announcements, SUs with matching 
requirements use a HTTP (HyperText Transfer Protocol)/TCP 
unicast link to request, directly from the SM, copies of the SDs 
associated with relevant SPs. The request is made using an HTTP 
GET request. The SU stores SD copies in a local cache. 

Alternatively, the SU may engage in an aggressive-
discovery process, where the SU transmits SD requirements, as 
Msearch queries, on the UPnP multicast group. Any SM holding 
a SD with matching requirements may use a HTTP/UDP unicast 
link to respond (after a jitter delay) directly to the SU. Whenever a 
SM responds to an Msearch query (or announces itself), it 
repeats a sequence of messages, with separate messages for 
distinct devices and service types managed by the SM. For each 
appropriate response, the SU uses a HTTP/TCP unicast link to 
send an HTTP GET request for a copy of relevant SDs, caching 
them locally. 

In UPnP, multiple HTTP GET requests are required to 
transfer the SD, because each SD consists of two parts. To 
maintain a SD in its local cache, a SU expects to receive periodic 
announcements from the relevant SM. In UPnP, the SM 
announces the existence of SDs at a specified interval, known as a 
Time-to-Live, or TTL (1800 s minimum recommended). Each 
announcement specifies a TTL value. If the SU does not receive 
an announcement from the SM within the TTL (or a periodic SU 
Msearch does not succeed within that time), the SU may 
discard the discovered SD.    

3.2.2 Discovery in Three-Party Architectures. Given a 
three-party architecture, we model the behavior of participating 
SCMs, SMs, and SUs, which each engage in a discovery process 
upon startup. We chose behaviors described in the Jini 
specification [2], where SMs and SUs attempt to discover any 
intermediary SCMs that exist in the network neighborhood. 

Upon initiation, a Jini component enters aggressive 
discovery, where it transmits probes on a designated aggressive-
discovery multicast group at a fixed interval (5 s recommended) 
for a specified period (seven times recommended), or until it has 
discovered a sufficient number of SCMs. Upon cessation of 
aggressive discovery, a component enters lazy discovery, where it 
listens on a designated lazy-discovery multicast group for 
announcements sent at intervals (120 s recommended) by SCMs. 
Our three-party model implements both the aggressive and lazy 
forms of Jini multicast discovery. 

Once discovery occurs, a SM deposits a copy of the SD for 
each of its services on the discovered SCM. The SCM caches this 
deposited state, but only for a specified length of time, or TTL. To 
maintain a SD on the SCM beyond the TTL, a SM must refresh 
the SD. In this way, if the SM fails, then the SCM can purge any 
SDs deposited by the SM. SUs may query discovered SCMs for 
SDs of interest. Alternatively, a SU may deposit a query with the 
SCM, which will attempt to match SDs provided by SMs to 
specifications of the deposited query. The SCM forwards any 
matching SDs on to the SU that deposited the relevant query. 

3.2.3 Discovery in Adaptive Architectures. An adaptive 
architecture requires SMs and SUs to rendezvous through a SCM, 

Figure. 1 Two-party service discovery system deployed 
in a topology with three service users (SUs) and thee 
service managers (SMs). 
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but allows direct SM-SU interaction when no SCM is available. If 
SMs and SUs interact directly and a SCM becomes available, then 
the architecture requires SMs and SUs to resume interacting 
through the SCM. We use the term mode switching to denote this 
ability to change architectural configurations (i.e., to switch 
between two- and three-party architectures). To model an adaptive 
architecture, we chose behaviors from the SLP specification [4]. 

SLP systems are configured by default to operate in three-
party mode, switching to two-party mode when SCMs are 
unavailable. Like Jini, three-party SLP discovery requires that 
SMs and SUs first discover intermediary SCMs. Upon initiation, a 
SLP SM or SU enters aggressive discovery, where every 900 s it 
transmits six probes within a fixed interval of 15 s on a designated 
aggressive-discovery multicast group. On the other hand, a SLP 
SCM and SM component commences lazy discovery, where it 
emits announcements on a designated lazy-discovery multicast 
group at recommended intervals of 10800 s (once every three 
hours), which we lowered to 120 s in all experiments to provide 
more consistent behavior in the adaptive and three-party 
architectures. When operating in three-party mode, SLP SUs and 
SMs rendezvous through SCMs. After discovery, SLP SMs 
employ procedures (similar to Jini) to deposit SDs for relevant 
services on discovered SCMs for a specified TTL, and then to 
refresh deposited SDs. To make behavior as consistent as possible 
across our models, we decided to use the same TTLs (on a per 
experiment basis) for a SD to be cached by a SCM. We denote a 
specific choice of TTL when describing each experiment (see 
Section 6). SUs query SCMs for SDs matching their requirements. 
SCMs process queries, matching SDs against SU requirements, 
and forward matches to SUs. SUs can cache the response and 
contact the related SPs to obtain use of the service. 

When SLP SUs and SMs fail to detect SCMs, they switch 
to two-party mode. In two-party mode, a SLP SU both listens for 
lazy announcements from SMs and transmits the aggressive-
discovery six-message probe sequence at 900 s intervals, while 
SMs listen for probes and respond as appropriate.  Upon receiving 
a lazy announcement or an aggressive-probe response, a SLP SU 
(in two-party mode) queries the SM for SDs matching its 
requirements. The SM responds with matching SDs, which the SU 
caches locally. In the meantime, SUs continue to search for a 
SCM, using both lazy and aggressive discovery. Upon finding a 
SCM, SLP requires the SU to switch to three-party mode and to 
cease direct contact with SMs discovered in two-party mode. All 
further contact with SMs must take place through SCMs. 

 
3.3 Modeling Consistency Maintenance Mechanisms 
 
Service discovery systems include consistency-maintenance 
mechanisms to ensure that changes to critical information about 
services can be propagated to interested SUs. Critical information 
could include service availability and capacity, and updates to 
descriptive information about service capabilities. Discovery 
systems that we analyzed provide one or both of two consistency-
maintenance mechanisms: polling and notification. We discuss 
each in turn. 

3.3.1 Polling. In polling, a SU periodically sends queries to 
obtain up-to-date information about a SD that was previously 
discovered, retrieved, and cached locally. In a two-party 
architecture, the SU issues the query directly to the SM from 
which the SD was obtained; thus, we model the UPnP HTTP GET 
request mechanism to poll the SM to retrieve a SD associated with 
a specific URL (Uniform Resource Locator). In response, the SM 

provides a SD containing a list of supported services, including 
relevant attributes. 

Polling in a three-party architecture consists of two 
independent processes. In one process, a SM sends a request to 
propagate an updated SD to each SCM on which the SD was 
originally cached. In Jini, this request takes place through a 
ChangeService message, which causes the SCM to update the 
cached SD. In SLP, the SM re-registers the SD, which causes the 
SCM to replace the previously deposited SD with the new version 
and an updated TTL. In a second process, each SU polls relevant 
SCMs by periodically issuing a query for a copy of SDs that the 
SU has previously retrieved and cached. The SCM replies with 
matching SDs. In Jini, the poll is implemented with a 
FindService request and a MatchFound reply; SLP polls 
(SCMs in three-party mode and SMs in two-party mode) with 
SrvRqst and SrvReply messages, respectively. We adopted a 
180 s polling interval for all architectures. 

3.3.2 Notification. Notification requires that updates be 
transmitted to interested parties immediately after they occur. We 
model notification only for the two-party and three-party 
architectures (i.e., not for the adaptive architecture), because the 
SLP specification that we used does not include notification. 

In two-party notification, a SM sends events to a SU that 
indicates a SD has changed. To receive events about a SD of 
interest, a SU must first register with the SM for this purpose. We 
model this procedure using the UPnP subscription mechanism, 
where the SU sends a Subscribe request, and the SM responds 
by either accepting or denying the request. The subscription, if 
accepted, is retained for a TTL, which may be refreshed with 
subsequent Subscribe requests from the SU. In our 
experiment, we chose 1800 s as TTL for subscriptions in both (the 
two- and three-party) architectures. 

Three-party notification requires a two-step procedure, 
which we model as specified for Jini. First, SUs must register with 
SCMs to receive notification about SDs of interest. The SCM 
registers the notification request for a specified TTL, which may 
be refreshed. Second, a SM issues a ChangeService to 
propagate a SD update to all SCMs on which the SM has 
previously deposited the SD. When the SCM receives a 
ChangeService request from a SM for a SD it has cached, the 
SCM issues a MatchFound that propagates the updated SD to 
all SUs that have registered to receive such notifications. 

 
4. MODELING FAILURE DETECTION AND 

RECOVERY TECHNIQUES 
 
Interactions among distributed components may be impeded by 
failures; thus, such components must be prepared to detect failures 
and take recovery actions. In this section, we review the types of 
failure that can impede interactions and then we describe selected 
failure detection and recovery techniques. We explain how we 
incorporated the techniques into our models. 
 
4.1 Failure Types 
 
We classify failures into two general categories: process failures 
and communication failures. Process failures can be caused by 
cyber attacks, by programming errors, or by hardware failures. 
We can subdivide process failures into node and thread failures. 
During a catastrophic failure, processing in a node ceases, and the 
node must reinitialize before processing resumes. Some 
information maintained by the node may persist across the failure, 
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while other information may be lost. The nature and condition of 
persistent information could prove crucial to a node’s behavior 
after processing resumes. Of course, the node might never 
reappear. Thread failures, while less catastrophic, can be more 
troublesome than node failures. A node might rely on certain 
long-running threads to react to events from other nodes. Failure 
of selected threads can interfere with the operation of the node, as 
well as other nodes. In some cases, a node can appear to be 
present, while being effectively inoperable. Since the effects of 
node and thread failure are similar, we focus only on node failure 
in this study, allowing the effects of thread failure to be inferred. 

Communication failures can arise due to jamming, or other 
interference, due to congestion, due to denial of service attacks, 
due to physical severing of cables, due to improperly configured 
or sabotaged routing tables, or due to multi-path fading as nodes 
move across a terrain. We subdivide communication failures into 
three classes: interface failures, message loss, and path failures. A 
communication interface in a node may fail fully (both transmit 
and receive) or partially (either transmit or receive). All outbound 
messages from an interface will be lost when the transmitter fails, 
while all inbound messages will be lost when the receiver fails. 
Message loss, a less severe failure, implies that individual 
messages may be dropped, either sporadically or in bursts. Path 
loss appears as a blocked communication route between two 
nodes, or areas, in a network. A path can be blocked in one or 
both directions. Because effects of path failure are similar to 
interface failure, we studied only interface failure. 

 
4.2  Failure Detection and Recovery Techniques 
 
In service discovery systems, failure detection and recovery 
responsibilities are divided among three parties: (1) transport 
protocols, (2) discovery protocols, and (3) applications. The 
transport protocols support the discovery protocols and the 
application, while the application also relies on the discovery 
protocols. We first describe failure detection and recovery 
provided by transport protocols, such as TCP and UDP. We then 
discuss heartbeats and soft state ⎯ the main detection and 
recovery techniques implemented by discovery protocols. 
Subsequently, we discuss remote exceptions and retries, which are 
the main detection and recovery techniques available to 
applications and selected discovery processes. We describe how 
we model these techniques. 

4.2.1 Recovery by Transport Protocols. Discovery 
protocols and applications use recovery services from three types 
of transport: (1) unreliable multicast protocols, (2) unreliable 
unicast protocols, and (3) reliable unicast protocols. We discuss 
each in turn. 

Unreliable Multicast Protocols. Unreliable protocols, 
whether multicast or unicast, neither recover nor signal lost 
messages; thus, neither source nor destination will learn of a loss. 
Further, multicast protocols exchange messages along a tree of 
receivers. For this reason, a multicast message might be received 
by some nodes, but not by others. A failure near a multicast 
source prevents messages from being received by any node in the 
multicast tree, while a failure near a receiver prevents messages 
from being received by only a single node in the tree. Of course, 
failures at intermediate points in the tree could result in messages 
being lost to subsets of receivers. All three systems we studied 
(UPnP, Jini, and SLP) employ unreliable UDP multicast 
protocols. 

When simulating UDP transmission, our models discard 
messages lost due to congestion and due to interface failures. 
During interface failure, the models discard all messages sent 
from a node with a failed transmitter, as well as all messages 
inbound for a node with a failed receiver. Neither sender nor 
receiver learns the fate of lost messages. Since unreliable 
protocols provide no guarantees, recovery must be provided by 
mechanisms at a higher layer. 

Unreliable Unicast Protocols. Among the systems we 
studied, both SLP and UPnP use an unreliable unicast protocol. 
SLP uses unicast UDP to transmit SrvRqst messages, used for 
queries, and to transmit SrvReg messages for registrations and 
registration renewals. To improve reliability, SLP employs two 
additional procedures. First, SLP issues redundant SrvRqst 
messages; each request is sent four times within a 15 s interval. 
Second, SLP requires a waiting period (we used 15 s) to listen for 
a corresponding SrvRply. If no SrvRply is received within 
that time, then the message transmission is abandoned and a 
remote exception (REX) is declared so that a higher layer entity 
can decide upon an appropriate recovery action. Our SLP models 
incorporate this behavior. 

UPnP uses unicast UDP to send responses to Msearch 
queries. To improve the reliability of these responses, UPnP 
requires that each UDP message be sent multiple (n) times.  In our 
model, we set n=2. 

Reliable Unicast Protocols. Reliable unicast protocols 
include mechanisms that attempt to ensure message delivery by 
detecting and re-transmitting lost messages. Of course, the 
reliability schemes may eventually give up if too many 
retransmissions are needed (which might indicate node or 
interface failure). In such cases, the reliable unicast protocol will 
signal to a higher layer that a message was (probably) not 
delivered. For example, Jini uses Remote Method Invocation 
(RMI) over TCP to invoke a method on a remote object, and to 
receive a response and UPnP uses TCP to submit HTTP requests 
and receive HTTP responses. Either the RMI layer (in Jini) or the 
TCP layer (in UPnP) can signal a remote exception (REX).  

Our model unifies reliable unicast protocols into one set of 
procedures that simulate TCP in two phases: connection 
establishment and data transfer. The connection establishment 
phase consists of exchanging connection request and response 
messages. Both connection requests and responses may involve 
multiple retries before a connection is established. We simulate 
connection request retries with delays of 6 s, 24 s, and 24 s, before 
signaling the connection requester with a REX 24 s after the final 
retry (78 s after the initial request).  

Successful connection establishment initiates a data-
transfer phase, where the connection requester sends a data 
request and may await a data response. The data request and 
response may be subject to retransmissions. We compute a 
retransmission timeout (RTO) that is roughly the round-trip time, 
or RTT. We increase the RTO by 25% with each successive 
retransmission. Retries in the data-transfer phase continue until a 
time threshold (60 s) is reached, after which the transmission 
attempt is abandoned. Failure of a data request causes a REX to 
be issued to the requester. Failure of a data response causes a 
REX to be issued to both the requester and responder. The 
requester cannot determine whether a REX was caused by failure 
to transmit the request or by failure to receive a response. The 
responder has more information, as it does not receive a REX 
when an inbound request fails, but does receive a REX when its  
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outbound response fails. In essence, while reliable unicast 
protocols attempt to deliver messages in the face of various 
communication failures, ultimately the reliability mechanisms 
might prove insufficient, causing a higher-layer process to be 
notified of the failure. In such cases, the higher-layer process is 
free to determine an appropriate recovery strategy. 

4.2.2 Recovery by Discovery Protocols. Components in a 
discovery system may also learn of failure by listening for 
recurring messages sent by remote components, much as a 
heartbeat is monitored to assess patient health. For example, 
UPnP SMs periodically multicast lazy announcements advertising 
SDs. Similarly, Jini and SLP SMs periodically refresh SD 
registrations on SCMs by sending unicast messages, and then 
listening for responses. Both lazy announcements and registration 
refresh messages convey soft state (or information) — in this case, 
the SD, which a receiver can cache for a period consistent with 
the associated TTL. When subsequent heartbeat messages fail to 
arrive within the TTL, a listener may assume failure of the SM 
and thus discard cached information about its related SD, 
effectively eliminating knowledge about existence of the related 
service. 

Our models use a form of soft state that allows SDs for 
failed components to be discarded and then to be either 
rediscovered or replaced. For example in our two-party model, 
once a UPnP SU discards knowledge of a SM and any associated 
SDs, the SU commences periodic multicast (Msearch) queries to  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
search for a new instance of the service. Once the SU regains a 
SD meeting its requirements, the related queries cease. SLP 
employs an analogous procedure when operating in two-party 
mode. 

The process is more complicated in three-party situations. 
Here, failure of refresh messages causes SCMs to discard a 
service registration. A SU may monitor the status of the SD by 
periodically polling the SCM. When poll responses indicate the 
SD is no longer present on the SCM, the SU may then discard its 
cached copy of the SD. In Jini, SUs may also register with the 
SCM to be notified when the SCM discards the SD. When 
receiving such notification, a SU discards its cached copy of the 
SD and then attempts to find a replacement by querying the SCM 
for another SD that satisfies its requirements. Meanwhile, a SM 
for a SD discarded by the SCM might recover after failures are 
repaired. The SM may rediscover the SCM through aggressive or 
lazy discovery, and then reregister the lost SD. The SU, if it has 
not found a replacement, can then receive the original SD by 
querying the SCM (Jini and SLP) or through notification (Jini). 

Table 2 summarizes the way in which we model heartbeat 
and soft state for each of our models. The table indicates values 
we adopted across all experiments (except as otherwise indicated 
in the table and discussed in Section 6). Though SCM discoveries 
could also be retained by SMs and SUs on a soft-state basis, the 
discovery systems we studied use an application-level technique 
to detect SCM failures. 

No recoveryNo recoveryNo recoveryMulticast 
UDP

SU and SM purge SCM after 
period of continuous REX 
(varied by experiment).

SM: depositing or refreshing SD 
on SCM retry; SU: registering 
and refreshing notification 
requests on SCM retry (120 s)

SU: FindService Poll
SCM: Notification

SU and SM issue seven probes 
(at 5 s intervals) only during 
startup; SCM issues lazy 
announcements at interval (120 
s).

SM registers SDs for TTL  
varied by experiment; SU 
registers notifications for TTL  
varied by experiment.

Issue REX in 78 s

Not Applicable

Three-Party 
Architecture (Jini)

Three-party mode: SU and SM 
purge SCM after 
period of continuous REX 
Two-party mode: SU purge SM 
after period of continuous REX 
(varied by experiment).

SU:SrvRqst after discovery 
retry (180 s with < 3 retries); 
SM (three-party mode) 
depositing or refreshing SD on 
SCM retry (120 s)

SU: SrvRqst Poll
(Notification unsupported)

SU and SM issue 6 probes 
within 15 s duration during 
startup and at 900 s interval; 
SCM sends lazy 
announcements at 120 s 
interval (SLP recommends 
10800 s).

SM (in two-party mode only) 
sends lazy announcements at 
120 s interval (recommended 
10800 s by SLP); SM registers
SDs for TTL varied by 
experiment. 

Not Applicable

Redundant transmission n = 4
No recovery

Adaptive 
Architecture (SLP)

Two-Party 
Architecture (UPnP)

Recovery 
Mechanism

Responsible 
Party

SU purges SD after failure to
receive SM announcement 
within TTL or after 3 retries of 
HTTP GetDiscard 

Knowledge

SU:  HTTP Get after discovery 
retry (180 s with < 3 retries); 
Registration request and 
refresh retry (120 s)

Retry after 
REX

SU: HTTP Get Poll
SM: Notification

Ignore REX

Application

SU issues aggressive probe 
(UPnP Msearch) at interval 
after purging SD (set to 120 s).Soft-State 

Recovery

SM sends n (3+2d+k) lazy 
announcements of SDs at 
interval varied by experiment. 
SU caches SD for TTL varied 
by experiment. (recommended 
1800 s for announcement 
interval and TTL by UPnP)

Heartbeat

Discovery 
Protocols

Issue REX in 78 sTCP

Redundant transmission n = 2
No recovery

Unicast UDP
Transport 
Protocols

No recoveryNo recoveryNo recoveryMulticast 
UDP

SU and SM purge SCM after 
period of continuous REX 
(varied by experiment).

SM: depositing or refreshing SD 
on SCM retry; SU: registering 
and refreshing notification 
requests on SCM retry (120 s)

SU: FindService Poll
SCM: Notification

SU and SM issue seven probes 
(at 5 s intervals) only during 
startup; SCM issues lazy 
announcements at interval (120 
s).

SM registers SDs for TTL  
varied by experiment; SU 
registers notifications for TTL  
varied by experiment.

Issue REX in 78 s

Not Applicable

Three-Party 
Architecture (Jini)

Three-party mode: SU and SM 
purge SCM after 
period of continuous REX 
Two-party mode: SU purge SM 
after period of continuous REX 
(varied by experiment).

SU:SrvRqst after discovery 
retry (180 s with < 3 retries); 
SM (three-party mode) 
depositing or refreshing SD on 
SCM retry (120 s)

SU: SrvRqst Poll
(Notification unsupported)

SU and SM issue 6 probes 
within 15 s duration during 
startup and at 900 s interval; 
SCM sends lazy 
announcements at 120 s 
interval (SLP recommends 
10800 s).

SM (in two-party mode only) 
sends lazy announcements at 
120 s interval (recommended 
10800 s by SLP); SM registers
SDs for TTL varied by 
experiment. 

Not Applicable

Redundant transmission n = 4
No recovery

Adaptive 
Architecture (SLP)

Two-Party 
Architecture (UPnP)

Recovery 
Mechanism

Responsible 
Party

SU purges SD after failure to
receive SM announcement 
within TTL or after 3 retries of 
HTTP GetDiscard 

Knowledge

SU:  HTTP Get after discovery 
retry (180 s with < 3 retries); 
Registration request and 
refresh retry (120 s)

Retry after 
REX

SU: HTTP Get Poll
SM: Notification

Ignore REX

Application

SU issues aggressive probe 
(UPnP Msearch) at interval 
after purging SD (set to 120 s).Soft-State 

Recovery

SM sends n (3+2d+k) lazy 
announcements of SDs at 
interval varied by experiment. 
SU caches SD for TTL varied 
by experiment. (recommended 
1800 s for announcement 
interval and TTL by UPnP)

Heartbeat

Discovery 
Protocols

Issue REX in 78 sTCP

Redundant transmission n = 2
No recovery

Unicast UDP
Transport 
Protocols

Table 2.  Summary of Recovery Mechanisms and Key Parameters. 
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4.2.3 Recovery by Applications. When failure detection 
leads to a REX, discovery systems generally expect application 
software to initiate recovery, guided by an application-level retry 
policy. In our models, depending on the situation, we implement 
three different policies: (1) ignore the REX, (2) retry the operation 
for some period, and (3) discard knowledge. The discard strategy, 
employed following repeated failure of the retry strategy, relies 
upon discovery mechanisms to recover from failures that are more 
persistent. These strategies (discussed below) are summarized in 
Table 2. 

Ignoring the Remote Exception. In general, our models 
ignore any REX received when responding to a request, relying 
on the requester to retry. A SU can ignore a REX received when 
issuing a poll (e.g., FindService, SrvRqst, or HTTP GET) 
because the poll recurs at an interval. A Jini SCM (three-party 
model) or UPnP SM (two-party model) also ignores a REX 
received while attempting to issue a notification. This behavior, 
which is described in both the Jini and UPnP specifications, 
depends upon TCP to provide reliability for notifications. 
Notifications include sequence numbers that allow a receiving 
node to determine whether or not previous notifications were 
missed. 

Retrying the Operation. In our models, we retry selected 
operations in the face of a REX. The UPnP specification separates 
the operation of discovering a service from obtaining a description 
of the service (Jini combines these operations). Without a 
description, a service cannot be used. For this reason, in the UPnP 
model, a SU must issue a HTTP GET to obtain a description. If no 
description arrives within 180 s, then our model retries the HTTP 
GET. If unsuccessful after three attempts, the SU purges the 
related SD and discards knowledge of the SM.  Our three-party 
models, based on Jini and SLP, also contain a retry strategy, but 
associated with attempts to register or change a SD with a SCM. 
In these cases, the SM retries a ChangeService or 
ServiceRegistration 120 s after receiving a REX. 
Similarly, when a SU receives a REX (from either a SM or SCM) 
in response to a request to register for notification, the SU retries 
the registration in 120 s. These retries recur up to some time 
bound, after which the SM discards knowledge of the SCM. 

Discarding Knowledge. Both the two-party and three-party 
models include the possibility that an application can discard 
knowledge of previously discovered nodes. After discarding 
knowledge of a SM or SCM, all operations involving that node 
cease until it is rediscovered, either through lazy or aggressive 
discovery. 

In our UPnP model, SUs discard a SM (and any related 
SDs) after failure to receive announcements from a SM within a 
TTL or after three unsuccessful retries of a HTTP GET. In our 
SLP model (two-party mode), SUs do not discard SMs after 
failure to receive announcements. We took this decision because 
the SLP specification does not require SUs to discard a SM when 
missing a heartbeat. 

In our three-party model (based on Jini), a SM or SU 
deletes a SCM after a period (varied by experiment) of receiving 
only REXs when attempting to communicate with a SCM. We 
adopt this behavior because the Jini specification states that a 
discovering entity may discard a SCM with which it cannot 
communicate. While the SLP specification is silent on these 
issues, we implemented our SLP model (in both two-party and 
three-party modes) so that SUs discard SMs after a period (varied 
by experiment) of continuous REXs. We took this decision to 
align this behavior among all our models.  

 
5. EXPERIMENT METHODOLOGY 
 
We adopted a common approach to modeling, to experiment 
design, and to metrics for analysis. Aspects of the approach seem 
suited to investigation of failure response in other classes of 
distributed systems. Below, we discuss our approach. 

Model Construction. We created simulation models for the 
three architectures we found. Executable models enabled us to 
understand collective behavior among distributed components. 
We based the structure and behavior of our models (recall Section 
3) on specifications for UPnP [3] (two-party architecture), Jini [2] 
(three-party architecture), and SLP [4] (adaptive architecture). 
Each model comprises a set of components (and relationships 
among them), interactions (as messages received by components), 
behavior (as actions taken in response to messages, including 
generating new messages), and variables (to represent internal 
state of components). Components communicate via a simulated 
transport service that represents multicast UDP and unicast UDP 
and TCP (as explained in Section 4.2.1). The transport service can 
be impeded by simulated message loss and interface failures. We 
used Rapide [43], an architecture description language and 
accompanying toolset developed at Stanford University, to 
implement models of Jini and UPnP; for SLP we used SLX, a 
simulation system developed by Wolverine Software [44]. We 
chose to use two different simulation systems in order to establish 
the generality of our approach. We note that the Rapide system 
automatically records causal event traces and provides tools to 
visual and analyze those traces. 

Experiment Design. With simulation models in hand, we 
designed experiments to investigate failure response for selected 
configurations of components, where each configuration 
represents a distinct combination of architecture (two-party, three-
party, or adaptive), number of deployed SCMs, and choice of 
behaviors for discovery, consistency maintenance, and recovery. 
We approached experiment design by focusing on the types of 
failures (recall Section 4.1) that might interfere with system 
operation. We decided to consider four failure types: (1) power 
failure and restart, (2) node failures, (3) interface failures, and (4) 
message loss. For each failure type, we constructed an 
application-level scenario to exercise simulated topologies. Our 
scenarios include: (1) recovering a previously discovered 
configuration (on restart after power failure), (2) maintaining 
operational capability in a distributed real-time control application 
(impeded by failure of nodes hosting needed components), and (3) 
maintaining consistency of distributed information (when 
communication is impeded by interface failures or message 
losses). For these scenarios, we simulated various configurations 
of our models with parameters selected to ensure that observed 
performance differences resulted only from differences in system 
architecture and protocol. For three scenarios (node failures, 
interface failures, and message loss), we subjected each 
configuration to increasing failure rates, while measuring system 
response. To focus on fundamental differences in the designs for 
discovery systems, we excluded a number of possible application-
level choices, such as local caching of service descriptions and 
varying subscription lengths. 

Metrics. To compare failure response among simulated 
configurations, we defined metrics specific to each scenario. 
Broadly these metrics fall into three categories: (1) effectiveness, 
which is the ability of a distributed system to exhibit a desired 
state, expressed as a probability that the state is reached or a 
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proportion of time a system is in the desired state; (2) 
responsiveness, which is the time taken, or latency, to reach the 
desired state; and (3) efficiency, which is the amount of effort, 
measured by the number of messages, required for a distributed 
system to complete a scenario. For most combinations of 
configuration and scenario, we conducted repeated simulations 
and then we plotted (on the y-axis) performance on a metric 
against increasing failure rate (on the x-axis). The graphs also 
include a table that summarizes performance by averaging a 
metric across all failure rates; this summarization of the plotted 
curves gives a quick comparison of relative performance. An 
exception to this general approach to measurement occurs for the 
scenario related to restart after power failure, where there is no 
increasing failure rate. In this case, we simply provide the average 
and variance of the latency before a configuration is restored. In 
selected cases, we analyzed event traces to understand how 
differences in architecture, topology, and behavior contribute to 
differences in performance. 

 
6. EXPERIMENTS AND RESULTS 
 
In this section, we describe our scenarios and exhibit results. For 
each scenario, we describe the related experiment, delineate the 
failure model and recovery parameters, define the metrics, display 
the results and discuss underlying causes. We begin in Section 6.1 
with the power-failure-and-restart scenario and then consider in 
Section 6.2 the distributed real-time control scenario impeded by 
node failures. Subsequently (in Section 6.3), we discuss the 
consistency maintenance scenario impeded by communication 
failures of two types: interface failures and message losses. 
 
6.1 Recovery After Power Failure 
 
In this experiment, a distributed system establishes an initial 
configuration in which pairs of SUs and SMs rendezvous, so that 
each SU obtains one required service. Subsequently, a power 
failure causes all nodes to crash. Upon power restoration, each SU 
attempts to rediscover the previously acquired service. This 
experiment measures the latency until the initial configuration is 
restored. 

6.1.1 Experiment Description. This experiment compares 
several system designs: a two-party model (based on UPnP), a 
three-party model (based on Jini), and an adaptive model (based 
on SLP). In the two-party case, the topology (recall Figure 1) 
consists of six nodes: three SUs and three SMs. We partition the 
nodes into three SU-SM pairs that attempt to rendezvous. In the 
three-party cases (Jini and SLP), the topology (recall Figure 2) 
adds three SCMs for a total of nine nodes; however, we use 
logical partitioning (Jini groups and SLP scopes) so the each SU-
SM pair must discover each other through a different SCM; so 
that a previously discovered configuration may not be 
rediscovered until all nodes have restarted. We allow all SU-SM 
pairs to rendezvous, which establishes an initial configuration, and 
then we simulate a power failure lasting 40 s. We restore power 
and wait for SUs to rendezvous with the previously discovered 
SMs. Once the initial configuration is restored the scenario ends. 

Each model includes parameters set to the values indicated 
in Table 3. The first three rows in Table 3 show parameters 
unique to specific discovery systems. These parameters include 
the pattern for aggressive-discovery probes and the interval for 
lazy-discovery announcements. Jini and UPnP allow SUs to 
register for notifications; we assume such registrations are lost on 

node failure. SLP does not allow notifications and thus requires 
SUs to poll SCMs to discover services. We instantiated the 
adaptive architecture with two different polling intervals: 31 s as 
recommended for SLP and 5 s in order to gain early acquisition of 
services. The fourth row of Table 3 shows parameters for which 
we selected common values across all models. In particular, note 
that each node has a restart delay, which in most cases is not 
defined in discovery specifications. Since the specification for Jini 
recommends a random delay distributed uniformly between 2 s 
and 15 s before commencing discovery operations, we decided to 
assign this same strategy to all of our models in order to eliminate 
this as a source of difference. The final row of Table 3 lists 
common transmission and processing delays that we used for each 
model.  

 
 

 

 

 

 

 

 

 

 

 

 

 

6.1.2 Metrics. We defined two metrics to compare system 
performance: restoration latency and efficiency.  Restoration 
latency measures the elapsed time from restoration of power until 
the initial configuration is reestablished. Since restoration latency 
depends upon the starting time of the last system component, we 
defined restart delay to measure the elapsed time from restoration 
of power until the final system component restarts. We defined 
efficiency as the total number of messages during restoration 
latency. 
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Table 4.  Results For Power Failure and Restart Experiment. 
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6.1.3 Results. Table 4 presents results, measured over 30 
repetitions, for four different configurations. The metrics reveal 
that for most configurations, restart delay is the dominant 
component of restoration latency; the previous configuration is 
restored within about 2 s after all nodes have restarted. An 
exception arises when we configure the adaptive architecture with 
a 31 s polling interval. Here, the polling interval is the dominant 
component of restoration latency. This occurs in cases where a 
related SCM and SU both restart before the SM. Here the SU 
discovers and queries the SCM for services before the SM can 
find the SCM and register its service. In this situation, the SU 
must wait for the 31 s polling interval to elapse for issuing a 
second, successful query. Reducing the polling interval to 5 s 
brings restoration latency closer to that exhibited by the other 
architectures. 

Regarding efficiency, Table 4 shows that architectures with 
more components exchange more messages during a restoration 
scenario, but those architectures with the same number of 
components tend to exchange more messages when the scenario 
takes longer to complete. The three-party architecture proves 
slightly less efficient than the adaptive architecture because Jini 
incurs messages related to registration, which SLP does not 
support. 

One final point to note is the slightly better restoration 
latency of the three-party, as compared with two-party, 
architecture. This occurs because Jini delivers a service 
description in one step, concomitant with discovery, while UPnP 
requires a three-step process: discover the service, get the first 
part of the service description, and then get the second part of the 
service description. Should transmission delays increase, this 
factor would cause even greater difference in restoration latency. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.2 Service Acquisition and Maintenance Impeded by Node 
Failures 

 
 In this experiment, we investigate effectiveness and efficiency of 
service discovery systems in detecting component failure and 
locating replacements. We model a client for a distributed real-
time control application that must discover two types of sensor 
and an actuator, then monitor sensor readings and control a 
process. The client has access to a population of sensors and 
actuators, each running on separate nodes that we allow to fail. 
The client, sensors, and actuators are supported by a discovery 
system, represented by configurations of the three architectural 
variants in our models: two-party (UPnP), three-party (Jini), and 

adaptive (SLP). Where applicable, the experiment topology may 
include one or more SCMs, which we also allow to fail. We 
compare configurations using functional effectiveness, measured 
as the proportion of time that the client possesses an operational 
set of sensors and actuators required to control the process. We 
also compare efficiency among configurations by the number of 
messages exchanged. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.1 Experiment Description. Our experiment models a 
topology that includes one (client) SU and 12 SMs, composed of 
four instances each of three service types: “fast” sensor, “slow” 
sensor, and actuator. Figure 3 illustrates such a topology 
configured as a two-party architecture and Figure 4 shows the 
same topology configured as a three-party architecture (including 
one to three SCMs). We compare the performance of eight 
different configurations, enumerated in Table 5.  Here, one 
configuration (A0) uses a two-party (UPnP) architecture and one 
(C0) uses an adaptive (SLP) architecture limited to two-party 
mode, three configurations (B1, B2, and B3) use a three-party 
(Jini) architecture, and three configurations (C1, C2, and C3) use 
an adaptive, three-party (SLP) architecture. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 3. Two-party service discovery system with one service 
user and 12 service managers. 
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To establish initial conditions, we exercise each 
configuration until discovery completes and the SU acquires one 
service of each of the three service types. We then fail nodes 
according to the failure model described below. In order to focus 
exclusively on failure detection and recovery processes, we do not 
allow the SU to cache backup services, so at any time the SU 
holds at most one SD for each service type. After activation, a 
“fast” sensor transmits a reading every two seconds and a “slow” 
sensor transmits a reading every 30 seconds. The SU invokes the 
actuator after receiving an appropriate combination of readings 
from a “fast” and “slow” sensor. We select actuation times 
randomly from a uniform distribution with a mean of 60 s, 
provided the SU receives the required sensor readings. When the 
SU holds one SD for a service of each type (“fast” sensor, “slow” 
sensor, and actuator) and when each of those services is 
operational, then the application is considered functional. If the 
SU lacks SDs for one or more service type or if one or more of the 
SDs held by the SU describes a service instance that is not 
operational, then the application is considered non-functional. 
When non-functional, the SU client must first detect what services 
have failed and then initiate recovery procedures to discover 
replacements. During each experiment repetition, we accumulate 
the periods when the client is non-functional as well as the time 
required for failure detection and recovery. We also record 
message counts of the underlying service discovery system for the 
experiment duration. 

6.2.2 Failure Model. During the experiment duration DT , 
each SM node (and SCM node in three-party configurations) fails 
randomly and independently, although at least one service of each 
type always remains active so that the application could become 
functional. We let λ  be the node failure rate that varies from 0% 
to 80% in 10% increments (though no failures occur when 

0=λ ).  The mean time to node failure is DMF Tt ⋅−= )1( λ .   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Node failure times are randomly chosen from a “stepped” normal 
distribution with three steps: a 0.15 probability of failure before 

MFMF tt 2.0− , a 0.7 probability of failure between MFMF tt 2.0−  

and MFMF tt 2.0+ , and a 0.15 probability of failure between 

MFMF tt 2.0+  and MFt2 . Failure times are distributed uniformly 
within each step. When a node fails, affected services become 
unavailable for a time, selected from three failure duration classes, 
each with a different probability and duration. Short failures occur 
with a probability of 0.1 for a fixed (135 s) duration; intermediate 
failures occur with a probability of 0.7 for a duration selected 

uniformly on the interval [ ]300,180  s, long failures occur with a 

probability of 0.2 selected uniformly on the interval [ ]600,480  s. 
6.2.3 Failure Recovery Techniques. Table 6 gives common 

and configuration-specific parameters for failure recovery 
techniques we used in this experiment. We chose parameters that 
enable the SU to respond quickly to failure of remote services and 
to find replacements as soon as possible. We describe the 
recovery techniques employed in our model: first at the discovery 
level and then at the application level.  

Discovery-Level Recovery. For the two-party (UPnP) 
architecture, we use a heartbeat and soft-state strategy, choosing a 
TTL of 600 s for refreshing cached SDs. If not refreshed within 
the TTL, the SU purges the SD and commences periodic (120 s) 
Msearch queries to find a replacement service. When we model 
SLP in two-party mode, the SU both listens for lazy 
announcements (120 s) from SMs and periodically issues 
multicast queries for SMs (900 s) to find replacements. In three-
party configurations (both Jini and SLP), we model heartbeat 
monitoring through registration refreshes, choosing a refresh 
interval of 30 s for slow sensors and actuators and 300 s for fast 
sensors. If refreshes are missed, the SCM purges the SD. In the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

120 sMulticast query intervalBehavior for two-party 
SLP configuration B0

Immediately after missed sensor 
reading and after failing to receive an 

actuation response within 20 s
SU purges SD

180 sSU-SCM query interval

At TTL expiration (600 s)SU purges SD

Discovery-Level 
Recovery

120 sMsearch query interval

Application-Level 
Recovery

20 s after failure to receive response to 
requestSM or SU purges SCM

2 s for fast sensors
30 s for slow sensors

Sensor interval

All configurations

Immediately after learning SD is 
unavailableSU purges SD

Immediately after a missed refreshSCM purges SD

30 s for slow sensors and actuators 
300 s for fast sensorsRefresh interval

Behavior for three-party 
Jini and SLP 

configurations
B1, B2, B3, C1, C2, C3

600 s (lowered from recommended 
value)Announce interval

Behavior for two-party 
UPnP configuration A0

ValueParameterConfiguration

120 sMulticast query intervalBehavior for two-party 
SLP configuration B0

Immediately after missed sensor 
reading and after failing to receive an 

actuation response within 20 s
SU purges SD

180 sSU-SCM query interval

At TTL expiration (600 s)SU purges SD

Discovery-Level 
Recovery

120 sMsearch query interval

Application-Level 
Recovery

20 s after failure to receive response to 
requestSM or SU purges SCM

2 s for fast sensors
30 s for slow sensors

Sensor interval

All configurations

Immediately after learning SD is 
unavailableSU purges SD

Immediately after a missed refreshSCM purges SD

30 s for slow sensors and actuators 
300 s for fast sensorsRefresh interval

Behavior for three-party 
Jini and SLP 

configurations
B1, B2, B3, C1, C2, C3

600 s (lowered from recommended 
value)Announce interval

Behavior for two-party 
UPnP configuration A0

ValueParameterConfiguration

Table 6.  Recovery Parameters for Node-Failure Experiment. 
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three-party architecture, a SU that discovers a SD through a SCM 
polls that SCM every 180 s to learn if the SD has been purged; if 
so, the SU assumes failure of the related service and also purges 
the SD. In both three-party and adaptive architectures, SUs and 
SMs search for SCMs by listening for lazy announcements (120 
s). 

Application-Level Recovery. Across all models, we adopt 
an identical application-level recovery policy: upon failure to 
receive a scheduled sensor reading (every 2 s for fast sensors and 
30 s for slow sensors) the SU immediately purges the related SD 
and commences search for a replacement. Similarly, failure to 
receive a response to an actuation attempt within 20 s causes the 
SU to purge the related SD and to commence search. A similar 
policy applies to detecting failed SCMs. If a SM does not receive 
a response when attempting to refresh a service registration, the 
SM assumes that the SCM has failed and begins searching for a 
replacement. Similarly, if a SU does not receive a response to a 
SCM query, the SU purges the SCM and begins to search. 

6.2.4 Metrics. We define NFT  as accumulated time during 
which a client application is in a non-functional state. We 

compute the proportion of DT that a client application is in a 
functional state, or the client’s functional effectiveness, by the 

ratio ( ) DNFD TTTF /−= . We compute the average functional 
effectiveness of a configuration at a particular failure rate λ for n 
experiment repetitions as  

( )
n

TTT
F

n

i i
D

i
NF

i
D∑ −

= =1

/
λ  

We measure NFT as follows. As indicated, a client that has become 
non-functional first incurs a delay before detecting the failure. We 
call this delay detection latency. After detecting a non-functional 
state, the client may incur some delay while restoring required 
services. We call this delay recovery latency. Detection latency 
commences when a SM fails but the SU holds a SD provided by 
the SM. Once the SU discards the SD, or the SM recovers, 
detection latency ends. Recovery latency begins after the SU 
purges a SD for a failed service and commences search. Recovery 
latency ends when the SU finds a SD matching its needs. During 
periods when a client incurs either detection or recovery latency 
or both (the states can overlap), the client is non-functional, and 

we accumulate such periods in NFT . 
6.2.5 Results. For each of the eight configurations in Table 

5, we set s1800=DT  and executed 60 repetitions for each 

failure rate λ . Figure 5 shows average functional effectiveness 

λF  for each configuration as λ  increases. Figure 5 also includes 

a table that shows the summary statistic 800 −F , which is λF  
averaged across all values of λ  for each configuration. The 
results show that six of the eight configurations have similar 

curves for λF  and a 800 −F  of over 0.9.  The three-party 
configuration with one SCM (B1) and two SCMs (B2) perform 
less well, because as λ rises, the incidence of failure of the single 
SCM in B1 and concurrent failure of both SCMs in B2 increases. 
With no SCM to query for services, the SU remains non-
functional. Adding a third SCM (B3) reduces the probability of 

concurrent SCM failure sufficiently to raise 800 −F  to a level 

comparable with other configurations. The adaptive architecture 

achieves a comparable 800 −F  even with two or fewer SCMs, 
because when no SCMs can be found, the SU immediately 
switches to two-party mode to discover the available SMs. In the 
discussion below, we provide more detail on the effectiveness of 
these configurations by considering their comparative detection 
and recovery latencies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As revealed in Figure 6, efficiency varies markedly among  

As revealed in Figure 6, efficiency varies markedly among 
the configurations. The two-party configurations A0 and C0 are 
notably more efficient than any three-party configuration. This 
occurs in part because more messages are needed for SUs and 
SMs to rendezvous through SCMs. These messages include 
heartbeats by the SCMs, registration and refresh of SDs by SMs, 
and polls of SCMs by the SU. In the three-party and adaptive 
architectures, differences in protocol also influenced efficiency. 
For equivalent configurations, the three-party architecture (B1, 
B2, and B3) proves more efficient than the adaptive architecture 
(C1, C2, and C3). This occurs, because in the former, Jini SCMs 
send lazy announcements at 120 s intervals, while Jini SUs and 
SMs employ aggressive search only at start-up. However, in the 
adaptive architecture, both SLP SCMs and SMs announce every 
120 s, while SUs and SMs repeat a six-probe aggressive search 
sequence at regular intervals (900 s).  We believe that with 
equivalent underlying behaviors, adaptive and three-party 
architectures would exhibit similar efficiency when configured 
with an equal number of SCMs. 

One additional point is worth noting. In the two-party 
configurations (A0 and C0), the message-count curves have 
increasing slope as λ  increases, because the SU must search 
more frequently for replacement services. Note, however, that 
three-party configurations have message-count curves with 
decreasing slope as λ  increases. The rate of message exchange 
decreases because SCMs fail more frequently and remain down 
for longer periods as λ rises, thus reducing the number of 
opportunities for SD refresh messages and SCM heartbeats. 
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6.2.6 Discussion. While three-party configurations with 
three SCMs (B3 and C3) yield comparable functional 
effectiveness to two-party configurations (A0 and C0), our 
experiment reveals quite different underlying causes. Figures 7(a)-

(c) display similar non-functional time ( NFT ) under increasing 
failure rate for configurations A0, B3, and C3. The figures also 

decompose NFT  into the proportions attributable to detection 
latency and recovery latency. In the two-party configuration, 

reported in Figure 7(a), about 90 % of NFT  accrues while waiting 
to detect a failure; recovery occurs quickly. Analysis of execution 
traces showed most failures were detected through missed sensor 
readings or REXs received in response to failed actuations.  In the 
three-party configuration, shown in Figure 7(b), the situation is 

different. Here, the largest component of NFT  is recovery latency. 
Execution traces for the three-party architecture show incidence of 
concurrent failure of all SCMs rising steadily with increasing λ . 
With no SCMs available, the SU is unable to find replacements 
for failed services until a SCM (1) recovers, (2) is discovered by 
the SU and SMs, (3) accepts registrations from available SMs, and 
(4) responds to queries from the SU. These factors dramatically 

increased the proportion of NFT  attributable to recovery latency. 
This trend is more marked with fewer SCMs (not shown here). In 
the adaptive configuration, as displayed in Figure 7(c), over 90 % 

of NFT  is again detection latency. Here, upon detecting failure, the 
SU switches to two-party mode when no SCMs can be found; 
thus, avoiding the delay incurred in waiting for a SCM to recover. 
Hence, the detection and recovery behavior of the adaptive 
configuration appears quite similar to the two-party configuration, 
which is also reflected in the similarity of Figures 7(a) and 7(c).  

 
6.3  Consistency Maintenance Impeded by Communication 

Failures 
 
In this experiment, we investigate effectiveness and efficiency of 
service discovery systems in maintaining consistency of 
information replicated throughout a distributed system. We model 

five clients (SUs) that each discover the same service manager 
(SM) and obtain a copy of the service description (SD) managed 
by the SM. Subsequently, the SM updates its local copy of the 
SD, creating an inconsistency with the SDs replicated to the SUs. 
We measure the probability that each SD will receive an updated 
copy of the SD prior to a deadline, the latency incurred in 
receiving the updated SD, and the number of messages exchanged 
to convey the update. We consider effects from two types of 
communication failure, interface failures and message losses, 
which could impede dissemination of the updated SD. We also 
compare two alternate consistency maintenance mechanisms: 
polling (recall Section 3.3.1) and notification (recall Section 
3.3.2), which are supported by selected discovery systems. 
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 (a) Decomposition of Nonfunctional Time into Detection and 
Recovery Latency for Configuration A0. 

(b) Decomposition of Nonfunctional Time into Detection and 
Recovery Latency for Configuration B3. 

(c) Decomposition of Nonfunctional Time into Detection and 
Recovery Latency for Configuration B3. 
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6.3.1 Experiment Description. We compare performance of 
nine configurations, as enumerated in Table 7. One configuration 
(A0p) uses a two-party (UPnP) architecture (see Figure 8) with a 
polling regime to maintain consistency. Another configuration 
(A0n) combines the same architecture with notification. Four 
configurations (B1p, B1n, B2p and B2n) use a three-party (Jini) 
architecture (see Figure 9) with one or two SCMs and polling or 
notification. Three configurations (C0p, C1p and C2p) use an 
adaptive (SLP) architecture (with zero, one, or two SCMs) and 
polling (SLP does not include a notification mechanism).  

 

 

 

 

 

 

 

 

 

 

 

 

To establish initial conditions, we set aside an interval, up 

to time Qt , for all SUs to discover the SM and obtain the SM’s 
SD. We then activate interface failures or message loss according 
to the appropriate failure model described below. In addition, we 

establish a deadline Dt  by which the change must propagate to all 
SUs, and then chose a time, randomly distributed on the uniform 

interval [ ]2, DQ tt , to introduce a change in the SD on the SM. 

Here, we set 100=Qt  s and 5400=Dt  s. Each experiment aims 
to restore consistency between the changed SD held by the SM 
and the cached copies of the SD held by the SUs. We recorded the 
time of change to the SD on the SM, the latency required to 

propagate the update to each SU prior to Dt  (or failure to do so) 
and the number of messages exchanged. 

6.3.2 Failure Models. We conducted separate experiments 
for interface failure and message loss. Table 8 summarizes 
relevant parameters for each failure model.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Interface Failure. In the interface-failure experiment, we let 
λ  be the interface failure rate.  During the experiment, each node 
suffers an interface failure at a time, randomly distributed on the 

uniform interval ( )[ ]λ⋅− QQQ ttt , . When activating each 
interface failure, there is an equal likelihood that the transmitter, 
receiver, or both fail. Once activated, each failure remains in 

effect for the duration of λ⋅Dt , after that the failure is remedied. 
During a failure interval, no messages are sent from a node with a 
failed transmitter, and a node with a failed receiver does not 
receive messages. For each configuration simulated, we varied λ  
from 0 to 90 % in increments of 5 %. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Message Loss. In the message-loss experiment, we let λ  

be the message-loss rate. For each attempt to transmit a message, 
whether on a reliable or unreliable channel, a uniform random real 

number is selected from the unit interval[ ]1,0 . If the number is 

less than λ , the message is discarded. Loss of a message sent on 
a reliable channel stimulates a retransmission after an appropriate 
timeout. We varied λ  as in the interface-failure experiment. 
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Table 7.  Nine Configurations Compared in Communication-
Failure Experiments. 
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Each transmission may fail 
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message loss rate 
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Loss Individual message 
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Individual message 
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Once per run for each nodeFailure incidence

Interface 
Failure

ValueParameterFailure

Each transmission may fail 
with probability equal to 
message loss rate 
from 0 to 90%. 

Failure incidence
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Loss Individual message 

transmissionFailure scope
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transmission  Failure duration
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from 0 to 90%Failure duration
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both with equal likelihoodFailure scope

Once per run for each nodeFailure incidence

Interface 
Failure

ValueParameterFailure

Table 8. Parameters for Interface Failure and Message Loss  
Models.
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6.3.3 Failure Recovery Techniques. We model recovery 
techniques at three levels: transport protocols, discovery 
protocols, and application. Recovery techniques for the transport 
protocols are described in Section 4.2.1. Table 9 shows the 
recovery techniques and related parameters we adopted for the 
discovery and application levels. 

Discovery-Level Recovery. In the two-party (UPnP) 
architecture, we use a heartbeat and soft-state strategy where SUs 
discarded SDs not refreshed within a TTL (of 1800 s). To enable 
rediscovery of SMs (and SCMs, where applicable) we adopt a 
discovery behavior consistent with the specific protocol (UPnP, 
Jini, or SLP) being modeled. In all configurations (except A0p, 
which does not employ registration), we chose the same TTL (of 
1800 s) after which registrations would be discarded if not 
renewed. For REXs received in response to registration or refresh 
attempts, to ad-hoc queries, or to change-service operations, the 
retries occur at intervals of 120 s (but only up to a maximum of 
540 s). To comply with the Jini and UPnP specifications, there are 
no retries after a REX when attempting to issue notifications.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Application-Level Recovery. For configurations (A0p, 

B1p, B2p, C0p, C1p, and C2p ) that use polling, we set the 
polling interval to 180 s. In (UPnP) configurations (A0p and 
A0n), SUs discard a SD after (HTTP GET) queries to the SM 
result in nothing but REXs for a total of 540 s. In other 
configurations, SUs discard a SCM after receiving nothing but 
REXs over 540 s while attempting to interact with the SCM.  

6.3.4 Metrics. We evaluate update effectiveness, 
responsiveness, and efficiency. Update effectiveness measures the 
probability that a change to a SD will propagate to a given SU 

before the deadline Dt .  We let n be the number of repetitions of 

an experiment, m be the number of SUs in a topology, and jit′  be 
the time that an updated SD is propagated to SU j, mj ≤≤1 , in 
experiment repetition i, ni ≤≤1 . Then, we define update 
effectiveness for the failure rate λ over n repetitions as 
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defines whether a change in a SD was propagated to the jth SU 
during the ith repetition  (i.e., 1 if true, 0 if false). 

Update responsiveness measures the latency in propagating 

the SD update. We let it′  be the time the SD change occurred on 

the SM in experiment repetition i. Update responsiveness λR~  is 

the median of all ijp−1  at a particular value of λ  where 
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is the proportion of time required to propagate an update to the jth 

SU in the ith repetition it′  at λ . 
Update efficiency measures the effort required to (attempt 

to) maintain consistency. Analysis of our experiment 
configurations revealed a minimum number of messages, x , that 
must be sent to propagate a change to all SUs. This minimum 
( 7=x ) occurred for the three-party configuration with 
notification and one SCM (B1n)2. We define update efficiency 
based on the ratio of x  to the actual number of messages 
observed. We let y be the number of messages sent while 
attempting to propagate a change from the SM to the SUs in a 
given repetition. Then, for n number of experiment repetitions, we 
define average update efficiency at a particular failure rate λ as 
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6.3.5 Interface-Failure Results. For each configuration in 
Table 7, we executed 1000=n  repetitions at each interface-

failure rate λ . Figure 10 shows update effectiveness λU  for the 
configurations as λ  increases. The figure also includes a table 

with mean update effectiveness 900 −U , which is λU  averaged 
across all values of λ  for each indicated configuration. Overall, 
these results show that a two-party architecture, or an adaptive 
architecture that has a two-party mode, provides superior 
effectiveness to a three-party architecture (at least given 
topologies limited to one or two SCMs). This occurs because each 
updated SD must propagate over only one channel (SM to SU) in 
two-party cases, but over two channels (SM to SCM and SCM to 
SU) in three-party cases. For both three-party and adaptive 

architectures, 900 −U  improves with the number of SCMs due to 
the reduction in the incidence of joint failure of both channels. We 
note that polling yields better effectiveness than notification. For 
example, when comparing three-party polling with one SCM 
(B1p) against three-party notification with one SCM (B1n), the 
advantage of polling appears as λ  exceeds 35 % because when 

                                                 
2 Recall that the two-party (UPnP) architecture requires a multiple-
message exchange to convey SDs. 

1800 sAnnounce interval

1800 sRegistration TTLA0n, B1p, B1n, B2p, B2n, C1p
and C2p

After 540 s with 
only REXSM or SU purges SCMB1p, B1n, B2p, B2n, C1p and 

C2p
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only REXSU purges SDA0p, A0n, and C0p

180 sPolling interval A0p, B1p, B2p, C0p, C1p and 
C2p

Application-
Level 

Recovery

120 sTime to retry after REXA0n, B1p, B1n, B2p, B2n, C0p, 
C1p and C2p

900 sAnnounce interval
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(4 probes in 15 s)Probe interval

C0p, C1p, and C2p (SLP)

120 sAnnounce interval

5 s (7 times)Probe interval
B1p, B1n, B2p and B2n (Jini)

At TTL expirationSU purges SD

120 sMsearch query intervalA0p and A0n (UPnP)

Discovery-
Level 

Recovery

ValueParameterConfiguration
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and C2p
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only REXSM or SU purges SCMB1p, B1n, B2p, B2n, C1p and 

C2p

After 540 s with 
only REXSU purges SDA0p, A0n, and C0p

180 sPolling interval A0p, B1p, B2p, C0p, C1p and 
C2p

Application-
Level 

Recovery

120 sTime to retry after REXA0n, B1p, B1n, B2p, B2n, C0p, 
C1p and C2p

900 sAnnounce interval

Variable 
(4 probes in 15 s)Probe interval

C0p, C1p, and C2p (SLP)

120 sAnnounce interval

5 s (7 times)Probe interval
B1p, B1n, B2p and B2n (Jini)

At TTL expirationSU purges SD

120 sMsearch query intervalA0p and A0n (UPnP)

Discovery-
Level 

Recovery

ValueParameterConfiguration

Table 9.  Key Model Parameters for Communication-
Failure Experiments. 
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notifications fail, SD updates are propagated by recovery 
mechanisms, which activate only after some delay. On the other 
hand, polling persists with retries after receiving a REX. We note 
that configurations using notification also exhibit anomalous 
behavior when λ  is in the range [ ]25,5  %; we discuss the 
reasons for this below in Section 6.3.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 shows median update responsiveness λR~  for all 
configurations as λ  increases. Generally, the ranking of 
architectures for responsiveness is similar to effectiveness. Where 
employed, notification exhibits better responsiveness than polling, 
which incurs increased latency from the 180 s polling interval. 

Figure 11 also shows a steep drop-off in λR~  for all configurations 

as λ  increases beyond the [ ]30,20  % range, where failures 
prevent initial propagation of the updated SD, forcing invocation 
of recovery actions that cannot succeed until paths are restored. 
Thus, even though some configurations achieved effectiveness of 
over 0.9 as λ  reaches 70% (see Figure 10), responsiveness for all 
configurations approaches zero. Three-party configurations 
experience longer delays at high values of λ  as paths to SCMs 
become increasingly unavailable. 

Figurre 12 shows average efficiency λE  for experiment 
configurations as λ  increases. The table included in Figure 12 

shows 900 −E , which is λE  across all values of λ  for each 

indicated configuration. Here, λE  declines for all configurations 
as λ  increases. This reflects a rising number of messages 
generated when recovery strategies are invoked more frequently 
as λ  rises. Configurations using more SCMs are less efficient (but 
more effective) than similar configurations with fewer SCMs. The 
adaptive architecture appears less efficient than the three-party 
architecture with an equivalent number of SCMs for the reasons 
described above in section 6.2.5. Again, we expect the use of 

equivalent underlying behaviors would yield comparable 
efficiencies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Some other points seem worth noting. The three-party 

configurations using notification (B1n and B2n) are more 
efficient than similar configurations using polling (B1p and B2p) 
because in Jini each SU poll to a SCM involves a request followed 
by a reply, while a Jini SCM notification is a single message. 
However, for 40<λ %, two-party (UPnP) notification (A0n) 
appears less efficient than two-party polling (A0p). This occurs 
because when UPnP notifications are lost, recovery strategies 
must often be used, thus prolonging the time to propagate the 
updated SD and increasing message counts.  
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Figure 10. Comparing update effectiveness ( λU ) for different 
configurations in response to increasing rate of interface failures 

(1000 repetitions per data point). The table gives 900 −U , or λU  
averaged across all values of λ  for each configuration. 
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Figure 11. Comparing median update responsiveness ( λR~ ) 
for different configurations in response to increasing rate of 
interface failures (1000 repetitions per data point). The table 
gives 900
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−R , which is λR~ , averaged across all values of λ  for 

each configuration. 
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Figure 12. Comparing average update efficiency ( λE ) for 
different configurations in  response to increasing rate of 
interface failures (1000 repetitions per data point). The table 

gives 900 −E , which is λE averaged across all values of λ  for 
each configuration. 
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6.3.6 Message-Loss Results. For each configuration in 
Table 7, we executed 200=n  repetitions at each message-loss 
rate λ . Figure 13 shows update effectiveness λU  for the 
configurations as λ  increases. Figure 13 also includes a table that 

shows 900 −U  across all values of λ  for each indicated 
configuration. Overall, these results show that most configurations 
provide an effectiveness of 0.95 or better until λ  exceeds 80 %. 
Overall, effectiveness under message loss conditions is higher 
than under interface failure conditions. This is because interfaces 
fail for protracted periods at higher values of λ , increasing the 
probability that channels remain blocked until Dt , so updates 
never get through. In contrast, message loss affects only 
individual transmissions, allowing recovery strategies more 
opportunities to propagate the update before Dt . Polling continues 
to yield better effectiveness than notification. The two-party 
configuration with polling (A0p) achieves a mean effectiveness of 
0.99, due to the combined advantages of using polling with just 
two parties (which requires transiting one channel rather than 
two). We note that the two-party configuration with notification 
(A0n) and the three-party notification with one SCM (B1n) 
exhibit anomalous behavior and reduced effectiveness as λ  
surpasses 20 %; we discuss the reasons for this below in Section 
6.3.7. Responsiveness (not shown here) exhibits a steep decline 
after 80>λ %, compared with 30>λ % for interface failure. 
The higher responsiveness under message loss conditions occurs 
for the same reasons as higher effectiveness. Under message loss, 
notification also continues to provide better responsiveness than 
polling.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 shows average efficiency λE  for experiment 

configurations as λ  increases and includes a table for 900−E  for 
for each configuration. As in the case of effectiveness and 
responsiveness, all configurations prove more efficient under 
message loss conditions than under interface failure for the 
reasons given above.  The better efficiency is also reflected in the 

overall more gradual decline in the message loss efficiency 
curves. Otherwise, the general ordering of efficiencies for the 
various configurations appears similar under both interface failure 
and message loss. We note the reduced efficiency of the two-party 
(UPnP) notification (A0n) above 20=λ % in comparison with 
two-party polling (A0p). In A0n, efficiency suffers from cases 
where notifications are lost and recovery procedures are required 
to propagate the update (taking more time and requiring more 
messages). The combination of lost notifications and use of 
recovery also causes a sharp decline in the efficiency of the three-
party notification with a single SCM (B1n), which at low values 
of λ , generates the fewest (7) messages to propagate updates. 
Another exception is the three-party configuration using 
notification with two SCMs (B2n), which exhibits increasing 

efficiency over the failure rate range [ ]35,5 % and overtakes the 
three-party configuration using polling with one SCM (B1p). This 
counterintuitive result occurs because in some repetitions, lost 
messages cause the SM or SUs to discover only one of the two 
SCMs; thus, messages that would normally be duplicated to both 
SCMs are not. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6.3.7 Discussion. The notification mechanism included in 

UPnP and Jini (and other distributed systems) proved 
unexpectedly ineffective at disseminating updates under certain 
conditions. Foremost, under low interface-failure rates (in the 
range [ ]30,5 %) our results exhibit saw-tooth phenomena for 
configurations using notification. The dip is most pronounced 
(nearly 15%) for the two-party (UPnP) configuration (A0n) and 
less pronounced (around 5%) for the three-party (Jini) 
configurations (B1n and B2n). In the two-party case, analysis of 
execution traces showed a large number of notifications were lost 
when either the SM transmitter was inoperable (causing 
notifications to all SUs to be lost) or when SU receivers were 
inoperable (causing lost notifications to individual SUs). Since 
neither UPnP nor Jini require notification senders to retry after a 
REX, updated information must be disseminated through a 
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Figure 13. Comparing update effectiveness ( λU ) for 
different configurations in response to increasing rate 
of message loss (200 repetitions per data point). The 

table gives 900 −U , or λU  averaged across all values of 
λ  for each configuration. 
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recovery mechanism. At low failure rates, a notification can be 
lost to an interface failure, which is repaired prior to the next 
announcement or registration-refresh attempt. Under such 
conditions, recovery mechanisms are not invoked and the SU does 
not obtain an updated SD. Polling proves more effective because 
the SU checks periodically (180 s intervals) and persistently for 
updated information and retrieves the SD when indicated.  

A similar sequence of events occurs in the three-party case, 
but the effects are more modest. The three-party configurations 
require a SM to first propagate a change to a SCM. Failure to 
propagate a change results in a REX that causes the SM to retry 
the change for up to 540 s, during which time the interface failure 
may be repaired. If still unconfirmed after 540 s, the SM purges 
the SCM and initiates aggressive discovery. After rediscovering 
the SCM, the SM propagates the change, and the SCM then 
notifies registered SUs. Even with this redundancy, there still is 
some chance that a SU receiver is blocked and thus unable to 
receive notification. The redundancy does, however, increase the 
probability that an updated SD reaches a SU. 

Notification (as specified for UPnP and Jini) also appears 
less effective under message loss. Lack of application-level retries 
to deliver notices leads to significant decline in update 
effectiveness above 20=λ %. This appears for the relevant two-
party (UPnP) configuration (A0n) and three-party (Jini) 
configuration (B1n), both of which use notification. Above 

20=λ %, the incidence of undelivered notifications increases 
and, unless recovery is stimulated, the updated SD is not 
disseminated.  In configuration A0n, as λ  exceeds 60 %, lost 
registration-refresh requests trigger recovery procedures with 
increasing frequency, which causes propagation of the updated 
SD when a registration is reestablished. This process slightly 
improves and then maintains effectiveness within the failure rate 

range [ ]80,60 %, causing this curve to echo the saw-tooth 
feature in the update effectiveness curve for A0n under interface 
failure. Above 80=λ %, lost messages effectively close the 
channel, and effectiveness collapses for all configurations. 

For the three-party configuration (B1n), loss of change 
requests (from the SM) as well as registration refreshes (from the 
SM and SUs) also stimulate recovery procedures that partly 
compensate for lost notifications. When a second SCM is added 
(configuration B2n) update effectiveness improves because the 
SM now has two paths through which to disseminate updates to 
SUs.   

 
7. CONCLUSIONS 
 
Overall, we found designs for first-generation discovery systems 
can be robust under difficult failure environments. Across all 
experiments, most configurations exhibited an effectiveness of 
better than 0.9 in obtaining services or propagating updates for 
failure rates approaching (often exceeding) 80 %. Configurations 
proved ineffective only when all essential nodes failed or were 
unreachable, or when recovery actions were not activated (as 
occurred in response to lost update notifications). Similarly, 
extensive delays in propagating updates depended on the duration 
of path outages.  

For our scenarios and metrics, two-party configurations (or 
three-party configurations that could adapt to two-party mode) 
appeared more robust than three-party configurations (where 
robustness improved with the number of replicated directories). 
Deploying three directory replicas yielded robustness equal to 

two-party configurations. In tradeoff, increasing the number of 
directory replicas lowers system efficiency by increasing the 
number of messages exchanged. In most cases, we found the 
adaptive architecture with one directory achieved robustness 
comparable to other configurations, while providing better 
efficiency than configurations with replicated directories.  

To disseminate updates, we found polling more effective 
than notification. Our polling regime used persistent retries, while 
our notification regime depended only on reliable transport 
protocols, falling back to alternate recovery mechanisms when 
notifications could not be delivered. The alternate recovery 
mechanisms were not always activated at lower failure rates. This 
anomaly appeared in effectiveness plots for configurations using 
notification. Notification generally conveyed updates with less 
delay than polling. In the two-party architecture, polling was more 
effective, so scenarios tended to end earlier and require fewer 
messages. 

Beyond our methodology and comparisons, we identified 
and discussed the most significant design and configuration 
decisions that influence robustness and efficiency in first-
generation discovery systems. We showed how available 
architectural alternatives, as well as choices for consistency 
maintenance and recovery strategies, lead to robustness-efficiency 
tradeoffs. We also showed how faulty assumptions regarding 
recovery strategies could unexpectedly degrade robustness and 
efficiency. The information provided should convey a better 
understanding of failure behavior in existing discovery systems, 
allowing potential users to configure deployments for high 
robustness at low cost. The discussions presented here could also 
help to improve designs for future discovery systems. 
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A Model-based Analysis of First-Generation Service 
Discovery Systems1 

 

Christopher Dabrowski, Kevin Mills, and Stephen Quirolgico 
National Institute of Standards & Technology 

Gaithersburg, Maryland 20899 
 
Information technology is undergoing a paradigm shift from desktop computing, where isolated 
workstations connect to shared servers across a network, to pervasive computing, where myriad 
portable, embedded, and networked information appliances continuously reconfigure themselves 
individually and collectively to support the information requirements of mobile workers and work 
teams. This shift will not occur overnight, nor will it be achieved without solving a range of new 
technical and social problems. Still, this inexorable change should yield many economic 
opportunities for the global information technology industry, and for the increasing swath of 
businesses that depend on information. The potential value of pervasive computing motivated the 
NIST Information Technology Laboratory (ITL) to establish a five-year program of research to 
help the information technology industry identify and solve some looming technical roadblocks 
that seemed likely to slow development and acceptance of the new paradigm. The ITL Pervasive 
Computing program addressed three general areas: human-computer interaction, programming 
models, and networking. Service discovery systems, which reside in an intersection between 
programming models and networking, cover a key aspect of pervasive computing. For this 
reason, researchers in ITL decided to study various industry designs for service discovery systems 
that could play a key part in future technology to enable pervasive computing applications. This 
special publication provides an analysis of a first generation of designs for service discovery 
systems. 

Over the period from about 1998 to 2000, industry developed a first generation of 
competing architectures and protocols for device and service discovery. Such a plethora of 
incompatible approaches might impede the interoperability required by a market for pervasive 
computing. Is the existence of so many different service discovery systems justified? NIST 
researchers analyzed various technical approaches and developed a model to unify the features, 
functions, and processes provided. The goal of this modeling effort was threefold: (1) to 
understand the essential service-discovery functionality provided by the industry, (2) to reveal 
any technical deficiencies in existing service-discovery specifications, and (3) to define the 
technical bounds achievable from this first-generation of service-discovery systems. The result of 
this modeling effort is reported in this special publication. 

The fact that numerous competing designs have appeared indicates a substantial industry 
interest in using dynamic service discovery as a means to deploy and evolve component-based 
systems. But why have so many different designs appeared? Are the designs sufficiently different 
to warrant multiple solutions? What elements are contained within the various designs? What 
problems should service discovery systems solve? What are the shortcomings of the first-
generation of service discovery systems? What open issues do first-generation designs for service 
discovery systems leave for implementers to solve? These are the questions that motivate the 
work reported in this publication. 

                                                 
1 Due to its scope and length, this paper was published as a separate, companion NIST Special Publication 

(SP 500-260). Only the execution summary of NIST SP 500-260 is reproduced here. 
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Based on careful analyses of selected specifications for service discovery architectures 
and protocols, we present a generic model that represents the key elements, relationships, and 
behaviors of a service discovery system. Our model consists of two parts: a meta-model that 
defines the context in which service discovery systems operate and a generic, object-oriented 
model that represents the fundamental structure and behavior of service discovery systems. We 
also identify some open issues or limitations in existing designs for first-generation service 
discovery systems. We demonstrate how our generic model can be used to represent specific 
service discovery systems. 

Beyond an analysis of the structure and behavior of first-generation service discovery 
systems, we consider two other problems. First, the current generation of service discovery 
systems can lead to some system-wide performance issues, unless implementers and users 
exercise due care. We identify three classes of performance issues that might arise, and we 
suggest a range of solutions that implementers might adopt to solve each issue. A second problem 
relates to service guarantees. None of the service discovery systems we analyzed defined any 
expectations about the guarantees, or even the goals, that the design aimed to satisfy. We propose 
a set of service guarantees that we believe service discovery systems should aim to achieve, and 
we explain the qualifications associated with such guarantees. In other work, we have used our 
proposed service guarantees to assess the performance and correctness of specific designs for 
service discovery systems. 

In summary, this special publication makes three specific contributions – intended to 
inform a future generation of designs and to improve the performance of implementations for the 
current generation of designs. First, we provide a generic model of the structure and behavior of 
first-generation service discovery systems, and we show how our model can represent the designs 
for several, specific service discovery systems. Our model unifies the common elements and 
behaviors in modern service discovery systems. Should an industry standards group choose to 
develop a unified specification for service discovery, our model could provide helpful input to the 
process. We also identify issues that designers should attempt to resolve in the next generation of 
service discovery systems. Second, we propose a set of service guarantees that we believe service 
discovery systems should strive to satisfy, along with an analysis of the factors that might 
interfere with meeting service guarantees. Such service guarantees could be cast into test 
assertions that serve to evaluate the behavior or measure the performance of designs and 
implementations of service discovery systems. Third, we identify and suggest possible solutions 
to performance issues that can arise in dynamic service discovery systems. Identifying possible 
performance issues can alert users to the potential for unexpected behavior when service 
discovery technology is deployed at large scale. Further, implementers of service discovery 
systems can consider our suggested solutions when developing software to embody related 
processes in a service discovery system. Our three contributions should help to improve the 
quality of the next generation of service discovery systems on which the service-oriented 
architectures of tomorrow appear likely to depend.  
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PERFORMANCE IMPROVEMENT TECHNIQUES FOR DISCOVERY SYSTEMS 

Initial investigation and measurement of prototype service discovery systems revealed an interesting 
property. The performance of such systems depends primarily on a set of tunable parameters, while the 
optimum values for the parameters depend upon the number of elements present in the system. 
Unfortunately, the nature of service discovery systems is for the number of elements to fluctuate 
significantly over a wide range of time scales, many of which prove too short for system administrators to 
detect and respond with appropriate parameter changes. On the other hand, service discovery systems 
include mechanisms to monitor system elements and to detect changes in system composition. NIST 
researchers conceived the idea that self-adaptive algorithms could be developed to use the underlying 
protocols of a service discovery system to monitor system composition and to automatically adjust 
various parameter settings to achieve improved performance. The papers in this section of the special 
publication describe and report the performance properties of several self-adaptive algorithms developed 
by NIST researchers and applied to various service discovery systems. 

In Paper #22, “Adaptive Jitter Control for UPnP M-Search”, Mills and Dabrowski investigate 
various self-adaptive algorithms that could be used to mitigate response implosion, which can occur in 
systems where a client multicasts a query to an unknown population of potential respondents all of whom 
may respond, overrunning the client’s receive buffer space. While response implosion may occur in any 
multicast-query system, the case of UPnP is particularly compelling because each respondent is required 
to send n (3+2d+k) messages in response to each multicast query, where n is a redundancy factor, d is the 
number of devices contained by a respondent, and k is the number of unique service types contained by a 
respondent. To mitigate response implosion, UPnP multicast queries carry a value, M, such that each 
respondent chooses a time to response by drawing a uniformly distributed random number from the 
interval 0…M. UPnP clients have no specific information to help in choosing a reasonable value for M. 
For example, this paper shows that a performance tradeoff exists between increased discovery latency (if 
M is chosen too large) and decreased discovery effectiveness (if M is chosen too small). The paper also 
shows that even when M is chosen to be the theoretically correct value, the random nature of responses 
leads to situations where the receive buffer becomes overly full; a situation that persists and leads to 
discovery effectiveness of only around 80%-85%. The paper proposes self-adaptive algorithms in two 
classes: random and scheduled. All the proposed algorithms rely on the fact that respondents likely have a 
picture of the state of the system, which they can use to determine when to reply. Further, respondents can 
feedback information to the client, allowing selection of a better value for M. Interestingly, the paper 
shows that the self-adaptive random schemes all exhibit the potential to overfill the receiver buffer, 
leading to lower than expected discovery effectiveness (82%-90%). On the other hand, the self-adaptive 
scheduled algorithms all achieve 100% discovery effectiveness at the cost of increased memory and 
processing usage at each respondent. The paper quantifies the estimated costs. The paper also suggests 
some alternatives to UPnP M-Search, which might lead to more effective discovery at lower cost and in 
larger networks. 

In Paper #23, “Self-Adaptive Leasing for Jini”, Bowers, Mills, and Rose analyze the performance 
of the Jini leasing system, which is one of several similar subscription-and-renewal functions included in 
many service discovery systems (an other distributed systems). Leasing systems require a client interested 
in using a remote resource to register for such use and then to periodically renew the registration. Failure 
to renew the registration will result in the client losing access to the remote resource. Such schemes allow 
client failures to be detected so that resources may be redirected to other clients. The paper defines 
relationships between lease period, detection-failure latency, and overhead (in bandwidth or processing 
time) for the Jini leasing system. The paper also defines and analyzes two self-adjusting leasing 
algorithms (called adaptive and inverted), which permit a lease granter to select a lease time that provides 
the lowest feasible failure detection latency while respecting limits on the overhead devoted to renewing 
leases. The analysis shows that the adaptive algorithm detects failures in ½ the time taken by the inverted 
algorithm. The paper also presents simulation results that confirm the analysis. 
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In Paper #24, “Improving Failure Responsiveness for Jini”, Rose, Bowers, Quirolgico, and Mills 
show how a self-adjusting leasing algorithm (the adaptive algorithm from Paper #23) can be incorporated 
into a Jini lookup service to provide the best possible failure-detection latency within the limits of the 
resources that can be dedicated to lease renewal. This paper extends Paper #23 by describing how NIST 
researchers incorporated the algorithm into “reggie”, the SUN Microsystems Java implementation of a 
Jini lookup service. The implementation discussed in this paper provides the basis for a demonstration of 
the algorithm. In Paper #25, “Self-Managed Leasing for Distributed Systems” Bowers, Mills, Quirolgico, 
and Rose recast the results from Paper #24 in the context of self-managed systems. 

In Paper #26, “An Autonomic Failure-Detection Algorithm”, Mills, Rose, Quirolgico, Britton, 
and Tan demonstrate how the self-adaptive leasing algorithm first introduced in Paper #23 can be applied 
to several functions in service discovery systems. The example applications include: (1) leasing in Jini, 
(2) subscriptions in UPnP, (3) service registration in SLP, and (4) polling in SLP. The paper provides 
analytical and simulation results for all the example applications and also adds measured empirical results 
for the Jini leasing application. 

In Paper #27, “Performance Characterization of Decentralized Algorithms for Replica Selection 
in Distributed Object Systems”, Tan and Mills survey key concepts related to replica selection and then 
use simulation to characterize performance (response time, server latency, selection error, probability of 
server overload) for four common replica-selection algorithms (random, greedy, partitioned, weighted) 
when applied in a decentralized form to client queries in a distributed object system deployed on a local 
network. The researchers introduce two new replica-selection algorithms (balanced and balanced-
partitioned) that give improved performance over the more common algorithms. The paper finds the 
weighted algorithm performs best among the common algorithms and the balanced algorithm performs 
best among all those considered. The paper also discusses the limits of applicability for the algorithms as 
presented, and suggests modification that might extend the range of applicability. The work reported in 
this paper should prove applicable to service discovery systems (such as Jini and SLP) that require service 
cache managers to be maintained as replicated directories of available services. Given a set of replicated 
directories and a population of clients, the algorithms investigated in this paper can be used to select a 
directory for to receive each client query. 
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Adaptive Jitter Control for UPnP M-Search 
 

Kevin Mills and Christopher Dabrowski 
Information Technology Laboratory 

National Institute of Standards and Technology 
Gaithersburg, MD  20899 

 
Abstract – Selected service-discovery systems allow clients to 
issue multicast queries to locate network devices and services. 
Qualifying devices and services respond directly to clients; thus, 
in a large network, potential exists for responses to implode on a 
client, overrunning available resources. To limit implosion, one 
service-discovery system, UPnP, permits clients to include a 
jitter bound in multicast (M-Search) queries. Qualifying devices 
use the jitter bound to randomize timing of their responses. 
Initially, clients lack sufficient knowledge to select an 
appropriate jitter bound, which varies with network size. In this 
paper, we characterize the performance of UPnP M-Search for 
various combinations of jitter bound and network size. In 
addition, we evaluate the performance and costs of four 
algorithms that might be used for adaptive jitter control. 
Finally, we suggest an alternative to M-Search for large 
networks. 
 

I.  INTRODUCTION 
 

Selected service-discovery systems allow clients to issue 
multicast queries to locate network devices and services [1, 
3]. Qualifying devices and services respond directly to 
clients; thus, in a large network, potential exists for responses 
to implode on a client, overrunning available resources. This 
implosion problem also arises in other protocols that support 
multicast queries and responses [4-7]. To limit implosion, 
one service-discovery system, Universal-Plug-and-Play1 
(UPnP) permits clients to include a jitter bound (MX) in 
multicast (M-Search) queries. Each qualifying device jitters 
its response time by randomly selecting a delay up to MX. 
Initially, clients lack sufficient knowledge to select an 
appropriate jitter bound, which varies with network size. 

In this paper, we model the UPnP M-Search mechanism 
and characterize performance for various combinations of 
jitter bound and network size. The resulting performance 
curves should help designers of UPnP clients to understand 
the effects of selecting particular jitter bounds. We also 
consider four algorithms that might be used to adaptively 
control jitter in UPnP M-Search. We compare the 
performance of the adaptive algorithms against each other 
and against a fixed jitter bound. We discuss the costs 
associated with adaptation. These costs lead us to suggest an 
alternative approach to M-Search for large networks. The 

                                                           
1 Certain commercial products and standards are identified in this paper to 
describe our study adequately. The National Institute of Standards and 
Technology neither recommends nor endorses these products or standards as 
the best available for the purpose. 

insights we provide should help designers of service-
discovery systems to create architectures that can scale across 
a variety of network sizes, while achieving effective and 
efficient performance. 

The remainder of this paper is organized as follows.  
Section II describes the UPnP M-Search mechanism, defines 
an experiment and related metrics to characterize M-Search 
performance, and illustrates M-Search performance for 
varying jitter bounds and network sizes.  Section III outlines 
four algorithms that might be used to adaptively adjust M-
Search jitter bounds, and compares the performance of the 
algorithms against each other and against a fixed jitter bound. 
Section III also discusses the costs and assumptions 
underlying adaptation.  Section IV suggests an alternative to 
M-Search for use in large networks.  Section V gives our 
conclusions. 

 

Fig. 1. General Operation of UPnP Discovery 
 

II.  CHARACTERIZING M-SEARCH PERFORMANCE 
 

Fig. 1 depicts the general operation of device and service 
discovery in UPnP. UPnP consists of two main elements: 
root devices (servers) and control points (clients). A UPnP 
network may contain r > 0 root devices. Each root device 
contains d > 0 embedded devices and k > 0 unique service 
types, where each device and service has a specific type. 
Each root device also contains a hierarchical description that 
defines the capabilities of 1 + d + k elements: the root device 
and each of its embedded devices and unique service types. 
The description can be rather lengthy; thus, UPnP provides a 
two-step process for obtaining descriptions. A control point 
first discovers devices or services of interest by type or 
identity, and then requests the related descriptions. 
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UPnP provides two discovery modes: lazy and aggressive. 
Lazy discovery uses periodic announcements sent by each 
root device on the UPnP multicast group (Notify in Fig. 1). 
At each announcement interval, each root device sends n (3 + 
2d + k) Notify messages to identify the root device (and its 
identity and type), each embedded device (by identity and 
type), and each unique service type (by type). The UPnP 
specification recommends a duplicate transmission factor, n, 
“due to the unreliable nature of UDP” (user-datagram 
protocol) [1]. Control points listen for announcements to 
discover the existence of various devices and services. The 
UPnP specification sets the announcement interval at 30 min. 
or more. For this reason, control points may use aggressive 
discovery to get an immediate picture of available services. 

Aggressive discovery commences when a control point 
multicasts an M-Search query, which specifies an interest 
(that can include specific devices, device types, service types, 
or all) and a jitter bound (MX in Fig. 1). Root devices listen 
for M-Search queries to determine if any contained items are 
of interest. Each root device sends 3n responses if the root 
device qualifies, and 2n and n responses respectively for each 
qualifying embedded device and service type. If the query 
asks for everything (SSDP_ALL), each root device responds 
with the same n (3 + 2d + k) messages used in lazy discovery. 
To mitigate a potential implosion of responses, each root 
device waits a random time, uniformly distributed in the 
range 0..MXs, before transmitting its responses in a burst. 
 
A.  Experiment Definition 
 
To characterize M-Search performance, we used SLXTM [8] 
to construct a simulation model representing the topology 
shown in Fig. 1, deployed in a 10-Mbps Ethernet. Since the 
UPnP specification allows implementation choices, we based 
those aspects of our model on UPnP software available 
publicly from Intel [9]. We allow the number of root devices, 
r, to vary from 10 to 200 by 10-step increments. Each root 
device includes an identical count of embedded devices (d = 
2) and service types (k = 3). We set n = 2, the default value in 
the Intel implementation of UPnP. We allow MX to vary 
from 2 to 40 in 2-s increments. For each combination of r and 
MX, an M-Search task in a single control point issues a query 
requesting SSDP_ALL, which elicits n (3 + 2d + k) = 20 200-
byte response messages from each root device; thus, 
aggregate implosion ranges from 200 (r = 10) to 4000 (r = 
200) response messages. (To keep our graphs legible, we 
display results over only r = 10..100 and MX = 2..20.) We 
limit the M-Search task to buffer no more than 40 messages, 
dropping the excess. We allow the control point task to 
execute every 5 ms, processing one response message at each 
execution (200 messages/s maximum rate). For each 
message, the task examines a cache to see if a new discovery 
occurs, adding items to the cache as required. The task takes 
c ms to process a message, where c varies with the cache 

size. When finished, the task reschedules itself to execute in 
5 – c ms. If c > 5, the task executes immediately.  

    Fig. 2. Overall discovery effectiveness (E) compared against 
discovery effectiveness by entity type: root devices (Er), embedded devices 
(Ed), and services (Es). [MX = 10 s] 

 
B.  M-Search Performance 
 
We measure system performance with four metrics: 
discovery effectiveness (E), discovery latency (L), buffer 
utilization (B), and processor usage (P). Given a network 
comprising e = r + rd + rk entities and assuming that a 
control point discovers f  < e entities from responses to an M-
Search, then E = f / e. We can also track discovery 
effectiveness by entity type, root devices (Er), embedded 
devices (Ed), and services (Es) as shown in Fig. 2. In the Intel 
implementation, each root device sends M-Search responses 
in the same order (3n then 2dn then kn) and since responses 
earliest in the sequence are more likely to find buffer space 
available at the control point, root devices are more likely to 
be discovered than either embedded devices (next most 
likely) or services (least likely). 

Fig. 2 also reveals that randomly jittering responses does 
not ensure E = 1, even when MX is set to a seemingly 
suitable value. When r = 100, a total of 2000 response 
messages will implode on the control point, which processes 
200 messages/s, suggesting that 10s (2000/200) might be a 
suitable value for MX. Unfortunately, since each root device 
picks a random time to respond and then sends a burst of 20 
response messages, collision periods can occur during which 
receive buffers are overrun in the control point. Fig. 3 
displays the problem. 

Even at MX = 20s, collisions occur with sufficient 
frequency that E decays significantly beyond r = 50. 
Collisions lead to increased buffer occupancy (Fig. 4), which 
leads to increased likelihood of message drops. Periods of 
high buffer occupancy (and therefore message loss) tend to 
persist, as incoming messages arrive in bursts at random 
intervals, while the M-Search task reduces the buffer backlog 
at a steady rate. 
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Fig. 3. Discovery effectiveness (E) for various values of MX (2s to 20s in 
2s increments) as the number or root devices (r) increases. 

Fig. 4. Average buffer occupancy (B) as a percentage of available buffers 
(40 messages in this case) for various values of MX  (2s to 20s in 2s 
increments) as the number or root devices (r) increases. 

Fig. 5. Average discovery latency (L) for various values of MX (2s to 20s 
in 2s increments) as the number or root devices (r) increases. 

 
Buffer size at the control point can be augmented to 

accommodate additional responses; however a suitable buffer 
size may be difficult to determine given the random nature of 
response jitter (and unknown network size).  Instead, a 

control point could increase MX; but then, as Fig. 5 shows, 
discovery latency will grow. 

We define discovery latency (L) as the time that elapses 
between successive discoveries of new entities in the 
network. As Fig. 5 shows, when MX is large compared to 
network size the gap between new discoveries grows for a 
control point. An increased MX also leads to fewer buffer 
overruns, which increases the discovery effectiveness for a 
control point. As discovery effectiveness increases, the 
discovery cache in the control point increases in size, which 
causes the M-Search task to spend more processor cycles 
examining each response message (Fig. 6). This increase 
occurs because the M-Search task must look through more 
cache entries to determine if a new entity has been 
discovered, and to insert a related cache entry if needed. For 
relatively large values of MX, processor utilization increases 
linearly with network size, though this would change if we 
modeled more efficient search algorithms. For relatively 
small values of MX, growth in processor utilization levels off 
with the size of the discovery cache maintained by the M-
Search task. 

 
III.  ADAPTIVE JITTER CONTROL 

 
We propose four algorithms for adaptive-jitter control, and 
then illustrate the performance arising from each. We also 
discuss the costs and assumptions underlying the algorithms. 
Some other algorithms to address multicast query-response 
implosion can be found in the literature [10,11].  
 
A.  Four Adaptive Jitter-Control Algorithms 
 
In adaptive-jitter control, each root device independently 
estimates the time it will take for all root devices to respond 
to each M-Search query. Each root device then uses its 
estimate to determine a time to send its own responses (if 
any). Included in each response message is a value 
recommending how long the control-point M-Search task 
should listen for responses. With this approach, the M-Search 
task need not guess an appropriate MX value. 

Each root device listens on the UPnP multicast group for 
Notify messages (which include a caching time, or max-age) 
sent by all root devices, and builds a map (NM) of devices 
and services in the network. For each root device, NM 
includes: the identity and type of the root device and all 
embedded devices and unique service types, a max-age, and 
an estimate of the redundant transmission factor (n). 
Estimates of n exploit the fact that in the Intel 
implementation each message is sent n times before the next 
message. Listening root devices apply a time threshold to 
identify duplicate messages and then compute an average n 
for each announcing root device. 
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Fig. 6. Average processor time (P) in seconds/message for a Control 
Point M-Search task to examine a response for various values of MX (2s to 
20s in 2s increments) as the number or root devices (r) increases. 

 
M-Search queries issued by the M-Search task include a 

rate, R, at which the task can consume messages, and also an 
MX > 0. Upon receiving an M-Search query, a root device 
cycles through its NM to estimate how many response 
messages will be sent by all root devices, using R to also 
estimate when the last set of responses should commence 
(Jstart) and finish (Jend) – under an assumption that 
messages will be sent consecutively at rate R. During this 
process, a root device can also note a time (Stx) when it 
should send its own responses – under an assumption that 
root devices will send messages sequentially in the ascending 
order of their unique identities. Using this information, we 
devised four adaptive jitter-control algorithms: Random Burst 
(RB), Random Paced (RP), Scheduled Burst (SB), and 
Scheduled Paced (SP). 

In the random algorithms (RB and RP), a root device 
selects a time, Tr, randomly distributed uniformly on the 
interval [0,Jstart], to send its response messages. The root 
device includes Jend in each response so that the M-Search 
task will learn an appropriate time interval to listen. The root 
device will not respond if 0 < MX < Tr. In the RB variant of 
the algorithm, the root device bursts its response messages. In 
the RP variant, the root device paces its responses at rate R. 

In the scheduled algorithms (SB and SP), a root device 
sends its response messages at Stx; however, the root device 
will not respond if 0 < MX < Stx. Response messages are sent 
in a burst (SB) or at rate R (SP). The root device includes 
Jend in each response message. 
 
B.  Performance of Adaptive Jitter Control 

 
Fig. 7 illustrates discovery effectiveness (E) for each adaptive 
jitter-control algorithm as the number of root devices (r) 
increases from 10 to 300. For comparison, we include the 
performance of a fixed MX = 33s, which is the Jstart value 
estimated by each root device when r = 300. 

Scheduling transmissions achieves full effectiveness (E = 
1). On the other hand, randomizing transmissions leads to 

collisions in the receive buffers, and then to buffer overflows 
and lost discoveries. Pacing responses (RP) results in fewer 
buffer overflows, but fails to eliminate them. While RP more 
closely matches arrival rate with service rate, Fig. 8 indicates 
a nearly identical average buffer occupancy for RP and RB. 

Fig. 7. Discovery effectiveness for four adaptive jitter control algorithms 
and one fixed jitter bound as the number of root devices increases 

Fig. 8. Average buffer occupancy for various jitter-control algorithms as 
the number of root devices increases. 

 
Buffer utilization is very low for SP because scheduling 

eliminates collisions and responses arrive at the rate at which 
the M-Search task can process them. While SB avoids 
collisions, responses arrive in (20-message) batches, leading 
to a higher average buffer utilization. Fig. 8 also shows that 
each of the adaptive jitter-control algorithms yields a nearly 
stable average buffer utilization (but at different occupancy 
levels), while buffer utilization for a fixed MX varies with the 
relationship between MX and r. 

Fig. 9 illustrates that all the adaptive jitter-control 
algorithms provide consistently low average discovery 
latency, L, despite variation in network size, which is not the 
case for a fixed MX, where latency varies with the 
relationship between MX and r. The scheduled algorithms 
(SB and SP) perform slightly better than the random 
algorithms (RB and RP) because buffer overflows resulting 
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from jitter randomization cause some discoveries to be lost, 
which tends to lengthen the time between new discoveries. 

Fig. 9. Average discovery latency of various jitter-control algorithms as 
the number of root devices increases  

Fig. 10. Average processor seconds per message used by the M-Search 
task for various jitter-control algorithms and increasing network size. 

 
The scheduled algorithms also lead to some serendipitous 

effects on processor utilization in the M-Search task (Fig. 
10).  Since scheduled responses arrive in order, the M-Search 
task need not conduct a search of its discovery cache for each 
response message. Instead, the M-Search task checks to see if 
a response can be inserted into the cache at the current 
insertion point. Only if this is not the case does the M-Search 
task need to search its cache. In our experiments all 
scheduled responses arrived in the expected order; thus, Fig. 
10 shows that both SB and SP consume a small, fixed 
amount of processor time for each message. 

Fig. 10 also shows that the cache search required by the 
random algorithms causes processor utilization to increase as 
the number of discovered entities increase. Processor 
utilization for RP always exceeds that for RB because the RP 
algorithm discovers a greater percentage of entities. Random 
jitter with a fixed MX = 33s uses more processor time than 
either RP or RB up until about r = 200, where RP proves 

more effective and thus requires more processor time. The 
rate of increase in processor utilization for the fixed MX 
continues to decline, reaching the same value as RB when r = 
300 (and Jstart = MX = 33s). 
 
C.  Costs and Caveats 

 
Adaptive jitter control comes with two costs: memory and 
processing time in root devices. Each root device creates, 
stores, and maintains a network map (NM) of size 

)]([
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,  (1) 

where h is the cache-header size, p is the root-device header 
size, q is per-entry content size, r is the number of root 
devices, and di, ki, and ti represent respectively the number of 
embedded devices, service types, and device types 
maintained by root device i. In our experiments, S varies 
from about 1.2 (r = 10) to 37 (r = 300) Kbytes.  

To process an M-Search query, a root device must scan 
NM to estimate the likely number of responses that will be 
issued by all root devices. During the scan, a root device also 
purges stale entries. Thus, for each M-Search query a root 
device uses processor time 
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, (2) 

where x is processor time to scan one entry, y is processor 
time to purge one root-device, and O is the number of stale 
root-device entries found during the scan. In our experiments, 
for SSDP_ALL queries with no stale entries, C varies 
between 0.3 (r = 10) and 9 (r = 300) ms. 

In addition to memory and processing costs, the scheduled 
algorithms assume that each root device has the same 
knowledge about network state (NM). Absent this 
assumption, root devices would schedule collisions, leading 
to lower discovery effectiveness. This same-NM assumption 
should hold in steady state, where all root devices have had a 
chance to announce themselves and where changes occur 
infrequently. Of course, when a root device enters a network 
it must acquire NM to participate effectively in adaptive jitter 
control. 
 

IV. DISCOVERY IN LARGE NETWORKS 
 

Most discovery protocols provide for recurring 
announcements at a known interval. For example, the Jini 
protocol recommends announcements every 120s [11]. 
Recurring announcements permit a network device to listen 
for a period of time over which a reasonably complete NM 
might be constructed. Unfortunately, the minimum 
announcement interval specified for UPnP is 30 min., which 
might prove too long a period for a device to wait before 
participating on the network. To compensate for this lengthy 
announcement interval, UPnP provides the M-Search 
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mechanism so that network devices can attempt to gain a 
sense of the NM on demand. We have shown, though, 
limitations of the M-Search as a means to find all devices and 
services on the network. Some other discovery protocols 
[2,3] include feedback mechanisms within their multicast 
queries in order to provide a means of dampening responses. 
Using such dampening mechanisms, a short repeated burst of 
multicast queries (for example, Jini recommends seven 
queries at intervals of five seconds) might be used to obtain a 
reasonably complete NM (ignoring the possibility of 
temporary node and channel failures). Unfortunately, UPnP 
includes none of these mechanisms; thus, acquiring the NM 
needed to permit effective participation in adaptive jitter 
control for M-Search queries seems to require using the 
regular UPnP M-Search. Since we have already shown UPnP 
M-Search to be ineffective for this purpose, we propose an 
alternative to M-Search for NM-bootstrap and for general use 
in large networks. 

Suppose that on startup a root device initiates a network 
mapping (NM) service with probability W. In that case, the 
network will contain only rW NM services. Then a control 
point, or a newly starting root device, can use M-Search (in 
fixed or adaptive form) to query only for instances of NM 
services. Each qualifying NM service can respond with the 
count of root devices, embedded devices, and service types 
known to it. Using this information, a querying node can 
select one NM service and use http-GET (HyperText Transfer 
Protocol) to retrieve its NM. Alternatively, the querying node 
may issue http-GETs to multiple NM services, and then 
merge the results into a signal NM. After retrieving a NM, a 
root device should be sufficiently bootstrapped to participate 
in adaptive M-Search. For a control point, querying for NM 
services will reduce (or eliminate) the need to issue 
SSDP_ALL M-Search queries. 

 A further advantage of using NM services can accrue as 
network volatility increases. As the need arises, due to 
increase in load or in network or node failures, a root device 
can choose to start a NM service to increase redundancy or to 
share the load from an increasing number of client queries. 
Similarly, as volatility diminishes or as network size 
decreases, root devices with a running NM service can elect 
to terminate the service in order to reduce network overhead. 

 
V.  CONCLUSIONS 

 
Given the UPnP M-Search mechanism, we illustrated 
relationships among network size (r), jitter bound (MX), 
discovery effectiveness (E) and latency (L), and buffer (B) 
and processor (P) utilization. Specifically, we showed how 
an inappropriate jitter bound (MX value) in UPnP M-Search 
queries could significantly reduce discovery effectiveness or 
increase discovery latency. We outlined four algorithms that 
might be used for adaptive jitter control, and we explained 
the storage and processing costs associated with adaptation. 
We compared the performance of the adaptive algorithms 

against each other and against a fixed MX value. The random 
paced (RP) algorithm yielded increased discovery 
effectiveness over random burst (RB). Both scheduled 
algorithms (SB and SP) led to better performance than either 
random algorithm. In particular, the scheduled paced (SP) 
algorithm achieved optimal performance for all metrics. We 
explained, however, that the performance of the scheduled 
algorithms would deteriorate if all root devices do not share 
the same picture (NM) of the network state. 

We outlined an approach to enable root devices to 
bootstrap their NM. We suggested that control points might 
also use this approach to replace M-Search SSDP_ALL 
queries, thus avoiding the potential for an implosion of M-
Search responses. Further, we hinted that the NM-bootstrap 
mechanism might be adapted to modulate redundancy and 
load sharing in support of aggressive discovery in UPnP 
networks. Further exploration of these ideas remains for 
future work. We also suggest that these algorithms should be 
investigated under various types and rates of failure. 
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Abstract 

 
Distributed systems require strategies to detect and recover 
from failures. Many protocols for distributed systems employ 
a strategy based on leases, which grant a leaseholder access 
to data or services for a limited time (the lease period). 
Choosing an appropriate lease period involves tradeoffs 
among resource utilization, responsiveness, and system size. 
We investigate these issues for Jini Network Technology. 
First, we establish quantitative tradeoffs among lease period, 
bandwidth utilization, responsiveness, and system size. Then, 
we consider two self-adaptive algorithms that enable a Jini 
system, given a fixed allocation of resources, to vary lease 
periods with system size to achieve the best responsiveness. 
We compare performance of these self-adaptive algorithms 
against each other, and against fixed lease periods. We find 
that one of the self-adaptive algorithms proves easy to 
implement and performs reasonably well. We anticipate that 
similar procedures could add self-adaptive capability to 
other distributed systems that rely on leases. 
 
1.  Introduction 

 
Distributed systems require strategies to detect and 

recover from failures. One commonly used strategy employs 
a leasing mechanism, where a node grants a leaseholder 
access to a resource for a limited time (the lease period). If 
the resource is needed beyond the original lease period, then 
the leaseholder can renew the lease by requesting additional 
lease periods. Once the resource is no longer needed, the 
leaseholder may relinquish its lease. If the leaseholder does 
not renew a lease before expiration of the lease period, the 
lease grantor assumes leaseholder failure and terminates the 
lease to prevent resource leaks. Since originally proposed by 
Gray and Cheriton for consistency maintenance in a 
distributed file cache [1], leases have become widely used in 
a range of applications [2-6]. 

In any leasing system, questions arise regarding how to 
select the lease period. Choosing an appropriate lease period 
requires consideration of tradeoffs among resource 
utilization, responsiveness, and number of leaseholders. We 
investigate these issues in the context of service-discovery 
protocols, which allow distributed software components to 

discover each other and compose themselves into assemblies 
that cooperate to meet application needs. Though several 
service-discovery protocols currently exist [e.g., 5-8], we 
selected Jini Network Technology [5] for our study because 
leasing plays a central role in registering Jini services. We 
base our modeling and analysis on the Jini specification [7]. 

We investigate self-regulating algorithms for achieving 
the best available responsiveness from a leasing system as 
system size varies, while respecting a constraint on resources 
devoted to leasing. We begin by establishing quantitative 
tradeoffs among responsiveness, resource consumption, and 
system size. Then, we propose two different self-regulating 
algorithms for varying lease periods in response to changing 
system size. We use simulation to compare the effectiveness 
of the algorithms against each other and against fixed lease 
periods. We consider whether one of the algorithms might be 
used to improve performance of Jini leasing and discuss 
using the algorithm in other service-discovery protocols, such 
as Universal Plug-and-Play (UPnP) [6]. 
 
2. Jini Leasing 

 
Jini defines an architecture that enables clients and 

services to rendezvous through a third party, known as a 
lookup service. A Jini service registers a description of itself 
with each discovered lookup service. A Jini client may 
register a request to be notified by a lookup service of 
arriving or departing services of interest, or of changes in the 
attributes describing services of interest. 

Figure 1 illustrates message exchanges for some typical 
Jini leasing scenarios. A registering component requests 
registration for a duration (LR), which may be accepted at 
time TG for a granted lease period LG < LR. LR may be any, 
which allows any value for LG. To extend registration beyond 
LG, registering components must renew the lease prior to an 
expiration time TE = TG + LG; otherwise, registration is 
revoked. This cycle continues until a Jini component cancels 
or fails to renew a lease. Lookup services assign LG within a 
configured range, LMIN < LG < LMAX. While a granted lease 
may not be revoked prior to TE, lookup services may deny 
any lease request. Jini components must adopt strategies for 
selecting values for LR. Similarly, lookup services must 
determine algorithms for assigning values for LG, LMIN, and 
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LMAX; and for deciding when to deny leases. We identify 
some relevant relationships. 

Fig. 1.  Message exchanges for four Jini leasing scenarios. 
 
Let SR be lease-request size, SG be lease-grant size, and N 

be the number of leaseholders. Typically, a leaseholder and 
lookup service exchange one request-grant pair per renewal 
cycle, with rate 1/LG Hz. Assuming identical LG assigned for 
each lease, bandwidth use (B) can be estimated as: 

)()( GRG SSLNB +⋅= . Assuming constant SR and SG, B increases 
linearly with N and decreases exponentially with LG. Another 
metric, responsiveness, R, measures the latency with which 
lookup services can detect leaseholder failure. Assuming 
uniformly distributed failure times, then expected 
responsiveness is 2GLR = ; thus, R is independent of N, 
but B and R are related through LG. 

These relationships can be used to constrain and predict 
behavior of a leasing system. For example, assume known 
requirements for R and B. The responsiveness equation can 
be rewritten to determine LG [i.e., RLG 2= ]. Then, using LG, 
the bandwidth equation can be transformed to find maximum 
system size [i.e., )()( GRGMAX SSLBN +⋅= ]. With this 
information, lookup services could grant lease periods < LG 
to ensure required responsiveness, deny requested leases that 
would consume an excess share of bandwidth, and deny 
requests for leases once N reaches NMAX. 

 
3. Two Self-adaptive Leasing Schemes 
 

We consider two techniques to vary LG with N; thus, 
using available bandwidth (B) to achieve the best possible 
responsiveness (R) for a given value of N. One technique 
restricts lease requests to LR = any. The second technique 
inverts the leasing process, permitting lookup services to poll 
leaseholders at a variable interval.  

Restricting LR. Assuming a leasing system must consume 
at most bandwidth B and guarantee minimum average 
responsiveness RMIN, a lookup service can grant a maximum 
lease period LMAX  = 2RMIN. Given B, SR, and SG, we can 
determine a maximum lease-renewal rate G  = B / (SR + SG). 
For minimum system size, NMIN  = 1, the lookup service can 
grant a minimum lease period LMIN = 1/G. While this value 
for LMIN respects the bandwidth constraint, other factors 
should be considered. For example, at LMIN = 1/G leaseholder 
processing burden might prove unacceptable. Instead, a 
leasing system might constrain maximum responsiveness 
(RMAX), giving a minimum lease period LMIN  = 2RMAX.  
Knowing N, a lookup service may select a suitable granted 
lease period from a range (LMIN < LG < LMAX) using a simple 
algorithm. First, compute LG = N/G. If LG > LMAX, then deny 
the lease; otherwise, if LG < LMIN, then set LG = LMIN. 
Assigning LG with this algorithm permits a leasing system to 
constrain B and guarantee minimum average responsiveness 
(RMIN), while providing the best responsiveness achievable 
(up to RMAX) as N varies over 1..NMAX. 

Inverted Leasing. As an alternative, we could invert the 
leasing process so that a lookup service polls periodically on 
a multicast channel, where all leaseholders listen. Figure 2 
illustrates some associated message exchanges. To obtain a 
lease, a leaseholder sends (via reliable unicast) a lease request 
to the lookup service, which returns a time (TP) when the 
leaseholder should expect to hear a multicast poll. 

Fig. 2. Message exchanges for inverted leasing mechanism. 
 
Each poll includes two values: the duration (D) over 

which the lookup service will listen for leaseholders to 
respond and the additional time (A > 0) beyond D within 
which leaseholders can expect the next poll. Each leaseholder 
chooses a random time (distributed uniformly over 0..D) to 
respond to the lookup service, which confirms each response. 
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The lookup service cancels a lease if the leaseholder does not 
respond within D. Similarly, failing to receive a poll within D 
+ A after the previous poll, causes a leaseholder to request a 
new lease. The main issue is selecting values for D and A in 
each poll. 

Assuming the polling interval is bounded by LMIN  < D + 
A < LMAX, the lookup service computes D = max(N/G, LMIN). 
A rapidly expanding system might benefit from deferring the 
next poll until D + A to accommodate increases in N during 
D. Choosing an appropriate value for A depends on system 
growth expected during D. In our experiments, we set A as a 
percentage of D. Recall, though, that D + A < LMAX, so A may 
be reduced below its computed value. When A = 0, the 
leasing system has reached maximum capacity. To ensure 
this, the lookup service must deny lease requests that will 
cause N to exceed NMAX, where GLN MAXMAX ⋅= . 

When using inverted leasing, a lookup service limits 
bandwidth usage according to ))()/(( RCPRP SSPNSB +⋅+= , 
where P is the polling interval (D < P < D + A < LMAX) and 
SP, SPR, and SRC represent respectively the size of poll, poll-
response, and response-confirm messages. Inverted leasing 
achieves system responsiveness of R = D, which is only ½ as 
responsive as simple adaptive leasing. To understand this 
difference, consider the following analysis. 

Assume failure times are distributed uniformly on D. 
Failures may occur either before or after a leaseholder 
responds to a poll. For leaseholders that fail before a poll, 
expected failure-detection latency is 2D . For leaseholders 
that fail after a poll, expected failure-detection latency 
increases to (D/2) + D. Assuming that failures are equally 
likely before or after a poll, then 

)2/3(2/1)2/(2/1 DDR ⋅+⋅= , which reduces to R = D. 
 

4. Simulation Results and Discussion 
 
We used simulation to investigate dynamic behavior of 

our self-adaptive algorithms. We coded an SLX discrete-
event simulation [9] model of Jini. To confirm our analysis 
and to verify our simulation, we conducted simulation 
experiments, varying N from 10..200 and LG from 15..300 s 
in 15-s increments. We used SR = 128 bytes and SG = 32 
bytes. Figure 3 shows simulated results for average B and R 
when LG = 15 s, 60 s, and 120 s. Our simulation confirms our 
analyses: (1) B increases linearly with N for a given LG and 
decreases exponentially with LG for a given N and (2) R = 
LG/2, independent of N. 

Next, we created model variants to implement the self-
adaptive leasing algorithms described in Section 3. One 
variant (Adaptive) replaces fixed LG with our simple adaptive 
algorithm; the other variant (Inverted) substitutes our 
inverted procedures for Jini leasing. We measured B under 
increasing and decreasing N. We measured the control 
variable (LG for Adaptive and D for Inverted) under 

increasing N, and we measured R under decreasing N. We set 
LMIN = 15 s, LMAX = ∞, and G = 3. For experiments involving 
Inverted, we set DA ⋅= 2.0 . 

Fig. 3. System responsiveness (R) – left-hand y-axis – and 
bandwidth usage (B) – right-hand y-axis – for three granted 
lease periods (LG = 15 s, 60 s, and 120 s) as system size 
increases (N = 10 to 200 leaseholders). 

 
Figure 4 depicts both Adaptive and Inverted under 

increasing N. While the control variables change in a similar 
fashion, change in B exhibits two obvious differences. First, 
B increases more steeply under Adaptive than under Inverted. 
Second, Inverted begins to constrain B earlier than Adaptive, 
which leads to a higher peak bandwidth usage. Inverted 
affects all leaseholders with each adjustment in the control 
variable, while Adaptive affects leaseholders one-by-one, and 
only as each lease is renewed. 

Figure 5 plots average R achieved by each self-
regulating scheme as N decreases. Inverted begins to reduce 
B sooner than Adaptive. For R, the results tell two stories. 
First, as indicated by a steeper negative slope, Inverted adapts 
R more quickly than Adaptive. Unfortunately, Inverted 
achieves only ½ the responsiveness of Adaptive. 
Implementing Inverted would require profound changes in 
Jini. Adaptive can be implemented easily within Jini lookup 
services, and might apply to domain-wide leasing. 

Each Jini service is required to register its service 
description with each appropriate lookup service that it 
discovers; thus, a service may be maintaining leases on ND 
different lookup services. System-wide leasing demands will 
vary with ND. Assuming a known network-wide resource 
budget for leasing, e.g., either aggregate bandwidth (BD) or 
renewal rate (GD), then each lookup service can compute its 
share (either BD/ND or GD/ND). Jini facilitates monitoring ND 
by requiring each lookup service to announce itself 
periodically. By monitoring announcements, each lookup 
service can increment and decrement ND as lookup services 
come and go, and continuously adjust its share of resources. 

Our results might also apply to a number of leasing 
schemes outside of Jini. For example, UPnP devices manage 
variables for which they may offer subscriptions to control 
points. UPnP subscription procedures, and associated 
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parameters, appear quite similar to those defined in Jini. We 
are confident our adaptive leasing algorithm could be applied 
to UPnP, yielding performance properties similar to those we 
report for Jini. 

 

Fig. 4. Bandwidth usage (B) – left-hand y-axis – and control 
variable (LG for Adaptive and D for Inverted) setting – right-
hand y-axis – as system size increases (N = 10 to 200 
leaseholders). LMIN = 15 s, G = 3 renewals per second, LMAX = ∞, 
and (for Inverted) A = 0.2D. 

Fig. 5. Bandwidth usage (B) – left-hand y-axis – and system 
responsiveness (R) – right-hand y-axis – as system size 
decreases (N = 200 to 0 leaseholders). LMIN = 15 s, G = 3 
renewals per second, LMAX = ∞, and (for Inverted) A = 0.2D. 

 
5. Conclusions 

 
We investigated Jini leasing procedures, establishing 

quantitative tradeoffs among responsiveness, resource 
consumption, system size, and granted lease period. We 
suggested an approach to bound bandwidth use, while 
guaranteeing a minimum level of responsiveness in detecting 
leaseholder failures. We also showed a simple adaptive 
leasing algorithm that bounds bandwidth consumption, while 
achieving the best available responsiveness as system size 
varies. We described an alternate algorithm that inverts the 
leasing process, and we showed that inverted leasing 

achieves only half the responsiveness guaranteed by the 
simple adaptive algorithm. We used simulation to show that 
inverted leasing adapts responsiveness more quickly and 
constrains bandwidth consumption better than our simple 
adaptive algorithm. Given the performance tradeoffs and 
implementation costs, we conclude that our simple adaptive 
leasing algorithm can yield useful performance properties 
with little cost. We outlined a simple technique for allocating 
a domain-wide resource budget among multiple lease 
grantors. We expect our analyses can be used to deploy Jini 
systems with understood leasing behavior, and we hope our 
ideas for adaptive leasing can provide improvements over 
static strategies. We argued that our adaptive leasing 
algorithm and related analyses should also apply in similar 
leasing systems, such as event subscriptions offered by 
UPnP. 
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Abstract 

 
Distributed systems require strategies to detect and recover 
from failures. Many protocols for distributed systems employ 
a strategy based on leases, which grant a leaseholder access 
to data or services for a limited time (the lease period). 
Choosing an appropriate lease period involves tradeoffs 
among resource utilization, responsiveness, and system size. 
We explain these tradeoffs for Jini Network Technology. 
Then, we describe an adaptive algorithm that enables a Jini 
system, given a fixed allocation of resources, to vary lease 
periods with system size to achieve the best responsiveness. 
We anticipate that similar procedures could improve failure 
responsiveness in other distributed systems that rely on 
leases. We describe how we implemented our adaptive 
algorithm in “reggie”, a publicly available implementation 
of the Jini lookup service. We can use our implementation to 
demonstrate how adaptive leasing provides the best available 
responsiveness as network size varies.  
 
1.  Introduction 

 
Distributed systems require strategies to detect and 

recover from failures. One commonly used strategy employs 
a leasing mechanism, where a node grants a leaseholder 
access to a resource for a limited time (the lease period). 
Once the resource is no longer needed, the leaseholder may 
relinquish its lease. If the resource is needed beyond the 
original lease period, then the leaseholder can renew the lease 
by requesting additional lease periods. If the leaseholder does 
not renew before expiration of the lease period, the lease 
grantor assumes leaseholder failure and terminates the lease.  

Choosing an appropriate lease period entails tradeoffs 
among resource utilization, responsiveness, and number of 
leaseholders. We explore these issues in the context of 
service-discovery protocols, which allow distributed software 
components to discover each other and compose themselves 
into assemblies. Though several service-discovery protocols 
currently exist [e.g., 1-4], we selected Jini Network 
Technology [1] to demonstrate our ideas, because leasing 
plays a central role in registering Jini services. We base our 
analysis on the Jini specification [2]. 
 

2. Jini Leasing 
 
Jini defines an architecture that enables clients and 

services to rendezvous through a third party, known as a 
lookup service. A Jini service registers a description of itself 
with each discovered lookup service. A Jini client may 
register a request to be notified by a lookup service of 
arriving or departing services of interest, or of changes in the 
attributes describing services of interest. 

 
Fig. 1.  Message exchanges for four Jini leasing scenarios. 

 
Figure 1 illustrates message exchanges for some typical 

Jini leasing scenarios. A registering component requests 
registration for duration LR, which may be accepted at time 
TG for a granted lease period LG < LR. LR may be any, which 
allows any value for LG. To extend registration beyond LG, 
registering components must renew the lease prior to an 
expiration time TE = TG + LG; otherwise, registration is 
revoked. This cycle continues until a Jini component cancels 
or fails to renew a lease. Lookup services assign LG within a 
configured range, LMIN < LG < LMAX. While a granted lease 
may not be revoked prior to TE, lookup services may deny 
any lease request. 

We can analyze performance of a Jini leasing system. 
Let SR be lease-request size, SG be lease-grant size, and N be 
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number of leaseholders. Typically, a leaseholder and lookup 
service exchange one request-grant pair per renewal cycle, 
with rate 1/LG Hz. Assuming identical LG assigned for each 
lease, bandwidth use (B) can be estimated as: 

)()( GRG SSLNB +⋅= . Assuming constant SR and SG, B increases 
linearly with N and decreases exponentially with LG. Another 
metric, responsiveness, R, measures the latency with which 
lookup services can detect leaseholder failure. Assuming 
uniformly distributed failure times, then expected 
responsiveness is 2GLR = ; thus, R is independent of N, 
but B and R are related through LG. 

These relationships can be used to constrain and predict 
behavior of a leasing system. For example, assume known 
requirements for R and B. The responsiveness equation can 
be rewritten to determine LG [i.e., RLG 2= ]. Then, using LG, 
the bandwidth equation can be transformed to find maximum 
system size [i.e., )()( GRGMAX SSLBN +⋅= ]. With this 
information, lookup services could grant lease periods < LG 
to ensure required responsiveness, deny requested leases that 
would consume an excess share of bandwidth, and deny 
requests for leases once N reaches NMAX. 

Fig. 2. System responsiveness (R) – left-hand y-axis – and 
bandwidth usage (B) – right-hand y-axis – for three granted 
lease periods (LG = 15 s, 60 s, and 120 s) as system size 
increases (N = 10 to 200 leaseholders). 

 
3. A Self-adaptive Algorithm for Jini Leasing 
 

We propose an algorithm that restricts lease requests to 
LR = any. Assuming a leasing system must consume at most 
bandwidth B and guarantee minimum average responsiveness 
RMIN, a lookup service can grant a maximum lease period 
LMAX  = 2RMIN. Given B, SR, and SG, we can determine a 
maximum lease-renewal rate G  = B / (SR + SG). For 
minimum system size, NMIN  = 1, the lookup service can grant 
a minimum lease period LMIN = 1/G. While this value for LMIN 
respects the bandwidth constraint, other factors should be 
considered. For example, at LMIN = 1/G leaseholder 
processing burden might prove unacceptable. Instead, a 
leasing system might constrain maximum responsiveness 
(RMAX), giving a minimum lease period LMIN  = 2RMAX.  

Knowing N, a lookup service may select a suitable granted 
lease period from a range (LMIN < LG < LMAX) using a simple 
algorithm. First, compute LG = N/G. If LG > LMAX, then deny 
the lease; otherwise, if LG < LMIN, then set LG = LMIN. 
Assigning LG with this algorithm permits a leasing system to 
constrain B and guarantee minimum average responsiveness 
(RMIN), while providing the best responsiveness achievable 
(up to RMAX) as N varies over 1..NMAX. 

 
Fig. 3. Responsiveness (R ) – left-hand y-axis – and bandwidth 
usage (B) – right-hand y-axis –as system size decreases (N = 
200 to 0 leaseholders). 

 
4. Simulation Results 

 
We coded an SLX discrete-event simulation [5] model of 

Jini to confirm our analysis and to investigate dynamic 
behavior of our self-adaptive algorithm. We conducted 
simulation experiments, varying N from 10..200 and LG from 
15..300 s in 15-s increments. We used SR = 128 and SG = 32 
bytes. Figure 2 shows simulated results for average B and R 
when LG = 15 s, 60 s, and 120 s.  The simulation confirms 
our analyses: (1) B increases linearly with N for a given LG 
and decreases exponentially with LG for a given N and (2) R 
= LG/2, independent of N. Next, we simulated our adaptive 
leasing algorithm. Figure 3 illustrates how the algorithm 
constrains B while improving R as system size decreases. 
These promising results led us to implement our adaptive 
algorithm in “reggie”, a publicly available implementation of 
a Jini lookup service. 

 
5. Implementation in “reggie”  
 

We base our adaptive-leasing implementation on the 
“reggie” lookup server provided with the Sun Microsystems 
Jini release. The “reggie” server implements the Jini 
specification for a lookup service, and includes additional 
extensions to allow remote administration of the lookup 
server through a service proxy. Administrative actions occur 
through the RegistrarAdmin interface, which is not part of the 
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Jini core specification, but a Sun extension to Jini 
(com.sun.jini.reggie package). The RegistrarAdmin interface 
allows basic monitoring, configuration, and control of an 
operational lookup server just as if it were any other type of 
Jini-enabled service. Using the RegistrarAdmin interface, an 
administrator can also perform some basic manipulation of 
minimum and maximum granted lease periods for services 
and events maintained on the lookup server.  However, this 
method requires constant human supervision to optimize 
leasing performance in a Jini network. Such human 
supervision would prove impractical in a large network 
where numerous services may join and leave. 

To implement adaptive leasing, we modified the “reggie” 
server implementation to assign lease grant times (LG) based 
on the required failure responsiveness (R) of the system and 
the bandwidth (B) allocated to lease renewal transactions.  
We added a collection of access methods to the 
RegistrarAdmin interface, callable via remote-method 
invocation (RMI), allowing a Jini client to view: the current 
LMIN, LMAX, and LG, the number of leaseholders (N) on the 
server, the instantaneous average bandwidth (BAVG) 
consumed by lease renewals, and the instantaneous average 
failure responsiveness (RAVG).  Since values for granted lease 
periods can be adjusted from changes to the allocated 
bandwidth and target responsiveness, we added methods to 
set B and R in the RegistrarAdmin interface.   

The lookup server (com.sun.jini.reggie.RegistrarImpl) 
starts with default values for LMIN and LMAX.  A Jini client can 
use the RegistrarAdmin interface to adjust target 
responsiveness and allocated bandwidth. Based on these 
adjustments, the lookup server computes new values for LMIN 
and LMAX.  At regular intervals, the lookup service samples 
average bandwidth use (BAVG) and the number of 
leaseholders, adjusting granted lease periods (LG) 
accordingly. Current bandwidth usage is calculated by 
multiplying the number of lease transactions (RMI calls) by 
the size of messages involved in the transaction. Currently, 
the lookup service records these values once every sixty 
seconds of operation, or when an administrator changes R or 
B.   

When a Jini service registers with the lookup service, it 
may either request a specific lease interval or use Jini’s 
LEASE.ANY constant to allow the lookup server to select an 
appropriate lease period for the service. In our 
implementation, if the service requests the LEASE.ANY 
constant, the lookup service uses the current value for LG as 
the granted lease period.  Otherwise, if the service requests a 
lease period in the range of LMIN and LMAX, it is granted. The 
lookup service rejects requests for leases outside this range.  

Figure 4 shows a snapshot of a Jini client graphical user 
interface (GUI) that uses the modified “reggie” 
RegistrarAdmin interface. The left-hand column plots values 
for LG, for bandwidth used (BAVG), and for average 
responsiveness (RAVG) over time. These graphs display values 

returned to the client from regular polling of access methods 
RegistrarAdmin interface, which uses RMI to call the 
corresponding method in the lookup server. The right-hand 
column of Figure 4 lists leaseholders using the lookup 
service, and displays their current status in the Jini network. 
Note that the GUI displays only the current known status, as a 
service may have left the network, but a proxy could still be 
registered with the server. The proxy would be purged when 
its lease expires.  The GUI in Figure 4 does not include the 
RegistrarAdmin GUI used to adjust allocated bandwidth or 
target responsiveness in the lookup service. 

 
Fig. 4.  Sample Graphical User Interface for a Jini client 
monitoring a lookup server that implements adaptive leasing 
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ABSTRACT 
We describe an adaptive algorithm that enables a distributed 
Jini enabled system, given a fixed allocation of resources, to 
vary lease periods to achieve the best responsiveness.  
 
Keywords 
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1.  INTRODUCTION 
Distributed systems require strategies to detect and recover 
from failures. One commonly used strategy employs a 
leasing mechanism, where a node grants a leaseholder access 
to a resource for a limited time (the lease period). Once the 
resource is no longer needed, the leaseholder may relinquish 
its lease. If the resource is needed beyond the original lease 
period, then the leaseholder can renew the lease by 
requesting additional lease periods. If the leaseholder does 
not renew before expiration of the lease period, the lease 
grantor assumes leaseholder failure and terminates the lease.  
 
Choosing an appropriate lease period entails tradeoffs among 
resource utilization, responsiveness, and number of 
leaseholders. We explore these issues in the context of 
service-discovery protocols, which allow distributed 
software components to discover each other and compose 
themselves into assemblies. Though several service-
discovery protocols currently exist [e.g., 1-3], [5] we 
selected Jini Network Technology [1] to demonstrate our 
ideas, because leasing plays a central role in registering Jini 
services.  
 
2. JINI LEASING 
Jini defines an architecture that enables clients and services 
to rendezvous through a third party, known as a lookup 
service. A Jini service registers a description of itself with 
each discovered lookup service.  
 

A registering component requests registration for duration 
LR, which may be accepted at time TG for a granted lease 
period LG < LR. LR or may be any, which allows any value 
for LG. To extend registration beyond LG, registering 
components must renew the lease prior to an expiration time 
TE = TG + LG; otherwise, registration is revoked. This cycle 
continues until a Jini component cancels or fails to renew a 
lease. Lookup services assign LG within a configured range, 
LMIN < LG < LMAX. While a granted lease may not be revoked 
prior to TE, lookup services may deny any lease request. 
 
We can analyze performance of a Jini leasing system. Let SR 
be lease-request size, SG be lease-grant size, and N be 
number of leaseholders. Typically, a leaseholder and lookup 
service exchange one request-grant pair per renewal cycle, 
with rate 1/LG Hz. Assuming identical LG assigned for each 
lease, bandwidth use (B) can be estimated as: 

)()( GRG SSLNB +⋅= . Assuming constant SR and SG, B 
increases linearly with N and decreases exponentially with 
LG. Another metric, responsiveness, R, measures the latency 
with which lookup services can detect leaseholder failure. 
Assuming uniformly distributed failure times, then expected 
responsiveness is 2GLR = ; thus, R is independent of N, 
but B and R are related through LG. 
 
These relationships can be used to constrain and predict 
behavior of a leasing system. For example, assume known 
requirements for R and B. The responsiveness equation can 
be rewritten to determine LG [i.e., L ]. Then, using LRG 2= G, 
the bandwidth equation can be transformed to find maximum 
system size [i.e., )( GMAX LB ⋅= () GR SS +N ]. With this 
information, lookup services could grant lease periods < LG 
to ensure required responsiveness, deny requested leases that 
would consume an excess share of bandwidth, and deny 
requests for leases once N reaches NMAX. 

 
3. A SELF-ADAPTIVE ALGORITHM 
FOR JINI LEASING  

Assuming a leasing system must consume at most bandwidth 
B and guarantee minimum average responsiveness RBEST, a 
lookup service can grant a maximum lease period LMAX  = 
2RBEST. Given B, SR, and SG, we can determine a maximum 
lease-renewal rate G  = B / (SR + SG). For minimum system 
size, NMIN  = 1, the lookup service can grant a minimum 
lease period LMIN = 1/G. While this value for LMIN respects 
the bandwidth constraint, other factors should be considered. 
For example, at LMIN = 1/G leaseholder processing burden 
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might prove unacceptable. Instead, a leasing system might 
constrain maximum responsiveness (RWORST), giving a 
minimum lease period LMIN  = 2RWORST.  Knowing N, a 
lookup service may select a suitable granted lease period 
from a range (LMIN < LG < LMAX) using a simple algorithm. 
First, compute LG = N/G. If LG > LMAX, then deny the lease; 
otherwise, if LG < LMIN, then set LG = LMIN. Assigning LG 
with this algorithm permits a leasing system to constrain B 
and guarantee minimum average responsiveness (RBEST), 
while providing the best responsiveness achievable (up to 
RWORST) as N varies over 1..NMAX. 
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Fig. 1. System responsiveness (R) – left-hand y-axis – and 
bandwidth usage (B) – right-hand y-axis – for three 
granted lease periods (LG = 15 s, 60 s, and 120 s) as 
system size increases (N = 10 to 200 leaseholders). 
 
4. SIMULATION RESULTS 
We coded an SLX discrete-event simulation [5] model of 
Jini to confirm our analysis and to investigate dynamic 
behavior of our self-adaptive algorithm. We conducted 
simulation experiments, varying N from 10..200 and LG from 
15..300 s in 15-s increments. We used SR = 128 and SG = 32 
bytes. Figure 2 shows simulated results for average B and R 
when LG = 15 s, 60 s, and 120 s.  The simulation confirms 
our analyses: (1) B increases linearly with N for a given LG 
and decreases exponentially with LG for a given N and (2) R 
= LG/2, independent of N. Next, we simulated our adaptive 
leasing algorithm. Figure 3 illustrates how the algorithm 
constrains B while improving R as system size decreases.  
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Fig. 2. Responsiveness (R ) – left-hand y-axis – and 
bandwidth usage (B) – right-hand y-axis –as system size 
decreases (N = 200 to 0 leaseholders). 
 

5.  IMPLEMENTATION 
These promising results led us to implement our adaptive 
algorithm in “reggie”, a publicly available implementation of 
a Jini lookup service. Administrative actions occur through 
the RegistrarAdmin interface, which is not part of the Jini 
core specification, but a Sun extension to Jini. The 
RegistrarAdmin interface allows basic monitoring, 
configuration, and control of an operational lookup server 
just as if it were any other type of Jini-enabled service.  
 
To implement self-managed leasing, we modified the 
“reggie” server code to assign lease-grant times (LG) based 
on an administrator-assigned policy specified by two target 
values: worst-case average failure responsiveness (RWORST) 
and average bandwidth (B) allocated to lease renewal 
transactions.  We added a collection of access methods to the 
RegistrarAdmin interface, allowing a Jini client to view: the 
current LMIN, LMAX, and LG, the number of leaseholders (N) 
on the server, the instantaneous average bandwidth (BAVG) 
consumed by lease renewals, and the instantaneous average 
failure responsiveness (RAVG).   
 
Results from our live experiment are similar to the results we 
obtained from simulations. For example, the behavior of 
BAVG (Bandwidth) and RAVG (Responsiveness) were similar to 
the simulation results when services were added, then 
removed from the network.  
 
6. FUTURE WORK 
Given the performance tradeoffs and implementation costs, 
we conclude that our simple adaptive leasing algorithm can 
yield useful performance properties at little cost.  We argue 
that our adaptive leasing algorithm should also apply to 
similar systems that employ leasing for resources, such as 
UPnP event subscriptions [2].  The modifications are done 
on the resource provider side, and any system that allows for 
flexible lease times should be able to take advantage of this 
algorithm. 
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ABSTRACT 
Designs for distributed systems must consider the possibility that 
failures will arise and must adopt specific failure detection 
strategies. We describe and analyze a self-regulating failure-
detection algorithm that bounds resource usage and failure-
detection latency, while automatically reassigning resources to 
improve failure-detection latency as system size decreases. We 
apply the algorithm to (1) Jini leasing, (2) service registration in 
the Service Location Protocol (SLP), and (3) SLP service polling. 

1. INTRODUCTION 
Recent research on failure detection and recovery in distributed 
systems reports non-functional periods comprising two distinct 
phases: periods when a system is unaware of a failure (failure-
detection latency) and periods when a system attempts to recover 
from a failure (failure-recovery latency)[1]. Depending on system 
architecture and assumptions about failure characteristics of 
components, the study found failure-detection latencies covered 
from 55% to 80% of non-functional periods. The study also 
revealed failure detection can consume substantial overhead. 
These findings suggest distributed systems could benefit from 
failure detection algorithms that exhibit definite bounds on 
latency and overhead. We define and analyze such an algorithm, 
and then apply it to Jini leasing and to service registration and 
polling in SLP. 

2. AUTONOMIC FAILURE-DETECTION 
Figure 1 illustrates a two-way heartbeat failure-detection 
technique, where N monitorables each issue a rising heartbeat 
(every HP seconds) to one monitor, which replies with a falling 
heartbeat. Assuming rising and falling heartbeat messages of 
known size (SR and SF, respectively), the system consumes 
network bandwidth B = N (SR+SF)/HP. The monitor must process 
N/HP heartbeat messages per second. The monitorable must 
process 1/HP heartbeat messages per second. 
Figure 2 defines the period of inconsistency when a monitorable 
fails between heartbeats. Should a monitorable fail immediately 
after receiving a falling heartbeat from a monitor, then the 
maximum failure-detection latency (LMAX) is defined by the 
heartbeat period, i.e., LMAX = HP. Assuming a monitorable is 
equally likely to fail at any time, the average failure-detection 
latency (LAVG) is half the heartbeat period, LAVG = HP/2. 

For monitor failure, where detection occurs when the monitor 
does not respond with a falling heartbeat, the situation differs 
slightly. A monitorable may wait for some timeout period (TO) 
before concluding the monitor has failed; thus, the maximum 
detection latency for monitor failure is HP + TO, and the average 
detection latency is HP/2 +TO.  
We define an autonomic algorithm to limit bandwidth usage to an 
allocated capacity (BA) and to limit average failure-detection 

*This work is a contribution of the U.S. Government, not subject to 
copyright. In addition, the work identifies certain commercial products 
and standards to describe our study adequately. The National Institute of 
Standards and Technology neither recommends nor endorses these 
products or standards as best available for the purpose. 

Figure. 1. Fundamental outlines of a two-way, heartbeat-
based, failure-detection technique.

MonitorMonitorable
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Falling Heartbeat
TR
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TR + HP
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DETECTIONLATENCY (L)

LAVG = HP / 2 LMAX = HP

Figure 2. Defining failure-detection latency for 
heartbeat-based failure-detection techniques. 
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latency (to LWORST), while reducing average failure-detection 
latency (LAVG < LWORST) to some lower bound (LBEST) when the 
number of monitorables (N) falls below system capacity (NMAX). 
We modify the two-way heartbeat technique so that the monitor 
includes a heartbeat period (HP) in each falling heartbeat. The 
monitorable uses HP to determine when to issue the next rising 
heartbeat. The monitor may vary HP with each falling heartbeat to 
maintain an operating range defined by three policy goals: the 
average failure-detection latency in the worst (LWORST) and best 
(LBEST) cases and the allocated bandwidth (BA). 

Assuming N monitorables, the monitor varies the heartbeat period 
(HMIN < HP < HMAX) using the algorithm in Figure 3.The 
maximum heartbeat period (HMAX) is set to twice the worst-case 
average failure-detection latency (HMAX  = 2 LWORST). Given HMAX 
and the monitor’s capacity [C = BA/(SR + SF)], a monitor can 
watch at most NMAX = HMAX C monitorables. Assuming a monitor 
watches at least one monitorable, a natural choice for HMIN would 
be 1/C; however, this heart rate might place too great a load on 
individual monitorables. Instead, we choose a best-case goal 
(LBEST) for average failure-detection latency and set HMIN  = 2 
LBEST. HMIN establishes a lower bound on failure-detection latency.  

Below, we report analytical results as time-series plots (time 
increases from 0 to 400) with N first increasing to 200, and then 
decreasing back to 0. In all plots (Figure 4) we assume the same 
heartbeat sizes (SR = 128 bytes and SF = 64 bytes) and policy 
goals (LWORST = 30 s, LBEST = 7.5 s, and BA = 576 bytes/s). The top 
plot shows our algorithm limits monitor workload to NMAX, while 
the second plot illustrates our algorithm adjusting HP between 
HMIN and HMAX as N varies. The third plot shows how average 
bandwidth increases and decreases but never exceeds allocated 
bandwidth (BA). The bottom plot illustrates how our algorithm 
improves average failure-detection latency (L) as N decreases 
(ticks 200 to 400), while average failure-detection latency never 
exceeds the worst (LWORST) and best (LBEST) cases. 

3. SAMPLE APPLICATIONS 
We apply our algorithm to selected functions in two service-
discovery protocols: Jini [2] and the Service Location Protocol 
(SLP) [3].  Jini enables clients and services to rendezvous 
through a third party, known as a lookup service. Each Jini 
service registers a description of itself with each discovered 
lookup service, and requests a lease duration (LR), which may be 
accepted at time TG for a granted lease period LG < LR. LR may be 
“any”, which allows a lookup service to assign any value for LG. 
To extend registration beyond LG, services must renew the lease 
prior to an expiration time TE = TG + LG; otherwise, registration is 

revoked. This cycle continues until a service cancels or fails to 
renew a lease. Lookup services assign LG within a configured 
range, LMIN < LG < LMAX. While a granted lease may not be 
revoked prior to TE, lookup services may deny any lease request. 

if new monitorable then N++; 
HP = N / C; 
if  HP > HMAX   

then  N--; 
                      raise capacity exception;  

elseif HP < HMIN   
                   then HP = HMIN ; 

  endif 
endif 

Figure 3. Autonomic algorithm to vary heartbeat period.

Figure 4. Time-series plots from an analytical model of 
the proposed autonomic failure-detection algorithm. 

0

25

50

75

0 100 200 300 400

Time

H
ea

rt
be

at
 P

er
io

d 
(H

P
) i

n 
Se

co
nd

s

HMIN HMIN

HMAX

HP HP

0

25

50

75

0 100 200 300 400

Time

H
ea

rt
be

at
 P

er
io

d 
(H

P
) i

n 
Se

co
nd

s

HMIN HMIN

HMAX

HP HP

0

100

200

300

400

500

600

0 100 200 300 400

Time

B
an

dw
id

th
 C

on
su

m
pt

io
n 

(B
) i

n 
B

/s

B B

BA

0

100

200

300

400

500

600

0 100 200 300 400

Time

B
an

dw
id

th
 C

on
su

m
pt

io
n 

(B
) i

n 
B

/s

B B

BA

0

50

100

150

200

0 100 200 300 400
Time

N N

NMAX

N
um

be
r o

f M
on

ito
ra

bl
es

(N
)

0

50

100

150

200

0 100 200 300 400
Time

N N

NMAX

0

50

100

150

200

0 100 200 300 400
Time

N N

NMAX

N
um

be
r o

f M
on

ito
ra

bl
es

(N
)

0

8

16

24

32

40

0 100 200 300 400
Time

Fa
ilu

re
-D

et
ec

tio
n 

La
te

nc
y 

(L)
 in

 S
ec

on
ds

LBEST

L

LWORST

0

8

16

24

32

40

0 100 200 300 400
Time

Fa
ilu

re
-D

et
ec

tio
n 

La
te

nc
y 

(L)
 in

 S
ec

on
ds

LBEST

L

LWORST

Networking for Pervasive Computing NIST Special Publication 500-259

Mills et al. 218



We apply our algorithm to enable Jini lookup services to vary LG 
within a bounded range (LMIN < LG < LMAX) while limiting 
resource consumption associated with lease renewal. The 
mapping is straightforward. Assuming three policy goals, 
bandwidth allocated (BA) and worst (LWORST) and best (LBEST) 
failure-detection latencies, we compute LMIN  = HMIN  = 2 LBEST 
and LMAX = HMAX  = 2 LWORST. Knowing the size of the rising (lease 
request) and falling (lease grant) heartbeats (SR and SF, 
respectively), leasing capacity (C) is computed as before. 
Knowing the number of registered services (N), a Jini lookup 
service uses the algorithm in Figure 3 to compute HP and then 
uses that value as the granted lease period (LG = HP). If the new 
lease would exceed system capacity, then the lookup service 
issues a LEASE_DENIED exception. 

To verify our analysis, we implemented our algorithm in a Jini 
simulation and compared simulation results against analytical 
predictions, given a selected set of policy goals and known sizes 
for Jini messages. We subsequently implemented our algorithm in 
a publicly available implementation of the Jini lookup service. 
We modified the lookup service code to accept our policy goals 
and to measure and report average bandwidth usage (B), the 
number of registered services (N), and the value for LG. We 
deployed our modified Jini lookup service in a test bed built to 
control and monitor thousands of Jini services. We coded a 
measurement client to detect service arrivals and departures, 
computing average failure-detection latency (L). We measured 
behavior of a live Jini system using the same policy goals selected 
for analysis and simulation. We report our results in Figure 5 as 
four time-series plots, where we used the same protocol 
parameters (SR = 350 bytes and SF = 350 bytes) and policy goals 
(BA = 2100 bytes/second, LBEST = 7.5 seconds and LWORST = 1200 
seconds, and so NMAX = 7200) for the analysis, the simulation 
(1000 repetitions per data point), and the live system (20-30 
repetitions per data point).  

SLP Service Registration. SLP enables clients, called user agents 
(UAs), and services, called service agents (SAs), to rendezvous 
through a third party, known as a directory agent (DA). A SLP 
SA registers a description of itself with each discovered DA. A 
UA may query any discovered DAs to find services of interest 
and to obtain attributes that describe services.  

A SA requests registration for a time-to-live (TTLR), which may 
be accepted by a DA at time TG. To extend registration beyond 
TTLR, the registering SA must renew the registration prior to an 
expiration time TE = TG + TTLR; otherwise, the DA revokes the 
registration. This cycle continues until the SA cancels or fails to 
refresh a registration. While an accepted registration may not be 
revoked prior to TE, a DA may deny any registration request. A 
DA will always deny a registration request when TTLR is too 
small, as determined by comparing the TTLR against a minimum-
refresh interval (RFMIN) included within advertisements multicast 
by the DA at a periodic rate (DABEAT). We apply our algorithm to 
provide SLP service registration with rapid feedback, eliminating 
the need for RFMIN. 

We add a field (TTLG) to the SrvAck message, used by DAs to 
acknowledge service-registration (SrvReg) messages from SAs. 
Then, a DA can ignore TTLR and instead compute a granted time-
to-live (TTLG), which can vary dynamically within a bounded 
range (TTLMIN < TTLG < TTLMAX) while limiting resource 
consumption associated with refreshing service registrations. The 

mapping is straightforward. Assuming our three policy goals, 
bandwidth allocated (BA) and worst (LWORST) and best (LBEST) 
failure-detection latencies, we compute TTLMIN  = HMIN  = 2 LBEST 
and TTLMAX = HMAX  = 2 LWORST. Knowing the size of the rising 
(SrvReg) and falling (SrvAck) heartbeat messages (SR and SF, 
respectively), registration capacity (C) is computed as before. 
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Figure 5. Time-series plots showing application of 
autonomic failure-detection to Jini leasing procedures
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Knowing the number of registered services (N), a DA can use the 
algorithm in Figure 3 to compute HP and then use that value as the 
granted time-to-live (TTLG = HP). If a new registration would 
exceed system capacity, then the DA issues the SrvAck with a 
status code of DA_BUSY_NOW. 

To verify our analysis, we implemented our algorithm in a SLP 
simulation and compared simulation results against analytical 
predictions. We report our results in Figure 6 as four time-series 
plots, where we used the same protocol parameters (SR = 76 bytes 
and SF = 56 bytes) and policy goals (BA = 396 bytes/s, LBEST = 7.5 
seconds and LWORST = 500 seconds) for the analysis and the 
simulation. Setting LWORST = 500 seconds and BA = 396 bytes/s 
provides a maximum system capacity of NMAX = 3000 registered 
services. In the main, Figure 6 shows a close correspondence 
between analytical predictions and simulation results; however, 
the bandwidth-usage simulation plot (as well as the bandwidth-
usage simulation plot for Jini leasing procedures - recall Figure 5) 
illustrates a hysteresis within the control loop of our proposed 
algorithm. During periods of increasing system size, the algorithm 
typically assigns a heartbeat period that immediately becomes too 
small for the now increased system size, and will only be able to 
reduce the heartbeat period one monitorable at a time, as each 
previously assigned heartbeat expires. This lag causes the 
algorithm to slightly overshoot the allocated bandwidth. The 
larger the heartbeat message size the greater the overshoot. For 
example, the Jini plot (700 bytes per heartbeat) overshoots 
allocated bandwidth more than the SLP plot (132 bytes per 
heartbeat). However, the downward slope in the bandwidth-usage 
simulation plots (as system size increases from 50 to 200) 
suggests that the algorithm will stabilize bandwidth usage at the 
allocated bandwidth once the system size stabilizes. 

SLP UA Polling. SLP UAs must poll DAs periodically to learn 
about service arrivals and departures or about changes in attribute 
values of service descriptions. SLP includes no mechanisms 
through which DAs can control the polling rate of UAs. We can 
modify DA procedures to determine which UAs are polling a DA, 
and then we can apply our algorithm to assign polling intervals to 
those UAs. First, we explain the modified DA procedures. 

When a UA queries a DA, either using a service-request (SrvRqst) 
or attribute-request (AttrRqst) message, we modify the DA 
procedures to lookup the UA in a local DA cache. If the UA is not 
found, then the DA creates a new cache entry for the UA; 
otherwise, the DA uses the existing cache entry. The DA grants 
the cache entry a polling interval (PG), which can vary 
dynamically within a bounded range (PMIN < PG < PMAX) while 
limiting resource consumption associated with UA polling. We 
modify the format of the appropriate reply message, either the 
service reply (SrvRply) or the attribute reply (AttrRply), to include 
a field to hold PG for return to the UA. If the UA fails to issue 
another query to the DA by the time PG expires, then the DA 
purges the associated entry from the local cache of UAs. Upon 
receiving PG in the reply message, the UA schedules its next poll 
(if any) of the DA to occur slightly before PG expires. 

The DA can use our algorithm to determine a suitable value for 
PG. The mapping is straightforward. Assuming our three policy 
goals, bandwidth allocated (BA) and worst (LWORST) and best 
(LBEST) failure-detection latencies, we compute PMIN  = HMIN  = 2 
LBEST and PMAX = HMAX  = 2 LWORST. Estimating an average size for 
the rising (SrvRqst or AttrRqst) and falling (SrvRply or AttrRply) 

heartbeat messages (SR and SF, respectively), registration capacity 
(C) is computed as before. Knowing the number of polling clients 

(N), a DA can use the algorithm in Figure 3 to compute HP and 
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Figure 6. Time-series plots showing application of 
autonomic failure-detection to SLP service-

registration refresh procedures 
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then use that value as the assigned polling interval (PG = HP). If a 
new polling UA would exceed system capacity, then the DA 
issues the SrvRply or AttrRply with a status code of 
DA_BUSY_NOW. 

To verify our analysis, we implemented our algorithm in a SLP 
simulation and compared simulation results against analytical 
predictions, given a selected set of policy goals and estimated 
sizes for SLP messages. We devised a specific polling algorithm. 
Upon discovering a DA, a UA first issues one SrvRqst message 
(receiving a SrvRply from the DA) and then an AttrRqst message 
(receiving a AttrRply from the DA). The DA grants a PG only for 
each AttrRply message, and the UA polls only with AttrRqst 
messages. In other words, on initial discovery a UA and DA 
exchange four messages (SrvRqst-SrvRply-AttrRqst-AttrRply), and 
then the UA and DA periodically exchange two messages 
(AttrRqst-AttrRply). We modified our analytical model to account 
for these polling procedures. 

We report our results in Figure 7 as four time-series plots, where 
we used the same protocol parameters (average SR = 77 bytes and 
average SF = 128 bytes) and policy goals (BA = 615 bytes/s, LBEST 
= 7.5 seconds and LWORST = 500 seconds) for the analysis and the 
simulation (1000 repetitions per data point). Setting LWORST = 500 
seconds and BA = 615 bytes/s provided a maximum system 
capacity of NMAX = 3000 registered services. For the simulation, 
we sampled individual message sizes from a distribution for each 
AttrRqst and AttrRply. The distribution parameters for an AttrRqst 
were: 4 bytes minimum, 256 bytes maximum, 77 bytes average, 
and 138 bytes variance. The distribution parameters for an 
AttrRqst were: 64 bytes minimum, 224 bytes maximum, 128 bytes 
average, and 25 bytes variance. 

Figure 7 shows a close correspondence between analytical 
predictions and simulation results, and also again illustrates the 
hysteresis associated with the bandwidth-allocation control loop. 
Here, the overshoot is worse than for SLP service registration 
because the SLP polling heartbeat message sizes are greater (205 
bytes on average compared with 132 bytes). The bandwidth-usage 
overshoot is lower than for Jini leasing, however, because the SLP 
polling heartbeat messages are smaller (205 bytes on average 
compared with 350 bytes). Further, the overshoot for SLP polling 
is somewhat exaggerated because the initial four-message 
exchange prior to the polling heartbeats is included in the 
bandwidth-usage during periods of increasing system size. This 
can also be seen in the results from our modified analytical 
model, which overshoots the allocated bandwidth (615 bytes/s). 
This effect diminishes as the granted polling interval (PG) 
increases, as can be seen in the downward slope in both the 
analytical predictions and simulation results. 
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Figure 7. Time-series plots showing application of 
autonomic failure-detection to SLP UA polling 
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ABSTRACT 
Designers of distributed systems often rely on replicas for 
increased robustness, scalability, and performance. Replicated 
server architectures require some technique to select a target 
replica for each client transaction. In this paper, we use 
simulation to characterize performance (response time, selection 
error, probability of server overload) for four common replica-
selection algorithms (random, greedy, partitioned, weighted) 
when applied in a decentralized form to client queries in a 
distributed object system deployed on a local network. We 
introduce two new selection algorithms (balanced and balanced-
partitioned) that give improved performance over the more 
common algorithms. We find the weighted algorithm performs 
best among the common algorithms and the balanced algorithm 
performs best among all those we considered. Our findings 
should help designers of distributed object systems to make 
informed decisions when choosing among available replica-
selection algorithms.  

Categories and Subject Descriptors 
D.1.3 [Concurrent Programming]: Distributed Programming  

General Terms 
Algorithms, Design, Measurement, Performance 

Keywords 
Distributed Object Systems, Replica Selection. 

1. INTRODUCTION 
Designers of distributed systems often rely on replicas for 
increased robustness, scalability, and performance. Replication 
appears in a growing range of applications, such as web services 
[1-15], distributed object systems [16-20], grid systems [21-22], 
and content distribution networks [25-26]. Replication systems 
require that each client transaction be assigned to a specific 
server replica for processing. Selection (or assignment) 
algorithms aim to minimize client response time, to balance 
server load, or to achieve a combination. Typical commercial 
systems for server replication [10-15] allow a designer to choose 
among several alternate selection algorithms; however, the 
designer is given little quantitative information to aid in 
choosing. At best, commercial systems outline heuristics to 

differentiate among available algorithms. Even academic papers 
[e.g., 1-9] do not give comprehensive quantitative results. 

In this paper, we aim to help designers understand quantitative 
performance differences (and underlying causes) among the 
most common algorithms (random, greedy, partitioned, and 
weighted) for replica selection. We also introduce two new 
algorithms (balanced and balanced-partitioned), and compare 
performance with the more common algorithms. We consider 
three performance characteristics: average client response time, 
probability of selection error, and probability of server overload. 

Section 2 surveys common selection algorithms typically 
implemented in commercial systems and identifies some 
algorithms proposed by researchers. Section 3 explains the 
design of our experiment, including performance metrics. 
Section 4 presents simulation results, which are discussed in 
Section 5. We conclude in Section 6.  

2. REPLICA SELECTION 
Our literature survey revealed two classes of replica-selection 
algorithms. One class encompasses heuristically based, 
statically configured algorithms. One static algorithm uses a 
round robin approach [10,13,15] to rotate client transactions in 
turn among replicas. A similar algorithm (using a uniform 
distribution) randomly assigns [10,11,13] each client transaction 
to one of the available replicas. These two algorithms assume 
that each replica has similar processing power available and that 
the mix of transaction types is congruent among the client 
population. Absent these assumptions, the round robin and 
random algorithms could perform poorly; however, no dynamic 
measurements are needed for either algorithm. A third approach 
uses a proportional algorithm [13,14], which distributes client 
transactions among replicas in proportion to relative power 
ratings assigned by a system administrator. This accounts for 
variation in processing power when a server population consists 
of heterogeneous platforms. Here, some information must be 
collected (off-line) and encoded for use by the algorithm, which 
cannot adapt should configuration information prove inaccurate 
or transient. Our experiments investigate algorithms that 
dynamically adjust assignment of client transactions based on 
measured conditions; thus, we do not consider statically 
configured approaches. We do simulate random assignment as a 
baseline case. 
A second class of selection algorithms dynamically assigns 
client transactions based on measured conditions. The most 
common approach, greedy selection, [3,7,9-11,14,18, 23-25] 
assigns each transaction to the replica estimated to give best 
performance against some metric (different systems adopt 

*This work is a contribution of the U.S. Government and is in the public 
domain. This work identifies certain commercial products and standards 
to describe our study adequately. The National Institute of Standards and 
Technology neither recommends nor endorses these products or 
standards as best available for the purpose.  
WOSP’05, July 12–14, 2005, Palma, de Mallorca, Spain.  
ACM 1-59593-087-6/05/0007 
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Table 1. Key Experiment Parameters 

different metrics). Greedy selection exhibits a well-known 
undesirable behavior where transactions oscillate in groups 
among available replicas. To combat this “thundering herd” 
effect, some systems incorporate a weighted algorithm 
[1,8,9,11,15] that first estimates the performance of each replica 
against a selected metric and then distributes client transactions 
in proportion to the likelihood that each replica will provide 
acceptable performance. Some systems first partition [1,2,5,15-
17,20] replicas (based on estimated performance against some 
metric) into two groups, available and unavailable, and then, 
using greedy [2,15,20], weighted [1], random [5,16], or 
multicast [17] selection, assign client transactions among 
replicas in the available group. Multicast selection sends a 
transaction to every replica in the available set and uses the first 
returned result. Our experiment investigates the performance of 
three, common dynamic replica-selection algorithms: greedy, 
weighted, and partitioned (with random assignment). 
Most replica-selection systems that we examined adopt a 
selection metric from one of two classes: client response time or 
server load. Estimated response time, an ideal selection metric 
from the client perspective, can be decomposed [17] as the sum 
of communications delay (CD), server queuing delay (SQ), and 
server processing time (SP). CD is important when clients access 
replicas through the Internet. SQ is salient when a server is 
heavily loaded. SP can dominate when transactions are 
computationally intensive. From a server perspective, estimated 
server load is an ideal selection metric. An alternative is 
estimated server latency (SL), which can be decomposed as SQ + 
SP, yielding a convenient relationship between response time 
and server load. When CD is similar among all clients, SL 
provides a reasonable approximation of relative response time. 
When highly variable, CD should be measured independently. 
Our experiments use SL as an estimator for client response times 
because we simulate a distributed object system deployed on a 
local network, where clients experience similar communication 
delays. 

3. EXPERIMENT DESIGN 
We designed an experiment to meet the following objective: 
Given a set of r replicas deployed in a local network and queried 
periodically by c clients, characterize and compare performance 
of alternate selection algorithms. Our experiments exhibit the 
following constraints: (1) client-director pairs are deployed in a 
decentralized architecture (see Figure 1), (2) replicas are 
implemented as Jini lookup services, (3) each replica executes 
on a distinct, but similar, server, (4) each server is shared with 
other applications, and (5) replica state is piggybacked on 
existing Jini multicast announcements. Below, we provide 
details about the experiment architecture, key parameters, our 
technique to vary processor availability, selection metric and 
algorithms, and performance metrics. 

3.1 Experiment Architecture 
Figure 1 outlines the experiment architecture, which implements 
five replicas, each simulating a Jini [27] lookup service and a set 
of unrelated applications. Using Jini discovery and registration 
procedures all Jini services (not shown) register a service 
description with each replica. Each client periodically queries its 
local director (that uses some selection algorithm) to determine 
the address of a replica, and then queries the selected replica for 

service descriptions. Each client query is initiated 30 s after 
receiving a reply to the previous query (the first query is issued 
after a random startup delay). Each replica periodically (every 
60 s) multicasts a Jini announcement extended to include two 
elements of replica state: (1) the number (N) of pending queries 
and (2) the current query processing rate (Q). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Key Experiment Parameters 
Table 1 summarizes key parameters in three classes: component 
quantities, startup delays, and workloads. In most instances, an 
experiment considers an increasing population of clients from 
10 to 100 (in increments of 10); however, the balanced and 
balanced-partitioned algorithms require 200 clients to 
distinguish their performance. The (uniformly distributed) 
random startup delays for servers and directors are required by 
Jini, while higher startup delay for clients allows Jini discovery 
and registration to complete before initiating client queries. 
Each server reserves a minimum of 1% of its processing 
capacity for client queries; however, as much as 75% may be 
used for client queries, depending upon the server’s background 
load, which we vary every 60 s. 

3.3 Processor Availability 
Table 2 exhibits parameters controlling variation in processor 
availability. Each server reserves a minimum (BLMIN) and 
maximum (BLMAX) percentage (25% to 99%) of its capacity to 
process a background workload, which also defines a maximum 
(CMAX) and minimum (CMIN) capacity (75% to 1%) each server 
can devote to processing client queries. An unloaded server can 
process QRATE = 4 queries/s (assuming a query can be processed 
in QPTIME = 250 ms), which means that a loaded server’s query 

Director

Client

What Replica?

This Replica 5
Server

Replicas

Push N & Q
every 60 s

Query Replica (30 s after previous Reply)

Reply From Replica

Typically from 10 to 100 Client/Director Pairs*

(increments of 10)

*200 Client/Director Pairs in selected cases

Figure 1. Experiment Architecture 
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Table 2. Parameters Controlling Query Processing Rate 

The maximum % that a Server’s query capacity can 
increase between updates+20CI

Selected every 60 s from a discrete uniform distribution,
dC = discrete_uniform(CD, CI) . 0.01

–0.2 to +0.2dC

QRATE
. CMAX defines the rate at which a minimally loaded 

Server can process queries3 queries/sQMAX

1/ QPTIME defines the rate (in queries per second) at 
which an unloaded Server can process queries4 queries/sQRATE

QRATE
. CMIN defines the rate at which a maximally loaded 

Server can process queries0.04 queries/sQMIN

Time to process a single query on an unloaded Server250 msQPTIME

Variation in 
Server Query 
Capacity

Bounds on
Server Query 
Capacity

Bounds on
Server 
Background 
Load

Computed every 60 s, after selecting dC and computing 
Ct (note that QMIN < Qt < QMAX)QRATE * CtQt

Computed every 60 s from new dC and previous C, but 
constrained as follows: CMIN < Ct < CMAX

C t-1 + dCCt

The maximum % that a Server’s query capacity can 
decrease between updates-20CD

1 - BLMAX defines the minimum % of each Server that can 
be allocated to process Client queries0.01CMIN

1 - BLMIN defines the maximum % of each Server that can 
be allocated to process Client queries0.75CMAX

Up to 99% of each Server may be allocated to process the 
background workload0.99BLMAX

A minimum of 25% of each Server is reserved for 
processing a background workload 0.25BLMIN

ExplanationValueParameter

The maximum % that a Server’s query capacity can 
increase between updates+20CI

Selected every 60 s from a discrete uniform distribution,
dC = discrete_uniform(CD, CI) . 0.01

–0.2 to +0.2dC

QRATE
. CMAX defines the rate at which a minimally loaded 

Server can process queries3 queries/sQMAX

1/ QPTIME defines the rate (in queries per second) at 
which an unloaded Server can process queries4 queries/sQRATE

QRATE
. CMIN defines the rate at which a maximally loaded 

Server can process queries0.04 queries/sQMIN

Time to process a single query on an unloaded Server250 msQPTIME

Variation in 
Server Query 
Capacity

Bounds on
Server Query 
Capacity

Bounds on
Server 
Background 
Load

Computed every 60 s, after selecting dC and computing 
Ct (note that QMIN < Qt < QMAX)QRATE * CtQt

Computed every 60 s from new dC and previous C, but 
constrained as follows: CMIN < Ct < CMAX

C t-1 + dCCt

The maximum % that a Server’s query capacity can 
decrease between updates-20CD

1 - BLMAX defines the minimum % of each Server that can 
be allocated to process Client queries0.01CMIN

1 - BLMIN defines the maximum % of each Server that can 
be allocated to process Client queries0.75CMAX

Up to 99% of each Server may be allocated to process the 
background workload0.99BLMAX

A minimum of 25% of each Server is reserved for 
processing a background workload 0.25BLMIN

ExplanationValueParameter

processing rate may vary from a minimum (QMIN) of 0.04 
queries/s to a maximum (QMAX) of 3 queries/s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Every 60 s each server updates capacity (Ct) for processing 
queries, subject to a constraint that capacity may not change by 
more than 20% (CD and CI bound the maximum percentage of 
decrease and increase, respectively) from the previous capacity 
(Ct-1). The updated capacity determines the current query-
processing rate (Qt). Figure 2 displays a two-hour time series 
depicting the relationship between changes in available capacity 
(Ct) – left-hand y-axis and query-processing rate (Qt) – right-
hand y-axis. 

 

 

 

 

 

 

 

 

 

 

We assume each query requires similar processing, i.e., 
transactions are homogeneous. We also assume query-
processing rate remains stable between announcements because 
the schedulers in the server operating systems allocate portions 
of processor time to specific processes and periodically (each 
minute here) adjust that allocation. We further assume that 
communication delays will be insignificant (and similar) 
because we simulate deployment in a local network. 

3.4 Selection Metric and Algorithms 
Directors select replicas based on estimated latency for each 
server r (SLr). SLr = Nr/Qr, where Nr and Qr are the number of 

queries pending and the query processing rate, respectively, 
received in the most recent announcement from server r. Table 3 
defines key elements of the notation we use in the following 
description of our replica-selection algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

Our baseline algorithm is random selection, where a director 
selects one of the known replicas, with each replica having an 
equal selection probability. Let S be the set of known server 
replicas, and n be the number of known server replicas. The 
director selects server replica si, where i is an integer selected 
uniformly on the interval [1..n]. The greedy algorithm requires a 
director to select the replica si with the lowest estimated server 
latency (Ni/Qi). 

In the partitioned (random selection) algorithm, a director first 
uses the state information cached for each replica to subset S 
into a set (A) of a available replicas with estimated server 
latencies at or below a threshold (TQAVAIL). The director then 
selects one replica (randomly) from A. If no replicas qualify for 
set A, then the director selects a replica randomly from set S. 

In the weighted algorithm, a director assigns each replica a 
weight based upon the inverse of estimated server latency and 
apportions the unit interval according to the weights. The 
director then draws a random real number uniformly distributed 
on the unit interval and selects the replica assigned to the 
corresponding portion. 

The greedy, partitioned, and weighted algorithms consider 
estimated server latency (N/Q) as a unified metric; however, 
replicas with similar server latency estimates could possess 
different capacities to absorb work. This observation led us to 
devise a balanced algorithm, where a director assigns each 
replica a weight, based on the number of queries (di) required 
for its server latency to reach the maximum estimated server 
latency among all replicas. The director then apportions the unit 
interval according to those weights and chooses a random real 
number uniformly distributed on the unit interval, selecting the 
replica assigned to the corresponding portion. Balanced 
selection entails some probability that client transactions may be 
assigned to overloaded replicas. For this reason, we devised a 
balanced-partitioned variant, which first partitions replicas into 
two subsets, available and unavailable, based on comparing 
estimated server latency against TQAVAIL, and then uses the 

Table 3. Notation for Defining Selection Algorithms 

Number of additional queries needed for ith Server to match TQREFdi

Maximum estimated Server latencyTQREF

Set of Servers with additional queries needed to match TQREFD

Normalization factorK

Weight assigned to ith Serverwi

Set of Servers with weightsW

Number of available Serversa

Set of available ServersA

Server i is available when Ni / Qi < TQAVAILTQAVAIL

Number of queries/second that Server i can processQi

Number of queries backlogged at Server iNi

ith Serversi

Number of Serversn

Set of ServersS

ExplanationNotation
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Figure 2. Variations in Ct causing Variations in Qt 
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Figure 3(a). Average Client Response Time for 
Common Selection Algorithms 

Figure 3(c). Probability of Server Overload for 
Common Selection Algorithms 

Figure 3(b). Probability of Selection Error for 
Common Selection Algorithms 

balanced algorithm to select a replica from among the available 
subset. Where the available subset is empty, selection is made 
using the balanced algorithm. 

3.5 Performance Metrics 
To compare performance among selection algorithms, we define 
three metrics: average client response time (avgRT), defined in 
Table 4, and probability of selection error (probSE) and server 
overload (probSO), defined in Table 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. SIMULATION RESULTS 
We implemented our experiment as an SLXTM [28] simulation 
of Jini lookup servers, services, clients, and directors, executing 
a set of runs that each considered an increasing population of 
clients, each supported by a director using one of the selection 
algorithms defined in Section 3.4. Each client in each run 
generated 1,000 queries, and each run was iterated 100 times; 
thus, each data point observes c x 105 replica selections. Below, 
we report results in two sets: the four common selection 
algorithms and the two algorithms we invented. 

Figures 3(a)-(c) plot performance (each graph displays a 
different metric) under increasing load for the common selection 
algorithms. Figures 4(a)-(c) plot performance for the balanced 
and balanced-partitioned algorithms, where we increase beyond 
100 clients in order to distinguish performance differences. 
Figures 4(a)-(c) also include for comparison weighted selection, 
the best performing of the common algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. DISCUSSION 
Our results show that selecting replicas based on information 
yields superior performance over random selection, which may 
assign transactions to overloaded replicas; thus leading to higher 
response times and server latencies. One exception appears: the 
“thundering herd” effect induced by greedy selection causes 
higher variance in server latency (not shown), as transactions 
descend en masse upon the best performing replica, 

Table 5. Definition of Probability of Selection Error and 
Probability of Server Overload 

Probability of a selection error, computed as:probSE
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Probability a Server is overloaded, computed as:probSO
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Total time during which TQi > TQMAX for Server i (observed 
and updated upon arrival and departure of each query)
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transforming it to a poor performer. Bulk arrivals ensure that 
information on which decisions were based becomes outdated 
quickly. 
Partitioning replicas into two sets (based on server latency) and 
then selecting randomly among the less loaded set, provides 
general improvement over greedy selection on all metrics. 
Further, the advantage of partitioned selection increases with 
client load. Spreading transactions evenly among replicas likely 
to provide good performance does not rapidly push one 
particular replica into overload. The general advantage of 
partitioned (random) over greedy selection exhibits one 
exception. Below 50 clients, servers have higher probability of 
being overloaded with partitioned (random) selection because 
the greedy algorithm assigns work in series – replica by replica 
– causing the number of overloaded servers to increase more 
slowly. Once all replicas reach saturation, the bulk arrival 
process of greedy selection creates larger backlogs, while 
partitioned selection spreads arrivals more evenly, allowing 
servers to spend less time in overload. 
Among the common algorithms, weighted selection provides the 
best performance on all metrics. Weighted selection adapts to 
changes in replica state without inducing rapid or large 
fluctuations. Greedy selection stimulates large changes in 
workload, pushing a selected replica away from the state that 
led to its selection. The partitioned algorithm induces cyclic 
oscillation in replica workload, but at a somewhat slower 
frequency than greedy selection. Weighted selection tends 
mainly to react to changes in replica state, while the greedy and 
partitioned algorithms induce feedback that alters the state to 
which they are reacting. This difference leads weighted 
selection to exhibit more stable and desirable performance. 
The balanced algorithm shares the reactive nature of weighted 
selection but improves performance for two reasons. First, 
balanced selection assigns more transactions to replicas with 
greater available processing capacity. Second, using the replica 
with the largest estimated server latency as the goal state 
reduces pressure for upward movement in system-wide server 
latency, and tends to reinforce downward movement. These 
reasons also explain why the balanced-partitioned algorithm 
performs well, up to a point. As the client population surpasses 
100, performance degrades for the balanced-partitioned 
algorithm because the set of replicas available diminishes, 
forcing fewer replicas to receive more transactions. After load 
reaches saturation, partitioning creates a bulk-arrival process 
that pushes replicas into overload for longer periods. These 
results indicate that adding a partitioning step could diminish 
performance for an otherwise good selection algorithm.      

6. CONCLUSIONS 
We used simulation to characterize performance (response time, 
selection error, probability of server overload) for four common 
replica-selection algorithms (random, greedy, partitioned, 
weighted) when applied in a decentralized form to client queries 
in a distributed object system deployed on a local network. We 
introduced two new selection algorithms (balanced and 
balanced-partitioned) that give improved performance over the 
more common algorithms. We found that weighted selection 
performs best among the common algorithms and that balanced 
selection performs best overall. We explained why greedy and 

random algorithms should be avoided. We also provided 
evidence that preceding selection with a partitioning step can 
weaken an otherwise good selection algorithm. 

Figure 4(c). Probability of Server Overload for New 
(and Weighted) Selection Algorithms 
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Figure 4(a). Average Client Response Time for New 
(and Weighted) Selection Algorithms 
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SUMMARY OF CONTRIBUTIONS TO SERVICE DISCOVERY TECHNOLOGY 

As part of the ITL research program in networking for pervasive computing, NIST researchers published 
the first generic model encompassing the structure and behavior of first-generation service discovery 
systems, and showed how that model can represent the designs for several, specific service discovery 
systems. The model provides a deep analysis of the common elements and behaviors in modern service 
discovery systems. NIST researchers also identified issues that designers should attempt to resolve in the 
next generation of service discovery systems. NIST researchers proposed a set of service guarantees that 
they believe service discovery systems should strive to satisfy, along with an analysis of the factors that 
might interfere with meeting service guarantees. Such guarantees could be cast into test assertions that 
serve to evaluate the behavior or measure the performance of designs and implementations of service 
discovery systems. NIST researchers also identified and suggested possible solutions to performance 
issues that can arise in service discovery systems. Identifying possible performance issues can alert users 
to the potential for unexpected behavior when service discovery technology is deployed at large scale. 
Further, implementers of service discovery systems can consider the suggested solutions when developing 
software to embody related processes in a service discovery system. All of the contributions reported in 
this special publication were provided to relevant standards bodies, consortia, and researchers in hopes of 
improving the quality of the next generation of service discovery systems on which the service-oriented 
architectures of tomorrow appear likely to depend. 
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