
Networking for Pervasive Computing

Research from the National Institute of Standards
and Technology

Kevin L. Mills, Editor

Special Publication 500-259

NIST Special Publication 500-259 Networking for Pervasive

Computing

Kevin L. Mills, Editor

C O M P U T E R NETWORKING

Advanced Network Technology Division
Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8920

July 2005

U.S. Department of Commerce
Carlos M. Gutierrez, Secretary

Technology Administration
Phillip J. Bond, Under Secretary for Technology

National Institute of Standards and Technology
William A. Jeffrey, Director

Acknowledgements

The editor, Kevin L. Mills of the National Institute of Standards and Technology (NIST), wishes to thank
his many colleagues who conducted and documented the research reprinted in this publication. Due to the
superior efforts of Nada Golmie, who led a fine team of researchers, we report significant findings
regarding interference issues between wireless personal-area network (WPAN) devices and wireless
local-area network (WLAN) devices. This research team also investigated technical approaches to
mitigate interference between WPAN and WLAN devices. Over the course of the WPAN research
reported here, contributing researchers included: Nicolas Chevrollier, Issam ElBakkouri, Frederic
Mouveaux, Olivier Rebala, Amir Soltanian, Arnaud Tonnerre, and Robert Van Dyck. A key collaboration
between Christopher Dabrowski of the NIST software division and Kevin Mills of the NIST networking
division provided focused and study direction for a group of contributing researchers who investigated
properties of first-generation service-discovery systems. Thanks to these researchers we provide
substantial understanding of the functionality, behavior, performance, and robustness of first-generation
service-discovery systems. This research group also investigated adaptive techniques that could enable
components in service-discovery systems to regulate their own behavior to achieve desired performance
properties. Over the duration of the service-discovery research reported here, contributing researchers
included: Kevin Bowers, Mackenzie Britton, Jesse Elder, Steve Quirolgico, Scott Rose, Andrew Rukhin,
and Ceryen Tan. Thanks are also due to the many reviewers, both inside and outside of NIST, who
provided helpful suggestions to improve the various papers reprinted in this publication. We also must not
ignore the significant contributions made by the designers, specification writers, and implementers who
developed the proposed technologies for wireless network access and for service discovery, which formed
the basis for the investigations reported here. Without the imagination and resources of these industrial
contributors, we would not be in a position to provide the knowledge we gained by studying various
networking technologies proposed for use in pervasive computing applications. A select few individuals
who had the foresight to provide funding to support the research reported here provided a final, but key,
contribution to this work. Funding was provided by: Susan Zevin, acting director of the NIST Information
Technology Laboratory, Douglas Maughan, manager of the Defense Advanced Research Projects Agency
(DARPA) Fault-Tolerant Networks Program, John Salasin, manager of the DARPA program in Dynamic
Assembly for System Adaptability, Dependability and Assurance, and James Puffenbarger of the
Advanced Research and Development Activity (ARDA).

Any mention of commercial products or reference to commercial organizations is for information only; it
does not imply recommendation or endorsement by NIST nor does it imply that the products mentioned
are necessarily the best available for the purpose.

Networking for Pervasive Computing NIST Special Publication 500-259

iii

iv

RESEARCH OVERVIEW

Information technology is undergoing a paradigm shift from desktop computing, where isolated
workstations connect to shared servers across a network, to pervasive computing, where myriad portable,
embedded, and networked information appliances continuously reconfigure themselves individually and
collectively to support the information requirements of mobile workers and work teams. This shift will
not occur overnight, nor will it be achieved without solving a range of new technical and social problems.
Still, this inexorable change should yield many economic opportunities for the global information
technology industry, and for the increasing swath of businesses that depend on information. The potential
value of pervasive computing motivated the NIST Information Technology Laboratory (ITL) to establish
a five-year program of research to help the information technology industry identify and solve some
looming technical roadblocks that seemed likely to slow development and acceptance of the new
paradigm. The ITL Pervasive Computing program addressed three general areas: human-computer
interaction, programming models, and networking. This special publication provides a compendium of
technical papers published by NIST researchers who investigated networking for pervasive computing.

Pervasive computing changes the emphasis of networking from the core (or backbone) to the
edge, where many portable devices will move through a wireless environment. Mobile devices can cause
unpredictable traffic patterns, or traffic patterns that may be predictable but different from traffic patterns
arising with conventional desktop computing. Since the network edge will comprise largely wireless
communications, one may expect sudden crowding of the shared wireless spectrum and also surging
demands for particular resources, such as wireless access points or configuration servers. Further, network
protocols will need to dynamically discover and compose resources and services to support changing
application demands associated with user mobility. Finally, it seems likely that user mobility will imply a
diverse set of processors, transmission schemes, and protocols, which suggests the need to mediate among
incompatible rules and descriptions and to allocate, schedule, and control shared, heterogeneous
resources. From among the changes presaged by pervasive computing, NIST researchers elected to
investigate two significant areas: (1) wireless personal area networks and (2) service discovery protocols.

Industry has developed a number of technical standards to provide wireless local-area network
(WLAN) access and to support wireless personal-area network (WPAN) configurations. Pervasive
computing will leverage both WLAN and WPAN technology, which operate in shared, unlicensed bands
of wireless spectrum. Given that myriad wireless devices will operate simultaneously in close proximity,
it appears possible that interference could compromise the quality of service available to mobile users.
This concern motivated NIST researchers to ask two questions. First, can we characterize the performance
of WLAN and WPAN protocols operating in the same network area? Second, can we devise technical
approaches to mitigate interference and enhance coexistence between competing WLAN and WPAN
devices? This special publication reprints six technical papers (Paper #1 through Paper #6) investigating
the effects of interference between WLAN and WPAN protocols. This special publication also reprints
eight technical papers (Paper #7 through Paper #14) reporting on various techniques to mitigate
interference between WLAN and WPAN devices. The techniques captured in these eight papers were also
submitted to the Institute for Electrical and Electronic Engineers (IEEE) technical committee developing
standards for coexistence among wireless devices sharing unlicensed spectra. Wireless communications
will provide the underlying infrastructure through which pervasive-computing devices and services can
discover each other and interact, possibly configuring into collections to support application needs. This
process of dynamic discovery, configuration, and monitoring provides a second area investigated by
NIST researchers.

Over the period from about 1998 to 2000, industry developed a first generation of competing
architectures and protocols for device and service discovery. Such a plethora of incompatible approaches
seemed likely to impede the interoperability required by a market for pervasive computing. Is the
existence of so many different service-discovery systems justified? NIST researchers analyzed the various
technical approaches and developed a model to unify the features, functions, and processes provided. The

Networking for Pervasive Computing NIST Special Publication 500-259

v

goal of this modeling effort was threefold: (1) to understand the essential service-discovery functionality
defined by the industry, (2) to reveal any technical deficiencies in existing service-discovery
specifications, and (3) to define the functional and behavioral bounds achievable from this first-generation
of service-discovery systems. The result of this modeling effort is reported in “A Model-based Analysis
of First-Generation Service Discovery Systems” a separate NIST special publication – SP 500-260. Here,
we reprint (as Paper #21) only the executive summary from SP 500-260. A particular goal of service-
discovery systems is to monitor the state of distributed resources in a network so that failed resources can
be detected and recovery actions can be initiated. Do the various architectures for service-discovery
systems provide different levels of robustness in the face of selected failure types? This question is
addressed in part by five research papers (Paper #15 through Paper #19) reprinted in this special
publication. One paper, “Understanding Failure Response in Service Discovery Systems” (Paper #20),
provides a comprehensive report on the robustness of the three main service-discovery architectures (two-
party, three-party, and adaptive two-three party) in the face a various types of failure (node failure,
communication failure, message loss, and power failure). While investigating service-discovery protocols,
NIST researchers noticed that the performance of some features depended upon adopting appropriate
parameter settings, but that the most apt parameter settings depended upon the size of the system. This
dependency caused some concern because, while service-discovery systems are intended to support
dynamic changes in system composition, none of the protocols investigated provide any requirement to
monitor system state and then to adjust selected parameter settings (or behavior) to improve system
performance. This observation led NIST researchers to propose and evaluate some self-adaptive
techniques that enable service-discovery components to monitor system state and to adjust various
parameters and behaviors in real time. The related papers are reprinted in this special publication. One
paper (Paper#22) investigates techniques to mitigate a possible implosion of responses to multicast
queries. Three papers (Paper #23 through Paper #25) explore algorithms to dynamically adjust the
duration assigned to leases (or subscriptions), which are often used by service-discovery protocols to
detect failures among remote components. One paper (Paper #26) shows how a particular algorithm for
dynamic adjustment of lease periods can be used to support various functions in a number of service-
discovery protocols. Finally, one paper (Paper #27) evaluates distributed algorithms that service-
discovery clients could use to select replicas to query. These research results regarding service-discovery
systems should: (1) help prospective users to understand the functionality, behavior, and robustness of
first-generation service-discovery systems, (2) inform implementers about the performance improvements
possible through various self-adaptive algorithms, and (3) provide designers with ideas for improving the
next generation of service-discovery systems.

Networking for Pervasive Computing NIST Special Publication 500-259

Table of Contents

INTRODUCTION ..1

WIRELESS LOCAL AND PERSONAL AREA NETWORKS...3
PERFORMANCE CHARACTERIZATION UNDER INTERFERENCE 4

Paper #1 Interference in the 2.4 GHz ISM Band: Impact on the Bluetooth Access
Control Performance by Nada Golmie and Frederic Mouveaux, published
in the Proceedings of the 18th International Conference on
Communications (ICC'01), June 2001...8

Paper #2 Physical Layer Performance for Coexistence of Bluetooth and
IEEE 802.11b by Amir Soltanian and Robert E. Van Dyck, published in
the Proceedings of the 2001 Virginia Tech Symposium on Wireless
Personal Communications, June 2001………………..…………………...14

Paper #3 Performance of the Bluetooth System in Fading Dispersive
Channels and Interference by Amir Soltanian and Robert E. Van
Dyck, published in the Proceedings of IEEE Globecom, November
2001...25

Paper #4 Interference of Bluetooth and IEEE 802.11: Simulation Modeling
and Performance Evaluation by Nada Golmie, Robert E. Van Dyck,
and Amir Soltanian, published in the Proceedings of the Fourth
International ACM Workshop on Modeling, Analysis and Simulation
of Wireless and Mobile Systems, July 2001 ..30

Paper #5 Interference Evaluation of Bluetooth and IEEE 802.11b Systems
by Nada Golmie, Robert E. Van Dyck, Amir Soltanian, Arnaud
Tonnerre, and Olivier Rebala, published in the journal Wireless
Networks, 9, pp. 201-211, Kluwer Academic Publishers, 200338

Paper #6 Interference in the 2.4 GHz ISM Band: Challenges and Solutions
by Nada Golmie, published in the Proceedings of the First International
Conference on Applications and Services in Wireless Networks,
ASW’2001, pp.187-199, July 2001 ...48

INTERFERENCE MITIGATION TECHNIQUES .. 61

Paper #7 Rejection of Bluetooth Interference in 802.11 LANs by Amir
Soltanian and Robert E. Van Dyck, published in the Proceedings
of the IEEE Vehicular Technical Conference, September 2002…...…....65

Paper #8 Techniques to Improve Bluetooth Performance in Interference
Environments by Nada Golmie and Nicolas Chevrollier, published
in the Proceedings of Military Communications, MILCOM,
October 2001 ………………………………………………………….……...68

Paper #9 Interference Aware Bluetooth Packet Scheduling by Nada
Golmie, Nicolas Chevrollier, and Issam ElBakkouri, published
in the Proceedings of the IEEE Global Telecommunications
Conference, GLOBECOM '01, vol. 5, pp. 2857-2863,2001……….……..73

Paper #10 Techniques to Improve the Performance of TCP in a mixed
Bluetooth and WLAN Environment by Nada Golmie and Olivier
Rebala, published in the Proceedings of the IEEE International
Conference on Communications, ICC, May 2003……….........................80

Networking for Pervasive Computing NIST Special Publication 500-259

vi

Paper #11 Bluetooth Dynamic Scheduling and Interference Mitigation by
Nada Golmie, published in the ACM journal Mobile Networks,
MONET Vol. 9, No. 1, February 2004………………………...…………….85

Paper #12 Bluetooth Adaptive Techniques to Mitigate Interference by
 Nada Golmie and Olivier Rebala, published in the Proceedings of IEEE

GLOBECOM, December 2003………………………..............................106
Paper #13 Bluetooth Adaptive Frequency Hopping and Scheduling by

Nada Golmie, Olivier Rebala, and Nicolas Chevrollier,
published in the Proceedings of Military Communications, MILCOM,
October 2003...111

Paper #14 Bluetooth and WLAN Coexistence: Challenges and Solutions by
Nada Golmie, Nicolas Chevrollier, and Olivier Rebala, published in
the IEEE Wireless Communications Magazine, December 2003..........116

SUMMARY OF CONTRIBUTIONS TO WLAN-WPAN TECHNOLOGY 125

FIRST-GENERATION SERVICE-DISCOVERY SYSTEMS …………….……..….……..……….126
BEHAVIORAL AND PERFORMANCE CHARACTERIZATION
 OF DISCOVERY SYSTEMS... 127

Paper #15 Analyzing Properties and Behavior of Service Discovery Protocols
Using an Architecture-Based Approach by Christopher Dabrowski
and Kevin Mills, published in the Proceedings of Working
Conference on Complex and Dynamic Systems Architecture,
December 2001 ...131

Paper #16 Understanding Consistency Maintenance in Service Discovery
Architectures during Communication Failure by Christopher
Dabrowski, Kevin Mills, and Jesse Elder, published in
the Proceedings of the 3rd International Workshop on Software
Performance, ACM, pp. 168-178, July 2002 .…………………………...144

Paper #17 Understanding Consistency Maintenance in Service Discovery
Architectures in Response to Message Loss by Christopher
Dabrowski, Kevin Mills, and Jesse Elder, published in
the Proceedings of the 4th International Workshop on Active
Middleware Services, IEEE Computer Society, pp. 51-60,
July 2002……………………………………………………………….…….155

Paper #18 Understanding Self-healing in Service-Discovery Systems by
Christopher Dabrowski and Kevin Mills, published in the
Proceedings of the First ACM SigSoft Workshop on
Self-healing Systems (WOSS '02), ACM Press, pp. 15-20,
November 18-19, 2002..165

Paper #19 Performance of Service-Discovery Architectures in Response to Node
Failures by Christopher Dabrowski, Kevin Mills, and Andrew Rukhin,
published in the Proceedings of the 2003 International Conference on
Software Engineering Research and Practice
(SERP'03), CSREA Press, pp. 95-101, June 2003………..171

Paper #20 Understanding Failure Response in Service Discovery Systems
by Kevin Mills, Christopher Dabrowski, and Steve Quirolgico,
submitted to the journal Cluster Computing, March 2005
............................. ...…………………..……………………………………..178

Networking for Pervasive Computing NIST Special Publication 500-259

vii

Paper #21 A Model-based Analysis of First-Generation Service Discovery
Systems by Christopher Dabrowski, Kevin Mills, and Steve
Quirolgico, NIST Special Publication 500-260…..……...…........…….…198

PEFORMANCE IMPROVEMENT TECHNIQUES FOR DISCOVERY SYSTEMS200

Paper #22 Adaptive Jitter Control for UPnP M-Search by Kevin Mills and
Christopher Dabrowski, published in the Proceedings of International
Conference on Communications (ICC), IEEE,
May 2003...202

Paper #23 Self-Adaptive Leasing for Jini by Kevin Bowers, Kevin Mills, and
Scott Rose, published in the Proceedings of the Pervasive
Computing Conference, IEEE, pp. 539-542, March 2003…...………….208

Paper #24 Improving Failure Responsiveness in Jini Leasing by Scott Rose,
Kevin Bowers, Steve Quirolgico, and Kevin Mills, published in the
Proceedings of the 3rd DARPA Information Survivability Conference
and Exposition (DISCEX-III 2003), IEEE Computer Society, Vol. II, pp.
103-105, April 2003, ...212

Paper #25 Self-Managed Leasing for Distributed Systems by Kevin Bowers,
Kevin Mills, Steve Quirolgico, and Scott Rose, published in the
Proceedings of the 1st Workshop on Algorithms and Architectures for
Self-Managing Systems, co-sponsored by ACM SIGMETRICS, June
2003...215

Paper #26 An Autonomic Failure-Detection Algorithm by Kevin Mills, Scott
Rose, Steve Quirolgico, Mackenzie Britton, and Ceryen Tan,
published in the Proceedings of the 4th International Workshop on
Software Performance, ACM, pp. 79-83, January 2004………..217

Paper #27 Performance Characterization of Decentralized Algorithms
 for Replica Selection in Distributed Object Systems by Ceryen
 Tan and Kevin Mills, published in the Proceedings of the 5th

 International Workshop on Software Performance, Palma de
 Mallorca, Spain, ACM, July 11-14, 2005 (in press)..……………..……..222

 SUMMARY OF CONTRIBUTIONS TO SERVICE DISCOVERY TECHNOLOGY228

Networking for Pervasive Computing NIST Special Publication 500-259

viii

INTRODUCTION

Information technology is undergoing a paradigm shift from desktop computing, where isolated
workstations connect to shared servers across a network, to pervasive computing, where myriad portable,
embedded, and networked information appliances continuously reconfigure themselves individually and
collectively to support the information requirements of mobile workers and work teams. This shift will
not occur overnight, nor will it be achieved without solving a range of new technical and social problems.
Still, this inexorable change should yield many economic opportunities for the global information
technology industry, and for the increasing swath of businesses that depend on information. The potential
value of pervasive computing motivated the NIST Information Technology Laboratory (ITL) to establish
a five-year program of research to help the information technology industry identify and solve some
looming technical roadblocks that seemed likely to slow development and acceptance of the new
paradigm. The ITL Pervasive Computing program addressed three general areas: human-computer
interaction, programming models, and networking. This special publication provides a compendium of
technical papers published by NIST researchers who investigated networking for pervasive computing.

Pervasive computing changes the emphasis of networking from the core (or backbone) to the
edge, where many portable devices will move through a wireless environment. Mobile devices can cause
unpredictable traffic patterns, or traffic patterns that may be predictable but different from traffic patterns
arising with conventional desktop computing. Since the network edge will comprise largely wireless
communications, one may expect sudden crowding of the shared wireless spectrum and also surging
demands for particular resources, such as wireless access points or configuration servers. Further, network
protocols will need to dynamically discover and compose resources and services to support changing
application demands associated with user mobility. Finally, it seems likely that user mobility will imply a
diverse set of processors, transmission schemes, and protocols, which suggests the need to mediate among
incompatible rules and descriptions and to allocate, schedule, and control shared, heterogeneous
resources. From among the changes presaged by pervasive computing, NIST researchers elected to
investigate two significant areas: (1) wireless personal area networks and (2) service discovery protocols.

Industry has developed a number of technical standards to provide wireless local-area network
(WLAN) access and to support wireless personal-area network (WPAN) configurations. Pervasive
computing will leverage both WLAN and WPAN technology, which operate in shared, unlicensed bands
of wireless spectrum. Given that myriad wireless devices will operate simultaneously in close proximity,
it appears possible that interference could compromise the quality of service available to mobile users.
This concern motivated NIST researchers to ask two questions. First, can we characterize the performance
of WLAN and WPAN protocols operating in the same network area? Second, can we devise technical
approaches to mitigate interference and enhance coexistence between competing WLAN and WPAN
devices? The answers found by NIST researchers are reported below in fourteen papers organized in two
sections: performance characterization and interference mitigation techniques. Overall, the research
results from NIST regarding mutual interference of WLAN and WPAN devices should: (1) help
prospective users to understand the limitations of current wireless devices deployed in the unlicensed 2.4
GHz ISM band, (2) inform standards setters about the performance improvements possible through
adoption of various co-existence algorithms, and (3) provide designers with ideas for improving the next
generation of wireless devices.

While wireless communications provide the underlying infrastructure through which pervasive-
computing devices can discover each other and configure into collections, a similar process of dynamic
discovery, configuration, and monitoring will occur at a higher level, where software components and
services cooperate to meet application needs. Over the period from about 1998 to 2000, industry
developed a first generation of competing architectures and protocols for component and service
discovery. Such a plethora of incompatible approaches seemed likely to impede the interoperability
required by a market for pervasive computing. Is the existence of so many different service-discovery
systems justified?

Networking for Pervasive Computing NIST Special Publication 500-259

1

NIST researchers analyzed the extant technical approaches and developed a model to unify the
features, functions, and processes provided. The modeling effort aimed: (1) to understand the essential
service-discovery functionality provided by the industry, (2) to reveal any technical deficiencies in
existing service-discovery specifications, and (3) to define the technical bounds achievable from this first-
generation of service-discovery systems. A particular goal of service-discovery systems is to monitor the
state of distributed resources in a network so that failed resources can be detected and recovery actions
can be initiated. Do the various architectures for service-discovery systems provide different levels of
robustness in the face of selected failure types? NIST researchers address these objectives and questions
in a collection of seven papers that characterize the behavior and performance of first-generation service-
discovery protocols. Of particular note, one paper, “A Model-based Analysis of First-Generation Service-
Discovery Systems”, provides a comprehensive model of the service-discovery domain and compares
several specific service-discovery systems with the domain model.

While investigating service-discovery protocols, NIST researchers noticed that the performance
of some features depends upon adopting appropriate parameter settings, where the most apt parameter
settings depend upon the size of the system. This dependency caused some concern because, while
service-discovery systems are intended to support dynamic changes in system composition, none of the
protocols investigated provide any requirement to monitor system state and then to adjust selected
parameter settings (or behavior) to improve system performance. This observation led NIST researchers
to propose and evaluate some self-adaptive techniques that enable service-discovery components to
monitor system state and to adjust various parameters and behaviors in real time. Six related papers are
reprinted here in a section on performance improvement techniques for service-discovery systems.
Overall, the research results from NIST regarding service-discovery systems should: (1) help prospective
users to understand the functionality, behavior, and robustness of first-generation service-discovery
systems, (2) inform implementers about the performance improvements possible through various self-
adaptive algorithms, and (3) provide designers with ideas for improving the next generation of service-
discovery systems.

Networking for Pervasive Computing NIST Special Publication 500-259

2

WIRELESS LOCAL AND PERSONAL AREA NETWORKS

The ITU-T (the telecommunications standards organization of the International Telecommunications
Union) reserved radio spectrum in selected bands (900 MHz, 2.4 GHz, and 5.8 GHz) throughout the
world for non-commercial use in support of industrial, scientific, and medical (ISM) endeavors. The free
availability of these radio-frequency bands led to a number of innovations in wireless local network
communications. Of specific interest in this publication are wireless local-area network technologies
(WLAN) that meet the so-called IEEE 802.11 standards and wireless personal-area network (WPAN)
technologies that meet the Bluetooth specification (and the related IEEE 802.15 standards). WLAN
technologies are designed to operate in the unlicensed 2.4 GHz ISM spectrum band, providing wireless
device communication over ranges of tens of meters. WPAN technologies are designed to operate in the
same ISM band, providing wireless device communication over a range of 1 to 10 meters. WLAN
technologies provide communications support for computational devices such as laptop and notebook
computers and personal digital assistants. WPAN technologies aim mainly to provide communications
support for input/output devices such as microphones, headphones, and video cameras. Both WLAN and
WPAN technologies appear as likely candidates for combination into systems of computation and
communication that will support mobile individuals; however, since WLAN and WPAN devices share the
same spectrum, the possibility arises for mutual interference when operating in close proximity. More
visionary designs also exist for so-called pervasive computing systems to permit mobile individuals to
congregate within buildings, conference rooms, and auditoriums that provide wireless access to a rich set
of local resources that could be deployed on demand to support collaborative work. In these latter cases,
the wireless spectrum could become quite crowded and mutual interference might prevent realization of
the pervasive computing vision.

Two key questions arise when considering the potential for WLAN and WPAN technologies to
revolutionize workplaces and lifestyles. First, what will be the nature of any mutual interference that
might arise among WLAN and WPAN devices? Second, what technical approaches might be developed
and deployed to mitigate mutual interference among WLAN and WPAN devices, and how successful will
such approaches prove? These questions, which motivated one facet of research in the NIST program on
networking for pervasive computing, are addressed in the following set of fourteen papers that document
findings by researchers in the Advanced Network Technologies Division at NIST. The papers divide
naturally into two sets. Six papers (Papers #1 through #6) assess the nature of mutual interference that can
arise when WLAN and WPAN devices operate in close proximity (within 15 meters). Eight papers
(Papers #7 through #8) investigate various technical approaches to mitigate mutual interference in order
to allow WLAN-WPAN devices to co-existent in close proximity. More detail on these papers appears in
the introduction to each set.

Networking for Pervasive Computing NIST Special Publication 500-259

3

PERFORMANCE CHARACTERIZATION UNDER INTERFERENCE

The design for WLANS and WPANS share a similar logical structure. A physical layer (PHY) defines
techniques for framing, encoding, protecting, transmitting, receiving, correcting, and decoding bits
conveyed over a wireless channel. A media-access control (MAC) layer defines techniques for sharing
access to the wireless channel, including avoiding, detecting, and recovering from transmissions that
overlap (collide) in space and time. Transport-layer protocols, such as the transmission control protocol
(TCP) and the user-datagram protocol (UDP), employ services of the MAC and PHY layers to exchange
messages related to a variety of applications, including file transfer, web surfing, and audio-video
communication. Particular combinations of application and transport protocol present a wireless channel
with data traffic exhibiting different characteristics and requiring different qualities of service. Overall,
each protocol layer has a complex set of factors that influence its behavior and performance, and the
combination of four layers (PHY, MAC, transport, and application) must be considered to develop any
meaningful characterization of system performance. For this reason, while a few papers presented below
consider only the PHY and MAC layers, most of the papers consider the larger set of four layers. To
provide some background to better understand the papers, more information is needed about each
protocol layer.

The wireless channel space has two facets: (1) physical distance and (2) frequency distance. That
is, two devices operating near each other, but on different frequencies, do not experience mutual
interference, while two devices operating on the same frequencies, but out of range from each other, do
not experience mutual interference. (Of course, other factors, such as noise and channel fading, which
may cause different frequencies to propagate with different characteristics, can impair a wireless channel
even in the absence of other interference.) The WLAN (IEEE 802.11) PHY provides for two different
techniques for nearby devices to share frequencies. One technique, direct sequence spread spectrum
(DSSS), uses codes that allow each device to transmit over a broad range of frequencies, while placing
some information about each bit at selected points within the frequency band. A receiver uses the same
code to extract the transmitted bit information from the frequency band. A second technique, frequency
hopping spread spectrum (FHSS), configures each device with a set of frequencies and times to transmit
on those frequencies. A device then sends bits at the designated times on the assigned frequencies. A
receiver uses the same frequency-time schedule to extract the transmitted bits from the channel. Since
most deployments of 802.11-compatible WLANS use DSSS, the papers described below model the
WLAN PHY layer as a DSSS channel. Bluetooth (and IEEE 802.15) use the frequency-hopping technique
to share the wireless channel; thus, the papers included here model the WPAN PHY layer as a FHSS
channel.

The MAC layers differ significantly for 802.11 WLANS and Bluetooth WPANS. WLANS use a
distributed collision avoidance, detection, and recovery algorithm that requires each device to determine
when a channel is free for use, to monitor its own transmission, to detect its own collisions, and to
schedule a future attempt to reacquire the channel. WPANS use a centralized polling scheme that
designates a single device as a master that organizes and oversees the transmissions of other (slave)
devices sharing the same channel. Another difference concerns message sizes. WLANS permit all
transmission to take on a variable length within an allowed range, while WPANS require that messages
consist of some integral number of fixed-size slots. The papers below model these differences in MAC
layer procedures.

Both WLANS and WPANS, as modeled here, employ the same set of transport protocols (TCP
and UDP). Though WPAN profiles have been specified and implemented to use other transport protocols,
these other protocols are not investigated in this set of papers. Regarding application traffic, the models
used in the following papers usually adopt the assumption that WLAN traffic consists of either file
transfer or web surfing. This is consistent with the most common current usage today. On the other hand,
since WPANS are designed explicitly to support both data and multimedia traffic, the models investigated
below use a variety of different application-traffic profiles when simulating WPANS.

Networking for Pervasive Computing NIST Special Publication 500-259

4

In Paper #1, “Interference in the 2.4 GHz ISM Band: Impact on Bluetooth Access Control
Performance”, Golmie and Mouveaux quantify the packet-loss rate of the Bluetooth MAC layer when the
radio operates in close proximity to a (802.11) WLAN. The paper reports results from two simulation
experiments. Both experiments model a pair of Bluetooth devices (one master and one slave) separated by
one meter. The Bluetooth devices may transmit either symmetric voice traffic (64 Kbps each direction) or
data traffic (at 50% of an available 1 Mbps channel capacity). The experiments also model two WLAN
devices on a channel, where one device transmits data and the other device receives data and sends
acknowledgments. The WLAN devices are separated by about 10 meters, with the WLAN data
transmitter being about 10 meters from the Bluetooth devices and the WLAN acknowledgement
transmitter within one meter. In the first experiment, the WLAN generates a constant 50% offered load,
but with varying packet sizes (packet spacing is varied as necessary to maintain a 50% offered load). In
the second experiment, the WLAN generates a variable offered load (ranging between 5% and 70%) by
altering spacing of fixed-size packets. Prior to reporting the simulation results, the authors develop an
analytical model of packet-loss rate under similar assumptions. The simulations found packet-loss rates
for the Bluetooth MAC to reach 25% for voice traffic and 27% for data traffic. The analytical predictions
showed similar results. The authors observe that any assessment of interference among wireless devices
must consider the characteristics (arrival rate and size) of application traffic. The authors conclude that
WLAN devices can create significant performance degradation for WPAN devices operating in close
proximity; thus, the cause and properties of such degradation deserve further investigation.

In Paper #2, “Physical Layer Performance for Coexistence of Bluetooth and IEEE 802.11b”,
Soltanian and Van Dyck study the bit-error rate performance at the physical layer for Bluetooth and
802.11b receivers under various combinations of mutual interference, noise, and fading. The study aims
to inform future investigations of physical-layer techniques that might be employed to reduce mutual
interference among wireless devices. The paper develops two separate (and detailed) models. One model
represents a Bluetooth system that can be parameterized with specific noise and fading assumptions and
that can be subjected to interference by either a WLAN system or another Bluetooth system. Because the
Bluetooth specification permits multiple Bluetooth networks (called piconets) to share the same channel,
mutual interference among piconets is a useful situation to consider. The Bluetooth model includes the
inexpensive receiver filter specified in the related technical standard, but also provides a variant with a
more sophisticated Viterbi receiver. The second model represents an 802.11b system that can be
parameterized with specific noise and fading assumptions and that can be subjected to interference by a
Bluetooth system. The WLAN (802.11b) model can consider either the 1-Mbps or 11-Mbps channel
capacities supported by the corresponding technical specification. While the models of the physical
systems are quite detailed, the models of application traffic are rather simple. The WLAN model assumes
constant transmissions and the WPAN model assumes constant transmissions always synchronized on
packet boundaries. These amount to worst-case assumptions, where interferers are never idle. The paper
presents simulation results showing that mutual interference may damage the physical-layer performance
of both WLAN and WPAN devices. The results also suggest that Bluetooth devices would become more
resistant to interference and noise if they included (a significantly more expensive) Viterbi receiver.

In Paper #3, “Performance of the Bluetooth System in Fading Dispersive Channels and
Interference”, Soltanian and Van Dyck continue their investigation of the WPAN physical layer, focusing
on the ability of Viterbi receivers to improve the performance of the Bluetooth PHY. Here, the
researchers study the bit-error and packet-loss rates under fading and interference in Bluetooth systems
with either a standard (non-coherent limited-discriminator) receiver or a Viterbi receiver, finding that the
Viterbi receiver provides superior performance. Of course, the Viterbi receiver would add significantly to
the cost of Bluetooth devices, which have a cost objective as low as $5 per device. The researchers also
suggest that the technical specification for Bluetooth permits too large a range for the transmitter’s
modulation index.

In Paper #4, “Interference of Bluetooth and IEEE 802.11: Simulation Modeling and Performance
Evaluation”, Golmie, Van Dyck, and Soltanian introduce simulation models of combined MAC and PHY
layers for both WLAN and WPAN, and use those models to study the effects of interference between

Networking for Pervasive Computing NIST Special Publication 500-259

5

Bluetooth and 802.11b wireless networks under several application scenarios. The paper validates that a
detailed PHY model can be replaced by a pre-computed table lookup in order to achieve accurate results
with a significant savings in compute time. The paper presents details about the WLAN and WPAN
simulation models, and then presents four experiments, which all use the same topology of devices. The
topology consists of two Bluetooth devices (master and slave) separated by 1 meter, and two WLAN
devices: a fixed access point about 15 meters from the Bluetooth devices and a mobile device that
changes position, moving within a range of ½ and 5 meters of the Bluetooth devices. One experiment
considers Bluetooth voice traffic with interference from the mobile WLAN node sending to the access
point, while a second experiment considers Bluetooth data traffic under the same conditions. A third
experiment considers WLAN data traffic flowing from access point to mobile device with interference
from Bluetooth voice traffic. A fourth experiment subjects WLAN data traffic to interference from
Bluetooth data traffic. The study considers WLANS operating at both 1 and 11 Mbps. The paper finds
that Bluetooth voice traffic can cause significant packet loss for WLAN devices operating within ½
meter: 65% for 1 Mbps WLANS and 30% for 11 Mbps WLANS. In addition, WLAN devices can cause
8% packet loss for Bluetooth devices operating at the same ½-meter distance. WLANS can also interfere
with Bluetooth data traffic, causing as much as 14% in packet losses at close range. Bluetooth data traffic
can induce similar packet losses in WLAN devices. The authors conclude that these significant
interference problems deserve further study in more complex scenarios involving large topologies and
including transport protocols.

In Paper #5, “Interference Evaluation of Bluetooth and IEEE 802.11 Systems”, Golmie, Van
Dyck, Soltanian, Tonnerre, and Rebala investigate interference effects on Bluetooth and 802.11b wireless
networks under a range of parameters, such as transmission power, offered load, and traffic profile.
Further, the paper studies performance of WPAN and WLAN devices in a variety of complex scenarios
involving multiple Bluetooth piconets and 802.11 devices. The study reveals some interesting findings.
First, to overcome Bluetooth interference, WLAN devices would have to increase transmission power by
more than 50 times, which appears impractical. Second, limiting transmission power in WLAN devices
can help to avoid interference with Bluetooth devices. Third, using a slower frequency-hop rate (than the
1,600 hops per second specified) for Bluetooth devices may reduce interference with WLAN devices.
Overall, the authors find that the traffic distribution has the largest affect on mutual interference, which
suggests that sophisticated control schemes might best be designed as application-dependent – an
impractical step due to complexity and cost. The findings reported in this paper lead the authors to
suggest that coexistence mechanisms for WLAN and WPAN devices might be a fruitful direction to
investigate.

In Paper #6, “Interference in the 2.4 GHz ISM Band: Challenges and Solutions”, Golmie recounts
lessons learned from previous studies (see Papers #1 through #5 in this special publication), and suggests
the outlines for a coexistence framework that might help WLAN and WPAN devices operate in close
proximity with better performance. In explaining existing interference problems and possible solutions for
WLAN and WPAN devices, Golmie takes a tutorial approach. The paper gives an overview of several
coexistence solutions proposed for various interference scenarios, and suggests that forward-error
correction (where packets include redundant bits that might be used to reconstruct damaged bits) has
limited benefits in many interference scenarios. The paper also shows that fragmenting packets can
reduce packet loss between two devices, at the expense of more interference to other devices. In the end,
Golmie suggests that research on coexistence mechanisms should examine both adaptive frequency
hopping (AFH) and MAC scheduling. AFH would require Bluetooth masters to detect and map used
frequencies and then adjust the hopping sequence for the piconet to select only an effective pattern of
unused frequencies. MAC scheduling would require Bluetooth masters to consult the map of used
frequencies and postpone transmissions to slaves experiencing used frequencies until an appropriate
frequency becomes available. The paper outlines some advantages and disadvantages of the two
approaches, and also considers briefly the idea of time-division scheduling when a WLAN and WPAN
device operates from the same computer. This approach does not address the general case of interference

Networking for Pervasive Computing NIST Special Publication 500-259

6

between independent WLAN and WPAN devices operating in close proximity. Overall, this paper sets the
framework for investigating interference mitigation techniques, as reported in the next set of papers.

Networking for Pervasive Computing NIST Special Publication 500-259

7

Interference in the 2.4 GHz ISM Band: Impact on
the Bluetooth Access Control Performance

Nada Golmie and Frederic Mouveaux
National Institute of Standards and Technology

Gaithersburg, Maryland 20899
Email: nada.golmie@nist.gov

Abstract— Bluetooth is a radio technology operating in the 2.4 GHz
ISM frequency band, that is emerging as a low-level and low-power wire-
less communication protocol used for wireless personal area networks
(WPANs) where proximal devices can share information and resources.
In this paper, we quantify the performance of the Bluetooth access con-
trol layer when the radio is operating in close proximity to a WLAN sys-
tem. We use a probability analysis approach to derive the packet error for
Bluetooth. The analytical results are validated using detailed simulation
models for an interference scenario consisting of Bluetooth and WLAN
devices. Packet loss is obtained for voice and data traf c for different in-
terference conditions.
Keywords—WPANs, Bluetooth, Interference.

I. INTRODUCTION

AN increasingly mobile lifestyle is creating the need for
Wireless Personal Area Networks (WPANs) consisting of

ad-hoc communications between portable computing devices
such as laptops, PDAs, pagers, and cellular telephones. What
is emerging today are wireless technologies, including IEEE
802.11 [1], and Bluetooth [2], that promise to out t portable
and embedded devices with high bandwidth, localized wire-
less communication capabilities that can also reach the globally
wired Internet.

Due to its almost global availability, the 2.4 GHz Indus-
try Scienti c and Medical (ISM) unlicensed band constitutes
a popular frequency band suitable to low cost radios. New pro-
posed solutions for WPANs such as IEEE 802.15 and Bluetooth
plan to operate in the 2.4 GHz ISM band while IEEE 802.11 [1]
has standards for Wireless Local Area Networks operating in
this band and microwave ovens are a primary user of the band
at 2.45 GHz. Therefore, it is anticipated that some interference
will result from all these technologies operating in the same
environment and frequency space. Furthermore, since IEEE
802.11, and Bluetooth devices may likely come together in a
laptop or may be close together at a desktop, interference may
lead to signi cant performance degradation.

The main goal of this paper is to present our results on the
performance of a Bluetooth access control system when its ra-
dio is operating in close proximity to an IEEE 802.11 system.
The evaluation of interference in the 2.4 GHz band has been
receiving more attention lately. Zurbes et. al. simulate the
impact of 100 co-located sessions on the Bluetooth radio per-
formance [3]. Kamerman reports on tolerable interference lev-
els between Bluetooth and 802.11 devices for various scenarios
and device positions [4]. His analysis is based on a simple path
loss model and Signal to Interference (SIR) requirements for
Bluetooth and 802.11 receivers. Furthermore, the probability

of an 802.11 packet error in the presence of a Bluetooth piconet
has been derived by Ennis [5], then extended by Shellhammer
[6] and Chiasserini and Rao [7].

In this paper, we rst use a probability analysis approach to
capture the interference environment. Our analytical results are
then validated against simulation results obtained from detailed
simulation models of the Bluetooth and IEEE 802.11 Medium
Access Control (MAC) and Physical (PHY) layers. Our goal
is to give additional insights on the performance of Bluetooth
voice and data traf c under different interference traf c condi-
tions.

This paper is organized as follows. In sections II and III we
give some general insights on the Bluetooth and IEEE 802.11
protocol operation respectively. In section IV, we present our
interference analysis and the probability that a packet contain-
ing error is received at the Bluetooth node. In section V, we
evaluate the impact of WLAN interference on the Bluetooth
performance and present simulation results. Concluding re-
marks are offered in section VI.

II. BLUETOOTH PROTOCOL OVERVIEW

In this section, we give a brief overview of the Bluetooth
technology [2] and discuss the main functionality of its pro-
tocol speci cations which consist of several modules, namely,
the Radio Frequency (RF), Baseband (BB) and Link Manager
(LM). Bluetooth is a short range (0 m - 10 m) wireless link
technology aimed at replacing non-interoperable proprietary
cables that connect phones, laptops, PDAs and other portable
devices together. Bluetooth operates in the ISM frequency
band starting at 2.402 GHz and ending at 2.483 GHz in the
USA, and Europe. 79 RF channels of 1 MHz width are de-
 ned. The air interface is based on an antenna power of 1 mW
(0 dBi gain). The signal is modulated using binary Gaussian
Frequency Shift Keying (GFSK). The raw data rate is de ned
at 1 Mbits/s. A Time Division Multiplexing (TDM) technique
divides the channel into 625 µs slots. Transmission occurs in
packets that occupy an odd number of slots (up to 5). Each
packet is transmitted on a different hop frequency with a max-
imum frequency hopping rate of 1600 hops/s.

Two or more units communicating on the same channel form
a piconet, where one unit operates as a master and the others
(a maximum of seven active at the same time) act as slaves. A
channel is de ned as a unique pseudo-random frequency hop-
ping sequence derived from the master device’s 48-bit address
and its Bluetooth clock value. Slaves in the piconet synchro-
nize their timing and frequency hopping to the master upon

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie & Mouveaux 8

connection establishment. In the connection mode, the master
controls the access to the channel using a polling scheme where
master and slave transmissions alternate. A slave packet always
follows a master packet transmission as illustrated in Figure 1
that depicts the master’s view of the slotted TX/RX channel.

Frequency
(MHz)

Time (µs)625µs

POLL
to
Slave 1

DATA
from
Slave 1

DATA
to
Slave 6 DATA

from
Slave 6

DATA
Broad
cast

DATA
to
Slave 3

NULL
from
Slave 3

TX RX TX RX TX TX RX

2.
40

2
M

H
z

2.
48

35
 M

H
z

RX

Fig. 1. Master TX/RX Hopping Sequence

There are two types of link connections that can be
established between a master and a slave: the Syn-
chronous Connection-Oriented (SCO), and the Asynchronous
Connection-Less (ACL) link. The SCO link is a symmetric
point-to-point connection between a master and a slave where
the master sends an SCO packet in one TX slot at regular time
intervals, de ned by TSCO time slots. The slave responds with
an SCO packet in the next TX opportunity. TSCO is set to
either 2, 4 or 6 time slots for HV 1, HV 2, or HV 3 packet for-
mats respectively. All three formats of SCO packets are de ned
to carry 64 Kbits/s of voice traf c and are never retransmitted
in case of packet loss or error. The ACL link, is an asym-
metric point-to-point connection between a master and active
slaves in the piconet. Several packet formats are de ned for
ACL, namely DM1, DM2, and DM3 packets that occupy 1,
3, and 5 time slots respectively. An Automatic Repeat Request
(ARQ) procedure is applied to ACL packets where packets are
retransmitted in case of loss until a positive acknowledgement
(ACK) is received at the source. The ACK is piggy-backed in
the header of the returned packet where an ARQN bit is set
to either 1 or 0 depending on whether the previous packet was
successfully received or not. In addition, a sequence number
(SEQN) bit is used in the packet header in order to provide a
sequential ordering of data packets in a stream and lter out
retransmissions at the destination. Forward Error Correction
(FEC) is used on some SCO and ACL packets in order to cor-
rect errors and reduce the number of ACL retransmissions.

III. IEEE 802.11 PROTOCOL OVERVIEW

The IEEE 802.11 standard [1] de nes both the physical
(PHY) and medium access control (MAC) layer protocols for
WLANs. In this sequel, we will be using WLAN and 802.11
interchangeably.

The IEEE 802.11 standard calls for three different PHY
speci cations: frequency hopping (FH) spread spectrum, direct
sequence (DS) spread spectrum and infrared (IR). The transmit

power for DS and FH devices is de ned at a maximum of 1 W
and the receiver sensitivity is set to -80 dBm. Antenna gain is
limited to 6 dBi maximum.

Under FH, each station’s signal hops from one modulating
frequency to another in a predetermined pseudo-random se-
quence. Both transmitting and receiving stations are synchro-
nized and follow the same frequency sequence. There are 79
channels de ned in the (2.4000 - 2.4835) GHz region spaced 1
MHz apart. The time each radio dwells on each frequency de-
pends on each individual implementation and government reg-
ulation. The basic access rates of 1 and 2 Mbits/s use multilevel
Gaussian frequency shift keying (GFSK).

A DS transmitter converts the data stream into a symbol
stream where each symbol represents a group of multiple bits to
spread over a relatively wideband channel of 22 MHz. The ba-
sic data rate is 1 Mbits/s encoded with differential binary phase
shift keying (DBPSK) or 2 Mbits/s using differential quadra-
ture phase shift keying (DQPSK). Higher rates of 5.5 and 11
Mbits/s are also available with techniques combining pulse-
position-modulation (PPM) and quadrature amplitude modu-
lation (QAM).

The IEEE 802.11 MAC layer speci cations common to all
PHYs and data rates coordinate the communication between
stations and control the behavior of users who want to access
the network. The Distributed Coordination Function (DCF)
which describes the default MAC protocol operation is based
on a scheme known as carrier-sense, multiple access, collision
avoidance (CSMA/CA). Both the MAC and PHY layers co-
operate in order to implement collision avoidance procedures.
The PHY layer samples the received energy over the medium
transmitting data and uses a clear channel assessment (CCA)
algorithm to determine if the channel is clear. This is accom-
plished by measuring the RF energy at the antenna and deter-
mining the strength of the received signal commonly known as
RSSI, or received signal strength indicator. In addition, car-
rier sense can be used to determine if the channel is available.
This technique is more selective since it veri es that the signal
is the same carrier type as 802.11 transmitters. A virtual car-
rier sense mechanism is also provided at the MAC layer. It uses
the request-to-send (RTS) and clear-to-send (CTS) message ex-
change to make predictions of future traf c on the medium and
updates the network allocation vector (NAV) available in sta-
tions. Communication is established when one of the wire-
less nodes sends a short RTS frame. The receiving station is-
sues a CTS frame that echoes the sender’s address. If the CTS
frame is not received, it is assumed that a collision occurred
and the RTS process starts over. Regardless of whether the vir-
tual carrier sense routine is used or not, the MAC is required
to implement a basic access procedure (depicted in Figure 2)
as follows. If a station has data to send, it waits for the chan-
nel to be idle through the use of the CSMA/CA algorithm. If
the medium is sensed idle for a period greater than a DCF in-
terframe space (DIFS), the station goes into a backoff proce-
dure before it sends its frame. Upon the successful reception
of a frame, the destination station returns an ACK frame after
a Short interframe space (SIFS). The backoff window is based
on a random value uniformly distributed in the interval [0, CW]

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie & Mouveaux 9

where CW represents the Contention Window parameter and
is varied between CWmin and CWmax. If the medium is de-
termined busy at any time during the backoff slot, the backoff
procedure is suspended. It is resumed after the medium has
been idle for the duration of the DIFS period. If an ACK is not
received within an ACK timeout interval, the station assumes
that either the data frame or the ACK was lost and needs to re-
transmit its data frame by repeating the basic access procedure.

Source

MBusy MBusyMIdle MIdle

DIFS

MIdle

Backoff

MBusy MIdle

Frame

Destination

SIFS ACK

a) Successful frame transmission

b) Frame retransmission

MBusy = Medium is Busy
MIdle = Medium is Idle

ACK Timeout

Source
MBusy MBusyMIdle MIdle

DIFS

MIdle

Backoff Frame Retransmission

Fig. 2. WLAN Frame Transmission Scheme

IV. INTERFERENCE ANALYSIS

Since we are mainly concerned with evaluating the Blue-
tooth performance in an interference environment, we consider
a Bluetooth receiver node as our reference and derive the proba-
bility that a packet containing errors (at least one error), P(PE),
is received at this node. The interfering signal is assumed to be
from proximally located WLAN devices.

A collision occurs when both the Bluetooth and the inter-
fering packets overlap in time and frequency. This collision is
detected at the Bluetooth receiver in the form of SIR that de-
pends on the power transmitted, the distance traveled, and the
path loss model used. The SIR then translates into a Bit Error
Rate (BER) according to the GFSK carrier modulation and the
Bluetooth receiver implementation used.

TBI

WLAN Packet WLAN Packet

TW TBackoff

Bluetooth
Packet

Bluetooth
Packet

��
��
��
��

Tc

TWI

TB

X

fB1 fB2

fW1 fW2

Fig. 3. Collisions at the Bluetooth Receiver Node

Figure 3 illustrates the timing of the Bluetooth packets with
respect to WLAN packets. Let fB and fW be the frequencies
used to transmit the Bluetooth and WLAN packets respectively.
We denote by TB and TW , the Bluetooth and the WLAN packet
transmission periods respectively. In order to determine the po-
sition of the Bluetooth packet with respect to the WLAN packet
when both systems use the same frequency (fB = fW), we de-

 ne a variable X that represent the time offset between a Blue-
tooth and a WLAN packet. Let TC represent the time interval
when both WLAN and Bluetooth packets overlap. We denote
by TWI the interval between two WLAN packets including the
packet transmission time TW and a backoff period, TBackoff .
TBackoff is the sum of several variables such as SIFS, DIFS,
the ACK transmission time, and CW . Similarly, we denote by
TBI , the interval between two Bluetooth packet transmissions.
Due to the slotted structure of the Bluetooth channel, a packet
transmission occurs at the boundary of a Bluetooth time slot.
We assume that X is a random variable that is uniformly dis-
tributed between zero and TWI . Note that X is a continuous
random variable, however in this analysis it is quanti ed to the
resolution of a Bluetooth symbol period at the rate of a symbol
(or a bit) per µs.

X ∼ U(0, TWI) (1)
Thus, the probability that a Bluetooth packet overlaps in time

and frequency with a WLAN packet depends on:
• The position of the WLAN packet with respect to the

Bluetooth packet, i.e. X
• The transmission frequencies, fB and fW of the Bluetooth

and WLAN systems respectively
The probability mass function of X is equal to pX(k) =

1
TW I

where k = 1, 2, ..TWI . Both the Bluetooth and WLAN
systems have a frequency hopping span of 79 channels. The
probability that a WLAN system lands on the same frequency
as a Bluetooth system depends on a discrete random variable
fW whose probability mass function is pfW (j) = n

79 where
j varies between 1 and 79 and n determines the number of
overlapping channels. For FH n = 1, while for DS WLAN
systems, n = 22.

Expressing P (PE) as a joint probability of frequency and
packet overlap yields:

P (PE) =
TWI∑
k=0

P (PE | X = k; fW = j)pX(k)pfW (j)

where P (PE | X = k; fW = j) depends on TC and BER.
Thus, we write:

P (PE | X = k; fW = j) = 1 − (1 − BER)TC (2)

Therefore,

P (PE) = (
n

79
)(

1
TWI

)
TWI∑
k=0

(1 − (1 − BER)TC) (3)

The value of TC depends on X , TW , and TB . We distinguish
three cases.

• TB ≤ TW and TB ≤ TWI -TW

TC =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

TB

if X ≤ TW − TB

TW − X
if TW − TB < X < TW

0
if TW ≤ X ≤ TWI − TB

X + TB − TWI

if TWI − TB < X ≤ TWI

(4)

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie & Mouveaux 10

• TB ≤ TW and TB > TWI -TW

TC =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

TB

if X < TW − TB

TW − X
if TW − TB ≤ X < TWI − TB

TW + TB − TWI

if TWI − TB ≤ X ≤ TW

X + TB − TWI

if TW < X ≤ TWI

(5)
• TB > TW ;

We let N(X) be the number of WLAN packets that hit a
Bluetooth packet.

N(X) =

⎧⎪⎪⎨
⎪⎪⎩

� TB

TWI
�

if X ≤ TWI� TB

TW I
� − TB

� TB

TWI
� + 1

otherwise

(6)

We also de ne Ti as the interval of time overlap with
WLAN packet i.

Ti =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max(TW − X, 0)
if i = 1

TW

if i = 2, .., N(X)− 1
min(X + TB − (N(X) − 1) × TWI , TW)

if i = N(X)
(7)

In this case TC is basically the sum of all Ti’s over N(X)
colliding WLAN packets.

TC =
N(X)∑
i=1

Ti (8)

V. SIMULATION RESULTS

Our goal in this section is to validate the analytical inter-
ference model presented in section IV. We used OPNET1 to
develop a simulation model for the Bluetooth protocol. We
partially implement the Baseband and L2CAP layer according
to the speci cations [2] and use the con guration and system
parameters shown in Table I. We assume that a connection is
already established between the master and the slave and that
the synchronization process is complete. The connection type
is either SCO for voice or ACL for data traf c. For WLAN we
use the models provided by the OPNET modeler’s library.

For the Bluetooth signal we assume a pair of devices; a mas-
ter and a slave device located at (0,0) and (1,0) meters respec-
tively. Master and slave devices are transmitting either voice or
data traf c. For voice traf c, we consider a symmetric stream
of 64 kbits/s each way. We use HV 1 packets that have a total
size of 366 bits including a header and an access code of 126
bits. HV 1 packets are sent every TSCO = 2 or 1250 µs. HV 1
payload bits are corrected with a 1/3 FEC rate.Since the pay-
load does not have a CRC, errors in the payload do not yield

1OPNET is a trademark of OPNET Technologies Inc.

TABLE I
SIMULATION PARAMETERS

System Parameters Values
Propagation delay 5 µs/km
Length of simulation run 30 seconds
Length of run prior to gathering statistics 10 % of simulated time
Bluetooth Parameters Values
Data Rate 1 Mbits/s
ACL Baseband Packet Encapsulation DM5
SCO Baseband Packet Encapsulation HV1
Number of Devices 2 (1 Master, 1 Slave)
Master Coordinates (1,0) (meters)
Slave Coordinates (0,0) (meters)
Transmitted Power 1 mW
WLAN Parameters
Packet Interarrival Time for 1 Mbits/s 10.56 ms
Packet Interarrival Time for 11 Mbits/s 2.52 ms
Transmitted Power 1 mW
Source Coordinates (0,0.15) (meters)
Sink Coordinates (0,10) (meters)
Packet Header 224 bits
TW includes Packet Header
TW I includes Backoff and TW

Slot Time 2 ∗ 10−5 seconds
SIFS Time 1 ∗ 10−5 seconds
DIFS Time 5 ∗ 10−5 seconds
CWmin 31
CWmax 1023
Fragmentation Threshold None
RTS Threshold None
Short Retry Limit 4
Long Retry Limit 7

to dropping packets. In addition, a 1/3 FEC rate is applied to
the header and a Hamming code (d = 14) is applied to the ac-
cess code. Uncorrected errors in either the header or the access
code lead to dropping packets. For the data traf c, we consider
a LAN access application. Both master and slave devices gen-
erate DM5 type packets every 0.01250 seconds, thus utilizing
50% of the 1 Mbits/s channel. DM5 packets have a total size
of 2871 bits, including a 54-bit header and a 72-bit access code
and occupy 5 Bluetooth slots. A 2/3 FEC rate is used to cor-
rect payload errors, while errors in the header or access code
are corrected with a 1/3 FEC and a Hamming code (d = 14)
respectively. Uncorrected errors in either the packet header or
payload lead to dropping packets.

For the WLAN signal, we use two 802.11 Direct Sequence
devices transmitting at 1 Mbits/s. We assume unidirectional
traf c; a WLAN source transmits packets to a WLAN sink that
returns ACK messages to the source. The WLAN source and
sink devices are located at (0,0.15) and (0,10) meters respec-
tively. Traf c sent from the WLAN source constitute the inter-
ference signal to the Bluetooth slave device.

We present the results from two different simulation exper-
iments that show the impact of interference on Bluetooth de-
vices for different applications, namely voice and data traf c.

Experiment 1- We vary the WLAN packet length, TW , and
the interarrival packet, TWI , while keeping the WLAN offered
load x ed at 50% of the 1 Mbits/s channel capacity. Thus,
TW and TWI are varied from 500 and 1000 µs to 8000 and
16000 µs respectively. Note that TB and TW denote the packet
length in time and are also equivalent to the packet size in bits
assuming a data rate of 1 MBits/s.

Experiment 2- We x TW at 1000 µs and vary TWI ac-

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie & Mouveaux 11

cording to TW

OL where OL is the offered load as a percentage of
the 1 Mbits/s channel capacity.

Table II summarizes the experiments.

TABLE II
VALIDATION EXPERIMENT SUMMARY

Experiment WLAN Offered Load WLAN Traf c
Experiment 1 50% of Channel Capacity TW and TWI variable
Experiment 2 Variable TW = 1000 µs, TWI =

TW
OL

Given that the WLAN source is at a distance, dI = 0.15m
from the Bluetooth slave, while the Bluetooth master is at a
distance, dM = 1m, and assuming that both the WLAN source
and the Bluetooth master device transmit at 1mW, the SIR at
the slave is given by 20log dI

dM
≈ −16 dB 2. The choice of the

BER value corresponding to this SIR is based on the PHY re-
sults of the Bluetooth receiver used [8]. We note that when the
Signal-to-noise ratio (SNR) is above 25 dB and the SIR is be-
low −10 dB, the BER is ∼ 0.3 for Bluetooth frequency offsets
of 10 MHz from the WLAN DS center frequency. Therefore,
we use BER = 0.3 and n = 10 in our analysis. A summary
of the parameters used in the analysis is provided in Table III.

TABLE III
ANALYSIS PARAMETERS

Parameters Values
TB 366 for HV 1 and 2871 for DM5
TW and TWI Variable
n 20
BER 0.3

All simulations are run for 1000 seconds of simulated time
and the rst 10 % of the data is discarded. The performance
measurements are logged at the slave device. The metric we
use includes the packet loss, PL, and the packet error, PE . The
packet loss is the number of packets discarded due to uncor-
rected errors in the packet divided by the total number of pack-
ets transmitted. While the packet error is the number of packets
received with at least one error (prior to applying error correc-
tion on the packet and deciding whether to keep it or drop it).
Note that Equation 3 captures the probability that a packet
containing at least one error is received at the Bluetooth node.
Since different error correcting schemes are applied on differ-
ent packet types and packet segments, this corresponds to the
packet error metric rather than the packet loss.

The simulation model used for this validation assumes the
following:

• The WLAN CCA is limited to carrier sense functional-
ity capable of detecting other WLAN devices of the same
kind (either FH or DS) but cannot detect the presence of
Bluetooth devices.

• The impact of Bluetooth interference on WLAN is dis-
abled in order not to change the WLAN traf c distribu-
tion. That is interference from Bluetooth does not cause
errors at the WLAN receiver.

2Assuming the logarithmic path loss model given in [4]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 1000 2000 3000 4000 5000 6000 7000 8000

Pro
ba

bili
ty

of
Pa

cke
t E

rro
rs

WLAN Packet Size (bits)

Impact of Interference on Bluetooth Voice

Analysis
Simulation

HV1 Packet Loss

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 1000 2000 3000 4000 5000 6000 7000 8000

Pro
ba

bili
ty

of
Pa

cke
t E

rro
rs

WLAN Packet Size (bits)

Impact of Interference on Bluetooth LAN (DM5)

Analysis
Simulation

DM5 Packet Loss

Fig. 4. (a)
(b)

Varying TW and TWI for a 50% WLAN Offered Load (a)

Impact of WLAN Interference on Bluetooth Voice (b) Impact of WLAN
Interference on Bluetooth LAN

• The BER value used in the Bluetooth receiver is computed
according to the receiver’s DSP model and varies accord-
ing to the frequency hop and the signal to interference ra-
tio.

Figure 4 (a) gives the probability of packet error for the
Bluetooth voice traf c for different WLAN packet lengths. We
note that the analytical results closely approximate the simula-
tion results. The probability of packet error varies between ∼
(22% - 13%), while the probability of packet loss remains at ∼
12%. As expected, the packet loss is lower than the packet error
due to the use of different error correction schemes applied on
different segments of the packet. We note that errors occurring
in the payload of HV 1 packets do not lead to dropping pack-
ets. Furthermore, if errors in the header can be corrected the
packet is kept, otherwise the packet is dropped. This explains
the difference between the packet loss and the packet error.

A similar trend applies to the Bluetooth LAN results given in
Figure 4(b). The packet error varies between ∼ (25% - 17%).
The difference between the packet loss and the packet error is

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie & Mouveaux 12

not as signi cant as in Experiment 1 (a). In fact, the decision to
drop DM5 packets is based on uncorrected errors in either the
header or the payload. Therefore, the packet loss and packet
error measures are very close.

Figure 5(a) and (b) illustrate the effect of varying the WLAN
offered load on the Bluetooth voice and LAN performance re-
spectively. The probability of voice packet error and packet
loss increase proportionally to the WLAN offered load (Figure
5 (a)). We also note that the difference between the packet er-
ror and the packet loss is signi cant (∼10%) at high WLAN
offered loads (65%). Note that only packet header collisions
affect the packet loss. As more interfering packets are trans-
mitted (increase in WLAN offered load), only a small number
of them will ”hit” the header and cause a collision.

The results for the Bluetooth LAN are given in Figure 5(b)).
The increase in packet error levels off at ∼ 25% for WLAN
offered loads greater than 25%. This ”threshold” phenomenon
is a direct effect of having reached an error threshold number
per packet. Additional errors above that threshold do not yield
to more packets being dropped.

VI. CONCLUDING REMARKS

We presented results on the performance of Bluetooth in
the presence of WLAN interference based on a probability of
packet collision in frequency and time overlap at the Bluetooth
receiver. We rst observe that the probability of packet error
analysis, in the tractable case where mutual interference effects
are not considered and only a particular receiver is studied,
can provide a close approximation to the packet error and the
packet loss measures. Furthermore, the results clearly show
that packet loss due to interference may be signi cant (up to
27% for data traf c and 25% for voice applications) and may
lead to severe performance degradation. In addition, longer
Bluetooth packets (such as DM5 packets) are more prone to
packet loss than shorter packets (HV 1). Note that, although
the packet loss is lower than the packet error for voice traf c,
the quality of the audio channel is likely to be impaired due to
the high number of residual errors in the payload.

More generally, the experiments stress the importance of
de ning accurate traf c models and distributions in the eval-
uation of interference. Both the offered load and the packet
length are necessary parameters in order to completely specify
the interference signal.

Our future work includes investigating simulation scenarios
where both WLAN and Bluetooth interference can be studied
together. This may unravel various intricate effects about the
traf c distribution and the overall system performance of Blue-
tooth and WLAN operating in the 2.4 GHz frequency band.

REFERENCES

[1] IEEE Std. 802-11, “IEEE Standard for Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Speci cation ,” June 1997.

[2] Bluetooth Special Interest Group, “Speci cations of the Bluetooth Sys-
tem, vol. 1, v.1.0B ’Core’ and vol. 2 v1.0B ’Pro les’, ” December 1999.

[3] S. Zurbes, W. Stahl, K. Matheus, and J. Haartsen, “Radio network perfor-
mance of bluetooth ,” in Proceedings of IEEE International Conference
on Communications, ICC 2000, New Orleans, LA, June 2000, vol. 3, pp.
1563–1567.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 10 20 30 40 50 60 70

Pro
ba

bili
ty

of
Pa

cke
t E

rro
rs

WLAN Offered Load (%)

Impact of Interference on Bluetooth Voice

Analysis
Simulation

HV1 Packet Loss

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 10 20 30 40 50 60 70

Pro
ba

bili
ty

of
Pa

cke
t E

rro
rs

WLAN Offered Load (%)

Impact of Interference on Bluetooth LAN (DM5)

Analysis
Simulation

DM5 Packet Loss

Fig. 5. (a)
(b)

Varying WLAN Offered Load (TW =1000 bits) (a) Impact of

WLAN Interference on Bluetooth Voice (b) Impact of WLAN Interference
on Bluetooth LAN

[4] A. Kamerman, “Coexistence between Bluetooth and IEEE 802.11 CCK:
Solutions to avoid mutual interference,” in IEEE P802.11 Working Group
Contribution, IEEE P802.11-00/162r0, July 2000.

[5] G. Ennis, “Impact of Bluetooth on 802.11 Direct Sequence,” in IEEE
P802.11 Working Group Contribution, IEEE P802.11-98/319, September
1998.

[6] S. Shellhammer, “Packet Error Rate of an IEEE 802.11 WLAN in the
Presence of Bluetooth,” in IEEE P802.15 Working Group Contribution,
IEEE P802.15-00/133r0, Seattle, Washington, May 2000.

[7] C.F. Chiasserini, R. Rao, “Performance of IEEE 802.11 WLANs in a Blue-
tooth Environment,” in IEEE Wireless Communications and Networking
Conference, WCNC 2000, Chicago, IL, September 2000.

[8] A. Soltanian and R. E. Van Dyck, “Physical layer performance for co-
existence of Bluetooth and IEEE 802.11b,” in to appear in Virginia Tech
Symposium on Wireless Personal Communications, June 2001.

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie & Mouveaux 13

���������
	��������������������������� ��!"	��#���$�&%'�(�*)+�,��-.��!/	��
�0�213,4"�5-.�(�6-7�8��!"9;:=<3<3< >�?�@�A
B$B�C

D/E�FHGJI�K�LNMPO=Q*FROSQ�O=Q*T2U�K�VXWYGZM�[(*]�O=Q_^/`7acb
d OSMeFHK�Q5OSL�f,Q*gZMPFNMeh.MPWiK=j6I�MPO=Q*T5O=GkT*g�O=Q*T_l�Wmacn*Q*K�LNK�o=`

p OSFNMPn.WYGegkV*h*Gko*qsrt^vu=w�x�y�y
z OSE{FNGegYq�|SO=Q*T.`�acb5}S~�O=Q�MPT�\�Q*FHgZM�\�o�K�|

�����c���Y����� � �s�R�����H���Y�N�.�X� ���Y� ���_���H�S�.�S�
��� �������R������� �Y�X� ���.�s���H�������H�S�7�=�����=�m ¡�����
�2�������¢�� ¤£��R�������5���m�¥�7�X�¥¦c§¨§¨§ ©7ª7«*¬®7��
�Y�S���=�N�7�=�Y��¯°�2���R���±�²���s�'�X���³��´s�S�H�����N�7���N��¯��R�
�R�.���=�m ¡�S�Y���X�����k�R�R�2�N���=� ���.�X�N�Y�7���2�=�.����¬ µ����
£��R�X�S���5���m��¯²���R�R�t�±�m�S���Z���H�¶���Y�R�t�H�������7�¢·¸�N�m�
���7�c�c�Z�����m�S���Y�N�.�¹�R�.���Sº7�m�����3�����¹�����_�¼»½�N���S���
�R��º¿¾,ÀÂÁÃ¦YÄ��H�Å�X�¶�=��¬Æ£��N�2�=�Y�m�7�t�Y�����'�������.�S�
���Y�Ç�7�X���7�H���=�# È�7�_�����Z�Y�������X�����7�X�É���=Ê��������.�
���X�7�����=�Ë¾,��Ä(�R�.���=�m ¡�S�Y���X���{�H�3�$Ì�Í�ÎÏ�����ÅÐ����
 ¡�����R��º¤�Y�������X���H��¬¤Ñ+���³�R�.���=�m ¡�S�Y�=�����Ç�R�¼�m���H�
�����¶�{�2���t���������NÒÓ�S�Y���.�"£��R�������5���m�Ç���H���7���S�
�7�Ç���²©�ª.«*¬®�S�Ô���Y�������t�±�����S�S¬Õµ����³©7ª7«5¬R7���¯
���NÒÓ�S�Y���.�m�H���R�±�Ç���7���S�Y�=�.�{{Ö¼���N��×��¶�=�Ø�����Ù�����
���S�Y���.�É�²Ö¼���±�m��×=�¶�=�¿�m�=�����±�.�S�Y�Ú���Y�¿�¶�m�X�X�
�H�=�Å·¸�N�m�t£"�R�����m�5���m�3�R�.���=�m ¡�S�Y���X���7¯X��º7���R�Å���X�
���7�H���R�XºÙ£"§�ÛÜ�������.�S�{ È���������m���$Ì�Í�ÎÝ���X�
 ¡�����R��ºÉ�������������N��¬;µ��R�����R�N��¯°�m�X�¼ÀÂÁÃ¦Ç�N�Ù�m���
���H�����=��·¸�N�m�v�É���.�X�=�Y�=�.�'ÞØ�±�m�S�Y���Ø�m�=�����±�.�S�S¯
�����¹�m���³�Ó�S�Y È�7�Y�2�������³�R�Ú�m���³�R�.���=�m ¡�S�Y�=�������
�R�R�2�N���=�³���.�X�H�m�.���2���.�ß�N�¸�_�=�������m�=��¬

à á�â�ã.ä5åJæiç"è�ã5é
å�â
êìëîí
ï�í
ï�ð(ñPò�óiëõô�ö�÷�ðcø7ùîò�ú�ó�ð¶ôSí�ò�û�üÂù±ý�ðcí,òSò�í
ï°þ�ëîÿ
ð��
ùîð ��� ø*ðcÿ � ò�ô���ù���ÿ
ð��°ô�ðcí¡þ�ò�ÿ�� �
	 ê����� ��������� ëõô{í
ï�ð����� ��� ��!#"%$'&)(*��ô�÷,+�í
ï�ðcÿ
ðÃë � �{ö�ÿZò�þ�ëõô�ö�ñPò�ô�ñPðcÿkô�-(*ò�ý�í�ñPòSð�.�ë � í,ð¶ô�ñPð�þ�ëîí
ï³ò�í
ï�ðcÿ°ð�.�ë � í
ëõô�ö � ú � í,ð¶ó � +ð � ø*ð¶ñcë/��ù±ùîú�í
ï�ð0"21314165-7 ��� �8� (Çþ�ëîÿ
ð¶ùõð �%� ùîò�ñ9��ù:��ÿ
ð��ô�ðcí¡þ�ò�ÿ�� 	 ê�;�<� � �>= ï�ð2ü6ùõý�ðcí,ò=ò�í
ï � ú � í,ð¶óÝð¶ó��ø�ùõò�ú � ûHÿ
ð�?Sý�ð¶ô�ñPúiï�ò�ø�ø�ë±ô�ö(í,ò/óßëîí
ëîö@��í,ð�í
ï�ð�ð�A*ð¶ñPí�ò�ûëõôSí,ðcÿ
ûHðcÿ
ð¶ô�ñPðB��ô�÷ØûC��÷�ëõô�öiñkï���ô�ô�ð¶ù�ëõó�ø*��ëõÿZó�ð¶ôSí � � ÷�ëõÿ
ð¶ñPí � ð�?=ý�ð¶ô�ñPð � ø�ÿ
ð���÷ � ø.ð¶ñPí,ÿký�ó 	CD $�$*$ � 5-7 ��� �8� (� ú � í,ð¶óÜò=ñcñcý�ø�ëîð � ��ø�ø�ÿ
òE.�ëõóF��í,ð¶ùîú �8� &G�H!�ëõô³í
ï�ð� ��óiðI(*��ô�÷ �J= ï�ðcÿ
ðcûHò�ÿ
ð8+�í
ï�ðÅü6ùõý�ðcí,ò=ò�í
ï � ú � í,ð¶óþ�ë±ùõù7ñPò�ô � ë � í,ð¶ôSí
ùîú°ï�ò�øØëõôSí,ò�í
ï�ðK5-7 ��� �8� (� ø.ð¶ñPí,ÿký�óL+ñ9��ý � ëõô�ö�ëõôSí,ðcÿ
ûNðcÿZð¶ô�ñPð°í,òM(.ò�í
ï � �÷�÷�ëîí
ëîò�ô���ù±ùîú8+�í
ï�ðûHÿ
ð�?=ý�ð¶ô�ñPú ï�ò�ø�ø�ëõô�ö ø*��í,í,ðcÿZô¿ûNò�ÿÇ÷�ë�A.ðcÿZð¶ô�íÅü6ùõý�ð��

í,òSò�í
ï¼ô�ðcíÈþÂò�ÿ%� � ++ñ9��ù±ùîð¶÷¤ø�ëõñPò�ô�ðcí � +K��ÿ
ðtô�ò�í{ñPò=ò�ÿN�÷�ëõô���í,ð¶÷,+ � ò�í
ï*��íió+ý�ùõí
ëîø�ùîðiø7ëõñPò�ô�ðcí � ò�ø*ðcÿ���í
ëõô�ö�ëõôí
ï�ð � ��ó�ð0ö�ðcò�ö�ÿ���ø�ï�ëõñO��ÿ
ð��¨þ�ë±ùõùSë±ô�í,ðcÿ
ûHðcÿ
ð6þ�ëîí
ï"ð���ñkïò�í
ï�ðcÿ �
= ï�ë � øP��ø.ðcÿQ��÷�÷�ÿ
ð ��� ð � í
ï�ð6ñPò=ð�.�ë � í,ð¶ô�ñPðÂë �%� ý�ðR(=ú>��ø'�ø�ùîú�ëõô�öS(P� � ð9(*��ô�÷3ó�ò�÷�ð¶ù � ûHò�ÿií
ï�ðÃø7ï�ú � ëõñ9��ù6ù/��ú�ðcÿ �ò�û0í
ï�ð¸í¡þ�ò � ú � í,ð¶ó � �GT � ëõô�öU��ø�ø�ÿ
ò�ø�ÿkë/��í,ðßñZï*��ô�ô�ð¶ùó�ò=÷�ð¶ù � (*� � ð¶÷�ò�ôiÿ
ð¶ñPð¶ô�íÂó�ð�� � ý�ÿZð¶ó�ð¶ô�í � +�þÂð$÷�ðcí,ðcÿN�óiëõô�ð�í
ï�ð½ø*ðcÿ
ûHò�ÿZó
��ô�ñPð�÷�ðcö�ÿ���÷���í
ëîò�ôJë±ô>�6ø�ÿ
ò�í,ò�í¡úSø*ð
ð¶ôWV�ëîÿ
ò�ô�óið¶ô�í �
= ï�ðJü6ùõý�ðcí,ò=ò�í
ï � ú � í,ð¶ó ò�ø.ðcÿ���í,ð � ��íH�¸ñZï���ô�ô�ð¶ù,(�ëîíÿ���í,ðJò�û � &#(7ëîí�X � ð¶ñ � � � �3= ï�ðJó�ò�÷�ý�ù/��í
ëîò�ô°ë � � ��ý � �� ë/��ô/ûNÿZð�?Sý�ð¶ô�ñPú � ï�ëîûHíQ��ðcú=ëõô�ö 	 �ZY[$'\ � þ�ëîí
ïB�(ô�ò�óië��ô���ù�ó�ò=÷�ý�ù/��í
ëîò�ô+ëõô�÷�ð�.�ò�û�]*^K_`7badc � ��ô�÷��(ô�ò�ÿZó
��ù��
ëe!cð¶÷L(*��ô�÷�þ�ëõ÷�í
ï°ò�û[f g�h`_i7badj�+7þ�ï�ðcÿ
ðKf g$ë � í
ï�ðBc÷�ü2ük��ô�÷�þ�ëõ÷�í
ï"ò�û.í
ï�ð0í,ÿ���ô � óiëîí,í,ðcÿ�l � �Z��ý �%� ë/��ô�ùõò�þø*� �%�nm ùîí,ðcÿ�+R��ô�÷ = ë � í
ï�ðo(�ëîí+ø.ðcÿkëîò=÷ �G= ï�ð°ü6ùõý�ð��í,òSò�í
ï�ÿ���÷�ëîò�ð¶ó�ø�ùîòmú � ��ûHÿ
ð�?=ý�ð¶ô�ñPú"ï�ò�ø�ø�ëõô�ö � ñkï�ð¶ó�ðëõô_þ�ï�ëõñZïtí
ï�ðØñ9��ÿZÿZëîðcÿ"ûNÿZð�?Sý�ð¶ô�ñPú2ë � ñZï*��ô�ö�ð¶÷3ò�ôp�ø*��ñ%��ðcí>(=ú�øP��ñ%��ðcí>(*� � ë � �>= ï�ðcÿZð���ÿZð"ý�ø�í,òGq-r°÷�ëîûs�ûNðcÿ
ð¶ôSíXñkï���ô�ô�ð¶ù � ð���ñZï+þ�ëîí
ï � &S��! � ðcø*��ÿ���í
ëîò�ô �Q= ï�ðø�ÿZëõó
��ÿZú¨ñPò�óßó+ý�ô�ëõñ9��í
ëîò�ô+ÿ���ô�ö�ð6ë �k� 7�óL+8(7ý�í�ëîí�ñ9��ô(.ð"ð�.�í,ð¶ô�÷�ð¶÷�ý�ø�í,ò � 787�ó �t= ï�ð"ð¶ôSí
ëîÿ
ð � í,ÿký�ñPí
ý�ÿ
ðò�û.í
ï�ð � ëõó/ý�ù/��í,ð¶÷ � ú � í,ð¶óÉë � ø�ÿ
ð � ð¶ôSí,ð¶÷ßëõô
Y�ëîö � � � "¡íëõô�ñcùõý�÷�ð � í
ï�ð�í,ÿ���ô � óiëîí,í,ðcÿE+sí
ï�ðiñZï*��ô�ô�ð¶ù�ô�ò�ë � ð8+sí
ï�ðÿ
ð¶ñPð¶ëeV�ðcÿK��ô�÷�í
ï�ðiëõô�í,ðcÿZûNðcÿ
ð¶ô�ñPð � ò�ý�ÿZñPð �t= ï�ð�ëõôSí,ðcÿN�ûNðcÿ
ð¶ô�ñPð � ò�ý�ÿZñPðÓñ9��ôK(*ð � ð¶ùîð¶ñPí,ð¶÷K� � ð¶ëîí
ï�ðcÿXü6ùõý�ðcí,ò=ò�í
ïò�ÿB5-7 ��� �8� (ÅíÈú=ø*ð¸ëõôSí,ðcÿ
ûHðcÿ
ð¶ô�ñPð � ��ò�í,ð¸í
ï���í�í
ï�ð¸ëõôb�í,ðcÿ
ûNðcÿZðcÿÂñ9��ôu(*ð � ðcí�í,ò"ï���V�ðZ�"÷�ë�A*ðcÿ
ð¶ôSí�ñ9��ÿ
ÿkëîðcÿ�ûHÿ
ð��?Sý�ð¶ô�ñPúu��ô�÷L�iÿ���ô�÷�ò�ó²ø7ï�� � ð(ò-A � ðcí �= ï�ðO"213141v5-7 ��� �8� (� í%��ô�÷���ÿZ÷i÷�ð � ñPÿZëe(*ð � ûHò�ý�ÿ�ó�ò�÷b�ý�ù/��í
ëîò�ô{ó�ðcí
ï�ò�÷ � ø�ÿ
òEV�ëõ÷�ëõô�öt(�ëîí$ÿ���í,ð � ò�û � + � +wj � j�+��ô�÷ �8� &#(�ëõí � X � ð¶ñ � c � �n= ï�ð m ÿ � í�ÿ���í,ðië � ��ñZï�ëîð9V�ð¶÷(Sút÷�ë�A*ðcÿ
ð¶ô�í
ës��ùÂük�k$b\ 	CD ük�:$b\ � þ�ëîí
ï D $�$�$2ý � �ëõô�ö���ô �8� ñZï�ëîø¹ü:��ÿ���ðcÿ2ñPò�÷�ð8xÃí
ï�ðÇñZï�ëîøÚÿ���í,ð³ë ��8� &{ñZï�ëîø � X � ð¶ñ �y= ï�ð_ù/� � í{ÿ���í,ð2ë � ò8(�í%��ëõô�ð¶÷ ý � �ëõô�öØñPò�ó�ø�ùõð¶ó�ð¶ô�í%��ÿZú�ñPò�÷�ð
��ðcú�ëõô�ö 	{zOz \ � +���ù � òS��í

Networking for Pervasive Computing NIST Special Publication 500-259

Soltanian & Van Dyck 14

|~}e�@�'�%�
�-�4�:�s�'�9�N���8�%�S�N���%�N�����t�b�'�����

|~}e�@�'�%�K���:�-�@���/�8�����>���*�u�N���%�N�����t�b�'�����
�8�t�G����}e�P�����N���-� ���G�%��}/�<�N�%�����8 P¡:�t���@���%}/�'�9�<�%�'�o�¢ ���o�8�£�S�*}e�%�����N���4�*}e�¤� ¢ �N���9�[¥O�'�k���@�
�B����}/� ¢ �%}/�@����N�b�N�N���¦�t��������§¨�8�O�%���F�K�S�*}e�����N���Z�P}e�£� ¢ �N�K}/�O���%��©�N�����N���p}/�ª|~}e�'�3�� ¢ � ¢ }/�p���@�*�%}/�N�%}/���U�8§<�%�'�L�N� ¢ �*�2©�
}/�N�N�9�� 3�%�'�#��� ¢ ���'���H�'�@}/�N�8 4�%�'�L�%������}e«8�9� ¢ �*�¬�%�'��k�/�'�9�N���8�%�}/�W�N�9��§¨�9�%���*���G�N�@�'�����8�`®M�G��¯b�*� ¢ }/�p�%�'��'�9� ¢ }s�/�k�8§~�%��}/�£�t�b�'���,}/�o�%�'�K§¨�@�/�/�E¡H}/�����%�����%}e�@���9�
° ±i²�³�´~µ�¶>¶£µ,·¹¸>ºK»*µ¼´3½ ¾ ¶K¿t´3²
ÀPÁ8Â Ã0Ä3ÅpÆÈÇnÉ~Ê Ë-ÌÎÍ�ÏRÐ,Ñ
¥O���nÒ |R�bÓÔ�%}e�@� ¢ �,� ¢ �#���Z�%�9���%���%���W�N���L���MÕ Ö8×

Ø�ÙÛÚÝÜ%ÞPßRà`á ���@� Ù �-âwã-ä Ú,åpæQÙÛÚÝÜ%ÞPßNß�Ü Ù � ß
¡H���9�%� áià6ç èNé*êë PìHí£}/�£�%���>���'�9�%�8�L���9�H� ¢ � ¢ �*}e�9 ¢ ���îã-äu}/�o�%�'�È� ¢ ����}e�9�o§¨����ï��'���*���8� Þ }/�o�%���M� ¢ �b©�'�@�)}/���*�'�0�%�N�%� ¢ �L ����@�
����}/�N����8§>�%����� ¢ � ¢ �*}e�%�ð�ñóò£æQÙÛÚ�Ü%ÞPß }/�n�%�'�o�@�'�N�*���K�*� ¢ �%�u�'�9«b} ¢ �%}e�@�w Q�@}/«8������
æQÙÛÚ�Ü%Þ¼ß3à �-âwôPõ3öL÷øPù úûñ/ü øPù ðwñÛý¼ÙCþFÿ���� ß���þ�� Ù � ß

� �'�£�8§��%�'�
	8�9�
}/�'� ¢ �3}/�FÒ |R�bÓi}s�~�%� ¢ � ¢ ��}/�'�@�e�k�*}e�}/�
�N� ¢ �*�%�
}e�N�N��� �E«8�9�#�B���e�%}e�P�e�S�N�b�K���@�/�� :¡���}/���}/��'�@�'�k�������%}s�'� ¢ �*���/�N�k�%� ¢ �P}/�'���*�e�N�9�[¡H}/�%�B}s�t�*���/�%��%���N���@���N� ý¼ÙÛÚ%ß �@}e«8���S���
ý¼ÙÛÚ%ßRà �� � Õ� Ù �-â�� í Ú~ÿ

ë è� ��� � ß~ÿ Ù �-â��<í Úwå
ë è� ��� � ß × ÜÙ��@ß¡H�'�9�%�� ÙÛÚNß }/�t�%�'�U�N� ¢ ��� ¢ ������©{§Û�*�����%}e�@�� ÙÛÚNßoà� ù÷ �� è��! ø#"%$�& è � �:�ª}/���N�%���*���9}/�'�����@�W�N���@�/�e���p}/���N�9�N©�N���n���@�H}/���N�9�%§Û�9�%�������8 O�%�����%�¼�����N� ¢ �H�b�9�9�'� ¢ ����� �8§�%�'�>�%}e�@� ¢ �,}s�O�%�'�*�%� ¢ �W�%} ¢ �s�e�
�%�����*�����,�

'3ïP� Ù � ß � ¢ � ¢ �/�%�t�¼�Z¡H��}e�N�N��� ¢ �
æQÙÛÚ�Ü%Þ¼ßRà �-âwô*õ úûñ/ü

ú
ø)(+* �ð�ñ-,bÙÛÚ[ÿ.���Zßwå

âwô*õ ú
ø)(ûñeü øPù ð�ñ2ÜÙ Ö ß¡H�'�9�%�0/v}/�k�%�'�>�e���'�8�%�#�8§ ý�ÙÛÚNß ¢ ���

,'ÙÛÚ%ßRà ö#÷øPù ý�ÙCþ*ß��Wþ�� Ù�1@ß
|'�8�K�k�/�'�9�N���8�%��¡H}e�%��� í �Ôà � �21 �¡:�
� ¢ «8�43 à �� ¡H��}/���B�
� ¢ ���[�%� ¢ � ¢ ��}/�'�@�e�£� ¢ � ¢ �*}/�~}s�[�N���%� ¢ �t� «8�9��Î¡:�F���@���N���9�'�%}/«8�n�N�b�K���@�,}/���N�9�%« ¢ �/�9�

Networking for Pervasive Computing NIST Special Publication 500-259

Soltanian & Van Dyck 15

576%5 8:9<;�=>=>?)@�ACBED<?)@

FHG%IJG%KMLONPG%QSRUTWVXG%NPG%KMLURZY[K0LU\#G>]U^W_a`)QSK#bcRU\#dfegLU\#QhL
LU\WGiVUd+dSL�jkNPG%QSK�jkRUl+T#QhVUG0m�VXN4Ron!QfpSGqVXQhrSG
dSs#LU\WGiGJt�IJG%RXR
bWG%uvQ%w:s�dSVxLU\#GcNyT#u[LUY{z)QhLU\|IJd}NPz~d}KWG%K�LxY[R
QhVUd}T#K)b��h�
K#RUG%IPY[K.QSK�dS��IJG4G%K�p+Y[VUd}K#NPG%K�L4������������]�K�QSKWdSLU\#GqV
R�LUT)bWwS���cYvN��q���h�{�
���f��s�d}T#K#b�LU\#QhL�LU\WG�VXN�R0p�QSuvTWG%R
eiGqVUG�`�G%u[dfe���� K#R�G%Ih��eHY[LU\�QSK:Q%pSGqVXQhrSG0phQSu[TWG¡dSs!QhzWj
z#VXd%tWY[N4QhL�G%u{w¢�h��K)R�G%Ih�¢£WdSV4Q�uvY[KWGJj�dSs�jkRUY{r}\�L¤m-¥O¦c^#n
z)QhLU\!�cLU\WG§z~d�e�GqV.R�z~G%IJL�VXQSu�b#G%K#RUY{L¨w�dSsPLU\#G§s-QSbWG%b
QSNPz7u[Y{LUT#bWG©YvR�Iqu{d}R�GªL�d¢QgFHYvIqY[QSK«b#YvR�L�VXY{`)T#LUY{d}K¬�������
 \#GqVUGqs�dSVXGS�7eiGyI®\Wd}R�GPQ4¯)QhL�s-QSb#Y[KWr�I®\#QSK#KWG%uZNPd�bWG%u
eHY[LU\�Q�F¡Y[IqY[QSK�b#Y[R�L�VXY[`)TWLUY{d}K�� \#Y[RHNPd+b#G%u�QSRURUT)NPG%R
LU\#QhL<Q�b#Y[VUG%IJLOz)QhLU\�GJt�YvR�LURO`~GqLkeiGqG%KPLU\WG°L�VXQSK#RUN�Y{L�L�GqV
QSK#bgLU\WG|VXG%IJG%Y{pSGqV%�>QSK#b±LU\#GqVUG|QhVUG|QSu[R�d.dSLU\WGqV4u{d�e
j
u{GqpSG%u�RUIqQhL�L�GqVXG%b¬z)QhLU\#Rq� \WGªz#VUdS`)Qh`)Yvu[Y{Lkw²bWG%K)RUY{Lkw
s-T#K#IJLUY{d}K³m�z�bWs®n>dSsOLU\WG�F¡Y[IqY[QSK|b#YvR�L�VXY{`)T#LUY{d}K�Y[R

´Oµim�¶}n>· ¶
¸�¹Wºh»
¼

½k¾�¿MÀ�¾¾�Á ¾ÃÂqÄ m
¶}Å
¸�¹ n°¶�Æ«��Ç m��}n

eH\#GqVUG ÂqÄ Y[R«LU\WGÉÈqGqVXdSLU\�j�dSVXbWGqV¬NPd�b#Y{Ê#G%bCËiG%RURUG%u
s-T#K#IJLUY{d}K�dSs�LU\WG
Ê#V®R�LOÌ+Y[K)b��MÅ�Y[RELU\WG
G%K�pSG%u{dSz~G
dSs�LU\WG
R�L�VXd}KWrPIJd}NPz~d}KWG%KMLq�WQSK#b ¸ ¹ Y[R�z#VUdSz~dSVULUY{d}K#QSu)L�d�LU\WG
z~dfeiGqVxdSsOLU\WG�Í�RXIqQhL�L�GqVUG%b#Î�F¡Q%w�u{G%Y{r}\©IJd}N4z�d}K#G%KMLq�
 \#GcFHY[IqY[QSK:s-QSIJL�dSV¡ÏÐY[R°LU\WG0V®QhLUY{dPdSs�LU\#Gcz~dfeiGqVHY[K
LU\WG�b#Y{VUG%IJLPz)QhLU\«´ZÑÒL�d³LU\WG|z~dfeiGqVÓY[K±LU\#G�b#YÕÔ�T#R�G
z)QhLU\�´�ÖS�

Ï×· ´OÑ
´ZÖEØ m��Sn

Ù R4ÏÚQhz#z#VUd}QSI®\WG%RPÈqGqVUdW�iLU\WG©IX\)QSK#KWG%u°`~G%\#Q%pSG%R�QSR
F¡QSu{G%Y{r}\�s�QSb)Y[KWrW�xeH\#GqVUG%QSR|QSR|Ï rSd+G%R¤L�dÒY[KWÊ)K)Y{LkwS�
LU\WGyIX\#QSK#K#G%u�Y[R¡Û�QST#RXRUY[QSK��
 eid.Y[NPz~dSVULUQSK�L�z)QhVXQSN4GqL�GqVXR�QSRUR�d�IqY[QhL�G%b±eHY{LU\§LU\WG
VUG%IJG%Y[pSGqV�QhVUGÜLU\#GÉQ%pSGqVXQhrSGÝIqQhVUVXY[GqV�j�L�dhjkKWd}Y[R�G¬V®QhLUY{d
Þcß�à �}QSK#b LU\WG
Q%pSGqV®QhrSG¡IqQhVUVXY[GqV�j�L�dhjkY[K�L�GqVUs�GqVXG%K#IJG°VXQ�j
LUY{d Þ Â à bWGqÊ7KWG%b|QSR

Þ Â à ·
´ Ñ á ´�Ö
´Zâ Ç Þ0ßªà · ´ Ñyá ´ZÖ

´�ã ä m�å}n

´Zâ�YvR�LU\WG°Y[K�L�GqVUs�GqVUG%K#IJG>z~d�e�GqV%�Se¡\#Y[u{G<´�ãcY[R�LU\WGiK#d}Y[R�G
z~dfeiGqVHY[K¤LU\#GcVUG%IJG%Y{pSGqV%æ�RHs�VXG%l�TWG%K)IJwÓ`)QSK)b��
]�K.LU\#Y[R�RUY[N T#u[QhLUY[d}K��~e�G�Ê#VXRUL�IJd}K)RUY[bWGqV�LU\WG Ù�ç Û�è
I®\#QSK#KWG%u0NPd�bWG%u���QSK#b�LU\WG%K�eiG³Qhz#z)u[w«LU\WG³F¡Y[IqY[QSK
s-QSb#Y[KWrW� Ù u[R�dW�>`�G%IqQST)R�G¤dSsHLU\WG|R�LUQhLUY[I:`~G%\#Qfp+Y{dSV�dSs
LU\WG�Y[K#b#d�dSViIX\#QSK#K#G%u[Rq�MLU\#G�é�dSz#z)u[GqViRU\)Y{s�L>s�VUG%l+TWG%K#IJw
Y[R
Y[r}KWdSVUG%b��

576qê ë�=�ìS?#í}î�?#í}?7=>ï�?±ACBED<?)@

ð>Y{LU\WGqV!Q
Ë°u[T#GqL�d�dSLU\�dSV�QSK�åh�}ñ+�[òSòJ`PY[K�L�GqVUs�GqVXG%K#IJG<RUY{rhj
K#QSu�IqQSK©`~G�VUGqz#VUG%RUG%KML�G%b�QSR
ó â}m�ô®ÇUõEn<·�ö±IJd}Rfm�ñh÷<m�øhù á øhÖfn¨ô á«ú ¹ m�ôoÇUõEn�n®Çûm�ü}n

eH\WGqVUGPõ�Y[R�LU\WGPVXQSK#b#d}N×Y[KWz)T#L�b#QhLUQ���eH\#Y[I®\�Y[R0Y[K�j
bWGqz~G%K#bWG%K�L�dSsÓý!� QSK#b ú ¹ bWGqz~G%K#b#R�d}KþLU\#GgL¨w�z~G
dSs
LU\WG:YvKML�GqVUs�GqVUGqV%��øhÖ�YvR�LU\WG:s�VUG%l�T#G%K#IJw³b#YÕÔ~GqVUG%K#IJG
`�GqL¨e�GqG%KªLU\WG�bWG%RUY[VUG%b�RXY{r}K#QSu�QSK)b�LU\#G Y[K�L�GqVUs�GqVUG%K#IJGS�
 \WG�Ë°u[TWGqL�d+dSLU\�VXQSb#Y{d�I®\#QSK#KWG%uvRHQhVUG:òy_�ÿHÈ Qhz)QhVULq�
R�d�øhÖ§IqQSKÉLUQhÌSG¢phQSu[TWG%R�dSs4��Ç%òhÇXñ�������_�ÿ¡ÈS� \WG
`)QSK#bWeHYvbWLU\¤dSs<LU\WGPåh�}ñ+�[òSòJ`³R�w�R�L�G%N Y[R¡ñSñ¤_�ÿHÈS��R�d
e�G§IqQhVXVXY{G%b¬d}TWLªRUY[N T#u[QhLUY{d}K)R¤s�dSV.øhÖ�� òSòg_�ÿ¡ÈS�
 \WG�RXQSNPz)u[Y[K#r
VXQhL�G
Y[R ß�� ·��	��RUQSN4z)u{G%R�
�`)Y[Lq��eH\)Y[IX\
G%l�T#QSuvR��©RXQSNPz)u{G%R�
�I®\#Y{z.s�dSV0LU\WG�åh�}ñ+�[òSò�éc^#^#^�R�w�R�j
L�G%N|� \#Y[R>RUQSNPz)u[YvKWr0VXQhL�G¡YvR>Qhz#z#VXdSz#VXY[QhL�Gxs�dSV
øhÖHTWz
L�dÓñSñ4_�ÿHÈS�
ç \WG%K§R�LUT#bWw�Y[KWr¤Y[K�L�GqVUs�GqVXG%K#IJGS��eiG4e°QSKMLcL�d�VUG%b#T#IJG
LU\WG§GJÔ~G%IJLUR.dSsPLU\WGgL�VXQh��I¢z)QhL�L�GqVXK#RªQSK#b IJd}K#IJG%K�j
L�VXQhL�G¢d}K LU\WGgGJÔ~G%IJLUR.dSs4LUY[NPG
�s�VUG%l+TWG%K#IJw¬dfpSGqV®u[Qhz
`�GqL¨e�GqG%K�LU\#GªL¨e�dÒRUw+R�L�G%N�Rq�a£WdSV�ËiuvTWGqL�d�dSLU\�z~GqV�j
s�dSVXN�QSK#IJGS�~e�GPN4QhÌSGPLU\WG%RUG L¨e�d|QSRURXT#NPz#LUY{d}K)R��ym�òh� n
LU\#QhLxLU\WGyåh�}ñ+�[òSòJ` ç ¥ Ù è Y[RxIJd}K#RULUQSKMLUu{w|L�V®QSK#RUN4Y{L�j
LUY[KWr4QSK#bgm�ñ+� n4LU\)QhL¡QSK�w:dSLU\#GqV�Ë°u[TWGqL�d+dSLU\©z7Y[IJd}KWGqLUR
QhVUG©R�w�K#IX\WVXd}K#Y{ÈqG%b±L�d³z)QSIXÌSGqL�`~d}T#K#b)QhVXY{G%R QSK#bÒQhVUG
QSu[R�d²L�VXQSK#RXN4Y{L�LUY[KWrW� \WG%R�G³IJdSVUVUG%RUz�d}K)b���YvKÜR�d}NPG
R�G%K#R�GS�7L�dÓeidSVXR�L�IqQSR�GPRUIJG%K#QhVXY{d}R%�
]�K�Q�VUG%QSuZR�w�R�L�G%N|�
LU\WGqVUG
eHY[uvu�`~G
LUY[N4G%R<eH\WG%K�LU\#GHY[K�L�GqVUs�GqVXGqV>Y[REdhÔO�E£WdSV
LU\WG�åh�}ñ+�[òSòJ`¬R�w�R�L�G%N|�
eiG�QSRURUT)NPG©LU\#QhLÓLU\WG�Ë°u[TWGJj
L�d�dSLU\©YvKML�GqVUs�GqVUGqVHYvRxQSu[R�d4QSu{e°Q%w�RxL�V®QSK#RUN4Y{L�LUYvKWrW�

£ZY[r}TWVUG
����]�KML�GqVXs�GqVUG%K)IJG°N4d+bWG%u�s�dSVELU\WG°s�QSb#YvKWr¡I®\#QSK�j
KWG%u[Rq�
]�K|LU\#G Ù�ç Û0è IX\#QSK)KWG%u��)QÓT#K#Y{s�dSVXN VXQSK#b#d}N bWG%u[Qfw
ô�Ö��§� ��Ç���n�QSK#bÓQ VXQSK)bWd}N z7\#QSR�G ú Ö��§� ��Ç�ñh÷�niQhVUG
Qhz#z)u[Y{G%b.L�dªLU\WG:Y[KML�GqVXs�GqVUGqV RUY{r}K#QSu>s�dSV G%QSIX\gz)QSIXÌSGqLq�
£WdSVyLU\#G�s-QSb#Y[KWr©I®\#QSK#KWG%u[R%�ZY{LyY[R�QSRURXT#NPG%b³LU\)QhL�LU\WG
Y[KML�G%K)bWG%bÝRUY{r}K#QSu�Y[R�RUT#`���G%IJL�G%bÝL�dÜF¡Y[IqY[QSKÝs-QSb#Y[KWrW�
eH\WGqVUG%QSR�LU\WG°Y[KML�GqVXs�GqVUG%K)IJG�T#K#b#GqVUrSd�G%RZFHQfw+u[G%Y{r}\�s-QSb�j
Y[KWrW�x£OY{rW����RU\#dfeÝQ�`)u[d+IXÌ©b#Y[QhrSVXQSN dSsELU\#Y[R¡IJd}KWÊ#rhj
TWVXQhLUY{d}K�� ç G¤I®\Wd}R�G|Ï · �¢m-Ï�� ��b#Ëxncs�dSV�LU\WG

Networking for Pervasive Computing NIST Special Publication 500-259

Soltanian & Van Dyck 16

�������! "���#�"�%$'&)(*,+.-0/)�%1�/2�%�31�*!4'�5�765486"/��:9) "4	;<*!�7 "��1>=4'?@?@��&)�����A�%&#BDCFEHG
IKJML N0OQPSRUT<V�T<WHXYT)Z
[/<�%�@ "��1M���%\	�� S1M4'&<�"�%�56"�]4	^�(_9) "�M=`����65��1M6"�%4'&baK(&)��=9<(����;<*!65�� �+.(A*%�%?7�!65�� 5=`�)�%��1M ��%?@�%&<(c654	 �+K(&)�_(&#�%&d65�M=$	 �(c65�:(&)�#�)e)?@98;K*!65�� �+f(����/�4F-0&Q�g&Qh.�%$�G�icG [/��;<&<(*ja<*%4�1�k2�%�36"/��l/)(c ��m*%�%?@�!65�� F+.-�/)�%1�/m1M4'?n9<(c ����6"/��o4'e�659Ke�6p9K/)(�5�o-0�!6"/](�����1��%�"�!4'&S*!��\	��*HG [/��o9) "�M=����65��1M6"�%4'&�a<(&)��9<(���Y;<*%65�� .�%�.(rqo(e)�"���%(&�;K*!65�� s-0�!6"/(&���t�e)�!\c(*!��&d6S*%4F-u9<(���l�%?n9<e)*g�5�A "���59v4'&)�"�	+xw�y'z|{"}�+$'�!\	��&Aad~#B��E

w y z|{"}���� �c��|� �v� yv�	������� ���� ��� �!�<��� � ��� z�i���}
-0/)�� "� � y �%�o6"/��@�]�)��aK(&)��-0�%�)6"/�G���1�1M4	 ��<�%&�$S654� �g?n4'&r(&)���#(&)$�B���EH+�6"/��p4	9)6"�%? e)?¡a<(&)�)-0�%��6"/o^|4	 6"/)�g��;<*!65�� ��g� �o¢"£ � � � y �¤ic¥%iF¦F§3G [/��7�)�g�"1M "��65��%?@9<e)*%�5�: "���59v4'&)�5�S4	^�6"/)�%��;<*!65�� n-¨(�n4	a)6"(�g&����©ad~�"(?@9<*%�%&�$�(&)�l65 �e)&)1�(c6"�%&�$7w y z|{"}�G[/)�Q4'e�659<e�6l4	^�6"/��# ���1M���!\	�� ª9) ��M=`����65��1M6"�!4'&«;K*!65�� 1�(&nav�¨ "��9) ����5��&�65���ne<�"�%&�$o�!6"�¬�%&�9K/)(�5�¨(&)�ntde<(�� �(�=6"e� ��u1M4'?n9v4'&���&�6"��+'mz|{"}s(&)�n®Sz|{5}�+d "���59v��1M6"�!\	��*!~	+d(�
� z|{5}¯� mz|{"}�1M4'�z �c�f°c± {5}.²#®Sz|{"}��"�%&fz �c�f°c± {"}� ³@z|{"}�1M4'�B �c�f°c± {f´mµxz|{"}`EH¥ z�i	iF}

[/)�r*%�%?@�!65�� "=`�)�%�"1M ��g?@�%&)(c654	 p4'e�659<e�6u�%�¨6"/�e)�
µj¶Hz|{5}j�¸· µxz|{"}· { � mz|{"}¹® ¶ z|{"}s²Q ¶ z|{"}¹®]z|{"}»º'z|{"}f´©® ºcz|{"} ¥¼z�i � }

[/)�r�)�%�"1M "��65�3�%?n9<e)*g�5�o "���59v4'&)�5��4	^¬(&ª�g����(*��)�¾½v�� 5=��&d6"�%(c654	 ��g��B�¿E
w<À5Á%Â�Â)B �vEÃ� 1M4'��z � z|�ª²«Ä º }5}z|�A²�Ä º } ² �"�g&fz � z|�A²�Ä º }5}z|�A²�Ä º }¹º ¥z�i��'}�Q��65 �e)&)1�(c65��6"/)�%�Å�%?n9<e<*%�5�¬ "���59v4'&)�"�je)�"�%&)$0(0Ær(�g�5�� -0�g&)��4F-Ç-��!6"/«È �ÊÉË(&)�¡ÌÇ� � ¥�Í�+�(&)�«6"/���&-��:e)�"�:�!6r6548(c9)9) "4FÎ��g?@(c65�76"/��]���� ��!\c(c6"�!\	����4	^Ï6"/��t�e)(�� �(c6"e) "�Q1M4'?n9v4'&���&�6"�A "��tde<�! "���¡�%&�1M4'?n9<e)6"�%&�$Ð t<GÏz�i � }�G2�x&�4	6"/��� n(c9)9) "4'(1�/©654Q�%?n9<*!��?@��&�636"/)�%�;<*%65�� u�%�Ï6547e)�"�r(@�"�%?n9K*!�x�<�¾½Ã�� ���&)1M����tde<(c6"�!4'&�G[/)�]�%&d65��$	 �(c65�M=`(&)��=`�)e)?n9©;<*!65�� ��%���"�%?@9<*!~Q(ª ���1M6�=(&�$'e<*%(c u;<*!65�� Ï-��!6"/l�%?n9<e<*%�5�x "���59v4'&)�5�

w ¢�Ñ z|{"}��¸ÒÔÓÕ �@ÖË{¨×©§� 4	6"/��� "-0�g�5�	G z�iMÍd}

[/��3�<�%�"1M "��65�M=H6"�%?@�3;<*%65�� o�g�04	a)6"(�g&����8ad~ª��(?n9<*%�%&)$w ¢�Ñ z|{"}�G [/��0(?n9K*%�!6"e)���¨4	^�6"/��0;<*!65�� j-��� "�x&�4	 �?@(*¾=�!Ø����n6547icG [/)�u(c9)9) "4	9) ��%(c65�Ï�"(?n9<*%�g&�$o6"�%?n�Ï^|4	 j6"/���5~��"65��?Ù�%�Ï1�/)4'�5��&ª(c6u6"/)��?@(�Î��%?3e<?¼��~	��4	9v��&)�%&�$�G
Ú ÛÏÜ�ÝoÞ�ß�ßjàâárã3ä)åvæjç è érênæjë
ìKJcí í_îÙïpW,ð�ñÃò�T<V_Omójópó
[/���aK(�"�%1¸iõôªa<�!6�ö��5��1õ �(c65�÷�%�b��&)1M4������øe)�"�%&�$ù �¨ú � Ænû�6"/�e)��+	�!6Y�g�Y&�4	6.&���1M���"�"(c "~�654o/)(F\	��(�1M4'/��� 5=��&�6.9</)(�5�� "��^|�� "��&)1M�Ï�%&36"/��� "��1M���!\	�� ¬654�����?n4��)e)*%(c65�6"/��� "��1M���!\	���»�"�!$'&)(*,G[/)�%�3�5~��"65��?üe�6"�%*%�!Ø����3(U�59) "��(�©�59v��1M65 �e)?ý�"1�/���?n�654A?@�!6"�!$'(c65�n6"/��n�M½v��1M6r4	^¨(3þ5(?7?n�� �G [/��n�¨(c "k	�� �5��tde)��&)1M�7-0�%6"/#1M4��)�]*!��&)$	6"/2ÿø� i	i:�g�r��?n9<*%4F~	���654 �59) "��(��6"/)�2�"�!$'&)(*HG [/��Qa<�!6A�)e) �(c6"�!4'&�+ [+u�%��MÎ�(1M6"*!~Si	iÏ1�/<�!9n9v�� ��!4��)��+§ ± +�*%4'&�$�G [/��¨9) "4�1M���"�"�%&�$$'(�%&_z�ú¨qr}Ï4	^j6"/)�%�0�"~��565��?ø�%��B¾i��cE.ÿ � �������� � i	i �-0/��� "�x³	��� ÓÕ �%�p6"/��xa<�!6j �(c65�	+�(&<�:³ ± � ÓÕ � �%�p6"/��1�/)�!9S �(c65�	G�
 ^Å-p�r1�(*g1�e)*%(c65��6"/���9v4F-��� 0�59v��1M65 �e<?¼4	^6"/��r�¨(c "k	�� �1M4�������+)-��r$	��63B¾i	i�E� z ° } � ��7�÷²������¡� z

ÿ ´�iÿ º }����H��� º z �ÿ }���z ° ² �ÿo§ ± }
´ iÿ º ��z ° }�¥ z�i�É'}

[/��A^�e)&)1M6"�!4'&f+ � z ° }�+u�g�@�%*%*%e<�565 �(c65��� �%& h.�%$�GjÍ2^|4	 ÿ÷� i	icG��Q� �5��� 6"/)(c6o(7&)(c � "4F-uaK(&)�ª�%&d65�� "^|�� "��&)1M��"�!$'&)(*s=`*g�!k	�7�¨*%e���654�4	6"/�=x*%4�1�(c65���m(c6�6"/��]?@�%�)�<*!��4	^6"/��A�59v��1M65 �e)?ý-0�%*g*pav�l?n4	 "�A(c6565��&�e)(c65��� 6"/)(& (&�%&�65�� �^ �� "�� r*%4�1�(c65���bi@ô���Ø7(�-¨(�~Q^| "4'?Ç6"/)�@?@�%�)�)*%�4	^Å6"/��3�59v��1M65 �e)?lG�����"/�4F-�&ª�%&»h.�%$�G � +K6"/)�3�%&�9Ke�6u�)(c6"(@aK�!6"�0(c "�3;) ��56�)�¾½v�� "��&�6"�g(*%*!~���&)1M4�������G [/��o "����e)*!6"�%&�$ �5��t�e���&)1M�r�%��59) "��(�_ad~26"/��l��(c �k	�� @1M4����	G [/��:4'e)659<e�6 4	^06"/���59) "��(���� r�g��^ ���2654ª(� t�e)(c "�M=��04d4	6 �0(�%�5����="!�4'�"�%&��z � �Ï=��#!u}n9<e)*%�5�M=`��/)(c9<�%&�$Q;K*!65�� �G [/��8�%?n9<e<*%�5�l "�M=�59v4'&)�5��4	^p6"/�� � �Ï=��#! ;<*%65�� x-��!6"/U(: �4'*%*¾=H4c½2^�(1M654	 $ �%�3B¾i	iME% z|{"} � ���H�jB!z�iu² $ } � {"¦F§ ± Ez � {"¦F§ ± }MB¾iu²bz|Í $ {"¦F§ ± } º E´ Í $ z|{5¦F§ ± }"�'&(�dB!z�i�´ $ } � {"¦F§ ± Ez � {5¦F§ ± }MB¾i0² z|Í $ {"¦F§ ± } º E ¥fz�i*)'}
[/����)�g�"1M "��65��6"�g?n���%?n9Ke)*%�5�� "���"9Ã4'&<�5�r4	^¬6"/)�%�0;<*!65�� �%�¨4	a)6"(�%&����Aad~S�"(?n9<*g�%&�$ % z|{5}�G

Networking for Pervasive Computing NIST Special Publication 500-259

Soltanian & Van Dyck 17

 20 15 10 5 0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

f [MHz]

P
ow

er

+-,/.1032547638:9<;�=>4?27@BAC4*D'E�250�FG;(HIEKJ34 L>MN25O(4?2QP>;SR34(TU EIEKJ34V2K4*D'4*,/W(4?2�XYEKJ34�,[Z3A�03E]\KM(F^A�_/4*\�MN2K4:`a25\�E]A�M(\5\�4*REKJ325;103.1JbEKJ34c@Sd#e�dfPgF^MNEKD5Ja4*Rh`�_/E�4?2*T i#J34jR34'e\�A�2K4*M(Ra,[Z3.k`�_/E�4?2l,[\mMn2K4*D'EKM(Z3.10a_[MN2 `�_/E�4?2 EKJaMNEl,[ZoE�4'e.(25MNE�4*\lEKJ34p;103E�A�03E7;(H�EKJ34^Fq0a_/EK,/A�_r,/4?2�Ra0a25,[Z3.sMut�,/EAC4?25,/;SR]Tci#Ja4vRa,/wx4?2K4*ZoEK,[M(_�R34*D';BRa4?2sD';1FyA�MN2K4*\sEKJ34A�J�M(\�4lM(Z3.1_/4l;(HzEKJ34m2K4*D'4*,/W(4*Rv\�{SFltC;1_�M(Z�RnEKJ34 Aa2K4'eWS,/;10a\	;1Z34pE�;u.(4*Z34?25MNE�4yEKJ34p;103E�A�03EQt�,/E�\KE�2K4*M(FkTm|"E,[\:M(\K\K0aFy4*R}EKJaMNEVEKJ34�D5Ja,/A~EK,[F^,[Za.	;(H]EKJa4#2K4*D'4*,/W(4?2>,[\\�{SZaD�J32K;1Za,/�?4*RuE�;}EKJ34mE�25M(Za\5F^,/E�E�4?2*T���*� �����������1���x�������n�s�P>;1F^A�_/4*Fy4*ZoEKMN2K{�D';SR34*\	=�4?254 ;(25,[.1,[ZaM(_[_/{kD';1ZaD'4*,[W(4*RtB{���Tz�3T<�Q;1_[M*{�H�;(2 ,rZ3H�2�MN2K4*R�F 0�_/EK,[\K_[,[EQ\KAx4*D'E�25;1Fpe4?E�2K{����*�(¡TQi¢J34*\�4pD';BR34*\QD?M(ZvtC4qD';1Z�\K,[R34?2K4*R£t�_/;SDKOD';SR34*\V;YW(4?2:EKJ34¢`a4*_[Rp;(H]D';1FyA�_/4'¤yZB0aFltC4?25*TI¥�4?E:EKJ34OBEKJ D';SR34�=�;(25R tC4V.1,/W(4*Z to{m¦�§Q¨©�«ªY§Y¬?ªY§'V®?®?®�ªY§?¯> /°VX=¢Ja4?2K4�± ,r\kEKJ34²_/4*Za.(EKJ³;(H EKJa4²D';BRa4�=�;(2�R]X7M(ZaR´ ¨µ�N¶5�B¶?®?®?®�¶K·¸T:i#J34QM(03E�;SD';(2K2K4*_[MNEK,[;1Zu;(H¹EKJ347D';SR34=>;(25Rn,[\º.1,[W(4*ZntB{»���*¼� ½Q§'§o� ¾N]¨ ¯f¿oÀÁÂ Ã ¬ ªY§ Â ªYÄ§YÅ Â/Æ ÀÈÇ�É Ê ��Ë(ÌU \�4?Ef;(H<Í©D';SR34*\f,[\fD';1Z�\K,[R34?2K4*RuD';1FyA�_/4*Fy4*ZoEKMN2K{~,/HM(ZaRn;1Za_/{~,[H<,/E#\5MNEK,[\�`a4*\ºEKJ34lH�;1_[_[;�=¢,[Za.q4*ÎB0aMNEK,/;1ZÏÁ§ Ã ¬ ½Q§'§S� ¾N C¨ÑÐµÒ H�;(2�¾�Ó¨ Ò·»± H�;(2�¾q¨ Ò T Ê �*Ô1Ìi#Ja4sD';1FyA�_/4*Fy4*ZoEKMN2K{²D';SR34*\p,[Z²EKJa4uÔ Ò �BT[�(�'tÕ\KEKM(ZSeRaMN2�Ra\kMN2K4�R34?`�Za4*RÖto{ÖM�\�4?En;(Hy�(×(ØÙÔYe�D5J�,/AÚD';SR34=>;(25Ra\?TVi¢J34?{sMN254l\�AC4*D?,/`a4*RstB{Û ¨b�«Ü À*ÅÞÝ(ß Æ Ý�à Æ Ý�á Æ Ý�â�Ç ¶GÜ À?Å�Ý(ß Æ Ý�á Æ ÝYâKÇ ¶Ü À*ÅÞÝ1ß Æ ÝYà Æ Ý�â�Ç ¶ ã�Ü À*ÅÞÝ(ß Æ ÝYâ�Ç ¶Ü À*ÅÞÝ1ß Æ ÝYà Æ Ý�á�Ç ¶ Ü À?Å�Ý(ß Æ ÝYá�Ç ¶ã¢Ü À?Å�Ý(ß Æ ÝYà�Ç ¶ Ü À*ÅÞÝ(ß�Ç ¡¶ Ê �*ä1Ì

=¢J34?2K4«å Âzævç Ò ¶Bè � ¶ è ¶ ¼ è��é H�;(2#ê-¨µ�N¶5�B¶5¼B¶�63T Ê � Ò Ìë¢;(E�4~EKJaMNEl4*M(D�J�4*_[4*Fy4*Z�E ;(HfM�D';SR34}=>;(25R²,r\mD';1FpeA�_/4'¤CXmM(ZaRì\K;íD?M(ZìtC4²E�25M(Za\5F^,/E�E�4*RÚ0�\K,[Z3.íî79>@SÍFy;BR�0a_[MNEK,/;1ZuM(\#Ra,r\KD?0a\K\�4*RutC4*_/;Y=mTU E»�(����t�,/EK\�ï�\K4*DNXQÔ�t�,/EK\ Ê R Ò E�;�R�ËoðmR Ò `a25\�Eu,[ZEK,[Fy4YÌ	MN2K4^E�2�M(Za\KF^,/E�E�4*R»AC4?2lD';SR34y=>;(25R]T}i¢J34y`a25\�ERa,/t�,/E Ê R Ò XuR���Ì�4*ZaD';BRa4*\ å ¬ t�M(\K4*Rb;1ZÑñ7î79>@SÍyX=¢Ja,[D�JòAa25;�WS,[R34*\ÑEKJ34óAC;1\K\K,/t�,r_[,/E�{ô;(HÚ4*F^A�_/;�{S,[Z3.Ra,�wC4?2K4*Z�EK,rM(_[_/{oe�D';1J34?2K4*ZoEqR34?E�4*D'EK,[;1Z]T�|"ZõEKJ�,[\p\�EK0aR3{(X=�4�4*FyA�_/;Y{QM	D';1J34?2K4*ZoE<2K4*D'4*,/W(4?2*X(M(\K\K0�F^,[Z3.fEKJaMNE<EKJ34,[Za,/EK,[M(_�A�JaM(\�4 ;(HVEKJ34p\K,/.1ZaM(_<,[\�OBZ3;Y=¢Z]TQi#J34qRa,/t�,/EK*XÊ R��BX<R�¼1Ì�X Ê Ra63X-R�×1Ì�X-M(Z�R Ê R�ØBXzR�Ë(Ì74*ZaD';BRa4 å X å�ö XM(ZaR å�÷ X32K4*\�AC4*D'EK,/W(4*_/{(X�M(\¢\�AC4*D?,/`a4*Rk,[Zki<MNt�_/4^�NTñQ,/t�,[Eº9-MNE�E�4?25Z 9:JaM(\K4Êùø Â ¶ ø Â[Æ ¬ ÌÒ(Ò ÒÒ � ú � Ò è�(� ö úi<MNt�_/4^�N8>îQ9º@SÍ©û:Z�D';BRa,rZ3.3Ti#J34^\�{S\�E�4*FüF^;BR34*_z,r\7Aa2K4*\�4*ZoE�4*R²,rZ�+<,[.3TI×BTký7Za_/{M(Z U¹þ �7ë©D5JaM(ZaZa4*_],[\#D';1Za\K,rR34?2K4*Rk,[ZuEKJa,r\fD?M(\�4(T

+-,/.10a2K4l×B8>P#PºÍÿ@S{B\�E�4*F��n;SR34*_�Ti#J34�Ra4*D';BR34?2zR34?E�4?2�F^,[Z34*\¹EKJ34�WNM(_[,[RqD';SR34�=>;(25R EKJaMNE,[\zD?_/;1\�4*\�E:E�;mEKJ34#2K4*D'4*,[W(4*R^\K,/.1ZaM(_¡X�M(ZaRy,/EVF^MNA�\zEKJaMNED';BR34u=>;(25Rõt�M(D5O�E�;�RaMNEKM»t�,/EK\?T²|"E^,[\q=>4*_[_>OBZ3;Y=¢ZEKJaMNEf,[Z~M(Z UIþ �Që D5JaM(Z�Z34*_�X3MpD';BR347\�4?Eº=¢J�,[D5JsJaM(\EKJ34:_[MN2K.(4*\KEIF^,[Z�,[F 0�F³û:0aD?_[,rR34*M(ZmRa,[\KEKM(ZaD'4VtC4?E�=>4?4*ZD';BR34�=�;(2�Ra\¹{S,/4*_[R�\]EKJ34º_/;�=>4*\�E<t�,/E�4?2K25;(2I25MNE�4(Tzi#JB0a\?XM(Z ;(A�EK,[F^M(_SD';BRa4º\K4?E<H�;(2VM(Z UIþ �QëjD�JaM(ZaZ34*_B=>;10a_[RF^M�¤S,rF^,/�?4QEKJ34mH�;1_[_/;Y=¢,[Z3.pF^,[Za,rF 0aFGRa,r\�EKM(ZaD'4
ø � Â � ¨ÖF^,[Z��5¦�§�ã�¦���� Ê �S��Ì´ ¶	� æ»ç �N¶5�B¶?®?®?®N¶K· é É

Networking for Pervasive Computing NIST Special Publication 500-259

Soltanian & Van Dyck 18

�����������������������	� 	!"���$#���%'&)(��	*+������,��	*+-.����#+/�0��%	%	(21����3�4*5��%6��%879(2�'�8���:1;�<%	*��=&)�>�	*5� ���	*5�<�?(2�5(A@��B5�DCEB5�8�2(2#������F#5(G%6�	���5����(2%H��IJB5���K�6�MLAN�O�PQ�RTSAU�VXW Y Z"[N]_^8`�acb�d Z efhg [�i b Z�Z g
���kj]jmln&)(��	* Y Vpo ���5#qf V O�7��	*5����(2�5(2��B5�#5(G%6�	���5���r(G% ZJs o Z 7t&)*�(2�u*_(2%�vw#5xy10�8�6�6�8��	*5���_�	*��#5(G%6�	���5���k��z{B5�5���$#���#"|'}m~$lX&)*���%6� Q�RTSAU�V N i O s� *5�������$(G��B5� �G(������2(2*��J�$#����8�	*��J# #���%	��u(�10��#� 10�������5�8��#5%���1���������z Z���� ����		���2� �6���%:(2���	*��	������(2���8 sw� ���	*���B�,�*_���5�	(2��B5��7c�	*5(G%3���8�	*��$#�����!10�H�����5%	(2#5�8	��#��6���3��������������z���t%6�����](G���������������	��@�	(�����% s � *��8	��� 	�����2%6�?����%u%]�������������q%	B51�@����5�	(2��B5�����,����(��	*5��% s x�!����J���$(2��,�� �+�	*��_���$#���&E���#5%q��zj]jHl�74���5�<�8���>&)u(��6�<�	*���%6�<��IJB5� �	(����5%'z���'�	*���#���@���$#���#���*���%6��%3LAN�O�P�4��V ���=�������	�� �H¡ ��¢��� £ ¡ ��¤¥�� ¦ ¡ �=§��� ¨�© b Z v g� ¢ V ���=����� � �� ¢H¡ � � �� £ ¡ � ¤ �� §�¡ � ¦ �� ¨�©� £ V ���=�������	� ¤ ¡ ����� ¦ ¡ ��¢¥� § ¡ � £ � ¨ ©�ª�«V ���=����� £ ^ ¬��®�¯ ¡ � ¦ ^�¬�u®=° ¡ �=§ ^ ¬��®=± ¡ � ¨ ©�²&)*5�8	� ³ V L ��� ² ��� ² ��¢ ² � £ ² �=¤ ² � ¦ ² �=§ ² � ¨ P b Z O g(2%´�	*��m	������(2����#<�������6�� s{µ �]�������2��!��	*��H� 10�����]%uB�1�@���5�	(G�����´	������(����8��6�q������%uB�	�<�	*��<�0�8	z¶��������5����(2��	*��3�5	��%6���5���k��zc(2���6�8	z��8	���5��� s· ¸"¹uº<»½¼�¾<¿�ÀÂÁcÃ
���w�Ä�6u���5%	��(2�6�6�8q� �q�Ä�;�=&E�8w���8�����'��z�Å9Æt7Ç�	*�����$�6u�����6��#È�0��&��8�1J!É�	*��F	������(����8�ÊË%������6���5��������!10�k���$�5	��%	%6��#"(2��#����8(�10���2%m��%Å´Ì V Å9Æ ¡�Í Æ ¡�Í Ì+\:Î9Ï'\:ÎEÐ ² b Z�� g&)*5�8	� Í Æ ���5# Í Ì � 	���	*��������6�����5�F,���(2�5%'��zE�	*���6u����%	��(��6�6�8����5#>�	*5��	������(����8�7Ñ	��%6�0�����	(�������!�79ÎÑÏF(2%�	*��m��� �	*��2��%	%87����5#<ÎTÐH���8����B����	%Tz¶��{����!���#5#5(2�	(����5���%6!$%6�6���h����%u% s
��������(2�5#��J��Ç��*5���5������7K&E��� �5���2!"�%	(G�������q��	����� ,�� �	(��������$#����ÓÒ��2(2����@���z¶@Ô%	(�,�*��?��	������@,�� �	(����_b�z¶	�8�k%6�4����� g z¶��H�	*��kÕ�u%6� o ��7$�	*��8	��� z��6�8)��5u����� ,�� �	(����w���J�0���������Â��zTv s v s � *������ �	*+����%	%Ç�8���10�k���$�5	��%	%6��#"��%3LAN � PÎ9Ï V×Ö O�Ø ¡ Z Ø�����,;b Q g z��� Q?Ù�o �� oJi v ¡ v�v�����,0b QJÚ o g z��� Q?Û�o � s b Z�� g

� %	%uB5��(2��,�Ø�#5x�,���(2�Fz���H�	*��k�6u���5%	�?(��6�6�8]���5#F�	*��	������(����8������6�����5��%����5#Ü(�,�����u(G��,_��#5#�(��	(����5���Â����%	%87CTI s b Z�� g �8����10�k&]u(2�6�6���q��%ÅcÌ V Å9Æ"\:Î9Ï i b Z�Ý g� *��q%6���5%u(��	(��$(��Ô!_��zÇ�	*5�q	������(����8�7]Þkßáà U ß�7�&)*5(2��*�(2%�	*��q��(2�5(G��B5�â������B�������zk%	(2,��5���m�0��&��8?	��IJB5(�	��#�6�>����*5(��8���q�+���8	�	��(2�Ä1�(2�3�8		����� �6��bãxmCEä g 7{����!1;�'���$�5	��%	%	��#q��%ÞkßÔà U ß V Å U ¡�å Y ÞÇæ6àáç i b Z o gè)�8	��7�Å U (G%c�	*��m	������(����8T����(G%6�m�;�=&E�8t����# å Y ÞÂæ6àéç(2%T�	*5�Çu��I�B5(2	��#?�8� 	�(��86@��6� @Ô����(2%	�Ç�� �	(��<�6�<����*5(��8�����ê�ë�Þ V N8Ø ¬ ¢ (2����� �Ñµíì -×�u*5��������� s � *��?jm-Çä(2%H#��8Õ�����#���% å Y Þ V ëÂîY�ï Nê3ð i b Z�ñ g
����xm�2B��8�6�J���	*K7q��B��%u(2��B��2� �	(����×%	*��=&)%Ä�	*5� ��� �å Y Þ ò N � #5xÇ7"&��ó,��8�X�ôê<ë3Þ V N8Ø ¬ ¢ s� �2%	��7âÞkßáà U ßõ����! 10�ö�á!��4(2�8���2��! %6���������6��# ��%Þ'ßáà U ß V \ o Ø�#�1�� s x�!"(2�5%6�8u�	(2��,��	*���%	��� ���2B���%87;�	*��	������(����8)����(G%6��(2%H�	*����Å U�V Þkßáà U ß{\ å Y ÞÇæ6àáç i�V @ ñ�� #�x�� i bÓv Ø g÷Â%	(G��,+CEI s b Z�Ý g ���5#Ä,�(2�����ÈÅ U 7T&��F�8�����8���2�8B5�2� �6�x��GB��8�6�����	*ªÊË% å Y Þõ���5# åkø Þù�����GB���%"z�����í��*�� @%6���F�6���0������,�! s � � 1���� Z %	*��=&)%H�	*���jH-Âäp� ���2B���%mz���ÅªÆ V N3� µ�sú'(2%6�	�������rL �<P N v � N8Ø N �jH-ÂäûL #5xEP ��� O � O Z v � Z�ñ� � 1���� Z Ò�jm-Çä�� ���2B���%]z¶��)xm�2B5�8�6�����	* s� *���� 10�����F�8���2�8B5�2� �	(2���5%��8���_1;��u�8�;��� �6��#_z���3�	*��o Ø ZJs N�N�1�	������(����8w��%	%	B5��(G��,�Þkßáà U ß V \ o ØÈ#5xm��7���5# å Y ÞÇæ�àéç Vüo #5xX� ��ê<ë3Þ V N8Ø ¬ ¢ s � � 1����?v�������	��(2��%H�	*���	��%uB5���	%mz���)ÅªÆ V Z�� � µnsú'(2%6�	�������rL �<P N v � N8Ø N �jH-ÂäûL #5xEP ��Z ��Z O o O�Ø v �� � 1����3vJÒHjm-Âä������GB���%mz¶�� o Ø ZJs N�N�1 s
���r#5(G%6�	���5����%?�2��%	%��	*5����N � ���8�6�8u%87m�	*��>jm-Âäý(2%*5(�,�*w������B�,�*>%6�F�	*����8		��u%'� 	������(2����!q�8��B5%6��#+1J!�	*���(2���6�8	z¶�8u���5����%	(�,��5��� s

Networking for Pervasive Computing NIST Special Publication 500-259

Soltanian & Van Dyck 19

0 5 10 15 20 25 30 35
10 5

10 4

10 3

10 2

10 1

100

Average Eb/N0 [dB]

B
E

R

k=0
k=3
k=10
AWGN SIM
AWGN ANLT

þcÿ��������	��
���������������������������������� "!#��ÿ� ������%$'&)(+*
�� -,�.)ÿ�!8ÿ��� /�0��,5ÿ� -�1!2�-�� - ��3�54�687:9<;����3!#��ÿ�=����36
> ?A@8BDCFEGBIHKJL1MN@POQ@8R�SUTWVXR

Y[Z�\]_^a`8b-cedfdDc�g
h ÿ5�%�-�5�e�	ÿ��� i���34��-����4_�j���k�����l7'9m;_���3!#��ÿ�=����wÿ� n�����
$'&)(+*o�� -,p.)ÿ�!8ÿ5�� q!��-�� " ��3��4l�e���r�-���34��3 s���3,ûÿ� þcÿ���6%��6t&u�)4����r���-�e�v�����l�����r$'&)(+*w!���4��x�e�
ymz�{}|	~)���3�r,-�<�������l�1y����������"��6ôþ����k�����
� ����4���!���4���.m�3������ÿ������0��,5ÿ� ���!#�� -,5ÿ��	ÿ��� ��0� ���s�2�
�� Uymz�{}|%~G���e��,"�_ÿ�4����3���5ÿ����3,������N������4����U�����.�6
$<��4��]ÿ� ����5ÿ�4D�-���-����� � �8�-���34��3 s�I���-���� -�������	ÿ�!���������.!�����=����-4	ÿ5 ��_����������������,A,��34�!#�uÿ� X�3,Éÿ� r¡¢�3���f£¥¤¦�����
�����%$:&)(+*§!���4���6

;W ¨�������j�����3 -!#��©¦�¨��� .G�e�	ÿ��ª�0,-��
« {¥¬�¯® � ¯°F±�²¥²¥³µ´ ���
« {¥¬¥¶¸·U¹»º �
« {¥¬�¼�·U¹»º ½¸�e�
« {¥¬¥¾ � ·U¹»º ½¯¿��

©��e "���1¿�
 h ���3!8ÿ��-�3,uÀ»;µ.§=e�������34+������������������������ÿ� �½
�������������3 -!#��6þ����N������������������ÿ� s�������j�����3 "!#�8�� %�m�����������������%4	ÿ��� -���Á�
���������?ÿ�4���4����3!8ÿ��"!1���3���5ÿ����3���3 s����!�!#����,�ÿ� ������k�����
4����� ",-�e��,D��ÂÁÃ�ÄFÃf�������»�¦.Å4��-���5�s ��¦���34�4����-�� 1��6��FÆXÿ�
�� ¨�����'������!#�� -,5ÿ��	ÿ��� -4¦��ÿ�=��3 qÿ� /©��e "���+¿�68©���+������½
���������� -!#��ÿ�4��U�3��4������3, � ÿ����Ç������,-�34	ÿ����3,_4	ÿ��� -���N���,-�i�È=����+�����������������3 -!#�	4��3 -4	ÿ��	ÿ�=Jÿ��¸������=��3�¯6�þcÿ���6DÉ��0�s�
4��-� � 4G���������������������� -!#��ÿ5 _���5ÿ�4m!���4���6�&u�%�� "4�����=��
���-�e�<�����	7:9<;����3!#��ÿ�=����+!��� k�������m�����%���3���5ÿ����3�U�3 ¨�
4����< ��_�����%4����� ",-�e��,D6]þcÿ���6IÉ��� X��-���34��3 ¨��4G���-��������½
���������� -!#� � ÿ����1�»�5�������¨�����Ê!#�e½a!��-�� - -�3�5ÿ� ¨�������j�����3 -!#�

0 5 10 15 20 25 30
10 5

10 4

10 3

10 2

10 1

100

CNR [dB]

B
E

R

fd=0 MHz, CIR=11 dB
fd=1 MHz, CIR= 0 dB
fd=2 MHz, CIR= 30 dB
fd=3 MHz, CIR= 40 dB

0 5 10 15 20 25 30 35
10 4

10 3

10 2

10 1

100

Average CNR [dB]

B
E

R

CIR=15 dB
CIR=20 dB

þ´ÿ��������ËÉ¨
 Ì ±2ÍÌ z¯Í �����������������Î���������������� "!#� � ÿ����
�»�5�������¨�����wÿ� ¨�������j�����3 -!#��6<�0�s�$:&)(+*Q!2�-�� - ��3�¯6<�� X�
.)ÿ�!8ÿ��� _!2�-�� - ��3�¯687:9<;¦���3!#��ÿ�=����36
ÿ� v�����/.)ÿ5!8ÿ��� l�0��,5ÿ� -�k!��"�� - ��3�Á6�$m41�U�3 ¨�	ÿ��� ��3,�ÿ�
h �3!#�	ÿ��� ÅÏÈ½¸�������ÑÐª�����U������4	ÿ��� -���Á�8�� -,Ò� �Ó�
�0.G�3������ÿ����X�������������ÿ� ¨�������������3 -!#��6	©��� « ¬¨�Ô=e�������
4������-��,	 ����e�����3��4���Ïe��,-�Äÿ� 1����,����8������������� � �»�¦.�j������-��!#�e½a!��-�� - -�3�9ÿ� ¨�������������3 -!#��6
*G�#Õ���� � �A4����-,-�x���-�v�������j���2���� -!#�v���������������������
� ÿ�����£e��Ï�6����# ÿ� ¨�������j�����3 -!#��6 ©���Ö!�����=��34 ÿ� þ´ÿ���4�6�£��0�s�»�� -,��� X���e���<�j������ Fÿ� s�������j�����3 "!#�#½a�2ÿ���ÿ����3,
�3 s=$ÿ����� -���3 s� � ÿ���� « |ª�×�Ø�e�k,-�<6'©���Ç£e��Ï�6����#
4	ÿ��� -���[���¨��Ù�4»�2ÿ�Ù��G "������,� "�� -,� ���ÿ�4��<�e�¦���-�Çÿ� -�"���N���
���������������������������3!#��ÿ�=����F6¦©�������������������� "!#��,��������¥½
,-�e�	ÿ��� A�j���U!��e���uÿ����	�����3�����3 -!#�l,�ÿ¢ÚX�����3 -!#�34%�-�Û����¿
Ü�ÝmÞ�ÿ54G�����U��4��G�����14����U������ -,ª4�� � ���[�����G�����	���#½4��-����4	������ßeàk�Ñ�u��4��������-���34��3 s���e�	ÿ�=��k!���4���6Å©���
 ¨�-�5�Tÿ� A�����_���e��Ù�����!#��,-�/4��X�3!#���2�-�á,-�¨�341 �����ÿ��1½
�-���F=��U���-�U�X�����j�����Ê�� -!#�U���������I "�-�'ÿ��+,-�¨�34+�����������

Networking for Pervasive Computing NIST Special Publication 500-259

Soltanian & Van Dyck 20

 20 15 10 5 0 5 10
10 4

10 3

10 2

10 1

100

CIR [dB]

B
E

R

fd=0,1,2,3,4 MHz
fd=5 MHz
fd=6 MHz
fd=7 MHz
fd=8 MHz
fd=9 MHz
fd=10 MHz
fd=11 MHz

 20 15 10 5 0 5 10
10 4

10 3

10 2

10 1

100

Average CIR [dB]

B
E

R

fd=0,1,2,3,4 MHz
fd=5 MHz
fd=6 MHz
fd=7 MHz
fd=8 MHz
fd=9 MHz
fd=10 MHz
fd=11 MHz

âfã�ä�å�æ�çéè�ê ë¢ì2íëïî¯í ð�ñ å�ç�ò�ó�ó�ò�ô×õ�ç�æ�ö�ó�æ�÷�ø�ù-ú#çüûGã�ò�ô
èeý�þ�ÿ�������ã�ù¨ò�ç�æ�ö�ç�æ�ç3ù-ú#ç�ÿ��0ø��
	�����Kú�ô"ø�ù-ù�ç ñ ÿ�������mã�ú�ã�ø�ù_ú�ô"ø�ù-ù�ç ñ ÿ�������æ�ç3ú#ç3ã���ç�æ3ÿ

èeý�þ�ÿ�������������� �"!#��ò�ç3÷�ÿ$	möjò�ç�æ&%('()+*�,fó�ù�ç�ä�æ2ø�-/.
å-ø ñ5ñ !0��ç�ç1�Êò�ô�çkç�2Xç3ú#òÇó�ö�ò�ô�çkõ"å ñ ��ç3��ô-øeõ"ã�ù�ä54 ñ ò�ç�æó�ö�ò�ô�çÇèeý�þ�ÿ������Òò�æ�ø�ù���÷�ã�ò�ò�ç�æ1,'ûmô-ã�ú�ôlô-ø���økù¨å ñ5ñ øeò687�9 ���&'()+*�ÿ:�Wù�ö0ø�ú#ò;,"ò�ô�ç=<>�?�@�¥ø ñ å-ç�øeò 687A9 ���'()+*Çô-ø���ò�ó(�Xç
��ç�æB! ñ óFû ã�ù�ó�æB-�ç�æ%ò�ó�ú�ø�å���çÇô-ã�ä�ô
ð>C ��ÿ
D óÔæ�ç ñ øeò�çnò�ô�ç�<>�?�E�¥ø ñ å-ç1�Åò�óÔò�ô-çnò�æ�ø�ù���÷Êã�ò�ò�ç�æõ�óFû»ç�æB�;,�ú#ó�ù���ã�-�ç�æ�ò�ô�ç�ò�ó�õXó ñ ó�ä�!ÒûGô�ç�æ�ç_ò�ô�ç ð�ñ å�ç�.ò�ó�ó�ò�ôrò�æ2ø�ù���÷�ã�ò�ò�ç�æÇø�ù�-Åò�ô-çªèeý�þ�ÿ�������ã�ù¨ò�ç�æ�öjç�æ�ç3ù-ú#ç
øeæ�çF��ó�ò�ô�õ�óG��ã�ò�ã�ó�ù�ç1-nó�ù�çl÷Uç�ò�ç�æ�ø3û�ø1!nö�æ�ó�÷�ò�ô�ç
ð�ñ å�ç�ò�ó�ó�ò�ôqæ�ç3ú#ç3ãH��ç�æ1I�ò�ô�ç ð»ñ å�ç�ò�ó¨ó�ò�ôÔò�æ�ø�ù���÷Êã�ò�ò�ç�æõ�óFû»ç�æ1ã��J�Ê÷J�K,'ûGô-ã ñ çUò�ô-ç�èeý�þ�ÿ������MLN�Uã��	þ�O�÷
�ËÿPA��ã�ù�ä CRQ ÿS�ÁþGT��U,WVYX�ZE[]\���%^- ð ÿA��ó_,�ûmô�ç3ù�ø
ð�ñ å�ç�ò�ó�ó�ò�ô1õ"ø�úB`�ç�ò8ô�ó�õa��ó�ù1ømö�æ�ç Q å�ç3ù-ú�!�ò�ô"øeò8ã�� ñ ç1�"�ò�ô-ø�ùb��ýW'c)�*<øFû»ød!Êö�æ�ó�÷pò�ô�çmú#ç3ù¨ò�ç�æ�ó�öIò�ô�ç<èeý�þ�ÿ����
ã�ù¨ò�ç�æ�ö�ç�æ�ç3ù-ú#ç�,Dò�ô-øeò+õ"ø�úB`�ç�ò�ã��+å���å-ø ñ5ñ !e��å_�/f�ç3ú#ò�ç1-�ò�ó

ç�æ�æ�ó�æB��ÿ D ô�ç�æ�ó ñ5ñ .¯ó82Çö0ø�ú#ò�ó�æ:g�ó�ö�ò�ô�çGèeý�þ�ÿ������Çò�æ�ø�ù��h.÷�ã�ò�ò�ç�æ+-�ç�ò�ç�æ2÷�ã�ù�ç1��ò�ô-ç�æ�ø�ù�ä�ç�ó�ö�ö�æ�ç Q å�ç3ù-ú�!/ó82i��ç�ò"�ód��ç�æ»ûGô-ã�ú2ôÊô-ã�ä�ô ð:C �+�»øeæ�çGó��j��ç�æ"��ç1-Dÿk�Wù�ò�ô-ã��R��ã�÷W.å ñ øeò�ã�ó�ùi,Fû¦ç�ú2ô�óG��çRg 9 �8,8��ó�ò�ô�ç¦ã�ùsò�ç�æ�öjç�æ�ç3ù"ú#ç���ã�ä�ù-ø ñûGã ñ�ñ ó�ú�ú�å�õl!�ò�ô�ç�÷�ønm�ã5÷%å-÷Ñød�¥ø�ã ñ ø8� ñ çJ�[ø�ù�-�ûGã�--ò�ôDÿ	mù�ó�ò�ô-ç�æ¦ó��a��ç�æ"�¥øeò�ã�ó�ù�ö�æ�ó�÷ âfã�ä�ÿ�è_�0ø��¦ã��¦ò�ô-øeò�ã�öDò�ô�ç
<:�?�o�eø ñ å�ç<ã��¦ø ñ û»ød!#��ä�æ�ç3øeò�ç�æ�ò�ô"ø�ùqp&- ð ,�ò�ô�ç ð:C �öjó�æGø ñ5ñ öjæ�ç Q å�ç3ù-ú�!Çó82i��ç�ò"�Gã�� ñ ç1�"��ò�ô-ø�ùr��ý#sateÿD ô�ç	õXç�æ�öjó�æ�÷Êø�ù-ú#çUã�ùªò�ô�çJ�Gã�ú�ã5ø�ùªú2ô-ø�ù-ù�ç ñ �vu 9 Oöjó�æmò�ô�ç&��ã�ä�ù-ø ñ ø�ù�-(u 9 ý�ö�ó�æGò�ô�ç	ã�ùsò�ç�æ�öjç�æ�ç3ù"ú#çw��ã����ô�óFûmùÊã�ù�âfã�ä�ÿ�è_�����2ÿx�uç���ç�çGò�ô"øeò V�X�Z 9 ��ý=- ð ã��ò�ô�ç�÷�ã�ù"ã�÷%å"÷iò�ó ñ ç�æ�ø8� ñ ç�ÿ��µù%ú#ó�÷Uõ"øeæ�ãy��ó�ù�ò�ó���ú#ç3ù-øeæz.ã�óG�Gûmô�ç�æ�ç�ò�ô-ç&-�ç1��ã�æ�ç1-c��ã�ä�ù-ø ñ å"ù�-�ç�æ�ä�ó�ç1�+�mø1! ñ ç3ã�ä�ôö�ø�--ã5ù�ä�ó�æ�ò�ô�ç�ã�ù¨ò�ç�æ�ö�ç�æ�ç3ù-ú#ç�ô-ø���øW�|{S��õ[øeò�ôi,�ò�ô�ç1��ç
æ�ç1��å ñ ò"�/÷�ød!}�Xçuú#ó�ù���ã�-�ç�æ�ç1-xó�õ-ò�ã�÷Êã���ò�ã�úeÿ~{+ùiò�ô�çó�ò�ô�ç�æ�ô-ø�ù�-i,mû¦çr��ç�çuò�ô-øeò3��ã�ù-ú#çªò�ô�çvã�ù¨ò�ç�æ�ö�ç�æ�ç3ù-ú#ç
ø�ú#ò"�'ø��:ûGã�-�ç;�"ø�ùa-�ù�ó�ã���ç�,Èò�ô�ç�æ�ç¦ãy�Iù�ó�ò:øGä�æ�ç3øeò�--ãH2Xç�æz.
ç3ù-ú#ç»ã5ù�ò�ô�ç�<:�h�Aæ�ç Q å-ã�æ�ç3÷Uç3ù¨ò���ç�òaû»ç�ç3ù1ò�ô�çR	�����ø�ù�-e�Gã�ú�ã5ø�ù_ú�ô-ø�ù-ù-ç ñ ÷Uó/-�ç ñ ��ÿ	��Aø@��ó ñ å-ò�ã�ó�ùQò�ó§÷�ã�ò�ã�ä�øeò�çÅò�ô-çrç�2�ç3ú#òAó�ö�ã�ù¨ò�ç�æz.öjç�æ�ç3ù"ú#ç�,�û¦çAå���çlø���ã�÷Uõ ñ çªò¸û¦ó8.���ò�øeò�ç��<ã�ò�ç�æB�"ã�æ�ç�.ú#ç3ãH��ç�æ�öjó�æ ð�ñ å�ç�ò�ó�ó�ò�ôDÿ�	Gä�ø�ã5ùi,�û»çÒø��"��å-÷UçAò�ô-øeòò�ô�çÒõ"ô-ø���ç�ó�öÇò�ô�çÒò�æ�ø�ù���÷�ã�ò�ò�ç1-���ã�ä�ù"ø ñ ã��b`�ù�óÈûGùò�óéò�ô�çxæ�ç3ú#ç3ãH��ç�æFÿ D ô-çrõ�ç�æ�ö�ó�æ�÷�ø�ù-ú#ç1�Aöjó�æ ð�ñ å�ç�.ò�ó¨ó�ò�ôvø�ùa-uöjó�æ	èeý�þ�ÿ�����ã�ù¨ò�ç�æ�ö�ç�æ�ç3ù-ú#ç1�%øeæ�çJ��ô�óÈûGùvã�ù
â�ã�äG��ÿS�_�0ø��uø�ù�-������U,�æ�ç1��õ�ç3ú#ò�ãH��ç ñ !�ÿE	�--æ�ø�÷�øeò�ã�úç3ù-ô-ø�ù-ú#ç3÷Uç3ù¨ò�ã���ó��a��ç�æ"��ç1-éã�ù�ò�ô�ç1��çF4-ä�å�æ�ç1�1,<ç;��ã�.
-�ç3ùsò ñ !ÛøeòÊølú#óG��òÊó�ö+ô-ø1��ã�ù�ävøl÷Uó�æ�ç�ú#ó�÷Uõ ñ ã�ú�øeò�ç1-æ�ç3ú#ç3ãH��ç�æ3ÿ D ô-ã��+ã�÷Uõ-æ�ód��ç3÷Uç3ù¨ò�ã��+õ"øeæ�ò�ã�ú�å ñ øeæ ñ !�ú#ó�ù/.��ã�-�ç�æ�ø8� ñ çrö�ó�æÅèeý�þ�ÿ������Pã�ù¨ò�ç�æ�ö�ç�æ�ç3ù-ú#ç�,_ûGô-ã5ú�ô ø�ú#ò"�
ø��
�-æ�ó�ø�-_�[ø�ù�-Òù�ó�ã���ç�ã5ùÒò�ô�ç ð�ñ å�ç�ò�ó�ó�ò�ôÒæ�ç3ú#ç3ã���ç�æ1LN��"ø�ù�-�ûGãy-�ò�ôDÿ

�j�;� �i���k���M�_�
�GóÈû�,×û»ç ú#ó�ù���ãy-�ç�æÑò�ô�ç õ�ç�æ�ö�ó�æ�÷�ø�ù-ú#çÖó�ö ò�ô�ç
� '3�"ã�òU�n��ç3ú èeý�þ�ÿ������ �"!#��ò�ç3÷3, øeä�ø�ã5ù ã�ù ø�ù
ã�ùsò�ç�æ�öjç�æ�ç3ù"ú#ç�. ñ ã�÷�ã�ò�ç1-rç3ù���ã�æ�ó�ù"÷Uç3ùsòÇûGã�ò�ô�VY�bZ 9� O�- ð ÿq��ã�ù-ú#çnò�ô�ç��z!/��ò�ç3÷ ò�ø8`�ç1��ø�-��¥ø�ù¨ò�øeä�ç§ó�ö
�Y�a����,�ó�ù�çvó��j��ç�æ"��ç1��ã5ùnâfã�ä�ÿS��ý��0ø���ò�ô-øeò�ö�ó�ækú#ó8.
ú�ô-ø�ù-ù-ç ñ ã5ùsò�ç�æ�ö�ç�æ�ç3ù-ú#ç�,lV�X�Z 9 \�����- ð ã��fø�-�ç Q å-øeò�çò�ó0��å-õ-õ-æ�ç1�"�Êò�ô�çªç�2Xç3ú#ò/ó�ö�ã�ù¨ò�ç�æ�ö�ç�æ�ç3ù-ú#ç��v�W�SZ��
��ý sa� �2ÿ D ô�çª÷UóG��òq--ã���ò�å�æB�"ã�ù�ä�ã�ù¨ò�ç�æ�öjç�æ�ç3ù-ú#çªãy� ñ ó8.ú�øeò�ç1-Aøeò 687�9 ��'()�*�,�ûmô-ã�ú�ôAù�ç�ç1-��%ø�÷�ã�ù"ã�÷%å"÷
VYX�Z×ó�öS\+O(- ð ÿ D ô-ã��S-"ã�2Xç�æ�ç3ù-ú#ç���ò�ç3÷��%ö�æ�ó�÷ ò�ô�ç
ù¨å ñ5ñ øeò�ò�ô�ç�÷�ã�-�- ñ ç�ó�öIò�ô�çY��õ�ç3ú#ò�æ�å-÷pó�öIò�ô�ç ð øeæ"`�ç�æú#ó#-�çÇø��W-�ç1��ú#æ�ãH��ç1-5��ç�ö�ó�æ�ç�ÿ�â�ó�æ1ö�æ�ç Q å�ç3ù-ú�!uó82i��ç�ò"�ä�æ�øeò�ç�æ�ò�ô-ø�ùÇèW'()+*�,�ò�ô�ç�VYXlZ��eø ñ å�ç<÷%å���ò ��ç���ç�æB!
ñ óFûnã�ùÇó�æB--ç�æ�ò�ó�ä�ç�òøUô-ã�ä�ô ð>C ��ÿ D ô-ã��¦ö0ø�ú#òGã���--å�ç

Networking for Pervasive Computing NIST Special Publication 500-259

Soltanian & Van Dyck 21

0 2 4 6 8 10 12 14 16 18
10 5

10 4

10 3

10 2

10 1

100

CNR [dB]

B
E

R

AWGN
fd=0 MHz, CIR=11 dB
fd=1 MHz, CIR= 0 dB

 12 11 10 9 8 7 6 5 4 3 2 1
10 4

10 3

10 2

10 1

100

CIR [dB]

B
E

R

fd=0 MHz
fd=1 MHz
fd=2 MHz
fd=3 MHz
fd=4 MHz
fd=5 MHz
fd=6 MHz
fd=7 MHz

¡k¢H£G¤_¥B¦$§#¨ ©«ª¬©«®¯¬ °:± ¤_¦;²z³l³�²"´0µ�¢H²z¦;¥"¶a¢ ¥"¦1·�¦1¢H¸�¦;¥W¹º¦;¥z»¼ ³�¥B½J¾�¿�·�¦�À Áv¾�Â °>± ¤_¦;²z³#³�²"´Ã¢�¿l²z¦;¥ ¼ ¦;¥B¦1¿�·�¦�À Á�¶�ÂÄ8ÅGÆ À�Ç�Ç�¶ ¢�¿l²z¦;¥ ¼ ¦;¥B¦1¿�·�¦�À È�É�Ê�Ë�·B´�¾�¿a¿_¦ ± À

²z³�²"´_¦�¶a¾�¿�Ì�¹a¾�Í"ÍiÎ ± ²z¦;¥�¢�¿�²"´_¦ Ä8ÅGÆ À�Ç�Ç�¶W¥"¦1·�¦1¢H¸�¦;¥k´�¾1¸l»¢�¿�£�´�¢H£G´=¾8²z²z¦1¿#¤�¾8²"¢H³G¿J¾8² ¼ ¥"¦1Ïl¤�¦1¿�·;¢H¦1Í|¿_¦1¾8¥�Ç�Ç>Ð(Ñ�Ò�À
Ó ´�¦&¥"¦1ÍB¤ ± ²"Í�³ ¼ ²"´�¢�Í�Î�£G¤_¥B¦=¾8¥"¦
·�³G½
¹j¾8¥B¾8¶ ± ¦=²z³q²"´_¦¾�¿�¾ ±�Ô ²"¢�·Y½J¦;²"´_³#Ì3¹�¥"³�¹º³GÍz¦1Ìe¢�¿rÕ�ÇdÖ#×�Ç ÄnØ À¡k¢H£_À Ç Å Á�¶ºÂY¢�¿�Ìa¢�·;¾8²z¦1ÍY²"´_¦J¹º¦;¥ ¼ ³�¥B½J¾�¿a·�¦J¢�¿5²"´_¦�Ù�¢�»
·;¢�¾�¿F·B´�¾�¿a¿_¦ ± ÁvÚÜÛÞÝGÂU×kß+´_¦;¥B¦J²"´_¦ °>± ¤�¦;²z³l³�²"´F¢�¿/»²z¦;¥ ¼ ¦;¥"¦1¿�·�¦�¢�ÍYÍ"¤_¶/àz¦1·�²z¦1Ì5²z³bÙ+¾ Ô/± ¦1¢H£G´ ¼ ¾�Ì�¢�¿�£_À Ó ´_¦½J¢y¿�¢�½=¤�½ áYâ�ãE¢�¿�²"´�¢�Íä·;¾�Íz¦�¢�Í áYâlã Û Æ Ì °ÁvåWæSãÞÛ�Ç Å#çaè ÂUÀ�¡_³�¥&²"´_¦ Ä8ÅGÆ À�Ç�Ç�¶0é�ê�êaêbÍ Ô Í"²z¦1½e×²"´_¦;¥B¦W¢yÍY¾$Ìa¢�ë�¦;¥B¦1¿�·�¦W³ ¼ Ö$Ì ° ¢�¿rì:íhÙ�¥"¦1Ïl¤a¢H¥"¦1Ìb²z³¾�·U´�¢H¦;¸�¦ ¾�·;·�¦;¹�²"¾8¶ ± ¦b¹º¦;¥ ¼ ³�¥U½J¾�¿�·�¦c¢�¿^È�É�Ê�Ëî¾�¿�ÌÙ�¢�·;¢�¾�¿5·B´a¾�¿�¿_¦ ± Í;×i¥B¦1Íz¹º¦1·�²"¢H¸�¦ ±HÔ À Ó ´�¢yÍAÌa¢�ë�¦;¥B¦1¿�·�¦
¢�Í£�¥"¦1¾8²z¦;¥A²"´�¾�¿e²"´�¦�¦1Ïl¤a¢H¸n¾ ± ¦1¿�²SÁ�ï�Ì ° Â ¼ ³�¥�²"´�¦ °>± ¤_¦�»²z³#³�²"´cÍ Ô Íz²z¦1½e×j¤�Í"¢�¿_£W²"´_¦�ð�éAí:¥B¦1·�¦1¢H¸�¦;¥1À¡k¢H£_À5Ç�ÇGÁv¾�ÂoÍ"´_³wß+Ío²"´_¦�¹º¦;¥ ¼ ³�¥U½J¾�¿�·�¦@³ ¼ ²"´_¦ÞÇ�Ç
Ðc¶a¢H²"ÍUñnÍ"¦1· Ä8ÅGÆ À�Ç�Ç�¶^ì�ì>òÞ¥B¦1·�¦1¢H¸�¦;¥=¢y¿5²"´_¦�È�É�Ê�Ë

 18 16 14 12 10 8 6 4
10 4

10 3

10 2

10 1

100

CIR [dB]

B
E

R

fd=0 MHz
fd=1 MHz
fd=2 MHz
fd=3 MHz
fd=4 MHz
fd=5 MHz
fd=6 MHz
fd=7 MHz

 15 10 5 0 5
10 4

10 3

10 2

10 1

100

Average CIR [dB]

B
E

R

fd=0 MHz
fd=1 MHz
fd=2 MHz
fd=3 MHz
fd=4 MHz
fd=5 MHz
fd=6 MHz
fd=7 MHz
fd=8 MHz
fd=9 MHz

¡|¢�£G¤_¥"¦+Ç Å ¨ ©�ªU¬©�®¯¬ Ä8ÅGÆ À�Ç�Ç�¶Jé�ê�ê�êA¹º¦;¥ ¼ ³�¥B½J¾�¿a·�¦�ß+¢H²"´
°:± ¤_¦;²z³l³�²"´(¢�¿l²z¦;¥ ¼ ¦;¥B¦1¿�·�¦�ÀAÁv¾�Â�È�É�Ê�Ë�·U´�¾�¿�¿_¦ ± ÀAÁ�¶�ÂÙ+¢�·;¢�¾�¿e·U´�¾�¿�¿_¦ ± À

·B´�¾�¿�¿�¦ ± À Ó ´_¦=³�¹�²"¢�½=¤�½ó¥"¦1·�¦1¢H¸�¦;¥S¹�¦;¥ ¼ ³�¥B½�Í�¾8¶º³G¤_²Æ Ì ° ¶º¦;²z²z¦;¥S²"´�¾�¿0ô�õ:ê/òJ×M¾�¿�Ìr²"´_¦�Í"¤_¶_»¯³�¹�²"¢y½&¤�½½
¦;²"´_³/Ìä¢�Í&¿_¦1¾8¥ ±HÔ ²"´_¦$Í"¾�½
¦�¾�Í
ô�õ>ê/ò
À Ó ´�¦�Í"¤_¶_»³�¹�²"¢�½J¾ ± Í Ô Í"²z¦1½Ã¹�¥"³d¸/¢�Ì_¦1Í=¾ °:ö Ù÷³ ¼ Ç Å çaø ¼ ³�¥
¾�¿æ ®"ùú&û Û Ä Ì ° Àaí?²+½&¤aÍz²+¶º¦S¿_³�²z¦1Ì(²"´�¾8²Yì�ì>ò�ß>¾�ÍÌ_¦1Í"¢H£G¿_¦1ÌJ¦�ü#¹ ± ¢�·;¢H² ±HÔ ¼ ³�¥ ¼ ¾�Ìa¢�¿_£S·U´�¾�¿�¿_¦ ± Í1×�ß+´_¦;¥B¦�¢H²"Í£G¾�¢�¿q³d¸�¦;¥�ô�õ:ê_ò�¢�Í�½=¤�·B´3½J³�¥"¦SÍ"¢H£G¿a¢HÎa·;¾�¿l²;À
¡|¢�£_ÀäÇ�ÇGÁ�¶�Â@¢ ±�± ¤�Í"²z¥B¾8²z¦1Í�²"´_¦ý¹�¦;¥ ¼ ³�¥B½�¾�¿�·�¦�³ ¼ Ç�ÇÐ3¶a¢�²"ÍUñnÍz¦1·:í öRö ö Ä8ÅGÆ À�Ç�Ç�¶�¥"¦1·�¦1¢H¸�¦;¥xß+¢H²"´ °>± ¤_¦;²z³#³�²"´·�³8»�·B´�¾�¿�¿�¦ ± ¢�¿l²z¦;¥ ¼ ¦;¥"¦1¿�·�¦�À Ó ´�¢yÍ Î�£G¤_¥"¦^¢y¿�Ì�¢�·;¾8²z¦1Í²"´�¾8² ²"´_¦^ì�ì>òþ½
³#Ìa¤ ± ¾8²"¢H³G¿�¢�Íb½
³�¥"¦ÿ¸#¤ ± ¿_¦;¥B¾8¶ ± ¦²z³b²"´�¦$¢�¿l²z¦;¥ ¼ ¦;¥"¦1¿�·�¦qÍ"¢H£G¿�¾ ± ²"´�¾�¿0²"´_¦5ÇeÐ3¶j¢H²"ÍUñnÍz¦1·éYêaê�ê�À1È�½J¢�¿a¢�½&¤a½@ì:í?ÙF³ ¼�� Ì ° ½&¤aÍz²M¶º¦ ¾�·B´a¢H¦;¸�¦1Ì²z³ £�¦;²(åWæSã Û]Ç Å#çaè ¼ ³�¥(¾ ±�± ¼ ¥"¦1Ï#¤_¦1¿�· Ô ³8ëiÍz¦;²"Í;ÀÓ ´�¢�Íx¥B¦1Í"¤ ± ² ¢yÍ ¿_³�²>Í"¤_¥"¹a¥B¢�Í"¢�¿�£_×8ÍB¢�¿�·�¦+²"´�¦�ì�ì>ò@¹�¥"³8»¸#¢�Ì�¦1Í:¾
´a¢H£G´_¦;¥>¶a¢H²>¥B¾8²z¦Y¶a¤�²:³/·;·;¤_¹a¢�¦1ÍR²"´�¦�Í"¾�½
¦ Æ�Æ

Networking for Pervasive Computing NIST Special Publication 500-259

Soltanian & Van Dyck 22

1 2 3 4 5 6 7 8 9 10
10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Eb/N0 [dB]

B
E

R

Optimum
QPSK
Suboptimum

 6 5 4 3 2 1 0 1 2 3 4
10 6

10 5

10 4

10 3

10 2

10 1

100

CIR [dB]

B
E

R

fd=0 MHz
fd=1 MHz
fd=2 MHz
fd=3 MHz
fd=4 MHz
fd=5 MHz
fd=6 MHz
fd=7 MHz
fd=8 MHz

�������
	������ ���������� ������� ���! " $#&%'�(*),+�	�-/.�0�1�� �32 .54687:9<; 1�=�.�0>0
�@? �32 �A4CBD?E�>�(FG+H+�F*=I�E05FG�(�)J�(*�@0�1�� �
KIL3MN��.�0>O
P3�QO
F*=SR�F*=
�(*�(��TU=�.@VW�E0
�X?��@Y*Y�+�)<.!1�+WOWZ�E0>�[��.��Q0 � 9 �@0>�(�.�?E?�T�RSF*=
�\	��@1��@��V��(�Y]�>YG�@O^),+�]�'+�F*=_KN����F�`aYG�@1b.�0>Oc�_Kd�e��F*Y�`aYG�@1b.�	*�b)f.���	�?�TXY*�Q-\%�?���R.�0>Og�E-\%>	*+hV��@Oi%'�(*),+�	�-/.�0>1��j1(.�0k-\+�YGF8?E��l��@?�Tm�'�n+��
ZF*.��E0>�@O\�>Y*�E0
�m-\+�	*�"1�+�-\%e?E�E1(.�FG�@O\Y*����0�.�?5%>	�+�1��@Y*Y��E0
� �o =��EY")f.�1�F]�EY"�@YG%'�@1(�E.�?Q?�TbFG	��
�k)J+�	<F*=
�[��KN����F*Yp`aYG�@1 " $#qYGT�Y*FG�@- �
r sutwv�xjy�z�{A|�twv�{ }"v�~ ���S�j{A��vm�

� tw�S�
��0uF*=>�EY[P�+�	�leRmP��!=>.�V��X�E0HV��@YGF*����.�FG�@O�F*=
�^%'�(*),+�	GZ-/.�0�1���+�)XBD?E�
�(FG+�+�F*=�.�0�O ������� ��� 7c��6m; Yu�E0�E0HFG�(*),�(*�@0>1���Z�?E�Q-/��FG�@OX�@0HVW��	*+�0>-\�@0HF*Y � 7 �_=>.�V��b�@Y�ZF*.���?Q�EY*=
�@O�%>	*�@?E�Q-/�E0>.�	*T�%'�(*),+�	�-/.�0>1��&	*�@Y*�>?�F*Yu),+�	�'+�F*=]F*=
� 6�7:9<; .�0>Oi),.�O>�Q0
�"1�=>.�0�0
�@?�-\+WO
�@?EY � o =
�Y*�Q-��>?Q.�F*��+�0>YNY*FG	*+�0
��?�T�Y*�>�����@YGFIF*=�.�F�F*=>�U�E0HFG�(*),�(GZ

�@0>1��m-�.@T�Y*�(V��(*�@?�T�O>.�-�.����mF*=>�w+�%'�(�.�F*��+�0[+�)��'+�F*=YGT�Y*FG�@-/Y/�E0�Y*+�-\�N.�%>%�?Q�E1(.�F*��+�0>Y � o =
� 687:9<; 	*��ZY*�>?�F*Y]),+�	gF*=>�����'�@1�Fk+�)$�E0HFG�(*),�(*�@0>1���+�0�BD?E�
�(FG+�+�F*=.�	*�\0
+�F]V��(*TN)f.�	i),	*+�-�F*=
�\)f.�O>�E0
�[*�@Y*�>?EF*Y(RSYG+_F*=>�EY-\+�O>�@?�-/.�T��'�[.�O>�@�H�>.�FG�b),+�	\YGF*�>O
TW�E0
�dF*=>�����'�@1�F+�)'�Q05FG�(*),�(*�@0>1��w�E0 ���g 1�+�0>O>��F*�E+�0>Y � Kd+�	*�(+hV��(@R
F*=
�6�7:9<; 1�=>.�0>0>�@?81(.�0��'�g�>YG�@OIFG+[�(Va.�?E��.�FG�k-\�@1�=>.aZ0>�EY*-/YDO
�@Y�����0
�@ObFG+��E-/%>	*+�V���1�+H��¡
�EYGFG�@0>1�� �7 =>�Q?��"-\+�YGF�+�)SF*=
�wYGF*��O
T\�>YG�@O\F*=
�mY*�E-\%e?�� ��¢ �n	*��Z1��@��V��(w),+�	<BC?Q�
�(FG+H+�F*=�ReF*=
�kY*�E-k�>?E.�F*��+�0d	*�@Y*�>?�F*YwY*�
��Z���@YGF�F*=�.�F[Y*�>��YGF*.�0HF*�E.�?E?�TU�'�(FGFG�([%'�(*),+�	�-/.�0�1��I1(.�0�A�m.�1�=>�E�(V��@O_�>Y*�E0
�k.�1�+�=>�(*�@05F$£<��FG�(*�e�>	*�@1��@��V��($),+�	�E05FG�(�)J�(*�@0�1���Z�?E�E-/��FG�@O^1�=>.�0>0
�@?EY ��¤ 	��@YG�@05F*?ET�R�PC��.�	*�O
�(V��@?�+�%��E0>�m.]-\+�	��DY*+�%�=>�EYGF*�Q1(.�FG�@O�£<��FG�(*�e�H	��@1��@��V��(@R�E0>1(?E�>O��E0
�i1�=�.�0>0
�@?'�@YGF*�E-�.�F*��+�0[��.�YG�@Ob+�0bF*=
�]BD?E�
��ZFG+H+�F*=d.�1(1��@Y�Yw1�+WO
� ��
+�	^F*=
� ������� ��� ¢i > � 	*�@1��@��V��(�RgF*=
�U	*�@Y*�>?EF*YN�E0._),.�O��E0
�d1�=�.�0>0
�@?j.�	*��-\+�	*��O
�(��	�.�O
�@OXF*=>.�0��E0X.�06�7:9<; 1�=>.�0>0>�@?¥RH1�+�-\%e.�	*�@O/FG+�BD?E�
�(FG+�+�F*= � o =
�(*��Z)J+�	*��R"1�+���¡
�EYGFG�@0>1��!YGF*�>O����@Y�0
�(�@O:FG+¦1�=
+�YG�!.U-\+�	*�	*�@.�?E�EYGF*�Q1k1�=>.�0>0
�@?�-\+WO
�@?¥R��E0�YGFG�@.�O!+�)$.�Y*Y*�>-��E0
�d.�06�7:9<; +�0>� � �>�>	*F*=
�(�-\+�	���RD-k�>?�F*�E%�.�F*=¦),.�O��E0
�X�EY�(V��@0N-\+�	*�]+�)n.\1�+�0>1��(�0d),+�	"F*=
���gKN����F*Yp`aYw " D#YGT�Y*FG�@-_R$����V��@0c��F*Y/	��@?E.�F*��V��@?�T�Y*=>+�	*F�YGTW-��A+�?3F*�E-\� �o =H��Y(Rj.^§ 6 #i¨nZ���.�Y*�@O� " D#�	*�@1��@��V��(@R�P3=>�E1�=���¡�Z%�?�+���F*YbF*=
�!),	*�@���
�@0>1�THZ�YG�@?��@1�F*��V���%>	*+�%'�(*F*���@Yb+�)�F*=
�1�=>.�0>0>�@?¥R>Y*=
+��>?QO�%�	*+���.���?�T��'�<��YG�@O �o =>�EY�%�.�%'�(d1�+�0>Y*�EO>�(�Y[F*=
�!%�=HT�Y*�Q1(.�?]?E.@T��(d+�)kF*=
�BC?Q�
�(FG+H+�F*=©.�0>O ������� ���ªYGTWYGFG�@-/Y(Rk�E0>1(?E��O>�E0
�¦F*=
�O
�@Y*����0�+�)3F*=
�[�.�O>�E+I	*�@1��@�EV��(�Y � Lw+�PC�(V��(@RC�EFkO
+��@Y0
+�Fi1�+�0>Y*�EO>�(]F*=
�/-\�@O>�E��-�.�1(1��@Y�Yg1�+�0HFG	*+�? 2 K 6 "4?E.@T��(� ��0^BC?Q�
�(FG+H+�F*=�R�F*=>�EY<?E.�T��(g1�+�0HF*.��E0>Y]F*=
�\),+�	GZPC.�	�O:�(*	*+�	bO
�(FG�@1�F*��+�0c.�0>Ou1�+�	*	*�@1�F*�E+�0SR"F*=
�^.��
FG+�Z-/.�F*�E1\	*�(%'�@.�Fi	��@�H�
�@Y*F 2 6 §"«i4]%>	*+�FG+W1�+�?EY(R8.�0�OXF*=
�)J	*�@���
�@0>1�Tc=
+�%>%e�E0
� � �
+�	 ������� ����RgF*=>��K 6 ¬�EY-\+�	*�w1�+�-/%�?���¡'RH1�+�0HF*.��E0>�E0
�k1(.�	*	����(CYG�@0>YG��RW-k�>?�F*��%�?E�.�1(1��@Y*YnP3��F*=�1�+�?E?Q�EY*��+�0�.@V�+��QO>.�0>1���RH.�Y�PC�@?E?
.�Yj.<0��>-�Z�A�(3+�)n+�F*=
�(3),�@.�F*�
	*�@Y � � �
	31(�
	*	��@05F"��+�.�?��EY3FG+�O
��ZFG�(�-/�E0
��F*=
���E0HFG�(*),�(*�@0>1���Z�?E�Q-/��FG�@O!%'�(*),+�	�-/.�0>1���+�)F*=
�g1�+�-����E0
�@O_%e=5TWY*�E1(.�?�.�0�OIK 6 �?E.�T��(�Y3),+�	3�@.�1�=YGT�Y*FG�@-P3��F*=�	*�@.�?E�QYGF*�E1�FG	�.�®�1$.�0>O�FG+�%'+�?�+������@Y � KN�(F�Z	��E1(Ym+�)��E0HFG�(*�@YGFi�Q0>1(?E�>O
��%�.�1*l��(F�?�+�Y*Y<%>	*+��e.����E?E��F*�E�@Y(R0H�>-��'�(�+�)�	��@Y*�EO>�>.�?��(*	*+�	�YD�E0�.k%�.�1*l��(F(R>O
�@?Q.@T�R>.�0>OF*=
	*+��
��=
%e�
F �
¯ ° x���v�t�±y*�j~\²m³´��vm�
o =
��.��
F*=
+�	�Y<P3�QY*=NFG+bF*=>.�0>l ¢ 	 � � � ¨ � KN�E?Q?��(w),+�	=>�EY�=
�@?�%>)f�>?C1�+�-/-\�@0HF*Y/O>�
	��E0
��F*=
�_1�+��
	�YG�_+�)mF*=>�EYYGF*�>O
T �

Networking for Pervasive Computing NIST Special Publication 500-259

Soltanian & Van Dyck 23

µq¶j·�¶j¸S¶�¹�ºn¶j»
¼�½p¾\¿
À�ÁmÀiÂmÃ�Ã�Ä*Å*ÆGÇ@ÈÉÃ�È>ÊÉËAÀiÌIÃ�ÅGÅ*ÍEÆ*ÆGÎ�ÈSÏ�ÐGÑCÒQÓ
Ç�ÔÅGÎHÎ�Å*ÕgÔAÖ¦È
Ç(×UÒ�Î�×$Ô�Ø'Îh×�Ç(Ä�Ä�Ã�Ê>Í�ÎwÍEÈ5ÅGÇ(Ä�Ù,Ã�Ú�Ç�Ø>Ä*Î�Ô

Û ÍEÊ�ÍEÈ
Ü�Æ*Õ>Î�Ä*Å�Ô�Ä�Ã�È
Ü�ÇÝÚ�Î�È>È
Ç@Ú�Å*Í Û Í�ÅßÞ�ÏáàªâDãGä@å�æ[ä�ç
è,éWêIëGì�ì�ì Ï Û Î�Ò¥À3í�í�Ï]È
Î
À]½(îWÏ<Ø>Ø�À<½@ï�ðW½pÔ�½@ï�ïW½�Ïñ Ú�Å(Àeò�î�î�îWÀ

¼óòh¾�ÑCÒQÓ
Ç(ÅGÎHÎ�Å*ÕôË�Ø'Ç@Ú(ÍEÃ�Ò�õöÈHÅGÇ(Ä*Ç@ÆGÅø÷mÄ*Î�Ó>Ø�Ï�ù�ú ê å(ûü ý å�þ è ü ä�ÿ�� äGç è,éWê �����>ê@è ä@ä è,é ù��	� è�ê�
�
� ä � æ�� � � æ��5æ�� � Ï��mÇ@Ú�Àø½�������À&Ö Û Ã�ÍEÒEÃ���Ò�Ç��Õ5ÅGÅGØ����h×3×"×iÀ ��ÒEÓ>Ç(ÅGÎHÎ�Å*ÕSÀáÚ�Î"!dÀ

¼ #h¾kõ%$&$'$XË�Å*ÊSÀ�í�î�òhÔ�½�½�Ï ëGì�ì�ì ù è þ�ÿ)(�þ�ã*(�ç�ä�ã,+ ü ã ê û
��ê �-�/.103254 ê (ü �6
 03å�å ê �7�98nä�ÿ è ãGä �;: 4<0,8)=þ�ÿ)(â é �	� ü å�þ � .�þ�� ê ã : â'><?�=�ù�ú ê å ü ý å�þ è ü ä�ÿ>Ïò�î�î
½@$�Ê�Í�Å*Í�Î�ÈSÀ

¼ A�¾CBiÀ�Ë�ÅGÇ(Ç@Ò�ÇEDF$�ÊSÀ�G�Ï�4XäIH ü �Eê@J þ"(ü äK8nä
C
C� ÿ ü å�þ�ûè ü ä�ÿ���Ïe¿�Î�Õ>ÈELcÍEÒ�Ç(ÞNMÉË�Î�È>Æ$õ�È>Ú�À�Ï�½�����ï�À
¼óðh¾/÷kÀ/¿
À/ÌXÀ/¿5Ã�È>Æ*ÆGÇ@ÈSÏEO�À\ÖgÀ�Ë�Å*ÍEÜ�ÅGÇ(Ä¦Ã�È�ÊPBgÀ

OjÄ�Ã�Æ*Ã�Ê�Ï�ÐQLuÍEÊ>ÇR��Ã�È>Ê ÍEÈ>Ê
Î�Î�Ä¦Ú�Õ>Ã�È>È>Ç@ÒE!\Ç@ÃaÔÆ*Ó
Ä*Ç�!\Ç@ÈHÅ*ÆbÃ�È>ÊcÑS$'B´Ã�È>Ã�ÒEÞ�Æ*ÍQÆ�Î�Ù�ÙJÄ*Ç�T�Ó
Ç@È>Ú�ÞÆGÇ@Ò�Ç@Ú�Å*Í Û ÇU!kÓ>Ò�Å*ÍEØ�Ã�Å*ÕÚ�Õ>Ã�È>È>Ç@ÒEÆXÃ�Å�ò�À A
ÏVA
À�W�ð�ÏÃ�È>Ê�½�½�À ð�÷<ÂYX�Ïáà ëGì�ì�ì[Z ã�þ�ÿ���æ,8nä

 æQÏDØ>Ø�À½@ò"W�òhÔ�½@ò�í�í�Ï ñ Ú�Å(À�½�����ï�À
¼óïh¾�ÂgÀH¿>À6\AÇ(Ø'Ç(Ä�È>ÍQÚ^]�Ã�È�Ê`_]À�Ö�ÀILuÞ�Æ*Î�Ú-]�Í¥Ï�Ð*ÌNÓ�Ò�Å*Í�ÔØ�Ã�Å*Õ^Ú�Õ>Ã�È>È>Ç@Ò�Ø�Ã�Ä�Ã�!\Ç(ÅGÇ(Ä�ÆmÙJÎ�Ä<Å*Õ
Ç�ÍEÈ>Ê>ÎHÎ�ÄwÄ�ÃaÔÊ>Í�ÎgÃ�Å$ò�À A\÷]Â�X<õ*Ë
Ìa��Ã�È>ÊSÏáàbdc è,é/ëGì�ì�ìfe�êpé æ

Zeê å é æg8nä�ÿ@ç�æQÏ Û Î�Ò¥À�½�Ï�Ø>Ø�À�½���îaÔ�½���#�Ïn½�������À
¼hW�¾/ËAÀ]Á<ÀjigÍk!_Ï�Â�ÀmljÀ<ÑCÇ(Ä*ÅGÎ�È>Í\Ã�È>ÊqÌ�ÀiËWÅGÇ(Ä�ÈSÏÐ*O�Ó>ÒEÆ*Ç�Ø>Ä*Î�Ø�Ã�Ü�Ã�Å*ÍEÎ�È Ú�Õ�Ã�Ä�Ã�Ú�ÅGÇ(Ä�ÍEÆGÅ*ÍQÚ(Æ:Ã�Åcò�À A÷<Â�X�ÍEÈ>Æ*ÍEÊ>Çn��Ó�ÍEÒEÊ>ÍEÈ>Ü�Æ(Ïáà ëGì�ì�ì�Z ãGþ�ÿ���æ e�êpé æ

Zeê å é æQÏ Û Î�Ò¥À�A5ð�Ï�Ø>Ø�À�ð"W��hÔßð���ò�Ï'ÖwÓ
Ü
À8½�����ï�À
¼óíh¾\ÌXÀ�i\À>ËWÍk!\Î�È[Ã�È>ÊdÁmÀ�ÁmÀ6LXÃ�È
Ü
Ï�Ð*�<Ípo'Ç(Ä*Ç@ÈHÅ*ÍEÃ�ÒÊ
Ç(ÅGÇ@Ú�Å*Í�Î�È�Î�Ù�÷<Ã�Ó>Æ*Æ�ÍEÃ�ÈIÌ^Ëqi�ÍEÈNÃV!\Î���ÍEÒ�ÇgÄ�ÃaÔÊ>Í�Î3Ç@È Û Í�Ä*Î�È�!\Ç@ÈHÅ(Ï�à ëGì�ì�ìrZ ã�þ�ÿ���æ e�ê�é æ Zeê å é æQÏØ>Ø�À�#�îIW�Ôs#�ò�îWÏut3Î Û À�½���í	A
À
¼ �h¾�ÖgÀvl�À ñ Ø>Ø'Ç@È>Õ
Ç@Ík! Ã�È>ÊwBgÀxL&À:ËWÚ�Õ>Ã�Ù,Ç(Ä@Ï

y ü ��å@ã ê@è�ê û Z ü
�ê ù ü{z ÿAþ � úAã�ä@å ê �7� ü ÿ z Ï<O�Ä*Ç@ÈHÅ*ÍEÚ�ÇÂwÃ�ÒEÒ�Ï�½���í���À
¼�½(îa¾\¿
ÀU÷kÀ|OjÄ�Î�Ã�]�ÍEÆ@Ï y ü{z�ü è þ � 8nä
C
C� ÿ ü å�þ è ü ä�ÿ���ÏÌNÚ�÷mÄ�Ã@×$Ô�ÂmÍEÒEÒ¥Ï�½�����ð�À
¼�½�½p¾\¿
À5ËAÀ�l�Ç(Ç$Ã�È>Ê}ljÀ�$3À�ÌIÍEÒEÒ�Ç(Ä�Ïu8 y 4n0 ì ÿ z�ü ÿ ê�ê ã�ûü ÿ z >�þ�ÿ)(IH�ä@ä	~aÏAÖwÄ*ÅGÇ@Ú�ÕIÂ3Î�Ó�ÆGÇ�Ï�½�����í�À

¼�½@òh¾kÌXÀ^¿
À�$3À�÷mÎ�ÒEÃ�Þ�Ï�Ð�ÁCÎ"!\Ø�Ò�Ç�!/Ç@È5Å*Ã�Ä*Þ´Æ*Ç(Ä�Í�Ç@Æ(Ïáà
ë*J"ì�Z ã�þ�ÿ���æ ë ÿ�ç�ä�ã
 þ è ü ä�ÿ Z�éWê ä�ã7��Ï Û Î�Ò¥À�õQ_DÔ%WHÏØ>Ø�À�í�òhÔßí"WHÏ'Ö3Ø�Ä@ÀS½���ïW½�À

¼�½�#h¾�ËAÀ�ÂwÃ�Ò�Ù,Î�Ä�ÊSÏ;i\À�ÂwÃ�ÒEÙJÎ�Ä�Ê Ã�È>Ê Ì�ÀL!ÇR�eÆGÅGÇ(Ä@ÏÐ�ÁCÎ"!\Ø�ÒEÇ�!\Ç@È5Å*Ã�Ä�ÞÚ�ÎWÊ
Çv]�Ç(ÞWÍEÈ
Ü�ÙJÎ�Ä�B3Ö3i�$nÔ
��Ã�ÆGÇ@Ê ÍEÈ>Ê
Î�Î�Ä ×3Í�Ä�Ç@Ò�Ç@Æ*Æ´Ú�Î"!,!kÓ>È>ÍQÚ(Ã�Å*Í�Î�È>Æ(Ïáà
ëGì�ì�ìªë ÿ è æC8nä�ÿ@ç(æ<ä�ÿ�8 ü ãGå � ü è �dþ�ÿ)(�ù��	� è�êR
 ��ÏØ>Ø�À�A5ò"W�Ô�AI#�îWÏ�ÌIÃ@Þ!½�������À

¼�½�A�¾�BiÀ��kÀS¿>Àd�jÃ�È�twÇ(Ç�Ï$Ð ñj� �<Ì Ú�Î�Ê>Ç@ÆwÙ,Î�Ä<Ø'Ç@Ã�]5ÔÅGÎ�Ô�Ã Û Ç(Ä�Ã�Ü�Ç�Ø'Î�×CÇ(Ä[Ä�Ç@Ê>Ó>Ú�Å*Í�Î�ÈuÃ�È>ÊuÇ(Ä*Ä*Î�ÄbÚ�Î�ÄGÔÄ*Ç@Ú�Å*Í�Î�ÈSÏáà ëGì�ì�ì���� äIH*þ �jZAê��Eê å�ä

C� ÿeæ�8nä�ÿ@ç�æQÏ
l�Î�È>Ê>Î�È Û Î�Ò¥À�½�Ï>Ø�Ø�ÀdW�A�îaÔ%W�A�A
Ï�twÎ Û À�½�����ï�À

¼�½@ðh¾�ÖgÀ�igÃ�!\Ç(Ä-!/Ã�ÈSÏnÐ�ÁCÎ�Ç��
ÍEÆGÅGÇ@È>Ú�Çj�'Ç(Å�×CÇ(Ç@ÈdÑDÒEÓ
Ç�ÔÅGÎHÎ�Å*Õ�Ã�È�Ê�õQ$'$&$ í�î�ò�ÀE½�½�Á"ÁSi ÆGÎ�ÒEÓ
Å*Í�Î�È�Æ/ÅGÎÃ Û Î�ÍEÊV!�Ó>Å*Ó>Ã�Ò>ÍEÈHÅGÇ(Ä*Ù,Ç(Ä*Ç@È>Ú�Ç"ÍEÈHÅGÇ(Ä*Ù,Ç(Ä*Ç@È>Ú�Ç�Ïáà}. � ûå ê ÿ è`Zeê å é ÿAä � ä z�ü ê � �mêR��� .�þ�H*ä�ãGþ è ä�ã ü ê � è�ê å é ÿ ü ûå�þ � ã ê úWä�ã è Ï'¿5Ã�ÈSÀ�½������

¼�½@ïh¾kÌXÀSi\À$ËWÍk!\Î�È:Ã�È>ÊcÁ<ÀDÁmÀ&LXÃ�È
Ü
Ï�Ð*�<Ípo'Ç(Ä*Ç@ÈWÔÅ*ÍEÃ�Ò Û Ç(Ä�Æ*Ó>Æ^ÒEÍ�!/Í�ÅGÇ(Ä^Ê>ÍEÆ*Ú�Ä�Í�!/ÍEÈ>Ã�ÅGÎ�ÄNÊ>Ç(ÅGÇ@Ú�Å*Í�Î�ÈÎ�Ù�È>Ã�Ä*Ä�Î�×$Ô���Ã�È�Ê � Ì�Ïáà ëGì�ì�ì�Z ãGþ�ÿ��(æ�8nä
C
 æQÏØ>Ø�À�½@ò�ò"W�Ô�½@ò�#	A
ÏutwÎ Û À8½���í�#�À
¼�½�W�¾��kÀ�ljÀ8Ë
Ú�Õ>ÍEÒQÒEÍEÈ
Ü
Ï�l�À�ÑwÀ�ÌNÍQÒEÆGÅGÇ@ÍEÈSÏ�BgÀ1ljÀ�O�ÍEÚ-]5ÔÕ
Î�Ò�Å*XªÃ�È�Ê[BiÀ<L&ÀNÑCÄ*Îh×3ÈSÏqÐ ñ Ø>Å*Í�!/Í{X@Ã�Å*Í�Î�ÈÎ�Ù�Å*Õ>Ç�Ø�Ä*Î�Ú�Ç@Æ�Æ*ÍEÈ
ÜUÜ�Ã�ÍEÈcÎ�Ù�Ã�È�ÌdÔ�Ã�Ä*ÞuÊ>Í�Ä*Ç@Ú�ÅÆGÇ�T�Ó
Ç@È>Ú�Ç�ÆGØ>Ä�Ç@Ã�Ê©Æ*ØAÇ@Ú�ÅGÄ�Ó�! Ú�Î"!`!�Ó>È�ÍEÚ(Ã�Å*Í�Î�ÈÆGÞWÆGÅGÇ�!_Ïáà ëGì�ì�ì�Z ãGþ�ÿ��(æ�8nä
C
 æQÏ�Ø>Ø�À�½�#�í��hÔ½�#���í�ÏAÖmÓ
Ü
À�½���í�îWÀ
¼�½@íh¾�ljÀgÑmÀgÌIÍEÒEÆGÅGÇ@ÍQÈSÏ�ËAÀ��<Ã Û ÍEÊ
Î Û ÍEÚ(Í¥Ï/Ã�È�Ê��kÀ@ljÀËWÚ�Õ�ÍEÒEÒEÍEÈ>Ü
Ï�Ð*_"Õ
Ç"Ç�o'Ç@Ú�Å�Î�Ù�!kÓ>Ò�Å*ÍEØ�Ò�Ç�Ô�ÅGÎ�È
Ç"ÍEÈHÅGÇ(ÄGÔÙJÇ(Ä�ÍEÈ
Ü¦Æ*Í�Ü�È>Ã�ÒEÆ�Î�È�Ã�Ê�Í�Ä*Ç@Ú�ÅbÆGÇ�THÓ>Ç@È>Ú�Ç!ÆGØ>Ä*Ç@Ã�ÊÆGØ'Ç@Ú�ÅGÄ�Ó�! Ú�Î"!`!�Ó>È�ÍEÚ(Ã�Å*Í�Î�È´ÆGÞWÆGÅGÇ�!_Ïáà ëGì�ì�ì

Z ãGþ�ÿ��(æ`8nä
C
 æQÏ Û Î�Ò�À&#�îWÏDØ>Ø�À�AI#�ïhÔ�A�A5ï�ÏwÌIÃ�Ä@À½���í�ò�À

Networking for Pervasive Computing NIST Special Publication 500-259

Soltanian & Van Dyck 24

Performance of the Bluetooth System
in Fading Dispersive Channels and Interference

A. Soltanian and R. E. Van Dyck
National Institute of Standards and Technology

Gaithersburg, Maryland 20899

Abstract— A noncoherent limiter-discriminator receiver is often con-
sidered for the Bluetooth system because of its simplicity and low cost.
While its performance is more than adequate for some channels, the re-
sults are signi cantly degraded in either an interference-limited environ-
ment or a frequency selective channel. In this paper, we compare the
performance of the traditional limiter-discriminator with integrate and
dump lter to a more sophisticated Viterbi receiver. We nd that the
Bluetooth access code is suf cient to be used for channel estimation in the
Viterbi receiver. A comparison is carried out in a Rayleigh fading channel
and in the presence of interference either from another Bluetooth piconet
or an IEEE 802.11b wireless local area network. Performance metrics
include bit error rate and packet loss rate.

I. INTRODUCTION

Bluetooth (BT) works in the 2.4 GHz unlicensed ISM band,
which is also shared by other communication systems includ-
ing 802.11 wireless local area networks (WLANs). The pri-
mary range of operation is 10 meters, but it can be extended
up to 100 meters. In typical indoor applications where the
channel exhibits low delay spread and there is a strong signal
path between the transmitter and the receiver, the noncoherent
limiter-discriminator with integrate and dump lter (LDI) re-
ceiver achieves reasonable performance [1]. However, it would
be useful to make the radio system more robust so as to max-
imize the quality of service in outdoor and large indoor appli-
cations.

Some experiments have been conducted [2], [3], [4] to eval-
uate the power delay pro le of indoor channels at 2.4 GHz.
The channel is roughly categorized into two major classes: (1)
channels with a line-of-sight (LOS) path and (2) channels with
an obscured path. For an LOS path, Kim et al. [2] nd that it
can be reasonably approximated by a Rician distribution with�����

, where K is the ratio of the power of the dominant path
to the power of the scattered paths. For a path with obstruc-
tions, the probability density function (pdf) of the amplitude
of the fading signal is Rician with

�����
, which is close to the

Rayleigh distribution. The root-mean-square (rms) average of
the delay spread varies between 75 nsec to 90 nsec. Zhang and
Hwang [4] report an rms delay spread as large as 217 nsec.
Wilkinson [5] studied the channel for the DECT system and
considered a worst case rms delay of 200 and 300 nsec for in-
door and outdoor channels, respectively. Also in this report, a
Rayleigh fading distribution was considered.

Another challenging issue for the Bluetooth system is the
coexistence with other Bluetooth piconets and/or with IEEE
802.11 WLANs. The interference emitted by these radios
may severely degrade the operation of a Bluetooth radio. The
Viterbi receiver may also be a promising substitute for the LDI
receiver in this case.

This paper’s main contribution is to evaluate the Bluetooth
performance in hostile environments. Two scenarios are con-
sidered: (1) a multipath Rayleigh fading channel, and (2) an
interference-limited environment. We show the bit error rate
performance in these scenarios as well as system layer perfor-
mance for Bluetooth voice packets.

II. BLUETOOTH

Bluetooth operates at a channel bit rate of 1 Mbit/sec [6].
The modulation is Gaussian frequency shift keying (GFSK)
with a nominal modulation index of �	� ��
� ��� and a normal-
ized bandwidth of ����� ��
���

, where ��� is the 3 dB Band-
width of the transmitter’s Gaussian low pass lter , and T is the
bit period. The Bluetooth radio employs a frequency hopping
scheme in order to mitigate the effect of interference and fad-
ing. There are a total of 79 hopping channels, each separated
by 1 MHz, and the hopping frequency is changed on a packet
by packet basis.

A. The GFSK Signal

The GFSK signal can be represented by [7]����������� �! #"%$'& � �)(+*-, �+.0/1������������� (1)

where
 2�43 5�6879 , : � is the energy per data bit,

* ,
is the

carrier frequency, and � is the random input stream, comprised
of the data bits ;=< ; /1�>�����?� is the output phase deviation, given
by [7]/1�>���@��� �!�)(� � AB<DC AFEHGI=J;1<LK ���NMPO � �8. (� �QARE	G

B<DC EHS ;1< � (2)

The second sum is the accumulated phase of all previous sym-
bols, and it is called the phase state. K ���T� �VU1WE8SYX �>Z��T[�Z ,
where X �>�T� is the impulse response of a Gaussian lter , and
L is the length of X �>�T� in bit periods. For Bluetooth with� � � �!
��� , we have \ �]� .
B. LDI Receiver

This receiver consists of a pre-detection bandpass lter ,
a limiter-discriminator, and an integrate and dump lter as
shown in Fig. 1. Details on the design of the receiver, including
parameter choices, are given in [1].

Networking for Pervasive Computing NIST Special Publication 500-259

Soltanian & Van Dyck 25

Fig. 1. Simulation model for the LDI receiver.

The bandpass lter has a Gaussian shape with impulse re-
sponse ^ _'`>aTbdcfe g)hi�j g8k _8l�m=n�oqp or s o't nDu8v�w t o)x (3)

In an AWGN channel, the optimum value for kzy|{ c g k _ is
chosen as 1.1 MHz [8],where k _ is the 3 dB bandwidth. The
integrate and dump lter has a rectangular impulse response
with a length of T. The appropriate sampling time is chosen at
the maximum eye opening.

C. Viterbi Receiver With Equalizer
The Viterbi receiver takes advantage of the phase trellis cre-

ated by the transmitter. For GFSK with modulation index

^	} c�~@�� , � g-� m8� states are required for the Viterbi receiver [7].
Given

^ } c��)�)� and � c g , the total number of phase states
is � c�� , which includes ������� ��� ~ ���� h ���|����'�@���� . Consequently,
the total number of states for the Bluetooth Viterbi receiver is��� g c�� g . This receiver may be too complex for low cost im-
plementations since it requires a lot of signal processing hard-
ware.

One way to simplify the receiver is to remove the effect of
the additional phase states in the decoding trellis. This action
can be done by not only passing the cumulative metrics from
a node to all its successor nodes, but also by passing the infor-
mation about the phase state. In this way, after selecting the
metric with minimum value, the phase state of that metric is
also recorded at the new trellis node. This architecture change
requires adding a little complexity to branch metric calcula-
tions, but it reduces the total number of trellis states from 12 to
2. We do not add any additional states to account for channel
multipath delay. However, if more signal processing is permit-
ted in the receiver design, the memory of the channel could

also be considered as additional states.
Because no equalization is intended in Bluetooth, no train-

ing sequence is explicitly de ned in the standard. We found
that the 64 bit access codes, which are sent in every packet,
show good correlation properties, and so can be used for the
estimation of the channel. This estimation is then used to com-
pensate for the effect of fading and phase rotation in the re-
ceived signal. Also, the correlation function can be used for the
purpose of synchronization. In order to have a fair comparison
with the LDI receiver, the Viterbi receiver front end contains
the same Gaussian lter to reject out of band interference and
noise. Results for this receiver appear in Section IV.

III. CHANNEL AND INTERFERENCE

Our channel model is a simple Rayleigh fading two ray
model, with variable delay between the two equal average
power paths. If the time delay between the paths is equal to� � , the rms of the delay spread is, � c � x�� � � . This model is
a good approximation for indoor channels, especially for low
rms delay spreads ��� � ��� nsec, but the results for higher de-
lay spreads ��� g �'� nsec are optimistic in comparison to more
accurate models [5]. The fading is assumed to be static for
the duration of the packet length, and the channel coef cients
are sampled at the packet rate. This is a weak assumption,
since the coherence bandwidth of the indoor channels is usu-
ally greater than the frequency separation of the hops [2], [9],
and the fading statistics may not vary for several consecutive
packets.

For the second scenario, we consider the performance of
Bluetooth in the presence of interference. The channel is
AWGN in this case, and the interference may be another Blue-
tooth piconet or an 802.11b system. The 802.11b WLAN
can use either direct sequence spread spectrum (DSSS) at
1 or 2 Mbits/sec, or it can use complementary code key-
ing (CCK) [10] at 5.5 or 11 Mbits/sec. Here, we consider
1 Mbit/sec DSSS. At this bit rate, data bits are spread by a
Barker code with 11 chips per bit, which leads to a rate of 11
Mchips/sec. The modulation is differential BPSK (DBPSK),
which facilitates noncoherent detection. A pulse shaping lter
may be employed to reduce the out of band emissions, thereby
giving an interference bandwidth of 22 MHz.

Either a Bluetooth or an 802.11b type interference signal can
be represented as y `�a �T¡ bdc kY¢%£'¤ ` g)h `q¥-¦=§¨¥-©ªb«a�§¬ ~ `>a ��¡ b�b � (4)

where b is the random input data that is independent of a, and¬ ~ depends on the type of the interferer. ¥-© is the frequency dif-
ference between the desired signal and the interference. We as-
sume that the interference signal is always on and exists for the
entire length of the Bluetooth packet. Also, for a pure physical
layer simulation, there is no error correction and retransmis-
sion in the channel. The Bluetooth radio channels are 1 MHz
apart, so ¥ © can take values of ��� � � g¯®%®°® MHz. The bandwidth
of the 802.11b system is 22 MHz, so we carried out simula-
tions for ¥-© � ��� MHz. There are ±�² c´³'³ samples/bit, which

Networking for Pervasive Computing NIST Special Publication 500-259

Soltanian & Van Dyck 26

0 2 4 6 8 10 12 14 16 18
10 5

10 4

10 3

10 2

10 1

100

Eb/N0 (dB)

B
E

R

Viterbi
LDI

Fig. 2. Performance in the AWGN channel.

equals 4 samples/chip for the 802.11b system. This sampling
rate is appropriate for µ-¶ up to 22 MHz. A uniform random
delay · ¶�¸0¹ º¼»¾½ and a random phase ¿ ¶�¸Y¹ º�À)Á+½ are applied
to the interferer signal for each packet.

IV. PERFORMANCE RESULTS

A. Physical Layer Performance
As a baseline for the performance comparisons of the two

receivers, we rst consider the AWGN channel. Fig. 2 shows
that the Viterbi receiver has a gain of 4 dB over the LDI re-
ceiver at a BER of Â ºÃ	Ä . The gain increases to about 5 dB atÂ ºRÃHÅ and nearly 6 dB at Â ºÃ	Æ . Because of the short ranges in-
volved, even for a transmit power of 1 mW, the received Ç�È�É�Ê�Ë
is typically very high. Consequently, if one considers only this
channel, there is no need for the more complex Viterbi receiver.

Simulation results for the LDI receiver in the two ray chan-
nel are presented in Fig. 3(a). For very low delay spreads
where the channel exhibits at fading, an average Ç�È�ÉÌÊÎÍ level
of 30 dB is required to achieve a BER close to Â ºRÃ	Å . This per-
formance is not maintained as Ï gets higher, and for Ï0ÐfÂ º'º
nsec, even for high values of Ç�È�É�Ê¼Í , the performance is poor.
The Viterbi receiver performance in Fig. 3(b) indicates that
this receiver can tolerate more delay spread, and it achievesÑ ÇÎÒÔÓÕÂ ºÃ	Ä for Ï�ÖØ× º�º nsec. Also, this receiver is insen-
sitive to the sampling time of the signal.

BER measurements for an interference-limited environment
are presented in Figs. 4 and 5; in all cases, the carrier-to-noise
ratio, Ù�Ê#Ò�Ó´× º dB.

In these gures, µ-¶ is the absolute frequency offset be-
tween the Bluetooth signal and the interference. The carrier-to-
interference ratio (CIR) is de ned as the ratio of the received
signal power to the received interference power, and it is mea-

101 102 103
10 4

10 3

10 2

10 1

B
E

R

Delay Spread (nsec)

Eb/N0=20 dB
Eb/N0=30 dB
Eb/N0=40 dB

101 102 103
10 4

10 3

10 2

10 1

B
E

R

Delay Spread (nsec)

Eb/N0=20 dB
Eb/N0=30 dB
Eb/N0=40 dB

Fig. 3. Ú ÛÌÜÚÞÝLÜ Performance as a function of channel delay spread. (a) LDI

receiver. (b) Viterbi receiver. Rayleigh two path channel.

sured at the input to the bandpass lter . Fig. 4 contains the re-
sults for both Viterbi and LDI receivers experiencing Bluetooth
interference. For the Viterbi receiver, there is a 2 dB improve-
ment for co-channel interference, and about 3 dB improvement
for the adjacent channel. The gure also shows that the Viterbi
receiver produces more errors than the LDI receiver in the pres-
ence of a strong interferer (low CIR). The main reason is that
the interference reduces the effectiveness of the channel esti-
mator used in the Viterbi receiver. However as the CIR in-
creases, the channel estimator performs better and the overall
BER improves. Other narrowband interference signals withµ�¶ßÐ À MHz are strongly attenuated by the bandpass lter , and

Networking for Pervasive Computing NIST Special Publication 500-259

Soltanian & Van Dyck 27

 14 10 6 2 2 6 10
10 3

10 2

10 1

100

CIR (dB)

B
E

R

VTB fd=0 MHz
VTB fd=1 MHz
LDI fd=0 MHz
LDI fd=1 MHz

Fig. 4. Performance with Bluetooth interference.

they do not produce errors for this range of CIR.
For the 802.11b interference, Figs. 5(a) and (b) show that for

frequency offsets up to 10 MHz, the system is still interference-
limited. This result stems from the fact that the two-sided
bandwidth of the 802.11b WLAN is 22 MHz, which is much
wider than that of Bluetooth.

The LDI receiver needs at least à�á'âäã�å dB in order to
get æ¼ç¼â4èêé�ëRìHí for all frequencies. The degradation forî�ï è!å MHz is the same, since the 802.11b spectrum is at at
these offsets. In Fig. 5(b), we observe a dramatic enhancement
in performance for the Viterbi receiver over the LDI receiver.
The minimum required CIR is about -4 dB in this case. Since
the 802.11b interferer is more like uncorrelated noise at the
input of this receiver, this level for CIR can also be concluded
by looking at the performance of the Viterbi receiver in the
AWGN channel (Fig. 2). This receiver requires ç�ð|ñ�ò¼ó#ãõô
dB for æ¼çÎâöãöé°ë ì	í . The bandpass lter has about 12 dB
out-of-band rejection. So, the maximum tolerable CIR at the
input of the receiver is about -4 dB.

B. System Layer Performance

While the results of the previous section strongly suggest
that the Viterbi receiver provides substantially better physical
layer performance, the main question is how does this advan-
tage translate into better system level performance. Four fac-
tors affect this mapping: (1) the frequency hopping pattern of
the BT system, (2) the error detection and correction in the BT
medium access control layer, (3) the BT traf c pattern, and (4)
the traf c pattern of the interferer. These issues are discussed
in much greater detail in [11], where performance results are
provided for a number of scenarios, all using the LDI receiver.

The frequency hopping implies that the probability a BT

 20 15 10 5 0 5 10
10 4

10 3

10 2

10 1

100

CIR (dB)

B
E

R

fd=0,1,2,3,4 MHz
fd=5 MHz
fd=6 MHz
fd=7 MHz
fd=8 MHz
fd=9 MHz
fd=10 MHz
fd=11 MHz

 22 20 18 16 14 12 10 8 6 4 2
10 4

10 3

10 2

10 1

100

Average CIR (dB)

B
E

R

fd=0 MHZ
fd=1 MHz
fd=2 MHz
fd=3 MHz
fd=4 MHz
fd=5 MHz
fd=6 MHz
fd=7 MHz
fd=8 MHz
fd=9 MHz
fd=10 MHz

Fig. 5. ÷�øÌù÷ÞúLù Performance with 802.11b interference. (a) LDI receiver. (b)

Viterbi receiver.

packet falls within the interference bandwidth is approximately
22/79. Even then, the BER will depend on the frequency offset
between the two received signals and whether the interferer is
actually transmitting.

We consider a two-way communication between a Bluetooth
master and slave, where each is sending 64 Kbits/sec of HV1
voice packets. These packets contain the BT access code, the
packet header, and the payload. The access code words have
large Hamming distances between each pair, while both the
header and payload are protected by 1/3 rate repetition codes.
The overall packet length is 366 bits. An uncorrected error in

Networking for Pervasive Computing NIST Special Publication 500-259

Soltanian & Van Dyck 28

 20 15 10 5 0 5
0

0.02

0.04

0.06

0.08

0.1

0.12

P
r(

P
a
ck

e
t
L
o
ss

)

CIR (dB)

LDI
Viterbi

Fig. 6. Bluetooth voice packer loss with 802.11b interference.

either the access code or the header leads to the packet being
dropped.

Fig. 6 shows the probability of packet loss versus CIR for
both the LDI and the Viterbi receivers. For the LDI receiver,
a û�ü'ýÿþ�� dB is necessary to get low packet loss. However,
this value decreases to û�ü'ý�þ���� dB for the Viterbi receiver.
In both cases, we use exponentially distributed packet inter-
arrival times for the WLAN, with an offered load of 50%. The
packet length for the WLAN interference is x ed and equal to��� ���	� bits.

V. CONCLUSIONS

We have investigated the performance of the Bluetooth ra-
dio by employing two different types of receivers: (1) a low
cost LDI and (2) a more sophisticated Viterbi receiver. From
the physical layer simulation results, we conclude that the
Viterbi receiver is superior in both the multipath Rayleigh fad-
ing channel and in interference. This superiority is particu-
larly considerable in the latter case, especially when the inter-
ference comes from an 802.11b WLAN. We have also shown
system level performance for Bluetooth voice packets in an
interference-limited environment. Even though the frequency
hopping and error correction help both receivers, thereby re-
ducing the differences in performance due to the physical layer,
the Viterbi receiver still provides a substantial improvement.

One issue of present concern is the large allowed deviation
in a Bluetooth transmitter’s modulation index. While the nom-
inal value is 0.33, the range is ��
 � � to ��
 �� . For a Viterbi re-
ceiver designed to use this nominal value, we nd that it is ro-
bust to variations of about ����
 ��� . Although there are methods
that allow one to estimate the modulation index [12], the re-
ceiver architecture, including the number of states, would have

to be changed. Therefore, we suggest that the deviation al-
lowed in the standard be reduced.

ACKNOWLEDGMENTS

The authors would like to thank Nada Golmie and Oliver
Rebala for many useful discussions and for providing the sys-
tem layer simulation results.

REFERENCES

[1] A. Soltanian and R. E. Van Dyck, “Physical layer performance for coex-
istence of Bluetooth and IEEE 802.11b,” Proc. Virginia Tech. Symposium
on Wireless Personal Communications, Blacksburg, VA, June, 2001.

[2] S. C. Kim, H. L. Bertoni, and M. Stern, “Pulse propagation character-
istics at 2.4 GHz inside buildings,” IEEE Trans. Veh. Tech., vol. 45, pp.
579-592, Aug. 1996.

[3] G. J. M. Janssen, P. A. Stigter, and R. Prasad, “Wideband indoor chan-
nel measurements and BER analysis of frequency selective multipath
channels at 2.4, 4.75, and 11.5 GHz,” IEEE Trans. Comm., vol. 44, pp.
1272-1288, Oct. 1996.

[4] Y. P. Zhang and Y. Hwang, “Time delay characteristics of 2.4 GHz band
radio propagation channels in room environments,” IEEE Int. Symp. Per-
sonal, Indoor and Mobile Radio Communications, vol. 1, pp. 28-32,
1994.

[5] T. A. Wilkinson, “Channel modelling and link simulation studies for
the DECT test bed program,” 6th Int. Conf. Mobile Radio and Personal
Comm., pp. 293-299, 1991.

[6] Bluetooth Special Interest Group, Speci cations of the Bluetooth System,
vol. 1, v.1.0B ’Core’, Dec. 1999. Available: http:/www.bluetooth.com.

[7] R. Steele (Ed.), Mobile Radio Communications, John Wiley & Sons Inc.,
1996.

[8] M. K. Simon and C. C. Wang, “Differential detection of Gaussian MSK
in a mobile radio environment,” IEEE Trans. Veh. Tech., pp. 307-320,
Nov. 1984.

[9] G. F. Pedersen and P. Eggers “Initial investigations of the Bluetooth link,”
IEEE Veh. Tech. Conf., vol. 1, pp. 64-69, Fall 2000.

[10] IEEE Std. 802-11, IEEE Standard for Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Speci cation , 2001 Edition.

[11] N. Golmie, R. E. Van Dyck, and A. Soltanian, “Interference of Blue-
tooth and IEEE 802.11: simulation modeling and performance evalua-
tion,” Proc. ACM Int. Workshop on Modeling, Analysis, and Simulation
of Wireless and Mobile Systems, Rome, Italy, July 2001.

[12] F. J. Casajús-Quirós and J. M. Páez-Borrallo, “Improving DECT perfor-
mance with band-pass equalization,” Proc. of VTC’97, pp. 1084-1088,
May 1997.

Networking for Pervasive Computing NIST Special Publication 500-259

Soltanian & Van Dyck 29

Interference of Bluetooth and IEEE 802.11: Simulation
Modeling and Performance Evaluation

N. Golmie, R. E. Van Dyck, and A. Soltanian
National Institute of Standards and Technology

Gaithersburg, Maryland 20899
Email: nada.golmie@nist.gov, robert.vandyck@nist.gov

ABSTRACT
The emergence of several radio technologies such as Blue-
tooth, and IEEE 802.11 operating in the 2.4 GHz unlicensed

ISM frequency band may lead to signal interference and re-
sult in signi�cant performance degradation when devices are
co-located in the same environment. The main goal of this
paper is to present a simulation environment for modeling
interference based on detailed MAC and PHY models. This
framework is then used to evaluate the impact of interfer-

ence on the performance of Bluetooth and IEEE 802.11. We
use several simulation scenarios and measure performance in
terms of packet loss, residual number of errors, and access
delay.

Keywords
WPANs, Bluetooth, IEEE 802.11, Interference.

1. INTRODUCTION
The proliferation of mobile computing devices including lap-
tops, personal digital assistants (PDAs), and wearable com-
puters has created a demand for wireless personal area net-
works (WPANs). WPANs allow closely located devices to
share information and resources. A key challenge in the de-

sign of WPANs is, perhaps, the adaptivity to a hostile radio
environment that includes noise, time-varying channels, and
abundant electromagnetic interference. Today, most radio
technologies considered by WPANs (Bluetooth Special In-
terest Group [1], and IEEE 802.15) employ the 2.4 GHz ISM

frequency band. In addition, both WPANs and Wireless
Local Area Networks (WLANs) devices implementing the
IEEE 802.11 standard speci�cations [2] will be sharing the
same frequency band. It is anticipated that some interfer-
ence will result from all these technologies operating in the
same environment. WLAN devices operating in proximity

to WPAN devices may signi�cantly impact the performance
of WPAN and vice versa.

The main goal of this paper is to present a tool for modeling
the interference of Bluetooth and IEEE 802.11. In addition,
we discuss our �ndings on the performance of these systems
when operating in close proximity to each other. Our re-

sults are based on detailed models for the MAC, PHY, and
wireless channel.

Previous performance results on Bluetooth and IEEE 802.11
interference include experimental measurements obtained by
Kamerman [3]. Furthermore, the probability of an 802.11

packet error in the presence of a Bluetooth piconet has been
derived by Zyren [4] and extended by Shellhammer [5]. In
addition, Golmie and Mouveaux [6] study the e�ect of 802.11
on Bluetooth, using a probability analysis approach and val-
idate the analysis with simulation results. They show that
signi�cant packet loss can occur and that access delays for

data traÆc double. Similar results have been obtained by
Lansford et. al. [7] who use simulation and experimen-
tal measurements to quantify the interference resulting from
Bluetooth and IEEE 802.11.

This paper is organized as follows. In section 2, we describe
in great detail our modeling approach for the MAC, PHY
and wireless channel. In section 3, we discuss the accuracy
of our model implementation. In section 4, we evaluate the
impact of interference on both Bluetooth andWLAN perfor-
mance and present simulation results. Concluding remarks

are o�ered in section 5.

2. INTEGRATED SIMULATION MODEL
In this section, we describe the methodology and tools used
to conduct the performance evaluation. The simulation en-
vironment consists of detailed models for the RF channel,
the PHY, and MAC layers developed in C and OPNET (for
the MAC layer). These detailed simulation models will con-
stitute an evaluation framework that is critical to studying

the various intricate e�ects between the MAC and PHY lay-
ers. Although interference is typically associated with the
RF channel modeling and measured at the PHY layer, it
can signi�cantly impact the performance of higher layer ap-
plications including the MAC layer. Similarly, changes in
the behavior of the MAC layer protocol and the associated

data traÆc distribution could play an important factor in
the interference scenario and a�ect the overall system per-
formance.

2.1 Channel Model

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Van Dyck, & Soltanian 30

The channel model consists of a geometry-based propagation

model for the signals, as well as a noise model. For the
indoor channel, we apply a propagation model consisting of
two parts: 1.) line-of-sight propagation (free-space) for the
�rst 8 meters, and 2.) a propagation exponent of 3.3 for
distances over 8 meters. Consequently, the path loss in dB
is given by

Lp =

�
32:45 + 20 log(f � d) if d < 8 m

58:3 + 33 log(d=8) otherwise,
(1)

where f is the frequency in GHz, and d is the distance in
meters. This model is similar to the one used by Kamerman
[3]. Assuming unit gain for the transmitter and receiver

antennas and ignoring additional losses, the received power
in dBmW is

PR = PT � Lp; (2)

where PT is the transmitted power also in dBmW. Eq. (2) is
used for calculating the power received at a given point due
to either a Bluetooth or an 802.11 transmitter, since this
equation does not depend on the modulation method.

Additive white Gaussian noise (AWGN) is used to model
the noise at the receivers. At 1 Mb/s any fading would be
frequency non-selective; in this case, the SNR is suÆciently
high so that the system is interference limited. This at
fading assumption is less true for the 11 Mb/s 802.11 data
rate, although the system is still interference limited.

The transmitters, channel, and receivers are implemented
at complex baseband. For a given transmitter, inphase and
quadrature samples are generated at a sampling rate of 44�
106 per second. This rate provides four samples/symbol

for the 11 Mb/s 802.11 mode, enough to implement a good
receiver. It is also high enough to allow digital modulation of
the Bluetooth signal to account for its frequency hopping.
Speci�cally, since the Bluetooth signal is approximately 1
MHz wide, it can be modulated up to almost 22 MHz, which
is more than enough to cover the 11 MHz bandwidth (one-

sided) of the 802.11 signal. The received complex samples
from both the desired transmitter and the interferer(s) are
added together at the receiver.

To complete the channel model, the noise must be added
to the received samples. Consider a �xed transmitter power

and no interference. Then, Eqs (1) and (2) allow one to
compute the received signal power for a given distance. The
SNR is calculated in dB according to

SNR = PR � SR; (3)

where SR is the receiver's sensitivity in dBmW. In an ac-
tual receiver, the sensitivity is determined primarily by the
amount of thermal noise in the electronics; within limits im-
posed by physics, a better design can lead to a higher sensi-
tivity. For our modeling purposes, the situation is somewhat
reversed. One assumes a speci�c (achievable) sensitivity and

uses Eq. (3) to compute the SNR. This quantity is used to set
the variance of the random number generator that provides
the AWGN noise for each inphase and quadrature sample.
Please note that the transmitter and interferer powers can
be changed on a packet by packet basis.

A few comments should be made about the relationship

among the received signal power, the received interference

power, the noise power, and the resulting performance. Anal-
ogously to SNR, one can de�ne the signal-to-interference
ratio (SIR) in dB as

SIR = PR � PI ; (4)

where PI is the interference power at the receiver. In the

absence of interference, the bit error rate (BER) for either
the Bluetooth or WLAN system is almost negligible for the
transmitter powers and ranges under consideration.

2.2 PHY Model
The PHY layer includes detailed models of the signal pro-
cessing in the Bluetooth and the 802.11 transmitters and
receivers. As mentioned before, complex baseband imple-

mentations are used.

Bluetooth The GFSK modulation used in the Bluetooth
system is a type of binary partial response continuous phase
modulation. It is a slight generalization of the GMSK mod-

ulation [8] used in the GSM cellular system, which uses a
modulation index of 0.5; instead, a modulation index of
approximately 0.3 is used in Bluetooth. Because of the
Gaussian-shaped �lter in the transmitter, every data bit is
transmitted over two symbol intervals, causing intersymbol
interference but reducing the required bandwidth. The in-

formation carrying phase is denoted by �(t; ~�), where t desig-
nates time, and ~� represents the data bit vector. The cosine
and sine of �(t; ~�), sampled 44 times per data bit (symbol),
give the inphase and quadrature samples.

While there are a number of possible receiver designs, we

chose to implement the noncoherent limiter-discriminator
(LD) receiver [9] [10]. Its simplicity and relatively low cost
should make it the most common type for many consumer
applications. Details of the actual design are given in [11].

802.11b The 1 Mb/s 1 802.11b system transmits data using

di�erential binary phase shift keying. With DBPSK modu-
lation, the information is conveyed by the phase di�erence
between adjacent transmitted symbols. Thus, it is not nec-
essary to have a coherent phase reference in the receiver. To
provide some interference protection, the modulated signal

is spread using a Barker sequence with code length equal to
eleven [2]. That is, each bit duration is divided into eleven
consecutive segments called chips. During each chip, the
transmitted signal is multiplied by either �1, depending on
the code [12]. Because the chip rate is 11� 106 per second,
the two-sided bandwidth of this signal is approximately 22

MHz. After spreading, the signal is fed into a pulse-shaping
�lter that provides further control on the spectral shape.

To achieve 11 Mb/s in an environment with fading and inter-
ference, a more sophisticated modulation scheme is required
if the bandwidth is to be kept constant. This is done using

a type of coded modulation. The basic idea is that uncoded
quadrature phase shift keying provides two bits per symbol.
If the symbol rate is kept constant at 11 � 106 per second
then a maximum data rate of 22 Mb/s is possible. However,
half of these bits are used to provide a coding gain using

1The symbol rate is the same as the bit rate, since this is a
binary modulation scheme.

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Van Dyck, & Soltanian 31

complementary code keying (CCK) [13].

2.3 MAC Model
We usedOPNET to develop a simulation model for the Blue-

tooth and IEEE 802.11 protocols. For the IEEE 802.11 pro-
tocol, we used the model available in the OPNET library.
For Bluetooth, we partially implemented the Baseband and
L2CAP layers according to the speci�cations [1]. We as-
sume that a connection is already established between the
master and the slave and that the synchronization process

is complete. The connection type is either SCO for voice or
ACL for data traÆc.

A MAC protocol generally consists of a collection of com-
ponents, each performing a special function, such as the

support of higher layer traÆc, the synchronization process,
the bandwidth allocation, and contention resolution mecha-
nism. In this sequel, we highlight the features that are the
most relevant to our work on interference, namely, we give
a brief description of the frequency hopping, the interface
to the physical layer, and the error detection and correction

schemes.

Frequency Hopping Frequency usage constitutes another
major component of the protocol model. Bluetooth uses a
frequency hopping mechanism that sweeps 79 channels of
the frequency band available at a maximum rate of 1600

hops/s depending on the packet size. Both master and slave
devices are synchronized and follow the same random fre-
quency hopping sequence. This frequency sequence is de-
rived at the master and slave devices and depends on the
master's clock and its Bluetooth address. The algorithm for
generating the sequence works as follows. Given a window

of 32 contiguous frequencies in the 2:4-2:479 GHz range, a
sequence of 32 frequencies is chosen randomly. Once all 32
frequencies in that set have been visited once, a new window
of 32 frequencies is selected. This new window includes 16
of the frequencies previously visited and 16 new frequencies.
For the IEEE 802.11, we focus in this study on the IEEE

802.11 Direct Sequence mode which uses a �xed frequency
that occupies 22 MHz of the frequency band. The center
frequency is selected among 11 available channels.

Error Detection and Correction Error detection and

correction is an essential component in the interference study.
For IEEE 802.11, errors are detected by checking the Frame
Check Sequence (FCS) that is appended to the packet pay-
load. In case an error is found, the packet is dropped and is
then later retransmitted. Otherwise, a positive ACK noti�es
the source of a correct reception. For Bluetooth, the device

�rst applies the error correction algorithm corresponding to
the packet encapsulation used. The encapsulation of voice
packets such as HV 1 and DM5 is shown in Figure 1. HV 1
packets have a total size packet length of 366 bits includ-
ing a header and an access code of 126 bits. HV 1 packets
use a payload of 80 information bits, a 1/3 FEC rate and

are sent every TSCO = 2 or 1250 �s. In case of an error
occurrence in the payload, the packet is never dropped. A
1/3 FEC is applied to the packet header while a Hamming
code (d = 14) is applied to the access code. Uncorrected
errors in the header and access code lead to a packet drop.
In addition, errors in the payload are corrected using a 1/3

FEC rate.

Figure 1: Bluetooth Packet Format

On the other hand, DM5 packets use a 2/3 rate FEC to
correct payload errors as shown in Figure 1. Errors in the
header or access code are corrected by a 1/3 FEC and a
Hamming code, respectively. Uncorrected errors lead to
dropping packets and the application of the ARQ and SEQN

schemes.

Statistics Collection At the MAC layer, a set of perfor-
mance metrics are de�ned to include access delay, probabil-
ity of packet loss, and residual number of errors in the Blue-

tooth voice packets. The access delay measures the time
it takes to transmit a packet from the time it is passed to
the MAC layer until it is successfully received at the desti-
nation. The access delay for the Bluetooth LAN traÆc is
measured at the L2CAP layer in order to account for re-
transmission delays. Packet loss measures the number of

packets discarded at the MAC layer due to errors in the bit
stream. This measure is calculated after performing error
correction. The residual number of errors in the Bluetooth
voice packets measures the number of errors that remain in
the packet payload after error correction is performed.

2.4 MAC Layer to PHY Layer Interface
The OPNET MAC models were interfaced to the physical
layer models described in the previous section in order to
simulate the overall system.

Figure 2: Packet Collision and Placement of Errors

This interface module is required to capture all changes in
the channel state (mainly in the energy level). Consider the
Bluetooth transmitter-channel-receiver chain of processes.
For a given packet, the transmitter creates a set of signal
samples that are corrupted by the channel and input to the
receiver; interference may be present for all or only speci�c

segments of the packet, as shown in Figure 2. A similar chain
of processing occurs for an 802.11b packet. The interface
module is designed to process a packet at a time.

At the end of each packet transmission, the MAC layer gen-
erates a data structure that contains all the information re-

quired to process the packet. This structure includes a list

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Van Dyck, & Soltanian 32

of all the interfering packets with their respective duration,

timing o�set, frequency, and transmitted power. The topol-
ogy of the scenario is also included. The data structure
is then passed to the physical layer along with a stream of
bits representing the packet being transmitted. The physical
layer returns the bit stream after placing the errors resulting
from the interference.

3. SIMULATION MODEL VALIDATION
In order to speed up the simulation process, we replace each
transmitter-channel-receiver process with a table-based ap-
proach combined with a binary symmetric channel. BER
tables for di�erent values of SIR and for di�erent frequency
o�sets were derived. For a segment of a packet where the

interference is stationary, the SNR and SIR are computed
using the transmitters' powers, the topology, and the path
loss model. Thus, using the calculated SIR and the given
frequency o�set of the intended signal with respect to the
interference signal, the average BER can be extracted by a

simple table lookup operation. Errors are then generated
for each bit of the packet segment using the binary symmet-
ric channel with crossover probability equal to the average
BER of the segment. The SNR in these tables is assumed
to be very high (greater than 30 dB), which is the case for
interference-limited environments. Still, the software can

check this assumption by comparing the SIR to this value.

Using tabulated BER values, as opposed to running the
detailed signal processing receiver and channel simulation
models in real-time, gives a speed up factor of about 120.
The main question is the accuracy of this approach; this

topic is discussed below.

3.1 Results Accuracy
Since the implementation of the PHY layer required choos-
ing a number of design parameters, the �rst step in the val-
idation process is comparing the PHY results against theo-
retical results. Complete BER curves of the Bluetooth and

802.11b systems are given in [11]; for the AWGN and at
Rician channels without interference, all the results match
very closely to analytical bounds and other simulation re-
sults. Also, the simulation results for both the MAC and
PHY models were compared and validated against analyti-

cal results for packet loss given di�erent traÆc scenarios [6].

3.2 Table Implementation Accuracy
Figure 3 gives the BER in terms of the SNR for varying
SIR and for co-channel interference. To create the table,
the curves are sampled every 0.5 dB in both SNR and SIR.
A couple of points need to be made: (1) For a �xed level of

SIR, one notices that the change in BER for a 0.5 dB step in
SNR is quite small, even at low SNR. For example, a change
in BER from 0.25 to 0.2 is not particularly important, since
it is still so high that a packet will most likely be lost. (2)
For a �xed SNR, a 0.5 step in SIR also gives a small relative
change in BER, especially for SIRs below 2 dB. As the SIR

goes above 2 dB, the BER drops below 10�2, and the sys-
tem performance becomes increasingly good. For the overall
system performance, it does not really matter if the BER is
10�5, 10�6, or smaller.

The table implementation does not impact the MAC per-

formance results. A sanity check experiment was conducted

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5 10 15 20 25

Pro
ba

bili
ty

of
Bit

 Er
ror

s

Signal to Noise Ratio (SNR) (dB)

Probability of Bit Errors vs. SNR

SIR = -6 dB
SIR = -2 dB
SIR = 0 dB
SIR = 2 dB
SIR=10 dB

Figure 3: Impact of WLAN Interference on BT; Co-
Channel Interference

to validate the simulation results obtained with the BER
tables and compare them to the results obtained using the
signal processing simulation model. Therefore, we run a set
of two experiments, one with the BER tabulated values and

one with the integrated DSP models, keeping all other sim-
ulation parameters the same. Using tabulated BER values
instead of the simulation model for the DSP receiver does
not a�ect the packet loss metric.

4. SIMULATION RESULTS
We present simulation results to evaluate the performance
of Bluetooth in the presence of WLAN interference and vice
versa. All simulations are run for 30 seconds of simulated
time. The performance measurements are logged at the
slave device for Bluetooth and at the Mobile device for the

WLAN. The mean access delay result is normalized by the
mean delay when no interference is present. We use the
con�guration and system parameters shown in Table 1.

For Bluetooth, we consider two types of application, namely

voice and internet traÆc. For voice, we assume a symmetric
stream of 64 kbits/s each way using HV 1 packet encapsu-
lation. For modeling internet traÆc, we consider a LAN
access application. This is typically a connection between a
PC and an Access Point or between two PCs, and it allows
for exchanging TCP/IP or UDP-like traÆc. Both slave and

master devices generate IP packets according to the distri-
bution presented in Table 2. The packet interarrival time
is exponentially distributed with a mean equal to 29:16ms,
which corresponds to a load of 30 % of the channel capacity
(248 kbits/s for both directions). Packets are encapsulated
with DM5 Baseband packets after the corresponding PPP,

RFCOMM, and L2CAP packet overheads totaling 17 bytes
are added.

For the WLAN, we use the IP traÆc distribution presented
in Table 2. We set the o�ered load to 30% of the chan-
nel capacity, which corresponds to mean packet interarrival

times of 2:52 ms and 10:56 ms for the 11 Mbits/s and the 1

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Van Dyck, & Soltanian 33

Table 1: Simulation Parameters

Simulation Parameters Values

Propagation delay 5 �s/km

Length of simulation run 30 seconds

Bluetooth Parameters Values

LAN Packet Interarrival Time 29.16 ms

ACL Baseband Packet Encapsulation DM5

SCO Baseband Packet Encapsulation HV1

Transmitted Power 1 mW

Slave Coordinates (0,0)

Master Coordinates (1,0)

WLAN Parameters

Packet Interarrival Time for 1 Mbits/s 10.56 ms

Packet Interarrival Time for 11 Mbits/s 2.52 ms

Transmitted Power 25 mW

AP Coordinates (0,15)

Mobile Coordinates (0,d)

Packet Header 224 bits

Slot Time 2 � 10�5 seconds

SIFS Time 1 � 10�5 seconds

DIFS Time 5 � 10�5 seconds

CWmin 31

CWmax 1023

Fragmentation Threshold None

RTS Threshold None

Short Retry Limit 4

Long Retry Limit 7

Table 2: IP TraÆc: Message Size Distribution

Message Size (bytes) 64 128 256 512 1024 1518

Probability 0.6 0.06 0.04 0.02 0.25 0.03

Mbits/s systems, respectively.

We present the results from four di�erent simulation ex-
periments that show the impact of WLAN interference on
Bluetooth devices and vice versa for di�erent applications,
namely voice and data traÆc. Table 3 provides a summary

of these four cases, while Figure 4 shows the experimental
topology. Please note that the WLAN access point (AP) is
�xed at (0,15), while the WLANmobile is free to move along
the vertical axis, i.e. its coordinates are (0,d). The Blue-
tooth devices are �xed at the given locations. In the �rst
two experiments, the mobile is the generator of the 802.11

data, while the AP is the sink. In the last two experiments
the traÆc is generated at the AP.

Table 3: Summary of the Experiments

Experiment Desired Interferer WLAN WLAN
Signal AP Mobile

1 BT Voice 802.11 Sink Source
2 BT LAN 802.11 Sink Source

3 802.11 BT Voice Source Sink
4 802.11 BT LAN Source Sink

Figure 4: Experiment Topology

Experiment 1 - We study a voice application generating a
symmetric stream of 64 kbits/s each way between the Blue-

tooth master and slave. The interference is from the mobile
sending data packets to the AP and receiving acknowledg-
ments (ACKs) from it. Since most of the WLAN traÆc is
originating close to the Bluetooth slave, the slave may su�er
from serious interference. Figure 5(a) shows the probability
of Bluetooth voice packet loss at the slave as a function of

the distance to the mobile for interference from both 1 Mb/s
and 11 Mb/s 802.11 WLANs.

Consider the 1 Mb/s case �rst. At one meter, approximately
eight percent of the packets are dropped, due to an error in
either the access code or the packet header. Even when the

packet is accepted, it may still contain a signi�cant number
of residual payload errors as shown in Figure 5(b). These er-
rors are measured after the FEC decoding is applied. While
six errors may not seem to be many, in an eighty bit payload
they will lead to poor voice quality. The packet loss is still
signi�cant even up to a distance of three meters.

The average length of a 1 Mb/s WLAN packet is 3,168 bits.
Thus, its transmission time is on the order of �ve Bluetooth
slots. HV1 packets are being transmitted in every Blue-
tooth slot, but on di�erent frequencies. Since the direct
sequence spreading requires a bandwidth of 22 MHz, there

is a signi�cant probability that a WLAN packet may cause
interference to multiple Bluetooth packets. In other words,
although Bluetooth is hopping to a new frequency for each
slot, the 802.11 interference is present in roughly 22 of the
79 channels. Yet with an average interarrival time for the

WLAN packets of 10.56 ms, many HV1 packets are suc-
cessfully received between the transmissions of the WLAN
packets.

For the 11 Mb/s case, the general trends are similar. How-
ever, the probability of packet loss is slightly lower. Because

both the 1 and 11 Mb/s 802.11 modulations use the same
bandwidth, the time overlap, not the frequency overlap, is
the main factor a�ecting performance. At 11 Mb/s, it takes
only 491 �s, on average, to transmit a packet 2; there-
fore, the Bluetooth and WLAN packets are about the same
length. Thus, a WLAN packet will usually only interfere

with a single Bluetooth one.

2Including the packet header transmitted at 1 Mb/s.

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Van Dyck, & Soltanian 34

Experiment 2 - We focus on a LAN access application.

Bluetooth is being used to send data from the master to the
slave, and the mobile is still the source of WLAN packets.
Figure 6(a) shows the probability of Bluetooth LAN packet
loss versus the distance to the mobile, again for both WLAN
data rates. While up to almost fourteen percent of the pack-
ets may be lost, the use of ARQ still allows the system to be

useful. Since a packet sent by the master is acknowledged
(positively or negatively) in the next slot, the access delays
remain quite small, as seen in Figure 6(b). Even at half
a meter with the 11 Mb/s WLAN interference, the access
delay is just doubled.

One observation is that for Bluetooth LAN packets, the ef-
fect of the di�erent 802.11 data rates is reversed. The prob-
ability of packet loss is now higher when the 11 Mb/s system
is the interferer. This result is also due to the traÆc distri-
butions. The Bluetooth LAN packets have a distribution

with an average length that needs two DM5 packets, where
each packet requires 2,871 �s for transmission. Now, the
Bluetooth and 1 Mb/s WLAN packets are approximately
the same length, so it is most likely that a WLAN packet
corrupts no more than one Bluetooth packet. The 11 Mb/s
WLAN packets are much shorter, and so a number of them

can occur during the transmission of the Bluetooth packet.
If the Bluetooth LAN packet is on the same frequency as
any of these WLAN packets, it will probably be corrupted.

Experiment 3 - Next, we are interested in the e�ect of the
Bluetooth voice packets on the 802.11 system. Let the AP

be the source of WLAN data packets and the mobile be the
receiver. Because the data packets are generally longer then
the ACKs, this is a more critical scenario then when the
mobile is the source. Figure 7(a) shows the probability of
WLAN packet loss as a function of distance to the Bluetooth
slave.

For a half meter distance, about sixty �ve percent of the 1
Mb/s packets are lost. This phenomenon occurs despite the
frequency hopping of Bluetooth. The loss rate is so high
due to the relatively long length of an 802.11 packet com-

pared to a Bluetooth one. Since 802.11 does not have any
error correction, all it takes is a single bit error to e�ectively
erase the packet. When transmitting HV1 voice packets, the
Bluetooth system sends many packets during the transmis-
sion time of an 802.11 packet. While there is approximately
a 22/79 chance that a single packet is in the 802.11 band,

this probability must be multiplied by the number of Blue-
tooth slots occurring doing the WLAN packet transmission.
Also, note that the access delay is increased by almost three
orders of magnitude due to the interference, as shown in
Figure 7(b).

Still considering the 1 Mb/s mode, one sees that the per-
formance signi�cantly improves as the distance exceeds two
meters. There appears to be almost a strong \threshold ef-
fect." The cause of this phenomenon is the direct sequence
spreading, which is reasonably robust to a narrow-band in-
terferer such as Bluetooth. Below two meters, the received

interference power, based on the topology and transmitter
powers, is so much that the 802.11 receiver makes many
bit errors. Above this distance, the Barker code correla-
tion e�ectively spreads the Bluetooth interference while de-

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Probability of BT Voice Packet Loss vs. Distance to 802.11 Source

distance (meters)

P
r(

pa
ck

et
 lo

ss
)

1 Mbps
11 Mbps

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

2

4

6

8

10

12
Residual Errors in BT Voice Packets vs. Distance to 802.11 Source

distance (meters)

N
um

be
r o

f E
rr

or
s

1 Mbps
11 Mbps

Figure 5:
(a)

(b)
Experiment 1. Bluetooth voice

packets with 802.11 interference. (a) Probability of
packet loss. (b) Residual errors.

spreading the desired signal. Then, the performance of the
1 Mb/s system is better than the 11 Mb/s system.

The 11 Mb/s system has a 0.3 probability of packet loss at
a range of half a meter. This probability drops almost lin-
early to a value near 0.1 for a range of 3.5 meters; the slope
does not increase until after this distance. Thus, there is
not as clear a threshold. Since the 11 Mb/s WLAN packets
are more than six times shorter than the 1 Mb/s ones, there

is a lower probability of overlap in time with the Bluetooth
packet. This accounts for the lower packet loss probabilities
at distances under two meters. However, the CCK modula-
tion is not as robust at the direct sequence spreading. So, it
is unable to provide as low a bit error rate as the DS mod-
ulation for distances in the approximate range of 2.5 to 4.5

meters.

Experiment 4 - Let the mobile be the receiver of the
WLAN packets from the AP, and consider how the Blue-
tooth data packets degrade the WLAN performance. Fig-
ure 8(a) shows that for both data rates, the probability of

an 802.11 packet being lost is much smaller for Bluetooth

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Van Dyck, & Soltanian 35

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Probability of BT LAN Packet Loss vs. Distance to 802.11 Source

distance (meters)

P
r(

pa
ck

et
 lo

ss
)

1 Mbps
11 Mbps

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2
Normalized Access Delay for BT LAN Packets vs. Distance to 802.11 Source

distance (meters)

N
or

m
al

iz
ed

 d
el

ay

1 Mbps
11 Mbps

Figure 6:
(a)

(b)
Experiment 2. Bluetooth data pack-

ets with 802.11 interference. (a) Probability of
packet loss. (b) Access delay.

LAN interference than for Bluetooth voice interference (Ex-
periment 3). The main reason for this di�erence is that the
average interarrival time of the Bluetooth packets is now

29.16 ms. Again, we see a distance where the performance
of the 1 Mb/s system becomes better than the 11 Mb/s sys-
tem, both in terms of probability of packet loss and delay.
Beyond four meters, both systems show very little e�ects
from interference, and the higher speed system again be-
comes the preferred choice. It should be noted that depend-

ing on the topology and the transmitter powers, the exact
distance where one data rate becomes better than another
will change. Yet, it is conjectured that these results will
hold for very general scenarios.

Figure 8(b) shows the access delays. At a distance of half a

meter, the 1 Mb/s case requires a delay less than three times
the delay with no interference, while the 11 Mb/s case has
a delay about 1.5 times its optimal value. Please compare
this to the previous experiment, where the delay for the 1
Mb/s case is about 900 times greater, and the delay for the
11 Mb/s is approximately 70 times. Not surprisingly, the

streaming voice packets cause substantially more interfer-

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
Probability of 802.11 Packet Loss vs. Distance to Bluetooth Slave

distance (meters)

P
r(

pa
ck

et
 lo

ss
)

1 Mbps
11 Mbps

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
100

101

102

103
Normalized Access Delay for 802.11 Packets vs. Distance to Bluetooth Slave

distance (meters)

N
or

m
al

iz
ed

 d
el

ay

1 Mbps
11 Mbps

Figure 7:
(a)

(b)
Experiment 3. 802.11 packets with

Bluetooth voice packets as interference. (a) Proba-
bility of packet loss. (b) Delay.

ence.

5. CONCLUDING REMARKS
We presented results on the performance of Bluetooth and
WLAN operating in the 2.4 GHz ISM band based on detailed
channel, MAC, and PHY layer models for both systems. The
evaluation framework used allows us to study the impact of
interference in a closed loop environment where two systems
are a�ecting each other, and explore the MAC and PHY

layer interactions in each system.

Our results indicate that scenarios using Bluetooth voice
traÆc may be the worst of all interference cases (65% of
packet loss for the WLAN 1 Mbits/s system). Also, we
note that Blutooth voice may be severely impacted by in-

terference with packet loss of � 8%. Moreover, the results
suggest that the data rate in the WLAN system may be a
factor in the performance, and, the recommended rate for
WLAN depends on the topology and the parameters used.
Therefore, one may want to exploit the data rate scaling
algorithm available in the WLAN system for improving per-

formance. Additionally, results could be obtained with the

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Van Dyck, & Soltanian 36

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Probability of 802.11 Packet Loss vs. Distance to Bluetooth Slave

distance (meters)

P
r(

pa
ck

et
 lo

ss
)

1 Mbps
11 Mbps

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
Normalized Access Delay for 802.11 Packets vs. Distance to Bluetooth Slave

distance (meters)

N
or

m
al

iz
ed

 d
el

ay

1 Mbps
11 Mbps

Figure 8:
(a)

(b)
Experiment 4. 802.11 packets with

Bluetooth LAN packets as interference. (a) Proba-
bility of packet loss. (b) Delay.

WLAN Frequency Hopping systems and compared to the
Direct Sequence system presented here.

Although the results depend on a number of parameters

including traÆc distribution, we believe that similar trends
should apply for most practical scenarios. Still, there may be
some bene�t in looking at more complicated scenarios with
more than two devices of each type and in studying higher
layer traÆc such as TCP/IP. Other future directions include
exploring acquisition mechanisms for WLAN and Bluetooth

and their respective performance in an interference-limited
environment. Finally, we hope that the work presented here
could represent a �rst step in the development of coexistence
mechanisms.

6. REFERENCES
[1] Bluetooth Special Interest Group, \Speci�cations of

the Bluetooth System, vol. 1, v.1.0B 'Core' and vol. 2
v1.0B 'Pro�les'," December 1999.

[2] IEEE Std. 802-11, \IEEE Standard for Wireless LAN

Medium Access Control (MAC) and Physical Layer

(PHY) Speci�cation ," June 1997.

[3] A. Kamerman, \Coexistence between Bluetooth and

IEEE 802.11 CCK: Solutions to avoid mutual
interference," in IEEE P802.11 Working Group

Contribution, IEEE P802.11-00/162r0, July 2000.

[4] J. Zyren, \Reliability of IEEE 802.11 WLANs in
Presence of Bluetooth Radios," in IEEE P802.11

Working Group Contribution, IEEE

P802.15-99/073r0, Santa Rosa, California, September

1999.

[5] S. Shellhammer, \Packet Error Rate of an IEEE

802.11 WLAN in the Presence of Bluetooth," in IEEE

P802.15 Working Group Contribution, IEEE

P802.15-00/133r0, Seattle, Washington, May 2000.

[6] N. Golmie and F. Mouveaux, \Interference in the 2.4
GHz ISM band: Impact on the Bluetooth access
control performance," in Proceedings of IEEE ICC'01,
Helsinki, Finland, June 2001.

[7] J. Lansford, R. Nevo, and B. Monello, \Wi-Fi

(802.11b) and Bluetooth Simultaneous Operation:
Characterizing the Problem," in Mobilian White

Paper, www.mobilian.com, September 2000.

[8] P. Varshney and S. Kumar, \Performance of GMSK in
a land mobile radio channel," in IEEE Transactions on

Vehicular Technology, Aug. 1991, vol. 40, pp. 607{614.

[9] M. K. Simon and C. C. Wang, \Di�erential versus
limiter-discriminator detection of narrow-band FM,"

in IEEE Transactions on Communications, Nov. 1983,
vol. COM-31, pp. 1227{1234.

[10] T. Ekvetchavit and Z. Zvonar, \Performance of
Phase-locked Loop Receiver in Digital FM Systems,"
in Ninth IEEE International Symposium on Personal,

Indoor and Mobile Radio Communications, 1998,
vol. 1, pp. 381{385.

[11] A. Soltanian and R. E. Van Dyck, \Physical layer
performance for coexistence of Bluetooth and IEEE

802.11b," in Virginia Tech Symposium on Wireless

Personal Communications, June 2001.

[12] D. L. Schilling, L. B. Milstein, R. L. Pickholtz, R. W.
Brown , \Optimization of the processing Gain of an
M-ary Direct Sequence Spread Spectrum
Communication System," in IEEE Trans. on

Communications, Aug 1980, pp. 1389{1398.

[13] K. Halford, S. Halford, M. Webster, and C. Andren,

\Complementary code keying for rake-based wireless
communication," in Proceedings of the 1999

International Symposium on Circuits and Systems,
1999, vol. 4, pp. 427{430.

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Van Dyck, & Soltanian 37

Interference Evaluation of Bluetooth and IEEE 802.11
Systems

N. Golmie, R. E. Van Dyck, A. Soltanian, A. Tonnerre, and O. Rebala
National Institute of Standards and Technology

Gaithersburg, Maryland 20899
Email: ����������	
�������� ���	���������
�������

ABSTRACT
��� ��������� �	
����� ����� ����������

��� �
 ����
������ ��� ���� ������� ��������� �� ��� ��� �� ������
��
�!" 	��#����$ %���� ��$ ��� ��
���� �����	������ ��� ���

�� ��
����&���� ���	������� ����������� '��� ������
 ���
��������� �� ���
��� ������������ ��� ���� ��� �	 ���

����� �
 �� ������� ��� ������ �	 �����	������ �� ��� ���	���
����� �	 �������� ��� ���� ������%
$
���
� (� ������
�
�������� 	����'��) 	�� ������� �����	������ %�
�� ��
������� "*+ ��� ,�- ����
� .��
�� '� �
� �
����

��������
������� �� �������� ��� �/���
 �	 ���������
�

��� �
 ����
��

��� ��'��� �/���� ���� ��� ���Æ� �$���
(� ����� ���� �� ���� �����0
�������
 �������� ������
�������� �������
 ��� (1*2 ������
�

Keywords
(,*2
� ��������� ���� ������� �����	�������

1. INTRODUCTION
��� ����	������� �	 ��%�� ��������� ������
 �������� ���
���
� ���
��� ������ �

�
����
 3,4*
5� ��� '����%� ����
�����
 ��
 ������� � ������ 	�� '����

 ���
��� ���� ����
'��)
 3(,*2
5� (,*2
 ��' ��
�$ ������ ������
 ��

���� ��	�������� ��� ��
�����
� *)�$ ������� �� ���
��
��� �	 (,*2
 �
 �������� �� � ��
��� ����� ��������
���� ���� ������
 ���
�� ��������$��� ������
� ��� �%���
���� �������������� �����	������� ����$� ��
� ����� �����
������
 ���
������ %$ (,*2
 3�������� !����� ������
�
����� 6�7� ��� ���� �����85 ����$ ��� ��� �� �!" 	���
#����$ %���� '���� �
 �
� �
�� %$ 1��� *��� 2��'��)
3(1*25 ������
 ����������� ��� ���� ������
�������

����&������
 6�7� �� �
 ����������� ����
��� �����	������
'� ��
�� 	��� � ���
� ����������
 ��������� �� ���
���
������������ (1*2 ������
 ��������� �� ���0����$ �� (,*2
������
 ��$
����&����$ ������ ��� ���	������� �	 (,*2
��� ���� ���
��

��� ���� ��� �	 ���
 ����� �
 �� ���
��� ��� &�����
 ��

��� ���	������� �	 ���
�
$
���
 '��� ��������� �� ��
�
���0����$ �� ���� ������ 9�� ��
��
 ��� %�
�� �� �������
����
 	�� ��� "*+� ,�-� ��� '����

 ������� :�����$�
� ���%�� �	 ��
����� ���������
 ��
 �� �� ��� ����������
�	 ���
 	�� '����

 ���'��)
�������� 6;7 6�7� (���
���
�	 ���
� ���
 ������ � ,�- �$�� �������������� �� �

�	��� �%
������� �� � ��
����� ������ ���� ���� ���
 ���
�������� �����	������ ���
�� �����	���� �� ����� �� ����
�����	������ ��� ������� ��� ���� ��� 	��#����$ ���
���
�
'� ���
� �� �������� �� ���������� "*+�,�- ������

�/���
 ��
���$ �����	������ �� ��� ��� �� %��� ��� ���
�����$ ������� .�� �0����� �����	������ ���
�� %$ ���
���'��� ����
 ��������� �� ��� �������$ �	 � (1*2 ���'��)
��
 %��� ����
������� 687 ��� ��#��������
 �� ���
��������
���
� ����� 3!2:5 ��� ���
����� %$ <������� �� ��� 6=7� ��
��������� ����� ��
 %���
����� �������
 �� #�����	$��� ���
������ �	 �����	������ �� %��� ��� (1*2 ��� ��� ����
����� ���	�������� ,�%�
��� ��
��
 ��� %� ��

�&�� ����
�� ��
� ����� ���������
 ��������� �� '������ ���$ ��$ ��
���$
�
�
��������� �� �0��������� ���
�������
�

*��$���� ��
��
 %�
�� �� ���%�%���$ �	 ���)�� ���
���
'��� �%������ %$!�������� 6>7� ����
 6�7� ��� ?$��� 6@7
	�� ��� (1*2 ���)�� ����� ��� %$ ����� �� ��� 6��7 	�� ���
�������� ���)�� ������ �� � ���
� ��
�
� ��� ���%�%���$ �	
���)�� ����� �
 �������� %�
�� �� ��� ���%�%���$ �	 ���)��
���
��� �� ���� ��� 	��#����$� *������ ���
� ���$����
��
��
 ��� �	��� ���� � &�
� ����� �����0������� �� ���
������ �	 �����	������ ��� ��� ��
����� ���	������� ������
������� ���$ �	��� ��)� �

�������
 ���������� ��� ���Æ�
��
���%�����
 ��� ��� ��������� �	 ��� ����� ����

 ������
��� '���� ��� ��)� ���� �

 ����
���� "��� ���������$�
�� ����� 	�� ��� ���$
�
 �� %� ������%�� ����� �����	������
���� ��� ������ ��� ���Æ� ��
���%����� 	�� ����
$
��� �

�	��� ��������

9� ��� ����� ����� �0��������� ��
��

��� �
 ��� ���

�%������ %$ <������� 6��7� ��'���� �� ��� 6��7� ��� .����
��� 6�;7 	�� � �'� ���� (1*2
$
��� ��� � �'� ���� ����
����� �������� ��� %� ���
������ ���� �������� �� ��� ��
�
�	 %���� ���
����&� �� ��� ������������� ��
���� ���
� �
����� ���������� ���
�
�
 �	 �
��� ������� ���
��������
�� ������� ��� ������ �	 �����	������� ���
 ����� ��������
��� ������� � ���� A�0�%� 	����'��)� ?��%�
 �� ��� 6��7
���
���
�������� ��
��
 	�� � ���%�� �	 �������� ������

������ �� �
���� ���� ����� ���$
��' ���� 	�� ��� ����
������� '�%
�

���
� ���	������� �
 �������� %$ ��$ &��

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie et al. 38

�������� ����� �� ��� 6�87 �
� � ������� "*+ ��� ,�-

�������� 	����'��) �� ������� ��� ������ �	 �����	������
	�� � ���� �	 (1*2 ������
 ��� � ���� �	 �������� ������
�
!����� ��
��
 ���� %��� �%������ %$ 1��
	��� �� ��� 6�=7 	��
��� ��
� �	 ��������� (1*2 ��� �������� ������
 �� ���

��� ������ �����
�������� ����
 ��� %�
�� �� � ��)
%����� ���$
�
 ��� � ���������� ��������� �	 ��� ��: 3B
	������� ���������5� ��� '��) �� ���
 ����� �
 �� �0���
���
�	 6�87�

���
 ����� �
 ������ �� �
 	��'
� ��
������ �� '� ����
���
������ ��
����
 �� ��� �������� ��� ���� ������ ������
�� ���������� ��
������ ;� '� ��
���%� �� ����� ����� ���
������� �������� 	�� ��� "*+� ,�- ��� '����

 �������
��
������ �� '� ������� ��� ������ �	 �����	������ �� %���
�������� ��� (1*2 ���	������� ��� ���
���
��������
��
��
� +�������� �����)
 ��� �/���� ��
������ 8�

2. PROTOCOL OVERVIEW
2.1 Bluetooth
�� ���

������� '� ���� � %���	 �������' �	 ��� ��������
��������$ 6�7 ��� ��
��

 ��� ���� 	����������$ �	 ��
 ����
����
����&������
� �������� �
 �
���� ����� 3� � � �� �5
'����

 ��) ��������$ ����� �� �������� ��������������%�
����������$ ��%�
 ���� ������� �����
� �����
� ,4*
 ���
����� �����%� ������
 ��������� �������� �������
 �� ���
�!" 	��#����$ %���
������� �� ����� �� ��� ������ ��
����; �� �� ��� C!* ��� ������� >@ :. ������
 �	 �
"� '���� ��� ��&���� ��� ��� �����	��� �
 %�
�� �� ��
������� ��'�� �	 � �('��� �� ������� ���� �	 � ��� ���

���� �
 �������� �
��� %����$ ���

��� .��#����$!��	�
<�$��� 3�.!<5� ��� ��' ���� ���� �
 ��&��� �� � "%��
D
�
* ���� 4���
��� "�����0��� 3�4"5 ������#�� ������
 ���
������ ���� =�8 �

��
� ����
��

��� �����
 �� ���)��

���� �����$ �� ��� ���%�� �	
��
 3�� �� 85� ���� ���)��
�
 ����
������ �� � ��/����� ��� 	��#����$ '��� � ��0����
	��#����$ ������� ���� �	 �=�� ���
D
�

�'� �� ���� ����
 ������������� �� ���
��� ������ 	���
� �������� '���� ��� ���� �������
 �
 � ��
��� ��� ��� �����

3� ��0���� �	
���� ������ �� ���
��� ����5 ��� �

���
�
* ������ �
 ��&��� �
 � ���#�� �
����������� 	��#����$
�������
�#����� ������� 	��� ��� ��
��� ������E
 ���%��
�����

 ��� ��
 �������� ���) ����� !���
 �� ��� �������

$������� � ����� ������ ��� 	��#����$ ������� �� ��� ��
�
��� ���� ���������� �
��%�
������ �� ��� ���������� �����
��� ��
��� ������
 ��� ����

 �� ��� ������ �
��� � �����

����� '���� ��
��� ���
��� ����
��

���
 ��������� *

��� ���)�� �'�$
 	��'
 � ��
��� ���)�� ����
��

��� �

��
������ �� .����� �� '���� ������
 ��� ��
���E
 ���' �	
���
����� �FD:F �������

����� ��� �'� �$��
 �	 ��) ����������
 ���� ��� %� �
�
��%�
��� %��'��� � ��
��� ��� �
���G ��� !$��������

+����������9������� 3!+95� ��� ��� *
$��������
 +����������
1�

 3*+15 ��)� ��� !+9 ��) �
 �
$������� ���������
����� ���������� %��'��� � ��
��� ��� �
��� '���� ���
��
���
���
 �� !+9 ���)�� �� ��� ��
�� �� ������ ����
�������
� ��&��� %$ ���� ����
��
� ���
��� ��
����

'��� �� !+9 ���)�� �� ��� ��0� �� ����������$� ����
�

�� �� ������ �� � �� = ����
��
 	�� �� �� �� �� �� �� ;
���)�� 	�����
� ��
�������$� * ����� 	�����
 �	 !+9 ���)�
��
 ��� ��&��� �� ����$ =� <%��
D
 �	 ����� ���Æ� ��� ���

 625 us

 366 us 259 us

PacketPacket
Master Slave

Packet
Master

Packet
Slave

f1 f2 f3 f4Frequency Hop
Sequence

Master TX Master TXMaster RX Master RX

Slave RX Slave TX Slave TXSlave RX

������ �� �	
��� ��� ������� ��������

����� ������
������ �� ��
� �	 ���)�� �

 �� ������

��� *+1 ��) �
 �� �
$������� �������������� ����������
%��'��� � ��
��� ��� ������
���
 �� ��� �������� *� *��
������� :����� :�#��
� 3*:B5 ��������� �
 ������ �� *+1
���)��
 '���� ���)��
 ��� ������
������ �� ��
� �	 �

 ����
� ��
����� ��)��'�������� 3*+<5 �
 �������� �� ���
������
��� *+< �
 ����$�%��)�� �� ��� ������ �	 ��� ��������
���)�� '���� �� *:B2 %�� �

�� �� ������ � �� � ���������
�� '������ �� ��� ��� �������
 ���)�� '�

����

	�$ ���
������� �� ��������� �
�#����� ���%�� 3!�B25 %�� �
 �
��
�� ��� ���)�� ������ �� ����� �� ������� �
�#������ ������
��� �	 ���� ���)��
 �� �
����� ��� &��� ��� ������
��

���

�� ��� ��
��������� .��'��� ����� +��������� 3.�+5 �
 �
��
��
��� !+9 ��� *+1 ���)��
 �� ����� �� ������� �����

��� ������ ��� ���%�� �	 *+1 ������
��

���
�

���� *+1 ��� !+9 ���)��
 ���� ���
��� ���)�� 	������
�� ���
�
�
 �	 � >��%�� ����

 ���� �
�� 	�� ��

��� ������&�
������ ���
$������� ������ � 8��%�� ������ ��� � �����%�
����� ��$��� ���� �������
 ������ � ����� �� � ���� ���)��
��������� �� ��� �$�� �	 ��) ���������� ���� �
 �
��%�
���
%��'��� � ��
��� ��� �
����

* ���������� ���� �	 ���� �D; �
 ������ �� ��� ������� ���
� %��) ���� '��� ������� ��
������ ����� �#�� �� ���
�
 ������ �� ��� ����

 ����
� ���� �� �� �; �����
 ���
�������� ��� �3������5��� H = ��� %� ���������� 2��� ����
����������� �����
 �� ��� ������ ��� ��� ����

 ����� ��� ��
� ���)�� ����� I���� ���)��
 ���� � ���� ���)�� ����� �	
;== %��
 �������� ��� ����

 ���� ��� ������� * ����������
���� �	 �D; �
 �
�� 	�� �� � ���)�� ��$���� 9� ��� �����
����� �� ��� �� � ���)�� ��$���
 �
� � �D; %��) ����
'���� ����$ �� %��
 �	 ��	�������� ��� ������� '��� �8 %��
�
�� ��� �� ; ���)��
 �� ��� ���� ��$ �������� �� �����
��$���� �� ���)��
 �� ��� ���� � +:+ �� ��� ��$����
�� ��
� �	 �� ����� ���������� �� ��� ��$���� ��� ���)�� �

����� �������� C���������� �����
 	�� �� ��� �� ���)��

��� �� ������� ���)��
 ��� ��� ���������� �	 ��� *:B ���
!�B2
�����
� ��%� �
������ �
 ��� ����� ����������

�� ��� ���)�� ��� ��� ������
 ��)�� %$ ��� ��������

2.2 IEEE 802.11
��� ���� ������
������� 6�7 ��&��
 %��� ��� ��$
���
3,�-5 ��� ������ ����

 ������ 3"*+5 �$�� �������

	�� (1*2
� �� ���

�#��� '�
�� %� �
��� (1*2 ���
������ ������������%$�

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie et al. 39

�	��� �� ����	�� �� ����� ����������
 �� ��� �	����
	�� 	�����
 �	��� �� �	
� �����
 	�� ��� ����������

 ���� !��	���� ���� "��������� #����� �	���
*���

 +��� ���� H �� ,��)�� �������
,��)�� ������ �D; :��������� ,��)�� �������
�I� ��$��� �D; :��������� ,��)�� ��������
�I� ��$��� �D; ���) +��� ,��)�� ��������
�I; ��$��� 2� .�+ ,��)�� ��������
4"�� 4";� 4"8 �D; ���) +��� ,��)�� �������
��$���
4��� 4�;� 4�8 2� .�+ ,��)�� ��������
��$���

������ $� %!#& ��	�� ��	�
��

��� ������

��� ���� ������
������� ��
 	�� ����� ��/����� ,�-

����&������
G 	��#����$ ������� 3.�5
�����
��������
������
�#����� 34!5
�����
�������� ��� ��	����� 3�:5�
��� ����
��� ��'�� 	�� 4! ��� .� ������
 �
 ��&��� �� �
��0���� �	 � (��� ��� ��������
��
������$ �

�� �� ���
���(� *������ ���� �
 ������ �� = �� ��0����� �� ���

'��)� '� 	���
 �� ��� ������%
����&������ 34!
�����
����
����5
���� �� �
 �� ���
��� 	��#����$ %��� �
 ��������
��� ��� ��
� ������$ ����$���

��� %�
�� ���� ���� 	�� ��� 4!
$
��� �
 � "%��
D
 �������
'��� ��/������� %����$ ���
�
��	�)�$��� 34�,!<5� !����
��$� � � "%��
D
 ���� �
 �������� �
��� ��/������� #������
���� ���
�
��	�)�$��� 34B,!<5 �� ���
��� ���� ���� �	
�� � ��� ����
D
��� ������ ����
 �	 8�8 ��� �� "%��
D
 ���
�
� �����%� �
��� ������#��
 ���%����� #��������� ���
�

��	�)�$��� ��� �����������$ ����)�$��� 3++<5J � �	
���
�
$
���
 �
� �� "� ������
�

��� ���� ������ "*+ �$��
����&������
� ������ �� �
,�-
 ��� ���� ����
� ���������� ��� ������������� %��
�'���
������
 ��� ������ ��� %������� �	 �
��
 '�� '��� ��
����

 ��� ���'��)� ��� 4�
���%���� +����������� .�������
34+.5� '���� ��
���%�
 ��� ��	��� "*+ ������� ������
����� �
 %�
�� �� �
�����)��'� �
 ��������
��
�� ������
����

� ���
��� ��������� 3+!"*D+*5� ���� ��� "*+ ���
,�- �$��
 ��������� �� ����� �� �������� ���
��� ������
���� ���������
� ��� ,�- �$��
����
 ��� �������� ���
���$ ���� ��� ������ ����
������� ���� ��� �
�
 � ����
������ �

�

���� 3++*5 �������� �� ��������� �	 ���

������ �
 ����� ���
 �
 �������
��� %$ ���
����� ��� :.
�����$ �� ��� ������� ��� ����������� ���
������� �	 ���
��������
���� ������$)��'� �
 :!!�� �� ��������
����

������� ���������� �� ��������� �������
��
� ��� %� �
�� ��
��������� �	 ��� ������ �
 �����%�� ���
 ������#�� �
 ����

�������
���� �� ����&�
 ���� ���
���� �
 ���
��� �������
�$�� �
 ������ ����
������
� �� � �	 ���
��������
� '�
�
� �������
��
� ��� ��� :!!� �� ��������� �	 ��� ������
�
 %�
$� ���
� � ��������
���� '� ������� (1*2 ���)�
��
� %�� �� '� ��� ���
� ��� (1*2 �� ��	�� ����
��

����

* ������ �������
��
� �������
� �
 �
� �������� �� ���
"*+ �$��� �� �
�
 ��� ��#��
�����
��� 3:�!5 ��� ��������

��� 3+�!5 ��

��� �0������ �� ��)� ����������
 �	 	�����
���Æ� �� ��� ������ ��� ������
 ��� ���'��) ��������
������ 32*I5 �����%� ��
������
� +������������ �
 �
�
��%�
��� '��� ��� �	 ��� '����

 ����

���
 �
���� :�!
	����� ��� ���������
������ �

��
 � +�! 	���� ���� �����

���
�����E
 �����

� �	 ��� +�! 	���� �
 ��� ��������� ��
�
 �

���� ���� � ���
��� �������� ��� ��� :�! �����

����
 ����� :������

 �	 '������ ��� ������ �������
��
�
������� �
 �
�� �� ���� ��� "*+ �
 ��#����� �� �������� �
%�
�� ����

 ��������� 3�������� �� .����� �5 �
 	��'
� �	 �

������ ��
 ���� ��
���� �� '���
 	�� ��� ������ �� %� ���
������� ��� �
� �	 ��� +!"*D+* ��������� �	 ��� ������
�

��
�� ��� 	�� � ������ ������� ���� � 4+. �����	����

���� 34�.!5� ���
������ ���
 ���� � %��)�/ ��������� %��
	��� ��
���
 ��
 	����� C��� ���
����

	� ��������� �	
� 	����� ��� ��
��������
������ ������
 �� *+< 	���� �	�
��� � !���� �����	����
���� 3!�.!5� ��� %��)�/ '����' �

%�
�� �� � ������ ���� ���	���$ ��
���%���� �� ��� ������
�� 6	
���� 	
���7� '���� 	
��� ��� 	
��� �����
���
��� +��������� (����' ���������
� �	 ��� ������ �
 ������
����� %�
$ �� ��$ ���� ������ ��� %��)�/
��� ��� %��)�/
��������� �

�
������� �� �
 ��
���� �	��� ��� ������ ��

%��� ��� 	�� ��� �������� �	 ��� 4�.! ������� �	 �� *+< �

��� �������� '����� �� *+< ������� �������� ���
������ �
�

���
 ���� ������ ��� ���� 	���� �� ��� *+< '�
 �
� ���
����
 �� ������
��� ��
 ���� 	���� %$ ��������� ��� %�
��
����

 ����������

�����
 ��� �������� %$ ����)��� ��� .���� +���) !�#�����
3.+!5 ���� �
 �������� �� ��� ���)�� ��$���� �� ��
� ��
����� �
 	����� ��� ���)�� �
 ������� ��� �
 ���� ���� ���
����
�������

3. INTEGRATED SIMULATION MODEL
�� ���

������� '� ��
���%� ��� ���������$ ��� ���	���
�
�� �� ������� ��� ���	������� ���������� ���
��������
����������� ���
�
�
 �	 ������� ����
 	�� ��� :. �������
��� ,�-� ��� "*+ �$��
 �������� �� + ��� 9,2�� 3	��
��� "*+ �$��5� ���
� �������
�������� ����
 ���
���
���� �� ��������� 	����'��) ���� �
 ������� ��
���$��� ���
������
 ��������� �/���
 %��'��� ��� "*+ ��� ,�- �$��
�
*������ �����	������ �
 �$����$ �

������� '��� ��� :.
������ ������� ��� ���
���� �� ��� ,�- �$��� �� ���

����&����$ ������ ��� ���	������� �	 ������ �$�� �����
������
 �������� ��� "*+ �$��� !�����$� ������
 �� ���
%������� �	 ��� "*+ �$�� ������� ��� ��� �

������� ����
���Æ� ��
���%����� ��� ��$ �� ��������� 	����� �� ��� ������
	������
������� ��� �/��� ��� �����
$
��� ���	��������

.����� ;
��'
 � ���)�� %���� ��������$ ��������� %$ �'�

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie et al. 40

ti ti+1 ti+2 ti+3

BER i BER i+1 BER i+2

01010101010101111000111000010101000
Desired Signal Packet

Interference Packet���
���
���

�����
�����
�����

Interference Packet

������ '� (���� "����
��� 	�� (�	������ �� ����
�
��� ��� ����� �	��)* �+ �
 ������� ���
�	�� ������
�	�� �� ��� ����� �����	��� ������
�

�����	������ ���)��
� +��
���� ���� ��� ��
���� ���)�� �

	��� ��� (1*2 ��� ��� �����	������ ���)��
 ��� ��������
3��� &���� �
 �#��$ ���� �	 ��� ���
 ��� �����
��� �0����
���� ��� 	��#������
 �	 ��� ���)��
 '� %� ��/�����5� .��
�����	������ �� ������ ��� ���)��
 ��
� ������ �� %��� ����
��� 	��#����$� ���� �
� ��� �����	������ ���)��
 ��
� %�
'����� ��� �� "� %���'���� �	 ��� (1*2� �� �
$
���
'��� ���$ �������� �������
� ����� ��$ %� �����	������
	��� ���� ���� ��� ���)�� �� ��$ ����� ����� (� ��&�� �
������ �	
����������$ 3,9!5 �
 ��� ���� ������ '���� ���
�����	������ �
 ���
����� .�� �0����� �� � � � ���� �

���
� ������� �
 �
 ���� � � � �����

���� ������ � ,9! '���� ����� �
 ��� �� ���� �����	���
��
� ��� ���%�� ��� ������� �	 %�� �����
 �� ��� ��
����
���)�� ������
 �� � ���%�� �	 	�����
G 3�5 ���
��������
�����	������ ����� 3!�:5 ��� ���
�����������
� ����� �� ���
��������� 3�5 ��� �$�� �	 ��������� �
�� %$ ��� ����
����
��� ��� ��� �����	����� ��� 3;5 ��� ������ ����� .�� ���

���
��� �� �
 �

����� �� �
� �������� ����
 �	 ��� ,�-
��� ������� �
 ��
���%�� %��'� K�
� %����
� �'� ���)��

������ �� ���� ��� 	��#����$ ���
 ��� ����

��$ ��� �� %��
�����
 ��� ��� ���
�#���� ���)�� �

� (��� ��� ��� �
�
3
����5���$��� ����
 ��
�����
��� �
 �����0������� ����
����� �����	������ �� (1*2 �
 � �����'%��� ���� L������
��� �
� �	 �������
���� �����

����%�
�� ����
 %����� ��
�'
 ��� �� ����� ������
���������
 �����	����
�

�� ����� ��
������ ��� �����
$
���� �� �����	��� �����
'�
 ������� ���� ��'
 ��� "*+ ����
 �� �
� ��� ��$
���
�$�� ��� ������ ����
� ���
 �����	��� ����� �������

� ������
 �� ��� ������
���� 3����$ �� ��� �����$ ���5�
+��
���� ��� �������� ����
���������������������� �����
�	 �����

�
� .�� � ����� ���)��� ��� ����
������ ������
 �

�� �	
����
����
 ���� ��� ��������� %$ ��� ������ ���
����� �� ��� ��������J �����	������ ��$ %� ���
��� 	�� � ��
��$
����&� ������
 �	
����������$� �

��'� �� .����� ;�
*
����� ����� �	 �����

��� �����
 	�� �� ������% ���)���
��� �����	��� ����� �
 ��
����� �� �����

 � ���)�� �� �
�����

*� ��� ��� �	 ���� ���)�� ����
��

���� ��� "*+ �$�� ����
�����
 � ����
�������� ���� �������
 � ��� ��	�������� ���
#����� �� �����

 ��� ���)��� ���

�������� ������
 � �
�
�	 � ��� �����	����� ���)��
 '��� ����� ��
������� ���������
������ �/
��� 	��#����$� ��� ����
������ ��'��� ��� �����

��$ �	 ���
������� �
 �
� �������� ��� ����
��������
�
 ���� ��

�� �� ��� ��$
��� �$�� ���� '��� �
����� �	
%��
 �����
������ ��� ���)�� %���� ����
������� ��� ��$
���
�$�� ������
 ��� %��
����� �	��� ������ ��� �����
 ��
�����
	��� ��� �����	�������

3.1 MAC Model
(� �
�� ����	 �� ������ �
�������� ���� 	�� ���
�������� ��� ���� ������ �������
� .�� ��������� '�
���������� ��� ����

 ������� ��������� �� ���
����&���
����
 6�7� (� �

��� ���� � ���������� �
 �����$ �
��%�
���
%��'��� ��� ��
��� ��� ���
��� ��� ���� ���
$������� ��
���� �����

 �
 �������� ��� �������� ������� �������
�������� �
 ����������� 4����
 �	 ��� �������� ��� ����
����� ��
������ ���� * �
����������� ���%�� ���������
�
 �
�� ��
���� �	 ��� �������������
����&� ��������$ ����
�
�
 ��� ��
���E
 ���) ��� ���%�� �����

 �� ������ � ����
��� ���%���

.�� ��� ���� ������ �������� '� �
�� ��� ���� �����%� ��
��� 9,2�� �%���$ ��� ����&�� �� �� %$��

 ��� 9,2��
����� ���� ��� �� �
� ��� "*+D,�- �����	��� ������
(� 	���
 �� ���

���$ �� ��� 4����� !�#����� ���� '����
�
�
 � &0�� 	��#����$ ���� �������
 �� "� �	 ��� 	��#����$
%���� ��� ������ 	��#����$ �

�� �� ���;> �� �

� ��� "+ �$��� �
�� �	 ���	������� ������
 ��� ��&���
�������� ���%�%���$ �	 ���)�� �

� ,��)�� �

 ���
���

��� ���%�� �	 ���)��
 ��
������ �� ��� "*+ �$�� ��� ��
�����
 �� ��� %��
������ ���
 ���
��� �
 �������� �	���
���	������ ����� �����������

3.2 PHY Model
��� ����
������
� ������� ��� ��������
 ��� ����������
�� �����0 %�
�%���� .�� � ����� ����
������� �����
� ���
#���������
����
 ��� ��������� �� �
������ ���� �	 ���
��� ���
������ ���
 ���� �������
 	���
����
D
$�%� 	��
��� �� "%��
D
 ������ ����� ������ �� �������� � ����
��������� �� �
 �
� ���� ������ �� ��' ������ ��������� �	
��� ��������
���� �� ������� 	�� ��
 	��#����$ ��������
!����&��$�
���� ��� ��������
���� �
 �����0�����$ �
"� '���� �� ��� %� �������� �� �� ���
� �� "� � '����
�
 ���� ���� ������ �� ����� ��� �� "� %���'���� 3����

����5 �	 ��� ������
����� ��� �������� �����0
����

	��� %��� ��� ��
���� ����
������ ��� ��� �����	����3
5 ���
����� �������� �� ��� ���������

(��� ����� ��� � ���%�� �	 ��

�%� �������� ��������
��
���
� '� ���
� �� �������� ��� ����������� �������
��
���������� 3145 �������� 6�>7 6��7� ��

�������$ ��� ���
�����$ �' ��
�
���� ��)� �� ��� ��
� ������ �$�� 	��
���$ ���
���� ����������
� 4����
 �	 ��� ����� ��
���
��� ����� �� 6�@7�

�� ��� ������% ++< ��������� ���� ����� �	 ����� ��	�����
���� %��
 ����
�
 �
�#����� �	 ����� ���
������� ����
 ����
	���
 �
$�%�� *
 %�	���� ��� �����
� ��� #��������� ����
������
 �	 ���
� ����
 ��� ����
������� ��� �������� ��)
 ��
��� ��������
$�%� ��� ������
 '���� '�
 ��� ��
� �)�$
����
������ ���� (��� ��� ��� �������� ���
 ��������
��������� %$ ���������� �����
� � �8= ��

�%�
$�%�
�
'� ���
� �
����$
�%�������� %�� ���
�����%$ 	�
��� ���
����������
����� �� ��� (�
���������� ����
	���J �����

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie et al. 41

�����
 ��� %� 	���� �� 6�@7�

3.3 Channel Model
��� ������ ���� ���
�
�
 �	 � �������$�%�
�� �����������
���� 	�� ���
����
� �
 '� �
 � ���
� ����� .�� ���
������ ������� '� ���$ � ����������� ���� ���
�
���� �	
�'� ����
G 3�5 �����	�
���� ����������� 3	����
����5 	�� ���
&�
� � �����
� ��� 3�5 � ����������� �0������ �	 ;�; 	��
��
�����
 ���� � �����
� +��
�#����$� ��� ���� �

 �� ��
�
 ����� %$

� H

�
;���8 M �� ��3� � �5 �	 � � � �
8��; M ;; ��3���5 �����'�
��

3�5

'���� � �
 ��� 	��#����$ �� �� � ��� � �
 ��� ��
����� ��
�����
� ���
 ���� �

����� �� ��� ��� �
�� %$ <�������
6��7� *

����� ���� ���� 	�� ��� ����
������ ��� ��������
�������
 ��� �������� ��������� �

�
� ��� �������� ��'��
�� ���(�

�	 H �
 � �� 3�5

'���� �
 �
 ��� ����
������ ��'�� �
� �� ���(� �#� 3�5 �

�
�� 	�� ��������� ��� ��'�� �������� �� � ����� ����� ���
�� ������ � �������� �� �� ������ ����
�������
���� ���

�#������ ���
 ��� ������ �� ��� ��������� �������

��� ���� ��������� ���� �����
 ��� ,�- �$�� ���	�������
�
 ���
�������������	������ ����� %��'��� ��� ��
����
����
��� ��� �����	�����
����� ���
 ����� �
 ����� �� �� %$

��� H �	 � �� � 3;5

'���� �� �
 ��� �����	������ ��'�� �� ��� ��������� �� ���
�%
���� �	 �����	������� ��� %�� ����� ���� 	�� ������ ��� ����
����� �� (1*2
$
��� �
 ���
� ������%� 	�� ��� ����
�
������ ��'��
 ��� �����
 ����� ���
����������

�� ������� ��� ������ ����� ���
� �
 ����� �� ��� ���
������
����
� ��������� �� ���
����&�� !2:� �� ����%�
�
���
�����������
� ����� �
 ��&��� %$ ��� H �	 � �	�
'���� �	 �
 ��� ��������
���� ��'��� ��� �	 �
 ��� ���
������E

��
������$ �� ���(J ���
 ����� ���� �
 ���������
�� ��� �������� ���� ���
� �
 �� ����� ���������� *��
������ '���� ���

��� ���
� 3*(�25 �
 �
�� �� ���� ���
���
� �� ��� ��������
�

3.4 Model Validation
4. SIMULATION RESULTS
(� ���
���
�������� ��
��
 �� ������� ��� ���	�������
�	 �������� �� ��� ���
���� �	 (1*2 �����	������ ��� ����
���
�� .��
�� '� ���
���� ��� �/���
 �	 ���������

��� �

����
������ ��'��� �/���� ���� ��� ����� ��� ���Æ� �$��
�� �����	������� !������ '� ��) �� �'� ����
��� �����	���
����
�������
 �� #�����	$ ���
������$ �	 ��� ���	�������
����������� 	�� ��� �������� ��� (1*2
$
���
�

4.1 Factors Effecting Interference
(� &�
� ���
���� � 	��� ���� ������$ ���
�
���� �	 �'�
(1*2 ������
 ��� �'� �������� ������
 3��� ��
��� ���
���
���5 �

��'� �� .����� �� ��� (1*2 ����

 �����
3*,5 �
 ������ �� 3���85 �����
� ��� ��� (1*2 ��%�� �

&0�� �� 3���5 �����
� ��� ��������
��� ������ �
 &0�� ��
3���5 �����
 ��� ��� ��
��� �
 &0�� �� 3���5 �����
�

Bluetooth Slave

(1,0)(0,0)

Bluetooth Master

(0,1)

(0,15)
WLAN Access Point

WLAN Mobile

������ ,� �������� � - �.� %!#& ��/���
 	�� ���
*�������� �������

�� �� �/��� �� ������ ��� �����	������ �� �������� ���
(1*2� '� ��&�� �'�
�������
� �� ��� &�
�
�������� '� ��
��� ��%�� %� ��� ��������� �	 ������ ����� '��� ��� *,
�
 ���
��)� �� ���
 ��
�� ��� �����	������ �
 	��� ��� ��%��

������ ���� ���)��
 �� ��� *, ��� ��������� ��)��'����
����
 3*+<
5 	��� ��� !���� ��
� �	 ��� (1*2 ���Æ� �

����������� ��
� �� ��� �������� �������� %��� ��� ��
�
��� ��� ���
��� ��$
�/�� 	���
�����
 �����	������� ��
���
�����
�������� ��� ���Æ� �
 ��������� �� ��� *, ���
�������� �� ��� (1*2 ��%��� �����
� ��� ���� ���)��

��� ������$ ����� ���� ��� *+<
� ���
 �
 � ���� �������

������� 	�� ��� (1*2 ���� '��� ��� ��%�� �
 ���
������
��%� �
������ �
 ��� �'�
�������
�

�	��� $� ����	�� �� ��� ����	���

!������� 4�
���� �����	���� (1*2 (1*2

!���� !���� *, "�%��
� �������� (1*2 !��) !�����
� (1*2 �������� !����� !��)

.�� ��������� '� ���
���� �'� �$��
 �	 ����������
� �����
��� ����� .�� ������ '� �

��� �
$�������
����� �	 =�
<%��
D
 ���� '�$ �
����� � ���)�� �����
������� .�� ����
���Æ�� '� ���
���� �
����� ���� ��������
 ��8 ���)��
�
��� ���)�� ����������� ���� �
 �0��������$ ��
���%�����
��� ��
 ���� ��
�����
 �
 �������� ��������� ��

�� H �� � � ���� 3�5

'���� � �
 ��� �/���� ���J � �
 ��� ���%�� �	
��
 ��������
%$ � ���)��� .�� ��8� � H 8� � �
 ���
��
� � �#�� ��
=�8 �
�

.�� (1*2� '� �
� ��� �� "%��
D
 ���� ��� ���
���� �
���� ����������� �$���� ����������
 	�� (1*2 ���� %�
	�� �� ����� ��'�����
���� '� ��� ����$ ������
��� �� ���
"*+ �$�� ���	�������� '� �%
����� ��� ���������
 	�� ���
���������� ���� �� ���)��
� � ��� �/���� ��� ��� �� ���
���� ��� ������ �+,D�,
���)� (� &0 ��� ���)�� ��$���
�� ��� ��� %��
 '���� �
 ��� ��0����
� � 	�� ��� "*+ ��$�
��� ���� ����� ��� ���$ �� ��� ���)�� ����������� ���� ��

�����
� �� � �
 �0��������$ ��
���%����� ��� ��
 ���� �

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie et al. 42

�������� ��������� ��

�� H 3
�@�

�� ���� ���
M

��� ���

��� ���� ���
5��� 385

'���� ��� �@��%�� ,1+, ������ �

��� �� � "%��
D
 ��� ���
��$��� �� �� "%��
D
� C��

����&�� �����'�
�� '� �
�
��� ���&�������� ���
$
��� ���������

��'� �� ��%� ;�

.��
�������
 � ��� �� '� ��� �8 ����
 �
��� � ��/�����
������
��� 	�� ���� ���� ������ �� �������� �� ������� ���
���� ����� ���&����� �������
�
��'��� ��
 ��� ����

�'�
������� ���������
� ��� �
� �������� .��� .�����
 8
��� =� ���
��
 ���� ���
����
���� ��������� ������ ��� ����
����
 ��� ���$
��� �� �������� �� ��� �������
��
 '���
���$���� ��� �0��������� ��
��
 ��
���%�� �� !������ ;���
���
 	��� �������
 	������ ��������� 	�� ��� ��
��
�

�	��� '� �����	���� (�	�����

�����	���� (�	�����
 0	���

,���������� ���$ 8 �
D)�
1����� �	
�������� ��� ��
�����

*�������� (�	�����
 0	���

*+1 ��
�%��� ,��)�� �����
������ 4"8
!+9 ��
�%��� ,��)�� �����
������ �I�
����
������ ,�'�� � �(
%!#& (�	�����

����
������ ,�'�� �8 �(
,��)�� ������ ��� %��

,��)�� ,�$��� ������ %��

%!#& ��	�
��

��� (�.��

.��
�� '� ��) �� ��� �/��� �� �������� �	 ������
��� ���
(1*2 ����
��

��� ��'�� ��
������� �J ���� �
� ������
�
��� ��� �����	���� ����
��

��� ��'�� �� ��� ������
�����
!���� ��'�� ������ ��������
 �0�
� �� ���$ (1*2 ���
�����������
� �� �
 ��������� �� ���
���� ��' ���$��� ���
����
������ ��'�� ������
 ��� �����	������� ��'�����
����
�������� '�
 ��
����� �
 � �' ��'�� ������� '� &0 ��

����
������ ��'�� �� � �(�� �
��������
�

(� &0 (1*2 � �� =�N 	�� ��/����� �������� ���Æ� �$��

��� ����
 �	 �� �� .����� 83�5� '� ���� �
��������� �/���
������ �� �(� * ����
���� '���� �
 ��
� �� ��D>@� ������

����
 �� ��� ���%�%���$ ���� �������� �
 ������� �� ���
(1*2 �������� %���� ���
� ������
��� ��� (1*2 ����
�
��

��� ��'�� %�$��� �� �(���
 ��� �/��� ��� ��������
���)�� �

� ���'��� � ��� 8 �(� �
�� ������ �� ���
(1*2 ����
������ ��'�� �����
 ��� �������� ���)�� �

�
,��
� ���� ��� ������� ��
�����
 �	 ��� ���)�� �

 �����

	�� ��/����� ����
 �	 � %��'��� � ��� 8 �(J �
 � ������
�
�
��� ���)�� �

 �
 ������� *
�� ���� ���� �������� ����� ��

��� �'�
� ���)�� �

� ���$ ��� �� ��

���� ���)��
� �� *

����� ���
�� 	�� ��� �' �

 ���%�%���$ �
 ���� ����� ���)�
��
 ��� ��L����� ��$ �	 ����� ��� �����
 �� ��� ����

 ����
�� ���)�� ������
�
�� ��%� �� * ���)�� ��$ %� ��������
'��� � �������$ ���� ���%�� �	 %�� �����
 �� ��� ��$����
'���� ��$ ��� �� �
�%
������ ��������� ��
�%L������ �����
#����$�

.����� 83%5
��'
 ��� ���%�%���$ �	 ���)�� �

 	�� ���

(1*2 ��%�� ������� ���
 �����
����
 �� *+<
 %����
������� �� ��� (1*2
������ ��� ������ ����� �
 ����
��� ���)�� �

 ������
�
 �
 ��� (1*2 ����
������ ��'��
������
�
� ��'����� '� ������ �
���� O%���P %��'��� �
��� 8�(�� � �#��
 ;�N ��� =�N� ���
 �
 ��� �� ��� �	�
	��� �	 ��
������ �����	������� ��� (1*2
����� ������
�

��
 ����
������ ��'�� ��� ���
�
 ���� �����	������ �� ���
�������� ������
J �
 � ��
��� ����� ��� ���� ������
��
�

���
 '����� ��� �������� �������� '���� ���
�
 ���� �
�
*+<
 �� ��� (1*2
������ *
 �0������� ���
 �/��� �
 ���
���
��� 	�� � H ���N ��� ����� ���Æ�
���� ��� ���Æ� ��
�
���%����� �
 ��� ������ %$ ���)�� ������
��

����

2�0�� '� ���
���� ��� �/��� �	 ������
��� ��� (1*2 ����
�
��

��� ��'�� �� ��� (1*2 ���	������� ��
������� ��
.��� .����� 83�5� '� �%
���� ���� ���� �	 ��� (1*2 ����
�
��

��� ��'�� �
 &	�$ ����
 ���� ���� ��� �������� ����
�
��

��� ��'�� 3&0�� �� ��(5� ��� ���)�� �

 	�� ���(1*2
�
 ��$ ������
�� %$ �� ��
� ��	� ���
 ���
 �
 �� �� ���
����
���� �%
�������� �� ��'�� ������� ��
���$� '� ����
���� ������
��� ��� ����
��

��� ��'�� ���
 ��� ����

���$
������� ��� ���	�������� ��'����� ������
��� ��� ����
�
��

��� ��'�� �
 �
��$ � O���� �����%��P
������$ ����
��$ ��� ������ ��� �����	������ �� ����� ������
�

12���� !�	�

��� �/���� ���� �
� ��	����� �� ��
��� ��
�
 �
 ���$ �$�
��� �
 �� ������
���� ��������� �� ����)� +��
����
�������
� '���� �������� �
 ��� �����	���� ��� &0 ��� (1*2 ����
�
��

��� ��'�� �� �8 �(� (� �%
���� ���� 	�� ��� (1*2�
��� ���)�� �

 �
 ����������� �� ��� �������� �/���� ���
�

��'� �� .����� =� .�� � �#��
 ��N� 8�N� ��� ���N
��� ���)�� �

 �
 �8N� ;8N� ��� �8N� ��
�������$� ���

�%
�������� ��
 %��� ���&���� ���$����$ �� 6��7� '����
��� ���)�� ����� �

��'� �� ������ ��� ��$ �� ��� �/����
��� �	 ��� �����	����
$
��� %�� �
� �� ��� ���)��
� �
 �	
%���
$
���
�

���
����&����� �	 ��� ���)��
� � �
 �������� �� .�����
 8
3�5 ��� 3�5� '����
���� �������� ����� ���)��
 ��� �� �

���)�� �

 	�� �������� %�� ���
� ���� �����	������ 	��
(1*2� ��'����� 	�� ��� (1*2 �� "%��
D
 ����� ��� �/���
�	 �������� ��� (1*2 ���)��
� � ���� ��� ����� ����� ��
������ %��
 ��
 ���$ ���� �/��� �� ��� ���	������� �	 %���
��� (1*2 ��� ��������� ��� ���� �
 ��� �� ��� �������$

���� ����
��

��� ���� �	 ��� (1*2 ���)��� *� ��� �
"%��
D
 ����� (1*2 ���)��
 �	 ���
��� %�� �����
 ��)�
���
�����%$ ����� �� ����
���� ��� ��� �/��� �	 ���)��
� �
�

���'��� ���� ����������� .�� � 	������ ��
��

��� �	
��� � "%��
D
 ��
�� ���
�
�� 6�87�

*�������� ��� �	��

�� ����� �� �������� ��� �/��� �	 ��� �������� ��� ����
�� (1*2� '� �
� ��/����� ���)�� �$��
� 4"�� 4";� ���
4"8J ���
� ���)��
 �����$ �� ;� ��� 8 ����
��
� ��
����
����$� ��� �������� ��� ���� �
 ���������� %$ ��� ���%��
�	 ����
��
 �������� %$ � ���)��� ���
� ��� ��� ���� �

�=��� 8;;� ��� ;�� ���
D
 	�� ���� ��;� ��� ��8 ���)�
��
� ��
�������$� ��� �/���� ��� 	�� �������� �

�� ��
���N� ��� ��
��
 �� ��%� � ����$ �������� ���� � 	�
���
��� ���� ���
 �� ������ ���)�� �

�
 3�@N� 8@N� ��� �8N

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie et al. 43

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5 10 15 20 25 30 35 40 45 50

Pr(
Pa

cke
t L

oss
)

Transmitted Power(mW)

BT Data=30%
BT Data=60%

BT Data=100%
BT Voice

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5 10 15 20 25 30 35 40 45 50

Pr(
Pa

cke
t L

oss
)

Transmitted Power(mW)

BT Data=30%
BT Data=60%

BT Data=100%
BT Voice

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

Pr(
Pa

cke
t L

oss
)

Transmitted Power(mW)

BT Data=30%
BT Data=60%

BT Data=100%
BT Voice

������ 3� ���
���
���

%!#& � H =�4�)	+ ����	��� ��

(���	������ �� �	���� ��

 ��� ��� *��������
�	/��
)�+ ����	��� �� (���	������ �� �	���� ��

 ��� ���
%!#&�������)�+ ����	��� $� (���	������ �� �	����
��

 ��� ��� %!#& �������

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

Pr(
Pa

cke
t L

oss
)

BT Offered Load

Wlan=30%
Wlan=60%

������ 5� ����	��� $� (���	������ �� �	���� ��

 ���
��� %!#& �������

	�� ���� ��; ��� ��8� ��
�������$5� 2��� ���� ���
��
��
 ��� ��
��
����� �� ��� (1*2 �/���� ����

�	��� ,� ����	��� $� (���	������ �� %!#& �	����
��

 /��
�
 *�������� ��� �	���

�� (1*2 � H ;�N (1*2 � H =�N
4"� ���@�> ���@=�
4"; ��8@88 ��8@8�
4"8 ���8>� ���8�8

*�������� ��	Æ� ����

��� #��
���� ���� �
� '������ �������� ����� ������
(1*2
���� ���� �������� ����� ��� ���� ���
�� (� �
� �����
�$��
 �	 ���)��
 	�� ����� �����
������� ����$��� �� �� ��
��� �� ;� �� � �����
���
 ��� '��
� ��
� �	 �����	������ 	��
(1*2 �

��'� �� ��%� 8 '��� �@N ���)�� �

� �� � ���
�� ;� '���� ������� �

 ����� ���������� ��� ���� �
�� ���
	��������� ���
��� �

 �	��� ��� �����	��� �����	�� �

 '���
(1*2 3>�N ��� 8=N 	�� �� � ��� �� ;� ��
�������$5�
��� (1*2 ���)�� �

 '��� �������� ���� �����	������ �

;>N� ,��
� ����� ���� ��� ��
��
 �� ��� ������ �� ���
(1*2 �/���� ����

�	��� 3� ����	��� $� (���	������ �� %!#& �	����
��

 /��
�
 *�������� ��	Æ� �����

�� (1*2 � H ;�N (1*2 � H =�N
I���� �I� ���@�> ���@=�

�I� ��>��� ��>�@;
�I; ��8==� ��8=�;

4���� � H =�N ��;>8� ��;@��

9� ��� ����� ����� %��� �������� ����� ��� ���� ��� �#��$
�/����� %$ ��� (1*2 �����	������ 3��N5 �

��'� �� ���

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie et al. 44

%� =� 2��� ���� �� �'�� (1*2 ����
��

��� ��'��
� ���
�������� ����� ��
 �

 ���)�� �

 3.����� 83�55� *
��

���� � ����� �$��
 �	 ����� ���)��

�/�� ���
��� ���)��
�

� �� �
 ���	���%� �� �
� �� ;� '���� ���
�
 �

 �����	���
���� �� ��� (1*2� ��� ����� ���������� ������ ���� � ���
�� � ���)��
 ��$ ������� ������� ����� �� � ���
��������
������������ %�� ���
 ������ �
 	�� ��� '��) �� ������� ���
���)��
 	��� �����	������� ��
����� �� �
 ��� 	��#����$ ����
���� �%���$ �	 �������� ���� ����
 ��� ������ ���� %$ ���
(1*2�

�	��� 5� ����	��� �� (���	������ �� *�������� �	����
��

 /��
�
 *�������� ��	Æ� �����

�� (1*2 � H ;�N (1*2 � H =�N
I���� �I� �����8 ����=�

�I� �����= �����8
�I; ���@@� ���@��

4���� � H =�N �����@ ����8@

*�������� ��	�
��

��� (�.��

(��� ��
� �������� ������
 '� %� ��������� �� � �(�
���
����&������ �
� ��'
 ������ ����
������ ��'��
� ���
%� >
��'
 ��� ���%�%���$ �	 ���)�� �

 	�� %��� ����
����� ��� ��� (1*2 	�� ����� ����
 �	 ��� �� ����
����
��� ��'�� ��� �'� �$��
 �	 �������� ���Æ�� *
 �0�������
������ ����
������ ��'��
 ��� �� ���� �
� (1*2 ���)��
�
�������

 �	 ��� �� ���Æ� �$��� ������
��� ��� ��'�� 	���
� �� �� �(���
 �� �����0�����$ � &	�$ ������� ������
�
�� (1*2 �

� +�����
�$� ��� �������� ���)�� ����� ����
������
�
� ��
�� ��� ���� ��' %���&��� ���
 ������
� �

	�� ��������J ���� � �

 ���%�%���$ �	 ���;;8 ��$ ��� ��
���������%� ����� #����$�

�	��� 6� ����	��� $� (���	������ �� �	���� ��

 /��-

�
 *�������� ��	�
��

��� ��.��� %!#& � H =��

�� �� �� 1�

 (1*2 1�

���Æ� ,�'�� ,��%� ,��%�
� H =�N � �����8 ���@=�

��8 �����8 �����>
�� ���>;; ���;8�

I���� � �����> ����8;
��8 ����>@ ���=�@
�� ���;;8 ���@>>

4.2 Realistic Interference Topologies
�� ���

������� '� ���
���� �'� �������� �����	������ ������
���
� (��� ���$ ������ �� %�
���'��� ��/������ ���$ ���
���$ ��������� ���� ������ ��� &�
� ��� ��
 ��� (1*2
������� �� ��� ���
� �	 ��� �������� �������
� ������ �� ���

������ '��� ���
����� ��� ��
 ��� (1*2 ����

 �����
������ �
 ���
������

�������� $

(� &�
� ��) �� ��� ������$ ��
������ �� .����� >� �� ����

�
�
 �	 ��� (1*2 *, ������ �� 3���85 �����
� ��� ���

WLAN Sink

WLAN Source

dB

BT Slave

BT Master

r

dw

������ 6� �������� $ - �.� %!#& ��/���
 	�� ���
*�������� �������

(1*2 ��%�� �� 3���5 �����
� ��� (1*2 ���Æ� �
 ������
���� �� ��� ��%��� '��� ��� *, ������
 ��)��'�������
�
��� ��
����� %��'��� ��� (1*2 *, ��� ��%�� �
 �� H �8
�����
� ����� ��� ��� �������� �������
 ������$ ������
�������� � ��
)� ��� ������ �	 ��� ��
) �
 ������ �� 3���5
��� ��
 �����
 �
 � H �� �����
� (� ��&�� �� �
 ��� ��
�����
%��'��� � �������� ��
��� ���
��� ����� �� H � �����
	�� ��	 �	 ��� ��
��� ���
��� ����
� '��� �� H � �����

	�� ��� ����� ��	 �	 ��� ��
��� ���
��� ����
�

�� ���
 ��
�� ��� ���� �����	������ �� �������� �
 ���
��
%$ ��� (1*2
����� ������ �� ��� ������ �	 ��� ��
)J ���
����������� �	 ��� ��� �������
 �/���
 ��� (1*2
������
(� 	���� ���� '��� ��� (1*2
$
��� �
 ��� ����������
��� �������� ���)�� �

 �
 ������%� 3�

 ���� ��� ����
����5� ��%� � ����
 ��� ���)�� �

 	�� ��� �������� ���
(1*2 ������
� ��� ���)�� �

 	�� ��� �������� ������

�
 �������� ���� ��� ��
��� ���
��� ������
 ���
��� ����
�'� �����
G �������
 '��� �� H � ����� ��� �������
 '���
�� H � �����
� .�� (1*2� ��� ���)�� �

 �
 ���
���� ��
���
������ �� �
 �/������$ ��� �� ���
��)�

(� �%
���� ���� ���(1*2 ���)�� �

 ������
 �� ��� ����
����� ���Æ� ��� ����� �� *
 � �
 ������ 	��� ;�N �� =�N�
��� (1*2 ���)�� �

 �

����&����$ ������� 	��� ����8N
�� �8�=�N� ��'����� ��� (1*2 ���)�� �

 �
 ��
��
����� ��
��� (1*2 �/���� ���� C��)� ��� �������
 ��
��
� ����
����� ����� ���
 ��� �����
��� ��� '��
� ��
� �����	������

������� 	�� (1*2� ���
 �
 ����$ ��� �� ��� 	��� ����
�������� ����� ���)��
 ���
����� ��� ��� ������� ���� �	
��� ������� �
 �=�� ���
D
� '���� �
 	�
�� �����	���� ������
��� �������
 ��
���� �	 ��� ���
 ��� ���
� ���� �����	������
�� ��� (1*2 �����������

�� ������� ��� �������� ���)�� �

 	�� �� H � �����

�
 �

 ���� 	�� �� H � �����
� ��� ���
�� �
 ���� '���
��� ��������
���� �

������� 3���� �
������ ��
�����5�
��� ������ �	 �����	������ �
 �

����&����� (� �
� ����
���� ��� �������� ���)�� �

 ������
 �� %��� (1*2 ���
�������� �/���� ���
� �� �
 ������ 	�� ������ �/���� ���
�

�������� '

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie et al. 45

�	��� 7� 8�������� ' ��
���

�� ���Æ� (1*2 � �� 1�

 (1*2 1�

�� H � � �� H � �

� H ;�N ;�N ����=� ���=;� �����8
=�N �����@ ���@8> ���@�>

� H =�N ;�N ����=� ��;>@= ���8=�
=�N ���=8= ��;@�� ���88>

I���� ;�N �����8 ���;�8 ��;=�@
=�N ������ ���=8@ ��;=�;

(� ��0� ���
���� ��� ������$ ����� �� .����� �� �� ���
����
 ��� (1*2 *, ��� 	��� (1*2 ��%�� ������
� ���
(1*2 *, �
 ������ �� 3���85 �����
� ��� �� �
 ���
�����
�	 ��� ���Æ� ����������� ��� 	��� (1*2 ��%�� ������

��� ����� �� � �'�������
���� ���� �� 3����5� 3���5� 3���
��5� ��� 3����5 �����
� �� ���
 ������$� ����� ��� 	��� ����
����� �������
� ���� ���
�
���� �	 � ��
����
��� ������ �����
��� �������� �	 ��� �������� ������
 �
 �

��'� �� ���
&�����

WLAN
Source

WLAN Sink

BT Slave

BT
Master

WLAN Sink BT
Master

BT Slave

BT Slave

BT
Master

BT
Master

BT Slave

WLAN SinkWLAN Sink

(0,15)

(-1,1) (1,1)

(-1,-1) (1,-1)

(0.5,1)(-0.5,1)

(-1,0.5) (1,0.5)

(-1,-0.5)

(-0.5,-1) (0.5,-1)

(1,-0.5)

������ 7� �������� ' - ��/� %!#& ��/���
 	�� ����
*�������� �������

�� ���
 ��
�� '� ��� ��)��� �� ��� �/��� �	 �������� ���
�����
 �� ��� 	��� (1*2
��) ������
� ��� ���)�� �

���
��� 	�� (1*2 �
 �������� ���� ��� 	��� ������
� *

��'� �� ��%� @ ��� ������ �	 (1*2 �����	������ �� ����
����� �
 ������� ����� ���� ��� (1*2
����� �
 	�� 	���
��� �������� �������
� *
 �0������� ��� (1*2 ���)�� �

������
 �� ��� �������� ���Æ� ���������
� ��� �� �
 ������
��
��
����� �� ��� (1*2 ���Æ� �������$� (��� ��������
������ ��� (1*2 ���)�� �

 �
 ��
� �� ��N� �� �
 8�N ���
;�N 	�� �������� '��� ���
 �	 � H =�N� ��� � H ;�N�
��
�������$�

5. CONCLUDING REMARKS
(� ���
����� ��
��
 �� ��� ���	������� �	 �������� ���
(1*2 ��������� �� ��� ��� �� �!" %��� %�
�� �� �������
������� "*+� ��� ,�- �$�� ����
 	�� %���
$
���
� ���
��������� 	����'��) �
�� ��'
 �
 ��
���$ ��� ������ �	
�����	������ �� � ��
�� ��� ����������� '���� �'�
$
���

�	��� 9� 8�������� , ��
���

�� ���Æ� (1*2 � �� 1�

 (1*2 1�

� H ;�N ;�N ����;� ��;;�;

=�N ����;; ��;��8
� H =�N ;�N ����;� ��8���

=�N ����=� ��8�@=
I���� ;�N ������ ���;��

=�N ������ ����;�

��� �/������ ���� ������ ��� �0���� ��� "*+ ��� ,�-
�$�� �����������
 �� ����
$
����

(� ��� �%� �� ���'
��� �
�	� �����
���
 %�
�� �� ���
��
��
� .��
�� '� ���� ���� ��'�� ������ ��$ ���� ������
%���&�
 �� ���
 ������������ �� ����� �� ������ ��� (1*2
���)�� �

 �� ������%� ���
� ��� ����
��

��� ��'�� ��

�� %�
����&����$ ������
�� 3���� &	�$ ����
 ��� ��'�� �	
�������� �
 ���
�Æ�����5� 9� ��� ����� ����� ������� ���
(1*2 ��'��� ��$ ��� ����� �����	������ �� ���������
!������ �
��� �
�'�� ��� ���� 	�� �������� 3���� �����
���)��
� �
5 ��$ ���
� �

 �����	������ �� (1*2�

9����� ��� ��
��
 ��� ��������� �� ��� ���Æ� ��
���%��
����� -��� ����� ��$ %� ���� ���� 	�� ��������� ������ ��
���� �
�����$ 	�� ��� ��������
�������
� 2�� ��$ ���
 ���
�����0��$ �	 ��� �����������
 ��� ��� ���%�� �	 �������
���
 �� ��L�
� ��)� ��� ������ ����� ���%�� ��������%��
%�� ����
��� �� �%L������ 	������� �
 ���$ ��������� �� ���
����������
 ��� ���
�������� ���
� ��������� �������%�
���	������� 	�� � ���������
$
��� ����
 �� ��� �0���
�
�	 ��� �����
$
���E
 ����������� �����	���� '� %����� ����
��� ������$
������
 �� ���
 ���%�� �� �� ��� ����������
�	 ���0�
����� �������
�
�

6. REFERENCES
6�7 �������� !����� ������
� ������ O!����&������
 �	

��� �������� !$
���� ��� �� ������ E+���E ��� ��� �
����� E,��&�
E�P 4����%�� �@@@�

6�7 ���� !��� ������� O���� !������� 	�� (����

 1*2
"����� *���

 +����� 3"*+5 ��� ,�$
��� 1�$��
3,�-5 !����&������ �P K��� �@@>�

6;7 O������G �������� ,��	������� ��������� ����P
�� ��������
��
����GDD�

�
�	�'�����%�����D���������'��)
D����
�����D
%������ �����

6�7 "� ��)��� :� ��������� *� 1��� ��� "� ����� O������
�	 +����� "���
 �� !�������� �	 1���� !���
(����

 2��'��)
�P �� ���
������ �� ��������
��������� !������ (*� *���
� �@@@�

687 !� C��'���� !� "�$������ ��� 2� "��������
O������#��
 �� ������� ��� ���	������� �	 '����

1*2 ����� �!" �����	������ �����������
 �P �� ����
�������
�!
 ������
� � ��""��
�����# $���
�� ����� �������
����
� �� ��""��
�����
������
�� �@@@� ��� �� ��� ���Q��8�

6=7 *� <������� ��� 2� ��)������� O"����'��� ����
�����	������ �� '����

 1*2
 ��������� �� ��� ���

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie et al. 46

�� �!" %����P �� ���
������ �� � � %� ����
���������� �&"�����" � �������# ����� ��
��'��� (���� ��""��
������ �@@>� ���%�� ;� ���
����Q���>�

6>7 !� !��������� O,��)�� ����� :��� �	 �� ����
������ (1*2 �� ��� ,��
���� �	 ���������P �� ����
�%)*�$+ ���,�� -���� �����'����# ����
�%)*�$+�))�$..�)� !������ (�
�������� "�$ �����

6�7 �� ����
� O������ �	 �������� �� ������ 4�����
!�#������P �� ���� �%)*�$$ ���,�� -����
�����'����# ���� �%)*�$$��%�.$�� !�����%�� �@@��

6@7 K� ?$���� O:���%���$ �	 ���� ������ (1*2
 ��
,��
���� �	 �������� :����
�P �� ���� �%)*�$$
���,�� -���� �����'����# ����
�%)*�$+����)/.�)� !���� :�
�� +��	������ !�����%��
�@@@�

6��7 2� ����� ��� .� "������0� O�����	������ �� ��� ���
�� �!" %���G ������ �� ��� �������� ����

������ ���	��������P �� ���
������ �� ���� ����)$�
�����

6��7 *� <�������� O+��0�
����� %��'��� �������� ���
���� ������ ++<G !������
 �� ����� �����
�����	�������P �� ���� �%)*�$$ ���,�� -����
�����'����# ���� �%)*�$$�))�$0*�)� K�$ �����

6��7 �� ��'���� I� "������ ��� K� �������� � O��������
!���$ 	�� ���� ������ ��� ��������
����������%���$�P �� � ���� 1� �
���� 	�
 ����&
������
� 21	�3# ����� *))$� "�$ �����

6�;7 4� .������� O1��) ,��	������� �	 �� ��%�����
�������� ,��
��� *��� 2��'��)�P �� ���
������ ��
���� ����)$� ��
��)�� .������ K��� �����

6��7 !� ?��%�
� (� !���� <� "�����
� ��� K� �����
���
O:���� ���'��) ���	������� �	 %������� �P ��
���
������ �� ���� ���������� ������
� �
��""��
�����# ��� *)))� 2�' 9����
� 1*� K���
����� ��� ;� ��� �8=;Q�8=>�

6�87 2� ������ :��� I�� 4$�)� ��� *� !��������
O�����	������ �	 �������� ��� ���� ������G
!�������� "������ ��� ,��	������� ����������P ��
���
������ �� � � ����� ��� ����������
���,� �� � �������# ���&���# �� ��"������ ��
�������� �� ��'��� �&���"�# ������)$� :����
���$� K�$ �����

6�=7 K� 1��
	���� *� !������
� ��� :� 2���� O(��.�
3������%5 ��� ��������G ���%��� +��0�
������P ��
���� ���4��, ����5��� !���D9��� �����

6�>7 "� <� !���� ��� +� +� (���� O4�/������� ���
�

���������
���������� ��������� �	 �����'�%��� ."�P
�� ���� 	����
���� � ��""��
������ 2��� �@�;�
��� +9"�;�� ��� ���>Q��;��

6��7 �� �)��������� ��� ?� ?������ O,��	������� �	
,��
����)�� 1��� :������� �� 4����� ." !$
���
�P
�� ��� ���� ���������� �&"�����" � �������#
����� �� ��'��� (���� ��""��
������ �@@��
��� �� ��� ;��Q;�8�

6�@7 *� !������� ��� :� �� I�� 4$�)� O,�$
��� �$��
���	������� 	�� ���0�
����� �	 �������� ��� ����
������%�P �� 1������ 	�
 �&"�����" � ��������
������� ��""��
������ K��� �����

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie et al. 47

Interference in the 2.4 GHz ISM Band:
Challenges and Solutions

N. Golmie

National Institute of Standards and Technology
Gaithersburg, Maryland 20899
Email: nada.golmie@nist.gov

RÉSUMÉ.

ABSTRACT. Most emerging radio technologies for Wireless Personal Area Networks such as the
Bluetooth protocol are designed to operate in the 2.4 GHz ISM band. Since both Bluetooth
and IEEE 802.11 devices use the same frequency band and may likely come together in a lap-
top or may be close together at a desktop, interference may lead to signi cant performance
degradation. The main goal of this paper is to describe the interference problem and to high-
light a coexistence framework for these technologies to operate in a proximal environment. We
give an overview of several coexistence solutions proposed for various interference scenarios.
We study several factors that may impact interference such as fragmentation and the choice of
packet encapsulation and give simulation results for selected scenarios and con gur ations of
interest.
MOTS-CLÉS :

KEYWORDS: WPAN, Bluetooth, WLAN, Interference, Coexistence

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 48

1. Introduction

Increasingly people work and live on the move. To support this mobile lifestyle,
especially as work becomes more intensely information-based, companies are pro-
ducing various portable and embedded information devices including PDAs, pagers,
cellular telephones and active badges. At the same time, recent advances in sensor
integration and electronic miniaturization are making it possible to produce sensing
devices equipped with signi cant processing memory and wireless communication
capabilities to create smart environments where scattered sensors could coordinate to
establish a communication network. These wearable computing devices and ad-hoc
smart environments impose unique requirements on the communication protocol de-
sign such as low power consumption, frequent make and break connections, resource
discovery and utilization and have created the need for Wireless Personal Area Net-
works (WPANs).

A WPAN is a wireless ad hoc data communications system that allows a number
of independent devices to communicate. WPAN is distinguished from other types of
wireless networks in both size and scope. Communications in WPAN are normally
con ned to a person or object and extend up to 10 meters in all directions.

This is in contrast to Wireless Local Area Networks (WLANs) that typically cover
a moderately sized geographic area such as a single building, or campus. WLANs ope-
rate in the 100 meter range and are intended to augment rather than replace traditional
wired LANs. They are often used to provide the nal few feet of connectivity between
the main network and the user. Users can plug into the network without having to
look for a place to link their computer, or having to install expensive components and
wiring.

What is emerging today are wireless technologies, including IEEE 802.11 [802],
Bluetooth [GRO a], IrDa [ASS], and HomeRF [GRO b][K. 00], that promise to out t
portable and embedded devices with high bandwidth, localized wireless communica-
tion capabilities that can also reach the globally wired Internet.

Due to its almost global availability, the 2.4 GHz Industry Scienti c and Medical
(ISM) unlicensed band constitutes a popular frequency band suitable to low cost radio
solutions such as the ones proposed for WPANs and WLANs. This sharing of the
spectrum among various wireless devices that can operate in the same environment
may lead to severe interference and result in signi cant performance degradation.

The main goal of this paper is to describe the interference problem. We give seve-
ral interference scenario examples and provide a qualitative discussion of the perfor-
mance degradation resulting from interference based on several published results in
the literature. We also give an overview of the coexistence framework adopted by the
IEEE 802.15.2 Task Group and discuss some of the coexistence solutions proposed.

The rest of the paper is structured as follows. In section 2, we give some general
insights on the Bluetooth and WLAN device operation. In section 3, we describe the
interference problem and give several interfence scenarios as example. In section 4,

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 49

we present a coexistence framework and in section 5 give some insights on factors
that might impact interference such as the use of Forward Error Correction (FEC), the
choice of the packet size and encapsulation. Our observations are accompanied with
simulation results obtained for an example scenario. Concluding remarks are offered
in section 6.

2. Wireless Technologies in the 2.4 GHz Band

In this section we give an overview of the various radio technologies operating
in the 2.4 GHz unlicensed ISM band. We focus on the Bluetooth and IEEE 802.11
protocols.

2.1. The Bluetooth Specifications

In this section, we give a brief overview of the Bluetooth technology [GRO a] and
discuss the main functionality of its protocol speci cations which consist of several
modules, namely, the Radio Frequency (RF), Baseband (BB) and Link Manager (LM).
Bluetooth is a short range (0 m - 10 m) wireless link technology aimed at replacing
non-interoperable proprietary cables that connect phones, laptops, PDAs and other
portable devices together. Bluetooth operates in the ISM frequency band starting at
2.402 GHz and ending at 2.483 GHz in the USA, and Europe. 79 RF channels of
1 MHz width are de ned. The air interface is based on an antenna power of 1 mW
(0 dBi gain). The signal is modulated using binary Gaussian Frequency Shift Keying
(GFSK). The raw data rate is de ned at 1 Mbits/s. A Time Division Multiplexing
(TDM) technique divides the channel into 625�s slots. Transmission occurs in packets
that occupy an odd number of slots (up to 5). Each packet is transmitted on a different
hop frequency with a maximum frequency hopping rate of 1600 hops/s.

Two or more units communicating on the same channel form a piconet, where one
unit operates as a master and the others (a maximum of seven active at the same time)
act as slaves. A channel is de ned as a unique pseudo-random frequency hopping se-
quence derived from the master device’s 48-bit address and its Bluetooth clock value.
Slaves in the piconet synchronize their timing and frequency hopping to the mas-
ter upon connection establishment. In the connection mode, the master controls the
access to the channel using a polling scheme where master and slave transmissions
alternate. A slave packet always follows a master packet transmission.

There are two types of link connections that can be established between a mas-
ter and a slave : the Synchronous Connection-Oriented (SCO), and the Asynchronous
Connection-Less (ACL) link. The SCO link is a symmetric point-to-point connection
between a master and a slave where the master sends an SCO packet in one TX slot
at regular time intervals, de ned by TSCO time slots. The slave responds with an SCO
packet in the next TX opportunity. TSCO is set to either 2, 4 or 6 time slots for HV 1,
HV 2, orHV 3 packet formats respectively. All three formats of SCO packets are de -

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 50

ned to carry 64 Kbits/s of voice traf c and are never retransmitted in case of packet loss
or error. The ACL link, is an asymmetric point-to-point connection between a master
and active slaves in the piconet. Several packet formats are de ned for ACL, namely
DM1, DM2, and DM3 packets that occupy 1, 3, and 5 time slots respectively. An
Automatic Repeat Request (ARQ) procedure is applied to ACL packets where packets
are retransmitted in case of loss until a positive acknowledgement (ACK) is received
at the source. The ACK is piggy-backed in the header of the returned packet where
an ARQN bit is set to either 1 or 0 depending on whether the previous packet was
successfully received or not. In addition, a sequence number (SEQN) bit is used in the
packet header in order to provide a sequential ordering of data packets in a stream and
 lter out retransmissions at the destination. Forward Error Correction (FEC) is used
on some SCO and ACL packets in order to correct errors and reduce the number of
ACL retransmissions.

2.2. The IEEE 802.11 Specifications

The IEEE 802.11 standard [802] de nes both the physical (PHY) and medium
access control (MAC) layer protocols for WLANs. In this sequel, we shall be using
WLAN and 802.11 interchangeably.

The IEEE 802.11 standard calls for three different PHY speci cations : frequency
hopping (FH) spread spectrum, direct sequence (DS) spread spectrum, and infrared
(IR). The transmit power for DS and FH devices is de ned at a maximum of 1 W and
the receiver sensitivity is set to -80 dBmW. Antenna gain is limited to 6 dB maximum.
In this work, we focus on the 802.11b speci cation (DS spread spectrum) since it is in
the same frequency band as Bluetooth and the most commonly deployed.

The basic data rate for the DS system is 1 Mbits/s encoded with differential binary
phase shift keying (DBPSK). Similarly, a 2 Mbits/s rate is provided using differential
quadrature phase shift keying (DQPSK) at the same chip rate. Higher rates of 5.5
and 11 Mbits/s are also available using techniques combining quadrature phase shift
keying and complementary code keying (CCK) ; all of these systems use 22 MHz
channels. Details of the modulation methods are provided in Section III.

The IEEE 802.11 MAC layer speci cations, common to all PHYs and data rates,
coordinate the communication between stations and control the behavior of users who
want to access the network. The Distributed Coordination Function (DCF), which
describes the default MAC protocol operation, is based on a scheme known as carrier-
sense, multiple access, collision avoidance (CSMA/CA). Both the MAC and PHY
layers cooperate in order to implement collision avoidance procedures. The PHY layer
samples the received energy over the medium transmitting data and uses a clear chan-
nel assessment (CCA) algorithm to determine if the channel is clear. This is accom-
plished by measuring the RF energy at the antenna and determining the strength of
the received signal commonly known as RSSI, or received signal strength indicator.
In addition, carrier sense can be used to determine if the channel is available. This

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 51

technique is more selective since it veri es that the signal is the same carrier type as
802.11 transmitters. A virtual carrier sense mechanism is also provided at the MAC
layer. It uses the request-to-send (RTS) and clear-to-send (CTS) message exchange
to make predictions of future traf c on the medium and updates the network alloca-
tion vector (NAV) available in stations. Communication is established when one of
the wireless nodes sends a short RTS frame. The receiving station issues a CTS frame
that echoes the sender’s address. If the CTS frame is not received, it is assumed that a
collision occurred and the RTS process starts over. Regardless of whether the virtual
carrier sense routine is used or not, the MAC is required to implement a basic access
procedure as follows. If a station has data to send, it waits for the channel to be idle
through the use of the CSMA/CA algorithm. If the medium is sensed idle for a period
greater than a DCF interframe space (DIFS), the station goes into a backoff procedure
before it sends its frame. Upon the successful reception of a frame, the destination sta-
tion returns an ACK frame after a Short interframe space (SIFS). The backoff window
is based on a random value uniformly distributed in the interval [CWmin; CWmax],
whereCWmin andCWmax represents the Contention Window parameters. If the me-
dium is determined busy at any time during the backoff slot, the backoff procedure is
suspended. It is resumed after the medium has been idle for the duration of the DIFS
period. If an ACK is not received within an ACK timeout interval, the station assumes
that either the data frame or the ACK was lost and needs to retransmit its data frame
by repeating the basic access procedure.

3. Interference in the 2.4 GHz Band

The 2.4 GHz ISM band allows for primary and secondary uses. Secondary uses
are unlicensed but must follow rules de ned in the Federal Communications Com-
mission Title 47 of the Code for Federal Regulations Part 15 [COM] relating to total
radiated power and the use of the spread spectrum modulation schemes. Interference
among the various uses is not addressed as long as the rules are followed. Thus, the
major down side of the unlicensed ISM band is that frequencies must be shared and
potential interference tolerated. While the spread spectrum and power rules are fairly
effective in dealing with multiple users in the band, provided the radios are physically
separated, the same is not true for close proximity radios. Multiple users, including
self-interference of multiple users of the same application, have the effect of raising
the noise oor in the band resulting in a degradation of performance. The impact of
interference may be even more severe, when radios of different applications use the
same band while located in close proximity.

Thus, the interference problem is characterized by a time and frequency overlap
as depicted in Figure 1. In this case, a Bluetooth frequency hopping system occu-
pying 1 MHz of the spectrum is shown to overlap with a WLAN Direct Sequence
Spread Spectrum signal occupying a 22 MHz channel. Note that, the collision overlap
time depends on the frequency hopping pattern and the traf c distribution of both the
Bluetooth and WLAN systems.

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 52

FIG. 1. Time and Frequency Collisions in the 2.4 GHz Band

Moreover, we can classify interferers into two classes based on their usage of the
spectrum. Devices implementing the Direct Sequence Spread Spectrum (DSSS) tech-
nique constitute one class of interferer that utilize a x ed channel in the band. Ty-
pically this channel is 22 MHz wide, although the width of the signal depends on
the transmitter’s implementation. The second class of interferers is represented by
devices implementing a type of Frequency Hopping (FH) mechanism. Note that the
IEEE 802.11 speci cations include a frequency hopping technique that uses a deter-
ministic frequency pattern. On the other hand, the Bluetooth speci cations de ne a
pseudo-random frequency sequence based on the Bluetooth device address and its in-
ternal clock. While interference among systems from the same type such as Bluetooth
on Bluetooth, or IEEE 802.11 on IEEE 802.11 interference can be signi cant, it is
usually considered early on in the design stages of the protocol. Therefore, the worst
realistic interference scenario consists of a mix of heterogeneous devices (i.e. devices
belonging to different classes). Thus, most results published in the literature today
focus on this worst case scenario.

Recently, there has been several attempts at quantifying the impact of interference
on both the WLAN and the Bluetooth performance. Published results can be classi ed
into at least three categories depending on whether they rely on analysis, simulation,
or experimental measurements. Analytical results based on probability of packet col-
lision were obtained by Shellhammer [S. 00a], Ennis [G. 98], and Zyren [J. 99] for
the WLAN packet loss and by Golmie et. al. [N. 01b] for the Blutooth packet error.
Although, these analytical results can often give a rst order approximation on the im-
pact of interference and the performance degradation (up to 25 % for Bluetooth packet
loss and close to 70% for WLAN packet loss), they often make a number of assump-
tions concerning the traf c distributions and the operation of the media access protocol

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 53

which can make them less realistic. More importantly, in order for the analysis to be
tractable, mutual interference that can change the traf c distribution for each system
is often ignored. On the other hand, experimental results such as the ones obtained by
Kamerman [A. 00], Howittt et. al [I. 01], and Fumolari [D. 01] can be considered
more accurate at the cost of being too speci c to the implementation tested. Thus, a
third alternative consists of using modeling and simulation to evaluate the impact of
interference. This third approach can provide a more e xible framework. However,
the accuracy of the results depends on the modeling assumptions made. Zurbes et.
al. [S. 00b] present simulation results for a number of Bluetooth devices located in
a single large room. They show that for 100 concurrent web sessions, performance is
degraded by only ve percent. Golmie et. al. [N. 01c] use a detailed MAC and PHY
simulation framework to evaluate the impact of interference. Similar results have been
obtained by Lansford et. al. [J. 00a] who use simulation and experimental measure-
ments to quantify the interference resulting from Bluetooth and IEEE 802.11. Their
simulation models are based on a link budget analysis and a Q function calculation for
the channel and PHY models respectively, in addition to the MAC layer behavior.

4. Coexistence Framework

Wireless system designers have always had to contend with interference from both
natural sources and other users of the medium. Thus, the classical wireless commu-
nication design cycle has consisted of measuring or predicting channel impairments,
choosing a modulation method, signal pre-conditioning at the transmitter, and pro-
cessing at the receiver to reliably construct the transmitted information. However,in
contrast to classical techniques to suppress interference such as modulation, channel
coding, interleaving and equalization, most of the techniques proposed for solving the
problem of interference in the 2.4 GHz band focus on adaptive non signal processing
control strategies including power and frequency hopping control, and MAC parame-
ter adjustments and scheduling.

In fact, the are a number of industry led activities focused on coexistence in the
2.4 GHz band. The IEEE 802.15.2 Coexistence Task Group was formed in order to
evaluate the performance of Bluetooth devices interfering with WLAN devices and
develop a model for coexistence which will consist of a set of recommended practices
and possibly modi cations to the Bluetooth and the IEEE 802.11 standard speci ca-
tions [802] that allow the proper operation of these protocols in a cooperating way. At
the same time, the Bluetooth Special Interest Group (SIG) formed its own task group
on Coexistence. Both the Bluetooth and the IEEE working groups maintain liaison re-
lations and are looking at similar techniques for alleviating the impact of interference.
The proposals considered by the groups range from collaborative schemes intended
for Bluetooth and IEEE 802.11 protocols to be implemented in the same device to
fully independent solutions that rely on interference detection and estimation.

Collaborative Mechanisms-
Mechanisms for collaborative schemes have been proposed to the IEEE 802.15 Co-

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 54

existence Task Group and are based on a MAC time domain solution that alternates
the transmission of Bluetooth and WLAN packets (assuming both protocols are im-
plemented in the same device and use a common transmitter) [J. 00b]. A priority
of access is given to Bluetooth for transmitting voice packets, while WLAN is given
priority for transmitting data.

Non-Collaborative Mechanisms-
The non-collaborative mechanisms considered range from adaptive frequency hop-
ping [B. 01] to packet scheduling and traf c control [N. 01a]. They all use similar
techniques for detecting the presence of other devices in the band such measuring the
bit or frame error rate, the signal strength or the signal to interference ratio (often
implemented as the Received Signal Indicator Strength (RSSI)). For example, each
device can maintain a bit error rate measurement per frequency used. Frequency hop-
ping devices can then know which frequencies are occupied by other users of the band
and thus modify their frequency hopping pattern. They can even choose not to transmit
on a certain frequency if that frequency is occupied. The rst technique is known as
adaptive frequency hopping, while the second technique is known as MAC scheduling.
Each technique has advantages and disadvantages. One of the advantages in using a
scheduling policy is that it does not require any changes in the FCC rules. In fact, title
47, part 15 of the FCC rules on radio frequency devices [COM], allows a frequency
hopping system to recognize the presence of other users within the same spectrum
band so that it adapts its hopsets to avoid hopping on occupied channels. Further-
more, scheduling in the Bluetooth speci cations is vendor implementation speci c.
Therefore, one can easily implement a scheduling policy with the currently available
Bluetooth chip set. On the other hand, adaptive frequency hopping requires changes
to the Bluetooth hopping pattern and therefore a new Bluetooth chip set design. While
both techniques can reduce the Bluetooth packet loss and the impact of interference
on the other system, only the adaptive frequency hopping technique can increase the
Bluetooth throughput by maximizing the spectrum usage.

Figure 2 illustrates the coexistence mechanisms space with respect to the duty
cycle or the device activity and frequency band occupancy. As the number of interfe-
rers increase, each system is forced to transmit less often in order to avoid collisions.
Thus, as the band occupancy increases, the duty cycle is reduced imposing time do-
main solutions. Frequency domain solutions such as adaptive frequency hopping can
only be effective when the band occupancy is low.

5. Factors Impacting Interference

In this section we discuss different factors that may impact interference. Our dis-
cussion is based on performance results obtained from our detailed simulation mode-
ling tool [N. 01c]. The example scenario that we use is based on a four node topology
including two WLAN nodes (1 access point (AP) and one mobile device) and two
Bluetooth nodes (1 master and 1 slave). Data is transmitted from the mobile WLAN
node to the AP that responds with acknowledgement messages upon the successful

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 55

FIG. 2. Coexistence Solution Space

receipt of data packets. In order to better visualize the topology we can think of the
placement of the four wireless devices on a two dimensional grid. The WLAN devices
are located at (0,15) and (0,d) meters for the AP and mobile device respectively. The
Bluetooth devices are placed at (0,0) and (1,0) meters for the slave and master de-
vice respectively. The transmitting power is set to 25 mW and 1 mW for WLAN and
Bluetooth respectively. Statistics are collected at the Bluetooth slave device and the
WLAN mobile node. Note that the distance between the WLAN mobile node and the
Bluetooth slave is varied along the "y" coordinate axis. The WLAN traf c distribution
is set as follows. The offered load is set to 50% of the channel capacity. The packet
size is 8000 bits and the packet interarrival time is set to 1.86 ms. The con guration
and system parameters are summarized in Table 1.

Choice of Bluetooth Voice Encapsulation-
Figure 3 illustrates the effect of chosing different packet encapsulation schemes for
transmitting Bluetooth voice packets in an interference environment. The encapsula-
tion varies from HV 1 that use a 1/3 FEC rate and a TSCO = 2, to HV 2 that use a
2/3 FEC rate and a TSCO = 4, and HV 3 that use no FEC and a TSCO = 6. Note
that there is no difference in the total packet length between the different HV packets.
From Figure 3(a), we observe that the choice of packet encapsulation does not impact
the performance of Bluetooth, in other words the use of additional error correction
does not improve performance. On the other hand, we note from Figure 3(b) that
HV 3 is "friendlier" to WLAN due to a longer TSCO period.

FEC Ef ciency -
We use three types of Bluetooth packet encapsulations, namely, DM1, DM3, and
DM5, that occupy 1, 3 and 5 slots respectively. The offered load for Bluetooth is set
to 30% of the channel capacity which corresponds to a packet interarrival of 2:91 ms,

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 56

Simulation Parameters Values
Propagation delay 5 �s/km
Length of simulation run 30 seconds
Bluetooth Parameters Values
Transmitted Power 1 mW
Slave Coordinates (0,0) meters
Master Coordinates (1,0) meters
WLAN Parameters
Packet Length 8000 bits
Packet Interarrival Time for 11
Mbits/s

1.86 ms

Transmitted Power 25 mW
AP Coordinates (0,15) meters
Mobile Coordinates (0,d) meters
Packet Header 224 bits
Slot Time 2 � 10�5 seconds
SIFS Time 1 � 10�5 seconds
DIFS Time 5 � 10�5 seconds
CWmin 31
CWmax 1023
Fragmentation Threshold None
RTS Threshold None
Short Retry Limit 4
Long Retry Limit 7

TAB. 1. Simulation Parameters

8:75 ms and 14:58 ms for DM1, DM3 and DM5 packets respectively. In this case
we note from Figure 4 that the use of FEC has limited bene ts and can only improve
the performance of Bluetooth for low interference scenarios (i.e. for distances greater
than 3 meters).

Effect of Fragmentation on the Interfering System-
Fragmentation or the transmission of short packets is a well documented technique
to alleviate the impact of interference since a shorter packet has a lower probability
of collision with an interfering system. However, Figure 5 shows that fragmentation
may degrade the performance of the interfering system.

6. Concluding Remarks

In this paper we focus on the problem of interference in the 2.4 GHz unlicensed
band. We rst de ne the problem and discuss some of the results previously publi-
shed in the literature on the evaluation of interference. We then give an overview of

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 57

0

0.05

0.1

0.15

0.2

0 1 2 3 4 5 6

P
r(

P
ac

ke
t L

os
s)

distance (meters)

Probability of BT Packet Loss vs. Distance to WLAN (11 Mbits/s) Source

HV3 Packets
HV2 Packets
HV1 Packets

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 1 2 3 4 5 6

P
r(

P
ac

ke
t L

os
s)

distance (meters)

Probability of WLAN (11 Mbits/s) Packet Loss vs. Distance to BT Slave

HV3 Interference
HV2 Interference
HV1 Interference

FIG. 3. (a) (b) Bluetooth voice packets with 802.11 interference. (a) Probability of
BT packet loss vs. distance to WLAN Source. (b) Probability of WLAN packet loss vs.
distance to BT Slave

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5

P
r(

P
ac

ke
t L

os
s)

distance (meters)

Probability of BT Lan Packet Loss vs. Distance to WLAN (11 Mbits/s) Source

DH1 Packets
DM1 Packets
DH3 Packets
DM3 Packets
DH5 Packets
DM5 Packets

FIG. 4. Probability of BT packet loss vs. distance to WLAN source

the coexistence framework consisting of several techniques proposed to alleviate the
impact of interference. Several factors that can impact the performance of Bluetooth
and WLAN in an interfering environment are explored. We make several observations
regarding the use of FEC, the choice of packet encapsulation and fragmentation and
the effect on performance. Our results indicate that the use of FEC has limited bene-
 t for many interfering scenarios. In addition, applying fragmentation can reduce the

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 58

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1000 2000 3000 4000 5000 6000 7000 8000

P
ro

ba
bi

lit
y

of
 P

ac
ke

t L
os

s

WLAN Packet Size (bits)

Impact of Fragmentation on BT (50% WLAN Offered Load)

HV1
DM5

FIG. 5. Probability of BT packet loss vs. distance to WLAN source

probability of packet loss at the expense of causing more interference to the "other"
system.

7. Bibliographie

[802] 802-11 I. S., « IEEE Standard for Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Speci cation », June 1997.

[A. 00] A. KAMERMAN, « Coexistence between Bluetooth and IEEE 802.11 CCK : Solutions
to avoid mutual interference », IEEE P802.11 Working Group Contribution, IEEE P802.11-
00/162r0, July 2000.

[ASS] ASSOCIATION I. D., « IrDA Advanced Infrared Physical Layer Speci cation, v. 1.0
», September 1998.

[B. 01] B. TREISTER, A. BATRA, K.C. CHEN, O. ELIEZER, « Adapative Frequency Hop-
ping : A Non-Collaborative Coexistence Mechanism », IEEE P802.15 Working Group
Contribution, IEEE P802.15-01/252r0, Orlando, FL, May 2001.

[COM] COMMISSION F. C., « Title 47, Code for Federal Regulations, Part 15 », October
1998.

[D. 01] D. FUMOLARI, « Link Performance of an Embedded Bluetooth Personal Area Net-
work », Proceedings of IEEE ICC’01, Helsinki, Finland, June 2001.

[G. 98] G. ENNIS, « Impact of Bluetooth on 802.11 Direct Sequence », IEEE P802.11 Wor-
king Group Contribution, IEEE P802.11-98/319, September 1998.

[GRO a] GROUP B. S. I., « Speci cations of the Bluetooth System, vol. 1, v.1.0B ’Core’ and
vol. 2 v1.0B ’Pro les’ », December 1999.

[GRO b] GROUP H. W., « HomeRF Shared Wireless Access Protocol Cordless Access
(SWAP-CA) Speci cations », May 2000.

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 59

[I. 01] I. HOWITT, V. MITTER, J. GUTIERREZ, « Empirical Study for IEEE 802.11 and Blue-
tooth Interoperability », in IEEE Vehicular Technology Conference (VTC), Spring 2001,
May 2001.

[J. 99] J. ZYREN, « Reliability of IEEE 802.11 WLANs in Presence of Bluetooth Radios »,
IEEE P802.15 Working Group Contribution, IEEE P802.15-99/073r0, Santa Rosa, Califor-
nia, September 1999.

[J. 00a] J. LANSFORD, R. NEVO, AND B. MONELLO, « Wi-Fi (802.11b) and Blue-
tooth Simultaneous Operation : Characterizing the Problem », Mobilian White Paper,
www.mobilian.com, September 2000.

[J. 00b] J. LANSFORD, R. NEVO, E. ZEHAVI, « MEHTA : A method for coexistence between
co-located 802.11b and Bluetooth systems », IEEE P802.15 Working Group Contribution,
IEEE P802.15-00/360r0, November 2000.

[K. 00] K. J. NEGUS, A. P. STEPHENS, AND J. LANSFORD, « HomeRF : Wireless Networ-
king for the Connected Home », IEEE Personal Communications, February 2000, p. 20-27.

[N. 01a] N. GOLMIE, « Interference Aware Bluetooth Scheduling Techniques », IEEE
P802.15 Working Group Contribution, IEEE P802.15-01/143r0, Hilton Head, NC, March
2001.

[N. 01b] N. GOLMIE AND F. MOUVEAUX, « Interference in the 2.4 GHz ISM band : Im-
pact on the Bluetooth access control performance », Proceedings of IEEE ICC, Helsinki,
Finland, June 2001.

[N. 01c] N. GOLMIE, R. E. VAN DYCK, A. SOLTANIAN, « Interference of Bluetooth and
IEEE 802.11 : Simulation Modeling and Performance Evaluation », Proceedings of the
Fourth ACM International Workshop on Modeling, Analysis and Simulation of Wireless and
Mobile Systems, MSWIM’01, Rome, Italy, July 2001.

[S. 00a] S. SHELLHAMMER, « Packet Error Rate of an IEEE 802.11 WLAN in the Presence
of Bluetooth », IEEE P802.15 Working Group Contribution, IEEE P802.15-00/133r0,
Seattle, Washington, May 2000.

[S. 00b] S. ZURBES, W. STAHL, K. MATHEUS, AND J. HAARTSEN, « Radio network perfor-
mance of bluetooth », Proceedings of IEEE International Conference on Communications,
ICC 2000, vol. 3, New Orleans, LA, June 2000, p. 1563-1567.

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 60

INTERFERENCE MITIGATION TECHNIQUES

In preliminary work (recall Papers #5 and #6), NIST researchers eliminated from further consideration
four possible interference-mitigation techniques. First, increasing WLAN power when needed to
overcome periods of Bluetooth interference was found to be impractical because the necessary power
increase would be too large. Second, using forward-error correction was found to have only limited
benefits in selected interference scenarios. Third, fragmenting packets was found to create additional
interference for other devices. Fourth, co-scheduling of WPAN and WLAN transmissions was found
applicable only in the special circumstance where Bluetooth and 802.11 devices operate within the same
computer node. On the other hand, several potential interference-mitigation techniques appeared worthy
of further investigation. For WLAN devices, one might use rate scaling, where WLAN devices lower the
transmission rate (for example, from 11 Mbps to 1 Mbps) during periods of Bluetooth interference.
WLAN devices might also be re-engineered to reject Bluetooth interference at the PHY layer. For
Bluetooth devices, one might adaptively adjust transmission power to a larger value during periods of
WLAN interference, or adjust transmission patterns to avoid WLAN interference. In adjusting
transmission patterns, one might develop a scheme that permits Bluetooth masters to periodically adapt
the frequency-hopping schedule for a piconet to account for interference. In another approach to adjust
transmission patterns, one might develop a scheme to delay selected transmissions during periods of
interference, and then transmit the information when the interference subsides. These are the techniques
studied in the papers contained in this section of the special publication.

In Paper #7, “Rejection of Bluetooth Interference in 802.11 LANs”, Soltanian and Van Dyck
investigate the use of complex adaptive filters for interference suppression in selected 802.11 systems.
The fundamental approach studied would use recursive least-squares lattice filters to estimate and cancel
Bluetooth interference. The paper focuses solely on the 1 Mbps version of 802.11 WLAN transmissions;
however, argues that the technique might also be applicable in the 2 Mbps model. The simulation results
presented in the paper show that WLAN packet-loss rates in range of 10-12% (for the standard 802.11
PHY) could be improved to a range of 1-4% (with the addition of a complex adaptive filter) even in the
presence of two interfering Bluetooth piconets. The paper leaves for further study the design of a receiver
for fading channels and for WLAN transmissions at higher speeds (5.5 and 11 Mbps). Adopting an
adaptive filter would require redesign and deployment of PHY components for existing WLAN receivers.
Changing the deployed base of WLAN devices would not occur quickly; thus, it makes sense to explore
techniques that could be adopted more easily, perhaps with software or firmware upgrades.

In Paper #8, “Techniques to Improve Bluetooth Performance in Interference Environments”,
Golmie and Chevrollier investigate the possibility of overcoming interference to Bluetooth devices using
either of two techniques: (1) Bluetooth power control or (2) Bluetooth scheduling. The paper presents
simulation results based on a topology where a Bluetooth master and slave, separated by 1 meter, operate
in proximity of a WLAN with a fixed access point about 15 meters from the Bluetooth devices and a
mobile WLAN device (the interferer) that moves within a range of 0 to 5 meters from the Bluetooth
devices. The proposed Bluetooth power-control algorithm periodically adjusts transmission power within
a bounded range to achieve a target signal-to-interference ratio. The paper shows that adaptive power
control (updating power levels after every 300 packets) reduces packet-loss rate from 18% to 4% when
the WLAN interferer operates a ½ meter from the Bluetooth devices. Beyond ½ meter, the adaptive-
power control algorithm loses no packets, while the standard Bluetooth transmission algorithm is still
losing 3% of packets when the WLAN interferer is 5 meters away. The paper also shows that increasing
Bluetooth transmission power increases interference for the proximal WLAN, at least within the range of
0 to 2 meters, where packet-loss rate for the WLAN ranges from 17% to 9%; thus, power control has
limited benefits and is rarely a friendly-neighbor solution. These results suggest that increasing Bluetooth
transmission power to overcome WLAN interference might have deleterious and unacceptable
consequences for some WLAN transmissions; thus, the paper also studies a Bluetooth scheduling
technique to avoid WLAN interference. The scheduling technique requires a Bluetooth master to acquire

Networking for Pervasive Computing NIST Special Publication 500-259

61

and maintain (during an interference-estimation phase) a table estimating likely error rate on each of the
79 frequencies available in a Bluetooth channel. The Bluetooth master then delays initiating a specific
master-slave interaction when a needed frequency pair is not available. While this technique seems likely
to increase access delays, the paper finds this to be the case only for small (single-slot) packets, which
experienced increased delays in the range of 1.6 ms to 2.6 ms. For longer (two- or three-slot) packets,
access delays actually decreased by as much as 2.6 ms. The paper finds that using a Bluetooth scheduling
algorithm reduces packet loss to zero for Bluetooth and WLAN devices. Though Bluetooth scheduling
applies only to data traffic (voice traffic is time sensitive), the potential advantages of the approach
warrant further investigation.

In Paper #9, “Interference Aware Bluetooth Packet Scheduling”, Golmie, Chevrollier, and
ElBakkouri further investigate the performance of the promising Bluetooth interference-aware scheduling
(BIAS) algorithm first conceived in the previous paper. Here, the researchers provide a rigorous and
complete description of the BIAS algorithm, including an explanation of how the approach could be
implemented within the Bluetooth specification. The paper also introduces and proves two properties of
BIAS: (1) error-free connections will be served at the negotiated rate and (2) error-free channels will be
shared among error-free and error-prone devices proportional to their assigned rate. The researchers use
simulation to compare the effectiveness of BIAS against a round-robin scheduling algorithm, given a
specific mix of traffic: 50% offered load on an 11-Mpbs WLAN and 25% offered load on a competing
Bluetooth WPAN. The simulation experiments model a topology where a Bluetooth master interacts with
three Bluetooth slaves, while an interfering WLAN mobile device interacts with a fixed WLAN access
point. The mobile WLAN device moves within a range of 0 to 11 meters of two of the Bluetooth slaves
(the master is 3 meters further from the WLAN mobile). The third Bluetooth slave is only ½ meter from
the master (in a direction away from the WLAN mobile). The paper shows that BIAS yields no packet
losses for any Bluetooth slave at any distance from the WLAN interferer. BIAS does increase access
delay (to≈4 ms) over round robin scheduling (at≈2 ms). The simulation results also show that BIAS
provides fairer access than round robin, which cedes more access to the Bluetooth slave closest to the
master (and farthest from the interfering WLAN). These promising results motivated the NIST
researchers to investigate BIAS more fully.

In Paper #10, “Techniques to Improve the Performance of TCP in a mixed Bluetooth and WLAN
Environment”, Golmie and Rebala investigate the potential to mitigate the effects of mutual interference
between a Bluetooth WPAN and 802.11 WLAN using either of two techniques: (1) WLAN rate scaling
combined with adaptive filtering or (2) BIAS. The researchers also consider combining BIAS and rate
scaling. The investigation simulates a topology where a Bluetooth master and slave (1-meter apart)
interact, while a WLAN mobile (ranging over 0 to 10 meters from the Bluetooth devices) communicates
with a fixed WLAN access point (located 15 meters from the Bluetooth devices). The paper reports three
scenarios: (1) both WLAN and WPAN devices conduct file transfers, (2) WLAN devices conduct file
transfers while WPAN devices surf the web, and (3) WLAN devices surf the web while WPAN devices
conduct file transfers. All devices use TCP as the transport protocol. Packet-loss probability is reported
for all scenarios, while TCP throughput and delay are reported for file transfer and web surfing,
respectively. The simulation results indicate that BIAS improves performance (reduces packet loss to
zero, increases throughput, and decreases delay) for both WPAN and WLAN systems. The improvement
shown with rate scaling is much lower because the WLAN reduces transmission rate by an order of
magnitude. Further, adaptive filtering is shown to improve performance for WLAN devices at the expense
of degrading performance for WPAN devices.

In Paper #11, “Bluetooth Dynamic Scheduling and Interference Mitigation”, Golmie more fully
studies BIAS with larger topologies, including multiple Bluetooth piconets, with more diverse traffic
types, including electronic mail, remote printing, video transmission, and file transfers, and with
asymmetric packet lengths. The study also considers BIAS performance in reaction to dynamic changes
in the wireless environment. In addition, the paper investigates two possible extensions: priority
scheduling in BIAS and mapping quality of service to BIAS parameters. The paper reports results from
four simulation experiments, where all of the experiments compare round robin scheduling for Bluetooth

Networking for Pervasive Computing NIST Special Publication 500-259

62

devices against BIAS in the presence of one or more interfering WLAN systems, each operating at 11
Mbps with a 60% offered load. One experiment simulates a topology with a Bluetooth master and slave
separated by 2 meters surrounded by three source-sink pairs of WLAN devices, where each source is
about 1 meter from the Bluetooth devices and transmits to a sink about 14 meters past the Bluetooth
devices. The topology is developed incrementally, starting with only the Bluetooth devices and adding
one WLAN source-sink pair at a time; this presents the Bluetooth devices with dynamically increasing
interference. Simulation with file transfers between the Bluetooth devices show no packet loss with BIAS
as the Bluetooth offered load increases from 5% to 80%; this holds across all simulated configurations of
competing WLAN devices. Round robin scheduling shows packet losses from 10% to 50% as the number
of competing WLAN devices increases from one to three pairs. BIAS also shows significantly lower
access delays than round robin when compared in similar interference environments. In a second
experiment, Golmie studies the effects of dynamically changing interference. Here, the topology is drawn
from the first experiment, but WLAN interference is limited to a singled source-sink pair that exhibits on-
off periods. Under these conditions, BIAS yields packet-loss rates under 1/10% even with a 100% offered
Bluetooth load, though access delay increases steeply after 50% offered load for small packets and after
70% offered load for large packets. In a third experiment, Golmie illustrates how BIAS can be used to
enforce quality of service requirements for various Bluetooth applications. Here, the topology consists of
a single Bluetooth master acting in a client role communicating with three Bluetooth slaves: a mail server
(about ½ meter past the master), a video server, and a print server. The video and print servers are 2
meters closer than the master to a source of WLAN interference. The WLAN network consists of a fixed
access point (file-transfer client) about 20 meters from the Bluetooth master and a mobile WLAN device
(file-transfer server) that ranges from 2 to 13 meters from the Bluetooth video and print servers. BIAS
keeps the packet-loss rate below ½% for all Bluetooth slaves under all circumstances, while round robin
yields packet-loss rates ranging from 2% to 15% for the print and video servers. BIAS also provides
Bluetooth slaves with access delays significantly superior to round robin scheduling. In a final
experiment, Golmie investigates the use of BIAS given 10 Bluetooth piconets (half with master and slave
separation of 1 meter and half 2 meters) randomly placed within 15 meters of an interfering WLAN,
which can convey either file-transfer or web-surfing traffic. Some piconets carry voice traffic, some
transfer files, and some transmit web surfing traffic. Simulation results show that BIAS (when compared
to round robin scheduling) leads to the same or lower packet-loss rates for Bluetooth devices under all
circumstances, with the advantage markedly increased when the interfering WLAN carries file-transfer
traffic. Further, when Bluetooth devices use BIAS (instead of round robin scheduling), WLAN devices
also see substantially lowered packet-loss rates. After extensively studying BIAS, NIST researchers
decided to investigate the performance of BIAS against adaptive frequency hopping (AFH).

In Paper #12, “Bluetooth Adaptive Techniques to Mitigate Interference”, Golmie and Rebala
investigate the relative performance of two interference-mitigation techniques (BIAS and AFH) for
Bluetooth devices as interference from WLAN devices varies and user traffic changes over time. While
many AFH algorithms can be conceived, Golmie and Rebala propose an algorithm that defines a
frequency-hop window comprising a fraction of the 79 available Bluetooth frequencies. When a
frequency in the hop window is “bad” then a “good” frequency is selected from among the remaining
Bluetooth frequencies. The frequency-hop window is recomputed at some interval, which can be
configured. The paper compares the performance of AFH against BIAS in four experiments. Two
experiments simulate a (canonical) topology of a Bluetooth master and slave separated by 1 meter and a
WLAN (11 Mbps) access point (15 meters from the Bluetooth devices) that communicates with a WLAN
device that is 1 meter from the Bluetooth devices. The interfering WLAN operates with on-off periods
and an offered load of 60%, while the Bluetooth offered load varies from 10% to 100%. BIAS provides
significantly lower packet-loss rates compared to AFH. The researchers repeated the experiment, but this
time including the TCP as the transport protocol and defining web-surfing and file-transfer traffic
profiles. Again, BIAS showed significantly lower packet-loss rates and comparable access delays to AFH.
In a third experiment, the researchers expand the topology to surround a Bluetooth master-slave piconet
with three WLAN source-sink pairs. In this case, BIAS again provides lower packet-loss rates, but AFH

Networking for Pervasive Computing NIST Special Publication 500-259

63

provides lower access delay. In a final experiment, the researchers expand the topology again to add two
additional Bluetooth master-slave piconets amidst the WLAN interferers. BIAS again out performs AFH
in terms of packet-loss rate, and also yields lower access delays for large packets. Overall, for the
experiments reported here, AFH yields lower access delays for short (one-slot) packets, while BIAS
provides better access delays for long (five-slot packets) and gives much lower packet-loss rates. AFH
also shows improved throughput over BIAS in selected situations. The mixed results regarding BIAS and
AFH stimulated NIST researchers to further investigate and compare the two interference-mitigation
schemes.

In Paper #13, “Bluetooth Adaptive Frequency Hopping and Scheduling”, Golmie, Rebala, and
Chevrollier investigate the conditions (interference levels, topologies, scenarios, and applications) under
which it should prove practical to use AFH and BIAS. Of special interest is studying how fast each
algorithm can adjust to changes in the inference environment. The paper investigates AFH and BIAS in
support of four applications: voice streaming, video streaming, web surfing, and file transfer. The
researchers consider both the AFH defined for the IEEE 802.15 standard (AFH-IEEE) and the AFH that
they defined (recall Paper #12). The first experiment considers the canonical topology described in Paper
#12 under conditions where a WPAN file transfer competes with a WLAN file transfer. Simulation results
show that BIAS provides much lower packet-loss rate, better channel efficiency, and similar access delay
when compared to either AFH or AFH-IEEE. In a second experiment, the researchers expand the
topology to include an additional competing WLAN source-sink pair, and consider Bluetooth file
transfers, web surfing, and video and audio streaming competing against WLAN file transfers. Simulation
results again show BIAS provides lower packet-loss rate, better channel efficiency, and similar access
delay for all scenarios when compared with AFH and AFH-IEEE. Given these additional results, NIST
researchers neared a final set of recommendations regarding interference-mitigation techniques for
WLAN and WPAN systems.

In Paper #14, “Bluetooth and WLAN Coexistence: Challenges and Solutions”, Golmie,
Chevrollier, and Rebala discuss two possible solutions (AFH and BIAS) to mitigate WLAN and WPAN
interference, providing some conclusions about the relative merits of each approach. AFH requires a
Bluetooth master to collect from each slave a picture of relative interference, to compute a new hopping
schedule, and to disseminate that schedule to each slave. This cyclic task might prove very difficult to
achieve in dynamic environments with fast changing interference patterns. On the other hand, if AFH is
practical for a given environment (where interference is not too volatile), then a number of performance
benefits can be obtained. AFH can provide maximum throughput for bandwidth hungry applications, such
as file transfers, and can give lower access delays for short packets, such as often used in voice
applications. AFH does not provide much benefit for applications with delay-jitter requirements. BIAS
provides superior performance for applications that are sensitive to packet loss. Overall, no single
technique appears to yield the best performance for all interference scenarios and applications. The
researchers conclude that combining BIAS and AFH might provide the flexibility to address a wider
range of situations on a case-by-case basis.

Networking for Pervasive Computing NIST Special Publication 500-259

64

���������	��
��������������������������� �!����"#�$�%"#�%�&���'
��)(�*,+�-/.�.1032547698
:<;>=@?BA%CEDGFIH�JK=LHEJMH�JKN1OPCRQTS�?UFPVXWKYZHEJ7[<\�]I^

_ H�F`=@CRJaH�D�b/JKcdF`=GF`e�FfSgCEh�A�FfHEJKNaHE?dNKc5HEJKNMijSk]IlKJKCRDGCRmE\
n HE=oFflKSk?`cdQKeK?`m�prq7[tsEuRvRwRw

x HE;>=@?dc�p�yEH�JKN�\�]I^az�{|H�J}F`N�W~JK=@cUF�W~mRC�y

�B�K�U�d�f��� ���j�����G�R�����U�`�o�E���d�<�`�%�����d���E���k�������G�k���k�#�
�������G���R���#�������d���E� �K���`�k�I���L�����G�R�d���I�L�k�I������� �`�������f���`�d�G���
�o�>�d���5�����I��� ���d��¡	�����%�k�5�d�%�I���#�¢�U�T�����U�I�%�¤£E¥E¦}§o¨E¨P�d©}�$�
�d���ª§¬«j�	�d���%�`���E���d�G�����o�#�d�o�E���P���I���k���f�f�G���'���%���d�ª�����
�d�G���ok�¬�d�����K���I�#�����d���I�|�E�Z�®�I�����%�f�`���E�¢�G���#�U�U��`¡	�%�#�f���
�o�#�U�d�G���Z���o�d����¯�°X�%�G�f�±���o�d�o�E���`�����d�����k²������,���%�X�%�������G�%�
�����f�f��°�����#���³�o�R�d���I�L���f���´�d���f�µ�#�'¶��o�����d�}���d��§ · ���
¶�«j¸¹�k���f�����k¯X�#��°Z���G�X�#���`�%�9�%�I�����#���G�o���º©»�E�B�K�#�`¼����
�o�E�`��¯Z�#�f�9���f���`���R�d���T§¾½'���I����������¯¿�`�%�9�o�o�>���d�#�d�o�E�����E�
�d���¬�#�����%�`���E�¬���o�d���g���%���I�����`��¯,�o�1�d�����d�%���%�I���d�`�o�E�M�E�
�À�%�o�d���K�o�¿Ád���������I��¯K�o�5�%���d���I���G�%����§ÃÂ$�P�o�5�d����°X�ª�d�����
°X���`�>�|�G��°Ä���f�����Ã���o�d����¯}�d���5�����%�K�o���¿Á`�#���>�k�¿���#�¢�T�
�`�%�k�����d�`�L�%�G��©>�`�%�%���I���`�`����§

ÅfÆ�ÅÇ}ÈRÉRÊ%Ë�Ì�Í�È	Î�Ê�Ç
ÏªÐ~ÑÒ¢ÑÒ#Ó|Ô$ÕkÖÃÐØ×#Ù�Ú�ÓdÛ#ÜÝÕIÞ�ÖÃÓd×kÑÃÕ ß�×#Ódàáà!ÐÝâ�ÓdÜØÓ`ã�ã�ÛEÓUâºãäÕk×�å Ü

å âÓdåæ×#ÓUÑçà�Õkâ�è�ãaÐÝ×ÃÑ�Ò�Ójé�ê ëZì�í,î,ïäð#ñóò�å ×�Ú}ô�ÑÒ#ÓUâÓ!ÐÝã�å�Ù�âÕIà!ÐØ×�Ù
Ô$Õk×�Ô$Ódâ�×¿å òEÕ�õ�ÑrÔ$Õ�ÓUö�Ð÷ãäÑ�ÓU×�Ô$ÓTà!ÐØÑ�Ò�Ó$ö�Ð÷ãçÑÐØ×�Ùæã�Þ�ãçÑÓUÖXãUôIÓ`ãäÛEÓdÔUÐÝå�ÜØÜÝÞ
Ñ�Ò�Ó�ïçø�øTøúùkûké�êÝü�üdòªà!ÐØâÓUÜÝÓdããBÜÝÕ�ÔUå�Üæå�â�Ó`å�×#ÓUÑçà�Õkâ�èþý�ÏMÿ������$ê
��Ò#Ó`ãäÓBã�Þ�ãçÑÓUÖXã&ÔUå�×¬ã�ÓUâÐÝÕ�õ�ã�ÜØÞ�Ú#å ÖXå ÙkÓZÑÒ#ÓBÕkÛ�Ódâå Ñ�ÐÝÕ�×ÀÕ ß�Ñ�Ò#Ó
ÏMÿ����1ã�Þ�ãçÑÓUÖ	�Øü�
Lê�#ÕkârÐØ×�ãçÑºå ×�ÔUÓ�ô ÑÒ#Ó�����ãäÞ�ãäÑ�ÓdÖ�Õ�ÔUÔUõ#Û#ÐÝÓdãTå
üTñ|í�îrò�å�×�Ú�à!Ð÷Ú�Ñ�Ò}ôIå�×�Ú�Ð~Ñ%Ò�å�ã�����Ò#ÕkÛ#Û#ÐÝ×#Ù,ÔºÒ�å ×�×#ÓUÜ÷ã�� é�
Lê���Ú�Ð��
âÓdÔ/Ñ,ã�Ó���õ#Ód×�Ô$Ó�ãäÛ�â�Ó`å�ÚPã�ÛEÓdÔ/Ñâ�õ�Ö ý���ð#ð#ð��!ùkûké#êØüküUòBã�Þ�ãäÑ�ÓdÖúÕ�Ô��
Ô$õ�Û#ÐØÓ`ã%å�Û#Û#âÕfö�ÐØÖXåIÑÓUÜÝÞæéké!ñ|í,î�ÐØ×ZÑ�Ò#Ó�ã�å�ÖÃÓrò�å ×�Ú	ê���Ò#Ódâ�ÓUß�Õ�âÓ�ô
Ñ�Ò�Ó����ªã�Þ�ãäÑ�ÓdÖ à!ÐØÜÝÜEÔUÕ�×�ã�Ð÷ãçÑÓU×�Ñ�ÜÝÞÃÒ#Õ�ÛBÐÝ×�Ñ�ÕZÑ�Ò#Óæù�ûké#êØüküUòBã�Û�Ó`Ô��
Ñ�âõ#Ö�ôIÔUå�õ�ãäÐÝ×#Ù!õ#×�ÐØ×�Ñ�Ód×�Ñ�ÐÝÕ�×�å�Ü ÐØ×�ÑÓUâ�ß�ÓUâÓU×�ÔUÓKÑ�Õ,òEÕ ÑÒ}ê�ìæÐ ��Ód×�Ñ�Ò#Ó
ÐÝÖ�ÛEÕ�â�Ñå�×�Ô$Ó5Õ ß�ÔUÕ�ÓUö�ÐÝãäÑ�Ód×�Ô$ÓBòEÓ$Ñçà�ÓUÓd×!���»å ×�Ú>ù�ûké#êØükü�ô�Ñ�Ò#Ódâ�Ó
Ò�åkã!ò�ÓdÓU×|ÔUÕ�×�ã�ÐÝÚ#ÓUâºå ò#ÜÝÓ�â�Ó`ãäÓ`å âºÔºÒ5Õk×5ÑÒ#Ð÷ã!Ñ�ÕkÛ#Ð÷Ô ê"��×gÕ���Ódâ#��ÐÝÓUà
Õ ß!ã�Õ�ÖÃÓXÕ ß�Ñ�Ò#ÓBÛ�â�ÕkÛ�Õ�ãäÓ`Ú�å�Û#Û#âÕkå�ÔºÒ�ÓdãjÐÝã&ÙkÐ��kÓU×ÀÐØ×$� %�
LêPñgÕ�ãçÑ
Õ ßaÑÒ#Ódã�Ó�Ö�ÓUÑ�Ò#Õ�Ú#ã�ÔUÕ�×�ÔUÓU×�Ñ�âºåIÑÓ Õ�×±ÔºÒ�å ×#ÙkÐØ×#ÙBÑ�Ò#Ó�ñ&��'7Ü÷åfÞ�ÓUâ
òEÓUÒ�å���ÐÝÕ�â`ô�ã�õ�ÔºÒ|å�ã�ò�Þ<âÓdãÔºÒ#ÓdÚ�õ�ÜØÐÝ×#ÙXÛ�åkÔºè�Ó$Ñºã,Õkâ,Õ ÑÒ#ÓUâà!ÐÝã�ÓZå�Ü(�
Ñ�Ódâ�ÐÝ×#Ù�Ñ�Ò#ÓTÑ�âºå�)BÔ êKð�Õ�ÖÃÓTÕ�ß#Ñ�Ò�Ó�å Û�Û#â�Õ�å�ÔºÒ#Ó`ã}å âÓTÔUÕ�ÜÝÜÝå�ò�Õkâå Ñ�Ð ��Ó�ô
âÓ���õ#ÐÝâ�ÐÝ×#ÙÃåXÚ�õ�å Ü*��ÜÝõ#Ó$ÑÕ�Õ Ñ�Ògå�×�Ú5ùkûké#êØükü�âÓdÔ$ÓdÐ��kÓUâ`ê

��Ò#ÐÝãTÛ�å ÛEÓUâ�ãäõ#ÙkÙ�Ó`ãçÑºãaå�×#Õ�×+� Ô$ÕkÜØÜ÷å òEÕ�âºåIÑÐ��kÓ�å�Û#Û#âÕkåkÔºÒ}ô ò�åkãäÓ`Ú
Õ�×�ãäÐÝÙ�×�å�Ü�Û#âÕ�Ô$Ó`ã�ã�ÐØ×�ÙBÐØ×|Ñ�Ò#Ó�Û#Ò�Þ�ãäÐ÷ÔUå�Ü�Ü÷åfÞ�ÓUâ`êjð�ÛEÓdÔUÐ(,EÔUå ÜÝÜÝÞ�ôRà�Ó
Û#âÕ�ÛEÕkã�ÓÃÐØ×�Ñ�Ódâäß�Ódâ�Ód×�Ô$ÓXâÓ.-çÓ`Ô/ÑÐØÕk×�ß�Õkâ&Ñ�Ò�Ó/�æð#ð�ðÀÏMÿ����áõ�ã�ÐØ×#Ù
âÓdÔ$õ�âã�Ð��kÓ�ÜÝÓdåkãçÑ#�Lã0��õ�å âÓdãaÜ÷åIÑ�Ñ�Ð÷Ô$Ó�,�ÜØÑ�Ódâãdêrð�ÐØ×�Ô$ÓjÑ�Ò#Ó�ÏMÿ����7Ò�å�ã
×#Õ214365�7�895�7%è�×#ÕIà!ÜÝÓdÚ�ÙkÓZÕ�ßrÑ�Ò#Ó�ÑÐØÖÃÐÝ×#Ù5Õkâæß�â�Ó:�kõ�ÓU×�ÔUÞ<õ�ãäÓ`Ú±ò�Þ
Ñ�Ò�Ó���ÜØõ�Ó$Ñ�Õ�Õ�Ñ�ÒBÐÝ×�Ñ�ÓUâ�ß�ÓUâÓU×�Ô$Ó�ôkÐ~Ñ�õ�ã�ÓdãrÑ�Ò#Óæå�Ú#å�Û�Ñ�Ð ��Ó;,�Ü~ÑÓUârÑÕZÓ`ã.�
Ñ�ÐÝÖXåIÑÓPå ×�Ú¬Ôdå ×�ÔUÓUÜaÑÒ#Ó/��ÜØõ#ÓUÑ�Õ�Õ ÑÒ�ÐØ×�ÑÓUâ�ß�ÓUâÓU×�ÔUÓ�êBÏªÒ#ÐÝÜÝÓXÑ�Ò#Ð÷ã
Û�å�Û�ÓdâTß�Õ�Ô$õ�ãäÓ`ãTÕk×XÑ�Ò#Ó�üjñ|ò6<Iã�ù�û�é�êÝü�ü,ÖÃÕ�Ú�Ó�ô�ÑÒ#Ójã�õ#Û#Û#âÓdãã�ÐØÕk×
ÖÃÓ$ÑÒ#Õ�Ú�ÐÝãBå�ÜÝã�Õ�å Û#Û�ÜØÐ÷ÔUå�ò#ÜØÓ�ÑÕ¬Ñ�Ò#ÓÀé¬ñgò6<Iã�ÓdÔ&=�>�ð+?@��ð#ð#ð
ÖÃÕ�Ú�Ó�êPñ|Õ�âÓUÕ���ÓdâdôRÑÒ#ÓXâÓdã�õ#Ü~Ñºã ÔUå�×�òEÓBÓUö�ÑÓU×�Ú#ÓdÚ�ß�â�ÕkÖA��ÜÝõ#Ó��
Ñ�Õ�Õ�Ñ�Ò±ÐÝ×�Ñ�Ódâäß�Ódâ�Ód×�Ô$Ó¿Ñ�Õ<Õ ÑÒ#ÓUâ�×�å�â�âÕIà��@ò�å ×�Ú<×#ÓUÑçà�Õkâ�è�ãæãäõ�ÔºÒÀå�ã
í,ÕkÖÃÓ�BC��å�×�ÚÃÑÒ#Óæß�â�Ó:�kõ�ÓU×�ÔUÞD�LÒ#ÕkÛ#Û#ÐÝ×#ÙZïçø�øTø>ùkûké#êØükü!ÏMÿ����Zê

��Ò#ÓUâÓgÒ�å�ãBò�ÓdÓU×ªÖZõ�ÔºÒ®âÓdã�Ódå�âÔºÒ¢ÐØ×�ÑÒ#Ó±å�â�Ó`å�Õ�ßæÐÝ×�Ñ�Ódâäß�ÓdâE�
ÓU×�Ô$ÓÃãäõ#Û�Û#â�Ó`ã�ã�ÐÝÕ�×&,�Ü~ÑÓUâºãGF	ß�Õkâæå5âÓdÔ$Ód×�ÑæâÓG��ÐÝÓUà'Û#ÜÝÓdåkãäÓ�ãäÓdÓH� ë9
Lô
IKJ�L � M�
N� O�
N�P�:
Lê��Ò#Ódã�Ó�Û�å ÛEÓUâºãdô�Ñ�ÕÃÕ�õ#â�òEÓdãäÑ,è�×#ÕIà!ÜØÓ`Ú�Ù�Ókô�Û#â�ÕkÖÃÐ(�
×#Ód×kÑÜØÞ�ÔUÕ�×�ã�Ð÷Ú�ÓUâ�å±ãäÑ�âÕ�×#ÙQ,�ö�Ó`Ú�ß�âÓ���õ#Ód×�Ô$Þ¬ÐÝ×kÑÓUâ�ß�ÓUâÓUâ¿ÐØ×>Ñ�Ò#Ó

 20 15 10 5 0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

f [MHz]
P

ow
er

R�SPT�U+V�UWR�XZY.[�\:YE]:^._�`Za9Y.^cbZXK\�dfehgibKj�Y"kmlhXZn�Y.Xo^.eGp�Y�qDbKj�Y�g XKY.[�\�Y.]�^.SPY.`lhXKY
XZY.rsl0bZS t�Y�bZe�bKj�Yo^.Y.]GbKY.Xmg XKYE[G\�Y.]�^c_�u�v�j�SP^Zj�SP`6rslhwxY.rPY.p�lh`myNz|{�}�U�~�ehbKY
bZj�Y]:ehbZ^�j|ehg�lha:a�XZeE�:SPdCl0bKY.r _4VEy"p�kHl0b�bZj:Y^#lhXKXZSPY.Xmg XKY.[�\�Y.]�^c_�U

ò�å�×�Ú�à!Ð÷Ú�Ñ�Ò|Õ�ßKÑ�Ò#ÓZÚ#Ódã�ÐØâÓdÚgã�ÐØÙk×�å Ü@ê;��Ò#ÓUâÓ&Ð÷ã,×#Õ�Ñæå�ã,ÖZõ�ÔºÒgÐÝ×+�
ß�Õ�âÖXåIÑÐØÕk×5ÐÝ×�Ñ�Ò#Ó&ÕkÛ�Ód×�ÜØÐØÑ�Ódâå Ñ�õ#âÓ å òEÕ�õ�Ñ!ÑÒ#Ó&ÛEÓUâ�ß�Õ�âÖÃå�×�Ô$Ó�Õ�ß
Ñ�Ò�Ódã�Ó|,�ÜØÑ�ÓUâºã�ß�Õkâ�åXÒ#ÕkÛ#Û#ÐÝ×#Ù�-äå ÖÃÖÃÓUâ`ê;'�Õk×�ã�Ó���õ#ÓU×�ÑÜØÞkô#Ñ�Ò�ÐÝã�Û�å��
ÛEÓUâ�ãçÑõ�Ú�ÐÝÓdã�å ×#ÓdàMå Û#Û�ÜØÐ÷ÔUå Ñ�ÐÝÕ�×Xß�ÕkârÑ�Ò�Ódã�Ó�,�ÜØÑ�Ódâã�ÐÝ×PåZÚ�Þ�×�å�ÖÃÐÝÔ
ÓU×���ÐÝâ�Õk×#ÖÃÓU×�Ñjà!ÐØÑ�Ò�Ò#Õ�Û#Û�ÐØ×#Ù5ÐØ×�ÑÓUâ�ß�ÓUâÓU×�ÔUÓ�êæï ×±åPà!ÐÝâÓUÜÝÓdãã,×#ÓUÑE�
à�Õ�âè±ÓU×���ÐÝâ�Õk×#ÖÃÓU×�ÑdôKågÜÝÕ�×#Ù|ÏMÿ����áÛ�å�ÔºèkÓ$Ñ ÖXåfÞ�òEÓ5ã�õ#ò+-çÓ`Ô/Ñ
Ñ�ÕXÖ¿õ#ÜØÑ�ÐÝÛ#ÜØÓ����9ÐØ×�ÑÓUâ�ß�ÓUâÓUâºãUô�Ó`å�ÔºÒ<à!Ð~ÑÒ�åXÚ#Ð(�RÓUâÓU×�Ñ!ß�âÓ���õ#ÓU×�Ô$Þ
Õ9�	ã�Ó$ÑZå ×�ÚÀå�ÖÃÛ#ÜØÐØÑ�õ�Ú�Ó�ê���Õ�â&Ó`å�ÔºÒÀÐØ×�Ñ�Ódâäß�Ódâ�Ód×�Ô$Ókô}ÑÒ#ÓBå�Ú#å�Û�Ñ�Ð ��Ó
,�ÜØÑ�ÓdâTÔ$Õ�Ó�)BÔUÐØÓd×kÑºãaÒ�å��kÓ�Ñ�Õ ÔºÒ�å�×#Ù�Ó�Ñ�Õ ÔUÕ�ÖÃÛEÓU×�ãåIÑÓ�ß�Õ�âaÑÒ#Ó,×#Ódà
Ô$Õk×�Ú�ÐØÑ�ÐÝÕ�×�ãdê��#Õ�â�ÖZõ#ÜØÑ�ÐÝÛ#ÜÝÓZãäÐÝÖZõ�Ü~Ñºå ×#ÓdÕ�õ�ã�ÐÝ×�Ñ�ÓUâ�ß�ÓUâÓUâºãdô�Ñ�Ò#Ð÷ã,Ð÷ã,å
ÔºÒ�å�ÜØÜÝÓU×#ÙkÐØ×�Ù!ÑåkãäèRê���Ò�Ó�Ü÷å�Ôºè�Õ ß�ÓUââ�Õkâ�Ô$Õkâ�âÓdÔ$Ñ�ÐÝÕ�×&ÐÝ× Ñ�Ò�Ó�ÏMÿ����
Û�åkÔºè�Ó$Ñºã,å�Ú�Ú#ã�Ñ�ÕBÑ�Ò#ÓZÚ#Ð()BÔ$õ�Ü~ÑçÞkô�ã�ÐØ×�ÔUÓ ÓG�kÓU×�Õ�×�Ó ò#ÐØÑ�ÓUââ�Õkâ!à!ÐØÜÝÜ
ÜÝÓdå�Ú�ÑÕ Û�åkÔºè�Ó$ÑrÜÝÕkããdêo��Ò#Ódâ�ÓUß�Õ�âÓ�ôIÑÒ#Ó�ÐÝ×�Ñ�Ódâäß�Ódâ�Ód×�Ô$Ó,ã�õ#Û#Û#âÓdãã�ÐØÕk×
å ÜÝÙ�Õkâ�ÐØÑ�Ò�ÖáÒ�åkã�Ñ�ÕPÚ#Ó$Ñ�Ó`Ô/Ñ�å ×�Ú�ÔUå�×�Ô$ÓdÜ}ÑÒ#Ó ÐÝ×kÑÓUâ�ß�ÓUâÓU×�ÔUÓ&ÐØ×±ÜØÓ`ã�ã
Ñ�Ò�å ×>Õk×#Ó<ò#Ð~ÑXÐÝ×�Ñ�ÓUâ0�Iå Ü@ê��j×�ÑÒ#Ó�Õ ÑÒ#ÓUâ�Ò�å ×�Ú	ôrß�ÕkâÃã�Ò#ÕkâäÑÃÚ�ÐÝãE�
Ñå�×�Ô$Ó!ÐÝ×�Ú�Õ�ÕkâTå Û#Û�ÜØÐ÷ÔUå Ñ�ÐÝÕ�×�ãdô�Õk×#Ó,ÔUå�×Ãåkã�ã�õ#ÖÃÓ�Ñ�Ò�åIÑaÑ�Ò�Ó�ÔUå�â�âÐØÓdâE�
Ñ�Õx�@×�Õ�Ð÷ãäÓÃâºåIÑ�ÐÝÕ¬ýZ'���B���ÐÝã Ò#ÐØÙkÒ}ê/��Ò#Ð÷ã�Ò#ÓUÜÝÛ�ã�ÑÕ|ãäÛEÓUÓ`ÚÀõ#ÛÀÑ�Ò#Ó
Ô$Õk×���ÓUâÙ�Ód×�Ô$Ójâå Ñ�Óæß�Õ�â,ã�Õ�ÖÃÓ�Û�å�âäÑÐÝÔUõ#ÜÝå�â!å ÜÝÙ�Õ�âÐØÑ�Ò#ÖXãdê

Å$ÅfÆ4���N�������o�UÈ������¢Ê�Ë����
��Ò#Óªü�ñgò6<Iã�ÓdÔ2��ð#ð#ð7ùkûké�êÝü�üÀÏMÿ���� ÓUÖÃÛ#ÜÝÕIÞ�ãQ����>�ð+?

ÖÃÕ�Ú�õ#Ü÷åIÑ�ÐÝÕ�×�ô�å�×�Ú¬ÓdåkÔºÒÀò�Ð~ÑZÐ÷ã ã�Û#âÓdå�ÚÀò�Þ�å�×ªü�üBÔºÒ#ÐÝÛ2��å âè�ÓUâ
Ô$Õ�Ú�Ó�� ù�
Lê���ÐÝÙ�ê,ü|ã�Ò#ÕIà,ã�ÑÒ#ÓgÑ�âºå ×�ãäÖÃÐØÑäÑ�Ó`Ú�ãäÐÝÙ�×�å�Ü�ã�Û�Ó`Ô/Ñ�âõ#Ö�ô
à!Ò#Ð÷ÔºÒgÒ�å�ã�åBãäõ�ò�ãçÑºå ×�Ñ�Ð÷å Ü�×#Õ ÑºÔºÒ�å Ñ,Ñ�Ò�ÓZÔUå�â�âÐØÓdâ�ß�â�Ó:��õ#ÓU×�ÔUÞ�F�å ×
å ×�å ÜÝÞkÑÐÝÔdå ÜaÚ�Ódâ�Ð �IåIÑ�ÐÝÕ�×�Õ ß�Ñ�Ò#ÓBã�Û�Ó`Ô/Ñâ�õ#Ö ÐÝã�ÙkÐ��kÓU×±ò�Þ|ÿ�ÓUÓXå ×�Ú
ñgÐÝÜØÜÝÓUâ�� ��
Lêo�jãTà!ÐÝÜØÜEòEÓæã�Ò#ÕIà!×XòEÓUÜÝÕIà&ô�ÑÒ#ÐÝã�×#Õ�ÑÔºÒBÐ÷ãaÑÒ#ÓjâÓdåkãäÕk×

Soltanian & Van Dyck 65

 18 16 14 12 10 8 6 4
10 4

10 3

10 2

10 1

100

CIR [dB]

B
E

R

fd=0 MHz
fd=1 MHz
fd=2 MHz
fd=3 MHz
fd=4 MHz
fd=5 MHz
fd=6 MHz
fd=7 MHz

���P���* :�¢¡�� £�¤.¥Z¥Z¦�¥�¥�§0£K¤4¨x¤.¥�© ¦�¥KªC§h«�¬.¤|¦h©N£K�¤¯®�°� :�P±�±4¥Z¤.¬.¤E� ²�¤.¥��P«³£K�¤
¨�¥Z¤.´Z¤.«�¬.¤�¦h©�¡�µP¶�¤c£K¦�¦h£K��P«�£Z¤.¥K©�¤.¥Z¤.«�¬.¤��m·m¸�¹»ºW¼�½�¾�¡o�

¿#ÀiÁ�¿�¿0À�Â;ÃiÂ�ÄEÅÇÆDÄ#ÈÉÁxÊ�Ë�Â�Æ9Å6¿#À�Â�ÌxÍÏÎ+Ð ÑxÑNÄ0Â�ËGÂGÒ ÓxÂ�ÄÔ;Ò(¿0ÀÖÕ�× Ø�Â�¿0Æ�Æ9¿#À
Ò ÊD¿0ÂGÄ#ÅÇÂGÄ0ÂGÊ�ËGÂ�Á9¿"ÙGÂ�Ä#Æ�ÅÇÄ#Â:ÚDØ�ÂGÊ�ËGÛ�ÆxÜ�Ý#Â�¿�Ò Ý�Þ6Â�¿#¿#ÂGÄ"¿#ÀiÁ9Ê/¿0À�Â�ÃiÂ�ÄEß
ÅÇÆxÄ0ÈÉÁ9Ê�ËGÂ�Ô;Ò�¿#ÀÉ¿0À�Â�Ò�ÊÏ¿#Â�ÄEÅÇÂ�Ä#Â�Ê�Ë�Â�Á�¿�Ñxà+Î+à�á�à�ÆxÄ"â¯ã&ä�Ù�Æ9ÜmÝ#Â�¿0Ý�Ð

å À�Â"æ+ÒçÝ0Ë�Ä0Â�¿#ÂNÒ�Ê�Ã�Ø+¿�Ý#Ò èxÊ�Áx×9¿#Æ�¿#À�Â"é$ê�ë�ì!Ä0Â�ËGÂGÒ ÓxÂGÄ:à�Ý0Á9ÈÖÃ�× Â�æ
ÆxÊiË�Â�ÃiÂ�Ä�ËhÀ�Ò Ã³Ã6ÂGÄ0Ò Æ�æ*à�í*î�à�Ë�Á9ÊHÞiÂ|ÂGï+Ã�Ä#Â:Ý#Ý#Â�æHÁxÝ

ð�ñKò�óNôöõÏñZò�ó�÷�øhñZò�ó*÷�ù�ñKò�ó�ú òÖô Ñ ú Î úGû�ûGû�ü ñ Ñ ó
äCÂ�Ä#ÂDà õDñZò�ó Ò Ý�¿#À�Â�æ+Â�Ý#Ò Ä#Â:æÖÑ"ãQÞ6ý9ÝEÂ:Ë�þ�ÿ�ÿ�ÿ|é$ê�ë�ì�ÝEÒ èxÊiÁ9×xÔ;Ò�¿#À
þ�Õ���ÿ�� ÈÖÆ+æ+Ø�×çÁ�¿0Ò�ÆDÊ*à ø�ñKò�ó Ò Ý�¿0À�Â�Õ å Ò ÊÏ¿#ÂGÄ#ÅÇÂGÄ0ÂGÊiË�Âxà+ÁxÊ�æ ù�ñKò�ó
ÒçÝ�¿#À�ÂCÁDæ�æ+Ò�¿#Ò ÓxÂ�Ô;À�Ò�¿#Â���ÁxØ�Ý#Ý#ÒçÁ9Ê�Ê�ÆxÒçÝEÂDÐ å À�Â�Ä#Â;ÁxÄ#Â�ÑxÑ;ËGÆxÈÖÃ�× Â�ï
Ý0Á9ÈÖÃ�× Â�Ý�ý�Þ�Ò�¿�Ò Ê³¿#À�Â�Þ�ÁDÝEÂ�Þ�Á9Ê�æ³ÝEÒ èxÊiÁ9×ZàÏÞ6Â�Ë�Á9Ø�Ý#Â�Æ9Å�¿0À�ÂÖÑxÑ�ËhÀ�Ò�Ã
Õ�Á9Ä��xÂ�Ä�ËGÆ+æ+Â	��Ð

 Ò è�Ð�Î�æ+Â�Ã�ÒçË�¿0ÝQ¿#À�Â2Õ��� Ë�Ø�Ä0ÓxÂ:Ý³ÅÇÆxÄ ¿#À�Â�Á9Þ6Æ�ÓxÂ»Ý#Û+Ý.¿0ÂGÈ à

ÆxÞ�¿0Á9Ò Ê�Â:æfØ�Ý#Ò�Ê�è ãQÆDÊD¿0Â���ÁxÄ#× Æ!Ý#Ò�È¯Ø�× Á9¿#Ò ÆxÊ*Ð�é Â ÁDÝ#Ý#Ø�ÈÖÂ»ÁxÊ
Ò ÊD¿0ÂGÄ#ÅÇÂGÄ0ÂGÊ�ËGÂ�ß�×�Ò ÈÖÒ(¿0Â�æ Â�ÊÏÓ�Ò Ä#ÆDÊ�ÈÖÂGÊÏ¿4Ô;Ò�¿#À������ ô á��Qæ�Õ�Ð��cÊ
¿#À�Â�Ý#Â4Ã�× Æ9¿hÝGà����4Ò Ý�¿#À�Â4ÅÇÄ#Â:ÚÏØ�ÂGÊ�ËGÛ³ÆxÜ�Ý#Â�¿�ÞiÂG¿.Ô"Â�ÂGÊ ¿0À�Â4é$ê�ë�ì
ËGÁxÄ#Ä0Ò ÂGÄ�ÁxÊ�æ|¿0À�Â�Õ å Ò�ÊÏ¿#Â�ÄEÅÇÂ�Ä#Â�Ê�Ë�ÂDÐ�é Â�Ý#Ø�Ã�Ã6ÆDÝ#Â�¿0À�Á�¿�¿0À�Â"Ò ÊÏ¿#Â�ÄEß
ÅÇÂGÄ0ÂGÊiË�ÂÒçÝ�Á9× Ô�Á�Û�Ý�ÆDÊ|Á9Ê�æ�¿#ÀiÁ�¿�Ò�¿�Â�ï+ÒçÝ.¿hÝ�ÅÇÆxÄ*¿#À�Â�Â�ÊÏ¿#Ò Ä#Â�× ÂGÊ�è9¿#À�ÆxÅ
¿#À�Â�é$ê�ë�ì Ã�ÁDË��xÂG¿�Ð å À�Â�Ë�Á9Ä0Ä#Ò ÂGÄ#ßZ¿#Æ9ß�Ò ÊD¿0ÂGÄ#ÅÇÂGÄ0ÂGÊ�ËGÂÄ0Á9¿#Ò Æ ñ �� !� ó
ÒçÝ�æ+Â#"iÊ�Â�æ Þ6Â�ÅÇÆDÄ#ÂÖ¿0À�Â/Þ�ÁxÊ�æ+Ã�ÁDÝ#Ý$"�×�¿#Â�Ä4Á�¿4¿#À�ÂÉÄ0Â�ËGÂGÒ ÓxÂGÄ:Ð&%�Ê�Â
Ý#ÂGÂ�Ý�¿0À�Á�¿|Á&�� �� Ó�Á9× Ø�ÂÖ×�Â:Ý#Ý�¿#ÀiÁ9Ê(';â³æ�Õ ÒçÝ|ËGÁxÃ�Á9Þ�× Â4ÆxÅNÃ�Ä0Æ9ß
æ+Ø�ËGÒ�Ê�è Â�Ä#Ä0ÆxÄhÝÉÒ Ê$¿#À�Â»é$ê�ë�ìAÃ�ÁxË��DÂ�¿�Ð å À�Â æ+Â�¿hÁ9Ò × Ý³Æ9Å4¿#À�Â
Ý#Ò�È¯Ø�× Á9¿#Ò ÆxÊ ËGÁxÊ³Þ6Â�ÅÇÆxØ�Êiæ³Ò Ê*)(Ñ,+ZÐ

-,-#-/.	0214365�7�8:9�;=<�8?>,7�;A@CBD;FE,GH>,7HE
éfÀ�Ò�× Â�Ô"Â�À�Á�ÓxÂ4ÆxÞ+¿hÁ9Ò Ê�Â�æQèDÆ�Æ�æ&Ä#Â:ÝEØ�×�¿0Ý�Ø�Ý#Ò�Ê�èHÁxÊWÁxæ�ÁxÃ+¿#Ò ÓxÂ

"�×�¿#Â�Ä&Þ�ÁxÝ#Â�æ ÆDÊö¿0À�Â�× Â�ÁxÝE¿Eß�ÈÖÂ�ÁxÊ Ý0ÚÏØ�Á9Ä0Â ñ ê�ã»ÿ ó Á9× èxÆDÄ#Ò�¿#À�È à
Ô�ÂWËhÀ�Æ�ÆDÝ#Â ¿#Æ2ÅÇÆ+ËGØ�Ý�ÆDÊ ¿#À�Â»Ä#Â:Ë�Ø�ÄhÝ#Ò�ÓDÂH× Â�ÁDÝ.¿#ß�Ý0ÚÏØ�Á9Ä0Â�ÝÖ×çÁ�¿#¿#ÒçË�Â
ñ �ê�ÿ+ê ó "�×�¿#ÂGÄ:Ð å À�ÂD�ê�ÿ+ê2Áx×�èDÆxÄ0Ò(¿0À�È Ä0Â�ÚÏØ�Ò Ä#Â:Ý"ÈÖÆDÄ#Â�ËGÆxÈÖÃ�Ø+ß
¿0Á9¿#Ò ÆxÊ�Áx×�Ë�ÆDÈ�Ã�×�ÂGï�Ò�¿.ÛQ¿0À�Á9Ê ¿#À�Â/ê�ãWÿ Á9× èxÆDÄ#Ò�¿#À�ÈHà�Þ�Ø+¿�Ò�¿0Ý�Å�ÁDÝ.¿
IKJ «4£K�¤�´K�Pª�¶�µs§0£K�P¦�«�´ML!N�´�§hª;¨:µP¤E´PO0¬���P¨�§h¥K¤�¶�´K¤E¾�£K¦�§hµPµP¦MQ2§;© ¥K¤MRG¶�¤.«�¬KS¦�Tx´Z¤c£VU9¤c£?Qm¤.¤.«/£K�¤�W&XZYo¸�§h«�¾/¡4[\Q�� £Z:¦�¶:£;§hµP�s§h´K�P«����^]�¦_Qm¤c²�¤.¥_L�£K�¤´�§hª;¨:µP�P«���¥Z§0£Z¤�P´*¨�¥K¦�¨x¤.¥Kµ SC¥Z¤.¾�¶�¬.¤.¾�U#S�£K�¤¥K¤E¬.¤.� ²�¤.¥#�

 26 25 24 23 22 21 20 19 18
10 6

10 5

10 4

10 3

10 2

10 1

CIR [dB]

B
E

R

fd=0 MHz
fd=1 MHz
fd=2 MHz
fd=3 MHz
fd=4 MHz
fd=5 MHz
fd=6 MHz
fd=7 MHz

���P����¼:��¹6XA`,XÖ§hµP��¦�¥Z� £K�ª��Fao«�¤�¡4[H�P«G£K¤.¥K©�¤E¥K¤.¥#�6·m¸o¹&º»¼�½"¾�¡o�

Ë�ÆDÊ�ÓxÂGÄ0èxÂ�Ê�Ë�Â�ÄhÁ�¿#Â�ÈÖÁb�xÂ:Ý|Ò(¿�Á�¿E¿0Ä0ÁDË�¿0Ò�ÓDÂÖÅÇÆxÄ�Ò ÊÏ¿#ÂGÄ#ÅÇÂGÄ0ÂGÊiË�Â/Ý#Ø�Ã+ß
Ã�Ä0Â�Ý0ÝEÒ ÆxÊ�Ð å À�Ò Ý4Á9× èxÆxÄ0Ò�¿#À�È�ÒçÝ�æ+Â:Ý#ËGÄ#Ò Þ6Â�æ Ò�Êc)�Ñ�Í�+ZàoÁ9Ê�æ»ÅÇÆxÄ�¿#À�Â
Ý0Á��xÂ�ÆxÅ�¿#À�ÂCÞ�Ä0ÂGÓ�Ò(¿.ÛDà9Ò�¿�Ò ÝÊ�Æ9¿�Ä0ÂGÃ6Â�Á�¿0Â�æ¯À�ÂGÄ0ÂxÐ å À�Â;Ã�ÁxÄ0ÁxÈÖÂ�¿#Â�Ä0Ý
Æ9Å6¿#À�Â�Á9× èxÆDÄ#Ò�¿#À�È�Á9Ä0ÂVd�àDÔ;À�ÒçËhÀ�ÒçÝ�¿0À�ÂCÆxÄhæ+Â�ÄÆ9Å6¿#À�ÂC×çÁ�¿#¿#ÒçË�Â�"�×�ß
¿#Â�Ä�àiÁ9Ê�æfe*àiÔ;À�ÒçËhÀHÒçÝ�¿#À�Â�ÅÇÆxÄ0èxÂ�¿#¿#Ò Ê�è�Å�ÁxË�¿#ÆxÄ:Ð�e Ä0ÂGÃ�Ä0Â�Ý#ÂGÊÏ¿hÝ�¿#À�Â
ÈÖÂGÈÖÆxÄ0Û|Æ9Åi¿#À�ÂCÁx×�èDÆxÄ0Ò(¿0À�È à�Ô;Ò(¿0Àge ô Ñ;ËGÆxÄ0Ä#Â:ÝEÃ6ÆxÊ�æ�Ò�Ê�è�¿#Æ�Ò Ê�"�ß
Ê�Ò�¿#Â�ÈÖÂGÈÖÆxÄ0ÛxÐ
 ÆxÄ�ÆxÊ�Â�Ò�ÊÏ¿0ÂGÄ#ÅÇÂGÄ0ÂGÄ:àÏÒ�¿;Ô�ÁDÝNÆDÞ�Ý#ÂGÄ0ÓxÂ�æÉ¿#À�Á9¿�Â�ÓxÂ�Ê
d ô Ñ4Ô�ÆxØ�× æQÞ6Â�ÂGÊ�ÆDØ�èxÀQ¿0ÆHË�Á9Ê�ËGÂG×�¿#À�Â�Ò ÊD¿0ÂGÄ#ÅÇÂGÄ0ÂGÊ�ËGÂxÐ�äCÆ�Ô�ß
ÂGÓDÂGÄ"ÅÇÆxÄ;È¯Ø�×(¿0Ò�Ã�×�Â|Ý#Ò�È¯Ø�×(¿hÁ9Ê�Â�ÆxØ�Ý"Ò ÊD¿0ÂGÄ#ÅÇÂGÄ0ÂGÄhÝGà�Ò Ê�Ë�Ä0Â�ÁDÝEÒ Ê�è^d ¿#Æ
Ý#ÆxÈÖÂ/Â�ï�¿0ÂGÊÏ¿¯Ô;Ò ×�×�æ+Â:Ë�Ä0Â�ÁxÝ#ÂÖ¿#À�Â&hjiD��Ð&é»Â³ÂGÈÖÃ�× Æ�Û�d ô á
Á9Êiæ&e ô ü k�l ÅÇÆxÄ�¿0À�Â�Ý#Â�ÝEÒ È4Ø�× Á9¿#Ò ÆxÊ�Ý�Ð

 Ò è�Ð�á Ã�Ä0Â�Ý#ÂGÊÏ¿0ÝÖ¿0À�Â&Ä0Â�Ý#Ø�×�¿0ÝÖÅÇÆDÄ�ÆxÊ�Â&Õ å Ò ÊD¿0ÂGÄ#ÅÇÂGÄ0ÂGÄ:Ð
 ÆxÄ

���m� ô á!��æ�Õ�à+ÆDÊ�Â�Ý#ÂGÂ:Ý�¿#À�Á9¿�¿#À�ÂnCêoÿ+ê Á9× èxÆxÄ0Ò�¿#À�È ÒçÝ;ËGÁxÃ�Á�ß
Þ�× Â|Æ9ÅoÄ#Â:æ+Ø�Ë�Ò Ê�è�¿#À�Â�Õ��o$¿0ÆÉÞiÂ�×�Æ�Ô�Ñ�ÍAprq�ÅÇÆxÄs�o�tCÝ;ÁDÝ�×�Æ�Ô ÁxÝ
Á9× ÈÖÆDÝE¿�'�ÎDÎCæ�Õ�Ð/��¿Ò ÝoÔ�ÆxÄ#¿#À�Ê�Æ9¿#Ò Ê�è�¿#À�Á9¿�¿#À�Â�Ò ÊD¿0ÂGÄ#ÅÇÂGÄ0ÂGÊ�ËGÂ"Á9¿�á
Á9Êiæ¯â|ã&ä�ÙCÆ9ÜmÝ#Â�¿0Ý�Ò Ýo¿0À�ÂCÈÖÆDÝE¿Næ+ÒvuÉËGØ�×�¿¿#Æ�Ý#Ø�Ã�Ã�Ä0Â�Ý0ÝGàxÞiÂ:ËGÁ9ØiÝEÂ
¿#À�Â�Õ�× Ø�Â�¿0Æ�Æ9¿#À�ÝEÒ èxÊiÁ9×�Ò ÝoÄ0Ò�èDÀÏ¿�Ò Ê4¿0À�Â�È�Òçæ�æ+× Â�Æ9Å�¿0À�Â�ÈÉÁ9Ò Ê4× ÆxÞ6ÂxÐ
ëw�o�t ÆxÅx'�Î9Í|æ�Õ èxÒ ÓxÂ:Ý�Á�Õ��� ÆxÅ�Ñ:Í�p4y�àÏÁ�èDÁ9Ò ÊÖÆ9Å*Á9× ÈÖÆDÝE¿�Ñz�
æ�Õ�Ë�ÆDÈ�ÃiÁ9Ä0Â�æ¯¿#Æ�¿0À�Â�Þ�ÁDÝEÂ�×�Ò Ê�ÂCË�ÁxÝ#Â;Æ9Å
 Ò�èiÐDÎ+Ðx��ÓDÂGÊÖÔ;À�Â�ÊÖ¿#À�Â
��ì��ÒçÝ"ÆDÊ�× ÛQÑz��æ�Õ�àÏ¿0À�ÂnCê�ÿ+ê�"�×�¿#Â�Ä;Þ�Ä#Ò Ê�èÏÝ�¿0À�Â|Õ��ofÞ6ÂG× Æ�Ô
Ñ�ÍApry�ÅÇÆxÄs�o�t�Ý�Æ9Å�'|Ñz��¿#Æ{'|Ñ}|�æ�Õ ñ Ê�ÆÉÝ#À�Æ�Ô;Ê ó Ð

-_~f.j�CGH>#7�8?5A>�;=�$��-��H74;�@���;�@�;A�6�r;�E

 Ò è�Ðxâ�Ò × ×�Ø�ÝE¿#ÄhÁ�¿0Â�Ý�¿0À�ÂCÕ��� ÃiÂ�ÄEÅÇÆDÄ#ÈÉÁxÊ�Ë�Â�ÅÇÆxÄ�¿.Ô"Æ|Õ å Ò ÊÏ¿#Â�ÄEß

ÅÇÂGÄ0ÂGÄhÝ�Ð å À�Â�Á9Þ�Ý0Ë�ÒçÝ0Ý#Á�ÝEÀ�Æ�ÔCÝ�¿0À�ÂV�o�t Æ9Å�¿#À�Â;Ý#Â�Ë�ÆDÊ�æ�Ò ÊÏ¿#Â�ÄEÅÇÂ�Ä#Â�Ä�à
Á9ÊiæH¿#À�Â4¿#À�Ä0ÂGÂ4ËGØ�Ä0ÓxÂ�Ý�Á9Ä0Â�ÅÇÆxÄ�æ�Ò(Ü�ÂGÄ0ÂGÊÏ¿��o�t�ÿHÆxÅ¿#À�ÂD"�Ä0ÝE¿�Ò Ê+ß
¿#Â�ÄEÅÇÂ�Ä#Â�Ä�Ð���ÓDÂGÊÖÒ�Åm¿#À�Ân�o�tfË�ÆxÈÖÃ�ÁxÄ#Â:æ�¿#Æ|¿0À�Â�"iÄ0ÝE¿NÒ ÊD¿0ÂGÄ#ÅÇÂGÄ0ÂGÄ�ÒçÝ
ß.Î9Í4æ�Õ�à+Á�Õ���$ÆxÅNÑ�ÍApry�Ò Ý�ÁxËhÀ�Ò�Â�ÓxÂ�æ/Ò(Å�¿#À�Â	�o�töËGÆxÈÖÃ�ÁxÄ#Â:æÖ¿#Æ
¿#À�Â�ÝEÂ:Ë�ÆxÊiæ�Ò ÊÏ¿#ÂGÄ#ÅÇÂGÄ0ÂGÄ�ÒçÝ�ßhÑ�Í�æ�Õ�Ð
��Å6¿0À�ÂCÊ�Ø�È¯ÞiÂ�ÄNÆ9Å�¿0Ò�ÈÖÂ�ß�Æ�ÓxÂ�Ä#×çÁ9Ã�Ã�Ò�Ê�è�Õ å Ò�ÊÏ¿0ÂGÄ#ÅÇÂGÄ0ÂGÄhÝ�Ò ÝNÈ�ÆDÄ#Â

¿#ÀiÁ9ÊÉ¿.Ô�Æ�àDÒ(¿�Ò Ý"Ý.¿0Ò�× ×iÃ6ÆDÝ0Ý#Ò�Þ�× Â;ÅÇÆDÄ"Áxæ�Á9Ã+¿0Ò�ÓDÂ�Á9× èxÆDÄ#Ò�¿#À�ÈÉÝ�¿0Æ4Ý#Ø�Ã+ß
Ã�Ä0Â�Ý0Ý�Áx×�×�¿#À�Â»Ò�ÊÏ¿#Â�ÄEÅÇÂ�Ä#Â�Ê�Ë�Â»Á�¿HËGÂGÄ#¿0ÁxÒ�Ê$ËGÆxÈ4Þ�Ò�Ê�Á9¿#Ò ÆxÊ�Ý�Æ9Å|ÅÇÄ0Â�ß
ÚÏØ�ÂGÊiË�Û2Æ9ÜmÝ#Â�¿0Ý�Ð
 ÆDÄ¯Ò Ê�ÝE¿0ÁxÊ�Ë�ÂDàÅÇÆxÄ�¿#À�Ä#Â�Â³Â:ÚDØiÁ9×�ÃiÆ�Ô�ÂGÄs�EÁ9È�ß
ÈÖÂGÄhÝGà�ÆxØ�Ä|Ý#Ò�È¯Ø�× Á9¿#Ò ÆxÊ�Ý�Ý#À�Æ�Ô�Â�æQ¿0À�Á�¿�Á9¿|Ý#ÆxÈÖÂ�ÅÇÄ0Â�ÚÏØ�ÂGÊiË�ÛQÆ9Ü6ß
Ý#Â�¿0Ý�¿#À�Â&Cê�ÿ�êc"�×�¿#Â�Ä�ËGÆxØ�×çæ2ÁxËhÀ�Ò ÂGÓDÂ�h	i	��� Ñ:Í�pry�Á�¿2�� ��

Networking for Pervasive Computing NIST Special Publication 500-259

Soltanian & Van Dyck 66

 20 19 18 17 16 15 14 13 12 11 10
10 4

10 3

10 2

10 1

CIR2 [dB]

B
E

R
CIR1= 20 dB
CIR1= 17 dB
CIR1= 14 dB

�A���/�/�/���4�r�&�:���H���z� �����/�� ��4���/ K���,����¡$��¢,�£ t�£�v M�£ t��¤_�

¥§¦�¨:©Aª}«s¦b«V¨:¬§®¦b«�¯�°�±2²�³w¯�°!±n´2³µ¯�°�±�¶2³¸·n²z¹2º�»s¼r½�¬§�¾
ª,¥!ª,¿zÀ�ÁÂ¬b¿V¦�¨:¨4ÃF¬�«_«_ÄvÅ�¨vªnÆ#¬!Ç	ÅAÄ:È�¦�É_Ä:¬bÈ�«o¬�Á�ÁÂ¿_ªzÊ!©�ª,È�Æ,ËÌ¬�Í�«Mª,É�«}ÀZÉ_ÎAªÏ ¨vÉ_ª}¿�ºA¬�ªz«$ÈA¬�É�ÄvÈFÆ#¿�ª}¦b«_ªDÉ�ÎAª2ÃFª}¿MÁÂ¬!¿_ÇÌ¦�ÈFÆ#ªDÉ�Î�¦§ÉnÇj©�Æ�Îm©AÈA¨:ª}«�«
É_Î�ªf¯�°�±ÐÄ:«jÎAÄ:ÑbÎCª}ÈA¬b©�ÑbÎHÀVÒ£¯�°�±�³Ó·VÔ�º�»�Õ#¼xÖ�ÎAÄ:«j¥§¦�¨:©Aª�Ä×«
Æ#¨:¬!«_ª�É_¬gÉ_ÎAªDÇ^Ä:ÈAÄ:Ç	©AÇÐÉ_¬!¨vª}¿�¦bÅA¨:ªn¯�°�±¸¥/¦b¨v©�ªnÁÂ¬b¿VÉ�ÎAªDØÚÙ�Û�Ü
¿�ª}Æ#ª}Äv¥!ª,¿�VÄvÉ_ÎfÈA¬^ÄvÈ�É�ª,¿_ÁÂª,¿�ª,È�Æ,ª$¿�ªtÝtªzÆ�É�Äv¬!È Ï ¨ÞÉ�ª,¿z¼

ßfàDáxâHãrä�åAæ\çoèêé}éjásë4è�ì�â6ìrí?î�í×æFï
ð ª,¿�Î�¦�Ã�«�¬bÁ�Ç^¬!¿_ªÌÄ:È�É_ª,¿�ª}«MÉDÄ×«�É_ÎAª�ª#Í4ª}Æ�É	É_Î�¦�ÉnÉ_ÎAªgÄ:È�É_ª}¿MÁÂª}¿M¾

ª,ÈFÆ#ªD«_©AÃAÃA¿�ª}«�«MÄ:¬bÈ Ï ¨vÉ_ª}¿VÎ�¦b«V¬!È�É�ÎAªDÃA¿�¬bÅF¦�ÅAÄ:¨vÄvÉtËÌ¬�Á�Ã�¦!Æ�ñbª#ÉVª}¿M¾
¿�¬b¿z¼2Ö�ÎAÄ×«DòmÛ�óô¨:¦/Ë!ª,¿n«MÉ�¦§É�Ä:«MÉ_Ä×Æ2Ä:«DÄvÇ^Ãr¬b¿_É�¦�È�ÉzÀ6«MÄ:È�Æ,ª2ÃF¦bÆ�ñbª,É�«
VÄvÉ_Î�ª}¿_¿�¬b¿�«�ÈAª}ª}º^É�¬	Årª�¿�ª#É_¿�¦�ÈF«MÇ^ÄvÉMÉ_ªzº�¼xõêÄvÑF¼Zön«_ÎA¬§�«÷É_ÎAªs¨v¬�«_«
ÃA¿�¬bÅ�¦bÅAÄ:¨vÄvÉ_Ä:ª}«�ÁÂ¬b¿�¦g»�¨v©Aª,É_¬Z¬�É�ÎmÄ:È!É�ª,¿_ÁÂª,¿�ª,¿�ÁÂ¬b¿sÉto¬�Æ}¦b«_ª}«}¼�Ö�ÎAªÏ ¿�«tÉ�Æ,¦!«MªDÄ×«�ÁÂ¬b¿�É�ÎAª2Å�¦b«_ª,¨:ÄvÈ�ª	«MË�«MÉ_ª}Ç&ÀrVÎAÄ:¨vª	É_ÎAª^«_ª}Æ#¬!È�º{Æ,¦!«Mª
©�«_ª}«oÉ_Î�ª$ø�Ùêù�Ù=¦bºA¦bÃ�É_Ä:¥bª Ï ¨ÞÉ�ª,¿z¼�ús¥bª,¿�¦D¨×¦�¿�Ñbªs¿�¦bÈAÑbª�¬�Á�óoûtø�«}À
É_Î�ª�¦bºA¦bÃ�É_Ä:¥bª Ï ¨vÉ_ª}¿DÄ×«D¦�ÅA¨:ª^É_¬{¿�ª}ºA©�Æ#ª2É_Î�ªg¨v¬�«_«�¿�¦§É�ª2ÁÂ¿_¬!Çü²}¹
É_¬ý²z´�Ãrª,¿�Æ#ª}È�É�É_¬&²VÉ�¬j¶DÃrª,¿�Æ#ª}È�É}À�«MÄ:ÑbÈ�Ä Ï Æ}¦�È�É_¨:Ë2ÄvÇ^ÃA¿�¬§¥ZÄvÈAÑDÉ_ÎAª
«_ËZ«MÉ_ª}ÇþÉ�ÎA¿_¬!©AÑbÎ�ÃA©�É}¼

ß2ÿ/à��$è��6ãrî��6é}íÂè��6éjâ����Cá$ë�å�é,å���æ	� è6ë�ä
ûKÈýÉ�ÎAÄ×«V«tÉ�©�º�ËbÀ�oªn«_ÎA¬§ÚÉ�Î�¦§É�¦�Èfø�Ùêù�Ù*¦bºA¦bÃ�É_Ä:¥bª Ï ¨vÉ_ª}¿�Æ,¦bÈ

Årª�©�«_ª}ºnÄ:ÈD¬!¿�º�ª}¿�É_¬$«M©�ÃAÃA¿�ª}«�«6¦VÎA¬!ÃAÃAÄ:ÈAÑs»�¨:©Aª#É�¬Z¬�É_ÎnÄ:È�É_ª}¿MÁÂª}¿_ª}¿}¼
õA¬!¿ê¦�«MÄ:ÈAÑb¨:ªHÝM¦bÇ^Ç2ª}¿}ÀzÉ�ÎAª�¦b¨vÑ!¬b¿�ÄÞÉ�ÎAÇ Ãrª,¿_ÁÂ¬b¿�ÇÌ«�Ê�©AÄvÉ_ªooª}¨v¨�À§¦�È�º
ÄvÉ�Æ,¦�È&ª#Í4ª}Æ#É_Ä:¥bª}¨vË&Æ,¦�ÈFÆ#ª,¨H¦2ÎA¬!ÃAÃAÄ:ÈAÑ$ÝM¦�Ç^Ç^ª,¿�¦�É�º�ÄÞÍ4ª,¿�ª,È�ÉVÁÂ¿�ª#¾
Ê�©Aª,ÈFÆ#Ë�¬bÍ4«_ª#É�«,¼÷Ö�Î�ªDø�Ù�ù�Ù�¦b¨vÑ!¬b¿�ÄÞÉ�ÎAÇ�«_©AÅ�«MÉ�¦�È�É�Ä:¦b¨v¨:Ëg¿�ª}º�©�Æ,ª}«
É_Î�ªs»�
�ø ÁÂ¬!¿÷Ét�¬	«_ÄvÇj©A¨ÞÉ�¦�ÈAª}¬b©�«HÝM¦�Ç^Ç^ª,¿�«,ÀZ¦�ÈFºgº�ª,Ãrª,ÈFº�ÄvÈ�Ñj¬!È
É_Î�ªj¦bÆ#É_©�¦b¨�É_Ä:Ç^ªj¦bÈ�º&ÁÂ¿_ªzÊ�©Aª,È�Æ,Ë�¬§¥!ª,¿�¨:¦bÃHÀ�É_Î�ªDÃ�¦bÆ�ñ!ª#É�ÇÌ¦/Ë&ÅFª
ª,¿�¿�¬b¿HÁÂ¿�ª,ª!¼�Ö�ÎA¿�ª,ª�«_ÄvÇj©A¨ÞÉ�¦�ÈAª}¬b©�«�Ä:È!É�ª,¿_ÁÂª,¿�ª,¿�«HÄ×«�¦�Ç^¬b¿�ªoº�Ä�gÆ#©A¨vÉ
ÃA¿�¬bÅA¨:ª,ÇfÀ�Å�©�É÷ª,¥!ª,È	Î�ª,¿�ªoÉ�ÎAª�¦bº�¦�Ã�É�Äv¥!ª Ï ¨vÉ_ª}¿÷«M©�Å�«tÉ�¦�È�É_Ä×¦�¨:¨:ËnÄvÇ2¾
ÃA¿�¬§¥bªz«6É�ÎAªVÃrª,¿_ÁÂ¬b¿�Ç^¦bÈ�Æ#ª!¼�õ�©A¿MÉ�ÎAª,¿x¿�ª}«_©A¨vÉ�«êÁÂ¬!¿�É_ÎAªz«Mª�Æ}¦b«_ª}«êVÄv¨:¨
ÅrªD«MÎA¬§VÈ&Ä:ÈýÉ�ÎAª Ï È�¦b¨�Ã�¦�Ãrª,¿z¼
Ö�ÎAª,¿�ª2¦b¿_ª	Éto¬&ª��ZÉ�ª,È�«_Äv¬!È�«sÉ_¬ýÉ_ÎAÄ×«��¬b¿�ñr¼DÖ�Î�ª Ï ¿�«MÉ$¬!ÈAªjÄ×«

É_¬ º�ª,¥!ª,¨:¬bÃ�¦{¿_ªzÆ#ª}Äv¥!ª,¿n¦�¿�Æ�ÎAÄvÉ_ª}Æ#É_©A¿�ªbÀ�ÄvÈFÆ#¨:©�º�Ä:ÈAÑ{É_Î�ª�¦bºA¦bÃ�É_Ä:¥bªÏ ¨vÉ_ª}¿}À�É_ÎF¦§ÉgÃrª,¿_ÁÂ¬b¿�Ç^«^�ª,¨:¨VÁÂ¬!¿ÌÇ	©A¨vÉ_Äv¾�ÃF¦§É_Î(Á ¦!º�ÄvÈ�Ñ\Æ�Î�¦�ÈAÈ�ª,¨×«,¼
ûKÈAÄvÉ_Ä×¦�¨x¿�ª}«_©A¨vÉ�«}À�©�«MÄ:ÈAÑf¦�È�¬bÈ�¾KÆ#¬!ÎAª,¿�ª,È�É$Æ,¬bÇjÅAÄvÈ�ÄvÈAÑfø�Û���
 ¿�ª#¾

 26 25 24 23 22 21 20 19 18 17 16
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

CIR [dB]

P
(p

ac
ke

t l
os

s)

No Filter
Adaptive Filter

�A���/���z���������� K������¤£¤��/���������/����� ���� t¤ �6� �£¡!��¢�"���� �£¡/���z�V�£¡/ s�/¤� s���ê�£¡/
��"#���z�£� $# ���¢#�£ M� �: t�£ M¢%�M ÷¤£�/�/�/�£ M¤£¤�����¢'&§� �£ M�M�

Æ#ª}Äv¥!ª,¿ýVÄÞÉ�Îµ¦�Èµ¦bºA¦bÃ�É_Ä:¥bª Ï ¨ÞÉ�ª,¿zÀ�¦�¿�ªmÃA¿�¬bÇ^Ä×«MÄ:ÈAÑF¼¸Ö�ÎAª=ÈAª��ZÉ
ª��ZÉ�ª,È�«_Äv¬!È�¬bÁ�É�ÎAÄ:«^�¬b¿�ñ*Ä×«2É_¬�©�«_ªf¦bÈ(¦!ºA¦�ÃAÉ_Ä:¥bª&ÄvÈ�É_ª}¿MÁÂª}¿_ª}È�Æ#ª
Æ,¦bÈ�Æ#ª}¨v¨×¦§É�Äv¬!ÈÌÇ^ª}Æ�Î�¦bÈAÄ:«_Ç É_¬jÇ2ÄvÉ_Ä:Ñ!¦�É_ª�É_ÎAªsª#Í4ª}Æ�É�¬�Á6»�¨:©Aª#É�¬Z¬�É_Î
¬bÈ^É�ÎAªnö�¼�ö�¦�È�º{²!²�ò{Å)(�«+*!¹!´�¼:²b²}Å^Ç2¬�º�ªz«,¼÷ùZÄ:È�Æ,ªVÉ_ÎAªz«MªsÇ^¬ZºAª}«
©�«_ªÌÆ#¬bÇ^ÃA¨:ª,Ç^ª}È!É�¦�¿�ËmÆ#¬�º�ª2ñbª}Ë�Ä:ÈAÑ�Ò�óVó �DÕ#À�ÄvÈ�«MÉ_ªz¦bº ¬�Á�,$ùAù�ù4À
¬bÈ�ªnÇ	©�«MÉsÆ#¬!È�«_Ä:º�ª}¿�É_ÎAªjÆ#¬bÇjÅAÄ:ÈAª}ºfª,ÍrªzÆ�É�«�¬�Á�É_ÎAª	ÄvÈ�É_ª}¿MÁÂª}¿_ª}È�Æ#ª
«_©AÃAÃA¿�ª}«�«MÄ:¬bÈ Ï ¨vÉ_ª,¿s¦�È�º�É_ÎAªnªzÊ�©�¦�¨:Ä-}ª,¿VÄ:È&É_ÎAªn¿�ª}Æ,ª,Ä:¥bª,¿Vº�ªz«MÄ:ÑbÈ6¼

. ãrä/�6è10Ìî�å2�436å25så2��æ
Ö�ÎAªj¦b©�É_ÎA¬!¿�«�o¬!©A¨×º{¨vÄ:ñbª	É_¬�É_Î�¦bÈAñ�új¼røVª}Å�¦�¨×¦ÌÁÂ¬!¿�¿�©AÈAÈAÄ:ÈAÑ

É_Î�ª2ÃF¦bÆ�ñbª,É$¨:¬!«�«�«MÄ:Ç	©�¨:¦�É_Ä:¬bÈ�«�¦�ÈFº�ÜD¼�6$¬!¨vÇ^Ä:ª2ÁÂ¬b¿nº�Ä×«_Æ,©�«_«_Ä:¬bÈ�«
¦�År¬b©AÉVÉ_ÎAªDòmÛ�óc¨:¦/Ë!ª,¿�ÃA¿�¬�É�¬ZÆ,¬b¨×«,¼

7Då28ZåAë�å2��ãFåFé
9 :<;>= �@?}��� �A��¢/�B��¢C��¢�"D�x�§���#D)��¢FE/GH���JI1KA�F¡LG}¤��M�N���A�B�NG# t���� t�£�v�����'��¢%�M �:�����t�} <O}��¤£�£ t¢��t ê���!�4���/ K���,���£¡���¢%"�P?�r�F�RQ�S�Tz� :�: �UI V+WYX[ZN\�]Y^`_Xba�_dc#_efJg�\ih�]�jlk�m4nHZ�o�_dp%mqZ�c	rU_dX[gts gto�o�W�gNX<o<Z�cJe�svu�Z�mvm pHc#_b\�e�wx_Z�c#o�IH�/���y :<z � : I��4�B�����,¤A�z�/����I�D = I#{��/¢/ �IJT�S�S : �9 T ; �4���/ K���,���£¡|?}�� N�t�B���}P?¢#�£ M�£ t¤£��~ê�����/��I�jLnHg�\N_ �)\�e�wx_Z�c#o�Z���wh%g��s p%gtw�ZNZ�wh�jlk�o�w�gtm�����Z�sM]�������]d�L]d�t��I�Eê i��� :N����� � = $������B���/�� ��¡,� �£��� �t�Y���÷� �/���z t�£�,����¡�� �t�����9 y ; {/�2�`��¢/¤£�v���A"@I = ��?,�£ t�/¡/ t¢/¤tI1��¢�"g�x�2�� <$# �I�K��ý� z �A�4�bQ�S�Tz� :�: �J� ��¢�"�4���/ K���,���£¡��^�F¢#���/����¢/���4�, <Oz��¤ �� t¢��t �I V��[�)��� ��gtwb¡)Z�XA¢¤£Fe�aL]BI¥$#���×�: �%I§�/���#T�S z T�¦HIJ?} t�z�M� z[§ �K�M�JT�S�S : �9 � ; {/�)E��`�`��¤£�£ t�¨��¢�"�{/��©����H t N"@I�KAP?¢#�� t� �: t�� t¢��t ��£ «ª£ i�K������¢Ì��¢¤"/����� ������6���� t�� t¤�¤Y�t���V���MI V �[�)���¬jl_MaL]�W¥X[Zt\�]2£CetaH]MI/�/�!� y ¦ z« ¦HIJ®��iG :N��� ¦}�9 � ; {/���x�`¯� M�M"z�� M�NIZ�6�°©÷�`?%���£���������z¤tI2��¢�"±Eo��®2�`�4¡#���z���� t¤tI¥K = "#���z�£� $# t¢/¡#��¢��t t�V t¢,�6�����o�/� �����z�� 6¤£��¢}�z¤����M"/¤���¢V�/¢%�M���£�� t�B���£ N"�¢/����¤£ �I V������)�

f#X�e�c#oi]�²/\�Z�p%oAw«] ��jLn%gAg�\ih��1jl_ a�cJe�slW¥X�ZN\�]MI��/����T���S z T�����IJ{��/¢/ :N� ¦�Qz�9 �; �r�L�Z�l��¢�"'�r�,�ê�H®�����¤£�£ t��¢�I@KP�6 «ª i�t�£����¢����Z¢#���£���t� z ����¢�"V��¢,�£ t�£�v t�� t¢��t ��¢��)�{¤��/�£ t��" z ¤��� i�K���£�/��¤[Gz¤ �� t�V¤��/¤£��¢/�o�£����¢z¤�$# t��¤A���@&§� �£ t��¤tI V������)�f#X�e�c#oi]Yu�Z�mvm¨]MI§�/��� � T�� z«� T�Q%IJ®��NG :N� Q�Tz�9 ¦ ; �r�l�Z����¢�"��r�!�ê�@®�����¤£�£ t��¢�I�KP�6 «ª i�t�£����¢D���4�/�z��¤� i"±�1�Ð��¢,�£ t�£�v t�� t¢��t ��¢'�1�&¤£�/�� N��" z ¤£�� N�K�£���/�\¤[Gz¤ �� t�V¤4�/¤£��¢/�+�M���V�z�� iO���"#���z�£� $# 4&§� �£ t��¤tI V�����)�³f#X[e�c#oi]�u�Z�m m�]BI§�z��� : S z T�S%I�{L��¢!� :N� Q y �9 Q ; P?�r�F�´?,��"���Q�S�T z�:�: I¥�[�)���µjlw�e�cJ¶Le�X[¶·�<Z�XRr¸_X[gNs gtoAo¨¹°²4��£Cg�¶�_dp%m²/\�\�gNo�o�u�Z�c#wbX�Z�s°ºx£¸² uJ»�e�cJ¶�W)h%k�oA_b\�e�s%¹�e�k�gtX¼ºbW)½�¾J»¼jLnHg�\t_ �)\�e�wx_Z�c#IT�S�S : �)"/� �£����¢��9 ��; {/��?b�t�Z t ¥��¢�"��r�_����®������� t�tIJu°¿¼£¸²!�YcHa�_cJg�gNX<_cHa/½�e�cJ¶LÀAZNZ�¢�I = � �� i�P¡©����/¤£ �I :N��� Qz�9 : S ; ?b�J©/�NGH�}��¢�I#²/¶�e<nlwb_��g�Á)_s w�gtX·f�h%g�Z�X<k�I#�r�£ M¢#�£�M�M �©/�����xI :N� Q �

Networking for Pervasive Computing NIST Special Publication 500-259

Soltanian & Van Dyck 67

Techniques to Improve Blueooth Performance in
Interference Environments

Nada Golmie and Nicolas Chevrollier
National Institute of Standards and Technology

Gaithersburg, Maryland 20899
Email: nada.golmie@nist.gov

Abstract—Bluetooth is a radio technology for Wireless Personal Area Net-
works operating in the 2.4 GHz ISM band. Since both Bluetooth and IEEE
802.11 devices use the same frequency band and may likely come together in
a laptop or may be close together at a desktop, interference may lead to sig-
ni cant performance degradation. The main goal of this paper is to propose
solutions to the interference problem consisting of power control adjustments
and scheduling policies to be implemented by the Bluetooth device. Simulation
results are given for selected scenarios and con gur ations of interest.
Keywords—Bluetooth, Interference, Power Control, MAC scheduling

I. INTRODUCTION

The Bluetooth [1] technology is an emerging short range ca-
ble replacement protocol operating in the 2.4 GHz ISM band.
Since both the Bluetooth and the IEEE 802.11 [2] protocols
operate in the 2.4 GHz, it is anticipated that interference may
severely degrade the performance of both systems.

Our goal is to propose solutions to the interference problem
pertaining to the Bluetooth radio operating in proximity to an
IEEE 802.11 network. We assume that the source of interfer-
ence to the Bluetooth system is an IEEE 802.11 system operat-
ing in a direct sequence spread spectrum (DSSS) mode. In the
rest of this sequel, the terms IEEE 802.11 DSSS and WLAN
will be used interchangeably.

We investigate two techniques aimed at alleviating the inter-
ference problem for Bluetooth. One technique is based on con-
trolling the transmitted power and keeping it proportional to the
signal-to-interference ratio (SIR) measured at the receiver. The
other technique takes advantage of the frequency hopping se-
quence of Bluetooth and uses scheduling with the aim of avoid-
ing interference. Simulation results for scenarios of interest are
discussed. Performance is measured in terms of the mean ac-
cess delay, the probability of packet loss, and the transmitted
power.

This paper is organized as follows. In sections II and III,
we describe the distributed power control algorithm and the
scheduling mechanism respectively and give numerical results.
Concluding remarks are offered in section IV.

II. POWER CONTROL

Given that some devices provide the ability to dynamically
modify their transmission power, we would like to investigate
the dynamics of a power control (PC) strategy as a means of
alleviating the impact of interference.

We use a distributed algorithm to implement a PC procedure.
The basic idea is to adjust the interference level in the system to
no more than what is needed. We assume that the receiver does
not have any knowledge of other systems except for the system

it is communicating with. Interference from other systems is
measured in terms of the SIR level at the receiver. Note that SIR
is a wide-spread link quality measure and has been used in many
previous studies for power control and dynamic channel alloca-
tion for interference limited systems [3] [4] [5]. The power
update algorithm works as follows. Initially, P0 = Pmax, then
every update interval U , the power at the transmitter, P (t + 1)

is updated as follows:

P (t+ 1) = min(Pmax;max(Pmin;
�t

SIR(t)
� P (t)) (1)

where �(t) is the target SIR and SIR(t) is based on an av-
erage value over many measurements. The power update rule
takes into consideration the SIR(t) statistic measured at the re-
ceiver side. The receiver can then relay this information to the
transmitter every update interval U .

Implementation Considerations Although the exact details
of a power control algorithm have been left unde ned for the
most part, the Bluetooth speci cations have included the neces-
sary hooks in the protocol in order to implement a power control
algorithm. Furthermore, the Bluetooth speci cations classi es
devices into three power classes as summarized in Table I

TABLE I
BLUETOOTH DEVICE POWER CLASSES

Power Class Maximum Output Power Minimum Output Power
1 100 mW (20 dBm) 1 mW (0 dBm)
2 2.5 mW (4 dBm) 0.25 mW (-6 dBm)
3 1 mW (0 dBm) N/A

Class 1 requires power control limiting the transmitted power
over 0 dBm, while power control is optional for classes 2 and 3.
The speci cations suggest that the transmitted power should be
adjusted based on the received signal strength indicator (RSSI)
measurements at the receiver. Note that in an interference-
limited environment, RSSI corresponds to the the SIR (assum-
ing that noise can be neglected). Furthermore, the speci cations
de ne Link Management Protocol (LMP) messages for adjust-
ing the power control as shown in Table II. The general format
of a Link Manager Protocol (LMP) message is illustrated in Fig-
ure 1.

Both LMP messages, LMP incr pow req and
LMP decr pow req, include one byte of contents reserved for
future use. We propose using this byte to transmit the measured

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie & Chevrollier 68

TABLE II
LMP POWER CONTROL MESSAGES

Message Op code Contents
LMP incr pow req 31 1 byte- future use
LMP decr pow req 32 1 byte- future use
LMP max power 33 1 byte
LMP min power 34 1 byte

SIR at the receiver in order for the transmitter to implement the
update rule given by Equation 1.

Fig. 1. LMP Message Format

Annother implementation issue to consider is the value of the
update interval, U . Andersin et al. [6] demonstrate that for
a system such as GSM, the SIR can be accurately estimated
within 0.1 to 0.3 seconds. The values are for heavily interfered
system with an interference level 20 dB above the noise oor .
In our case, the value of SIR depends on the main signal and
the interference spectral shape (i.e. whether the main signal
falls inside or outside of the interfering signal band). Therefore,
given 79 frequency channels, U can be chosen proportionally
to 4 or 5 times 79. There is a trade-off between the value of U
and the amount of signaling traf c required. A small value for
U allows the system to be perhaps more responsive at the cost
of having to exchange additional signaling information.

Numerical Results
We present simulation results to evaluate the effect of the

power control algorithm. We use a 4-node topology as illus-
trated in Figure 2, and the simulation parameters presented in
Table III. We vary the traf c distributions for WLAN and Blue-
tooth as follows.

Fig. 2. Experiment Topology

We assume that the WLAN Mobile device is transmitting
data packets to the AP device which is responding with ACKs.
The WLAN packet payload is set to 7776 bits transmitted at 11
Mbits/s, while the packet header is set to 224 bits transmitted at
1 Mbits/s. We assume that the WLAN packet interarrival rate is

exponentially distributed with a mean of 1:86 ms corresponding
to 50% of the offered load. For Bluetooth, we assume that both
master and slave devices are transmitting DM1 packets with a
mean arrival rate of � where � =

2�0:000625

l
� 2 � 0:000625

seconds, and l = 30 is the offered load in percent of the channel
capacity. Our setup parameters are summarized in Table III.
We measure the probability of packet loss and the mean access
delay measured at the Bluetooth slave device.

TABLE III
ADAPTIVE POWER SIMULATION PARAMETERS

Simulation Parameters Values
Update Interval (U) 300 packets
Bluetooth Parameters Values
ACL Baseband Packet Encapsulation DM1, DM3, DM5
Packet Interarrival Time for DM1 2.91 ms
Packet Interarrival Time for DM3 8.75 ms
Packet Interarrival Time for DM5 15.58 ms
Pmin 1 mW
Pmax 100 mW
Slave Coordinates (0,0)
Master Coordinates (1,0)
WLAN Parameters
Packet Interarrival Time 1.86 ms
Offered Load 50 % of Channel Capacity
Transmitted Power 25 mW
Data Rate 11 Mbits/s
AP Coordinates (0,15)
Mobile Coordinates (0,d)
Packet Header 224 bits
Payload Size 7776 bits

The power update rule given by Equation 1 was implemented
at the Bluetooth master and slave devices. Initially, the power
was set to Pmax = 100 mW, then updated according to the
rule. SIR was measured over an update interval, U, equal to 300
packets. Figure 3 shows the transmitted power (after 5 U) for
the Bluetooth master device versus the distance of Bluetooth
slave from the source of interference. Note that if there is no
change in the interference signal, the transmitted power should
converge to its nal value in one step, i.e. 1 U.

0

20

40

60

80

100

0 1 2 3 4 5

Ma
ste

r T
ran

sm
itte

d P
ow

er
(m

W)

distance (meters)

Master Transmitted Power vs. Distance to WLAN (11 Mbits/s) Source

 Transmitted Power, Dm1

Fig. 3. Bluetooth Transmitted Power

As expected the transmitted power in Figure 3 varies be-
tween Pmax and Pmin. Figure 4 (a) and (b) give the packet loss
and the access delay respectively with and without the power

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie & Chevrollier 69

0

0.05

0.1

0.15

0.2

0 1 2 3 4 5

Pr
(P

ac
ke

t L
os

s)

distance (meters)

Probability of BT Packet Loss vs. Distance to WLAN (11 Mbits/s) Source

w Power Control
wo Power Control

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

0 1 2 3 4 5

Me
an

 Ac
ce

ss
 D

ela
y (

se
co

nd
s)

distance (meters)

Delay for BT Packet vs. Distance to WLAN (11 Mbits/s) Source

w Power Control
wo Power Control

Fig. 4. (a)
(b)

Effect of Adaptive Power Control on Bluetooth Performance.

(a) Probability of Packet Error vs. Distance. (b) Mean Access Delay vs.
Distance.

control algorithm. Note that the WLAN transmitted power is
 x ed at 25 mW. For distances equal to 0:5 m from the inter-
ference source, increasing the transmitted power leads to lower
packet losses, � 4 % with power control instead of 18% with-
out power control. A similar reasoning applies to the delays
shown in Figure 4(b). However for distances less than 0:5m,
the transmitted power is capped by Pmax and the packet loss
remains higher than � 9%. A couple of observations are in or-
der. We note that the power control algorithm can be effective
in some scenarios; in the case studied here, lower packet losses
and access delays are obtained for distances greater than 0:5m
from the interference source. However, it should be made clear
that this performance gain comes at the cost of increasing the
interference level for other systems. As expected, increasing
the Bluetooth transmitted power, has a negative impact on the
interfering system; in Figure 5 we note a 17% packet loss at the
WLAN AP device, even if it is about 15 meters away from the
Bluetooth devices. As the Bluetooth transmitted power is weak-
ened, the packet loss at the WLAN AP device drops to zero.

In a way, adjusting the power control can only be a partial so-
lution. This may or may not constitute a problem for other sys-
tems depending on the con guration and the parameters used.

0

0.05

0.1

0.15

0.2

0 1 2 3 4 5

Pr
(P

ac
ke

t L
os

s)

distance (meters)

Probability of Wireless LAN (11 Mbits/s) Packets Loss vs. Distance from Mobile to BT Slave

w Power Control
wo Power Control

Fig. 5. Impact on the WLAN AP Device

III. MAC SCHEDULING

In this section, we investigate how scheduling techniques can
be used to alleviate the impact of interference. We devise a
mechanism for the Bluetooth MAC scheduler consisting of two
components:

1. Interference Estimation

2. Master Delay Policy

In the Interference Estimation phase, the Bluetooth device
detects the presence of an interfering device occupying a num-
ber of frequencies in the band. In this sequel, interfering de-
vices are assumed to be WLAN DSSS systems. In order to de-
tect the presence of interference, the Bluetooth device maintains
a Frequency Usage Table where a bit error rate measurement,
BERf , is associated to each frequency as shown in Figure 6.
Note that, a frame error rate or a packet loss measure can be
used instead of the bit error rate (BER). Frequencies are clas-
si ed according to a criteria that measures the level of interfer-
ence in the channel and marked used or unused depending on
whether their corresponding BER is above or below a thresh-
old value, BERT , respectively. This Frequency Usage Table
is maintained at each receiver’s side for both master and slave
devices.

Fig. 6. Frequency Usage Table

The Master Delay Policy makes use of the measurements col-
lected during the Interference Estimation phase in order to avoid

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie & Chevrollier 70

a packet transmission in a ”bad” receiving channel, or a channel
with a high level of interference. The basic idea is to ”wait”
for or choose an unused frequency for the receiver in the fre-
quency hopping pattern. Thus the transmitter needs to consult
the receiver’s Frequency Usage Table before transmitting any
packets. Alternatively, the receiver, can send status updates on
its usage table to the transmitter. In Bluetooth, since the mas-
ter device controls all transmissions in the piconet, the delay
rule has to be implemented only in the master device. Fur-
thermore, since following each master’s transmission, there is
a slave transmission, the master checks both the slave’s receiv-
ing frequency and its own receiving frequency before chosing
to transmit a packet in a given frequency hop as illustrated in
Figure 7.

Fig. 7. Delay Scheduling Policy at Bluetooth Master

The main steps of the scheduling policy are summarized as
follows.

1. Slave’s End.
(a) For every packet received, update BERf which is an

average value of the BER per frequency.
(b) Every update interval, U , refresh the Frequency Usage

Table by marking the frequencies, and
(c) Send a status update message to the Master;

2. Master’s End.
(a) For every packet received, update BERf which is an

average value of the BER per frequency.
(b) Every update interval, U , refresh the Frequency Usage

Table, and
(c) Before sending a packet, check slave’s receiving fre-

quency and master’s following receiving frequency, de-
lay transmission until both master and slave’s receiving
frequencies are available.

Implementation Considerations One of the advantages in
using this scheduling policy is that it does not require any
changes in the FCC rules. In fact, title 47, part 15 of the FCC
rules on radio frequency devices [7], allows a frequency hop-
ping system to recognize the presence of other users within the
same spectrum band so that it adapts its hopsets to avoid hop-
ping on occupied channels. However, coordination among hop-
ping frequency systems in order to avoid simultaneous channel
occupancy is not allowed.

Furthermore, scheduling in the Bluetooth speci cations is
vendor implementation speci c. Therefore, one can easily im-
plement a scheduling policy with the currently available Blue-
tooth chip set. Most importantly, the proposed scheduling algo-
rithm does not require any changes to the Bluetooth frequency
hopping pattern which is implemented in ASICs, and devices

implementing scheduling can easily interoperate with other de-
vices that do not.

Fig. 8. LMP Interference Status PDU

As far as the status update message is concerned, we de ne
an LMP Interference Status PDU as shown in Figure 8.
We use an Op code value of 60 and set the Transition ID to
1 in order to indicate that the message is sent from the slave to
the master. The content eld uses 10 bytes to encode the slave’s
Frequency Usage Table. In fact, we reserve one bit for future
use, and map the 79 channels in the Frequency Usage Table to
a 79-bit string of 0’s and 1’s indicating the used and unused
receiving frequencies respectively.

Numerical Results We simulate our proposed scheduling
policy. We use the simulation environment, network topology
and parameters described in section II. We use three types of
Bluetooth packet encapsulations, namely, DM1, DM3, and
DM5, that occupy 1, 3 and 5 slots respectively. The offered
load for Bluetooth is set to 30% of the channel capacity which
corresponds to a packet interarrival of 2:91 ms, 8:75 ms and
14:58 ms for DM1, DM3 and DM5 packets respectively. The
transmitted power for Bluetooth and WLAN is x ed at 1mW
and 25 mW respectively. Simulation parameters are summa-
rized in Table III. Figure 9 (a) and (b) gives the packet loss
and the mean access delay measured at the Bluetooth slave for
varying distances of the interference source from the Bluetooth
receiver. From Figure 9 (a) we observe that using the schedul-
ing policy, leads to a packet loss of zero. We are basically
able to avoid the channels occupied by the interfering system.
When no scheduling policy is used the packet loss is � 24% for
DM5, and DM3, and 19% for and DM1 packets respectively
when the Bluetooth receiver is at a distance of 0:005 meters
from the interference source. As the distance from the interfer-
ence source is increased the packet loss drops to around 2:7%
for DM1 packets. It is still around 6:7% for DM3 and DM5

packets.
For DM1, we observe an increase in delay from 1:6ms to

2:6ms when the scheduling policy is applied. On average the
scheduling policy yields to a delay increase of 1ms (� 1:6 Blue-
tooth slots). On the other hand, the scheduling policy reduces
the delays by 0:8 ms and 2:6 ms for DM3 and DM5 respec-
tively. Thus, delaying transmission to avoid bad channels pays
off for packets occupying more than one slot. Note that, when
bad channels are used, packets are dropped and have to be re-
transmitted which yields large delays. This effect does not apply
to DM1 packets since they occupy only one slot.

In summary, we note that the scheduling policy is effective in
reducing packet loss and delay (especially for multi-slot Blue-
tooth packets). Another advantage worth mentioning, are the
additional savings in the transmitted power since packets are
not transmitted when the channel is bad. Moreover, we note
that by avoiding channels occupied by other devices, we elimi-

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie & Chevrollier 71

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5

Pr
(P

ac
ke

t L
os

s)

distance (meters)

Probability of BT Packet Loss vs. Distance to WLAN (11 Mbits/s) Source

w Scheduling
wo Scheduling DM1
wo Scheduling DM3
wo Scheduling DM5

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 1 2 3 4 5

Me
an

 Ac
ce

ss
 D

ela
y (

se
co

nd
s)

distance (meters)

Delay for BT Packet vs. Distance to WLAN (11 Mbits/s) Source

w/o Scheduling DM1
w Sheduling DM1

w/o Scheduling DM3
w Sheduling DM3

w/o Scheduling DM5
w Sheduling DM5

Fig. 9. (a)
(b)

Effect of MAC Scheduling on Bluetooth Performance. (a) Prob-

ability of Packet Error vs. Distance. (b) Mean Access Delay vs. Distance

nate interference on the other system sharing the same spectrum
band. Figure 10 shows the packet loss for the WLAN Mobile
device (receiving ACKs). We note that scheduling reduces the
ACK packet loss to zero. Therefore scheduling can be consid-
ered as a neighbor friendly policy. Note that the packet loss
at the WLAN AP located at (0,15) m is negligible in this case
since the Bluetooth signal is too weak.

Finally, we note that scheduling policy proposed here works
only with data traf c since voice packets need to be sent at x ed
intervals. However, if the delay variance is constant and the de-
lay can be limited to a slot (as was shown here), it may be worth-
while to use DM packets for voice using the same scheduling
technique proposed here. This will constitute the basis of future
work.

IV. CONCLUDING REMARKS

In this paper we explored two techniques for alleviating the
impact of interference on the Bluetooth performance. While the
power control approach may be useful and simple to use in some
limited scenarios, it can only be a partial solution and thus can
not be considered by itself. Our plan is to test the dynamics of
the power control algorithm simultaneously on both the WLAN
and the Bluetooth systems in order to gain additional insights

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 1 2 3 4 5

Pr
(P

ac
ke

t L
os

s)

distance (meters)

Probability of Wireless LAN (11 Mbits/s) Packet Loss vs. Distance from Mobile to BT Slave

w Scheduling
wo Scheduling DM1
wo Scheduling DM3
wo Scheduling DM5

Fig. 10. Impact of MAC Scheduling on the WLAN Mobile Device

on its strengths and limitations in the context of interference.
Conversely, our simulation results indicate that the simple

scheduling technique that we propose to delay the transmis-
sion of Bluetooth data packet once interference is detected can
signi cantly lower the probability of packet loss for Bluetooth
without much increase in the mean access delay.

The performance evaluation results obtained for the Blue-
tooth ACL link seems to be promising. We are currently looking
at additional scenarios, and traf c conditions. We are also inves-
tigating the use of combined approaches such as packet encap-
sulation, scheduling, and ARQ o w control. Other future direc-
tions consist of exploring the interoperation of the coexistence
techniques developed for Bluetooth and WLAN in dynamically
changing environments in order to unravel their strengths and
limitations.

REFERENCES

[1] Bluetooth Special Interest Group, “Speci cations of the Bluetooth System,
vol. 1, v.1.0B ’Core’ and vol. 2 v1.0B ’Pro les’, ” December 1999.

[2] IEEE Std. 802-11, “IEEE Standard for Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Speci cation ,” June 1997.

[3] G. Foschini, Z. Miljanic, “A Simple Distributed Autonomous Power Con-
trol Algorithm and its Convergence ,” in IEEE Journal on Vehicular Tech-
nology, November 1993, vol. 42.

[4] J. Zander , “Distributed Cochannel Interference Control in Cellular Ra-
dio Systems,” in IEEE Journal on Vehicular Technology, February 1992,
vol. 41.

[5] Bambos, N., “Toward power-sensitive network architectures in wireless
communications: concepts, issues, and design aspects,” in IEEE Personal
Communications, June 1998, vol. 5, pp. 50–59.

[6] M. Andersin, N. Mandayan, J. Zander, “A Subspace based Estimation of
the Signal to Interference Ratio for TDMA Cellular Systems,” in IEEE
VTC’96, Atlanta, GA, April 1996.

[7] Federal Communications Commission, “Title 47, Code for Federal Regu-
lations, Part 15,” October 1998.

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie & Chevrollier 72

Interference Aware Bluetooth Packet Scheduling
N. Golmie, N. Chevrollier and I. ElBakkouri

National Institute of Standards and Technology
Gaithersburg, Maryland 20899

Abstract— Bluetooth is a radio technology for Wireless Personal Area
Networks operating in the 2.4 GHz ISM band. Since both Bluetooth and
IEEE 802.11 devices use the same frequency band and may likely come to-
gether in a laptop or may be close together at a desktop, interference may
lead to signi cant performance degradation. The main goal of this paper
is to propose a scheduling algorithm aimed at reducing the impact of in-
terference. This algorithm takes advantage of the fact that devices in the
same piconet will not be subject to the same levels of interference on all
channels of the band. The basic idea is to utilize the Bluetooth frequency
hopping pattern and distribute channels to devices such that to maximize
their throughput while ensuring fairness of access among users. Simulation
results are given for selected scenarios and con gurations of interest.

Keywords— WPANs, Bluetooth, Interference, max-min fairness,
scheduling.

I. INTRODUCTION

An important requirement in the design of a scheduling
mechanism for the Bluetooth technology is the support of het-
erogeneous traf c, a mix of voice and data applications such as
email, ftp, remote login, and video with a wide range of delay,
packet loss and throughput constraints.

Another key challenge in the design of a Bluetooth schedul-
ing algorithm is probably the adaptiveness to a noisy environ-
ment. Today most radio technologies considered by Wireless
Personal Area Network (WPAN) industry consortia and stan-
dard groups including the Bluetooth Special Interest Group [1],
HomeRF [2], and the IEEE 802.15, employ the 2.4 GHz ISM
frequency band. In addition both WPANs and Wireless Local
Area Network (WLAN) devices implementing the IEEE 802.11
standard speci cations [3] will be sharing the same frequency
band. Thus, WLAN devices operating in proximity to Bluetooth
devices can signi cantly impact the performance of Bluetooth
devices and vice versa as shown in [4][5][6].

Our goal in this paper is to propose a fair packet schedul-
ing algorithm for Bluetooth that reduces the impact of inter-
ference. In Bluetooth, the master device controls both down-
stream (master-to-slave), and upstream (slave-to-master) traf-
 c directions. The master can use odd numbered slots to send
data downstream while slaves have to wait to be ”polled” by the
master in order to send data upstream in even numbered slots.
Although in this paper, we do not make a speci c distinction be-
tween upstream and downstream traf c, we focus on a schedul-
ing policy for polling slaves in order to allow them to access
the channel. However our strategy or a similar policy can be
used for either traf c directions. Furthermore, we assume that
the source of interference to the Bluetooth system is an IEEE
802.11 system operating in a Direct Sequence Spread Spectrum
(DSSS) mode. Note that our technique can be adapted to any
other interference environment as well.

Recently, the issue of meeting different quality of service re-
quirements in a wireless environment has been receiving more
attention in the literature.

Fragouli, et. al. [7] proposed a strategy that combines class-
based queuing [8] with channel-state based scheduling [9] that
eliminates the Head of Line problem caused by FIFO queuing
when certain devices suffer from a bad link. In [7], link shar-
ing guidelines are provided to maximize channel utilization and
limit the access of misbehaving sources.

Furthermore, a number of algorithms have been proposed on
fair scheduling [10][11][12]. While there may be some differ-
ences in implementation and complexity, the basic idea in all
these algorithms, is for sources experiencing a bad wireless link
to relinquish the unutilized bandwidth to other sources that can
take advantage of it. Compensation in bandwidth occurs when
the channel conditions improve in order to achieve the so-called
Long Term Fairness objective.

While the problem that we are trying to solve bears some
resemblance with the problem addressed previously ([12] [7]
[11][10]), we are more interested in an instantaneous measure of
fairness rather than a Long Term Fairness objective. The reason
is as follows. All previous work uses a two state Markov chan-
nel model for each link. The transition probabilities between
the good and bad states are in the order of several seconds to ac-
count for periods of fading, multipath and various other wireless
effects. The situation in our case is somewhat different due to
the hopping nature of the Bluetooth device that uses a different
frequency every 625 µs interval. Since different Bluetooth de-
vices in a piconet will be subject to different interference levels
due to parameters such as geometry and transmitted power, not
all frequencies will be equally good to all devices. Therefore,
our goal is to optimally assign frequencies such as to maximize
channel utilization and guarantee fairness among the devices.

This paper is organized as follows. In section II we give some
general insights on the Bluetooth protocol operation. In sections
III and IV, we describe the scheduling mechanism and discuss
its fairness properties respectively. In section V, we give simu-
lation results and concluding remarks are offered in section VI.

II. BLUETOOTH PROTOCOL OVERVIEW

In this section, we give a brief overview of the Bluetooth pro-
tocol [1]. Bluetooth is a short range (0 m - 10 m) wireless link
technology aimed at replacing non-interoperable proprietary ca-
bles that connect phones, laptops, PDAs and other portable de-
vices together. Bluetooth operates in the ISM frequency band
starting at 2.402 GHz and ending at 2.483 GHz in the USA,
and Europe. 79 RF channels of 1 MHz width are de ned. The
raw data rate is de ned at 1 Mbits/s. A Time Division Multi-
plexing (TDM) technique divides the channel into 625 µs slots.
Transmission occurs in packets that occupy an odd number of
slots (up to 5). Each packet is transmitted on a different hop fre-
quency with a maximum frequency hopping rate of 1600 hops/s.

Two or more units communicating on the same channel form

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Chevrollier, & ElBakkouri 73

a piconet, where one unit operates as a master and the others
(a maximum of seven active at the same time) act as slaves. A
channel is de ned as a unique pseudo-random frequency hop-
ping sequence derived from the master device’s 48-bit address
and its Bluetooth clock value. Slaves in the piconet synchronize
their timing and frequency hopping to the master upon connec-
tion establishment. In the connection mode, the master con-
trols the access to the channel using a polling scheme where
master and slave transmissions alternate. The master uses even
numbered slots while odd numbered slots are reserved for slave
transmissions.

There are two types of link connections that can be
established between a master and a slave: the Syn-
chronous Connection-Oriented (SCO), and the Asynchronous
Connection-Less (ACL) link. The SCO link is a symmetric
point-to-point connection between a master and a slave de ned
to carry 64 kbits/s of a voice stream.

In this paper, we focus on a scheduling strategy used for
transmitting data on the ACL link that de nes an asymmetric
point-to-point connection between a master and active slaves in
the piconet. While the master can send data to a slave in the
piconet on any even numbered slots, a slave has to be polled be-
fore it can transmit data. Therefore, the slave to master data rate
is negotiated using Link Manager Protocol (LMP) messages at
connection setup. The negotiated rate is usually de ned in terms
of a poll interval, and a packet length. Additional Quality of Ser-
vice (QOS) parameters can be exchanged in Link Layer Control
Adaptation Protocol (L2CAP) messages and include parameters
such as peak bandwidth, latency and delay variation.

Several packet formats are de ned for ACL, namely DM or
DH packets that occupy either 1, 3, or 5 time slots. DM pack-
ets use Forward Error Correction (FEC) while DH packets do
not have any FEC in the payload. An Automatic Repeat Request
(ARQ) procedure is applied to ACL packets where packets are
retransmitted in case of loss until a positive acknowledgement
(ACK) is received at the source. The ACK is piggy-backed in
the header of the returned packet where an ARQN bit is set
to either 1 or 0 depending on whether the previous packet was
successfully received or not. In addition, a sequence number
(SEQN) bit is used in the packet header in order to provide a
sequential ordering of data packets in a stream and lter out re-
transmissions at the destination.

In addition to ACL and SCO packets, the master and slave
message exchange includes short POLL and NULL packets.
POLL messages can be sent by the master and require an ACK
while NULL messages can be sent by either the master or the
slave and do not require an ACK.

III. BLUETOOTH INTERFERENCE AWARE SCHEDULING
(BIAS)

In this section, we present the Bluetooth Interference Aware
Scheduling (BIAS) algorithm. Our main objective is to alle-
viate the impact of interference while maintaining fairness and
supporting different Quality of Service (QoS).

In this sequel, we assume that the traf c from slave Si to the
master is characterized by a data rate, ri, equal to li

pi
where li

is the packet length in slots (1, 3 or 5 slots depending on the

packet type), and pi is the poll interval in (master/slave) slot
pairs. In addition, we assume the following transmission rules
for the master and slave.

Master - The master polls slave Si every pi in order to guaran-
tee ri in the upstream direction. A poll message can be either
a data or NULL message. A data packet is sent to slave Si if
there is a packet in the queue for slave Si. This packet con-
tains the ACK of the previous packet received from slave S i. In
case there is no data to transmit and the master needs to ACK
a previous slave transmission, it sends a NULL packet to slave
Si.
Slave Si - Upon receipt of a packet from the master, the slave
can transmit a data packet. This data packet contains the ACK
information of the master to slave packet transmission. In case
the slave does not have any data to send, it sends a NULL packet
in order to ACK the previous packet reception from the master.
No ACK is required for a NULL message from the master.

Our algorithm consists of several components, namely, a chan-
nel estimation procedure, a procedure that assigns weights to
devices in order to determine a channel access priority, and a
resource credit function that allocates bandwidth to each device
according to its service requirements and the state of the chan-
nel.

The estimate channel() procedure is used to detect the pres-
ence of interference in the frequency band. Thus, each Blue-
tooth receiver maintains a Frequency Usage Table where a bit
error rate measurement, BERf , is associated to each frequency
as shown in Figure 1. Frequencies are classi ed according to
a criteria that measure the level of interference in the channel
and are marked used or clear depending on whether their cor-
responding BER is above or below a threshold value, BERT ,
respectively. Note that, other criteria such as frame error rate,
packet loss, or the received signal strength can be used in addi-
tion to the bit error measurement to detect a high level of inter-
ference in a speci c frequency band.

Fig. 1. Frequency Usage Table

Since the master device controls all transmissions in the pi-
conet, the slaves need to send their Frequency Usage Table in
the form of status update messages. The scheduler at the mas-
ter can then make use of the measurements collected during the
Channel Estimation phase in order to optimize the frequency
allocation on each time slot and avoid a packet transmission in
a receiving channel with a high level of interference. Figure 2
illustrates the frequency allocation that occurs at the master. In
this case, frequency 78 is used to communicate with slave S i,
while frequencies 76, 1 and 0 are assigned to slaves Si, Si+1

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Chevrollier, & ElBakkouri 74

and Si+1 in that order. Observe that the pattern of frequencies
corresponds to the receiving frequencies. Thus, an M marks a
receiving slot for the master device while an S is a receiving
frequency for a slave device. Although, the master scheduler
attempts to maximize channel utilization, it intentionally leaves
certain slot pairs empty if either the master or the slave receiv-
ing frequency is used. Thus, in Figure 2, frequencies 16, 2, 7
and 77 are not used since frequencies 2 and 77 are not clear for
the master.

Fig. 2. Master Frequency Allocation Scheduling

The basic idea in the credit system is to control the bandwidth
allocated to each device in order to ensure that no device gets
more than its fair share of the available bandwidth. Thus, de-
vices with a positive credit counter, ci, are allowed to send data.
There can be several ways to compute credits. Our method is
based on the max-min fairness criteria [13]. Given r i, we let ui

be the probability that a pair of slots (master/slave) are clear.
Thus, ui represents the available spectrum to slave i. Therefore,
we write:

ui = P (slave i has a clear receiving frequency)

×P (master has a clear receiving frequency) (1)

where

P (device i has a clear receiving frequency) =

Number of clear Channelsi
Total Number of Channels

(2)

We then de ne µi as

µi = min(ui, ri) (3)

where µi is the minimum guaranteed rate for device i. Thus,
in the case device i has a requested rate ri, such that ri > ui,
but is experiencing interference so it is not able to utilize more
that ui of the spectrum, and its rate is limited to ui. We de ne a
constrained device to be a device that is not able to use the entire
frequency spectrum, such that ri > ui, while an unconstrained
device is such that ri ≤ ui. The next step is to reallocate the
leftover bandwidth that is unused by the constrained devices
and let gi be the actual rate given to device i:

gi =

{
µi +

ri(B−µ)∑
j∈Unconstrained

rj

if ri < ui

µi otherwise
(4)

where µ =
∑

i µi and B = 1 − Number of Used ChannelsF

Total Number of Channels .
Number of Used ChannelsF is the number of frequencies
that are marked used for all devices (in other words frequen-
cies that can not be used by any device in the piconet). In
essence, Equation 4 redistributes the leftover bandwidth to un-
constrained devices proportionally to their service rate as in the
Generalized Processor Scheduling (GPS) [14]. Thus, the com-
pute credits() function consists of computing the credits accord-
ing to:

ci = gi × N (5)

where N is the number of slot pairs considered in the allocation.
The other component of the algorithm is to actually give the

”right of way” or a priority of access to certain devices. We
choose to give devices with fewer number of good channels a
higher priority over other devices that have more channels avail-
able. Thus, in compute weights() we set wi as follows:

wi = min(ε, P (slave i has a used receiving frequency)) (6)

where we de ne

P (slave i has a used receiving frequency) =

Number of used Channelsi
Total Number of Channels

(7)

and assume ε takes on values in]0, 1
Total Number of Channels]

in the case all channels are clear. Finally, priority are assigned
according to the ”send factor”, αi, given by:

αi = wi · ci (8)

A. BIAS Pseudocode

The algorithm’s pseudocode is as follows.
Every N slots

estimate channel();
compute weights();
compute credits();
Every Even TSf // Master Transmission Slot
if TSf + 1 is clear // Master can receive in next slot

Af = { set of slaves that can receive on frequency f }
i = maxAf

(αi) // Select device i with the largest send
factor

if ∃ i s.t. qsizei > 0 and αi > 0
ci- -; //decrement credit counter
αi = wi × ci; // update send factor
transmit packet for slave i

Table I summarizes the parameters used in the algorithm and
their de nition.

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Chevrollier, & ElBakkouri 75

TABLE I
DEFINITION OF PARAMETERS USED IN THE SCHEDULING ALGORITHM

Parameters De nition
B available spectrum
ri rate negotiated for device i
wi weight for device i
ci credit for device i
gi rate allocated for device i
αi send factor for device i
ui available frequency usage for device i
µi minimum guaranteed rate for device i
ε weight assigned to devices with ui = 1

B. Numerical Example

Let’s consider the Frequency Usage Table given in Figure
3 as an example. We consider 10 receiving frequencies, f ∈
[0, 9]. In order to keep the discussion simple, we show the fre-
quency pattern for the downstream traf c and assume all 10 fre-
quencies are clear for the master. We assume that there are
3 slaves in the piconet and each slave has a service rate equal
to r1 = r2 = r3 = 1/3 i.e. each slave gets polled every 6
slots. Since frequency 2 is marked used for all 3 slaves, noone
can use it and B = 9/10. We compute ui according to Equa-
tion 1. Slave, S1, can use 2 out the 10 frequencies, therefore
u1 = 2/10. u2 = 7/10 and u3 = 3/10 for S2 and S3 respec-
tively.

Fig. 3. Frequency Allocation Example

Similarly, µ1 = 2/10, µ2 = 1/3 and µ3 = 3/10. µ =∑3
i=1 µi = 25/30. Since S2 is unconstrained, it is a candidate

device for receiving the leftover bandwidth. Therefore, g 1 =
0.2, g2 = µ2 + B − µ = 0.4, and g3 = 0.3. The credits are
c1 = 2, c2 = 4 and c3 = 3 slots for N = 10. The weights
are w1 = 8/10, w2 = 3/10 and w3 = 7/10. At time TS =
0, α1 = 2 ∗ 8/10 = 8/5 while α2 = 4 ∗ 3/10 = 6/5 and
α3 = 3 ∗ 7/10 = 27/10. Therefore, S3 is serviced at time
TS = 0. A similar calculation determines the service order for
S1 on TS = 4, 6 and S2 on TS = 2, 10, 12, 14, and S3 on
TS = 16, 18.

IV. BIAS PROPERTIES

In this section we summarize the features of the BIAS algo-
rithm and highlight some of its fairness properties. Speci cally ,
Theorem 1 states that error-free connections are serviced ac-

cording to their negotiated rate and gives an upper bound deriva-
tion for the initial delay. Theorem 2 says that clear channels are
shared among error-free and error-prone devices according to
their proportional rate.

The BIAS algorithm properties are summarized as follows.
P1. Service guarantees are provided to error-free connections
including delay bounds and throughput. Although, error-prone
connections are given a higher priority of access, interference-
free devices are not affected by the interference conditions sub-
siding on some devices in the piconet.
P2. The scheduling policy is work conserving since no slots will
be left idle if there is at least one device with a positive credit
counter.
P3. Short term max-min fairness is guaranteed since the leftover
bandwidth unused by the error prone sessions is redistributed
to error-free sessions proportionally to their negotiated service
rate.
P4. The sharing of clear channels is proportional to each ses-
sion’s negotiated rate regardless of whether they are error-free
or error-prone.

Theorem 1
The number of slots allocated to an error-free session i over an
interval of N slot pairs is equal to at least ri × N . The initial
delay (in slot pairs), ∆, for an error free session, k, to send its
 rst packet over an interval of 1.25 × Nms is at most equal to:

∆ =
k∑

i=1

min(xi, ci) (9)

where i represents the index of slave i,and c i is the credit given
to device i. xi is de ned as:

xi = �ci · wi − ci−1 · wi−1

wi
� (10)

where wi is the weight of device i, and indices are assigned to
devices such that w1 · c1 > w2 · c2 > wk · ck > ... > wn · cn,
for all n devices in the piconet.

Proof
The minimum number of slots allocated to an error free connec-
tion follows directly from Equation 4. Since error free connec-
tions are not constrained by their spectrum usage, their alloca-
tion is greater or equal to their negotiated service rate, r i.

In order to prove the initial access delay bound, we consider
two devices i and j such that wi · ci > wj · cj . Since αj < αi

(αi = wi · ci), device j will only be allowed to access the chan-
nel after device i has transmitted at least xi = � ci·wi−cj ·wj)

wi
�.

Note that

wi(ci − xi) ≤ wj · ci (11)

and device j is allowed to transmit after device i has transmit-
ted at least xi packets. Also, observe that after the initial ∆ slot
pairs, both devices i and j will be serviced in a Round Robin
(RR) fashion. This represents an upper bound since device i
will keep its priority of access only if all ∆ slot pairs are clear.
In case, a used slot pair is encountered during the rst ∆ slot

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Chevrollier, & ElBakkouri 76

pairs and it is clear for device j, then j is allowed to transmit.
�

Theorem 2
All devices sharing a set or subset of clear channels are serviced
according to their allocated rate.

Proof
In case the devices sharing a set of clear frequencies have equal
αs, they are serviced according to a RR policy. In the case de-
vices have different αs, the device with the maximum α is ser-
viced rst. Assuming equal credit counters, and without loss
of generality, a high value for α indicates that the device has
limited usage of the spectrum and is therefore self-constrained.
That is, the device will not be able to use every slot in the set
and thus will not deny service to other devices sharing the same
subset with a smaller value of α. �

V. SIMULATION RESULTS

In this section, we present simulation results to evaluate the
performance of BIAS. The results obtained are compared with
Round Robin (RR) scheduling. Our simulation environment is
based on a detailed simulation environment consisting of the
MAC, PHY and channel models for Bluetooth and IEEE 802.11
(WLAN) as described in [6]. We use the topology illustrated in
Figure 4, and the simulation parameters presented in Table II.

Fig. 4. Experiment Topology

We assume that WLAN is operating in the Direct Sequence
Spread Spectrum (DSSS) mode. We vary the traf c distribu-
tions for WLAN and Bluetooth as follows. We assume that the
WLAN Mobile device is transmitting data packets to the Ac-
cess Point (AP) device which is responding with ACKs. The

WLAN packet payload is set to 7776 bits transmitted at 11
Mbits/s, while the packet header is set to 224 bits transmitted
at 1 Mbits/s. We assume that the WLAN packet interarrival rate
is exponentially distributed with a mean of 1.86 ms correspond-
ing to 50% of the offered load. For Bluetooth, we assume that
the master device is transmitting DM1 packets with a mean ar-
rival rate of λ where λ = 2∗0.000625

l − 2 ∗ 0.000625 seconds,
and l = 25 is the offered load in percent of the channel capacity.
There are 3 slaves in the topology and they are sharing 25% of
the total capacity. Thus, the offered load for each slave is set
to 8.33%. The parameters used in the setup are summarized in
Table II. Statistics are collected at the Bluetooth slave devices.

TABLE II
SIMULATION PARAMETERS

Bluetooth Parameters Values
ACL Baseband Packet Encapsulation DM1 , 366 bits
Packet Interarrival Time for the master 2.91 ms
Transmitted Power 1 mW
Slave 1 Coordinates (0, -3.5)
Slave 2 Coordinates (2,0)
Slave 3 Coordinates (-2,0)
Master Coordinates (0,-3)
WLAN Parameters Values
Packet Interarrival Time 1.86 ms
Offered Load 50 % of Channel Capacity
Transmitted Power 25 mW
Data Rate 11 Mbits/s
AP Coordinates (0,10)
Mobile Coordinates (0,d)
Packet Header 224 bits
Payload Size 7776 bits

The performance metrics that we use include the packet loss,
the mean access delay and the fairness index. The packet loss
is the probability that a packet is dropped at a device due to
interference. The access delay measures the time it takes to
transmit a packet from the time it is passed to the MAC layer
until it is successfully received at the destination.The delay is
measured at the L2CAP layer. We de ne the fairness index
for device i, Fi = Number of Packets Received

Expected Number of Packets Received . The
Number of Packets Received is the number of packets sent
minus the number of packets dropped.

Figure 5 gives the Bluetooth slave packet loss with respect
to d, the y-coordinate of the WLAN transmitter. As the WLAN
transmitter moves further away from the Bluetooth piconet (d
increases), the packet loss measured at each of the slave devices
decreases for RR scheduling and is kept at zero for BIAS. At
d = 0, the WLAN transmitter is 2m away from slaves 2 and 3
and 3 meters away from slave 3, the packet loss is 1%, 17.3%,
and 17.8% for slaves 1, 2 and 3 respectively for RR and 0% for
BIAS. Even when d = 8m (i.e. the WLAN device is at 11.18m
away from slaves 2 and 3, the packet loss is still in the order of
6.7% for slaves 2 and 3 with RR.

Figure 6 gives the mean access delay for servicing the Blue-
tooth slaves. With RR, the mean access delay is around 1.6ms
for d = 0m for all 3 slaves. With BIAS, the delay increases
to ∼ 3.6 ms for slaves 2 and 3 and 5.2ms for slave 1. This in-
crease in delay is expected since there is a trade-off between
packet loss and delay.Thus, in order to bring the packet loss to
zero, bad frequencies are skipped at the expense of increasing

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Chevrollier, & ElBakkouri 77

0

0.05

0.1

0.15

0.2

0 2 4 6 8 10 12

Pr(
Pa

cke
t L

os
s)

y coordinate of the WLAN mobile (meters)

 BIAS slave 1,2,3
 RR slave 1
 RR slave 2
RR slave 3

Fig. 5. Effect of Scheduling on Packet Loss.

0

0.002

0.004

0.006

0.008

0.01

0 2 4 6 8 10 12

Me
an

 Ac
ce

ss
De

lay
 (s

)

y coordinate of WLAN Mobile (meters)

 RR slave 1
 RR slave 2
 RR slave 3

0

0.002

0.004

0.006

0.008

0.01

0 2 4 6 8 10 12

Me
an

 Ac
ce

ss
De

lay
 (s

)

y coordinate of WLAN Mobile (meters)

 BIAS slave 1
 BIAS slave 2
 BIAS slave 3

Fig. 6. (a)
(b)

Effect of Scheduling on the Mean Access Delay. (a) Round

Robin Scheduling. (b) BIAS Scheduling

0.5

0.6

0.7

0.8

0.9

1

1.1

0 2 4 6 8 10 12

Fa
irn

es
s I

nd
ex

y coordinate of WLAN Mobile (meters)

 RR slave 1
 RR slave 2
 RR slave 3

0.5

0.6

0.7

0.8

0.9

1

1.1

0 2 4 6 8 10 12

Fa
irn

es
s I

nd
ex

y coordinate of WLAN Mobile (meters)

BIAS slave 1
 BIAS slave 2
 BIAS slave 3

Fig. 7. (a)
(b)

Effect of Scheduling on Fairness. (a) Round Robin Scheduling.

(b) BIAS Scheduling

the mean access delay. We veri ed that this result does not ap-
ply to multi-slot packets where the transmission time represents
a larger fraction in the delay calculation. Therefore, reducing
the packet loss when multi-slot packets are used reduces the
mean access delay as well.

Figure 7 gives the fairness index with RR and BIAS. We
note that all 3 slaves get the same number of packets with BIAS
and their fairness index is 1 regardless of the position of the
WLAN transmitter. For RR, the fairness index is 0.99 for slave
1, while it is 0.92 and 0.93 for slaves 2 and 3 respectively for
d = 0m. Also, note that slaves 2 and 3 experience 17% of
packet loss. Thus, more packets are being sent to slaves 2 and 3
with RR and the channel utilization is as not as ef cient as with
BIAS. As the offered load increases, we expect this effect to be
magni ed and lead to unfairness and degradation in servicing
slave 1, which the error-free device in this case. Also, on the
topic of channel utilization, we observe that with RR scheduling
the number of NULL packets transmitted is 12% higher than
with BIAS. This is mainly due to the packet loss that leads to

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Chevrollier, & ElBakkouri 78

retransmissions and therefore the number of NULL packets to
ACK data transmissions is higher.

VI. CONCLUDING REMARKS

In this paper we present, BIAS, a scheduling technique for
alleviating the impact of interference on the Bluetooth perfor-
mance. This technique attempts to redistribute the bandwidth
unused by the interference-prone sessions to other error-free
connections that can take advantage of it. Our goal is to guar-
antee fairness in scheduling while maximizing the channel uti-
lization.

Our simulation results indicate that BIAS can signi cantly
lower the probability of packet loss for sessions experiencing
interference without much increase in the mean access delay
for the worst case scenario. Furthermore, we demonstrate that
BIAS can provide Short Term Fairness where error-free ses-
sions are still serviced according to their negotiated rate regard-
less of the channel conditions of other devices.

Our current work is focused on extending BIAS and investi-
gating the use of combined approaches such as packet encapsu-
lation and o w control in order to support QoS in a Bluetooth
environment.

REFERENCES

[1] Bluetooth Special Interest Group, “Speci cations of the Bluetooth Sys-
tem, vol. 1, v.1.0B ’Core’ and vol. 2 v1.0B ’Pro les’, ” December 1999.

[2] K. J. Negus, A. P. Stephens, and J. Lansford, “HomeRF: Wireless Net-
working for the Connected Home,” in IEEE Personal Communications,
February 2000, pp. 20–27.

[3] IEEE Std. 802-11, “IEEE Standard for Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Speci cation ,” June 1997.

[4] N. Golmie and F. Mouveaux, “Interference in the 2.4 GHz ISM band:
Impact on the Bluetooth access control performance,” in Proceedings of
IEEE ICC’01, 2001.

[5] A. Soltanian and R. E. Van Dyck, “Physical layer performance for coex-
istence of Bluetooth and IEEE 802.11b,” in in Virginia Tech. Symposium
on Wireless Personal Communications, June 2001.

[6] N. Golmie, R.E. Van Dyck and A. Soltanian, “Interference of Bluetooth
and IEEE 802.11: Simulation Modeling and Performance Evaluation,”
in Proceedings of the Fourth ACM International Workshop on Modeling,
Analysis, and Simulation of Wireless and Mobile Systems, MSWIM’01,
Rome, Italy, July 2001.

[7] C. Fragouli, V. Sivaraman, and M. B. Srivastava, “Controlled Multime-
dia wireless link sharing via enhanced class-based queuing with channel-
state-dependent packet scheduling,” in Proceedings of IEEE INFO-
COM’98, San Fransisco, CA, March 1998, pp. 572–580.

[8] S. Flyod and V. Jacobson, “Link Sharing and resource management mod-
els for packet networks,” in ACM/IEEE Transactions on Networking, Au-
gust 1995, vol. 3, pp. 365–386.

[9] P. Bhagwat, P. Bhattacharya, A. Krishna, and S. Tripathi, “Enhancing
Throughput over Wireless LANs using Channel State Dependent Packet
Scheduling,” in Proceedings of IEEE INFOCOM’96, 1996, vol. 3, pp.
1133–1140.

[10] S. Lu, V. Bharghawan, and R. Srikant, “Fair Scheduling in wireless packet
networks,” in Proceedings of ACM SIGCOMM’97, September 1997, pp.
63–74.

[11] P. Ramanathan and P. Agrawal, “Adapting packet fair algorithms to wire-
less networks,” in Proceedings of ACM/IEEE MOBICOM’98, October
1998, pp. 1–9.

[12] T.S.E. Ng, I. Stoica, and H. Zhang, “Packet fair queueing algorithms
for wireless networks with location dependent errors,” in Proceedings of
INFOCOM’98, March 1998, pp. 1103–1111.

[13] D. Bertsekas and R. Gallager, Data Networks, 2nd Ed., Prentice Hall,
1992.

[14] A. Parekh and R. Gallager, “A generalized processor sharing approach
to o w control - the single node case,” in ACM/IEEE Transactions on
Networking, June 1993, vol. 1, pp. 344–357.

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Chevrollier, & ElBakkouri 79

Techniques to Improve the Performance of TCP in a
mixed Bluetooth and WLAN Environment

N. Golmie and O. Rebala
National Institute of Standards and Technology

Gaithersburg, Maryland 20899
Email: nada.golmie@nist.gov

Abstract—A major challenge for the WLAN technology stems from hav-
ing to share the 2.4 GHz ISM band with other wireless devices such as Blue-
tooth radios. The main goal of this paper is to investigate the use of tech-
niques to mitigate the effects of interference for Bluetooth and WLAN and
discuss the resulting performance trade-offs. We compare the performance
of the Bluetooth and WLAN systems and evaluate how each technique im-
proves or degrades TCP performance. Simulation results for selected sce-
narios and configurations of interest are obtained and the performance of
Bluetooth and WLAN is measured in terms of packet loss, TCP throughput
and delay.

Keywords— WPANs, Bluetooth, Interference, MAC scheduling, TCP
performance.

I. INTRODUCTION

Since the Bluetooth and 802.11b technologies use the 2.4
GHz ISM band, devices operating in close proximity may suffer
from mutual interference and significant performance degrada-
tion in terms of packet loss, lower throughputs and higher de-
lays.

Various techniques and algorithms aimed at reducing the im-
pact of interference have been considered [1]. These techniques
range from collaborative schemes intended for Bluetooth and
IEEE 802.11 protocols to be implemented in the same device
[2] to fully independent solutions that rely on interference de-
tection and estimation [3].

In this paper, we investigate the use of several techniques to
mitigate interference for Bluetooth and WLAN and focus ex-
clusively on schemes that do not require changes to either spec-
ifications. We consider rate scaling in conjunction with adap-
tive filtering for WLAN, and interference aware scheduling for
Bluetooth. We compare the effects of using these techniques
on performance for different scenarios and traffic types. Per-
formance is measured in terms of packet loss, TCP delay and
throughput.

The remainder of this paper is organized as follows. In sec-
tion II, we describe the techniques used to mitigate interference.
In section III, we give simulation results and concluding re-
marks are offered in section IV.

II. TECHNIQUES TO MITIGATE INTERFERENCE

In this section, we present two techniques that can be used
to mitigate the effect of interference. For WLAN, we consider
data rate scaling, which is a common technique used in many
implementations today to reduce the data rate from 11 down
to 1 Mbit/s in a WLAN system. For Bluetooth, we consider a
scheduling algorithm that avoids transmitting data on channels
used by other wireless devices.

A. Bluetooth Interference Avoidance Scheduling

In this subsection, we give a brief overview of the Bluetooth
Interference Aware Scheduling (BIAS) algorithm [4]. BIAS
consists of three main components, namely a channel estima-
tion procedure, a credit function that allocates bandwidth to
each device according to its service requirements, and a pri-
ority scheduling function. Channel estimation can be based on
either explicit or implicit methods. Explicit methods include
BER calculation, packet loss, or frame error rate measurements
performed on each receiver (master and slave device). The
measurements are then collected by the master device at reg-
ular time intervals. Alternatively, implicit methods do not re-
quire the master and the slave to exchange information about
the state of the channel. This information is derived by the mas-
ter upon receipt of a negative ACK. We note that either channel
estimation method allows the master device, which controls all
data transmissions in the piconet, to avoid data transmission to
a slave experiencing a ”bad” frequency. Furthermore, since a
slave transmission always follows a master transmission, using
the same principle, the master avoids receiving data on a ”bad”
frequency, by avoiding a transmission on a frequency preceding
a ”bad” one in the hopping pattern.

This simple scheduling scheme needs only be implemented
in the master device and translates into the following transmis-
sion rule. The master transmits in a slot after it verifies that
both the slave’s receiving frequency and its own receiving fre-
quency are ”good”. Otherwise, the master skips the current
transmission slot and repeats the procedure over again in the
next transmission opportunity.

Additional considerations including bandwdith requirements
and quality of service guarantees for each master/slave connec-
tion in the piconet can also be combined with the channel state
information and mapped into transmission priorities given to
each direction in the master/slave communication. Details on
assigning transmission priorities are given in [5].

The algorithm’s general steps are summarized below.

1: Every Even TSf // Master transmits on frequency f
2: if TSf + ldn is good // Master can receive in next slot
3: {
4: Af

data
= {set of slaves s.t. ((f ”good”) and (qsize > 0) }

5: if (Af
data

�= ∅)
6: select slave i //according to a priority criteria
7: transmit data packet of size ldn to slave i
8: }

U.S. Government work not protected by U.S. copyright0-7803-7802-4/03/$17.00 © 2003 IEEEU.S. Government work not protected by U.S. copyright

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie & Rebala 80

where ldn is the length of the packet from the master to the
slave (downstream) and TSf is the transmission slot using fre-
quency f.

B. WLAN Rate Scaling

Rate scaling is used in most WLAN implementations in or-
der to optimize the range performance since the 1 Mbit/s Barker
code WLAN receiver performs better than the Complementary
Code Keying (CCK) 11 Mbit/s [6] [7] [8]. The Barker code
correlation effectively spreads noise or the interference signal
while de-spreading the desired signal and leads to lower prob-
ability of bit error (BER) than CCK for the same signal-to-
interference ratio (SIR).

While there is provision in the IEEE 802.11 standards [9] to
implement a rate scaling algorithm, the details remain vendor
implementation specific. In our study, we use a simple two-
level threshold algorithm with some hysteresis margin in order
to avoid unnecessary oscillations.

1: If SIRmeasured ≥ SIRHigh // the interference is low
2: PHY mode = 11 Mbit/s
3: If SIRmeasured < SIRLow // the interference level is high
4: PHY mode = 1 Mbit/s

Basically, SIRmeasured is based on the Received Signal
Strength Indicator (RSSI). The assumption is when the RSSI is
low, the interference level is high (or the desired signal is weak),
and therefore, the receiver reverts to the 1 Mbit/s mode. We set
SIRHigh and SIRLow to 6 and 2 db respectively based on the
BER performance of each receiver. Above 2 dB the BER for
the 11 Mbit/s is below 10−4 [7].

In addition, we use an adpative filter in our 1 Mbit/s WLAN
receiver that is able to estimate and cancel the Bluetooth inter-
ference. This technique is based on recursive least-squares lat-
tice (RLSL) filters and generally more effective for the 1 Mbit/s
WLAN receiver. It is adaptive in the sense that it does not re-
quire an a priori knowledge of the Bluetooth hopping patterns.
Additional details on this method can be found in [10] where
the authors discuss its effectiveness for both the 1 and 11 Mbit/s
WLAN receivers.

III. SIMULATION RESULTS

In this section, we present simulation results to evaluate the
performance of the two techniques discussed in the previous
section. We use a detailed simulation environment consisting of
the MAC, PHY and channel models for Bluetooth and WLAN
as described in [11]. We use the topology illustrated in Figure 1.
The Bluetooth master and slave are placed one meter a part at
(-0.5,0) and (0.5, 0) meters respectively. The WLAN station is
located at (0,15) meters, while the WLAN server is located at
(0,d) meters, where d varies along the y-axis between 0 and 10
meters.

We consider two application profiles, namely, FTP, and
HTTP. We use the TCP/IP stack implemented in the OPNET
library and configure the application profiles as shown in Ta-
ble I. The parameters used in the setup are summarized in Ta-
ble II. The simulations are run for 500 seconds of simulated
time. We run 10 trials using a different random seed for each

(0,15)

WLAN Station

(0,d)

WLAN Server

Bluetooth
Master

Bluetooth
Slave

(0.5,0)(-0.5,0)

(0,0)

Fig. 1. Experiment Topology

trial. In addition, to plotting the mean value, we verify that that
the statistical variation around the mean values are very small
(less than 1%).

The performance metrics include the packet loss, the average
delay in seconds and the throughput in bytes/s. The packet loss
is the percentage of packets dropped due to interference over
the total number of packets received at the MAC layer. The
average delay, measured at the TCP layer, indicates the time it
takes to transmit a packet from the time it is passed to the TCP
layer until it is successfully received at the destination. The
throughput is the traffic received at the TCP layer and includes
packet retransmissions.

TABLE I

APPLICATION PROFILE PARAMETERS

Parameters Distribution Value
FTP
Percentage of Put/Get 50%
Inter-Request Time (seconds) Exponential 1
File Size (bytes) Constant 2 M
HTTP
Page Interarrival Time (seconds) Exponential 10
Number of Objects per page Constant 2
1st Object Size (bytes) Constant 10000
2nd Object Size (bytes) Uniform (2000, 100000)

TABLE II

SIMULATION PARAMETERS

Bluetooth Parameters Values
ACL Baseband Packet Encapsulation DH5
Transmitted Power 1 mW
Slave Coordinates (-0.5, 0)
Master Coordinates (0.5,0)
WLAN Parameters Values
Transmitted Power 25 mW
Data Rate 11 Mbit/s if not rate scaling
Station Coordinates (0,15)
Server Coordinates (0,d)
PLCP Header 192 bits
Packet Header 224 bits

We run simulations for three different experiments where we
vary the profiles used for the Bluetooth and WLAN applications
as shown in Table III. In experiment 1, both WLAN and Blue-
tooth use the FTP profile, while in experiments 2 and 3, the
WLAN (/Bluetooth) application uses FTP (/HTTP) and HTTP
(/FTP) traffic respectively. Although a large amount of data was
obtained at analyzed, due to space constraints, only a small sub-
set of the results is shown here.

In the next two subsections, we discuss the performance of

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie & Rebala 81

TABLE III

EXPERIMENT SUMMARY

Scenario WLAN Bluetooth
1 FTP FTP
2 FTP HTTP
3 HTTP FTP

TCP over WLAN and Bluetooth in terms of the techniques pro-
posed. We compare the performance of WLAN and Bluetooth
when rate scaling is used for WLAN and scheduling is used for
Bluetooth. For each experiment, we run 4 simulations in or-
der to identify the benefits of each algorithm and its interactions
with other schemes. None refers to the case when no algorithm
is used. Rate Scaling means that WLAN uses the rate scaling
algorithm, while Scheduling means that Bluetooth uses BIAS.
The case where WLAN uses rate scaling and Bluetooth uses
BIAS simultaneously is refered to as Rate Scaling + Schedul-
ing.

A. TCP over WLAN

Figure 2 (a) gives the packet loss with respect to the y-
coordinate of the WLAN server, d, when both WLAN and Blue-
tooth use the FTP profile. When no algorithm is used, the packet
loss can be up to 14% when the WLAN server is close to the
Bluetooth piconet (d=0 meters). As the server moves away from
the Bluetooth piconet, the packet loss drops to zero (d ≥ 5 me-
ters). When rate scaling is used, the packet loss drops to 5%
when d=0 meters. This packet loss observed is due to the inter-
mittent use of the 11 Mbit/s WLAN receiver before the 1 Mbit/s
mode is used. While the adaptive filter used in the 1 Mbit/s re-
ceiver is able to reduce the packet loss to zero, the 11 Mbit/s
receiver is less robust and yields a relatively high packet loss.
Observe that the packet loss is zero when Bluetooth uses BIAS
since the Bluetooth transmitter avoids using the same frequency
used by WLAN.

Figure 2(b) illustrates the throughput of the WLAN server.
When no algorithm is used, the throughput starts at 240 Kbyte/s
when d=0 meters, and goes up to 350 Kbyte/s when d ≥ 5
meters and the packet loss is zero. Observe that when BIAS is
used, the throughput remains around 350 Kbyte/s since no pack-
ets are lost. Since rate scaling involves reducing the WLAN bit
rate from 11 to 1 Mbit/s, this yields to reducing the throughput
to 50 Kbyte/s. As expected, rate scaling can reduce the packet
loss, at the cost of reducing the throughput.

Figure 3(a) and (b) give the WLAN packet loss and delay
respectively for experiment 3. In this case, the WLAN uses the
HTTP profile while the Bluetooth uses the FTP profile. The
packet loss depicted in Figure 3(a)) is slightly less than when
WLAN uses the FTP profile (Figure 2(a)), however it follows
a similar trend. The packet loss with BIAS is around 1% when
d < 4 meters.

An important metric for HTTP is the delay to access data,
therefore in Figure 3(b), we plot the TCP delay. Note that it
is 15 ms when the packet loss is 12% (Figure 3(a)) and drops
down to 2.5 ms when the packet loss is zero. Observe that when
rate scaling is used the delay remains flat at 5 ms. On the other
hand, when Bluetooth uses BIAS, the delay starts at 5 ms and

0 %

5 %

10 %

15 %

20 %

0 m 2 m 4 m 6 m 8 m 10 m

Pa
ck

ets
 lo

ss

Y Coordinate of the WLAN Server (meters)

None
Rate Scaling

Scheduling
Rate Scaling + Scheduling

0

50000

100000

150000

200000

250000

300000

350000

400000

0 m 2 m 4 m 6 m 8 m 10 m

TC
P

Th
rou

gh
pu

t (b
yte

s/s
)

Y Coordinate of the WLAN Server (meters)

None
Rate Scaling

Scheduling
Rate Scaling + Scheduling

Fig. 2. (a)
(b)

Experiment 1. WLAN FTP Performance. (a) Probability of

Packet Loss. (b) TCP Throughput

drops down to 2.5 ms.
Overall, we note that the use of Bluetooth scheduling im-

proves the WLAN performance and brings it closer to the ideal
case when no interference is present. The use of rate scaling
produces interesting but expected trade-offs. While the WLAN
packet loss is reduced, the delay is increased and the throughput
is reduced.

B. TCP over Bluetooth

Figure 4(a) gives the packet loss for the Bluetoth master de-
vice as a function of the WLAN server y coordinate, d. When
no algorithm is used, the packet loss is around 10% for d =0
meters. When 2 ≤ d ≤ 6 meters, we observe a spike with a
peak of 17% at d=4 meters. This is due to the closed loop inter-
ference between the WLAN and Bluetooth systems. To better
understand the interactions, we look at Figure 2(a). Since less
WLAN packets are lost (more WLAN packets are transmitted),
this causes more interference on Bluetooth and thus more packet
loss. This trend is valid until d=5 meters and the WLAN packet

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie & Rebala 82

0 %

5 %

10 %

15 %

20 %

0 m 2 m 4 m 6 m 8 m 10 m

Pa
ck

ets
 lo

ss

Y Coordinate of the WLAN Server (meters)

None
Rate Scaling

Scheduling
Rate Scaling + Scheduling

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 m 2 m 4 m 6 m 8 m 10 m

TC
P

De
lay

 (s
ec

on
ds

)

Y Coordinate of the WLAN Server (meters)

None
Rate Scaling

Scheduling
Rate Scaling + Scheduling

Fig. 3. (a)
(b)

Experiment 3. WLAN HTTP Performance. (a) Probability of

Packet Loss. (b) TCP Delay

loss is zero. At that point, the Bluetooth packet loss start de-
creasing as the WLAN server moves further away. When rate
scaling is used for the WLAN, we note a packet loss of 12%
for Bluetooth at d=0 meters. The packet loss remains high until
d=10 meters. This is due to the fact that rate scaling causes the
WLAN to transmit packets at a lower rate, occupying more time
in the air and causing more interference on Bluetooth. Note that
when scheduling is used for Bluetooth, the packet loss is re-
duced to zero.

The TCP throughput depicted in Figure 4(b), closely follows
the packet loss curves in Figure 4(a). When no algorithm is
used, the throughput is 38 Kbyte/s when d=0 meters, 35 Kbyte/s
when d=5 meters, and 45 Kbytes/s when d=10 meters, which
clearly reflects a 12%, 17%, and 0% packet loss respectively. As
expected, when rate scaling is used the throughput is about 10%
lower than when scheduling is used reflecting the 10% packet
loss observed in Figure 4(a).

The results for packet loss and delay when Bluetooth uses
the HTTP profile (experiment 2), are illustrated in Figures 5(a)

0 %

5 %

10 %

15 %

20 %

0 m 2 m 4 m 6 m 8 m 10 m

Pa
ck

ets
 lo

ss

Y Coordinate of the WLAN Server (meters)

None
Rate Scaling

Scheduling
Rate Scaling + Scheduling

0

20000

40000

60000

80000

100000

0 m 2 m 4 m 6 m 8 m 10 m

TC
P

Th
rou

gh
pu

t (b
yte

s/s
)

Y Coordinate of the WLAN Server (meters)

None
Rate Scaling

Scheduling
Rate Scaling + Scheduling

Fig. 4. (a)
(b)

Experiment 1. Bluetooth FTP Performance. (a) Probability of

Packet Loss. (b) TCP Throughput

and (b) respectively. The packet loss when rate scaling is used
is slightly higher (11%) than when no algorithm is used (8%).
The packet loss is zero when scheduling is used.

The TCP delay in Figure 5(b) starts at 33 ms when rate scal-
ing is used at d=0 meters. It is 7 ms and 12 ms when scheduling
and no algorithm are used respectively. When no interference
is present (d=10 meters), the delay is around 6 ms. Thus, the
scheduling algorithm yields a slight increase in delay (around 1
ms) while reducing the packet loss to zero.

In summary, the main advantages of using scheduling in
terms of the Bluetooth performance, are to reduce the packet
loss to zero at almost no cost to either thoughput or delay. On
the other hand the use of rate scaling for WLAN leads to higher
packet losses for Bluetooth, including higher delays and lower
throughput.

IV. CONCLUDING REMARKS

In this paper, we study the performance of TCP over Blue-
tooth and WLAN in a mutual interference environment consist-

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie & Rebala 83

0 %

5 %

10 %

15 %

20 %

0 m 2 m 4 m 6 m 8 m 10 m

Pa
ck

ets
 lo

ss

Y Coordinate of the WLAN Server (meters)

None
Rate Scaling

Scheduling
Rate Scaling + Scheduling

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 m 2 m 4 m 6 m 8 m 10 m

TC
P

De
lay

 (s
ec

on
ds

)

Y Coordinate of the WLAN Server (meters)

None
Rate Scaling

Scheduling
Rate Scaling + Scheduling

Fig. 5. (a)
(b)

Experiment 2. Bluetooth HTTP Performance. (a) Probability of

Packet Loss. (b) TCP Delay

ing of two Bluetooth and two WLAN devices operating at the
same time. We consider two application profiles, namely HTTP
and FTP.

We investigate the use of two techniques to mitigate the ef-
fects of this mutual interference. Both techniques rely on de-
tecting the presence of other wireless systems and adapting to
the interference environment. For Bluetooth, we use a schedul-
ing scheme that consists of avoiding to transmit a packet on a
frequency used by the WLAN system. On the other hand, for
WLAN we use rate scaling which consists of reverting to the
more robust 1 Mbit/s mode. We also include in the 1 Mbit/s
receiver used, an adaptive filter that can notch out the Bluetooth
signal. Both techniques do not require any changes to either the
Bluetooth or the IEEE 802.11 specifications.

Our simulation results indicate that the use of Bluetooth
scheduling improves both the Bluetooth and WLAN systems’
performance. The packet loss is reduced to zero, while the
throughput is increased, and the delay decreased. On the other
hand, the benefits of using rate scaling in the WLAN system

are clearly less pronounced. While the packet loss is reduced
for WLAN due to the the use of a more robust receiver and an
adaptive filter, the performance of Bluetooth is degraded due
to the increase of the WLAN packet transmission. As a result,
the probability of a packet collision in time and frequency is
much higher leading to higher packet loss and delays, and lower
throughputs.

Finally, we note that these observations apply to either FTP
or HTTP traffic. While the exact performance results depend on
the parameters of the application profile used, the general trends
hold in most cases studied.

ACKNOWLEDGEMENTS

The authors would like to thank Amir Soltanian for his help in
the PHY layer simulation models and his assistance in making
the 1 Mbit/s WLAN receiver with the adaptive filter available to
use in the combined MAC and PHY simulation framework.

REFERENCES

[1] Carla F. Chiasserini, and Ramesh R. Rao, “ Coexistence mechanisms for
interference mitigation between IEEE 802.11 WLANs and bluetooth ,” in
Proceedings of INFOCOM 2002, 2002, pp. 590–598.

[2] J. Lansford, R. Nevo, E. Zehavi, “MEHTA: A method for coexistence
between co-located 802.11b and Bluetooth systems,” in IEEE P802.11
Working Group Contribution, IEEE P802.15-00/360r0, November 2000.

[3] B. Treister, A. Batra, K.C. Chen, O. Eliezer, “Adapative Frequency Hop-
ping: A Non-Collaborative Coexistence Mechanism,” in IEEE P802.11
Working Group Contribution, IEEE P802.15-01/252r0, Orlando, FL, May
2001.

[4] N. Golmie, N. Chevrollier, and I. Elbakkouri, “Interference Aware Blue-
tooth Packet Scheduling,” in Proceedings of GLOBECOM’01, San Anto-
nio, TX, November 2001.

[5] N. Golmie, “Bluetooth Dynamic Scheduling and Interference Mitigation,”
in ACM Mobile Network, MONET, 2002.

[6] B. Sklar, Digital Communications: Fundamentals and Applications,
Prentice Hall, 1997.

[7] A. Soltanian and R. E. Van Dyck, “Physical layer performance for coex-
istence of Bluetooth and IEEE 802.11b,” in Virginia Tech Symposium on
Wireless Personal Communications, June 2001.

[8] N. Golmie, R.E. Van Dyck, A. Soltanian, A. Tonnerre, and O. Rebala,
“Interference Evaluation of Bluetooth and IEEE 802.11b Systems,” in
ACM Wireless Network, WINET, 2002.

[9] IEEE Std. 802-11, “IEEE Standard for Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specification ,” June 1997.

[10] A. Soltanian, R. E. Van Dyck, and O. Rebala, “Rejection of Bluetooth
Interference in 802.11 WLANs,” in Proceedings of IEEE VTC, Fall 2002,
September 2002.

[11] N. Golmie, R.E. Van Dyck and A. Soltanian, “Interference of Bluetooth
and IEEE 802.11: Simulation Modeling and P erformance Evaluation,”
in Proceedings of the Fourth ACM International Workshop on Modeling,
Analysis, and Simulation of Wireless and Mobile Systems, MSWIM’01,
Rome, Italy, July 2001.

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie & Rebala 84

Bluetooth Dynamic Scheduling

and Interference Mitigation
N. Golmie

National Institute of Standards and Technology

Gaithersburg, Maryland 20899

Email: nada.golmie@nist.gov

Abstract

Bluetooth is a cable replacement technology for Wireless Personal Area Networks. It is designed to support a wide variety of applications such as

voice, streamed audio and video, web browsing, printing, and le sharing, each imposing a number of quality of service constraints including packet

loss, latency, delay variation, and throughput. In addition to QOS support, another challenge for Bluetooth stems from having to share the 2.4 GHz

ISM band with other wireless devices such as IEEE 802.11. The main goal of this paper is to investigate the use of a dynamic scheduling algorithm that

guarantees QoS while reducing the impact of interference. We propose a mapping between some common QoS parameters such as latency and bit rate

and the parameters used in the algorithm. We study the algorithm’s performance and obtain simulation results for selected scenarios and con guratio ns

of interest.

Keywords

WPANs, Bluetooth, Interference, MAC scheduling.

I. INTRODUCTION

Today most radio technologies considered by Wireless Personal Area Network (WPAN) industry consortia and standard groups

including the Bluetooth Special Interest Group [1], HomeRF [2], and the IEEE 802.15, employ the 2.4 GHz ISM frequency band.

This same frequency band is already in use by microwave ovens and the popular Wireless Local Area Network (WLAN) devices

implementing the IEEE 802.11 standard speci cations [3].

However, instead of competing with WLANs for spectrum and applications, WPANs are intented to augment many of the usage

scenarios and operate in conjunction with WLANs, i.e., come together in the same laptop, or operate in proximity in an of ce or

conference room environment. For example, Bluetooth can be used to connect a headset, or PDA to a desktop computer, that in

turn may be using WLAN to connect to an Access Point placed several meters away.

Thus, an issue of growing concern is the coexistence of WLAN and WPAN in the same environment. Several techniques and

algorithms aimed at reducing the impact of interference have been considered. These techniques range from collaborative schemes

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 85

intended for Bluetooth and IEEE 802.11 protocols to be implemented in the same device to fully independent solutions that rely on

interference detection and estimation. In particular:

• Collaborative Mechanisms-

Mechanisms for collaborative schemes have been proposed to the IEEE 802.15 Coexistence Task Group and are based on a

Time Division Multiple Access (TDMA) solution that alternates the transmission of Bluetooth and WLAN packets (assuming

both protocols are implemented in the same device and use a common transmitter) [4]. A priority of access is given to

Bluetooth for transmitting voice packets, while WLAN is given priority for transmitting data.

• Non-Collaborative Mechanisms-

The non-collaborative mechanisms range from adaptive frequency hopping [5] to packet scheduling and traf c control [6].

They all use similar techniques for detecting the presence of other devices in the band such as measuring the bit or frame

error rate, the signal strength or the signal to interference ratio (often implemented as the Received Signal Indicator Strength

(RSSI)). Frequency hopping devices may be able to detect that some frequencies are used by other devices and thus modify

their frequency hopping pattern. They can also choose not to transmit on ”bad” frequencies. The rst technique is known as

adaptive frequency hopping, while the second technique is known as MAC scheduling. The main advantage of scheduling is

that it does not require changes to the Bluetooth speci cations.

In this paper we present a Bluetooth Interference Aware Scheduling (BIAS) algorithm to deal with coexistence. This algorithm

takes advantage of the fact that devices in the same piconet will not be subject to the same levels of interference on all channels

of the band. The basic idea is to utilize the Bluetooth frequency hopping pattern and distribute channels to devices such that to

maximize their throughput while ensuring fairness of access among users.

In this paper, we propose several extensions to a preliminary discussion of the the algorithm [7] in order to address (1) priority

scheduling, (2) dynamic changes in the environment, and (3) asymmetric scenarios where packet lengths and data rates are chosen

differently in the upstream (slave to master transmission) and downstream (master to slave transmission) directions. In addition,

we describe how to map commonly used QOS parameters, namely bit rate, and jitter and the parameters used in BIAS. Simulation

results for scenarios and con gurations of interest are presented and performance is measured in terms of packet loss and mean

access delay.

The remainder of this paper is organized as follows. In section II we give some general insights on the Bluetooth interference

environment. In sections III, we describe the scheduling algorithm and discuss the mapping of the QOS parameters. In section IV,

we present simulation results and offer concluding remarks in section V.

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 86

II. INTERFERENCE ENVIRONMENT

Since Bluetooth operates in the 2.4 GHz band along with other wireless technologies such as 802.11, high and low rate WPAN

(802.15.3 and 4), the resulting mutual interference leads to signi cant performance degradation.

In this paper, we assume that interference is caused by an 802.11 spread spectrum network operating in proximity of the Bluetooth

piconet. This represents the worst case interference for Bluetooth. Golmie et al. [8][9] use a detailed MAC and PHY simulation

framework to evaluate the impact of interference for a pair of WLAN devices and a pair of Bluetooth devices. The results indicate

that Bluetooth performance may be severely impacted by interference with packet loss of 8% and 18% for voice and data traf c

respectively. In [9], the authors investigate the effect of several factors, such as transmitted power, offered load, packet size,

hop rate, and error correction on performance. First, they note that power control may have limited bene ts in an interference

environment. Increasing the Bluetooth transmission power even ten times is not suf cient to reduce the Bluetooth packet loss.

Second, using a shorter packet size leads to less packet loss for Bluetooth at the cost of causing more interference on WLAN.

Overall, the results exhibit a strong dependence on the type and characteritics of the traf c distribution used.

Additional analytical [10] [11] and experimentation [12] [13] results con rm these ndings.

III. BLUETOOTH SCHEDULING ALGORITHM

In this section, we present a Bluetooth Interference Aware Scheduling (BIAS) algorithm that consists of several components,

namely, (i) dynamic channel estimation, (ii) credit computation, and (iii) access priority. A preliminary discussion of BIAS ap-

peared in [7].

In this sequel, we assume that traf c from slave Si to the master (upstream) is characterized by a data rate, γ i
up, equal to

Ni
peak×liup

pi where N i
peak is the number of packets sent back-to-back within a poll interval, p i, and liup is the packet length (1, 3, or

5 slots depending on the packet type). Similarly, the data rate in the downstream (from the master to slave S i) is characterized by

γi
dn equal to Ni

peak×lidn

pi . Note that N i
peak and pi are the same in the upstream and downstream, since every packet in the upstream

corresponds to one in the downstream. In addition, we assume the following transmission rules for the master and slave.

Master - The master polls Si every pi slots in order to guarantee γ i
up in the upstream direction. A poll message can be either a

data or POLL packet. A data packet is sent if there is a packet in the queue destined for S i. This packet contains the ACK of the

previous packet received from Si. In case there is no data to transmit and the master needs to ACK a previous slave transmission,

it sends a NULL packet.

Slave Si - Upon receipt of a packet from the master, the slave can transmit a data packet. This data packet contains the ACK

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 87

information of the master to slave packet transmission. In case the slave does not have any data to send, it sends a NULL packet in

order to ACK the previous packet reception from the master. No ACK is required for a NULL message from the master.

In a nutshell, we propose a method that allows the master device, which controls all data transmissions in the piconet, to avoid

data transmission to a slave experiencing a ”bad” frequency. Furthermore, since a slave transmission always follows a master

transmission, using the same principle, the master avoids receiving data on a ”bad” frequency, by avoiding a transmission on a

frequency preceding a ”bad” one in the hopping pattern.

Frequency
Offset

Frequency
Status Table

0

1

 2

3

...

78

77

76

Master Slave

Frequency Hopping Pattern

f
s f

m

Slave Rx Master Rx

f
s

f
m

Slave Rx Master Rx
����

Delay Packet
Transmission

��
Packet to Transmit

Update Frequency
Status Table for

Master and Slave upon
receipt of Packet from

Slave

Good Frequency

Bad Frequency

Fig. 1. Interference Aware Scheduling

This simple scheduling scheme illustrated in Figure 1 needs only be implemented in the master device and translates into the

following transmission rule. The master transmits in a slot after it veri es that both the slave’s receiving frequency, f s, and its own

receiving frequency, fm, are ”good”. Otherwise, the master skips the current transmission slot and repeats the procedure over

again in the next transmission opportunity.

Figure 2 describes the master’s transmission o w diagram. In addition, to checking the slave’s and the master’s receiving fre-

quencies pair, (fs,fm), the algorithm incorporates bandwidth requirements, and quality of service guarantees for each master/slave

connection in the piconet. This bandwidth allocation is combined with the channel state information and mapped into transmission

priorities given to each direction in the master/slave communication. It is shown in the ”choose slave” routine in the o w diagram.

Note that the master invokes the ”choose” routine after serving the retransmission and ACK queues for packets sent by the master

requiring retransmissions and packets received by the master requiring acknowlegments respectively.

In the remainder of this section, we discuss (a) a dynamic channel estimation procedure, (b) a credit allocation function, and (c) a

service priority routine that schedules packet transmissions to devices according to their service requirements and the state of the

channel.

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 88

Master Transmission Slot

Yes
No

No
Retransmit?

ACK?

Yes

 (f s,f m) good?
No

Yes

Choose Slave

Transmit Packet

Find Slave?

Yes

No

Fig. 2. Master Packet Transmission Flow Diagram

A. Dynamic Channel Estimation

Estimation is mainly based on measurements conducted on each frequency or channel in order to determine the presence of

interference. Several methods are available ranging from BER, RSSI, packet loss rate, and negative ACKs. In this discussion, the

estimation is based on negative ACKs, which belongs to the class of implicit methods that do not require messages to be exchanged

between the master and the slave devices. First, we de ne two phases in the channel estimate procedure. During the Estimation

Window packets are sent on all frequencies regardless of their classi cation. Note that in case no data traf c is available for

transmission, POLL/NULL packets could be exchanged between the master and the slave in order to probe the channel and collect

measurements. The Estimation Window takes place every estimation interval, EI , and is followed by an Online phase where the

master uses only ”good” frequencies to selectively send data and POLL packets to slaves in the piconet.

Next, we give a lower bound on the Estimation Window and describe how to adjust EI based on the environment’s dynamics.

Estimation Window -

Since the slave does no need to send information to the master about the state of its channel, as soon as a frequency is determined

to be ”bad” it can be classi ed as such right away and skipped at the next hop. A simple rule such as the number of times each

frequency is visited before a frequency is classi ed can be used in order to derive the status of a frequency. Thus, the boundary

between the Estimation Window and the online phase is blurred as illustrated in Figure 3. While the channel estimation procedure

is still performed ever EI , the size of the Estimation Window does not need to be predetermined.

Estimation Interval - How often to update the channel estimation depends on the application and the dynamics of the scenario

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 89

Estimation Interval, EI

Estimation Phase Online Phase

Start Estimation Phase

Partial Online

Fig. 3. Implicit Estimation

used. We propose an adaptive procedure to adjust EI , which the interval between two consecutive estimation windows.

First, we let δ, be the percentage of frequencies that change classi cation status (from ”good” to ”bad” or vice versa) during the

previous estimation phase. More formally, let S(f,t) be the status of frequency f at time t.

S(f, t) = 1; if f is ”good”

S(f, t) = 0; otherwise (1)

Using the exclusive ’OR’ (⊗) operation between S(f,t) and S(f, t+1) represents the change of status of frequency f from time t to

t + 1. A change of status leads to a logic ”1” while a no change yields a logic ”0”. Summing over all frequencies and dividing by

the number of frequencies available, which is 79 in this case, leads to the following

δ =
1
79

79∑
f

(S(f, t) ⊗ S(f, t + 1)) (2)

We can then de ne, a procedure for adapting EI . Initially, EI is set to EImin. Then, EI is updated every interval, k, according

to the rationale that if a change were to happen it is likely to happen again in the near future and therefore EI is set to EI min.

Otherwise, the window is doubled.

EIk+1 = max (2 ∗ EIk, EImax); if δ ≤ 0.1

EIk+1 = EImin otherwise (3)

B. Credit Allocation

The credit system controls the bandwidth allocated to each device in order to ensure that no device gets more than its fair share

of the available bandwidth. Thus, devices with a positive credit counter, c i, are allowed to send data. Since the rate in the upstream

can be different from the rate in the downstream, we de ne c i
up and ci

dn for both the upstream and downstream credits. Credits can

be computed according to the upstream and downstream rates negotiated as follows:

ci
up = γi

up × N (4)

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 90

ci
dn = γi

dn × N

where N is the number of slots considered in the allocation and γ i
up/down = liup/down ∗ N i

peak/pi. Credits are decremented by the

number of slots used in each data packet transmission. The transmission of POLL and NULL packets does not affect the credit

count based on the rationale that credits are not required for the transmission of POLL and NULL messages. An interesting question

is how to compute γ or derive it from application QOS parameters such as delay, peak bandwidth, and jitter. Let d (seconds), r

(bits/s), σ (seconds) represent delay, peak bandwidth, and jitter respectively. r is part of the L2CAP QOS parameters and for some

applications is negotiated between the master and the slave at connection setup. r is equal to (N peak × El ∗ 8)/(p × 625 × 10−6)

and γ = (r × l× 625× 10−6)/(El × 8). Note that El is the number of information bytes contained in a packet of length l. Table I

gives El corresponding to the various DH formats.

TABLE I

PACKET ENCAPSULATION RATE FOR DH PACKETS

Packet Type l El (Bytes)

DH1 1 27

DH3 3 183

DH5 5 339

The choice of l depends on the L2CAP packet size, k. When k ≤ E5, Npeak = 1 and l is such that:

1 if 0 < k ≤ 27 (5)

l = 3 if 27 < k ≤ 183

5 if 183 < k ≤ 339

However, when k > E5, higher layer packets (L2CAP) are segmented into Npeak packets. The aim is to nd Npeak equal to

Npeak = � k

El
� (6)

such as to minimize Npeak × l, or the total number of slots needed. Furthermore, since master and slave transmission alternate,

the end-to-end delay of a packet accounts for the segmentation and the transmission of packets in both directions. Therefore, the

choice of lup and ldn are loosely constrained by the delay requirements as follows:

Npeak × (lup + ldn) ≤ d

625 × 10−6
(7)

where 625 × 10−6 is the length of a slot in seconds. Finally, the choice of p is determined by σ as follows.

2 ≤ p ≤ σ

625 × 10−6
(8)

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 91

where 2 is the minimum value for the poll interval since every other slot is dedicated to a master (or slave) transmission.

In case r, d, and σ cannot be determined from the application QOS, γ can be set to 1− ∑
γi, the leftover bandwidth after having

calculated γ for all other applications with known service rates (
∑

γ).

C. Service Priority

The third component of the algorithm is to give an access priority to devices based on their channel conditions and their allocated

credits.

We let ui be the probability that a pair of master/slave transmission slots are ”good”. Thus, u i represents the available spectrum

to slave Si, and we write:

ui = max((1 − 1/79), P (slave i has a good receiving frequency)

×P (master has a good receiving frequency)) (9)

where

P (device i has a good receiving frequency) =

Number of good Channelsi/Total Number of Channels (10)

We use a two-tier system with high and low priorities, denoted by A, and B respectively. Priority A is used to support delay

constrained applications such as voice, MP3, and video. On the other hand, priority B, is used to support best effort connections

such as ftp, http, print, email. The scheduling routine services priority A devices rst, and priority B devices second. Also, among

same tier connections, we choose to give devices with fewer number of good channels the right of way over other devices that have

more channels available. The priority access is determined according to a weight factor, w, that is the product of the credits and the

probability of experiencing a bad frequency. w i
up and wi

dn are computed as follows:

wi
up = ci

up × (1 − ui) (11)

wi
dn = ci

dn × (1 − ui)

The master schedules a data transmission for slave i such as to maximize the product of the weights in the up and downstreams.

i = maxf
S(wi

up × wi
dn) (12)

To transmit a POLL packet, the master looks only at the weight function in the upstream:

i = maxf
S(wi

up) (13)

The selection of a slave is restricted over the set of slaves S that can receive on the master’s current transmission frequency, f . Thus,

any slave that experiences a ”bad” channel on the current transmission frequency is not considered. Four sets of slaves are formed,

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 92

Af
data, Af

poll, Bf
data, and Bf

poll. Adata and Apoll represent the set of high priority connections requiring data and POLL packet

transmissions respectively. Similarly, Bdata and Bpoll represent low priority connections. First, the algorithm tries to schedule

a packet to high priority slaves in group A, then a POLL packet, before it moves to group B. The credit counters and weights

are updated accordingly after every master’s transmission. Table II summarizes the parameters used in the algorithm and their

de nition. The algorithm’s pseudocode is given in the appendix.

TABLE II

DEFINITION OF PARAMETERS USED IN THE SCHEDULING ALGORITHM

Parameters De nition

γi
up,dn rate allocated for device i in the upstream and downstream

wi
up,dn weight for device i

ci
up,dn

credit for device i

N Number of slots considered in the allocation

ui available frequency usage for device i

IV. PERFORMANCE EVALUATION

In this section, we present simulation results to evaluate the performance of BIAS. The experiments illustrate the algorithm’s

responsiveness to changes in the environment and the support of QOS. The results obtained are compared with Round Robin

(RR) scheduling. Our simulation environment is based on a detailed MAC, PHY and channel models for Bluetooth and IEEE

802.11 (WLAN) as described in [8]. The parameters used in the setup vary according to the experiment. The common simulation

parameters are summarized in Table III. The simulations are run for 300 seconds of simulated time unless speci ed otherwise. We

run 10 trials using a different random seed for each trial. In addition, to plotting the mean value, we verify that that the statistical

variation around the mean values are very small (less than 1%).

The performance metrics include the packet loss, the mean access delay, and the channel estimation transient time. The

packet loss is the percentage of packets dropped due to interference over the total number of packets received. The access delay

measures the time it takes to transmit a packet from the time it is passed to the MAC layer until it is successfully received at the

destination. The delay is measured at the L2CAP layer. The estimation transient time measures the time it takes a Bluetooth device

to detect the presence of a ”bad” frequency, i.e. from the time a packet loss occurs until the frequency is classi ed ”bad”. This

average is provided on a per frequency basis.

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 93

TABLE III

COMMON SIMULATION PARAMETERS

Bluetooth Parameters Values

ACL Baseband Packet Encapsulation DH5

Transmitted Power 1 mW

WLAN Parameters Values

Packet Interarrival Time 2.172 ms

Offered Load 60 % of Channel Capacity

Transmitted Power 25 mW

Data Rate 11 Mbit/s

PLCP Header 192 bits

Packet Header 224 bits

Payload Size 12000 bits

A. Experiment 1: Base Case

This experiment includes Bluetooth performance results for the reference scenario when no interference is present. It represents

a base case since the effects of BIAS are quanti ed and compared against the reference scenario. It also covers different levels of

interference caused by WLAN systems operating in close proximity. Thus, we examine Bluetooth’s performance when 1, 2, and 3

WLAN interfering systems are operational and compare that to the ideal performance when no interference is present. Note that,

the maximum number of non-overlapping channels for WLAN systems is 3, i.e. there could be up to 3 WLAN networks operating

simultaneously using different non-overlapping channels. In each case, results are obtained with BIAS and RR scheduling. The

bene ts of using BIAS are discussed in terms of packet loss and access delay.

Topology - We use the topology illustrated in Figure 4 that consists of 3 WLAN systems (source-sink pairs), and one Bluetooth

piconet with one master and one slave device. In a rst step, we record the results of Bluetooth when no WLAN system is present.

Then, we add one WLAN system at a time starting with WLAN (Source/Sink) 1, followed by WLAN (Source/Sink) 2, and 3.

Bluetooth
Master

(0,14)

WLAN Sink 1

Bluetooth
Slave

(1,0)(-1,0) (0,0)

(-20,14)

WLAN Sink 2

(-2,-1)

WLAN Source 2

(20,14)

WLAN Sink 3

(0,-1)

WLAN Source 1

(2,-1)

WLAN Source 3

Fig. 4. Topology for Experiments 1 and 2

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 94

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70 80

Pa
cke

t L
os

s

Offered Load (%)

No WLAN System
WLAN System 1, RR

WLAN System 1, BIAS
WLAN Systems 1 and 2, RR

WLAN Systems 1 and 2, BIAS
WLAN Systems 1, 2, and 3, RR

WLAN Systems 1, 2, and 3, BIAS

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 10 20 30 40 50 60 70 80

De
lay

 (s
ec

on
ds

)

Offered Load (%)

No WLAN System
WLAN System 1, RR

WLAN System 1, BIAS
WLAN Systems 1 and 2, RR

WLAN Systems 1 and 2, BIAS
WLAN Systems 1, 2, and 3, RR

WLAN Systems 1, 2, and 3, BIAS

Fig. 5. (a) (b) Experiment 1. Variable Number of WLAN Interfering Systems. (a) Probability of Packet Loss. (b) Mean Access Delay

Traf c - For Bluetooth, a generic source that generates DH5 packets is considered. The packet interarrival mean time in

seconds, tB , is exponentially distributed and is computed according to

tB = 2 × l × 0.000625 × (
1

λ
− 1) (14)

where l is the packet length in slots and λ is the offered load. We assume that WLAN is operating in the Direct Sequence Spread

Spectrum (DSSS) mode. The WLAN source is transmitting data packets to the sink which is responding with ACKs. The WLAN

packet payload is set to 12000 bits transmitted at 11 Mbit/s, while the PLCP header of 192 bits is transmitted at 1 Mbit/s. The

packet interarrival time in seconds, tW , is exponentially distributed and its mean is computed according to

tW = (
192

1000000
+

12224

11000000
)/λ (15)

Results - Figure 5 gives the packet loss (a) and the mean access delay (b) measured at the slave for a variable Bluetooth offered

load (5-80%). Observe that when no WLAN system is present, the packet loss is zero and the access delay remains at at around 4

ms. This represents a reference measure for the Bluetooth performance when there is no interference. Each WLAN system addition

an increase of 15% in packet loss as shown in Figure 5(a). The packet loss is around 15%, 30% and 45% when one, two, and three

WLAN systems are present respectively. Repeating the same experiments using BIAS, brings the packet loss down to zero for any

number of WLAN systems. The delay trends captured in Figure 5(b) are consistent with the packet loss results. Using BIAS yields

lower delays than when RR is used. When one WLAN system is present, the delay curve with BIAS is at at 5 ms (a 1 ms increase

compared to the reference case when no interference is present). When 2 WLAN systems are present, the delay curve takes off at

35% with RR, while the curve remains at until 60% with BIAS. When 3 WLAN systems are present, the delay curve takes off

sharply at 15% with RR, while the knee of the curve remains lower with BIAS (shifted to the right).

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 95

1e-005

0.0001

0.001

0.01

0 % 20 % 40 % 60 % 80 % 100 %

Pa
cke

ts
los

s

BT offered load (%)

BIAS, DH5
BIAS, DH1

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 % 20 % 40 % 60 % 80 % 100 %

De
lay

 (s
ec

on
ds

)

BT offered load (%)

BIAS, DH5
BIAS, DH1

Fig. 6. (a) (b) Experiment 2. Variable Bluetooth Offered Load. (a) Probability of Packet Loss. (b) Mean Access Delay

B. Experiment 2: Dynamic Behavior

In this experiment, we focus on BIAS’s responsiveness to transient effects and sudden changes in the environment. We measure

the channel estimation transient time per frequency and over the entire spectrum. We design an experiment where the WLAN traf c

is turned on and off several times during each simulation run (about 20 times).

Topology - We use the topology of Figure 4 with one WLAN system (Source/Sink 1) and the Bluetooth master/slave pair.

Traf c - The offered load for Bluetooth is varied between 5 and 100%, while for WLAN the offered load is set to 60%. For

Bluetooth, both DH1 (1 slot) and DH5 (5 slots) packets are used in order to compare the difference in transient times. The interar-

rival time is computed according to Equations 14 and 15. In addition, the time the WLAN connection is on, T ON , is exponentially

distributed with a mean equal to 30 seconds, while the time the WLAN connection is off , T OFF , is also exponentially distributed

with mean equal to 60 seconds. Each simulation is run for 1800 seconds. In addition, we set E min = 5 seconds, Emax = 900

seconds, and α = 0.9.

Results - Figure 6(a) and (b) give the packet loss and access delay respectively measured at the Bluetooth slave device. The

packet loss is negligible (less than 0.1%) for both DH1 and DH5 packets. The delay for DH1 packets is lower than the delay for

DH5 packets for offered loads under 40% (it is around 2 ms for DH1 packets, and 4 ms for DH5 packets). The knee of the curve

for DH5 packets is located around 70% of the offered load while it is at 50% for DH1 packets. Figure 7 gives the time it takes

to estimate a ”bad” frequency using DH1 and DH5 packets. The use of DH5 packets leads to a slower hopping rate and therefore

increases the transient times, up to 7.5 ms while it is around 900 µs for DH1 packets.

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 96

0.001

0.01

0 % 20 % 40 % 60 % 80 % 100 %

Tim
e t

o D
ete

ct
a B

ad
 Fr

eq
ue

nc
y (

se
co

nd
s)

BT offered load (%)

DH5
DH1

Fig. 7. Experiment 2. Variable Bluetooth Offered Load. Time to Estimate a ”Bad” Channel.

C. Experiment 3: QOS Support

This experiment highlights the support of QOS in an environment where devices experience different levels of interference and

connections have a range of service requirements.

Topology - We use the topology illustrated in Figure 8. Slaves 1 and 2 experience the same level of interference, while slave

3 does not experience any interference. The y-coordinate of the WLAN FTP server is varied along the y-axis in order to vary the

level of interference on the Bluetooth piconet.

Email Server
BT Slave

3

Client BT
Master

(0,d)

(0,15)
WLAN FTP Client

WLAN FTP
Server

Print Server
BT Slave

1

Video Server
BT Slave

2

(0,-5.5)

(2,-2)
(-2,-2)

(0,-5)

(0,0)

Fig. 8. Topology for Experiment 3

Traf c - For Bluetooth, we consider three application pro les, namely, Print, Video, and Email. We use print, video, and email

traf c between slaves 1, 2, 3 and the master respectively. Note that the master is the client process in all three connections. The

pro le parameters are given in Table IV. The WLAN uses the FTP pro le described in Table V.

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 97

TABLE IV

BLUETOOTH APPLICATION PROFILE PARAMETERS

Parameters Distribution Value

Email

Send Interarrival Time (seconds) Exponential 120

Send Group Constant 3

Receive Interarrival Time (secondS) Exponential 60

Receive Group Constant 3

Email Size (bytes) Exponential 1024

Print

Print Requests Interarrival Time (seconds) Exponential 30

File Size Normal (30000,9000000)

Video

Frame Rate Constant 1 Frame/s

Frame Size (bytes) Constant 17280 (128 x 12 pixels)

TABLE V

WLAN APPLICATION PROFILE PARAMETERS

Parameters Distribution Value

FTP

File Interarrival Time (seconds) Exponential 5

File Size (bytes) Exponential 5000000

Percentage of Get 100%

Since the video application uses 475 out of 1600 slots, we set γup = 0.3 and γdn = 0.05. The two other applications, share the

leftover bandwidth (1 − 0.35 = 0.65). Since in a realistic environment it is often dif cult to predict the exact traf c distribution in

the upstream and downstream, 0.65 is divided equally between the upstream and downstream, and each direction gets 0.17.

Results - Figure 9 depicts the results when the WLAN y-coordinate is varied between 0 and 11 meters. In Figure 9 (a), the

packet loss with BIAS is below 0.5% for all three slaves. With RR, slave 1 (Print) and slave 2 (Video) vary between 15% and 2%

of packet loss between 0 and 11 meters respectively. Slave 3 (Email) has a low packet loss with both BIAS and RR since it is far

from the WLAN server.

The access delay for slave 2 (Video) in Figure 9(b) stays around 1.5 ms with BIAS, while it is up to ten times higher with RR

(15 ms). For Print, delays with BIAS are half the delays with RR. The delays for Email are also reduced by half with BIAS (7.5

ms as opposed to 15 ms).

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 98

1e-005

0.0001

0.001

0.01

0.1

1

0 m 2 m 4 m 6 m 8 m 10 m

Pro
ba

bili
ty

of
Pa

cke
ts

los
s

Y Coordinate of the WLAN FTP Server (meters)

slave 1 (Print), BIAS
slave 2 (Video), BIAS
slave 3 (Email), BIAS

slave 1 (Print), RR
slave 2 (Video), RR
slave 3 (Email), RR

0.001 s

0.01 s

0.1 s

0 m 2 m 4 m 6 m 8 m 10 m

De
lay

 (s
ec

on
ds

)

Coordinate of the WLAN FTP Server (meters)

slave 1 (Print), BIAS
slave 2 (Video), BIAS
slave 3 (Email), BIAS

slave 1 (Print), RR
slave 2 (Video), RR
slave 3 (Email), RR

Fig. 9. (a) (b) Experiment 3. Variable Distance (a) Probability of Packet Loss. (b) Access Delay

D. Experiment 4: WLAN and Multi-Bluetooth Piconets Interference

When two or more Bluetooth piconets are proximally located, one expects few collisions when the packets happen to be transmit-

ted on the same frequency. However, the probability of such collisions is low as discussed in [14] since each piconet has a unique

frequency sequence. Given that these packet collisions are random in nature and are already mitigated by frequency hopping, we

do not expect signi cant performance improvements when BIAS is used since the packet loss is already very low. Furthermore,

the fact that frequencies are eliminated due to other Bluetooth piconet interference may even cause delay increases. We illustrate

this particular issue using the following scenario.

Topology - We use the topology illustrated in Figure 10 representing a conference hall environment. It consists of one WLAN

AP located at (0,15) meters, and one WLAN mobile at (0,0) meters. The WLAN mobile is the server device, while the AP is the

client. The distance between the WLAN AP and mobile is dW = 15 meters. There are ten Bluetooth piconets randomly placed,

covering a disk. The center of the disk is located at (0,0) and its radius is r = 10 meters. We de ne d B as the distance between a

Bluetooth master and slave pair. dB = 1 meter for half of the master and slave pairs, while dB = 2 meters for the other half of the

master and slave pairs.

Traf c - We use the application pro les available in the OPNET library and con gure the parameters according to Table VI.

Four piconets use the Voice application, while four other piconets use the FTP pro le. Two piconets use the HTTP pro le. Half of

the Bluetooth piconets have the slave and the master device set one meter apart, while the other half have the slave and the master

device set two meters apart. The WLAN is either using the FTP pro le de ned in Table V, or the HTTP pro le de ned in Table VI.

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 99

WLAN Sink

WLAN Source

dB

BT Slave

BT Master

r

dw

Fig. 10. Topology for Experiment 4

TABLE VI

PROFILE PARAMETERS

Parameters Distribution Value

Voice

Encoder G.711

Silence Length (seconds) Exponential 0.65

Talk Spurt (seconds) Exponential 0.352

Bluetooth FTP

Percentage of Put/Get 100%

Inter-Request Time (seconds) Exponential 5

File Size (bytes) Exponential 250000

HTTP

Page Interarrival Time (seconds) Exponential 30

Number of Objects per page Constant 2

Object 1 Size (bytes) Constant 1000

Object 2 Size (bytes) Uniform (2000,100000)

Results - The results for Bluetooth are shown in Table VII and VIII for the packet loss and the access delay respectively. The

results are separated by application category (FTP, HTTP, Voice), and dB , for each of the WLAN pro les.

First, we observe that the packet loss is slightly lower with BIAS for all Bluetooth and WLAN traf c types. Second, the change

is more signi cant when WLAN is set to the FTP pro le, since this latter application transmits more packets and thus causes more

interference on the Bluetooth piconets. In addition, we note that the decrease in packet loss is most noticeable for d B = 2 m. The

packet loss for the Bluetooth FTP application goes from 17% to 8% (for RR and BIAS respectively), while for the Bluetooth voice

application it goes from 16% to 5%.

Observe that when the WLAN HTTP application is used, the Bluetooth packet loss remains the same with BIAS and RR. In this

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 100

TABLE VII

BLUETOOTH PACKET LOSS PROBABILITY FOR EXPERIMENT 4

BT Traf c WLAN Traf c

FTP HTTP

BIAS RR BIAS RR

FTP dB = 1 m 0.0309 0.0410 0.0161 0.029

dB = 2 m 0.0841 0.1705 0.0381 0.045

HTTP dB = 1 m 0.0009 0.0057 0.0024 0.0010

dB = 2 m 0.035 0.0652 0.0291 0.0309

Voice dB = 1 m 0.0023 0.0339 0.0003 0.0009

dB = 2 m 0.0581 0.1627 0.046 0.0373

TABLE VIII

BLUETOOTH MAC DELAY (SECONDS) FOR EXPERIMENT 4

BT Traf c WLAN Traf c

FTP HTTP

BIAS RR BIAS RR

FTP dB = 1 m 0.2905 0.3749 0.1595 0.1480

dB = 2 m 0.5078 1.3942 0.2668 0.1970

HTTP dB = 1 m 0.0890 0.084 0.0829 0.0800

dB = 2 m 0.1087 0.1148 0.1155 0.0770

Voice dB = 1 m 0.0018 0.0014 0.0014 0.0013

dB = 2 m 0.0070 0.0034 0.0050 0.0015

case, the packet loss is mainly due to other piconet interference, which BIAS was not designed to mitigate.

The delays given in Table VIII are consistent with the packet loss results. We note a signi cant delay decrease (by up to fty

percent) when the WLAN is set to the FTP pro le especially for the the Blueototh FTP and voice applications. The delay remains

unchanged when the WLAN uses the HTTP application.

Table IX and X give the packet loss and the access delay respectively for the WLAN FTP and HTTP pro les. Observe a

signi cant reduction in packet loss with BIAS for both WLAN applications, where the packet loss drops from 60% and 68% to 1%

and 4% for the FTP and HTTP application respectively.

As expected, the access delay shown in Table X is improved by at least an order of magnitude.

In summary, the use of BIAS in a multi-Bluetooth piconet environment leads to performance improvements for Bluetooth when

the WLAN interference is signi cant, and does not affect performance when most of the interference is due to other Bluetooth

piconets. Note that BIAS always improves the performance of the WLAN since Bluetooth packets are no longer transmitted on the

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 101

TABLE IX

WLAN PROBABLITY OF PACKET LOSS FOR EXPERIMENT 4

WLAN Traf c

FTP HTTP

BIAS RR BIAS RR

0.0125 0.6834 0.0450 0.6174

TABLE X

WLAN MAC DELAY (SECONDS) FOR EXPERIMENT 4

WLAN Traf c

FTP HTTP

BIAS RR BIAS RR

0.0011 0.0154 0.000795 0.0127

frequencies used by the WLAN.

V. CONCLUDING REMARKS

In this paper we propose a scheduling technique, BIAS, aimed at eliminating interference on WLAN and alleviating the impact

of interference on the Bluetooth performance. This work addresses the need to adjust to changes in the environment, support

asymmetric traf c in the upstream and downstream, in addition to the use of different scheduling priorities.

The performance results obtained are summarized as follows. First, BIAS eliminates packet loss even in the worst interference

case when more than 3/4 of the spectrum are occupied by other devices. Delay is slightly increased over the reference scenario

(when no interference is present). This increase varies between 1 to 5 ms on average. Furthermore, BIAS is able to rapidly adjusts to

changes in the channel. The channel estimation estimation time is around 7 ms and 900 µs for DH5 and DH1 packets respectively.

Finally, BIAS supports QOS and maintains a low access delay for delay-sensitive traf c such as video applications.

Our future work is aimed at further investigating the performance of BIAS for additional scenarios of interest where connections

with different QOS are set up and torn down over time. Mainly, we focus on studying the results’ dependence on the application

pro le used and the tuning of the algorithm’s QOS parameters.

ACKNOWLEDGEMENTS

The author would like to thank O. Rebala and A. Tonnerre for their help in developing the simulation models and compiling the

results.

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 102

REFERENCES

[1] Bluetooth Special Interest Group, “Speci cations of the Bluetooth System, vol. 1, v.1.0B ’Core’ and vol. 2 v1.0B ’Pro les’, ” December 1999.

[2] K. J. Negus, A. P. Stephens, and J. Lansford, “HomeRF: Wireless Networking for the Connected Home,” in IEEE Personal Communications, February 2000,

pp. 20–27.

[3] IEEE Std. 802-11, “IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Speci cation ,” June 1997.

[4] J. Lansford, R. Nevo, E. Zehavi, “MEHTA: A method for coexistence between co-located 802.11b and Bluetooth systems,” in IEEE P802.11 Working Group

Contribution, IEEE P802.15-00/360r0, November 2000.

[5] B. Treister, A. Batra, K.C. Chen, O. Eliezer, “Adapative Frequency Hopping: A Non-Collaborative Coexistence Mechanism,” in IEEE P802.11 Working

Group Contribution, IEEE P802.15-01/252r0, Orlando, FL, May 2001.

[6] N. Golmie, and N. Chevrollier, “Techniques to Improve Bluetooth Performance in Interference Environment,” in Proceedings of MILCOM’01, McLean,

Virginia, October 2001.

[7] N. Golmie, N. Chevrollier, and I. Elbakkouri, “Interference Aware Bluetooth Packet Scheduling,” in Proceedings of GLOBECOM’01, San Antonio, TX,

November 2001.

[8] N. Golmie, R.E. Van Dyck and A. Soltanian, “Interference of Bluetooth and IEEE 802.11: Simulation Modeling and Performance Evaluation,” in Proceedings

of the Fourth ACM International Workshop on Modeling, Analysis, and Simulation of Wireless and Mobile Systems, MSWIM’01, Rome, Italy, July 2001.

[9] N. Golmie, R.E. Van Dyck, A. Soltanian, A. Tonnerre, and O. Rebala, “Interference Evaluation of Bluetooth and IEEE 802.11b Systems,” in to appear in

ACM Wireless Network, WINET, 2002.

[10] S. Shellhammer, “Packet Error Rate of an IEEE 802.11 WLAN in the Presence of Bluetooth,” in IEEE P802.15 Working Group Contribution, IEEE

P802.15-00/133r0, Seattle, Washington, May 2000.

[11] N. Golmie and F. Mouveaux, “Interference in the 2.4 GHz ISM band: Impact on the Bluetooth access control performance,” in Proceedings of IEEE ICC’01,

2001.

[12] I. Howitt, V. Mitter, J. Gutierrez, “Empirical Study for IEEE 802.11 and Bluetooth Interoperability,” in in IEEE Vehicular Technology Conference (VTC),

Spring 2001, May 2001.

[13] D. Fumolari, “Link Performance of an Embedded Bluetooth Personal Area Network,” in Proceedings of IEEE ICC’01, Helsinki, Finland, June 2001.

[14] A. El-Hoiydi, “Interference Between Bluetooth Networks - Upper Bound on the Packet Error Rate,” in IEEE Communications Letters, June 2001, vol. 5, pp.

245–247.

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 103

Appendix: BIAS Pseudocode

1: Every N Slots

2: estimate channel();

3: compute credits();

4: Every Even TSf // Master Transmission Slot

5: if TSf + ldn is clear // Master can receive in next slot

6: {

7: Af
data

= {set of high priority slaves s.t. ((f ”good”) and (qsize > 0) and (cdn > 0) }

8: Af
poll

= {set of high priority slaves s.t. ((f ”good”) and (cup > 0)) }

9: Bf
data

= {set of low priority slaves s.t. ((f ”good”) and (qsize > 0)) }

10: Bf
poll

= {set of low priority slaves s.t. ((f ”good”) and (cup × cdn > 0)) }

11: // Service high priority slaves rst

12: if (Af
data

�= ∅) // transmit data packets

13: {

14: i = max
A

f
data

(wi
up × wi

dn) // Select device i with the largest weight

15: transmit data packet of size ldn to slave i

16: ci
dn,up = ci

dn,up − lidn,up; //decrement credit counter

17: wi
dn,up

= (1 − ui) × ci
dn,up

; // update weights

18: }

19: else if (Af
poll

�= ∅) // transmit polls

20: {

21: i = max
A

f
poll

(wi
up) // Select device i with the largest weight

22: transmit poll to slave i

23: ci
up = ci

up − liup; //decrement credit counter

24: wi
up = (1 − ui) × ci

up; // update weights

25: }

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 104

26: // Then service low priority slaves

27: else if (Bf
data

�= ∅)

28: {

29: i = max
B

f
data

(wi
up × wi

dn
) // Select device i with the largest weight

30: transmit data packet of size ldn to slave i

31: if (ci
dn

> 0) ci
dn

= ci
dn

− li
dn

; //decrement credit counter

32: else ci
up = ci

up − lidn; //decrement credit counter

33: wi
dn,up = (1 − ui) × ci

dn,up; // update weights

34: }

35: else if (Bf
poll

�= ∅) // transmit polls

36: {

37: i = max
B

f
poll

(wi
up) // Select device i with the largest weight

38: transmit poll to slave i

39: if (cup > 0) ci
up = ci

up − liup; //decrement credit counter

40: else ci
dn = ci

dn − liup; //decrement credit counter

41: wi
dn,up

= (1 − ui) × ci
dn,up

; // update weights

42: }

43: }

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie 105

Bluetooth Adaptive Techniques to Mitigate
Interference
N. Golmie and O. Rebala

National Institute of Standards and Technology
Gaithersburg, Maryland 20899

Email: nada.golmie@nist.gov

Abstract—In this paper, we investigate the use of adaptive techniques to
mitigate interference for Bluetooth systems in the presence of WLAN direct
sequence spread spectrum devices. We consider two different techniques
that attempt to avoid time and frequency collisions of WLAN and Bluetooth
transmissions. We conduct a comparative analysis of their performance for
several dynamic scenarios where the WLAN interference varies over time
due to either change in user activity or number of non-overlapping WLAN
systems. We discuss the trade-offs involved in terms of delay, packet loss
performance, and synchronization.

I. INTRODUCTION

Recently, there has been a growing number of industry led ac-
tivities focused on the coexistence of wireless devices in the 2.4
GHz band. Both, the IEEE 802.15.2 Coexistence Task Group
and the Bluetooth Special Interest Group (SIG) are looking at
similar techniques for alleviating the impact of interference.
The proposals considered by the groups range from collabo-
rative schemes intended for Bluetooth and IEEE 802.11 pro-
tocols to be implemented in the same device to fully indepen-
dent solutions that rely on interference detection and estima-
tion. Except for a Time Division Multiple Access (TDMA)
technique aimed at time sharing the Bluetooth and 802.11 sig-
nals [1], most mechanisms considered do not require any direct
communication between the protocols. These so-called non-
collaborative mechanisms range from adaptive frequency hop-
ping [2] to packet scheduling and traf c control [3]. The tech-
niques used for detecting the presence of other devices in the
band are based on measuring the bit or frame error rate, and
the signal to interference ratio. For example, each device can
maintain a packet error rate measurement per frequency used.
Frequency hopping devices can then know which frequencies
are occupied by other users of the band and thus modify their
frequency hopping pattern. They can even choose not to trans-
mit on a certain frequency if that frequency is occupied. The
 rst technique is known as adaptive frequency hopping, while
the second technique is known as MAC scheduling or Bluetooth
Interference Aware Scheduling (BIAS).

In this paper, we investigate the use of BIAS and an AFH
technique. Although both techniques rely on similar meth-
ods for estimating the interference environment before a packet
transmission, they differ signicantly in terms of complexity and
performance. Our goal is to bring to light some of the trade-
offs associated with different interference scenarios, applica-
tions, and parameters.

The remainder of this paper is organized as follows. In sec-
tion II, we brie y describe BIAS and an AFH technique. In
section III, we discuss the performance results obtained. In sec-

tion IV, we offer concluding remarks.

II. ADAPTIVE INTERFERENCE MITIGATION TECHNIQUES

Central to most interference mitigation techniques is the abil-
ity to detect the presence of other systems operating in the band.
One method to estimate interference consists of measuring the
percentage of packets dropped, Pr(Ploss), per frequency per re-
ceiver. Thus, given Pr(Ploss) and let’s say a threshold value
of 0.5, frequencies at each receiver are classi ed “good” or
“bad” depending on whether their packet loss rate is less than or
greater than 0.5 respectively. Also, updating Pr(Ploss) may vary
according to the application, the environment, and the level of
accuracy and interference tracking desired. In our simulations,
we use a minimum update interval of 2 and a maximum of 100
seconds. Details on the dynamic procedure used to vary the up-
date interval between this minimum and maximum values are
found in [4].

Since in a Bluetooth piconet, the master device controls all
packet transmission, the measurements collected by the slave
devices are sent to the master (or implied in acknowledgement
packets) that decides to (1) either avoid data transmission to
a slave experiencing a ”bad” frequency in the case of BIAS,
and/or (2) modify the frequency hopping pattern in the case
of AFH. While in the former case the decision remains local
to the master, in the latter case, the master needs to communi-
cate the changes in the hopping sequence to all slaves in the pi-
conet in order to maintain synchronization. Thus, AFH requires
the exchange of Layer Management Protocol (LMP) messages
in order to advertise the new hopping sequence. Observe that
this constitutes one of the major differences between BIAS and
AFH.

A. Interference Aware Scheduling

The basic idea of the so-called Bluetooth Interference Aware
Scheduling (BIAS) is that a data transmission to a slave ex-
periencing a “bad” frequency is postponed until a “good” fre-
quency is found in the hopping pattern. Furthermore, since a
slave transmission always follows a master transmission, using
the same principle, the master avoids receiving data on a “bad”
frequency, by avoiding a transmission on a frequency preceding
a ”bad” one in the hopping pattern. Further details on BIAS are
found in [5].

B. Adaptive Frequency Hopping
From the many AFH algorithms possible, we propose an

AFH algorithm that modi es the original Bluetooth frequency

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie & Rebala 106

hopping scheme as follows.

bad frequency

W
FH

N
BF
=3

NBF Number of bad frequencies

Bluetooth Segment

Default segment_size = 32

Fig. 1. Resizing the Frequency Hopping Window, WF H

Given a segment of 32 “good” and “bad” frequencies that we
call the Frequency Hopping Window (WFH), the algorithm vis-
its each “good” frequency exactly once. Each “bad” frequency
in the segment is replaced with a “good” frequency selected
from outside the original segment of 32 as shown in Figure 1.
Thus, WFH is increased by the number of “bad” frequencies,
NBF , in the original segment. Thus, the difference between
AFH and the original Bluetooth hopping sequence algorithm is
in the selection of only “good” frequencies in order to ll up the
segment size.

Finally, AFH does not preclude additional scheduling tech-
niques to control the transmission (and possibly the retransmis-
sion) of packets on the medium.

III. PERFORMANCE EVALUATION

In this section we present simulation results to evaluate the
performance of the proposed AFH algorithm. We ran several
experiments using different applications, traf c types, and net-
work topologies. Given the lack of space, only a representative
set of the data obtained is discussed in this paper. While the
advantages of AFH may be obvious in terms of mitigating the
interference between Bluetooth and WLAN in a stationary en-
vironment, we focus mainly on its dynamic behavior and its
ability to adjust to time-varying and different interference lev-
els. Although, more dif cult to solve, the scenarios selected are
perhaps more realistic. A summary of the experiments is given
in Table I.

TABLE I
EXPERIMENT SUMMARY

Experiment Traf c Topology
1 ON/OFF Exponential 1
2 FTP/HTTP 1
3 ON/OFF Exponential 2 w/ 1 Bluetooth Piconet
4 ON/OFF Exponential 2 w/ 3 Bluetooth Piconets

A. Experiment 1: Variable Offered Load

We use Topology 1 illustrated in Figure 2 with one WLAN
system (Access Point/Station) and a Bluetooth master/slave
pair. The WLAN access point (AP) is located at (0,15) meters,
and the WLAN station is x ed at (0,1) meters. The Bluetooth
slave device is x ed at (0,0) meters and the master is x ed at
(1,0) meters.

In Experiment 1, we use an on-off traf c generation model
with parameters to characterize burstiness and user activity as
seen at layer 2, such as packet interarrival, and packet size. For
Bluetooth the packet size is x ed to either 1, or 5 slots using the

Bluetooth Slave

(1,0)(0,0)

Bluetooth Master

(0,d)

(0,15)
WLAN Access Point

WLAN Station

Fig. 2. Topology 1 - Two WLAN devices and one Bluetooth piconet

DH format and the mean interarrival time is computed accord-
ing to

tB = 2 × ns × Ts/λ, (1)

where λ is the offered load, ns is the number of slots occupied
by a packet. For DH5, ns = 5. Ts is the slot size equal to 625
µs.

For WLAN, we x the packet payload to 12, 000 bits assum-
ing an IP packet of 1500 bytes and compute the mean packet
interarrival time according to

tW = (
192

1, 000, 000
+

12, 224

data rate
)/λ, (2)

where λ is the offered load, 224 is the MAC layer header, 192
is the PLCP header (always sent at 1 Mbit/s). The payload is
transmitted at the data rate of 11 Mbit/s. The offered load for
Bluetooth is varied between 10 and 100%, while the WLAN
offered load is set to 60%. The time the WLAN connection is
ON, TON , is exponentially distributed with a mean equal to 10
seconds, while the time the WLAN connection is OFF, TOFF ,
is also exponentially distributed with mean equal to 20 seconds.
Each simulation is run for 900 seconds. Averages and con -
dence intervals are obtained over 10 simulation runs.

Figure 3(a) gives the packet loss results at the Bluetooth
slave. Observe that with AFH the packet loss is close to 8%
and 4% for DH5 and DH1 packets respectively. These results
are close to the ones obtained when no interference mitigation
technique is used and depend on the frequency of the synchro-
nization messages exchanged between the Bluetooth master and
the slave. Thus there is a trade-off between the communication
overhead and the response to changes in the interference envi-
ronment. A fast responding system will incurr a lower packet
loss at the cost of a higher communication overhead. In this
experiment, synchronization messages are exchanged every 2
seconds, which is also the value used for Emin. On the other
hand, using BIAS without AFH reduces the packet loss to less
than 2% and 0.9% for DH5 and DH1 packets respectively at
10% offered load. As the offered load is increased, the packet
loss even drops further to negligible levels. Since no explicit
message exchange is required for BIAS, the response time to
changes in the interference environment happen within a packet
round trip time. Figure 3(b) illustrates the access delay results.
For DH1 packets, AFH yields lower delays than BIAS. Delay-
ing the transmission of a short packet in the case where the prob-
ability of packet collision is less than 22/79 leads to higher ac-
cess delays. The access delay curve for AFH takes off at around

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie & Rebala 107

70% load. For DH5 packets, the delays obtained with AFH are
comparable to the results obtained with BIAS loads less than
50%. However, as the offered load is increased the access de-
lays obtained with BIAS are lower mainly due to fast response
times and low packet loss.

B. Experiment 2: FTP and HTTP Pro le

In this experiment, we use Topology 1 given in Figure 2. We
consider two application pro les, namely, FTP and HTTP. We
use the TCP/IP stack implemented in the OPNET library and
con gure the application parameters provided. For the FTP
pro le, the parameters are the percentage of put/get, the inter-
request time, and the le size. The percentage of put/get rep-
resents the number of times the put command is executed in an
FTP connection over the total number of put and get commands,
i.e., a fty percent indicates that half of the FTP commands ex-
ecuted are put, and the other half are get. The inter-request time
is the interval between two FTP commands, and the le size rep-
resents the size of the le requested in bytes. The HTTP pro le
is described by parameters characterizing a web page such as
the page interarrival time, the number of objects in each page
and their size in bytes. Two pro le sets are de ned for each of
the Bluetooth and the WLAN in Table II.

TABLE II
PROFILE PARAMETERS

Parameters Distribution Value
Bluetooth FTP
Percentage of Put/Get 100%
Inter-Request Time (seconds) Exponential 5
File Size (bytes) Constant 2M
WLAN FTP
Percentage of Put/Get 100%
Inter-Request Time (seconds) Exponential 1
File Size (bytes) Constant 2M
HTTP
Page Interarrival Time (seconds) Exponential 5
Number of Objects per page Constant 2
Object 1 Size (bytes) Constant 10K
Object 2 Size (bytes) Uniform (200K,600K)

We ran two simulations where in each case both the WLAN
and Bluetooth devices are using either the HTTP or the FTP
pro le. Table III gives the packet loss using FTP and HTTP
traf c. Observe that the packet loss with BIAS alone is an order
of magnitude lower than with AFH due to the dynamic nature
of the traf c. The packet loss with AFH is comparable to the
packet loss obtained when no algorithm is used.

On the other hand, the FTP access delay with BIAS is slightly
higher than with AFH and None in that order. This increase in
delay can be attributed to the policy of delaying the transmis-
sion of packets on the so-called ”bad” frequencies, although the
probability that a packet collision occurs is less than 22/79 (in

TABLE III
EXPERIMENT 2: BLUETOOTH PROBABILITY OF PACKET LOSS

BIAS AFH None
FTP 0.005 0.037 0.059

HTTP 0.005 0.019 0.021

TABLE IV
EXPERIMENT 2: BLUETOOTH ACCESS DELAY (SECONDS)

BIAS AFH None
FTP 0.0040 0.0033 0.0029

HTTP 0.0026 0.0023 0.0023

fact it is proportional to the offered load and the number of chan-
nels occupied by WLAN divided by the number of frequencies
used by Bluetooth). There is no noticeable difference in delay
for the HTTP application given that it does not generate as much
traf c as the FTP application.

C. Experiment 3: Multi-WLAN Interference

In this experiment, our goal is to study the performance of
AFH in a multi-WLAN environment, where the Bluetooth hop-
ping sequence is close to the minimum number of hops allowed,
which in our case is set to 15. We use Topology 2 illustrated in
Figure 4, consisting of 3 WLAN systems (source-sink pairs). In
this experiment (Experiment 3) we use one Bluetooth piconet,
while in Experiment 4, we use all three Bluetooth piconets. We
use the same traf c parameters described in Experiment 1. Fig-
ure 5 gives the packet loss and access delay measured at the
Bluetooth slave. In this case, there are three WLAN systems
occupying about 9-11 frequencies each. That leaves about 18-
20 frequencies in the band to be used by Bluetooth. With BIAS,
the Bluetooth piconets only transmits on “good” frequencies,
and therefore has to skip approximately 1 in every 4 transmis-
sion opportunity. With AFH, the frequency hopping sequence
is modi ed in order to include only “good” frequencies. There-
fore, we expect signi cant throughput and delay improvements
with AFH. Observe in Figure 5(a) the packet loss with AFH
(DH5) is around 2%. It is negligible with AFH for DH1 pack-
ets, and BIAS for both DH1 and DH5 packets. As expected, the
access delay with AFH, shown in Figure 5(b), is several orders
of magnitude lower than with BIAS. The delay for DH1 packets
stays around 1 ms until an offered load of 70%. The delay for
DH5 packets starts at 10 ms with a steep slope between 10 and
60%. At 60% the delay reaches 100 ms. On the other hand,
the delay with BIAS for DH1 packets is 15 ms at 10% load and
quickly reaches 10 seconds at 20% load. For DH5 packets, the
delay between 10 and 40% load is comparable to the delay ob-
tained with AFH. However, the delay curve takes off sharply at
40%. The delay is around 10 seconds between 40 and 100%
offered load.

D. Experiment 4: Multi-WLANs and Bluetooth Piconets

In this experiment we use Topology 2 illustrated in Figure 4,
with all three Bluetooth piconets (two additional Bluetooth pi-
conets to what was used in Experiment 3) to highlight the per-
formance of AFH in an extreme case of interference where
multi-Bluetooth and WLAN devices are operating in the same
environment. Our goal is to verify that the performance im-
provements observed with AFH in the previous experiment still
apply in this case.

Figure 6 gives the packet loss and access delay measured at
the Bluetooth slaves and averaged over all three slaves. As ex-

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie & Rebala 108

pected in this case, the presence of two more Bluetooth piconets
makes the interference detection more challenging. As a result
the packet loss observed in Figure 6 is higher than in Figure 5.
The packet loss for AFH (8%) is about an order of magnitude
higher than with BIAS (around 1% and 0.8% for DH5 and DH1
packets respectively). The difference in packet loss between
the two schemes is due using a reduced hopping set with AFH
while increasing the number of Bluetooth piconets. Similarly,
the access delay in Figure 6(b) is higher than the delay in Fig-
ure 5(b) for both schemes. The delay with AFH for DH1 packets
is around 2 ms. On the other hand the delay for DH5 packets is
between 20 and 100 ms for offered loads between 10 and 70%.
The delay with BIAS for both types of packets is between 10
and 20 seconds.

IV. CONCLUDING REMARKS

In this paper, we study using adaptive frequency hopping for
Bluetooth devices when operating in close proximity to WLAN
systems. We present the details of an AFH algorithm and com-
pared its performance to BIAS, a delay transmission method
aimed at interference mitigation. A summary of our ndings is
as follows. In the case of WLAN interference, when the inter-
ference levels vary over time and the channel estimation is per-
formed often, the main advantages of AFH in terms of lowering
the access delay, applies only to short packets (DH1). BIAS
is more effective for longer packets (DH5) and leads to lower
packet loss and comparable access delays. In the case of multi-
WLANs (three non-overlapping systems), AFH keeps the delay
low and doubles the throughput obtained with BIAS. This re-
sult holds even in the presence of two additional Bluetooth pi-
conets. Thus, signi cantly reducing the frequency hopping se-
quence due to WLAN interference, causes only a slight increase
in the probability of packet collisions among the different Blue-
tooth piconets and does not affect performance.

REFERENCES

[1] J. Lansford, A. Stephens, and R. Nevo, “Wi-Fi (802.11b) and Blue-
tooth: Enabling Coexistence,” in IEEE Network Magazine, Sept/Oct. 2001,
vol. 15, pp. 20–27.

[2] B. Treister, A. Batra, K.C. Chen, O. Eliezer, “Adapative Frequency Hop-
ping: A Non-Collaborative Coexistence Mechanism,” in IEEE P802.11
Working Group Contribution, IEEE P802.15-01/252r0, Orlando, FL, May
2001.

[3] Carla F. Chiasserini, and Ramesh R. Rao, “ Coexistence mechanisms for
interference mitigation between IEEE 802.11 WLANs and bluetooth ,” in
Proceedings of INFOCOM 2002, 2002, pp. 590–598.

[4] N. Golmie, O. Rebala, and N. Chevrollier, “Bluetooth Adaptive Frequency
Hopping and Scheduling,” in Proceedings of MILCOM’03, Boston, MA,
October 2003.

[5] N. Golmie, “Bluetooth Dynamic Scheduling and Interference Mitigation,”
in to appear in ACM Mobile Network, MONET, 2003.

0.0001

0.001

0.01

0.1

1

0 % 20 % 40 % 60 % 80 % 100 %
Pa

ck
ets

 lo
ss

BT offered load (%)

AFH + BIAS, DH5
AFH + BIAS, DH1

BIAS, DH5
BIAS, DH1
None, DH5
None, DH1

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 % 20 % 40 % 60 % 80 % 100 %

De
lay

 (s
ec

on
ds

)

BT offered load (%)

AFH, DH5
AFH, DH1

BIAS, DH5
BIAS, DH1
None, DH5
None, DH1

Fig. 3. (a)
(b)

Experiment 1. (a) Probability of Packet Loss. (b) Mean Access

Delay (seconds)

BT M 1

(0,14)

WLAN Sink 1

BT S 1

(0,0)

(0,1)(-1,1)

(-20,14)

WLAN Sink 2

(-2,-1)

WLAN Source 2

(20,14)
WLAN Sink 3

(0,-1)

WLAN Source 1

(2,-1)

WLAN Source 3

BT M 2

(-1,0)

BT M 3

(1,0)

BT S 2

BT S 3

(1,1)

Fig. 4. Topology 2 - Multi-WLANs and Bluetooth piconets interference

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie & Rebala 109

1e-005

0.0001

0.001

0.01

0.1

1

0 % 20 % 40 % 60 % 80 % 100 %

Pa
ck

ets
 lo

ss

BT offered load (%)

AFH, DH1
BIAS, DH5
AFH, DH5

BIAS, DH1

0.001

0.01

0.1

1

10

100

0 % 20 % 40 % 60 % 80 % 100 %

De
lay

 (s
ec

on
ds

)

BT offered load (%)

AFH, DH5
BIAS, DH5
AFH, DH1

BIAS, DH1

Fig. 5. (a)
(b)

Multi-WLANs Interference. (a) Probability of Packet Loss. (b)

Mean Access Delay (seconds)

1e-005

0.0001

0.001

0.01

0.1

1

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 %

Pa
ck

ets
 lo

ss

BT offered load (%)

AFH, DH5
BIAS, DH5
AFH, DH1

BIAS, DH1

0.001

0.01

0.1

1

10

100

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 %

De
lay

 (s
ec

on
ds

)

BT offered load (%)

AFH, Dh5
BIAS, DH5
AFH, DH1

BIAS, DH1

Fig. 6. (a)
(b)

Multi-WLANs and Multi-Bluetooth Piconets Interference. (a)

Probability of Packet Loss. (b) Mean Access Delay (seconds)

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie & Rebala 110

Bluetooth Adaptive Frequency Hopping and
Scheduling

N. Golmie, O. Rebala, N. Chevrollier
National Institute of Standards and Technology

Gaithersburg, Maryland 20899
Email: nada.golmie@nist.gov

Abstract— In this paper, we investigate the use of Adaptive Frequency
Hopping (AFH) techniques aimed at modifying the Bluetooth frequency
hopping sequence in the presence of WLAN direct sequence spread spec-
trum devices. We examine the conditions such as the applications, topolo-
gies, and scenarios under which AFH techniques improve performance that
is measured in terms of packet loss, TCP delay, and channel ef ciency . We
also compare the results obtained with AFH to others obtained using a
scheduling technique that consist in delaying the transmission of a Blue-
tooth packet until the medium is ”idle”. Our results show that an obvious
performance improvement with AFH is in terms of delay and throughput.
AFH brings the delay down to the same level than when no interference is
present. On the other hand, AFH is rather slow in responding to changes
in the environment and the packet loss is more signi cant than with the
scheduling. This is probably due to the limitations imposed by the commu-
nication overhead. The main dif culty for AFH is having to dynamically
communicate the changes to all slaves in the piconet in order to keep the
synchronization.

I. INTRODUCTION

The deployment of different wireless devices for mobile,
home, and enterprise networks, all operating in the 2.4 GHz
unlicensed band, is met with growing concerns about signal
interference and performance degradation. To address these
challenges, a number of industry led activities have focused
on the coexistence of these devices in the same environment.
For example, the IEEE 802.15.2 Coexistence Task Group and
the Bluetooth Special Interest Group (SIG) are looking at tech-
niques for alleviating the impact of interference between IEEE
802.11b and Bluetooth devices.

A solution that has gained acceptance in both groups is based
on modifying the frequency hopping sequence of Bluetooth in
order to make it avoid direct sequence spread spectrum devices
such as IEEE 802.11b. This so-called Adaptive Frequency Hop-
ping (AFH) has gained momentum especially after the Fed-
eral Communications Commission, a US government agency in
charge of telecommunication regulations, has relaxed the min-
imum frequency hop requirement to 15 (down from 75). AFH
is expected to be included in the new release of the Bluetooth
speci cations, Version 1.2.

Other proposals considered by the groups range from collab-
orative schemes intended for Bluetooth and IEEE 802.11 proto-
cols to be implemented in the same device to fully independent
solutions that rely on interference detection and estimation. Ex-
cept for a Time Division Multiple Access (TDMA) technique
aimed at time sharing the Bluetooth and 802.11 signals [1],
most mechanisms considered do not require any direct commu-
nication between the protocols. For example, Bluetooth Inter-
ference Aware Scheduling (BIAS) is a MAC scheduling tech-
nique [2] that is aimed at delaying packet transmission if the

medium is used by other devices. Another technique known as
OverLap Avoidance (OLA) [3] uses different Bluetooth encap-
sulations to avoid a frequency collision between Bluetooth and
802.11.

Our goals in this paper are to investigate the use of AFH tech-
niques aimed at modifying the Bluetooth frequency hoping se-
quence in the presence of WLAN direct sequence spread spec-
trum devices. Mainly, under what conditions – i.e., interference
levels, topologies, scenarios, and applications – is it practical to
use either AFH or BIAS? Which mechanisms is more effective
for a given application? How fast can either technique adjust
to changes in the environment? We conduct numerous simula-
tion experiments to evaluate and quantify the operation range of
AFH and BIAS. To answer the question of application sensitiv-
ity, we consider four applications, namely, voice, video, HTTP,
and FTP. We set the application pro les available in the OPNET
library including the details of the entire TCP/IP stack.

In section II, we describe an AFH algorithm implementation.
In section III, we describe BIAS. Section IV discusses channel
estimation techniques and their use with interference mitigation
schemes. In section V, we consider several experiments to eval-
uate the performance of AFH and how it compares to BIAS. In
section VI, we offer concluding remarks.

II. BLUETOOTH ADAPTIVE FREQUENCY HOPPING

We devise an AFH algorithm that modi es the original Blue-
tooth frequency hopping scheme as follows.

bad frequency

W FH

NBF=3 NBF Number of bad frequencies

Bluetooth Segment

Default segment_size = 32

Fig. 1. Resizing the Frequency Hopping Window, WFH

Given a sorted list of odd and even frequencies, and a segment
of 32 frequencies, WFH = 32, including “good” and “bad” fre-
quencies, the algorithm visits each “good” frequency exactly
once. While the segment size is the same as the one used in
the current Bluetooth speci cations [4], in order to lter out
the so-called “bad” frequencies, the window, WFH , over which
frequencies are selected is increased by the number of “bad”
frequencies, NBF , in WFH . Thus, the main difference between
the scheme we propose and the current Bluetooth speci cations

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Rebala, & Chevrollier 111

is the resizing of the interval over which frequencies are ran-
domly selected for each segment as illustrated in Figure 1.

Note that in order for a frequency to be classi ed “bad”, it has
to be “bad” for at least one device in the piconet. Thus, NBF

represents the union of the sets of “bad” frequencies collected
from of all devices.

1: WFH = segment size; // Initialize the hopping algorithm window size
2: WFH+ = NBF ; // Increase by the number of “bad” frequencies
3: If (WFH > 79)
4: WFH = 79; // limit to the list size
5: NBF = min(NBF ; 79�Hmin)

6: //use at least Hmin different frequencies

After, each “good” frequency is visited once, a new segment
is set including 16 frequencies of the previous segment and 16
new frequencies in the sorted list.

When WFH is greater than 79, the number of “good” fre-
quencies may be less than 32 and therefore there are not enough
“good” frequencies to ll in the segment. In that case, we al-
low each “good” frequency to be visited more than once, with
the condition to use at least Hmin different frequencies. In
other words, we impose the minimum hop set to be at least
equal to Hmin different frequencies. In our simulations, we
set Hmin = 15.

In summary, the difference between AFH and the original
Bluetooth hopping sequence algorithm is the dynamic resizing
of WFH based on the frequency classi cation status. The other
requirement for AFH is the exchange of LMP messages be-
tween the master and the slaves in the piconet in order to ad-
vertise the new hopping sequence.

Finally, it is worth pointing out that the details presented here
give an example of how ”bad” frequencies can be eliminated
from the Bluetooth hopping sequence. Other variants are also
possible. For example, the IEEE 802.15.2 Task Group on co-
existence considers a more general algorithm that allows one to
choose which ”bad” frequencies to keep and which to eliminate.
However, for all practical scenarios considered, most AFH algo-
rithms will give comparable performance. In fact, this is easily
veri ed by implementing the AFH in [5], denoted by AFH-
IEEE, and comparing the results obtained to the algorithm pro-
posed in this paper.

III. BLUETOOTH INTERFERENCE AWARE SCHEDULING

The Bluetooth Interference Aware Scheduling (BIAS) algo-
rithm [6] is a delay policy implemented at the master device
that postpones the transmission of a packet until a slot asso-
ciated with a ”good” frequency becomes available. The master
device, which controls all data transmissions in the piconet, uses
information about the state of the channel in order to avoid data
transmission to a slave experiencing a ”bad” frequency. Fur-
thermore, since a slave transmission always follows a master
transmission, using the same principle, the master avoids re-
ceiving data on a ”bad” frequency, by avoiding a transmission
on a frequency preceding a ”bad” one in the hopping pattern.

This simple scheduling scheme needs only be implemented
in the master device and translates into the following transmis-
sion rule. The master transmits in a slot after it veri es that

both the slave’s receiving frequency and its own receiving fre-
quency are ”good”. Otherwise, the master skips the current
transmission slot and repeats the procedure over again in the
next transmission opportunity.

Additional considerations including bandwidth requirements
and quality of service guarantees for each master/slave connec-
tion in the piconet can also be combined with the channel state
information and mapped into transmission priorities given to
each direction in the master/slave communication. Details on
assigning transmission priorities are given in [6].

The algorithm’s general steps are summarized below.

1: Every Even TSf // Master transmits on frequency f
2: if TSf + ldn is good // Master can receive in next slot
3: f

4: A
f

data
= fset of slaves s.t. ((f ”good”) and (qsize > 0) g

5: if (Af
data

6= ;)
6: select slave i //according to a priority criteria
7: transmit data packet of size ldn to slave i
8: g

where ldn is the length of the packet from the master to the
slave and TSf is the transmission slot using frequency f.

IV. CHANNEL ESTIMATION

Channel estimation methods include BER calculation, packet
loss, or frame error rate measurements performed by each re-
ceiver (master and slave device). Since in a Bluetooth piconet,
the master device controls all packet transmission, the measure-
ments collected by the slave devices are sent to the master that
decides to (1) either avoid data transmission to a slave experi-
encing a ”bad” frequency, and/or (2) modify the frequency hop-
ping pattern. While in the former case the decision remains lo-
cal to the master, in the latter case, the master needs to commu-
nicate the change to all slaves in the piconet in order to maintain
synchronization. Also, the former method falls into the schedul-
ing policy category, while the latter is in the AFH category.

Channel estimation is based on measurements conducted on
each frequency in order to determine the presence of interfer-
ence. Although our discussion exclusively focuses on packet
loss, other measurements can be used. In a nutshell, channel
estimation works as follows. Each Bluetooth receiver maintains
a Frequency Status Table (FST) where a percentage of pack-
ets dropped due to errors, Pr(PLoss), is associated to each fre-
quency offset, f , as shown in Figure 2. Frequencies are clas-
si ed “good” or “bad” depending on whether their packet loss
rate is below or above a threshold value respectively. In Figure 2
the threshold value is equal to 0.5. Each slave has its own FST
maintained locally. However, the master has in addition to its
FST, a copy of each slave’s FST.

At regular time intervals each slave updates its FST copy kept
at the master using a status update message that can be de ned
in the Layer Management Protocol (LMP). Alternatively, the
master can derive information about each slave’s FST by keep-
ing track of the ACK bit sent in the slave’s response packet.

First, we de ne two phases in the channel estimate proce-
dure. During the Estimation Window, EW, packets are sent on
all frequencies regardless of their classi cation. EW is followed

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Rebala, & Chevrollier 112

Frequency Offset Pr[PLoss]Status

0

1

 2

3

...

78

77

76

10-3

0.75

1

0.89

10-4

10-3

10-3

bad

good

bad

good

bad

good

good

Fig. 2. Frequency Status Table

by an interval, EI, in which slaves have updated their FST at the
master (refer to Figure 3). The master uses the channel informa-
tion collected during EW in order rearrange the frequency hop-
ping pattern in case of AFH and/or selectively avoid to transmit
packets on so-called ”bad” frequencies. In order to avoid hav-
ing to manually compute or pick an arbitrary value for EW, we
use a technique to dynamically adjusts the window based on
the number of times, Nf , each frequency in the band should be
visited. Further details on channel estimation parameter tun-
ing are available in [6]. In our simulations, we use Nf = 1,
EImin = 2s, EImax = 100s.

Estimation Interval, EIEstimtation Window, EW

Estimation Phase Online Phase

Slave sends LMP message to Master
to update its FST at Master

Fig. 3. Explicit Estimation

Note that during both phases, Pr(PLoss) is measured and con-
tinuously updated. Although the local FSTs can be updated ev-
ery time a packet is received, the copy of the slave FST kept
at the master is updated either at the end of each EW using an
LMP de ned message, or every time a packet acknowledgement
(ACK) is received by the master. It is important to point out that
for scheduling purposes, the master can make use of the ACK
feedback information as soon as it becomes available. On the
other hand, AFH requires a master to slave message exchange
in order to keep the piconet synchronized. In our study, we as-
sume that updates are based on ACK feedback for BIAS and
LMP messages for AFH sent at the end of each EW.

V. PERFORMANCE EVALUATION

In this section we present simulation results to evaluate the
performance of AFH in a realistic environment. We ran several
experiments using different applications, and network topolo-
gies. We consider four application pro les, namely, FTP, HTTP,
voice, and video. We use the TCP(UDP)/IP stack implemented
in the OPNET library and con gure the application parameters
provided. For the FTP pro le, the parameters are the percentage
of put/get, the inter-request time, and the le size. The percent-
age of put/get represents the number of times the put command
is executed in an FTP connection over the total number of put
and get commands, i.e., a fty percent indicates that half of the
FTP commands executed are put, and the other half are get. The
inter-request time is the interval between two FTP commands,
and the le size represents the size of the le requested in bytes.

The HTTP pro le is described by parameters characterizing a
web page such as the page interarrival time, the number of ob-
jects in each page and their size in bytes. For the voice applica-
tion, we use the encoding de ned in the G.723.1 speci cations.
The video application uses a 1 Frame/s rate and a frame size
of 17280 bytes. The application pro le parameters are summa-
rized in Table I.

TABLE I
APPLICATION PROFILE PARAMETERS

Parameters Distribution Value
Bluetooth FTP
Percentage of Put/Get 100%
Inter-Request Time (seconds) Exponential 5
File Size (bytes) Constant 2M
Bluetooth HTTP
Page Interarrival Time (seconds) Exponential 5
Number of Objects per page Constant 2
Object 1 Size (bytes) Constant 10K
Object 2 Size (bytes) Uniform (20K,600K)
Bluetooth Voice
Encoder G.723.1
Bluetooth Video
Frame Rate Constant 1 Frame/s
Frame Size (bytes) Constant 17280 (128 x 120 pixels)
WLAN FTP
Percentage of Put/Get 0%
Inter-Request Time (seconds) Exponential 1
File Size (bytes) Constant 2M
Connection Duration (seconds) Exponential 20
Interval between Connections (seconds) Exponential 20

For each network topology considered, we run a set of 16
simulations covering each application and algorithm combina-
tion. None refers to the case when no algorithm is present, while
BIAS and AFH refer to using BIAS and AFH respectively. Note
that AFH-IEEE refers to the AFH algorithm included in the
draft IEEE Recommended Practice on Coexistence [5]. Perfor-
mance is measured in terms of the packet loss, the delay mea-
sured at the TCP layer (in seconds), and the channel ef cienc y.
The channel ef cien y measures the normalized number of data
packets received minus the number of packets lost and pack-
ets ignored in the case of duplicate transmissions. Averages are
obtained and reported for each simulation set consisting of 10
simulation runs. Each simulation is run for 900 seconds. The
packet loss and channel ef cienc y are measured at the applica-
tion client (master device), while the TCP access delay is mea-
sured at the application server (slave device).

A. Experiment 1: WLAN Interference

We use Topology 1 illustrated in Figure 4 with one WLAN
system (Access Point/Station) and a Bluetooth master/slave
pair. The WLAN access point (AP) is located at (0,15) meters,
and the WLAN station is x ed at (0,1) meters. The Bluetooth
slave device is x ed at (0,0) meters and the master is x ed at
(1,0) meters.

In this case, the WLAN station is ”uploading” les to WLAN
server using the FTP put command. A summary of the applica-
tion pro le is described in Table I.

Table II gives the performance of the Bluetooth FTP applica-
tion. First, observe that the results with AFH and AFH-IEEE
are comparable and therefore in our discussion we will not dis-
tinguish between the two algorithms unless speci ed otherwise.

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Rebala, & Chevrollier 113

Bluetooth Slave

(1,0)(0,0)

Bluetooth Master

(0,d)

(0,15)
WLAN Access Point

WLAN Station

Fig. 4. Topology 1 - Two WLAN devices and one Bluetooth piconet

TABLE II
EXPERIMENT 1: BLUETOOTH FTP PERFORMANCE

None BIAS AFH AFH-IEEE
Packet Loss 0.1633 0.0009 0.0748 0.0721

TCP Delay (seconds) 0.0201 0.0178 0.0167 0.0184
Channel Ef cienc y 0.6921 0.9981 0.9306 0.9336

When no interference mitigation algorithm is present, which
represents a base case, the packet loss is around 16%. The ef-
fects of BIAS are summarized in comparison to the base case as
follows. First, we observe a decrease in packet loss to negligible
levels, a decrease of 3 ms in the delay (from 20.1 to 17.8 ms),
and an increase of 30% in the ef cienc y. Similarly the effects of
AFH are characterized by a lower packet loss (to 7%), lower de-
lay (16.7� 18:4ms), and higher ef cienc y (�93%). The delays
observed with BIAS and AFH are almost comparable, while the
difference in ef cienc y is more striking. Although more pack-
ets are sent with AFH, they are more likely due to duplicate
transmissions.

The observations noted for FTP are also consistent with the
HTTP results given in Table III. Similarly, BIAS reduces the
packet loss to zero, the access delay by 6 ms (to 11 ms), and
increases the ef cienc y by 30% (to 99%). On the other hand,
AFH gives a packet loss of 5%, reduces the delay by 3 ms (to
� 10 ms) and increases ef cienc y by 20% (to � 95%).

The results of the video application are shown in Table IV.
Here again, BIAS reduces the packet loss to a negligible level,

TABLE III
EXPERIMENT 1: BLUETOOTH HTTP PERFORMANCE

None BIAS AFH AFH-IEEE
Packet Loss 0.1487 0.0012 0.0585 0.0445

TCP Delay (seconds) 0.0171 0.0112 0.0109 0.0107
Channel Ef cienc y 0.6943 0.9976 0.9453 0.9557

TABLE IV
EXPERIMENT 1: BLUETOOTH VIDEO PERFORMANCE

None BIAS AFH AFH-IEEE
Packet Loss 0.1310 0.0043 0.0455 0.0269

Channel Ef cienc y 0.6974 0.9914 0.9503 0.9611

TABLE V
EXPERIMENT 1: BLUETOOTH VOICE PERFORMANCE

None BIAS AFH AFH-IEEE
Packet Loss 0.1359 0.0091 0.0400 0.0212

Channel Ef cienc y 0.6901 0.9840 0.9631 0.9722

and increases the ef cienc y to 99%. On the other hand, AFH
causes a decrease in packet loss to 4.5% and 2.6% for AFH and
AFH-IEEE respectively (down from 13%).

Table V shows the results of the voice application. We ob-
serve a packet loss of 4 and 2% with AFH and AFH-IEEE re-
spectively compared to 0.9% with BIAS. The channel ef cienc y
is 98%, 96%, and 97% for BIAS, AFH, and AFH-IEEE respec-
tively.

For AFH, the time it takes to estimate the channel and com-
municate the changes is usually longer than for BIAS leading
to a higher packet loss and a lower channel ef cienc y. This sig-
ni es that a number of packets transmitted are due to duplicate
transmissions that end up getting discarded at the destination
and therefore do not lead to a higher goodput. This observa-
tion captures the essence of the performance trade-offs between
AFH and BIAS. AFH increases the total number of packets sent
at the cost of higher packet loss, and lower ef cienc y. This may
be acceptable for some bandwidth hungry applications such as
FTP and HTTP, but perhaps less desirable for real-time appli-
cations such as voice and video. In summary, there are de nite
trade-offs for using AFH versus BIAS depending on the appli-
cation considered.

B. Experiment 2: Multi-WLAN Interference

In this experiment, our goal is to study the performance of
AFH in a multi-WLAN environment, where the Bluetooth hop-
ping sequence is further reduced. We use Topology 2 illustrated
in Figure 5, consisting of 2 WLAN systems (source-sink pairs)
operating on non-overlapping frequencies (each WLAN system
operates on a different center channel). We use the same traf c
parameters described in Table I.

Bluetooth
Master

(1,14)
WLAN
AP 2

Bluetooth
Slave

(1,0)(0,0)

(-15,-1)

WLAN
AP 1

(0,-1)

WLAN
Station 1

(1,-1)

WLAN
Station 2

Fig. 5. Topology 2 - Multi-WLANs and Bluetooth piconets interference

Since there are two WLAN systems occupying about 16 fre-
quencies each, that leaves about 47 frequencies in the band to
be used by Bluetooth. With BIAS, the Bluetooth piconet only
transmits on “good” frequencies, and therefore has to skip ap-
proximately 1 in every 3 transmission opportunities. With AFH,

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Rebala, & Chevrollier 114

TABLE VI
EXPERIMENT 2: BLUETOOTH FTP PERFORMANCE

None BIAS AFH AFH-IEEE
Packet Loss 0.3431 0.0183 0.1524 0.1542

TCP Delay (seconds) 0.0322 0.0213 0.0218 0.0242
Channel Ef cienc y 0.4500 0.9684 0.8486 0.8552

TABLE VII
EXPERIMENT 2: BLUETOOTH HTTP PERFORMANCE

None BIAS AFH AFH-IEEE
Packet Loss 0.2535 0.0169 0.1350 0.1172

TCP Delay (seconds) 0.0181 0.0191 0.0160 0.0152
Channel Ef cienc y 0.4725 0.9705 0.8668 0.8849

the frequency hopping sequence is modi ed in order to include
only “good” frequencies. Therefore, one expects signi cant
throughput and delay improvements with AFH. Our goals in
this experiment are to verify that our previous conclusions about
AFH and BIAS still hold even in the case of severe interference.

Table VI gives the performance results for the Bluetooth FTP
application. The packet loss when no algorithm is present is
around 34% for Bluetooth. Note that it is more than double the
packet loss obtained in Experiment 1. The packet loss is 1.8%,
15.24%, 15.42% with BIAS, AFH, and AFH-IEEE respectively.
Delays with AFH and BIAS are comparable (21 ms). On the
other hand, the channel ef cienc y is only 84% and 85% with
AFH, while it is around 96% with BIAS.

Table VII gives the results for the Bluetooth HTTP applica-
tion. The results are consistent with the FTP results for the most
part. There are additional delay improvements with AFH.

Tables VIII and IX give the results for the video and voice
applications respectively. The general trends observed in Exper-
iment 1 are still valid. In general, BIAS leads to lower packet
loss and higher or equal channel ef cienc y than AFH.

VI. CONCLUDING REMARKS

In this paper, we study using adaptive frequency hopping for
Bluetooth devices when operating in close proximity to WLAN
systems. We present the details of an AFH algorithm and com-
pare its performance to BIAS, a delay transmission method
aimed at interference mitigation.

A summary of our ndings is as follows. For the applications

TABLE VIII
EXPERIMENT 2: BLUETOOTH VIDEO PERFORMANCE

None BIAS AFH AFH-IEEE
Packet Loss 0.2725 0.0230 0.1070 0.0750

Channel Ef cienc y 0.2079 0.9803 0.8485 0.8878

TABLE IX
EXPERIMENT 2: BLUETOOTH VOICE PERFORMANCE

None BIAS AFH AFH-IEEE
Packet Loss 0.2126 0.0433 0.0940 0.0564

Channel Ef cienc y 0.4543 0.9269 0.9088 0.9300

considered, BIAS leads to a lower packet loss and an equal or
higher channel ef cienc y than AFH. Basically, when the chan-
nel estimation has to be performed often, the synchronization
overhead associated with AFH leads to an additional packet
loss. In fact, our results indicate that this packet loss is often
accompagnied with additional duplicate packet transmissions,
which in turn lead to a lower channel ef cienc y. Thus, the num-
ber of additional packets transmitted with AFH is often offset by
an additional number of packets lost or ignored. In other words,
the adaptive part of AFH is constrained by the channel estima-
tion and how often to synchronize the devices in the piconet.
That in turn determines the response time and the performance.

Having said that, AFH may be more suitable for slow-
changing environments where the same sequence could be used
for a long period of time. On the other hand, in environments
where the interference levels vary more rapidly, BIAS would be
the interference mitigation solution of choice.

An area of future investigations would be combining BIAS
and AFH within the same scenario, where BIAS would be used
to respond quickly to a change in the environment, before an
AFH policy is put in place if the interference persists for a long
period of time.

REFERENCES

[1] J. Lansford, A. Stephens, and R. Nevo, “Wi-Fi (802.11b) and Blue-
tooth: Enabling Coexistence,” in IEEE Network Magazine, Sept/Oct. 2001,
vol. 15, pp. 20–27.

[2] N. Golmie, “Interference Aware Bluetooth Scheduling Techniques,” in
IEEE P802.11 Working Group Contribution, IEEE P802.15-01/143r0,
Hilton Head, NC, March 2001.

[3] Carla F. Chiasserini, and Ramesh R. Rao, “ Coexistence mechanisms for
interference mitigation between IEEE 802.11 WLANs and bluetooth ,” in
Proceedings of INFOCOM 2002, 2002, pp. 590–598.

[4] Bluetooth Special Interest Group, “Speci cations of the Bluetooth System,
vol. 1, v.1.0B ’Core’ and vol. 2 v1.0B ’Pro les’, ” December 1999.

[5] IEEE Std. 802-15 Task Group on Coexistence, “Draft Recommended Prac-
tice for Information Technology, Part 15.2: Coexistence of Wireless Per-
sonal Area Networks with Other Wireless Devices Operating in the Unli-
censed Frequency Bands,” March 2003.

[6] N. Golmie, “Bluetooth Dynamic Scheduling and Interference Mitigation,”
in ACM Mobile Network, MONET, 2002.

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Rebala, & Chevrollier 115

Bluetooth and WLAN Coexistence:
Challenges and Solutions

N. Golmie, N. Chevrollier, and O. Rebala
National Institute of Standards and Technology

Gaithersburg, Maryland 20899
Email: nada.golmie@nist.gov

Abstract

In this article we discuss solutions to the interference problem caused by the proximity and simultaneous operation of Bluetooth and WLAN
networks. We consider different techniques that attempt to avoid time and frequency collisions of WLAN and Bluetooth transmissions. We conduct a
comparative analysis of their respective performance and discuss the trends and trade-offs they bring for different applications and interference levels.
Performance is measured in terms of packet loss, TCP goodput, delay, and delay jitter.

I. INTRODUCTION

The Bluetooth technology [1] is considered a Wireless Personal Area Network (WPAN) system, intended for cable replacement
and short distance ad hoc connectivity. WPAN is distinguished from other types of wireless networks in both size and scope.
Communications in WPAN are normally con ned to a person or object and extend up to 10 meters in all directions. This is
in contrast to Wireless Local Area Networks (WLANs) employing the IEEE 802.11 speci cations [2] that typically cover a
moderately sized geographic area such as a single building or campus. In this sequel, we will use WLAN and IEEE 802.11
interchangeably. WLANs operate in the 100 meter range and are intended to augment rather than replace traditional wired LANs.
They are often used to provide the nal few feet of connectivity between the main network and the user.

However, instead of competing with WLANs for applications, WPANs are intended to augment many of the usage scenarios and
operate in conjunction with WLANs, i.e., come together in the same laptop, or operate in proximity in an of ce or conference room
environment. For example, Bluetooth can be used to connect a headset, or PDA to a desktop computer, that in turn may be using
WLAN to connect to an Access Point placed several meters away.

Bluetooth and several cordless phone manufacturers plan to operate in the 2.4 GHz Industry Scienti c and Medical (ISM)
unlicensed band since it is suitable for low cost radio solutions such as the ones proposed for WPANs. In addition, IEEE 802.11 [2]
has standards for WLANs operating in this band as well. However, the major down side of the unlicensed ISM band is that
frequencies must be shared and potential interference tolerated as de ned in the the Federal Communications Commission Title
47 of the Code for Federal Regulations Part 15 [3]. While the spread spectrum and power rules are fairly effective in dealing with
multiple users in the band provided the radios are physically separated, the same is not true for close proximity radios such as IEEE
802.11 and Bluetooth that may likely come together in a laptop or a desktop. An issue of growing interest is the coexistence of
these devices in the same environment.

Recently, there has been a growing number of industry led activities focused on the coexistence of wireless devices in the 2.4
GHz band. Both, the IEEE 802.15.2 Coexistence Task Group [4] and the Bluetooth Special Interest Group (SIG) are looking at
similar techniques for alleviating the impact of interference. The proposals considered by the groups are intended for Bluetooth
and IEEE 802.11 direct sequence spread spectrum protocols. They range from collaborative schemes to be implemented in the
same device to fully independent solutions that rely on interference detection and estimation. Except for a Time Division Multiple
Access (TDMA) technique aimed at time sharing the Bluetooth and 802.11 signals [5], most mechanisms considered do not require
any direct communication between the protocols. These so-called non-collaborative mechanisms are intended mainly for Bluetooth
since it is easier for a frequency hopping system to avoid frequencies occupied by a spread spectrum system such as WLAN. The
techniques considered range from adaptive frequency hopping [6] to packet scheduling and traf c control [7]. The techniques used
for detecting the presence of WLAN devices in the band are based on measuring the bit or frame error rate, the signal strength or
the signal to interference ratio (often implemented as the Received Signal Strength Indicator (RSSI)). For example, each device can
maintain a packet error rate measurement per frequency visited. Frequency hopping devices can then know which frequencies are
occupied by other users of the band and modify their frequency hopping pattern. They can even choose not to transmit on a certain
frequency if that frequency is occupied. The rs t technique is known as adaptive frequency hopping, while the second technique
is known as Medium Access Control (MAC) scheduling. Other scheduling techniques known as packet encapsulation rules or
OverLap Avoidance (OLA) [8], use the variety of Bluetooth packet lengths to avoid the overlap in frequency between 802.11 and
Bluetooth. In other words, the Bluetooth scheduler knows to use the packet length of proper duration (1, 3 or 5 slots) in order to
skip the so-called ”bad” frequency. This was shown to provide goodput improvements for both 802.11 and Bluetooth data traf c.

In this article, we investigate two solutions to the interference problem, namely, (1) an Adaptive Frequency Hopping (AFH)
mechanism aimed at modifying the Bluetooth frequency hopping sequence in the presence of WLAN direct sequence spread
spectrum devices [9], (2) a Bluetooth Interference Aware Scheduling (BIAS) strategy that postpones the transmission of packets
on so-called “bad” frequencies [7]. Each of these two techniques considered imposes a number of implementation implications.

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Chevrollier, & Rebala 116

For example, the implication with AFH is that the chipset has to be modi ed in order to support a new Bluetooth hopping sequence
that does not contain any frequencies used by WLAN. On the other hand, the backoff strategy applies to the Bluetooth master
device rmw are that is responsible for transmitting packets on the medium.

The remainder of this article is organized as follows. Section II discusses interference detection methods used to determine the
presence of WLAN interference. In section III and IV, we describe the backoff and AFH procedures respectively. In section V, we
consider realistic scenarios to discuss performance trends and trade-offs. In section VI, we offer some concluding remarks.

II. BLUETOOTH INTERFERENCE ESTIMATION

Central to most interference mitigation techniques is the ability to detect the presence of other systems operating in the band, or
in other words, estimate interference. Techniques that do not require interference estimation belong to the collaborative category
where both the Bluetooth and WLAN protocols are implemented on the same device in order for each protocol to be aware of the
traf c and packet transmissions in both the WLAN and the Bluetooth networks.

Master Classification
Table at t0

Freq

Good

Bad

f0 f1 f8 f77 f78

Freq

Good

Bad

f0 f1 f8 f77 f78

Master Frequency
Estimation Table

f0 f1 f77 f78f14

f0 f1 f77 f78f14

Slavei Frequency
Estimation Table

Slavei Classification
Table at t0

M: Master Slot
Si, Sk: Slave Slot

SkChannel
Slots

M

f12 f73f8 f8f10f0 f0f14 f12f77 f75

t0 t1

Si Si SiSk SiM M M M M

f14

Freq

PktLost

Pr(Ploss)

f8f0 f8f10 f77 f75

1 2

0 0

3PktRec 1

1

10

2

2

1

1

0.33

2

1

3

0

2

0

31

0

1

2

0.5

1

0.33

0

0

f14 f12f14 f0

Master Classification
Table at t1

Slavei Classification
Table at t1

(a)

(b)

Fig. 1. Interference Estimation and Frequency Classi cation

Interference estimation methods include Signal to Interference Ratios (SIR), Bit Error Rate (BER) calculation, packet loss, or
frame error rate measurements performed by a device receiver. We use packet loss measurements in our performance evaluation
although other measurements can be used as well without affecting the outcome of the experiments studied. In addition, we limit
our discussion to interference estimation for Bluetooth since that pertains to the solutions presented here.

In a nutshell, here is how a Bluetooth receiver detects the presence of a WLAN spread spectrum system. Measurements are col-
lected by each receiver in the piconet since interference depends on the device location and transmitted power. These measurements
consist of a percentage of packets dropped due to errors, Pr(Ploss), that is associated with each frequency in the hopset, f , as shown
in Figure 1(a). Given Pr(Ploss) and a packet loss threshold, frequencies are classi ed “good” or “bad” depending on whether their
packet loss rate is less than or greater than the threshold value respectively. In Figure 1(b), we use a packet loss threshold equals to
0.5.

Since in a Bluetooth piconet, the master device controls all packet transmissions, the measurements collected by the slaves are
mostly useful if available at the master. There are at least two ways of sharing these measurements among the devices of the
piconet. One approach would be for the master and slaves to periodically exchange their measurements via management messages.

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Chevrollier, & Rebala 117

Another method would be for the master to derive information about each slave’s measurements by looking at the ACK bit sent
in the slave’s response packets. Observe that in this latter approach, the master can make use of the ACK feedback information
as soon as it becomes available, and thus speed up the estimation time by few tens to hundreds of milliseconds depending on the
traf c load and packet sizes considered. Scanning the entire frequency band using ACK feedback may take between 0.5 to 1.5
seconds depending on the application and the traf c load considered.

A nal point of observation is concerned with the classi cation update interval. Since the master uses the packet loss information
collected in order to rearrange the frequency hopping pattern in case of AFH and/or selectively avoid packet transmissions on
so-called ”bad” frequencies, one needs to ask how often should frequencies be classi ed? If the classi cation update period is
relatively short, the classi cation re ects more accurately the state of the channel at a higher communication overhead cost in case
the measurements are distributed via management messages. Also, frequent classi cations may lead to a higher packet loss. On
the other hand, a long classi cation period may not be able to keep up with rapid changes in the interference environment, when
traf c is bursty and users are mobile. A number of techniques can be used in order to make the update interval track changes in the
channel dynamics. In our evaluation, we x ed the update interval to 4 seconds in order to highlight the effects of synchronization
messages.

III. BLUETOOTH INTERFERENCE AWARE SCHEDULING

Since the interference mitigation approach that we discuss is concerned primarily with packet scheduling and transmission in
Bluetooth, we will rst give a brief overview of how packets are transmitted in Bluetooth, and we will then show how to modify
the packet scheduler in order to mitigate interference.

The Bluetooth transmission channel is divided into 625 µs slots. Transmission occurs in packets that occupy an odd number of
slots (1, 3, or 5). Each packet is transmitted on a different hop frequency with a maximum frequency hopping rate of 1600 hops/s
in case packets occupy a single slot, and a minimum hopping rate of 320 hops/s in case packets occupy 5 slots. Note that every slot
has a frequency associated with it; however transmission of a packet occupying multiple slots always uses the frequency associated
with the rst slot.

A slave packet always follows a master packet transmission as illustrated in Figure 2(a), which depicts the master’s view of the
slotted channel. A slave needs to respond to a master’s packet that is speci cally addressed to it. In case it does not have any data
to send, it sends a NULL packet. Moreover, each packet contains the ACK information of the previous packet received.

Since the master is in charge of all transmissions in the piconet and chooses which slave to transmit to, it is easy to envision
a scheduling policy at the master that considers the frequency classi cation information before sending packets on the medium.
The so-called Bluetooth Interference Aware Scheduling (BIAS) [7] is a backoff policy that postpones the transmission of a packet
until a slot associated with a “good” frequency becomes available. Here is how it works. The master continuously classi es each
frequency as either “bad” or “good” based on a prede ned criterion, for example a packet loss threshold as mentioned in section
II. Given a master/slave slot pair and their associated frequencies as illustrated in Figure 2(a), the master transmits in a slot after it
veri es that both the slave’s receiving frequency and its own receiving frequency are ”good”. Thus, the master avoids receiving data
on a “bad” frequency, by avoiding a transmission on a frequency preceding a “bad” one in the hopping pattern. If either frequency
in the pair is “bad”, the master skips the current transmission slot and repeats the procedure over again in the next transmission
opportunity.

Finally, Figure 2(a) shows an example of transmission priority that can be built into the master scheduler. In this case, the
master schedules retransmissions rst, then data packet, and nally acknowledgment packets. Note that in all three cases the
pair of frequencies associated with the master and slave slots need to be “good”. Additional considerations including bandwidth
requirements and quality of service guarantees for each master/slave connection in the piconet can also be combined with the
channel state information and mapped into transmission priorities given to each direction in the master/slave communication.
Details on assigning transmission priorities are given in [7].

IV. BLUETOOTH ADAPTIVE FREQUENCY HOPPING

The key idea in BIAS is to wait for a slot associated with a “good” frequency in order to transmit a packet. The question that
comes up is, can the frequency and slot association be modi ed in order to eliminate the so-called “bad” frequencies? In other
words, can “bad” frequencies be replaced with “good” ones so that transmissions need not be postponed? That’s the main idea in
adaptive frequency hopping.

First, we describe the Bluetooth frequency hopping sequence de ned in the Bluetooth speci cations [1] , then we present an
AFH algorithm that modi es it in order to mitigate interference.

Frequency hopping in Bluetooth is achieved as follows. Frequencies are sorted into a list of even and odd frequencies in the
2.402-2.480 GHz range. A segment consisting of the rst 32 frequencies in the sorted list is chosen. After all 32 frequencies in
that window are visited once in a random order, a new window is set including 16 frequencies of the previous window and 16 new
frequencies in the sorted list. From the many AFH algorithms possible, here is an implementation that eliminates “bad” frequencies
in the sequence.

Given a segment of 32 “good” and “bad” frequencies, the algorithm visits each “good” frequency exactly once. Each “bad”
frequency in the segment is replaced with a “good” frequency selected from outside the original segment of 32 as shown in

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Chevrollier, & Rebala 118

Channel Slots

Reset Frequency
Classification Tables
at Master

M S S S S S S S S SM M M M M M M M

Continuous Estimation and Classification

f0 f2 f1f78 f77f64 f75f73f62f4 f6
Master bad
frequency
Slave bad
frequency

f60

Frequencies

Hopping Segment

Hopping Sequence

fM fS

Continuous Estimation

t1

M S S S S S S S SM M M M M M M

a) BIAS b) AFH

Packet Transmission

Standard Segment

Adaptive Segment

f4 f62f0 f2

f0 f6 f64

f6 f60

f60

Segment Size = 32

f64
f66

Find
Slave

Master
Transmit

Slot

yes

no

Choose
Slave

Ack?
(fm,fs)
good

Transmit Data
or Poll

Retransmit no

no

yes

yes

yes

no

Master Schedules

Synchronize

Adjust Bluetooth

Master Classifies

Standard Bluetooth
Hopping Segment

Adaptive Bluetooth
Hopping Segment

M S S S S S S S SM M M M M M M

LMP Exchange LMP ExchangeLMP Exchange

Fig. 2. Bluetooth Scheduling and Adaptive Hopping Techniques

Figure 2(b). Thus, the difference between AFH and the original Bluetooth hopping sequence algorithm is in the selection of only
“good” frequencies in order to ll up the segment size. Some additional constraints can be imposed on the maximum number of
“bad” frequencies to eliminate if a minimum number of different frequencies is to be kept in the sequence. In their most recent
ruling the FCC recommends using at least 15 different frequencies.

Changing the frequency patterns requires changes in the Bluetooth hardware implementations. Another requirement is the
advertisement of the new hopping pattern among devices in the piconet in order to keep synchronization. This is typically done
using Link Management Protocol (LMP) messages exchanged between the master and the slaves in the piconet in order to advertise
the new hopping sequence. This last requirement imposes some limitations on how often a new hopping pattern should be advertised
and used. Improving performance such as lowering the packet loss, the access delay, and increasing the throughput should outweigh
the communication overhead associated with synchronization. As suggested in section II, the synchronization update interval could
be dynamically adjusted so that it tracks changes in the channel. In our simulations the LMP messages were sent twice in a 4 seconds
update interval. The rst LMP message was sent when the frequency tables were reset, while the second message was sent about
1.5 seconds later to signify the use of a new hopping pattern.

Finally, AFH does not preclude additional scheduling techniques to control the transmission (and possibly the retransmission)
of packets on the medium.

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Chevrollier, & Rebala 119

V. PERFORMANCE EVALUATION RESULTS

We present simulation results to evaluate the performance of Bluetooth and WLAN and discuss some of the trade-offs associated
with the backoff and the frequency hopping schemes presented earlier. Our simulation environment is based on detailed MAC,
PHY and channel models for Bluetooth and IEEE 802.11 (WLAN) as described in [10]. The channel model consists of a geometry-
based propagation model for the signals, as well as a noise model based on Additive white Gaussian noise (AWGN). For the indoor
channel, we apply a propagation model consisting of two parts: (1) line-of-sight propagation (free-space) for the rst 8 meters,
and (2) a propagation exponent of 3.3 for distances over 8 meters [11]. The transmitters, channel, and receivers are implemented
at complex baseband. We develop models for the Bluetooth and the IEEE 802.11 access protocols using the OPNET network
simulator and con gure the applications available in the simulator library.

In general, we nd that performance results vary according to the network con guration, usage scenario and application con-
sidered [10]. In this paper, we vary the application and the interference level considered, as these two factors are most likely to
dominate the performance results.

For Bluetooth, we consider two applications, FTP and voice. FTP is a bandwidth hungry application that stresses the throughput
requirement, while voice has strict delay and jitter requirements. Together, these two applications constitute a representative set
of the application space used in a Bluetooth piconet. For WLAN, we use FTP to upload a large le (for instance a movie) to a
server. For the FTP pro le, the parameters are the inter-request time and the le size. The inter-request time is the interval between
two FTP commands, and the le size represents the size of the le requested in bytes. For Bluetooth we vary the le sizes from
200 bytes to 500 Kbytes (every 5 seconds), while for WLAN we use a single le of 960 Mbytes. The voice application used in
Bluetooth is based on the G.723.1 encoder (with silence). The simulation and pro le parameters are given in Table I.

TABLE I
SIMULATION PARAMETERS

Simulation Parameters Values
Propagation delay 5 µs/km
Length of simulation run 1600 seconds
Bluetooth Parameters
ACL Baseband Packet Encapsulation DH5
Transmitted Power 1 mW
WLAN Parameters
Transmitted Power 25 mW
Packet Header 224 bits
Packet Payload 12,000 bits
Application Pro le Parameters Distribution Values
Bluetooth FTP
Inter-Request Time (seconds) Exponential 5
File Size (Kbytes) varies in [0.2,500]
WLAN FTP
File Size (Mbytes) Constant 960
Bluetooth Voice
Encoder G.723.1
Silence Length (seconds) Exponential 0.65
Talk Spurt (seconds) Exponential 0.352

We use the four-device con guration shown in Figure 3 that is common to some of ce or home environments. It consists of
a laptop computer connected to the Internet via WLAN, while a desktop located at a distance d from it, is also connected to
either a PDA or a wireless headset over a Bluetooth link. By varying d, the level of interference on each of the Bluetooth and
WLAN receivers is effected. For example, as d is increased, the level of interference is decreased. Other usage scenarios can also
be obtained by putting both WLAN and Bluetooth receivers on the same device, for example the laptop computer in this case.
Although some variations in the performance results are to be expected, the differences in the results remain minor.

Now, we discuss the details of two experiments involving a voice and an Ftp application for Bluetooth and an Ftp application
for WLAN. For each experiment we set d=1 and 3 meters. In addition, in experiment 1, we vary the le size of the Bluetooth FTP
application. Each data point collected is averaged over 15 simulation trials using a different random seed for each trial. In addition
to the mean value, we verify that statistical variation around the mean values are small and fall within a 95% con dence interval.

A. Effects on Bluetooth Data Traf c
In this experiment, we consider the effects of BIAS and the AFH schemes on the performance of a Bluetooth FTP connection

when it is operating in close proximity to a WLAN FTP connection. While the WLAN connection is used to upload a 960 Mbytes
 le to a server, a Bluetooth FTP connection is used to download les (email, attachment documents) from a PDA to a desktop
computer. This latter operation produces similar traf c characteristics than that of a ”HOT SYNC” even if the le sharing protocol
used in that case is speci c to the PDA manufacturer.

Figure 4(a) gives the packet loss results at the Bluetooth receiver located on the desktop computer. None refers to the case
when no algorithm is used, while AFH and Scheduling refer to the use of AFH and BIAS respectively. Also, the distance between

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Chevrollier, & Rebala 120

Bluetooth

WLAN Network

Access Point

PC

d

1m

Laptop

15m

PDA

FTP

VOICE

FTP
Upload

(Experiment 1)

(Experiment 2)

Fig. 3. Topology 1 - Two WLAN devices and one Bluetooth piconet

the Bluetooth desktop and the WLAN laptop is either 1 m or 3 m as indicated after the dash. First, observe that the curves are
grouped into 3 distinct pairs according to the scheme used. Also, the packet loss corresponding to 1 m is always higher than the
one corresponding to 3 m. This is expected since the packet loss is higher when the WLAN node is closer to the Bluetooth device.
When no scheme is used the packet loss starts at 12% and 4% for 1 and 3 m respectively. The packet loss for AFH starts at 2% and
increases to 6% as the offered load is increased to 800 Kbit/s. There is less than 1% difference between the packet loss for 1 and 3
m. The packet loss for BIAS is negligible and is at least two orders of magnitude lower than the ones observed for None.

Note that the relatively higher packet loss observed with AFH depends on the frequency of the synchronization messages ex-
changed between the Bluetooth master and the slave. There is a trade-off between the communication overhead and the response to
changes in the interference environment. A fast responding system will incur a lower packet loss at the cost of a higher communi-
cation overhead. In this experiment, synchronization messages are exchanged on average every few seconds (1.5 and 2.5). Since no
explicit message exchange is required for the scheduling algorithm, the response time to changes in the interference environment
happen within a packet round trip time.

Figures 4(c) and (d) illustrate the TCP goodput and delay results respectively. Observe that the goodput is directly proportional
to the offered load until about 480 Kbit/s for all 6 curves. We have computed that about 660 Kbit/s is the maximum application
goodput available considering the choice of the simulation parameters. This includes a 10% overhead for the packet headers of
all layers between the application and the Bluetooth baseband link and assuming a maximum TCP packet payload of 1460 bytes.
Thus, 480 Kbit/s corresponds to 72% of the Bluetooth medium capacity. As the offered load is increased beyond 500 Kbit/s, the
difference between the various schemes becomes more signi cant. The maximum goodput obtained is 600 and 550 Kbit/s with
AFH and BIAS respectively. When no algorithm is used the maximum goodput is 480 Kbit/s.

The TCP le transfer delay shown in Figure 4(d) is consistent with the goodput results. The le transfer delay remains below 4
seconds until 500 Kbit/s for AFH and BIAS. It is 2 seconds higher when no algorithm is used. All delay curves take off sharply
when the offered load increased above 500 Kbit/s.

In summary, AFH improves the maximum Bluetooth goodput by 25%, while BIAS brings only a 14% improvement. It is im-
portant to point out that in this experiment the interference level remains the same for several minutes since the WLAN connection
is transmitting during the entire simulation time. Therefore, the throughput advantage brought by AFH can be further increased as
the communication overhead is kept low and the channel update interval is increased to several hundred seconds. Had the WLAN
traf c been more bursty, additional packet loss could have been incurred with AFH, and the throughput advantage may not have
been as signi cant. On the other hand, BIAS produces a lower packet loss due to its ability to avoid frequencies that have become
“bad” within a packet round trip time.

B. Effects on the Bluetooth Voice Application
While in the previous experiment, the objective was to maximize the throughput of an FTP connection, in this experiment the

goal is the minimize the delay and most importantly the delay jitter for a Bluetooth voice connection. We use the same parameters
used in Experiment 1 and replace the Bluetooth FTP connection with a voice connection as shown in Figure 3. Table II gives
the Bluetooth performance results collected on the desktop for d =1 m. The packet loss is 11%, 2.9% and 0.6% with None, AFH

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Chevrollier, & Rebala 121

TABLE II
EXPERIMENT 2: BLUETOOTH VOICE PERFORMANCE

BIAS AFH None
d=1 meter
Probability of Packet Loss 0.0064 0.0294 0.1101
Delay (seconds) 0.0832 0.0014 0.0018
Delay Jitter (seconds) 0.0770 0.0769 0.0767
Goodput (Kbit/s) 2.9096 2.9124 2.9197
d=3 meter
Probability of Packet Loss 0.0064 0.0155 0.0320
Delay (seconds) 0.0836 0.0015 0.0017
Delay Jitter (seconds) 0.0770 0.0764 0.0768
Goodput (Kbit/s) 2.9109 2.9332 2.9189

and BIAS respectively. Note that the delay jitter is around 76 ms with all three schemes. On the other hand, the delay measured
with BIAS is 83 ms, while it is 14 and 18 ms with AFH and None respectively. This result points out the main disadvantage of
BIAS in terms of increasing the access delay while lowering the packet loss. However since the delay jitter obtained with BIAS is
comparable to what is obtained with AFH and None, then BIAS is still a viable option for voice applications.

The results for d=3 meters are consistent with the discussion presented earlier. In this case the packet loss is lower than with d=1
m since the Bluetooth receiver and the WLAN transmitter are further apart.

C. Effects on the WLAN Performance
Although the interference mitigation schemes presented mostly impact the performance of Bluetooth, it is equally important to

consider any effects on the WLAN performance. Before we discuss the effects of the algorithms implemented for Bluetooth on the
WLAN, it is important to keep in mind that in the simulation setup used, the WLAN node that is close to the Bluetooth piconet
is mainly functioning as a transmitter of data packets and not a receiver. Thus, the impact of the Bluetooth interference is not as
signi cant since the WLAN node only receives short ACK packets. Figure 4(b) shows the WLAN packet loss observed on the
WLAN receiver located on the laptop computer. When no interference mitigation algorithm is implemented for Bluetooth, the
packet loss is 17% and 10% at a distance of 1 and 3 meters respectively. The packet loss when AFH is implemented drops to 7%
and 5% at d=1 and 3 m respectively. The packet loss is less than 1% with BIAS. Note that, we expect the packet loss to be more
signi cant with None and AFH (up to 30% and 15% respectively) when the WLAN node is receiving long packets.

In summary, BIAS not only gives the lowest packet loss results for Bluetooth, but is also a neighbor friendly strategy for WLAN.
Since “bad” frequencies can be avoided quickly that reduces the packet loss for both Bluetooth and WLAN.

VI. CONCLUDING REMARKS

In this paper, we study the use of interference mitigation techniques for Bluetooth when operating in close proximity to WLAN
systems. We consider a backoff strategy (BIAS) for Bluetooth that avoids the transmission of packets in the WLAN spectrum.
We also look at adapting the Bluetooth frequency hopping pattern (AFH) in order to avoid the WLAN spectrum. The former
method does not require any changes to the Bluetooth speci cations. On the other hand, changing the frequency hopping pattern
requires changes to the Bluetooth speci cations. The two techniques considered capture the range of solutions considered for the
interference problem in the 2.4 GHz band.

Furthermore, while BIAS can be viewed as an intermediate or a temporary x to the problem, AFH is expected to be part of
the next generation Bluetooth speci cations and perhaps chipsets if interoperability issues with legacy devices do not hinder its
deployment and rapid market acceptance. However, taking a step back from speculative market analysis and technology hypes, our
goals in this paper are to examine some of the strategies available for users and vendors and discuss the performance implications
and trade-offs they bring.

A summary of our ndings is as follows. First, an obvious trade-off lies in terms of communication overhead, and perfor-
mance improvement. Although partially explored in this study by imposing a synchronization interval, dynamic scenarios where
the WLAN interference is intermittent may be dif cult to track using AFH. This is probably due to limitations imposed by the
communication overhead. The main dif culty is having to dynamically communicate the changes to all slaves in the piconet in
order to keep the synchronization. Nevertheless, the use of AFH in environments where the level of interference does not change
often, brings additional performance improvements. More speci cally , AFH maximizes the throughput for bandwidth hungry ap-
plications such as FTP, most le sharing, synchronization applications where the packet loss requirement is not as stringent. On
the other hand, the bene ts of AFH may not be as obvious for delay jitter and packet loss constrained applications such as voice
and video, where packets are never retransmitted and the packet interarrival time is required to be relatively constant. For those
applications, BIAS seems to give better performance results, mainly negligible packet loss and low delay jitters.

Finally, our results strongly suggest that no single technique could optimize performance for all scenarios and applications.
Perhaps, combining BIAS and AFH could lead to widening the solution space and applying an appropriate technique for each
scenario and application considered.

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Chevrollier, & Rebala 122

REFERENCES

[1] Bluetooth Special Interest Group, “Speci cations of the Bluetooth System, vol. 1, v.1.0B ’Core’ and vol. 2 v1.0B ’Pro les’, ” December 1999.
[2] IEEE Std. 802-11, “IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Speci cation ,” June 1997.
[3] Federal Communications Commission, “Title 47, Code for Federal Regulations, Part 15,” October 1998.
[4] IEEE 802.15.2-2003, “IEEE Recommended Practice for Information Technology -Part 15.2: Coexistence of Wireless Personal Area Networks with Other

Wireless Devices Operating in the Unlicensed Frequency Bands,” 2003.
[5] J. Lansford, A. Stephens, and R. Nevo, “Wi-Fi (802.11b) and Bluetooth: Enabling Coexistence,” in IEEE Network Magazine, Sept/Oct. 2001, vol. 15, pp.

20–27.
[6] B. Treister, A. Batra, K.C. Chen, O. Eliezer, “Adapative Frequency Hopping: A Non-Collaborative Coexistence Mechanism,” in IEEE P802.11 Working

Group Contribution, IEEE P802.15-01/252r0, Orlando, FL, May 2001.
[7] N. Golmie, “Bluetooth Dynamic Scheduling and Interference Mitigation,” in to appear in ACM Mobile Network, MONET, 2004.
[8] Carla F. Chiasserini, and Ramesh R. Rao, “ Coexistence mechanisms for interference mitigation between IEEE 802.11 WLANs and bluetooth ,” in Proceedings

of INFOCOM 2002, 2002, pp. 590–598.
[9] N. Golmie, “Bluetooth Adaptive Frequency Hopping and Scheduling,” in Proceedings of MILCOM’03, Boston, MA, October 2003.
[10] N. Golmie, R.E. Van Dyck, A. Soltanian, A. Tonnerre, and O. Rebala, “Interference Evaluation of Bluetooth and IEEE 802.11b Systems,” in ACM Wireless

Network, WINET, Vol. 9, pp. 200-211, May 2003.
[11] A. Kamerman, “Coexistence between Bluetooth and IEEE 802.11 CCK: Solutions to avoid mutual interference,” in IEEE P802.11 Working Group Contribu-

tion, IEEE P802.11-00/162r0, July 2000.

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Chevrollier, & Rebala 123

0

0.05

0.1

0.15

0.2

0 100 200 300 400 500 600 700 800

Pa
ck

ets
 lo

ss

Offered Load (Kbit/s)

None-1m
AFH-1m

Scheduling-1m
None-3m
AFH-3m

Scheduling-3m

0

0.05

0.1

0.15

0.2

0 100 200 300 400 500 600 700 800

Pa
ck

ets
 lo

ss

Offered Load (Kbit/s)

None-1m
AFH-1m

Scheduling-1m
None-3m
AFH-3m

Scheduling-3m

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700 800

TC
P

Go
od

pu
t (

Kb
it/s

)

Offered Load (Kbit/s)

None-1m
AFH-1m

Scheduling-1m
None-3m
AFH-3m

Scheduling-3m
0.01

0.1

1

10

100

0 100 200 300 400 500 600 700 800

TC
P

De
lay

 (s
ec

on
ds

)

Offered Load (Kbit/s)

None-1m
AFH-1m

Scheduling-1m
None-3m
AFH-3m

Scheduling-3m

Fig. 4. (a) (b)
(c) (d)

Experiment 1. (a) Bluetooth Probability of Packet Loss (b) WLAN Probability of Packet Loss (c) Bluetooth Goodput (Kbit/s). (d) Bluetooth

TCP Delay (seconds)

Networking for Pervasive Computing NIST Special Publication 500-259

Golmie, Chevrollier, & Rebala 124

SUMMARY OF CONTRIBUTIONS TO WLAN-WPAN TECHNOLOGY

As part of the ITL research program in networking for pervasive computing, NIST researchers published
an expansive, coherent, and focused evaluation of interference between WLAN and WPAN technology.
The published results were expansive in the sense that they covered physical, access control, transport,
and application layers, coherent in the sense that they considered a selected set of topologies likely to
reveal useful findings, and focused in the sense that they investigated specifications for the most
commonly deployed WLAN (IEEE 802.11b DSSS) and WPAN (Bluetooth) technologies. NIST
researchers provided convincing evidence that interference could be quite a problem for proximal WLAN
and WPAN devices. NIST researchers helped to form and then lead an IEEE 802.15 task group to
consider possible coexistence strategies for WLAN and WPAN technologies. The interference results
published by NIST researchers provided insights into a range of techniques for interference mitigation.
NIST researchers investigated both physical layer approaches (such as receive filtering, adaptive power
control, and rate scaling) and access-control approaches (such as adaptive frequency hopping and
interference-aware scheduling) in isolation and combination. The findings from NIST researchers were
conveyed to the IEEE 802.15 task group that considers wireless coexistence strategies, and variants of
approaches proposed by NIST researchers were adopted in selected standards. As specific industry
segments, such as healthcare providers, consider adoption of wireless WLAN and WPAN technologies,
the evaluation approaches pioneered by NIST researchers could be applied to estimate likely interference
problems and to investigate the properties of various coexistence strategies.

Networking for Pervasive Computing NIST Special Publication 500-259

125

FIRST-GENERATION SERVICE DISCOVERY SYSTEMS

Software systems are evolving to a so-called network-centric (or net-centric) form, where distributed
components are composed together dynamically and then cooperate to provide information processing in
support of application requirements. This mode of operation is projected to occur throughout a pervasive
computing environment, as software components acting on mobile computing devices communicate over
a wireless network to rendezvous and configure into component collections in support of user needs.
Once configured, component collections must monitor themselves, detect component failures, and then
discover and configure replacement components. Various groups in the information-technology industry
have conceived of software infrastructures to provide these functions (of discovery, configuration, and
monitoring) in the form of libraries that can be used generally by distributed components. For example,
engineers and researchers at Sun Microsystems conceived JiniTM Networking Technology to provide
service discovery support for Java components. In addition, a team of engineers meeting in the Internet
Engineering Task Force (IETF) designed and specified the Service Location Protocol (SLP) to provide
service discovery functionality for Internet applications. Further, a group of designers and engineers from
Microsoft and Intel devised a set of protocols and description techniques, later standardized under the
auspices of the Universal Plug-and-Play (UPnP) Forum, to extend plug-and-play technology to
encompass local-area networks. Several industry groups also develop service discovery technology that is
more narrowly construed. For example, the Home Audio Video interoperability (HAVi) protocol provides
service discovery for home entertainment and multimedia applications connected over IEEE 1394
(Firewire) networks. In addition, the Bluetooth Consortium specified a service discovery protocol that
operates over top Bluetooth (or IEEE 802.15) wireless networks. Further, the Salutation Consortium
defined a vertically integrated service discovery system to support office automation and related devices,
such as copiers and fax machines. The fact that numerous competing designs have appeared indicates a
substantial industry interest in using dynamic service discovery as a means to deploy and evolve
component-based technology for pervasive computing.

Two key questions arise when considering the potential for service discovery technologies to
revolutionize our ability to deploy and configure components and services in pervasive computing
applications. First, what behavioral and performance characteristics should users expect from the current
generation of designs for service discovery systems? Second, what techniques might be used to improve
the performance of the current generation of service discovery systems? These questions are addressed in
the following set of thirteen papers that document findings by researchers in the Information Technology
Laboratory at NIST. The papers divide naturally into two sets. Seven papers (Paper #15 through #21)
characterize the behavior and performance of designs for the first-generation of service discovery
protocols. The majority of the papers focus on robustness of the designs while supporting several
applications (e.g., information dissemination and real-time control) when subjected to various failures,
such as message loss, communication failure, node failure, and power failure. One paper (#20) aggregates
all failure-related results, providing a single characterization of failure response for the three major
designs for service discovery systems. Another paper (#21) provides a complete model-based analysis and
comparison of the major designs along several dimensions: functionality, structure, scalability, and
service guarantees. A set of six papers (Paper #22 through #27) investigates various self-adaptive
algorithms that could be implemented to improve the scalability, responsiveness, and fairness of service
discovery systems. These algorithms may become key assets in pervasive computing environments,
where the number of communication components can vary over a wide range within a short time.

Networking for Pervasive Computing NIST Special Publication 500-259

126

BEHAVIORAL AND PERFORMANCE CHARACTERIZATION OF DISCOVERY SYSTEMS

The designs for various service discovery systems share a similar logical structure. All service discovery
systems encompass at least three component types: a service user (SU) and a service provider (SP) and
supporting service manager (SM). Component instances communicate via messages exchanged over a
network. Each SU attempts to discover available SPs. Each SM advertises the availability of a set of one
or more associated SPs. The primary objective of a service discovery system is to enable a SU with
specific requirements for some service to rendezvous with any available SP that satisfies those
requirements. The secondary objective of a service discovery system is to enable all components to
monitor the availability and characteristics of other available components. This secondary objective
allows, for example, a SU to determine when a new SP satisfying some requirements arrives, or to learn
when a previously discovered SP is no longer available or has altered characteristics.

Designs for service discovery systems generally encompass one of three architectures. In a two-
party architecture a SU can discover an available SP directly from a SM, which acts as a proxy for the SP.
In a three-party architecture a SU must first discover another component, the service cache manager, or
SCM, and then query that component for any available SPs. This implies that SMs will also discover
SCMs on behalf of associated SPs and then deposit and maintain (on the SCMs) descriptions of the SPs.
In an adaptive architecture the SUs and SMs operate in a three-party mode unless or until no SCMs can
be discovered, after which the SUs and SMs switch to a two-party mode of operation. In general, when a
system operates without interfering failures, any of the architectures should offer reasonable robustness.
On the other hand, will the various architectures offer similar robustness when subjected to failures that
could arise in a distributed system?

Numerous types of failure can interfere with the operation of a distributed system. For example,
message losses could cause processes to exchange only partial information, and might also lead to
situations where some communicating processes are unsure about the state of the information received by
corresponding processes. More pernicious results could arise when a partial communication failure, of a
transmitter or receiver, affects all communicating processes on a node. On the other hand, individual
nodes could fail, taking down all processes on the node, or individual processes may fail or become
subverted on particular nodes. Even more routine failures, such as power loss and restoration, present
challenges for distributed systems.

Another factor may well complicate the failure response of particular service discovery systems.
Service discovery systems consist of general middleware functions implemented to support application-
specific logic. This implies that some failures will be resolved, if possible, by the service discovery
functions, while other failures will be referred to the application software for resolution. For this reason,
any fair assessment of the robustness of designs for service discovery systems must compare the designs
not only under identical failure scenarios but also under identical application-specific processing, and
related assumptions.

For all service discovery architectures modeled for the work reported in this publication, the
NIST researchers provide identical failure models and application-specific processing. Further, where
specifications permit, the researchers strive to configure the various service discovery protocols with
parameter values that yield similar behavior. In addition, the models incorporate identical assumptions
about characteristics of the underlying protocols – either the transmission-control protocol (TCP) or the
unicast and multicast versions of the user datagram protocol (UDP) – used to exchange messages among
service discovery processes. The goal of this modeling approach is to eliminate behavioral and
performance differences that could be attributed to differences in failure models, application models,
protocol configuration, and communication mechanisms. Under this regime, any evident performance
differences should be due to differences in system architecture and protocol design.

All the models underlying the results reported in this publication represent multiple, independent
nodes that execute an application supported by service discovery middleware and also by communication
protocols. The service discovery middleware is modeled as a collection of independent processes, each

Networking for Pervasive Computing NIST Special Publication 500-259

127

supporting some service discovery function. Application-specific logic is modeled as a process separate
from, but interacting with, the service discovery processes. Processes within each modeled node
communicate using an appropriate protocol (either TCP or unicast or multicast UDP, depending on the
particular process and system design) over a communication channel with similar transmission and
propagation delays.

Along with developing simulation models for various service discovery systems, applications,
and supporting communication protocols, the NIST researchers had to devise metrics to compare behavior
and performance. This required some degree of innovation because the literature did not previously
contain any comparisons of the behavior and performance of service discovery systems. For this reason,
each of the following papers defines the specific performance metrics used to compare system behavior.

In Paper #15, “Analyzing Properties and Behavior of Service Discovery Protocols Using an
Architecture-Based Approach”, Dabrowski and Mills define a partial set of consistency conditions that
they believe a service discovery system should strive to achieve, and then they show some scenarios
under which the design for one service discovery system fails to provide the specified consistency. The
paper is motivated by the fact that no extant designs for service discovery systems provide a specification
of consistency goals. By proposing some consistency goals and then showing how a model of a service
discovery system can be evaluated against those goals, Dabrowski and Mills suggest a concrete approach
to improve the specification, design, and testability of service discovery systems (and distributed systems
in general). In this case, the authors uncover some specification ambiguities and omissions that could lead
to feature interference and race conditions. The researchers also show, using a power-outage-and-restart
scenario, how the same model used to assess logical properties can be employed to investigate
performance characteristics, at least for relatively small topologies. Because the results reported in this
paper were obtained using a model constructed with an architecture-description language (ADL), the
authors close with a critique of the use of such models.

In Paper #16, “Understanding Consistency Maintenance in Service Discovery Architectures
during Communication Failure”, Dabrowski, Mills, and Elder study the ability of selected designs for
service-discovery protocols to maintain consistency in a distributed system during catastrophic
communication failure (e.g., jamming). The researchers use an architectural-description language, called
Rapide, to model two different architectures (two-party and three-party) and two different consistency-
maintenance mechanisms (polling and notification). The paper investigates performance differences
among combinations of architecture and consistency-maintenance mechanism as communication-failure
rate increases. The paper reports system performance along three dimensions: (1) update responsiveness
(How much latency is required to propagate changes?), (2) update effectiveness (What is the probability
that a node receives a change?), and (3) update efficiency (How many messages must be sent to propagate
a change throughout the topology?). The paper reveals lower than expected update effectiveness for the
notification mechanism over failure rates from 5% to 35%. This performance deficiency arises when
temporary failures block dissemination of notifications, which rely upon retransmission within TCP,
leading to a remote exception. The service discovery systems investigated do not persist in attempts to
deliver notifications, but instead seem to assume that the communications failure will be detected and
recovered by other discovery processes. This assumption proves unwarranted in the 5%-35% range of
failure rates.

In Paper #17, “Understanding Consistency Maintenance in Service Discovery Architectures in
Response to Message Loss”, Dabrowski, Mills, and Elder study the ability of selected designs for service-
discovery protocols to maintain consistency in a distributed system during severe message loss. This
paper uses the same models and experiment design employed in Paper #16, except that they replace
communication-failure rate with message-loss rate. Again, the researchers model two different
architectures (two-party and three-party) and two different consistency-maintenance mechanisms (polling
and notification). The paper characterizes performance (update responsiveness, effectiveness, and
efficiency) differences among combinations of architecture and consistency-maintenance mechanism as
message-loss rate increases. All the systems studied prove remarkably robust, providing substantial
(>85%) update effectiveness even as the message-loss rate reaches 85%. The paper also finds that update

Networking for Pervasive Computing NIST Special Publication 500-259

128

responsiveness is better at lower (<25%) message-loss rates when using notification, but polling proves
better at higher (>25% and < 85%) message-loss rates. Notification also yields lower update effectiveness
in the range of 25%-85% message-loss rate. Beyond 85% message-loss rate the performance of all
architectures and mechanisms diminishes substantially.

In Paper #18, “Understanding Self-healing in Service-Discovery Systems”, Dabrowski and Mills
dissect the effectiveness of two failure-recovery mechanisms often embedded in distributed applications
supported by service discovery systems. The researchers quantify the proportion of update effectiveness
achieved through soft-state (heartbeat) mechanisms included in service discovery systems against the
proportion of update effectiveness that can be attributed to application-level persistence (retries). In
effect, this paper further examines the results reported in Paper #16 for the notification mechanism during
communication failure. The aim is to better understand when to rely on soft state and when to rely on
application-level persistence. The results suggest that soft state and application-level persistence provide
complementary recovery mechanisms when deployed in a two-party architecture. At lower (<30%) failure
rates, application persistence provides the most value, while soft state contributes most at higher failure
rates. The results also reveal that soft state and application persistence appear redundant when deployed in
a three-party architecture.

In Paper #19, “Performance of Service-Discovery Architectures in Response to Node Failures”,
Dabrowski, Mills, and Rukhin investigate the ability of selected designs for service-discovery protocols to
detect and recover from failure of remote services when used to support real-time distributed control
applications. The researchers model two architectures (two-party and three-party) underlying most
commercial service-discovery systems, and use simulation to quantify functional effectiveness
(proportion of time an application is functional) and efficiency achieved by each of the architectures as
the rate of failure increases among remote services. The results suggest that a two-party architecture
yields better robustness than a three-party architecture. The paper also decomposes non-functional periods
into failure-detection latency and restoration latency, which reveals that for the two-party architecture
80% of non-functional periods are due to failure-detection latency. For the three-party architecture
failure-detection and restoration latency each compose about 50% of non-functional periods. This occurs
because the three-party architecture depends upon the presence of SCMs; thus, is unable to recover a lost
service until at least one SCM is operational.

In Paper #20, “Failure Response in First-Generation Service Discovery Systems”, Dabrowski,
Mills, and Quirolgico compile and present a comprehensive collection of simulation results that
characterize the performance of multiple architectures (two-party, three-party, and adaptive) operating
under a range of failure scenarios (node failure, communications failure, message loss, and power failure
and restart) in selected applications (real-time distributed control, information dissemination, and
configuration recovery). On the one hand, this paper collects results previously reported individually in
Papers #15, #16, #17, and #19. On the other hand, this paper extends those results in several ways. First,
the paper includes an adaptive architecture for which no results have been reported previously. The paper
also reports for the first time the performance of the two-party architecture in the face of power failure
and restart. Second, the paper increases the number of experiment repetitions significantly to produce
performance graphs that exhibit much less noise than the graphs published in previous papers. The main
aim of this paper is to provide an archival set of results characterizing failure response for state-of-the-art
designs for first-generation service discovery systems.

In Paper #21, “A Model-based Analysis of First-Generation Service Discovery Systems”,
Dabrowski, Mills, and Quirolgico compare and contrast state-of-the-art designs for first-generation
service discovery systems. The approach, unique within existing literature, first constructs a generic
object-oriented meta-model and model (documented in the Unified Modeling Language, or UML) for the
domain of service discovery systems. The generic model is based on an analysis of representative
specifications for first-generation service discovery systems. The authors also identify a set of open issues
in existing designs. The authors demonstrate how their generic model can be used to represent specific
service discovery systems, including three – Universal Plug-and-Play (UPnP), Jini, and the Service
Location Protocol (SLP) –analyzed in creating the model, but also including two service discovery

Networking for Pervasive Computing NIST Special Publication 500-259

129

systems – the Web Services Dynamic Discovery and the Globus Monitoring and Discovery Service
(MDS) – not analyzed in creating the model. Beyond an analysis of the structure and behavior of first-
generation service discovery systems, the authors consider two other issues. First, the authors identify
three classes of performance concerns that might arise in first-generation service discovery systems, and
they suggest a range of solutions that implementers could adopt to solve each issue. Second, the authors
propose a set of service guarantees that they believe service discovery systems should aim to achieve, and
they provide a formal specification of those guarantees. The authors also make available a UML
description for the model described in the paper.

Networking for Pervasive Computing NIST Special Publication 500-259

130

Analyzing Properties and Behavior of Service Discovery Protocols
Using an Architecture-Based Approach

Christopher Dabrowski and Kevin Mills

National Institute of Standards and Technology
Gaithersburg, MD USA 20899
{cdabrowski, kmills} @nist.gov

Abstract

Current trends suggest that future software systems may
appear as collections of distributed components that
combine and recombine dynamically in response to
changing conditions. Such dynamic environments will
require new analysis approaches and tools for software
design. In this paper, we investigate an architecture-
based approach to evaluate and compare designs for
service discovery protocols operating under network and
node failures. We elaborate our approach, using Jini as a
specific example, and show how Jini can be analyzed
using Rapide, an Architecture Description Language
(ADL). Our analyses take two forms: property analysis
and event analysis. We use property analysis to
investigate robustness to dynamic change, while we use
event analysis to discern underlying causes of observed
behavior and performance. We evaluate how well Rapide
supported our modeling and analyses. We also
recommend improvements in ADLs to help test and
analyze designs for distributed systems.

1. Introduction

Numerous trends suggest that future software will
operate in an environment much more uncertain than
today’s typical client-server paradigm. Increased
deployment of wireless communications, implying greater
user mobility, coupled with proliferation of personal
digital assistants and other information appliances,
foretell a future where software components can never be
quite sure about the network connectivity available, about
the other software services and components nearby, or
about the state of the network neighborhood a few
minutes in the future. In the most extreme situations, as
found for example in military applications [1], software
components composing a distributed system may find that
cooperating components disappear due to physical or
cyber attacks or due to jamming of communication
channels or movement of computing platforms beyond
communications range. Even in less demanding
circumstances, increased use of computer chips, network
communications, and software to implement a growing
range of consumer appliances portends the need for
simple, self-contained units that, when powered on, can

discover their technical surroundings and then
automatically configure themselves into a larger system
that might already be deployed. Further, as the consumer
rearranges components in such a system, then the system
must automatically adapt its configuration as necessary.
Such environments demand new analysis approaches and
tools for software design, implementation, and testing.

Our work considers how one might rigorously assess
the robustness of distributed software systems in response
to dynamic change, such as process, node, and link
failures of both a temporary and permanent nature. More
particularly we seek techniques to test the behavior and
resilience of dynamic distributed systems, and to compare
and contrast various approaches to design such systems.
As a challenging application we investigate service
discovery protocols, which provide mechanisms for
rendezvous and robustness in the face of uncertainty.
Such mechanisms enable dynamic elements in a network:
1) to discover each other, 2) to express opportunities for
collaboration, and 3) to compose themselves into larger
collections that cooperate to meet an application need. In
this paper, we limit our analysis to Jini(tm)1 Networking
Technology, one of at least six service discovery
protocols [2]-[7] designed to date. Future papers will
consider additional discovery protocols.

We wish to address software robustness as early as
possible in the engineering lifecycle because the earlier a
design error can be uncovered, the lower the cost to
repair. For this reason, we use an Architectural
Description Language (ADL) [12]-[19] to transform
natural-language specifications into architectural models
that provide rigorous representation of system structure
and behavior. Such architectural models, coupled with
appropriate automated analysis tools, permit designers to
uncover and correct errors and omissions, and to clarify
ambiguities that would otherwise lead to incorrect
behavior, or to performance problems, after a
specification has been implemented and the resulting

1 Certain commercial products or company names are identified in

this report to describe our study adequately. Such identification is not
intended to imply recommendation or endorsement by the National
Institute of Standards and Technology, nor is it intended to imply that
the products or names identified are necessarily the best available for the
purpose.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski & Mills 131

software deployed. Architectural models also provide
significant advantages over less formal approaches when
comparing and contrasting alternate designs for dynamic
distributed systems, such as service discovery protocols.

Other authors compare various service discovery
protocols [8]-[11], [22], [24]. While instructive, these
comparisons exhibit significant limitations. For example,
existing comparisons are largely functional in nature and
informal in presentation. Such comparisons cannot
capture nor express a deep understanding of the
behavioral properties of the protocols, nor can these
comparisons uncover areas of ambiguity, inconsistency,
and incompleteness within the specifications. Further,
existing comparisons use concepts and terminology taken
from individual specifications. Since each specification
adopts a unique language for describing its design, it
becomes difficult to compare the designs directly. In
future work, we aim to contribute a more rigorous
comparison of three discovery protocols: Jini [4], UPnP
[3], and SLP [6].

The current study serves two purposes: 1) validate our
approach against the specification for Jini and 2) evaluate
the suitability of ADLs to model and analyze dynamic
distributed systems. To perform this study, we examined
several ADLs [12]-[19], selecting Rapide [12], an ADL
developed at Stanford University. Rapide specializes in
modeling architectures for real-time, distributed systems
and therefore represents behavior in a form suitable to
investigate discovery protocols. Rapide also comes with
an accompanying suite of analysis tools that can execute a
specification and can record and visualize system
behavior.

This paper reports our initial results with respect to
modeling and analyzing the Jini specification. The paper
is organized as five sections. First, we describe our
approach to model and analyze discovery protocols. We
provide a general architecture intended to encompass all
the protocols we studied. Using Jini as an example, we
illustrate how this architecture can be used to model a
specific protocol, and then how the model can be
converted to an executable specification, described using
Rapide. In the second section, Analysis Approaches, we
discuss the application of ADL tools to analyze logical
properties of our models, and in the process to uncover
specification deficiencies, and to assess the degree to
which the model satisfies selected consistency conditions.
Further, we show how behavior traces from our model
can be analyzed to produce quantitative metrics. In the
third section, we report and discuss the results obtained
from our initial analysis of Jini. We examine how well
our Jini model satisfies selected consistency conditions,
and we characterize the behavior and performance of Jini
with respect to particular scenarios. In the fourth section,
we assess our experiences using an ADL and related tools
to model and analyze Jini. We report our positive

findings, along with recommendations for improvements.
In the fifth section, we provide our conclusions and
outline future work.

2. Modeling with an Architecture-based
Approach

Most extant discovery protocols are specified
statically, using natural language, and supplemented with
reference software that provides one presumably
legitimate implementation of the specification. The static
specification expresses the appropriate behavior of system
components in reaction to particular events and
conditions. The reference implementation contains
incidental complexity needed to fit the protocol into a
software framework that includes various supporting
components. Typically, static specifications cannot be
used effectively to understand the dynamic behavior of
distributed systems. Such specifications do not express
collective behavior very well and often do not define
consistency conditions against which dynamic behavior
can be evaluated. Further, natural-language specifications
usually lack completeness, and suffer from ambiguities
and inconsistencies. On the other hand, reference
software includes complexity irrelevant to the
fundamental requirements of the specification. Further,
reference software typically will implement one particular
design choice in cases where a specification may allow
various alternatives.

To overcome these shortcomings, we adopted an
approach that entails the following general steps: 1)
construct an architectural model of each discovery
protocol, 2) identify and specify relevant consistency
conditions that each model should satisfy, 3) define
appropriate metrics for comparing the behavior of each
model, 4) construct interesting scenarios to exercise the
models and to probe for violations of consistency
conditions, and 5) compare the results from executing
similar scenarios against each model. Below, we elaborate
our approach, using Jini as a specific example, and show
how Jini can be modeled using Rapide, an Architecture
Description Language (ADL). We also discuss the Rapide
run-time, which converts our Jini model to an executable
specification. First, we introduce discovery protocols, and
define some consistent terminology that we can use to
build comparable architectural models.

2.1. Discovery Protocols in Essence

Discovery protocols enable software components to
find each other on a network, and to determine if
discovered components match their requirements.
Further, discovery protocols include techniques to detect
changes in component availability, and to maintain,

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski & Mills 132

within some time bounds, a consistent view of
components in a network. Many diverse industry
activities explore different approaches to meet such
requirements; leading to a variety of proposed designs for
service discovery protocols [2]-[7]. Some industry groups
approach the problem from a vertically integrated
perspective, coupled with a narrow application focus.
Other industry groups propose more widely applicable
solutions. For example, a team of researchers and
engineers at Sun designed a general service discovery
mechanism atop Java(tm), which provides a base of
portable software technology. The proliferation of service
discovery protocols motivates deeper analyses of their
designs. Beyond this, given the level of debate within the
industry, a comparative analysis can help to assess the
relative merits of particular protocols.

To help us compare protocols, we developed a general
UML (Unified Modeling Language) model, expressed
with a consistent terminology (see Table 1) that provided
a basis for the Rapide architectural model. The main
components in our general model include: 1) service
manager (SM), 2) service user (SU), and 3) service cache
manager (SCM), where the service cache manager is an
optional element not supported by all discovery protocols.

Table 1. Mapping Concepts Among Various Discovery Protocols.

Service RegistrationDevice/Service DescriptionService ItemService Description

Directory Service Agent
(optional)

not applicableLookup ServiceService Cache Manger

Service URL
Service Type
Service Attributes
Template URL
Template URL

Universal Unique ID
Device/Service Type
Device/Service Schema
Presentation URL
Control/Event URL

Service ID
Service Type
Attribute Set
Service Applet
Service Proxy

Identity
Type
Attributes
User Interface
Program Interface

ServiceDevice or ServiceServiceService Provider

Service AgentRoot DeviceService or
Device Proxy

Service Manager

User AgentControl PointClientService User

SLPUPnPJiniGeneric Model

Service RegistrationDevice/Service DescriptionService ItemService Description

Directory Service Agent
(optional)

not applicableLookup ServiceService Cache Manger

Service URL
Service Type
Service Attributes
Template URL
Template URL

Universal Unique ID
Device/Service Type
Device/Service Schema
Presentation URL
Control/Event URL

Service ID
Service Type
Attribute Set
Service Applet
Service Proxy

Identity
Type
Attributes
User Interface
Program Interface

ServiceDevice or ServiceServiceService Provider

Service AgentRoot DeviceService or
Device Proxy

Service Manager

User AgentControl PointClientService User

SLPUPnPJiniGeneric Model

These components participate in the discovery,
registration, and consistency maintenance processes that
comprise dynamic discovery protocols. A service
manager maintains a database (Service Repository) of
records (Service Descriptions, or SDs), where each record
describes the essential characteristics of a particular
service or device (Service Provider, or SP). Each SD
contains the identity, type, and attributes that characterize
a SP. Each SD also provides up to two interfaces (an
application-programming interface and a graphic-user
interface) to access a service. Table 1 shows how these
general concepts map to specific concepts for Jini, UPnP,
and SLP. Since the paper uses Jini as an example, we
provide a brief synopsis.

2.2. Jini in Brief

Upon startup, a Jini component (SU, SM, or SCM)
engages in a discovery process to locate other, relevant
Jini components within the network neighborhood. To
oversimplify things: 1) SMs attempt to discover relevant
SCMs with which to register a SD for each SP managed
and 2) SUs attempt to discover relevant SCMs to query
for SDs that lead to desired SPs. In other words, SUs and
SPs rendezvous through SDs registered by SMs with
particular SCMs, where the SCMs are found through a
discovery process.
 2.2.1. Jini Discovery. Jini encompasses two discovery
modes, multicast and directed, supported by three
discovery processes, which we call aggressive, lazy, and
directed. Both aggressive and lazy discovery involve
multicast communication among Jini components
participating in two multicast groups. Upon initiation, a
Jini component enters aggressive discovery, where it
transmits probes at a fixed interval for a specified period,
or until it has discovered a sufficient number of SCMs.
Upon cessation of aggressive discovery, a component
enters lazy discovery, where it listens for announcements
sent at intervals by SCMs. This implies that during lazy
discovery a SCM both listens for announcements by other
SCMs and sends its own announcements at the required
intervals. Figure 1 gives a simplified illustration of the
two Jini discovery modes, and the three supporting
processes.

During aggressive discovery, probes sent by Jini
components identify interest in one or more
administrative scopes, which Jini calls groups; probes
also contain a list of SCMs already discovered by the Jini
component. Each SCM must reply to a probe only when
the list of groups contained within the probe intersects
with the SCM’s own list of groups in which it is a
member, and also provided that the probe does not
indicate that the SCM has already been discovered. Once
a relevant SCM is discovered, the discovering component
requests an application-programming interface (API) that
enables the component to interact with the SCM.

Lazy discovery operates similarly. Announcements
sent by SCMs identity group membership. A Jini
component requests an API from an announcing SCM
when the following conditions hold: 1) the group
membership of the SCM intersects with the groups of
interest to the component, 2) the component has not
already discovered the SCM, and 3) the component has
not already discovered enough SCMs. Receipt of an API
from the SCM ends the discovery process between the
component and the SCM.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski & Mills 133

SU, SM, or
SCM

SCM API

Request SCM API

Probe groups() SCMs ()

TCP Connect

AGRESSIVE DISCOVERY

SCM

LAZY DISCOVERY

Announce groups()

TCP Connect

SCM API

Request SCM API

DIRECTED DISCOVERY

TCP Connect

SCM API

Request SCM API

M
ul

tic
as

t
M

od
e

D
ire

ct
ed

M
od

e

Fig. 1. Jini has two discovery modes (multicast and directed) that
encompass three discovery processes. In multicast mode, aggressive
discovery is initiated on node startup, and then lazy discovery begins
after aggressive discovery completes. In directed mode, directed
discovery is used to look for specified SCMs.

Directed discovery operates differently from multicast
discovery. Each Jini component may be given a specific
list of SCMs to discover. For each SCM on the list, a Jini
component establishes a connection and requests an API.
Should the SCM prove unavailable, the component can
continue to retry connecting. As explained later,
ambiguities regarding interaction between directed and
multicast discovery lead to several problems for the Jini
specification.

 Once a Jini component obtains an API from a SCM, the
component can use the API to access services provided
by the SCM. To allow the component and the SCM to
reside on different network nodes, the API must use a
communication protocol, such as Java Remote Method
Invocation (RMI)2, which enables the component to
access SCM services as if they resided within the same
Java Virtual Machine (JVM). In general, SCM services
can be classified as registration and consistency
maintenance, which Jini refers to as leasing.

2.2.2. Jini Registration. A SM holds a SD for one or
more SPs. The SM must register each of these SDs with
each SCM discovered. As part of the registration request,
the SM asks that the registration remain valid for some
duration. If the SCM agrees to add the SD to its set of
registered services, then the SCM grants a lease time (not

2 Jini does not require the use of any particular technique for remote
procedure calls. In this paper, we use RMI for illustrative purposes.

more than requested) and returns a service item and lease
to the SM. Once a SD is registered with a SCM, SUs can
discover the existence of the related SP by querying the
SCM, or by receiving notifications from the SCM. Before
receiving notifications, a SU must register notification
requests with a SCM. A SU can register a request that a
SCM notify the SU whenever the SCM adds, deletes, or
changes a SD of interest. As with service registrations,
notification requests will be maintained by a SCM only
for an agreed time (the lease period).

2.2.3. Jini Consistency Maintenance. In a distributed
system, new services and devices can be deployed,
obsolete services and devices can be removed, and nodes,
processes, and links can fail. These facts imply that
replicated state, distributed throughout a system, can
become inconsistent. To time bound such inconsistencies,
Jini requires each SCM to periodically purge SD
registrations and notification requests. For this reason, a
SCM assigns a lease to each registration and notification
request. The lease indicates when the SCM plans to purge
the item. To prevent its removal by the SCM, the
registering component must renew the lease prior to the
purge time. In this way, if the registering component fails
(or the network path fails), then the SCM can, within a
bounded delay, remove reference to the item, and, when
appropriate, can notify other interested components. Once
the failure is resolved, the discovery and registration
processes can be restarted for the failed component, and
the previous state might be recovered eventually.

Interactions with SCMs provide another means for Jini
to maintain consistent state. Each component may register
some items with a SCM. In addition, leases for these
registered items must be renewed periodically. Whenever
a component attempts to invoke a SCM method across a
network the possibility exists for a remote exception.
Remote exceptions indicate that the corresponding SCM
(process or node) might have failed, or that the network
link between the component and the SCM might have
failed. A component is free to retry a method invocation,
and to give up after some period of time.

2.3. Complexity and Uncertainty

The foregoing discussion of Jini, while oversimplified,
highlights the inherent complexity and uncertainty
associated with discovery protocols. Complexity arises
from several sources. The protocol involves multiple
parties communicating across a network, which
introduces asynchrony, and which can also introduce
variable delays. Multiparty interactions can be quite
difficult to specify and understand. Further, the protocol
defines various operating modes that could potentially
interfere with one another, and each protocol entity
maintains independently operating behavioral threads,

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski & Mills 134

which implement features that can interact in
unanticipated ways.

Uncertainty also arises because nodes, processes, and
links can appear and disappear without warning.
Discovery protocols must include behavior to cope with
such changes. The coping behavior itself can exhibit
unexpected interactions with the already complex
behavior defined to implement multiparty
communication. Together, this complexity and
uncertainty discourage protocol designers from
attempting to specify the properties of a particular
discovery protocol. Yet, we desire to compare and
contrast the protocols based on such properties. This
conundrum led us to the idea of constructing an
architectural model for each discovery protocol, and
using the models to investigate various properties.

2.4. An Architectural Model for Jini

Broadly speaking, an architectural model comprises a
set of components, and the connections among them,
along with the relationships and interactions among the
components. In our application, an architectural model
expresses structure (as components, connections, and
relations), interfaces (as messages received by
components), behavior (as actions taken in response to
messages received, including generation of new
messages), and consistency conditions (as Boolean
relations among state variables maintained across
different components).

Figure 2 depicts the top level of our Jini architecture
that was realized in Rapide. This architecture consists of
three component types (SU, SM, and SCM) together with
three connection types: Aggressive Discovery Multicast
Group (ADMG), Lazy Discovery Multicast Group
(LDMG), and Remote Method Invocation Unicast Link
(RMIUL). Only one instance each can exist for the
LDMG and ADMG but the SU, SM, SCM, and RMIUL
can be instantiated as multiple instances. Each SU, SM,
and SCM resides on a network node and participates in
service discovery, registration, and consistency
maintenance. To perform these functions, each type of
Jini component is decomposed into subcomponents (not
described in this paper due to lack of space). Jini
components use the ADMG to distribute probes to any
SCMs listening. SCMs use the LDMG to distribute
announcements to any Jini component listening. When
asked to engage in directed discovery, a Jini component
uses one RMIUL to contact each SCM on its directed-
discovery list. To invoke methods on a specific SCM, a
Jini component must use an appropriate RMIUL.

We implement SMs, SCMs, and SUs, as Rapide
interfaces. We define connections, also implemented as
Rapide interfaces, to link Jini components that exchange
events. We use Rapide services to constrain the event

types allowed on each connection. We model two classes
of connection: 1) fan-out multicast links (ADMG and
LDMG) for discovery and 2) unicast links (RMIUL) for
directed discovery and for remote-method invocation.
 Modeling connections as Rapide interfaces allows the
links to encapsulate logic: 1) to control link state (up or
down) and 2) to send appropriate remote exceptions in
response to events sent over a failed link. The remote
exception logic proves significant because some events
require remote exceptions to be sent in one direction,
while other events require bi-directional remote
exceptions. Since nodes may come up or go down at any
time, our model also includes specific events to start and
stop nodes. As we discuss later in Section 5, these
requirements have implications for how ADLs should
model connections.

Remote Method Invocation

Unicast Links

Lazy Discovery Multicast Group

Service
Manager

Service
User

Service
Cache

Manager

Aggressive Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy Discovery Multicast Group

Service
Manager
Service

Manager

Service
User

Service
User

Service
Cache

Manager

Service
Cache

Manager

Aggressive Discovery Multicast Group

Fig. 2. Our top-level architecture models a distributed Jini by using two
multicast groups and a set of unicast links to connect Jini components
into a topology.

3. Analysis Approach

 Our specification analyses take two forms: property
analysis and event analysis. Both depend upon Rapide’s
ability to execute a specification and to generate events.
We use property analysis to investigate robustness to
dynamic change, including network failure. Property
analysis also provides insight into processes defined in a
protocol specification, and helps to identify ambiguity,
inconsistency, incompleteness, and other flaws. Event
analysis examines Rapide POSETs (partially ordered sets
of events exchanged among components) to discern
underlying causes of observed behavior and performance,
and especially to assess the protocol’s capacity to recover
from network disruption. We also use event analysis to
understand circumstances surrounding specific protocol
design issues, such as race conditions. Property and event
analysis can be used together to evaluate a protocol’s
resilience in the face of network failure. We also suspect
that POSETs can provide a basis for complexity metrics,

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski & Mills 135

another dimension along which we expect to compare
discovery protocols. Our current work has not developed
such complexity metrics. Below, we describe our use of
Rapide to analyze properties and behavior of Jini.

3.1. Property Analysis

 To implement property analysis we define consistency
conditions and then use the Rapide constraint language to
express the negation of each consistency condition. If a
negation is satisfied, then Rapide has detected an
inconsistency. We stimulate periodic events, called
consistency probes, which retrieve values from the
internal state variables of appropriate components. At
each probe interval Rapide checks for the presence of an
inconsistency. In general, discovery protocols attempt to
guarantee time-bounded inconsistency. Our analysis
strives to verify such guarantees. We also seek to identify
unbounded inconsistencies, which persist indefinitely.
Unbounded inconsistencies suggest areas of a
specification, or protocol design, which merit further
attention. Below we give some examples of consistency
conditions. In Section 4, we discuss circumstances in our
Jini model where these consistency conditions do not
hold.
 We posited the quality of service that users might
expect from discovery protocols. Then we defined these
ideas as consistency conditions that specify relationships
a protocol should strive to maintain among state variables
across interacting components. In this paper, we define
selected consistency conditions3 that should hold in the
absence of failures or other dynamic changes that could
permit the conditions to be violated for a transient period.
Several consistency conditions concern the SCM and the
SM. Analogous conditions could also be defined for the
SCM and the SU. For example, a SM can only register a
service description with a SCM it has discovered. This
can be expressed as the following consistency condition:

For All (SM, SD, SCM): (CC1)
 (SM, SD) IsElementOf SCM registered-services
 implies SCM IsElementOf SM discovered-SCMs

In our model, we express the negation of this consistency
condition as a Rapide constraint. Consistency probes
return the contents of each SM’s list of discovered SCMs
and of each SCM’s list of registered services. Rapide
checks various combinations of values for specific pairs
of SMs and SCMs at each probe time. When the negation
is true, an inconsistency exists.
 A second example consistency condition states that if a
SM has discovered a SCM and the SM has a SD for a

3 Consistency conditions we define here do not necessarily reflect the

intent of Jini’s designers.

service that it is managing, then the SM should have
registered the SD with the SCM. Here, a service is
managed if the SM is required to advertise its availability.
This may be expressed as:

For All (SM, SD, SCM): (CC2)
 SCM IsElementOf SM discovered-SCMs &
 (SD) IsElementOf SM managed-services
 implies (SM, SD) IsElementOf SCM registered-services

This consistency condition amounts to an inverse view of
CC1. This inverse view can catch specification issues that
CC1 would miss.
 A third example consistency condition states that if a
SM has discovered a SCM through multicast discovery
and has registered its services on that SCM, then there
should be an intersection between the list of groups the
SM is to join and at least one group in which the SCM
holds membership. This can be expressed as:

For All (SM, SD, SCM): (CC3)
 SCM IsElementOf SM discovered-SCMs &
 (SM, SD) IsElementOf SCM registered-services &
 NOT (SCM IsElementOf SM persistent-list)
 implies Intersection
 (SM GroupsToJoin, SCM GroupsMemberOf)

Reference to the absence of membership of the SCM in
the SM persistent list eliminates SCMs that the SM found
through directed discovery.

3.2. Event Analysis

 We use event analysis to understand underlying causes
for the observed behavior and performance of discovery
protocols. The general idea is to define a set of usage
scenarios that can be executed against the models of
several discovery protocols. Table 2 provides an excerpt
from a scenario we defined, and provides a sense of the
stimuli that can be simulated. While executing scenarios,
the Rapide run-time produces POSETs that provide a
basis for analyses. POSETs help us to understand
relationships among events, which trace back to specific
behavior in components, and to possible issues within a
specification. The POSETs may also be used to compute
simple metrics, such as number of events generated or
time taken by the model to transition between two
configurations of interest. To support such computation,
we insert performance probes at key points in the Rapide
model. Such probes can compute the desired
measurements, or can place markers in the POSET for
off-line computation. While event analyses can be applied
individually to specific protocols, greater value may
accrue in comparative analysis. Following we give
examples of some event analyses of interest.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski & Mills 136

Table 2. Sample Scenario Commands with Parameters and Intended
Execution Times.

SM4 SCM3 T ATT API GUI 20 30AddService50

SU8 5 1 2 S XYZ ALLFindService10

SM4 GROUP1GroupJoin10

SCM1 SM4LinkFail5

SM4NodeFail5

ParametersCommandTime

SM4 SCM3 T ATT API GUI 20 30AddService50

SU8 5 1 2 S XYZ ALLFindService10

SM4 GROUP1GroupJoin10

SCM1 SM4LinkFail5

SM4NodeFail5

ParametersCommandTime

 3.2.1. Identifying and Understanding Race
Conditions. Due to asynchronous processing and
associated delays in communications among components,
distributed systems often exhibit race conditions, where
system behavior can vary depending upon the order in
which events arrive at cooperating components. Though
such problems cannot always be eliminated, it remains
important to identify the existence of specific race
conditions so that application programmers can adopt
appropriate safeguards. We can use Rapide to find race
conditions by asserting and testing consistency
conditions. For example, consider the following:

For All (SM, SD, SCM, SU, NR): (CC4)
 (SU, NR) IsElementOf SCM requested-notifications &
 (SM, SD) IsElementOf SCM registered-services &
 Matches((SM, SD), (SU,NR))
 implies (SM, SD) IsElementOf SU matched-services

This consistency condition indicates that if a SU has
requested notification when a certain service (SM, SD)
registered at a SCM matches specified criteria, then the
SU should become aware of the matching service. While
the Jini specification does not guarantee CC4, we would
be interested to identify situations where the condition
does not hold. In such cases, we can analyze the POSET
to determine specific causes. In this way, we might
uncover race conditions that require an application
programmer to take particular care when using Jini’s
matching mechanisms.
 3.2.2. Measuring and Understanding Protocol
Performance. When comparing various discovery
protocols, we can use Rapide to define and compute
performance metrics, and then use POSET analysis to
investigate the underlying behaviors. Of course,
comparative performance must be considered in light of
selected scenarios of interest. For example, consider a
scenario where a major power failure occurs after the
discovery phase has completed, services and notification
requests are registered, and SUs have received SDs for
services that meet their requirements. During the failure,
most Jini entities lose some internal state: all nodes lose

discovered SCMs; SUs lose SDs for services previously
discovered; but SCMs and SMs must retain specified
persistent information. Upon power restoration, the Jini
components restart and recover. To assess recovery
performance we define two metrics, restoration latency
and restoration overhead, which measure the efficiency of
recovery in terms of total time and number of messages
generated before all SUs rediscover their original set of
SDs. Restoration latency covers node start-up delays,
transmission times, processor background workload, and
times for processing transaction data. Restoration
overhead includes all events exchanged by Jini
components from power up through complete restoration
of the desired state.

4. Selected Analysis of the Jini Service
Discovery Protocol

 In this section we discuss some results obtained
running scenarios against our Jini architectural model.
We were able to verify the robustness of Jini’s design in a
range of failure scenarios that are not presented here due
to lack of space. However, we found the Jini specification
unclear regarding interactions between multicast and
directed discovery. In particular, we could not discern
whether discovered SCMs should be kept on a single list
or whether SCMs found by directed discovery should be
kept on a separate list from SCMs found by multicast
discovery. We included both interpretations in our Jini
model, and we ran related scenarios to evaluate CC1 and
CC2. We also noticed that the Jini reference
implementation permits administrators to alter the
operation of a running SCM. We were interested to
consider if such changes could adversely affect a Jini
network, so we ran related scenarios to evaluate CC3.
Further, we discovered an apparent race condition that is
difficult to discern from reading the Jini specification, so
we ran scenarios to evaluate CC4. We also executed
selected scenarios to understand some performance
characteristics of Jini systems. Here, we discuss restart
from power failure. While the work described here
suggests some incompleteness and ambiguity (already
shared with Sun) in the Jini specification, our purpose is
to illustrate an architecture-based approach to model,
analyze, and compare service discovery protocols.
Regardless of any ambiguity and incompleteness
discussed here, overall we found Jini to operate as
specified.

4.1. Interfering Interactions between Directed
and Multicast Discovery

 The Jini specification permits a Jini component to
engage simultaneously in two modes of discovery:

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski & Mills 137

directed and multicast. However, the specification is
unclear with respect to issues that arise regarding
interactions between these two modes. This means that an
implementer must make some decisions, which can lead
to various difficulties. We identified decisions that cause
local interference between independent processes on the
same Jini node. We also found decisions that cause
independent processes on the same Jini node to interfere
with the node’s remote state on discovered SCMs. We
discuss these situations below.
 4.1.1. Local Interference. For the following
discussion, assume that the implementer decides to
maintain a single list of SCMs discovered by a SM.
Figure 3 illustrates (using a simplified description) what
occurs during a scenario where SM4 uses multicast
discovery to find SCMs in a Jini group (GROUP2).

Scenario SM4 SCM3

GroupJoin GROUP2

Found SCM3 GROUP2Discovered SCMs
(SCM3) Register SM4 SD1 Registered Services

(SM4, SD1)

AddSCM SCM3

GroupLeave GROUP2 Discover SCM3

Cancel SM4 SD1

Registered Services
()Found SCM3

Cancelled SM4 SD1

Discovered SCMs
(SCM3)

Discovered SCMs
()

+

+

+

-

- Register SM4 SD1 Registered Services
(SM4, SD1)+

CC1 Violated

Registered Services
()-

Lease Expired
SM4 SD1

Probe SM2 GROUP2

Consistency Restored

No Duplicates Allowed

Fig. 3. Example of local interference between directed and multicast
discovery modes.

In this case SM4 discovers SCM3, also a member of
GROUP2. Shortly after, SM4 is told to discover SCM3
(AddSCM) through directed discovery, and at the same
time SM4 is told to drop membership in GROUP2. The
resulting behavior leads to a time-bounded violation of
CC1, which states that a SD should not be registered on a
SCM if the SCM is not on the discovered list of the SM
managing the SD. The specific behavior follows.
 Through multicast discovery SM4 finds SCM3 and
adds it to the list of discovered SCMs. Subsequently,
SM4 is asked simultaneously to leave GROUP2 and to
discover SCM3. The group leave causes SM4 to first
cancel leases for SDs held on SCM3 and then to remove
SCM3 from its list of discovered SCMs. Between these
two events, SM4 uses directed discovery to find SCM3
and then attempts to add SCM3 to its list of discovered
SCMs. Since our model assumes that probes will be built

from the list of discovered SCMs, we decided not to
insert duplicate SCMs in that list.4 This rule is enforced
by the list maintenance function. Therefore, in Figure 3,
the second discovery of SCM3 is not added to the list of
discovered SCMs because it’s already there. Soon
thereafter, SM4 completes lease cancellation for SDs on
SCM3 and then removes SCM3 from its list of discovered
SCMs. In the meantime, the directed discovery process in
SM4 registers SDs with SCM3. At that point, CC1 is
violated, and remains so until the leases for the SM4 SDs
expire on SCM3.
 4.1.2. Remote Interference. Suppose that an
implementer decides to maintain SCMs discovered by
multicast and directed discovery on separate lists? In this
case, local interference disappears, only to be replaced by
a form of remote interference, where two discovery
processes within the same node independently manipulate
the state of SDs on SCMs. Figure 4 illustrates behavior
from a scenario that uncovers this problem through
violation of CC2, which states that services managed by a
SM must be registered on all discovered SCMs. In the
scenario, SM4 uses directed discovery to find SCM1.
Later SM4 is instructed to join GROUP1, which includes
SCM1. This causes a duplicate service registration, which
leads SCM1 to abrogate the existing lease for (SM4,
SD1). Subsequently, SM4 is told to leave GROUP1. In
the end, this causes SM4 to cancel leases for its SDs held
on SCM1, resulting in a situation where SCM1 is on the
list of SCMs discovered directly by SM4 but where the
SDs from SM4, which were originally registered through
the directed discovery action, are not now registered on
SCM1. Assuming that SM4 maintains a single
registration process, this violation of CC2 is unbounded
in time.

4.2. Insensitivity to Changes in Group
Membership by SCMs

 The Jini reference implementation includes an
interface that permits an administrator to alter parameters
associated with a running SCM. We mirrored this
behavior within our Jini model, and then exercised the
option to change group membership of a running SCM.
Figure 5 illustrates the relevant subset of a related
scenario. First, SM4 is instructed to join GROUP1, which
leads to the multicast discovery of SCM1 (a member of
GROUP1).
Subsequently, an administrator removes (AdminDelete
Group) SCM1 from membership in GROUP1. Once this
occurs, CC3 is violated because: (1) SM4 has found
SCM1 with multicast discovery, (2) SDs managed by
SM4 are registered with SCM1, and yet (3) SM4 and

4 Allowing duplicates on a single list leads to a number of other

problems, which are beyond the scope of the discussion here.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski & Mills 138

SCM1 have no common group membership. The
violation of CC3 continues in a time-unbounded form so
long as SM4 renews leases on SCM1.

 Scenario SM4 SCM1

GroupJoin GROUP1 Probe SM4 GROUP1

Discovered SCMs
MD()

DD (SCM1)
Register SM4 SD1

Registered Services
(SM4, SD1)

AddSCM SCM1

GroupLeave GROUP1

Discover SCM1

Registered Services
()

Found SCM1

Cancelled SM4 SD1

Discovered SCMs
MD (SCM1)
DD (SCM1)

Discovered SCMs
MD ()

DD (SCM1)

+

+

+

-

-

Register SM4 SD1

Registered Services
(SM4, SD1)+

CC2 Violated

Registered Services
()-

Found GROUP 1 SCM1

Cancel SM4 SD1

Fig. 4. Example of remote interference between directed and multicast
discovery modes

 Scenario SM4 SCM1

GroupJoin GROUP1
Probe SM4 GROUP1

Groups To Join
(GROUP1)

Registered Services
(SM4, SD1)AdminDeleteGroup GROUP1

Group Membership
(GROUP1, GROUP2)+

+

Register SM4 SD1
+

CC3 Violated

-

Found GROUP 1 SCM1

Group Membership
(GROUP2)

Discovered SCMs
MD (SCM1)

DD ()

Groups To Join
(GROUP1)

Fig. 5. Example of insensitivity to group membership changes by the
SCM.

 These results suggest that the Jini specification may be
incomplete with regard to this issue. While an
administrator can remove group membership from a
running SCM, the Jini protocol specifies no behavior in
reaction to this new information. As a SCM continues to
issue announcements, which contain its current group
membership, other Jini components are told to ignore
announcements from SCMs that do not belong to groups
of interest. As shown in the discussion above, this can
lead to a situation where SMs (as well as SUs) may
continue to maintain registration with SCMs no longer
relevant. This might or might not be the intent of Jini’s
designers; however, the issue should be addressed in the
specification.

4.3. Race Conditions

 All distributed systems exhibit the possibility for race
conditions. Our architectural model permits us to
investigate how such conditions can arise. Figure 6
presents a portion of a scenario illustrating a race between
service registration by SMs and registration of
notification requests by SUs.

 Scenario SU7 SCM1

Found (none)

Find X

AddSCM SCM1

Notify SCM1 X Added

Discover SCM1

Found SCM1

Request AddedMatched Services
() +

Notify SU7 X Added Registered Services
(SM4, SD1, X)+

Requested
Notifications

(SU7, X)

CC4 Violated

SM4

FindService SCM1 X

AddSCM SCM1

Discover SCM1

Found SCM1

Register SM4 SD1 X

Fig. 6. Example race condition between service registration by an SM
and notification request registration by an SU.

 In this case, SU7 discovers SCM1 and then queries it
for a matching service. At the time of the query, SCM1
does not contain a SD for a matching service and so
replies without matches. In this particular scenario, SU7
delays for 10s its request to be notified by SCM1 when a
SD for a matching service is added to the SCM cache. In
the interim, SM4 discovers SCM1 and registers a SD for
a service matching the needs of SU7. Unfortunately, the
only matching service was registered during the interval
between the query and the request for notification by
SU7. In Jini’s definition of matching semantics, SU7 can
continue to renew leases for its request for notification
and SM4 can continue to renew leases for its SD and the
two will never learn of each other. This situation results
in a time-unbounded violation of CC4, which states that if
a SCM holds a notification request from a SU, which
matches a SD also held by the SCM, then the SU should
know about the matching SD.
 While this violation of CC4 can be attributed to the
10s delay before SU7 sends a notification request, a
number of other situations can lead to similar results. For
example, network congestion can delay the reply to the
original query by SU7 or can delay the request by SU7
for SCM1 to register its notification. Alternatively,
competing processing within the node supporting SU7
could delay the generation of its notification requests. To
account for this, SUs might issue a second query for a

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski & Mills 139

matching service after the notification request is
registered with a SCM. In this way, the SU can detect any
matching SDs registered by the SCM after the first query
but before the notification request.

4.4 Restart Performance

 To demonstrate the ability of our architectural model
to provide insight into performance-related behavior, we
describe the results of an experiment to investigate the
restart of a Jini network following recovery from a major
power failure. The experiment topology consists of nine
nodes (three of each type: SU, SM, and SCM). We
partition the nodes into threes, where each partition
consists of one SU attempting to rendezvous with one SM
through a SCM. Once all SUs have found their assigned
SMs, we simulate a major power failure, which causes all
nodes to crash for 40s. We then restore the power and
wait for all SUs to rendezvous with their assigned SMs.
Table 3 gives the values for relevant experiment
parameters. Upon restart, each Jini node chooses a
random delay before beginning discovery; we used delays
uniformly distributed between two and 15s. We also had
each SU and SM request leases of 30s for notification
requests and service registrations, and we had each node
renew the leases for a period of 100s. For each link, we
introduced variable transmission delays; for each node,
we introduced variable processing-load delays. We also
introduced processing delays for manipulating items in
the discovery databases and the SCM registration
databases. Since the Jini specification did not address the
persistence of notification requests upon SCM failure, we
assumed that this information was purged on failure.

Table 3. Parameter values used in the power-failure restart performance
experiment. Some values reflect settings of Jini protocol parameters,
while others reflect assumptions regarding transmission and processing
delays.

5s (7 times)Probe Interval (and period)

120sAnnounce Interval

2s – 15s uniformNode Restart Delay

Jini
Protocol
Parameters

10 us (discovery DBs)
100 us (SCM cache)

Per Item Processing

10us – 100 us uniformProcessing Load Delay

1us – 10us uniformTransmission Delay
Delays

Purge on SCM FailureNotification Requests

100sTotal Leasing Duration

30sPer Lease Time

ValueParameterParameter Class

5s (7 times)Probe Interval (and period)

120sAnnounce Interval

2s – 15s uniformNode Restart Delay

Jini
Protocol
Parameters

10 us (discovery DBs)
100 us (SCM cache)

Per Item Processing

10us – 100 us uniformProcessing Load Delay

1us – 10us uniformTransmission Delay
Delays

Purge on SCM FailureNotification Requests

100sTotal Leasing Duration

30sPer Lease Time

ValueParameterParameter Class

 We ran the experiment 30 times, measuring the
restoration latency and overhead. In this experiment,
before the original state could be recovered, all nodes had

to restart. For that reason, the maximum node restart
delay dominates the restoration delay. For example, for
our experiment runs, the average maximum node restart
delay was 12.56s (2.09s variance), and the average
restoration latency was 14.76s (3.31s variance). The
restoration overhead in each run depends upon the
restoration latency, because periodic message exchanges
associated with Jini discovery and leasing continue
through the restoration. In this experiment, the restoration
latencies were relatively close, as were the number of
messages exchanged, differing only in the number of
probes sent during aggressive discovery and in the
subsequent number of discoveries. In our runs, the
number of messages exchanged to achieve restoration
ranged approximately between 70 and 90. These results
demonstrate that the same architectural model can be used
to investigate both performance and logical properties of
a distributed system.

4.5 Summary of Findings

 Using our architectural model and usage scenarios we
were able to verify the robustness of Jini mechanisms in a
range of failure scenarios. Further, as supported by the
analyses above, we were able to uncover areas of
incompleteness and ambiguity in the natural-language
specification for Jini. While a static, natural-language
specification, such as Jini’s, contains a reasonable
description of the behavior of each component in
response to specific events, such specifications largely
miss collective behavior arising when various
components interact together in a distributed system, and
especially when pieces of the system change state during
the interactions. In addition, our dynamic, executable
model of the Jini specification permitted us to explore the
behavior and performance of Jini systems in various
realistic scenarios. A static specification cannot hope to
provide similar insights.

5. Assessment of the Architecture-based
Approach

 As part of our work, we assessed how well the Rapide
ADL and analysis tools supported our modeling and
analyses of Jini, with specific attention to analysis of
dynamic behavior. We found that the Rapide ADL
provided valid abstractions to represent and analyze the
structure and behavior of Jini under conditions of
dynamic change. Using Rapide interfaces we easily
represented the major service discovery components, and
subcomponents (not discussed in this paper). The
components proved easy to connect into architectures that
model a network of Jini entities. Our analyses relied upon
Rapide’s ability to represent dynamic behavior through

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski & Mills 140

events, rules, and constraints, and then to analyze the
resulting POSETs. The ability to represent the behavior of
individual components and to analyze the collective
behavior resulting from interactions was key, without
which this analysis could not have been performed. We
did identify some suggestions for improving specific
capabilities that apply generally to all ADLs. Before
discussing these suggestions, we describe general merits
of using an architectural model.

5.1. Merits of using an Architectural Model

 Our Rapide model provided benefits for analysis.
Some of these benefits apply to all ADLs. First, the
architectural model proved more precise, concise, and
informative than the natural-language specification. For
example, the architectural model provided executable
behavior so that we could discover interactions not
apparent from the paper specification. As a consequence,
we were able to identify and address areas of ambiguity,
inconsistency, and incompleteness. While the Jini
specification was supported by a reference
implementation, the architectural model proved easier to
understand and analyze, and permitted us to focus on the
essential complexity inherent in the specification. The
reference implementation entailed incidental complexity
that interfered with our ability to gain a clear
understanding of the behavior of the specification.
Second, a single architectural model can be analyzed for
behavioral, performance, and logical properties. Using a
single model limits the errors and inconsistencies that can
creep in when multiple models must be used to represent
the same specification. Third, using an architectural
model enabled us to readily consider alternative
implementation options, where they were allowed by the
specification, and to identify specification ambiguities.
When addressing ambiguities, the architectural model
enabled us to investigate the ramifications of various
alternate resolutions.

5.2 Areas for Improvement

 Below, we identify and discuss some suggestions for
improving ADLs in several areas: domain-specificity,
simplification through views, representation of structure
and behavior, and support for analysis. While we discuss
these suggestions in the context of Rapide, we believe
they apply more generally to use of ADLs for modeling
architectures for dynamic systems.
 5.2.1. Need for customizable domain-specific syntax
and semantics. Constructing an architectural model
typically entails a partnership between a domain expert
and a system architect. The partnership proceeds more
smoothly when the architecture reflects the terminology
of the domain, allowing the domain expert to review the

specification with less help from the architect. For this
reason, ADLs should support renaming common ADL
constructs such as interfaces, components, connectors or
modules to use terms familiar in the domain. This would
allow the expert to more easily read the specification
without having to learn the ADL in detail. The same
benefit may accrue from allowing customization of
language syntax to be more familiar to domain
practitioners, especially with respect to system behavior.

5.2.2. Improvement to representation of structure.
Rapide, and other ADLs, connect components to
subcomponents and pass events in a strictly hierarchical
manner. One purpose in doing this is to constrain
communications among subcomponents of different
hierarchies in order to limit the introduction of errors
when replacing subcomponents. This requires inter-
component events to propagate through multiple levels in
two hierarchies, leading to several inefficiencies. First, if
the same events must be duplicated as a result, an
unnecessarily large set of events will be created for
analysis. Second, the architecture entails an increased
number of connections, resulting in a larger specification,
which is more difficult to maintain and modify. This
inhibits revision and evolution of system designs,
especially important when modeling dynamic systems,
and also discourages investigation of alternative design
approaches. Third, the strict hierarchy arrangement does
not agree with real-world designs in which
subcomponents of different systems often communicate
directly. To address these problems, we recommend
investigating alternative ways to specify connectivity
between top-level components and subcomponents in an
architectural model, while preserving correct
communications. We plan to address this area further in
future work.
 Beyond the question of number, connections take on
importance for modeling reasons. Specifically, we believe
that connections should be represented as first-class
entities [17], [20], [21], [23]. Many domains, including
networking, have numerous, well-known connection
classes. Such domain-specific knowledge can be encoded
as taxonomies of connection types, provided that
connections can be represented as first-class entities
within the ADL. For example, we found the need to
specify classes of multicast groups and RMI connections
in order to represent systems that dynamically “plug-and-
play” with network components, and to simulate transient
failures, transmission delays, and other network
characteristics. Using connection types allowed us to
more easily specify restrictions on events that pass among
components, and to define constraints on inter-component
behavior, while associating them directly with appropriate
places in an architectural model. Making connections
first class permits still further semantic distinction

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski & Mills 141

between components and connections, thus facilitating
clear and explicit description of architecture. First class
connections also encourage designers to define
constraints for specific connection types and type
hierarchies, so that formal reasoning about connector
behavior can be localized. We suspect this may be of
particular importance for architectures of dynamic
systems, where connections provide a focal point for
analysis.

5.2.3. Improvement to representation of behavior.
As an adjunct to sending and receiving events, a Rapide
component encapsulates a set of state variables. To test
consistency conditions during execution, we needed to
capture and analyze state variables maintained by
multiple components. This required us to adopt several
cumbersome solutions. We believe modeling of
architectures for dynamic systems is greatly facilitated by
permitting definition of component state from a subset of
internal state variables. Component states should be
selectively exported and recorded along with events.
Linking events to changes in state [13] then allows
recording of dependencies for analysis.

Assuming appropriate state variables are exported,
further investigation is needed to determine how best to
define, implement, and evaluate consistency conditions
that involve the state of two or more components and that
account for time. ADL constraint representation should
include rich semantics for this purpose. Further, analyses
of architectures for dynamic systems benefit greatly when
ADL run-time environments include support for
automated evaluation of inter-component consistency
conditions (as some already do), and especially constraint
languages and related constraint-analysis engines that
account for time.

6. Conclusions and Future Work

 Our current work illustrates the viability of an
architecture-based approach to investigate and evaluate
logical and behavioral properties of discovery protocols
under conditions of dynamic change. Our results show
that executable architecture models prove essential to
understand the collective behavior of distributed systems.
In this paper, we demonstrated how such models help to
uncover ambiguity, incompleteness, and other issues in
static, natural-language specifications. Our demonstration
contributes to improving the specification for Jini. We
also argue that a single executable architecture model can
be used to investigate system performance as well as
logical properties. Beyond this, we offered some
recommendations, based on our experience, to improve

the suitability of ADLs to model and analyze distributed
systems.
 In the next phase of our project, we intend to
demonstrate that using architectural models provides a
sound basis on which to compare and contrast the
technical merits of various discovery protocols. The
results from our analyses should provide industry with
better understanding of the design and behavior of
discovery protocols. We will define a generic set of usage
scenarios to measure interesting events common among
all protocols. These scenarios will exploit a common
vocabulary and set of protocol features derived from our
UML model. Similarly, we will identify a set of
consistency conditions, design issues, and performance
metrics that provide a suitable basis for comparison
among discovery protocols. We suspect relevant
consistency conditions and metrics will involve only SMs
and SUs, because not all protocols require SCMs.
 The next phase of the project will also provide a
vehicle for continued appraisal of our architecture-based
approach to investigate distributed system designs under
dynamic conditions. We intend to sharpen and refine our
current assessment. We also hope to make more specific
recommendations on ADL features to better support
domain-specific models, to represent connections, and to
analyze internal state of components. Modeling additional
discovery protocols also provides an opportunity to
examine reuse of architectural components as we attempt
to adapt common functions in architectures for different
protocols. This work should reveal insights regarding
ADL features that facilitate reuse.
 Finally, we suspect, but cannot yet conclude, that the
nature of dynamism in the service-discovery domain
differs from other real-time domains. The next phase of
the project, together with the results of concurrent
research in dynamic change within the defense software
research community, should illuminate this issue as well.
Since automatic component discovery and collaborative
composition will be essential capabilities of future
defense systems, early insights gained into this issue will
likely prove important.

7. Acknowledgments

 The work described in this paper benefits from
financial support provided by the National Institute of
Standards and Technology (NIST), the Advanced
Research Development Agency (ARDA), and the
Defense Advanced Research Projects Agency (DARPA).
In particular, we acknowledge the support of Greg
Puffenbarger from ARDA and John Salasin, DARPA’s
program manager for Dynamic Assembly for System
Adaptability, Dependability, and Assurance (DASADA).
We also gratefully acknowledge the insights that Jim
Waldo, Jini Architect, provided us during several hours of

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski & Mills 142

discussion about our approach and preliminary results,
and in written comments on an earlier draft of this paper.

8. References

[1] G. Bieber and J. Carpenter, “Openwings A Service-Oriented
Component Architecture for Self-Forming, Self-Healing,
Network-Centric Systems,” on the www.openwings.org web
site.

[2] Salutation Architecture Specification, Version 2.0c,
Salutation Consortium, June 1, 1999.

[3] Universal Plug and Play Device Architecture, Version 1.0,
Microsoft, June 8, 2000.

[4] Ken Arnold et al, The Jini Specification, V1.0 Addison-
Wesley 1999. Latest version is 1.1 available from Sun.

[5] Specification of the Home Audio/Video Interoperability
(HAVi) Archiecture, V1.1, HAVi, Inc., May 15, 2001.

[6] Service Location Protocol Version 2, Internet Engineering
Task Force (IETF), RFC 2608, June 1999.

[7] Specification of the Bluetooth System, Core, Volume 1,
Version 1.1, the Bluetooth SIG, Inc., February 22, 2001.

[8] B. Miller and R. Pascoe, Mapping Salutation Architecture
APIs to Bluetooth Service Discovery Layer, Version 1.0,
Bluetooth SIG White paper, July 1, 1999.

[9] C. Bettstetter and C. Renner, “A Comparison of Service
Discovery Protocols and Implementation of the Service
Location Protocol”, Proceedings of the Sixth EUNICE Open
European Summer School: Innovative Internet Applications,
EUNICE 2000, Twente, Netherlands, September, 13-15, 2000.

[10] G. Richard, “Service Advertisement and Discovery:
Enabling Universal Device Cooperation,” IEEE Internet
Computing, September-October 2000, pp. 18-26.

[11] B. Pascoe, “Salutation Architectures and the newly defined
service discovery protocols from Microsoft and Sun: How does
the Salutation Architecture stack up,” Salutation Consortium
whitepaper, June 6, 1999.

[12] Luckham, D. “Rapide: A Language and Toolset for
Simulation of Distributed Systems by Partial Ordering of
Events,” http://anna.stanford.edu/rapide, August 1996.

[13] Allen, R. “A Formal Approach to Software Architecture”,
Ph.D. Thesis, Carnegie Mellon University, CMU Technical
Report CMU-CS-97-144, May 1997.

[14] Garlan, D, Monroe, R., and Wile, D., “Acme: An
Architecture Description Interchange Language”, Proceedings
of CASCON ’97, Nov. 1997.

[15] Melton, R. “The Aesop System: A Tutorial,” Carnegie
Mellon University, Pittsburgh, Pennsylvania, 1998.

[16] Moriconi, M & Riemenschneider, R. “Introduction to
SADL 1.0: A Language for Specifying Software Architecture
Hierarchies,” TR SRI-CSL-97-01, March 1997.

[17] Medvidovic, N., P.Oreizy, J. Robbins, and R. Taylor.
“Using Object-Oriented Typing to Support Architectural Design
in the C2 Style”, Proceedings of SIGSOFT’96: The Fourth
Symposium on the Foundations of Software Engineering
(FSE4), San Francisco, CA, October 16-18, 1996.

[18] Shaw, M. R. DeLine, D.V. Klein, T.L. Ross, D.M. Young,
and G. Zelesnik, “Abstractions for Software Architecture and
Tools to Support Them,” IEEE Trans. Software Eng., vol. 21,
no. 4, pp. 314-335, Apr. 1995.

[19] Vestal, S. MetaH User’s Manual, Version 1.27, Honeywell
Technology Center, Minneapolis, MN 55418, 1997.

[20] Shaw, M., R. DeLine, and G. Zelesnik, “Abstractions and
Implementations for Architectural Connections,” Proc. Third
Int'l Conf. Configurable Distributed Systems, May 1996.

[21] Allen, R. and D. Garlan. "Formalizing Architectural
Connection", Proceedings of the Sixteenth International
Conference on Software Engineering, Sorrento, Italy, Ma 1994,
pp. 71-80.

[22] J. Rekesh, UPnP, Jini and Salutation - A look at some
popular coordination framework for future network devices,
Technical Report, California Software Lab, 1999. Available
online from http://www.cswl.com/whiteppr/tech/upnp.html.

[23] Garlan, D. “Higher Order Connectors”, Workshop on
Compositional Software Architectures, Monterey, CA, January,
1998.
[24] R. Pascoe, “Building Networks on the Fly”, IEEE
Spectrum, March 2001, pp. 61-65.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski & Mills 143

Understanding Consistency Maintenance in Service
Discovery Architectures during Communication Failure

Christopher Dabrowski
NIST

NN Room 560
Gaithersburg, Maryland USA 20899

1-301-975-3249

cdabrowski@nist.gov

Kevin Mills
NIST

NN Room 445
Gaithersburg, Maryland USA 20899

1-301-975-3618

kmills@nist.gov

Jesse Elder
NIST

NN Room 579
Gaithersburg, Maryland USA 20899

1-301-975-4411

jelder@nist.gov

ABSTRACT
Current trends suggest future software systems will comprise
collections of components that combine and recombine
dynamically in reaction to changing conditions. Service-discovery
protocols, which enable software components to locate available
software services and to adapt to changing system topology,
provide one foundation for such dynamic behavior. Emerging
discovery protocols specify alternative architectures and
behaviors, which motivate a rigorous investigation of the
properties underlying their designs. Here, we assess the ability of
selected designs for service-discovery protocols to maintain
consistency in a distributed system during catastrophic
communication failure. We use an architecture description
language, called Rapide, to model two different architectures
(two-party and three-party) and two different consistency-
maintenance mechanisms (polling and notification). We use our
models to investigate performance differences among
combinations of architecture and consistency-maintenance
mechanism as interface-failure rate increases. We measure system
performance along three dimensions: (1) update responsiveness
(How much latency is required to propagate changes?), (2) update
effectiveness (What is the probability that a node receives a
change?), and (3) update efficiency (How many messages must be
sent to propagate a change throughout the topology?). We use
Rapide to understand how failure-recovery strategies contribute to
differences in performance. We also recommend improvements to
architecture description languages.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications –
methodologies and tools.
D.2.5 [Software Engineering]: Testing and debugging –
symbolic execution and tracing.
D.2.8 [Software Engineering]: Metrics – performance measures.

1. INTRODUCTION
Growing deployment of wireless communications, implying
greater user mobility, coupled with proliferation of personal
digital assistants and other information appliances, foretell a
future where software components can never be quite sure about
the network connectivity available, about the other software
services and components nearby, or about the state of the network
neighborhood a few minutes in the future. In extreme situations,
as found for example in military applications [1], software
components composing a distributed system may find that
cooperating components disappear due to physical or cyber
attacks or due to jamming of communication channels or
movement of nodes beyond communications range. Such
environments demand new analysis approaches and tools to
design and test software.

In this paper, we use architectural models to assess the ability of
selected designs for service-discovery protocols to maintain
consistency in a distributed system during catastrophic
communication failure. Using an architecture description
language (ADL), we model two different architectures (two-party
and three-party) and two different consistency-maintenance
mechanisms (polling and notification). To provide our models
with realistic behaviors, we incorporate consistency-maintenance
mechanisms adapted from two specifications: Jini™ Networking
Technology1 [2] and Universal Plug-and-Play (UPnP) [3]. We use
our models to investigate performance differences among
combinations of architecture and consistency-maintenance
mechanism as interface-failure rate increases. We measure system
performance along three dimensions: (1) update responsiveness
(How much latency is required to propagate changes?), (2) update
effectiveness (What is the probability that a node receives a
change?), and (3) update efficiency (How many messages must be
sent to propagate a change throughout the topology?).

Our modeling and analysis approach builds on earlier work [4]
where we derived benefits by creating dynamic models from
specifications for service-discovery protocols. Dynamic models

1 Certain commercial products or company names are identified in

this paper to describe our study adequately. Such identification
is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor to imply
that the products or names identified are necessarily the best
available for the purpose.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Elder 144

Table 1. Mapping concepts among service-discovery systems.

enable us to understand collective behavior among distributed
components, and to detect ambiguities, inconsistencies and
omissions in specifications. In this paper, we apply the same
method: (1) construct an architectural model of each discovery
protocol, (2) identify and specify relevant consistency conditions
that each model should satisfy, (3) define appropriate metrics for
comparing the behavior of each model, (4) construct relevant
scenarios to exercise the models and to probe for violations of
consistency conditions, and (5) compare results from executing
similar scenarios against each model. To implement the method,
we rely on Rapide [5], an ADL developed at Stanford University.
Rapide represents behavior in a form suitable to investigate
distributed systems, and comes with an accompanying suite of
analysis tools that can execute a specification and can record and
visualize system behavior. In this paper, we use Rapide to
understand how failure-recovery strategies contribute to
differences in performance. Based on our experiences, we also
recommend improvements to architecture description languages.

The remainder of the paper is organized in six sections. We begin,
in Section 2, by introducing service-discovery protocols and
architectures, including a description of procedures to maintain
consistency in replicated information. Section 2 also discusses
various failures that can interfere with consistency maintenance.
In Section 3, we outline some techniques, included in our models,
to recover from failures. Section 4 defines an experiment, and
related metrics, to compare the performance and overhead
exhibited by selected pairings of architecture and consistency-
maintenance mechanism while attempting to propagate changes
during interface failures. In Section 5, we present results from the
experiment, and we discuss causes underlying some of the results.
In Section 6, we outline future work to evaluate service-discovery
architectures and protocols during message loss and node failure.
We conclude in Section 7.

2. SERVICE DISCOVERY SYSTEMS
Service-discovery protocols enable software components in a
network to discover each other, and to determine if discovered
components meet specific requirements. Further, discovery
protocols include consistency-maintenance mechanisms, which
can be used by applications to detect changes in component
availability and status, and to maintain, within some time bounds,
a consistent view of components in a network. Many diverse
industry activities explore different approaches to meet such
requirements, leading to a variety of proposed designs for service-
discovery protocols [2, 3, 6-14]. Some industry groups approach
the problem from a vertically integrated perspective, coupled with
a narrow application focus. Other industry groups propose more
widely applicable solutions. For example, a team of researchers
and engineers at Sun Microsystems designed Jini Networking
Technology [2], a general service-discovery mechanism atop
JavaTM, which provides a base of portable software technology.
As another example, a group of engineers at Microsoft and Intel
conceived Universal Plug-and-Play [3] in an attempt to extend
plug-and-play, an automatic intra-computer device-discovery and
configuration protocol, to distributed systems. The proliferation of
service discovery protocols motivates deeper analyses of their
designs.

To help us compare designs, we developed a general structural
model, documented using the UML (Unified Modeling

Language). Our general model provides a basis for comparative
analysis of various discovery systems by representing the major
architectural components with a consistent and neutral
terminology (see first column in Table 1). The main components
in our general model include: (1) service user (SU), (2) service
manager (SM), and (3) service cache manager (SCM), where the
SCM is an optional element not supported by all discovery
protocols. These components participate in the discovery,
information-propagation, and consistency-maintenance processes
that comprise discovery protocols. A SM maintains a database of
service descriptions, (SDs), each SD encoding the essential
characteristics of a particular service or device (Service Provider,
or SP). Each SD contains the identity, type, and attributes that
characterize a SP. Each SD also includes up to two software
interfaces (an application-programming interface and a graphic-
user interface) to access a service. A SU seeks SDs maintained by
SMs that satisfy specific requirements. Where employed, the SCM
operates as an intermediary, matching advertised SDs of SMs to
requirements provided by SUs. Table 1 shows how these general
concepts map to specific concepts from Jini, UPnP, and the
Service Location Protocol (SLP) [8]. The behaviors by which SUs
discover and maintain consistency in desired SDs depend partly
upon the service-discovery architecture employed.

2.1 Alternative Architectures
Broadly speaking, system architecture comprises a set of
components, and the connections among them, along with the
relationships and interactions among the components. In our
application, we represent the architecture of a discovery system
using an architectural model, which expresses structure (as
components, connections, and relations), interfaces (as messages
received by components), behavior (as actions taken in response
to messages received, including generation of new messages), and
consistency conditions (as Boolean relations among state
variables maintained across different components). Our initial
analysis of six distinct discovery systems revealed that most
designs use one of two underlying architectures: two-party and
three-party.

2.1.1 Two-Party Architectures
A two-party architecture consists of two major components: SMs
and SUs. In this study, we use a two-party architecture arranged in
a simple topology consisting of one SM and five SUs, as depicted
in Figure 1. To animate the architecture, we chose behaviors for
discovery, information propagation, and consistency maintenance,
as described in the specification for UPnP. Upon startup, each SU
and SM engages in a discovery process to locate other relevant
components within the network neighborhood. In a lazy-discovery
process, each SM periodically announces the existence of its SDs

Service RegistrationDevice/Service DescriptionService ItemService Description (SD)

Directory Service Agent
(optional)

not applicableLookup ServiceService Cache
Manager (SCM)

Service URL
Service Type
Service Attributes
Template URL
Template URL

Universal Unique ID
Device/Service Type
Device/Service Schema
Presentation URL
Control/Event URL

Service ID
Service Type
Attribute Set
Service Applet
Service Proxy

Identity
Type
Attributes
User Interface
Program Interface

ServiceDevice or ServiceServiceService Provider (SP)

Service AgentRoot DeviceService or
Device Proxy

Service Manager (SM)

User AgentControl PointClientService User (SU)

SLPUPnPJiniGeneric Model

Service RegistrationDevice/Service DescriptionService ItemService Description (SD)

Directory Service Agent
(optional)

not applicableLookup ServiceService Cache
Manager (SCM)

Service URL
Service Type
Service Attributes
Template URL
Template URL

Universal Unique ID
Device/Service Type
Device/Service Schema
Presentation URL
Control/Event URL

Service ID
Service Type
Attribute Set
Service Applet
Service Proxy

Identity
Type
Attributes
User Interface
Program Interface

ServiceDevice or ServiceServiceService Provider (SP)

Service AgentRoot DeviceService or
Device Proxy

Service Manager (SM)

User AgentControl PointClientService User (SU)

SLPUPnPJiniGeneric Model

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Elder 145

Figure 1. Two-party service-discovery architecture
deployed in a six-node topology: five service users (SUs)
and one service manager (SM).

over the UPnP multicast group, used to send messages from a
source to a group of receivers. Upon receiving these
announcements, SUs with matching requirements use a
HTTP/TCP (HyperText Transfer Protocol/transmission-control
protocol) unicast link (for message exchanges between two
specific parties) to request, directly from the SM, copies of the
SDs associated with relevant SPs. The SU stores SD copies in a
local cache. Alternatively, the SU may engage in an aggressive-
discovery process, where the SU transmits SD requirements, as
Msearch queries, on the UPnP multicast group. Any SM holding
a SD with matching requirements may use a HTTP/UDP (user-
datagram protocol) unicast link to respond (after a jitter delay)
directly to the SU. Whenever a UPnP SM responds to an Msearch
query (or announces itself), it does so with a train of (3 + 2d + k)
messages, where d is the number of distinct devices and k is the
number of unique service types managed by the SM. For each
appropriate response, the SU uses a HTTP/TCP unicast link to
request a copy of the relevant SDs, caching them locally.

To maintain a SD in its local cache, a SU expects to receive
periodic announcements from the relevant SM. In UPnP, the SM
announces the existence of SDs at a specified interval, known as a
Time-to-Live, or TTL. Each announcement specifies the TTL
value. If the SU does not receive an announcement from the SM
within the TTL (or a periodic SU Msearch does not succeed
within that time), the SU may discard the discovered SD. We
selected the minimum TTL of 1800 s, as recommended by the
UPnP specification. (See Tables 2 and 4 for a summary of
relevant parameter values used in this paper.)

2.1.2 Three-Party Architectures
A three-party architecture consists of SMs, SUs, and SCMs,
where the number of SCMs represents a key variable. In this
study, we model a three-party architecture with one SM and five
SUs, as shown in Figure 2. We anticipate that under failure
conditions, increasing the number of SCMs will increase the
chance of successful rendezvous among components, leading to
better propagation of information updates from SMs to SUs. To
investigate this, we vary the number of SCMs in our three-party
architectural model. To animate our three-party model, we choose
behaviors described in the Jini specification.
In Jini, the discovery process focuses upon discovery by SMs and
SUs of any intermediary SCMs that exist in the network
neighborhood. Elsewhere [4], we describe these procedures in
detail. Here, we simply summarize. Upon initiation, a Jini
component enters aggressive discovery, where it transmits probes

on the aggressive-discovery multicast group at a fixed interval (5 s
recommended) for a specified period (seven times recommended),
or until it has discovered a sufficient number of SCMs. Upon
cessation of aggressive discovery, a component enters lazy
discovery, where it listens on the lazy-discovery multicast group
for announcements sent at intervals (120 s recommended) by
SCMs. Our three-party model implements both the aggressive and
lazy forms of Jini multicast discovery.

Once discovery occurs, a SM deposits a copy of the SD for each
of its services on the discovered SCM. The SCM caches this
deposited state, but only for a specified length of time, or TTL. To
maintain a SD on the SCM beyond the TTL, a SM must refresh
the SD. In this way, if the SM fails, then the SCM can purge any
SDs deposited by the SM. To make behavior as consistent as
possible across our models for both the two-party and three-party
architectures, we selected 1800 s as TTL for a SD to be cached by
a SCM. Using these techniques, SUs and SPs rendezvous through
SDs registered by SMs with particular SCMs, where the SCMs
are found through a discovery process. The SCMs match SDs
provided by SMs to SU requirements, and forward matches to
SUs, which then access the appropriate SPs.

2.2 Consistency Maintenance Mechanisms
After initial discovery and information propagation (through
SDs), service-discovery protocols provide consistency-
maintenance mechanisms that applications can use to ensure that
changes to critical information propagate throughout the system.
Critical information may consist of service availability and
capacity, or updates to descriptive information about service
capabilities, which may be necessary for a SU to effectively use a
discovered service. In our study, we consider two basic
consistency-maintenance mechanisms, polling and notification,
along with accompanying mechanisms to propagate new
information.

2.2.1 Polling
In polling, a SU periodically sends queries to obtain up-to-date
information about a SD that was previously discovered, retrieved,
and cached locally. In a two-party architecture, the SU issues the

HTTP/TCP and HTTP/UDP

Service
User

Service
Manager

UPnP Multicast Group

Unicast Links

HTTP/TCP and HTTP/UDP

Service
User

Service
User

Service
Manager

UPnP Multicast Group

Unicast Links

Service
Manager

Service
User

Service
Cache

Manager

Aggressive-Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy-Discovery Multicast Group

Optional, 2nd SCMService
Manager

Service
User

Service
Cache

Manager

Aggressive-Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy-Discovery Multicast Group

Optional, 2nd SCM

Figure 2. Three-party service-discovery architecture
deployed in a seven- or eight-node topology: five service
users (SUs), a service manager (SM), and a service cache
manager (SCM), with an optional 2nd SCM.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Elder 146

query directly to the SM from which the SD was obtained. In this
study, we use the UPnP HTTP Get request mechanism to poll the
SM to retrieve a SD associated with a specific URL (uniform-
resource locator). In response, the SM provides a SD containing a
list of all supported services, including their relevant attributes.
Polling in a three-party architecture consists of two independent
processes. In one process, a SM sends a ChangeService request to
propagate an updated SD to each SCM where the SD was
originally cached. In the second process, each SU polls relevant
SCMs by periodically issuing a FindService request, effectively a
query with a set of desired SD requirements. The SCM replies
with a MatchFound that contains the relevant information for any
matching SDs. In our study, we adopt a 180-second interval for
polling in both architectures.

2.2.2 Notification
In notification, immediately after an update occurs, a SM sends
events that announce a SD has changed. To receive events about a
SD of interest, a SU must first register for this purpose. In the
two-party architecture, the SU registers directly with a SM. We
model this procedure using the UPnP event-subscription
mechanism, where the SU sends a Subscribe request, and the SM
responds by either accepting the subscription, or denying the
request. The subscription, if accepted, is retained for a TTL,
which may be refreshed with subsequent Subscribe requests from
the SU. In our experiment, we chose 1800 s as TTL for event
subscriptions in both architectures.
In a three-party architecture, a SU registers with a SCM to receive
events using a procedure analogous to that used by a SM to
propagate a SD. As with SD propagation, the SCM grants event
registrations for a TTL, which may be refreshed. When a SD
update occurs, the SM first issues a ChangeService request to all
SCMs to which it originally propagated the SD. The SCM then
issues a MatchFound to propagate the event to all SUs that have
registered to receive events about the SD.

2.3 The Nature and Import of Failures
The foregoing discussion, while oversimplified, highlights the
complexity inherent in discovery protocols. Additional
complexity arises from uncertainty, as nodes, processes, and links
can appear and disappear without warning. Discovery protocols
must include behavior to cope with such changes. In this section,
we address the nature of various failures that can arise, and we
consider the implication of such failures on the behavior of
discovery protocols, and on the application software that depends
upon them.

2.3.1 Classifying Failures
In our research, we focus particularly on failures that can exist
within a hostile environment, such as encountered during military
or emergency-response operations. We can classify such failures
in two general categories: (1) communication failures and (2)
process failures. Communication failures can arise due to enemy
jamming, or other interference, due to congestion, due to physical
severing of cables, due to improperly configured or sabotaged
routing tables, or due to multi-path fading as nodes move across a
terrain. We can subdivide communication failures into three
classes: interface failures, message loss, and path failures. This
paper considers only interface failure. A communication interface
in a node may fail fully (both transmit and receive) or partially
(either transmit or receive). All outbound messages from an

interface will be lost when the transmitter fails, while all inbound
messages will be lost when the receiver fails. Message loss, a less
severe failure, implies that individual messages may be lost, either
sporadically or in bursts. Path loss appears as a blocked
communication route between two nodes, or areas, in the network.
A path can be blocked in one or both directions.
Process failures can be caused by enemy bombardments or cyber
attacks, by programming errors, or by hardware failures. We can
subdivide process failures into node and thread failures. During a
catastrophic failure, processing in a node ceases, and the node
must reinitialize before processing resumes. Some information
maintained by the node may persist across the failure, while other
information may be lost. The nature and condition of persistent
information could prove crucial to a node’s behavior after
processing resumes. Of course, the node might never reappear.
Thread failures, while less catastrophic, can be more troublesome
than node failures. A node might rely on certain long-running
threads to react to events from other nodes. Failure of selected
threads can interfere with the operation of the node, as well as
other nodes in a distributed system. In some cases, a node can
appear to be present, while being effectively inoperable.

2.3.2 Failure Recovery in Service Discovery Systems
In service-discovery systems, failure-recovery responsibilities are
divided among three parties: (1) lower-layer protocols, (2)
discovery protocols, and (3) applications. Discovery protocols and
applications use the services of three classes of lower-layer
protocols: (1) unreliable unicast protocols, (2) unreliable multicast
protocols, and (3) reliable unicast protocols. Unreliable protocols,
whether unicast or multicast, neither recover nor signal lost
messages; thus, neither source nor destination will learn of a loss.
Further, multicast protocols exchange messages along a tree of
receivers. For this reason, a multicast message might be received
by some nodes, but not by others. A failure near a multicast
source prevents messages from being received by any node in the
multicast tree, while a failure near a receiver prevents messages
from being received by only a single node in the multicast tree. Of
course, failures at intermediate points in the multicast tree could
result in messages being lost to subsets of receivers. Since
unreliable protocols provide no guarantees, recovery must be
provided by mechanisms at a higher layer.
Reliable unicast protocols include mechanisms that attempt to
ensure delivery of messages by detecting and retransmitting lost
messages. Of course, the reliability schemes may eventually give
up if too many retransmissions are needed (which might indicate
node, interface, or path failure). In such cases, the reliable unicast
protocol will signal to a higher layer that a message could not be
delivered. Some ambiguity does exist, however, when using
reliable unicast protocols to send request-response message pairs,
as is the case for discovery systems. After submitting a request
through a reliable unicast protocol, a requesting process might
wait for a corresponding response from a remote process. For
example, Jini can use Remote Method Invocation (RMI) over
TCP to invoke a method on a remote object, and to receive a
response. Similarly, UPnP uses TCP to submit HTTP requests and
receive HTTP responses. In such cases, the RMI layer or the TCP
layer can signal a remote exception (REX). The requesting
process cannot determine whether a REX was caused by failure to
transmit the request or by failure to receive a response from the
remote process. The responding process has more information, as

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Elder 147

it does not receive a REX when an inbound request fails, but does
receive a REX when its outbound response fails. In essence, while
reliable unicast protocols attempt to deliver messages in the face
of various communication failures, ultimately the reliability
mechanisms might prove insufficient, causing a higher-layer
process to be notified of the failure. In such cases, the higher-layer
process is free to determine an appropriate recovery strategy.

3. MODELING RECOVERY STRATEGIES
Our architectural models incorporate three classes of failure-
recovery strategies: (1) recovery by lower-layer protocols, (2)
recovery by discovery protocols, and (3) recovery by application
software. For each class, we outline the strategies (see Table 2)
included in our models.

3.1 Recovery by Lower-Layer Protocols
Our models operate over two types of channels: unreliable,
simulating the UDP in both multicast and unicast forms, and
reliable, simulating the TCP. In UDP simulation, we discard
messages lost due to transmission errors, and we discard messages
lost due to path and interface failures. During path failure,
messages can be discarded in one or both directions. During
interface failure, we discard all messages sent from a node with a
failed transmitter, and we discard all messages inbound for a node
with a failed receiver. Neither sender nor receiver learns the fate
of lost messages.

In the TCP simulation, our model proves more complex. For
messages lost to transmission errors, we schedule a retransmission
(roughly within a round-trip time, or RTT). We increase the RTT
by about 25% with each successive retransmission. If successive
retransmissions exceed a threshold (three in the current study),
then we discard the message and issue a REX. For messages lost
to interface or path failure, we model TCP connection
establishment procedures by discarding the message and waiting
for a period, uniformly distributed between an upper and lower
bound (30-75 s in the current study), then we signal a REX. When
discarding a request, we signal a REX to the requester, but when
discarding a response, we signal a REX to both parties.

3.2 Recovery by Discovery Protocols
Discovery protocols include built-in robustness measures to deal
with the possibilities of UDP message loss and node failure.
Discovery protocols specify periodic transmission of key
messages. For example, Jini requires a node to engage in
aggressive discovery on startup, and then to enter lazy discovery,
where all SCMs periodically announce their presence. In a similar
lazy discovery, UPnP requires SMs to periodically announce their
presence. While not specifying aggressive discovery, UPnP
permits SUs to issue Msearch queries at any time. To compensate
for the different announcement intervals recommended for Jini
and UPnP, we chose to have UPnP SUs issue Msearch queries
every 120 s, but only after a SU purges a SD from its local cache.
Once a SU regains its desired SD, the related Msearch queries
cease. Whenever a UPnP SM announces itself or responds to an
Msearch query, it sends n copies of each message, where n is a
retransmission factor (two in the current study) recommended by
the UPnP specification to compensate for possible UDP message
loss. In both Jini and UPnP, each announcement includes a TTL.
Receiving nodes can cache the information in the announcement
until the TTL expires; then the information must be purged from
the cache. In this way, each node in the system eliminates residual
information about failed or unreachable nodes. Our models
incorporate these failure-recovery behaviors.

3.3 Recovery by Application Software
When discovery nodes communicate over a reliable channel, a
REX may occur. Response to a REX is left to the application. In
our models, depending on the situation, we implement three
different strategies: (1) ignore the REX, (2) retry the operation for
some period, and (3) discard knowledge. The retry strategy
attempts to recover from transient failures. The discard strategy,
which occurs following repeated failure of the retry strategy, relies
upon discovery mechanisms to recover from more persistent
failures.

3.3.1 Ignore the Remote Exception
In many cases, we simply ignore a REX. In general, our models
ignore a REX received when attempting to respond to a request. A
SU can ignore a REX received in response to a poll, FindService
or HTTP Get, because the poll recurs at an interval. The SCM
(three-party model) or the SM (two-party model) also ignores a
REX received while attempting to issue a notification. This
behavior, which is described in both the Jini and UPnP
specifications, depends upon reliable lower-layer protocols to
provide robustness for notifications. Notifications include
sequence numbers that allow a receiving node to determine
whether or not previous notifications were missed.

3.3.2 Retry the Operation
In our models, we retry selected operations in the face of a REX.
The UPnP specification separates the operation of discovering a
resource from obtaining a description of the resource (Jini
combines these operations). Without a description, the resource
cannot be used. For this reason, in our two-party model, a SU
must issue a HTTP Get to obtain a description. If no description
arrives within 180 s, then our model retries the HTTP Get. If
unsuccessful after three attempts, the SU ceases the retries, but
sets a flag reminding itself to reissue a HTTP Get when the
resource is next announced. Our three-party model, based on Jini,

Table 2. Summary of recovery responsibilities and
strategies as implemented within our models for two- and
three-party architectures.

Three-Party
Architecture (Jini)

Two-Party
Architecture (UPnP)

Recovery
Mechanism

Responsible
Party

SU and SM: purge SCM after
540 s of continuous
REX

SU: purge SD after failure to
receive SM announcement
within 1800 s

Discard
Knowledge

SM: depositing or refreshing SD
copy on SCM retry in 120s

SU: registering and refreshing
notification requests with SCM
retry in 120 s

SU: HTTP Get after discovery
retry in 180 s (retries < 3)

Subscribe requests retry in
120s

Retry after
REX

SU: FindService Poll
SCM: Notification

SU: HTTP Get Poll
SM: Notification

Ignore REX

Application
Software

SU and SM: issue seven probes
(at 5 s intervals) only
during startup

SU: issues Msearch every 120 s
(after purging SD)

Aggressive
Discovery

SCM: announces every 120 sSM: announces with n (3+2d+k)
messages every 1800 s

Lazy
Discovery

Discovery
Protocols

Issue REX in 30-75 sIssue REX in 30-75 sTCP

No recoveryNo recoveryUDPLower-Layer
Protocols

Three-Party
Architecture (Jini)

Two-Party
Architecture (UPnP)

Recovery
Mechanism

Responsible
Party

SU and SM: purge SCM after
540 s of continuous
REX

SU: purge SD after failure to
receive SM announcement
within 1800 s

Discard
Knowledge

SM: depositing or refreshing SD
copy on SCM retry in 120s

SU: registering and refreshing
notification requests with SCM
retry in 120 s

SU: HTTP Get after discovery
retry in 180 s (retries < 3)

Subscribe requests retry in
120s

Retry after
REX

SU: FindService Poll
SCM: Notification

SU: HTTP Get Poll
SM: Notification

Ignore REX

Application
Software

SU and SM: issue seven probes
(at 5 s intervals) only
during startup

SU: issues Msearch every 120 s
(after purging SD)

Aggressive
Discovery

SCM: announces every 120 sSM: announces with n (3+2d+k)
messages every 1800 s

Lazy
Discovery

Discovery
Protocols

Issue REX in 30-75 sIssue REX in 30-75 sTCP

No recoveryNo recoveryUDPLower-Layer
Protocols

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Elder 148

Table 3. Experiment combinations.

also contains a retry strategy, but associated with attempts to
register or change a SD with a SCM. In these cases, the SM retries
a ChangeService or ServiceRegistration 120 s after receiving a
REX. Similarly, when a SU receives a REX (from either a SM or
SCM) in response to a request to register for notification, the SU
retries the registration in 120 s. These retries occur until some
time bounds, after which the SM discards knowledge of the SCM.

3.3.3 Discard Knowledge
Both our two-party and three-party models include the possibility
that an application can discard knowledge of previously
discovered nodes. In UPnP, after failure to receive
announcements from the SM within a TTL, a SU discards a SM
and any related SDs. We implement this behavior in our two-party
model. In Jini, the specification states that a discovering entity
may discard a SCM with which it cannot communicate. In our
three-party model, a SM or SU deletes a SCM if it receives only
REXs when attempting to communicate with the SCM over a
540-s interval. After discarding knowledge of a SM (UPnP) or
SCM (Jini), all operations involving the node cease until it is
rediscovered, either through lazy discovery (Jini or UPnP
announcements) or aggressive discovery (UPnP Msearch queries).

4. EXPERIMENT DESIGN AND METRICS
In this paper, we investigate the following question: How do
alternative service-discovery architectures, topologies, and
consistency-maintenance mechanisms perform under deadline
during interface failure? To address this question, we deploy a
two-party and three-party architecture (recall Figures 1 and 2),
each in a topology that includes one SM and five SUs. In the
three-party case, we use two topologies, one with one SCM and
another with two SCMs. To establish initial conditions, we
exercise each topology until discovery completes, and the initial
information (a SD) propagates to all SUs. To begin the
experiment, we introduce a change in the SD at the SM, and we
establish a deadline, D, before which the change must propagate
to all SUs. We measure the number of messages exchanged and
the latency required to propagate the new information, or until D,
under two different consistency-maintenance mechanisms: polling
and notification. We repeat this experiment while varying the
percentage of interface-failure time for each node up to 75% (in
increments of 5%). We provide further details below.

4.1 Experiment Combinations
To compare change propagation in two- and three-party
architectures, we use our models to combine the architectures with
different consistency-maintenance mechanisms. Table 3 depicts
the six combinations. Each experiment runs one combination from
time zero until D, while introducing failures at each node (see

4.3). Each experiment aims to restore consistency among the
changed SD held by the SM and the cached copies of the SD held
by all of the SUs.

4.2 Tracking Consistency
To track consistency in our experiment, we employ property
analysis [4], using a single consistency condition: service
attributes for a SD discovered by a SU should have the same
values as the attributes of the SD being maintained by the SM that
manages the SD. More formally,
 FOR All (SM, SU, SD)
 (SM, SD [Attributes1]) isElementOf SM managed-services AND
 (SM, SD [Attributes2]) isElementOf SU discovered-services
 implies Attributes1 equals Attributes2

The condition is incorporated directly into our models and
checked using Rapide procedural code. We establish an initial
system state in which this condition holds, and then introduce a
change in (SM, SD [Attributes1]), which negates the condition for
all SUs. Then, we monitor updates to (SM, SD) tuples in the set
of discovered-services maintained by individual SU's to determine
if the condition becomes true. Note that if a SU discards its (SM,
SD) tuple, the tuple must be recovered before the condition can be
satisfied. These consistency checks form the basis for our
measurements.

4.3 Generating Interface Failures
We set aside an interval, up to time Q, to complete initial
discovery and information propagation. In our experiments, Q =
100 s and D = 5400 s. We choose a time, randomly distributed on
the uniform interval Q to D/2, to introduce a change into the SD
on the SM. We also choose times, randomly distributed on the
uniform interval Q to [D - (D x F)], for each node to suffer an
interface failure, where F is the interface-failure rate, which
defines the duration of failures as follows. Once activated, each
failure remains in effect for a duration of D x F, after which the
failure is remedied. We choose interface failures to be of equal
and increasing length to give a suitable basis for comparative
analysis. When activating each interface failure, we choose with
equal likelihood that the transmitter, receiver, or both fail. Table 4
summarizes most of the relevant parameters and values for our
experiments.

4.4 A Sample Run
Figure 3 shows partial results from a sample run for the three-
party architecture, with two SCMs, using notification as the
consistency-maintenance mechanism. In this run, F was 0.05, and
so each failure occurred between 100 and 5130 s [D - (D x F)],
and lasted for 270 s (D x F). Figure 3 shows the time when each
interface failed, and recovered. The performance section of the
figure lists two times for each node: loss of consistency and
restoration of consistency, or D where inconsistency remains. The
figure also lists two message counts for each node: messages sent
to restore consistency and total messages sent. For each SM and
SCM, the first count includes messages sent while any SU
remains inconsistent. In this sample run, SUs 1, 2, 4, and 5 and
both SCMs became consistent quickly, within 0.00109 s, which
represents the time necessary to propagate the change from the
SM to at least one SCM, match the changed SD registration to all
the SU notification requests registered on the SCM, and forward
the matches. However SU 3, whose receiver failed at an
inopportune time, never heard the notification and continued in an

Notification (with service registration and
notification registration on SCM)

JiniThree-Party (Dual SCM)

Polling (with service registration on SCM)JiniThree-Party (Dual SCM)

Notification (with service registration and
notification registration on SCM)

JiniThree-Party (Single SCM)

Polling (with service registration on SCM)JiniThree-Party (Single SCM)

Notification (with notification registration
on SM)

UPnPTwo-Party

PollingUPnPTwo-Party

Consistency-Maintenance MechanismProtocol BasisArchitectural Variant

Notification (with service registration and
notification registration on SCM)

JiniThree-Party (Dual SCM)

Polling (with service registration on SCM)JiniThree-Party (Dual SCM)

Notification (with service registration and
notification registration on SCM)

JiniThree-Party (Single SCM)

Polling (with service registration on SCM)JiniThree-Party (Single SCM)

Notification (with notification registration
on SM)

UPnPTwo-Party

PollingUPnPTwo-Party

Consistency-Maintenance MechanismProtocol BasisArchitectural Variant

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Elder 149

inconsistent state for the remainder of the run. This illustrates how
lack of robustness in the notification mechanism can lead to
prolonged inconsistent states.

4.5 Metrics
We use the data collected from experiment runs to compute three
metrics: update responsiveness, update effectiveness, and update
efficiency. We define these below.

4.5.1 Update Responsiveness
Assuming information is created at a particular time and must be
propagated by a deadline, then the difference between the
deadline and the creation time represents available time in which
to propagate the information. Update Responsiveness, R,
measures the proportion of the available time remaining after the
information is propagated. More formally, let D be a deadline by
which we wish to propagate information to each SU-node n in a
service discovery topology. Let tC be the creation time of the

information that we wish to propagate, where tC < D. Let tU(n) be
the time that the information is propagated to SU n, where n = 1
to N, and N is the total number of SUs in a topology. Define
change-propagation latency (L) for SU n as: Ln = (tU(n) -
tC)/(max(D, tU(n)) – tC). This is effectively the proportion of
available time used to propagate the change to SU n. The
numerator represents the time at which the SU achieved
consistency after the update occurred. The denominator represents
the time available to propagate the change. The term max(D, tU(n))
accounts for cases where tU(n) > D. Define R for SU n as: Rn = 1 –
Ln. Rn is the proportion of available time remaining after
propagating a change to SU n.

4.5.2 Update Effectiveness
Update Effectiveness, U, measures the probability that a change
will propagate successfully for a given SU, i.e., tU(n) < D. More
formally, assuming definitions from 4.5.1 hold, let X be the
number of runs (30 here) during which a particular topology is
observed under identical conditions. Recalling that N is the total
number of SUs in a topology, define the number of SUs observed
under identical conditions as: O = X .N. Define U, the probability
that tU(n) < D, as: U = 1 – P(F), where P(F) = (ΣiΣj (one if Ri,j
equals 0 and zero otherwise))/O and where i = 1...X and j = 1...N.

4.5.3 Update Efficiency
Given a specific service-discovery topology, examination of the
available architectures (two-party and three-party) and
consistency-maintenance mechanisms (polling and notification)
reveals a minimum number of messages, M, that must be sent to
propagate a change to all SUs. In our topology, M (M = 7) occurs
when using notification to propagate information in a three-party
architecture with one SCM. Update Efficiency, E, can be defined
as the ratio of M to the actual number of messages observed. More
formally, let S be the number of messages sent while attempting to
propagate a change from a SM to SUs in a given run. Define
average E as: Eavg = (Σk(M/Sk))/X, where k = 1..X.

5. RESULTS AND DISCUSSION
In this section, after showing results from our experiments, we
consider the relative performance of our models. We propose
reasons for performance differences, subject to further analysis
and verification by on-going research. We also use Rapide to
examine selected saw-tooth behaviors, and we outline suggestions
for improving ADLs (based on our experiences with Rapide).

5.1 Results
In a series of six graphs, which have identical abscissas (interface-
failure rate, increasing from 0% to 75% in increments of 5%) and
ordinates (one of the three metrics ranging between 0 and 1), we
plot selected measurements generated from our models. Each
graph compares four of the configurations in Table 3 against one
of the metrics: update responsiveness (median), effectiveness, or
efficiency (average). We choose the median as a measure of
update responsiveness because the measured data tend to clump in
distinct concentrations. Averages proved less representative of the
data. Figure 4(a) compares responsiveness from our two-party
model against that from our single-SCM, three-party model, for
both polling and notification. Figure 4(b) provides a similar
comparison, but substitutes the results from our dual-SCM, three-
party model in place of results from our one-SCM, three-party
model. Figures 4(c) and 4(d) compare update effectiveness using

Rate - 5
Run number - 21

SM 1 OUT Interface down 365, up 635

SCM 1 OUT Interface down 2417, up 2687
SCM 2 IN & OUT Interface down 519, up 789

SU 1 IN Interface down 2238, up 2508
SU 2 IN Interface down 3256, up 3526
SU 3 IN Interface down 207, up 477
SU 4 OUT Interface down 2876, up 3146
SU 5 IN Interface down 4478, up 4748

Performance:

SM 1 346.00000 346.00000 6 17
SCM 1 346.00000 346.00016 61 102
SCM 2 346.00000 346.00015 61 105
SU 1 346.00000 346.00109 0 11
SU 2 346.00000 346.00109 0 11
SU 3 346.00000 5400.00000 4 11
SU 4 346.00000 346.00109 0 11
SU 5 346.00000 346.00114 0 11

Figure 3. Console output from a sample run: three-party,
two SCMs, notification, F = 5%, Q =100 s, and D = 5400 s.

100 us for cache items
10 us for other items

Per-item processing
delay

10-100 us uniformTCP transmission delay

10 us constantUDP transmission
delay

Transmission and
processing delays

5% increments of 5400 s
from 0 to 75%

Failure duration

Transmitter, receiver, or
both with equal likelihoodFailure scope

Once per run for each nodeFailure incidence

Interface failure
parameters

After 540 s with only REXSM or SU purges SCM

120 sAnnounce interval

5 s (7 times)Probe intervalJini-specific
behavior for three-
party architecture

At TTL expirationSU purges SD

120 sMsearch query interval

1800 sAnnounce intervalUPnP-specific
behavior for two-
party architecture

120 sTime to retry after
REX (if applicable)

1800 sRegistration TTL

180 sPolling interval
Behavior in both
two- and three-
party architectures

ValueParameter

100 us for cache items
10 us for other items

Per-item processing
delay

10-100 us uniformTCP transmission delay

10 us constantUDP transmission
delay

Transmission and
processing delays

5% increments of 5400 s
from 0 to 75%

Failure duration

Transmitter, receiver, or
both with equal likelihoodFailure scope

Once per run for each nodeFailure incidence

Interface failure
parameters

After 540 s with only REXSM or SU purges SCM

120 sAnnounce interval

5 s (7 times)Probe intervalJini-specific
behavior for three-
party architecture

At TTL expirationSU purges SD

120 sMsearch query interval

1800 sAnnounce intervalUPnP-specific
behavior for two-
party architecture

120 sTime to retry after
REX (if applicable)

1800 sRegistration TTL

180 sPolling interval
Behavior in both
two- and three-
party architectures

ValueParameter

Table 4. Values for relevant parameters.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Elder 150

vv

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
Interface Failure Rate (%)

M
ed

ia
n

U
pd

at
e

R
es

po
ns

iv
en

es
s

Two-Party
Notification

Two-Party Polling

Three-Party Single-
SCM Notification

Three-Party Single-
SCM Polling

Figure. 4. Graphs comparing combinations of architecture, topology, and consistency-maintenance mechanism.

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80

Interface Failure Rate (%)

U
pd

at
e

Ef
fe

ct
iv

en
es

s

Two-Party Notification

Two-Party Polling

Three-Party Single-SCM
Notification

Three-Party Single-SCM
Polling

(c) Update Effectiveness of Two-Party vs. Three-Party (Single-
SCM)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
Interface Failure Rate (%)

M
ed

ia
n

U
pd

at
e

R
es

po
ns

iv
en

es
s

Two-Party Notification

Two-Party Polling

Three-Party Dual-SCM
Notification

Three-Party Dual-SCM
Polling

(b) Median Update Responsiveness of Two-Party vs.
Three-Party (Dual-SCM)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80
Interface Failure Rate (%)

U
pd

at
e

Ef
fe

ct
iv

en
es

s
Two-Party Notification

Two-Party Polling

Three-Party Dual-SCM
Notification

Three-Party Dual-SCM
Polling

(d) Update Effectiveness of Two-Party vs. Three-Party
(Dual-SCM)

(e) Update Efficiency of Two-Party vs. Three-Party (Single-SCM)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
Interface Failure Rate (%)

A
ve

ra
ge

 U
pd

at
e

Ef
fic

ie
nc

y

Two-Party Notification

Two-Party Polling

Three-Party Single-
SCM Notification

Three-PartySingle-SCM
Polling

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
Interface Failure Rate (%)

A
ve

ra
g

e
U

p
d

at
e

E
ff

ic
ie

n
cy

Two-Party Notification

Two-Party Polling

Three-Party Dual-SCM Notification

Three-Party Dual-SCM Polling

(a) Median Update Responsiveness of Two-Party vs. Three-
Party (Single-SCM)

(f) Update Efficiency of Two-Party vs. Three-Party (Dual-
SCM)

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Elder 151

Table 5. Summary statistics (mean across all interface-failure
rates) computed for each curve given in the graphs shown in
Figures 4(a) through 4(f).

Table 6. Depicts upper and lower bounds of the 95% C.I.,
computed using appropriate statistical techniques, for each
metric and all experiment combinations at selected interface-
failure rates.

the same combinations. Figures 4(e) and 4(f) use the same
combinations, but compare update efficiency. The graphs
reporting measures of responsiveness and effectiveness depict a
system undergoing a phase-transition from peak performance
(where changes propagate quickly) to non-performance (where
changes fail to propagate). Regarding efficiency, the graphs show
a system that begins at its best efficiency (without interfering
failures) and then asymptotically approaches zero efficiency as the
failure rate increases toward 100%. The graphs (particularly those
showing update effectiveness) also depict several eccentricities, in
the form of saw-tooth behaviors. Using the analysis and
visualization tools provided by Rapide, we were able to
investigate the causes underlying these eccentricities (see 5.3).
Because the graphs can be difficult to interpret, we compute
summary statistics (see Table 5) for each of our six combinations.
Each summary statistic reflects the mean of a particular metric,
when averaged across all interface-failure rates, for a specified
configuration. To indicate the uncertainty associated with our
measurements, we also give (see Table 6) the upper and lower
bounds (computed using an appropriate standard error formula for
each metric) associated with selected interface-failure rates (5%,
40%, and 75%) for each of our curves.

5.2 Understanding Relative Performance
Below, we discuss the results for each of our three metrics. The
reader should note that engineering trade-offs exist among these
metrics: responsiveness, effectiveness, and efficiency.

5.2.1 Responsiveness
Results in Figs. 4(a) and 4(b) and the first column of Table 5
show that the various combinations of architecture and behavior
exhibit similar responsiveness, where the mean median ranges
between 0.663 and 0.530. Table 6, which reports uncertainty in
the results, confirms a rough similarity in responsiveness.
Similarity arises because interface failures interfere with both
polling and notification, requiring nodes to rely on recovery
mechanisms in the underlying discovery protocols to restore
consistency. Absent failures, notification proves more responsive
because change notices are issued to interested parties
immediately after a change occurs, while polling incurs some lag
time. The presence of interface failures complicates the situation.
First, if a required interface is not operating when a notification is
issued, then an update will be lost. Second, when polls fail for an
extended period (likely during high interface-failure rates), then
polling ceases and updates can be missed. Under both (polling

and notification) mechanisms, restoring consistency depends upon
the recovery mechanisms in the discovery protocol.

The recovery mechanisms, as implemented in our models, exhibit
similar responsiveness: rediscovery of lost nodes will occur within
120 s after restoration of a failed interface. In the three-party case,
periodic (120 s) announcements by each SCM (lazy-discovery
procedures) ensure rediscovery. Similarly, in the two-party model,
the periodic (120 s) Msearch queries by each SU (aggressive-
discovery procedures) also ensure rediscovery. In this way,
restoration of a failed interface leads to rediscovery of lost nodes,
and to restoration of consistency in cached copies of SDs. As the
interface-failure rate increases beyond 30%, the rediscovery
machinery tends to dominate the responsiveness results (see 5.4
for further discussion of recovery mechanisms).

5.2.2 Effectiveness
Results in Figs. 4(c) and 4(d) and the second column of Table 5
show that certain combinations lead to better update effectiveness,
and Table 6 suggests that these differences could be significant.
Differences in effectiveness may be partly attributed to
architecture and topology. For example, each SD copy must
propagate over either one link (two-party case) or two links
(three-party case). For this reason, the three-party architecture
(single SCM) can prove more vulnerable to interface failures (two
links must be operational). This suggests that a two-party
architecture will be more effective under severe interface failures,
and our results support this. On the other hand, the three-party
architecture allows replication of SCMs, which provides a greater
number of paths through which information can propagate. This
suggests (and our results agree) that the three-party architecture
with the dual SCM should provide superior effectiveness over the
single-SCM, three-party architecture. Our results also indicate that
the dual-SCM three-party architecture yields effectiveness close to
that of the two-party architecture. Adding SCMs will likely
improve the effectiveness of the three-party architecture by
increasing path redundancy in the topology.
Differences in effectiveness may also be attributed in part to
consistency-maintenance mechanism. In general, polling should
lead to better effectiveness than notification. Our results support
this for the two-party architecture and for the three-party
architecture with a single SCM. Polling has built-in robustness
from issuing periodic requests. On the contrary, in both two- and
three-party architectures, each notification is issued only once

EfficiencyEffectivenessResponsiveness

0.391
0.543

0.562
1.000

0.244
0.412

0.605
1.000

0.501
0.849

0.561
0.783

40%

0.056
0.096

0.099
0.143

0.043
0.083

0.042
0.095

0.076
0.138

0.111
0.162

75%

0.974
0.986

1.000
1.000

0.974
0.980

1.000
1.000

0.975
0.980

1.000
1.000

5%

0.033
0.103

0.035
0.290

0.043
0.173

0.099
0.504

0.031
0.230

0.065
0.220

40%

0.660
0.753

0.730
0.803

0.660
0.753

0.521
0.652

0.760
0.826

0.709
0.787

75%

1.000
1.000

0.970
0.977

1.000
1.000

0.993
0.993

1.000
1.000

0.970
0.977

5%

0.019
0.059

0.218
0.273

0.939
0.955

Three-Party Polling
(Dual SCM)

0.009
0.096

0.335
0.599

0.977
0.983

Three-Party Notification
(Dual SCM)

0.040
0.164

0.387
0.512

0.946
0.960

Three-Party Polling
(Single SCM)

0.033
0.320

0.827
1.000

0.939
0.955

Three-Party Notification
(Single SCM)

0.042
0.059

0.501
0.666

0.993
0.993

Two-Party Polling

0.031
0.354

0.354
0.467

0.954
0.966

Two-Party Notification

75%5%40%.

EfficiencyEffectivenessResponsiveness

0.391
0.543

0.562
1.000

0.244
0.412

0.605
1.000

0.501
0.849

0.561
0.783

40%

0.056
0.096

0.099
0.143

0.043
0.083

0.042
0.095

0.076
0.138

0.111
0.162

75%

0.974
0.986

1.000
1.000

0.974
0.980

1.000
1.000

0.975
0.980

1.000
1.000

5%

0.033
0.103

0.035
0.290

0.043
0.173

0.099
0.504

0.031
0.230

0.065
0.220

40%

0.660
0.753

0.730
0.803

0.660
0.753

0.521
0.652

0.760
0.826

0.709
0.787

75%

1.000
1.000

0.970
0.977

1.000
1.000

0.993
0.993

1.000
1.000

0.970
0.977

5%

0.019
0.059

0.218
0.273

0.939
0.955

Three-Party Polling
(Dual SCM)

0.009
0.096

0.335
0.599

0.977
0.983

Three-Party Notification
(Dual SCM)

0.040
0.164

0.387
0.512

0.946
0.960

Three-Party Polling
(Single SCM)

0.033
0.320

0.827
1.000

0.939
0.955

Three-Party Notification
(Single SCM)

0.042
0.059

0.501
0.666

0.993
0.993

Two-Party Polling

0.031
0.354

0.354
0.467

0.954
0.966

Two-Party Notification

75%5%40%.

0.1100.9270.587
Three-Party Polling

(Dual SCM)

0.2210.9420.655Three-Party Notification
(Dual SCM)

0.2010.9110.530
Three-Party Polling

(Single SCM)

0.3890.8940.601Three-Party Notification
(Single SCM)

0.2510.9730.615Two-Party Polling

0.2120.9210.663Two-Party Notification

Average
EfficiencyEffectivenessMedian

Responsiveness

Mean (across all interface-failure rates)

0.1100.9270.587
Three-Party Polling

(Dual SCM)

0.2210.9420.655Three-Party Notification
(Dual SCM)

0.2010.9110.530
Three-Party Polling

(Single SCM)

0.3890.8940.601Three-Party Notification
(Single SCM)

0.2510.9730.615Two-Party Polling

0.2120.9210.663Two-Party Notification

Average
EfficiencyEffectivenessMedian

Responsiveness

Mean (across all interface-failure rates)

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Elder 152

with no further action by the sender in response to a REX (recall
Table 2). In two-party notification, effectiveness suffers from
situations where the notice is lost but the SM is not lost (because
announcements occur only every 1800 s and thus an interface
failure can be restored before the next announcement). In these
situations, rediscovery does not occur and the change will not be
propagated (see 5.3).

5.2.3 Efficiency
For a given combination of architecture and topology, we expect
that notification would be more efficient than polling. We also
expect that the two-party architecture would be more efficient
than the three-party architecture, and that the single-SCM
topology would be more efficient than the dual-SCM topology. In
general, our results support these expectations, but with a few
twists. The three-party, single-SCM architecture with notification
proves more efficient than the two-party architectures because in
Jini the SD arrives with the notification, while in UPnP
notifications indicate only that a change has occurred, requiring a
SU to exchange a request-response message pair to obtain the
updated SD.
In notification, efficiency also decreases as the failure rate
increases because SUs need to recover from REXs associated with
refreshing remote registrations. Each SU must periodically refresh
notification requests deposited on the SM (two-party case) or
SCM (three-party case). Interface failures lead to REXs during
refresh attempts. A REX invokes retry procedures: every 120 s
until 540 s of continuous REX (three-party case) or every 120 s
until a SM is purged (two-party case).

5.3 Investigating Saw-Tooth Phenomena
A number of the curves shown in Figures 4(a)-(f), exhibit saw-
tooth phenomena, most pronounced for update effectiveness,
particularly for the two-party architecture with notification. Our
uncertainty calculations suggest that at failure rates above 40%
these spikes may be attributed to random variations, which might
be reduced by increasing the number of runs at each failure rate
(currently 30) and the corresponding number of data points
(currently 5 SUs x 30 runs = 150). On the other hand, spikes at
lower failure rates appear more likely due to causal behavior in
our models. For example, the two-party architecture with
notification exhibits a significant dip at 15% interface-failure rate.
Using visualization and analysis tools included with Rapide, we
examined the partially ordered sets of events (POSETs) that
display the complete causal behavior of our model. The POSETs
revealed that at the 15% interface-failure rate a large number of
notifications were lost when either the SM transmitter was
inoperable (causing notifications to all SUs to be lost) or when SU
receivers were inoperable (causing lost notifications to individual
SUs). Recovery from notification loss depends upon a SU
discarding a SM, and then rediscovering the SM, and retrieving
related SDs. A SU discards a SM when it fails to receive an
announcement from the SM within the specified time.
Unfortunately, in many cases, a failed interface that caused a
notification loss was repaired prior to the next SM announcement
(announcements come every 1800 s). In such cases, the SU does
not purge the SM, and therefore there is no rediscovery. Without
rediscovery, there is no mechanism to restore consistency; thus,
lost notifications lead to inconsistencies that persist to the
deadline (and beyond).

Why does this behavior not appear with notification in the three-
party architecture? The three-party architecture requires a SM to
first propagate a change to a SCM. The SCM then propagates the
change on to SUs that requested notification. While notification
from SCM to SU is unprotected, on failure a SM retries change
propagation to a SCM. An inoperable SCM transmitter leads not
only to failure to propagate notifications to SUs, but also to
failure to confirm the change propagated by the SM. Absent
confirmation, the SM retries the change for up to 540 s, during
which time the SCM transmitter might be restored. Each repeated
change that propagates to the SCM also causes notifications to be
sent to the relevant SUs. Thus for SCM transmitter failures, we
conclude that robustness in change propagation from SM to SCM
compensates for lack of robustness in notifications from SCM to
SU. No equivalent serendipity occurs in the two-party
architecture. These cases suggest relationships between the timing
and scope of failures and the role of recovery mechanisms in the
different architectures.

5.4 Role of Recovery Mechanisms
Under hostile conditions, such as those in our experiments,
recovery mechanisms play a key role in consistency maintenance.
For example, a detailed analysis of results from our two-party
architectural model show that at 30% failure rate and below,
interface failures tend to be restored more frequently within the
REX retry period associated with HTTP Get requests; thus,
application recovery contributes substantially to update
effectiveness. Above 30% failure rate, application recovery tends
to exhaust its allotted time, leading a SU to discard knowledge of
the SM. In such cases, update effectiveness depends primarily on
robustness mechanisms built into the discovery protocol. We plan
additional analysis to establish the contribution to update
effectiveness of various recovery strategies in both two- and three-
party architectures.

5.5 Recommendations for Improving ADLs
While the Rapide ADL provided useful abstractions to represent
and analyze the structure and behavior of service-discovery
protocols under failure, we recommend some improvements that
apply generally to ADLs. First, this study reinforces our previous
recommendations [4] that component states should be selectively
exportable to allow data extraction and recording for analysis.
Such an export mechanism would also assist in implementing
techniques to evaluate consistency conditions that involve state
variables from two or more components and that consider time,
two important considerations when analyzing component
interactions. We note that some ADLs include constraint-analysis
engines that consider time [e.g., 15]. Second, ADLs, and
especially their tools, must provide representations of behavior
that can be evaluated efficiently. For example, to bound POSET
size in this study, we were forced to substitute procedure calls in
place of Rapide constraint evaluation. Third, we would find it
convenient if ADL tools supported the same statistical techniques
available from commercial simulation systems. For example, ADL
tools might include mechanisms to track and summarize statistics
about selected state variables. ADLs might also include machinery
to apply statistical tests to selected variables across experiment
runs in order to automate halting decisions. We expect to develop
additional recommendations as our work proceeds.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Elder 153

6. FUTURE WORK
We envision future work along three general directions. First, we
intend to complete our characterization of performance for various
combinations of architecture, topology, and behavior during
failures. We will model the effects of message loss, which appear
likely to differ significantly from those described in this study,
and we will assess the ramification of node failure on discovery
and recovery mechanisms in various architectures and topologies.
Second, we plan to model and evaluate selected changes to
improve the performance of discovery architectures and protocols
in response to failure. Here, our goal is to increase the fault-
tolerance of such systems. We intend to implement and evaluate
our most promising suggested changes in publicly available
service-discovery software. Third, we will expand our generic
structural model of service-discovery architectures to include
message exchanges and verifiable consistency conditions.

Along a different dimension, we hope to improve methodologies
available to design and engineer distributed software systems. At
present, many publicly available specifications come with one or
more reference implementations. We hope to demonstrate that
architectural models lead to better understanding of the properties
of distributed systems. In addition, we aim to improve ADLs, and
associated tools, by providing recommendations based on our
experience. We are also considering developing our own
modeling and analysis tools especially designed for understanding
collective behavior in multi-party distributed systems.

7. CONCLUSIONS
Emerging service-discovery protocols provide the foundation for
software components to discover each other, to organize
themselves into a system, and to adapt to changes in system
topology. While likely suitable for small-scale commercial
applications, questions remain regarding the performance of such
protocols at large scale, and during periods of high volatility and
duress, such as might exist in military and emergency-response
applications. In this paper, we used architectural models to
characterize the performance of selected combinations of system
topology and consistency-maintenance mechanism during
catastrophic communication failure. Further, we used behavioral
analysis to investigate causes underlying observed performance.
Our initial investigations show significant differences in update
effectiveness can be obtained by varying aspects of the design
(architecture, topology, consistency-maintenance mechanism, and
recovery strategies). Our results also suggest relationships among
interface-failure rate, failure timing, and recovery strategies.

8. ACKNOWLEDGMENTS
The work described benefits from financial support provided by
the National Institute of Standards and Technology (NIST), the
Defense Advanced Research Projects Agency (DARPA), and the
Advanced Research Development Agency (ARDA). In particular,
we acknowledge the support of Susan Zevin from NIST, Doug
Maughan and John Salasin from DARPA, and Greg Puffenbarger
from ARDA. We also thank Stefan Leigh of NIST and the
anonymous WOSP reviewers for insightful comments that helped
us to improve the manuscript.

9. REFERENCES
[1] G. Bieber and J. Carpenter, “Openwings A Service-Oriented

Component Architecture for Self-Forming, Self-Healing,
Network-Centric Systems,” on the web site:
http://www.openwings.org.

[2] Ken Arnold et al, The Jini Specification, V1.0 Addison-
Wesley 1999. Latest version is 1.1 available from Sun.

[3] Universal Plug and Play Device Architecture, Version 1.0,
Microsoft, June 8, 2000.

[4] Dabrowski, C. and Mills, K., “Analyzing Properties and
 Behavior of Service Discovery Protocols Using an
Architecture-Based Approach”, Proceedings of Working
Conference on Complex and Dynamic Systems Architecture,
Brisbane, Australia, December 2001.

[5] Luckham, D. “Rapide: A Language and Toolset for
Simulation of Distributed Systems by Partial Ordering of
Events,” http://anna.stanford.edu/rapide, August 1996.

[6] Salutation Architecture Specification, Version 2.0c,
Salutation Consortium, June 1, 1999.

[7] Specification of the Home Audio/Video Interoperability
(HAVi) Archiecture, V1.1, HAVi, Inc., May 15, 2001.

[8] Service Location Protocol Version 2, Internet Engineering
Task Force (IETF), RFC 2608, June 1999.

[9] Specification of the Bluetooth System, Core, Volume 1,
Version 1.1, the Bluetooth SIG, Inc., February 22, 2001.

[10] B. Miller and R. Pascoe, Mapping Salutation Architecture
APIs to Bluetooth Service Discovery Layer, Version 1.0,
Bluetooth SIG White paper, July 1, 1999.

[11] C. Bettstetter and C. Renner, “A Comparison of Service
Discovery Protocols and Implementation of the Service
Location Protocol”, Proceedings of the Sixth EUNICE Open
European Summer School: Innovative Internet Applications,
EUNICE 2000, Twente, Netherlands, September, 13-15,
2000.

[12] G. Richard, “Service Advertisement and Discovery: Enabling
Universal Device Cooperation,” IEEE Internet Computing,
September-October 2000, pp. 18-26.

[13] B. Pascoe, “Salutation Architectures and the newly defined
service discovery protocols from Microsoft and Sun: How
does the Salutation Architecture stack up,” Salutation
Consortium whitepaper, June 6, 1999.

[14] J. Rekesh, UPnP, Jini and Salutation - A look at some
popular coordination framework for future network devices,
Technical Report, California Software Lab, 1999. Available
online from http://www.cswl.com/whiteppr/tech/upnp.html.

[15] Allen, R. A Formal Approach to Software Architecture,
Ph.D. Thesis, Carnegie Mellon University, CMU Technical
Report CMU-CS-97-144, May 1997.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Elder 154

Understanding Consistency Maintenance in Service Discovery Architectures in
Response to Message Loss

Christopher Dabrowski, Kevin Mills, Jesse Elder
National Institute of Standards and Technology

Gaithersburg, Maryland USA
{cdabrowski, kmills, jelder}@nist.gov

Abstract

Current trends suggest future software systems will
comprise collections of components that combine and
recombine dynamically in reaction to changing
conditions. Service-discovery protocols, which enable
software components to locate available software services
and to adapt to changing system topology, provide one
foundation for such dynamic behavior. Emerging
discovery protocols specify alternative architectures and
behaviors, which motivate a rigorous investigation of the
properties underlying their designs. Here, we assess the
ability of selected designs for service-discovery protocols
to maintain consistency in a distributed system during
severe message loss. We use an architecture description
language, called Rapide, to model two different
architectures (two-party and three-party) and two
different consistency-maintenance mechanisms (polling
and notification). We use our models to investigate
performance differences among combinations of
architecture and consistency-maintenance mechanism as
message-loss rate increases. We measure system
performance along three dimensions: (1) update
responsiveness (How much latency is required to
propagate changes?), (2) update effectiveness (What is
the probability that a node receives a change?), and (3)
update efficiency (How many messages must be sent to
propagate a change throughout the topology?).

1. Introduction

Successful deployment of active middleware services,
which can detect and adapt to changes in topologies of
distributed components, will depend upon a foundation
layer of service-discovery software that can monitor the
state of nearby software services and components and that
can detect changes in network connectivity. Already,
military organizations are investigating the applicability of
commercial service-discovery systems to meet such
requirements in hostile and volatile environments [1]. In
military and civil emergency response situations, software
components in a distributed system may find that
cooperating components disappear due to physical or

cyber attacks, to jamming of communication channels or
to movement of nodes. Such environments demand new
analysis approaches and tools to design and test software
that will be used to provide active middleware services.

In this paper, we use architectural models to assess the
ability of selected designs for service-discovery protocols
to maintain consistency in a distributed system during
severe message loss. (A companion paper investigates
robustness in the face of interference due to node interface
failure [2].) Using an architecture description language
(ADL), we model two different architectures (two-party
and three-party) and two different consistency-
maintenance mechanisms (polling and notification). To
provide our models with realistic behaviors, we
incorporate consistency-maintenance mechanisms adapted
from two specifications: Jini™ Networking Technology1
[3] and Universal Plug-and-Play (UPnP) [4]. We use our
models to investigate performance differences among
combinations of architecture and consistency-maintenance
mechanism as message-loss rate increases. We measure
system performance along three dimensions: (1) update
responsiveness (How much latency is required to
propagate changes?), (2) update effectiveness (What is the
probability that a node receives a change?), and (3) update
efficiency (How many messages must be sent to propagate
a change throughout the topology?).

Our modeling and analysis approach builds on earlier
work [5] where we derived benefits by creating dynamic
models from specifications for service-discovery
protocols. Dynamic models enable us to understand
collective behavior among distributed components, and to
detect ambiguities, inconsistencies and omissions in
specifications. In this paper, we apply the same method:
(1) construct an architectural model of each discovery
protocol, (2) identify and specify relevant consistency
conditions that each model should satisfy, (3) define
appropriate metrics for comparing the behavior of each
model, (4) construct relevant scenarios to exercise the

1 Certain commercial products or company names are identified in this

paper to describe our study adequately. Such identification is not
intended to imply recommendation or endorsement by the National
Institute of Standards and Technology, nor to imply that the products
or names identified are necessarily the best available for the purpose.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Elder 155

models and to probe for violations of consistency
conditions, and (5) compare results from executing similar
scenarios against each model. To implement the method,
we rely on Rapide [6], an ADL developed at Stanford
University. Rapide represents behavior in a form suitable
to investigate distributed systems, and comes with an
accompanying suite of analysis tools that can execute a
specification and can record and visualize system
behavior. In this paper, we use Rapide to understand how
failure-recovery strategies contribute to differences in
performance.

The remainder of the paper is organized in six sections.
We begin, in Section 2, by introducing service-discovery
protocols and architectures, including a description of
procedures to maintain consistency in replicated
information. In Section 3, we outline some techniques,
included in our models, to recover from failures. Section 4
defines an experiment, and related metrics, to compare the
performance and overhead exhibited by selected pairings
of architecture and consistency-maintenance mechanism
while attempting to propagate changes during message
loss. In Section 5, we present results from the experiment,
and we discuss causes underlying some of the results. We
conclude in Section 6.

2. Service discovery systems

Service-discovery protocols enable software
components in a network to discover each other, and to
determine if discovered components meet specific
requirements. Further, discovery protocols include
consistency-maintenance mechanisms, which can be used
by applications to detect changes in component
availability and status, and to maintain, within some time
bounds, a consistent view of components in a network.
Many diverse industry activities explore different
approaches to meet such requirements, leading to a variety
of proposed designs for service- discovery protocols [3, 4,
7-10]. Some industry groups approach the problem from a
vertically integrated perspective, coupled with a narrow
application focus. Other industry groups propose more
widely applicable solutions. For example, a team of
researchers and engineers at Sun Microsystems designed
Jini Networking Technology [3], a general service-
discovery mechanism atop JavaTM, which provides a base
of portable software technology. As another example, a
group of engineers at Microsoft and Intel conceived
Universal Plug-and-Play [4] in an attempt to extend plug-
and-play, an automatic intra-computer device-discovery
and configuration protocol, to distributed systems. The
proliferation of service-discovery protocols motivates
deeper analyses of their designs.

To help us compare designs, we developed a general
structural model, documented using the UML (Unified

Modeling Language). Our general model provides a basis
for comparative analysis of various discovery systems by
representing the major architectural components with a
consistent and neutral terminology (see first column in
Table 1). The main components in our general model
include: (1) service user (SU), (2) service manager (SM),
and (3) service cache manager (SCM). The SCM is an
optional element not supported by all discovery protocols.
These components participate in the discovery,
information-propagation, and consistency-maintenance
processes that comprise discovery protocols. A SM
maintains a database of service descriptions, (SDs), each
SD encoding the essential characteristics of a particular
service or device (Service Provider, or SP). Each SD
contains the identity, type, and attributes that characterize
a SP. Each SD also includes up to two software interfaces
(an application-programming interface and a graphical-
user interface) to access a service. A SU seeks SDs
maintained by SMs that satisfy specific requirements.
Where employed, the SCM operates as an intermediary,
matching advertised SDs of SMs to requirements provided
by SUs. Table 1 shows how these general concepts map
to specific concepts from Jini, UPnP, and the Service
Location Protocol (SLP) [9]. The behaviors by which SUs
discover and maintain consistency in desired SDs depend
partly upon the service-discovery architecture employed.

2.1 Alternative architectures
Broadly speaking, system architecture comprises a set

of components, and the connections among them, along
with the relationships and interactions among the
components. In our application, we represent the
architecture of a discovery system using an architectural
model, which expresses structure (as components,
connections, and relations), interfaces (as messages
received by components), behavior (as actions taken in
response to messages received, including generation of
new messages), and consistency conditions (as Boolean
relations among state variables maintained across different
components). Our initial analysis of six distinct discovery
systems revealed that most designs use one of two
underlying architectures: two-party or three-party.

Service RegistrationDevice/Service DescriptionService ItemService Description (SD)

Directory Service Agent
(optional)

not applicableLookup ServiceService Cache
Manager (SCM)

Service URL
Service Type
Service Attributes
Template URL
Template URL

Universal Unique ID
Device/Service Type
Device/Service Schema
Presentation URL
Control/Event URL

Service ID
Service Type
Attribute Set
Service Applet
Service Proxy

Identity
Type
Attributes
User Interface
Program Interface

ServiceDevice or ServiceServiceService Provider (SP)

Service AgentRoot DeviceService or
Device Proxy

Service Manager (SM)

User AgentControl PointClientService User (SU)

SLPUPnPJiniGeneric Model

Service RegistrationDevice/Service DescriptionService ItemService Description (SD)

Directory Service Agent
(optional)

not applicableLookup ServiceService Cache
Manager (SCM)

Service URL
Service Type
Service Attributes
Template URL
Template URL

Universal Unique ID
Device/Service Type
Device/Service Schema
Presentation URL
Control/Event URL

Service ID
Service Type
Attribute Set
Service Applet
Service Proxy

Identity
Type
Attributes
User Interface
Program Interface

ServiceDevice or ServiceServiceService Provider (SP)

Service AgentRoot DeviceService or
Device Proxy

Service Manager (SM)

User AgentControl PointClientService User (SU)

SLPUPnPJiniGeneric Model

Table 1. Mapping concepts among service-
discovery systems.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Elder 156

2.1.1 Two-party architectures. A two-party
architecture consists of two major components: SMs and
SUs. In this study, we use a two-party architecture
arranged in a simple topology consisting of one SM and
five SUs, as depicted in Figure 1. To animate the
architecture, we chose behaviors for discovery,
information propagation, and consistency maintenance, as
described in the specification for UPnP. Upon startup,
each SU and SM engages in a discovery process to locate
other relevant components within the network
neighborhood. In a lazy-discovery process, each SM
periodically announces the existence of its SDs over the
UPnP multicast group, used to send messages from a
source to a group of receivers. Upon receiving these
announcements, SUs with matching requirements use a
HTTP/TCP (HyperText Transfer Protocol/transmission-
control protocol) unicast link (for message exchanges
between two specific parties) to request, directly from the
SM, copies of the SDs associated with relevant SPs. The
SU stores SD copies in a local cache. Alternatively, the
SU may engage in an aggressive-discovery process, where
the SU transmits SD requirements, as Msearch queries, on
the UPnP multicast group. Any SM holding a SD with
matching requirements may use a HTTP/UDP (user-
datagram protocol) unicast link to respond (after a jitter
delay) directly to the SU. Whenever a UPnP SM responds
to an Msearch query (or announces itself using the lazy
discovery process), it does so with a train of (3 + 2d + k)
messages, where d is the number of distinct devices and k
is the number of unique service types managed by the SM.
For each appropriate response, the SU uses a HTTP/TCP
unicast link to request a copy of the relevant SDs, caching
them locally.

To maintain a SD in its local cache, a SU expects to
receive periodic announcements from the relevant SM. In
UPnP, the SM announces the existence of SDs at a
specified interval, known as a Time-to-Live, or TTL. Each
announcement specifies the TTL value. If the SU does
not receive an announcement from the SM within the TTL
(or a periodic SU Msearch does not succeed within that

time), the SU may discard the discovered SD. We selected
the minimum TTL of 1800 s, as recommended by the
UPnP specification. (See Tables 2 and 4 for a summary of
relevant parameter values used in this paper.)

2.1.2 Three-party architectures. A three-party
architecture consists of SMs, SUs, and SCMs, where the
number of SCMs represents a key variable. In this study,
we model a three-party architecture with one SM and five
SUs, as shown in Figure 2. We anticipate that under
failure conditions, increasing the number of SCMs will
increase the chance of successful rendezvous among
components, leading to better propagation of information
updates from SMs to SUs. To investigate this, we vary the
number of SCMs in our three-party architectural model.
To animate our three-party model, we chose behaviors
described in the Jini specification.

In Jini, the discovery process focuses upon discovery

by SMs and SUs of any intermediary SCMs that exist in
the network neighborhood. Elsewhere [5], we describe
these procedures in detail. Here, we simply summarize.
Upon initiation, a Jini component enters aggressive
discovery, where it transmits probes on the aggressive-
discovery multicast group at a fixed interval (5 s
recommended) for a specified period (seven times
recommended), or until it has discovered a sufficient
number of SCMs. Upon cessation of aggressive discovery,
a component enters lazy discovery, where it listens on the
lazy-discovery multicast group for announcements sent at
intervals (120 s recommended) by SCMs. Our three-party
model implements both the aggressive and lazy forms of
Jini multicast discovery. Once discovery occurs, a SM
deposits a copy of the SD for each of its services on the
discovered SCM. The SCM caches this deposited state,
but only for a specified length of time, or TTL. To

HTTP/TCP and HTTP/UDP

Service
User

Service
Manager

UPnP Multicast Group

Unicast Links

HTTP/TCP and HTTP/UDP

Service
User

Service
User

Service
Manager

UPnP Multicast Group

Unicast Links

Figure 1. Two-party service-discovery
architecture deployed in a six-node topology:
five service users (SUs) and one service
manager (SM).

Service
Manager

Service
User

Service
Cache

Manager

Aggressive-Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy-Discovery Multicast Group

Optional, 2nd SCMService
Manager

Service
User

Service
Cache

Manager

Aggressive-Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy-Discovery Multicast Group

Optional, 2nd SCM

Figure 2. Three-party service-discovery
architecture deployed in a seven- or eight-
node topology: five service users (SUs), a
service manager (SM), and a service cache
manager (SCM), with an optional 2nd SCM.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Elder 157

maintain a SD on the SCM beyond the TTL, a SM must
refresh the SD. In this way, if the SM fails, then the SCM
can purge any SDs deposited by the SM. To make
behavior as consistent as possible across our models for
both the two-party and three-party architectures, we
selected 1800 s as TTL for a SD to be cached by a SCM.
Using these techniques, SUs and SPs rendezvous through
SDs registered by SMs with particular SCMs, where the
SCMs are found through a discovery process. The SCMs
match SDs provided by SMs to SU requirements, and
forward matches to SUs, which then access the
appropriate SPs.

2.2 Consistency maintenance mechanisms

After initial discovery and information propagation
(through SDs), service-discovery protocols provide
consistency-maintenance mechanisms that applications
can use to ensure that changes to critical information
propagate throughout the system. Critical information may
consist of service availability and capacity, or updates to
descriptions of service capabilities, which may be
necessary for a SU to effectively use a discovered service.
In our study, we consider two basic consistency-
maintenance mechanisms, polling and notification, along
with accompanying mechanisms to propagate updates.

2.2.1 Polling. In polling, a SU periodically sends
queries to obtain up-to-date information about a SD that
was previously discovered, retrieved, and cached locally.
In a two-party architecture, the SU issues the query
directly to the SM from which the SD was obtained. In
this study, we use the UPnP HTTP Get request mechanism
to poll the SM to retrieve a SD associated with a specific
URL (uniform resource locator). In response, the SM
provides a SD containing a list of all supported services,
including their relevant attributes.

Polling in a three-party architecture consists of two
independent processes. In one process, a SM sends a
ChangeService request to propagate an updated SD to
each SCM where the SD was originally cached. In the
second process, each SU polls relevant SCMs by
periodically issuing a FindService request, effectively a
query with a set of desired SD requirements. The SCM
replies with a MatchFound that contains the relevant
information for any matching SDs. In our study, we adopt
a 180-s interval for polling in both architectures.

2.2.2 Notification. In notification, immediately after
an update occurs, a SM sends events that announce a SD
has changed. To receive events about a SD of interest, a
SU must first register for this purpose. In the two-party
architecture, the SU registers directly with a SM. We
model this procedure using the UPnP event-subscription
mechanism, where the SU sends a Subscribe request, and
the SM responds by either accepting the subscription, or

denying the request. The subscription, if accepted, is
retained for a TTL, which may be refreshed with
subsequent Subscribe requests from the SU. In our
experiment, we chose 1800 s as TTL for event
subscriptions in both architectures.

In a three-party architecture, a SU registers with a
SCM to receive events using a procedure analogous to
that used by a SM to propagate a SD. As with SD
propagation, the SCM grants event registrations for a
TTL, which may be refreshed. When a SD update occurs,
the SM first issues a ChangeService request to all SCMs
to which it originally propagated the SD. The SCM then
issues a MatchFound to propagate the event to all SUs
that have registered to receive events about the SD.

3. Modeling recovery strategies

Elsewhere [2], we discuss the classes of network
failures occurring in hostile environments and describe
failure-recovery mechanisms of lower-layer protocols in
more detail. Here we address recovery in response to
message loss at a more general level. Our architectural
models incorporate three classes of failure-recovery
strategies: (1) recovery by lower-layer protocols, (2)
recovery by discovery protocols, and (3) recovery by
application software. For each class, we outline the
strategies (see Table 2) included in our models.

3.1 Recovery by lower layers

Our models operate over two types of channels:
unreliable, simulating the UDP in both multicast and
unicast forms, and reliable, simulating the TCP. UDP
provides no guarantee of message delivery; therefore our
simulated unreliable channels discard messages lost due to
transmission errors. Neither sender nor receiver learns the
fate of lost messages.

Table 2. Summary of recovery responsibilities
and strategies as implemented within our
models for two- and three-party architectures.

Three-Party
Architecture (Jini)

Two-Party
Architecture (UPnP)

Recovery
Mechanism

Responsible
Party

SU and SM: purge SCM after
540 s of continuous
REX

SU: purge SD after failure to
receive SM announcement
within 1800 s

Discard
Knowledge

SM: depositing or refreshing SD
copy on SCM retry in 120s

SU: registering and refreshing
notification requests with SCM
retry in 120 s

SU: HTTP Get after discovery
retry in 180 s (retries < 3)

Subscribe requests retry in
120s

Retry after
REX

SU: FindService Poll
SCM: Notification

SU: HTTP Get Poll
SM: Notification

Ignore REX

Application
Software

SU and SM: issue seven probes
(at 5 s intervals) only
during startup

SU: issues Msearch every 120 s
(after purging SD)

Aggressive
Discovery

SCM: announces every 120 sSM: announces with n (3+2d+k)
messages every 1800 s

Lazy
Discovery

Discovery
Protocols

Issue REX 78 s if connection
establishment fails

Issue REX in 78 s if connection
establishment failsTCP

No recoveryNo recoveryUDP
Lower-Layer

Protocols

Three-Party
Architecture (Jini)

Two-Party
Architecture (UPnP)

Recovery
Mechanism

Responsible
Party

SU and SM: purge SCM after
540 s of continuous
REX

SU: purge SD after failure to
receive SM announcement
within 1800 s

Discard
Knowledge

SM: depositing or refreshing SD
copy on SCM retry in 120s

SU: registering and refreshing
notification requests with SCM
retry in 120 s

SU: HTTP Get after discovery
retry in 180 s (retries < 3)

Subscribe requests retry in
120s

Retry after
REX

SU: FindService Poll
SCM: Notification

SU: HTTP Get Poll
SM: Notification

Ignore REX

Application
Software

SU and SM: issue seven probes
(at 5 s intervals) only
during startup

SU: issues Msearch every 120 s
(after purging SD)

Aggressive
Discovery

SCM: announces every 120 sSM: announces with n (3+2d+k)
messages every 1800 s

Lazy
Discovery

Discovery
Protocols

Issue REX 78 s if connection
establishment fails

Issue REX in 78 s if connection
establishment failsTCP

No recoveryNo recoveryUDP
Lower-Layer

Protocols

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Elder 158

Reliable unicast protocols attempt to ensure delivery of
messages by detecting and retransmitting lost messages.
Accordingly in the TCP simulation, our model is more
complex, including both connection establishment and
data transfer. During connection establishment, we allow
up to four attempts to initiate a connection. An attempt
fails if either the connection request or accept is lost. If no
accept arrives, then the request is resent in 6 s for the first
retry, but we wait 24 s for each subsequent retry. If all
attempts fail, then we signal a REX to the requester.
During data transfer, messages lost to transmission errors
are scheduled for retransmission (roughly within a round-
trip time, or RTT). We increase the retransmission
timeout by 25% with each successive retransmission. We
place no bound on the number of retransmissions during
data transfer.

3.2 Recovery by discovery protocols

Discovery protocols include built-in robustness
measures to deal with the possibilities of UDP message
loss and node failure. Discovery protocols specify
periodic transmission of key messages. For example, Jini
requires a node to engage in aggressive discovery on
startup, and then to enter lazy discovery, where all SCMs
periodically announce their presence. In a similar lazy
discovery, UPnP requires SMs to periodically announce
their presence. While not specifying aggressive discovery,
UPnP permits SUs to issue Msearch queries at any time.
To compensate for the different announcement intervals
recommended for Jini and UPnP, we chose to have UPnP
SUs issue Msearch queries every 120 s, but only after a
SU purges a SD from its local cache. Once a SU regains
its desired SD, the related Msearch queries cease.
Whenever a UPnP SM announces itself or responds to an
Msearch query, it sends n copies of each message, where
n is a retransmission factor (two in the current study)
recommended by the UPnP specification to compensate
for possible UDP message loss. In both Jini and UPnP,
each lazy announcement recurs periodically. Receiving
nodes can cache information from the announcements; the
cached information may be purged if communication fails.
In this way, each node in the system eliminates residual
information about failed or unreachable nodes. Our
models incorporate these failure-recovery behaviors.

3.3 Recovery by application software

When discovery nodes communicate over a reliable
channel, a REX may occur. Response to a REX is left to
the application. In our models, depending on the situation,
we implement three different strategies: (1) ignore the
REX, (2) retry the operation for some period, and (3)
discard knowledge. The retry strategy attempts to recover

from transient failures. The discard strategy, which occurs
following repeated failure of the retry strategy, relies upon
discovery mechanisms to recover from more persistent
failures.

3.3.1 Ignore REX. In general, our models ignore a
REX received when attempting to respond to a request. A
SU can ignore a REX received in response to a poll,
FindService or HTTP Get, because the poll recurs at an
interval. The SCM (three-party model) or the SM (two-
party model) also ignores a REX received while
attempting to issue a notification. This behavior, which is
described in both the Jini and UPnP specifications,
depends upon reliable lower-layer protocols to provide
robustness for notifications. Notifications include
sequence numbers that allow a receiving node to
determine if previous notifications were missed.

3.3.2 Retry the operation. In our models, we retry
selected operations in the face of a REX. The UPnP
specification separates the operation of discovering a
resource from obtaining a description of the resource (Jini
combines these operations). Without a description, the
resource cannot be used. For this reason, in our two-party
model, a SU must issue a HTTP Get to obtain a
description. If no description arrives within 180 s, then
our model retries the HTTP Get. If unsuccessful after
three attempts, the SU ceases the retries, but sets a flag
reminding itself to reissue a HTTP Get when the resource
is next announced. Our three-party model, based on Jini,
also contains a retry strategy, but associated with attempts
to register or change a SD with a SCM. In these cases, the
SM retries a ChangeService or ServiceRegistration 120 s
after receiving a REX. Similarly, when a SU receives a
REX (from either a SM or SCM) in response to a request
to register for notification, the SU retries the registration
in 120 s. All retries occur until some time bounds, after
which knowledge of the discovery is discarded.

3.3.3 Discard knowledge. Both our two-party and
three-party models include the possibility that an
application can discard knowledge of previously
discovered nodes. In UPnP, after failure to receive
announcements from the SM within a TTL, a SU discards
a SM and any related SDs. We implement this behavior in
our two-party model. In Jini, the specification states that a
discovering entity may discard a SCM with which it
cannot communicate. In our three-party model, a SM or
SU deletes a SCM if it receives only REXs when
attempting to communicate with the SCM over a 540-s
interval. After discarding knowledge of a SM (UPnP) or
SCM (Jini), all operations involving the node cease until it
is rediscovered, either through lazy discovery (Jini or
UPnP announcements) or aggressive discovery (UPnP
Msearch queries).

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Elder 159

4. Experiment design and metrics

In this paper, we investigate the following question:
How do alternative service-discovery architectures,
topologies, and consistency-maintenance mechanisms
perform under deadline during message loss? To address
this question, we deploy a two-party and three-party
architecture (recall Figures 1 and 2), each in a topology
that includes one SM and five SUs. In the three-party
case, we use two topologies, one with one SCM and
another with two SCMs. To compare change propagation
in two- and three-party architectures, we then combine the
architectures with different consistency-maintenance
mechanisms. Table 3 depicts the six combinations. To
establish initial conditions, we exercise each topology
until discovery completes, and the initial information (a
SD) propagates to all SUs. To begin the experiment, we
introduce a change in the SD at the SM, and we establish
a deadline, D, before which the change must propagate to
all SUs. We measure the number of messages exchanged
and the latency required to propagate the new information,
or until D, under two different consistency-maintenance
mechanisms: polling and notification. We repeat this
experiment while varying the message-loss rate up to 95%
(in increments of 5%). We provide further details below.

4.1. Tracking consistency

To track consistency in our experiment, we employ
property analysis [5], using a single consistency condition:
service attributes for a SD discovered by a SU should
have the same values as the attributes of the SD being
maintained by the SM that manages the SD, expressed as:

FOR All (SM, SU, SD)
(SM, SD [Attributes1]) isElementOf SM managed-services &

 (SM, SD [Attributes2]) isElementOf SU discovered-services
 implies Attributes1 equals Attributes2

The condition is incorporated directly into our models and
checked using Rapide procedural code. We establish an
initial system state in which this condition holds, and then
introduce a change in (SM, SD [Attributes1]), which
negates the condition for all SUs. Then, we monitor

updates to (SM, SD) tuples in the set of discovered-
services maintained by individual SU's to determine if the
condition becomes true. Note that if a SU discards its
(SM, SD) tuple, the tuple must be recovered before the
condition can be satisfied. These consistency checks form
the basis for our measurements.

4.2. Generating message loss

We set aside an interval, up to time Q, to complete
initial discovery and information propagation. In our
experiments, Q = 100 s and D = 5400 s. We define F as
the message-lost rate, which represents the independent
variable in our experiment, ranging from 0.00 to 0.95 in
increments of 0.05. For each attempt to transmit a data
message, whether on a reliable or unreliable channel, or to
retransmit a data message on a reliable channel, or to send
or retry a connection request or accept message on a
reliable channel, we select a uniform random number, V,
from the unit interval 0 to 1. If V < F, we discard the
message, which in the case of messages sent on the
reliable channel will stimulate a retransmission after the
appropriate timeout period (recall 3.1). Table 4
summarizes most of the relevant parameters and values for
our experiments.

4.3. Metrics

We use the data collected from experiment runs to

compute three metrics: update responsiveness, update
effectiveness, and update efficiency.

Table 3. Experiment combinations.

Notification (with service registration and
notification registration on SCM)

JiniThree-Party (Dual SCM)

Polling (with service registration on SCM)JiniThree-Party (Dual SCM)

Notification (with service registration and
notification registration on SCM)

JiniThree-Party (Single SCM)

Polling (with service registration on SCM)JiniThree-Party (Single SCM)

Notification (with notification registration
on SM)

UPnPTwo-Party

PollingUPnPTwo-Party

Consistency-Maintenance MechanismProtocol BasisArchitectural Variant

Notification (with service registration and
notification registration on SCM)

JiniThree-Party (Dual SCM)

Polling (with service registration on SCM)JiniThree-Party (Dual SCM)

Notification (with service registration and
notification registration on SCM)

JiniThree-Party (Single SCM)

Polling (with service registration on SCM)JiniThree-Party (Single SCM)

Notification (with notification registration
on SM)

UPnPTwo-Party

PollingUPnPTwo-Party

Consistency-Maintenance MechanismProtocol BasisArchitectural Variant

Table 4. Values for relevant parameters.

100 us for cache items
10 us for other items

Per-item processing
delay within node

0.14 – 0.42 s uniform
(range is multiplied by 1+F)

Transmission delay
without message loss

Connection Establishment -
4 retransmission attempts
with delays of 6 s, 24 s, 24
s and 24 s; then REX if
unsuccessful.
Data Transfer – retransmit
until success, increasing
time-out by 25% on each
retry (first time-out is round-
trip time).

Reliable protocol
response

Message discarded. No
retransmission.

Unreliable protocol
response

Each transmission attempt
fails with P(F)Loss Probability (F)

Message loss
parameters and
protocol response

After 540 s with only REXSM or SU purges SCM

120 sAnnounce interval

5 s (7 times)Probe intervalJini-specific
behavior for three-
party architecture

At TTL expirationSU purges SD

120 sMsearch query interval

1800 sAnnounce intervalUPnP-specific
behavior for two-
party architecture

120 sTime to retry after
REX (if applicable)

1800 sRegistration TTL

180 sPolling interval
Behavior in both
two- and three-
party architectures

ValueParameter

100 us for cache items
10 us for other items

Per-item processing
delay within node

0.14 – 0.42 s uniform
(range is multiplied by 1+F)

Transmission delay
without message loss

Connection Establishment -
4 retransmission attempts
with delays of 6 s, 24 s, 24
s and 24 s; then REX if
unsuccessful.
Data Transfer – retransmit
until success, increasing
time-out by 25% on each
retry (first time-out is round-
trip time).

Reliable protocol
response

Message discarded. No
retransmission.

Unreliable protocol
response

Each transmission attempt
fails with P(F)Loss Probability (F)

Message loss
parameters and
protocol response

After 540 s with only REXSM or SU purges SCM

120 sAnnounce interval

5 s (7 times)Probe intervalJini-specific
behavior for three-
party architecture

At TTL expirationSU purges SD

120 sMsearch query interval

1800 sAnnounce intervalUPnP-specific
behavior for two-
party architecture

120 sTime to retry after
REX (if applicable)

1800 sRegistration TTL

180 sPolling interval
Behavior in both
two- and three-
party architectures

ValueParameter

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Elder 160

4.3.1 Update Responsiveness. Assuming information
is created at a particular time and must be propagated by a
deadline, then the difference between the deadline and the
creation time represents available time in which to
propagate the information. Update Responsiveness, R,
measures the proportion of the available time remaining
after the information is propagated. More formally, let D
be a deadline by which we wish to propagate information
to each SU-node n in a service-discovery topology. Let tC
be the creation time of the information that we wish to
propagate, where tC < D. Let tU(n) be the time that the
information is propagated to SU n, where n = 1 to N, and
N is the total number of SUs in a topology. Define
change-propagation latency (L) for SU n as: Ln = (tU(n) -
tC)/(max(D, tU(n)) – tC). This is effectively the proportion
of available time used to propagate the change to SU n.
The numerator represents the time at which the SU
achieved consistency after the update occurred. The
denominator represents the time available to propagate the
change. The term max(D, tU(n)) accounts for cases where
tU(n) > D. Define R for SU n as: Rn = 1 – Ln. Rn is the
proportion of available time remaining after propagating
a change to SU n.

4.3.2 Update Effectiveness. Update Effectiveness, U,
measures the probability that a change will propagate
successfully for a given SU, i.e., tU(n) < D. More formally,
assuming definitions from 4.3.1 hold, let X be the number
of runs (30 here) during which a particular topology is
observed under identical conditions. Recalling that N is
the total number of SUs in a topology, define the number
of SUs observed under identical conditions as: O = X ∗ N.
Define U, the probability that tU(n) < D, as: U = 1 – P(F),
where P(F) = (ΣiΣj (one if Ri,j equals 0 and zero
otherwise))/O and where i = 1...X and j = 1...N.

4.3.3 Update Efficiency. Given a specific service-
discovery topology, examination of the available
architectures (two-party and three-party) and consistency-
maintenance mechanisms (polling and notification)
reveals a minimum number of messages, M, that must be
sent to propagate a change to all SUs. In our topologies,
M (M = 7) occurs when using notification to propagate
information in a three-party architecture with one SCM.
Update Efficiency, E, can be defined as the ratio of M to
the actual number of messages observed. More formally,
let S be the number of messages sent while attempting to
propagate a change from a SM to SUs in a given run.
Define average E as: Eavg = (Σk(M/Sk))/X, where k = 1..X.

5. Results and discussion

In this section, after showing results from our
experiments, we consider the relative performance of our
models and propose reasons for these differences.

5.1. Results

In a series of six graphs, which have identical abscissas
(message-loss rate, increasing from 0% to 95% in
increments of 5%) and ordinates (an appropriate metric
ranging between 0 and 1), we plot selected measurements
generated from our models. Each graph compares four of
the configurations in Table 3 against one of the metrics:
update responsiveness (average), effectiveness, or
efficiency (average). Figure 3(a) compares effectiveness
from our two-party model against that from our single-
SCM, three-party model, for both polling and notification.
Figure 3(b) provides a similar comparison, but substitutes
the results from our dual-SCM, three-party model in place
of results from our one-SCM, three-party model. Figures
3(c) and 3(d) compare update responsiveness using the
same combinations. Figures 3(e) and 3(f) use the same
combinations, but compare update efficiency. The graphs
reporting measures of effectiveness and responsiveness
depict a system undergoing a phase transition from peak
performance (where changes propagate quickly) to non-
performance (where changes fail to propagate). Regarding
efficiency, the graphs show a system that begins at its best
efficiency (without interfering message losses) and then
asymptotically approaches zero efficiency as the message-
loss rate increases toward 100%. Because the graphs can
be difficult to interpret, we compute summary statistics
(see Table 5) for each of our six combinations. Each
summary statistic reflects the mean of a particular metric,
when averaged across all message-loss rates, for a
specified configuration.

5.2. Relative performance

Below, we discuss the results for each of our three

metrics. The reader should note that engineering trade-offs
exist among: effectiveness, responsiveness, and efficiency.

5.2.1 Effectiveness. Figs. 3(a) and 3(b) show that all
combinations of architecture, topology, and consistency
maintenance strategy exhibit update effectiveness of 0.85
or better up to a message-loss rate of 85%, after which
they decline sharply. This similarity in effectiveness
among the combinations can be attributed to commonality
in the recovery behaviors of the discovery protocols, as
implemented in our models. We require each SU (and the
SM in the three-party case) to discard discovered
information after a break in communications (recall Table
2) and then to initiate rediscovery. In the two-party model,
periodic (120 s) Msearch queries by each SU (aggressive-
discovery procedures) lead to rediscovery. Similarly, in
the three-party case, periodic (120 s) announcements by
each SCM (lazy-discovery procedures) lead to
rediscovery.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Elder 161

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100
Message Loss Rate (%)

U
pd

at
e

Ef
fe

ct
iv

en
es

s

Two-Party Notification

Two-Party Polling

Three-Party Single SCM Notification

Three-Party Single SCM Polling

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100
Message Loss Rate (%)

U
pd

at
e

Ef
fe

ct
iv

en
es

s

Two-Party Notification

Two-Party Polling

Three-Party Dual SCM Notification

Three-Party Dual SCM Polling

(a) Update effectiveness of two-party vs.
three-party (single-SCM)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100
Message Loss Rate (%)

A
ve

ra
ge

 U
pd

at
e

R
es

po
ns

iv
en

es
s

Two-Party Notification

Two-Party Polling

Three-Party Single SCM Notification

Three-Party Single SCM Polling

(b) Update effectiveness of two-party
vs. three-party (dual-SCM)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100
Message Loss Rate (%)

A
ve

ra
ge

 U
pd

at
e

R
es

po
ns

iv
en

es
s

Two-Party Notification

Two-Party Polling

Three-Party Dual SCM Notification

Three-Party Dual SCM Polling

(c) Average update responsiveness of two-party
vs. three-party (single-SCM)

(d) Average update responsiveness of two-party
vs. three-party (dual-SCM)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Message Loss Rate (%)

A
ve

ra
ge

 U
pd

at
e

Ef
fic

ie
nc

y

Two-Party Notification

Two-Party Polling

Three-Party Single SCM
Notification
Three-Party Single SCM
Polling

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100
Message Loss Rate (%)

A
ve

ra
ge

 U
pd

at
e

Ef
fic

ie
nc

y

Two-Party Notification

Two-Party Polling

Three-Party Dual SCM
Notification
Three-Party Dual SCM
Polling

(e) Average update efficiency of two-party vs.
three-party (single-SCM)

(f) Average update efficiency of two-party vs.
three-party (dual-SCM)

Figure 3. Graphs comparing combinations of architecture, topology, and consistency-maintenance
mechanism.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Elder 162

After rediscovering a discarded node, the SU or SM re-
establishes lost registrations, as appropriate for the
consistency-maintenance strategy: notification registration
for SUs and service registrations for the SM (three-party
cases). In the process of restoring this distributed state
information, each SU may obtain and cache a consistent
copy of the SD maintained by the SM. As message-loss
rate increases beyond 50%, this rediscovery machinery
tends to dominate the effectiveness results.

Despite rough similarity, certain combinations do show
slightly better effectiveness than others (see Figs. 3(a) and
3(b) and the first column of Table 5). We attribute these
differences to the consistency-maintenance strategy
(polling or notification), and to differences in the recovery
actions taken by the application software while
implementing a particular strategy. Architecture and
topology play a secondary role. In general, polling should
lead to better effectiveness than notification, and our
results support this in all architecture-topology
combinations. Polling has built-in robustness from issuing
periodic requests. On the contrary, notifications are issued
only once with no further action by the sender in response
to a REX (recall Table 2). Therefore, in notification,
effectiveness suffers from situations where the notice is
lost but where the notification registration and the node
(SM or SCM) discovery are not lost. In these situations,
there is no opportunity for recovery mechanisms to regain
a lost node (SM or SCM) and to register for notification.
Without such recovery, the SU might never obtain a copy
of a changed SD. However, in three-party notification
with dual SCMs, the effects of architecture and topology
also come into play. Here, a replicated SCM provides an
additional path for the SM to propagate the update, thus
increasing the effectiveness of notification almost to the
level of polling.

Beyond a rough similarity with distinguishable
differences, the curves for effectiveness in two-party
notification and in three-party single-SCM notification

also include some irregularities, where effectiveness first
drops and then improves as the message-loss rate
increases. We used Rapide analysis tools to investigate the
reasons underlying these dips. For both cases, we found
that as the failure rate increases beyond 40%, the rate of
recovery of the lost SM and lost registrations also
increases. Recall that notification has no built-in
robustness, relying instead on recovery mechanisms in
TCP. Thus, to regain consistency when TCP recovery
fails, notification must rely on recovery mechanisms in the
discovery protocols, which provide opportunities to
propagate previously lost updates. The higher the
recovery rates, the greater the number of opportunities to
regain consistency. As the message-loss rate increases, the
recovery rate increases, and the effectiveness improves,
up to a limit. Once the message-loss rate reaches 80%, the
ability of the discovery protocols to effect recovery
becomes impaired, leading to an inevitable decline in
effectiveness. We also note that between 40% and 80%
message-loss rate one of the notification combinations
(three-party single-SCM) provides better effectiveness
than the other (two-party). We suspect this occurs because
the recovery actions of the SM (regaining the SCM
discovery and registering the SD) provide additional
opportunities (not available in the two-party case) to
propagate the updated SD. Also recall that in Jini (the
basis for behavior in our three-party models) notification
includes the SD, while in the two-party case, based on
UPnP, the SU must invoke separate operations to retrieve
a copy of the SD. This provides additional opportunities
for message loss to interfere with the restoration of
consistency in the two-party case. These somewhat
surprising dips in the effectiveness curves for notification
also appear under conditions of node interface failures,
discussed in a companion paper [2].

5.2.2 Responsiveness. Results in Figs. 3(c) and 3(d)
and the second column of Table 5, show that three
combinations of architecture and behavior (two-party
polling, three-party polling with dual SCMs, and three-
party notification with dual SCMs) exhibit similar
responsiveness. Below 70% message-loss rate, three-party
polling with a single SCM also exhibits similar
responsiveness, but then declines more steeply than the
others. For each architecture-topology combination, Table
5 shows that polling leads to better overall responsiveness
than notification. However, Figs. 3(c) and 3(d) show that
notification is more responsive at lower message-loss
rates, where the periodicity of polling incurs a greater lag
time. As message-loss rate increases, polling becomes
more responsive than notification, which must rely on
recovery mechanisms in the discovery protocols to
recover from failure to transfer notifications (recall 5.2.1),
whereas the built-in robustness of polling overcomes
failures in lower protocol layers. In the three-party case
with dual SCMs, notification achieves a similar

0.233 0.887 0.931 Three-Party Polling
 (Dual SCM)

0.400 0.881 0.921 Three-Party Notification
 (Dual SCM)

0.391 0.846 0.902 Three-Party Polling
 (Single SCM)

0.552 0.807 0.870 Three-Party Notification
 (Single SCM)

0.525 0.901 0.956 Two-Party Polling

0.296 0.799 0.867 Two-Party Notification

Average Update
Efficiency

Average Update
Responsiveness

Update
Effectiveness

Mean (across all message-loss rates)

Table 5. Summary statistics (mean across all
message-loss rates) computed for each curve in
the graphs shown in Figures 3(a) through 3(f).

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Elder 163

responsiveness to polling because notifications are sent
over redundant paths, which mitigate the effect of
transmission failures.

At high message-loss rates, under both polling and
notification, restoring consistency depends largely upon
recovery mechanisms in the discovery protocol. For
responsiveness, as for effectiveness, our models of these
recovery mechanisms ensure a degree of similarity in the
results for three cases: two-party polling, three-party
polling, and three-party notification with dual SCMs. In
the case of three-party polling with a single SCM,
responsiveness declines more rapidly at higher message-
loss rates because, lacking a redundant SCM, fewer
opportunities exist to recover a copy of the updated SD.
Finally, for reasons already addressed (see 5.2.1), between
40% and 90% message-loss rates, both two-party
notification and three-party notification with a single SCM
prove considerably less responsive than the other
combinations.

5.2.3 Efficiency. For a given combination of
architecture and topology, we expect notification to be
more efficient than polling. We also expect the two-party
architecture to be more efficient than the three-party
architecture, and the single-SCM topology to be more
efficient than the dual-SCM topology. In general, our
results support these expectations. However, there are a
few twists. First, the three-party, single-SCM architecture
with notification proves more efficient than the two-party
architectures because in Jini the SD arrives with the
notification, while in UPnP the notifications indicate only
that a change has occurred, requiring a SU to exchange a
request-response message pair to obtain the updated SD.
Second, each SU must periodically refresh notification
requests deposited on the SM (two-party case) or SCM
(three-party case). As the message-loss rate increases,
failure to transfer refresh messages leads to REXs, which
stimulate retry procedures: every 120 s until 540 s of
continuous REX (three-party case) or every 120 s until a
SM is purged (two-party case). For this reason, efficiency
decreases for notification as the message-loss rate
increases.

6. Conclusions

Emerging service-discovery protocols provide the
foundation for software components to discover each
other, to organize themselves into a system, and to adapt
to changes in node connectivity. While likely suitable for
small-scale commercial applications, questions remain
regarding the performance of such protocols at large scale,
and during periods of high volatility and duress, such as
might exist in military and emergency-response
applications. In this paper, we used architectural models
to characterize the performance of selected combinations

of system topology and consistency-maintenance
mechanism during severe message loss. Further, we used
behavioral analysis to investigate the causes of observed
performance. Our initial investigations show significant
differences in performance can be obtained by varying
aspects of the design (architecture, topology, consistency-
maintenance mechanism, and recovery strategies).

7. Acknowledgments

The work described benefits from financial support
provided by the National Institute of Standards and
Technology (NIST), the Defense Advanced Research
Projects Agency (DARPA), and the Advanced Research
Development Agency (ARDA). In particular, we
acknowledge the support of Susan Zevin from NIST,
Doug Maughan and John Salasin from DARPA, and Greg
Puffenbarger from ARDA. We also thank Stefan Leigh
and Scott Rose of NIST and the anonymous WAMS
reviewers for insightful comments that helped us to
improve the manuscript.

8. References

[1] G. Bieber and J. Carpenter, “Openwings A Service-

Oriented Component Architecture for Self-Forming, Self-
Healing, Network-Centric Systems,” on the web site:
http://www.openwings.org.

[2] Dabrowski, C., Mills, K., and Elder, J. “Understanding
Consistency Maintenance in Service Discovery
Architectures during Communication Failure”, Proceedings
of the 3rd International Workshop on Software
Performance, ACM, Rome, Italy, July 24-26, 2002.

[3] Ken Arnold et al, The Jini Specification, V1.0 Addison-
Wesley 1999. Latest version is 1.1 available from Sun.

[4] Universal Plug and Play Device Architecture, Version 1.0,
Microsoft, June 8, 2000.

[5] Dabrowski, C. and Mills, K., “Analyzing Properties and
 Behavior of Service Discovery Protocols Using an
Architecture-Based Approach”, Proceedings of Working
Conference on Complex and Dynamic Systems
Architecture, Brisbane, Australia, December 2001.

[6] Luckham, D. “Rapide: A Language and Toolset for
Simulation of Distributed Systems by Partial Ordering of
Events,” http://anna.stanford.edu/rapide, August 1996.

[7] Salutation Architecture Specification, Version 2.0c,
Salutation Consortium, June 1, 1999.

[8] Specification of the Home Audio/Video Interoperability
(HAVi) Archiecture, V1.1, HAVi, Inc., May 15, 2001.

[9] Service Location Protocol Version 2, Internet Engineering
Task Force (IETF), RFC 2608, June 1999.

[10] Specification of the Bluetooth System, Core, Volume 1,
Version 1.1, the Bluetooth SIG, Inc., February 22, 2001.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Elder 164

Understanding Self-healing in Service-Discovery Systems
C. Dabrowski

U.S. National Institute of Standards
and Technology

Gaithersburg, MD 20899
+1 (301) 975-3249

cdabrowski@nist.gov

K. Mills
U.S. National Institute of Standards

and Technology
Gaithersburg, MD 20899

+1 (301) 975-3618

kmills@nist.gov

ABSTRACT

Service-discovery systems aim to provide consistent views of
distributed components under varying network conditions. To
achieve this aim, designers rely upon a variety of self-healing
strategies, including: architecture and topology, failure-detection
and recovery techniques, and consistency maintenance
mechanisms. In previous work, we showed that various
combinations of self-healing strategies lead to significant
differences in the ability of service-discovery systems to maintain
consistency during increasing network failure. Here, we ask
whether the contribution of individual self-healing strategies can
be quantified. We give results that quantify the effectiveness of
selected combinations of architecture-topology and recovery
techniques. Our results suggest that it should prove feasible to
quantify the ability of individual self-healing strategies to
overcome various failures. A full understanding of the interactions
among self-healing strategies would provide designers of
distributed systems with the knowledge necessary to build the
most effective self-healing systems with minimum overhead.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Distributed programming

General Terms
Algorithms, Measurement, Performance, Design, Reliability,
Experimentation.

Keywords
Architecture, Self-Healing Systems, Self-Repairing Systems,
Service Discovery.

1. INTRODUCTION
Growing deployment of wireless communications, implying
greater user mobility, coupled with proliferation of personal
digital assistants and other information appliances, foretell a
future where software components can never be quite sure about
the network connectivity available, about the other software
services and components nearby, or about the state of the network
neighborhood a few minutes in the future. In extreme situations,
as found for example in military applications [1], software
components composing a distributed system may find that
cooperating components disappear due to physical or cyber
attacks or due to jamming of communication channels or
movement of nodes beyond communications range. In such
volatile environments, service discovery protocols enable
distributed components to rediscover lost components or to find
other components that provide essential services needed to
accomplish critical tasks. To do this, service discovery systems
include self-healing strategies to mitigate, detect, and recover
from failures.
Service discovery protocols rely on several self-healing strategies.
Architecture, which defines the logical components and
relationships that compose a system, coupled with topology,
which specifies the number and placement of components in a
system, can be used in combination to mitigate the effects of
failures by increasing system redundancy. Failure detection
techniques, which typically include monitoring of periodic
announcements and bounded retries (and resulting exceptions),
allow components to estimate uncertainty regarding the state of
cooperating components or regarding the intervening network
path. Recovery techniques, which include application-level
persistence and soft state, define actions a component can take to
address suspected failures. Consistency-maintenance mechanisms,
which include notification and polling, provide a means to
maintain synchronized state among distributed components by
propagating state changes to remote components.
In previous work, we used architectural models to investigate the
behavior of various service-discovery systems under increasing
communication failure [6] and message loss [7]. Our
investigations yielded quantitative measures for the effectiveness,
responsiveness, and efficiency of alternate system designs. We
considered various combinations of architecture, topology, and
consistency-maintenance mechanisms, however we did not vary
failure recovery techniques.
In this paper, we extend our approach to quantify the contribution
of failure recovery techniques in order to provide a more complete
picture of the actions of individual self-healing strategies within

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski & Mills 165

service discovery systems. We focus our investigation on four
combinations of failure-detection and recovery technique while
limiting other variables to include only two architecture-topology
combinations and one consistency-maintenance mechanism. We
examine system behavior under increasing communication failure.
We use the same Rapide [4] models of service-discovery systems
that we used in our previous research. Our models are based on
two specifications: Jini™ Networking Technology [2] and
Universal Plug-and-Play [3]. We adapted self-healing strategies
from these specifications.
The remainder of the paper is organized as four sections. In the
first section, we provide an overview of the self-healing strategies
used in service-discovery systems. The second section gives a
quantitative summary of the overall effectiveness of various
combinations of self-healing strategy, when used to maintain
consistent state among distributed components as the duration of
communication failures increases. In the third section, we
investigate and quantify the contribution of failure detection and
recovery techniques to overall system effectiveness. In the
conclusions, we discuss the feasibility and desirability of gaining
a full understanding of the interactions among self-healing
strategies for adaptive distributed systems.

2. DISCOVERY SYSTEMS AND SELF-
HEALING
Service discovery systems enable distributed software components
to discover each other, and to determine if discovered components
meet specific requirements. Discovery protocols include
consistency-maintenance mechanisms, which can be used to
disseminate changes in component availability and status, and to
maintain, within some time bounds, a consistent view of
components in a network. Failure-detection and recovery
techniques enable components to detect and react to network
changes by restoring communications with remote components or
by locating alternate components. A number of different designs
have been proposed for service-discovery systems. For example, a
team at Sun Microsystems designed Jini Networking Technology,
a general service-discovery mechanism atop JavaTM. As another
example, a group from Microsoft and Intel conceived Universal
Plug-and-Play (UPnP) to provide plug-and-play components for
distributed systems.

2.1 Architecture and Topology
Our analysis of six distinct discovery systems revealed that most
designs use one of two underlying architectures: two-party and
three-party. A two-party architecture consists of two components
types: service manager (SM) and service user (SU). Figure 1
shows a two-party architecture deployed in a six-component
topology: one SM and five SUs. A three-party architecture adds a
third component type: service cache manager (SCM). The three-
party architecture allows for multiple SCMs to mitigate the effect
of failures (passive self-healing). Figure 2 shows a three-party
architecture with one SM, five SUs, and up to two SCMs. A SM
maintains a database of service descriptions (SDs), where each SD
encodes the essential characteristics of a particular service. A SU
seeks SDs maintained by SMs that satisfy specific requirements.
Where employed, the SCM operates as an intermediary, matching
advertised SDs of SMs to SD requirements provided by SUs.

To animate our two-party model, we incorporated behaviors from
the UPnP specification. Upon startup, each SU and SM seeks to
discover other, relevant components within the network
neighborhood. In a lazy-discovery process, each SM periodically
announces the existence of its SDs over the UPnP multicast
group. Upon receiving these announcements, SUs with matching
requirements request copies of the desired SDs from the SM. The
SU stores SD copies in a local cache. Alternatively, the SU may
engage in an aggressive-discovery process by transmitting SD
requirements, as Msearch queries, on the UPnP multicast group.

Any SM holding a SD with matching requirements may respond
directly to the SU. The SU may then request a copy of the
relevant SDs, caching them locally. To maintain a SD in its local
cache, a SU expects to receive periodic announcements from the
relevant SM at a specified interval, known as a Time-to-Live, or
TTL (or it must receive replies to its Msearchs within the TTL).
Otherwise, the SU may discard the SD.
To animate our three-party model, we chose behaviors described
in the Jini specification. In Jini, the discovery process focuses
upon discovery by SMs and SUs of any intermediary SCMs that
exist in the network neighborhood. Upon initiation, a Jini
component enters aggressive discovery, where it transmits probes
on the aggressive-discovery multicast group at a fixed interval for
a specified period or until it has discovered a sufficient number of
SCMs. Upon cessation of aggressive discovery, a component

Service
Manager

Service
User

Service
Cache

Manager

Aggressive-Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy-Discovery Multicast Group

Optional, 2nd SCMService
Manager

Service
User

Service
Cache

Manager

Aggressive-Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy-Discovery Multicast Group

Optional, 2nd SCM

HTTP/TCP and HTTP/UDP

Service
User

Service
Manager

UPnP Multicast Group

Unicast Links

HTTP/TCP and HTTP/UDP

Service
User

Service
User

Service
Manager

UPnP Multicast Group

Unicast Links

Figure 2. Three-party service-discovery architecture
with five service users (SUs), a service manager (SM), a
service cache manager (SCM), with an optional 2nd

SCM.

Figure 1. Two-party service-discovery architecture
with five service users (SUs) and one service manager
(SM).

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski & Mills 166

enters lazy discovery, where it listens for announcements sent at
intervals by SCMs. Once discovery occurs, a SM deposits a copy
of the SD for each of its services on the discovered SCM for a
specified length of time, or TTL. To maintain a SD on the SCM
beyond the TTL, a SM must refresh the SD; otherwise it is
purged. The SCMs match SDs provided by SMs to SU
requirements, and forward matches to SUs.

2.2 Consistency-Maintenance Mechanisms
After initial discovery and information propagation (through
SDs), SUs can use consistency-maintenance mechanisms to obtain
updates to SDs for discovered services. We consider two basic
mechanisms: notification and polling. In polling, a SU
periodically sends queries to obtain up-to-date information about
a previously discovered SD. In a two-party architecture, the SU
issues the query directly to the SM from which the SD was
obtained, and receives a response. In a three-party architecture,
polling consists of two processes: 1) a SM propagates an updated
SD to each SCM where the SD was originally cached and 2) each
SU periodically queries relevant SCMs.
In notification, immediately after an update occurs, a SM sends
events that announce a SD has changed. To receive events about a
SD, a SU must first register for this purpose. In the two-party
architecture, the SU requests registration with a SM. The request,
if accepted, is retained for a TTL, which may be refreshed with
subsequent requests from the SU. In a three-party architecture, a
SU registers with a SCM to receive updates. The SCM grants
event registrations for a TTL, which may be refreshed. When a SD
is updated, the SM first propagates the update to all SCMs on
which it deposited the SD; each SCM then forwards the event to
all SUs registered to receive updates to the SD.

2.3 Failure-Detection Techniques
In a hostile military or emergency response environment, faults
may arise due to enemy jamming or other interference,
congestion, physical severing of cables, improperly configured or
sabotaged routing tables, or multi-path fading as nodes move
across a terrain. In this paper, we consider communication failure.
Node communication may fail fully (both transmit and receive) or
partially (either transmit or receive). All outbound messages from
an interface will be lost when the transmitter fails, while all
inbound messages will be lost when the receiver fails.
To detect failures, discovery systems use a combination of two
techniques: monitoring periodic announcements and bounded
retries (and resulting exceptions). Discovery protocols specify
periodic transmission of key messages. Listeners can monitor
these messages; much in the same way a heartbeat is monitored to
assess the health of a patient. For example, as described above,
both Jini and UPnP provide for periodic announcements of the
availability of essential resources. Failure to receive scheduled
announcements may indicate that the announcing entity has failed
or that the network path is blocked. In other situations, software
components send messages using reliable communication
protocols, which persistently resend unacknowledged messages
up to some bound, issuing a remote exception (REX) if the bound
is exceeded. Failure detection allows components to employ
recovery techniques.

2.4 Recovery Techniques
Discovery systems generally support two recovery techniques:
soft-state and application-level persistence. Periodic
announcements convey soft information about essential state,
which a receiver can cache for a period of time, consistent with
the expected announcement or heart rate. Each new re-
announcement, or heartbeat, may convey updated state
information; thus, the receiver overwrites previously cached state
with state arriving in the latest announcement, or heartbeat. When
the heartbeat fails, the receiver discards the cached state. When
the heartbeat resumes, the receiver recovers the latest state. For
example, upon failure of heartbeat messages sent by Jini SMs to
refresh SDs cached on SCMs, the SD is discarded. The same
occurs upon failure of periodic refreshes of notification
registrations in both Jini and UPnP. Similarly, UPnP SUs may
commence periodic Msearch queries after failure by a SM to
refresh a SD within the TTL, which causes the SU to discard
knowledge of the SM. Once a SU regains its desired SD, the
related Msearch queries cease. This method is also employed
when, after an initial aggressive discovery phase, Jini SCMs enter
lazy discovery where they announce themselves every 120s. This
ensures rediscovery of the SCM by SMs and SUs within 120s
after a fault is rectified.
When failure-detection leads to a REX, discovery systems
generally expect application software to initiate recovery, guided
by an application-level persistence policy. In our models,
depending on the situation, we implement three different
persistence policies: (1) ignore the REX, (2) retry the operation
for some period, and (3) discard knowledge. A SU can ignore a
REX received in response to an attempted poll, because the query
recurs periodically. In our models, two-party SMs and three-party
SCMs also ignore a REX received as a result of attempted
notifications. This behavior, which is described in both the Jini
and UPnP specifications, depends upon reliable lower-layer
protocols to provide robustness for events. In other cases, the retry
policy attempts to recover from transient failures by resending a
message (for which it has received a REX) after a nominal delay.
The discard policy, which occurs following repeated failure of a
retry, relies upon monitoring periodic soft-state announcements to
recover from more persistent failures. As indicated above, in the
two-party model, the SU discards the SM and its related SDs after
failure to receive announcements from the SM within the TTL. In
Jini, the specification states that a discovering entity may discard a
SCM with which it cannot communicate. In our three-party
model, a SM or SU deletes a SCM if it receives only REXs after
attempting to communicate with the SCM over a 540-s interval.
After discarding knowledge of a SM (UPnP) or SCM (Jini), all
operations involving the node cease until it is rediscovered by
monitoring periodic announcements (through either lazy or
aggressive discovery).

3. EFFECTIVENESS OF SELF-HEALING
In previous work, we investigated the effectiveness of selected
self-healing strategies when attempting to maintain synchronized
state among distributed components during communication failure
[6] and message loss [7]. We compared combinations of two- and
three-party architectures and topologies (as shown in Figures 1
and 2), together with different consistency-maintenance
mechanisms (notification or polling). In each combination, we
used the same failure-detection (monitoring periodic

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski & Mills 167

announcements and bounded-retries) and recovery (soft state and
application-level persistence) techniques (see Table 1). We
measured effectiveness (as the probability that a node achieves
state synchronization) for increasing failure rates. Here we
summarize our findings for effectiveness in the face of
communications failure. Figure 3 shows effectiveness for each
combination as communication-failure rate increases to 75%.

Our previous papers provided qualitative explanations (based on
analysis of execution traces) regarding the contributions of each
self-healing strategy to measured differences in effectiveness.
Here, we summarize our main findings for communications
failure. Figure 3 indicates a rough similarity in effectiveness for
all combinations; however, within these ranges, there are also
significant differences. We attribute similarity in effectiveness to
the fact that we employ similar failure-detection and recovery
techniques in all combinations. The graph contains several
eccentricities, in the form of saw-tooth behaviors. For example,
two-party notification suffers a significant drop in effectiveness
between 5% and 25% failure rate. This occurs because
notifications rely on underlying reliable communication protocols
to achieve robustness. When these protocols fail (as would be
likely in case of communication failure), notifications are lost.
The application software then relies upon detection of failure of
periodic announcements (heartbeat) and restoration through
initiation of recovery actions. Unfortunately, in UPnP the lazy-
discovery announcement occurs no more frequently than every
1800s. Between 5% and 25% failure rate, there exists a substantial
likelihood that communication failure is corrected prior to the
next announcement. In such cases, an aggressive-discovery
announcement (120-s interval) is not initiated, and state contained
in the notification remains lost. As the failure rate increases,
coincidence of announcement failure and notification failure
becomes more probable, leading to initiation of the aggressive-
discovery announcements, which eventually recovers state
contained in the lost notification. Jini does not suffer as much
from this phenomenon for two reasons. First, in Jini the lazy-
discovery announcements occur at a 120-s interval. Second, Jini
SMs exhibit some persistence when attempting to propagate SDs
to SCMs. In selected cases, this persistence causes the SCM to
periodically retry notifications.
Despite the dominance of failure-detection and recovery
techniques, our results show that certain combinations of
architecture, topology, and consistency-maintenance mechanism
contribute to differences in effectiveness. For instance, each SD
copy must propagate over either one link (two-party case) or two

links (three-party case). For this reason, the three-party
architecture (single SCM) can prove more vulnerable to
communication failures (two links must be operational). This
suggests that the two-party architecture will be more effective
under severe failures, and our results support this. On the other
hand, the three-party architecture allows replication of SCMs,
which provides a greater number of paths through which
information can propagate. This suggests (and our results agree)
that the three-party architecture with dual SCM provides superior
effectiveness over the single-SCM, three-party architecture. Our
results also indicate that the dual-SCM three-party architecture
yields effectiveness close to that of the two-party architecture.
Regarding consistency-maintenance mechanism, we conclude that
polling, with its built-in persistence, should lead to better
effectiveness than notification, where events are issued only once
with no further action by the sender in response to a REX. Our
results support this analysis for the two-party architecture and for
the three-party architecture with a single SCM. However,
notification appears slightly more effective than polling for the
three-party architecture with dual SCM. We suspect this may be
because notifications require only that the SCM-to-SU link be
operational, while polling also requires the SU-to-SCM link.

4. DISSECTING RECOVERY STRATEGIES
To further dissect recovery strategies, we decided to factor
recovery techniques into four cases: 1) no recovery, 2) soft state
only, 3) application persistence only, and 4) both soft state and
application persistence.1 We believe that this finer degree of
factoring will enable us to quantify the contribution of various
self-healing strategies to overall system effectiveness. Further, we
expect that such factoring might reveal interactions among self-
healing strategies, and help to identify situations where strategies
are redundant, complementary, or conflicting. To explore these

1 When a failure recovery technique is factored out of an experiment, the

related failure detection technique (see Table 1) is also factored out.
Eliminating soft state implies that the related heartbeat is ignored, while
eliminating application-level persistence implies that the related REX
(after bounded retries) is ignored.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
Communications Failure Rate (%)

Ef
fe

ct
iv

en
es

s Two-Party Notification
Two-Party Polling
Three-Party Single-SCM Notification
Three-Party Single-SCM Polling
Three-Party Dual-SCM Notification
Three-Party Dual-SCM Polling

Three-Party
Architecture (Jini)

Two-Party
Architecture (UPnP)

Failure Detection and
Recovery Technique

SU and SM: purge SCM after
540 s of continuous
REX

SU: purge SD after failure to
receive SM announcement
within 1800 s

Discard
Knowledge

SM: depositing or refreshing SD
copy on SCM retry in 120s

SU: Push Event registration or
refresh on SCM retry in 120 s

SU: Initial Pull Query
retry in 180 s (retries < 3)
Push Event Registration
retry in 120s

Retry after
REX

SU: Pull Query
SCM: Push Event

SU: Pull Query (After Initial Pull)
SM: Push Event

Ignore REX
Bounded
Retries

and
Application-

Level
Persistence

Policy

SU and SM: issue seven probes
(at 5 s intervals) only
during startup

SU: issues Msearch every 120 s
(after purging SD)

Aggressive
Discovery

SCM: announces every 120 sSM: announces with n (3+2d+k)
messages every 1800 s

Lazy
DiscoveryHeartbeat

and
Soft State

Three-Party
Architecture (Jini)

Two-Party
Architecture (UPnP)

Failure Detection and
Recovery Technique

SU and SM: purge SCM after
540 s of continuous
REX

SU: purge SD after failure to
receive SM announcement
within 1800 s

Discard
Knowledge

SM: depositing or refreshing SD
copy on SCM retry in 120s

SU: Push Event registration or
refresh on SCM retry in 120 s

SU: Initial Pull Query
retry in 180 s (retries < 3)
Push Event Registration
retry in 120s

Retry after
REX

SU: Pull Query
SCM: Push Event

SU: Pull Query (After Initial Pull)
SM: Push Event

Ignore REX
Bounded
Retries

and
Application-

Level
Persistence

Policy

SU and SM: issue seven probes
(at 5 s intervals) only
during startup

SU: issues Msearch every 120 s
(after purging SD)

Aggressive
Discovery

SCM: announces every 120 sSM: announces with n (3+2d+k)
messages every 1800 s

Lazy
DiscoveryHeartbeat

and
Soft State

Table 1. Summary of self-healing strategies included in our
models.

Figure 3. Effectiveness for various combinations of
architecture, topology, and consistency-maintenance
mechanism, as failure rate increases.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski & Mills 168

ideas, we applied our approach to investigate the contribution of
recovery techniques, given various architecture-topology
combinations, in the case of one consistency-maintenance
mechanism (notification) and one fault type (communication
failure).

Figure 4 shows effectiveness for two-party notification as
communication failure increases to 75%. The curve representing
the use of all recovery techniques was taken from Figure 3. The
remaining three curves in Figure 4 depict effectiveness when
selected recovery techniques are disabled. Where no recovery is
employed, effectiveness decreases nearly linearly as failure rate
increases, dropping below 10% when the failure rate reaches 75%.
When soft-state recovery is enabled alone, effectiveness improves
significantly. Similarly, when application-persistence is enabled
alone, effectiveness also improves significantly. Further, Figure 4
shows that application-persistence contributes more to system
effectiveness at lower failure rates (30% and below), while soft-
state recovery contributes more at higher failure rates. For two-
party notification, under communication failure, the two recovery
techniques appear complementary.
Figures 5 and 6, which show the contribution of recovery
techniques for three-party, single-SCM notification and three-
party, dual-SCM notification, yield a different picture. Where all

recovery techniques are disabled, effectiveness decreases nearly
linearly as failure rate increases; however, the rate of decrease of
the three-party dual-SCM architecture appears lower than for the
two-party architecture, and effectiveness stays above 10% at the
75% failure rate.

This suggests that increased robustness from a dual-SCM
topology slightly mitigates the effects of communication failures.
The three-party, single-SCM architecture with no recovery
provides the poorest level of performance, reflecting the need to
propagate the notification across two links without the alternative
path provided by the second SCM. Note, however, that once
either recovery technique is enabled in both variants of the three-
party architecture, effectiveness improves to the level observed
when both recovery techniques are enabled. This result indicates
that, for three-party, single and dual-SCM notification, the two
recovery techniques (soft state and application persistence) are
redundant. These results shown in figures 4 through 6 are
summarized in computed summary statistics in Table 2.

5. CONCLUSIONS
Our preliminary results (in Figs. 4-6) show the desirability and
feasibility of dissecting the quantitative contributions to system
effectiveness of various recovery strategies. Further, our results
show that interactions (such as redundancy and complementarity)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 4 0 50 60 70 80

Interface Failure Rate (%)

U
pd

at
e

Ef
fe

ct
iv

en
es

s

Both Recovery Strategies

Application-Level Persistence Only

Soft State Only

No Recovery Strategy

Figure 6. Update effectiveness of three-party
notification (dual SCM) with soft state, application-
recovery, and no recovery shown separately.

Table 2. Summary statistics (mean across all
interface failure rates) computed for each curve in
the graphs shown in Figure 4 through Figure 6.

0.5330.9420.9380.942
Three-Party
Notification
(Dual SCM)

0.4410.9070.9140.914
Three-Party
Notification
(Single SCM)

0.4660.8240.7630.921
Two-Party
Notification

No
Recovery
Strategy

Soft-
State
Only

Application
Persistence

Only

Both
Recovery
Strategies

0.5330.9420.9380.942
Three-Party
Notification
(Dual SCM)

0.4410.9070.9140.914
Three-Party
Notification
(Single SCM)

0.4660.8240.7630.921
Two-Party
Notification

No
Recovery
Strategy

Soft-
State
Only

Application
Persistence

Only

Both
Recovery
Strategies

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
Interface Failure Rate (%)

Up
da

te
 E

ffe
ct

iv
en

es
s

Both Recovery Strategies
Application-Level Persistance Only
Soft State Only
No Recovery Strategy

Figure 4. Update effectiveness of two-party
notification with soft state, application persistence,
and no recovery shown separately.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80

Interface Failure Rate (%)

Up
da

te
 E

ffe
ct

iv
en

es
s

Both Recovery Strategies

Application-Level Persistence Only

Soft State Only

No Recovery Strategy

Figure 5. Update effectiveness of three-party (single
SCM) notification with soft state, application
persistence, and no recovery shown separately.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski & Mills 169

between various recovery techniques can be identified and
quantified.
Emerging service-discovery protocols provide the foundation for
software components to discover each other, to organize
themselves into a system, and to adapt to changes in system
topology. These capabilities can also be used to effect self-
healing in distributed component systems. In this paper, we used
architectural models to characterize how architecture, topology,
consistency-maintenance mechanism, and failure-recovery
strategy each contribute to self-healing during communication
failure. Further, in the context of communication failure and using
notification as a consistency-maintenance mechanism, we
dissected the self-healing properties attributable to recovery
techniques and to topology. Our results suggest that it should
prove feasible to quantify the ability of individual self-healing
strategies to overcome various types of failure. A full
understanding of the interactions among self-healing strategies
would provide designers of distributed systems with the
knowledge necessary to build the most effective self-healing
systems with minimum overhead.

6. ACKNOWLEDGMENTS
The work discussed in this paper was funded in part by DARPA,
under the auspices of the FTN and DASADA programs.

7. REFERENCES
[1] G. Bieber and J. Carpenter, “Openwings A Service-Oriented

Component Architecture for Self-Forming, Self-Healing, Network-
Centric Systems,” on the http://www.openwings.org web site.

[2] Ken Arnold et al, The Jini Specification, V1.0 Addison-
Wesley 1999. Latest version is 1.1 available from Sun.

[3] Universal Plug and Play Device Architecture, Version 1.0,
Microsoft, June 8, 2000.

[4] Luckham, D. “Rapide: A Language and Toolset for Simulation
of Distributed Systems by Partial Ordering of Events,”
http://anna.stanford.edu/rapide, August 1996.

[5] Dabrowski, C. and Mills, K., “Analyzing Properties and
Behavior of Service Discovery Protocols Using an
Architecture-Based Approach”, Proceedings of Working
Conference on Complex and Dynamic Systems Architecture,
Brisbane, Australia, December 2001.

[6] Dabrowski, C. Mills, K., and Elder, J. “Understanding
Consistency Maintenance in Service Discovery Architectures
During Communications Failure”, Accepted at Third Annual
Workshop on Software Performance, Rome Italy, July 2002.

[7] Dabrowski, C. Mills, K., and Elder, J. “Understanding
Consistency Maintenance in Service Discovery Architectures
In Response to Message Loss”, Accepted at Fourth Annual
International Workshop on Active Middleware Services,
Edinburgh, Scotland, July 2002.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski & Mills 170

Performance of Service-Discovery
Architectures in Response to Node Failures

C. Dabrowski, K. Mills, A. Rukhin

U.S. National Institute of Standards and Technology,
Gaithersburg, MD 20899

{cdabrowski|kmills|arukhin}@nist.gov

Abstract

 Current trends suggest future software systems will rely
on service-discovery protocols to combine and recombine
distributed services dynamically in reaction to changing
conditions. We investigate the ability of selected designs
for service-discovery protocols to support real-time
distributed control applications by detecting and
recovering from failure of remote services. We model two
architectures (two-party and three-party) underlying most
commercial service-discovery systems. We use simulation
to quantify functional effectiveness achieved by the two
architectures as the rate of failure increases for remote
services. We further decompose non-functional periods
into failure-detection delay and recovery delay. Our
quantitative measurements suggest that a two-party
architecture yields better robustness than a three-party
architecture. We discuss the underlying causes for this
outcome.

1. Introduction

Designs for distributed systems must consider the
possibility that failures will arise, and must adopt specific
failure detection and recovery strategies [1]. Much
existing research surrounding failures in distributed
systems focuses on providing fault-tolerant invocation of
remote methods, either through parallel execution of
replicated components or through automated checkpoint
and restart procedures [2-4]. Fault-tolerant remote-
method invocation typically relies upon a layer of
mechanisms to detect and recover from failures without
requiring application-specific awareness or action. While
such application-transparent fault-tolerance appears
appealing, many current distributed object systems, even
large systems, employ simpler techniques that detect and
report failures, requiring applications to decide upon
appropriate recovery strategies [5-7]. In this paper, we
investigate one such set of simpler techniques requiring
application awareness and cooperation. These techniques
encompass the fundamental failure detection and recovery
strategies available in service-discovery systems [8-13].

In previous work, we investigated the ability of
various service-discovery systems to propagate updates
under communication failure [14] and message loss [15].
Our investigations yielded quantitative measures for the
effectiveness, responsiveness, and efficiency of alternate
system designs. In this paper, we investigate the
effectiveness, efficiency and latency of service-discovery
systems in detecting component failure and locating
replacements. We model specific discovery strategies and
failure-recovery techniques in combination with two
major architectural variants found in service-discovery
systems: two-party, where clients and services
rendezvous directly, and three-party, where clients and
services rendezvous through a directory. For the three-
party architecture, we consider topologies that include
directory replicas. Our models, which adapt discovery
and recovery strategies from the Jini™1 Networking
Technology [10] and Universal Plug-and-Play [9]
specifications, layer a real-time distributed control
application above each of the discovery systems. We
model application-level strategies that focus our
experiments on the fundamental properties of service-
discovery protocols; thus, we exclude a number of
possible application choices, such as service caching. We
measure functional effectiveness, defined as the
proportion of time that a distributed application meets its
requirements, or more precisely, as the proportion of time
that a client component possesses an operational set of
remote services needed to accomplish its task. To provide
a clear picture of failure response, we also measure both
failure-detection latency (time required to recognize that a
remote service used by the client has failed) and failure-
recovery latency (time required for the client to replace a
failed service). We also measure overhead as the number
of messages sent. Our models are written using Rapide
[16], which records complete event traces that permit

1 Certain commercial products or company names are identified in this
report to describe our study adequately. Such identification is not
intended to imply recommendation or endorsement by the National
Institute of Standards and Technology, nor is it intended to imply that
the products or names identified are necessarily the best available for the
purpose.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Rukhin 171

detailed analysis of system behavior, helping us to
determine causes underlying quantitative performance.

2. Discovery and recovery

Service-discovery protocols enable networked
components to rendezvous and to combine with
discovered components into distributed applications
meeting specific requirements. Discovery protocols
include failure-detection and recovery techniques that
enable components within distributed applications to
detect and react to failures by restoring communications
with remote components or by locating alternate
components. A number of different designs have been
proposed for service-discovery systems. For example, a
team at Sun Microsystems designed Jini Networking
Technology, a general service-discovery system atop
JavaTM. As another example, a group from Microsoft and
Intel conceived Universal Plug-and-Play (UPnP) to
provide plug-and-play components for distributed
systems.

2.1. Service discovery

Our analysis of six discovery systems [8-13] revealed that
most designs use one of two underlying architectures:
two-party or three-party. A two-party architecture
consists of two component types: service manager (SM)
and service user (SU). The three-party architecture adds a
third component type, service cache manager (SCM).
Multiple SCMs can be used to mitigate the effect of SCM
failure. In both architectures, service discovery occurs
passively, via multicast announcements, and actively, via
multicast queries. Each SM maintains a database of
service descriptions (SDs), where each SD encodes the
essential characteristics of a particular service provider
(SP) managed by the SM. Each SU seeks SDs satisfying
specific requirements. Where employed, the SCM
operates as an intermediary, matching advertised SDs of
SMs to SD requirements provided by SUs.

In this study, each SM manages one SP from among
three service types: fast sensor, slow sensor, and actuator.
Our experiment consists of four instances of each service
type, whose roles are explained below. Figure 1 shows a
two-party architecture deployed in our experiment
topology with 12 SMs and one SU. To animate our two-
party model, we incorporated discovery behaviors from
the UPnP specification, as described elsewhere [14, 15].
Figure 2 shows the three-party architecture in our
experimental topology: with 12 SMs, one SU, and up to
three SCMs. To animate our three-party model, we chose
discovery behaviors from the Jini specification, as
described elsewhere [14, 15].

2.2. Failure-Detection Techniques

To detect failures, applications using discovery
systems rely on a combination of two techniques:
monitoring periodic transmissions and retrying ad hoc
transmissions (where exceeding a retry bound causes an
exception). Discovery protocols specify periodic
transmission of key messages. In addition, components
employing remote services may maintain regular contact
to accomplish application-specific tasks. Components can
listen for these recurring messages, much as a heartbeat
can be monitored to assess patient health. For example,
both Jini and UPnP periodically announce resource
availability. Similarly, a sensor service may periodically
issue readings to its clients. Failure to receive scheduled
communications might indicate that the remote service
has failed, or that the channel between client and service
is blocked. In other situations, software components send
messages using reliable communication protocols, which
persistently resend unacknowledged messages up to some
bound, issuing a remote exception (REX) if the bound is
exceeded. For example, a client may attempt to invoke a
method offered by a remote service that has failed. In the
three-party architecture, a SU might attempt to query for a
SD from a failed SCM, only to receive a REX. Failure

Figure 1. Two-party service-discovery
architecture with one service user and 12
service managers

HTTP/TCP and HTTP/UDP

UPnP Multicast Group

Unicast Links

Fast
Sensor

SM

Fast
Sensor

SM

Slow
Sensor

SM

Slow
Sensor

SM

Actuator
SM

Actuator
SM

Service
User

Slow
Sensor

SM

Slow
Sensor

SM

Service
User

Service Cache
Manager

(SCM)

Aggressive Discovery Multicast Group

Lazy Discovery Multicast Group

Actuator
SM

Actuator
SM

Fast
Sensor

SM

Fast
Sensor

SM

Unicast Links

Remote Method
Invocation

Optional SCMs

Figure 2. Three-party service-discovery
architecture with one service user, 12 service
managers, and up to 3 service cache managers

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Rukhin 172

detection enables components to employ recovery
techniques.

2.3. Failure-recovery techniques

Discovery systems generally support two recovery
techniques: soft-state and application-level persistence.
Periodic announcements issued by a component convey
soft information about component state, which a receiver
can cache for a period of time, consistent with the
expected announcement rate. Each new announcement
may convey updated state information; thus, a receiver
overwrites previously cached state with state from newly
arriving announcements. When an announcement fails to
arrive, a receiver discards previously cached state,
effectively eliminating knowledge about existence of the
announcing component. When announcements resume, a
receiver rediscovers the remote component and recovers
the latest component state. Our application uses a
modified form of soft state, which allows discarded
components to be either rediscovered or replaced. For
example, upon failure of heartbeat messages sent by
UPnP SMs to refresh cached SDs, a SU discards
knowledge of the SM and any associated SDs. Similarly,
a SU may discard knowledge of a SM and SD for a
remote sensor upon failure to receive sensor updates. To
effect recovery, UPnP SUs may commence periodic
multicast (Msearch) queries to search for a new instance
of a required service. Once the SU regains a SD meeting
requirements, the related queries cease. In Jini, loss of
contact with a service may cause the SU to query a SCM
for a replacement. In addition, service unavailability may
be indicated by failure of heartbeat messages sent by Jini
SMs to refresh SDs cached on SCMs, causing the SCM to
discard the SD and to notify SUs that indicated interest in
learning about service failures. Periodic announcements
ensure rediscovery of the SCM by SMs within 120s after
the SM recovers. The Jini SU can then receive the
corresponding SD through notification or query. Of
course, in Jini, SCMs could also fail. SCM startup
announcements ensure discovery of a new or restarted
SCM within about 30s.

When failures lead to a REX, discovery systems
generally expect application software to initiate recovery,
guided by an application-level persistence policy. The
policy may require ignoring the REX, retrying the
operation for some period, or discarding knowledge of
the remote component. Since our experiment simulates a
real-time control application, we chose not to persist after
a REX, but instead to discard knowledge of the associated
remote component, relying on periodic announcements
and soft state to recover. This policy is also used in the
three-party model when SCM failure is detected through a
REX in response to a query (SU) or registration refresh
(SU or SM). After discarding knowledge of a SM (UPnP)

or SCM (Jini), all operations involving the remote
component cease.

3. Experiment description

We investigate how effectively the two alternate
service-discovery architectures, and associated failure
detection and recovery mechanisms, provide clients with
required services as nodes hosting the services fail and
recover. We model the two- and three-party architectures
using the four topologies shown in Figures 1 and 2. In all
topologies, we deploy a single SU and twelve SMs, where
each SM manages a specific type of SP: “fast” sensor,
“slow” sensor, or actuator. The twelve SMs include four
of each SP type. After discovery and activation by the
SU, a “fast” sensor transmits a reading every two seconds
and a “slow” sensor transmits a reading every 30 seconds.
Once discovered and activated by the SU, an actuator can
be invoked after the SU receives an appropriate
combination of readings from a “fast” and “slow” sensor.
In our experiment, we simulate actuation attempts using a
uniform distribution with a mean of 60s. When the SU
holds one SD for a SP of each type (“fast” sensor, “slow”
sensor, and actuator) and each of the SPs is operational,
then the application is considered functional. If the SU
lacks SDs for one or more SP type or if one or more of
the SDs held by the SU describes a SP that is not
operational, then the application is considered non-
functional. The experiment measures accumulated
functional time in proportion to a duration D during
which SMs and SCMs periodically fail and recover. To
establish initial conditions, each topology is exercised
until discovery completes, and the application becomes
functional. To focus exclusively on failure detection and
recovery processes, we do not cache services; the SU
holds at most one SD for each SP type at any time. In the
three-party architecture, some additional decisions are
necessary. For each SD discovered and retained, the SU
registers with the SCM for notification about failures. The
SU refreshes notification registrations every 300s. Each
SM registers with each discovered SCM, and refreshes
every 60s (slow sensors/actuators) or 300s (fast sensors).

3.1. Failure model

During D, each SM (and SCM in the three-party case)
fails randomly and independently, although at least one
service of each type always remains active so that the
application could become functional. We calculate a
mean time to failure, MTF, from a failure rate R, varied
from 0.1 to 0.9 of D in 0.1 increments, where MTF = (1 –
R) * D. Node failure times are randomly chosen from a
“stepped” normal distribution with three steps: a 0.15
probability that failure occurs before (MTF - 0.2 * MTF),

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Rukhin 173

a 0.7 probability that failure occurs between (MTF - 0.2 *
MTF) and (MTF + 0.2 * MTF), and a 0.15 probability that
failure occurs between (MTF + 0.2 * MTF) and (2 *
MTF). Failure time is distributed uniformly within each
step.

When a SM or SCM fails, affected services become
unavailable for a time. There are three failure classes,
each with a different probability, P, and duration. Short
failures occur with P = 0.1 for a fixed duration (135s);
intermediate failures occur with P = 0.7 for a duration
selected uniformly on the interval 180-300s, long failures
occur with P = 0.2 selected uniformly on the interval 480-
600s.

3.2. Metrics

We define non-functional time, NF, as accumulated
time during which an application is in a non-functional
state. Assuming we can measure NF, over a given
duration D, then functional effectiveness, F, can be
quantified as a ratio: F = (D – NF)/D. We define
consistency conditions to measure NF, as explained
below

A client in a distributed application may become non-
functional due to failure of remote components but incur
a delay before detecting the failure. We call this delay
failure-detection latency. After detecting a non-functional
state, the application may incur some delay while
restoring required services. We call this delay failure-
recovery latency. During periods when a client incurs
either failure-detection or failure-recovery latency or both
(the states can overlap when a client requires more than
one remote service), the distributed application is non-
functional. We accumulate such non-functional periods to
NF.

We define two consistency conditions such that
violation of one corresponds to failure-detection latency
and violation of the other corresponds to failure-recovery
latency. The following consistency condition requires
each SD held by a SU to match a SD managed by a SM.
More formally,

SM

SU

vicesmanagedSerSDSM
eseredServicdisSDSM

SDSUSM

∈∃→
∈

∀

|
cov),(

],,[

In this condition (CC-1), managedServicesSM denotes the
database of SD(s) for services managed by a SM and
discoveredServicesSU denotes the (SM, SD) pairs a SU
has discovered. CC-1 is violated (and failure-detection
latency commences) when a SM fails but the SU holds a
SD provided by the SM. Once the SU discards the SD, or
the SM recovers, consistency is restored (and failure-

detection latency ends). A second consistency condition
requires that available SDs matching SU requirements
should be known to the SU. More formally,

SU

SUSM

eseredServicdisSDSM
eededresourcesNSDvicesmanagedSerSD

SDSUSM

cov),(

],,[

∈→
∈∧∈

∀

This condition (CC-2) is violated (and failure-recovery
latency begins) after the SU purges a SD for a failed
service and commences search. Consistency returns (and
failure-recovery latency ends) when the SU finds a SD
matching its needs.

4. Results and discussion

For each of four topologies (two-party and three-party
with one, two, and three SCMs), we set D = 1800s and
executed multiple repetitions for each value of R using
the failure model described in 3.1. We conducted separate
experiment runs for cases where failed nodes (including
SMs and SCMs) are discarded and replaced by new
nodes, and for cases where failed nodes restart,
maintaining persistent information in the manner
specified by the protocols. For the replacement case, we
ran a second variant of the experiment where all SMs for
a resource type may fail. We recorded functional
effectiveness, detection latency, recovery latency, and the
total number of protocol messages exchanged in each run.

4.1. Effectiveness and efficiency

Figure 3 shows average functional effectiveness of the
two-party and three-party architectures for the
replacement case as R increases, and where one SM for
each service type is always available (implying that the
system could be functional for all of D). In examining
Fig. 3, recall how failure detection occurs. In the two-
party model, the SU may detect service unavailability by
monitoring cyclical sensor readings or by monitoring
notification registration refreshes. In the three-party
model, the SCM notifies the SU if the SM fails to refresh
service registrations. In both models, the SU may also
detect unavailability when a REX occurs in response to
attempted actuations. To become functional again, the SU
must invoke appropriate recovery mechanisms to regain
SDs to replace unavailable services. In the three-party
architecture, at least one SCM must be operational for
recovery to succeed. During periods when all SCMs fail,
the SU is unable to recover needed services, increasing
non-functional time.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Rukhin 174

Overall, the two-party architecture proves more

effective above 60% failure rate, allowing the SU to
remain functional for as much as 80% of D even when the
failure rate reaches 80% (MTF = 360s). At rates below
60% the effectiveness of two-party is comparable to
three-party with two and three SCMs. Fig. 3 also shows
that effectiveness improves for the three-party
architecture as the number of SCMs increase, though
even with 3 SCMs, performance does not equal that of the
two-party architecture. Adding SCMs improves
effectiveness by lowering the incidence of concurrent
failure of all SCMs.

Message counts (Fig. 4) reveal the two-party

architecture to be significantly more efficient than the
three-party architecture. Note also that for the three-party
architecture, total message counts decrease as failure rate

increases, because SCMs remain down for longer periods;
thus, requiring fewer registration refresh and SCM
heartbeat messages. For the two-party model, message
counts increase slightly at high failure rates because the
SU invokes active recovery procedures after detecting
failures. Fundamentally, the three-party architecture relies
on redundancy of SCMs to improve functional
effectiveness; thus, exacting a high overhead at low
failure rates, but permitting overhead to diminish as
failure rate increases. The two-party architecture relies on
active recovery invoked by a SU; thus, at low failure rates
overhead is lower because recovery procedures are not
invoked often, but overhead increases with failure rate as
recovery procedures are invoked more often.

4.2. Underlying causes

To better understand differences in effectiveness
among the alternate architectures, we decomposed non-
functional time to show the estimated proportion
attributable to failure-detection latency and to failure-
recovery latency. Figure 5 shows that detection latency is
the dominant (~80%) component of non-functional time
for the two-party model. Analysis of execution traces
using the Rapide toolset showed most failures were
detected through missed sensor readings (2s for fast
sensors and 30s for slow sensors) or REXs received in
response to failed actuations. We suspected that in the
two-party architecture detection latency, and therefore
non-functional time, could be reduced by increasing
registration-refresh frequency; thus, decreasing the
interval between heartbeats. Failed notification refresh
attempts by the SU would permit detection of SM
unavailability (and violation of CC-1) before non-receipt
of slow sensor readings or failed actuation attempts. To
test this theory, we lowered the registration refresh
frequency from 300s to 30s in the two-party model, and
reran the experiment The result was a 49% drop in
detection latency leading to a 2.6% overall improvement
in functional effectiveness (an increase in the mean
effectiveness across all failure rates from 0.908 to 0.932).
However, efficiency decreased 69%, with a rise in
message count from an average of 662 to 1116. Similarly
in the three-party architecture, we suspect increasing
refresh frequency for service registrations would lead to
earlier detection by the SCM of SM failure [see 17], and
to earlier notification for the SU. Of course, increasing
the heartbeat rate also would decrease efficiency.

Our data for the three-party architecture show that
above 60% failure rate the incidence of concurrent failure
of all SCMs increases steadily. This precludes finding
available services meeting SU requirements; thus, leaving
the system in violation of CC-2. To restore consistency
and achieve operational functionality, a SCM must first
recover, accept registrations for the SU and available

Figure 3. Functional effectiveness for four
topologies under increasing R for the
replacement case where at least one SM of
each type is operational (60 reps/point)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
Failure Rate (%)

Two Party
Three Party (1 SCM)
Three Party (2 SCMs)
Three Party (3 SCMs)

Figure 4. Average message counts for four
topologies under increasing R for the
replacement case where at least one SM of
each type is operational (30 reps/point)

0

10
00

20
00

30
00

40
00

50
00

0 20 40 60 80

Failure Rate (%)

M
es

sa
ge

 C
ou

nt
s

Two Party
Three Party, 1 SCM
Three Party, 2 SCMs
Three Party, 3 SCMs

y = +2.16x

y = -1.70x

y = -6.97x

y = -10.55x

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Rukhin 175

SMs, and then propagate matching SDs to the SU.
Lacking an ability to directly discover SMs, the SU
remains non-functional while awaiting recovery of at
least one SCM. These effects are evident in Fig. 6, which
shows the proportion of recovery latency increasing for
the three-party model (3 SCMs) as the failure rate rises.
This trend is more marked as the number of SCMs
decreases (not shown here). We speculate that functional
effectiveness might improve for the three-party model if
SUs were permitted to discover SMs directly when no
SCMs are available. We plan experiments along these
lines using the Service Location Protocol (SLP) [12],
which enables switching between the two- and three-party
architecture as the situation warrants.

4.3. Results for experiment variants

To confirm our findings, we varied the experiment in
two respects. First, we changed node behavior to allow
failed nodes to restart rather than be replaced by new

nodes. In this case, three-party SCMs that recovered
were allowed to retain previous, unexpired service
registrations and notification registrations in accordance
with the Jini protocol, while two-party SMs were
permitted to retain notification registrations. The results
showed no significant differences in performance
between the restart and replacement cases, the graphs (not
shown) were almost identical. This occurs in the three-
party case because most of the persistent registrations
expire by the time a failed SCM restarts. In the two-party
case, where only notification registrations persist, the SU
that registered the notification is likely to have discarded
knowledge of the SM by the time it restarts. Since, in our
experiment, restarting nodes derive little value from
persistent information, functional effectiveness is mainly
influenced by soft-state mechanisms, as in the
replacement case.

Second, we varied the experiment to permit all SMs to
fail, rather than to have at least one SM always available
for each service type. The results, shown in Fig. 7.,
illustrate functional effectiveness for both the two- and
three-party models decreases substantially above R =
60%, as the incidence of concurrent SM failures
increases, resulting in extended periods when no SMs
were available for a service type needed by the SU.
Though the absolute functional effectiveness declined, the
ranking of the curves remained the same as in the
previous experiments, with the two-party model proving
most effective followed by the three-party model with
three-, two-, and one-SCM topologies, respectively. Thus,
in all of our experiment variants, the two-party model
achieved better functional effectiveness than the three-
party model.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
Failure Rate (%)

Two Party
Three Party (3 SCMs)
Three Party (2 SCMs)
Three Party (1 SCM)

Figure 7. Functional effectiveness for four
topologies under increasing R for the
replacement case where all SMs of each
service type are allowed to fail (30 reps/point)

Figure 6. Detection and recovery latencies
in three-party service-discovery model with
3 SCMs as a proportion of non-functional
time (also shown) (60 reps/point)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
Failure Rate (%)

Detection Latency
Recovery Latency
Non-Functional Time

Figure 5. Detection and recovery latencies in
two-party service-discovery model as a
proportion of non-functional time (also
shown) (60 reps/point)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
Failure Rate (%)

Detection Latency
Recovery Latency
Non-Functional Time

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Rukhin 176

5. Conclusion

This study provides an initial characterization of the
performance of service-discovery architectures in
response to node failures, which complements our
previous studies of response to communication failures
and message loss. The present study shows that in
response to node failure, two-party systems exhibit better
functional effectiveness and efficiency than three-party
systems, with three-party SCMs being a potential point of
vulnerability. Possible solutions to mitigate this
vulnerability require further study. Similarly, further
research is needed to verify that registration refresh rates
or service caching could improve functional
effectiveness. Finally, we need to verify that our
conclusions hold in networks with large numbers of
services.

6. Acknowledgements

The work discussed in this paper was funded in part by
DARPA, under the auspices of the FTN and DASADA
programs

7. References

[1] G. Bieber and J. Carpenter, “Openwings A Service-Oriented
Component Architecture for Self-Forming, Self-Healing,
Network-Centric Systems,” http://www.openwings.org web site.

[2] Fault Tolerant CORBA Specification, v1.0, ptc/00-04-04,
Object Management Group.

[3] C. Marchetti, A. Virgillito, and R. Baldoni, “Design of an
Interoperable FT-CORBA Compliant Infrastructure,”
Proceedings of the European Research Seminar on Advances in
Distributed Systems (ERSADS), 2001.

[4] D. Liang et al. “A Fault-Tolerant Object Service on
CORBA,” The Journal of Systems and Software, Vol. 48. 1996.

[5] Y.M. Wang, O.P. Damani, and W.J. Lee, “Reliability and
Availability Issues in Distributed Component Object Model
(DCOM),” Proceeding of the International Workshop on
Community Networking, 1997, pp. 59-63.

[6] Felber, P. et al. “Failure Detectors as First Class Objects,”
Proceedings of the International Symposium on Distributed
Objects and Applications (DOA’99), IEEE Computer Society
Press, September 5-7, 1999, p. 132.

[7] Carey, R.W. et al. “Large-Scale Corba-Distributed Software
Framework For Nif Controls,” Proceedings of the 8th
International Conference on Accelerator & Large Experimental
Physics Control Systems, Stanford Linear Accelerator Center,
November 27-30, 2001, p. 425.

[8] Salutation Architecture Specification, V. 2.0c, Salutation
Consortium, June 1, 1999.

[9] Universal Plug and Play Device Architecture, V. 1.0,
Microsoft, June 8, 2000.

[10] Ken Arnold et al, The Jini Specification, V1.0 Addison-
Wesley 1999. Latest version is 1.1 available from Sun.

[11] Specification of the Home Audio/Video Interoperability
(HAVi) Archiecture, V1.1, HAVi, Inc., May 15, 2001.

[12] Guttman, E., Perkins, C., Veizades, J., and Day, M. Service
Location Protocol, V.2, Internet Engineering Task Force (IETF),
RFC 2608, June 1999.

[13] Specification of the Bluetooth System, Core, Vol. 1, Version
1.1, the Bluetooth SIG, Inc., February 22, 2001., 1999.

[14] Dabrowski, C. Mills, K., and Elder, J. “Understanding
Consistency Maintenance in Service Discovery Architectures
During Communications Failure,” Proceedings of the 3rd
International Workshop on Software Performance, ACM, July
2002, pp. 168-178.

[15] Dabrowski, C., Mills, K., and Elder, J. “Understanding
Consistency Maintenance in Service Discovery Architectures In
Response to Message Loss,” Proceedings of the 4th
International Workshop on Active Middleware Services, IEEE
Computer Society, July 2002, pp. 51-60.

[16] Luckham, D. “Rapide: A Language and Toolset for
Simulation of Distributed Systems by Partial Ordering of
Events,” http://anna.stanford.edu/rapide, August 1996.

[17] Bowers, K., Mills, K., and Rose, S. “Self-adaptive Leasing
for Jini,” IEEE International Conference on Pervasive
Computing and Communications 2003, Dallas-Fort Worth,
Texas, March 2003.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Rukhin 177

Understanding Failure Response in
Service Discovery Systems

C. Dabrowski, K. Mills, S. Quirolgico

National Institute of Standards & Technology
Gaithersburg, Maryland 20899

ABSTRACT
Service discovery systems enable distributed components to find
each other without prior arrangement, to express capabilities and
needs, to aggregate into useful compositions, and to detect and
adapt to changes. First-generation discovery systems can be
categorized based on one of three underlying architectures and on
choice of behaviors for discovery, monitoring, and recovery. This
paper reports a series of investigations into the robustness of
designs that underlie selected service discovery systems. The
paper presents a set of experimental methods for analysis of
robustness in discovery systems under increasing failure intensity.
These methods yield quantitative measures for effectiveness,
responsiveness, and efficiency. Using these methods, we
characterize robustness of alternate service discovery architectures
and discuss benefits and costs of various system configurations.
Overall, we find that first-generation service discovery systems
can be robust under difficult failure environments. This work
contributes to better understanding of failure behavior in existing
discovery systems, allowing potential users to configure
deployments to obtain the best achievable robustness at the least
available cost. The work also contributes to design improvements
for next-generation service discovery systems.

Keywords: Distributed systems, robustness, service discovery

1. INTRODUCTION

Various teams designed and implemented a first generation of
(competing) service discovery systems [1-6] that enable
distributed components to find each other without prior
arrangement, to express capabilities and needs, to compose into
collections, and to detect and adapt to changes. Each specific
design defines a system structure, along with protocols for
discovery, monitoring, and recovery. Some designs [5,6] assume a
specific underlying communication technology, and some designs
[1,5] focus on one application domain. Three designs [2-4] were
conceived to operate over Internet protocols and to support many
applications.

In this paper, we investigate the architectures and
behaviors underlying Jini Networking Technology1 [2], Universal
Plug and Play (UPnP) [3], and the Service Location Protocol
(SLP) [4] when subjected to various failures. Elsewhere [7], we

1 Certain commercial products or company names are identified in this
paper to describe our study adequately. Such identification is not intended
to imply recommendation or endorsement by the National Institute of
Standards and Technology, nor to imply that the products or names
identified are necessarily the best available for the purpose.

present a generic model encompassing the designs of these
systems and we identify performance issues that could arise.
While this previous work considers system behavior absent
failures, here we explore the relative ability of discovery systems
to cope with different types and intensities of failure.

We reported preliminary results in various conference
papers [8-11]; however, this paper improves upon earlier work in
two ways. First, we extend the scope of our results to cover three
architectures (two-party, three-party, and adaptive), three failure
scenarios (configuration restoration, service acquisition and
maintenance, and consistency maintenance), four failure types
(power failure and restart, node failure, communication failure,
and message loss), and a set of failure detection and recovery
techniques at three levels (transport protocols, discovery
protocols, and application logic). Second, we increase the amount
of data collected and analyzed to obtain better estimates for
performance metrics at high failure rates.

This paper contributes to the understanding of service
discovery systems. First, this paper characterizes robustness of
discovery systems under difficult failure environments. This paper
further identifies and discusses the most significant design and
configuration decisions that influence robustness. Second, this
paper identifies specific design and deployment decisions that
could lead to diminished robustness. Third, this paper quantifies
the relative cost associated with specific decisions. Overall, the
information provided here should contribute to better
understanding of failure behavior in existing discovery systems,
allowing potential users to configure deployments to obtain the
best achievable robustness at the least available cost. Further,
results and discussions presented here could contribute to design
improvements in the next generation of discovery systems.

This paper also contributes experimental methods to study
robustness in distributed systems. First, we introduce and apply
metrics to quantify relative robustness and cost at the application
level for various scenarios. Second, we present a technique to
decompose aggregate robustness into detection and recovery
latency. Using this technique, we show how similar robustness
can be achieved through different behaviors arising from
particular design choices. Our methods can be adopted, adapted,
or extended by other researchers to investigate failure response in
distributed systems – a topic due for increased study.

We begin (in Section 2) with a synopsis of existing work
comparing and contrasting service discovery systems. Most
previous work focuses on functional comparisons [12-19], on
means for translating among discovery systems [20-26], or on
improving existing designs [27-37]. Our own related work [7, 38-
42] attempts to unify designs for several existing discovery
systems, and investigates performance problems arising when
such systems are deployed at large scale.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Quirolgico 178

In Section 3, we survey the design and function of service
discovery systems. We introduce a model to convey concepts
across selected systems. Using our model, we describe how
discovery operates under UPnP (a two-party architecture, where
clients issue multicast queries to find services), Jini (a three-party
architecture, where clients consult a directory to find services),
and SLP (which is a three-party architecture that can adapt to
become a two-party architecture). We also describe two
mechanisms (polling and notification) used by discovery systems
to maintain consistent information among distributed replicas. The
architectures, discovery procedures, and consistency maintenance
mechanisms described in Section 3 form the basis for scenarios,
experiments, and results recounted in later sections.

In Section 4, we introduce selected types of failure that can
impede a distributed system and we discuss selected techniques to
detect and recover at three layers. At the lowest layer, transport
protocols may include detection and recovery mechanisms (e.g.,
acknowledgments, retransmissions, and exceptions). In the middle
layer, discovery protocols typically include some detection and
recovery mechanisms (e.g., heartbeats and soft state). At the top
layer, applications may take recovery actions in reaction to
exceptions raised by transport protocols. Interactions among these
detection and recovery techniques can become quite intricate and
difficult to understand.

In Section 5, we describe our experiment methodology,
consisting of six steps: (1) constructing (simulation) models
reflecting structure, behavior, and deployments of selected service
discovery systems, (2) incorporating failure models into the
simulations (3) devising scenarios and related metrics to quantify
robustness and cost, (4) simulating scenarios for selected
configurations over a range of failure rates, (5) collecting,
analyzing, and plotting data from simulations, and (6)
investigating unexpected results and anomalies. In Section 6, we
describe the design and results for our experiments: (1) restart
after power failure, (2) service acquisition and maintenance
impeded by node failures, and consistency maintenance impeded
(3) by communication failures and (4) by message loss. We report
results from these four experiments, which encompass 30
configurations. For each experiment, we explain the scenario and
failure model, define metrics, present results, outline findings, and
discuss unexpected outcomes. We close in Section 7 with a précis
of our findings and contributions.

2. RELATED WORK

Emergence of various specifications for service discovery
systems, coupled with the anticipated importance of discovery
functionality in future distributed systems, has stimulated
significant interest in understanding similarities and differences
among competing designs. Most existing comparisons focus on
architecture, features, and function. A few comparisons also
consider programming differences, because most discovery
systems are conceived as middleware to support distributed
applications. Bettsletter and Renner [12] compare SLP, Jini,
UPnP, and Bluetooth with respect to architecture, function, and
features, and consider underlying requirements for programming
languages, operating systems, and network protocols. The
comparison is expressed using concepts and terminology specific
to each discovery system, although the authors do identify three
common aspects (support for searching on service attributes,
inclusion of a directory, and use of leasing) for comparison.
Richard [13] compares software architectures, along with system

features and functions, for Jini, Bluetooth, Salutation, SLP, and
UPnP. Elsewhere [17], Richard expands his comparison to include
programming considerations by providing source code for clients
and services in Jini, SLP, UPnP, and Bluetooth. Pascoe [15]
outlines a brief architectural comparison of Jini, UPnP, and
Salutation, and Rekesh [14] gives a similar comparison that
appears to be based on Pascoe’s work. In a subsequent paper [16],
Pascoe amplifies his architectural comparison to include
comparison of functions and features. O’Driscoll [18], when
considering a wide range of home networking technology,
provides descriptions of Bluetooth, HAVi (the Home Audio-
Video interoperability specification), UPnP, and Jini. Though
giving no direct comparison, O’Driscoll provides a summary of
architecture, function, and features from which readers may infer
a comparison. Olivier [19] provides a detailed description of Jini,
but also includes a brief description of UPnP and a comparison
between Jini and SLP. None of these comparisons considers
performance or robustness.

Limitations in existing comparisons motivated our own
work. Elsewhere [7], we provide a unified and general model for
first-generation discovery systems and then show how our model
can be used to represent Jini, UPnP, and SLP. Our unified model,
conceived with neutral terminology, provides a basis for direct
comparison among architectural, functional, and behavioral
elements of designs. Our model also reveals limitations and open
issues in existing designs and specifications, and includes a set of
service guarantees that we believe discovery systems should
attempt to satisfy. Further, we identify selected performance
issues that may arise when deploying discovery systems at large
scale, and we use our model to outline algorithms that might
improve performance. While our previous work improves on
existing comparisons, we did not consider robustness under
various types of failure. The present paper extends our previous
work by comparing failure response in the major designs for first-
generation discovery systems (as represented by Jini, UPnP, and
SLP).

As a natural extension to functional comparisons, some
researchers conceive protocol translators in order to achieve
interoperation among dissimilar service discovery systems. For
example, the Open Services Gateway Initiative (OSGi) [20, and
also chapter 17 in 18] defines a layer of middleware to bridge
among Jini, UPnP, and Bluetooth. Miller and Pascoe [21] show
how to map between the application-level programming interfaces
of Salutation and Bluetooth. Allard et al. [22] and Sameh and El-
Kharboutly [23] describe different techniques to bridge between
Jini and UPnP, while Guttman and Kempf [24] consider
techniques to bridge between Jini and SLP. Similarly, Yu et al.
[26] define a software structure for middleware that can bridge
among a diverse set of service discovery systems and distributed
object systems. Ponnekanti and Fox [25] take a more general tact
by defining a framework that clients may use to find candidate
services and to automatically configure an appropriate set of
proxies and stubs to allow a client to invoke a selected service.
Only one [23] of these papers investigates performance, and none
considers the effects of failures. While our paper does not
consider translation among discovery systems, researchers could
use our method to investigate and quantify robustness of various
designs for bridges and translators.

Beyond first-generation systems for discovery of services
operating in close proximity, researchers in industry and academe
are investigating how to build discovery systems that scale over a
wide area. An early proposal, known as Universal Description,

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Quirolgico 179

Discovery and Integration (UDDI) [36], defines well-known,
web-accessible repositories, where service descriptions may be
deposited so that clients may query for services of interest. The
UDDI approach exhibits limited scalability because every service
in a network must deposit its description with a central directory,
or else with multiple replicas of a central directory. To overcome
such limitations, researchers continue to propose a number of
more flexible approaches. One early idea, E-speak [28], used an
expanding-ring multicast search to discover directories that
organized into a federated topology through which service
descriptions permeated over time. A similar idea is contained in
JXTA [29], where a peer-to-peer system is used to disseminate
copies of service descriptions throughout a topology of caches,
and in Neuron [32], a self-organizing and self-tuning topology of
caches that can tolerate failures of nodes and communication
links. Other self-organizing directories have also been proposed,
including SRIRAM [31], NeuroGrid [34], and the Secure Service
Discovery Service [27]. A somewhat different approach [30]
forms a logical ring (based on node addresses) that helps
individual nodes to bootstrap into various available overlay
networks, each of which advertises services. Grid researchers
have also proposed a design for wide-area service discovery [33],
coupled with the ability to inject and disseminate real-time status
information [35]. Most of these designs include provisions to
detect and recover from failures or to mitigate failures; however,
no comprehensive results exist that compare robustness among
various designs. While this paper investigates robustness only for
local discovery, we suspect that our method could be applied to
quantify and compare robustness among designs for wide-area
discovery.

3. MODELING SERVICE DISCOVERY SYSTEMS

Service discovery systems enable components in a network to
discover each other, and to determine if discovered components
meet specific requirements. Further, discovery systems include
consistency-maintenance mechanisms, which can be used by
applications to detect changes in component availability and
status, and to maintain, within some time bounds, a consistent
view of distributed components. Many diverse industry activities
explore different approaches to meet such requirements, leading
to a variety of proposed designs [1-6]. Some groups approach the
problem from a vertically integrated perspective, coupled with a
narrow application focus. Other groups propose more widely
applicable solutions. For example, a team of researchers and
engineers at Sun Microsystems designed Jini Networking
Technology [2], a discovery system atop Java, which provides a
base of portable software technology. As another example, a
group of engineers at Microsoft and Intel conceived Universal
Plug-and-Play (UPnP) [3] to extend plug-and-play from single
computers to distributed systems. Similarly, the efforts of Sun
Microsystems and other companies led to the Service Location
Protocol (SLP) [4], aimed at providing service discovery for the
Internet.

While these designs appear quite different, the systems
share some common traits. First, they all assume availability of
the Internet protocols as a base. Second, they all provide general
approaches to describe the capabilities and status of services.
Third, they all include mechanisms that can be used to detect and
recover from failures. Jini, UPnP, and SLP differ in architecture,
in approach to describing services, and in assumptions about how
to use transport protocols. This interesting combination of

similarities and differences led us to base our comparative study
on Jini, UPnP, and SLP. Our main challenge was finding a means
to clearly understand and represent similarities and differences
among the three systems. To address this challenge, we developed
a general model with common terminology and then mapped
concepts from each specific system into our model.

3.1 A General Model of Service Discovery Systems

Our model provides a basis for comparative analysis of various
discovery systems by representing major architectural components
and concepts with a consistent and neutral terminology (see first
column in Table 1). The main components in our model include:
(1) service user, (2) service manager, and (3) service cache
manager. A service user (SU) is a client in a service discovery
system. A SU is concerned with discovering services from
components within the distributed system, acquiring access to
discovered services, and using discovered services. A service
manager (SM) maintains a database of service descriptions, each
of which encodes the characteristics of a particular service
provider (i.e., the provider of the service). Each service
description (SD) contains the identity, type, and attributes that
characterize a service provider (SP). Each SD also includes the
addresses of software interfaces (e.g., an application-
programming interface or graphic user interface) to access a
service. A SU seeks SDs satisfying specific requirements. A
service cache manager (SCM) operates as an intermediary,
matching advertised SDs from SMs to requirements provided by
SUs. SCMs are optional components supported by some, but not
all, discovery systems. Table 1 shows how these general concepts
map to specific concepts from Jini, UPnP, and SLP.

The behaviors by which (Jini, UPnP, and SLP) SUs

discover and maintain consistency in relevant SDs depend in part
upon the system architecture and design and in part on the
transport protocols used. Transport protocols are used for two
kinds of message exchange: (1) multicast, in which transmitted
messages are conveyed to all receivers that participate in a
multicast group and (2) unicast, which is point-to-point
communication directly between a pair of corresponding entities.
Both Jini and UPnP use the UDP (User Datagram Protocol) for
exchanging multicast messages and use the TCP (Transmission
Control Protocol) for exchanging unicast messages. UPnP also
uses UDP to unicast answers to multicast queries. SLP uses UDP
for exchanging both multicast and unicast messages. The

Service RegistrationDevice/Service DescriptionService ItemService Description

Directory Service Agent
(optional)

not applicableLookup ServiceService Cache Manger

Service URL
Service Type
Service Attributes
Template URL
Template URL

Universal Unique ID
Device/Service Type
Device/Service Schema
Presentation URL
Control/Event URL

Service ID
Service Type
Attribute Set
Service Applet
Service Proxy

Identity
Type
Attributes
User Interface
Program Interface

ServiceDevice or ServiceServiceService Provider

Service AgentRoot DeviceService or
Device Proxy

Service Manager

User AgentControl PointClientService User

SLPUPnPJiniGeneric Model

Service RegistrationDevice/Service DescriptionService ItemService Description

Directory Service Agent
(optional)

not applicableLookup ServiceService Cache Manger

Service URL
Service Type
Service Attributes
Template URL
Template URL

Universal Unique ID
Device/Service Type
Device/Service Schema
Presentation URL
Control/Event URL

Service ID
Service Type
Attribute Set
Service Applet
Service Proxy

Identity
Type
Attributes
User Interface
Program Interface

ServiceDevice or ServiceServiceService Provider

Service AgentRoot DeviceService or
Device Proxy

Service Manager

User AgentControl PointClientService User

SLPUPnPJiniGeneric Model

Table 1. Mapping Concepts among Selected Service Discovery
Systems.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Quirolgico 180

differences in transport protocols become significant when
considering approaches to detect and recover from failures;
therefore, we defer (until Section 4) a more detailed discussion.
Here, we focus on behavioral differences arising from variations
in architecture and design.

3.2 Modeling Service Discovery Architectures and Protocols

Our analysis of six distinct discovery systems revealed that most
designs use one of two architectures: two-party or three-party.
One discovery system we examined uses both architectures
together. A two-party architecture consists of two major
component types: SMs and SUs. Figure 1 illustrates a two-party
architecture (configured for UPnP). Service discovery occurs
through interactions between these two component types; SUs
discover SMs and then query them for suitable SDs. A three-party
architecture adds a third component type, the SCM, which
contains a directory. Figure 2 illustrates a three-party architecture
(configured for Jini). In a three-party architecture, both SMs and
SUs first discover SCMs to serve as intermediaries. SMs deposit
SDs with SCMs and SUs interact with SCMs to obtain suitable
SDs. A third architectural variant (supported by SLP) employs
both the two-party and three-party architecture and is capable of
switching between them, depending on circumstances. We call
this an adaptive architecture.

3.2.1 Discovery in Two-Party Architectures. Given a two-
party architecture, we model the behavior of participating SMs
and SUs. Upon startup, each SU and SM engages in a discovery
process to locate other relevant components within the network
neighborhood. We chose behaviors described in the specification
for UPnP [3].

In a lazy-discovery process, each SM periodically
announces existence of its SDs over a designated UPnP multicast
group. Upon receiving these announcements, SUs with matching
requirements use a HTTP (HyperText Transfer Protocol)/TCP
unicast link to request, directly from the SM, copies of the SDs
associated with relevant SPs. The request is made using an HTTP
GET request. The SU stores SD copies in a local cache.

Alternatively, the SU may engage in an aggressive-
discovery process, where the SU transmits SD requirements, as
Msearch queries, on the UPnP multicast group. Any SM holding
a SD with matching requirements may use a HTTP/UDP unicast
link to respond (after a jitter delay) directly to the SU. Whenever a
SM responds to an Msearch query (or announces itself), it
repeats a sequence of messages, with separate messages for
distinct devices and service types managed by the SM. For each
appropriate response, the SU uses a HTTP/TCP unicast link to
send an HTTP GET request for a copy of relevant SDs, caching
them locally.

In UPnP, multiple HTTP GET requests are required to
transfer the SD, because each SD consists of two parts. To
maintain a SD in its local cache, a SU expects to receive periodic
announcements from the relevant SM. In UPnP, the SM
announces the existence of SDs at a specified interval, known as a
Time-to-Live, or TTL (1800 s minimum recommended). Each
announcement specifies a TTL value. If the SU does not receive
an announcement from the SM within the TTL (or a periodic SU
Msearch does not succeed within that time), the SU may
discard the discovered SD.

3.2.2 Discovery in Three-Party Architectures. Given a
three-party architecture, we model the behavior of participating
SCMs, SMs, and SUs, which each engage in a discovery process
upon startup. We chose behaviors described in the Jini
specification [2], where SMs and SUs attempt to discover any
intermediary SCMs that exist in the network neighborhood.

Upon initiation, a Jini component enters aggressive
discovery, where it transmits probes on a designated aggressive-
discovery multicast group at a fixed interval (5 s recommended)
for a specified period (seven times recommended), or until it has
discovered a sufficient number of SCMs. Upon cessation of
aggressive discovery, a component enters lazy discovery, where it
listens on a designated lazy-discovery multicast group for
announcements sent at intervals (120 s recommended) by SCMs.
Our three-party model implements both the aggressive and lazy
forms of Jini multicast discovery.

Once discovery occurs, a SM deposits a copy of the SD for
each of its services on the discovered SCM. The SCM caches this
deposited state, but only for a specified length of time, or TTL. To
maintain a SD on the SCM beyond the TTL, a SM must refresh
the SD. In this way, if the SM fails, then the SCM can purge any
SDs deposited by the SM. SUs may query discovered SCMs for
SDs of interest. Alternatively, a SU may deposit a query with the
SCM, which will attempt to match SDs provided by SMs to
specifications of the deposited query. The SCM forwards any
matching SDs on to the SU that deposited the relevant query.

3.2.3 Discovery in Adaptive Architectures. An adaptive
architecture requires SMs and SUs to rendezvous through a SCM,

Figure. 1 Two-party service discovery system deployed
in a topology with three service users (SUs) and thee
service managers (SMs).

HTTP/TCP and HTTP/UDP

Service
User

Service
User

Service
Manager

UPnP Multicast Group

Unicast Links

Figure 2. Three-party service discovery system deployed in
a topology with three service users (SUs), three service
manager (SMs), and three service cache manager (SCMs).

Service
Manager

Service
User

Service
Cache

Manager

Aggressive-Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy-Discovery Multicast Group

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Quirolgico 181

but allows direct SM-SU interaction when no SCM is available. If
SMs and SUs interact directly and a SCM becomes available, then
the architecture requires SMs and SUs to resume interacting
through the SCM. We use the term mode switching to denote this
ability to change architectural configurations (i.e., to switch
between two- and three-party architectures). To model an adaptive
architecture, we chose behaviors from the SLP specification [4].

SLP systems are configured by default to operate in three-
party mode, switching to two-party mode when SCMs are
unavailable. Like Jini, three-party SLP discovery requires that
SMs and SUs first discover intermediary SCMs. Upon initiation, a
SLP SM or SU enters aggressive discovery, where every 900 s it
transmits six probes within a fixed interval of 15 s on a designated
aggressive-discovery multicast group. On the other hand, a SLP
SCM and SM component commences lazy discovery, where it
emits announcements on a designated lazy-discovery multicast
group at recommended intervals of 10800 s (once every three
hours), which we lowered to 120 s in all experiments to provide
more consistent behavior in the adaptive and three-party
architectures. When operating in three-party mode, SLP SUs and
SMs rendezvous through SCMs. After discovery, SLP SMs
employ procedures (similar to Jini) to deposit SDs for relevant
services on discovered SCMs for a specified TTL, and then to
refresh deposited SDs. To make behavior as consistent as possible
across our models, we decided to use the same TTLs (on a per
experiment basis) for a SD to be cached by a SCM. We denote a
specific choice of TTL when describing each experiment (see
Section 6). SUs query SCMs for SDs matching their requirements.
SCMs process queries, matching SDs against SU requirements,
and forward matches to SUs. SUs can cache the response and
contact the related SPs to obtain use of the service.

When SLP SUs and SMs fail to detect SCMs, they switch
to two-party mode. In two-party mode, a SLP SU both listens for
lazy announcements from SMs and transmits the aggressive-
discovery six-message probe sequence at 900 s intervals, while
SMs listen for probes and respond as appropriate. Upon receiving
a lazy announcement or an aggressive-probe response, a SLP SU
(in two-party mode) queries the SM for SDs matching its
requirements. The SM responds with matching SDs, which the SU
caches locally. In the meantime, SUs continue to search for a
SCM, using both lazy and aggressive discovery. Upon finding a
SCM, SLP requires the SU to switch to three-party mode and to
cease direct contact with SMs discovered in two-party mode. All
further contact with SMs must take place through SCMs.

3.3 Modeling Consistency Maintenance Mechanisms

Service discovery systems include consistency-maintenance
mechanisms to ensure that changes to critical information about
services can be propagated to interested SUs. Critical information
could include service availability and capacity, and updates to
descriptive information about service capabilities. Discovery
systems that we analyzed provide one or both of two consistency-
maintenance mechanisms: polling and notification. We discuss
each in turn.

3.3.1 Polling. In polling, a SU periodically sends queries to
obtain up-to-date information about a SD that was previously
discovered, retrieved, and cached locally. In a two-party
architecture, the SU issues the query directly to the SM from
which the SD was obtained; thus, we model the UPnP HTTP GET
request mechanism to poll the SM to retrieve a SD associated with
a specific URL (Uniform Resource Locator). In response, the SM

provides a SD containing a list of supported services, including
relevant attributes.

Polling in a three-party architecture consists of two
independent processes. In one process, a SM sends a request to
propagate an updated SD to each SCM on which the SD was
originally cached. In Jini, this request takes place through a
ChangeService message, which causes the SCM to update the
cached SD. In SLP, the SM re-registers the SD, which causes the
SCM to replace the previously deposited SD with the new version
and an updated TTL. In a second process, each SU polls relevant
SCMs by periodically issuing a query for a copy of SDs that the
SU has previously retrieved and cached. The SCM replies with
matching SDs. In Jini, the poll is implemented with a
FindService request and a MatchFound reply; SLP polls
(SCMs in three-party mode and SMs in two-party mode) with
SrvRqst and SrvReply messages, respectively. We adopted a
180 s polling interval for all architectures.

3.3.2 Notification. Notification requires that updates be
transmitted to interested parties immediately after they occur. We
model notification only for the two-party and three-party
architectures (i.e., not for the adaptive architecture), because the
SLP specification that we used does not include notification.

In two-party notification, a SM sends events to a SU that
indicates a SD has changed. To receive events about a SD of
interest, a SU must first register with the SM for this purpose. We
model this procedure using the UPnP subscription mechanism,
where the SU sends a Subscribe request, and the SM responds
by either accepting or denying the request. The subscription, if
accepted, is retained for a TTL, which may be refreshed with
subsequent Subscribe requests from the SU. In our
experiment, we chose 1800 s as TTL for subscriptions in both (the
two- and three-party) architectures.

Three-party notification requires a two-step procedure,
which we model as specified for Jini. First, SUs must register with
SCMs to receive notification about SDs of interest. The SCM
registers the notification request for a specified TTL, which may
be refreshed. Second, a SM issues a ChangeService to
propagate a SD update to all SCMs on which the SM has
previously deposited the SD. When the SCM receives a
ChangeService request from a SM for a SD it has cached, the
SCM issues a MatchFound that propagates the updated SD to
all SUs that have registered to receive such notifications.

4. MODELING FAILURE DETECTION AND

RECOVERY TECHNIQUES

Interactions among distributed components may be impeded by
failures; thus, such components must be prepared to detect failures
and take recovery actions. In this section, we review the types of
failure that can impede interactions and then we describe selected
failure detection and recovery techniques. We explain how we
incorporated the techniques into our models.

4.1 Failure Types

We classify failures into two general categories: process failures
and communication failures. Process failures can be caused by
cyber attacks, by programming errors, or by hardware failures.
We can subdivide process failures into node and thread failures.
During a catastrophic failure, processing in a node ceases, and the
node must reinitialize before processing resumes. Some
information maintained by the node may persist across the failure,

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Quirolgico 182

while other information may be lost. The nature and condition of
persistent information could prove crucial to a node’s behavior
after processing resumes. Of course, the node might never
reappear. Thread failures, while less catastrophic, can be more
troublesome than node failures. A node might rely on certain
long-running threads to react to events from other nodes. Failure
of selected threads can interfere with the operation of the node, as
well as other nodes. In some cases, a node can appear to be
present, while being effectively inoperable. Since the effects of
node and thread failure are similar, we focus only on node failure
in this study, allowing the effects of thread failure to be inferred.

Communication failures can arise due to jamming, or other
interference, due to congestion, due to denial of service attacks,
due to physical severing of cables, due to improperly configured
or sabotaged routing tables, or due to multi-path fading as nodes
move across a terrain. We subdivide communication failures into
three classes: interface failures, message loss, and path failures. A
communication interface in a node may fail fully (both transmit
and receive) or partially (either transmit or receive). All outbound
messages from an interface will be lost when the transmitter fails,
while all inbound messages will be lost when the receiver fails.
Message loss, a less severe failure, implies that individual
messages may be dropped, either sporadically or in bursts. Path
loss appears as a blocked communication route between two
nodes, or areas, in a network. A path can be blocked in one or
both directions. Because effects of path failure are similar to
interface failure, we studied only interface failure.

4.2 Failure Detection and Recovery Techniques

In service discovery systems, failure detection and recovery
responsibilities are divided among three parties: (1) transport
protocols, (2) discovery protocols, and (3) applications. The
transport protocols support the discovery protocols and the
application, while the application also relies on the discovery
protocols. We first describe failure detection and recovery
provided by transport protocols, such as TCP and UDP. We then
discuss heartbeats and soft state ⎯ the main detection and
recovery techniques implemented by discovery protocols.
Subsequently, we discuss remote exceptions and retries, which are
the main detection and recovery techniques available to
applications and selected discovery processes. We describe how
we model these techniques.

4.2.1 Recovery by Transport Protocols. Discovery
protocols and applications use recovery services from three types
of transport: (1) unreliable multicast protocols, (2) unreliable
unicast protocols, and (3) reliable unicast protocols. We discuss
each in turn.

Unreliable Multicast Protocols. Unreliable protocols,
whether multicast or unicast, neither recover nor signal lost
messages; thus, neither source nor destination will learn of a loss.
Further, multicast protocols exchange messages along a tree of
receivers. For this reason, a multicast message might be received
by some nodes, but not by others. A failure near a multicast
source prevents messages from being received by any node in the
multicast tree, while a failure near a receiver prevents messages
from being received by only a single node in the tree. Of course,
failures at intermediate points in the tree could result in messages
being lost to subsets of receivers. All three systems we studied
(UPnP, Jini, and SLP) employ unreliable UDP multicast
protocols.

When simulating UDP transmission, our models discard
messages lost due to congestion and due to interface failures.
During interface failure, the models discard all messages sent
from a node with a failed transmitter, as well as all messages
inbound for a node with a failed receiver. Neither sender nor
receiver learns the fate of lost messages. Since unreliable
protocols provide no guarantees, recovery must be provided by
mechanisms at a higher layer.

Unreliable Unicast Protocols. Among the systems we
studied, both SLP and UPnP use an unreliable unicast protocol.
SLP uses unicast UDP to transmit SrvRqst messages, used for
queries, and to transmit SrvReg messages for registrations and
registration renewals. To improve reliability, SLP employs two
additional procedures. First, SLP issues redundant SrvRqst
messages; each request is sent four times within a 15 s interval.
Second, SLP requires a waiting period (we used 15 s) to listen for
a corresponding SrvRply. If no SrvRply is received within
that time, then the message transmission is abandoned and a
remote exception (REX) is declared so that a higher layer entity
can decide upon an appropriate recovery action. Our SLP models
incorporate this behavior.

UPnP uses unicast UDP to send responses to Msearch
queries. To improve the reliability of these responses, UPnP
requires that each UDP message be sent multiple (n) times. In our
model, we set n=2.

Reliable Unicast Protocols. Reliable unicast protocols
include mechanisms that attempt to ensure message delivery by
detecting and re-transmitting lost messages. Of course, the
reliability schemes may eventually give up if too many
retransmissions are needed (which might indicate node or
interface failure). In such cases, the reliable unicast protocol will
signal to a higher layer that a message was (probably) not
delivered. For example, Jini uses Remote Method Invocation
(RMI) over TCP to invoke a method on a remote object, and to
receive a response and UPnP uses TCP to submit HTTP requests
and receive HTTP responses. Either the RMI layer (in Jini) or the
TCP layer (in UPnP) can signal a remote exception (REX).

Our model unifies reliable unicast protocols into one set of
procedures that simulate TCP in two phases: connection
establishment and data transfer. The connection establishment
phase consists of exchanging connection request and response
messages. Both connection requests and responses may involve
multiple retries before a connection is established. We simulate
connection request retries with delays of 6 s, 24 s, and 24 s, before
signaling the connection requester with a REX 24 s after the final
retry (78 s after the initial request).

Successful connection establishment initiates a data-
transfer phase, where the connection requester sends a data
request and may await a data response. The data request and
response may be subject to retransmissions. We compute a
retransmission timeout (RTO) that is roughly the round-trip time,
or RTT. We increase the RTO by 25% with each successive
retransmission. Retries in the data-transfer phase continue until a
time threshold (60 s) is reached, after which the transmission
attempt is abandoned. Failure of a data request causes a REX to
be issued to the requester. Failure of a data response causes a
REX to be issued to both the requester and responder. The
requester cannot determine whether a REX was caused by failure
to transmit the request or by failure to receive a response. The
responder has more information, as it does not receive a REX
when an inbound request fails, but does receive a REX when its

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Quirolgico 183

outbound response fails. In essence, while reliable unicast
protocols attempt to deliver messages in the face of various
communication failures, ultimately the reliability mechanisms
might prove insufficient, causing a higher-layer process to be
notified of the failure. In such cases, the higher-layer process is
free to determine an appropriate recovery strategy.

4.2.2 Recovery by Discovery Protocols. Components in a
discovery system may also learn of failure by listening for
recurring messages sent by remote components, much as a
heartbeat is monitored to assess patient health. For example,
UPnP SMs periodically multicast lazy announcements advertising
SDs. Similarly, Jini and SLP SMs periodically refresh SD
registrations on SCMs by sending unicast messages, and then
listening for responses. Both lazy announcements and registration
refresh messages convey soft state (or information) — in this case,
the SD, which a receiver can cache for a period consistent with
the associated TTL. When subsequent heartbeat messages fail to
arrive within the TTL, a listener may assume failure of the SM
and thus discard cached information about its related SD,
effectively eliminating knowledge about existence of the related
service.

Our models use a form of soft state that allows SDs for
failed components to be discarded and then to be either
rediscovered or replaced. For example in our two-party model,
once a UPnP SU discards knowledge of a SM and any associated
SDs, the SU commences periodic multicast (Msearch) queries to

search for a new instance of the service. Once the SU regains a
SD meeting its requirements, the related queries cease. SLP
employs an analogous procedure when operating in two-party
mode.

The process is more complicated in three-party situations.
Here, failure of refresh messages causes SCMs to discard a
service registration. A SU may monitor the status of the SD by
periodically polling the SCM. When poll responses indicate the
SD is no longer present on the SCM, the SU may then discard its
cached copy of the SD. In Jini, SUs may also register with the
SCM to be notified when the SCM discards the SD. When
receiving such notification, a SU discards its cached copy of the
SD and then attempts to find a replacement by querying the SCM
for another SD that satisfies its requirements. Meanwhile, a SM
for a SD discarded by the SCM might recover after failures are
repaired. The SM may rediscover the SCM through aggressive or
lazy discovery, and then reregister the lost SD. The SU, if it has
not found a replacement, can then receive the original SD by
querying the SCM (Jini and SLP) or through notification (Jini).

Table 2 summarizes the way in which we model heartbeat
and soft state for each of our models. The table indicates values
we adopted across all experiments (except as otherwise indicated
in the table and discussed in Section 6). Though SCM discoveries
could also be retained by SMs and SUs on a soft-state basis, the
discovery systems we studied use an application-level technique
to detect SCM failures.

No recoveryNo recoveryNo recoveryMulticast
UDP

SU and SM purge SCM after
period of continuous REX
(varied by experiment).

SM: depositing or refreshing SD
on SCM retry; SU: registering
and refreshing notification
requests on SCM retry (120 s)

SU: FindService Poll
SCM: Notification

SU and SM issue seven probes
(at 5 s intervals) only during
startup; SCM issues lazy
announcements at interval (120
s).

SM registers SDs for TTL
varied by experiment; SU
registers notifications for TTL
varied by experiment.

Issue REX in 78 s

Not Applicable

Three-Party
Architecture (Jini)

Three-party mode: SU and SM
purge SCM after
period of continuous REX
Two-party mode: SU purge SM
after period of continuous REX
(varied by experiment).

SU:SrvRqst after discovery
retry (180 s with < 3 retries);
SM (three-party mode)
depositing or refreshing SD on
SCM retry (120 s)

SU: SrvRqst Poll
(Notification unsupported)

SU and SM issue 6 probes
within 15 s duration during
startup and at 900 s interval;
SCM sends lazy
announcements at 120 s
interval (SLP recommends
10800 s).

SM (in two-party mode only)
sends lazy announcements at
120 s interval (recommended
10800 s by SLP); SM registers
SDs for TTL varied by
experiment.

Not Applicable

Redundant transmission n = 4
No recovery

Adaptive
Architecture (SLP)

Two-Party
Architecture (UPnP)

Recovery
Mechanism

Responsible
Party

SU purges SD after failure to
receive SM announcement
within TTL or after 3 retries of
HTTP GetDiscard

Knowledge

SU: HTTP Get after discovery
retry (180 s with < 3 retries);
Registration request and
refresh retry (120 s)

Retry after
REX

SU: HTTP Get Poll
SM: Notification

Ignore REX

Application

SU issues aggressive probe
(UPnP Msearch) at interval
after purging SD (set to 120 s).Soft-State

Recovery

SM sends n (3+2d+k) lazy
announcements of SDs at
interval varied by experiment.
SU caches SD for TTL varied
by experiment. (recommended
1800 s for announcement
interval and TTL by UPnP)

Heartbeat

Discovery
Protocols

Issue REX in 78 sTCP

Redundant transmission n = 2
No recovery

Unicast UDP
Transport
Protocols

No recoveryNo recoveryNo recoveryMulticast
UDP

SU and SM purge SCM after
period of continuous REX
(varied by experiment).

SM: depositing or refreshing SD
on SCM retry; SU: registering
and refreshing notification
requests on SCM retry (120 s)

SU: FindService Poll
SCM: Notification

SU and SM issue seven probes
(at 5 s intervals) only during
startup; SCM issues lazy
announcements at interval (120
s).

SM registers SDs for TTL
varied by experiment; SU
registers notifications for TTL
varied by experiment.

Issue REX in 78 s

Not Applicable

Three-Party
Architecture (Jini)

Three-party mode: SU and SM
purge SCM after
period of continuous REX
Two-party mode: SU purge SM
after period of continuous REX
(varied by experiment).

SU:SrvRqst after discovery
retry (180 s with < 3 retries);
SM (three-party mode)
depositing or refreshing SD on
SCM retry (120 s)

SU: SrvRqst Poll
(Notification unsupported)

SU and SM issue 6 probes
within 15 s duration during
startup and at 900 s interval;
SCM sends lazy
announcements at 120 s
interval (SLP recommends
10800 s).

SM (in two-party mode only)
sends lazy announcements at
120 s interval (recommended
10800 s by SLP); SM registers
SDs for TTL varied by
experiment.

Not Applicable

Redundant transmission n = 4
No recovery

Adaptive
Architecture (SLP)

Two-Party
Architecture (UPnP)

Recovery
Mechanism

Responsible
Party

SU purges SD after failure to
receive SM announcement
within TTL or after 3 retries of
HTTP GetDiscard

Knowledge

SU: HTTP Get after discovery
retry (180 s with < 3 retries);
Registration request and
refresh retry (120 s)

Retry after
REX

SU: HTTP Get Poll
SM: Notification

Ignore REX

Application

SU issues aggressive probe
(UPnP Msearch) at interval
after purging SD (set to 120 s).Soft-State

Recovery

SM sends n (3+2d+k) lazy
announcements of SDs at
interval varied by experiment.
SU caches SD for TTL varied
by experiment. (recommended
1800 s for announcement
interval and TTL by UPnP)

Heartbeat

Discovery
Protocols

Issue REX in 78 sTCP

Redundant transmission n = 2
No recovery

Unicast UDP
Transport
Protocols

Table 2. Summary of Recovery Mechanisms and Key Parameters.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Quirolgico 184

4.2.3 Recovery by Applications. When failure detection
leads to a REX, discovery systems generally expect application
software to initiate recovery, guided by an application-level retry
policy. In our models, depending on the situation, we implement
three different policies: (1) ignore the REX, (2) retry the operation
for some period, and (3) discard knowledge. The discard strategy,
employed following repeated failure of the retry strategy, relies
upon discovery mechanisms to recover from failures that are more
persistent. These strategies (discussed below) are summarized in
Table 2.

Ignoring the Remote Exception. In general, our models
ignore any REX received when responding to a request, relying
on the requester to retry. A SU can ignore a REX received when
issuing a poll (e.g., FindService, SrvRqst, or HTTP GET)
because the poll recurs at an interval. A Jini SCM (three-party
model) or UPnP SM (two-party model) also ignores a REX
received while attempting to issue a notification. This behavior,
which is described in both the Jini and UPnP specifications,
depends upon TCP to provide reliability for notifications.
Notifications include sequence numbers that allow a receiving
node to determine whether or not previous notifications were
missed.

Retrying the Operation. In our models, we retry selected
operations in the face of a REX. The UPnP specification separates
the operation of discovering a service from obtaining a description
of the service (Jini combines these operations). Without a
description, a service cannot be used. For this reason, in the UPnP
model, a SU must issue a HTTP GET to obtain a description. If no
description arrives within 180 s, then our model retries the HTTP
GET. If unsuccessful after three attempts, the SU purges the
related SD and discards knowledge of the SM. Our three-party
models, based on Jini and SLP, also contain a retry strategy, but
associated with attempts to register or change a SD with a SCM.
In these cases, the SM retries a ChangeService or
ServiceRegistration 120 s after receiving a REX.
Similarly, when a SU receives a REX (from either a SM or SCM)
in response to a request to register for notification, the SU retries
the registration in 120 s. These retries recur up to some time
bound, after which the SM discards knowledge of the SCM.

Discarding Knowledge. Both the two-party and three-party
models include the possibility that an application can discard
knowledge of previously discovered nodes. After discarding
knowledge of a SM or SCM, all operations involving that node
cease until it is rediscovered, either through lazy or aggressive
discovery.

In our UPnP model, SUs discard a SM (and any related
SDs) after failure to receive announcements from a SM within a
TTL or after three unsuccessful retries of a HTTP GET. In our
SLP model (two-party mode), SUs do not discard SMs after
failure to receive announcements. We took this decision because
the SLP specification does not require SUs to discard a SM when
missing a heartbeat.

In our three-party model (based on Jini), a SM or SU
deletes a SCM after a period (varied by experiment) of receiving
only REXs when attempting to communicate with a SCM. We
adopt this behavior because the Jini specification states that a
discovering entity may discard a SCM with which it cannot
communicate. While the SLP specification is silent on these
issues, we implemented our SLP model (in both two-party and
three-party modes) so that SUs discard SMs after a period (varied
by experiment) of continuous REXs. We took this decision to
align this behavior among all our models.

5. EXPERIMENT METHODOLOGY

We adopted a common approach to modeling, to experiment
design, and to metrics for analysis. Aspects of the approach seem
suited to investigation of failure response in other classes of
distributed systems. Below, we discuss our approach.

Model Construction. We created simulation models for the
three architectures we found. Executable models enabled us to
understand collective behavior among distributed components.
We based the structure and behavior of our models (recall Section
3) on specifications for UPnP [3] (two-party architecture), Jini [2]
(three-party architecture), and SLP [4] (adaptive architecture).
Each model comprises a set of components (and relationships
among them), interactions (as messages received by components),
behavior (as actions taken in response to messages, including
generating new messages), and variables (to represent internal
state of components). Components communicate via a simulated
transport service that represents multicast UDP and unicast UDP
and TCP (as explained in Section 4.2.1). The transport service can
be impeded by simulated message loss and interface failures. We
used Rapide [43], an architecture description language and
accompanying toolset developed at Stanford University, to
implement models of Jini and UPnP; for SLP we used SLX, a
simulation system developed by Wolverine Software [44]. We
chose to use two different simulation systems in order to establish
the generality of our approach. We note that the Rapide system
automatically records causal event traces and provides tools to
visual and analyze those traces.

Experiment Design. With simulation models in hand, we
designed experiments to investigate failure response for selected
configurations of components, where each configuration
represents a distinct combination of architecture (two-party, three-
party, or adaptive), number of deployed SCMs, and choice of
behaviors for discovery, consistency maintenance, and recovery.
We approached experiment design by focusing on the types of
failures (recall Section 4.1) that might interfere with system
operation. We decided to consider four failure types: (1) power
failure and restart, (2) node failures, (3) interface failures, and (4)
message loss. For each failure type, we constructed an
application-level scenario to exercise simulated topologies. Our
scenarios include: (1) recovering a previously discovered
configuration (on restart after power failure), (2) maintaining
operational capability in a distributed real-time control application
(impeded by failure of nodes hosting needed components), and (3)
maintaining consistency of distributed information (when
communication is impeded by interface failures or message
losses). For these scenarios, we simulated various configurations
of our models with parameters selected to ensure that observed
performance differences resulted only from differences in system
architecture and protocol. For three scenarios (node failures,
interface failures, and message loss), we subjected each
configuration to increasing failure rates, while measuring system
response. To focus on fundamental differences in the designs for
discovery systems, we excluded a number of possible application-
level choices, such as local caching of service descriptions and
varying subscription lengths.

Metrics. To compare failure response among simulated
configurations, we defined metrics specific to each scenario.
Broadly these metrics fall into three categories: (1) effectiveness,
which is the ability of a distributed system to exhibit a desired
state, expressed as a probability that the state is reached or a

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Quirolgico 185

proportion of time a system is in the desired state; (2)
responsiveness, which is the time taken, or latency, to reach the
desired state; and (3) efficiency, which is the amount of effort,
measured by the number of messages, required for a distributed
system to complete a scenario. For most combinations of
configuration and scenario, we conducted repeated simulations
and then we plotted (on the y-axis) performance on a metric
against increasing failure rate (on the x-axis). The graphs also
include a table that summarizes performance by averaging a
metric across all failure rates; this summarization of the plotted
curves gives a quick comparison of relative performance. An
exception to this general approach to measurement occurs for the
scenario related to restart after power failure, where there is no
increasing failure rate. In this case, we simply provide the average
and variance of the latency before a configuration is restored. In
selected cases, we analyzed event traces to understand how
differences in architecture, topology, and behavior contribute to
differences in performance.

6. EXPERIMENTS AND RESULTS

In this section, we describe our scenarios and exhibit results. For
each scenario, we describe the related experiment, delineate the
failure model and recovery parameters, define the metrics, display
the results and discuss underlying causes. We begin in Section 6.1
with the power-failure-and-restart scenario and then consider in
Section 6.2 the distributed real-time control scenario impeded by
node failures. Subsequently (in Section 6.3), we discuss the
consistency maintenance scenario impeded by communication
failures of two types: interface failures and message losses.

6.1 Recovery After Power Failure

In this experiment, a distributed system establishes an initial
configuration in which pairs of SUs and SMs rendezvous, so that
each SU obtains one required service. Subsequently, a power
failure causes all nodes to crash. Upon power restoration, each SU
attempts to rediscover the previously acquired service. This
experiment measures the latency until the initial configuration is
restored.

6.1.1 Experiment Description. This experiment compares
several system designs: a two-party model (based on UPnP), a
three-party model (based on Jini), and an adaptive model (based
on SLP). In the two-party case, the topology (recall Figure 1)
consists of six nodes: three SUs and three SMs. We partition the
nodes into three SU-SM pairs that attempt to rendezvous. In the
three-party cases (Jini and SLP), the topology (recall Figure 2)
adds three SCMs for a total of nine nodes; however, we use
logical partitioning (Jini groups and SLP scopes) so the each SU-
SM pair must discover each other through a different SCM; so
that a previously discovered configuration may not be
rediscovered until all nodes have restarted. We allow all SU-SM
pairs to rendezvous, which establishes an initial configuration, and
then we simulate a power failure lasting 40 s. We restore power
and wait for SUs to rendezvous with the previously discovered
SMs. Once the initial configuration is restored the scenario ends.

Each model includes parameters set to the values indicated
in Table 3. The first three rows in Table 3 show parameters
unique to specific discovery systems. These parameters include
the pattern for aggressive-discovery probes and the interval for
lazy-discovery announcements. Jini and UPnP allow SUs to
register for notifications; we assume such registrations are lost on

node failure. SLP does not allow notifications and thus requires
SUs to poll SCMs to discover services. We instantiated the
adaptive architecture with two different polling intervals: 31 s as
recommended for SLP and 5 s in order to gain early acquisition of
services. The fourth row of Table 3 shows parameters for which
we selected common values across all models. In particular, note
that each node has a restart delay, which in most cases is not
defined in discovery specifications. Since the specification for Jini
recommends a random delay distributed uniformly between 2 s
and 15 s before commencing discovery operations, we decided to
assign this same strategy to all of our models in order to eliminate
this as a source of difference. The final row of Table 3 lists
common transmission and processing delays that we used for each
model.

6.1.2 Metrics. We defined two metrics to compare system
performance: restoration latency and efficiency. Restoration
latency measures the elapsed time from restoration of power until
the initial configuration is reestablished. Since restoration latency
depends upon the starting time of the last system component, we
defined restart delay to measure the elapsed time from restoration
of power until the final system component restarts. We defined
efficiency as the total number of messages during restoration
latency.

120 sAnnounce Interval

120 sAnnounce Interval

Purge on SM FailureNotification Requests

30 sRegistration TTL
Common Protocol
Parameters

100 sTotal Registration Duration

2 s – 15 s uniformNode Restart Delay

SLP Protocol
Parameters

4 Probes in 15 sProbe Pattern

Not ApplicableNotification Requests

5 s or 31 sPolling Interval

Jini Protocol
Parameters

7 Probes 5 s apartProbe Pattern

Purge on SCM FailureNotification Requests

Not ApplicablePolling Interval

None used in experimentProbe Pattern

1800 sAnnounce IntervalUPnP Protocol
Parameters

10 us (discovery DBs)
100 us (SCM cache)

Per Item Processing

10 us – 100 us uniformProcessing Load Delay

1 us – 10 us uniformTransmission Delay
Delays Used in
For All Models

Not ApplicablePolling Interval

ValueParameterParameter Class

120 sAnnounce Interval

120 sAnnounce Interval

Purge on SM FailureNotification Requests

30 sRegistration TTL
Common Protocol
Parameters

100 sTotal Registration Duration

2 s – 15 s uniformNode Restart Delay

SLP Protocol
Parameters

4 Probes in 15 sProbe Pattern

Not ApplicableNotification Requests

5 s or 31 sPolling Interval

Jini Protocol
Parameters

7 Probes 5 s apartProbe Pattern

Purge on SCM FailureNotification Requests

Not ApplicablePolling Interval

None used in experimentProbe Pattern

1800 sAnnounce IntervalUPnP Protocol
Parameters

10 us (discovery DBs)
100 us (SCM cache)

Per Item Processing

10 us – 100 us uniformProcessing Load Delay

1 us – 10 us uniformTransmission Delay
Delays Used in
For All Models

Not ApplicablePolling Interval

ValueParameterParameter Class

Table 4. Results For Power Failure and Restart Experiment.

1005765.1334.681.2213.23
Adaptive
(31 s polling interval)

77554.2516.21.5713.13
Adaptive
(5 s polling interval)

90703.3114.762.0912.56Three-Party
67492.9715.042.9713.07Two-Party

MaximumMinimumVarianceMeanVarianceMean

Efficiency
(number of messages)

Restoration Latency
(seconds)

Restart Delay
(seconds)Model Variant

1005765.1334.681.2213.23
Adaptive
(31 s polling interval)

77554.2516.21.5713.13
Adaptive
(5 s polling interval)

90703.3114.762.0912.56Three-Party
67492.9715.042.9713.07Two-Party

MaximumMinimumVarianceMeanVarianceMean

Efficiency
(number of messages)

Restoration Latency
(seconds)

Restart Delay
(seconds)Model Variant

Table 3. Parameters For Power Failure and Restart Experiment.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Quirolgico 186

6.1.3 Results. Table 4 presents results, measured over 30
repetitions, for four different configurations. The metrics reveal
that for most configurations, restart delay is the dominant
component of restoration latency; the previous configuration is
restored within about 2 s after all nodes have restarted. An
exception arises when we configure the adaptive architecture with
a 31 s polling interval. Here, the polling interval is the dominant
component of restoration latency. This occurs in cases where a
related SCM and SU both restart before the SM. Here the SU
discovers and queries the SCM for services before the SM can
find the SCM and register its service. In this situation, the SU
must wait for the 31 s polling interval to elapse for issuing a
second, successful query. Reducing the polling interval to 5 s
brings restoration latency closer to that exhibited by the other
architectures.

Regarding efficiency, Table 4 shows that architectures with
more components exchange more messages during a restoration
scenario, but those architectures with the same number of
components tend to exchange more messages when the scenario
takes longer to complete. The three-party architecture proves
slightly less efficient than the adaptive architecture because Jini
incurs messages related to registration, which SLP does not
support.

One final point to note is the slightly better restoration
latency of the three-party, as compared with two-party,
architecture. This occurs because Jini delivers a service
description in one step, concomitant with discovery, while UPnP
requires a three-step process: discover the service, get the first
part of the service description, and then get the second part of the
service description. Should transmission delays increase, this
factor would cause even greater difference in restoration latency.

6.2 Service Acquisition and Maintenance Impeded by Node
Failures

 In this experiment, we investigate effectiveness and efficiency of
service discovery systems in detecting component failure and
locating replacements. We model a client for a distributed real-
time control application that must discover two types of sensor
and an actuator, then monitor sensor readings and control a
process. The client has access to a population of sensors and
actuators, each running on separate nodes that we allow to fail.
The client, sensors, and actuators are supported by a discovery
system, represented by configurations of the three architectural
variants in our models: two-party (UPnP), three-party (Jini), and

adaptive (SLP). Where applicable, the experiment topology may
include one or more SCMs, which we also allow to fail. We
compare configurations using functional effectiveness, measured
as the proportion of time that the client possesses an operational
set of sensors and actuators required to control the process. We
also compare efficiency among configurations by the number of
messages exchanged.

6.2.1 Experiment Description. Our experiment models a
topology that includes one (client) SU and 12 SMs, composed of
four instances each of three service types: “fast” sensor, “slow”
sensor, and actuator. Figure 3 illustrates such a topology
configured as a two-party architecture and Figure 4 shows the
same topology configured as a three-party architecture (including
one to three SCMs). We compare the performance of eight
different configurations, enumerated in Table 5. Here, one
configuration (A0) uses a two-party (UPnP) architecture and one
(C0) uses an adaptive (SLP) architecture limited to two-party
mode, three configurations (B1, B2, and B3) use a three-party
(Jini) architecture, and three configurations (C1, C2, and C3) use
an adaptive, three-party (SLP) architecture.

Figure 3. Two-party service discovery system with one service
user and 12 service managers.

HTTP/TCP and HTTP/UDP

UPnP Multicast Group

Unicast Links

Fast
Sensor

SM

Fast
Sensor

SM

Slow
Sensor

SM

Slow
Sensor

SM

Actuator
SM

Actuator
SM

Service
User

Slow
Sensor

SM

Slow
Sensor

SM

Service
User

Service Cache
Manager
(SCM)

Aggressive Discovery Multicast Group

Lazy Discovery Multicast Group

Actuator
SM

Actuator
SM

Fast
Sensor

SM

Fast
Sensor

SM

Unicast Links

Remote Method
Invocation

Optional SCMs

Figure 4. Three-party service discovery system with one
service user, 12 service managers, and up to three service
cache managers.

Table 5. Eight Configurations Compared in Node-Failure
Experiment.

Three

Two

One

None

Three

Two

One

None

SCMs

C3
C2
C1

B3
B2

C0

B1

A0

Configuration

SLP

Jini

UPnP

Behavior

Three-Party

Adaptive

Two-Party

Architecture

Three

Two

One

None

Three

Two

One

None

SCMs

C3
C2
C1

B3
B2

C0

B1

A0

Configuration

SLP

Jini

UPnP

Behavior

Three-Party

Adaptive

Two-Party

Architecture

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Quirolgico 187

To establish initial conditions, we exercise each
configuration until discovery completes and the SU acquires one
service of each of the three service types. We then fail nodes
according to the failure model described below. In order to focus
exclusively on failure detection and recovery processes, we do not
allow the SU to cache backup services, so at any time the SU
holds at most one SD for each service type. After activation, a
“fast” sensor transmits a reading every two seconds and a “slow”
sensor transmits a reading every 30 seconds. The SU invokes the
actuator after receiving an appropriate combination of readings
from a “fast” and “slow” sensor. We select actuation times
randomly from a uniform distribution with a mean of 60 s,
provided the SU receives the required sensor readings. When the
SU holds one SD for a service of each type (“fast” sensor, “slow”
sensor, and actuator) and when each of those services is
operational, then the application is considered functional. If the
SU lacks SDs for one or more service type or if one or more of the
SDs held by the SU describes a service instance that is not
operational, then the application is considered non-functional.
When non-functional, the SU client must first detect what services
have failed and then initiate recovery procedures to discover
replacements. During each experiment repetition, we accumulate
the periods when the client is non-functional as well as the time
required for failure detection and recovery. We also record
message counts of the underlying service discovery system for the
experiment duration.

6.2.2 Failure Model. During the experiment duration DT ,
each SM node (and SCM node in three-party configurations) fails
randomly and independently, although at least one service of each
type always remains active so that the application could become
functional. We let λ be the node failure rate that varies from 0%
to 80% in 10% increments (though no failures occur when

0=λ). The mean time to node failure is DMF Tt ⋅−=)1(λ .

Node failure times are randomly chosen from a “stepped” normal
distribution with three steps: a 0.15 probability of failure before

MFMF tt 2.0− , a 0.7 probability of failure between MFMF tt 2.0−

and MFMF tt 2.0+ , and a 0.15 probability of failure between

MFMF tt 2.0+ and MFt2 . Failure times are distributed uniformly
within each step. When a node fails, affected services become
unavailable for a time, selected from three failure duration classes,
each with a different probability and duration. Short failures occur
with a probability of 0.1 for a fixed (135 s) duration; intermediate
failures occur with a probability of 0.7 for a duration selected

uniformly on the interval []300,180 s, long failures occur with a

probability of 0.2 selected uniformly on the interval []600,480 s.
6.2.3 Failure Recovery Techniques. Table 6 gives common

and configuration-specific parameters for failure recovery
techniques we used in this experiment. We chose parameters that
enable the SU to respond quickly to failure of remote services and
to find replacements as soon as possible. We describe the
recovery techniques employed in our model: first at the discovery
level and then at the application level.

Discovery-Level Recovery. For the two-party (UPnP)
architecture, we use a heartbeat and soft-state strategy, choosing a
TTL of 600 s for refreshing cached SDs. If not refreshed within
the TTL, the SU purges the SD and commences periodic (120 s)
Msearch queries to find a replacement service. When we model
SLP in two-party mode, the SU both listens for lazy
announcements (120 s) from SMs and periodically issues
multicast queries for SMs (900 s) to find replacements. In three-
party configurations (both Jini and SLP), we model heartbeat
monitoring through registration refreshes, choosing a refresh
interval of 30 s for slow sensors and actuators and 300 s for fast
sensors. If refreshes are missed, the SCM purges the SD. In the

120 sMulticast query intervalBehavior for two-party
SLP configuration B0

Immediately after missed sensor
reading and after failing to receive an

actuation response within 20 s
SU purges SD

180 sSU-SCM query interval

At TTL expiration (600 s)SU purges SD

Discovery-Level
Recovery

120 sMsearch query interval

Application-Level
Recovery

20 s after failure to receive response to
requestSM or SU purges SCM

2 s for fast sensors
30 s for slow sensors

Sensor interval

All configurations

Immediately after learning SD is
unavailableSU purges SD

Immediately after a missed refreshSCM purges SD

30 s for slow sensors and actuators
300 s for fast sensorsRefresh interval

Behavior for three-party
Jini and SLP

configurations
B1, B2, B3, C1, C2, C3

600 s (lowered from recommended
value)Announce interval

Behavior for two-party
UPnP configuration A0

ValueParameterConfiguration

120 sMulticast query intervalBehavior for two-party
SLP configuration B0

Immediately after missed sensor
reading and after failing to receive an

actuation response within 20 s
SU purges SD

180 sSU-SCM query interval

At TTL expiration (600 s)SU purges SD

Discovery-Level
Recovery

120 sMsearch query interval

Application-Level
Recovery

20 s after failure to receive response to
requestSM or SU purges SCM

2 s for fast sensors
30 s for slow sensors

Sensor interval

All configurations

Immediately after learning SD is
unavailableSU purges SD

Immediately after a missed refreshSCM purges SD

30 s for slow sensors and actuators
300 s for fast sensorsRefresh interval

Behavior for three-party
Jini and SLP

configurations
B1, B2, B3, C1, C2, C3

600 s (lowered from recommended
value)Announce interval

Behavior for two-party
UPnP configuration A0

ValueParameterConfiguration

Table 6. Recovery Parameters for Node-Failure Experiment.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Quirolgico 188

three-party architecture, a SU that discovers a SD through a SCM
polls that SCM every 180 s to learn if the SD has been purged; if
so, the SU assumes failure of the related service and also purges
the SD. In both three-party and adaptive architectures, SUs and
SMs search for SCMs by listening for lazy announcements (120
s).

Application-Level Recovery. Across all models, we adopt
an identical application-level recovery policy: upon failure to
receive a scheduled sensor reading (every 2 s for fast sensors and
30 s for slow sensors) the SU immediately purges the related SD
and commences search for a replacement. Similarly, failure to
receive a response to an actuation attempt within 20 s causes the
SU to purge the related SD and to commence search. A similar
policy applies to detecting failed SCMs. If a SM does not receive
a response when attempting to refresh a service registration, the
SM assumes that the SCM has failed and begins searching for a
replacement. Similarly, if a SU does not receive a response to a
SCM query, the SU purges the SCM and begins to search.

6.2.4 Metrics. We define NFT as accumulated time during
which a client application is in a non-functional state. We

compute the proportion of DT that a client application is in a
functional state, or the client’s functional effectiveness, by the

ratio () DNFD TTTF /−= . We compute the average functional
effectiveness of a configuration at a particular failure rate λ for n
experiment repetitions as

()
n

TTT
F

n

i i
D

i
NF

i
D∑ −

= =1

/
λ

We measure NFT as follows. As indicated, a client that has become
non-functional first incurs a delay before detecting the failure. We
call this delay detection latency. After detecting a non-functional
state, the client may incur some delay while restoring required
services. We call this delay recovery latency. Detection latency
commences when a SM fails but the SU holds a SD provided by
the SM. Once the SU discards the SD, or the SM recovers,
detection latency ends. Recovery latency begins after the SU
purges a SD for a failed service and commences search. Recovery
latency ends when the SU finds a SD matching its needs. During
periods when a client incurs either detection or recovery latency
or both (the states can overlap), the client is non-functional, and

we accumulate such periods in NFT .
6.2.5 Results. For each of the eight configurations in Table

5, we set s1800=DT and executed 60 repetitions for each

failure rate λ . Figure 5 shows average functional effectiveness

λF for each configuration as λ increases. Figure 5 also includes

a table that shows the summary statistic 800 −F , which is λF
averaged across all values of λ for each configuration. The
results show that six of the eight configurations have similar

curves for λF and a 800 −F of over 0.9. The three-party
configuration with one SCM (B1) and two SCMs (B2) perform
less well, because as λ rises, the incidence of failure of the single
SCM in B1 and concurrent failure of both SCMs in B2 increases.
With no SCM to query for services, the SU remains non-
functional. Adding a third SCM (B3) reduces the probability of

concurrent SCM failure sufficiently to raise 800 −F to a level

comparable with other configurations. The adaptive architecture

achieves a comparable 800 −F even with two or fewer SCMs,
because when no SCMs can be found, the SU immediately
switches to two-party mode to discover the available SMs. In the
discussion below, we provide more detail on the effectiveness of
these configurations by considering their comparative detection
and recovery latencies.

As revealed in Figure 6, efficiency varies markedly among

As revealed in Figure 6, efficiency varies markedly among
the configurations. The two-party configurations A0 and C0 are
notably more efficient than any three-party configuration. This
occurs in part because more messages are needed for SUs and
SMs to rendezvous through SCMs. These messages include
heartbeats by the SCMs, registration and refresh of SDs by SMs,
and polls of SCMs by the SU. In the three-party and adaptive
architectures, differences in protocol also influenced efficiency.
For equivalent configurations, the three-party architecture (B1,
B2, and B3) proves more efficient than the adaptive architecture
(C1, C2, and C3). This occurs, because in the former, Jini SCMs
send lazy announcements at 120 s intervals, while Jini SUs and
SMs employ aggressive search only at start-up. However, in the
adaptive architecture, both SLP SCMs and SMs announce every
120 s, while SUs and SMs repeat a six-probe aggressive search
sequence at regular intervals (900 s). We believe that with
equivalent underlying behaviors, adaptive and three-party
architectures would exhibit similar efficiency when configured
with an equal number of SCMs.

One additional point is worth noting. In the two-party
configurations (A0 and C0), the message-count curves have
increasing slope as λ increases, because the SU must search
more frequently for replacement services. Note, however, that
three-party configurations have message-count curves with
decreasing slope as λ increases. The rate of message exchange
decreases because SCMs fail more frequently and remain down
for longer periods as λ rises, thus reducing the number of
opportunities for SD refresh messages and SCM heartbeats.

0.4

0.6

0.8

1

0 20 40 60 80
Failure Rate λ (%)

A
ve

ra
ge

 F
un

ct
io

na
l E

ffe
ct

iv
en

es
s

C0 C3
B3 C2
C1 A0

B2

B1

0.915C2

C3

C1

C0

B3

B2

B1

A0

Configuration

0.916

0.872

0.804

0.913

0.921

0.918

0.911

0.915C2

C3

C1

C0

B3

B2

B1

A0

Configuration

0.916

0.872

0.804

0.913

0.921

0.918

0.911

800−F

Figure 5. Comparing average functional effectiveness λF for
different configurations in response to increasing rate of node
failures, where at least one SM of each type is operational (60
repetitions per data point). The table gives the 800−F , or
functional effectiveness averaged across all values of λ for
each configuration.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Quirolgico 189

6.2.6 Discussion. While three-party configurations with
three SCMs (B3 and C3) yield comparable functional
effectiveness to two-party configurations (A0 and C0), our
experiment reveals quite different underlying causes. Figures 7(a)-

(c) display similar non-functional time (NFT) under increasing
failure rate for configurations A0, B3, and C3. The figures also

decompose NFT into the proportions attributable to detection
latency and recovery latency. In the two-party configuration,

reported in Figure 7(a), about 90 % of NFT accrues while waiting
to detect a failure; recovery occurs quickly. Analysis of execution
traces showed most failures were detected through missed sensor
readings or REXs received in response to failed actuations. In the
three-party configuration, shown in Figure 7(b), the situation is

different. Here, the largest component of NFT is recovery latency.
Execution traces for the three-party architecture show incidence of
concurrent failure of all SCMs rising steadily with increasing λ .
With no SCMs available, the SU is unable to find replacements
for failed services until a SCM (1) recovers, (2) is discovered by
the SU and SMs, (3) accepts registrations from available SMs, and
(4) responds to queries from the SU. These factors dramatically

increased the proportion of NFT attributable to recovery latency.
This trend is more marked with fewer SCMs (not shown here). In
the adaptive configuration, as displayed in Figure 7(c), over 90 %

of NFT is again detection latency. Here, upon detecting failure, the
SU switches to two-party mode when no SCMs can be found;
thus, avoiding the delay incurred in waiting for a SCM to recover.
Hence, the detection and recovery behavior of the adaptive
configuration appears quite similar to the two-party configuration,
which is also reflected in the similarity of Figures 7(a) and 7(c).

6.3 Consistency Maintenance Impeded by Communication

Failures

In this experiment, we investigate effectiveness and efficiency of
service discovery systems in maintaining consistency of
information replicated throughout a distributed system. We model

five clients (SUs) that each discover the same service manager
(SM) and obtain a copy of the service description (SD) managed
by the SM. Subsequently, the SM updates its local copy of the
SD, creating an inconsistency with the SDs replicated to the SUs.
We measure the probability that each SD will receive an updated
copy of the SD prior to a deadline, the latency incurred in
receiving the updated SD, and the number of messages exchanged
to convey the update. We consider effects from two types of
communication failure, interface failures and message losses,
which could impede dissemination of the updated SD. We also
compare two alternate consistency maintenance mechanisms:
polling (recall Section 3.3.1) and notification (recall Section
3.3.2), which are supported by selected discovery systems.

0

10
00

20
00

30
00

40
00

0 20 40 60 80

Failure Rate λ (%)

M
es

sa
ge

 C
ou

nt
s

C3
B3

C2
B2

C1
B1

A0
C0

Figure 6. Comparing message counts for different
configurations in response to increasing rate of node
failures where at least one SM of each type is
operational (60 repetitions per data point).

 (a) Decomposition of Nonfunctional Time into Detection and
Recovery Latency for Configuration A0.

(b) Decomposition of Nonfunctional Time into Detection and
Recovery Latency for Configuration B3.

(c) Decomposition of Nonfunctional Time into Detection and
Recovery Latency for Configuration B3.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
Failure Rate (%)

Pr
op

or
tio

n
of

 L
at

en
ci

es

NONFUNCTIONAL
TIME

DETECTION LATENCY

RECOVERY LATENCY

CONFIGURATION C3

NONFUNCTIONAL
TIME

DETECTION LATENCY

RECOVERY LATENCY

CONFIGURATION B3

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
Failure Rate (%)

Pr
op

or
tio

n
of

 L
at

en
ci

es

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
Failure Rate (%)

Pr
op

or
tio

n
of

 L
at

en
ci

es

DETECTION LATENCY

RECOVERY LATENCY

NONFUNCTIONAL
TIME

DETECTION LATENCY

RECOVERY LATENCY

NONFUNCTIONAL
TIME

CONFIGURATION A0

Figure 7. Detection and recovery latencies of various
configurations as a proportion of nonfunctional time (60
repetitions per data point).

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Quirolgico 190

6.3.1 Experiment Description. We compare performance of
nine configurations, as enumerated in Table 7. One configuration
(A0p) uses a two-party (UPnP) architecture (see Figure 8) with a
polling regime to maintain consistency. Another configuration
(A0n) combines the same architecture with notification. Four
configurations (B1p, B1n, B2p and B2n) use a three-party (Jini)
architecture (see Figure 9) with one or two SCMs and polling or
notification. Three configurations (C0p, C1p and C2p) use an
adaptive (SLP) architecture (with zero, one, or two SCMs) and
polling (SLP does not include a notification mechanism).

To establish initial conditions, we set aside an interval, up

to time Qt , for all SUs to discover the SM and obtain the SM’s
SD. We then activate interface failures or message loss according
to the appropriate failure model described below. In addition, we

establish a deadline Dt by which the change must propagate to all
SUs, and then chose a time, randomly distributed on the uniform

interval []2, DQ tt , to introduce a change in the SD on the SM.

Here, we set 100=Qt s and 5400=Dt s. Each experiment aims
to restore consistency between the changed SD held by the SM
and the cached copies of the SD held by the SUs. We recorded the
time of change to the SD on the SM, the latency required to

propagate the update to each SU prior to Dt (or failure to do so)
and the number of messages exchanged.

6.3.2 Failure Models. We conducted separate experiments
for interface failure and message loss. Table 8 summarizes
relevant parameters for each failure model.

Interface Failure. In the interface-failure experiment, we let
λ be the interface failure rate. During the experiment, each node
suffers an interface failure at a time, randomly distributed on the

uniform interval ()[]λ⋅− QQQ ttt , . When activating each
interface failure, there is an equal likelihood that the transmitter,
receiver, or both fail. Once activated, each failure remains in

effect for the duration of λ⋅Dt , after that the failure is remedied.
During a failure interval, no messages are sent from a node with a
failed transmitter, and a node with a failed receiver does not
receive messages. For each configuration simulated, we varied λ
from 0 to 90 % in increments of 5 %.

Message Loss. In the message-loss experiment, we let λ

be the message-loss rate. For each attempt to transmit a message,
whether on a reliable or unreliable channel, a uniform random real

number is selected from the unit interval[]1,0 . If the number is

less than λ , the message is discarded. Loss of a message sent on
a reliable channel stimulates a retransmission after an appropriate
timeout. We varied λ as in the interface-failure experiment.

Polling SLPAdaptive
(no SCMs)C0p

C2p

C1p

B2n

B2p

B1n

B1p

A0n

A0p
Configuration

Polling
(with service registration on SCM)SLPAdaptive

(One SCM)

Polling
(with service registration on SCM)SLPAdaptive

(Two SCMs)

Notification
(with service registration and notification registration on SCM)JiniThree-Party

(Two SCMs)

Polling
(with service registration on SCM)JiniThree-Party

(Two SCMs)

Notification
(with service registration and notification registration on SCM)Jini

Three-Party
(One SCM)

Polling
(with service registration on SCM)JiniThree-Party

(One SCM)

Notification
(with notification registration on SM)UPnPTwo-Party

PollingUPnPTwo-Party

Consistency-Maintenance MechanismBehaviorArchitecture

Polling SLPAdaptive
(no SCMs)C0p

C2p

C1p

B2n

B2p

B1n

B1p

A0n

A0p
Configuration

Polling
(with service registration on SCM)SLPAdaptive

(One SCM)

Polling
(with service registration on SCM)SLPAdaptive

(Two SCMs)

Notification
(with service registration and notification registration on SCM)JiniThree-Party

(Two SCMs)

Polling
(with service registration on SCM)JiniThree-Party

(Two SCMs)

Notification
(with service registration and notification registration on SCM)Jini

Three-Party
(One SCM)

Polling
(with service registration on SCM)JiniThree-Party

(One SCM)

Notification
(with notification registration on SM)UPnPTwo-Party

PollingUPnPTwo-Party

Consistency-Maintenance MechanismBehaviorArchitecture

Table 7. Nine Configurations Compared in Communication-
Failure Experiments.

HTTP/TCP and HTTP/UDP

Service
User

Service
Manager

UPnP Multicast Group

Unicast Links

HTTP/TCP and HTTP/UDP

Service
User

Service
User

Service
Manager

UPnP Multicast Group

Unicast Links

Figure 8. Two-party service discovery system deployed in a
six-node topology: five service users and one service

Service
Manager

Service
User

Service
Cache

Manager

Aggressive-Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy-Discovery Multicast Group

Optional, 2nd SCMService
Manager

Service
User

Service
Cache

Manager

Aggressive-Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy-Discovery Multicast Group

Optional, 2nd SCM

Figure 9. Three-party service discovery system deployed
in a seven- or eight-node topology: five service users, a
service manager, and one or two service cache managers.

Each transmission may fail
with probability equal to
message loss rate
from 0 to 90%.

Failure incidence

Message
Loss Individual message

transmissionFailure scope

Individual message
transmission Failure duration

5% increments of 5400 s
from 0 to 90%Failure duration

Transmitter, receiver, or
both with equal likelihoodFailure scope

Once per run for each nodeFailure incidence

Interface
Failure

ValueParameterFailure

Each transmission may fail
with probability equal to
message loss rate
from 0 to 90%.

Failure incidence

Message
Loss Individual message

transmissionFailure scope

Individual message
transmission Failure duration

5% increments of 5400 s
from 0 to 90%Failure duration

Transmitter, receiver, or
both with equal likelihoodFailure scope

Once per run for each nodeFailure incidence

Interface
Failure

ValueParameterFailure

Table 8. Parameters for Interface Failure and Message Loss
Models.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Quirolgico 191

6.3.3 Failure Recovery Techniques. We model recovery
techniques at three levels: transport protocols, discovery
protocols, and application. Recovery techniques for the transport
protocols are described in Section 4.2.1. Table 9 shows the
recovery techniques and related parameters we adopted for the
discovery and application levels.

Discovery-Level Recovery. In the two-party (UPnP)
architecture, we use a heartbeat and soft-state strategy where SUs
discarded SDs not refreshed within a TTL (of 1800 s). To enable
rediscovery of SMs (and SCMs, where applicable) we adopt a
discovery behavior consistent with the specific protocol (UPnP,
Jini, or SLP) being modeled. In all configurations (except A0p,
which does not employ registration), we chose the same TTL (of
1800 s) after which registrations would be discarded if not
renewed. For REXs received in response to registration or refresh
attempts, to ad-hoc queries, or to change-service operations, the
retries occur at intervals of 120 s (but only up to a maximum of
540 s). To comply with the Jini and UPnP specifications, there are
no retries after a REX when attempting to issue notifications.

Application-Level Recovery. For configurations (A0p,

B1p, B2p, C0p, C1p, and C2p) that use polling, we set the
polling interval to 180 s. In (UPnP) configurations (A0p and
A0n), SUs discard a SD after (HTTP GET) queries to the SM
result in nothing but REXs for a total of 540 s. In other
configurations, SUs discard a SCM after receiving nothing but
REXs over 540 s while attempting to interact with the SCM.

6.3.4 Metrics. We evaluate update effectiveness,
responsiveness, and efficiency. Update effectiveness measures the
probability that a change to a SD will propagate to a given SU

before the deadline Dt . We let n be the number of repetitions of

an experiment, m be the number of SUs in a topology, and jit′ be
the time that an updated SD is propagated to SU j, mj ≤≤1 , in
experiment repetition i, ni ≤≤1 . Then, we define update
effectiveness for the failure rate λ over n repetitions as

mn

chg
U

n

i

m

j
ij

⋅

∑ ∑

=
= =1 1

λ

where

⎩⎨
⎧ <′

=
otherwise

if

0

,1 Dij

ij

tt
chg

defines whether a change in a SD was propagated to the jth SU
during the ith repetition (i.e., 1 if true, 0 if false).

Update responsiveness measures the latency in propagating

the SD update. We let it′ be the time the SD change occurred on

the SM in experiment repetition i. Update responsiveness λR~ is

the median of all ijp−1 at a particular value of λ where

iD

i

ij

tt

tijt
p

′−

′−′
=

is the proportion of time required to propagate an update to the jth

SU in the ith repetition it′ at λ .
Update efficiency measures the effort required to (attempt

to) maintain consistency. Analysis of our experiment
configurations revealed a minimum number of messages, x , that
must be sent to propagate a change to all SUs. This minimum
(7=x) occurred for the three-party configuration with
notification and one SCM (B1n)2. We define update efficiency
based on the ratio of x to the actual number of messages
observed. We let y be the number of messages sent while
attempting to propagate a change from the SM to the SUs in a
given repetition. Then, for n number of experiment repetitions, we
define average update efficiency at a particular failure rate λ as

()
n

yx
E

n

i
i∑

= =1

/
λ .

6.3.5 Interface-Failure Results. For each configuration in
Table 7, we executed 1000=n repetitions at each interface-

failure rate λ . Figure 10 shows update effectiveness λU for the
configurations as λ increases. The figure also includes a table

with mean update effectiveness 900 −U , which is λU averaged
across all values of λ for each indicated configuration. Overall,
these results show that a two-party architecture, or an adaptive
architecture that has a two-party mode, provides superior
effectiveness to a three-party architecture (at least given
topologies limited to one or two SCMs). This occurs because each
updated SD must propagate over only one channel (SM to SU) in
two-party cases, but over two channels (SM to SCM and SCM to
SU) in three-party cases. For both three-party and adaptive

architectures, 900 −U improves with the number of SCMs due to
the reduction in the incidence of joint failure of both channels. We
note that polling yields better effectiveness than notification. For
example, when comparing three-party polling with one SCM
(B1p) against three-party notification with one SCM (B1n), the
advantage of polling appears as λ exceeds 35 % because when

2 Recall that the two-party (UPnP) architecture requires a multiple-
message exchange to convey SDs.

1800 sAnnounce interval

1800 sRegistration TTLA0n, B1p, B1n, B2p, B2n, C1p
and C2p

After 540 s with
only REXSM or SU purges SCMB1p, B1n, B2p, B2n, C1p and

C2p

After 540 s with
only REXSU purges SDA0p, A0n, and C0p

180 sPolling interval A0p, B1p, B2p, C0p, C1p and
C2p

Application-
Level

Recovery

120 sTime to retry after REXA0n, B1p, B1n, B2p, B2n, C0p,
C1p and C2p

900 sAnnounce interval

Variable
(4 probes in 15 s)Probe interval

C0p, C1p, and C2p (SLP)

120 sAnnounce interval

5 s (7 times)Probe interval
B1p, B1n, B2p and B2n (Jini)

At TTL expirationSU purges SD

120 sMsearch query intervalA0p and A0n (UPnP)

Discovery-
Level

Recovery

ValueParameterConfiguration

1800 sAnnounce interval

1800 sRegistration TTLA0n, B1p, B1n, B2p, B2n, C1p
and C2p

After 540 s with
only REXSM or SU purges SCMB1p, B1n, B2p, B2n, C1p and

C2p

After 540 s with
only REXSU purges SDA0p, A0n, and C0p

180 sPolling interval A0p, B1p, B2p, C0p, C1p and
C2p

Application-
Level

Recovery

120 sTime to retry after REXA0n, B1p, B1n, B2p, B2n, C0p,
C1p and C2p

900 sAnnounce interval

Variable
(4 probes in 15 s)Probe interval

C0p, C1p, and C2p (SLP)

120 sAnnounce interval

5 s (7 times)Probe interval
B1p, B1n, B2p and B2n (Jini)

At TTL expirationSU purges SD

120 sMsearch query intervalA0p and A0n (UPnP)

Discovery-
Level

Recovery

ValueParameterConfiguration

Table 9. Key Model Parameters for Communication-
Failure Experiments.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Quirolgico 192

notifications fail, SD updates are propagated by recovery
mechanisms, which activate only after some delay. On the other
hand, polling persists with retries after receiving a REX. We note
that configurations using notification also exhibit anomalous
behavior when λ is in the range []25,5 %; we discuss the
reasons for this below in Section 6.3.7.

Figure 11 shows median update responsiveness λR~ for all
configurations as λ increases. Generally, the ranking of
architectures for responsiveness is similar to effectiveness. Where
employed, notification exhibits better responsiveness than polling,
which incurs increased latency from the 180 s polling interval.

Figure 11 also shows a steep drop-off in λR~ for all configurations

as λ increases beyond the []30,20 % range, where failures
prevent initial propagation of the updated SD, forcing invocation
of recovery actions that cannot succeed until paths are restored.
Thus, even though some configurations achieved effectiveness of
over 0.9 as λ reaches 70% (see Figure 10), responsiveness for all
configurations approaches zero. Three-party configurations
experience longer delays at high values of λ as paths to SCMs
become increasingly unavailable.

Figurre 12 shows average efficiency λE for experiment
configurations as λ increases. The table included in Figure 12

shows 900 −E , which is λE across all values of λ for each

indicated configuration. Here, λE declines for all configurations
as λ increases. This reflects a rising number of messages
generated when recovery strategies are invoked more frequently
as λ rises. Configurations using more SCMs are less efficient (but
more effective) than similar configurations with fewer SCMs. The
adaptive architecture appears less efficient than the three-party
architecture with an equivalent number of SCMs for the reasons
described above in section 6.2.5. Again, we expect the use of

equivalent underlying behaviors would yield comparable
efficiencies.

Some other points seem worth noting. The three-party

configurations using notification (B1n and B2n) are more
efficient than similar configurations using polling (B1p and B2p)
because in Jini each SU poll to a SCM involves a request followed
by a reply, while a Jini SCM notification is a single message.
However, for 40<λ %, two-party (UPnP) notification (A0n)
appears less efficient than two-party polling (A0p). This occurs
because when UPnP notifications are lost, recovery strategies
must often be used, thus prolonging the time to propagate the
updated SD and increasing message counts.

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

Failure Rate λ (%)

U
pd

at
e

Ef
fe

ct
iv

en
es

s

A0n
A0p

C0p

A0n
C1p

C2p
B2n

B2p
B1n

B1p

0.887C1p
C2p

C0p
B2n
B2p
B1n
B1p
A0n
A0p

Configuration

0.817
0.811
0.924

0.934

0.858

0.901

0.864

0.948

0.887C1p
C2p

C0p
B2n
B2p
B1n
B1p
A0n
A0p

Configuration

0.817
0.811
0.924

0.934

0.858

0.901

0.864

0.948
900−U

Figure 10. Comparing update effectiveness (λU) for different
configurations in response to increasing rate of interface failures

(1000 repetitions per data point). The table gives 900 −U , or λU
averaged across all values of λ for each configuration.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
Failure Rate λ (%)

M
ed

ia
n

U
pd

at
e

R
es

po
ns

iv
en

es
s

A0p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
Failure Rate λ (%)

M
ed

ia
n

U
pd

at
e

R
es

po
ns

iv
en

es
s

A0p

B2n

B1n
B1p

A0n

B2p

C0p

C1p

C2p

0.502C1p
C2p

C0p
B2n
B2p
B1n
B1p
A0n
A0p

Configuration

0.459
0.425
0.548

0.522

0.479

0.527

0.517

0.522

0.502C1p
C2p

C0p
B2n
B2p
B1n
B1p
A0n
A0p

Configuration

0.459
0.425
0.548

0.522

0.479

0.527

0.517

0.522
900

~
−R

Figure 11. Comparing median update responsiveness (λR~)
for different configurations in response to increasing rate of
interface failures (1000 repetitions per data point). The table
gives 900

~
−R , which is λR~ , averaged across all values of λ for

each configuration.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
Failure Rate λ (%)

A
ve

ra
ge

 U
pd

at
e

Ef
fic

ie
nc

y

B1n

A0p

C0p

B1p

B1n
C1p

A0n

B2p
C2p

0.146C1p
C2p

C0p
B2n
B2p
B1n
B1p
A0n
A0p

Configuration

0.309
0.196
0.179

0.179

0.108

0.091

0.183

0.228

0.146C1p
C2p

C0p
B2n
B2p
B1n
B1p
A0n
A0p

Configuration

0.309
0.196
0.179

0.179

0.108

0.091

0.183

0.228
900−E

Figure 12. Comparing average update efficiency (λE) for
different configurations in response to increasing rate of
interface failures (1000 repetitions per data point). The table

gives 900 −E , which is λE averaged across all values of λ for
each configuration.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Quirolgico 193

6.3.6 Message-Loss Results. For each configuration in
Table 7, we executed 200=n repetitions at each message-loss
rate λ . Figure 13 shows update effectiveness λU for the
configurations as λ increases. Figure 13 also includes a table that

shows 900 −U across all values of λ for each indicated
configuration. Overall, these results show that most configurations
provide an effectiveness of 0.95 or better until λ exceeds 80 %.
Overall, effectiveness under message loss conditions is higher
than under interface failure conditions. This is because interfaces
fail for protracted periods at higher values of λ , increasing the
probability that channels remain blocked until Dt , so updates
never get through. In contrast, message loss affects only
individual transmissions, allowing recovery strategies more
opportunities to propagate the update before Dt . Polling continues
to yield better effectiveness than notification. The two-party
configuration with polling (A0p) achieves a mean effectiveness of
0.99, due to the combined advantages of using polling with just
two parties (which requires transiting one channel rather than
two). We note that the two-party configuration with notification
(A0n) and the three-party notification with one SCM (B1n)
exhibit anomalous behavior and reduced effectiveness as λ
surpasses 20 %; we discuss the reasons for this below in Section
6.3.7. Responsiveness (not shown here) exhibits a steep decline
after 80>λ %, compared with 30>λ % for interface failure.
The higher responsiveness under message loss conditions occurs
for the same reasons as higher effectiveness. Under message loss,
notification also continues to provide better responsiveness than
polling.

Figure 14 shows average efficiency λE for experiment

configurations as λ increases and includes a table for 900−E for
for each configuration. As in the case of effectiveness and
responsiveness, all configurations prove more efficient under
message loss conditions than under interface failure for the
reasons given above. The better efficiency is also reflected in the

overall more gradual decline in the message loss efficiency
curves. Otherwise, the general ordering of efficiencies for the
various configurations appears similar under both interface failure
and message loss. We note the reduced efficiency of the two-party
(UPnP) notification (A0n) above 20=λ % in comparison with
two-party polling (A0p). In A0n, efficiency suffers from cases
where notifications are lost and recovery procedures are required
to propagate the update (taking more time and requiring more
messages). The combination of lost notifications and use of
recovery also causes a sharp decline in the efficiency of the three-
party notification with a single SCM (B1n), which at low values
of λ , generates the fewest (7) messages to propagate updates.
Another exception is the three-party configuration using
notification with two SCMs (B2n), which exhibits increasing

efficiency over the failure rate range []35,5 % and overtakes the
three-party configuration using polling with one SCM (B1p). This
counterintuitive result occurs because in some repetitions, lost
messages cause the SM or SUs to discover only one of the two
SCMs; thus, messages that would normally be duplicated to both
SCMs are not.

6.3.7 Discussion. The notification mechanism included in

UPnP and Jini (and other distributed systems) proved
unexpectedly ineffective at disseminating updates under certain
conditions. Foremost, under low interface-failure rates (in the
range []30,5 %) our results exhibit saw-tooth phenomena for
configurations using notification. The dip is most pronounced
(nearly 15%) for the two-party (UPnP) configuration (A0n) and
less pronounced (around 5%) for the three-party (Jini)
configurations (B1n and B2n). In the two-party case, analysis of
execution traces showed a large number of notifications were lost
when either the SM transmitter was inoperable (causing
notifications to all SUs to be lost) or when SU receivers were
inoperable (causing lost notifications to individual SUs). Since
neither UPnP nor Jini require notification senders to retry after a
REX, updated information must be disseminated through a

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

Failure Rate λ (%)

U
pd

at
e

Ef
fe

ct
iv

en
es

s

A0n

B1n

A0p

B2n

B2p

A0n

C2p C1p
B2n C0p

0.951C1p

C2p

C0p

B2n

B2p

B1n

B1p

A0n

A0p

Configuration

0.886

0.950

0.929

0.944

0.975

0.966

0.948

0.991

0.951C1p

C2p

C0p

B2n

B2p

B1n

B1p

A0n

A0p

Configuration

0.886

0.950

0.929

0.944

0.975

0.966

0.948

0.991
900−U

Figure 13. Comparing update effectiveness (λU) for
different configurations in response to increasing rate
of message loss (200 repetitions per data point). The

table gives 900 −U , or λU averaged across all values of
λ for each configuration.

00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
Failure Rate λ (%)

A
ve

ra
ge

 U
pd

at
e

Ef
fic

ie
nc

y

B1n

A0p

B2n

B1p

A0n

C2p

B2p

C0p

C1p

0.315C1p
C2p

C0p
B2n
B2p
B1n
B1p
A0n
A0p

Configuration

0.602
0.400
0. 317

0.378

0.244

0.235

0.419

0. 553

0.315C1p
C2p

C0p
B2n
B2p
B1n
B1p
A0n
A0p

Configuration

0.602
0.400
0. 317

0.378

0.244

0.235

0.419

0. 553
900−E

Figure 14. Comparing average update efficiency (λE) for
different configurations in esponse to increasing rate of
message loss (200 repetitions per data point). The table

gives 900−E , which is λE averaged across all values of λ for
each configuration.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Quirolgico 194

recovery mechanism. At low failure rates, a notification can be
lost to an interface failure, which is repaired prior to the next
announcement or registration-refresh attempt. Under such
conditions, recovery mechanisms are not invoked and the SU does
not obtain an updated SD. Polling proves more effective because
the SU checks periodically (180 s intervals) and persistently for
updated information and retrieves the SD when indicated.

A similar sequence of events occurs in the three-party case,
but the effects are more modest. The three-party configurations
require a SM to first propagate a change to a SCM. Failure to
propagate a change results in a REX that causes the SM to retry
the change for up to 540 s, during which time the interface failure
may be repaired. If still unconfirmed after 540 s, the SM purges
the SCM and initiates aggressive discovery. After rediscovering
the SCM, the SM propagates the change, and the SCM then
notifies registered SUs. Even with this redundancy, there still is
some chance that a SU receiver is blocked and thus unable to
receive notification. The redundancy does, however, increase the
probability that an updated SD reaches a SU.

Notification (as specified for UPnP and Jini) also appears
less effective under message loss. Lack of application-level retries
to deliver notices leads to significant decline in update
effectiveness above 20=λ %. This appears for the relevant two-
party (UPnP) configuration (A0n) and three-party (Jini)
configuration (B1n), both of which use notification. Above

20=λ %, the incidence of undelivered notifications increases
and, unless recovery is stimulated, the updated SD is not
disseminated. In configuration A0n, as λ exceeds 60 %, lost
registration-refresh requests trigger recovery procedures with
increasing frequency, which causes propagation of the updated
SD when a registration is reestablished. This process slightly
improves and then maintains effectiveness within the failure rate

range []80,60 %, causing this curve to echo the saw-tooth
feature in the update effectiveness curve for A0n under interface
failure. Above 80=λ %, lost messages effectively close the
channel, and effectiveness collapses for all configurations.

For the three-party configuration (B1n), loss of change
requests (from the SM) as well as registration refreshes (from the
SM and SUs) also stimulate recovery procedures that partly
compensate for lost notifications. When a second SCM is added
(configuration B2n) update effectiveness improves because the
SM now has two paths through which to disseminate updates to
SUs.

7. CONCLUSIONS

Overall, we found designs for first-generation discovery systems
can be robust under difficult failure environments. Across all
experiments, most configurations exhibited an effectiveness of
better than 0.9 in obtaining services or propagating updates for
failure rates approaching (often exceeding) 80 %. Configurations
proved ineffective only when all essential nodes failed or were
unreachable, or when recovery actions were not activated (as
occurred in response to lost update notifications). Similarly,
extensive delays in propagating updates depended on the duration
of path outages.

For our scenarios and metrics, two-party configurations (or
three-party configurations that could adapt to two-party mode)
appeared more robust than three-party configurations (where
robustness improved with the number of replicated directories).
Deploying three directory replicas yielded robustness equal to

two-party configurations. In tradeoff, increasing the number of
directory replicas lowers system efficiency by increasing the
number of messages exchanged. In most cases, we found the
adaptive architecture with one directory achieved robustness
comparable to other configurations, while providing better
efficiency than configurations with replicated directories.

To disseminate updates, we found polling more effective
than notification. Our polling regime used persistent retries, while
our notification regime depended only on reliable transport
protocols, falling back to alternate recovery mechanisms when
notifications could not be delivered. The alternate recovery
mechanisms were not always activated at lower failure rates. This
anomaly appeared in effectiveness plots for configurations using
notification. Notification generally conveyed updates with less
delay than polling. In the two-party architecture, polling was more
effective, so scenarios tended to end earlier and require fewer
messages.

Beyond our methodology and comparisons, we identified
and discussed the most significant design and configuration
decisions that influence robustness and efficiency in first-
generation discovery systems. We showed how available
architectural alternatives, as well as choices for consistency
maintenance and recovery strategies, lead to robustness-efficiency
tradeoffs. We also showed how faulty assumptions regarding
recovery strategies could unexpectedly degrade robustness and
efficiency. The information provided should convey a better
understanding of failure behavior in existing discovery systems,
allowing potential users to configure deployments for high
robustness at low cost. The discussions presented here could also
help to improve designs for future discovery systems.

8. ACKNOWLEDGMENTS

We received generous funding support from Susan Zevin, as
acting director of the NIST Information Technology Laboratory,
Douglas Maughan, as manager of the Defense Advanced
Research Projects Agency (DARPA) Fault-Tolerant Networks
Program, John Salasin, as manager of the DARPA program in
Dynamic Assembly for System Adaptability, Dependability and
Assurance, and James Puffenbarger of the Advanced Research
and Development Activity (ARDA).

9. REFERENCES

[1] Salutation Architecture Specification, Version 2.0c, Salutation

Consortium, June 1999.
[2] K. Arnold, et al, The Jini Specification, Version 1.0, Addison-

Wesley, 1999.
[3] Universal Plug and Play Device Architecture (UPnP), Version

1.0, Microsoft, Inc., 2000.
[4] E. Guttman, C. Perkins, J. Veizades, and M. Day, Service

Location Protocol, Volume 2, Internet Engineering Task
Force (IETF), RFC 2608, 1999.

[5] Specification of the Home Audio/Video Interoperability
(HAVi) Architecture, Version 1.1, HAVi, Inc., 2001.

[6] Specification of the Bluetooth System, Core, Version 1.1,
Volume 1, the Bluetooth SIG, Inc., 2001.

[7] C. Dabrowski, K. Mills, and S. Quirolgico, A Model-based
Analysis of First-Generation Service Discovery Systems,
Special Publication 500-260, National Institute of Standards
and Technology, 2005.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Quirolgico 195

[8] C. Dabrowski and K. Mills, “Analyzing Properties and
Behavior of Service Discovery Protocols Using an
Architecture-Based Approach,” Proceedings of Working
Conference on Complex and Dynamic Systems Architecture,
Brisbane, Australia, December 2001.

[9] C. Dabrowski, K. Mills, and J. Elder, “Understanding
Consistency Maintenance in Service Discovery Architectures
During Communications Failure,” Proceedings of the 3rd
International Workshop on Software Performance, Rome,
Italy, July 2002, pp. 168-178.

[10] C. Dabrowski, K. Mills, and J. Elder, “Understanding
Consistency Maintenance in Service Discovery
Architectures In Response to Message Loss,” Proceedings
of the 4th International Workshop on Active Middleware
Services, Edinburgh, United Kingdom, July 2002, pp. 51-
60.

[11] C. Dabrowski, K. Mills, and A. Rukhin, “Performance of
Service-Discovery Architectures in Response to Node
Failure,” Proceedings of the International Conference on
Software Engineering Research and Practice, Las Vegas,
NV, June 2003, pp. 95-104.

[12] C. Bettstetter and C. Renner, “A Comparison of Service
Discovery Protocols and Implementation of the Service
Location Protocol,” Proceedings of the Sixth EUNICE Open
European Summer School: Innovative Internet Applications,
Open EUNICE 2000, Twente, Netherlands, September
2000.

[13] G. Richard, “Service Advertisement and Discovery: Enabling
Universal Device Cooperation,” IEEE Internet Computing,
Volume 4, Number 5, pp. 18-26, 2000.

[14] J. Rekesh, UPnP, Jini and Salutation - A look at some
popular coordination framework for future network devices,
Technical Report, California Software Lab, 1999.

[15] R. Pascoe, “Salutation Architectures and the newly defined
service discovery protocols from Microsoft and Sun: How
does the Salutation Architecture stack up,” Salutation
Consortium white paper, 1999.

[16] R. Pascoe, “Building Networks on the Fly,” IEEE Spectrum,
Volume 38, Issue 3, pp. 61-65, 2001.

[17] G. Richard, Service and Device Discovery: Protocols and
Programming, McGraw-Hill, 2002.

[18] G. O'Driscoll, Essential Guide to Home Networking
Technologies, Prentice-Hall Trading Company, 2000.

[19] B. Olivier, “Jini: a platform for building adaptive integrated
learning environments,” Report from the Centre for
Learning Technology (CeLT), University of Wales Bangor,
United Kingdom, December 2000.

[20] D. Bushmitch, W. Lin, A. Bieszczad, A. Kaplan, V.
Papageorgiou, and A. Pakstas, “A SIP-Based Device
Communication Service for OSGi Framework,”
Proceedings of the 2004 IEEE Consumer Communications
And Networking Conference, Las Vegas, NV, January
2004, pp. 453-458.

[21] B. Miller and R. Pascoe, “Mapping Salutation Architecture
APIs to Bluetooth Service Discovery Layer,” Version 1.0,
Bluetooth SIG white paper, July 1999.

[22] J. Allard, V. Chinta, S. Gundala, and G. Richard, “Jini Meets
UPnP: An Architecture for Jini/UPnP Interoperability,”
Proceedings of the 2003 International Symposium on
Applications and the Internet (SAINT 2003), Orlando, FL,
January 2003, pp. 268-275.

[23] A. Sameh and R. El-Kharboutly, “Modeling Jini-UPnP
Bridge using Rapide ADL,” Proceedings of the IEEE/ACS
International Conference on Pervasive Services (ICPS'04),
Beirut, Lebanon, July 2004, p. 237.

[24] E. Guttman and J. Kempf, “Automatic Discovery of Thin
Servers: SLP, Jini and the SLP-Jini Bridge,” Proceedings of
the 25th Annual Conference of the IEEE Industrial
Electronics Society (IECON 99), Volume 2, San Jose, CA,
December 1999, pp. 722-727.

[25] S. Ponnekanti and A. Fox, “Application-Service
Interoperation without Standardized Service Interfaces,”
Proceedings of the IEEE International Conference on
Pervasive Computing and Communications (PerCom 2003),
Fort Worth, TX, March 2003, pp. 30-39.

[26] M. Yu, A. Taleb-Bendiab, D. Reilly, and W. Omar, “Multi-
Standard Service Interoperation Protocol through
Polyarchical Middleware,” Proceedings of the PostGraduate
Networking Conference (PGNet), Liverpool, United
Kingdom, June 2003, pp.143-148.

[27] S. Czerwinski, et al, “An Architecture for a Secure Service
Discovery Service,” Proceedings of the Fifth Annual
International Conference on Mobile Computing and
Networks (MobiCom '99), Seattle, WA, August 1999, pp.
24-35.

[28] S. Frolund, et al., “Building Dependable Internet Services
with E-speak,” Hewlett Packard Laboratories Technical
Report HPL-2000-78, 2000.

[29] JXTA v2.0 Protocols Specification, Sun Microsystems, 2004,
http://spec.jxta.org/v1.0/docbook/JXTAProtocols.html.

[30] M. Castro, et al., “One Ring to Rule them All: Service
Discovery and Binding in Structured Peer-to-Peer Overlay
Networks,” The Proceedings of the Tenth ACM SIGOPS
European Workshop, ACM, Saint-Émilion, France,
September 2002.

[31] D. Verma, et al., “SRIRAM: A scalable resilient autonomic
mesh,” IBM SYSTEMS JOURNAL, Volume 42, Number 1,
pp. 19-28, 2003.

[32] H. Hsiao and C. King, “Neuron – A Wide-Area Service
Discovery Infrastructure,” Proceedings of the International
Conference on Parallel Processing (ICPP ‘02), Vancouver,
British Columbia, August 2002, p. 455.

[33] A. Iamnitchi and I. Foster, “On Fully Decentralized Resource
Discovery in Grid Environments,” Proceedings of an IEEE
International workshop on Grid computing, Denver, CO,
November 2001.

[34] S. Joseph, “NeuroGrid: Semantically Routing Queries in
Peer-to-Peer Networks,” Proceedings of the International
Workshop on Peer-to-Peer Computing, Pisa, Italy, May
2002.

[35] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman,
“Grid Information Services for Distributed Resource
Sharing,” Proceedings of the 10th IEEE International
Symposium on High Performance Distributed Computing
(HPDC-10), San Francisco, CA, August 2001, pp. 181-194.

[36] UDDI Technical White Paper, published by the members of
uddi.org, September 2000.

[37] V. Sundramoorthy, M. Speelziek, G. van de Glind, and J.
Scholten, “Service Discovery with FRODO,” 12th IEEE
International Conference on Network Protocols (ICNP),
Berlin, Germany, October 2004, pp. 24-27.

[38] K. Bowers, K. Mills, and S. Rose, “Self-adaptive Leasing for
Jini,” Proceedings of the IEEE International Conference on

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Quirolgico 196

Pervasive Computing and Communications (PerCom 2003),
Fort Worth, TX, March 2003, pp. 539-542.

[39] K. Mills and C. Dabrowski, “Adaptive Jitter Control for
UPnP M-Search,” Proceedings of 2003 IEEE International
Communications Conference, Anchorage, AK, May 2003.

[40] S. Rose, K. Bowers, S. Quirolgico, and K. Mills, “Improving
Failure Responsiveness in Jini Leasing,” Proceedings of the
Third DARPA Information Survivability Conference and
Exposition (DISCEX-III 2003), Volume 2, Washington,
DC, April 2003, pp. 103-105.

[41] K. Mills, S. Rose, S. Quirolgico, M. Britton, and C. Tan, “An
Autonomic Failure-Detection Algorithm,” Proceedings of
the 4th International Workshop on Software Performance
(WoSP 2004), San Francisco, CA, January 2004, p. 79.

[42] C. Tan and K. Mills, “Performance Characterization of
Distributed Algorithms for Replica Selection in Distributed
Object Systems,” Accepted for Fifth International
Workshop on Software Performance (WoSP 2005), Palma
de Mallorca, Spain, July 2005.

[43] D. Luckham, “Rapide: A Language and Toolset for
Simulation of Distributed Systems by Partial Ordering of
Events,” http://anna.stanford.edu/rapide, 1996.

[44] J. Henriksen, “An Introduction to SLXTM,” Proceedings of
the 1997 Winter Simulation Conference, ACM, Atlanta,
GA, December 1997, pp. 559-566.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Quirolgico 197

A Model-based Analysis of First-Generation Service
Discovery Systems1

Christopher Dabrowski, Kevin Mills, and Stephen Quirolgico
National Institute of Standards & Technology

Gaithersburg, Maryland 20899

Information technology is undergoing a paradigm shift from desktop computing, where isolated
workstations connect to shared servers across a network, to pervasive computing, where myriad
portable, embedded, and networked information appliances continuously reconfigure themselves
individually and collectively to support the information requirements of mobile workers and work
teams. This shift will not occur overnight, nor will it be achieved without solving a range of new
technical and social problems. Still, this inexorable change should yield many economic
opportunities for the global information technology industry, and for the increasing swath of
businesses that depend on information. The potential value of pervasive computing motivated the
NIST Information Technology Laboratory (ITL) to establish a five-year program of research to
help the information technology industry identify and solve some looming technical roadblocks
that seemed likely to slow development and acceptance of the new paradigm. The ITL Pervasive
Computing program addressed three general areas: human-computer interaction, programming
models, and networking. Service discovery systems, which reside in an intersection between
programming models and networking, cover a key aspect of pervasive computing. For this
reason, researchers in ITL decided to study various industry designs for service discovery systems
that could play a key part in future technology to enable pervasive computing applications. This
special publication provides an analysis of a first generation of designs for service discovery
systems.

Over the period from about 1998 to 2000, industry developed a first generation of
competing architectures and protocols for device and service discovery. Such a plethora of
incompatible approaches might impede the interoperability required by a market for pervasive
computing. Is the existence of so many different service discovery systems justified? NIST
researchers analyzed various technical approaches and developed a model to unify the features,
functions, and processes provided. The goal of this modeling effort was threefold: (1) to
understand the essential service-discovery functionality provided by the industry, (2) to reveal
any technical deficiencies in existing service-discovery specifications, and (3) to define the
technical bounds achievable from this first-generation of service-discovery systems. The result of
this modeling effort is reported in this special publication.

The fact that numerous competing designs have appeared indicates a substantial industry
interest in using dynamic service discovery as a means to deploy and evolve component-based
systems. But why have so many different designs appeared? Are the designs sufficiently different
to warrant multiple solutions? What elements are contained within the various designs? What
problems should service discovery systems solve? What are the shortcomings of the first-
generation of service discovery systems? What open issues do first-generation designs for service
discovery systems leave for implementers to solve? These are the questions that motivate the
work reported in this publication.

1 Due to its scope and length, this paper was published as a separate, companion NIST Special Publication

(SP 500-260). Only the execution summary of NIST SP 500-260 is reproduced here.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Quirolgico 198

Based on careful analyses of selected specifications for service discovery architectures
and protocols, we present a generic model that represents the key elements, relationships, and
behaviors of a service discovery system. Our model consists of two parts: a meta-model that
defines the context in which service discovery systems operate and a generic, object-oriented
model that represents the fundamental structure and behavior of service discovery systems. We
also identify some open issues or limitations in existing designs for first-generation service
discovery systems. We demonstrate how our generic model can be used to represent specific
service discovery systems.

Beyond an analysis of the structure and behavior of first-generation service discovery
systems, we consider two other problems. First, the current generation of service discovery
systems can lead to some system-wide performance issues, unless implementers and users
exercise due care. We identify three classes of performance issues that might arise, and we
suggest a range of solutions that implementers might adopt to solve each issue. A second problem
relates to service guarantees. None of the service discovery systems we analyzed defined any
expectations about the guarantees, or even the goals, that the design aimed to satisfy. We propose
a set of service guarantees that we believe service discovery systems should aim to achieve, and
we explain the qualifications associated with such guarantees. In other work, we have used our
proposed service guarantees to assess the performance and correctness of specific designs for
service discovery systems.

In summary, this special publication makes three specific contributions – intended to
inform a future generation of designs and to improve the performance of implementations for the
current generation of designs. First, we provide a generic model of the structure and behavior of
first-generation service discovery systems, and we show how our model can represent the designs
for several, specific service discovery systems. Our model unifies the common elements and
behaviors in modern service discovery systems. Should an industry standards group choose to
develop a unified specification for service discovery, our model could provide helpful input to the
process. We also identify issues that designers should attempt to resolve in the next generation of
service discovery systems. Second, we propose a set of service guarantees that we believe service
discovery systems should strive to satisfy, along with an analysis of the factors that might
interfere with meeting service guarantees. Such service guarantees could be cast into test
assertions that serve to evaluate the behavior or measure the performance of designs and
implementations of service discovery systems. Third, we identify and suggest possible solutions
to performance issues that can arise in dynamic service discovery systems. Identifying possible
performance issues can alert users to the potential for unexpected behavior when service
discovery technology is deployed at large scale. Further, implementers of service discovery
systems can consider our suggested solutions when developing software to embody related
processes in a service discovery system. Our three contributions should help to improve the
quality of the next generation of service discovery systems on which the service-oriented
architectures of tomorrow appear likely to depend.

Networking for Pervasive Computing NIST Special Publication 500-259

Dabrowski, Mills, & Quirolgico 199

PERFORMANCE IMPROVEMENT TECHNIQUES FOR DISCOVERY SYSTEMS

Initial investigation and measurement of prototype service discovery systems revealed an interesting
property. The performance of such systems depends primarily on a set of tunable parameters, while the
optimum values for the parameters depend upon the number of elements present in the system.
Unfortunately, the nature of service discovery systems is for the number of elements to fluctuate
significantly over a wide range of time scales, many of which prove too short for system administrators to
detect and respond with appropriate parameter changes. On the other hand, service discovery systems
include mechanisms to monitor system elements and to detect changes in system composition. NIST
researchers conceived the idea that self-adaptive algorithms could be developed to use the underlying
protocols of a service discovery system to monitor system composition and to automatically adjust
various parameter settings to achieve improved performance. The papers in this section of the special
publication describe and report the performance properties of several self-adaptive algorithms developed
by NIST researchers and applied to various service discovery systems.

In Paper #22, “Adaptive Jitter Control for UPnP M-Search”, Mills and Dabrowski investigate
various self-adaptive algorithms that could be used to mitigate response implosion, which can occur in
systems where a client multicasts a query to an unknown population of potential respondents all of whom
may respond, overrunning the client’s receive buffer space. While response implosion may occur in any
multicast-query system, the case of UPnP is particularly compelling because each respondent is required
to send n (3+2d+k) messages in response to each multicast query, where n is a redundancy factor, d is the
number of devices contained by a respondent, and k is the number of unique service types contained by a
respondent. To mitigate response implosion, UPnP multicast queries carry a value, M, such that each
respondent chooses a time to response by drawing a uniformly distributed random number from the
interval 0…M. UPnP clients have no specific information to help in choosing a reasonable value for M.
For example, this paper shows that a performance tradeoff exists between increased discovery latency (if
M is chosen too large) and decreased discovery effectiveness (if M is chosen too small). The paper also
shows that even when M is chosen to be the theoretically correct value, the random nature of responses
leads to situations where the receive buffer becomes overly full; a situation that persists and leads to
discovery effectiveness of only around 80%-85%. The paper proposes self-adaptive algorithms in two
classes: random and scheduled. All the proposed algorithms rely on the fact that respondents likely have a
picture of the state of the system, which they can use to determine when to reply. Further, respondents can
feedback information to the client, allowing selection of a better value for M. Interestingly, the paper
shows that the self-adaptive random schemes all exhibit the potential to overfill the receiver buffer,
leading to lower than expected discovery effectiveness (82%-90%). On the other hand, the self-adaptive
scheduled algorithms all achieve 100% discovery effectiveness at the cost of increased memory and
processing usage at each respondent. The paper quantifies the estimated costs. The paper also suggests
some alternatives to UPnP M-Search, which might lead to more effective discovery at lower cost and in
larger networks.

In Paper #23, “Self-Adaptive Leasing for Jini”, Bowers, Mills, and Rose analyze the performance
of the Jini leasing system, which is one of several similar subscription-and-renewal functions included in
many service discovery systems (an other distributed systems). Leasing systems require a client interested
in using a remote resource to register for such use and then to periodically renew the registration. Failure
to renew the registration will result in the client losing access to the remote resource. Such schemes allow
client failures to be detected so that resources may be redirected to other clients. The paper defines
relationships between lease period, detection-failure latency, and overhead (in bandwidth or processing
time) for the Jini leasing system. The paper also defines and analyzes two self-adjusting leasing
algorithms (called adaptive and inverted), which permit a lease granter to select a lease time that provides
the lowest feasible failure detection latency while respecting limits on the overhead devoted to renewing
leases. The analysis shows that the adaptive algorithm detects failures in ½ the time taken by the inverted
algorithm. The paper also presents simulation results that confirm the analysis.

Networking for Pervasive Computing NIST Special Publication 500-259

200

In Paper #24, “Improving Failure Responsiveness for Jini”, Rose, Bowers, Quirolgico, and Mills
show how a self-adjusting leasing algorithm (the adaptive algorithm from Paper #23) can be incorporated
into a Jini lookup service to provide the best possible failure-detection latency within the limits of the
resources that can be dedicated to lease renewal. This paper extends Paper #23 by describing how NIST
researchers incorporated the algorithm into “reggie”, the SUN Microsystems Java implementation of a
Jini lookup service. The implementation discussed in this paper provides the basis for a demonstration of
the algorithm. In Paper #25, “Self-Managed Leasing for Distributed Systems” Bowers, Mills, Quirolgico,
and Rose recast the results from Paper #24 in the context of self-managed systems.

In Paper #26, “An Autonomic Failure-Detection Algorithm”, Mills, Rose, Quirolgico, Britton,
and Tan demonstrate how the self-adaptive leasing algorithm first introduced in Paper #23 can be applied
to several functions in service discovery systems. The example applications include: (1) leasing in Jini,
(2) subscriptions in UPnP, (3) service registration in SLP, and (4) polling in SLP. The paper provides
analytical and simulation results for all the example applications and also adds measured empirical results
for the Jini leasing application.

In Paper #27, “Performance Characterization of Decentralized Algorithms for Replica Selection
in Distributed Object Systems”, Tan and Mills survey key concepts related to replica selection and then
use simulation to characterize performance (response time, server latency, selection error, probability of
server overload) for four common replica-selection algorithms (random, greedy, partitioned, weighted)
when applied in a decentralized form to client queries in a distributed object system deployed on a local
network. The researchers introduce two new replica-selection algorithms (balanced and balanced-
partitioned) that give improved performance over the more common algorithms. The paper finds the
weighted algorithm performs best among the common algorithms and the balanced algorithm performs
best among all those considered. The paper also discusses the limits of applicability for the algorithms as
presented, and suggests modification that might extend the range of applicability. The work reported in
this paper should prove applicable to service discovery systems (such as Jini and SLP) that require service
cache managers to be maintained as replicated directories of available services. Given a set of replicated
directories and a population of clients, the algorithms investigated in this paper can be used to select a
directory for to receive each client query.

Networking for Pervasive Computing NIST Special Publication 500-259

201

Adaptive Jitter Control for UPnP M-Search

Kevin Mills and Christopher Dabrowski
Information Technology Laboratory

National Institute of Standards and Technology
Gaithersburg, MD 20899

Abstract – Selected service-discovery systems allow clients to
issue multicast queries to locate network devices and services.
Qualifying devices and services respond directly to clients; thus,
in a large network, potential exists for responses to implode on a
client, overrunning available resources. To limit implosion, one
service-discovery system, UPnP, permits clients to include a
jitter bound in multicast (M-Search) queries. Qualifying devices
use the jitter bound to randomize timing of their responses.
Initially, clients lack sufficient knowledge to select an
appropriate jitter bound, which varies with network size. In this
paper, we characterize the performance of UPnP M-Search for
various combinations of jitter bound and network size. In
addition, we evaluate the performance and costs of four
algorithms that might be used for adaptive jitter control.
Finally, we suggest an alternative to M-Search for large
networks.

I. INTRODUCTION

Selected service-discovery systems allow clients to issue
multicast queries to locate network devices and services [1,
3]. Qualifying devices and services respond directly to
clients; thus, in a large network, potential exists for responses
to implode on a client, overrunning available resources. This
implosion problem also arises in other protocols that support
multicast queries and responses [4-7]. To limit implosion,
one service-discovery system, Universal-Plug-and-Play1
(UPnP) permits clients to include a jitter bound (MX) in
multicast (M-Search) queries. Each qualifying device jitters
its response time by randomly selecting a delay up to MX.
Initially, clients lack sufficient knowledge to select an
appropriate jitter bound, which varies with network size.

In this paper, we model the UPnP M-Search mechanism
and characterize performance for various combinations of
jitter bound and network size. The resulting performance
curves should help designers of UPnP clients to understand
the effects of selecting particular jitter bounds. We also
consider four algorithms that might be used to adaptively
control jitter in UPnP M-Search. We compare the
performance of the adaptive algorithms against each other
and against a fixed jitter bound. We discuss the costs
associated with adaptation. These costs lead us to suggest an
alternative approach to M-Search for large networks. The

1 Certain commercial products and standards are identified in this paper to
describe our study adequately. The National Institute of Standards and
Technology neither recommends nor endorses these products or standards as
the best available for the purpose.

insights we provide should help designers of service-
discovery systems to create architectures that can scale across
a variety of network sizes, while achieving effective and
efficient performance.

The remainder of this paper is organized as follows.
Section II describes the UPnP M-Search mechanism, defines
an experiment and related metrics to characterize M-Search
performance, and illustrates M-Search performance for
varying jitter bounds and network sizes. Section III outlines
four algorithms that might be used to adaptively adjust M-
Search jitter bounds, and compares the performance of the
algorithms against each other and against a fixed jitter bound.
Section III also discusses the costs and assumptions
underlying adaptation. Section IV suggests an alternative to
M-Search for use in large networks. Section V gives our
conclusions.

Fig. 1. General Operation of UPnP Discovery

II. CHARACTERIZING M-SEARCH PERFORMANCE

Fig. 1 depicts the general operation of device and service
discovery in UPnP. UPnP consists of two main elements:
root devices (servers) and control points (clients). A UPnP
network may contain r > 0 root devices. Each root device
contains d > 0 embedded devices and k > 0 unique service
types, where each device and service has a specific type.
Each root device also contains a hierarchical description that
defines the capabilities of 1 + d + k elements: the root device
and each of its embedded devices and unique service types.
The description can be rather lengthy; thus, UPnP provides a
two-step process for obtaining descriptions. A control point
first discovers devices or services of interest by type or
identity, and then requests the related descriptions.

HTTP/UDP Unicast Messages

Control
Point

UPnP Multicast Group
Notify M-Search w/MX

M-Search
Responses

r Root
Devices

1Root Device
Description

d Embedded
Device

Descriptions
k Service Type
Descriptions

1 Root Device
Description
d Embedded

Device
Descriptions

k Service Type
Descriptions

n * (3 + 2d + k)

HTTP/UDP Unicast Messages

Control
Point

UPnP Multicast Group
Notify M-Search w/MX

M-Search
Responses

r Root
Devices

1Root Device
Description

d Embedded
Device

Descriptions
k Service Type
Descriptions

r Root
Devices

1Root Device
Description

d Embedded
Device

Descriptions
k Service Type
Descriptions

1 Root Device
Description
d Embedded

Device
Descriptions

k Service Type
Descriptions

n * (3 + 2d + k)

Networking for Pervasive Computing NIST Special Publication 500-259

Mills & Dabrowski 202

UPnP provides two discovery modes: lazy and aggressive.
Lazy discovery uses periodic announcements sent by each
root device on the UPnP multicast group (Notify in Fig. 1).
At each announcement interval, each root device sends n (3 +
2d + k) Notify messages to identify the root device (and its
identity and type), each embedded device (by identity and
type), and each unique service type (by type). The UPnP
specification recommends a duplicate transmission factor, n,
“due to the unreliable nature of UDP” (user-datagram
protocol) [1]. Control points listen for announcements to
discover the existence of various devices and services. The
UPnP specification sets the announcement interval at 30 min.
or more. For this reason, control points may use aggressive
discovery to get an immediate picture of available services.

Aggressive discovery commences when a control point
multicasts an M-Search query, which specifies an interest
(that can include specific devices, device types, service types,
or all) and a jitter bound (MX in Fig. 1). Root devices listen
for M-Search queries to determine if any contained items are
of interest. Each root device sends 3n responses if the root
device qualifies, and 2n and n responses respectively for each
qualifying embedded device and service type. If the query
asks for everything (SSDP_ALL), each root device responds
with the same n (3 + 2d + k) messages used in lazy discovery.
To mitigate a potential implosion of responses, each root
device waits a random time, uniformly distributed in the
range 0..MXs, before transmitting its responses in a burst.

A. Experiment Definition

To characterize M-Search performance, we used SLXTM [8]
to construct a simulation model representing the topology
shown in Fig. 1, deployed in a 10-Mbps Ethernet. Since the
UPnP specification allows implementation choices, we based
those aspects of our model on UPnP software available
publicly from Intel [9]. We allow the number of root devices,
r, to vary from 10 to 200 by 10-step increments. Each root
device includes an identical count of embedded devices (d =
2) and service types (k = 3). We set n = 2, the default value in
the Intel implementation of UPnP. We allow MX to vary
from 2 to 40 in 2-s increments. For each combination of r and
MX, an M-Search task in a single control point issues a query
requesting SSDP_ALL, which elicits n (3 + 2d + k) = 20 200-
byte response messages from each root device; thus,
aggregate implosion ranges from 200 (r = 10) to 4000 (r =
200) response messages. (To keep our graphs legible, we
display results over only r = 10..100 and MX = 2..20.) We
limit the M-Search task to buffer no more than 40 messages,
dropping the excess. We allow the control point task to
execute every 5 ms, processing one response message at each
execution (200 messages/s maximum rate). For each
message, the task examines a cache to see if a new discovery
occurs, adding items to the cache as required. The task takes
c ms to process a message, where c varies with the cache

size. When finished, the task reschedules itself to execute in
5 – c ms. If c > 5, the task executes immediately.

 Fig. 2. Overall discovery effectiveness (E) compared against
discovery effectiveness by entity type: root devices (Er), embedded devices
(Ed), and services (Es). [MX = 10 s]

B. M-Search Performance

We measure system performance with four metrics:
discovery effectiveness (E), discovery latency (L), buffer
utilization (B), and processor usage (P). Given a network
comprising e = r + rd + rk entities and assuming that a
control point discovers f < e entities from responses to an M-
Search, then E = f / e. We can also track discovery
effectiveness by entity type, root devices (Er), embedded
devices (Ed), and services (Es) as shown in Fig. 2. In the Intel
implementation, each root device sends M-Search responses
in the same order (3n then 2dn then kn) and since responses
earliest in the sequence are more likely to find buffer space
available at the control point, root devices are more likely to
be discovered than either embedded devices (next most
likely) or services (least likely).

Fig. 2 also reveals that randomly jittering responses does
not ensure E = 1, even when MX is set to a seemingly
suitable value. When r = 100, a total of 2000 response
messages will implode on the control point, which processes
200 messages/s, suggesting that 10s (2000/200) might be a
suitable value for MX. Unfortunately, since each root device
picks a random time to respond and then sends a burst of 20
response messages, collision periods can occur during which
receive buffers are overrun in the control point. Fig. 3
displays the problem.

Even at MX = 20s, collisions occur with sufficient
frequency that E decays significantly beyond r = 50.
Collisions lead to increased buffer occupancy (Fig. 4), which
leads to increased likelihood of message drops. Periods of
high buffer occupancy (and therefore message loss) tend to
persist, as incoming messages arrive in bursts at random
intervals, while the M-Search task reduces the buffer backlog
at a steady rate.

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

10 20 30 40 50 60 70 80 90 100
r

D
is

co
ve

ry
 E

ffe
ct

iv
en

es
s

E

Er

Ed

Es

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

10 20 30 40 50 60 70 80 90 100
r

D
is

co
ve

ry
 E

ffe
ct

iv
en

es
s

E

Er

Ed

Es

Networking for Pervasive Computing NIST Special Publication 500-259

Mills & Dabrowski 203

Fig. 3. Discovery effectiveness (E) for various values of MX (2s to 20s in
2s increments) as the number or root devices (r) increases.

Fig. 4. Average buffer occupancy (B) as a percentage of available buffers
(40 messages in this case) for various values of MX (2s to 20s in 2s
increments) as the number or root devices (r) increases.

Fig. 5. Average discovery latency (L) for various values of MX (2s to 20s
in 2s increments) as the number or root devices (r) increases.

Buffer size at the control point can be augmented to

accommodate additional responses; however a suitable buffer
size may be difficult to determine given the random nature of
response jitter (and unknown network size). Instead, a

control point could increase MX; but then, as Fig. 5 shows,
discovery latency will grow.

We define discovery latency (L) as the time that elapses
between successive discoveries of new entities in the
network. As Fig. 5 shows, when MX is large compared to
network size the gap between new discoveries grows for a
control point. An increased MX also leads to fewer buffer
overruns, which increases the discovery effectiveness for a
control point. As discovery effectiveness increases, the
discovery cache in the control point increases in size, which
causes the M-Search task to spend more processor cycles
examining each response message (Fig. 6). This increase
occurs because the M-Search task must look through more
cache entries to determine if a new entity has been
discovered, and to insert a related cache entry if needed. For
relatively large values of MX, processor utilization increases
linearly with network size, though this would change if we
modeled more efficient search algorithms. For relatively
small values of MX, growth in processor utilization levels off
with the size of the discovery cache maintained by the M-
Search task.

III. ADAPTIVE JITTER CONTROL

We propose four algorithms for adaptive-jitter control, and
then illustrate the performance arising from each. We also
discuss the costs and assumptions underlying the algorithms.
Some other algorithms to address multicast query-response
implosion can be found in the literature [10,11].

A. Four Adaptive Jitter-Control Algorithms

In adaptive-jitter control, each root device independently
estimates the time it will take for all root devices to respond
to each M-Search query. Each root device then uses its
estimate to determine a time to send its own responses (if
any). Included in each response message is a value
recommending how long the control-point M-Search task
should listen for responses. With this approach, the M-Search
task need not guess an appropriate MX value.

Each root device listens on the UPnP multicast group for
Notify messages (which include a caching time, or max-age)
sent by all root devices, and builds a map (NM) of devices
and services in the network. For each root device, NM
includes: the identity and type of the root device and all
embedded devices and unique service types, a max-age, and
an estimate of the redundant transmission factor (n).
Estimates of n exploit the fact that in the Intel
implementation each message is sent n times before the next
message. Listening root devices apply a time threshold to
identify duplicate messages and then compute an average n
for each announcing root device.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 20 30 40 50 60 70 80 90 100
r

E

MX = 2

MX = 20

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 20 30 40 50 60 70 80 90 100
r

E

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 20 30 40 50 60 70 80 90 100
r

E

MX = 2

MX = 20

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

10 20 30 40 50 60 70 80 90 100
r

L
(s

)

MX = 2

MX = 20

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

10 20 30 40 50 60 70 80 90 100
r

L
(s

)

MX = 2

MX = 20

MX = 2

MX = 20
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 20 30 40 50 60 70 80 90 100

r

B
 (a

vg
. p

er
ce

nt
)

MX = 2

MX = 20
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 20 30 40 50 60 70 80 90 100

r

B
 (a

vg
. p

er
ce

nt
)

Networking for Pervasive Computing NIST Special Publication 500-259

Mills & Dabrowski 204

Fig. 6. Average processor time (P) in seconds/message for a Control
Point M-Search task to examine a response for various values of MX (2s to
20s in 2s increments) as the number or root devices (r) increases.

M-Search queries issued by the M-Search task include a

rate, R, at which the task can consume messages, and also an
MX > 0. Upon receiving an M-Search query, a root device
cycles through its NM to estimate how many response
messages will be sent by all root devices, using R to also
estimate when the last set of responses should commence
(Jstart) and finish (Jend) – under an assumption that
messages will be sent consecutively at rate R. During this
process, a root device can also note a time (Stx) when it
should send its own responses – under an assumption that
root devices will send messages sequentially in the ascending
order of their unique identities. Using this information, we
devised four adaptive jitter-control algorithms: Random Burst
(RB), Random Paced (RP), Scheduled Burst (SB), and
Scheduled Paced (SP).

In the random algorithms (RB and RP), a root device
selects a time, Tr, randomly distributed uniformly on the
interval [0,Jstart], to send its response messages. The root
device includes Jend in each response so that the M-Search
task will learn an appropriate time interval to listen. The root
device will not respond if 0 < MX < Tr. In the RB variant of
the algorithm, the root device bursts its response messages. In
the RP variant, the root device paces its responses at rate R.

In the scheduled algorithms (SB and SP), a root device
sends its response messages at Stx; however, the root device
will not respond if 0 < MX < Stx. Response messages are sent
in a burst (SB) or at rate R (SP). The root device includes
Jend in each response message.

B. Performance of Adaptive Jitter Control

Fig. 7 illustrates discovery effectiveness (E) for each adaptive
jitter-control algorithm as the number of root devices (r)
increases from 10 to 300. For comparison, we include the
performance of a fixed MX = 33s, which is the Jstart value
estimated by each root device when r = 300.

Scheduling transmissions achieves full effectiveness (E =
1). On the other hand, randomizing transmissions leads to

collisions in the receive buffers, and then to buffer overflows
and lost discoveries. Pacing responses (RP) results in fewer
buffer overflows, but fails to eliminate them. While RP more
closely matches arrival rate with service rate, Fig. 8 indicates
a nearly identical average buffer occupancy for RP and RB.

Fig. 7. Discovery effectiveness for four adaptive jitter control algorithms
and one fixed jitter bound as the number of root devices increases

Fig. 8. Average buffer occupancy for various jitter-control algorithms as
the number of root devices increases.

Buffer utilization is very low for SP because scheduling

eliminates collisions and responses arrive at the rate at which
the M-Search task can process them. While SB avoids
collisions, responses arrive in (20-message) batches, leading
to a higher average buffer utilization. Fig. 8 also shows that
each of the adaptive jitter-control algorithms yields a nearly
stable average buffer utilization (but at different occupancy
levels), while buffer utilization for a fixed MX varies with the
relationship between MX and r.

Fig. 9 illustrates that all the adaptive jitter-control
algorithms provide consistently low average discovery
latency, L, despite variation in network size, which is not the
case for a fixed MX, where latency varies with the
relationship between MX and r. The scheduled algorithms
(SB and SP) perform slightly better than the random
algorithms (RB and RP) because buffer overflows resulting

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

10 20 30 40 50 60 70 80 90 100

r

P
 (a

vg
. s

/m
sg

)

MX = 20

MX = 2
0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

10 20 30 40 50 60 70 80 90 100

r

P
 (a

vg
. s

/m
sg

)

MX = 20

MX = 2

0.8

0.85

0.9

0.95

1

10 60 110 160 210 260
r

E

Fixed MX = 33

RB

RP

SB SP

0.8

0.85

0.9

0.95

1

10 60 110 160 210 260
r

E

Fixed MX = 33

RB

RP

SB SP

0

0.1

0.2

0.3

0.4

10 50 90 130 170 210 250 290
r

B
 (a

vg
. p

er
ce

nt
)

Fixed MX = 33

RB

RP

SB

SP
0

0.1

0.2

0.3

0.4

10 50 90 130 170 210 250 290
r

B
 (a

vg
. p

er
ce

nt
)

Fixed MX = 33

RB

RP

SB

SP

Networking for Pervasive Computing NIST Special Publication 500-259

Mills & Dabrowski 205

from jitter randomization cause some discoveries to be lost,
which tends to lengthen the time between new discoveries.

Fig. 9. Average discovery latency of various jitter-control algorithms as
the number of root devices increases

Fig. 10. Average processor seconds per message used by the M-Search
task for various jitter-control algorithms and increasing network size.

The scheduled algorithms also lead to some serendipitous

effects on processor utilization in the M-Search task (Fig.
10). Since scheduled responses arrive in order, the M-Search
task need not conduct a search of its discovery cache for each
response message. Instead, the M-Search task checks to see if
a response can be inserted into the cache at the current
insertion point. Only if this is not the case does the M-Search
task need to search its cache. In our experiments all
scheduled responses arrived in the expected order; thus, Fig.
10 shows that both SB and SP consume a small, fixed
amount of processor time for each message.

Fig. 10 also shows that the cache search required by the
random algorithms causes processor utilization to increase as
the number of discovered entities increase. Processor
utilization for RP always exceeds that for RB because the RP
algorithm discovers a greater percentage of entities. Random
jitter with a fixed MX = 33s uses more processor time than
either RP or RB up until about r = 200, where RP proves

more effective and thus requires more processor time. The
rate of increase in processor utilization for the fixed MX
continues to decline, reaching the same value as RB when r =
300 (and Jstart = MX = 33s).

C. Costs and Caveats

Adaptive jitter control comes with two costs: memory and
processing time in root devices. Each root device creates,
stores, and maintains a network map (NM) of size

)]([
0

iii

r

i
tkdqphS ++⋅++= ∑

=

, (1)

where h is the cache-header size, p is the root-device header
size, q is per-entry content size, r is the number of root
devices, and di, ki, and ti represent respectively the number of
embedded devices, service types, and device types
maintained by root device i. In our experiments, S varies
from about 1.2 (r = 10) to 37 (r = 300) Kbytes.

To process an M-Search query, a root device must scan
NM to estimate the likely number of responses that will be
issued by all root devices. During the scan, a root device also
purges stale entries. Thus, for each M-Search query a root
device uses processor time

)()]1([
0

OykdxC ii

r

i

⋅+++⋅=∑
=

, (2)

where x is processor time to scan one entry, y is processor
time to purge one root-device, and O is the number of stale
root-device entries found during the scan. In our experiments,
for SSDP_ALL queries with no stale entries, C varies
between 0.3 (r = 10) and 9 (r = 300) ms.

In addition to memory and processing costs, the scheduled
algorithms assume that each root device has the same
knowledge about network state (NM). Absent this
assumption, root devices would schedule collisions, leading
to lower discovery effectiveness. This same-NM assumption
should hold in steady state, where all root devices have had a
chance to announce themselves and where changes occur
infrequently. Of course, when a root device enters a network
it must acquire NM to participate effectively in adaptive jitter
control.

IV. DISCOVERY IN LARGE NETWORKS

Most discovery protocols provide for recurring
announcements at a known interval. For example, the Jini
protocol recommends announcements every 120s [11].
Recurring announcements permit a network device to listen
for a period of time over which a reasonably complete NM
might be constructed. Unfortunately, the minimum
announcement interval specified for UPnP is 30 min., which
might prove too long a period for a device to wait before
participating on the network. To compensate for this lengthy
announcement interval, UPnP provides the M-Search

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

10 50 90 130 170 210 250 290
r

P
(a

vg
. s

/m
sg

)

RP

RB

Fixed MX = 33

SPSB

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

10 50 90 130 170 210 250 290
r

P
(a

vg
. s

/m
sg

)

RP

RB

Fixed MX = 33

SPSB

0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

0.4
0.45
0.5

10 50 90 130 170 210 250 290
r

L
 (s

)

Fixed MX = 33

RB RP SB SP
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

0.4
0.45
0.5

10 50 90 130 170 210 250 290
r

L
 (s

)

Fixed MX = 33

RB RP SB SP

Networking for Pervasive Computing NIST Special Publication 500-259

Mills & Dabrowski 206

mechanism so that network devices can attempt to gain a
sense of the NM on demand. We have shown, though,
limitations of the M-Search as a means to find all devices and
services on the network. Some other discovery protocols
[2,3] include feedback mechanisms within their multicast
queries in order to provide a means of dampening responses.
Using such dampening mechanisms, a short repeated burst of
multicast queries (for example, Jini recommends seven
queries at intervals of five seconds) might be used to obtain a
reasonably complete NM (ignoring the possibility of
temporary node and channel failures). Unfortunately, UPnP
includes none of these mechanisms; thus, acquiring the NM
needed to permit effective participation in adaptive jitter
control for M-Search queries seems to require using the
regular UPnP M-Search. Since we have already shown UPnP
M-Search to be ineffective for this purpose, we propose an
alternative to M-Search for NM-bootstrap and for general use
in large networks.

Suppose that on startup a root device initiates a network
mapping (NM) service with probability W. In that case, the
network will contain only rW NM services. Then a control
point, or a newly starting root device, can use M-Search (in
fixed or adaptive form) to query only for instances of NM
services. Each qualifying NM service can respond with the
count of root devices, embedded devices, and service types
known to it. Using this information, a querying node can
select one NM service and use http-GET (HyperText Transfer
Protocol) to retrieve its NM. Alternatively, the querying node
may issue http-GETs to multiple NM services, and then
merge the results into a signal NM. After retrieving a NM, a
root device should be sufficiently bootstrapped to participate
in adaptive M-Search. For a control point, querying for NM
services will reduce (or eliminate) the need to issue
SSDP_ALL M-Search queries.

 A further advantage of using NM services can accrue as
network volatility increases. As the need arises, due to
increase in load or in network or node failures, a root device
can choose to start a NM service to increase redundancy or to
share the load from an increasing number of client queries.
Similarly, as volatility diminishes or as network size
decreases, root devices with a running NM service can elect
to terminate the service in order to reduce network overhead.

V. CONCLUSIONS

Given the UPnP M-Search mechanism, we illustrated
relationships among network size (r), jitter bound (MX),
discovery effectiveness (E) and latency (L), and buffer (B)
and processor (P) utilization. Specifically, we showed how
an inappropriate jitter bound (MX value) in UPnP M-Search
queries could significantly reduce discovery effectiveness or
increase discovery latency. We outlined four algorithms that
might be used for adaptive jitter control, and we explained
the storage and processing costs associated with adaptation.
We compared the performance of the adaptive algorithms

against each other and against a fixed MX value. The random
paced (RP) algorithm yielded increased discovery
effectiveness over random burst (RB). Both scheduled
algorithms (SB and SP) led to better performance than either
random algorithm. In particular, the scheduled paced (SP)
algorithm achieved optimal performance for all metrics. We
explained, however, that the performance of the scheduled
algorithms would deteriorate if all root devices do not share
the same picture (NM) of the network state.

We outlined an approach to enable root devices to
bootstrap their NM. We suggested that control points might
also use this approach to replace M-Search SSDP_ALL
queries, thus avoiding the potential for an implosion of M-
Search responses. Further, we hinted that the NM-bootstrap
mechanism might be adapted to modulate redundancy and
load sharing in support of aggressive discovery in UPnP
networks. Further exploration of these ideas remains for
future work. We also suggest that these algorithms should be
investigated under various types and rates of failure.

REFERENCES

[1] Universal Plug and Play Device Architecture, Version 1.0, Microsoft,

June 8, 2000.
[2] Erik Guttman and James Kempf. Service Location Protocol, Version

2, RFC 2608bis, January 10, 2002.
[3] Ken Arnold et al, The Jini Specification, V1.0 Addison-Wesley 1999.

Latest version is available from Sun.
[4] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, Session

Invitation Protocol, RFC 2543, March 1999.
[5] Stuart Cheshire, DNS-based Service Discovery, Internet Draft,

December 20, 2002.
[6] O Catrina, D. Thaler, B. Aboba, and E. Guttman, Zeroconf Multicast

Address Allocation Protocol, Internet Draft, October 22, 2002.
[7] Stuart Cheshire, Performing DNS queries via IP Multicast, Internet

Draft, December 20, 2002.
[8] James O. Henriksen, “An Introduction to SLXTM” Proceedings of the

1997 Winter Simulation Conference, ACM, Atlanta, Georgia,
December 7-10, 1997, pp. 559-566.

[9] Preston Hunt and Ulhas Warrier, “UPnP Applications Enhance
Mobile Functionality”, Intel Developer Update Magazine, Intel, April
2002, pp. 1-5. (Intel UPnP Software Development Kit available from:
http://www.intel.com/labs/connectivity/upnp/index.htm)

[10] T. Imieli´nski and S. Goel, “Dataspace - querying and monitoring
deeply networked collections of physical objects,” Tech. Rep. DCS-
TR-381, Rutgers University, July 1999.

[11] B. R. Badrinath and Pradeep Sudame. “Gathercast: The design and
implementation of a programmable aggregation mechanism for the
Internet”, Proceedings of IEEE International Conference on
Computer Communications and Networks (ICCCN), October 2000.

Networking for Pervasive Computing NIST Special Publication 500-259

Mills & Dabrowski 207

Self-Adaptive Leasing for Jini

 Kevin Bowers Kevin Mills and Scott Rose
Renssalaer Polytechnic Institute National Institute of Standards and Technology

 bowerk@rpi.edu {kmills, srose}@nist.gov

Abstract

Distributed systems require strategies to detect and recover
from failures. Many protocols for distributed systems employ
a strategy based on leases, which grant a leaseholder access
to data or services for a limited time (the lease period).
Choosing an appropriate lease period involves tradeoffs
among resource utilization, responsiveness, and system size.
We investigate these issues for Jini Network Technology.
First, we establish quantitative tradeoffs among lease period,
bandwidth utilization, responsiveness, and system size. Then,
we consider two self-adaptive algorithms that enable a Jini
system, given a fixed allocation of resources, to vary lease
periods with system size to achieve the best responsiveness.
We compare performance of these self-adaptive algorithms
against each other, and against fixed lease periods. We find
that one of the self-adaptive algorithms proves easy to
implement and performs reasonably well. We anticipate that
similar procedures could add self-adaptive capability to
other distributed systems that rely on leases.

1. Introduction

Distributed systems require strategies to detect and

recover from failures. One commonly used strategy employs
a leasing mechanism, where a node grants a leaseholder
access to a resource for a limited time (the lease period). If
the resource is needed beyond the original lease period, then
the leaseholder can renew the lease by requesting additional
lease periods. Once the resource is no longer needed, the
leaseholder may relinquish its lease. If the leaseholder does
not renew a lease before expiration of the lease period, the
lease grantor assumes leaseholder failure and terminates the
lease to prevent resource leaks. Since originally proposed by
Gray and Cheriton for consistency maintenance in a
distributed file cache [1], leases have become widely used in
a range of applications [2-6].

In any leasing system, questions arise regarding how to
select the lease period. Choosing an appropriate lease period
requires consideration of tradeoffs among resource
utilization, responsiveness, and number of leaseholders. We
investigate these issues in the context of service-discovery
protocols, which allow distributed software components to

discover each other and compose themselves into assemblies
that cooperate to meet application needs. Though several
service-discovery protocols currently exist [e.g., 5-8], we
selected Jini Network Technology [5] for our study because
leasing plays a central role in registering Jini services. We
base our modeling and analysis on the Jini specification [7].

We investigate self-regulating algorithms for achieving
the best available responsiveness from a leasing system as
system size varies, while respecting a constraint on resources
devoted to leasing. We begin by establishing quantitative
tradeoffs among responsiveness, resource consumption, and
system size. Then, we propose two different self-regulating
algorithms for varying lease periods in response to changing
system size. We use simulation to compare the effectiveness
of the algorithms against each other and against fixed lease
periods. We consider whether one of the algorithms might be
used to improve performance of Jini leasing and discuss
using the algorithm in other service-discovery protocols, such
as Universal Plug-and-Play (UPnP) [6].

2. Jini Leasing

Jini defines an architecture that enables clients and

services to rendezvous through a third party, known as a
lookup service. A Jini service registers a description of itself
with each discovered lookup service. A Jini client may
register a request to be notified by a lookup service of
arriving or departing services of interest, or of changes in the
attributes describing services of interest.

Figure 1 illustrates message exchanges for some typical
Jini leasing scenarios. A registering component requests
registration for a duration (LR), which may be accepted at
time TG for a granted lease period LG < LR. LR may be any,
which allows any value for LG. To extend registration beyond
LG, registering components must renew the lease prior to an
expiration time TE = TG + LG; otherwise, registration is
revoked. This cycle continues until a Jini component cancels
or fails to renew a lease. Lookup services assign LG within a
configured range, LMIN < LG < LMAX. While a granted lease
may not be revoked prior to TE, lookup services may deny
any lease request. Jini components must adopt strategies for
selecting values for LR. Similarly, lookup services must
determine algorithms for assigning values for LG, LMIN, and

Networking for Pervasive Computing NIST Special Publication 500-259

Bowers, Mills, & Rose 208

LMAX; and for deciding when to deny leases. We identify
some relevant relationships.

Fig. 1. Message exchanges for four Jini leasing scenarios.

Let SR be lease-request size, SG be lease-grant size, and N

be the number of leaseholders. Typically, a leaseholder and
lookup service exchange one request-grant pair per renewal
cycle, with rate 1/LG Hz. Assuming identical LG assigned for
each lease, bandwidth use (B) can be estimated as:

)()(GRG SSLNB +⋅= . Assuming constant SR and SG, B increases
linearly with N and decreases exponentially with LG. Another
metric, responsiveness, R, measures the latency with which
lookup services can detect leaseholder failure. Assuming
uniformly distributed failure times, then expected
responsiveness is 2GLR = ; thus, R is independent of N,
but B and R are related through LG.

These relationships can be used to constrain and predict
behavior of a leasing system. For example, assume known
requirements for R and B. The responsiveness equation can
be rewritten to determine LG [i.e., RLG 2=]. Then, using LG,
the bandwidth equation can be transformed to find maximum
system size [i.e.,)()(GRGMAX SSLBN +⋅=]. With this
information, lookup services could grant lease periods < LG
to ensure required responsiveness, deny requested leases that
would consume an excess share of bandwidth, and deny
requests for leases once N reaches NMAX.

3. Two Self-adaptive Leasing Schemes

We consider two techniques to vary LG with N; thus,
using available bandwidth (B) to achieve the best possible
responsiveness (R) for a given value of N. One technique
restricts lease requests to LR = any. The second technique
inverts the leasing process, permitting lookup services to poll
leaseholders at a variable interval.

Restricting LR. Assuming a leasing system must consume
at most bandwidth B and guarantee minimum average
responsiveness RMIN, a lookup service can grant a maximum
lease period LMAX = 2RMIN. Given B, SR, and SG, we can
determine a maximum lease-renewal rate G = B / (SR + SG).
For minimum system size, NMIN = 1, the lookup service can
grant a minimum lease period LMIN = 1/G. While this value
for LMIN respects the bandwidth constraint, other factors
should be considered. For example, at LMIN = 1/G leaseholder
processing burden might prove unacceptable. Instead, a
leasing system might constrain maximum responsiveness
(RMAX), giving a minimum lease period LMIN = 2RMAX.
Knowing N, a lookup service may select a suitable granted
lease period from a range (LMIN < LG < LMAX) using a simple
algorithm. First, compute LG = N/G. If LG > LMAX, then deny
the lease; otherwise, if LG < LMIN, then set LG = LMIN.
Assigning LG with this algorithm permits a leasing system to
constrain B and guarantee minimum average responsiveness
(RMIN), while providing the best responsiveness achievable
(up to RMAX) as N varies over 1..NMAX.

Inverted Leasing. As an alternative, we could invert the
leasing process so that a lookup service polls periodically on
a multicast channel, where all leaseholders listen. Figure 2
illustrates some associated message exchanges. To obtain a
lease, a leaseholder sends (via reliable unicast) a lease request
to the lookup service, which returns a time (TP) when the
leaseholder should expect to hear a multicast poll.

Fig. 2. Message exchanges for inverted leasing mechanism.

Each poll includes two values: the duration (D) over

which the lookup service will listen for leaseholders to
respond and the additional time (A > 0) beyond D within
which leaseholders can expect the next poll. Each leaseholder
chooses a random time (distributed uniformly over 0..D) to
respond to the lookup service, which confirms each response.

Jini
Service

Jini
Lookup
Service

TG + LG

(b) Lease Denial

Jini
Service

Jini
Lookup
Service

Lease Request (LR)T
Lease Grant (LG < LR)

TG

Lease Request (LR)

Lease Grant (LG < LR)
TG’

(a) Initial Lease Grant & Renewal

Jini
Service

Jini
Lookup
Service

Lease Request (LR)T
Lease Grant (LG < LR)

TG

Lease Cancel
Lease Cancelled

(c) Lease Cancellation

TG + LG

TR

TC

Jini
Service

Jini
Lookup
Service

Lease Request (LR)T
Lease Grant (LG < LR)

TG

(d) Lease Expiration

TG + LG
TE

Lease Request (LR > LMAX)
T

Lease Denied

Jini
Service

Jini
Lookup
Service

TP + D

(b) Lease Denial

Jini
Service

Jini
Lookup
Service

Lease RequestT
Lease Grant (TP)

TP
Multicast Poll (D, A)

Multicast Poll (D, A)
TP + D + A

(a) Initial Lease Grant & Renewal

(c) Lease Cancellation (d) Lease Expiration

Lease RequestT
Lease Denied

Lease Poll Response
Lease Poll Confirm

TP + D

Jini
Service

Jini
Lookup
Service

Lease RequestT
Lease Grant (TP)

TP Multicast Poll (D, A)

Lease Cancel

Lease Cancelled

N = NMAX

TP + D

Jini
Service

Jini
Lookup
Service

Lease RequestT
Lease Grant (TP)

TP Multicast Poll (D, A)

Lease
Expires

Networking for Pervasive Computing NIST Special Publication 500-259

Bowers, Mills, & Rose 209

The lookup service cancels a lease if the leaseholder does not
respond within D. Similarly, failing to receive a poll within D
+ A after the previous poll, causes a leaseholder to request a
new lease. The main issue is selecting values for D and A in
each poll.

Assuming the polling interval is bounded by LMIN < D +
A < LMAX, the lookup service computes D = max(N/G, LMIN).
A rapidly expanding system might benefit from deferring the
next poll until D + A to accommodate increases in N during
D. Choosing an appropriate value for A depends on system
growth expected during D. In our experiments, we set A as a
percentage of D. Recall, though, that D + A < LMAX, so A may
be reduced below its computed value. When A = 0, the
leasing system has reached maximum capacity. To ensure
this, the lookup service must deny lease requests that will
cause N to exceed NMAX, where GLN MAXMAX ⋅= .

When using inverted leasing, a lookup service limits
bandwidth usage according to))()/((RCPRP SSPNSB +⋅+= ,
where P is the polling interval (D < P < D + A < LMAX) and
SP, SPR, and SRC represent respectively the size of poll, poll-
response, and response-confirm messages. Inverted leasing
achieves system responsiveness of R = D, which is only ½ as
responsive as simple adaptive leasing. To understand this
difference, consider the following analysis.

Assume failure times are distributed uniformly on D.
Failures may occur either before or after a leaseholder
responds to a poll. For leaseholders that fail before a poll,
expected failure-detection latency is 2D . For leaseholders
that fail after a poll, expected failure-detection latency
increases to (D/2) + D. Assuming that failures are equally
likely before or after a poll, then

)2/3(2/1)2/(2/1 DDR ⋅+⋅= , which reduces to R = D.

4. Simulation Results and Discussion

We used simulation to investigate dynamic behavior of

our self-adaptive algorithms. We coded an SLX discrete-
event simulation [9] model of Jini. To confirm our analysis
and to verify our simulation, we conducted simulation
experiments, varying N from 10..200 and LG from 15..300 s
in 15-s increments. We used SR = 128 bytes and SG = 32
bytes. Figure 3 shows simulated results for average B and R
when LG = 15 s, 60 s, and 120 s. Our simulation confirms our
analyses: (1) B increases linearly with N for a given LG and
decreases exponentially with LG for a given N and (2) R =
LG/2, independent of N.

Next, we created model variants to implement the self-
adaptive leasing algorithms described in Section 3. One
variant (Adaptive) replaces fixed LG with our simple adaptive
algorithm; the other variant (Inverted) substitutes our
inverted procedures for Jini leasing. We measured B under
increasing and decreasing N. We measured the control
variable (LG for Adaptive and D for Inverted) under

increasing N, and we measured R under decreasing N. We set
LMIN = 15 s, LMAX = ∞, and G = 3. For experiments involving
Inverted, we set DA ⋅= 2.0 .

Fig. 3. System responsiveness (R) – left-hand y-axis – and
bandwidth usage (B) – right-hand y-axis – for three granted
lease periods (LG = 15 s, 60 s, and 120 s) as system size
increases (N = 10 to 200 leaseholders).

Figure 4 depicts both Adaptive and Inverted under

increasing N. While the control variables change in a similar
fashion, change in B exhibits two obvious differences. First,
B increases more steeply under Adaptive than under Inverted.
Second, Inverted begins to constrain B earlier than Adaptive,
which leads to a higher peak bandwidth usage. Inverted
affects all leaseholders with each adjustment in the control
variable, while Adaptive affects leaseholders one-by-one, and
only as each lease is renewed.

Figure 5 plots average R achieved by each self-
regulating scheme as N decreases. Inverted begins to reduce
B sooner than Adaptive. For R, the results tell two stories.
First, as indicated by a steeper negative slope, Inverted adapts
R more quickly than Adaptive. Unfortunately, Inverted
achieves only ½ the responsiveness of Adaptive.
Implementing Inverted would require profound changes in
Jini. Adaptive can be implemented easily within Jini lookup
services, and might apply to domain-wide leasing.

Each Jini service is required to register its service
description with each appropriate lookup service that it
discovers; thus, a service may be maintaining leases on ND
different lookup services. System-wide leasing demands will
vary with ND. Assuming a known network-wide resource
budget for leasing, e.g., either aggregate bandwidth (BD) or
renewal rate (GD), then each lookup service can compute its
share (either BD/ND or GD/ND). Jini facilitates monitoring ND
by requiring each lookup service to announce itself
periodically. By monitoring announcements, each lookup
service can increment and decrement ND as lookup services
come and go, and continuously adjust its share of resources.

Our results might also apply to a number of leasing
schemes outside of Jini. For example, UPnP devices manage
variables for which they may offer subscriptions to control
points. UPnP subscription procedures, and associated

0

10

20

30

40

50

60

70

10 30 50 70 90 110 130 150 170 190

N (leaseholders)

R
 (s

)

0
200
400
600
800
1000
1200
1400
1600
1800
2000

B
 (b

yt
es

/s
)

R (LG = 120 s)

R (LG = 60 s)

R (LG = 15 s)

B (LG = 15 s)

B (LG = 120 s)

B (LG = 60 s)

0

10

20

30

40

50

60

70

10 30 50 70 90 110 130 150 170 190

N (leaseholders)

R
 (s

)

0
200
400
600
800
1000
1200
1400
1600
1800
2000

B
 (b

yt
es

/s
)

R (LG = 120 s)

R (LG = 60 s)

R (LG = 15 s)

B (LG = 15 s)

B (LG = 120 s)

B (LG = 60 s)

Networking for Pervasive Computing NIST Special Publication 500-259

Bowers, Mills, & Rose 210

parameters, appear quite similar to those defined in Jini. We
are confident our adaptive leasing algorithm could be applied
to UPnP, yielding performance properties similar to those we
report for Jini.

Fig. 4. Bandwidth usage (B) – left-hand y-axis – and control
variable (LG for Adaptive and D for Inverted) setting – right-
hand y-axis – as system size increases (N = 10 to 200
leaseholders). LMIN = 15 s, G = 3 renewals per second, LMAX = ∞,
and (for Inverted) A = 0.2D.

Fig. 5. Bandwidth usage (B) – left-hand y-axis – and system
responsiveness (R) – right-hand y-axis – as system size
decreases (N = 200 to 0 leaseholders). LMIN = 15 s, G = 3
renewals per second, LMAX = ∞, and (for Inverted) A = 0.2D.

5. Conclusions

We investigated Jini leasing procedures, establishing

quantitative tradeoffs among responsiveness, resource
consumption, system size, and granted lease period. We
suggested an approach to bound bandwidth use, while
guaranteeing a minimum level of responsiveness in detecting
leaseholder failures. We also showed a simple adaptive
leasing algorithm that bounds bandwidth consumption, while
achieving the best available responsiveness as system size
varies. We described an alternate algorithm that inverts the
leasing process, and we showed that inverted leasing

achieves only half the responsiveness guaranteed by the
simple adaptive algorithm. We used simulation to show that
inverted leasing adapts responsiveness more quickly and
constrains bandwidth consumption better than our simple
adaptive algorithm. Given the performance tradeoffs and
implementation costs, we conclude that our simple adaptive
leasing algorithm can yield useful performance properties
with little cost. We outlined a simple technique for allocating
a domain-wide resource budget among multiple lease
grantors. We expect our analyses can be used to deploy Jini
systems with understood leasing behavior, and we hope our
ideas for adaptive leasing can provide improvements over
static strategies. We argued that our adaptive leasing
algorithm and related analyses should also apply in similar
leasing systems, such as event subscriptions offered by
UPnP.

6. References

[1] C. Gray and D. Cheriton. “Leases: an efficient fault-tolerant

mechanism for distributed file cache consistency”, ACM
SIGOPS Operating Systems Review, Proceedings of the
Twelfth ACM symposium on Operating systems principles,
November 1989, Volume 23 Issue 5.

[2] Charles E. Perkins and Kevin Luo. “Using DHCP with
computers that move”, Wireless Networks, March 1995,
Volume 1 Issue 3.

[3] Anoop Ninan, Purushottam Kulkarni, Prashant Shenoy, Krithi
Ramamritham, and Renu Tewari. “Performance: Cooperative
leases: scalable consistency maintenance in content
distribution networks”, Proceedings of the eleventh
international conference on World Wide Web, May 2002.

[4] Jacob Harris and Vivek Sarkar. “Lightweight object-oriented
shared variables for distributed applications on the Internet”,
ACM SIGPLAN Notices, Proceedings of the conference on
Object-oriented programming, systems, languages, and
applications, October 1998, Volume 33 Issue 10.

[5] Jim Waldo. “The JiniTM architecture for network-centric
computing”, Communications of the ACM, July 1999.

[6] Universal Plug and Play Device Architecture, Version 1.0, 08
Jun 2000 10:41 AM. © 1999-2000 Microsoft Corporation. All
rights reserved.

[7] Ken Arnold et al, The Jini Specification, V1.0 Addison-Wesley,
1999. The latest version is available on the web from Sun.

[8] Service Location Protocol Version 2, Internet Engineering Task
Force (IETF), RFC 2608, June 1999.

[9] James O. Henriksen, “An Introduction to SLXTM” Proceedings
of the 1997 Winter Simulation Conference, ACM, Atlanta,
Georgia, December 7-10, 1997, pp. 559-566.

0

50

100

150

200

250

200 180 160 140 120 100 80 60 40 20

N (leaseholders)

B
 (b

yt
es

/s
)

0

10

20

30

40

50

60

70

R
 (s

)

B (Adaptive)

B (Inverted)

R (Inverted)

R (Adaptive)

0

50

100

150

200

250

200 180 160 140 120 100 80 60 40 20

N (leaseholders)

B
 (b

yt
es

/s
)

0

10

20

30

40

50

60

70

R
 (s

)

B (Adaptive)

B (Inverted)

R (Inverted)

R (Adaptive)

0

50

100

150

200

250

300

350

400

10 30 50 70 90 110 130 150 170 190

N (leaseholders)

B
 (b

yt
es

/s
)

0

10

20

30

40

50

60

70

L G
 (s

) o
r D

 (s
)

LG (Adaptive)

D (Inverted)

B (Adaptive)

B (Inverted)

0

50

100

150

200

250

300

350

400

10 30 50 70 90 110 130 150 170 190

N (leaseholders)

B
 (b

yt
es

/s
)

0

10

20

30

40

50

60

70

L G
 (s

) o
r D

 (s
)

LG (Adaptive)

D (Inverted)

B (Adaptive)

B (Inverted)

Networking for Pervasive Computing NIST Special Publication 500-259

Bowers, Mills, & Rose 211

Improving Failure Responsiveness in Jini Leasing

Scott Rose, Kevin Bowers, Steve Quirolgico, and Kevin Mills

National Institute of Standards and Technology
 srose@nist.gov

Abstract

Distributed systems require strategies to detect and recover
from failures. Many protocols for distributed systems employ
a strategy based on leases, which grant a leaseholder access
to data or services for a limited time (the lease period).
Choosing an appropriate lease period involves tradeoffs
among resource utilization, responsiveness, and system size.
We explain these tradeoffs for Jini Network Technology.
Then, we describe an adaptive algorithm that enables a Jini
system, given a fixed allocation of resources, to vary lease
periods with system size to achieve the best responsiveness.
We anticipate that similar procedures could improve failure
responsiveness in other distributed systems that rely on
leases. We describe how we implemented our adaptive
algorithm in “reggie”, a publicly available implementation
of the Jini lookup service. We can use our implementation to
demonstrate how adaptive leasing provides the best available
responsiveness as network size varies.

1. Introduction

Distributed systems require strategies to detect and

recover from failures. One commonly used strategy employs
a leasing mechanism, where a node grants a leaseholder
access to a resource for a limited time (the lease period).
Once the resource is no longer needed, the leaseholder may
relinquish its lease. If the resource is needed beyond the
original lease period, then the leaseholder can renew the lease
by requesting additional lease periods. If the leaseholder does
not renew before expiration of the lease period, the lease
grantor assumes leaseholder failure and terminates the lease.

Choosing an appropriate lease period entails tradeoffs
among resource utilization, responsiveness, and number of
leaseholders. We explore these issues in the context of
service-discovery protocols, which allow distributed software
components to discover each other and compose themselves
into assemblies. Though several service-discovery protocols
currently exist [e.g., 1-4], we selected Jini Network
Technology [1] to demonstrate our ideas, because leasing
plays a central role in registering Jini services. We base our
analysis on the Jini specification [2].

2. Jini Leasing

Jini defines an architecture that enables clients and

services to rendezvous through a third party, known as a
lookup service. A Jini service registers a description of itself
with each discovered lookup service. A Jini client may
register a request to be notified by a lookup service of
arriving or departing services of interest, or of changes in the
attributes describing services of interest.

Fig. 1. Message exchanges for four Jini leasing scenarios.

Figure 1 illustrates message exchanges for some typical

Jini leasing scenarios. A registering component requests
registration for duration LR, which may be accepted at time
TG for a granted lease period LG < LR. LR may be any, which
allows any value for LG. To extend registration beyond LG,
registering components must renew the lease prior to an
expiration time TE = TG + LG; otherwise, registration is
revoked. This cycle continues until a Jini component cancels
or fails to renew a lease. Lookup services assign LG within a
configured range, LMIN < LG < LMAX. While a granted lease
may not be revoked prior to TE, lookup services may deny
any lease request.

We can analyze performance of a Jini leasing system.
Let SR be lease-request size, SG be lease-grant size, and N be

Jini
Service

Jini
Lookup
Service

TG + LG

(b) Lease Denial

Jini
Service

Jini
Lookup
Service

Lease Request (LR)T
Lease Grant (LG < LR)

TG

Lease Request (LR)

Lease Grant (LG < LR)
TG’

(a) Initial Lease Grant & Renewal

Jini
Service

Jini
Lookup
Service

Lease Request (LR)T
Lease Grant (LG < LR)

TG

Lease Cancel
Lease Cancelled

(c) Lease Cancellation

TG + LG

TR

TC

Jini
Service

Jini
Lookup
Service

Lease Request (LR)T
Lease Grant (LG < LR)

TG

(d) Lease Expiration

TG + LG
TE

Lease Request (LR > LMAX)
T

Lease Denied

Networking for Pervasive Computing NIST Special Publication 500-259

Rose et al. 212

number of leaseholders. Typically, a leaseholder and lookup
service exchange one request-grant pair per renewal cycle,
with rate 1/LG Hz. Assuming identical LG assigned for each
lease, bandwidth use (B) can be estimated as:

)()(GRG SSLNB +⋅= . Assuming constant SR and SG, B increases
linearly with N and decreases exponentially with LG. Another
metric, responsiveness, R, measures the latency with which
lookup services can detect leaseholder failure. Assuming
uniformly distributed failure times, then expected
responsiveness is 2GLR = ; thus, R is independent of N,
but B and R are related through LG.

These relationships can be used to constrain and predict
behavior of a leasing system. For example, assume known
requirements for R and B. The responsiveness equation can
be rewritten to determine LG [i.e., RLG 2=]. Then, using LG,
the bandwidth equation can be transformed to find maximum
system size [i.e.,)()(GRGMAX SSLBN +⋅=]. With this
information, lookup services could grant lease periods < LG
to ensure required responsiveness, deny requested leases that
would consume an excess share of bandwidth, and deny
requests for leases once N reaches NMAX.

Fig. 2. System responsiveness (R) – left-hand y-axis – and
bandwidth usage (B) – right-hand y-axis – for three granted
lease periods (LG = 15 s, 60 s, and 120 s) as system size
increases (N = 10 to 200 leaseholders).

3. A Self-adaptive Algorithm for Jini Leasing

We propose an algorithm that restricts lease requests to
LR = any. Assuming a leasing system must consume at most
bandwidth B and guarantee minimum average responsiveness
RMIN, a lookup service can grant a maximum lease period
LMAX = 2RMIN. Given B, SR, and SG, we can determine a
maximum lease-renewal rate G = B / (SR + SG). For
minimum system size, NMIN = 1, the lookup service can grant
a minimum lease period LMIN = 1/G. While this value for LMIN
respects the bandwidth constraint, other factors should be
considered. For example, at LMIN = 1/G leaseholder
processing burden might prove unacceptable. Instead, a
leasing system might constrain maximum responsiveness
(RMAX), giving a minimum lease period LMIN = 2RMAX.

Knowing N, a lookup service may select a suitable granted
lease period from a range (LMIN < LG < LMAX) using a simple
algorithm. First, compute LG = N/G. If LG > LMAX, then deny
the lease; otherwise, if LG < LMIN, then set LG = LMIN.
Assigning LG with this algorithm permits a leasing system to
constrain B and guarantee minimum average responsiveness
(RMIN), while providing the best responsiveness achievable
(up to RMAX) as N varies over 1..NMAX.

Fig. 3. Responsiveness (R) – left-hand y-axis – and bandwidth
usage (B) – right-hand y-axis –as system size decreases (N =
200 to 0 leaseholders).

4. Simulation Results

We coded an SLX discrete-event simulation [5] model of

Jini to confirm our analysis and to investigate dynamic
behavior of our self-adaptive algorithm. We conducted
simulation experiments, varying N from 10..200 and LG from
15..300 s in 15-s increments. We used SR = 128 and SG = 32
bytes. Figure 2 shows simulated results for average B and R
when LG = 15 s, 60 s, and 120 s. The simulation confirms
our analyses: (1) B increases linearly with N for a given LG
and decreases exponentially with LG for a given N and (2) R
= LG/2, independent of N. Next, we simulated our adaptive
leasing algorithm. Figure 3 illustrates how the algorithm
constrains B while improving R as system size decreases.
These promising results led us to implement our adaptive
algorithm in “reggie”, a publicly available implementation of
a Jini lookup service.

5. Implementation in “reggie”

We base our adaptive-leasing implementation on the
“reggie” lookup server provided with the Sun Microsystems
Jini release. The “reggie” server implements the Jini
specification for a lookup service, and includes additional
extensions to allow remote administration of the lookup
server through a service proxy. Administrative actions occur
through the RegistrarAdmin interface, which is not part of the

0

10

20

30

40

50

60

70

10 30 50 70 90 110 130 150 170 190

N (leaseholders)

R
 (s

)

0
200
400
600
800
1000
1200
1400
1600
1800
2000

B
 (b

yt
es

/s
)

R (LG = 120 s)

R (LG = 60 s)

R (LG = 15 s)

B (LG = 15 s)

B (LG = 120 s)

B (LG = 60 s)

0

10

20

30

40

50

60

70

10 30 50 70 90 110 130 150 170 190

N (leaseholders)

R
 (s

)

0
200
400
600
800
1000
1200
1400
1600
1800
2000

B
 (b

yt
es

/s
)

R (LG = 120 s)

R (LG = 60 s)

R (LG = 15 s)

B (LG = 15 s)

B (LG = 120 s)

B (LG = 60 s)

0

50

100

150

200

250

200 180 160 140 120 100 80 60 40 20

N (leaseholders)
B

 (b
yt

es
/s

)

0

5

10

15

20

25

30

35

40

R
 (s

)

B

R

0

50

100

150

200

250

200 180 160 140 120 100 80 60 40 20

N (leaseholders)
B

 (b
yt

es
/s

)

0

5

10

15

20

25

30

35

40

R
 (s

)

B

R

Networking for Pervasive Computing NIST Special Publication 500-259

Rose et al. 213

Jini core specification, but a Sun extension to Jini
(com.sun.jini.reggie package). The RegistrarAdmin interface
allows basic monitoring, configuration, and control of an
operational lookup server just as if it were any other type of
Jini-enabled service. Using the RegistrarAdmin interface, an
administrator can also perform some basic manipulation of
minimum and maximum granted lease periods for services
and events maintained on the lookup server. However, this
method requires constant human supervision to optimize
leasing performance in a Jini network. Such human
supervision would prove impractical in a large network
where numerous services may join and leave.

To implement adaptive leasing, we modified the “reggie”
server implementation to assign lease grant times (LG) based
on the required failure responsiveness (R) of the system and
the bandwidth (B) allocated to lease renewal transactions.
We added a collection of access methods to the
RegistrarAdmin interface, callable via remote-method
invocation (RMI), allowing a Jini client to view: the current
LMIN, LMAX, and LG, the number of leaseholders (N) on the
server, the instantaneous average bandwidth (BAVG)
consumed by lease renewals, and the instantaneous average
failure responsiveness (RAVG). Since values for granted lease
periods can be adjusted from changes to the allocated
bandwidth and target responsiveness, we added methods to
set B and R in the RegistrarAdmin interface.

The lookup server (com.sun.jini.reggie.RegistrarImpl)
starts with default values for LMIN and LMAX. A Jini client can
use the RegistrarAdmin interface to adjust target
responsiveness and allocated bandwidth. Based on these
adjustments, the lookup server computes new values for LMIN
and LMAX. At regular intervals, the lookup service samples
average bandwidth use (BAVG) and the number of
leaseholders, adjusting granted lease periods (LG)
accordingly. Current bandwidth usage is calculated by
multiplying the number of lease transactions (RMI calls) by
the size of messages involved in the transaction. Currently,
the lookup service records these values once every sixty
seconds of operation, or when an administrator changes R or
B.

When a Jini service registers with the lookup service, it
may either request a specific lease interval or use Jini’s
LEASE.ANY constant to allow the lookup server to select an
appropriate lease period for the service. In our
implementation, if the service requests the LEASE.ANY
constant, the lookup service uses the current value for LG as
the granted lease period. Otherwise, if the service requests a
lease period in the range of LMIN and LMAX, it is granted. The
lookup service rejects requests for leases outside this range.

Figure 4 shows a snapshot of a Jini client graphical user
interface (GUI) that uses the modified “reggie”
RegistrarAdmin interface. The left-hand column plots values
for LG, for bandwidth used (BAVG), and for average
responsiveness (RAVG) over time. These graphs display values

returned to the client from regular polling of access methods
RegistrarAdmin interface, which uses RMI to call the
corresponding method in the lookup server. The right-hand
column of Figure 4 lists leaseholders using the lookup
service, and displays their current status in the Jini network.
Note that the GUI displays only the current known status, as a
service may have left the network, but a proxy could still be
registered with the server. The proxy would be purged when
its lease expires. The GUI in Figure 4 does not include the
RegistrarAdmin GUI used to adjust allocated bandwidth or
target responsiveness in the lookup service.

Fig. 4. Sample Graphical User Interface for a Jini client
monitoring a lookup server that implements adaptive leasing

6. Acknowledgments

The work described in this paper is funded in part by the

DARPA Fault-Tolerant Networks program and the NIST
Pervasive Computing program. We gratefully acknowledge
support from Dr. Doug Maughan of DARPA and Dr. Susan
Zevin of NIST.

7. References

[1] Jim Waldo. “The JiniTM architecture for network-centric

computing”, Communications of the ACM, July 1999.
[2] Universal Plug and Play Device Architecture, Version 1.0, 08

Jun 2000 10:41 AM. © 1999-2000 Microsoft Corporation. All
rights reserved.

[3] Ken Arnold et al, The Jini Specification, V1.0 Addison-Wesley,
1999. The latest version is available on the web from Sun.

[4] Service Location Protocol Version 2, Internet Engineering Task
Force (IETF), RFC 2608, June 1999.

[5] James O. Henriksen, “An Introduction to SLXTM” Proceedings
of the 1997 Winter Simulation Conference, ACM, Atlanta,
Georgia, December 7-10, 1997, pp. 559-566.

Networking for Pervasive Computing NIST Special Publication 500-259

Rose et al. 214

Self-Managed Leasing for Distributed Systems

Kevin Bowers

Renssalaer Polytechnic Institute

bowerk@rpi.edu

Kevin Mills, Steve Quirolgico, and Scott Rose
National Institute of Standards and Technology

{kmills, steveq, scottr}@nist.gov

ABSTRACT
We describe an adaptive algorithm that enables a distributed
Jini enabled system, given a fixed allocation of resources, to
vary lease periods to achieve the best responsiveness.

Keywords
algorithm, self-managing, performance, Jini, leasing

1. INTRODUCTION
Distributed systems require strategies to detect and recover
from failures. One commonly used strategy employs a
leasing mechanism, where a node grants a leaseholder access
to a resource for a limited time (the lease period). Once the
resource is no longer needed, the leaseholder may relinquish
its lease. If the resource is needed beyond the original lease
period, then the leaseholder can renew the lease by
requesting additional lease periods. If the leaseholder does
not renew before expiration of the lease period, the lease
grantor assumes leaseholder failure and terminates the lease.

Choosing an appropriate lease period entails tradeoffs among
resource utilization, responsiveness, and number of
leaseholders. We explore these issues in the context of
service-discovery protocols, which allow distributed
software components to discover each other and compose
themselves into assemblies. Though several service-
discovery protocols currently exist [e.g., 1-3], [5] we
selected Jini Network Technology [1] to demonstrate our
ideas, because leasing plays a central role in registering Jini
services.

2. JINI LEASING
Jini defines an architecture that enables clients and services
to rendezvous through a third party, known as a lookup
service. A Jini service registers a description of itself with
each discovered lookup service.

A registering component requests registration for duration
LR, which may be accepted at time TG for a granted lease
period LG < LR. LR or may be any, which allows any value
for LG. To extend registration beyond LG, registering
components must renew the lease prior to an expiration time
TE = TG + LG; otherwise, registration is revoked. This cycle
continues until a Jini component cancels or fails to renew a
lease. Lookup services assign LG within a configured range,
LMIN < LG < LMAX. While a granted lease may not be revoked
prior to TE, lookup services may deny any lease request.

We can analyze performance of a Jini leasing system. Let SR
be lease-request size, SG be lease-grant size, and N be
number of leaseholders. Typically, a leaseholder and lookup
service exchange one request-grant pair per renewal cycle,
with rate 1/LG Hz. Assuming identical LG assigned for each
lease, bandwidth use (B) can be estimated as:

)()(GRG SSLNB +⋅= . Assuming constant SR and SG, B
increases linearly with N and decreases exponentially with
LG. Another metric, responsiveness, R, measures the latency
with which lookup services can detect leaseholder failure.
Assuming uniformly distributed failure times, then expected
responsiveness is 2GLR = ; thus, R is independent of N,
but B and R are related through LG.

These relationships can be used to constrain and predict
behavior of a leasing system. For example, assume known
requirements for R and B. The responsiveness equation can
be rewritten to determine LG [i.e., L]. Then, using LRG 2= G,
the bandwidth equation can be transformed to find maximum
system size [i.e.,)(GMAX LB ⋅= () GR SS +N]. With this
information, lookup services could grant lease periods < LG
to ensure required responsiveness, deny requested leases that
would consume an excess share of bandwidth, and deny
requests for leases once N reaches NMAX.

3. A SELF-ADAPTIVE ALGORITHM
FOR JINI LEASING

Assuming a leasing system must consume at most bandwidth
B and guarantee minimum average responsiveness RBEST, a
lookup service can grant a maximum lease period LMAX =
2RBEST. Given B, SR, and SG, we can determine a maximum
lease-renewal rate G = B / (SR + SG). For minimum system
size, NMIN = 1, the lookup service can grant a minimum
lease period LMIN = 1/G. While this value for LMIN respects
the bandwidth constraint, other factors should be considered.
For example, at LMIN = 1/G leaseholder processing burden

Networking for Pervasive Computing NIST Special Publication 500-259

Bowers et al. 215

might prove unacceptable. Instead, a leasing system might
constrain maximum responsiveness (RWORST), giving a
minimum lease period LMIN = 2RWORST. Knowing N, a
lookup service may select a suitable granted lease period
from a range (LMIN < LG < LMAX) using a simple algorithm.
First, compute LG = N/G. If LG > LMAX, then deny the lease;
otherwise, if LG < LMIN, then set LG = LMIN. Assigning LG
with this algorithm permits a leasing system to constrain B
and guarantee minimum average responsiveness (RBEST),
while providing the best responsiveness achievable (up to
RWORST) as N varies over 1..NMAX.

0

10

20

30

40

50

60

70

10 30 50 70 90 110 130 150 170 190

N (leaseholders)

R
 (s

)

0
200
400
600
800
1000
1200
1400
1600
1800
2000

B
 (b

yt
es

/s
)

R (LG = 120 s)

R (LG = 60 s)

R (LG = 15 s)

B (LG = 15 s)

B (LG = 120 s)

B (LG = 60 s)

0

10

20

30

40

50

60

70

10 30 50 70 90 110 130 150 170 190

N (leaseholders)

R
 (s

)

0
200
400
600
800
1000
1200
1400
1600
1800
2000

B
 (b

yt
es

/s
)

R (LG = 120 s)

R (LG = 60 s)

R (LG = 15 s)

B (LG = 15 s)

B (LG = 120 s)

B (LG = 60 s)

Fig. 1. System responsiveness (R) – left-hand y-axis – and
bandwidth usage (B) – right-hand y-axis – for three
granted lease periods (LG = 15 s, 60 s, and 120 s) as
system size increases (N = 10 to 200 leaseholders).

4. SIMULATION RESULTS
We coded an SLX discrete-event simulation [5] model of
Jini to confirm our analysis and to investigate dynamic
behavior of our self-adaptive algorithm. We conducted
simulation experiments, varying N from 10..200 and LG from
15..300 s in 15-s increments. We used SR = 128 and SG = 32
bytes. Figure 2 shows simulated results for average B and R
when LG = 15 s, 60 s, and 120 s. The simulation confirms
our analyses: (1) B increases linearly with N for a given LG
and decreases exponentially with LG for a given N and (2) R
= LG/2, independent of N. Next, we simulated our adaptive
leasing algorithm. Figure 3 illustrates how the algorithm
constrains B while improving R as system size decreases.

0

50

100

150

200

250

200 180 160 140 120 100 80 60 40 20

N (leaseholders)

B
 (b

yt
es

/s
)

0

5

10

15

20

25

30

35

40

R
 (s

)

B

0

50

100

150

200

250

200 180 160 140 120 100 80 60 40 20

N (leaseholders)

B
 (b

yt
es

/s
)

0

5

10

15

20

25

30

35

40

R
 (s

)

B

RR

Fig. 2. Responsiveness (R) – left-hand y-axis – and
bandwidth usage (B) – right-hand y-axis –as system size
decreases (N = 200 to 0 leaseholders).

5. IMPLEMENTATION
These promising results led us to implement our adaptive
algorithm in “reggie”, a publicly available implementation of
a Jini lookup service. Administrative actions occur through
the RegistrarAdmin interface, which is not part of the Jini
core specification, but a Sun extension to Jini. The
RegistrarAdmin interface allows basic monitoring,
configuration, and control of an operational lookup server
just as if it were any other type of Jini-enabled service.

To implement self-managed leasing, we modified the
“reggie” server code to assign lease-grant times (LG) based
on an administrator-assigned policy specified by two target
values: worst-case average failure responsiveness (RWORST)
and average bandwidth (B) allocated to lease renewal
transactions. We added a collection of access methods to the
RegistrarAdmin interface, allowing a Jini client to view: the
current LMIN, LMAX, and LG, the number of leaseholders (N)
on the server, the instantaneous average bandwidth (BAVG)
consumed by lease renewals, and the instantaneous average
failure responsiveness (RAVG).

Results from our live experiment are similar to the results we
obtained from simulations. For example, the behavior of
BAVG (Bandwidth) and RAVG (Responsiveness) were similar to
the simulation results when services were added, then
removed from the network.

6. FUTURE WORK
Given the performance tradeoffs and implementation costs,
we conclude that our simple adaptive leasing algorithm can
yield useful performance properties at little cost. We argue
that our adaptive leasing algorithm should also apply to
similar systems that employ leasing for resources, such as
UPnP event subscriptions [2]. The modifications are done
on the resource provider side, and any system that allows for
flexible lease times should be able to take advantage of this
algorithm.

7. REFERENCES
[1] Jim Waldo. “The JiniTM architecture for network-centric

computing”, Communications of the ACM, July 1999.
[2] Universal Plug and Play Device Architecture, Version

1.0, 08 Jun 2000 10:41 AM. © 1999-2000 Microsoft
Corporation. All rights reserved.

[3] Ken Arnold et al, The Jini Specification, V1.0 Addison-
Wesley, 1999. The latest version is available on the
web from Sun.

[4] James O. Henriksen, “An Introduction to SLXTM”
Proceedings of the 1997 Winter Simulation
Conference, ACM, Atlanta, Georgia, December 7-10,
1997, pp. 559-566.

[5] A. Ninan, P. Kulkarni, P. Shenoy, K. Ramamiritham,
and R. Tewari. “Performance: Cooperative Leases:
Scalable Consistency Maintenance in Content
Distribution Networks”, Proceedings of the eleventh
International Conference on World Wide Web, May
2002.

Networking for Pervasive Computing NIST Special Publication 500-259

Bowers et al. 216

An Autonomic Failure-Detection Algorithm*
K. Mills, S. Rose, S. Quirolgico

NIST
Mail Stop 892

Gaithersburg, Maryland 20899
1-301-975-3618

{kmills, scottr, steveq}@nist.gov

M. Britton
Southern Methodist University

1265 Columbine Lane
Salina, Kansas 67401

1-214-641-9914
mbritton@mail.smu.edu

C. Tan
Montgomery Blair High School

403 Branch Drive
Silver Spring, MD 20901

1-301-593-8132
cetan@mbhs.edu

ABSTRACT
Designs for distributed systems must consider the possibility that
failures will arise and must adopt specific failure detection
strategies. We describe and analyze a self-regulating failure-
detection algorithm that bounds resource usage and failure-
detection latency, while automatically reassigning resources to
improve failure-detection latency as system size decreases. We
apply the algorithm to (1) Jini leasing, (2) service registration in
the Service Location Protocol (SLP), and (3) SLP service polling.

1. INTRODUCTION
Recent research on failure detection and recovery in distributed
systems reports non-functional periods comprising two distinct
phases: periods when a system is unaware of a failure (failure-
detection latency) and periods when a system attempts to recover
from a failure (failure-recovery latency)[1]. Depending on system
architecture and assumptions about failure characteristics of
components, the study found failure-detection latencies covered
from 55% to 80% of non-functional periods. The study also
revealed failure detection can consume substantial overhead.
These findings suggest distributed systems could benefit from
failure detection algorithms that exhibit definite bounds on
latency and overhead. We define and analyze such an algorithm,
and then apply it to Jini leasing and to service registration and
polling in SLP.

2. AUTONOMIC FAILURE-DETECTION
Figure 1 illustrates a two-way heartbeat failure-detection
technique, where N monitorables each issue a rising heartbeat
(every HP seconds) to one monitor, which replies with a falling
heartbeat. Assuming rising and falling heartbeat messages of
known size (SR and SF, respectively), the system consumes
network bandwidth B = N (SR+SF)/HP. The monitor must process
N/HP heartbeat messages per second. The monitorable must
process 1/HP heartbeat messages per second.
Figure 2 defines the period of inconsistency when a monitorable
fails between heartbeats. Should a monitorable fail immediately
after receiving a falling heartbeat from a monitor, then the
maximum failure-detection latency (LMAX) is defined by the
heartbeat period, i.e., LMAX = HP. Assuming a monitorable is
equally likely to fail at any time, the average failure-detection
latency (LAVG) is half the heartbeat period, LAVG = HP/2.

For monitor failure, where detection occurs when the monitor
does not respond with a falling heartbeat, the situation differs
slightly. A monitorable may wait for some timeout period (TO)
before concluding the monitor has failed; thus, the maximum
detection latency for monitor failure is HP + TO, and the average
detection latency is HP/2 +TO.
We define an autonomic algorithm to limit bandwidth usage to an
allocated capacity (BA) and to limit average failure-detection

*This work is a contribution of the U.S. Government, not subject to
copyright. In addition, the work identifies certain commercial products
and standards to describe our study adequately. The National Institute of
Standards and Technology neither recommends nor endorses these
products or standards as best available for the purpose.

Figure. 1. Fundamental outlines of a two-way, heartbeat-
based, failure-detection technique.

MonitorMonitorable

Rising Heartbeat

Falling Heartbeat
TR

TF

TR + HP

FAILURE

DETECTIONLATENCY (L)

LAVG = HP / 2 LMAX = HP

Figure 2. Defining failure-detection latency for
heartbeat-based failure-detection techniques.

HP = heartbeat period

Monitor

Rising Heartbeat

Falling Heartbeat

Rising Heartbeat

Falling Heartbeat

Rising Heartbeat

Falling Heartbeat

.

.

.

N = number of Monitorables

TR

TF

TR + HP

TF + HP

TR + i * HP

TF + i * HP

SR = size of rising heartbeat
SF = size of falling heartbeat

Bandwidth Usage (B)
B = N (SR + SF) / HP

TR = time of rising heartbeat TF = time of falling heartbeat

Monitorable

Networking for Pervasive Computing NIST Special Publication 500-259

Mills et al. 217

latency (to LWORST), while reducing average failure-detection
latency (LAVG < LWORST) to some lower bound (LBEST) when the
number of monitorables (N) falls below system capacity (NMAX).
We modify the two-way heartbeat technique so that the monitor
includes a heartbeat period (HP) in each falling heartbeat. The
monitorable uses HP to determine when to issue the next rising
heartbeat. The monitor may vary HP with each falling heartbeat to
maintain an operating range defined by three policy goals: the
average failure-detection latency in the worst (LWORST) and best
(LBEST) cases and the allocated bandwidth (BA).

Assuming N monitorables, the monitor varies the heartbeat period
(HMIN < HP < HMAX) using the algorithm in Figure 3.The
maximum heartbeat period (HMAX) is set to twice the worst-case
average failure-detection latency (HMAX = 2 LWORST). Given HMAX
and the monitor’s capacity [C = BA/(SR + SF)], a monitor can
watch at most NMAX = HMAX C monitorables. Assuming a monitor
watches at least one monitorable, a natural choice for HMIN would
be 1/C; however, this heart rate might place too great a load on
individual monitorables. Instead, we choose a best-case goal
(LBEST) for average failure-detection latency and set HMIN = 2
LBEST. HMIN establishes a lower bound on failure-detection latency.

Below, we report analytical results as time-series plots (time
increases from 0 to 400) with N first increasing to 200, and then
decreasing back to 0. In all plots (Figure 4) we assume the same
heartbeat sizes (SR = 128 bytes and SF = 64 bytes) and policy
goals (LWORST = 30 s, LBEST = 7.5 s, and BA = 576 bytes/s). The top
plot shows our algorithm limits monitor workload to NMAX, while
the second plot illustrates our algorithm adjusting HP between
HMIN and HMAX as N varies. The third plot shows how average
bandwidth increases and decreases but never exceeds allocated
bandwidth (BA). The bottom plot illustrates how our algorithm
improves average failure-detection latency (L) as N decreases
(ticks 200 to 400), while average failure-detection latency never
exceeds the worst (LWORST) and best (LBEST) cases.

3. SAMPLE APPLICATIONS
We apply our algorithm to selected functions in two service-
discovery protocols: Jini [2] and the Service Location Protocol
(SLP) [3]. Jini enables clients and services to rendezvous
through a third party, known as a lookup service. Each Jini
service registers a description of itself with each discovered
lookup service, and requests a lease duration (LR), which may be
accepted at time TG for a granted lease period LG < LR. LR may be
“any”, which allows a lookup service to assign any value for LG.
To extend registration beyond LG, services must renew the lease
prior to an expiration time TE = TG + LG; otherwise, registration is

revoked. This cycle continues until a service cancels or fails to
renew a lease. Lookup services assign LG within a configured
range, LMIN < LG < LMAX. While a granted lease may not be
revoked prior to TE, lookup services may deny any lease request.

if new monitorable then N++;
HP = N / C;
if HP > HMAX

then N--;
 raise capacity exception;

elseif HP < HMIN
 then HP = HMIN ;

 endif
endif

Figure 3. Autonomic algorithm to vary heartbeat period.

Figure 4. Time-series plots from an analytical model of
the proposed autonomic failure-detection algorithm.

0

25

50

75

0 100 200 300 400

Time

H
ea

rt
be

at
 P

er
io

d
(H

P
) i

n
Se

co
nd

s

HMIN HMIN

HMAX

HP HP

0

25

50

75

0 100 200 300 400

Time

H
ea

rt
be

at
 P

er
io

d
(H

P
) i

n
Se

co
nd

s

HMIN HMIN

HMAX

HP HP

0

100

200

300

400

500

600

0 100 200 300 400

Time

B
an

dw
id

th
 C

on
su

m
pt

io
n

(B
) i

n
B

/s

B B

BA

0

100

200

300

400

500

600

0 100 200 300 400

Time

B
an

dw
id

th
 C

on
su

m
pt

io
n

(B
) i

n
B

/s

B B

BA

0

50

100

150

200

0 100 200 300 400
Time

N N

NMAX

N
um

be
r o

f M
on

ito
ra

bl
es

(N
)

0

50

100

150

200

0 100 200 300 400
Time

N N

NMAX

0

50

100

150

200

0 100 200 300 400
Time

N N

NMAX

N
um

be
r o

f M
on

ito
ra

bl
es

(N
)

0

8

16

24

32

40

0 100 200 300 400
Time

Fa
ilu

re
-D

et
ec

tio
n

La
te

nc
y

(L)
 in

 S
ec

on
ds

LBEST

L

LWORST

0

8

16

24

32

40

0 100 200 300 400
Time

Fa
ilu

re
-D

et
ec

tio
n

La
te

nc
y

(L)
 in

 S
ec

on
ds

LBEST

L

LWORST

Networking for Pervasive Computing NIST Special Publication 500-259

Mills et al. 218

We apply our algorithm to enable Jini lookup services to vary LG
within a bounded range (LMIN < LG < LMAX) while limiting
resource consumption associated with lease renewal. The
mapping is straightforward. Assuming three policy goals,
bandwidth allocated (BA) and worst (LWORST) and best (LBEST)
failure-detection latencies, we compute LMIN = HMIN = 2 LBEST
and LMAX = HMAX = 2 LWORST. Knowing the size of the rising (lease
request) and falling (lease grant) heartbeats (SR and SF,
respectively), leasing capacity (C) is computed as before.
Knowing the number of registered services (N), a Jini lookup
service uses the algorithm in Figure 3 to compute HP and then
uses that value as the granted lease period (LG = HP). If the new
lease would exceed system capacity, then the lookup service
issues a LEASE_DENIED exception.

To verify our analysis, we implemented our algorithm in a Jini
simulation and compared simulation results against analytical
predictions, given a selected set of policy goals and known sizes
for Jini messages. We subsequently implemented our algorithm in
a publicly available implementation of the Jini lookup service.
We modified the lookup service code to accept our policy goals
and to measure and report average bandwidth usage (B), the
number of registered services (N), and the value for LG. We
deployed our modified Jini lookup service in a test bed built to
control and monitor thousands of Jini services. We coded a
measurement client to detect service arrivals and departures,
computing average failure-detection latency (L). We measured
behavior of a live Jini system using the same policy goals selected
for analysis and simulation. We report our results in Figure 5 as
four time-series plots, where we used the same protocol
parameters (SR = 350 bytes and SF = 350 bytes) and policy goals
(BA = 2100 bytes/second, LBEST = 7.5 seconds and LWORST = 1200
seconds, and so NMAX = 7200) for the analysis, the simulation
(1000 repetitions per data point), and the live system (20-30
repetitions per data point).

SLP Service Registration. SLP enables clients, called user agents
(UAs), and services, called service agents (SAs), to rendezvous
through a third party, known as a directory agent (DA). A SLP
SA registers a description of itself with each discovered DA. A
UA may query any discovered DAs to find services of interest
and to obtain attributes that describe services.

A SA requests registration for a time-to-live (TTLR), which may
be accepted by a DA at time TG. To extend registration beyond
TTLR, the registering SA must renew the registration prior to an
expiration time TE = TG + TTLR; otherwise, the DA revokes the
registration. This cycle continues until the SA cancels or fails to
refresh a registration. While an accepted registration may not be
revoked prior to TE, a DA may deny any registration request. A
DA will always deny a registration request when TTLR is too
small, as determined by comparing the TTLR against a minimum-
refresh interval (RFMIN) included within advertisements multicast
by the DA at a periodic rate (DABEAT). We apply our algorithm to
provide SLP service registration with rapid feedback, eliminating
the need for RFMIN.

We add a field (TTLG) to the SrvAck message, used by DAs to
acknowledge service-registration (SrvReg) messages from SAs.
Then, a DA can ignore TTLR and instead compute a granted time-
to-live (TTLG), which can vary dynamically within a bounded
range (TTLMIN < TTLG < TTLMAX) while limiting resource
consumption associated with refreshing service registrations. The

mapping is straightforward. Assuming our three policy goals,
bandwidth allocated (BA) and worst (LWORST) and best (LBEST)
failure-detection latencies, we compute TTLMIN = HMIN = 2 LBEST
and TTLMAX = HMAX = 2 LWORST. Knowing the size of the rising
(SrvReg) and falling (SrvAck) heartbeat messages (SR and SF,
respectively), registration capacity (C) is computed as before.

0

25

50

75

0 100 200 300 400
Time

Le
as

e
Gr

an
t P

er
io

d
(L

G)
 in

 s
ec

on
ds

0

25

50

75

0 100 200 300 400
Time

Le
as

e
Gr

an
t P

er
io

d
(L

G)
 in

 s
ec

on
ds

0

500

1000

1500

2000

2500

0 100 200 300 400

Time

Ba
nd

wi
dt

h
Us

ed
 (B

) i
n

By
te

s/
Se

co
nd Simulation

Analysis

Measurement

0

500

1000

1500

2000

2500

0 100 200 300 400

Time

Ba
nd

wi
dt

h
Us

ed
 (B

) i
n

By
te

s/
Se

co
nd Simulation

Analysis

Measurement

0

10

20

30

40

0 100 200 300 400
TimeFa

ilu
re

-D
et

ec
tio

n
La

te
nc

y
(L

) i
n

Se
co

nd
s

Simulation

Analysis

Measurement

0

10

20

30

40

0 100 200 300 400
TimeFa

ilu
re

-D
et

ec
tio

n
La

te
nc

y
(L

) i
n

Se
co

nd
s

Simulation

Analysis

Measurement

Nu
m

be
r o

f R
eg

is
te

re
d

Se
rv

ic
es

 (N
)

0

50

100

150

200

0 100 200 300 400
Time

Nu
m

be
r o

f R
eg

is
te

re
d

Se
rv

ic
es

 (N
)

0

50

100

150

200

0 100 200 300 400
Time

Figure 5. Time-series plots showing application of
autonomic failure-detection to Jini leasing procedures

Networking for Pervasive Computing NIST Special Publication 500-259

Mills et al. 219

Knowing the number of registered services (N), a DA can use the
algorithm in Figure 3 to compute HP and then use that value as the
granted time-to-live (TTLG = HP). If a new registration would
exceed system capacity, then the DA issues the SrvAck with a
status code of DA_BUSY_NOW.

To verify our analysis, we implemented our algorithm in a SLP
simulation and compared simulation results against analytical
predictions. We report our results in Figure 6 as four time-series
plots, where we used the same protocol parameters (SR = 76 bytes
and SF = 56 bytes) and policy goals (BA = 396 bytes/s, LBEST = 7.5
seconds and LWORST = 500 seconds) for the analysis and the
simulation. Setting LWORST = 500 seconds and BA = 396 bytes/s
provides a maximum system capacity of NMAX = 3000 registered
services. In the main, Figure 6 shows a close correspondence
between analytical predictions and simulation results; however,
the bandwidth-usage simulation plot (as well as the bandwidth-
usage simulation plot for Jini leasing procedures - recall Figure 5)
illustrates a hysteresis within the control loop of our proposed
algorithm. During periods of increasing system size, the algorithm
typically assigns a heartbeat period that immediately becomes too
small for the now increased system size, and will only be able to
reduce the heartbeat period one monitorable at a time, as each
previously assigned heartbeat expires. This lag causes the
algorithm to slightly overshoot the allocated bandwidth. The
larger the heartbeat message size the greater the overshoot. For
example, the Jini plot (700 bytes per heartbeat) overshoots
allocated bandwidth more than the SLP plot (132 bytes per
heartbeat). However, the downward slope in the bandwidth-usage
simulation plots (as system size increases from 50 to 200)
suggests that the algorithm will stabilize bandwidth usage at the
allocated bandwidth once the system size stabilizes.

SLP UA Polling. SLP UAs must poll DAs periodically to learn
about service arrivals and departures or about changes in attribute
values of service descriptions. SLP includes no mechanisms
through which DAs can control the polling rate of UAs. We can
modify DA procedures to determine which UAs are polling a DA,
and then we can apply our algorithm to assign polling intervals to
those UAs. First, we explain the modified DA procedures.

When a UA queries a DA, either using a service-request (SrvRqst)
or attribute-request (AttrRqst) message, we modify the DA
procedures to lookup the UA in a local DA cache. If the UA is not
found, then the DA creates a new cache entry for the UA;
otherwise, the DA uses the existing cache entry. The DA grants
the cache entry a polling interval (PG), which can vary
dynamically within a bounded range (PMIN < PG < PMAX) while
limiting resource consumption associated with UA polling. We
modify the format of the appropriate reply message, either the
service reply (SrvRply) or the attribute reply (AttrRply), to include
a field to hold PG for return to the UA. If the UA fails to issue
another query to the DA by the time PG expires, then the DA
purges the associated entry from the local cache of UAs. Upon
receiving PG in the reply message, the UA schedules its next poll
(if any) of the DA to occur slightly before PG expires.

The DA can use our algorithm to determine a suitable value for
PG. The mapping is straightforward. Assuming our three policy
goals, bandwidth allocated (BA) and worst (LWORST) and best
(LBEST) failure-detection latencies, we compute PMIN = HMIN = 2
LBEST and PMAX = HMAX = 2 LWORST. Estimating an average size for
the rising (SrvRqst or AttrRqst) and falling (SrvRply or AttrRply)

heartbeat messages (SR and SF, respectively), registration capacity
(C) is computed as before. Knowing the number of polling clients

(N), a DA can use the algorithm in Figure 3 to compute HP and

0

50

100

150

200

0 100 200 300 400
Time

Nu
m

be
r o

f R
eg

is
te

re
d

Se
rv

ic
es

 (N
)

0

50

100

150

200

0 100 200 300 400
Time

Nu
m

be
r o

f R
eg

is
te

re
d

Se
rv

ic
es

 (N
)

0

25

50

75

0 100 200 300 400
Time

Ti
m

e-
To

-L
iv

e
Gr

an
te

d
(T

TL
G)

 in
 S

ec
on

ds
0

25

50

75

0 100 200 300 400
Time

Ti
m

e-
To

-L
iv

e
Gr

an
te

d
(T

TL
G)

 in
 S

ec
on

ds

0

100

200

300

400

500

0 100 200 300 400
Time

Ba
nd

wi
dt

h
Us

ed
 (B

) i
n

By
te

s/
Se

co
nd

Analysis

Simulation

0

100

200

300

400

500

0 100 200 300 400
Time

Ba
nd

wi
dt

h
Us

ed
 (B

) i
n

By
te

s/
Se

co
nd

0

100

200

300

400

500

0 100 200 300 400
Time

Ba
nd

wi
dt

h
Us

ed
 (B

) i
n

By
te

s/
Se

co
nd

Analysis

Simulation

0

10

20

30

40

0 100 200 300 400
Time

Fa
ilu

re
-D

et
ec

tio
n

La
te

nc
y

(L
) i

n
Se

co
nd

s

0

10

20

30

40

0 100 200 300 400
Time

Fa
ilu

re
-D

et
ec

tio
n

La
te

nc
y

(L
) i

n
Se

co
nd

s

Figure 6. Time-series plots showing application of
autonomic failure-detection to SLP service-

registration refresh procedures

Networking for Pervasive Computing NIST Special Publication 500-259

Mills et al. 220

then use that value as the assigned polling interval (PG = HP). If a
new polling UA would exceed system capacity, then the DA
issues the SrvRply or AttrRply with a status code of
DA_BUSY_NOW.

To verify our analysis, we implemented our algorithm in a SLP
simulation and compared simulation results against analytical
predictions, given a selected set of policy goals and estimated
sizes for SLP messages. We devised a specific polling algorithm.
Upon discovering a DA, a UA first issues one SrvRqst message
(receiving a SrvRply from the DA) and then an AttrRqst message
(receiving a AttrRply from the DA). The DA grants a PG only for
each AttrRply message, and the UA polls only with AttrRqst
messages. In other words, on initial discovery a UA and DA
exchange four messages (SrvRqst-SrvRply-AttrRqst-AttrRply), and
then the UA and DA periodically exchange two messages
(AttrRqst-AttrRply). We modified our analytical model to account
for these polling procedures.

We report our results in Figure 7 as four time-series plots, where
we used the same protocol parameters (average SR = 77 bytes and
average SF = 128 bytes) and policy goals (BA = 615 bytes/s, LBEST
= 7.5 seconds and LWORST = 500 seconds) for the analysis and the
simulation (1000 repetitions per data point). Setting LWORST = 500
seconds and BA = 615 bytes/s provided a maximum system
capacity of NMAX = 3000 registered services. For the simulation,
we sampled individual message sizes from a distribution for each
AttrRqst and AttrRply. The distribution parameters for an AttrRqst
were: 4 bytes minimum, 256 bytes maximum, 77 bytes average,
and 138 bytes variance. The distribution parameters for an
AttrRqst were: 64 bytes minimum, 224 bytes maximum, 128 bytes
average, and 25 bytes variance.

Figure 7 shows a close correspondence between analytical
predictions and simulation results, and also again illustrates the
hysteresis associated with the bandwidth-allocation control loop.
Here, the overshoot is worse than for SLP service registration
because the SLP polling heartbeat message sizes are greater (205
bytes on average compared with 132 bytes). The bandwidth-usage
overshoot is lower than for Jini leasing, however, because the SLP
polling heartbeat messages are smaller (205 bytes on average
compared with 350 bytes). Further, the overshoot for SLP polling
is somewhat exaggerated because the initial four-message
exchange prior to the polling heartbeats is included in the
bandwidth-usage during periods of increasing system size. This
can also be seen in the results from our modified analytical
model, which overshoots the allocated bandwidth (615 bytes/s).
This effect diminishes as the granted polling interval (PG)
increases, as can be seen in the downward slope in both the
analytical predictions and simulation results.

4. REFERENCES
[1] C. Dabrowski, K. Mills, and A. Rukhin A. Performance of

Service-Discovery Architectures in Response to Node
Failures, Proceedings of the 2003 International Conference
on Software Engineering Research and Practice (SERP'03),
CSREA Press, June 2003, pp. 95-101.

[2] K. Arnold et al, The Jini Specification, V1.0 Addison-
Wesley 1999. Latest version is 1.1 available from Sun.

[3] Service Location Protocol Version 2, Internet Engineering
Task Force (IETF), RFC 2608, June 1999.

Figure 7. Time-series plots showing application of
autonomic failure-detection to SLP UA polling

0

50

100

150

200

0 100 200 300 400
Time

Nu
m

be
r o

f P
ol

lin
g

Cl
ie

nt
s

(N
)

0

50

100

150

200

0 100 200 300 400
Time

Nu
m

be
r o

f P
ol

lin
g

Cl
ie

nt
s

(N
)

0

25

50

75

0 100 200 300 400
Time

Po
lli

ng
 In

te
rv

al
 G

ra
nt

ed
 (P

G)
 in

 S
ec

on
ds

0

25

50

75

0 100 200 300 400
Time

Po
lli

ng
 In

te
rv

al
 G

ra
nt

ed
 (P

G)
 in

 S
ec

on
ds

0

10

20

30

40

0 100 200 300 400
TimeFa

ilu
re

-D
et

ec
tio

n
La

te
nc

y
(L

) i
n

Se
co

nd
s

0

10

20

30

40

0 100 200 300 400
TimeFa

ilu
re

-D
et

ec
tio

n
La

te
nc

y
(L

) i
n

Se
co

nd
s

0

200

400

600

800

0 100 200 300 400
Time

Ba
nd

wi
dt

h
Us

ed
 (B

) i
n

By
te

s/
Se

co
nd Simulation

Analysis

0

200

400

600

800

0 100 200 300 400
Time

Ba
nd

wi
dt

h
Us

ed
 (B

) i
n

By
te

s/
Se

co
nd

0

200

400

600

800

0 100 200 300 400
Time

Ba
nd

wi
dt

h
Us

ed
 (B

) i
n

By
te

s/
Se

co
nd Simulation

Analysis

Networking for Pervasive Computing NIST Special Publication 500-259

Mills et al. 221

Performance Characterization of Decentralized Algorithms
for Replica Selection in Distributed Object Systems*

Ceryen Tan
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139
1-617-253-1000

ctan@mit.edu

Kevin Mills
National Institute of Standards and Technology

Gaithersburg, Maryland 20899
1-301-975-3618

kmills@nist.gov

ABSTRACT
Designers of distributed systems often rely on replicas for
increased robustness, scalability, and performance. Replicated
server architectures require some technique to select a target
replica for each client transaction. In this paper, we use
simulation to characterize performance (response time, selection
error, probability of server overload) for four common replica-
selection algorithms (random, greedy, partitioned, weighted)
when applied in a decentralized form to client queries in a
distributed object system deployed on a local network. We
introduce two new selection algorithms (balanced and balanced-
partitioned) that give improved performance over the more
common algorithms. We find the weighted algorithm performs
best among the common algorithms and the balanced algorithm
performs best among all those we considered. Our findings
should help designers of distributed object systems to make
informed decisions when choosing among available replica-
selection algorithms.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Distributed Programming

General Terms
Algorithms, Design, Measurement, Performance

Keywords
Distributed Object Systems, Replica Selection.

1. INTRODUCTION
Designers of distributed systems often rely on replicas for
increased robustness, scalability, and performance. Replication
appears in a growing range of applications, such as web services
[1-15], distributed object systems [16-20], grid systems [21-22],
and content distribution networks [25-26]. Replication systems
require that each client transaction be assigned to a specific
server replica for processing. Selection (or assignment)
algorithms aim to minimize client response time, to balance
server load, or to achieve a combination. Typical commercial
systems for server replication [10-15] allow a designer to choose
among several alternate selection algorithms; however, the
designer is given little quantitative information to aid in
choosing. At best, commercial systems outline heuristics to

differentiate among available algorithms. Even academic papers
[e.g., 1-9] do not give comprehensive quantitative results.

In this paper, we aim to help designers understand quantitative
performance differences (and underlying causes) among the
most common algorithms (random, greedy, partitioned, and
weighted) for replica selection. We also introduce two new
algorithms (balanced and balanced-partitioned), and compare
performance with the more common algorithms. We consider
three performance characteristics: average client response time,
probability of selection error, and probability of server overload.

Section 2 surveys common selection algorithms typically
implemented in commercial systems and identifies some
algorithms proposed by researchers. Section 3 explains the
design of our experiment, including performance metrics.
Section 4 presents simulation results, which are discussed in
Section 5. We conclude in Section 6.

2. REPLICA SELECTION
Our literature survey revealed two classes of replica-selection
algorithms. One class encompasses heuristically based,
statically configured algorithms. One static algorithm uses a
round robin approach [10,13,15] to rotate client transactions in
turn among replicas. A similar algorithm (using a uniform
distribution) randomly assigns [10,11,13] each client transaction
to one of the available replicas. These two algorithms assume
that each replica has similar processing power available and that
the mix of transaction types is congruent among the client
population. Absent these assumptions, the round robin and
random algorithms could perform poorly; however, no dynamic
measurements are needed for either algorithm. A third approach
uses a proportional algorithm [13,14], which distributes client
transactions among replicas in proportion to relative power
ratings assigned by a system administrator. This accounts for
variation in processing power when a server population consists
of heterogeneous platforms. Here, some information must be
collected (off-line) and encoded for use by the algorithm, which
cannot adapt should configuration information prove inaccurate
or transient. Our experiments investigate algorithms that
dynamically adjust assignment of client transactions based on
measured conditions; thus, we do not consider statically
configured approaches. We do simulate random assignment as a
baseline case.
A second class of selection algorithms dynamically assigns
client transactions based on measured conditions. The most
common approach, greedy selection, [3,7,9-11,14,18, 23-25]
assigns each transaction to the replica estimated to give best
performance against some metric (different systems adopt

*This work is a contribution of the U.S. Government and is in the public
domain. This work identifies certain commercial products and standards
to describe our study adequately. The National Institute of Standards and
Technology neither recommends nor endorses these products or
standards as best available for the purpose.
WOSP’05, July 12–14, 2005, Palma, de Mallorca, Spain.
ACM 1-59593-087-6/05/0007

Networking for Pervasive Computing NIST Special Publication 500-259

Tan & Mills 222

Startup delays cause
offset in Client
queries

Client issues next query 30 s after
receiving reply from previous queryClients

Clients and Directors
are paired

10 to 100*

in increments of 10
(*200 in selected cases)

60..75 s

NotesParameter ValueComponent

Each Server pushes
an update every 60 s,
but startup delays
cause update offsets

5 updates per minuteDirectors

Per Server - varied
every 60 s

Background Load is 25% to 99%
(i.e., capacity for queries is 75% to 1%)

Servers

Component
Workloads

Clients

Directors
Randomly selected
using a uniform
distribution

0…15 s
ServersComponent

Startup
Delays

Clients

Directors

Per run constant5Servers

Component
Quantities

Startup delays cause
offset in Client
queries

Client issues next query 30 s after
receiving reply from previous queryClients

Clients and Directors
are paired

10 to 100*

in increments of 10
(*200 in selected cases)

60..75 s

NotesParameter ValueComponent

Each Server pushes
an update every 60 s,
but startup delays
cause update offsets

5 updates per minuteDirectors

Per Server - varied
every 60 s

Background Load is 25% to 99%
(i.e., capacity for queries is 75% to 1%)

Servers

Component
Workloads

Clients

Directors
Randomly selected
using a uniform
distribution

0…15 s
ServersComponent

Startup
Delays

Clients

Directors

Per run constant5Servers

Component
Quantities

Table 1. Key Experiment Parameters

different metrics). Greedy selection exhibits a well-known
undesirable behavior where transactions oscillate in groups
among available replicas. To combat this “thundering herd”
effect, some systems incorporate a weighted algorithm
[1,8,9,11,15] that first estimates the performance of each replica
against a selected metric and then distributes client transactions
in proportion to the likelihood that each replica will provide
acceptable performance. Some systems first partition [1,2,5,15-
17,20] replicas (based on estimated performance against some
metric) into two groups, available and unavailable, and then,
using greedy [2,15,20], weighted [1], random [5,16], or
multicast [17] selection, assign client transactions among
replicas in the available group. Multicast selection sends a
transaction to every replica in the available set and uses the first
returned result. Our experiment investigates the performance of
three, common dynamic replica-selection algorithms: greedy,
weighted, and partitioned (with random assignment).
Most replica-selection systems that we examined adopt a
selection metric from one of two classes: client response time or
server load. Estimated response time, an ideal selection metric
from the client perspective, can be decomposed [17] as the sum
of communications delay (CD), server queuing delay (SQ), and
server processing time (SP). CD is important when clients access
replicas through the Internet. SQ is salient when a server is
heavily loaded. SP can dominate when transactions are
computationally intensive. From a server perspective, estimated
server load is an ideal selection metric. An alternative is
estimated server latency (SL), which can be decomposed as SQ +
SP, yielding a convenient relationship between response time
and server load. When CD is similar among all clients, SL
provides a reasonable approximation of relative response time.
When highly variable, CD should be measured independently.
Our experiments use SL as an estimator for client response times
because we simulate a distributed object system deployed on a
local network, where clients experience similar communication
delays.

3. EXPERIMENT DESIGN
We designed an experiment to meet the following objective:
Given a set of r replicas deployed in a local network and queried
periodically by c clients, characterize and compare performance
of alternate selection algorithms. Our experiments exhibit the
following constraints: (1) client-director pairs are deployed in a
decentralized architecture (see Figure 1), (2) replicas are
implemented as Jini lookup services, (3) each replica executes
on a distinct, but similar, server, (4) each server is shared with
other applications, and (5) replica state is piggybacked on
existing Jini multicast announcements. Below, we provide
details about the experiment architecture, key parameters, our
technique to vary processor availability, selection metric and
algorithms, and performance metrics.

3.1 Experiment Architecture
Figure 1 outlines the experiment architecture, which implements
five replicas, each simulating a Jini [27] lookup service and a set
of unrelated applications. Using Jini discovery and registration
procedures all Jini services (not shown) register a service
description with each replica. Each client periodically queries its
local director (that uses some selection algorithm) to determine
the address of a replica, and then queries the selected replica for

service descriptions. Each client query is initiated 30 s after
receiving a reply to the previous query (the first query is issued
after a random startup delay). Each replica periodically (every
60 s) multicasts a Jini announcement extended to include two
elements of replica state: (1) the number (N) of pending queries
and (2) the current query processing rate (Q).

3.2 Key Experiment Parameters
Table 1 summarizes key parameters in three classes: component
quantities, startup delays, and workloads. In most instances, an
experiment considers an increasing population of clients from
10 to 100 (in increments of 10); however, the balanced and
balanced-partitioned algorithms require 200 clients to
distinguish their performance. The (uniformly distributed)
random startup delays for servers and directors are required by
Jini, while higher startup delay for clients allows Jini discovery
and registration to complete before initiating client queries.
Each server reserves a minimum of 1% of its processing
capacity for client queries; however, as much as 75% may be
used for client queries, depending upon the server’s background
load, which we vary every 60 s.

3.3 Processor Availability
Table 2 exhibits parameters controlling variation in processor
availability. Each server reserves a minimum (BLMIN) and
maximum (BLMAX) percentage (25% to 99%) of its capacity to
process a background workload, which also defines a maximum
(CMAX) and minimum (CMIN) capacity (75% to 1%) each server
can devote to processing client queries. An unloaded server can
process QRATE = 4 queries/s (assuming a query can be processed
in QPTIME = 250 ms), which means that a loaded server’s query

Director

Client

What Replica?

This Replica 5
Server

Replicas

Push N & Q
every 60 s

Query Replica (30 s after previous Reply)

Reply From Replica

Typically from 10 to 100 Client/Director Pairs*

(increments of 10)

*200 Client/Director Pairs in selected cases

Figure 1. Experiment Architecture

Networking for Pervasive Computing NIST Special Publication 500-259

Tan & Mills 223

Table 2. Parameters Controlling Query Processing Rate

The maximum % that a Server’s query capacity can
increase between updates+20CI

Selected every 60 s from a discrete uniform distribution,
dC = discrete_uniform(CD, CI) . 0.01

–0.2 to +0.2dC

QRATE
. CMAX defines the rate at which a minimally loaded

Server can process queries3 queries/sQMAX

1/ QPTIME defines the rate (in queries per second) at
which an unloaded Server can process queries4 queries/sQRATE

QRATE
. CMIN defines the rate at which a maximally loaded

Server can process queries0.04 queries/sQMIN

Time to process a single query on an unloaded Server250 msQPTIME

Variation in
Server Query
Capacity

Bounds on
Server Query
Capacity

Bounds on
Server
Background
Load

Computed every 60 s, after selecting dC and computing
Ct (note that QMIN < Qt < QMAX)QRATE * CtQt

Computed every 60 s from new dC and previous C, but
constrained as follows: CMIN < Ct < CMAX

C t-1 + dCCt

The maximum % that a Server’s query capacity can
decrease between updates-20CD

1 - BLMAX defines the minimum % of each Server that can
be allocated to process Client queries0.01CMIN

1 - BLMIN defines the maximum % of each Server that can
be allocated to process Client queries0.75CMAX

Up to 99% of each Server may be allocated to process the
background workload0.99BLMAX

A minimum of 25% of each Server is reserved for
processing a background workload 0.25BLMIN

ExplanationValueParameter

The maximum % that a Server’s query capacity can
increase between updates+20CI

Selected every 60 s from a discrete uniform distribution,
dC = discrete_uniform(CD, CI) . 0.01

–0.2 to +0.2dC

QRATE
. CMAX defines the rate at which a minimally loaded

Server can process queries3 queries/sQMAX

1/ QPTIME defines the rate (in queries per second) at
which an unloaded Server can process queries4 queries/sQRATE

QRATE
. CMIN defines the rate at which a maximally loaded

Server can process queries0.04 queries/sQMIN

Time to process a single query on an unloaded Server250 msQPTIME

Variation in
Server Query
Capacity

Bounds on
Server Query
Capacity

Bounds on
Server
Background
Load

Computed every 60 s, after selecting dC and computing
Ct (note that QMIN < Qt < QMAX)QRATE * CtQt

Computed every 60 s from new dC and previous C, but
constrained as follows: CMIN < Ct < CMAX

C t-1 + dCCt

The maximum % that a Server’s query capacity can
decrease between updates-20CD

1 - BLMAX defines the minimum % of each Server that can
be allocated to process Client queries0.01CMIN

1 - BLMIN defines the maximum % of each Server that can
be allocated to process Client queries0.75CMAX

Up to 99% of each Server may be allocated to process the
background workload0.99BLMAX

A minimum of 25% of each Server is reserved for
processing a background workload 0.25BLMIN

ExplanationValueParameter

processing rate may vary from a minimum (QMIN) of 0.04
queries/s to a maximum (QMAX) of 3 queries/s.

Every 60 s each server updates capacity (Ct) for processing
queries, subject to a constraint that capacity may not change by
more than 20% (CD and CI bound the maximum percentage of
decrease and increase, respectively) from the previous capacity
(Ct-1). The updated capacity determines the current query-
processing rate (Qt). Figure 2 displays a two-hour time series
depicting the relationship between changes in available capacity
(Ct) – left-hand y-axis and query-processing rate (Qt) – right-
hand y-axis.

We assume each query requires similar processing, i.e.,
transactions are homogeneous. We also assume query-
processing rate remains stable between announcements because
the schedulers in the server operating systems allocate portions
of processor time to specific processes and periodically (each
minute here) adjust that allocation. We further assume that
communication delays will be insignificant (and similar)
because we simulate deployment in a local network.

3.4 Selection Metric and Algorithms
Directors select replicas based on estimated latency for each
server r (SLr). SLr = Nr/Qr, where Nr and Qr are the number of

queries pending and the query processing rate, respectively,
received in the most recent announcement from server r. Table 3
defines key elements of the notation we use in the following
description of our replica-selection algorithms.

Our baseline algorithm is random selection, where a director
selects one of the known replicas, with each replica having an
equal selection probability. Let S be the set of known server
replicas, and n be the number of known server replicas. The
director selects server replica si, where i is an integer selected
uniformly on the interval [1..n]. The greedy algorithm requires a
director to select the replica si with the lowest estimated server
latency (Ni/Qi).

In the partitioned (random selection) algorithm, a director first
uses the state information cached for each replica to subset S
into a set (A) of a available replicas with estimated server
latencies at or below a threshold (TQAVAIL). The director then
selects one replica (randomly) from A. If no replicas qualify for
set A, then the director selects a replica randomly from set S.

In the weighted algorithm, a director assigns each replica a
weight based upon the inverse of estimated server latency and
apportions the unit interval according to the weights. The
director then draws a random real number uniformly distributed
on the unit interval and selects the replica assigned to the
corresponding portion.

The greedy, partitioned, and weighted algorithms consider
estimated server latency (N/Q) as a unified metric; however,
replicas with similar server latency estimates could possess
different capacities to absorb work. This observation led us to
devise a balanced algorithm, where a director assigns each
replica a weight, based on the number of queries (di) required
for its server latency to reach the maximum estimated server
latency among all replicas. The director then apportions the unit
interval according to those weights and chooses a random real
number uniformly distributed on the unit interval, selecting the
replica assigned to the corresponding portion. Balanced
selection entails some probability that client transactions may be
assigned to overloaded replicas. For this reason, we devised a
balanced-partitioned variant, which first partitions replicas into
two subsets, available and unavailable, based on comparing
estimated server latency against TQAVAIL, and then uses the

Table 3. Notation for Defining Selection Algorithms

Number of additional queries needed for ith Server to match TQREFdi

Maximum estimated Server latencyTQREF

Set of Servers with additional queries needed to match TQREFD

Normalization factorK

Weight assigned to ith Serverwi

Set of Servers with weightsW

Number of available Serversa

Set of available ServersA

Server i is available when Ni / Qi < TQAVAILTQAVAIL

Number of queries/second that Server i can processQi

Number of queries backlogged at Server iNi

ith Serversi

Number of Serversn

Set of ServersS

ExplanationNotation

Number of additional queries needed for ith Server to match TQREFdi

Maximum estimated Server latencyTQREF

Set of Servers with additional queries needed to match TQREFD

Normalization factorK

Weight assigned to ith Serverwi

Set of Servers with weightsW

Number of available Serversa

Set of available ServersA

Server i is available when Ni / Qi < TQAVAILTQAVAIL

Number of queries/second that Server i can processQi

Number of queries backlogged at Server iNi

ith Serversi

Number of Serversn

Set of ServersS

ExplanationNotation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 10 19 28 37 46 55 64 73 82 91 100 109 118
Time (minutes)

C
t

0

0.5

1

1.5

2

2.5

3

3.5

Q
t

Ct

Qt

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 10 19 28 37 46 55 64 73 82 91 100 109 118
Time (minutes)

C
t

0

0.5

1

1.5

2

2.5

3

3.5

Q
t

Ct

Qt

Figure 2. Variations in Ct causing Variations in Qt

Networking for Pervasive Computing NIST Special Publication 500-259

Tan & Mills 224

0

30

60

90

120

10 20 30 40 50 60 70 80 90 100

Number of Clients

av
g R

T
(s

ec
on

ds
)

Random

Greedy

Partitioned

Weighted
0

30

60

90

120

10 20 30 40 50 60 70 80 90 100

Number of Clients

av
g R

T
(s

ec
on

ds
)

Random

Greedy

Partitioned

Weighted

0.00

0.05

0.10

0.15

10 20 30 40 50 60 70 80 90 100
Number of Clients

pr
ob

SE

Random

Greedy

Partitioned

Weighted
0.00

0.05

0.10

0.15

10 20 30 40 50 60 70 80 90 100
Number of Clients

pr
ob

SE

Random

Greedy

Partitioned

Weighted

0.00

0.05

0.10

0.15

0.20

10 20 30 40 50 60 70 80 90 100
Number of Clients

pr
ob

SO

Random

Greedy

Partitioned

Weighted

0.00

0.05

0.10

0.15

0.20

10 20 30 40 50 60 70 80 90 100
Number of Clients

pr
ob

SO

Random

Greedy

Partitioned

Weighted

Figure 3(a). Average Client Response Time for
Common Selection Algorithms

Figure 3(c). Probability of Server Overload for
Common Selection Algorithms

Figure 3(b). Probability of Selection Error for
Common Selection Algorithms

balanced algorithm to select a replica from among the available
subset. Where the available subset is empty, selection is made
using the balanced algorithm.

3.5 Performance Metrics
To compare performance among selection algorithms, we define
three metrics: average client response time (avgRT), defined in
Table 4, and probability of selection error (probSE) and server
overload (probSO), defined in Table 5.

4. SIMULATION RESULTS
We implemented our experiment as an SLXTM [28] simulation
of Jini lookup servers, services, clients, and directors, executing
a set of runs that each considered an increasing population of
clients, each supported by a director using one of the selection
algorithms defined in Section 3.4. Each client in each run
generated 1,000 queries, and each run was iterated 100 times;
thus, each data point observes c x 105 replica selections. Below,
we report results in two sets: the four common selection
algorithms and the two algorithms we invented.

Figures 3(a)-(c) plot performance (each graph displays a
different metric) under increasing load for the common selection
algorithms. Figures 4(a)-(c) plot performance for the balanced
and balanced-partitioned algorithms, where we increase beyond
100 clients in order to distinguish performance differences.
Figures 4(a)-(c) also include for comparison weighted selection,
the best performing of the common algorithms.

5. DISCUSSION
Our results show that selecting replicas based on information
yields superior performance over random selection, which may
assign transactions to overloaded replicas; thus leading to higher
response times and server latencies. One exception appears: the
“thundering herd” effect induced by greedy selection causes
higher variance in server latency (not shown), as transactions
descend en masse upon the best performing replica,

Table 5. Definition of Probability of Selection Error and
Probability of Server Overload

Probability of a selection error, computed as:probSE

Number of queries received by Server i when TQi > TQMAXNOi

Total number of queries received by Server iNTi

Probability a Server is overloaded, computed as:probSO

Total time during which Server i is upTUi

Total time during which TQi > TQMAX for Server i (observed
and updated upon arrival and departure of each query)

TOi

Server i is overloaded when TQi > TQMAX (here TQMAX = 50 s)TQMAX

Estimated time for Server i to clear its query backlog,
computed as Ni /Qi

TQi

Number of queries/second that Server i can processQi

Number of queries backlogged at Server iNi

Number of Serverss

DefinitionNotation

Probability of a selection error, computed as:probSE

Number of queries received by Server i when TQi > TQMAXNOi

Total number of queries received by Server iNTi

Probability a Server is overloaded, computed as:probSO

Total time during which Server i is upTUi

Total time during which TQi > TQMAX for Server i (observed
and updated upon arrival and departure of each query)

TOi

Server i is overloaded when TQi > TQMAX (here TQMAX = 50 s)TQMAX

Estimated time for Server i to clear its query backlog,
computed as Ni /Qi

TQi

Number of queries/second that Server i can processQi

Number of queries backlogged at Server iNi

Number of Serverss

DefinitionNotation

∑∑
==

s

i
Ui

s

i
Oi TT

11

/

∑∑
==

s

i
Ti

s

i
Oi NN

11

/

Time that Client i received a reply to its jth querytri,j

Number of queries sent by Client iqi

Number of Clientsc

DefinitionNotation

Time that Client i issued its jth querytqi,j

Average response time, computed as: avgRT

Time that Client i received a reply to its jth querytri,j

Number of queries sent by Client iqi

Number of Clientsc

DefinitionNotation

Time that Client i issued its jth querytqi,j

Average response time, computed as: avgRT
∑∑∑
== =

−
c

k
kji

c

i

q

j
ji qtqtr

i

1
,

1 1
, /)(

Table 4. Definition of Average Client Response Time

Networking for Pervasive Computing NIST Special Publication 500-259

Tan & Mills 225

transforming it to a poor performer. Bulk arrivals ensure that
information on which decisions were based becomes outdated
quickly.
Partitioning replicas into two sets (based on server latency) and
then selecting randomly among the less loaded set, provides
general improvement over greedy selection on all metrics.
Further, the advantage of partitioned selection increases with
client load. Spreading transactions evenly among replicas likely
to provide good performance does not rapidly push one
particular replica into overload. The general advantage of
partitioned (random) over greedy selection exhibits one
exception. Below 50 clients, servers have higher probability of
being overloaded with partitioned (random) selection because
the greedy algorithm assigns work in series – replica by replica
– causing the number of overloaded servers to increase more
slowly. Once all replicas reach saturation, the bulk arrival
process of greedy selection creates larger backlogs, while
partitioned selection spreads arrivals more evenly, allowing
servers to spend less time in overload.
Among the common algorithms, weighted selection provides the
best performance on all metrics. Weighted selection adapts to
changes in replica state without inducing rapid or large
fluctuations. Greedy selection stimulates large changes in
workload, pushing a selected replica away from the state that
led to its selection. The partitioned algorithm induces cyclic
oscillation in replica workload, but at a somewhat slower
frequency than greedy selection. Weighted selection tends
mainly to react to changes in replica state, while the greedy and
partitioned algorithms induce feedback that alters the state to
which they are reacting. This difference leads weighted
selection to exhibit more stable and desirable performance.
The balanced algorithm shares the reactive nature of weighted
selection but improves performance for two reasons. First,
balanced selection assigns more transactions to replicas with
greater available processing capacity. Second, using the replica
with the largest estimated server latency as the goal state
reduces pressure for upward movement in system-wide server
latency, and tends to reinforce downward movement. These
reasons also explain why the balanced-partitioned algorithm
performs well, up to a point. As the client population surpasses
100, performance degrades for the balanced-partitioned
algorithm because the set of replicas available diminishes,
forcing fewer replicas to receive more transactions. After load
reaches saturation, partitioning creates a bulk-arrival process
that pushes replicas into overload for longer periods. These
results indicate that adding a partitioning step could diminish
performance for an otherwise good selection algorithm.

6. CONCLUSIONS
We used simulation to characterize performance (response time,
selection error, probability of server overload) for four common
replica-selection algorithms (random, greedy, partitioned,
weighted) when applied in a decentralized form to client queries
in a distributed object system deployed on a local network. We
introduced two new selection algorithms (balanced and
balanced-partitioned) that give improved performance over the
more common algorithms. We found that weighted selection
performs best among the common algorithms and that balanced
selection performs best overall. We explained why greedy and

random algorithms should be avoided. We also provided
evidence that preceding selection with a partitioning step can
weaken an otherwise good selection algorithm.

Figure 4(c). Probability of Server Overload for New
(and Weighted) Selection Algorithms

0

1

2

3

4

5

6

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Num ber of Clients

av
g R

T
 (s

ec
on

ds
)

W eighted

Balanced-Partitioned

Balanced

0

1

2

3

4

5

6

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Num ber of Clients

av
g R

T
 (s

ec
on

ds
)

W eighted

Balanced-Partitioned

Balanced

Figure 4(a). Average Client Response Time for New
(and Weighted) Selection Algorithms

0.00

0.01

0.02

0.03

0.04

0.05

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Num ber of Clients

pr
ob

SO

Balanced

Balanced-Partitioned

Weighted

0.00

0.01

0.02

0.03

0.04

0.05

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Num ber of Clients

pr
ob

SO

Balanced

Balanced-Partitioned

Weighted

0.00

0.01

0.02

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Num ber of Clients

pr
ob

SE

W eighted

Balanced-Partitioned

Balanced

0.00

0.01

0.02

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Num ber of Clients

pr
ob

SE

W eighted

Balanced-Partitioned

Balanced

Figure 4(b). Probability of Selection Error for New
(and Weighted) Selection Algorithms

Networking for Pervasive Computing NIST Special Publication 500-259

Tan & Mills 226

7. REFERENCES
[1] Rabinovich, M., Xiao, Z., and Aggarwal, A. Computing on

the Edge: A Platform for Replicating Internet Applications.
In Proceedings of the 8th International Workshop on Web
Content Caching and Distribution, (Hawthorne, New York,
September 29 through October 1, 2003).

[2] Lewontin, S. and Martin, E. Client Side Load Balancing for
the Web. In Proceedings of 6th International World Wide
Web Conference. (Santa Clara, California, April 7-11,
1997).

[3] Vingralek, R., Breitbart, Y., Sayal, M., and Scheuermann,
P. Web++: A System For Fast and Reliable Web Service.
In Proceedings of the USENIX Annual Technical
Conference. (Monterey, California, June 6-11, 1999).
USENIX Association.

[4] Sayal, M., Scheuermann, P., and Vingralek, R. Content
Replication in Web++. In Proceedings 2nd IEEE
International Symposium on Network Computing and
Applications. (Cambridge, Massachusetts, April 16 - 18,
2003). IEEE, p. 33.

[5] Fei, Z., Bhattacharjee, S., Zegura, E., and Ammar, M. A
Novel Server Selection Technique for Improving Response
Time of a Replicated Service. In Proceedings IEEE
INFOCOM 1998. (San Francisco, California, March 1998).
IEEE, pp. 783-791.

[6] Crovella, M. and Carter, R. Dynamic Server Selection in
the Internet. In Proceedings of the 3rd IEEE Workshop on
the Architecture and Implementation of High Performance
Communication Subsystems. (Mystic, Connecticut, August
1995).

[7] Carter, R. and Corvella, M. Server Selection using
Dynamic Path Characterization in Wide-Area Networks. In
Proceedings of INFOCOM 1997. (Kobe, Japan, April
1997).

[8] Cardellini, V., Colajanni, M. and Yu, P. Request
Redirection Algorithms for Distributed Web Systems.
IEEE Transactions on Parallel and Distributed Systems,
Vol. 14, No. 4, April 2003, pp. 355-368.

[9] Sayal, M., Breitbart, Y., Scheuermann, P. and Vingralek,
R. Selection Algorithms for Replicated Web Servers. In
Proceedings of the Workshop on Internet Server
Performance. (Madison, Wisconsin, June 1998).

[10] Connect Control Datasheet. Check Point Software
Technologies Ltd. 2003.

[11] Load Balancing System, Chapter 6 in Intel Solutions
Manual, Intel Corporation, pp. 49-67.

[12] Farrell, R. Review of Web server load balancers. Network
World, September 27, 1997.

[13] Load Balancing in a Cluster, WebLogic Server 7.0, bea.
[14] Configuring application server load balancing, Tarantella.
[15] Server Load Balancing. TechBrief from Extreme

Networks.
[16] Othman, O., O’Ryan, C. and Schmidt, D. The Design and

Performance of an Adaptive CORBA Load Balancing

Service. To appear in the “online” edition of the
Distributed Systems Engineering Journal. February 2001.

[17] Krishnamurthy, S. Sanders, W., and Cukier, M.
Performance Evaluation of a Probabilistic Replica
Selection Algorithm. In Proceedings of the Seventh IEEE
International Workshop on Object-Oriented Real-Time
Dependable Systems. (San Diego, California January 07 -
09, 2002).

[18] Shen, K., Yang, T., and Chu, L. Cluster Load Balancing for
Fine-Grained Network Services. In Proceedings of the
International Parallel and Distributed Processing
Symposium (IPDPS). (Fort Lauderdale, Florida April 15-
19, 2002).

[19] Waldvogel, M., Hurley, P., and Bauer, D. Dynamic Replica
Management in Distributed Hash Tables. IBM Research
Report RZ-3502, July 2003.

[20] Ferdean, C. and Makpangou, M. A Scalable Replica
Selection Strategy based on Flexible Contracts. In
Proceedings of the Third IEEE Workshop on Internet
Applications. (San Jose, California, June 23 - 24, 2003).

[21] Vazhkudai, S. Tuecke, S., and Foster, I. Replica Selection
in the Globus Data Grid. In Proceedings of the 1st
International Symposium on Cluster Computing and the
Grid. (Brisbane, Australia, May 15-18, 2001).

[22] Zhao, Y. and Hu, Y. GRESS – a Grid Replica Selection
Service. In Proceedings of the 15th International
Conference Parallel And Distributed Computing and
Systems. (Marina Del Ray, California, November 3-5,
2003).

[23] Fu, Z. and Venkatasubramanian, N. Combined Path and
Server Selection in Dynamic Multimedia Environments. In
Proceedings of the 7th ACM International Conference on
Multimedia (Part 1). (Orlando, Florida, 1999). ACM pp.
469-472.

[24] Guo, M. Ammar, M. Zegura, E. Selecting among
Replicated Batching Video-on-Demand Servers. In
Proceedings of the 12th International Workshop on
Network and Operating System Support for Digital Audio
and Video. (Miami, Florida, May 12-14, 2002).

[25] Huang, C. and Abdelzaher, T. Towards Content
Distribution Networks with Latency Guarantees. In
Proceedings of the 12th International Workshop on Quality
of Service. (Montreal, Canada, June 7-9, 2004).

[26] Krishnamurthy, B. Wills, C. and Zhang, Y. On the Use and
Performance of Content Distribution Networks. In
Proceedings of the ACM SIGCOMM Internet Measurement
Workshop. (San Francisco, California, November 1-2,
2001).

[27] Arnold, K. et al, The Jini Specification, V1.0 Addison-
Wesley 1999. Latest version is available from Sun.

[28] Henriksen, J. An Introduction to SLXTM. In Proceedings of
the 1997 Winter Simulation Conference. (Atlanta, Georgia,
December 7-10, 1997), pp. 559-566.

Networking for Pervasive Computing NIST Special Publication 500-259

Tan & Mills 227

SUMMARY OF CONTRIBUTIONS TO SERVICE DISCOVERY TECHNOLOGY

As part of the ITL research program in networking for pervasive computing, NIST researchers published
the first generic model encompassing the structure and behavior of first-generation service discovery
systems, and showed how that model can represent the designs for several, specific service discovery
systems. The model provides a deep analysis of the common elements and behaviors in modern service
discovery systems. NIST researchers also identified issues that designers should attempt to resolve in the
next generation of service discovery systems. NIST researchers proposed a set of service guarantees that
they believe service discovery systems should strive to satisfy, along with an analysis of the factors that
might interfere with meeting service guarantees. Such guarantees could be cast into test assertions that
serve to evaluate the behavior or measure the performance of designs and implementations of service
discovery systems. NIST researchers also identified and suggested possible solutions to performance
issues that can arise in service discovery systems. Identifying possible performance issues can alert users
to the potential for unexpected behavior when service discovery technology is deployed at large scale.
Further, implementers of service discovery systems can consider the suggested solutions when developing
software to embody related processes in a service discovery system. All of the contributions reported in
this special publication were provided to relevant standards bodies, consortia, and researchers in hopes of
improving the quality of the next generation of service discovery systems on which the service-oriented
architectures of tomorrow appear likely to depend.

Networking for Pervasive Computing NIST Special Publication 500-259

228

	NIST800-NetPC.pdf
	Paper25.pdf
	Keywords

