
Computer
Systems
Technology
U.S. DEPARTMENT OF
COMMERCE
Technology Administration

National institute of

Standards and
Technology

Nisr

i NIST Special Publication 500-229
.J

Z39,50 Implementation Experiences

Editors:

Paul Over

William E. Moen

Ray Denenberg

Lennie Stovel

NAT'L INST. OF STAND & TECH R.I.C.

AlllOM 7fl7S31

NIST

PUBLiCATlONS

-fag."
get

I

r

Z39.50
iitt Into

%s/

X and mx

4/

Ge„er.^»Stecorcl Syntax 1

The National Institute of Standards and Technology was established in 1988 by Congress to "assist industry

in the development of technology . . . needed to improve product quality, to modernize manufacturing processes,

to ensure product reliability . . . and to facilitate rapid commercialization ... of products based on new scientific

discoveries."

NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's

competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the

agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and

provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce,

industry, and education with the standards adopted or recognized by the Federal Government.

As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied

research in the physical sciences and engineering, and develops measurement techniques, test methods, standards, and

related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's

research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303. Major technical operating units

and their principal activities are listed below. For more information contact the Public Inquiries Desk, 301-975-3058.

Office of the Director
• Advanced Technology Program

• Quality Programs

• International and Academic Affairs

Technology Services
• Manufacturing Extension Partnership

• Standards Services

• Technology Commercialization

• Measurement Services

• Technology Evaluation and Assessment

• Information Services

Materials Science and Engineering
Laboratory
• Intelligent Processing of Materials

• Ceramics

• Materials Reliability'

• Polymers

• Metallurgy

• Reactor Radiation

Chemical Science and Technology
Laboratory
• Biotechnology

• Chemical Kinetics and Thermodynamics

• Analytical Chemical Research

• Process Measurements^

• Surface and Microanalysis Science

• Thermophysics^

Physics Laboratory
• Electron and Optical Physics

• Atomic Physics

• Molecular Physics

• Radiometric Physics

• Quantum Metrology

• Ionizing Radiation

• Time and Frequency'

• Quantum Physics'

Manufacturing Engineering Laboratory
• Precision Engineering

• Automated Production Technology

• Intelligent Systems

• Manufacturing Systems Integration

• Fabrication Technology

Electronics and Electrical Engineering
Laboratory
• Microelectronics

• Law Enforcement Standards

• Electricity

• Semiconductor Electronics

• Electromagnetic Fields'

• Electromagnetic Technology'

• Optoelectronics'

Building and Fire Research Laboratory
• Structures

• Building Materials

• Building Environment

• Fire Safety

• Fire Science

Computer Systems Laboratory
• Office of Enterprise Integration

• Information Systems Engineering

• Systems and Software Technology

• Computer Security

• Systems and Network Architecture

• Advanced Systems

Computing and Applied Mathematics
Laboratory
• Applied and Computational Mathematics^

• Statistical Engineering^

• Scientific Computing Environments^

• Computer Services

• Computer Systems and Communications^

• Information Systems

'At Boulder, CO 80303.

^Some elements at Boulder, CO 80303.

NIST Special Publication 500-229

Z39.50 Implementation Experiences

Editors:

Paul Over

Computer Systems Laboratory

National Institute of Standards

and Technology

Gaithersburg, MD 20899-0001

William E. Moen
School of Librar-y and Information

Sciences

University of North Texas

Denton, TX 76201

Computer Systems Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899-0001

September 1995

U.S. Department of Commerce

Ronald H. Brown, Secretary

Technology Administration

Mary L. Good, Under Secretary for Technology

National Institute of Standards and Technology

Arati Prabhakar, Director

Ray Denenberg

Z39.50 Maintenance Agency

Library of Congress

Washington, DC 20540

Lennie Stove!

The Research Libraries Group, Inc.

1200 Villa Street

Mountain View, CA 94041-1100

Reports on Computer Systems Technology

The National Institute of Standards and Technology (NIST) has a unique responsibility for computer

systems technology within the Federal government. NIST's Computer Systems Laboratory (CSL) devel-

ops standards and guidelines, provides technical assistance, and conducts research for computers and

related telecommunications systems to achieve more effective utilization of Federal information technol-

ogy resources. CSL's responsibilities include development of technical, management, physical, and ad-

ministrative standards and guidelines for the cost-effective security and privacy of sensitive unclassified

information processed in Federal computers. CSL assists agencies in developing security plans and in

Improving computer security awareness training. This Special Publication 500 series reports CSL re-

search and guidelines to Federal agencies as well as to organizations in industry, government, and

academia.

National Institute of Standards and Technology Special Publication 500-229
Natl. Inst. Stand. Technol. Spec. Publ. 500-229, 125 pages (Sept. 1995)

CODEN: NSPUE2

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1995

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402

Preface

ANSI/NISO Z39.50, a communications protocol for information retrieval in a client/server environment, is widely

implemented in the United States and increasingly in Europe - with interest growing elsewhere as well. Maintained

for ANSI/NISO by the Z39.50 Maintenance Agency at the Library of Congress, the standard is driven by the consen-

sus of its implementors as represented by the active members of the Z39.50 Implementors' Group (ZIG). The ZIG

exchanges information about implementation problems and solutions (e.g., through energetic discussion on the

Z39.50 list and at meetings), but until now, only a few members have found time to reflect on and write about their

experiences with implementing Z39.50.

While substantial explanatory material has been added to the Z39.50 standard in recent revisions, the protocol speci-

fication is not intended as a repository for supporting material such as discussions of how to get started, design alter-

natives, lessons learned, etc. But the need for such ancillary documentation increases as the standard grows and the

number of implementations rises. The following collection of papers on Z39.50 implementation experiences is

offered as a small contribution toward meeting this need in the hope that it will help new developers to build on the

work of more experienced Z39.50 implementors and encourage additional contributions of a practical nature to the

literature on Z39.50.

The first three papers draw on the authors' extensive experience with particular implementations to provide generic

guidance on designing and implementing Z39.50 clients and servers. In Z39.50for Full-Text Search and Retrieval

Margaret St. Pierre (Blue Angel Technologies) describes the construction of a minimally conformant client/server

and its modular extension. John Kunze (U.C. Berkeley and the U.S. National Library of Medicine) focuses in Basic

Z39.50 Server Concepts and Creation on some fundamental design decisions in implementing a basic server. Ralph

LeVan's (OCLC) article, Building a Z39.50 Client, provides a tutorial on building a Z39.50 client and includes sam-

ple source code.

The next two papers also offer generic guidance but with a narrower focus. In Implementing Explain Denis Lynch

(TRW Business Intelligence Systems) writes on how a Z39.50 server's Explain database can be used to help users

and clients discover and take advantage of a Z39.50 server's resources. Makx Dekkers's (Pica) contribution. Imple-

menting Z39.50 in a multi-national and multi-lingual environment, reflects on some of the problems encountered as

Z39.50, with its Anglo-American origins, is applied to information retrieval in an international environment.

The third group of papers discusses some publicly available resources that have grown out of particular implementa-

tions. Use ofZ39.50for Search and Retrieval of Scientific and Technical Information by Les Wibberley (Chemical

Abstracts Service) recounts the growing pains of Z39.50 in meeting the needs of scientific users and the development

of the Scientific and Technical Attribute Set (STAS). Kevin Gamiel's and Nassib Nassar's (CNIDR) article. Struc-

tural Components of the Isite Information System, outlines technical topics related to a publicly available open infor-

mation system (Isite) - in particular its document model.

The remaining four papers speak to design goals and implementation decisions in specific information retrieval appli-

cations using Z39.50. In Z39.50 - implications and implementation at the AT&T library network Robert Waldstein

(AT&T Bell Laboratories) looks at the changing expectations of users in one large corporate environment and the

development of the Z39.50 standard to meet those expectations. The Implementation ofZ39.50 in the National

Library of Canada 's AMICUS System by J. C. Zeeman (Software Kinetics Ltd.) describes the architecture of an inte-

grated bibliographic system including details about the modular search engine and the management of its interface to

a relational and a full-text database. Terry Sullivan and Mark Hinnebusch (Florida Center for Library Automation)

discuss the implementation of Z39.50 services to maximize platform independence in Developing a Multi-Platform

Z39.50 Service. Peter Ryall (Lexis-Nexis) writes in his article. Use ofZ39.50for the Delivery of Current Awareness

Products, about the application of a variety of Z39.50 services to help users deal with information overload.

Our thanks to all the authors for finding time to collect and refine their thoughts and to the other readers - Lennie

Stovel (The Research Libraries Group, Inc.) and Bill Moen (University of North Texas) - for their careful review of

the articles and many thoughtful suggestions for improvements.

Ray Denenberg (Z39.50 Maintenance Agency) Paul Over (NIST)

iii

Table of Contents

Z39.50 for Full-Text Search and Retrieval

Margaret St. Pierre 1

Basic Z39.50 Server Concepts and Creation

John A. Kunze 11

Building a Z39.50 Client

Ralph LeVan 23

Implementing Explain

Denis Lynch 49

Implementing Z39.50 in a multi-national and multi-lingual environment

Makx Dekkers 57

Use of Z39.50 for Search and Retrieval of Scientific and Technical Information

Les Wibberley 61

Structural Components of the Isite Information System

Kevin Gamiel andNassib Nassar 71

Z39.50 - implications and implementation at the AT&T library network

Robert K. Waldstein 75

The Implementation of Z39.50 in the National Library of Canada's AMICUS System

J. C. Zeeman 85

Developing a Multi-Platform Z39.50 Service

Terry Sullivan and Mark Hinnebusch 99

Use of Z39.50 for the Delivery of Current Awareness Products

Peter N.RyalL... Ill

V

>

V

i

I

),

\

Z39.50 for Full-Text Search and Retrieval

Margaret St. Pierre

Blue Angel Technologies

saint@bluangel.com

Abstract

For search and retrieval of full-text, image, and

multimedia information over a heterogeneous net-

work, a non-proprietary standards-based communi-

cations protocol is mandatory. In order for the proto-

col to achieve general acceptance and ubiquity

within the rapidly evolving world of distributed in-

formation access, it is imperative that the implemen-

tation of this protocol be simple and modular, yet

rich enough in functionality to meet the growing

demands of the information age.

This paper describes implementation experience

with the ANSI/NISO Z39.50-1995' information re-

trieval protocol as the communications protocol of

choice for distributed information access. The re-

quirement for simplicity is achieved with an imple-

mentation of a baseline set of Z39.50 services. The

described base-level functionality is sufficient to

demonstrate interoperable search and retrieval func-

tionality with a number of other Z39.50 implemen-

tations. The requirement for modularity and richness

in function is achieved through the incremental im-

plementation of features such as Generic Record

Syntax, Element Set Specification, and the Explain

Facility.

1 Introduction

The ANSI/NISO Z39.50-I995 Standard is the result

of a culmination of the many requirements of a large

number of contributing implementors. It was de-

signed to be a comprehensive information search and

retrieval protocol specification. The development of

a complete ANSI/NISO Z39.50-1995 implementa-

tion may at first appear to be a major undertaking. In

practice, most implementors begin with a simple

baseline implementation, verify interoperability

against other implementations, and then incremen-

tally expand in functionality with additional Z39.50

features. This paper describes how such an approach

can be used to develop a Z39.50 implementation for

use in the search and retrieval of full-text, image,

and multi-media information.

Section 2 provides a description of a baseline client

and server implementation, and provides recommen-

dations for modular additions of Z39.50 features to

this baseline. Section 3 introduces the modular addi-

tion of Generic Record Syntax (GRS) for supplying

structured database records. Section 4 covers the

requesting of structured database records using the

Element Specification Format (ESPEC). An exten-

sion for providing additional server-specific infor-

mation using the Explain Facility is described in

Section 5. Finally, Section 6 provides guidance for

additional modular extensions of Z39.50 functional-

ity.

This paper is one of a series of implementation pa-

pers put together by NIST (National Institute of

Standards and Technology) and the Z39.50 Mainte-

nance Agency. This paper does not address data

communications nor implementation tools. These

topics are covered in other papers in this series.

2 Baseline

Implementation

A baseline implementation of Z39.50 is a confor-

mant implementation as described in the confor-

mance section of the Standard (refer to Section 4.4.1

''General Conformance Requirements"). The only

requirements for minimal conformance are the Init,

Search, and Present Services, and the Type-1 query.

The section below provides guidance for creating a

simple baseline implementation, complete with ex-

ample pseudo-application protocol data units. This

baseline implementation should prove to be interop-

erable with most full-text Z39.50 implementations.

'ANSI/NISO Z39.50-1995 - Information Retrieval

(Z39.50): Application Service Definition and Protocol

Specification.

1

The main components of the baseline implementa-

tion are the Init, Search, and Present Services. These

services provide the ability to negotiate initialization

information, perform a search on a database, create a

result set of database records that match the query,

and retrieve one or more records from the result set.

The query is a simple Type-1 query containing a

single term, and database records are returned in a

result set as ASCII text, called Simple Unstructured

Text Record Syntax (SUTRS). Although the Stan-

dard supports the ability to include more than one

database in a Search Request, a baseline server im-

plementation need only support searching a single

database at a time. And finally, a conformant im-

plementation provides support for creating and ac-

cessing a single result set of database records, called

the default result set; support for multiple result sets

is optional and may be added at a later time.

An example of a simple Init Request sent by the cli-

ent is as follows:

protocolVersion : Version 1 and 2

options: Search and Present

preferredMessageSize : 50000

exceptionalRecordSize : 50000

These comprise the mandatory components of the

Init Request. For simplicity, the optional components

have been omitted. It is desirable, however, for in-

teroperability testing and usage statistics gathering,

to include an Implementation Id, Name, and Ver-

sion.^ The Init Response returned by the server in-

cludes the negotiated values of the Init Request pa-

rameters, and a Boolean flag indicating whether or

not the server accepts the connection.

Of the three services, the Search Service contains the

largest number of mandatory parameters. Some cli-

ent implementations expect to use the Search Re-

quest to obtain the first few of records in the result

set, commonly called a Piggybacked-Present, and

request additional records later using the Present

Service. Other client implementations request no

records during the Search Service, but instead use

the Present Service for the retrieval of all records.

The former approach may provide improved per-

formance, while the latter approach simplifies the

implementation.

A simple Search Request example follows:

smallSetUpperBound: 0

largeSetLowerBound: 1

mediumSetPresentNumber : 0

replacelndicator : true

resultSetName : "default"

databaseName : database name

query: Type-1

attributeSet: 1.2.840.10003.3.1

rpn: Operand

attrTerm: AttributesPlusTerm

attributes: (empty list)

term: octet string

For this Search Request, the client indicates that it

does not want any piggybacked records in the re-

sponse by setting the small set upper bound to 0 and

large set lower bound to 1 . It requests that the server

perform a search on a database whose name is data-

base name, where the search term is supplied as an

octet string. The example query is the simplest query

to formulate consisting of a Type-1 query, using the

Bib-1 attribute set, and containing a single operand,

no attributes, and a term. Most implementations use

the Bib-1 attribute set for providing a well-known set

of search access points, such as a Title or Author

search. As described in Section 5 (see also the Lynch

article in this series), the Z39.50 Explain Facility

provides a means for clients to discover the search

access points available on a specific server.

An example of a Search Response that may have

resulted from the above Search Request is shown

below:

resultCount: 15

numberOfRecordsRe turned: 0

nextResultSetPosition : 1

searchStatus

:

presentStatus

true (i.e. success)

success

^Some server implementors consider it anti-social if this

information is not included in an Init Request.

No records were returned since no records were re-

quested in the Search Request. The number of items

in the result set is 15, and the search completed suc-

cessfully. The next-result-set-position parameter is

not particularly useful, but is mandatory.

Finally, the Present Service provides a means for

retrieving records from the result set. ITie Present

Request optionally specifies an element set name and

preferred record syntax, which if not included, de-

2

fault to whatever the server selects. In a baseline

client implementation, it is best to explicitly specify

the preferred record syntax, since a server may select

a syntax not supported. The following sample Pres-

ent Request asks for the delivery of the first database

record in the result set as ASCII text by requesting a

preferred record syntax of SUTRS.

resultSetId: "default"

resultSetStartPoint : 1

numberOfRecordsRequested: 1

recordComposition : simple

elementSetNames : "F"

preferredRecordSyntax: 1.2. 840 . 10003 . 5 . 101

A full record is requested by specifying an element

set name of "F". Alternatively, the element set name

may be specified as "B", referring to a request for a

brief record. The information provided in a brief

database record is defined by the server. Typically a

brief record contains enough information for the user

to determine if the database record is of interest, and

if so, the client then requests the full database record.

Some server implementations treat a request for a

brief record as identical to a request for a full record,

and thus return the entire record. In any case, a

conformant server implementation must be able to

respond to requests for both the full and brief ele-

ment sets.

return a failed present status and a non-surrogate

diagnostic.^

Once the baseline implementation is completed and

interoperability has been verified against one or

more other implementations, optional functionality

omitted from the baseline may be added as needed.

Support for Bib-1 attributes. Boolean and proximity

operators, multi-database search, piggybacked pres-

ent, and named result sets can all be incrementally

added. The addition of many of these features to a

server implementation often depends on the func-

tionality available in the underlying search engine.

The client, on the other hand, should not be designed

to rely on the availability at any given server of these

additional features.

3 Sending Structured Data

In practice, many databases contain records com-

posed of both structured and unstructured informa-

tion. Often it is useful to be able to convey both

structured and unstructured information in a data-

base record to a client. An intelligent client can then

make wise use of this structured information, par-

ticularly when there is a need to compare common
components of the structured information across

databases residing on disparate servers over a wide-

area network.

A Present Response to the above request follows:

numberOfRecordsRet : 1

nextResultSetPosition : 2

presentStatus : success

records: list of NamePlusRecord

name: database name

record: external

direct-reference : 1.2. 840. 10003. 5. 101

encoding: single-ASNl-type

ANY: ASCII text of record

etc

.

Suppose, for example, each state in the U.S. is re-

sponsible for maintaining and serving its own data-

base of criminal records, where each criminal record

is made up of structured information such as the

criminal's name, birthdate, eye and hair color, date

of last offense, and some images such as a finger-

print and a photograph. In addition, the criminal

record may also contain less structured information,

such as a list of prior criminal offenses, police re-

ports, psychological history, etc. An investigator

researching a particular crime can then search across

any number of these databases and obtain a uniform

view of the structured data even though the data is

obtained from one more separately maintained serv-

ers.

This example details the successful return of a single

database record, where the database name must be

included only with the first record. If a server does

not support the requested element set name or pre-

ferred record syntax, a well-behaved server should

general, a diagnostic message may appear in place of a

record as a surrogate diagnostic, or in place of all rec-

ords as a non-surrogate diagnostic.

3

As another example, consider a storefront database

whose records contain items such as product name,

product description, cost, and cost unit (e.g. U.S.

Dollar, Japanese Yen). A bargain shopper client can

be designed to search any number of storefront data -

bases and to locate the top three suppliers providing

the best price.

Generic Record Syntax (GRS) is a Z39.50 record

syntax used to transfer database records containing

any amount of structured or unstructured informa-

tion from a server to a client. This section provides a

brief overview the various components of a generic

record, and provides a detailed example of how to

extend the baseline implementation to include GRS
records. For completeness, refer to Appendix ''RET:

Z39.50 Retrieval" of the Standard for a more thor-

ough examination of this topic.

Elements and Tags

A Generic Record is made up of one or more hierar-

chically organized elements, where an element is a

component of a database record. Each element is

tagged, where the tag acts as an identifier for the

element.

The tag associated with each element may be a nu-

meric or a string tag. When a numeric tag is used, it

reflects a common understanding between the server

and client regarding the meaning of the element as-

sociated with the numeric tag. The Standard pro-

vides two sets of numeric tags: a set of tags used for

meta-information about the record, called tagSet-M,

and a set of tags used for generic information called

tagSet-G. Examples of tags from the tagSet-M in-

clude Score and Date of Last Modification, whose

numeric values are 18 and 16, respectively. Exam-

ples of tags from the tagSet-G include Title and

Author, with numeric values of 1 and 2, respectively.

See Appendix ''TAG: TagSet Definitions and Sche-

mas" of the Standard for a complete definition of the

tag sets.

In contrast to a numeric tag whose meaning is in-

trinsically understood by both the client and the

server, a string tag conveys meaningful information

to the user (not to the client though) regarding the

associated element. In practice, a string tag is used

for tagging elements that may be only locally known

to a particular database or database record. String

tags provide an extensible means for including addi-

tional structured elements in a database record where

the elements are not commonly recognized or well-

known. For example, in an encyclopedia database

composed of a number of volumes of information,

each database record may contain an element with

string tag of "volume".

Database Schema

Each database is associated with a schema which

defines the collection of tags used in the database

records. Numeric tags may be selected from tagSet-

M or tagSet-G, or alternatively, they may be defined

specifically for a given database or set of databases.

When databases are designed to share a common
schema, even though the databases reside on differ-

ent servers over a wide-area network, the common
structured elements can be meaningfully compared.

A database schema for a criminal record or a store-

front could easily be defined using tags from tagSet-

M and tagSet-G, where applicable, and defining a

new set of tags where necessary.

At the time of this writing, there are two published

schemas, WAIS (Wide Area Information Servers)

and GILS (Government Information Locator Serv-

ice), that are well-known in practice and are used in

a number of databases today. The WAIS schema

makes use of tags from the tagSet-M and tagSet-G:

title, name, date, rank, score, local control number"*,

and URx'. It also makes provisions for database-

specific tags by allowing arbitrary string tags to be

used to define any additional elements of the data-

base record. A client searching across multiple data-

bases that use the WAIS schema can expect to obtain

the tags defined in the WAIS Schema, and thus the

client can present database records uniformly to the

user regardless of which server delivered the data-

base records. The WAIS schema was designed to be

general enough for use in most full-text databases.

For the GILS schema, a large number of government

agencies have agreed upon a set of data elements and

corresponding tags common to government infor-

mation locator records. A GILS record contains in-

formation about a specific source of government in-

''The local control number, or record identifier, is an

opaque string defined by the server that identifies the

record on that local server.

'a client may want to use the Uniform Resource Identifier

(URx) to identify and remove duplicate records, particu-

larly when a search is performed over multiple data-

bases residing on different servers. For example, if a

client is searching two databases containing records

gathered from a WebCrawler, there is a greater chance

of duplicated records.

4

formation. The WAIS and GILS schemas share

many of the same tags from tagSet-M and tagSet-G,

such as title, local control number, and URx. In ad-

dition, the GILS schema includes a GILS tagSet,

which contains tags such as the originating govern-

ment agency and government information distributor

name, organization and address.

Variants

Database information is often available in a number

of display formats, languages, character sets, etc.

Using GRS, element data can be made available in

one or more variants, where a variant is an alternate

representation of the same element data. For exam-

ple, in the criminal database, the police report ele-

ment may be available in both plain text, MS-Word,

and PDF formats. In a multilingual storefront data-

base, the product description element may be avail-

able in English, Spanish, and French. Variants pro-

vide a mechanism for capturing additional meta-

information about the available representations of

the element.

For a given element, each variant provided by a

server contains a variant identifier. The variant

identifier serves to distinguish a specific variant

from other variants of an element. The variant

identifier can be used by the client within a Present

Request to specify which variant of an element is

requested. The implementation example described

below demonstrates the use of the variant identifier

to obtain a specific variant of an element of a data-

base record.

Implementation Example

A natural extension to the baseline implementation

is the inclusion of a GRS module for delivery of

structured and unstructured information associated

with a database record. In practice, the delivery of

GRS records usually occurs in two main steps. In the

first step, the client requests a number of database

records, where each record contains only a small set

ofprimary elements, such as the title or author, and

a skeleton of the remainder of the record, which de-

scribes any additional elements that are available for

retrieval, but does not include the actual data. The

primary elements contain enough information about

the database record to allow the user to determine if

the other elements (described by the skeleton) of the

database record are of interest. If a specific element

of a database record is of interest, the second step is

the retrieval of a variant of an element of a database

record. Variations on this basic two-step process are

explored further in the next section.

Suppose, for example, a search resulted in a result

set of 100 database records. The first step might be

to request all the primary elements, a skeleton of the

remaining elements, and any available variant in-

formation. This is embodied in a request for the

"VARIANT' element set (that is, the element set

name "VARIANT' is statically defined to mean

"primary elements, skeleton of remaining elements,

and variant information"). An example of a Present

Request follows:

resultSetId: "default"

resultsetStartPoint : 1

numberOfRecordsRequested: 100

recordComposition : simple

elementSetNames : "VARIANT'

preferredRecordSyntax: 1.2. 840 . 10003 . 5 .105

where the preferred record syntax is now GRS. If a

server does not support GRS or the "VARIANT'
element set, it should return a present status of fail-

ure and a non-surrogate diagnostic. If the Bib-1 di-

agnostic code 227 is returned, meaning no data

available in requested record syntax, the client may
wish to revert to a Present Request with a preferred

record syntax of SUTRS. If the Bib-1 diagnostic code

25 is returned signifying that the specified element

set name is not valid for the specified database, the

client may instead try the "B" element set name.

Suppose that all 100 records are delivered in the

Present Response. An example of a Present Response

is shown below:

numberOfRecordsRet : 100

nextResultSetPosition : 0

PresentStatus : success

records: list of NamePlusRecord

name: database name

record: external

direct-reference: 1.2. 840. 10003. 6. 105

encoding: single-ASNl-type

ANY: generic record

record: external

etc.

5

A simple example generic record obtained from a

criminal database is provided below.

Tag

Type

Tag

Value

Content

2

generic

1

(title)

"John Doe"

1

meta

16

(dateOfLastMod)

"19950507080559"

J

local

" FingGirpirint

"

noDa taRe<jues ted

(NULL)

3

local

"Police Report" noDataReguested

(NULL)

3

local

"Photograph" noDataReguested

(NULL)

Other tagged elements could have also been supplied

depending on what information was stored in the

database. The title and dateOfLastMod contain con-

tent, whereas the skeleton elements, the fingerprint,

police report, and photograph do not. Instead, the

skeleton elements contain meta-data indicating sup-

ported variants. The main reason for not returning

the content associated with the skeleton elements is

that these elements tend to be large, and are often

available in more than one variant. Furthermore, the

user usually is initially interested in browsing the

brief data associated with the descriptive elements of

each record, and not the data associated with the

content elements of all records.

Suppose the police report is a 705,051 -byte MS-
Word document. The meta-data for this element

would contain a supported variant given as follows:

Variant

:

Triple 1:

Class

:

Type :

Value

:

Triple 2

Class

:

Type

:

Value

:

Triple 3

:

Class

:

Type:

Value:

triples

1 (variantid)

2 (variantid)

variant identifier

2 (BodyPartType)

1 (ianaType/subType)

"application/ms -word"

7 (Meta-data returned)

2 (size)

705051 bytes

where variant identifier uniquely identifies the vari-

ant for this element. It is useful to supply the client

with the size of the variant, particularly if the ele-

ment is large, as is often the case with multimedia

data.

A variant may also contain an optionally specified

variant set identifier (not to be confused with a vari-

ant identifier), which defines the classes, types, and

values that make up the variant. Refer to Appendix

"Var: Variant Sets" for the definition of the Variant-

1 variant set, identified by the object identifier

1.2.840.10003.12.1. In practice, it is assumed that

the variant set is Variant- 1, and thus the variant set

identifier is omitted from the variant.

If the client wishes to retrieve the variant associated

with this element, an example of a Present Request is

specified as follows:

resultSetId:

result setStartPoint

:

numberOfRecordsRequested

:

recordComposition

:

elementSetNames

:

preferredRecordSyntax

:

"default"

record number

1

simple

variant identifier

1.2.840.10003.5.105

For this example, record number is the position of

the requested record in the result set, and variant

identifier is the variant identifier string for the

"application/ms-word" variant of the "Police Rec-

ord" element. A Present Response to this request

would contain one GRS record, where the record

contains one tagged element. The content for the

element would contain the MS-Word version of the

"Police Record" element.

Tag

Type

Tag

Value

Content

3

iocaJ

"Police Report" MS-Word Document

(octet string)

Suppose an element larger than the negotiated ex-

ceptional record size is requested. In this case, the

server returns as much of the element as will fit into

the Present Response without exceeding the negoti-

ated exceptional record size. The server also in-

cludes, with the element meta-data, a target token: a

string created by the server to refer to the next piece

of the element. It is specified in GRS using Variant

Class 5 Piece, Type 7: target token.

For the client to retrieve the next piece of the ele-

ment, the element set name of the above Present Re-

quest is modified to use the target token.

6

resultSetId: "default"

resultsetStartPoint : record number

numberOfRecordsRequested: 1

recordComposition : simple

elementSetNames : target token

preferredRecordSyntax: 1.2. 840 . 10003 . 5 . 105

The GRS functionality presented in this section de-

scribes a simple set of features useful for extending

the baseline implementation to send structured data.

In addition to the described functionality, GRS in-

cludes a rich set of additional features that could be

incrementally added to enhance the quality of the

structured data, including hierarchically structured

records, usage restrictions, and search term high-

lighting.

4 Requesting Structured Data

There may be times when a client requires greater

control over requesting elements of a database rec-

ord. Suppose for example the client wishes to request

the title, author, and date of last modification from a

set of database records. This section describes

Z39.50 extensions enabling a client to request spe-

cific elements of a structured database record.

A constraint imposed by Version 2 is that the record

composition in the Present Request must be a simple

element set name. One way to allow the client to

request multiple elements in a Version 2 implemen-

tation would be for the server to define a new simple

element set name for the client to use in the Present

Request. For example, the server could define a new

element set name called "modzilla" that returns the

title, author, and date of last modification. Unfortu-

nately, this is not a generally extensible mechanism

for obtaining any arbitrary set of elements from a

database.

Another possibility is to define an element set name

that is made up of a list of requested elements sepa-

rated by spaces. The new element set name would

then be called "title author date". This approach is

also unacceptable since the element set name now

contains implicit structure, which is in violation of

the primitive nature required of the element set

name.

The ultimate solution is to upgrade the baseline im-

plementation to Version 3, and to use a record com-

position of complex in concert with Element Set

Specification (ESPEC). This enables the client to

explicitly request any number of elements from one

or more database records.

Upgrading the baseline implementation to Version 3

requires a modification to the Protocol Version pa-

rameter of the Init Request and Response. There are

a few other minor differences between Version 2 and

3, for example, in the specification of the query and

diagnostic record. For the most part, these differ-

ences are small and can be easily accommodated.

During the Present Request, the client can explicitly

request various components of a database record. An
example of a Present Request containing a complex

record composition is given below.

resultSetId: "default'

resultsetStartPoint: record number

numberOfRecordsRequested: 1

recordComposition: complex

selectAlternativeSyntax: true

generic

:

elementSpec

:

direct-reference

:

encoding:

ANY:

preferredRecordSyntax

:

externalEspec

1.2.840.10003 .11.1

single-ASNl-type

element spec

1.2.840.10003.5.105

A simple example of an element spec used to request

the title, author, and date of last modification fol-

lows:

Espec-l

:

elementRequest

:

simpleElement

:

tag

:

tagType

:

tagValue

:

simpleElement

:

tag:

tagType

:

tagType

:

simpleElement

:

tag:

tagType

:

tagValue

:

elements

simpleElement

TagPath

2 (generic)

1 (title)

TagPath

2 (generic)

2 (author)

TagPath

1 (meta)

16 (dateOfLastMod)

7

As with the baseline and GRS modules, the imple-

mentation of the ESPEC module could later be ex-

tended to include support for additional features of

ESPEC, such as requests for specific variants of an

element, hierarchical elements, wild things, and wild

paths.

5 Explaining the Server

When a client encounters a new server for the first

time, it is useful to be able to probe the server, for

example, to obtain a list of available databases, or a

list of search attributes or retrieval elements avail-

able for particular database. These capabilities are

particularly important for full-text databases where

search attributes and record structure may differ

from database to database. This section describes

how the Z39.50 Explain Facility can be used to ob-

tain information from a server. It describes how an

implementation of the Explain Facility can be devel-

oped on top of the baseline implementation and in-

crementally extended as needed.

The implementation of the Explain Facility is a logi-

cal extension of the existing search and present

services of the baseline implementation. It requires

the addition of a new database, called "IR-Explain-

7", a new set of search attributes (Exp-1), and a new

record syntax (Explain). Obtaining server informa-

tion amounts to formulating a Type-1 query using

the Exp-1 attributes, searching the IR-Explain-1

database, and retrieving Explain records.

Explain is made up of 15 categories, each of which

provides different information about the server. The

Targetlnfo category, for example, supplies general

information about the server, and the Databaselnfo

category supplies database-specific information. Be-

cause each category can be implemented independ-

ently, there is no need to provide support for all

categories, and new categories can be added as

needed. For interoperability, the CategoryList cate-

gory provides a convenient mechanism for a client to

determine what categories are supported by a server.

Below is an example of a non-piggybacked Search

Request of the IR-Explain-1 database. The query

uses the Exp- 1 attribute set, and requests the Catego-

ryList category from the Explain database.

smallSetUpperBound:

largeSetLowerBound

:

mediumSetPresentNumber

:

replacelndicator

:

resultSetName

:

databaseName

:

query:

attributeSet

:

rpn:

attrTerm:

attributes

:

attributeElement

:

attributeType

:

attributeValue

:

term:

0

1

0

true

"default"

IR-Explain-1

Type-1

1.2.840.10003.3.2

Operand

AttributesPlusTerm

1 (Use)

1 (ExplainCategory)

"CategoryList"

The above Search Request should result in at most a

single database record. An example of a Present Re-

quest for this record follows, where the preferred

record syntax is Explain.

resultSetId: "default"

resultsetStartPoint : 1

numberOfRecordsRequested : 1

recordComposition : simple

elementSetNames : "B"

preferredRecordSyntax: 1 . 2 . 840. 10003 . 5 . 100

A Present Response to the above request is:

numberOfRecordsRet : 1

nextResultSetPosition : 0

PresentStatus : success

records: list of NamePlusRecord

name: database name

record: external

direct -reference: 1.2. 840. 10003. 5. 100

encoding: single-ASNl-type

ANY: explain record

record: external

etc

.

where explain record is composed of a list of the

categories supported for this server.

8

An example of an Explain record containing the

CategoryList category is shown below.

explain record:

category list:

category info:

category

:

category info:

category:

category info:

category

:

category info:

category

:

category list

"CategoryList"

"Targetlnfo"

At tributeDetails"

"ElementSetDe tails'

From the information obtained in the CategoryList, a

client can determine what other categories are sup-

ported by the server. In the example shown, the Tar-

getlnfo, AttributeDetails, and ElementSetDetails

categories can now be obtained from the server. If

the server were to add support for additional catego-

ries at a later time, the client would be able to de-

termine this the next time it retrieves the Catego-

ryList category.

6 Additional Extensions

In summary, this paper has described a baseline im-

plementation of Z39.50 and how to incrementally

extend this baseline. Other features of Z39.50 can

also be implemented as modular extensions. For ex-

ample, if database security is a concern, the Access

Control Facility can be added without the need to

modify the original baseline (other than updating the

Options in the Init Service). Similarly, if sorting a

result set is a requirement, the Sort Facility can be

implemented and included as a separate module.

Because the capabilities are negotiated during the

Init, if a client or server does not support a particular

capability, interoperability is still guaranteed.

9

Basic Z39.50 Server Concepts and Creation

John A. Kunze

8 August 1995

University of California at Berkeley

and

U.S. National Library of Medicine

jak@ violet, berkeley.edu

ABSTRACT

The Z39.50 protocol is a standard network

language for searching and retrieving records

from remote databases. The Z39.50 client/server

session model provides multiple abstract views

of records, depending on whether searching,

retrieval, or element selection is taking place.

The underlying network stream that carries user

queries, database records, diagnostics, and proto-

col control information is structured according to

the Basic Encoding Rules (BER) as applied to

human readable specifications written in the

Abstract Syntax Notation, ASN. 1

.

Several important decisions face creators of

Z39.50 servers. Building the BER transport

mechanism may be done from scratch or with

software tools compiled from ASN.l. Develop-

ing a model for managing result sets (records

resulting from a query) is required by the stateful

nature of Z39.50. A switch may need to be

designed to route a query to one of several data-

base engines for resolution, depending on which

engine or database management system adminis-

ters the database(s) being searched. In order to

respond to search cancel requests, a server's

input system must be at least partially asynchro-

nous. Performance requirements may favor a

multi-threaded design over a simpler single-

threaded design.

Introduction

This paper leads network programmers through the

basic concepts and steps in setting up a networked

server that conforms to the Z39.50 standard for

searching and retrieving records from remote infor-

mation systems. Section 1 deals with concepts and

section 2 with creating the server.

The reader is presumed to be familiar with the

Z39.50-1992 specification [1] of the standard with

which we will be primarily concerned. Access to

the appendices of the Z39.50-1995 specification [2]

will also help round out some concepts that are used

but not made explicit in Z39.50-1992. This paper

supplements the standard with an eye to helping an

implementor build a simple server.

1. Z39.50 Concepts

1.1. The Main Parts of a Z39.50 System

A user interacts with a computer program, the

client , which exchanges network messages with a

remote computer program, the server. The client

acts on behalf of a user, which is often a person, but

is sometimes another program, for example, a CGI
script [3] that converts requests received by an

HTTP [4] server into requests suitable for a Z39.50

server (here the CGI script functions as a so-called

gateway). The server acts on behalf of one or more

information providers. So far this describes any

number of networked client/server systems, but a

critical distinguishing feature of a Z39.50 system is

11

the network messaging language, or protocol . In

this paper we will focus on the server of a Z39.50

protocol system.

A Z39.50 server program is itself a system of three

main parts. It contains a protocol engine which

manages the reading and writing of Z39.50 network

messages, known as PDUs (Protocol Data Units).

The server protocol engine is called to perform net-

work input or output by the control module , which

routes requests to and responses from one or more

database engines . A database engine executes

queries, creates search result sets, and stores them

for the purpose of returning records on demand,

often relying on a DBMS (database management

system) underneath it.

For some implementations it may be a goal to keep

the protocol engine, control module, and database

engine independent. In practice, however, this is

difficult because generalizing an access paradigm to

connect multiple communication styles up to multi-

ple search systems tends to require costly simplify-

ing assumptions or complex conversion mechanisms.

To the extent that independence is achieved, it

becomes easy to re-use the protocol engine with dif-

ferent DBMSs and to make a given database engine

accessible on the network via multiple protocols.

1.2. Basic Z39.50 Session Activities

A complete Z39.50 session may be anything from a

single request/response exchange of PDUs (network

messages) to a complex series of exchanges to refine

a set of search results before retrieval. The Z39.50

session itself is called an association , and it takes

place over a network connection whose set-up and

tear-down are described outside the standard in [5].

Note that this description ([5]) is not the one to

which the standard directs the reader, but it does

match the prevailing Internet implementation

environment. While Z39.50-1992 was conceived in

an OSI framework [6], current practice calls for a

TCP/IP transport [7]. This means that most imple-

mentors disregard Z39.50-1992 references to the OSI

concepts of Association Control Service Element

and Presentation Context (most of which have been

eliminated in Z39.50-1995). Important concepts

from OSI that remain valid for implementors are

ASN.l [8] and BER [9], whose roles are described

below.

Once a TCP connection is set up, a Z39.50 session

is established with a client Init request followed by a

server response indicating that the session connec-

tion is accepted. A session may be terminated sim-

ply by closing the TCP connection.

A client Search request contains a query that the

server executes to create a result set of records satis-

fying the query. A subsequent client Present request

asks the server to return some of the result set

records, selecting elements and structural layout

according to certain specifications. The server

returns records in a Present response. As an optimi-

zation, an initial subset of records may be returned

with the Search response, a feature informally called

"piggybacking."

In formulating a response that includes records (such

as for Present), a server performs Element Selection,

which is a process of deciding, often under client

direction, how to constitute a record before returning

it. The full record contains all relevant information,

including potentially large elements, such as an

image or the full text of a document. Element selec-

tion allows a client to glance at many records

through relatively small summary element sets

before requesting the full element set for those

records only that the client user wants to look at

more thoroughly. The idea is to minimize network

transmission by keeping the summary records small

enough for bulk transfer while anticipating that the

user, basing decisions on perusal of summary infor-

mation, will request only a few fully constituted

records.

Init, Search, and Present are the only top level proto-

col features needed for the basic server. No
advanced features such as Access Control and

Resource Control are required here, nor are any

features specific to Z39.50-1995, such as Explain

and Segmentation. All features described here con-

form to Z39.50-1992 and should work in Z39.50-

1995 implementations as well.

1.3. The Abstract Record

The term record in Z39.50 always refers to an

abstraction of a record that a server makes visible to

the world via Z39.50. By never referring to the

internal database record structure, Z39.50 avoids

confining applicability to any one particular DBMS,
but this then requires that the server implementor

12

develop a map between it and the abstract record.

An element is a component of a record. There are

few restrictions on elements. For example, a record

may contain any number of elements, including

zero, and its elements may overlap or repeat.

Similarly, there are few restrictions on records.

There is, however, an important unstated assumption

that any two records from the same database have a

similar configuration of elements. While wildly dif-

ferent sets of elements between two records would

leave a Z39.50 server operational, it would under-

mine predictability for the client, particularly in the

area of element selection.

For the purpose of this discussion, a server database

record has three personas - for Search, Element

Selection, and Present - and each persona comes in

several choices. This complexity is needed to

accommodate the different ways that a record can or

might be broken down, indexed, re-ananged, and

displayed. Again, the data personalities that a server

chooses to show are purely abstractions for external

consumption via Z39.50; they imply nothing about

layout or composition of the internal database

records behind them.

1.3.1. The Search Persona

A specific choice of Search persona defines Query

semantics. This is a collection of traits, accessible

elements, and expected behaviors for a database

when running a Query. For our purposes. Query

semantics are given by a text describing (a) some

numbers to use in referring to each data element that

might be searched and (b) a description of those ele-

ments. The text may be seen as a table with one

row per element; each row lists a concept and the

number(s) that Z39.50 needs to transmit a reference

to that concept.

This kind of table is called an attribute set . Dif-

ferent attribute sets show different public search

points for the same data. An attribute set called

Bib-1 was originally designed for searching biblio-

graphic data. Another attribute set called STAS-1

[10] is used for technical and scientific data (it

imports Bib-1). For the basic server implementor,

designing a search point table for each database

using the Bib-1 attributes is completely adequate.

The Bib-1 attributes are listed in appendices of both

the Z39.50-1992 and Z39.50-1995 specifications.

1.3.2. The Element Selection Persona

The Element Selection persona assumes a particular

division of a record into tagged elements, from the

point of view of retrieval. It is a collection of traits,

accessible elements, and expected behaviors for a

database when building up a retrieval record from

elements of the abstract record. In its fullest form as

specified in Z39.50-1 995, it is given by both a text

that dictates general structural rules (such as how

element hierarchies are formed) and, most impor-

tantly, a table listing each element tag next to a

description of it. Such a table is called a tag set.

Element selection takes place prior to laying out a

record for return. This is when a server, often under

client direction, decides which of the available ele-

ments to include. A client may request element

selection using an element specification that contains

either a named set (such as "F" for Full), a

sequence of element tags, or both. Whether to

include an element is ultimately up to the server and

depends on several factors, notably on delivery con-

straints dictated by the requested Present persona

(which is essentially the record syntax, described

below).

This discussion assumes the simplified element

selection mechanism described in Z39.50-1992,

which allows only named element sets but not indi-

vidual element tags. In particular, the basic server

need only define for each database its own element

sets corresponding to the names

F (Full) all available record elements, and

B (Brief) restricted set summarizing record.

1.3.3. The Present Persona

A specific choice of Present persona defines Infor-

mation semantics. This is a collection of traits,

accessible elements, and expected behaviors for a

database when requesting delivery of records. For

our purposes, Information semantics are given by (a)

a table describing the kind of information within

each data element that may be included in a returned

record and (b) a text describing the actual bit-level,

serialized layout (that is, in a network data stream,

not in memory) of those data elements. They are

called, respectively, (a) an Abstract Syntax and (b) a

Transfer Syntax.

13

A particular combination of these two is called a

record syntax . Different combinations provide dif-

ferent retrieved views of the same data. Note that

data elements that are searched may bear little rela-

tionship to elements that are returned.

The potential complexity in all this generality is

mitigated by the small number of abstract syntaxes

and the common practice of employing only one

transfer syntax per abstract syntax. The simplest is

SUTRS (Simple Unstructured Text Record Syntax),

which consists of one string designed to hold multi-

ple lines of text formatted by the server, thereby

greatly easing the display burden for the client

software. Another common syntax is USMARC
(United States MAchine Readable Catalog) [11],

used in many bibliographic systems. Basic servers

that deliver either or both of unstructured text and

bibliographic records need only consider supporting

these two syntaxes.

1.3.4. Merging Personas

One consequence of the abstract record having mul-

tiple personas is a powerful separation of Search,

Present, and Element Selection functions that

enables the kind of task-specific semantic mapping

among elements that large scale systems require.

Another consequence, however, is that the split per-

sonas define no sense of element equivalence

between personas unless the attribute sets and tag

sets are defined to draw an explicit relationship.

For example, in some systems a query on an Author

(Search persona) might return records with an

Author element (Present persona) containing data

that appears unrelated to the query term. This may
be because the match succeeded on other elements

that the server deemed related to Author, or because

the user's term was mapped to a synonym that

matched (e.g., Mark Twain may return Samuel Cle-

mens). In some information domains exact element

equivalence across personas would be useful.

One goal of STAS-1, which names both an attribute

set and a tag set, is to maintain element identity

between personas. While it does not require every

search, selection, and retrieval element to carry the

same tag for each database, it does allow the data-

base provider to preserve the correspondence when-

ever that may be meaningful.

1.4. The Roles of ASN.l and B£R
The text describing the Abstract Syntax (section

1.3.3a above) may include an abstract record struc-

ture specified in ASN.l (Abstract Syntax Notation 1)

[8]. ASN.l is not much more than a scheme for

writing down the kind of data structuring and typing

information afforded by most programming

languages, but it is abstract in that it is independent

of programming language and machine architecture.

The text describing how the Transfer Syntax (section

1.3.3b above) is used to represent the abstract syntax

may not be needed because as long as there is an

ASN.l specification, the bit-level serialized layout

can be derived from it. The rules for deriving the

layout in Z39.50 are called BER (Basic Encoding

Rules) [9]. The abstract syntax for SUTRS, simple

as it is, consists of exactly one ASN.l International-

String, which is a kind of character string that holds

any number of text lines. One particular abstract

syntax that does not include an ASN.l specification,

but instead relies on a separate text to describe the

transfer syntax, is USMARC [11].

From the point of view of the programmer, ASN.l

is not directly used by a running system, but instead

primarily affects the system under construction. It

influences decisions as to what real data structures

will hold the elements coming from and going to the

serialized network data stream. Of particular impor-

tance is the core Z39.50 ASN.l protocol

specification as a set of PDUs, since they contain all

other structures, including Queries and Records.

Programmers study these abstract PDUs closely

when writing the protocol engine that interprets and

builds the corresponding real PDUs.

Encoding and decoding subroutines have to be writ-

ten that convert data between real structures and the

serialized stream format dictated by BER. In some

implementations, an ASN.l compiler generates pro-

gram code for both the data structures and the

conversion routines. More discussion of this subject

appears in section 2.2.

A strength of ASN.l is that it provides a clear,

machine independent way to express structuring and

ordering of protocol elements. The BER algorithms

ensure that arbitrary hierarchical data structures in

text or binary will be transmitted over a serial byte

stream without loss of information. On the other

hand, because the encoded stream itself is binary, it

14

cannot easily be entered from a keyboard or output

directly onto a display device. This makes it harder

to tinker with Z39.50 servers than with some other

servers. For example, much of an HTTP [4] server

can be tested by simply establishing a terminal ses-

sion with the server and typing in HTTP protocol

client requests (which are text-based) from the key-

board.

1.5. The Z39.50 Query

The protocol allows for several different query types,

but for a basic server it is adequate to support only

the Type-1 query, which we refer to as the Query.

Accompanying the Query in a Search request is a

list of database names. Inside the Query is an attri-

bute set name plus a boolean expression tree, each

leaf of which is either a result set name or an actual

search term list. Often the tree received consists of

just one leaf that contains a single term list

corresponding to a straightforward search, one that

might, for example, be expressed by a traditional-

looking command sequence such as find
author="Mark Twain". Non-leaf tree nodes

(branches) indicate one of the boolean operations

AND, OR, or AND-NOT, where the three children

are, respectively, the left operand, right operand, and

operator. For historical reasons the Type-1 query is

also known as the Reverse Polish Notation Query, or

RPNQuery.

The heart of the Query is the search term list, which

is a Term (one or more words) and an indefinite-

length list of attributes that the client bundles with

the Term. Each attribute consists of two numbers:

a type and a value. They identify, respectively, an

attribute category and subcategory. In the Bib-1

attribute set, for example, the attribute 1 ,30 associ-

ates the Tenn with a Use(l) category of Date(30).

In another attribute set the attribute 1 ,30 might mean

something other than Date. Here is a sample search

term list.

Mark Twain
1,1003 4,1 5,100 3,1 6,1 2,3

For completeness, this particular list includes one

attribute from each of the six categories, though

often a client omits several categories. Taken left to

right, the attributes (integer pairs) identify a search

access point (search index) for which a string of

words, "Mark Twain", submitted in a Query will be

treated, respectively, as an

author

,

with words structured as a phrase,
no truncation,
occurring at beginning of a field,
not needing an entire subfield,
and compared for equality.

1.6. Statefulness, Complexity, and Z39.50

Z39.50 is one of several protocols that allows a

client program to transmit user queries to a remote

server program and to receive server responses, the

ultimate aim being to display results to the user.

Unlike several well-known stateless protocols, such

as HTTP and Gopher [12], Z39.50 is stateful, in the

following sense. A server using a stateless protocol

(such as HTTP) treats each request as if from a

client with which it has never communicated before;

in other words, it maintains no memory, or state

,

regarding the client. In contrast, a stateful protocol

(such as Z39.50) is conducted over a session for

which the server keeps track of things like user

identification and search results as they accumulate

over the course of the session.

One obstacle facing every implementor is the per-

ceived complexity of the standard. Z39.50 probably

owes this perception to three factors: (a) it is a for-

mal national and international standard [13], (b) it

grew out of the library automation community,

whose highly methodical approach to storing and

indexing information might not be immediately

appreciated by the non-library-oriented implementor,

and (c) it contains references to the stunningly

comprehensive ISO OSI [6] layered network model.

Experience with the standard usually reveals the

essential simplicity beneath its densely detailed

specification. Z39.50 is stateful and it is complex.

These two facts may be viewed as weaknesses or

strengths. Without promoting either view it may be

said that Z39.50 was designed to solve a complex

problem and that stateless protocols were designed

to solve simpler problems.

15

2. Creating a Z39.50 Server

2.1. Before Starting

You need to ask yourself whether you want to build

a server from scratch or on top of an available

software base. At the time of writing, server pack-

ages were freely available from the Clearinghouse

for Networked Information Discovery and Retrieval

(CNIDR) the National Library of Canada, and the

University of California at Berkeley. For informa-

tion on how to obtain them, you may access the

World-Wide Web "Z39.50 Pointer Page" [14]:

http: //ds . internic.net/z3950/z3 950 .html

Whatever you decide in creating your own server, it

is recommended that you track protocol development

and establish contact with other implementors. One

way to start becoming involved is to subscribe to the

Z39.50 Implementors Group (ZIG) mailing list,

z3 950iw@nervin . nerdc . uf 1 . edu. To do so

send an e-mail message to listservOnervm
. nerdc . uf 1 . edu with the body of the message

containing

sub z3 9 50iw yourJirstjiame your last name

An official register of Z39.50 implementors [15] is

available and you may wish to have your

organization's name listed in it.

2.2. Whether to Use an ASN.l Compiler

An important decision is whether to build your own

BER encoding and decoding routines or to have an

ASN.l compiler build them for you. It would do so

by translating the ASN.l specification for PDUs,

record syntaxes, queries, etc. into program source

code. You may wish to consider the following

issues in reaching this decision.

The problem to be solved is translating Z39.50

PDUs, which encapsulate all other data, between

their network format and the form in which the

server programmer can make use of them via pro-

gram variables. This amounts to making the coded

byte stream conveniently available to the internal

memory of a running server program, a process

called decoding. Most of what follows about decod-

ing applies in a straightforward way to the inverse

process, called encoding.

Decoding is generally done in three steps (as is

encoding). First, a PDU originally encoded by the

client is read into a server buffer as a contiguous

sequence of bytes that includes a header from which

the decoder can deduce when the last byte of the

PDU has been received. Second, this flat form of

the PDU drives construction of a generalized tree

that reveals the hierarchical structure inside the PDU
buffer. Finally, the leaves of the tree are explored to

discover which actual PDU elements have been

received.

ASN.l compilers generate data structure definitions

and source code for high level programming

languages (such as C or PL/1). Generally each

abstract structure definition produces both a real data

structure definition (e.g., an ASN.l SEQUENCE
becomes a C struct) to contain the corresponding

PDU element and a decoding routine (plus another

for encoding).

To perform the last step above, the programmer calls

a compiler-generated, top level general PDU decod-

ing routine, which in turn calls the appropriate

specific PDU decoding routine, which calls other

routines, and so forth depending on what is found at

each branch and leaf of the tree. At the end of this

process, what is left is (a) a PDU buffer, (b) a tree

whose leaves point to individual PDU elements, and

(c) another tree of structures corresponding closely

to the ASN.l specification and containing fully

decoded leaf elements. (With a clever compiler the

leaves of both trees will point back into the buffer

since it is expensive to make and keep copies.)

An advantage of using an ASN.l compiler is that

each PDU is rigorously checked for syntactic

correctness and the PDU is fully decoded in one fell

swoop. Another possible advantage is that the

decoding routines can be re-created automatically

when the ASN.l specification changes. Since the

programmer must still alter by hand the server code

that references the changed structures, this advantage

would be certain if routines built by hand used a

second tree of structures just as the compiler-

generated routines do (c, above). In practice, how-

ever, hand-generated routines only use the one gen-

eralized tree (b, above), so the amount of code that

needs changing in either case is roughly equivalent.

A disadvantage of using an ASN.l compiler is that

it can be very inflexible with regard to experimental

16

elements or element sequences not given by one

unified ASN.l specification (such as when a server

supports Z39.50-1992 and Z39.50-1995 simultane-

ously). It may be hard to make your compiler

ignore unknown PDU elements, and when it rejects

a PDU sometimes recovery is impossible. Another

situation in which recovery can be difficult using

compiler-generated code is when an ASN.l structure

(such as a record in the Generic Record Syntax)

spans more than one record, which will likely hap-

pen one day if you support full Z39.50-1995 Seg-

mentation.

The advantage of rigorous syntax checking becomes

less significant in mature interoperation environ-

ments where the majority of errors will be semantic.

Besides the time and space used to build and main-

tain a second tree (c, above), there is also a potential

inefficiency in decoding everything at once because

received elements often go unused.

Even if you use an ASN.l compiler, becoming fami-

liar with the rudiments of BER can help you under-

stand how to use your internal data structures best

and how to read PDU log files when debugging. An
excellent package of low-level BER routines is

freely available from OCLC [16] for implementors

writing their own encoding and decoding routines.

Two ASN.l compilers that are freely available are

SNACC [17] and ISODE's pepsy [18].

2.3. Getting Started Online

Before you can bring up a server on the network,

you will need to locate a set of TCP tools. On
many platforms they are already provided with your

operating system (e.g., the UNIX socket library).

It is also imperative to locate a Z39.50 client with

which to test your server as you build it. Unless

you build your own client as well, you may wish to

read [14] for information about freely available

clients. Existing servers that are known to be func-

tioning correctly can be valuable for gaining com-

parison experience and simple reality checks.

Once you have any sort of server program ready to

test (e.g., just to test Init), you will need to make it

ready to accept incoming client connections. One
way is to have the server code itself listen on a par-

ticular TCP port, and then have your client try to

make the network connection to that port from either

the same computer or a different computer. Another

way is to use an existing "super-server" that listens

on a number of ports and starts up your server upon

sensing an incoming connection to a port that you

will have specified in advance.

This second way is particularly useful in the UNIX
environment because it allows the server code to be

written without having to know whether its input

and output are to a socket, a file, or a terminal; this

can be useful for debugging, when you may want to

start your server by hand without reconfiguring the

super-server. Under UNIX the super-server is called

the inetd daemon and the way to make your server

known to it is to add an entry such as

z39.50 stream tcp nowait nobody
/usr/local/irserver irserver

(all on one long line) into the system file

/etc/inetd.conf . The standard TCP port for Z39.50

is 210, so under UNIX, for example, you can make

this fact known to the system by adding the line

Z39.50 210/tcp ir

to the file /etc/services . Setting up the underlying

TCP connection involves straightforward coding

consistent with widely available HTTP servers.

2.4. Design the Control Module

Two main issues to resolve early are (a) to what

degree the server's input will need to be asynchro-

nous and (b) whether the server will be single-

threaded or multi-threaded. A server is asynchro-

nous if it can detect and act upon the arrival of a

new request before it finishes processing the current

request. A server is single-threaded if at most one

client connection is active at a time.

For a basic server without Access Control or

Resource Control, the easiest design is purely syn-

chronous and single-threaded. Highlights of the

simple synchronous server control scheme are:

1. Block program until request PDU arrives.

2. Execute request and formulate response.

3. Send response PDU and go back to step 1

.

In a basic server program the scheme will probably

be fleshed out with a simple timeout and checks for

termination and errors. The following somewhat

over-simplified C program fragment illustrates this.

It uses the UNIX select (2) system call [19] to

wait no more than a specified timeout period for

17

input to arrive.

for (;;) {

/* for select, clear bit mask for read */

/* file descriptors; set our input bit */

FD_ZERO(&rfds) ; FD_SET (input , &rfds);

maxd = input +1; /* last bit to check */

if (! select (maxd, &rfds, 0, 0, timeout)) {

printlog (
" read timed out");

exit (1)

;

}

/* beware: timeout only guaranteed we */

/* would get one byte of the PDU */

1- switch (getPDU (input , &request)) {

case END_OF_INPUT

:

printlog {" end of session");

exit(O); /* normal termination */

default:
case NOT_A_PDU:
case UNSUPPORTED_PDU:

printlog ("garbage or unsupported PDU");

exit(l); /* session abort */

case INIT_REQUEST

:

printlog (
" init ")

;

status = init (request , ^response)

;

break;
case SEARCH_REQUEST

:

printlog (
" search")

;

status = search (request, &response)

;

break;
case PRESENT_REQUEST

:

printlog ("present ") ;

status = present (request, ^response)

;

break;

)

if (status != OK) {

printlog (" internal error");
exit (1)

;

•

}

putPDU (output , response);

}

If you are strictly interested in the basic server you

may skip to the next section. If you intend to

enhance your server beyond the simple synchronous

scheme it makes sense to plan early. Some asyn-

chronous ability will be needed if you intend to

allow canceling a search in progress, as this requires

acting on a TriggerResourceReport request from the

client while the database engine is toiling away.

Detecting the arrival of a byte of input is easy, but

detecting that what arrived was a triggering PDU is

harder. It requires that the server be able to set

aside a PDU that turns out to be a non-triggering

PDU, in other words, to put it in a queue. This

could be the case if two or more request PDUs
arrive back-to-back (a feature allowed in Z39.50-

1995).

Also, a complex subsystem such as a database

engine cannot simply be interrupted and made to

return from an arbitrary program instruction. It can,

however, return from various states in the subsystem

where the programmer is willing to insert a check

(such as testing a global variable set by the control

module upon arrival of a relevant PDU) for a cancel

so that the cleanup and retreat, if necessary, may be

orderly.

Keeping a queue for PDUs is indispensable in the

multi-threaded case. The main reason for imple-

menting a multi-threaded server on computers where

a single-threaded design is also an option is to

improve performance. It is relatively easy to design

and run a single-threaded server: the process starts

up when a client attempts a connection, is used

exclusively by that client, and is then terminated

when that client releases the connection. This car-

ries with it the cost of creating and destroying each

server process, which becomes more significant as

the frequency of connections rises. At such times

having only one server process that is multi-threaded

to handle many connections becomes appealing.

The drawback is that careful error monitoring, strict

memory usage accounting, and general programming

quality become critical, because a program abort

now affects many users, not just the user whose

request caused the abort.

2.5. Design the Protocol Engine

The protocol engine's job is to read and write PDUs
under direction from the control module. It needs to

keep track of the evolving protocol state as PDUs
are sent and received. For example, it might provide

a check on the control module to prevent a Present

response from being attempted when a Search

response is called for. It might also look for sundry

protocol violations, such as inconsistent or illegal

parameters (such as conflicting values for

smallSetUpperBound, largeSetLowerBound, and

mediumSetPresentNumber).

18

Session tear-down can seem anti-climactic to the

implementor since there is nothing for the protocol

engine to do but return. Because the basic Z39.50-

1992 system has no access to the Z39.50-1995 Close

request, normal and abnormal termination may be

indistinguishable. If the server drops the TCP con-

nection before the client drops it, that is a server

abort. If the client drops the connection when it is

waiting for a server response, that is a client abort.

But if the client drops it when the server is waiting

for a request PDU, it is impossible to know if that

was a client close or client abort.

2.6. Design the Database Engine

A database engine, possibly one of several, is called

by the control module to create the result set for a

Query and to retrieve records from result sets. It is

the ultimate arbiter of all questions regarding what is

and is not supported by the server for a given data-

base, mostly dependent on the DBMS underneath it.

This means that while the protocol engine can screen

out client protocol errors on a syntactic and

superficial semantic level, all other interpretive

actions, including most error situations, are rightly

the domain of the database engine. Because each

database engine will have different capabilities, too

much protocol engine error checking could pre-empt

DBMS functionality.

The database engine is responsible for implementing

all aspects of the record personas mentioned earlier.

It defines which attribute sets, tag sets, element sets,

abstract syntaxes, and transfer syntaxes will be sup-

ported for each database. It must therefore keep

tables that map actual database elements to

(a) search access points - to build indexes and

recognize incoming attribute combinations,

(b) element selection tags - to choose the ele-

ments for the element sets Full and Brief, and

(c) element return tags - to identify elements

returned in records (such as field tags for

USMARC).

One tricky question is whether the server will handle

more than one database per search, and as before the

answer must be left up to the database engine in

question. Which engine to ask can itself be a prob-

lem when two databases in the search are managed

by different engines, but in all probability the com-

bination will not be supported. If only one database

engine is involved, all databases in the requested

combination will need to support the particular per-

sona (as specified via PDU parameters) that the

client is approaching. This may be easy when

searching a set of related archives, for example, but

difficult when searching a personnel directory in

combination with a chemical database.

2.7. Process Init

When an Init request PDU arrives, the server must

follow up by sending an Init response indicating

either acceptance or rejection. For many servers,

this is a formality because not much useful feature

or buffer information is gained in the process.

Many servers and clients currently interoperate well

only with Z39.50-1992 Search and Present, regard-

less of what other features are negotiated. Those

that are able to allocate I/O buffers dynamically

have little need for negotiated buffer sizes.

The idAuthentication Init parameter, however, is of

particular interest to servers that need authentication

without using Access Control. If it is received,

tagged as an ASN.l VisibleString and containing

two text substrings separated by a slash character

('/'), the first substring is taken to be a userid and

the second to be a password.

2.8. Process Search

When a Search request PDU arrives, the control

module finds the database engine that administers

the databases in the database list and hands the

Query over to it. The database engine then decides

if it supports the requested database combination.

A model for result sets must be developed. This

includes the concept of intermediate result set, which

is the set of records matching a subexpression within

the Query. Intermediate result sets are needed dur-

ing Query evaluation, which culminates in the crea-

tion of the top level result set named in the search

request. As a service, the server may wish to make

them available after Query completion (a feature

supported in Z39.50-1995), which means that they

must occupy the same name space as the client-

named sets. It is also helpful to keep track of which

top level set caused the creation of which intermedi-

ate sets. For the basic server there is probably no

need to support intermediate result sets.

19

You will have to decide how result set existence will

be communicated among the various server modules

that require it (e.g., a global linked list might be

used). Some servers may support result sets that

persist between sessions (the Extended Services of

Z39.50-1995 support this) in order to allow connec-

tions from stateless gateways (such as from HTTP)
to retrieve records resulting from a search in a prior

session.

Finally, the server must be prepared to handle a

Search request that returns some result set records

piggybacked onto the Search response. It makes

sense to structure this record-retrieving function so

that it may be re-used when processing a Present

request.

2.9. Process Present

A Present request arrives designating a range of

records to retrieve. Obtaining records from a result

set is usually done through the intermediary of the

DBMS that created it. For even though the search

that created it is over, the DBMS cannot relinquish

control since the set might be referenced in a subse-

quent boolean search expression. Besides, it is usu-

ally too expensive to externalize DBMS records

except on client demand. If other program modules

(such as other DBMSs) need to know whether a

result set exists, the DBMS that created it will have

to externalize that fact somehow.

Most of the problems with Present will already have

been solved if you implemented piggybacked records

for the Search response. This includes handling ele-

ment sets and record syntaxes.

To support retrieval of SUTRS, the server need only

render a set of record elements as text with a max-

imum line length of approximately 72 characters.

The maximum is approximate in order to give

clients an idea of what length to plan for, but not to

preclude the possibility of the occasional long line

for which the server has decided that preserving data

integrity outweighs aesthetics (e.g., not breaking a

long row of a formatted table). To support the

USMARC record syntax, you will need to refer to

the various standards comprising USMARC [11].

2.10. Did You Get It Right?

Your server is essentially "right" if it interoperates

with three independently developed clients. If you

do not have access to as many clients as you would

like to test, you may wish to invite connections from

implementors by sending a message to the ZIG
mailing list (section 2.1).

To prepare for test or public access to your server,

you will want to write a server description document

defining server parameters such as Internet host-

name, port number, and listing available databases.

For each database, describe the attributes, element

sets, and record syntaxes supported. Once in the

hands of client users, that description opens up your

Z39.50 server to the Internet.

3. Conclusion

This paper has covered a number of key ideas

behind the Z39.50 international standard protocol for

searching and retrieving records from networked

information systems. These include the way that

Z39.50 allows database records to adopt many dif-

ferent personas depending on whether the current

operation involves search, retrieval, or element selec-

tion. The abstract form of each Z39.50 PDU is

given by an ASN.l description that the implementor

uses to write software converting PDUs between

internal memory and the serialized byte stream

encoding dictated by BER.

Implementors of Z39.50 servers need to consider

several issues carefully. One of these is whether to

implement from scratch or on top of existing

software packages for ASN.l and for BER, if not for

Z39.50 itself. The server control module will have

to be conceived with models in mind for result set

management and database engine switching. A
server may be synchronous or asynchronous, or

single- or multi-threaded. These are among the

many decisions that will have an impact on server

functionality and performance.

4. References

[1] ANSI/NISO Z39.50-1992, Information

Retrieval Service and Protocol: American

National Standard, Information Retrieval

Application Service Definition and Protocol

Specification for Open Systems Interconnection,

1992. ftp://ftp.cni.org/pub/NISO/docs/Z39.50-

20

1992/www/Z39.50.toc.htnil (also available in

hard copy from NISO Press Fulfillment, P.O.

Box 338, Oxon Hill, Maryland 20750-0338;

phone 800-282-6476 or 301-567-9522; fax

301-567-9553).

[2] ANSI/NISO Z39.50- 1 995, ANSI Z39.50:

Information Retrieval Service and Protocol,

1995. http://lcweb.loc.gov/z3950/agency

[3] NCSA CGI, The Common Gateway Interface,

National Center for Supercomputing Applica-

tions.

http://hoohoo.ncsa.uiuc.edu/cgi/overview.html

[4] Bemers-Lee, T., Hypertext Transfer Protocol

(HTTP), CERN, November 1993.

http://ds.intemic.net/intemet-drafts/draft-ietf-

http-vlO-spec-OO.txt

[5] RFC 1729, Using the Z39.50 Information

Retrieval Protocol in the Internet Environment,

December 1994.

http://ds.intemic.net/rfc/rfc 1 729.txt

[6] ISO 7498, Open Systems Interconnection -

Basic Reference Model, Intemational Standards

Organization.

[7] RFC 793, Transmission Control Protocol, Sep-

tember 1981. ftp://ds.intemic.net/rfc/rfc793.txt

[8] ISO 8824, Information Processing Systems -

Open Systems Interconnection - Specifications

for Abstract Syntax Notation One (ASN.I),

Omnicom, Inc., Vienna, VA, 1987.

[9] ISO 8825, Information Processing Systems -

Open Systems Interconnection - Specification

of Basic Encoding Rules for Abstract Syntax

Notation One (ASN.I), Omnicom, Inc., Vienna,

VA, 1987.

[10] STAS-1, Scientific and Technical Attribute Set,

Maintenance Agency, CNIDR.
http://stas.cnidr.org/STAS.html

[11] Network Development and MARC Standards

Office, USMARC Concise Formats for Biblio-

graphic, Authority, and Holdings Data, Cata-

loging Distribution Service, Library of

Congress, Washington, DC, June 1988

[12] RFC 1436, The Internet Gopher Protocol,

University of Minnesota, March 1993.

ftp://ds.intemic.net/rfc/rfc 1436.txt;type=a

[13] ISO 10162/10163 Intemational Organization

for Standardization (ISO). Documentation -

Search and Retrieve Service/Protocol

Definition, 1992.

[14] http://ds.intemic.net/z3950/z3950.html, Z39.50

Resources - a Pointer Page, Robert Wald-

stein, wald@library.att.com.

[15] Register of Z39.50 Implementors, available

from the Z39.50 Maintenance Agency, Ray

Denenberg, ray@rden.loc.gov.

http://lcweb.loc.gov/z3950/agency

[16] OCLC BER Utilities, Ralph LeVan,

rrl@oclc.org.

ftp://ftp.rsch.oclc.org/pub/BER_utilities

[17] SNACC, Sample Neufeld Asn.I to C Compiler,

University of British Columbia.

ftp://ftp.cs.ubc.ca/pub/local/src/snacc

[18] ISODE pepsy ASN.I compiler, ISO Develop-

ment Environment Consortium.

ftp://ftp.psi.com/isode

[19] UPM select. Select - synchronous I/O multi-

plexing, UNIX Programmers' Manual.

The name UNIX is a trademark of AT&T.

21

Building A Z39.50 Client

Ralph LeVan

OCLC Online Computer Library Center Inc.

6565 Frantz Rd.

Dublin, OH 43017

email: rrl@oclc.org

mous FTP site. (See the section on Source Code

Availability at the end of the article.)

Abstract

The core functionality for a Z39.50 Client Applica-

tion is described. This core functionality consists of

Connection, Initialization, Search, Present and Dis-

connection. A Z39.50 Client API is described which

provides the core functionality. Also included are

brief descriptions of TCP/IP, the abstract syntax

ASN.l, BER records and USMARC records. Code

for implementing the Client API, TCP/IP access, en-

coding/decoding BER records and decoding

USMARC records is freely available.

1. Introduction

Z39.50, the ANSI/NISO Information Retrieval Pro-

tocol, is perceived by potential implementors as being

difficult to implement. I will demonstrate that this is

not so by developing a Z39.50 client during the

course of this article. The code produced, while

copyrighted, is freely available for anyone to use.

In this article, I will stick to the "core" functionality

of Z39.50; features that are widely implemented and

have the greatest chance of interoperability. You will

learn how to initialize a Z39.50 session, how to do

searches using simple Boolean operators (type-

1

queries) and how to retrieve USMARC and simple

text (SUTRS) records. To do this, I will show you

how to build a Z39.50 Client Application Program

Interface (API) which will allow you to embed

Z39.50 client functionality in your applications. I

will show you how to build Z39.50 messages and

how to send and receive them using standard TCP/IP

socket protocols. I will also give you a simple tool

for displaying USMARC records. Finally, I will

wrap all these tools up in a simple Z39.50 client

(zdemo).

This article is intended primarily for implementors.

It is sprinkled liberally with C code fragments. The

complete source code is available at OCLC's anony-

2. The Z39.50 Standard

2.1 Who Developed It?

The Z39.50 standard was initially developed in the

library community. It was built to satisfy a require-

ment to search and retrieve USMARC-formatted

bibliographic records. Those roots still show today:

the core attribute set for Z39.50 (which includes the

list of types of things that can be searched for) is

named bib- 1 and the most widely interoperable record

syntax is still USMARC. However, the standard has

grown considerably beyond the original modest re-

quirements. Today there are organizations using

Z39.50 to deliver fijill-text documents based on natu-

ral language queries. Other organizations support

complex chemical structure searching and display.

2.2 Who Maintains It?

The Z39.50 standard started life as the product of a

standards committee. The committee considered its

work complete with the successful balloting of the

original 1988 version of the standard. At that point a

Maintenance Agency was appointed by the National

Information Standards Organization (NISO) and the

original committee was disbanded. Members of the

Z39.50 committee met occasionally to discuss possi-

ble implementation of the standard and in 1990 the

Z39.50 Implementors Group (ZIG) was founded.

Today, changes to the standard are developed jointly

by the ZIG and the Maintenance Agency. Because

the standard is being enhanced by real implementors,

the standard now reflects their real-world require-

ments.

23

2.3 Where Can I Get It?

The Maintenance Agency for the Z39.50 standard is

the Library of Congress. It maintains an anonymous

FTP server at ftp.loc.gov where many documents

related to Z39.50 are available. Among those docu-

ments is the latest version of the standard. Paper

copies of the standard can be purchased directly from

NISO. Contact them by phone at (800) 282-NISO.

3. Z39.50 Overview

Unlike other Internet protocols such as HTTP or

WAIS, Z39.50 is a session oriented protocol. That

means that a connection to a Z39.50 server is made

and a persistent session is started. The connection

with the server is not closed until the session is com-

pleted. Session oriented applications are often called

"stateful" applications and transaction oriented appli-

cations are often called "stateless".

A session oriented protocol is considerably more ef-

ficient than a transaction oriented protocol that re-

quires that the connection with the server be reestab-

lished with every message. Session orientation also

allows clients iterative refinement of search result

sets and multiple record retrieval requests against the

same result set. It also allows the client and server to

negotiate behavior, such as the kinds of services it

needs, and to have that negotiation persist for the du-

ration of the session. In HTTP, much of the message

traffic from the client contains descriptions of pre-

ferred server behavior that needs to be repeated with

every transaction.

In its simplest form, Z39.50 is a synchronous proto-

col. That is, the client sends a message to the server

and waits for the server to respond. The client that is

developed in this article (zdemo) will use this form.

It is possible to negotiate much more complex behav-

ior. The client can have multiple outstanding re-

quests to the Z39.50 server and the Z39.50 server

can interrupt those client requests with requests of its

own that must be responded to before the original

client request can be completed. The Client API will

not negotiate for that functionality, but it can be

readily extended to provide it.

4. Z39.50 Messages

There are two logical parts to the definition of

Z39.50 messages (called Protocol Data Units or

PDU's in the standard). First is the definition of the

content of the messages and second is the encoding

rules for converting the logical content into a physical

message that can be transmitted. In Z39.50, the mes-

sages are defined in the Abstract Syntax Notation 1

(ASN.l) grammar and the encoding rules are defined

by the Basic Encoding Rules (BER).

4.1 Defining The Message: Abstract Syntax

Notation 1

ASN. 1 is an ISO standard (ISO 8824) for defining

the content of messages. It is used to define all the

ISO protocol messages and is used in the Internet

world to define Simple Network Management Proto-

col (SNMP) messages. ASN.l is a very rich lan-

guage. What follows is a simple description of

ASN. 1 ; seek a higher authority for a more definitive

description.

ASN. 1 defines records as being composed of combi-

nations of atomic and constructed data types. The

atomic data types are things like INTEGER and

BITSTRING. You will recognize them in ASN.l,

because they are usually in capital letters. Con-

structed data types are things like Queries and Op-

tions. They always begin with an initial capital letter.

All data types have a number (usually called a tag)

assigned to them. The tags for atomic data types are

assigned by the BER encoding rules. The tags for

constructed data types are assigned in the ASN. 1

where they are defined and are specified inside square

brackets.

Because tags are simply numbers, there is the pos-

sibility the two applications will choose the same tags

to mean the different things. One possible way to

avoid this would be to reserve ranges of tags for

ASN.l data types. Instead, ASN.l defines four types

of tags: UNIVERSAL, APPLICATION, CONTEXT
and PRIVATE. UNIVERSAL tags are expected to be

recognized wherever they are used in a record, (i.e.,

a tag of [UNIVERSAL 8] is always an INTEGER.)

CONTEXT tags can have different meanings in dif-

ferent contexts. A tag of /CONTEXT I] might be a

query in one part of a record and a count in another.

The meaning of the tag is defined by its context.

For example, the ASN.l definition Referenceld ::=

[2] IMPLICIT OCTETSTRING defines a constructed

data type named Referenceld, whose tag is 2. The

24

type of tag was not specified and defaults to

CONTEXT. The Referenceld is composed of the

atomic data type OCTETSTRING. The IMPLICIT in

that statement says that the tag for the

OCTETSTRING must not be included inside the Ref-

erenceld.

If IMPLICIT had been omitted from the above defi-

nition (i.e., Referenceld . [2] OCTETSTRING)
then both the context tag ([2]) and the UNIVERSAL
tag {[UNIVERSAL 4]) would have been encoded in

the message. Thus, the use of the IMPLICIT key-

word in the definition allows for smaller encodings.

ASN. 1 includes constructs for grouping data types

together. These constructs include CHOICE (pick

one of the things that follows), SEQUENCE (the

things that follow must be provided in the order

specified) and SET (the things that follow can be

provided in any order.)

4.1.1 EXTERNAL'S, OBJECT ID's and ISO
Registration

ASN.l allows the developer to specify that a con-

structed datatype being referenced is not defined in

the current body of the ASN. 1 . The keyword for

specifying this is EXTERNAL. EXTERNALS are

used throughout the Z39.50 standard. They are the

mechanism used to provide extensibility and flexibil-

ity in the standard. Saying that a field is defined ex-

ternally to the standard allows a company to use pri-

vate data in that field that only their clients and serv-

ers will understand. (This is an interoperability

problem for other clients and servers, but there are

often good reasons for wanting to do this.) It also

allows the ZIG to agree on extensions to the standard

simply by agreeing on the contents of fields defined

EXTERNAL to the standard.

EXTERNALS provide flexibility by allowing Object

Identifiers to be used to make selection from a broad

range of possible choices. For example, RecordSyn-

tax is defined as EXTERNAL in Z39.50, which means

that any of a number of possible choices (e.g.,

USMARC, SUTRS, GRS) can be specified.

EXTERNAL objects, when they arrive in a message,

have an OBJECT IDENTIFIER. The OBJECT
IDENTIFIER provides an identification number that

allows the message decoder to understand the con-

tents of the object. OBJECT IDENTIFIERS are rep-

resented symbolically as strings of numbers, sepa-

rated by periods ('.'). 1.2.840.10003 is the OBJECT
IDENTIFIER for the Z39.50 standard itself

Object Identifiers are controlled by the International

Standards Organization (ISO). Object Identifiers

would have no value as identifiers if they were not

unique. Normally, ISO issues Object Identifiers, but

once ISO issued an Object Identifier for Z39.50, the

Z39.50 Maintenance Agency was authorized to issue

subordinate Object Identifiers for Z39.50 objects.

Thus, all Z39.50 Object Identifiers begin with the

Object Identifier for the standard itself

4.2 Encoding the Message: The Basic Encod-

ing Rules

Z39.50 messages are encoded according to the Basic

Encoding Rules (BER), ISO 8825. BER defines rec-

ords as being composed of a triple of values: a tag, a

length and a value (TLV). The tag portion of the

triple includes bits that specify the type of tag

{UNIVERSAL or CONTEXT) and whether the value

portion of the tag is primitive data or is composed of

more TLV triples. This recursive definition of a rec-

ord allows for the construction of arbitrarily complex

hierarchical records.

I know of two ways to construct BER records. The

first way is with an ASN.l compiler. The compiler

reads the ASN. 1 definition and produces source code

in a programming language such as C or C++. The

programmer can then fill in a structure in that lan-

guage with the values that are to be encoded and the

code produced by the ASN. 1 compiler reads that

structure and builds the BER record. The strong ad-

vantage of this method is that you're reasonably con-

fident that the resulting BER record does in fact en-

code the ASN.l properly.

OCLC chose not to use an ASN.l compiler, but in-

stead produced utilities to construct the BER records

directly. OCLC has made those utilities publicly

available, as well as the Z39.50 Client API. The rea-

sons for choosing not to use an ASN.l compiler stem

mostly from the maturity of the compilers when

OCLC first started implementing Z39.50 in 1988.

Those reasons are given in greater detail in the docu-

mentation accompanying the BER utilities. Direc-

tions for getting the BER utilities can be found at the

end of this article.

25

4.2.1 The BER Utilities

The BER utilities allow the programmer to build a

tree structure that describes the contents of the rec-

ord, instead of filling in a record-specific structure

and having a record-specific routine construct the

BER record. Each node in the tree contains the tag

for the data it describes and either a pointer to data or

a pointer to another node in the tree. A node in the

tree is a C structure of type DATA_DIR. Routines

are provided to construct the tree and to encode the

primitive data types such as BITSTRING and

INTEGER. Once the tree is built, a utility routine

{bld_rec()) is called to construct the BER record.

When a BER record is received and decoded by an

application, one of these tree structures is produced.

To examine the contents of the BER record, simply

traverse the tree. This puts the interpretation of the

record much more in the hands of the programmer.

5. ZDEMO and the Client API

Zdemo is going to be a simple client. It will establish

a connection to the Z39.50 server, send an InitRe-

quest and wait for an InitResponse. It will then sit

in a loop waiting for the user to enter searches, record

display requests or a Quit command. Commands will

consist of a single letter (S for Search, D for record

Display and Q for Quit.) Arguments to the com-

mands can follow the command and the default com-

mand is Search, when the command is omitted (i.e., S

DOG and DOG are equivalent commands).

The Client API is nearly as simple. It consists of the

routines InitRequest() and InitResponse(), Sear-

chRequest() and SearchResponse() and PresentRe-

questO and PresentResponse{). The request routines

take parameters that correspond to the fields in the

Z39.50 requests. The response routines take a BER
record as their only parameter and return a pointer to

a response-specific structure with fields in it that cor-

respond to the fields in the Z39.50 response. The

encoding and decoding of the requests and responses

will depend on the BER utilities.

6. Establishing the Z39.50 Connection

The vast majority of Z39.50 servers are accessible

via TCP/IP, so our client will need to know how to

connect to a server via TCP/IP. The usual way to

perform TCP/IP functions is with "sockets". Sockets

provide the tools and structures for establishing

TCP/IP connections and for sending and receiving

messages. Sockets have some of the characteristics

of files, in that they are opened, read from and writ-

ten to. In the UNIX world, the relationship between

files and sockets is very close; it is less so in the MS
Windows world.

For our purposes, only the simplest features of sock-

ets will be used. We will need to know how to con-

vert a host name into an IP address, open a socket,

send a message, wait for a return message, determine

how many bytes of message are waiting, read a mes-

sage and close the socket. The complete code for

opening and closing a connection to a Z39.50 server

is contained in irpconn.c at OCLC's anonymous FTP
site. (See the section on Source Code Availability at

the end of this article.) The code for writing a

Z39.50 request, waiting for the response and then

reading the response is contained in doirp.c.

Windows Sockets are similar enough to standard

UNIX sockets that I have provided support for them

as well. Sprinkled throughout irpconn.c and doirp.c

you will see fragments surrounded with "#ifdef

WINDOWS" and "#endif '. These sections contain

the support for Windows Sockets.

The routine to make the connection is named con-

nect(). It gets passed the name of the host machine

for the Z39.50 server and the port where the server is

listening. The standard port for Z39.50 is 210, but

few of the servers actually listen at that port, so

zdemo (our client program) will need to accept the

port number as an argument. In turn, zdemo will get

the host name and port as arguments that are passed

to it, though, with modification, zdemo could read

this information from a configuration file.

For MS Windows applications, the first step is to

initialize winsock.dll, the dynamic link library that

contains the sockets routines. This is done by calling

WSAStartup(), passing it the lowest acceptable ver-

sion number of the Windows Sockets standard. In

our code, zdemo will ask for version 1.1. If either

there is no winsock.dll available or it does not sup-

port version 1 . 1 of the Windows Sockets standard,

then connecti) will write a diagnostic message and

retum a failure indication.

The next step in establishing the connection will be to

convert the host name into an IP address. This is

done by calling gethostbyname(), passing it the host

26

name. If successful, it will return a structure which

contains data that will be used in creating the socket.

If gethostbynamei) fails, then connect() will write a

diagnostic message and return a failure indication.

Next, the socket is created. This is done by calling

socketO, telling it that the client will be using it to

communicate via TCP/IP. If socket(} fails, then con-

nectO will write a diagnostic message and return a

failure indication.

Next, the connection to the server is established by

calHng connectQ, passing it the socket and a struc-

void *socket;

ture containing the IP address and port number. If

connectO fails, then connect() will write a diagnostic

message and return a failure indication. If it suc-

ceeds, then connecti) returns a pointer to the socket

and is done. A TCP/IP connection has been made to

the Z39.50 server.

6.1 ZDEMO
So far, our source code for zdemo looks like this:

int main(int argc, char *argv[])

{

char password[20], server_name[100], userid[20]",

*usage="usage: zdemo -h[hostname] [-pport#]
"

"[-uuserid/password]";

int i, port=210; (

get_args(argc, argv, server_name, &port, userid, password);

printfC'Talking to Z39.50 server on port %u of host ' %s'\n", port,

server_nanie);

/* initiaUzation code */

if((socket=irp_connect(server_name, port))==0

)

{

printfC'unable to connect to server %s\n",

server_name?server_name: '
"')

;

exit(l);

}

27

7. Initialization

The first Z39.50 service is Initialization. The cHent

and server use this service to negotiate the other

Z39.50 services and options that are to be provided.

Tney also get to negotiate the preferred message size

and exceptional record size. In addition, the client

can provide a userid and password.

7.1 Negotiation

Z39.50 supports a simple negotiation mechanism.

The client proposes values in the InitRequest and the

server responds with the actual values. If the client is

unhappy with the returned values, its only option is to

close the session.

7.1.1 Version

There are now three versions of Z39.50. Version 1

was defined in 1988. It was implemented at only a

few sites and was completely superseded by Version

2, which introduced ASN. 1 and BER encoding to the

standard. Version 2 was defined in 1992. The 1995

version of the standard defines both Version 2 and

Version 3. The reason for this is that the ZIG wanted

Version 3 to be backward compatible with Version 2

and wanted a single document that defined both. The

ZIG did not want developers to have to have two

documents to develop a server capable of interoperat-

ing with either Version 2 or Version 3 clients. So,

both versions are defined in Z39.50-1995 and all the

compatibility rules for the two versions are defined

there as well.

The version of the standard that the client wants to

use is one of the things that is negotiated. The client

sends a bitstring with a bit turned on for each version

of the standard that the client understands. The

server responds with a similar bitstring. The highest

version of the standard that the client and server have

in common is the version in effect for the session. If

the client and server have no supported version in

common, then the server will return an empty bit-

string and fail the InitRequest. The client can de-

duce the reason for the failure from the empty Ver-

sion bitstring in the InitResponse.

7.1.2 Options

The client and server negotiate the services and op-

tions that they want through the Options bitstring.

These are specified by turning on the appropriate bits

in the bitstring. All of the Z39.50 services can be

negotiated; that is, the client can request that they be

made available by the server. The server can deny

these services by turning off the appropriate bit in the

bitstring when it is returned in the InitResponse.

Options that can be negotiated include such things as

support for named result sets or concurrent opera-

tions.

7.1.3 Message Sizes

The client also specifies a Preferred-message-size

and an Exceptional-record-size. The Preferred-

message-size will be exceeded by the server only

when the client requests a single record and its size

exceeds the Preferred-message-size, but not the Ex-

ceptional-record-size. The purpose of this is to al-

low the client to control the maximum size of a nor-

mal message from the server, but to allow it to occa-

sionally accept large records.

The server may respond to the proposed values with

alternative values in the InitResponse.

7.2 Other InitiaUzation Parameters

The client can provide a userid and password in the

InitRequest and can also provide information identi-

fying the client software itself. Lastly, the InitRe-

quest contains a placeholder for information defined

externally to the standard.

All Z39.50 request definitions include an optional

referenceld. This is an arbitrary string of bytes that

the client can send that the server is required to return

with the response. Its intent is to help the client iden-

tify the returning response in an asynchronous mes-

sage environment. While referenceld can hold any

number of bytes, the Z39.50 Client API allows only a

C language long value to be used.

7.3 The InitRequest

The InitRequest is created by a call to the InitRe-

questi) routine. It takes a referenceld, a pre-

ferredMessageSize, an exceptionalRecordSize, an

id and a password as parameters. It does not accept

28

options as a parameter, since the Client API always

negotiates for the most functionality that it can han-

dle.

InitRequesti) returns a pointer to an allocated area in

memory that contains the BER encoded InitRequest.

The prototype for InitRequesti) looks like this:

unsigned char *InitRequest(

long referenceld,

long preferredMessageSize,

long exceptionalRecordSize,

char *id,

char *password);

7.3.1 Encoding the Request

The easiest way to understand the InitRequesti) rou-

tine is to walk through it line by line, showing the

ASN.l that is being encoded and providing commen-

tary. The C code is indented and in bold. The

ASN.l is in italics and the commentary is in normal

text.

Normally when I code using the BER utilities, I use

preprocessor variables to hold the tag values. The

preprocessor variable InitRequest would be defined

as 20. I do this for readability. But in the code be-

low, the commentary explains what is going on in the

code, and I want you to be able to see the correlation

between the code and the ASN. 1 , so I am omitting the

preprocessor variables. If you get the code from our

FTP server, you will see proper preprocessor vari-

ables instead of constants.

CHAR *Init_Request(long referenceld, long preferredMessageSize,

long exceptionalRecordSize, char *id, char *password, long *len)

/*

referenceld has no particular meaning to the Client API. You can put whatever

value you want into it, and it will be returned in the response, id and password

can be either NULL or "". len will contain the length of the encoded request

when InitRequesti) returns.

*/

{

static char *protocol_version="yy"; /* versions 1 and 2 */

/*

When you want Version 2, you have to ask for Version 1 too. (This is to allow

interoperability with ISO 10163).

*/

static char *options_supported="yy"; /* search and present only */

/* build an IRP Init request */

dir=dmake(20, ASNl_CONTEXT, 30);

initRequest [20] IMPLICIT InitializeRequest,

I*

Make a DATA_DIR tree for assembling the parts of our message. The first two

arguments specify the tag and tag type for the root of our tree. They correspond

to the first tag in the ASN. 1 definition of an InitRequest. The 30 tells dmakei

)

that we expect to see 30 nodes in our tree. If that number is exceeded, then the

BER utilities will automatically increment the size of the tree by that amount,

dir, the value returned by dmakei)> is a pointer to the root of the tree.

*/

if(referenceld)

daddchar(dir, 2, ASNl_CONTEXT, (CHAR*)&referenceId, sizeof(referenceld));

29

referenceld Referenceld OPTIONAL,

I*

Referenceld is defined later in the standard as:

Referenceld ::= [2] IMPLICIT OCTETSTRING
If a non-zero referenceld has been provided, then add it to the request. The first

argument to daddchar(j is a pointer to the parent of the field being added. The

next 2 arguments are the tag and tag type of the referenceld. The last two

arguments are a pointer to the referenceld and its length. The referenceld is

being passed to the server as a string of bytes (an OCTETSTRING in ASN.l.)

*/

daddbits(dir, 3, ASNl_CONTEXT, protocol_version);

protocolVersion ProtocolVersion,

I*

protocolVersion is defined later in the standard as:

protocolVersion ::= [3] IMPLICIT BITSTRING

daddbitsO encodes ASN.l BITSTRINGs. Here, we're encoding the ProtocolVersion.

*/

daddbits(dir, 4, ASNl_CONTEXT, options_supported);

options Options,

I*

Options is defined later in the standard as:

Options ::= [4] IMPLICIT BITSTRING

*l

daddnumCdir, 5, ASNl_CONTEXT, (CHAR*)&preferredMessageSize,

sizeof(preferredMessageSize))

;

preferredMessageSize [5] IMPLICIT INTEGER,
/*

daddnumO encodes ASN.l INTEGERS. Here, we're encoding the preferredMessageSize.

*/

daddnum(dir, 6, ASNl_CONTEXT, (CHAR*)&exceptionalRecordSize,

sizeof(exceptionalRecordSize))

;

exceptionalRecordSize [6] IMPLICIT INTEGER,

if(id&&*id)

{

char *t;

DATA_DIR *subdir;

/*

We'll use subdir to keep track of subtrees in our DATA_DIR tree.

*/

int len=strlen(id)+l;

/*

We need to figure out how long the id and password are and then add 1 for the

7' separator character.

*/

if(password && *password)

len+=strlen(password)+l

;

else

password="";

t=(char*)dmalloc(dir, len+1);

30

/*

dmallocO malloc's space that is freed automatically when the DATA_DIR tree

is freed. In this case, the is for the NULL that sprintfO will put at the end

of the string.

*/

strcpy(t, id);

if(password && *password)

sprintf(t+strlen(t), "/%s", password);

subdir=daddtag(dir, 7, ASNl_CONTEXT);
idAuthentication [7] ANY OPTIONAL,

I*

daddtagi) adds a tag without any data. It returns a pointer to the node that

was added to the tree to hold the tag.

*/

daddchar(subdir, ASN1_VISIBLESTRING, ASN1_UNIVERSAL, (CHAR*)t, len-1);

/*

The ANY is recommended later in the standard to be encoded as a CHOICE,
one option of which is:

open VisibleString,

Add the id and password with an IMPLICIT ASN. 1 data type of

VISIBLESTRING.
*/

}

daddchar(dir, 110, ASNl_CONTEXT, (CHAR*)"1995", 4);

implementationid [110] IMPLICIT InternationalString OPTIONAL,

daddchar(dir. 111, ASNl_CONTEXT, (CHAR*)"OCLC IRP API", 12);

implementationName [HI] IMPLICIT InternationalString OPTIONAL,

daddchar(dir, 112, ASNl_CONTEXT, (CHAR*)"1.0", 3);

implementation Version [1 12] IMPLICIT InternationalString OPTIONAL,

I*

Tell the server what kind of client is talking to it.

*/

return bld_rec(dir, len);

/*

bld_rec() malloc's the amount of space needed to hold the BER record, assembles

the BER record in that area and returns a pointer to that area, which is finally

returned By InitRequest().

*/

}

7.3.2 Transmitting the Request

Zdemo transmits the BER requests by calling

doirpO, passing it the pointer to the BER request and

the pointer to the socket returned by connect().

DoirpO sends the request to the Z39.50 server, waits

for the response to the request from the server and

returns a pointer to that response.

Doirpi) starts by determining the length of the re-

quest. It does this by calling the BER utility

asnllen(). It uses that length to drive a while loop

where the length represents the number of bytes of

the request waiting to be sent.

Doirpi} sends data to the server by calling the socket

routine send() and passing it the socket, a pointer to

the request and the number of bytes to send. Send()

returns the number of bytes actually sent. The

31

pointer to the request is incremented by that amount

and the length is decremented by that amount. If the

length goes to zero, then the complete request has

been sent and zdemo falls out of the while loop. If

send() indicates an error, then doirp() prints an error

message and quits, returning an error indication.

Next, doirpi) needs to wait for the response from the

server. The socket utilities are prepared to handle

much more complicated tasks than zdemo is requiring

of them, so some of the tools that it uses seem overly

complicated for this purpose. The mechanism for

waiting for a message is one of those tools. The

socket utilities allow an application to have many

active sockets open and allow you to wait until any

of them have a message. To do this, the application

has to construct a list of sockets to be waited on.

Two preprocessor macros are used to construct the

list: FD_ZERO() and FD_SET(). FD_ZERO() ini-

tializes an empty list, and FD_SET() adds sockets to

the list. After the list is built, the routine select() is

called, passing it the list of sockets to be waited on.

The selectO call sits inside a while loop; sometimes

selecti) returns with an indication that it has not re-

ceived anything yet.

After doirp() has gotten the indication that a message

is available, it calls ioctl() to determine the amount of

data that has been received. It then calls recv() to

read the data. It passes recv() the socket, a pointer to

a buffer to hold the incoming message, and the num-

ber of bytes it wants to read (which it got from

ioctl().) Recv() returns a count of the number of

bytes that it actually read. If that count is zero, then

there was probably some failure in the connection

and recv() will print an error message and retum with

an error indication.

Often, TCP/IP has to break large messages into

smaller messages to transmit them. That means that

when doirpi) gets a message, it might be the first of

many messages that comprise a complete Z39.50 re-

sponse. The BER utilities provide a routine, IsCom-

pleteBERi), which gets passed a pointer to a buffer

with a BER encoded message and a count of the

number of bytes in the buffer. IsCompleteBER() re-

turns an indication of whether a complete message is

in the buffer. If the message is complete, then Is-

CompleteBERO also returns the actual size of the

message, which might be less than the amount of data

in the buffer, since it is possible for more than one

message to have been received at one time.

If the message was not complete, then IsComplete-

BER() also returns the number of bytes remaining to

be read to complete the message. Sometimes Is-

CompleteBERi) reports that the message is not com-

plete and there are zero bytes waiting to be read.

This means that IsCompleteBER() cannot determine

the remaining length and doirpi) should just wait for

more data to arrive. Either way, doirpi) sits in a

loop, reading more data, until IsCompleteBERi) re-

ports that a complete message has arrived. When
that happens, doirpi) returns a pointer to the buffer

containing the message.

At this point, zdemo has sent our InitRequest and

received an InitResponse.

7.4 The InitResponse

The most important field in an InitResponse is the

result field. It tells the client whether its InitRequest

has been accepted by the Z39.50 server. If it has a

non-zero value, then a Z39.50 session has been suc-

cessfully established. If it is zero, then the Z39.50

server has rejected our session. Unfortunately, there

is no explicit mechanism for the server to tell why it

is rejecting our InitRequest. We'll have to deduce

the reason from the other values returned in the Ini-

tResponse.

7.4.1 Decoding the Response

The Z39.50 Client API provides the routine InitRe-

sponsei) to decode the InitResponse from the

Z39.50 server. It is passed a pointer to the InitRe-

sponse and returns a pointer to a structure containing

information from the InitResponse.

The first step in decoding any Z39.50 response is to

decode the BER encoded message. The BER utility

bld_diri) does this. Its job is to build a DATA_DIR
tree that reflects the structure of the message. Typi-

cally, to decode the message, we'll just traverse the

tree. I use a for loop to do this. I set the loop vari-

able to the first child in the tree and loop through all

its siblings. Inside the loop I use a switch statement

to test for the possible tags that might have been in

the message.

Again, as with the InitRequesti), the easiest way to

understand the InitResponsei) routine is to walk

through it line by line, showing the ASN.l that is

being encoded and providing commentary. The C

32

code is indented and in bold. The ASN. 1 is in italics ables with constants to ennphasize the correspondence

and the commentary is in normal text. I have also between the C code and the ASN. 1

.

repeated the practice of replacing preprocessor vari-

INIT_RESPONSE *InitRespoiise(CHAR *respoiise)

{

DATA_DIR far *subdir;

INIT_RESPONSE *init_response;

if(!response II !bld_dir(response, dir))

return NULL;
/*

If a response was not provided or we were unable to decode the response, then

return a failure indication. The dir that is being passed to bld_dir() is the same

one that was created in InitRequest() to hold the message being built there. Dir is

a global variable and will be used by all the request and response routines.

*/

if(dir->fldid!=21)

return NULL;
initResponse [21] IMPLICIT InitializeResponse,

I*

If the response wasn't an InitResponse, then return a failure indication. The tag

in the root node of the tree is the message tag.

*/

/*

*/

/*

*/

/*

*/

if((init_response=(INIT_RESPONSE*) caIIoc(l, sizeof(INIT_RESPONSE)))==NULL)

return NULL;

If we can't allocate space to hold the structure describing the InitResponse, then

return a failure indication.

for(subdir=dir->ptr.child; subdir; subdir=subdir->next)

This is our driving loop. The loop variable is initialized to point at the first child

off the root. As long as there is such a child, process it and then point at its

sibling.

switch(subdir->fldid)

Test for the value of the tag in this node.

{

case 2:

referenceId ReferenceId OPTIONAL,

I*

Referenceld is defined later in the standard as:

Referenceld ::= [2] IMPLICIT OCTETSTRING
*/

niemcpy((char*)&init_response->referenceId, (char*)subdir->ptr.data,

(int)subdir->count);

/*

33

Just save the referenceld in the INIT_RESPONSE structure. Only the calling application will be inter-

ested in it.

*/

break;

case 4:

options Options,

I*

Options is defined later in the standard as:

Options ::= [4] IMPLICIT BITSTRING
*/

init_response->options=dgetbits(subdir);

/* .

dgetbitsO decodes encoded BITSTRINGs. It returns a character string

with a 'y' for every bit that was turned on, and a 'n' for every bit that

was turned off.

*/

break;

case 5:

preferredMessageSize [5] IMPLICIT INTEGER,

init_response->preferredMessageSize=dgetnuin(subdir);

/*

dgetnum() decodes encoded INTEGERS. It returns a long, which we will

save in the INIT_RESPONSE structure.

*/ .

break;

case 6:

exceptionalRecordSize [6] IMPLICIT INTEGER,

init_response->inaximumRecordSize=dgetnum(subdir);

break;

case 12:

result [12] IMPLICIT BOOLEAN,
init_response->result = (int)dgetnum (subdir);

/*

BOOLEANs are encoded as INTEGERS, so dgetnum() is used to decode

them. A non-zero value means TRUE and a zero value means FALSE.
*/

break;

}

}

return init_response;

}

34

7.5 ZDEMO
The following code gets added to zdemo:

INIT_RESPONSE *init_response;

long len;

unsigned char *request, *response;

/*

Build the InitRequest.

*/

request=InitRequest(0, 16384, 500000L, userid, password, &len);

/*

Send the request and get the response.

*/

response = do_irp(request, socket);

if(!response) /* If we did not get a response, then quit. */

{

printfC'unable to send init requestW);

exit(2);

}

/*

Decode the response.

*/

init_response=InitResponse(response);

if(!init_response II !init_response->result)

{ /* If the response was not decodable, or if the InitRequest failed, then quit. */

printf("init failed\n");

exit(3);

}

8. Searching

Z39.50 allows highly specific searching of databases.

The specificity of Z39.50 queries is one of the stan-

dard's great strengths. Other protocols, such as

WAIS or Gopher, support "magical" searching. The

user enters some kind of free text query and "magic"

happens. The same query on another server might

produce completely different results, because differ-

ent "magic" happened. The user is at a loss to de-

termine why the records were retrieved. The user is

also unable to control the search. The user is unable

to specify that she wants to find records where the

word SMITH appeared in the title, but not as an

author. These weaknesses have all been overcome

with Z39.50.

Another strength of Z39.50 queries is the persistence

of their results for the duration of the Z39.50 session.

With other protocols, the results of the query must be

sent immediately to the client. That's fine, if the da-

tabase is small and the result sets are always small.

When the databases are large, that is not practical.

The user needs the ability to fetch and examine some

of the records and still be able to ask for other rec-

ords later. Better yet, if the result set is large, the

user would like to be able to apply restrictors to the

result set and produce a smaller, hopefully more per-

tinent, result set.

8.1 Result Sets

In order to reference a result set after it has been pro-

duced, the result set must have a name. In Z39.50,

35

the client provides the name of the result set with the

query: the client names the result set. Every query

can have a different result set name, allowing the cli-

ent to reference any number of previous result sets.

But few, if any, servers allow an unlimited number of

result sets. When a client has exceeded the number

of supported result sets, the server might delete old

result sets arbitrarily.

In fact, some servers allow a client to have only one

result set. In that case, they do not really support

named result sets. To get around the apparent con-

tradiction of the client being able to name result sets

and the server being unable to support named result

sets, the ZIG agreed on the result set name "default".

This is the result set name that must accepted by

servers that do not otherwise support named results

sets. If all queries sent to such a server are named

"default", then the client has only one result set that

it can refer to.

Unfortunately, in Version 2 of the standard, the client

can not tell whether the server will allow result set

names other than "default". The only way to tell is

to use a different result set name. If the server cannot

support named result sets, it will fail the search and

return an error code indicating the problem. The cli-

ent will then know that "default" will be the only ac-

ceptable result set name. In Version 3, support for

named result sets is one of the options that can be

negotiated at initialization time.

If the client uses the same result set name twice, the

server should replace the previous result set of the

same name with the new result set. To keep that

from happening accidentally, the client is required to

set a flag in the SearchRequest indicating that the

result set is to be replaced.

8.2 Attributes

In "magic" searching systems, query terms are un-

qualified. That is, the user types in a term, but pro-

vides no extra information about the term to indicate

its semantic meaning. Systems that provide more

specific searching usually provide the concept of an

"index". So the user can say that the term provided

should be considered to be an author or a word from

a title. But this is only a single piece of qualifying

information that can be provided with the term.

The Z39.50 developers wanted a richer mechanism

than simply indexes. They wanted to provide many
dimensions of qualification to the term. The word

they chose to describe these additional qualifications

on a term is "attribute". A term can have many at-

tributes. One of those attributes could be Use, which

roughly corresponds with indexes. The Use attribute

allows the client to specify how the term would have

been used in the records to be retrieved. For exam-

ple, the term was Used as an AUTHOR or TITLE.

Another attribute is Structure; the term is supplied

according to a particular structure. The structure

might be that the term is a WORD or a PHRASE.

8.2.1 Attribute Sets

Since the developers understood that they could not

predict all the attributes that implementors would

want, they created the idea of an attribute set. An
attribute set defines a collection of attributes. Im-

plementors are free to invent their own attribute sets,

but the developers provided a starter set of attributes

and packaged them in an attribute set named bib-1.

Attribute sets are identified by an Attribute Set ID,

which is just an Object Identifier. All Attribute Set

ID'S begin with 1.2.840.10003.3; the Attribute Set

ID for the bib-1 attribute set is 1.2.840.10003.3.1.

The bib-1 attribute set contains 6 types of attributes:

Use, Relation, Position, Structure, Truncation and

Completeness. These attributes are explained in

great detail in the bib-1 attributes documents, avail-

able at the Library of Congress' FTP site. The only

attributes discussed in this article will be Use and

Structure.

Attribute types in an attribute set are identified by a

number. In the bib-1 attribute set. Use is attribute

type 1 and Structure is attribute type 4. The values

that an attribute can have are also identified by a

number. This means that it takes two numbers to

specify an attribute for a term: the attribute type and

the attribute value. For example, every Use attribute,

such as AUTHOR or TITLE, has a number.

(AUTHOR is 1003 and TITLE is 4.) These numbers

are specified in the Attribute Sets appendix of the

standard. At last count, there were 98 different Use

attributes specified, and that list can be extended at

any time.

36

8.3 Query Terms and Attributes

Terms can have one or more attributes associated

with them. In the ASN. 1 for the standard, this asso-

ciation is called AttributesPIusTerm and consists of

an AttributeList and a Term. An AttributeList is

defined as a SEQUENCE of AttributeEIement

which are in turn defined as a pair of INTEGERS

consisting of attributeType and attributeValue.

These pairs of numbers are exactly the numbers de-

scribed above.

In Version 2, all the attributes in the query have to

come from the same attribute set. During the devel-

opment of Version 3, it soon became clear that this

was a problem. How could the user formulate a

query asking about AUTHORS (a bib-1 Use attrib-

ute) and BOILINGPOINTs (a Use attribute from an

chemical attribute set)? In Version 3, the attribute

set ID can be specified for every AttributeEIement.

That means that you can mix attributes from a num-

ber of attribute sets.

8.4 Query Grammars

Z39.50 defines several query grammars, each one

identified by a number. Type-0 queries are for pri-

vate query grammars. Sometimes clients and servers

from the same organization prefer to use that organi-

zation's own query grammar. At OCLC, a number

of our clients know how to use the query grammar of

our database engine and pass those queries to the

Z39.50 server as type-0 queries.

Type-1 queries are the only widely accepted queries.

Support for them is mandatory in Z39.50. Type-1

queries are described in more detail later.

Type-2 queries use the query grammar from the ISO

Common Command Language (ISO 8777). This

grammar has severe extensibility limitations and

probably should not be used. ISO CCL queries can

always be sent as type-0 queries.

Type- 100 queries use the query grammar from the

ANSI/NISO Common Command Language

(Z39.58). This grammar is closely related to, and

has the same problems as, the ISO Common Com-

mand Language.

Type-101 queries are an extension of type-1 queries

to support proximity searching. With Version 3 of

the standard, type- 1 queries are identical with type-

101; but they remain distinct in Version 2.

Type- 102 queries are still being defined. They are

intended to support some of the features of query

grammars that support ranking.

8.5 Reverse Polish Notation Queries (type-1)

Type-1 queries are called Reverse Polish Notation

(RPN) queries. Reverse Polish Notation is a way of

representing Boolean queries by specifying first the

operands and then the operator. Normal query

grammars let you specify an operand, then an opera-

tor and another operand. This is called an infix nota-

tion. The problem with infix notations is that you

end up having to use parentheses to specify the order

of evaluation of the operators and operands. Reverse

Polish Notation does not have that problem.

The search (DOG OR CAT) AND HOUSE would

be expressed as DOG CAT OR HOUSE AND in

Reverse Polish Notation and the search DOG OR
(CAT AND HOUSE) would be expressed as DOG
CAT HOUSE AND OR in RPN. The query is

evaluated left to right. Every time you encounter an

operator you process the two operands to the left and

replace the operator and operands with the result of

evaluating them. In the first example, the OR is as-

sociated with DOG and CAT. After DOG OR
CAT is evaluated, the result is put back into the

query. The AND then has that result and HOUSE
as its operands.

Reverse Polish Notation queries can be easily repre-

sented as trees, with the operators as roots and

branches and the operands as leaves. That is the

sense in which type-1 queries are Reverse Polish

Notation. They are not text strings as in the exam-

ples above. They are trees defined recursively in

ASN.l. A type-1 query can either be an operand or

an operator with two operands. An operand can ei-

ther be a term or a type-1 query. This recursive

definition allows for arbitrarily complex queries.

We need some way to pass a query into our Z39.50

Client API. To do this, we'll use real Reverse Polish

Notation. Terms will be optionally followed by a

slash 7' and then a Use attribute value. They can

also be followed by an optional slash and a Structure

attribute value. Terms can be surrounded by double-

quotes. The following are all examples of legal query

terms: DOG (no Use or Structure attribute speci-

fied), DOG/21 (dog as a subject heading),

DOG/21/2 (dog as a subject heading and a structure

37

of WORD) and "DOG HOUSE"/21/l (dog house as

a subject heading and a structure of PHRASE).

8.6 Database Names

The client must specify what database or databases

the server is to search. The Z39.50 standard allows

multiple databases to be specified in a search request.

Unfortunately, this is another feature that cannot be

determined at initialization time. One way the client

can find out if the server supports multiple database

names is to try it and see if a diagnostic is returned,

but the lack of a diagnostic does not necessarily mean

that all the databases were searched. Some of the

servers just ignore the extra database names. This

feature is not available in the Client API.

8. 7 Piggy-backed Presents

It is possible to request that records be returned

automatically with the SearchResponse. This is

called a piggy backed Present. Piggy-backed Pres-

ents are supported in the Client API but are not sup-

ported by zdemo and are beyond the scope of this

article. Zdemo will provide hard-coded values for

those parameters in its call to SearchRequest{).

8.8 The SearchRequest

The SearchRequest is created by a call to the Sear-

chRequest() routine. It takes a referenceld, a repla-

celndicator, a resuItSetName, a databaseName, a

query, and a query_type.

The referenceld is a C language long value and has

the same meaning as in InitRequest(). The replace-

Indicator is an integer and has either a zero or non-

zero value for FALSE and TRUE respectively. The

resultSetName can be any character string. The da-

tabaseName is a character string whose value is de-

termined by the server.

The conversion of the query parameter into a Z39.50

query is probably the trickiest code in the Client

API. The query is passed as a character string, but

its evaluation is dependent on the query-type. If the

query-type is 0, then the query is assumed to be in a

private query grammar and is passed through to the

Z39.50 server exactly as received by SearchRe-

quest().

If the query-type is 1, then SearchRequestQ is ex-

pecting a string with a Reverse Polish Notation query

in it. The terms can be surrounded with double-

quotes. This is important if the term consists of mul-

tiple words, as in a phrase search. The term can also

be followed by an optional slash ('/') and a Use at-

tribute value. The Use attribute value can also be

followed by another optional slash and a Structure

attribute value. There is no default Use attribute

value and the default Structure attribute value is

WORD.

For example: to search for books about slavery by

Mark Twain, you could enter the search:

slavery/21 "twain, mark'Vl003/1 and

which asks for records with "slavery" as a subject

heading and "twain, mark" as an author phrase.

As in InitRequestO, SearchRequest() returns a

pointer to an allocated area in memory that contains

the BER encoded SearchRequest.

The prototype for SearchRequest() is:

unsigned char *SearchRequest(

long referenceld,

int replacelndicator,

char *resultSetName,

char *databaseName,

char *query);

I will not walk through the code this time. You have

already seen BER encoded messages produced; the

searches are not any more exciting. The code is pro-

vided if you want to examine it.

8.9 The SearchResponse

The SearchResponse is processed by SearchRe-

sponse() and it, like InitResponse(), takes the BER
record returned by the Z39.50 server as its only pa-

rameter and returns a pointer to an allocated structure

which contains the fields of the SearchResponse.

The prototype for SearchResponse() is:

SEARCH_RESPONSE *SearchResponse(

CHAR *response);

and the SEARCH_RESPONSE structure looks like

this:

typedef struct

{

long referenceld;

38

int searchStatus;

long resultCount;

long resuItSetStatus;

long error_code;

char *error_msg;

} SEARCH_RESPONSE;

The referenceld is the same one provided to Sear-

chRequest().

searchStatus contains either a zero to indicate that

the search failed or a non-zero value to indicate suc-

cess.

If searchStatus indicates that the search succeeded

then resultCount will contain the count of the num-

ber of records that satisfy the search and the value of

resultSetStatus will be undefined. A value of zero in

resultCount is not an indication that the search

failed, only that there are no records in the database

that meet the search criteria.

If searchStatus indicates that the search failed, then

the value of resultCount is undefined and resultSet-

Status will indicate if there are any records available

for retrieval. Typically resultSetStatus will contain

the value 3 which indicates that there is no result set

available, but other values are potentially available

and defined in the standard. error_code and er-

ror_nisg should contain values; otherwise they will

contain 0 and NULL respectively. The values for

error_code and error_msg are described in the Er-

ror Diagnostics appendix of the standard.

8.10 ZDEMO
Before zdemo can generate a search, it needs a simple

command processor. Remember that commands to

zdemo are going to be single letters, so parsing the

commands will be easy. Zdemo will need a loop for

getting commands from the user. A command of 'q'

or an end-of-file indication from the input stream will

end the loop. Inside that loop, zdemo will test for a

single letter command and if there is none, then it will

assume that a search is being requested. It will then

switch on the value of the command and call a rou-

tine to handle the command.

Our driving loop looks like this:

char cmd, input[1000];

while(gets(input))

{

strlwr(input);

if(input[0]) /* did we get any input? */

if(input[l]==' ') /* was the second character a blank? */

cnid=input[0];

else

cmd='S'; /* assume that they want to search */

else

cmd=' '; /* no command */

if(cnid=='q')

break; /* exit the loop */

svtltch(cnid)

{

case 's': /* explicit search command */

zsearch(input+2); /* +2 to skip command and blank */

break;

case 'S': /* implicit search command */

zsearch(input);

39

In addition, the routines that zdemo calls will need

some clues about the behavior of the Z39.50 server.

For instance, some servers will not accept any re-

sultSetNames except "default". Zdemo will be told

this through arguments that are passed to it at startup

time. In the case of the "default" resultSetName,

zdemo will look for an argument of "-d" to indicate

that it must use the "default" resultSetName.

char resuItSetNaine[20];

void zsearch(char *query)

{

long len;

SEARCH_RESPONSE *search_response;

unsigned char *request, *response;

static int search_num=l;

if (MustUseDefault) /* global variable */

strcpy(resuItSetName, "default");

else

sprintf(resultSetName, "Search%d", search_num++)

-J -

request=SearchRequest(0, TRUE, resultSetName, database_name, query, &len);

response = do_irp(request, socket);

search_response=SearchResponse(response);

printf("%ld records found.W, search_response->resultCount);

if(search_response->searchStatus)

printf("Search Successful! :-)\n");

else

{

puts("Search Failed! :-(");

printf("Error_code=% Id, message='% s'\n", search_response->error_code,

search_response->error_msg ? search_response->error_msg

:

"None provided");

if(search_response->error_code==22)

{

puts("Must use ResultSetName of V'defaultV'");

puts("Resetting internal flags; please try again");

MustUseDefault=TRUE;

}

if(search_response->error_msg)

free(search_response->error_msg);

}

free(search_response)

;

free(response);

}

40

9. Retrieval

The Z39.50 implementors clearly saw retrieval as a

weakness in Version 2 of the standard. Many of the

enhancements in Version 3 center around retrieval.

Included in these enhancements are the ability to ask

for specific parts of a record, to ask about the con-

tents of a record and to specify a prioritized list of

desired record syntaxes. But, even without these en-

hancements, Z39.50 supplies perfectly acceptable

mechanisms for retrieving records. Since this article

is concentrating on core functionality, the Client API
will only use those retrieval features available in

Version 2.

Version 2 allows clients to ask for a specific range of

records from a result set in full or brief forms and to

specify a single record syntax. The most common
record syntaxes are USMARC and SUTRS.

USMARC is the record syntax used in the U.S. li-

brary community to exchange cataloging information

and SUTRS is a Simple Unstructured Text Record

Syntax, invented by the ZIG. Both of these record

syntaxes will be discussed in greater detail later.

9.1 Result Sets Revisited

In Z39.50, result sets are modeled as containing or-

dered lists of pointers to records. This does not mean

that a server is actually supposed to create lists like

that; it means that the client can act as if that were

true. The ordering of the result set is important, al-

though the type of ordering is not. Whether the rec-

ords are in rank order or chronological order or

sorted by title is unimportant. What is important is

that the client can ask for the n'th record in a result

set and always get the same record from the same

result set.

To retrieve records from a result set, the client speci-

fies the name of the result set and the relative record

number of the record in the result set. The first rec-

ord in a result set is record number 1 . In the C pro-

gramming languages the first record would naturally

be record number 0, so it is important to remember

that that is not true here.

To ask for several records, the client can specify a

single relative record number for the first desired rec-

ord and a count of the number of records to be re-

turned. This only allows for a single list of adjacent

records to be returned. With Version 3 comes the

ability to specify multiple ranges of records in a sin-

gle request. This will allow the user to request the

first, third and ten thousandth records from a result

set and the client will be able to satisfy the request in

a single transaction with the server.

9.2 Element Sets and Element Set Names

The fields in a record are called elements in Z39.50.

A collection of elements would be an element set and

if that collection of elements had a name, it would be

an element set name. In Version 2, element set

names are the only mechanism available to specify

the elements desired from a record. Version 3 in-

cludes rich mechanisms for identifying and specifying

the elements in a record, but element set names are

sufficient for many purposes.

The standard only specifies two element set names:

"F" for Full records (all elements included) and "B"

for Brief records. Brief records are a problem. The

standard is rightly silent on the elements that consti-

tute a brief record. But, that leaves the client devel-

oper at the whims of the server developers as to the

fields that can be displayed in a brief record. Unless

I am sure that a particular server returns all the fields

that I want to display in a brief record, I usually ask

for full USMARC records and throw away the fields

that I do not need. That technique will not work if

SUTRS records have been requested, since they con-

sist of a single field.

9.3 Record Syntaxes

A record syntax is simply the way that records are

encoded. There are a number of record syntaxes rec-

ognized in Z39.50. Object identifiers are used to

specify record syntaxes, so record syntaxes must be

either registered with the maintenance agency or be

registered as nodes of an implementor's private ob-

ject identifier tree. As mentioned above, there are

two widely recognized record syntaxes; USMARC
and SUTRS. I'll describe them in detail below, but it

is worth mentioning the other record syntaxes listed

in the standard. Understanding what these other

syntaxes are and where they are intended to be used

is useful in understanding where the implementors of

the standard are taking it.

41

9.3.1 Non-core Record Syntaxes

9.3.1.1 Other MARC Syntaxes

There are a number of variants on the MARC record

syntax. In the United States, the Z39.50 developers

tend to forget that fact and refer to USMARC as

simply MARC. But, there are 14 other MARC rec-

ord syntaxes recognized by the standard and they will

be supported by many of the commercial servers as

Z39.50 services are implemented in Europe. For the

most part, these are national MARC syntaxes (e.g.,

UKMARC, CANMARC and FINMARC) which en-

code support for local cataloging standards, but there

are also some internationally recognized MARC
syntaxes (e.g., UNIMARC and INTERMARC.)

9.3.1.2 Explain

Successful interoperation of Z39.50 clients and serv-

ers in Version 2 is based on a priori agreements be-

tween the two parties. The client had no mechanism

for determining what Use attributes were going to be

supported by the server for searching nor what record

syntaxes were going to be supported for retrieval.

The client had to be told this information through

some process outside of the standard. Currently,

most of the server hosts provide human readable

documentation that can be used to statically configure

a client. The Explain service provides the mechanism

that allows those things to be determined dynami-

cally.

The Explain service is implemented as a database

that can be queried by the client. Access to the rec-

ords in this database is primarily gained through

search keys defined by the standard. The contents of

these records, which contain things like Use attributes

and record syntaxes supported are defined by the

Explain record syntax.

9.3.1.3 OPAC
OPAC (Online Public Access Catalog) records were

an attempt to allow holdings information to be

transmitted along with bibliographic records (usually

sent in USMARC format.) They were not widely

implemented and a number of non-standard mecha-

nisms for transmitting holdings information were de-

veloped instead.

9.3.1.4 Summary

Summary records were developed as part of an effort

to bring the WAIS retrieval software into compliance

with Z39.50. WAIS was based on the 1988 version

of Z39.50, with a number of private extensions.

Among these extensions was the ability to provide

brief record information in a more standardized way

than the simple Brief Element Set Name provided by

the standard.

9.3.1.5 GRS

The Generic Record Syntax is at the heart of most of

the growth areas of Z39.50 implementation. The

other record syntaxes described so far have limited

structural flexibility (you cannot have really complex

fields) and rigid semantics (everyone knows what to

expect in every field.) What was needed was a rec-

ord syntax with great flexibility and the ability to

transmit both elements with semantic understanding

and elements with no semantic understanding.

GRS was invented for this purpose. It supports arbi-

trarily complex hierarchical records and elements that

can carry numeric tags from any number of well-

known name spaces as well as string tags intended to

carry field "names" that might be of use to a human

viewing them, if not of use to the software receiving

them.

GRS is being heavily used by the Chemical Abstract

Service to provide their complex chemical records

which include things like chemical structure informa-

tion. In addition, the GILS (Government Information

Locator Service) profile uses GRS records as the

most flexible way to transmit Information Locator

records and the CIMI (Coalition for the Interchange

of Museum Information) group is looking to use GRS
records to transmit their information.

9.3.2 USMARC
USMARC can be quite daunting, at first. Fields are

tagged numerically and there is little pattern to the

tagging. If you do not know what the tags mean, you

are out of luck. To complicate things more, some of

the fields can repeat and others cannot: but some of

the non-repeatable fields have other, repeatable, fields

that the extra data can go into, (e.g.. The first author

of a book might be placed in a 100 field, a non-

42

repeating field, but subsequent authors would be put

into 700 fields.)

There are actually three different sets of rules com-

bined to form USMARC records. The first is the

encoding standard; ANSI Z39.2. It describes the

physical encoding of all MARC records (at least that

is the theory.) The second is the tagging rules: what

data goes in what fields. Finally come the formatting

rules for the data (e.g. names should be entered last

name first with a comma separator.) Fortunately, as

client developers, it is not necessary to worry about

the formatting rules.

The encoding rules are straightforward. The records

are theoretically encoded as 7-bit ASCII, but I've

seen many private characterset extensions that use 8-

bit ASCII. The record begins with a fixed format

leader that describes the length and type of the

MARC record and well as describing some of the

encoding options that will be used in the record. The

leader is followed by a directory that describes what

fields are contained in the records, the offset from the

beginning of the data that the field can be found at

and the length of the field. Fields can have tags in the

range 1 through 999.

Finally comes the data itself. Fields with tags 1

through 10 have a fixed format. Fields with tags 1

1

through 999 have subfields. The subfields do not

have additional subfields. Subfields have single

character tags and the tags are primarily alphabetic,

but digits and even punctuation characters are some-

times used. The fields and subfields are separated by

separator characters.

I have provided a routine to help with the decoding of

the USMARC records; marc2dir(). It takes a

USMARC record and decodes it as if it were a BER
record. Even if you decide that you do not want to

use the BER Utilities, this routine will give you a leg

up on the decoding of USMARC records. In addi-

tion, I have provided a table at the end of this article

that lists a large number of USMARC fields and their

subfields and the labels that are commonly put on

them when displaying them to non-librarians.

The intent is to allow the client to ask the server to

format its data in a manner suitable for display to a

human. The assumption is that the server probably

has a better idea of how its data should be formatted

than the client does, especially if they have no other

record syntaxes in common.

SUTRS records are simply a single field of ASCII

characters with a newline character at least every 72

characters. As the name states, there is no structure

within that single field. The client should not try to

parse the field looking for subfields.

9.4 The PresentRequest

The PresentRequest is created by a call to the Pre-

sentRequestO routine. It takes a referenceld, a re-

sultSetName, a resultSetStartPoint and number-

OfRecordsRequested, an ElementSetName and a

preferredRecordSyntax

.

The referenceld is a long and has the same meaning

as in InitRequesti). The resuItSetName will be one

of the resultSetNames used in a previous successful

call to SearchRequesti). The resultSetStartPoint is

the relative record number from the resultSet of the

first desired record. numberOfRecordsRequested

is the count of the number of sequential records re-

quested. The sum of resultSetStartPoint and num-

berOfRecordsRequested minus 1 should be less

than or equal to the resultCount for the resultSet.

ElementSetNames will be set to "F" or "B", depend-

ing on whether Full or Brief records are desired.

preferredRecordSyntax is set to the Object ID of

either USMARC or SUTRS. Preprocessor variables

ofMARC_SYNTAX and

SIMPLETEXT_SYNTAX are provided for this

purpose.

As in SearchRequesti), PresentRequest() returns a

pointer to an allocated area in memory that contains

the BER encoded PresentRequest.

The prototype for PresentRequest{) is:

9.3.3 SUTRS
The Simple Unstructured Text Record Syntax exists

to provide a minimal level of data communication.

SUTRS records are essentially preformatted records.

43

unsigned char *PresentRequest(

long referenceld,

char *resuItSetName,

long resultSetStartPoint,

long numberOfRecordsRequested,

char *EIementSetNames,

char *preferredRecordSyntax);

9.5 The PresentResponse

The PresentResponse is processed by PresentRe-

sponse() and it, like SearchResponse(), takes the

BER record returned by the Z39.50 server as its only

parameter and returns a pointer to an allocated

structure which contains the fields of the PresentRe-

sponse. The prototype for PresentResponse() is:

PRESENT_RESPONSE *PresentResponse(

CHAR *response);

and the PRESENT_RESPONSE structure looks like

this:

The referenceld is the same one provided to Sear-

chRequesti).

presentStatus contains either a zero to indicate that

there was no error during the PresentRequest or it

contains a status code describing the type of problem

encountered during the PresentRequest.

A value of 5 in presentStatus means that no records

were returned and the PresentRequest completely

failed. If this happens, there should be an er-

ror_code and possibly an error_msg explaining why

the PresentRequest failed. The other possible values

indicate why fewer records than requested where re-

turned. Those values are described in detail in the

standard. The values for error_code and error_msg

are described in the Error Diagnostics appendix of

the standard.

The numberOfRecordsRetumed contains the count

of records returned by the server. It should be equal

to the numberOfRecordsRequested from the Pre-

sentRequesti). If it is not, then presentStatus should

have had a value other than 0.

The nextResultSetPosition is set to the value that

should be used as the resultSetStartPoint in the next

PresentRequesti) to retrieve the next sequential rec-

ord.

recordSyntax will be set to the Object ID of the rec-

ord syntax used by the server for the records re-

turned. It should be the same as the preferredRe-

cordSyntax used in the PresentRequesti).

records will contain an array of pointers to and the

lengths of the records returned. The number of

pointers in the array will be equal to numberOfRe-

cordsRetumed, even if the server accidentally re-

turns fewer records than it claims. If this happens

then the pointer will be set to NULL.

9.6 ZDEMO
Zdemo needs four things to allow it to do Presen-

tRequests. It needs a way for the user to specify the

resultSetStartPoint and numberOfRecordsRe-

quested, a way to specify the preferredRecordSyn-

tax, a way to specify the ElementSetName and a

way to display the records returned.

The preferredRecordSyntax is specified with a new

command (r) that takes as its single argument either

the word USMARC or the word SUTRS. A global

variable is set based on the argument. The default

value for preferredRecordSyntax is USMARC.

The ElementSetName is specified with a new com-

mand (e) that takes as its single argument either the

word FULL or the word BRIEF. A global variable

is set based on the argument. The default value for

ElementSetName is FULL.

The PresentRequest is initiated and the numberOf-

RecordsRequested and resultSetStartPoint are

specified with a new command (d) that takes two op-

tional numbers representing the resultSetStartPoint

typedef struct

{

long referenceld;

long presentStatus;

long numberOfRecordsRetumed;

long nextResultSetPosition;

char recordSyntax[50];

struct record

{

long len;

char *record;

} *records

long error_code;

char *error_msg;

} SEARCH_RESPONSE;

44

and numberOfRecordsRequested respectively. The

default value for both numbers is 1

.

to handle the search (s) command, so it will not be

shown here.

The code in zdemo for parsing the two new com-

mands is trivial and looks much like the code added

void zread(char *panns)

{

long i, nunirecs=l, whichrec=l;

PRESENT_RESPONSE *present_response;

unsigned char *request, *response;

Zdemo will call a new routine, zread() to handle the

PresentRequest. The code for zread() looks like

this:

if(*parms) /* were any arguments provided */

{

char *t;

whichrec=atoi(panns)

;

if((t=strchr(parms, ' ')) != NULL)
numrecs=atoi(t);

}

request=PresentRequest(0, resultSetName, whichrec, numrecs,

ElementSetName, preferredRecordSyntax)

;

response = do_irp(request, socket);

present_response=PresentResponse(response);

if(!present_response)

{

printfC'Did not get a PresentResponse!\n");

return;

}

numrecs= present_response->numberOfRecordsRetumed;

printf("%ld records returned\n", nRecs);

svdtch(present_response->presentStatus)

{

case IRP_success:

printfC'Present successful\n");

break;

case IRP_partial_l:

case IRP_partial_2:

case IRP_partial_3:

case IRP_partial_4:

printfC'Partial results retumedXn");

break;

case IRP_failure:

printfC'Present failed\n");

break;

}

45

for(i=0; i<numrecs; i++)

if(present_response->records[i].record) /* did a record really get returned? */

{

char *end, *ptr;

if(strcinp(present_response->recordSyntax, SIMPLETEXT_SYNTAX)==0)
{ /* SUTRS records have a BER wrapper around them */

DATA_DIR *temp=daIloc(3);

bId_dir(present_response->records[i].record, temp);

ptr=(char*)temp->ptr.data;

end=ptr+(int)temp->count;

dfree(temp);

}

if(strcnip(present_response->recordSyntax, MARC_SYNTAX)==0)
{ /* convert the MARC record to a SUTRS-like record */

ptr=formatinarc(present_response->records[i].record);

end=ptr+strlen(ptr)

;

}

while(ptr<end)

{ /* print each line in the record */

char *t=strchr(ptr, '\n');

if(t)

*t='\0';

puts(ptr);

if(t)

ptr=t+l;

else

ptr=end;

}

free(present_response->records[i].record);

}

if(present_response->error_code)

{

printf("Error_code=%Id, message=' %s'\n", present_response->error_code,

present_response->error_msg ?

present_response->error_insg: "None provided");

if(present_response->error_msg)

free(present_response->error_msg)

;

free(respoiise);

free(present_response)

;

46

9.6.1 Displaying USMARC Records

Decoding USMARC records is beyond the scope of

this article, but the code to accomplish it is provided

as part of zdemo at OCLC anonymous FTP site.

(See the section of Source Code Availability at the

end of this article.)

10. Terminating the Z39.50 session

In Version 2 of Z39.50, both the client and the server

are allowed to terminate the session at any time,

simply by dropping the TCP/IP connection between

them. The routine disconnect() has been provided to

do this. It accomplishes this by closing the socket

with a call to thefclose() routine (one of the standard

C i/o routines.)

11. Summary
This article has described the elements of Z39.50

necessary to create a simple client. Many of the more

complex elements have been mentioned in enough

detail that you should have some idea if you need

them. Hopefully the code provided and its discussion

have shown you that while it is not trivial to build

Z39.50 applications, neither is it terribly complex.

NOTICE TO USERS: The Z39.50 Client API

("Software") has been developed by OCLC Online

Computer Library Center, Inc. Subject to the terms

and conditions set forth below, OCLC grants to user

a perpetual, non-exclusive, royalty-free license to

use, reproduce, alter, modify, and create derivative

works from Software, and to sublicense Software

subject to the following terms and conditions:

SOFTWARE IS PROVIDED AS IS. OCLC
MAKES NO WARRANTIES,
REPRESENTATIONS, OR GUARANTEES
WHETHER EXPRESS OR IMPLIED
REGARDING SOFTWARE, ITS FITNESS FOR
ANY PARTICULAR PURPOSE, OR THE
ACCURACY OF THE INFORMATION
CONTAINED THEREIN.

User agrees that :1) OCLC shall have no liability to

user arising therefrom, regardless of the basis of the

action, including liability for special, consequential,

exemplary, or incidental damages, including lost

profits, even if it has been advised of the possibility

thereof; and :2) user will indemnify and hold OCLC
harmless from any claims arising from the use of the

Software by user's sublicensees.

User shall cause the copyright notice of OCLC to

appear on all copies of Software, including derivative

works made therefrom.

12. Source Code Availability

The source code for the Z39.50 Client API and

zdemo is available via anonymous FTP at

ftp.rsch.oclc.org in the

pub/SiteSearch/z39.50_client_api directory. A copy

of this article, all the source code and user documen-

tation for the Client API can also be found in that

directory.

The BER utilities used by the Client API can be

found on the same host in the pub/BER_utilities di-

rectory.

OCLC maintains their copyright to all these materi-

als, but they have been made freely available to all

developers.

12.1 License

©1995 OCLC Online Computer Library Center, Inc.,

6565 Frantz Road, Dublin, Ohio 43017-0702.

OCLC is a registered trademark of OCLC Online

Computer Library Center, Inc.

47

Implementing Explain

Denis Lynch

TRW Business Intelligence Systems

dml@ bis.trw.com

Abstract

The Explain facility is the primary mechanism for Z39.50

clients to discover servers' capabilities. Explain-based cli-

ents can dynamically configure their user interface (or other

search capabilities) to exactly match individual servers.

This allows generic clients to access a wide range of Z39.50

server, and allows any client to adjust to changes in server

configuration.

The Explain facility is defined by an abstract record struc-

ture and attribute set, with no additional protocol mecha-

nisms. Still, effectively using Explain is a relatively large

undertaking. This paper describes the most important issues

to be considered, and suggests the most important features

to implement first.

Introduction

The Z39.50 protocol allows clients and servers to work

together to provide users with tailored access to informa-

tion. This flexibility presents a challenge to client develop-

ers: how will a client know how to deal with a specific

server? The traditional choices have been:

• Make the client very general, but very simple, providing

only "least common denominator" access.

• Build the client with specific knowledge of the server(s)

it will access, providing tailored access to a limited set

of information sources.

Early in the development of Z39.50 it became apparent that

the least common denominator was not useful for most

applications. On the other hand, building server knowledge

into clients is cumbersome and dangerous: even the most

stable environments change; a client with obsolete server

knowledge will give its users nasty surprises. The Z39.50

environment reveals this problem more than some others

precisely because of the specificity that it supports. For

example a user might have a request like "Return Canadian

MARC records for all the items in this database with MESH
subject starting with 'symptom'". But while such a specific

request will get exactly what the user wants when the server

supports the specific search access point and record syntax,

few servers do so.

Collectively the Z39.50 Implementors' Group (ZIG) deter-

mined that dynamic discovery of server capabilities was the

most promising way to get good client behavior. The best

way to communicate the dynamic data from servers to cli-

ents was seen to be the very search and retrieval facilities

that are the core of the Z39.50 protocol. Server characteris-

tics were divided into categories, and database record struc-

tures were defined to contain the information in each

category.

Explain records organize human-readable information as

well as information to be used internally by client software.

For example, the server description record (Targetlnfo)

includes separate human-readable items for an overall

description, usage restrictions, and operating hours as well

as items client software can use directly such as network

addresses and the maximum number of result sets sup-

ported.

Capturing server information in a searchable database

makes supporting Explain relatively easy, since both clients

and servers will necessarily have most of the required capa-

bilities. It also meant that the ZIG's energies could be

devoted to defining the dynamic information requirements

without concern for new protocol capabilities.

Implementation experience has proven that sophisticated

clients can be built that use only Explain information to

configure their user interface and key operating characteris-

tics.

49

Targetlnfo TermListDetails Extended Svcs CategoryList

General Server Information
T

RecordSyntaxinfo Schemalnfo Unitlnfo

AttributeSetlnfo Tagsetlnfo VariantSettlnfo

Static Information

Databaselnfo

TermListlnfo

Database-specific Information

AttributeDetails ElementSetDetails RetrievalRecordD

SortDetails Processinglnfo.

Overview of the Explain information structure

The remainder of this paper describes the Explain database

structure and how clients and servers can use Explain infor-

mation effectively. The paper does not exhaustively cover

the Explain database structure. Readers are referred to the

1995 Z39.50 standard, in particular section 3.2.10, Appen-

dix 3 section ATR.2, and Appendix 5 section REC.l.

• Static information that should not vary among servers,

e.g. attribute set definitions

• Database-specific information, e.g. available record syn-

taxes

• Information that applies generally to the server, e.g.

extended services available.

The Explain Database

The Explain database operates within the Z39.50 protocol

exactly like any other database. Each server's primary

Explain database is named IR-EXPLAIN-1 ; a server may have

additional Explain databases as well (see the Surrogate

Explain section below). Because predictable behavior and

content are important to the internal workings of clients.

Explain databases are searched using a dedicated attribute

set, and records are retrieved in a dedicated ASN.l syntax.

(Other alternatives, such as the Generic Record Syntax,

were considered, but the concreteness and specificity of

ASN.l and the Explain- 1 attribute set were compelling.)

An Explain database contains three basic kinds of records:

General server information

Four types of records apply across databases:

• The Targetlnfo record describes the server as a whole

• The CategoryList lists the kinds of Explain records con-

tained in the database

• ExtendedServiceslnfo records describe each Extended Ser-

vice supported by the server

• TermListDetails describe each term list supported in the

target (term list names appear in TermListlnfo records for

specific databases; multiple databases can share the

more detailed TermListDetails descriptions).

50

static Information

One of the sources of Z39.50's power and flexibility is the

degree to which important concepts are modularized into

entities that may be defined externally to the standard. Two
such entities—Attribute Sets and Record Syntaxes—are

central to using Z39.50. Four additional entities play impor-

tant roles in Version 3: unit systems, database schemas,

record tag sets and variant sets. Instances of all six of these

entities are identified by an object identifier or a unique

name.

Since the definition of each of these entities (for example a

specific attribute set) is intended to be universal, clients and

servers could have complete a priori knowledge of the defi-

nitions. In practice, though, clients can allow users to use

servers without having built-in knowledge of the semantics

of these entities. For example, a client can use information

from a Unitlnfo record to allow a user to enter a numeric term

and specify that it is a length in furlongs, where the unit

type and unit (i.e. "length" and "furlongs") are transparent

to the client.

The static information categories contain enough details

about the entities to support this kind of transparent client

behavior.

Like all Explain records these static descriptions can con-

tain human-readable text that clients simply display to

users, allowing users to understand aspects of the server's

operation that the client software does not necessarily

understand.

Database-specific Information

Most of the dynamic content of an Explain database relates

to a specific database on a server. Each database is

described by a Databaselnfo record; additional records

describe specific aspects of the database:

• AttributeDetails lists the attributes that can be used in a

Type-1 or Type- 101 query, and how those attributes can

be used in combination.

• TermListlnfo lists the term lists ("indexes") that apply.

• ElementSetDetails and RetrievalRecordDetails describe

record retrieval options.

• SortDetails lists the available sort options.

• Processinglnformation allows a server to provide clients

with specific instructions such as search forms and

record formatting.

Surrogate Explain Databases

A single Explain database describes a single information

service. There are many reasons that a Z39.50 server might

wish to provide Explain data about a service other than

itself (for example if the other service does not have an

Explain database). We refer to such a server as a "surrogate

Explain server," and the corresponding database as a "surro-

gate Explain database." The mechanism for this is straight-

forward:

• The surrogate Explain server provides its own Explain

data in the standard place: database IR-EXPLAIN-1.

• The surrogate Explain server provides Explain data for

additional servers as separate databases. By convention

the names of surrogate Explain databases should be the

URLs for the server they explain. (That is not a require-

ment, and there are times when other names must be

used.)

• Each surrogate Explain database should naturally be

described in the IR-EXPLAIN-1 database. Only the Data-

baselnfo record is required, and two of its elements are

especially important to clients:

- explainDatabase (a Boolean flag) informs the client

that the database is an Explain database

- lastUpdate gives clients an indication that cached data

may be obsolete.

When a server follows these conventions a client can deter-

mine what surrogate Explain data is available by searching

IR-EXPLAIN-1 for

ExplainCategory = "Databaselnfo"

AND

ExplainDatabase AlwaysMatches {any term).

The client is likely to need the list of databases in any case,

so it can simply search for ExplainCategory = "Databaselnfo";

then Brief records will identify all the server's "normal"

databases and surrogate Explain databases.

Using Explain in a Client

Even the most basic Z39.50 client can use dynamic infor-

mation from Explain to great advantage. The most obvious

application is search attributes, but the opportunities are

much greater.

• Network addresses. If the Explain data is coming from a

surrogate Explain server, the surrogate Explain server

might recommend a network address different than the

destination server name. It is possible that a non-surro-

51

gate server would provide alternative addresses—but

these would only be discovered after a connection to the

original address had succeeded!

Target operation parameters. The Targetlnfo record con-

tains more detail about the server than Init negotiation

provides. A client can use the namedResultSets and multi-

pleDBsearch flags for named result sets and multi-data-

base searching to avoid sending searches that the server

will fail. (Clients can learn that named result sets are not

supported during initialization if Version 3 is negotiated,

but not if Version 2 is negotiated.)

Searching.

- Whenever a TermListlnfo record is available for a data-

base a client should use the listed termLists as the pri-

mary search access points. For each access point (or

index) to a database, the TermListlnfo record includes a

title for each term list, intended for display to the

user (possibly in multiple languages), an indication

of the cost of using that access point, and whether the

term list is scannable. The attributes in a term lists's

TermListDetails record specify which attribute combi-

nations address that term list.

A server administrator identifies term lists as specific

ways to search a database, so distinct term lists can

be presumed to be truly different. On the other hand,

the same administrator will list as many attribute val-

ues as possible in AttributeDetails, even though some

are treated identically.

- AttributeDetails lists all legal attributes for a database;

its attributeCombinations lists how those attributes can

be combined in a single operand. Attribute names

and descriptions can be found in AttributeSetlnfo

records; database-specific descriptions may be

included in the AttributeDetails.

- The associatedDbs element of a database's Data-

baselnfo record lists the databases that can be

searched in combination with that database. (Similar

information may be available in the Targetlnfo

record's dbCombinations element.)

Retrieval. The ElementSetDetails and RetrievalRecordDetails

records associated with a database identify the record

syntaxes and element requests that are sensible for that

database. Knowing the full list of alternatives allows a

client to choose appropriate element set names, even if

the standard "F" and "B" are not appropriate. (This could

happen, for example, if "F" and "B" are supported only

for a record syntax the client can't accept.)

Scan. Scan requests use attribute combinations to

address term lists. A client may choose to attempt to

scan with any supported attribute combination, but using

only term lists with the scanable flag set will avoid

unnecessary errors.

• Processing instructions. These are currently usable only

by private agreement between the client and server. Gen-

eral purpose formats will be defined in the future.

• Extended Services. Each Extended Service supported by

a server is described by an ExtendedServiceslnfo record.

Clients can use this record to learn whether ES packages

will be retained in the ES database, and whether the

request can be issued with the wait flag.

• Access requirements. Both the Targetlnfo record and Data-

baselnfo records may contain Accesslnfo elements. Clients

can use this access information to determine if they can

usefully access the server and specific databases. The

most important element in this regard is restrictedAccess.

If restrictedAccess indicates that access to a server or

database is restricted, the client will be able to access the

server or database successfully only if it supports one of

the listed accessChallenges. In some cases a client might

learn that a database doesn't support any of the query

types the client supports. (This is unlikely, since essen-

tially all clients and servers support Type-1 queries.)

• Human-readable descriptions. The various description

fields—particularly in Targetlnfo and Databaselnfo

records—should be available from a client's Help sys-

tem. The information in these fields may explain to a

user why operations behave as they do, as well as

describing the contents of the databases.

Getting Explain records

Explain databases are accessed using the search and

retrieval facilities of the Z39.50 service. The exp-1 attribute

set includes USE attributes that are tailored for searching

Explain databases. Each exp-1 attribute corresponds to a

specific element in an Explain record. Some of the attributes

correspond to elements that appear in more than one type of

record (e.g. ExplainCategory and DatabaseName), while others

correspond to elements that currently appear in only one

type of record (e.g. ExtendedServiceOID).

Several attributes require specific search terms, as described

in the definition of exp-1.

Exp-1 only defines USE attributes; attributes of other classes

are the same as Bib-1 attributes.

Explain databases can be accessed effectively using the Ver-

sion 2 present facility, in particular simple element set

names. The Explain record syntax definition identifies the

52

elements that must appear in brief records (element set

name "B"), these include all of the identifying elements of

the record. Full records (element set name "P) must contain

all elements present in the database. The element set names

"description", "specificExplain" and "asn" are also defined in

certain cases as detailed in the syntax definition.

Search

Finding desired records in an Explain database is generally

very simple. The canonical search is:

ExplainCategory = category

AND

identifier = value

For example

ExplainCategory = "Databaselnfo"

AND

DatabaseName = "CATALOG"

A few records have multi-field keys (e.g. ElementSetDetails

and Processinglnformation) which means that known-item

searches require additional terms.

As with most things, it is best to keep the searches as simple

as possible. TRW's Explain software, for example, never

sends attributes other than USE, and always uses the general

choice for encoding search terms.

Retrieval

The safest policy is to assume that a server has 100% recall,

but unknown precision. Clients should therefore be pre-

pared to accept records that weren't asked for. In particular,

the desired record may not be the first one in a result set.

(Perhaps even more annoying: the search may return many

records, but none is the desired record!) It is wise for the cli-

ent to remember the result set positions of these "unwanted"

records in case they become wanted later (e.g. if a target

returns many Databaselnfo records when only one was

wanted, the client can avoid later searches by retaining the

positions of the "unwanted" records).

To minimize round-trip delays, all searches should request

piggyback presents. In most cases the piggyback should

only request brief records, but known-item searches

(searches that expect to find no more than one record) could

set a small-set size of one, and request full records for the

small set.

Explain servers may not handle present requests exactly as

issued. The two most obvious things clients should be pre-

pared to handle are:

• Piggyback present is not required, and some common
servers do not honor it. Clients should be prepared to

issue present requests if a search response contains no

response records.

• Brief records are not required, so clients should examine

the records they have received before issuing a redun-

dant present request. If any non-brief elements are

present the record isn't brief. It would be most irregular

for a server that doesn't provide brief records to make

other element set distinctions, so in practice it is safe to

assume that non-brief records received for "B" are full

records.

Although it isn't strictly necessary, specifying the preferred

record syntax as Explain is a reasonable safety measure.

Handling errors

The most common error received from Explain searches is

"Database does not exist." This should be noted carefully

—

there's no reason to try again! A server may react in other

less helpful ways, for example "Unsupported attribute set"

or "No records syntaxes available." It is simplest to assume

that almost any error means that the server doesn't support

Explain at all. (Bib-1 error 27—Result set no longer

exists—is one exception.)

Once connected, servers frequently time out idle connec-

tions. Since Explain is best handled "behind the scenes," the

connection should simply be re-established the next time it

is needed.

Default configuration

The conventions described in this section are used by

TRW's software. They have been proposed to the ZIG as

possible implementors' agreements.

For servers that provide many similar databases it may be

simpler to describe them only once. The easiest way to do

this is to describe a database named "Defaulf . A client that

finds no record of a particular type (e.g. AttributeDetails) for a

specific database should try to find the same record for the

database "Defaulf. In many cases that record will have

already been retrieved as fallback for a different database.

A surrogate Explain server can provide default client con-

figuration information for specific destination servers, as

53

well as providing fallback default behavior. To obtain infor-

mation about a destination server from a surrogate Explain

server, a client searches a sequence of Explain databases.

(An Explain database is searched only if the surrogate

Explain server's IR-Explain-1 database has a Databaselnfo

record for that Explain database.)

• The URL for the destination server is used as a database

name (e.g. the database name "z39.50s://rlg.stanford.edu" is

used when looking for information about RLG's server)

• A similar string is used to find a database of default

information to be used for the specific access (e.g.

"239.50s://defaulf for Z39.50 access)

• A fallback database is used for generic default informa-

tion ("default://defaulf

)

The default Explain databases are structured exactly like

other surrogate databases.

Minimizing impact on servers

Explain searches require roughly the same amount of server

attention as real information searches. This makes it impor-

tant that clients behave reasonably ! Here are a few tech-

niques:

• Cache explain records, and don't ask the server for

information that has already been retrieved. Generally

it's not a good idea to "download" a server's whole

Explain database—just cache the records that are

retrieved in the normal course of operation.

The biggest problem with cached records is knowing

when to throw them away. The strategy TRW adopted is

to delete all cached information about a database when-

ever the Commonlnfo in a Databaselnfo record has an

update (or creation) date more recent than the corre-

sponding Databaselnfo record in the cache. This works

well because the Databaselnfo records are retrieved from

the server on a regular basis (see the next item), and the

Commonlnfo is in brief records.

• Keep lists, and check the appropriate list before asking

the server a question. This technique applies especially

to Databaselnfo records. A client can avoid searches by

noticing that there is no Databaselnfo record for the rele-

vant database (e.g. when looking for AttributeDetails for a

specific database, or for surrogate Explain information

about a specific server). One scheme for managing these

lists is as follows:

- Initialize the list before any records are retrieved

from the cache. (Each cache will have several lists.)

- As records are retrieved from the cache, add them to

the appropriate list.

- When a specific record is needed, retrieve records

from the cache until either the record is found or the

whole cache has been retrieved.

- When all the records have been retrieved from the

cache and the needed record hasn't been found, ask

the server. But instead of asking the server for a spe-

cific record, ask for the list (e.g. "all Databaselnfo

records"). As the records from this list are retrieved

the local cache can be checked for out-of-date infor-

mation.

- After the server's list has been completely retrieved a

record that isn't in the list doesn't exist—there is no

need for additional searches.

• If a surrogate server is supplying the Explain data, check

for the destination server's surrogate Explain database in

the list of Explain databases before accessing the surro-

gate database.

• Remember result set positions of records to avoid redun-

dant searches. As Explain records are encountered in

Present responses, the client should retain the result set

name, result set position, and identifying information

(ExplainCategory plus, for example, DatabaseName). When
the client needs a record that was incidentally received,

this retained information lets the record be Presented

from the existing result set without another Search.

Building an Explain Database

"Using Explain in a Client", above, points out most of the

issues with populating an Explain database. This section

points out a few additional considerations for server admin-

istrators.

• Make use of default configurations wherever possible. In

a surrogate Explain system it makes sense to provide

default Targetlnfo records, for example to make clients

presume that multiple database searching is not sup-

ported.

• Consider carefully what attributes to include in Explain.

There is no reason to list attributes that are treated as

synonyms just for compatibility. Clients that rely on

dynamic configuration will be misled by these attribute

aliases; clients that don't use the dynamic configuration

won't notice that the aliases are missing.

• Provide term list information if at all possible.

• Include AttributeCombinations to let clients filter out illegal

search requests. The AttributeCombinations structure is

designed to avoid combinatorial explosion by specifying

patterns that describe a set of similar combinations, for

example:

54

- With USE attributes 4, 20, 21, 62 and 1000 the RELA-

TION attribute may be omitted or value 3 may be sup-

plied, and the STRUCTURE attribute may be omitted

or values 1 , 2 or 6 may be supplied

- For USE attributes 30, 31, 32, 101 1 and 1012 the

RELATION attribute may be omitted or values 1, 2, 3,

4 or 5 may be supplied, and the STRUCTURE attribute

may be omitted or values 5 or 100 may be supplied.

• There is no need to include individual attributes in an

AttributeSetlnfo record if no databases on the server use

those attributes.

• If a CategoryLlst record is provided, it should list only

categories for which at least one record is available. The

primary purpose of the CategoryList is to allow clients to

learn about Explain extensions supported by the server,

but it can also allow clients to skip searches for records

that the server doesn't have.

Serving Explain Records

Any fairly capable Z39.50 server should be able to process

Explain requests. Unlike user-initiated requests, Explain

requests are generated from low-level client code. They will

generally be fairly simple, and will not take advantage of

Explain information themselves. Servers should therefore

make every attempt to process Explain requests without

returning the kind of diagnostics that might help a human

user refine a request.

There are a few specific requirements:

• The Explain records syntax and attribute set must be

supported.

• Since Explain searches will be generated automatically

by the client software, support for named result sets is

nearly mandatory. The cost of retaining the result sets

will surely be less than the cost of re-executing searches.

• If Version 3 is negotiated, the search engine must be pre-

pared to process search terms sent in the OBJECT IDENTI-

FIER choice.

• In Version 2 or Version 3, the search engine must be pre-

pared to deal with object identifier terms sent as charac-

ter strings as specified is Appendix ATR.2, note (4).

• Support of element sets other than "P is not required.

But a Brief record should never contain any non-brief

elements: clients need to be able to look at a received

record and determine whether it is Full. As described

above, clients will reasonably presume that records with

non-brief elements are non-brief records.

• Support for piggyback present is not required.

• Unlike processing user-requested searches, a server

should simply ignore Explain search operands with

unsupported attributes. If the server fails the search

instead, the client will (at best) reformulate a broader

query without the offending attribute. Ignoring the

unsupported operand avoids this inevitable round trip.

• A useful Explain service can be provided with only a

few attributes. The minimal set of attributes is very

short:

- ExplainCategory

- DatabaseName

- TermListName (if term lists are provided)

The next attributes to add are the identifiers from other

records supported by the server:

- AttributeSetOID

- RecordSyntaxOID

- TagSetOID

- SchemaOID

- ExtendedServiceOID

- VariantSetOID

- UnitSystem

The next tier of attributes is:

- HumanStringLanguage (if there is more than one)

- DateChanged

- DateAdded

- DateExpires

Only a very simple search engine and no specialized data-

base are required. The Explain records can simply be stored

as BER-encoded files. The TRW Explain Editor and server

add some small twists to this:

• Each Explain database is stored as a separate directory.

• Within an Explain Database directory, subdirectories are

created to store records pertaining to specific databases.

• Records that are not specific to a single database are

stored in the top-level Explain Database directory.

• Two special files are created in every directory:

- title.trw contains the title of the database. Our software

makes no use of directory names because of charac-

ter set and length restrictions.

- contents.trw contains a list of all the files in the direc-

tory along with the values of the searchable fields

(including creation/update dates). This isn't much

data, but it allows the directory to be indexed or

searched without accessing the actual Explain

records.

55

Conclusion

The Explain database structure appears daunting to new

readers in size and complexity: its ASN.l definition is

slightly larger than the definition of the body of the Z39.50

protocol, and the records are closely interrelated (like the

protocol itself, the Explain database was designed for econ-

omy and modularity).

This paper has described how the most general parts of the

Explain database are used in practice, and how software can

be designed to provide and access Explain databases effi-

ciently. The paper is based on experience gained in building

a reasonably complete end-to-end Explain system: a graphi-

cal editor for creating and maintaining the data, server

extensions to provide the data, and a client that relies exclu-

sively on Explain records for configuration.

The author can be reached at dml@bis.trw.com.

56

Implementing Z39.50 in a multi-national and multi-lingual environment

Makx Dekkers

Pica - Centrum voor bibliotheekautomatisering

Leiden, The Netherlands

(dekkers@pica.nl)

Abstract

Z39.50 provides a very useful tool for intersystem

communication, but it also demonstrates that

differences in language and culture have an impact on

the scope and usefulness of international services.

A number of problems arise when implementing

Z39.50 in a multi-national and multi-lingual

environment. In the U.S. implementers group, these

problems are not always obvious.

Problems that are being identified by current

implementers in Europe include differences in

character sets between countries, different sorting

order of characters in different languages, different

rules for conversion from 8-bit to 7-bit ASCII for

indexing dependent on country and language,

difficulties in translating system messages, variety of

MARC formats and differences in cataloguing rules

between countries.

Intemationalisation of the standard can solve some of

the problems. Hopefully, through the implementation

and use of EXPLAIN some of the others can be

explained to users. The aim should be to make it

possible, through Z39.50, to provide services to a wide

international audience, respecting the multitude of

cultures and languages in the world.

Introduction

As a result of the possibilities offered by the

introduction of network technology in the past

decades, exchange of information through

communication between computer systems has become

an everyday phenomenon in today's world.

With the success of Z39.50 in North America,

organizations in non-English speaking areas are

becoming interested and now are identifying problems

with the essential Anglo-American scope of some

aspects of Z39.50. Obvious examples are: the use of

basic 7-bit ASCII, and the relation with the Anglo-

American Cataloguing Rules AACR2. It should be

stressed that the issue is not a American-European

dichotomy but rather one of language, i.e. English

versus non-English communities.

While it is clear that Z39.50 provides a very useful

tool for intersystem communication, experience from

international projects indicates that solutions will have

to be found for national differences such as language,

character sets, cataloguing rules and data formats, to

make the standard globally acceptable.

Problem areas

It should be stated that many of the problems that are

identified by non-English implementers are not

inherent to Z39.50, but are merely made visible

because of the new possibilities of intersystem

communication.

A major category of problems is that of external

incompatibilities. These problems are related to

cultural differences: national bodies are responsible for

definition and maintenance of national rules for

bibliographic descriptions; more fundamentally,

different countries use different languages with

different character sets and sorting rules.

Almost all countries have bodies that define the

national rules for cataloguing of publications. Large

bibliographic utilities sometimes define their own

(additional) rules. Although some coordination is

taking place, such as with the AACR2 rules, the

independence of these national bodies introduces some

fundamental incompatibilities when organisations in

57

different countries want to interchange bibliographic

descriptions through Z39.50.

An illustrative example of this is the treatment of

multi-volume publications; under some rules these are

catalogued as one single record with repeated

elements, under other rules they are described as

separate entities with relations between them. Another

example is the use of standard phrases in national

language within the cataloguing rules, such as for title

changes for journals (in Dutch cataloguing the

description would contain the phrase "Voortgezet

als:"). International exchange of such bibliographic

descriptions would ideally involve automatic

translation; however, this is not being done in practice.

For searching, standardised keyword lists are usually

defined in national language and subject code systems

are agreed in a national context. These different

language and country related rules and practices cause

incompatibilities that are difficult or sometimes

impossible to overcome.

A number of interworking problems are associated

with differences in character sets. There are many

scripts being used in the world and most of the

existing library systems are unable to handle them all.

Transcription rules or character set conversions will

sometimes lose information since they are not always

one-to-one reversible. Transcription rules are generally

dependent on the combination of source and target

language, e.g., Russian Cyrillic will be transcribed

differently in the Netherlands, Germany and France.

Furthermore, transcription rules sometimes change

over time. Especially in searching, it is difficult for a

user to determine what transcription should be used:

will it be Nabokov, Nabokow, Nabokoff? How does

one search for the person referred to in the

Netherlands as Aleksandr Isajevitsj Solzjenitsyn? In

practice, in current multi-national communication, the

textual information is transferred in 7-bit ASCII (ISO

646). This limits the scope of communication to

languages with a Latin character set and even then the

results are fundamentally insufficient.

In sorting, the situation is even more complicated. The

same character set may be used in two different

languages, yet the sorting order might be different. In

some languages "o-umlaut" is sorted as "oe", in others

it might appear at the end of the alphabet. Even when

the same language is used in two countries, there

might be differences in sorting order of names: in

Belgium a personal name of "Van Dam" will appear

under "V", in the Netherlands under "D".

All these practices make it difficult to predict what the

results of search commands will be; sometimes items

will not be found that are in the database, sometimes

they will just appear in unexpected places in a sorted

list. Users do not always realise these difficulties and

the occasional user might turn away in

disappointment.

Users would like to look at title descriptions that were

found as a result of the search action. This is not a

trivial task. The target database records might be

stored in a format that the user is unfamiliar with. The

systems will then have to provide some form of

format conversion. Even between MARC formats,

which are at least structurally compatible, format

conversions almost invariably lose some of the

information. If for some reason format conversions are

not possible, the user will either see an unfamiliar

format or a description can only be displayed as

unstructured text, which might be fine for an end-user

doing reference work, but would be close to useless to

a librarian.

Finally, there are also some elements of the standard

itself that pose problems to users in multi-lingual

environments. For several services, the target system

may convey diagnostic information to the origin. The

standard does not prescribe the origin behaviour when

such messages are received, so the origin might not

know anything better to do than show the diagnostic

information to the user. This information could be in

a language the user is not familiar with. Obviously,

the standard is not supposed to prescribe any external

behaviour but to users this is not really helpful.

Solution scenarios

In practical implementations of the standard, solutions

to the above problems take a very pragmatic approach.

In one way or another, they all take the lowest

common denominator and make the best of it. This

either leads to solutions that cut away all complexity

and settle for very limited functionality, or to highly

parameterised implementations of the form: "If talking

to A do this, if talking to B do the other". The

language and character set problems are commonly

'solved' by standardizing on English and basic ASCII.

58

For real solutions, a first essential step is for

developers and implementers of the standard to

become aware of the problems that are introduced by

its use in multi-national and multi-lingual

environments. This awareness can not be of a simple

theoretical nature; it can only lead to practical steps if

there is a business case to justify extra investments.

One general step towards solving the incompatibilities

outlined above is the introduction of negotiations,

dynamic conversions, and powerful explanation

techniques. Negotiation aims at establishing a mutually

agreed environment. If this cannot be achieved, the

data that is exchanged can be converted from one

format to another. If that is impossible, the user should

receive some information to explain why the result is

not as expected and to suggest alternative actions to

maximise the user's efforts.

In the final text of the 1995 version of the standard, a

mechanism has been incorporated for negotiations

between origin and target. This mechanism may be

used to negotiate the character set used for textual

information and the language of messages. This is an

essential improvement over the 1992 standard,

allowing multi-lingual systems to take advantage of

their capabilities across a Z39.50 communication. The

character sets that can be used are ISO 10646 and ISO

2022, or mutually agreed private character sets. If

negotiation cannot be completed successfully, the

situation is basically that of the 1992 standard: the

target determines the language and the only safe

assumption for the character set is that it will be 7-bit

ASCII.

For the data formats, it is clear that national or local

rules will remain important to determine the way

information is stored in databases. Possibly some of

the MARC formats will become widely accepted as an

exchange format; at the moment, USMARC and

UNIMARC seem to be the dominant formats in

several projects. It is also clear that this will not be a

solution for systems not governed by purely

bibliographic rules that do not usually store or export

their data in MARC. A positive development is that

some European projects are building table-driven,

public domain toolkits for format conversions.

Although 100% accuracy in conversion cannot be

achieved, this might help in broadening the scope of

Z39.50 interoperability.

In areas where negotiation or conversions cannot solve

the problems, the use of the Explain facilities defined

in the standard would have to provide the solution.

This facility is probably the most powerful feature of

Z39.50. It can be seen from the complexity of the

Explain facility that the problems are manifold.

Through Explain, the client is given information that

can be used to help the user to better understand what

goes on behind the scenes and to allow him or her to

make sense of the results of certain actions. The

problem, of course, is that what makes perfect sense

for one user might be completely illogical to another.

At best. Explain will provide a general information

level to an average user. Still, this is better than

nothing and fortunately, all messages in Explain have

been designed for multi-lingual environments. As a

drawback, the maintenance of an Explain database can

be a considerable task.

Even with the above solutions, there will remain

elements that cannot be negotiated, converted, or

explained during a session. There will always be out-

of-band bilateral agreements between Z39.50 partners

and there will always be situations where two Z39.50

systems cannot communicate to provide a useful

service to users. As an example of the latter, imagine

that the Z39.50 target provides access to a Chinese

database and the origin has no way of displaying

Chinese characters to the user. It should be clear that

a standard like Z39.50 is just a vehicle for

communication and will never be capable of solving

all the problems that exist; neither should it try to do

this.

Conclusion

Z39.50 provides a very useful tool for intersystem

communication but it is clear that differences in

language and culture have an impact on the scope and

usefulness of international services. Intemationalisation

of the standard can solve some of the problems.

Hopefully through the implementation and use of

Explain some of the others can be explained to users.

The aim should be to make it possible, through

Z39.50, to provide services to a wide international

audience, respecting the multitude of cultures and

languages in the world.

Copyright © 1995, M. Dekkers

59

I

!

I

I-

'I

Use of Z39.50 for Search and Retrieval of Scientific and Technical Information

Les Wibberley

Chemical Abstracts Service

les.wibb@cas.org

Abstract

A common perception of Z39.50 is that it defines a sim-

ple information retrieval standard for bibliographic data.

But in its latest version, Z39.50-1995, the standard has

evolved into a rich set of interoperable services that can be

used for client/server-based search and retrieval within liter-

ally any information discipline.

This paper addresses the use of Z39.50 for search and

retrieval of scientific and technical information. This topic

is explored within the context of an implementation of

Z39.50 by Chemical Abstracts Service (CAS). The paper

explores some of the practical implementation issues

encountered, the solutions applied, and lessons learned.

Introduction

Z39.50 is an American National Standard that specifies

an interoperable protocol and services for information

search and retrieval. The Z39.50 protocol specifies formats

and procedures governing the exchange of messages

between a client and server, enabling the client to request

that the server search databases for information that meets

specified criteria, and to retrieve some or all of the identified

information.

This paper addresses the use of Z39.50 for search and

retrieval of scientific and technical information. It explores

some of the practical implementation issues encountered,

the solutions applied, and lessons learned. Specific topics

include the use of Attribute Sets, Record Syntaxes, Element

specification. Segmentation, Otherlnformation, and

Extended Services. These topics are explored within the

context of an implementation of Z39.50 by Chemical

Abstracts Service (CAS).

A brief history of Z39.50

The Z39.50 protocol was originally proposed in 1984

for search and retrieval of bibliographic information. The

first version of Z39.50 was prepared by a committee of the

National Information Standards Organization (NISO), and

was approved as an ANSI standard in 1988 [1]. Early imple-

mentations of Z39.50-1988 included WAIS (Wide Area

Information Servers) and OCLC systems. Within this paper,

Z39.50-1988 will be referred to as "VI."

As interest in Z39.50 broadened, the Z39.50 Implemen-

tors Group (ZIG) was established in 1990. The formation of

the ZIG was a positive step for Z39.50, since it allowed new

versions of the standard to be guided, driven, and defined by

the needs and experience of implementors. This lent a prac-

tical balance to the academic and theoretical viewpoints that

have traditionally influenced standards.

Enhancements proposed by Z39.50 implementors were

coupled with changes necessary to align Z39.50 with its

international counterpart standard, ISO 10162/10163 [2].

This work led to the second version of Z39.50, approved as

ANSI standard Z39.50-1992 [3]. The improved interopera-

bility and functionality of this "V2" standard triggered a

large number of successful implementations.

Development of the third version of Z39.50 began in

late 1991. Several major enhancements and extensions were

proposed by implementors for this third version, to support

a wider scope of information retrieval activities. From

December 1991 through September 1994, a progression of

"V3" drafts was developed by the Z39.50 Maintenance

Agency, based on ZIG proposals. Each draft underwent

careful scrutiny by implementors, and was discussed at

length over the ZIG electronic mail list and at the ZIG meet-

ings. Z39.50-1995 [4] was balloted in the fall of 1994. At

the time of this paper's writing, June 1995, all ballot objec-

tions and comments had been resolved, and final approval

of Z39.50-1995 was underway. Since one of the goals of

Z39.50-1995 is to support interoperability with Z39.50-

1992, it includes specification of both "V2" and "V3" of the

protocol.

CAS interest in Z39.50

Chemical Abstracts Service (CAS) is a world leader in

scientific and technical information, with heavy concentra-

tion on chemistry-related sciences [5]. In additional to its

traditional publishing and CD-ROM products, CAS builds

and licenses scientific and technical databases, and provides

online access to these and other licensed databases through

STN International, the Scientific and Technical Information

Network. CAS also develops and licenses search and

retrieval software for accessing scientific and technical data-

bases.

As a member of NISO, CAS has tracked and voted on

the Z39.50 standard since its inception. CAS interest in

61

Z39.50 was due to its potential for providing a single robust,

standard, interoperable protocol for search and retrieval.

Since Z39.50 is based on the client/server model, the user

interface, protocol, server, search engine, and database man-

agement components can each be treated as independent

modules, providing greater architectural flexibility. Like

other commercial online services, CAS has traditionally

used a proprietary user command language and protocol for

accessing its databases and services. Z39.50 appeared to be

a potential candidate as the protocol for the next generation

of client/server systems, offering both expanded functional-

ity and interoperability.

Z39.50-1988 was too limited to be used for interopera-

bility between sophisticated information retrieval systems,

especially in a commercial context. However, by 1991,

increasing interest in Z39.50 indicated that it might develop

into a widely supported standard within the industry, espe-

cially if it could be enhanced to support a broader context of

information retrieval. At that point, CAS joined the ZIG and

became an active participant in the development of both V2
and V3 of Z39.50.

Z39.50 Implementation Issues

CAS started an experimental implementation of Z39.50

in 1 99 1 , in order to evaluate its potential for providing

interoperable access to scientific and technical (scitech)

information. In the process of this evaluation, several issues

were identified.

1. Protocol scope and extensibility

Initially, Z39.50 would be used to provide access to

existing databases using an existing search and retrieval

system. It would therefore be necessary to build a gateway

to translate between the Z39.50 protocol and the existing

search system's protocol.

The first issue encountered was the fact that the func-

tionality defined by Z39.50 V2 was a small subset of the

functionality of the search and retrieval system to which it

provided access. And the protocol was not extensible to

support additional functionality, without sacrificing interop-

erability.

There was a lack of extensibility at two levels. First,

there was no way to add supplementary data to the Protocol

Data Units (PDUs) defined for a given service within the

protocol. And .secondly, there was no interoperable way to

add supplementary services to the protocol.

2. Attribute Set limitations

Using the Z39.50 protocol, a client sends its Query in a

Search Request Protocol Data Unit (PDU) to the server,

which executes the search and returns a Search Response

PDU back to the client, indicating the results of the search

operation.

Z39.50 supports several query types within its Search

Request PDU, but the one required query type is the Type 1

,

or Reverse Polish Notation query. The Type 1 query allows

any number of search terms to be combined with boolean

logic. Each search term can be qualified by one or more

Attributes, which identify characteristics of the term, such

as: how the term is to be used (Use Attribute); whether it is

truncated (Truncation Attribute); how it is structured (Struc-

ture Attribute); etc. Z39.50-1992 defined a "bib-1" Attribute

Set, which included Use Attributes for most of the common
bibliographic fields, but did not include Use Attributes for

other information disciplines, such as scitech information.

Therefore, the second major issue encountered was

how to identify and characterize scitech query terms within

a Z39.50 Search Request.

3. Search service limitations

In addition to the search term Attribute limitations,

there were also several other implementation issues related

to searching.

a. The V2 Search Request only allowed one Attribute

Set to be specified. This precluded the possibility of

mixing Attributes from two or more Attribute Sets

in the same Search Request.

b. There was no mechanism for specifying the

datatype of a given term within a Type I query.

Since bibliographic searches generally required

support for textual terms only, this had not been a

major problem. However, for scitech searching,

terms might be expressed as integers, real numbers,

externally defined structures, binary data, or a vari-

ety of other datatypes.

c. There was no way to specify the "units" in which a

search term was expressed. For example, a search

term specifying a boiling point may need to qualify

whether the term value is expressed in degree Cel-

sius, Fahrenheit, or Kelvin.

d. There was no way to send or return additional

search information. V2 PDUs contained no extensi-

bility features for carrying informafion not explic-

itly defined by the ASN. 1 structure of the PDU.

Thus, information about the "Type" or "Scope" of a

search could not be expressed in the Search

Request. And additional information about the

search results (such as how many "hits" were found

for each term in the query) could not be returned in

the Search Response.

4. Element Specification

Within the Z39.50 model, once a search is completed,

the matching records from the database are represented by a

Result Set, logically containing one "record" per "answer."

A Z39.50 client may retrieve one or more records from the

Result Set, using the Present service. Within V2, the only

way for the client to specify the particular data elements to

be retrieved from the Result Set records is to specify an Ele-

mentSetName in the Present Request PDU. Only two Ele-

62

mentSetNames were pre-defined by the standard: Brief and

Full, both essentially defined by the server. Other Element-

SetNames also were to be "primitive" in nature, meaning

that a name would designate a pre-defined set of retrieval

elements.

Database records within scitech databases tend to con-

tain a large number of data elements, and the particular

selection of elements to retrieve may vary considerably,

depending on a given client's or user's needs. Pre-defining

unique ElementSetNames for each combination and permu-

tation of the retrievable elements for each database sup-

ported by a given server is a tedious and error-prone task.

Furthermore, there was no defined mechanism for the client

and server to share a common understanding of these Ele-

mentSetNames in a way which would ensure general

interoperability.

5. Record Syntax limitations

When a Z39.50 client retrieves Result Set records from

the server, it may request a particular packaging of the ele-

ments by specifying a preferred Record Syntax in the

Present Request PDU. The Record Syntax is intended to

ensure preservation of the information content and seman-

tics, as information is transferred from the server to the cli-

ent.

In the early implementation stages, there was only one

type of Record Syntax defined by the Z39.50 standard:

USMARC and the various other national MARC formats.

MARC is an old but revered format that was designed to

carry bibliographic data in a rather limited tagged field for-

mat. The MARC Record Syntax has served the library and

bibliographic community quite well, but is completely inad-

equate for carrying scitech information. However, at the

time, the scitech community had not defined any appropri-

ate syntaxes or formats that could be used as a general

interoperable Record Syntax within Z39.50.

Retrievable scitech information may be available in a

wide variety of forms, including character strings, binary

strings, integers, real numbers, tables, images, complex data

structures, and others. A given scitech element may be

available in various forms and may be expressed in different

unit systems. The form in which a client retrieves a given

scitech element may depend on what it plans to do with it.

For example, a client retrieving scitech information may

manipulate it, display it, save it, print it, or feed it into local

software to process it. The form in which an element is

retrieved for display may be very different than the form

useful for local processing.

There may be complex hierarchical relationships

between individual elements within a retrieved record. A
given logical Result Set "record" may actually consist of a

complex hierarchy of records, each containing a complex

hierarchy of elements. The amount of data retrieved for a

single scitech Result Set record (or even a given element

within a record) could be very large, and may need to be

retrieved in pieces. It is useful to be able to retrieve meta-

data (data about data) in addition to the data elements them-

selves. Finally, numeric information such as integers need to

be encoded in a standard manner when transferred between

computers with different hardware architectures, to ensure

data portability.

Few of these needs were addressed by MARC. There-

fore, a new, flexible Record Syntax was needed to support

retrieval of scitech information. In addition, a simple

Record Syntax was needed to retrieve pre-formatted infor-

mation which a simple client could simply display for the

user, without any particular understanding of its content or

semantics.

6. Other Retrieval limitations

In addition to the Element Specification and Record

Syntax limitations, there were other limitations to the

Present service for retrieving scitech information using

Z39.50 V2.

a. There was no way to request retrieval metadata.

b. There was no way to request different elements and

Record Syntaxes for different databases, when the

Result Set was created by a search against multiple

databases.

c. There was no way to request a particular form of a

given element.

d. There was no way to request particular sub-trees of

a hierarchical data structure.

e. There was no flexible way to return large Result Set

records. Since there was no concept of record seg-

mentation, a record larger than the message buffer

provided by the client simply could not be

retrieved.

Approach to the issues

The CAS approaches to these Z39.50 implementation

issues fell into three categories:

o enhancement of the standard through active partici-

pation in the ZIG;

o development of interoperable formats and conven-

tions to support exchange of scitech information;

0 definition of external data structures for use within

the standard.

The primary approach was to actively participate in the

evolution of the Z39.50 standard, by working with other

implementors within the ZIG to propose and evaluate new

functionality and extensibility enhancements that addressed

the basic limitations of the protocol. Examples of this work

include the addition of the Otherlnformation structure, the

Scan service, and the Extended Services in V3 of Z39.50.

The second approach was to work with other organiza-

tions to develop open, interoperable formats and conven-

tions needed to support the exchange of scitech information.

63

These formats and conventions were designed to be plugged

into the Z39.50 protocol in a standard and interoperable

manner. Examples include STAS, the Scientific and Techni-

cal Attribute and Element Set [6], and CXF, the Chemical

exchange Format [7].

The third approach was to work with other implemen-

tors and partners to develop and propose externally-defined

data structures to be used within the protocol to carry addi-

tional information needed for commercial scitech informa-

tion systems. Some of these structures were proposed for

public adoption, while others were intended for more lim-

ited contexts of interoperability. Examples include the GRS-

1 (the Generic Record Syntax), AdditionalSearchlnforma-

tion, and the SetUserParm Extended Service.

CAS began its implementation of Z39.50 in 1991, and

continues to evolve and expand that implementation over

time. CAS initially based its implementation on VI, then

V2, and finally V3 of the standard. Each of these versions

presented its own set of issues, which had to be addressed

within its own context. In several cases, the next version of

the standard included opportunities for better solutions to a

given problem than possible in the previous version. Since

most current implementations of Z39.50 are based on V2,

interoperability goals dictate that, wherever possible, solu-

tions to issues be applicable to both V2 and V3. Therefore,

some approaches to the issues represent compromises

between the functionality available in V3 and the need to

interoperate with V2 implementations.

Solutions to the issues

1. Protocol scope and extensibility

The first extensibility challenge was that Z39.50 V2
provided no way to carry supplementary data in the Proto-

col Data Units (PDUs) defined for a given service within the

protocol. V3 addresses this problem by adding an optional

Otherlnformation structure to each Z39.50 PDU. This

allows a given Z39.50 service to carry along externally-

defined information that augments the core information

fields explicitly defined within the PDU. The Otherlnforma-

tion structure allows the externally-defined information

structure to be uniquely identified by an Object IDentifier

(OID) to improve interoperability and avoid any ambiguity.

A simple example of the use of this feature within the

CAS Z39.50 implementation is to allow a language code to

be carried within the Otherlnformation field of the Scan

Request PDU. This allows the client to specify the preferred

national language for the output of a Scan operation against

a multi-lingual thesaurus.

The second extensibility challenge was that Z39.50-

1992 lacked several necessary services, and provided no

interoperable way to add supplementary services to the pro-

tocol. Z39.50-1995 addresses this in two ways: (1) addition

of new services such as Scan and Sort which are closely

related to search and retrieval; and (2) addition of the

Extended Services facility.

CAS has leveraged both of these new protocol features

to provide better access to its existing databases and ser-

vices. As an example of the first case, CAS has imple-

mented the Scan facility to allow term expansion within

both database indices and thesauri.

In the second case, CAS has leveraged the Extended

Services facility extensively to support both "standard"

Extended Services (those specified in Z39.50-1995), and

"local" Extended Services. An example of a "local" CAS
Extended Service is the Analyze Extended Service. Analyze

allows the client to perform an analysis of the content of one

or more records within a Result Set, based on specified data

elements and their values. This information can then be

used to help the user select the information of greatest

value.

2. Attribute Set limitations

The issue here was how to identify and characterize

scitech query terms within a Z39.50 Search Request. The

solution to this issue was to define a new Scientific and

Technical Attribute and Element Set (STAS).

STAS defines both an Attribute Set and an Element Set.

The STAS Attribute Set supports the use of scientific, tech-

nical, and related search terms within a standard Type 1 or

Type 101 Query carried within a Z39.50 Search Request.

The STAS Element Set supports identification and selection

of data elements retrievable from scientific, technical, and

related databases using a Z39.50 Present Request. The

STAS Attributes and Elements are also useful within other

Z39.50 services such as Scan and Sort.

CAS originally developed STAS as part of its research

project on the use of Z39.50. In September 1994, co-spon-

sors CNIDR [8], Dialog [9], FIZ Karlsruhe [10], and CAS
announced the public availability of STAS as an open, pub-

lic definition. As such, any interested party may freely use

and contribute to STAS. STAS maintenance and registration

functions are provided by CNIDR. The Z39.50 Mainte-

nance Agency has assigned the STAS Attribute Set a stan-

dard public Object Id, which is listed in Appendix ATR of

the Z39.50-1995 standard along with bib-1 and others.

The Search service supported by Z39.50 V2 has a limi-

tation that influenced the approach taken in defining STAS.

A V2 Search Request allows Attributes from only a single

Attribute Set to be used in a given RPN query. And yet it is

a practical requirement to support searches containing both

bibliographic and scitech search terms within the same

query. This limitation required definition of a single

Attribute Set that contained both bibliographic and scitech

Attributes.

Therefore, the STAS Attribute Set is defined as a super-

set of the bib-1 Attribute Set, and implicitly imports all

Attributes specified by the bib-1 Attribute Set. Additional

64

STAS Attribute types and values are assigned identifiers

that are outside of the range assigned to bib- 1 Attribute

types and values. As new Attribute types and values are

added to the bib-1 Attribute Set, they automatically become

part of the STAS Attribute Set.

The STAS Attribute and Element Set definitions are

evolving from the ongoing effort of defining Attribute and

Element mappings for existing scitech databases. Wherever

a valid mapping can be defined between existing bib-1

Attributes and a database's search fields, bib-1 Attributes

will be used. For each database search field that has no

equivalent bib-1 Attribute, a new STAS Attribute will be

defined.

3. Search service limitations

a. The V2 Search Request allowed specification of only

one Attribute Set within an RPN query.

This issue was addressed in two ways: (1) the definition

of STAS as a superset of the bib-1 Attribute Set addressed

the problem within the V2 context; and (2) expanding the

V3 RPN query to allow specification of multiple Attribute

Sets provided a long-term robust solution.

Z39.50 V2 supports a single Attribute Set ID field in

the RPN query within a Z39.50 Search Request. Search

Requests using STAS will specify the STAS Attribute Set

Object IDentifier (OID) in this field. This allows use of both

bib-1 and other STAS Attributes within the query.

Z39.50 V3 allows optional specification of the

Attribute Set Id for each search term, and even for each

Attribute. This feature of V3 allows STAS to be used in

combination with the bib-1 and/or any other Attribute

Set(s). Bib-1 Attributes may be explicitly identified as such,

and other STAS Attributes may be identified by the STAS
Attribute Set Id.

b. There was no mechanism for specifying the datatype

of a given term within a Type 1 query.

The short term (V2) approach to this issue was to define

STAS Attributes explicitly enough to provide strong hints

about the datatype of the term. In retrospect, the disadvan-

tage of this approach was the proliferation of similar Use

Attributes for a term with the same semantics but different

datatypes, forms, or formats.

The long term solution was to expand the RPN search

term definition within V3 to support explicit data typing of

the term contents. With this capability, the current STAS

philosophy is to move away from datatype-specific Use

Attributes.

c. V2 provided no way to specify the "units" in which a

search term was expressed.

The short-term (V2) approach to this issue was to carry

the units indicators along with the term value within the

RPN query term. Although this works adequately within a

limited context, the lack of publicly defined conventions for

expressing units in this manner limits the interoperability of

this approach.

The long-term solution to this problem is the explicit

support for units within V3. CAS defined and proposed an

IntUnit structure for specifying values with units. IntUnit

allows specification of an Integer value, qualified by a scale

factor, Units System, Unit Type, and Unit. After some dis-

cussion and modifications, this IntUnit structure has been

incorporated into several parts of the V3 standard. In partic-

ular, the IntUnit is one of the supported datatypes for RPN
search terms, thus allowing a search term to be expressed in

explicit units.

d. There was no way to send or return additional search

information.

Since V2 Search PDUs lacked the capability for carry-

ing additional search information, indicators about the

"Type" or "Scope" of a search could not be expressed in the

Search Request.

The V2 approach to this issue was to define new STAS
Attribute Types to express Search Type and Search Scope.

For example, currently defined STAS Search Types include

Substructure, Closed Substructure, Family, and Exact

Searches. And currently defined Search Scope values

include Full File, Sample File, Range, and Subset Searches.

Although these indicators are generally expressed glo-

bally for an entire query, this approach allowed the flexibil-

ity of specifying Search Type and Scope at the subtree or

even the term level of a given query.

The V3 approach to this issue was the addition of a new

optional AdditionalSearchlnfo field in the Search Request

PDU. Although this V3 feature has not been leveraged yet,

it will eventually provide a more robust solution.

A second issue was that additional information about

the search results, such as how many "hits" were found for

each term in the query, could not be returned in the Search

Response.

The V3 solution to this problem is a new optional Addi-

tionalSearchlnfo field in the Search Response PDU. CAS
leveraged this V3 feature by defining an external structure

for carrying various types of information about the search

results, including how the server interpreted the query and

how many "hits" were found for each term in the query.

This structure was proposed to the ZIG, and following dis-

cussion and modification, was added to the V3 standard.

4. Element Specification

The CAS solution to the Element Specification issue

within the V2 context was to define a simple syntax for

expressing any combination of elements to be retrieved.

This syntax is called STETSEN (the Scientific and Techni-

cal Element Set Names) [11]. STETSEN draws on STAS,

by using the STAS Element Numbers to identify individual

elements to be retrieved. Just as a unique STAS Use

Attribute Value can be defined for each database search

65

field, a unique STAS Element Number can be assigned to

each database retrieval field (retrievable element).

A given combination of retrieval elements is expressed

using the STETSEN syntax by a character string containing

a list of the corresponding STAS Element Numbers, sepa-

rated by commas or spaces. These STAS Element Numbers

may be combined with other ElementSetNames such as Full

(F), Brief (B), or target-defined names. Since a STETSEN
ElementSetName is simply a character string, it can be

legally carried in the ElementSetName field within either

the V2 or V3 Present Request PDU.

The general Element Specification issue was addressed

in a more robust manner in V3. CAS worked with other

implementors within the ZIG to define several new mecha-

nisms within the V3 Present service to support more flexible

and powerful mechanisms for element retrieval. These

include the CompSpec, eSpec-1, Variant, and Schema fea-

tures. Although CAS has not yet fully leveraged these new

features, they provide very powerful retrieval capabilities,

and will be implemented in the future.

5. Record Syntax limitations

Since externally-defined Record Syntaxes can be flexi-

bly "plugged into" both V2 and V3 of Z39.50, the basic

issue was addressed by defining new Record Syntaxes that

met the requirements for scitech information. Related issues

were addressed within the context of the V3 Present service

via mechanisms such as the Schema concept and the

CompSpec structure.

One fundamental issue that was clarified during the

development of these V3 mechanisms was the fact that a

Record Syntax consists of both an Abstract Syntax and a

Transfer Syntax. The Abstract Syntax (often expressed in a

formal notation, such as ASN.l) specifies the content,

semantics, and structure of the record [12]. The Transfer

Syntax (usually defined by a set of encoding rules such as

BER) ensures that the information in the record is success-

fully conveyed over a network in a portable and unambigu-

ous manner [13]. When USMARC and the other MARC
formats were the only supported Z39.50 Record Syntaxes,

these distinctions were less critical, and not well articulated.

But development of new Record Syntaxes to support non-

textual information forced developers to better articulate

this concept within the Z39.50 standard.

CAS initially worked with a small group of Z39.50

implementors, led by John Kunze (University of California

Berkeley) to develop a new "info-1" Record Syntax. The

goal of info-1 was to flexibly carry tagged elements of mul-

tiple datatypes and formats as well as metadata about those

elements. CAS implemented at least three generations of

this concept, starting with info-1, then GRS-0, and finally

GRS- 1 . After several years of discussions, implementations,

and refinement, this work has evolved into the Generic

Record Syntax- 1 (GRS-1), as specified in V3. GRS-1 is a

very powerful Record Syntax that supports flexible delivery

of literally any type of information of essentially arbitrary

complexity. GRS- 1 supports tagged elements, metadata,

hierarchical data structures, unit specification, and informa-

tion about the particular form (variant) of individual ele-

ments. Use of the BER standard to encode GRS-1 records

ensures strong data portability across networks and comput-

ing platforms.

CAS has upgraded its Z39.50 implementations to use

GRS-1 extensively in delivering scitech information via the

Present service. When STAS is used in combinafion with

GRS-1, the Tag Numbers used to identify elements carried

in a GRS-1 record are the STAS Element Numbers. The

STAS Element Numbers therefore constitute a standard

Z39.50 TagSet that has been registered in the V3 standard.

Use of STAS Element Numbers within GRS-1 lever-

ages a STAS convention, wherein the same number space is

used to assign STAS Use Attribute Values, STAS Element

Numbers, and STAS Tag Numbers. Within many databases,

there are often retrieval fields (elements) that correspond to

search fields (Attributes). It is often useful for a client to be

able to relate a retrieval field with a corresponding search

field. A database field that can be both searched and

retrieved is assigned the same value for its STAS Use

Attribute, its STAS Element Number, and its STAS GRS-1

Tag number.

In addition to GRS-1, there was also a need for a simple

Record Syntax for delivering pre-formatted textual informa-

tion for display. CAS worked with a small group of other

implementors to propose and refine SUTRS (the Simple

Unstructured Text Record Syntax), which is now a regis-

tered Record Syntax defined within V3. SUTRS is espe-

cially useful as a "lowest common denominator" Record

Syntax between clients and servers that have minimal

knowledge of each others' data or conventions.

Finally, CAS needed a standard interoperable format

for exchanging detailed chemical information, and worked

with other organizations to develop the Chemical eXchange

Format (CXF). CXF is defined in ASN.l, encoded using

BER, and may be used either as a Record Syntax or as an

Element Syntax for a tagged element within GRS-1. In the

interest of maximum scitech interoperability, CAS has sub-

mitted CXF to the industry as an open definition, available

for use by any interested organization. CAS uses CXF
extensively in the search and retrieval of chemical informa-

tion via Z39.50.

6. Other Retrieval limitations

There were other limitations to the Present service for

retrieving scitech information using Z39.50 V2.

a. There was no way to request retrieval metadata.

In conjunction with the development of the GRS-1

Record Syntax, CAS also worked with other implementors

to develop a complementary element specification mecha-

nism for use within V3. This work resulted in the V3 eSpec-

66

1 structure, which may be used within the CompSpec struc-

ture of the V3 Present Request.

eSpec- 1 allows the client to request retrieval of element

metadata, with or without the corresponding data. GRS-

1

provides the complementary ability to deliver the metadata,

with or without the corresponding data. And the V3 TagSet-

M defines a set of Tags which can be used to identify meta-

data carried within GRS- 1 in an interoperable manner. The

combination of these new mechanisms allows a client to

dynamically discover characteristics such as the size, cost,

and copyright restrictions of information, prior to retrieving

it.

b. There was no way to request different elements and

Record Syntaxes for different databases, when the

Result Set was created by a search against multiple

databases.

This need has been addressed by development of the

new CompSpec structure of the V3 Present Request. This

new structure allows the client to specify a particular com-

bination of Record Syntax and element specification for

each database from which the Result Set was created.

c. There was no way to request a particular form of a

given element.

The V3 eSpec-1 structure allows the client to request a

particular form of a given element for retrieval via a concept

called "Variants." V3 defines Variant- 1, a standard Variant

Set which identifies a number of classes and types of vari-

ants such as national language, body type, size, etc. GRS-1

provides the complementary ability to deliver the requested

variant of the element as well as the corresponding "applied

variant" identifiers. And the V3 metadata capabilities

already mentioned allow dynamic discovery of the available

variants of a given element before retrieving it. The combi-

nation of these new V3 mechanisms allows a client to

dynamically negotiate and retrieve the best form of infor-

mation for its needs.

d. There was no way to request particular sub-trees of

a hierarchical data structure.

The V3 eSpec-1 structure allows the client to request

retrieval of specific elements or subtrees within a hierarchi-

cal data structure, using the concept of TagPaths. A TagPath

specifies the path through a data structure, where each node

in the path is identified by a tag. ESpec- 1 allows the client to

specify a given element or subtree for retrieval by specify-

ing its TagPath. GRS-1 provides the complementary ability

to deliver the requested element or subtree as well as the

corresponding Tags representing the Path. And the V3

Schema concept provides the client and server with a com-

mon understanding of the hierarchical database structure by

documenting it using TagPaths.

e. There was no flexible way to return large Result Set

records.

The new Segmentation features of the V3 Present

Facility address this problem. Records larger than the mes-

sage buffer provided by the client can now be retrieved, by

breaking them up into pieces, which are delivered in Seg-

ment Request PDUs. CAS is one of the (irsl implcmcntors

of Segmentation, including segmentation of GRS- 1 records,

using a recently defined Fragmentation Syntax.

A second V3 capability was added to support the

retrieval of "pieces" of individual elements, using the

eSpec-1, GRS-1, and Variant mechanisms. A client may
retrieve a single large element, such as a large image, in

pieces by specifying its retrieval using eSpcc-l. The partic-

ular piece and its size can be specified using Variants. And
GRS-1 identifies the specific element, its piece and its size

upon delivery.

Lessons learned

In the course of implementing Z39.50, several lessons

were learned.

1 . Standards can be enhanced and expanded, but it is not

easy.

A given standard rarely meets all the needs of a given

implementor. In some cases, the best way to address the

shortcomings of a key standard is to actively participate in

its development. However, influencing the scope and func-

tionality of an evolving standard such as Z39.50 is neither

easy nor inexpensive. It takes time, effort, resources,

patience, persistence, and commitment. For some imple-

mentors with advanced requirements, it may actually be

simpler to design and implement a proprietary protocol

which does exactly what is needed. However, we have pre-

viously learned that a world of proprietary protocols does

not promote the flow of information. The interoperability

provided by Z39.50 promotes the unencumbered flow of

information, and opens up many technical and business

opportunities which would not be possible with the use of

proprietary protocols. In the case of Z39.50, our investment

in active standards participation was successful and will be

leveraged.

2. Implementation experience leads to better standards.

Having participated in several other standards develop-

ment efforts, it is the author's opinion that the process for

developing the Z39.50 standard was an unusually successful

one. A lot of the credit for this goes to the Z39.50 Mainte-

nance Agency and the ZIG. The administrative and political

hurdles were kept at a manageable level, allowing technical

needs to be addressed in a timely manner. An active role by

Z39.50 implementors in defining and expanding the stan-

dard within the ZIG added a practical influence to the pro-

cess. In several cases, implementors such as CAS designed

and implemented new features and services before propos-

ing them to the ZIG for inclusion in the Z39.50 standard. In

other cases, early implementation of features proposed

within a working draft of the standard helped refine and

67

improve their definition, leading to a better specification.

This active participation by implementors coupled with

early implementation experience resulted in a better Z39.50

standard.

3. The Attribute, Element, and metadata problems are dif-

ficult, and cannot be solved by a protocol alone.

Some of the major remaining interoperability chal-

lenges for implementors of Z39.50 revolve around the need

for unique and unambiguous identification of information,

both in search queries and retrieved answers. The ambigu-

ities and inconsistencies in the use of the bib-1 Attribute Set

and the MARC record syntax are the most visible aspects of

the problem. However, an underlying source of the problem

lies in the original indexing policies used to identify infor-

mation. Different organizations index and identify informa-

tion in different ways. Mappings of the bib-1 Attributes into

search elements and mappings of retrieval elements into

MARC records are not consistent across databases or orga-

nizations. This results in reduced interoperability of infor-

mation. Definition of a protocol such as Z39.50 cannot

alone solve this problem. Definition of metadata standards,

improved indexing standards, and unambiguous Attribute

and Element Sets are also needed.

CAS has attempted to avoid many of the MARC and

bib-1 Attribute Set interoperability problems by defining

and using the STAS Attribute, Element, and Tag Sets in

conjunction with the SUTRS and GRS-1 Record Syntaxes.

However, for protocol consistency, STAS also inherits some

of the characteristics of the bib-1 Attribute Set. It is there-

fore expected that STAS will continue to evolve, as addi-

tional experience is gained with its use. Other Attribute,

Element, and Tag Sets will probably be defined to address

other information disciplines. A new bibliographic Attribute

Set may eventually evolve to replace bib-1. In summary,

this particular area of information interoperability is a chal-

lenging one, and will require additional work in the future.

Futures

The CAS implementation of Z39.50 is an ongoing

project. The specific issues and solutions identified in this

paper reflect the functionality implemented to date. How-
ever, Z39.50-I995 defines a very rich set of services and

features, several of which CAS has not yet implemented. In

the future, CAS will continue to implement additional

Z39.50 features and services, as required by its users and

projects. Some representative examples are noted here.

The STETSEN syntax for ElementSetNames has pro-

vided an adequate means for specifying element selection

within both the V2 and V3 contexts. However, the future

direction will be to implement support for the eSpec-1 defi-

nition to enhance interoperability and support more granular

retrieval specifications. For example, eSpec- 1 will allow the

client to:

• retrieve and leverage metadata

• discover variants of retrieval elements

• retrieve the optimal form of information

• request the server to package information in an

optimal manner

The Explain service supports the discovery of informa-

tion useful to both the users and clients of Z39.50 services.

Explain holds great potential for expanding the intelligence

and reach of Z39.50 clients, without building specific data-

base knowledge into the client software. Use of Explain will

be especially useful when the client and server have been

independently developed or are operated by different orga-

nizations. However, the Explain specification has just

recently been finalized, and is probably one of the least

mature portions of Z39.50-1995. As Explain matures and

gains wider acceptance, CAS will add support for Explain

in the future.

There are several standard Extended Services defined

in Z39.50-1995, which CAS will implement in the future to

provide access to advanced features of the CAS search and

retrieval systems. For example, the ItemOrder Extended

Service defines a mechanism for initiating document orders

from a Z39.50 client. CAS will initially use Item Order to

convey user requests to the CAS Document Delivery Sys-

tem.

Due to project requirements and timeframes, CAS
implemented some V3 Extended Services and data struc-

tures prior to their finalization in Z39.50-1995. Since

Z39.50 explicitly supports the identification and use of such

"local" data structures and Extended Services, they are cur-

rently being used between CAS clients and servers, with no

compromise in protocol compliance. However, over time,

these CAS-defined conventions and Extended Services will

be migrated to adhere to the "standard" structures and

Extended Services defined by Z39.50-1995. This will

improve interoperability with Z39.50 clients and servers

implemented and operated by other organizations.

Conclusion

Z39.50 is a very positive example of the value of

interoperable standards. It supports a rich set of interopera-

ble services between separately developed clients and serv-

ers. Z39.50 has rapidly evolved to address the needs of

implementors operating within the context of various infor-

mation disciplines and commercial search systems. The

model of the ZIG working in concert with NISO, ANSI and

ISO has proven to be very successful in meeting the needs

of the information retrieval community. In recognition of

the demonstrated value of Z39.50, it is being used as one of

the key access protocols for current and future CAS soft-

ware projects and products.

68

References

[1] ANSI/NISO Z39.50-1988, "ANSI Z39.50: Infor-

mation Retrieval Service and Protocol", 1988.

[2] ISO 10163—Information and Documentation -

Search and Retrieve Application Protocol Specification for

Open Systems Interconnection, 1991.

[3] ANSI/NISO Z39.50-1992, "ANSI Z39.50: Informa-

tion Retrieval Service and Protocol", 1992.

<URL:ftp://ftp.cni.org/pub/NISO/docs/Z39.50-1992/www/

Z39.50.toc.html>

[4] ANSI/NISO Z39.50-1995, "ANSI Z39.50: Informa-

tion Retrieval Service and Protocol", 1995.

<URL:http://lcweb.loc.gov/z3950/agency/1995doc.html>

[5] Chemical Abstracts Service (CAS), a division of the

American Chemical Society, is the world's leading provider

of chemical information.

<URL:http://info.cas.org/welcome.html>

[6] STAS, the Scientific and Technical Attribute and

Element Set.

<URL:http://stas.cnidr.org/STAS.html>

[7] CXF, the Chemical eXchange Format, Version 1.0,

September 1994, CAS.

<URL:ftp://info.cas.org/pub/cxf/specification/cxf. 1 .0/>

[8] CNIDR is The Clearinghouse for Networked Infor-

mation Discovery and Retrieval, located at MCNC in

Research Triangle Park, N.C.

<URL:http://cnidr.org/welcome.html>

[9] Knight-Ridder Information Inc., formerly Dialog

Information Services, Inc., a Knight-Ridder company.

<URL:http://www.dialog.com/>

[10] FIZ-Karlsruhe is the FachlnformationsZentrum

Karlsruhe, operator of STN International in Europe.

<URL:http://www.fiz-karlsruhe.de/>

[11] STETSEN—The Scientific and Technical Element

Set Names, an internal CAS technical paper.

[12] ISO 8824—Information Processing Systems -

Open Systems Interconnection - Specification of Abstract

Syntax Notation One (ASN.l), 1990.

[13] ISO 8825—Information Processing Systems -

Open Systems Interconnection - Specification of Basic

Encoding Rules for Abstract Syntax Notation One

(ASN.l), 1990.

69

I

ii
.

'

I

I:

70

Structural Components of the Isite Information System

Kevin Gamiel (Kevin.Gamiel@cnidr.org)

Nassib Nassar (nrn@cnidr.org)

Clearinghouse for Networked Information Discovery and Retrieval (CNIDR)

Abstract

This paper discusses various technical topics related to

the structural model of Isite, an open information system

supporting multiple external protocol-based access mecha

nisms, a database-independent search and retrieval API,

and an extensible field-based text search engine. Isite

was developed by the Clearinghouse for Networked Infor-

mation Discovery and Retrieval (CNIDR), which is fund-

ed by the National Science Foundation.

Two Models in Data Publishing

The broad range of existing distributed data access mod-

els can be classified into two main groups: those oriented

toward browsing, and those supporting searching capabili-

ties.

Examples of browsing systems are Gopher (University of

Minnesota) and World-Wide Web (CERN); publishers

with the proper tools can make their data accessible to

users through these systems. Browsing systems are based

on the concept of navigating through a virtual information

space. Such a system is well suited to data retrieval in

cases where there are clear relationships among the data.

In such systems, it is very important to have some meth-

od of organization, since browsing depends on the user's

ability to make intelligent navigational decisions. Brows-

ing systems have proved very useful for locating databas-

es on the vastly distributed global Internet, because the

"hyper-text" model utilized by Gopher and the World-

Wide Web has encouraged a rudimentary kind of organi-

zation among related documents.

An information system based on the searching model is

desirable when the data being published are difficult to

organize. In such cases an automated search on relevant

words of text may be far more economical than a brows-

ing model, or at least may assist the browsing system at

certain stages.

In practice, a combination of these access models is fre-

quently used. For example, many search-based systems

are arranged at the top level with a user interface provid-

ed by a browsing system. It is also desirable that the

various searching systems conform to Internet protocol

standards so that they may easily be integrated with other

searching and browsing systems.

Isite

Isite uses the combined model, but also provides multiple

access mechanisms via standard protocols. Additionally,

using the Search API included in Isite, multiple databases

of different formats may be served. Newly installed data

bases have the immediate benefit of being accessible

through all data retrieval communications protocols sup-

ported by Isite.

At present Isite supports four access methods based on

standard Internet protocols: Z39.50, World-Wide Web
(HTTP), Electronic Mail, and Gopher. The Z39.50 proto-

col, implemented in Isite in conformance to the ANSI/-

NISO Z39.50 version 2 standard, is the primary access

point of the system. Z39.50 supplies a rich set of "state-

ful" services for deep search and retrieval on distributed

database servers. It is the internationally accepted open

standard for search and retrieval over networks. The

other protocols are supported via protocol "gateway" soft

ware. A gateway is software that translates between two

different protocols. Thus Isite contains an HTTP to Z39.-

50 gateway, which converts search queries received by an

HTTP server to queries that can be understood by the

Z39.50 server.

The Search API (SAPI) provides a layer of abstraction

between the Z39.50 server in Isite and the database sys-

tem that contains the data to be served. The API is a

specification for a certain set of functions that must be

supported per database system. Thus the Z39.50 server

can rely on a consistent communications layer for access-

ing data stored in various databases. A supported data-

base may be a complex text search or relational system,

or it may be a simple utility such as "grep." The essen-

tial principle is that the SAPI must normalize the behav-

ior of the database software in order to be accessible by

the Z39.50 server. With this layer operational, all access

methods available to Isite are extended to databases sup-

ported by SAPI.

Implementation

Isite consists of several distinct software packages, in-

cluding (1) libcnidr, a source code library of commonly

used functions, (2) ZDist, an ANSI/NISO Z39.50 version

2 programmer's library, UNIX server, and UNIX client

71

and gateway, (3) SAPI, the Search API, and (4) Isearch, a

field-based text search system including a C++ class

interface and lindex/Isearch utilities.

ZDist

The ZDist package contains much of the core of commu-

nications access for Isite. Access to SAPI-supported data

bases is entirely directed through Z39.50. The current

version of ZDist, included in Isite, supports the Initialize,

Search, Present, and Close facilities of Z39.50.

The Z39.50 library is written in C and is based on the

freely available BER utilities developed by the OCLC On
line Computer Library Center, Inc. The server and cli-

ent/gateway use this library to encode and decode Z39.50

Protocol Data Units (PDU). The application-level net-

work communications source code is distinct from the

Z39.50 PDU encoding/decoding layer, and is physically

located in the libcnidr library.

The Z39.50 server application is easily configurable by

modifying a text file, and the configuration options in-

clude executing the server either as a forking daemon or

from inetd, specifying a maximum number of simulta-

neous connections, specifying which databases to serve,

and various Z39.50 settings down to the PDU level. The

server's overall operation is straightforward: it (1) listens

for client connections on a well-known port (usually 210),

(2) accepts a connection, initializes with the client, (3)

accepts search queries, and (4) interacts with the SAPI to

process the query and returns results to the client, after

which (5) the client may request that the server "present"

the contents of any of the results, and (6) the server con-

tacts the SAPI to retrieve those contents and return them

to the client.

The Z39.50 client is designed especially to be the founda-

tion for gateway applications. Thus it is not interactive,

nor does it provide a user-friendly interface. In order to

build a gateway from a "stateless" protocol such as HTTP
to a "stateful" protocol such as Z39.50, state requirements

must be hidden from the calling (in this case, HTTP)
side. The Z39.50 client is implemented as a single-pass

client that initializes, searches, and presents in uninter-

rupted sequence. The client also conforms to the Com-
mon Gateway Interface (CGI), a well-known standard for

gateway communication with HTTP servers. The CGI
process provides a layer between HTTP and the Z39.50

gateway. Like the Z39.50 server, the client is configur-

able, allowing the user to specify all Z39.50 PDU-level

information, for maximum flexibility.

Electronic Mail Gateway

Implementation of an Electronic Mail gateway is simpli-

fied by taking advantage of a feature of the Z39.50 client.

Since all PDU-level information may be specified in a

text configuration file, a rudimentary gateway can use the

exact text of an Electronic Mail message as the client

configuration file. The results of the search may then be

mailed in reply to the requesting user.

Isearch and the Document Type Model

Isearch is designed as a set of modular components, at

the center of which are two groups of C++ classes: the

Isearch engine, which encapsulates the functionality of

field-based indexing, searching, and presenting, and the

Document Type class hierarchy, which defines the behav-

ior of the Isearch engine for certain types of documents.

It is the latter that we wish to discuss here.

Document Type classes bind specific functionality in the

Isearch engine to the documents being processed. C++
classes defining the field structure and presentation char-

acteristics of certain types of documents are therefore

grouped by the common features of those documents.

The DOCTYPE base class defines default behavior, and it

is invoked during the processing of documents for which

no Document Type class has been specified. All Docu-

ment Types must be derived from DOCTYPE; therefore it

is important to understand the implementation of the base

class and its interactions with the Isearch engine, which,

although straightforward, require some explanation.

There are four essential methods of DOCTYPE: Add-

FieldDefsO, ParseFields(), ParseRecords(), and Present().

The first three of these are invoked during indexing, and

the fourth during searching. AddFieldDefs() provides

information to the Isearch engine about the fields it ex-

pects to discover during the parsing phase. ParseFields()

is called during indexing of each document record, at

which time it parses the document and inserts field struc-

ture information into the RECORD object. Parse-

RecordsO defines the record structure for files that con-

tain multiple document records; this may be beneficial in

cases where record structure is dependent upon other

aspects of document structure that must be determined at

run-time. Finally, the Present() method defines exactly

how documents are displayed in response to requests for

various element sets, which allows presentation to be

abstracted from the retrieval of field contents.

The Isearch engine calls each of these methods at appro-

priate times during the indexing and searching processes.

In DOCTYPE they are defined for minimal functionality,

72

but they can be overridden within descendent classes.

For example, DOCTYPE::AddFieldDefs() and DOC-
TYPE: :ParseFields() contain no source code, and conse-

quently the default behavior of the indexing routines is to

treat documents as lacking field structure. No knowledge

of field structure is indigenous to the Isearch engine.

However, source code to handle field-based searching is

present in the engine and has only to be enabled by defin-

ing field structure within the Document Type.

The method of building field definitions and structure

tables is slightly involved because of the various levels of

nesting and data hiding.

An instance of the DFDT (Data Field Definitions Table)

class is stored within the Isearch engine classes, and DOC
TYPE methods can add new definitions to the table. The

table is a list of DFD (Data Field Definition) objects.

Each DFD consists of a field name and an attribute list

(ATTRLIST), which in turn contains a list of attribute

(ATTR) objects that can be used to preserve additional

information about each field definition. Field definition

information can be added to the engine's internal DFDT
object at any point within the Document Type methods,

except that field structure information should not be gen-

erated for a record if that field structure refers to fields

that have not yet been defined. There are two good rea-

sons to generate DFD objects within DOCTYPE:;Add-

FieldDefsO; first, it is a convenient place to collect all

field definition information, and secondly, it allows for

optimization within the Isearch engine. An example in

which it is necessary to generate field definitions in

DOCTYPE::ParseFields() is when field information is not

known ahead of time, such as in the case where the field

name must be derived from contents of the document

being processed.

An example that illustrates this last point is the SGML-
TAG Document Type, which scans the document text for

SGML-like tags and treats the tag name as the field name

and the delimited text as the field contents. In order to

support maximum variety of field structure and yet avoid

the unnecessary overhead of definitions for fields not pre-

sent in any of the documents, generating field definitions

in AddFieldDefsO would require knowledge of field

information a posteriori. The problem is solved by add-

ing each field definition as it is discovered during parsing

of the document records.

Building field structure information is similar to building

a DFDT. Field structure is encapsulated in a DFT (Data

Field Table) object, which is a member of the RECORD
class; thus there is one DFT per document record being

indexed. The DFT is a list of DF (Data Field) objects,

each of which consists of a field name and an FCT (Field

Coordinate Table). The FCT is a list of coordinate pairs

(FC) that delimit instances of the field withir the docu-

ment record. Inserting multiple FC objects into the FCT
enables support in the Isearch engine for repeating fields,

which may be defined as a sequence of multiple occur-

rences of the same field within a single document record.

At search time these field definitions and structures may
be retrieved and used for presentation of document text.

The Isearch engine provides a method for locating the

contents of a certain field within a certain document

record. However, the Document Type architecture creates

one additional level of abstraction. A method in the

Isearch engine called Present() is accessible to the main

application for general purpose high-level presentation of

document text, and it yields control to the Present() meth-

od of the Document Type associated with the document

record that is being accessed. The default behavior, de-

fined in DOCTYPE::Present(), is more or less to treat the

element set as a field name, and to retrieve the contents

of that field from the Isearch engine. In addition, it inter-

prets the element sets "B" and "F" as requesting "brief

and "full" records, respectively. The purpose of this

architecture is to allow DOCTYPE::Present() to be rede-

fined in descendent classes, in order that various forms of

presentation may be implemented. For example, element

sets may be synthesized from more than one field, re-

trieved text data may be reformatted for suitable output,

etc. DOCTYPE::Present() essentially "intercepts" normal

processing of field-based presentation, thus allowing it to

be extended in relation to the document being accessed.

It is hoped that the advantages of using the Document

Type architecture outweigh the small amount of addition-

al development required to integrate it with existing sys-

tems. Since the model is a map of document type behav-

ior rather than a physical document representation, the

scope of the representation is unspecified. A Document

Type may be so general as to handle all SGML docu-

ments, or so special as to be tailored to a particular pro-

prietary document format. The model may even be

wrapped around other field parsers, since a Document

Type may be defined simply to read field coordinates out

of an ancillary file.

The Document Type model benefits from some of the

features of object-oriented programming, including exten-

sibility, modularity, code maintainability, data hiding, and

the ability to build upon previous work via class inheri-

tance. Documents defined by a Document Type know

how to "present" themselves, which minimizes risky and

tedious internal modifications to the Isearch engine. In

addition, DOCTYPE can be expanded to provide in-

creased access to features of the engine, while descendant

classes may add document type-specific functionality.

73

Since the Isearch engine supports document records of

different Document Types within the same database, it is

possible to abstract multitype text data by normalizing

functionality within the Document Type class methods.

For example, a database of international patents may

consist of a variety of data formats. Rather than requir-

ing massive data conversion, the Document Type model

allows run-time format normalization by supporting cus-

tomized field parsing and a formatted presentation layer.

Thus multitype data can be stored in their native format

within the same database, and Search and Present opera-

tions can be abstracted from structural differences.

Conclusion

Isite implements a variety of modular architectural struc-

tures based, where possible, upon open standards. Used

together, they provide a powerful, extensible information

system that is capable of remaining compatible with con-

tinuously changing paradigms.

Z39.50 - implications and implementation at the AT&T library network.

Robert K. Waldstein

AT&T Bell Laboratories

Murray Hill, NJ 07974

Abstract

The AT&T library organization has developed an

interest in Z39.50 for a number of diverse reasons.

It is hoped that eventually Z39.50 will help with

or solve several classes of problems, ranging from

behind the scenes issues resulting from distributed

computing architectures to diversity of user inter-

faces. In addition to helping with known prob-

lems, we hope that Z39.50 will give us a flexibil-

ity required for a constantly evolving library

organization in an international corporate environ-

ment.

For Z39.50 to meet our needs the main require-

ment is that the protocol itself incorporate all the

functionality of our existing information retrieval

environment. The 1992 (version 2) version of the

standard was a major start, but the newer version

(1995 version 3) comes much closer to incorporat-

ing existing functionality.

The next major requirement is proven interopera-

bility and transparency of database provider to our

users. Issues of indexing style, default operations

and ways to override defaults, database coverage

and loading characteristics become even more

apparent in Z39.50 than in the traditional online

world.

Our end users, like users everywhere, are expect-

ing interfaces integrated into their regular comput-

ing environment. A solution to this problem is a

well accepted search and retrieval protocol.

Z39.50 is well positioned to become this protocol,

and in this belief we have focused our attention on

developing a high-quality server for our internal

resources.

1. Introduction

The AT&T library organization has changed con-

siderably, and continuously, along with the rest of

AT&T in the years since divestiture in 1984. We
provide world-class library services to the

employees of AT&T worldwide including: techni-

cal information needed for research and develop-

ment, business and marketing needs, as well as

manufacturing information and internal

newsletters. Some significant user requirements

that we must meet as a corporate information ser-

vice provider are:

• Cost reductions. This is both in terms of our

budget and what people are willing to pay for

information services and resources.

• Information provided in the user's environ-

ment, e.g. integrated workstation, fax.

• Information on demand. Users often want the

desired information at the time of request. In

addition, the user wants to control the depth

and format of the desired information.

• User access to information. User demand for

direct access to information is growing, with

or without an intermediary's involvement.

The computing environment in which we provide

our services has been evolving rapidly. Distri-

buted computing has become a requirement for a

flexible environment, both in terms of costs and

functionality. In addition, workstations - power-

ful computer resources at the user's desk - have

nearly replaced terminals as access tools. Works-

tations have not only opened new opportunities,

they have changed users' expectations about the

"look and feel" of the information presented to

them.

The information market has also been rapidly

evolving during this time period. Interest in new

forms of access licenses, especially site licenses,

has been growing among database providers.

Databases have begun to expand beyond flat text,

into "multimedia" - particularly scanned images.

Finally, special interest database providers are

appearing on the Internet, covering an entire range

of corpuses. These include the human genome,

ftp-able files, congressional bills, acronyms, and

Library of Congress exhibits. Although providing

access (as well as meaning and organization) to all

this information may be pushing what some may
consider the library's role, our users do come to us

expecting our service to include these resources.

Finally, of course, the means by which informa-

tion is accessed and used is changing. Our users

have multiple or no offices. Telecommuting is a

growing practice. Information requests and

75

requirements arise while waiting in airports. The

growing international user population and infor-

mation environment make time zones and export

laws increasingly important. The importance of

security, of computers, information, and custo-

mers interests has been growing, especially as the

Internet becomes both a carrier and a source of

information.

This paper presents technical concerns related to

these issues. It will focus on the author's percep-

tions, and in particular on where and why Z39.50

presents a flexible means of approaching a diverse

set of these issues.

2. Overview of the AT&T Library Network and

Retrieval Environment

The AT&T library network is from many perspec-

tives based on information retrieval. Our end

users search the databases we provide, our infor-

mation professionals search both internal and

external database resources, our publications are

based primarily on searching database resources,

and our library automation systems are based on

database searches and modifications. Our internal

database setup since the early 1980s has been

Unix-based, with an internally developed data-

base engine called SLIMMERt'l SLIMMER has

been designed to work as a filter - for searching,

retrieving, and formatting records from databases;

as well as for updating databases. Our library

automation systems, including circulation sys-

tems, table of contents (TOC) alerting, billing, and

photocopy tracking, consist primarily of scripts

tying together database retrievals and database

updates. These scripts are written primarily in

high level languages such as perl''^^, AWK^^^, and

Unix shell(s).

The above conveys a view of our library systems

as modules which have, at their lowest level, data-

base retrievals and updates. Until recently, a

software module that used a database had to reside

on the same computer as the database. From the

1960s through 1990, our library automation sys-

tems were mainframe-based. When applications

resided on different computers they had the

extreme limitation that they could not exchange

information with other applications in real time.

In the early 1980s this was solved by bringing

most of our library applications together on a sin-

gle computer. This was also when we switched to

using the Unix operating system. But by the late

1980s, as our requirements grew, a single main-

frame computer proved an inflexible and costly

solution.

Our organization took the first step away from this

architecture in 1991 when we began using Net-

work File Systems (NFS). In 1991/1992 we
moved to a cluster of minicomputers with a com-

mon file system using NFS. Unfortunately, this

added complexities that we are still dealing with

after 3 years:

• Shared database aspects such as shared

memory and interprocess control require con-

siderable care.

• Database and record locking has proved a con-

tinual problem in a multi-CPU environment.

• The load on the network and the file server is

quite high in a large database environment.

For example, an application needs to know the

number of articles in Byte magazine that con-

tain the word "computer". This can be

expressed as a search on "Byte AND com-

puter". The inverted file entries for "byte"

and "computer" are brought to the computer

where the application is running, intersected

(ANDed), and the number of records in the

intersection saved. To obtain one number,

several million bytes of data flow over the net-

work.

• Finally, as our network continues to grow and

diversify other network problems are arising.

Issues of security with exporting our file sys-

tems to computers geographically far away is a

concern. In addition, as the computers are

more dispersed the speed of the linking net-

work (and the reliability) decreases.

Thus while NFS is good for many of our shared

file applications, it has significant limitations for

large database applications. A viable alternative

approach is the use of database servers.

A database server has a database residing at one

place with all the applications accessing the single

copy via some robust, flexible technique. When
the access technique is a network protocol, this

makes the the database server and the application

using the database nearly independent. Z39.50 is

well-developed protocol that can help meet our

internal needs as a database server. In addition, it

allows us to use external database servers in a

transparent manner.

76

Increasingly over the last 10 years we have also

been mounting databases, both from internal as

well as external sources. Most recently we have

begun receiving newswire feeds, such as DowVi-

sion and AP wires. As our users' data require-

ments grow, and with them the demand on our

organization resources, both computer (e.g. disk

space, CPU, backups, security) and human (e.g.

database administrators, help lines, tape handlers),

our organization is looking constantly at buying

database access. But our requirements are high:

neither our end users nor staff can be expected to

learn multiple interfaces or database setups, plus

we require that the location of a database be nearly

transparent.

The client-server model is becoming the 1990s'

solution to the problems described above. In addi-

tion, and perhaps most importantly, it helps

minimize the need for people (users at all levels)

to learn new interfaces depending on the informa-

tion resource being accessed. It also opens up

opportunities for distributed library applications.

It means applications that require database access

can be built independent of where the database

resource resides.

3. Z39.50 Version 2 Protocol Limitations

This section addresses issues that were of concern

in Z39.50-1992 Version 2 - issues that version 3

has resolved. These are protocol limitations - that

is, features the standard could not support in the

1992 version. Presenting a simplified user search

is probably the easiest way of conveying the first

set of issues that arose upon considering Z39.50.

Note these issues are mostly resolved in the 1995

version of the protocol.

The following is a simplified user search interac-

tion of a SLIMMER database.

1. The user is presented with a introductory

screen presenting the database.

2. The user enters a search, for example "com-

puter retrieval". SLIMMER searches all

indexed fields, basically ANDs together the

two terms, and tells the user:

Term "computer" retrieved 21959 items -

Term "retrieval" retrieved 919 items -

now 315 in set

3. The user is now presented with ways of

reducing the retrieved set; one common
method is to restrict the search by field, for

example "title".

4. Records are retrieved and displayed.

In the scenario above, the interface knows a fair

amount about the database. It needs to know the

database name and other relevant information to

present the user on the introductory screen. This

is probably the first embarrassment to a Z39.50

client implementor; all the interface really knows

about the database is the network address; this

does not make for a friendly welcome screen. But

problems also exist lower in the interaction. Step

3 requires knowing both how to present indexed

fields for a given database to a user and how to use

them in a Z39.50 search. Step 4 requires knowing

the content of a database record and how to

present it to the user. A related requirement is

knowing how to obtain a given field from a

record. For example, if the user says "give me
more records by this author" somehow the client

software must be able to find the "author" field

and know how to use it in a Z39.50 search.

All these issues are solved by the Explain facility

in Z39.50-1995. Without Explain, implementa-

tions are constrained to conveying database infor-

mation outside the retrieval session (e.g. by phone

or documents). Since our system allows consider-

able database setup flexibility and change we

needed Explain to get started. So we implemented

the first stable Explain structure, as proposed in

summer 1992. It has proved quite satisfactory for

our main needs.

Step 2 above, the search step, also involves a

number of protocol features beyond Z39.50-1992.

By default SLIMMER searches all indexes. This

capacity was not in the 1992 standard but was

added shortly thereafter as the Use attribute "any".

In addition, note the line:

Term "retrieval" retrieved 919 items - now 315 in set

The intermediate step information about "retrieved

919 items" cannot be conveyed in Z39.50-1992.

This required the User Information Format

features introduced in the 1995 version.

Finally, step 3 was probably the most controversal

issue of a protocol deficiency in Z39.50-1992.

SLIMMER carries along information about the

fields of a record in which the retrieval terms were

used. This allows, for example, a user to search

on "einstein" and then based on the number of

77

retrieved records either look at all the records or

first reduce the set to those records where "ein-

stein" was used in the "title or subject". This

feature exists in many major database providers,

as well as in the Common Command language

(Z39.58); it can now be done interoperably done

in version 3.

Step 4 includes fairly major requirements. It

requires the ability to package a record in a

Z39.50 message without loss of information.

Since SLIMMER has elements (record pieces like

author, title) with arbitrary string and numeric tags

that can have diverse content, MARC is not an

acceptable record package. John Kunze (Univer-

sity of California at Berkeley) proposed a flexible

record structure called INFO-1 that supported the

functionality required. We implemented and used

this structure from 1992 through 1994. This

record format evolved into the generic record syn-

tax (GRS), which is part of the 1995 protocol

specification. This new format even better suited

our needs; in particular it has a clean way to carry

a local record key and record dates, part of our

basic SLIMMER record.

4. A Security Concern in Client/Server

There is a security requirement that arises once

records are delivered into the control of client

software. Currently, when our databases contain

sensitive data (e.g. social security numbers, pass-

words) we simply do not display this content.

This works quite well as long as we control the

user display and interaction with the record. How-

ever, once the record has gone out to a user's pro-

gram we lose control of how the record content is

displayed and manipulated. This problem was

solved by adding to a database setup a list of fields

that are considered sensitive, and these are simply

never sent to the client program.

This security approach has solved a number of

problems as well as creating new ones. It solved a

growing problem: as our interface gave greater

control to the user it was becoming more difficult

to protect against clever users gaining access to

sensitive data. Simply not making the data avail-

able is one solution, but is too extreme for some

cases. For example, if a personnel record has a

special library access password we displayed on

the screen

user has library access password.

That is, the password is sensitive, but the fact that

it exists is of value and is not sensitive. Solutions

to this problem are difficult and have uncertain

return, so for now this functionality is an accepted

loss in our Z39.50 implementation.

5. Z39.50 Extended Services

When the AT&T library network originally inves-

tigated Z39.50 a number of functions were

ignored since interoperability was not necessarily

a requirement. Many of these have since been

proposed and incorporated into Z39.50-1995.

Two noteworthy services, item order and database

update, are discussed below.

5.1 Item Order

Item order is essential to our users - they com-

plain when databases present records describing

materials they cannot easily order. But this

doesn't necessarily mean that we require it in

Z39.50; it means we require it as a functionality of

the client software. Usually this involves the

client software gathering some amount of infor-

mation about the item being requested (from the

database record) and information about the user -

both from the user and personnel database(s) -

and delivering this information to a request han-

dling system. In our present environment part of

database setup is setting up what information is

needed for a request and where the request is

delivered and how. Presently we do not allow

requests from distributed clients, since the request

invokes request entry commands in our other sys-

tems. However, we will soon allow the following

technique when a client program is connected to a

database mounted at our server:

1. User says "I want the object described on

my screen". This will cause an item order

to be sent to the Z39.50 server. Technically

this is an Extended Service item order pack-

age for a resultSetltem.

2. In most cases the server will just ack-

nowledge the request and that will end the

transaction (from the Z39.50 point-of-view).

This works since the Z39.50 server knows

who the user is (required to gain access to

the database) plus which record is being

requested. The Z39.50 server passes the

request on to the correct request handler as

set up by the database administrator.

3. When additional information is required;

e.g. more billing information, permission to

bill, or the size of requested item, this

78

information is obtained using Access Con-

trol via a PROMPT- 1 access control format.

PROMPT- 1 allows the database provider to

obtain any required information from the

user. This approach is necessary because it

is the database provider that knows what

additional information is required with a

given request, not the client designer.

This does not solve the problem of AT&T
employees using distributed clients to search data-

bases at non-AT&T information providers. In this

situation we still want user requests to filter back

through our request handling organizations. If we
controlled the clients it would be easiest to set up

our own private request format. In fact we do

have a command distributed to many AT&T com-

puters called library which sends electronic mail

in a fixed format to request library materials and

services^'^l If we could have the clients use this

existing format our work is minimal. But we

believe this approach has significant limitations.

In our environment we need an accepted protocol

for requests of material. Since we have many

traditional library needs (e.g., book buying and

borrowing, article photocopies), we are watching

the development of ISO 10161 - the ILL protocol.

In addition, that protocol is growing and develop-

ing to handle orders for diverse types of materials

beyond traditional library needs.

The growth of the ILL and Z39.50 standards and

their synergy'^' are of interest for other reasons.

We acquire significant quantities of materials,

especially books and photocopies, from external

vendors. To give our customers the turnaround

times and service required, we use electronic

interaction with our vendors. This usually means

setting up a new method of transmitting requests

and information about requests with each vendor.

If this could be standardized our organization, and

we believe our vendors, would benefit.

5.2 Database Update

This, like item order, is a functionality we would

like and are pleased will be supported in the con-

text of Z39.50. We use a variety of technologies

presently to ensure a single flow of database

updates. As our computing environment becomes

more complex, ensuring that only a single update

process is running has become more complicated.

As our environment becomes more distributed,

security of data and especially of data updates is

an ongoing concern.

Having a single network point for updates, in this

case the Z39.50 server, simplifies issues of con-

current updates and security. In contrast with

alternatives involving NFS, inter-process control

(IPC), and other related network and operating

system dependencies, single process control is a

preferable solution. So although the availability

of clients able to interoperably send database

updates is not expected soon, this functionality

may have internal application in the near future.

6. External Database Access

Accessing databases at other servers raises a new

set of problems. To our users, at least theoreti-

cally, there should be no difference between

accessing an external database and accessing an

iiiternal database. Unfortunately, the real v.'orld is

not quite that simple. Our initial problems can be

divided into several categories:

• Traditional issues of database loading.

• Issues of indexing and index access.

• Features of the remote Z39.50 server.

• Speed of the connection to the remote data-

base.

It is interesting to think of the problems described

below compared to issues of buying and locally

mounting a database. When our organization buys

information resource tapes, we investigate the best

resource in terms of content for our customer

needs. The assumption is made that our database

administrators and systems can then make the data

available in a way that will satisfy our customers.

With the advent of Z39.50, acquiring a database

requires answers to questions relating to whether

the available Z39.50 access is sufficiently flexible

to meet our requirements. This requires a new set

of training and thinking in acquiring database

access. The issues described have to be con-

sidered and handled before signing a contract.

6.1 Issues of Database Loading

An important advantage of Z39.50 is transparency

of database access to the user. Z39.50 hides

access differences, but the underlying database is

still all important and different for each provider.

These differences can be important, but often

Z39.50 hides these as well. Issues of update fre-

quency, completeness of loading (often all aspects

of a database are not made available), quality and

availability of full text, completeness of records

(whether all fields loaded), and how record

updates are handled are examples of important,

basic issues. Librarians have long realized the

importance of these factors in selecting and using

a resource. However, it is clear that our end users

cannot be expected to make similar judgment,

especially when we have intentionally screened

them from differences among database providers.

These are the first set of issues raised by the inter-

nal database administrator when we acquire and

locally load a resource. It is easy to overlook

these issues when acquiring Z39.50 access, partic-

ularly since most end users would not even notice

these issues.

6.2 Issues of Indexing and Index Access

Indexing issues with remote servers break into

two sets of major problems. The first set are

issues of how the database provider indexed the

records of the database, the second set concern the

Z39.50 interaction.

AT&T library users have come to expect fairly

complete indexing. That is, they expect indexing

of most of the record content, and the ability to

specify which record element is being accessed.

How that data is indexed, and the depth to which

it is indexed can vary considerably; librarians are

trained to be aware of this factor.

SLIMMER allows considerable flexibility in

indexing; our end users expect this, and our sys-

tems are designed using this functionality. For

example, a "phone number" field may have con-

tent

123 456-7890

and we might index it so a user can search on

"phone number"

123 456-7890 or 1234567890 or 7890 or 123.

The ability of the system to do this type of index-

ing is a combination of system flexibility, and

equally importantly, local control. When database

access is purchased indexes may be unchangeable,

or at best changed via contract and interaction

with the organization that makes the database

available.

In addition to these issues are Z39.50 aspects of

index access. The first issue often raised is coor-

dinating the client and server to access the correct

index. This can be done in three ways:

• Published lists of access points. By far the

main such list is the BIB-1 attribute set which

is part of the published standard.

• Out-of-band agreements on attributes. That is,

the client author and the database provider can

agree on values to be used for different access

points.

• The Explain database to communicate the

available attributes. A client using the Explain

database can dynamically learn the access

points for a given database and the Z39.50

method to convey using a particular access

point. Explain is clearly the most flexible

solution to this problem, but unfortunately

there are not many existing Explain implemen-

tations.

Interpreting what is meant by an access point is a

problem both in the Z39.50 environment and other

search setups. The user who searches for "author"

may or may not expect corporate authors or edi-

tors. These are problems in user interface but

carry into the interface between the client and

server developers.

6.3 Features of the Remote Z39.50 Server

Clients can be designed to compensate for some

differences between remote database sources. For

example, whether the server sends GRS or

USMARC records is not something a user should

notice. But some other server features are more

difficult to hide from the user. Features (or lack

thereof) we have had to cope with include:

• Whether proximity is supported. This feature

is more complex, since the level of proximity,

e.g., word, sentence, paragraph, is an issue as

well.

• Whether Boolean operators are supported.

Yes, it is possible to mount a database under

Z39.50 and not support Boolean operators.

• How unspecified Use attributes are handled.

This is a significant issue in our interface,

since the default operation is to search all

indexes. Our clients request the desired

behavior, using Use attribute "any". However,

many servers do not support this. For intero-

perability reasons our clients then switch for

these servers to a Use attribute of "server

choice" or send no Use attribute. The

undefined behavior of the server at this point

has caused some trouble and confusion.

• Whether the remote server supports named
result sets. Some functions of our clients

require creating and holding intermediate

result sets. Without this capacity the clients

80

can still work but at a reduced functionality.

6.4 Speed of the Connection to the Remote Database

Z39.50 database resources are mainly available

over TCP/IP networks (e.g. the Internet). When a

user complains about our search response time,

and the response time degradation is the result of

someone doing real-time video at an unrelated

site, this does not satisfy the user. The solution to

this problem is the ability to purchase guaranteed

band-width which is presently not available. In

addition, firewalls and proxy servers can add con-

siderably to response times - another overhead

that is difficult for libraries to control.

This has been a major issue in our initial attempts

to make Z39.50, as well as other Internet

resources, available to our users. In the World

Wide Web environment people may be willing to

wait 1-2 minutes to hear the President's cat* or

several minutes for an "archie" search. However,

users expect external databases (which they are

not even aware are external) to have response

times iike internally mounted databases; e.g. a few

seconds. We frequently experience long delays in

forming a connection, initializing the session, and

retrieving records. Some of the user impact of

these delays can be mitigated in the user interface

and others may be avoided by caching data that

the user may need to see or use again. But no

complete solution that satisfies our users is

presently available.

7. Workstation Issues - and the Future

Our users, and our libraries, are deploying more

powerful workstations, and this raises expections

about computer access in general.

7.1 User Expectations and Issues

The user expectations are starting to be met, partly

through the explosion of client/server solutions

coming via the World Wide Web and web

browsers. Using existing (or arriving) WWW
technology and clients many methods are avail-

able to present users with, and help them find, the

*

Available at

http://www.whitehouse.gov/White_House/FamiIy/other/socks.au

desired information resource for their needs.

These solutions range from standard HTML pages

functioning as menus to searchable databases of

resources which give back descriptions and

pointers to relevant resources. A link on these

pages can be either a pointer to text such as a

president's speech, or a pointer to a database or set

of databases using a Z39.50 URL. When a user

selects a database search the web browser could

open a Z39.50 session or invoke a companion

application process to handle the link.

As appealing as the above scenario is, there are

serious issues that need to be resolved. These

issues have to do with who "owns" or handles the

information connection.

• Who is responsible for the user's workstation

as an information gathering tool? My organi-

zation is already getting calls from people who
want network access, either to our services or

to external information providers allowing net-

work access. These range from people Vv'ith

dumb terminals to people with PCs who have

never heard of nor want to hear of TCP, to

people in restricted networks. Who, then, is

responsible for the client software mounted on

a user's computer? Although our view (and

hope for client/server technology in general) is

that these issues reside at the user's end, it is

not clear users agree. In order to give users

the greater control they desire, users presently

must accept the burden of computer system

administration as the overhead.

• Who is responsible for response time? Library

literature has always claimed 3-5 seconds is

desired response time. When our users follow

an information link through the AT&T firewall

out into the Internet, response time can be in

minutes. Responsibility for this problem

becomes murkier when the library is paying

for the information access, and the user con-

siders it unacceptable or unusable due to

response time.

• Who is responsible for the functionality of the

user's client software? This is further compli-

cated since the functionality can vary depend-

ing on the remote server. There are issues of

what functionality the client has (e.g., does it

allow proximity searching), whether it intero-

perates correctly with the desired server, and

whether the server supports the desired func-

tionality. It is the author's belief that a well-

designed client should present the user with

functionality up to what it supports (e.g.

Boolean operators, word proximity, USE attri-

butes), and smoothly present the user with

interoperability issues pertaining to a given

server (e.g. the server fails the word proximity

search request).

• Who is the user's point of contact? This issue

intermixes with how databases are presented

to the user: e.g. whose name and number

appears on the screens, and who the user per-

ceives is providing the information service.

Setups where the user is presented with the

information resource as coming from an inter-

nal provider as well as setups where the user is

fully aware that a remote provider is involved

are both used in the non-client/server world.

Which setup is used is based on what the

information provider and the intermediaries

perceive as their role and relationship to the

user.

• Who is responsible for the functionality and

contract with the database server? This will be

an early issue that needs to be resolved by my
organization. If we purchase access to data-

bases for a customer, we want the customer to

help pay for the access and to be aware of the

library's role, and we want user requests to be

in our control and user feedback to come back

to our organization. Whether we will be able

to keep this degree of control in the new

environment is uncertain - but the money

issues are the bottom line. A number of solu-

tions to this problem exist, but many details

need to be resolved.

7.2 Library Expectations and Requirements

Our libraries have two points of interaction with

databases; for searching and for systems access.

In the case of searching, the staff have the issues

(and desires) of users - they want a single

integrated search environment. Library user wants

are similar, but a single, consistent, user adaptable

environment is most important since diverse users

use the same system. Presently this goal has not

been reached, as users are confronted with dif-

ferent interfaces for every CD-ROM product,

laser-disk system, locally mounted OPAC-
accessible databases, and, increasingly, OPAC-
accessible externally mounted databases. Our
vision is of a library OPAC that consists of client

software accessing all the resources the library

makes available through one common interface.

Although we have attempted to achieve this in the

past, without a common protocol and buy-in by

the database providers this goal is basically

unachievable.

Our library staff also accesses databases for all the

basic functions of a library (e.g. for circulation,

entering and tracking user photocopy requests, and

for checking book status). It is not clear that

workstation client/server access is an improve-

ment for this functionality. However, if we decide

to move in this direction, our environment com-

bined with Z39.50 may make this a less painful

move than might be expected. At a low level

(below user interface) we should be able to take

our present environment built on high level

language scripts driving database access and

updates and port it. That is, in theory we should

be able to purchase a PC version of Perl, Awk,
and shell and use this to provide our present func-

tionality. Although we have litde implementation

experience at this level, we have reason to believe

our environment has the desired flexibility and

functionality to achieve a move of this scope.

8. Conclusion

The AT&T library organization developed an

interest in Z39.50 for a number of diverse reasons.

We hope that eventually Z39.50 will help with or

solve several classes of problems ranging from

behind-the-scenes issues resulting from distributed

computing architectures to diversity of user inter-

faces. In addition to helping with known prob-

lems, we hope that Z39.50 will give us the flexi-

bility we require for a constantly evolving library

organization in an international corporate environ-

ment.

For Z39.50 to meet our needs, the main require-

ment is that the protocol itself incorporate all the

functionality of our existing information retrieval

environment. Version 2 of the standard was a

major start, but version 3 comes much closer to

incorporating existing functionality. In particular,

Explain, generic record syntax (GRS), search res-

triction by attribute, new search information for-

mats, and new access formats make the protocol

viable in our environment with little or no non-

conforming extensions to the protocol.

The next major requirement is proven interopera-

bility and transparency of database providers to

our users. This functionality is coming, though

somewhat slower than hoped. Issues of indexing

style, default operations and ways to override

82

defaults, database coverage and loading charac-

teristics become even more apparent in Z39.50

than in the traditional online world. However, we
will soon be able to buy database access rather

than mount tapes, with no loss of functionality or

noticeable changes in access for our customers.

Our final requirement is that our end users, like

users everywhere, are expecting interfaces

integrated into their regular computing environ-

ment. Developing user interfaces for diverse user

environments takes significant resources. Our

users also expect the search tools to work the

same, whether against internal or external

resources. The clear solution to this problem is a

well-accepted search and retrieval protocol.

Z39.50 is well-positioned to become this protocol,

and in this belief we have focused our attention on

developing a high-quality server for our internal

resources.

After three years of involvement in Z39.50, it

appears that Z39.50 was the correct choice for

flexible future growth of our organization. Z39.50

continues to gain acceptance and Z39.50 imple-

mentations continue to become more available.

Acceptance by ISO is an important milestone.

Increasingly, database suppliers (including CD-

ROM vendors) offer Z39.50 access, making this

technology an increasingly attractive alternative to

mounting databases internally. The federal

Government Information Locator Service (GILS)

initiative makes access to government informa-

tion, which is important at a corporation such as

AT«&T, a desired benefit. Finally, the growing

interest in Z39.50 in the Internet community as

demonstrated by development of Z39.50 URLs
makes it likely that the less formal information

resources of the Internet will also be available and

searchable by a common protocol.

REFERENCES

1. Waldstein, Robert K. SLIMMER - a UNIX
system based information retrieval system.

Reference Services Review Vol 16, No 1-2, pp
69-76, 1988.

2. Wall, Larry and Schwartz, Randal L. Pro-

gramming perl. O'Reilly & Associates, Inc.

1991.

3. Aho, Alfred V., Kernighan, Brian W, and

Weinberger, Peter J. The AWK Programming

Language. Addison-Wesley Publishing Com-
pany, 1988.

4. Waldstein, Robert K. Library an Electronic

Ordering System. Information Processing and

Management Vol 22, No 1, pp. 39-44, 1986.

5. Turner,Fay The ILL protocol and Z39.50.

Available via anonymous ftp from ftp.nlc.ca;

in postscript (zillart.ps) or as ascii text (z-

illart.txt).

84

The Implementation of Z39.50 in the
National Library of Canada's AMICUS System

J. C. Zeernan

Software Kinetics Limited.

Stittsville, Ontario

zeeman@sofkin.ca

Abstract

amicus is the National Library's new integrated bib-

liographic system. The initial phase of development,

released in the second quarter of 1995, supports cata-

loguing and catalogue products, bibliographic search-

ing and customer information management. The

search module is implemented as a Z39.50 server that

accesses the two database engines integrated into

AMICUS: a relational database for bibliographic data

management and a fiill text database for keyword

searching and future full text access. An overview of

the AMICUS applications is followed by a brief intro-

duction to the modelling of AMICUS bibliographic

information in the relational database. A more detailed

description of the architecture of the AMICUS search

engine is given, describing components, internal mes-

saging, query analysis, optimization, semantic map-

ping and record conversion. A description of the three

AMICUS clients concludes the paper.

Background
The National Library of Canada is the national copy-

right deposit library in Canada. It serves as the pri-

mary cataloguing agency for Canadian published ma-

terials and as the national agency for assignment of

International Standard Bibliographic Numbers

(ISBNs) and International Standard Serial Numbers

(ISSNs). It makes catalogue records available to a

large number of Canadian libraries and exchanges na-

tional level records with both the Library of Congress

and the British Library to make their records available

as source records in Canada. The NLC maintains a

large union catalogue of Canadian holdings and hosts

the catalogues of several other federal agencies in Ot-

tawa (the "full-service libraries"), notably the cata-

logue of the Canada Institute for Scientific and Tech-

nical Information (CISTI) — the library of the Na-

tional Research Council of Canada. Because Canada

is a bilingual country, cataloguing is done in both

English and French, and the NLC offers its products

and services in both languages.

The NLC began preparations for the replacement of its

bibliographic system, DOBIS, in the late 1980s. A
fundamental conclusion arising from extensive investi-

gation was that no vendor could provide an off-the-

shelf product that would meet the complex require-

ments of the National Library in terms of support for

multiple languages, standard number assignment, and

multiple overlapping databases to support:

• Canadiana cataloguing,

• multiple sets of source records for both biblio-

graphic items and authorities,

• the Canadian union catalogue incorporating records

of highly variable quality, and

• the individual library catalogues of the National

Library and its full-service partners.

In 1992 a Canadian systems integrator, Groupe CGI,

was competitively awarded the contract to develop a

new information system for the National Library.

Software Kinetics Limited teamed with CGI to develop

the winning proposal and acted as subcontractor dur-

ing design and implementation of the system, with

particular involvement in the design and development

of the bibliographic search engine.

Amongst other requirements the RFC specified that the

system must:

• be based on a relational database system(RDBMS)

for management of bibliographic data;

• support keyword searching;

• meet stringent performance requirements for both

cataloguing and searching;

• support Z39.50 access; and

85

• support an initial database in excess of 10 million

records, rising to 20 million over the life of the

system.

The winning bid proposed the use of Digital Equip-

ment's VAX hardware platform with the VMS operat-

ing system, the Ingres RDBMS and Fulcrum's

Ful/Text engine for keyword access. Catalogue access

would be provided for a Windows graphical user inter-

face (GUI) client and for a host-based terminal client.

Analysis, design and as much of implementation as

possible would be done using CASE tools.

Work on the project plan began in July 1992. Devel-

opment was largely completed by April 1995 and the

system went into production on 12 June 1995.

AMICUS applications

Cataloguing

Cataloguing is implemented as a Microsoft Windows-

based client-server application developed using the

Ingres OpenRoad application development tool.

Cataloguing is intimately connected with searching:

the cataloguing fiinctions are available to authorized

users as menu options from the search windows and

vice-versa. The main cataloguing window appears as

a MARC-based worksheet. Cataloguers can copy-

catalogue from the large set of source records; edit

previously created records either to correct errors or to

create new records for similar items; or add new rec-

ords.

The basic worksheet is a blank form on which the

cataloguer can create a MARC-tagged record. The

same form is used for all record types, including

authorities. The cataloguer can input tags, indicators

and codes directly, from memory, or can choose ap-

propriate values from labelled pop-ups. All input is

validated and updates the database immediately.

The cataloguing application matches cataloguer input

for controlled headings, including names, titles, subject

headings, control numbers, classifications and call

numbers with data elements existing in the database.

If the cataloguer's input is matched, the access point

table for the appropriate heading is automatically up-

dated. If the input is not matched, the cataloguer may
browse existing values in the database to find the ap-

propriate term. If a term is not found, the cataloguer

may choose to add the term to the database, in which

case he or she is presented with a worksheet on which

to enter the required control irrformation. When this

information is supplied, the original workform is

automatically updated with the new data element.

Standard Number management
The National Library acts as the Canadian numbering

authority for International Standard Book Numbers

(ISBNs) and for International Standard Serial Num-
bers (ISSNs). To facilitate its management obliga-

tions, AMICUS incorporates applications that allow

National Library staff to manage the assignment of

number blocks to publishers and trace number assign-

ment to individual items.

Bibliographic Searching

Bibliographic searching is supported for users of the

AMICUS Windows-based client and for users of ter-

minals connected to the host VAX computer via telnet

or Datapac, the Canadian public X.25 network. For

these latter users, two host-based search interfaces

have been implemented: a command-based search

interface for experienced searchers, modelled on the

NISO Z39.58 Common Command Language; and a

form-based interface for patrons of the National Li-

brary and CISTI reading rooms and reference services.

All these interfaces use the NISO Z39.50 Information

Retrieval protocol to communicate with the biblio-

graphic search engine located on the VAX computer.

The bibliographic database is maintained as a fiilly

normalized Ingres relational database, with keyword

indexes to bibliographic records maintained in the

Ful/Text component of the system. The bibliographic

search engine manages concurrent searching of both

database systems transparently from the user's point

of view.

The AMICUS system allows the user to search a

number of databases. At present the following data-

bases are available:

• Canadiana bibliographic records,

86

• Canadiana authority records,

• Library of Congress Cataloguing Distribution

Service bibliographic records,

• the catalogue of the National Library's collections,

• the catalogue of the CISTI collections,

• the catalogue of the AMICUS Full-Service librar-

ies,

• the Canadian Union Catalogue.

In addition the user can search the combination of all

the bibliographic databases as "Any AMICUS data-

base".

These databases are implemented as logical subsets of

the single AMICUS physical database. The same

physical database record can be associated with mul-

tiple logical databases and different, possibly conflict-

ing, data elements can be part of the record in different

databases.

User/Supplier Information

AMICUS includes applications to manage information

pertaining to the users of National Library systems and

information and also to the suppliers of information to

the National Library, including publishers participat-

ing the cataloguing-in-publication, ISBN and ISSN

programs and libraries contributing to the Union

Catalogue.

Products

The existing set of National Library bibliographic

products, including Canadiana, the national bibliogra-

phy, will be produced from AMICUS. The system

includes applications to generate and manage these

products.

Billing

The National Library has an obligation to recover a

portion of its costs and most of the bibliographic serv-

ices provided by the National Library to other libraries

are therefore charged services. AMICUS includes

applications to monitor usage and generate billing in-

formation for the production of invoices.

Functions Not Implemented

The current release of AMICUS does not support the

following fimctions, among others:

• circulation

• acquisitions and serials control

• ILL messaging

• financial management

• publishing and ad-hoc products

These functions are currently provided by legacy sys-

tems or by the Dynix integrated library system ac-

quired by the National Library to serve as an interim

measure until the functions can be integrated into

AMICUS.

The Relational Database

AMICUS is fundamentally a relational database. This

has a significant impact on how searches are per-

formed in the system.

A greatly simplified version of a portion of the logical

data model used for AMICUS bibliographic informa-

tion is shown in Figure 1 below. Arrows in the dia-

gram point in the direction of the "many" aspect of a

one-to-many relationship. The diagram shows how

some of the entities in the system are related to each

other. To keep the diagram simple many entities, such

as subject headings, notes, physical descriptions, loca-

tion information, etc. have been omitted. It should be

noted how names, titles, etc. are related to biblio-

graphic items and to authorities and also how biblio-

graphic items are related to physical copies and to each

other. There is a separate access point entity for each

entity that has a many-to-many relation with the bib-

liographic item. Most of the relationships shovvTi in the

diagram are optional in the sense that not every in-

stance of the entity will have a corresponding access

point: for instance, some bibliographic items will have

no name heading related to them.

87

Each of the entities has a number of attributes that

specify both the data elements that form the entity and

the entity's relationships with other entities. The

principal attributes for the three major types of

AMICUS entities are shown below.

Principal attributes of a headings entity:

• heading number

• heading type (e.g. "personal name inverted order"

for a name, etc.)

• heading display text

• heading searchable sort form

• heading inverse sort form

• control information (e.g. language, verification

level, etc.)

The "heading searchable sort form" is a normalized

form of the heading to allow the headings in the table

to be sorted in lexical order, for production of scan

lists, and to enable a heading be matched against a

searcher's input term without having to worry about

variations in capitalization and punctuation. This

normalized form is stored as a distinct data element,

and is in fact the principal element used for searching.

The exact nature of the normalization performed de-

pends on the heading type. Typically punctuation and

MARC subfield codes are removed, all text is con-

verted to upper case, non-ASCII characters are

mapped to ASCII equivalents, etc.

The "heading inverse sort form" is present to allow

backwards movement in a scan list. ISO standard

SQL does not support moving backwards in a table, so

the inverse form contains a simple binary inversion of

the searchable form, which has the effect that moving

forwards in the order of the inverse sort form actually

moves backwards in the order of the searchable sort

form.

Principal attributes of an access point entity:

• heading number (to provide access to and from

rows in the headings tables)

• bibliographic item number (to provide access to

and from rows in the items table)

• heading function (e.g. "added entry", etc.)

• control information

Related

item

Authority

Shelf list Bibliographic

item

Copy

Name access

point

Name
heading

Title

heading

Control

number

Title access

point

Control no.

access point

Figure 1 - Portion of AMICUS Logical Data Model

88

The heading number and bibliographic item number

attributes allow instances of the bibliographic item

entity that are associated with a given heading to be

selected and vice versa. The heading function element

allows appropriate displays to be constructed on the

basis of the heading function and also allows selections

to be made on the basis of the type of relationship be-

tween the heading and the bibliographic item.

Principal attributes of the bibliographic item entity:

• bibliographic item number

• various coded elements (e.g. bibliographic level,

record type, country of publication, etc.)

• date of entry on file and of last transaction

• dates of publication

• control information.

It should be noted that the bibliographic item entity

contains none of the descriptive information or head-

ings normally considered to be part of the

"bibliographic" information.

This data model is used as the basis for the physical

design of the database. The database consists of a

series of tables, each corresponding to a single entity in

the logical model. The attributes of the entity become

the columns in the table and the data records become

rows. Any individual element in the database can

therefore be identified as the intersection of a row and

column in a particular table. The internationally stan-

dardized Structure Query Language (SQL) is used to

create the database and to access and manipulate all

the information in the database, and forms the only

valid means of accessing the data in the database.

An SQL statement to retrieve bibliographic records

related to a name would be as follows:

SELECT
itemNumber

FROM
nameHeading,

nameAccessPoint

WHERE
nameHeadingSearchForm IS LIKE

'JOHN SMITH %'

AND

nameHeading.namcHeadingNumber =

nameAccessPoint.nameHeading-

Number

This query selects values of the item-num.bcr column

in rows in the name-access-points table that are identi-

fied by having the same value in the namc-heading-

number column as rows in the name-headings table

that are identified by having a value in the name-

heading-sort-form column beginning with the string

"JOHN SMITH ". It should be noted that it is not

necessary to access the bibliographic items table in

order to create a set of bibliographic item numbers.

An SQL statement like that shown above is readable

by a human operator. It represents, however, a very

simple case. When additional qualifiers are added,

such as heading types and heading functions, SQL
statements quickly become too long to be easily input

or even understood by a human operator. System us-

ers cannot be expected to routinely use SQL to query

the database and SQL is in fact normally generated by

an application that presents a more intuitive interface

to the user and shelters him or her from the physical

schema of the database and from the complexity of the

SQL syntax.

Although a large number of tables can theoretically be

joined in one query, experience has shown that per-

formance begins to degrade rapidly when an SQL Se-

lect statement requires accessing more than three ta-

bles. The AMICUS data model allows single-term

searches to be executed with only two-table accesses in

all but a very few instances; for these, three-table ac-

cesses are required. Four-table or more accesses are

never used in the AMICUS bibliographic search en-

gine.

The Full Text Engine

Keyword access to AMICUS bibliographic data is

provided by use of a separate database system — in-

dependent from the relational DBMS — the Ful/Text

DBMS. This system maintains keyword indexes of

all names, titles, subject headings and bibliographic

notes. Searching is performed via a proprietar>' Appli-

cation Programming Interface (API) that supports

Boolean operations, proximity searching, thesaurus

look-up and substitution, and relevance ranking of re-

sults. The last two features are not used in the current

AMICUS implementation, although they will offer

89

considerable power in later phases of development

when full text and other data is added to AMICUS.

A Ful/Text database is modelled as a set of documents

that are searchable via the engine. To allow specificity

of searching, a document can be divided into a number

of "zones" that can be searched individually or in

combination. For AMICUS records the following

zones have been defined, "author", "title", "subject",

"publisher" and "notes". Zones in a Ful/Text query

are specified using numeric zone identifiers.

Ful/Text does not require the documents themselves to

be stored as part of its database. Documents can be

external entities to which Ful/Text maintains search-

able indexes together with a catalogue of pointers back

to the documents themselves. AMICUS thus main-

tains no bibliographic data in the Ful/Text database.

Instead, the Ful/Text indexes refer to the bibliographic

records in the Ingres database.

The simplest Ful/Text query consists of a single word

to be found: e.g., "SMITH". This will build a result

set of documents containing the word "SMITH" any-

where in the document. Searches can be restricted to

specific parts of documents by using a "zone opera-

tor": to find a word used as part of an author's name,

the search string would be "\C40s SMITH", where

"\C" represents an escape sequence, "s" is the zone

operator and "40" the parameter indicating the zone

value to which the search is to be restricted. More

complex queries are created by adding Boolean,

proximity and other operators.

In addition to the zone operator, Ful/text supports a

number of other operators that act on multiple words.

The syntax of these operators requires a leading escape

(represented by "\C"), one or more optional parame-

ters, the operator identifier, the words the operator is

to be applied to and a final escape following the term

plus a closing brace ("\C}") to indicate the limit of the

scope of the operator. The proximity operator, for

example is "\C<distance>p ... \C}". A phrase is

searched as two adjacent words by using the proximity

operator with a distance parameter of zero, so the

Ful/Text query for a phrase used in an author's name

is: "\C40s \COp SMITH JOHN \C}". Operators can

be nested and can occur in any order.

The basic search unit of Ful/Text is the word, and all

operators other than proximity apply to one or more

words. The only distance unit supported for proximity

is character distance. AMICUS therefore, also sup-

ports only the character unit for proximity distance.

The result of a Ful/Text search is a result set of docu-

ment ids maintained by the Ful/Text engine. The bib-

liographic search engine obtains these ids fi"om a

Ful/Text search to use as either an interim result set or

as the final result set of the search as appropriate.

The Bibliographic Search Engine

The bibliographic search engine is at the heart of the

AMICUS bibliographic information management and

retrieval fiinctions.

The principal requirements to be met by the AMICUS
search engine were as follows:

• to integrate search access of the relational and the

fiill text databases;

• to integrate with the cataloguing application being

developed using Ingres Windows-4GL;

• to support a very large database;

• to provide a Z39.50 version 2 target;

• to support up to 250 simultaneous users;

• to meet stringent performance requirements.

The design approach was to modularize searching as

much as possible into separate components, each dedi-

cated to a specific role in executing the Z39.50 query

and each operating independently and simultaneously.

The general architecture of the search engine is shown

in Figure 2 below (acronyms are explained below).

The search engine thus consists of a number of proc-

esses that together implement the search functionality

supported by AMICUS. Each of the processes in the

search engine operates independently of all others, and

uses asynchronous messaging to communicate with the

other processes as needed. Each process maintains its

own message queue and deals with each message in the

queue in turn. While the message queue is currently

implemented using the VMS mailbox utility that pro-

vides efficient low-level support for interprocess com-

munication, message handling is sufficiently isolated

that a different messaging mechanism, such as RPC,

90

could be implemented without major disruption should

the engine be transferred to a different platform.

Each of the processes is dedicated to a specific task in

responding to a Z39.50 protocol message.

EIT The External IR Target implements the

Z39.50 protocol machine for non-AMICUS
users. It is based on the IR Toolkit software

developed by Software Kinetics Ltd. for the

National Library of Canada. It implements

version 2 of the protocol as specified in the

1992 standard. All services of version 2 are

currently supported with the exception of Ac-

cessControl, DeleteResultSet, and Resour-

ceReport.

The EIT polls for incoming Z39.50 Applica-

tion Protocol Data Units (APDUs). When an

InitRequest APDU is received, it decodes the

APDU and issues a message to the MISR pro-

cess (see below) requesting validation of the

~7

/ 7
AMICUS

Client

~7_

/ 7

Z39.50

Client

Figure 2: Bibliographic Search Engine Architecture

user's authentication information and the sup-

ply of session information such as the various

resource limits to apply to searches and the set

of databases the user is allowed to search.

The protocol machine uses the response from

the MISR to formulate the InitResponse

APDU.

APM The AMICUS Protocol Manager process im-

plements a proprietary protocol developed for

use between AMICUS clients and the biblio-

graphic search engine. This protocol acts as a

wrapper around Z39.50 protocol messages

and other messages used by AMICUS clients.

AMICUS clients offer additional search serv-

ices not available to external Z39.50 clients,

such as saving queries and result sets. These

services were not available in the 1 992 text of

Z39.50 and what became the 1995 specifica-

tions were not sufficiently stable when the

AMICUS design was finalized in early 1993

to allow them to be implemented. Therefore, a

proprietary protocol has been used.

91

The AMICUS protocol is also used by

AMICUS clients to request that a MARC rec-

ord image be placed in an Ingres table for sub-

sequent use by the client. The AMICUS pro-

tocol is furthermore designed to permit the

transfer of Z39.50 messages to and from a

remote Z39.50 host via a client gateway on the

/ AMICUS server. None of these services are

available to non-AMICUS Z39.50 clients.

The APM includes the same Z39.50 protocol

machine as the EIT and generally behaves in

the same way. Principal differences lie in the

internal naming of result sets and in the crea-

tion of records. AMICUS clients do not use

Z39.50 to obtain records for display, but in-

stead manage their own displays directly from

the Ingres database.

MISR The Manage IR Security and Resources proc-

ess finds the message in its queue and executes

the appropriate SQL statements to obtain

authorization and session information. If the

user has supplied a valid user id and password

the MISR obtains the necessary session infor-

mation, such as resource limits that apply to

the user and databases the user is allowed to

search, and makes it available to other proc-

esses for use as required.

MIR Query analysis, optimization and execution is

managed by the Manage Information Re-

trieval process. There is a single MIR process

that continuously loops through all outstand-

ing searches, analyzing queries and dealing

with messages from other processes as neces-

sary.

The query analyzer receives a decoded query

from the protocol engine (APM or EIT) and

builds a query execution tree based on the

logic of the query. Figure 3 below illustrates

the query tree that would be built from the

common command language query "find TW
cats or dogs and SU pets or animals and DA >

1993" (find records with title word "cats" or

"dogs" and with subject heading "pets" or

"animals" and with publication date greater

than 1993). As illustrated in Figure 3 below,

each term in the query becomes a leaf of the

tree and leaves are joined into branches with

the operators in the query. Execution of the

query begins with the bottom left-hand leaf

and proceeds upwards and to the right.

Branches of the tree may be optimized to

make most effective use of the database en-

gines' native query optimizers while minimiz-

DA> 1993

TW = cats TW = dogs SU = pets SU =

animals

Figure 3 - Query Execution Tree

92

ing query execution time. In this query, the ti-

tle-word terms are passed to the Ful/Text en-

gine as a single subquery, and the subject-

heading terms are passed to the Ingres engine

as a single subquery using the SQL "union"

operator. The result of each search is an In-

gres table holding the intermediate result.

These two subquery results are next joined

into a single intermediate result and, since date

of publication is not indexed in the Ingres da-

tabase, the intermediate result will finally be

joined with the date attribute in the biblio-

graphic items table to form the final result set.

Query execution is implemented as a finite

state machine that makes recursive passes

through the query tree, optimizing where pos-

sible, dispatching subqueries to a database in-

terface process (a PIQ, see below), interpret-

ing results and changing the state of the vari-

ous nodes as appropriate. Each query node

may be in any one of the following states:

"incomplete", "wait for dependent", "wait for

PIQ", "wait for result", "complete". The

query is reprocessed until the top-most

("root") node reaches the "complete" state at

which point the query has been fiiUy processed

and the result set (if any) has been built.

When the MIR receives a message from a PIQ

that a subquery has been processed, it finds

the node associated with that PIQ and changes

the state of the node as appropriate. It then re-

analyzes the query, changing the state of other

nodes as necessary. For instance, if the de-

pendents of a query node have all reached the

"complete" state, the node can then be

changed from "wait for dependent" to "wait

for PIQ", at which point the subquery speci-

fied by the node will be executed.

MIRE The Manage IR External process manages the

creation of MARC records for return to an

external Z39.50 user. There are multiple

MIRE processes active simultaneously; the

number is specified at search engine startup

time, allowing system managers to tune this

number for optimal use of system resources

and performance. If the SearchRequest con-

tains a "piggy-backed" present, the MIR will

ask the next idle MIRE to create one record

required for the response. If multiple records

have been requested, multiple requests will be

passed to one or more MIRE processes. If the

EIT receives a PresentRequest it will repeat-

edly ask the next idle MIRE to create the next

record required for the response. To create

the record the MIRE executes a database pro-

cedure that extracts the required data from the

various database tables and then assembles

this data into the MARC exchange format. At

present only the CanMARC format is sup-

ported for output.

PIQ All search interaction with the two database

engines is handled by a Process IR Query

process. As with the MIREs, there are multi-

ple PIQ processes active simultaneously, with

their use managed by the MIR. The number

of simultaneous PIQs is specified when the

search engine is started. Each PIQ can inter-

act with both the RDBMS and the full text

engine. Since execution of SQL statements by

the RDBMS is synchronous (i.e. the process

blocks until the query completes), using mul-

tiple PIQs allows multiple subqueries to be

executed simultaneously.

The PIQ executes the database interaction and

builds either an intermediate or a final result

set. These sets are placed in RDBMS tables.

Each PIQ processes a single subquery, which

may be an SQL select statement to evaluate a

single term, an optimized query that contains

several terms, an SQL statement to perform a

Boolean operation on the results of previous

terms, ora fiill-text query.

Full-text queries are always optimized as

much as possible. The result of a fiill-text

query is a list of matching bibliographic item

keys, which is copied into an Ingres table as

the final or an intermediate result set.

Semantics Tables

The query analyzer has no built-in knowledge of the

semantics of the AMICUS databases or of an

AMICUS search. All the semantic knowledge relating

to the physical data model of Ingres and the Ful/Text

93

database structure resides in separately maintained

semantics tables used by the query analyzer to gener-

ate subqueries for execution by a PIQ. There is one

semantics table for each record type in the system that

requires different semantic processing. In AMICUS at

present there are separate semantics tables for author-

ity records and for bibliographic items. Adding search

support for other record types may involve as little

work as defining a new semantics table.

The query analyzer has a only basic understanding of

how to constmct an SQL statement that involves a

two- or three-table join and how to construct a

Ful/Text query. It also incorporates a growing set of

deterministic optimization cases based on comparison

of tables names and other data from the semantics ta-

bles.

The semantics tables are held as Ingres tables for ease

of maintenance, but for performance reasons are stored

in memory while the search engine is running. This

permits the search semantics to be altered in the data-

base tables as required, without interfering with the

operation of the search engine. Alterations will take

effect the next time the engine is restarted (normally

daily).

The semantics table for a database lists every Z39.50

Bib-1 attribute combination supported for that data-

base, and, for each, specifies the semantics of the

subquery that corresponds to the attribute combina-

tion. Some of these combinations specify full-text

searches, others specify SQL searches of the Ingres

database. For every term in a query the attribute

combination is looked up in the table. If a row is not

found, an "unsupported attribute combination" diag-

nostic is returned and the search is failed. If the row is

found the query elements are placed in a memory

structure used by the MIR to construct a subquery that

is passed to a PIQ for execution.

Each row in a semantics table contains the following

information:

• the attribute combination,

• parameters used in generating the searchable form

of the term,

• a flag to indicate whether the attributes specify an

indexed or unindexed database element, and either

• a skeleton Ful/Text query or

• the components of the SQL query.

The elements of the last item are used to create an

SQL select statement for the subquery and may be

used to optimize several subqueries into a single more

complex select.

For example, the attribute combination:

use = 4 (title),

position - 1 (first-in-field),

relation = 3 (equality),

structure = 1 (phrase),

truncation = 100 (do not truncate),

completeness = 1 (incomplete subfield)

retrieves the following parameters from the semantics

table:

primary search table = titleHeading

first join table = titleAccessPoint

second join table = null

key of primary table = titleHeadingNumber

join table key for first join = titleHeading-

Number

join table key for second join = null

element name from which to select record id =

bibliographicItemNumber

element name in primary table in which to

match term - titleHeadingSearchForm

SQL operator = LIKE
variable string containing the search term =

'%s %%'
string constant to add to the SQL statement =

null

These parameters lead to the creation of the following

SQL statement (assuming the user's search term is

"Rape of the lock":

SELECT bibliographicItemNumber

FROM titleHeading, titleAccessPoint

WHERE
titleHeading.titleHeadingNumber =

titleAccessPoint.titleHeadingNumber

AND
titleHeading.titleHeadingSearchForm

IS LIKE 'RAPE OF THE LOCK %'

Note that the C-language "sprintfO" function is used

to place the term into the SQL statement. This func-

tion replaces a "%s" in the input string with a variable

94

(in this case the search term). To use "%" as a literal

character in the output string requires that it be re-

peated in the input string, thus " '%s %%' ". The

single quotes are literal characters in the output string

that are required by the SQL syntax.

Most of the data in a bibliographic record (in particu-

lar, almost all coded data elements in a MARC record)

can be searched using the search engine.. To support

searching these coded elements, some 240 local use

attributes have been added to the basic Bib-1 attribute

set. Not all these elements are indexed, however. If

these unindexed elements were searched on their own,

complete higres table reads would be required to sat-

isfy the query, a process which would take hours, if

not days, in a database of 20 million bibliographic rec-

ords. The search engine therefore enforces rules as to

the combination of indexed and unindexed terms that

may be searched. Any unindexed term may be

searched in combination with a result set, with an in-

dexed term or with an intermediate result. Otherwise,

if query optimization would result in an unindexed

term on its own (or a combination of unindexed terms)

forming an SQL statement, a user-authentication pa-

rameter obtained during initialization is examined to

determine whether the user has the privilege to initiate

searches of unmdexed terms (very few users will have

such permission). If the user does not have permis-

sion, the entire search is failed and an appropriate di-

agnostic is returned.

To allow users to search for multiple values of the

same unindexed element (e.g. language English or

French or German) in a single query without having to

input a query with complex nesting of parentheses and

repetition of terms, tke search engine allows lists of

such values to be sent as a single term, which the en-

gine processes as an SQL "... IN (value,...,value)"

statement, e.g., code-language = eng, fre, ger. Queries

of this form are handled very efficiently by the

RDBMS.

AMICUS Clients

Three separate user interfaces have been created for

the AMICUS system. One is a Microsoft Windows

interface intended for use by cataloguing and other

technical services staff; one, Access AMICUS, is a

VMS host-based interface using a command-driven

paradigm, intended for use by subscribers to the

NLC's MARC record distribution, union catalogue

and ILL services; and the last, ISAAC, developed for

CISTI, is also a VMS host-based interface but using a

menu and form-driven paradigm, and intended for use

by patrons of the NLC's and CISTI's reading rooms

and reference services. There are French and English

language versions of each of these interfaces, and us-

ers can switch freely between the two languages.

The Windows interface provides access to all

AMICUS functionality, including bibliographic

searching and cataloguing. Access AMICUS supports

bibliographic searching, ILL requesting and notifica-

tion of holdings. ISAAC supports bibliographic

searching and the creation of requests for the NLC's

ILL system and CISTI's document delivery system.

All the clients support complex searching using nested

Boolean operators, keyword searching and proximity

searching. They all support the use of at least the

previous result set as an operator in the query. They

all support index scanning and generation of searches

from index terms and offer multiple record display

formats that are user selectable.

Each of these interfaces uses the same Z39.50 origin

software, based on the IR Toolkit developed by Soft-

ware Kinetics Ltd. The use of the Z39.50 protocol is,

however, invisible to users of the AMICUS interfaces.

The interfaces initialize a Z39.50 session when they

are started. Subsequently they use the Search service

only. The Z39.50 client portion of each interface re-

ceives a Z39.58 Common Command Language (CCL)

query string from the user interface, together with

other search parameters (such as the name of the data-

base to search), parses the query into a Z39.50 t>pe 1

or 101 query, and generates a SearchRequest message

which is wrapped inside an AMICUS Protocol mes-

sage and sent to the search engine. The CCL query

string may be either input directly by the user or gen-

erated by the user interface in response to mouse clicks

or form filling.

None of the clients currently request records to be re-

turned from the Z39.50 search. Instead they access

the result set in the Ingres database directly to obtain

display information, using the proprietary IngresNet

protocol. If a search results in a single record, it is

displayed to the user in the session default display

format. Numerous predetermined display formats are

95

currently supported by AMICUS, including brief and

full labelled formatted displays for specific uses such

as interlibrary loan or reference services, and two

CanMARC displays, one oriented toward descriptive

cataloguers and one for subject cataloguers. If a

search results in multiple records, a tabular display of

result set records is presented, from which the user can

select one or more records for a fuller display.

Similarly, index scanning and result set sorting are

implemented through IngresNet access to the Ingres

database. Wlien the architectural model for the client

was prepared, the 1995 Z39.50 Scan and Sort services

were insufficiently stable to permit their use in the

AMICUS clients. Future versions of the client may

implement the Scan and Sort services.

Each of the clients contains a query parser that gener-

ates Z39.50 queries from user input. The same parser

is implemented on all clients. This parser accepts a

Z39.58 Common Command Language (CCL) string as

input and generates as output a Z39.50 version 2

query of type 1 (or 101 if the query contains a prox-

imity operator). The parser uses a table to control the

mapping of CCL index names to Z39,50 attribute

combinations. This table specifies an attribute value

combination for every index name recognized by the

parser. Thus, for the Title Keyword index, ("TW")

the table specifies the following attribute values: Use

= 4, Position = 3, Completeness = 1. Values of other

attributes are shown as 0, meaning that the parser

should calculate correct values to send on the basis of

the query term. If the term contains multiple words,

the parser will set the Structure attribute to 1, for

"phrase"; if the term contains a final "?", the parser

will set the Truncation attribute to 1 for "right trun-

cated", etc. A calculation is not specified for every

case; if there is no calculation, the query omits the at-

tribute type completely, allowing the server to use its

default value for that attribute. If the input term con-

tains no explicit truncation mark, for instance, no trun-

cation attribute will be contained in the Z39.50 query

for that term and the default value of the server will be

used. For the AMICUS server the default value for

truncation is 100, "do not truncate".

The index table is maintained as an Ingres table, from

which configuration files are extracted for use by the

clients. For speed at startup, the index table is main-

tained as two files that are read when the user interface

is initialized. The clients implement a paradigm of

indexes and limiters, with "indexes" referring to those

searchable elements for which physical indexes are

maintained, and "limiters" referring to those elements

that are not indexed in the database and are intended to

be used only to modify sets created by a search of a

primary index (although a few users have permission

to search directly on limiters, as described above).

There is an index name corresponding to almost every

distinct element in the AMICUS data model.

Query strings of almost unlimited complexity can be

built through the use of parentheses in the CCL query

string, with the limitation that a single query may not

exceed 1000 characters and a single term may not ex-

ceed 200 characters. Multiple index names can be

applied to a single term (e.g. "tw sw nuclear physics"),

which the parser interprets as a Boolean OR of the

single term applied to the each of the index names (

"tw nuclear physics OR sw nuclear physics").

Proximity searching is fully supported by the clients,

using the CCL "within" operator for ordered proximity

and the CCL "near" operator for unordered proximity.

Searchers may use the client's default value for dis-

tance, may change the default for a session or may
supply a specific value on a case-by-case basis. As

mentioned earlier, only the "character" unit is sup-

ported for distance.

The Windows client is designed to support searching

of both the AMICUS databases and databases at re-

mote servers via a Z39.50 client gateway on the

AMICUS server. To support this, the user can

choose which system to connect to, and which data-

base at the system to search. The index tables support

this model by maintaining different attribute combina-

tions for each index name depending on the system and

the database being searched. Only searching of the

AMICUS databases will be supported for the initial

release of the AMICUS clients, however.

The Windows Interface

The Windows interface permits the searcher to con-

struct queries either by typing in a CCL query string

directly or by choosing the various elements of the

query from selection lists. It is expected that frequent

users of the interface will normally prefer to enter their

queries directly, while occasional users will prefer the

point-and-click approach. When the searcher uses a

96

selection list to choose an index that requires system-

controlled term values, such as a language code or

physical description code, a list of the allowed values

is presented to the searcher. Selecting a value inserts

the index name and value in the query. The searcher

can type in operator names directly or click on buttons

to select them.

Every AMICUS user has a default database name to

which all searches are applied. The searcher can select

from the list of AMICUS databases a different data-

base to search. This selection applies for the remainder

of the session, or until changed again.

To simplify the input of complex repeated queries, a

user can save all or portions of queries for subsequent

insertion into a query string. The searcher selects from

a list of these "Search qualifiers" and the user inter-

face includes fiinctions that allow a user to manage his

or her personal list.

The interface maintains a log of searches that have

been performed in the current session. The searcher

can examine the log; display records from any previ-

ous search; select a previous result set to use as an

operand in a subsequent search. The 25 most recent

queries are maintained by the log, and the searcher can

delete individual queries from the log as desired.

The Access AMICUS Interface

The Access AMICUS interface presents a host-based

command-oriented search interface to the National

Library's Search Service subscribers across Canada.

This interface is deliberately designed to resemble the

DOBIS search interface, to minimize the amount of

retraining required by the 500-plus Search Service

users. The query language is uses the CCL Find and

Scan commands, with the exception that single-

character commands, "F" for "find" and "S" for

"scan", are required, as opposed to the full name and

three-character acronyms specified by CCL.

Users of Access AMICUS enter CCL commands to

scan indexes and search the AMICUS databases. The

interface also allows users to download CanMARC
records for cataloguing purposes, notify the National

Library of local holdings and make ILL requests for

items in the National Library's and CISTI's collec-

tions.

The interface does not support a number of the fea-

tures of the Windows interface: search logs are not

maintained; search qualifiers arc not available, pop-up

lists of term values are limited to only the most com-

monly used indexes and have limited sets of values.

The interface is not currently designed to allow

searching of systems other than AMICUS.

The ISAAC Interface

The ISAAC interface is designed for use by untrained

end-users of the CISTI and National Library collec-

tions. The interface is implemented as a set of menus

that lead to search templates, with each template pre-

senting the user an input form that, when completed,

specifies a search to be performed. There are tem-

plates for performing a "quick search" (name, title

and/or distinguishing number such as ISBN or

AMICUS number); for searching for monographs,

serials, and a number of special types of material such

as technical reports, theses, newspapers, audio-visual

material, music; and for doing subject searching. Each

of these templates uses a dialogue tailored for the spe-

cific type of material identified by the template. The

interface uses the template and data supplied by the

searcher to construct a CCL query string which is

passed to the client query parser for generation of a

Z39.50 SearchRequest.

When records have been found the user can initiate a

dialogue to narrow the search, broaden the search or to

"find more like this".

ISAAC offers access to only the National Library col-

lections, CISTI collections and Union Catalogue data-

bases. Only a limited subset of AMICUS indexes is

used.

Since the National Library and CISTI are both closed-

stack libraries, ISAAC allows the user to issue a re-

quest for delivery of an item to a reading room or (for

CISTI staff) to an office; it allows the user to issue

ILL and document delivery requests to CISTI or the

National Library.

Conclusion

This paper has described how Z39.50 provides the

core functionality of the AMICUS bibliographic

search engine. The server has been designed to pro-

97

vide maximum efficiency in searching and offers sub-

second responses in building result sets for common

queries. It is designed to be highly flexible and can be

adapted to different data models with relative ease.

The underlying database technology can be changed

without requiring major alterations to the engine, and

the system can be ported to different hard-

ware/software platforms with little difficulty.

Z39.50 is used to provide transparent search access to

heterogeneous database systems and also to provide

access to the National Library of Canada's core in-

formation to the widest possible range of clients.

AMICUS demonstrates that Z39.50 can successfully

be used to provide a public search interface to SQL
databases.

One positive effect of the client-server technology used

has been the feasibility of creating multiple user inter-

faces for different purposes, as shown by the three in-

terfaces created for AMICUS.

AMICUS is a significant new bibliographic system,

designed from the ground up to meet the needs of two

large research institutions, one of which has the addi-

tional requirements of a national library.

98

Developing a Multi-Platform Z39.50 Service

Terry Sullivan and Mark Hinnebusch

The Florida Center for Library Automation

Gainesville, Florida

Abstract

It is possible to develop a Z39.50 service that is

independent of the underlying computer hard-

ware and operating system and that will interop-

erate using many different transport mechanisms,

such as TCP/IP, OSI, SNA, and Named Pipes.

This article discusses the design and implementa-

tion of one such service, developed at the Florida

Center for Library Automation, with special

regard to independence issues.

A System Model for Independence

Z39.50 has been crafted with a single

overriding goal, which is to provide a "lingua

franca" for search and retrieval between disparate

systems, usually geographically dispersed and

provided by different vendors. The primary

function of the Z39.50 Implementors' Group

(ZIG) has been the crafting, through intense

negotiation among implementors, of mechanisms

that generalize the services provided by, or

envisioned by, various system vendors, with

interoperability between these various systems as

the principal goal.

It has been clear to a number of imple-

mentors that Z39.50 not only provides a mecha-

nism for interoperability with others' systems but

also offers a powerful model for the distribution

of services within a single system or system

complex, or between various products offered by

the same vendor.

The Florida Center for Library Automa-

tion was an early implementor of Z39.50. At the

time we began work on Z39.50, we had little

reason to believe that we understood how the

protocol and the software that we were develop-

ing would be used. This meant, in turn, that we

could make no assumptions about the underlying

hardware and operating system services upon

which we would need to build our Z39.50 soft-

ware.

We posited a distributed model in which

Z39.50 agents could communicate with corre-

sponding agents in remote systems as well as

with those located in the same system. This is

best shown by a diagram. In Figure 1, the

relationship of the Z39.50 service providers and

service users is diagrammed. Service providers

are programs that implement the Z39.50 proto-

col. Service users are system components that

utilize the services of the service providers. In

this figure, all of the four elements reside within

a single system, but there is no requirement that

this be so. Each could be in a separate system,

or any two or more could be co-resident.

A traditional database server/requester

system, implemented monolithically, can be

viewed as the origin and target service users, as

in Figure 2.

But suppose you want to serve multiple

service users. You can replicate the Z39.50

origin and/or target service providers and tightly

couple them to the various service users. Alter-

natively, you can have a single Z39.50 service

provider with the intelligence to support multiple

service users. Or, you can interconnect multiple

service providers and service users in a distribut-

ed network, as shown in Figure 3.

In such a configuration it is imperative

that the Z39.50 software be available on a vari-

ety of platforms so that the best machine can be

used for each particular situation.

99

remote
target

remote
origin

'4

'4

Z39 . 50
origin

Z39 . 50
target

origin
service
user

target
service
user

Figure 1

remote
target

remote *
origin

Z39.50 <-

origin

Z39.50
target

traditional
S/R system

Figure 2

o
r
i

g
i

n
s

database
engine

o
r
i

g
i

n
s

database
engine

Z39 . 50
target

--

Z39 . 50
target

database
engine

o
r
i

g
i

n
s

Figure 3

100

When FCLA first became active with

Z39.50, there were strong indications that OSI
would be mandated for use in federally acquired

systems. The US GOSIP was being promulgated

and the State of Florida had followed suit,

producing a Florida GOSIP, aligned with the US
GOSEP. Because of this, our original plans were

based on OSI. However, we discovered, as the

ZIG was formed, that other implementors were

more interested in offering Z39.50 over the more

popular and more widely implemented TCP/IP

protocols. FCLA shifted its focus to developing

a combined OSI/TCP model. Over time, we
have recognized the value of running Z39.50

over LANs, hence the need for NetBios and

Named Pipe support.

FCLA developed Z39.50 code capable of

supporting the model shown in Figure 3. The

code is named AccessFlorida, and is running on

an IBM 3090 mainframe as a separate VTAM
application under the MVS operating system, on

an IBM RS/6000 running AIX 3.2, and on an

IBM 486 DX class PC running OS/2. We are in

the process of moving the AIX version to a new
IBM SP2 PowerParallel multiprocessor and we

know of at least one instance of porting Access-

Florida to Microsoft NT.

While AccessFlorida is designed to

provide Z39.50 origin and target services, its

design allows for its use with many different

connection oriented protocols. This feature will

be exploited in the future. We are currently

providing a prototype Z39.50/HTML gateway

using AccessFlorida, and we have long term

plans to support XI 2 (business transactions)

messaging using this versatile code base.

The remainder of this paper discusses the

design of AccessFlorida as it pertains to indepen-

dence from hardware and operating systems.

Figure 4 represents the conceptual layer-

ing of AccessFlorida onto each system upon

which it is implemented. This layering helps to

identify and isolate system dependent and net-

work dependent fragments within AccessFlorida.

Each piece of the diagram was examined and

this analysis affected the design at the very start

of the project. The next two sections detail the

research that went into the review of the differ-

ent portions of the diagram, the outcome of this

research, and its effect on both the design and

implementation of AccessFlorida.

Operating System Independence

One of the primary design goals of

AccessFlorida is to isolate the system from all

dependencies based on a particular operating

system and network interface. This requirement

is met in two ways. The first is in choosing a

programming language that is supported by all

operating systems we plan to use. The second is

to isolate all system calls in separate modules

and add a thin layer of code to reduce the depen-

dencies on these calls.

In considering the programming lan-

guage, we examined each targeted platform to

determine which languages were supported. On
each platform, the network interface was also

taken into consideration, since the API presented

by these interfaces would also have an influence

on the choice of language. The outcome of this

research was the selection of C, using the IBM
supplied compilers for each platform. On MVS
the compiler is C/370, on 0S2 the compiler was

originally IBM C/2 and later the C Set-(-+ com-

piler, and on AIX the native C compiler is used.

Even in choosing a common language

and using compilers supplied by the same com-

pany, care is needed during design and imple-

mentation. Each platform has specific require-

ments that bind both compiler and linker. For

example, on MVS, all external names are limited

to eight characters; on MVS and 0S2 (using the

FAT file system), file names are limited to eight

characters; and on AIX, file names are case

sensitive. Each implementation of the compiler

has extensions that are not supported on all

platforms. Furthermore, MVS and the other

platforms have different file systems.

These restrictions resulted in four design

decisions. The first is to limit all filename

references to eight lower case characters.

101

AccessFlorida

Networks Operating System

TCP SNA Pipes Net
Bios

I/O Memory Process
Management

Figure 4

The second is to include a header file in each

software module that isolates all system depen-

dent requirements. This header file is tailored to

each operating system. It initially redefined

every external function name to eight characters

for the MVS system; later it was used to easily

switch the system dependent header files, again

by redefining these names; and finally, it is used

to redefine system wide parameters, such as

buffer sizes and default parameters. The third

design decision is that AccessFlorida will not

make any assumptions concerning the location

and names of the files it uses for processing.

We decided that this will be controlled by setting

up the appropriate environment on each system.

The fourth decision is to completely base the

code on ANSI C and to not use any extensions

supplied by the various compilers.

Another area of concern is how each

operating system handles process management.

On AIX, a process can only spawn duplicate

images of itself; on 0S2, a process can be multi-

threaded or spawn copies of itself, and on MVS
one process can create a new process, using

ATTACH, which can be an independent process

or a thread. Each of these methods, although

similar in nature, produces different effects on a

software product and adds operating system

overhead in the management of these newly

created resources. Since the main resources that

AccessFlorida manages are the Z39.50 connec-

tions between remote clients and remote servers,

we decided to design a synchronous system that

maintains it own resources in an identical fashion

on all platforms. This leads to another design

decision to not multithread or spawn, but rather

to enhance the management of resources in

AccessFlorida in such a way as to provide an

efficient scheduler where all resources are given

appropriate time to complete processing.

In effect, AccessFlorida becomes a

dispatcher of its own threads and resources. The

management of these resources and their execu-

tion path is implemented in the concept of the

Connection Description Block (CDB), and the

execution of a state machine. The CDB contains

all of the information that must be maintained

during a context switch, and it contains only the

necessary information. Because of this, internal

context switching is far more efficient than

operating system context switching as imple-

mented through a process or a thread switch,

where the process or thread contexts must be

maintained by the operating system.

The last major area of concern lay in the

management of memory on the various plat-

forms. The C language enables AccessFlorida to

use memory in a consistent manner regardless of

operating system. However, since the design

required that AccessFlorida handle its resources

in a highly efficient manner, we decided that to

improve performance, once memory is obtained

by AccessFlorida it remains under its control. In

short, the software manages its own heap and

only calls the operating system when it needs to

expand its heap size. This management of

102

memory is further refined into two categories,

buffer management and dynamic management.

Buffer management is responsible for

obtaining memory for the buffers that are used to

send and receive data over the communications

networks. The management of these buffers

consists of obtaining memory in relatively large

chunks and ensuring that this memory remains

persistent for as long as the buffer remains

active, that is, contains valid data. Each buffer

is indirectly connected to a CDB and has enough

side information to identify the amount of valid

data that it contains, the network that it is associ-

ated with, and the connection within that net-

work that is using it. Two identical types of

buffers are used: receive buffers and send buff-

ers. These buffers are implemented in a separate

module where they are managed independently

of the rest of the software. This module's API

presents functions necessary to retrieve individu-

al buffers, to clear the memory associated with

the buffers, and to provide the ability to reuse

every buffer.

Dynamic memory management is used

during the encoding and decoding process. As

with the use of buffers, this processing has to

proceed in an efficient manner. Unlike buffer

management, where large chunks of memory are

used all at once, this dynamic memory manager

is responsible for retrieving relatively small

chunks of memory from a larger memory pool.

Again, the goal is to reuse memory once allocat-

ed, thereby reducing calls to the operating sys-

tem. The management of this memory resides in

a separate software module and is independent of

the rest of AccessFlorida. This module allocates

a large chunk of memory once, during initializa-

tion, and reuses this memory throughout the

execution of AccessFlorida. Dynamic memory

management is highly efficient and aids greatly

in the decoding and encoding of data from and

to the network buffers.

Network Independence

Another major area of concern in the

design of AccessFlorida deals with the various

APIs presented by the targeted networks, and the

implementation of these APIs on the various

platforms. From the beginning, the design

provided for a layered approach that helped to

reduce the cost of supporting multiple networks.

This layering is conceptually represented in

Figure 4, where each segment of the network

layer is translated into software modules.

AccessFlorida accesses each network

through one set of functions. Access to these

functions depends on whether information is

being received or sent. The internal API to

connect and send data over the networks is

implemented in the connection manager, while

the functions to receive and accept connections

are implemented as part of the main processing

of the control program. All of these calls are

used at a layer above the network layer to isolate

the network specific dependencies from the main

processing in AccessFlorida. The overall opera-

tion of this interface is depicted in Figure 5.

The actual network interface is imple-

mented in separate software modules, all expos-

ing the same external API to the rest of Access-

Florida. There are currently three such modules

in AccessFlorida, one for the TCP/IP network,

one for the SNA network, and another for trans-

mission of data via Named Pipes. The OSI

support in AccessFlorida is now obsolete and

would require some modification to be re-en-

abled. The network interface modules are used

to present the same API regardless of operating

system. The implementation of the API is

accomplished through these software modules,

plus one additional module that actually performs

the specific call to the network API. This isola-

tion has greatly helped in the porting of Access-

Florida from the original MVS implementation to

both the AIX and 0S2 operating systems by

isolating the specific implementations in lower

layered software modules. The original

networks used in AccessFlorida were a pure OSI

stack, as provided by the IBM OSI/CS product,

and IBM's SNA network. Both of these net-

works are message driven, delivering information

in well defined packets or buffers.

These message based protocols fit neatly with

the bit stream generated by the BER encoding of

103

Control

Progrun

Conntctlof

Man«o«r

Di r*ctory Pout 1 HQ

3«rvrc»s MmnBQvr ^ com

7*^

Figure 5

the ASN. 1 of Z39.50. This encoding generates

well defined delineations within the bit stream

sent through the networks. When we dropped

OSI/CS, we migrated our BER support to SNA-
CC, originally developed by Michael Sample at

the University of British Columbia. With the

104

introduction of the SNACC generated code from

the ASN.l of Z39.50 Version 2, and the SNACC
runtime libraries, these message driven networks

worked fine, since one entire APDU could be

received or sent with one call to the network.

With the introduction of TCP/IP, which uses a

stream based protocol, a layer is required to

provide this packetized functionality over the

stream-based socket interface of TCP/IP. When
remote access was provided by using Named
Pipes, a message based scheme was chosen to

retain the sending and receiving of complete

APDUs.

OSI

The IBM OSI/CS implementation had

problems at the Presentation layer. To circum-

vent these problems, access to this network was

accomplished at the session layer. The Presenta-

tion layer was then replaced with code generated

by the public domain product, SNACC. This

was the implementation that AccessFlorida first

used when it was released into the public domain

as a production system. There was still a

connectivity problem with the OSI network.

Connectivity is one of the first requirements to

interoperate in an open environment. In the

United States, OSI support usually requires X.25

as the lowest three layers. While there are

several X.25 networks, we were unable to con-

nect with other Z39.50 OSI implementations

because there were no adequate bridges between

the various X.25 networks and there was no

other OSI based Z39.50 service in our X.25

domain. This lack of connectivity led to the

introduction of TCP/IP into the network layer

used by AccessFlorida.

The OSI network was never ported to the

other operating system platforms; its implementa-

tion remains solely on the MVS system. How-

ever, a by-product of AccessFlorida is the imple-

mentation of Tosi, a thin implementation of the

upper layers of OSI, that is also transport inde-

pendent, that has been placed in the public

domain.

SNA

AccessFlorida must be able to communi-

cate via SNA since our primary database server

is implemented on the IBM CICS/MVS platform,

SNA support is excellent in CICS, and other

communication protocols were not supported in

CICS when we began this project. The imple-

mentation of the SNA network is accomplished

by designating AccessFlorida as an LU6.2 appli-

cation, capable of managing its own communica-

tion and resources on an SNA network. The

specific protocol used for communication is

Advanced Peer to Peer Communication, more

commonly known as APPC. LU6.2 is an IBM
proprietary protocol represented by two publicly

available APIs: CPI/C and APPC. APPC is a

message based communication protocol, sending

data in easily identified packets over a highly

delineated and secure communication line. One

LU6.2 application can open several sessions, or

links, with one or more LU6.2 applications.

Sessions may be parallel, i.e., capable of running

simultaneous conversations between the applica-

tions. In IBM terminology a session is estab-

lished between the two LU6.2 applications and

then conversations are established between

specific code fragments, or transactions, of the

two applications. Thus the applications are

linked at two levels with security provided at

each level. Communication is actually at the

conversation level and in most instances is two

way (i.e., duplex) although one way conversa-

tions are also common.

APPC is a highly reliable and secure

form of communication, but unfortunately specif-

ic implementations of APPC differ greatly. On
MVS, access to APPC is accomplished through

an assembler interface that is linked into the rest

of AccessFlorida. The interface on the other

platforms is accomplished through C function

calls, but still differ enough that each platform

requires its own specific APPC module. These

system dependencies are isolated by providing an

internal API for this network that is used by the

rest of AccessFlorida. All that was required was

the rewrite of one module to interface to the

specific implementation of APPC on each operat-

ing system.

105

As stated earlier, each pair of LU6.2

applications taking part in APPC communication

is required to open one or more sessions between

them. AccessFlorida applies a special semantic

meaning to establishment of these sessions.

Once a session is created between AccessFlorida

and another LU6.2 application, the two applica-

tions are said to be in a connected state with

respect to the network, and a closed state with

respect to Z39.50. In OSI terminology, the

creation and establishment of these sessions is

the same as establishing both a presentation

connection and an application association.

Conversations are used by AccessFlorida

to send APDUs to the partner application by

special convention. Each conversation sends or

receives data only one time. Thus a conversa-

tion is allocated, a PDU sent (or received) over

the conversation, and then the conversation is

deallocated. There is never any direct notifica-

tion that a message is received; only indirectly,

by the later arrival of a reply, does the sender

know that the message was processed at the

destination. In order to associate one message

with another within the sessions connecting two

Z39.50 applications, the reference id is used.

Each Z39.50 application protocol data unit

contains a reference id. The Z39.50 standard

specifies that this field will be echoed by the

target if sent by the origin and supplies no

additional meaning to this field. With version 3

of the standard and the introduction of concur-

rent operations, the reference id is used to give

the origin the ability to interleave operations

within a connection. This is identical to the

mechanism used in AccessFlorida to implement

Z39.50 over APPC.

TCP/IP

We added the TCP/IP network to Ac-

cessFlorida after the OSI and APPC networks

were implemented. TCP/IP gives AccessFlorida

the greatest connectivity with other Z39.50

applications. The TCP/IP socket implementation

and API are straightforward and fit neatly into

the internal network API of AccessFlorida. In

connecting AccessFlorida to this network, three

aspects of the socket protocol were considered.

The first is the fact that a socket connec-

tion within TCP/IP is stream-based, while Ac-

cessFlorida expects to send and receive informa-

tion in chunks, one protocol data unit at a time.

To accommodate this difference, two approaches

were examined. In the first approach, the PDU
is decoded or encoded while the PDU is being

received or sent over a connected socket. This

approach is more commonly referred to as

decoding/encoding directly over the socket. The

second approach entails decoding only enough

information to guarantee that an entire PDU is

received, and encoding only enough information

to guarantee that an entire PDU is sent. Each

approach has benefits. The first might be faster

since data would be moved to and from the

"line" quicker. The second might provide better

troubleshooting and migration paths since data is

received and sent in logical messages specified

by the application. Since AccessFlorida expects

its data to be delivered in complete PDUs, the

second approach was adopted.

In adopting this second approach, the C
function to read information from the socket was

constructed to determine the amount of data

needed to complete the PDU by examining the

tag and length specification of the encoding.

When BER is applied to an ASN.l specification,

the resulting encoding is said to consist of a Tag,

Length, and Value; this is commonly called a

TLV encoding. For tags that are defined to be

constructed, the length of the constructed value

may be specified either directly (the definite

form) or indirectly (the indefinite form). When
the indefinite form is used the value terminates

when two null octets (known as the end-of-

content octets) are encountered. Whenever a

constructed tag is encountered, the value for this

encoding consists of at least one more TLV
encoding.

With this information, the socket reading

function performs a peek on the socket to look at

the first ten bytes. It then examines the tag

value to calculate the length of the tag. If two

null octets are encountered it decrements a

106

counter for the end-of-contents octets and sets

the number of octets to be read to two, otherwise

it sets the number of octets to be read to the

length of the tag. If no end-of-contents octets

are encountered, the function then examines the

length value. If a definite length is encountered,

it sets the number of octets to read to the number

of bytes of the length field plus the number

specified by the length field. If an indefinite

length is encountered, it increments the number

of end-of-contents octets to be read and sets the

number of bytes to be read to one since an

indirect length takes only one byte. After both

the tag and length fields are examined, the

function then reads the number of bytes calculat-

ed. This logic is repeated until the entire PDU
is read.

The second consideration dealt with the

mechanism AccessFlorida uses when accessing

the TCP/IP network. Recall that AccessFlorida

operates as its own dispatcher; no threading or

spawning is involved in its processing. Since

AccessFlorida needs to accommodate multiple

connections, the TCP/IP network is accessed in

an asychronous mode. Thus, complete PDUs
might not be sent or received entirely in one call

to the network. In that case, rather than blocking

on the socket, AccessFlorida saves enough

information to complete the operation later.

When data is being received and a PDU has not

been completed, the amount of data received, the

number of end-of-contents octets to read, and the

number of bytes to read to complete a TLV
encoding are saved and the process of receiving

data is terminated temporarily. The process later

resumes tests to see if there is any data on any

active socket ready to be received. If, after

processing the other active sockets, this socket

has more data, the process of reading the PDU is

resumed. A similar mechanism is used when

sending data.

Since AccessFlorida may be servicing

many connections, care is taken to give every

active connection an equal opportunity to be

processed. This is accomplished by keeping

track of both the active sockets and those sockets

having data to be read or sent. AccessFlorida

uses two TCP/IP supplied structures and a coun-

ter for this purpose. The structures are the

TCP/IP fd_set structures, which are used to test

the availability of sockets for reading and writ-

ing. The first fd_set structure is populated with

the appropriate socket once a socket connection

is made. The socket is only removed after it has

been disconnected. The second structure is

populated with active sockets that have data to

be read or are ready for writing. A counter is

initialized to the number of sockets in this

second structure. Once the second structure has

been populated, the first available socket is

removed, the counter is decremented, and the

socket is processed. All sockets in this second

structure are processed before it is reset using the

first structure. Using this method, all sockets

that are ready for processing are guaranteed to be

processed before any socket is reprocessed.

The third concern dealt with detection of

a closed socket. A closed socket is used in

version 2 of Z39.50 to abort or gracefully close

a connection. AccessFlorida not only needs to

detect when a socket is closed, but also to trans-

late the close into either an abort or simple close.

The detection of a closed socket is handled by

the return code from any TCP/IP system func-

tion. Depending on which function is called,

AccessFlorida translates the TCP/IP error into

either an ABORT or a RELEASE RECEIVED.

Named Pipes

The last network layer to be added to

AccessFlorida was using Named Pipes. This

implementation is similar to the SNA network

implementation. The addition of this network

enables database servers on local area networks

to be accessed via Z39.50.

AccessFlorida Components

The various components making up the

AccessFlorida system are classified according to

the tasks they perform. Each component is

briefly described in this section.

107

The Initialization component consists of

the C functions necessary to establish the opera-

tional environment and call the communications

protocol interfaces to establish the various net-

work environments. This component calls each

of the software managers via their respective

initialization functions thereby completing the

initialization of AccessFlorida.

The Control Program is the primary con-

trol process and the heart of the system. It is

essentially an infinite loop which calls the net-

work components as needed to perform the main

work of the system.

The OSI component is a set of programs

that call the necessary OSI/CS subroutines to

initialize the OSI environment, accept new origin

associations, initiate new target associations,

listen for and receive APDUs from end systems,

send APDUs to end systems, terminate associa-

tions, and terminate the OSI environment.

The TCP/IP component is a set of pro-

grams that call the necessary subroutines to

initialize the TCP environment, accept new

origin associations, initiate new target associa-

tions, listen for and receive APDUs from end

systems, send APDUs to end systems, terminate

associations, and terminate the TCP environment.

The APPC component is a set of pro-

grams that call the necessary APPC subroutines

to initialize the APPC environment, build new
logical associations, listen for and receive mes-

sages from end systems, send messages to end

systems, terminate logical associations, and

terminate the APPC environment. Some APPC
services are available from the underlying operat-

ing system or there may be basic APPC support

subroutines as part of the interface if the under-

lying system provides only partial APPC support.

The connection manager is implemented

in several modules and operates on a connection

description block (CDB). It is responsible for

keeping track of each connection, the state of the

connection, the partners involved in the connec-

tion, the messages received and sent on the

connection, and the networks involved in the

connection.

The buffer manager is responsible for

managing all of the receive and send buffer

structures in AccessFlorida. It consists of C
functions to create and initialize the buffers, to

identify and return the buffers, and to release or

free any memory associated with the buffers.

The state machine verifies that incoming

Z39.50 APDUs and APPC messages are valid for

the state of the association, modifies the state to

reflect the incoming APDU or message, and

defines the actions to be taken in response to the

incoming APDU or message given the state of

the association. The state machine is implement-

ed in its own module and uses the functions that

are made available through the CDB manager.

The Z39.50 protocol manager generates

Z39.50 APDUs to send to end systems, using

information maintained in memory and associat-

ed with the CDB. It also sets information in

memory based on the content of APDUs re-

ceived from end systems. The Z39.50 protocol

manager is the only component of the Access-

Florida system which must be aware of the struc-

ture of Z39.50 APDUs.

The protocol identifier module identifies

the appropriate protocol and is only aware of the

structure of the protocols needed to uniquely

identify the message and discover which CDB it

is associated with. This allows AccessFlorida to

operate ultimately as a multiprotocol gateway.

AccessFlorida encodes and decodes all

messages through one module that interacts with

the SNACC generated decode/encode functions

and the SNACC runtime library. The translator

converts Z39.50 PDU contents to an internal

form and attaches the resulting structures to the

CDB. The translator is logically imbedded in

the modules used for encoding and decoding

messages and is a logical construct. The use of

the translator makes integration of new protocols

easier and less confusing. By mapping all

messages to an internal structure, the problem of

supporting more than two protocols is overcome.

108

The attribute mapper performs Z39.50

attribute mapping to enhance the interoperability

of the two connected systems. It operates on the

internally defined structure representing a search

request.

The routing manager ascertains the target

system, communications protocol, and applica-

tion protocol for a database specified by an

origin in a Z39.50 SEARCH APDU. The rout-

ing manager logically associates the database

with the target and the protocols needed to reach

that target.

To identify the target system the routing

manager uses a database directory. The routing

manager contains the necessary functions to

ascertain the target which owns the database

being requested and returns both the application

protocol and commiunication protocol used by

this target.

The function of identifying the applica-

tion protocol being received by a remote origin

is part of the protocol identifier. The communi-

cation protocol is handled by the routing manag-

er which does the actual routing of the messages

to the appropriate communication network.

Termination routines perform the house-

keeping functions necessary to cleanly terminate

processing. They also call the communications

protocol interfaces to terminate the OSI, TCP/IP

and SNA APPC environments.

Program Logic Flow

The initial entry point of the AccessFlo-

rida system is the main function. This program

is started by the operating system. The first

function call is to the initialization manager that

calls the appropriate functions to initialize all

control structures, the CDB chains, and the state

machine. It then calls the functions to initialize

the OSI, TCP/IP and APPC interfaces to estab-

lish the necessary communications environments.

Once initialized, AccessFlorida sets a timer and

enters a loop that terminates once the timer has

expired or AccessFlorida encounters an unresolv-

able error condition. In this loop AccessFlorida

processes all incoming messages on the net-

works. For each iteration of the loop, the sup-

port manager is called to generate statistics and

other related information. Eventually the timer

expires, and control passes to the termination

routine which performs orderly shutdown.

The control program calls the OSI, TCP,

APPC or Named Pipe interfaces to accept new
associations and to receive Z39.50 APDUs or

other messages.

When a message is received by the OSI,

TCP/IP, APPC, or pipe interface, control is

passed to the connection manager so that it can

either initialize a new CDB or obtain the CDB
associated with the association upon which the

APDU is received. Control then passes to the

protocol manager which identifies the application

protocol. Using the information returned by the

protocol manager, the actual CDB is identified,

and the input for this CDB is updated. This

CDB is then passed to the state machine which

uses an action table to process the CDB and send

the appropriate messages to either the remote

origin or remote target. This sequence of events

is similar for each network.

The State Machine, using the information

in the CDB, validates the APDU and identifies

the appropriate actions to be taken in response to

the APDU. The State Machine extracts from its

internal state table the identity of a subroutine to

be called to handle the input, given the current

states of the two sides of the conversation. The

subroutine performs an action and sets a return

code reflecting the results of that action. The

State Machine uses the subroutine identifier, the

current conversation states, and the return code

from the subroutine to enter the action table to

extract a new set of conversation states which it

stores in the CDB. If the "continue flag" is on

in the action table entry, the State Machine then

reenters the state table to ascertain additional

actions to be taken. The continue flag is used to

force AccessFlorida to switch from one service

provider to another, or to continue processing as

the current service provider.

109

Figure 6

This process continues until the action table

entry continue flag is off, at which time the State

Machine returns to the calling function in one of

the network modules.

If the input is a SEARCH APDU, one of

the routines called will be the Query Translator

which will perform the necessary translation,

calling the attribute mapper to complete that

task.

The Z39.50 protocol manager is called to

create any Z39.50 APDUs that must be generated

and the appropriate communications interface is

called to send the generated APDUs.

Conclusion

FCLA expended a significant effort

during the design and implementation of its

Z39.50 software, AccessFlorida, to ensure future

portability across hardware platforms, software

bases and communications protocols. This effort

has proven worthwhile by the ease with which

AccessFlorida has been ported from its original

platform, IBM's mainframe workhorse, the 3090

running MVS, to an RS/6000 running the AIX
flavor of Unix, and to a PC running OS/2. Work
has been done to support communications over

TCP/IP, OSI, SNA, and Named Pipes.

The modular approach taken in the

design and implementation of AccessFlorida

ensures portability to future hardware and operat-

ing system options. We know others are inter-

ested in porting our software to the OS/400

operating system running on the IBM AS/400

family and we are aware of a working port to

Windows NT.

AccessFlorida is designed as a general-

ized protocol manager and state machine, capable

of providing support for, and translation between,

multiple protocols, at both the transport and

application layers. At the transport layer, Ac-

cessFlorida already gateways between TCP/IP,

APPC, and Named Pipes, and OSI support could

be re-established with minimal effort, should the

need arise. At the application level, AccessFlo-

rida currently translates between Z39.50 and

internal search engine messages. We have a

prototype Z39.50/HTML/HTTP gateway running

and have long term plans to perform XI 2 trans-

actions via AccessFlorida.

110

Use of Z39.50 for the Delivery of Current Awareness Products

Peter N. Ryall, LEXIS-NEXIS (email: peterr@Iexis-nexis.coin)

ABSTRACT

In the context of LEXIS-NEXIS, a Current Awareness Product

(CAP) is an information product which provides concise,

relevant data to a customer, related to a particular topic (or

topics) of interest to that specific customer, or to customers

within a broader market or industry group. This paper will

discuss how Z39.50 is being used to deliver Current Aware-

ness products to a variety of customers in a wide range of

user environments. One essential objective of this delivery

facility is to provide the necessary relevant information, pro-

activeiy, to each customer in their own native environment,

with minimal deviation from their standard methods for in-

teracting with their groupware and/or individual workstation

applications.

An assortment of Z39.50 services is used in this facility to

provide a flexible delivery platform that supports such un-

conventional features as: information alerts, uploading

record usage information for accounting and billing purpos-

es, initiating subscriptions to specific Current Awareness

products, establishing information filtering profiles, and pro-

viding access to (and delivery of) products consisting of

'webs' of pre-fabricated, related result sets.

Z39.50 Conformance Caveats

The application discussed in this paper was implemented and

initially deployed in mid- 1994, so that it was not able to take

advantage of more recent Z39.50 Implementor's Group

(ZIG) thinking and decisions with regards to particular

Z39.50 services. In addition, some of the required features of

the CAP implementation were driven by the need to accom-

plish all CAP access and dehvery interactions within the

same protocol. As Z39.50 was chosen as this single unified

protocol, some compromises were required to accomplish

this objective. The following is a brief statement of the inten-

tional deviations from conformance to the Z39.50 Version 3

standard, along with a set of predictions as to how and when

these deviations will be brought in line with the standard.

All of the non-conformant features have been implemented

within private groupings of Origin and Target systems. They

are not being recommended for use in public Z39.50 Target

or Origin implementations, nor are any of them being pro-

posed as enhancements to the Z39.50 standard at this time.

The first CAP feature that fits into this category is the use of

Resource Control to deliver 'alerts' from the Target to the

Origin system. The decision to use Resource Control in this

non-standard way was strongly driven by the need to deliver

all product functionality using the Z39.50 protocol. Al-

though alerts could more naturally be sent using an offline

delivery vehicle such as FAX or email, the use of Resource

Control reports to convey alerts allowed us to provide 'real-

time' reporting using long-running Z39.50 Associations. In

future releases, delivery of these alerts will be migrated to

other vehicles (FAX and email) in environments where real-

time notification is not required.

The second non-conformant CAP feature is the use of a 'vir-

tual Record 0' within a Result Set to provide access to set-

level metadata. Record 0 is not defined by the Z39.50 stan-

dard as a valid record for retrieval, so this usage of Record 0

does not fit the model of "each record of the result set con-

tains either a database record, a diagnostic record, or a surro-

gate diagnostic record". To bring this feature into conform-

ance, a possible short-term (Version 3) solution would be to

issue a search using the Result Set as the Operand, and re-

questing that the metadata be returned in additionalSearchln-

fo. A more flexible solution will be proposed for Version 4,

possibly using Record 0 as defined here, or by defining a set

model which includes set-level metadata as an extension to

each record in the Result Set, thereby allowing it to be re-

trieved by simply Presenting set-level meta-elements from

any record in the set.

The third non-conformant CAP feature is the usage of the

implementationID, implementationName, and implementa-

tionVersion Init parameters to allow an Origin to connect to

a specific set of back-end search and retrieval services. This

is used mostly for testing and backwards compatibility pur-

poses, and is not planned for use in public Z39.50 service im-

plementations (as described in Section 4.0).

The final non-conformant CAP feature is the unconventional

usage of Persistent and Transient Result Sets. Each of the

resultSetlds conveyed in an Alert represents an identifier for

a Transient Result Set (one which only endures for the life-

time of the Association). However, in this implementation of

CGTI, the Target performs an automatic (and transparent)

service for the Origin. It maintains a Persistent Result Set

Task Package corresponding to each of the Transient Result

Sets it reports to the Origin in an Alert.

Then, when the Origin issues a Present against the Result Set

(using the Transient Result Set ID), the Target automatically

asks the back-end retrieval service to fetch the essential ele-

ments of the Persistent Set and create a Transient Set. This

Transient Set is created with a front-end mapping filter

which allows it to be accessed via Present using the Persis-

tent Result Set Package ID. Thus the Target and its associat-

ed back-end services present a 'virtual Persistent Result Set'

image to the accessing Origin. Note: in subsequent Associa-

111

tions, the Origin still uses the same Transient Result Set ID

to access records in the 'virtual Persistent Result Set'.

In a future release, the usage of Persistent and Transient Re-

suit Sets will be brought into line with the Z39.50 standard

by requiring the Origin to first issue a Present using the Per-

sistent Result Set Package ID, in order to obtain a Transient

Result Set ID to be used within the Association.

It is also important to note here that, while the CAP facility

does not require the use of the Z39.50 Search service, the

Target which supports CAP functionality also supports

search services. Thus while the Target is compliant with the

Z39.50 requirement to support Search, the Search service is

not used by an Origin in accessing and retrieving informa-

tion from CAPs.

1 .0 Overview of CGTI and Current Awareness
Products

Traditionally, LEXIS-NEXIS has provided extensive

search and retrieval information services using in-

terfaces and formats defined in-house. After free-

text searching across our large information databas-

es, users would then determine which result sets are

relevant to their search. LEXIS-NEXIS Current

Awareness Products (CAPs) address an audience

with broad or focused needs for information about

. specific industries and markets. CAPs are designed

as a value-added product consisting of predefined

sets of information organized by subject areas. Ex-

ternal user environments access CAPs and other

search and retrieval services through our Coarse

Grain Transaction Interface (CGTI).

The "coarse grain" nature of CGTI reflects a more

loosely-coupled interface which allows access to a

broader, more flexible family of services than the

traditional LEXIS-NEXIS interface. The CGTI is

based on the ANSI/NISO (National Information

Standards Organization) Z39.50 search and retriev-

al standard. The Z39.50 standard includes protocol

specifications for search and retrieval of informa-

tion stored in machine-readable databases.

1.1 Deflnitions and Description

This paper introduces and describes the CGTI, by

which a broad range of Current Awareness Prod-

- ucts (CAPs) may be accessed via an external sys-

tem. It presents the set of message-based requests

that may be constructed and sent to the Information

Service (Z39.50 Target) by an external client

(Z39.50 Origin). Each Origin request (and associat-

ed Target response) is described in detail, and ex-

amples are presented showing how each CAP capa-

bility is accessed.

The interface used to access CAPs (as well as other

search and retrieval services) is based on Version 3

of the Z39.50 standard, which is specifically de-

signed to meet the needs of client environments de-

siring access to information search and retrieval

services such as those provided by LEXIS-NEXIS.

In this paper, the LEXIS-NEXIS implementation of

the Z39.50 search and retrieval standard is referred

to as the CGTI. Because CGTI is less tighdy-cou-

pled to the internal environment of the search and

retrieval system, a more open and consistent inter-

face is provided, allowing both the information pro-

vider (i.e., LEXIS-NEXIS) and external system and

workstation developers to mature and enhance their

systems independently of one another.

1.2 CGTI

The CGTI model consists of three distinct compo-

nents:

• Third-party platform domain, consisting of the

Z39.50 Origin and local user applications re-

siding on a specific platform;

• Delivery domain, consisting of the lower layer

communications protocol components;

Lexis-Nexis domain, consisting of the Z39.50

Target and back-end information products

(CAPs) and services.

The third-party platform domain consists of the

Z39.50 Origin, a set of APIs, and local user appli-

cations residing on a user-specific platform. A set

of environment-independent interfaces (APIs) al-

lows local applications to initiate transfer activity

through the CGTI to the Z39.50 Target. This trans-

fer activity takes the form of an exchange of mes-

sage requests and responses. The developer can

write code using Z39.50 protocol data units (PDUs)

or use a library of functions defined in specialized

toolkits to communicate across the CGTI.

A single toolkit function may call one or more

PDUs to execute multiple Z39.50 services. LEXIS-

NEXIS provides a toolkit (called the "Origin Adapter

Toolkit") for this purpose.

This flexible arrangement allows the end user ac-

cess to CAPs from a variety of environments such

as:

• Information desktop workstations/services

such as Folio and Lotus Notes

• Message handling systems such as AT&T Per-

sonalink and other value-added distributor sys-

tems

112

• Mass market distributor systems like Prodigy

• Integrated corporate and third-party informa-

tion systems

The delivery domain provides the logical and phys-

ical bridge that links the Target and the Origin. A
physical connection must be made between the Or-

igin and the remote Target system. This connection

can be established over a variety of physical com-

munication mechanisms, such as: leased lines,

TCP/IP, or X.25. A logical connection, or Z39.50

association, must also be established between the

Origin and Target. Messages from the Origin and

Target are translated into Z39.50 requests/respons-

es before transmission through the delivery do-

main.

Figure 1-1 illustrates the CGTI model.

Information Provider
Domain

Third Party or IP

Platform Domain

Figure 1-1 CGTI Model

The LEXIS-NEXIS domain consists of the CGTI Tar-

get and back-end information products and servic-

es. The CGTI Target translates:

• Incoming CGTI requests/responses into func-

tion/procedure calls;

• Function call responses/callbacks into the cor-

responding outgoing CGTI requests/responses

Some situations require that back-end services be

called to execute request processing and/or data

manipulation.

The CGTI "Origin Adapter Toolkit" provides the

necessary functions to allow a local application to

access a CAP without the complications of building

an Origin supporting the CGTI Z39.50 profile (pri-

vate to LEXIS-NEXIS).

1.3 Current Awareness Products Conceptual

Model

The basic conceptual model of Current Awareness

Products is as follows:

• LEXIS-NEXIS, through its advanced authoring

facilities (combining human Subject Experts

and automated processes), creates value-added

relevancy-based information products which

are designed for use in specific industries and

markets, and for access by users who have ei-

ther broad or focused needs for relevant infor-

mation related to specific subject areas;

Note: These products are referred to as Current

Awareness Products to distinguish them

from standard search and retrieval servic-

es, which provide free-text searching

across large subsets of the information

warehouse but do not guarantee the return

of highly-focused, relevant answer sets.

• LEXIS-NEXIS makes these products available

via the CGTI, using a minimal subset of the

Z39.50 standard requests to provide the fol-

lowing capabilities:

- access to, and retrieval of, one or more di-

rectories of CAPs that are potentially

available to end users attached to the client

(Z39.50 Origin) system;

Note: These directories may be presented in

an 'active' way to the end user - e.g.,

as forms which allow the user to sub-

scribe to an individual CAP; once

subscribed, the user could receive

new information (documents/articles)

automatically whenever the CAP is

updated.

113

The CGTI server will notify the CGTI
client when new material is available;

the degree of automation in obtaining

results is determined by the client sys-

tem implementation, and can vary

from real-time alerts at the user's

workstation, to notifications sent

through a store/forward mechanism

(e.g., E-Mail system), to requiring the

user to check a shared folder or data-

base where new results are placed as

they are received.

In the LEXIS-NEXIS CAP implementa-

tion, one option is for the server to

send notifications (alerts) to the client

. , via a non-standard mechanism which

uses the Z39.50 Resource Control re- 1.4

quest to convey the alert data. The
• specifics of these alerts and how they

are encoded is described later in this

paper.

- the ability for the CGTI Origin to establish

a persistent (long-running) Alert Specifi-

cation for a particular CAP. This Specifi-

cation instructs the CAP Provider to notify

the Origin system whenever the specified

CAP is updated with new information;

- once an Alert Specification is established,

and the Origin system is notified of new

information in a topic/subject category,

the Origin may then retrieve one or more

of the documents in the updated category;

- the ability to access the directory (table of

contents) of a CAP on an episodic basis;

this involves retrieving the desired direc-

tory from the Target, presenting it to the

user, and then allowing the user to select

and navigate through the hierarchy of the

directory;

- also on an episodic basis, the ability to re-

quest retrieval of one or more of the avail-

able forms of the documents/articles in a

specific topic/subject category of the CAP
directory (examples of possible forms are

'cite-list', 'preview', 'full-text', and 'full-

text with graphic');

- the ability to access the descriptive and hi-

erarchy (parent/child) information related

to a specific topic/subject category.

A future capability to be supported for access

to CAPs is the capability to search through a

particular product directory (or the master di-

rectory of all products accessible to an Origin

system). The Origin will be allowed to issue a

Z39.50 Search request that searches across a

product (or all products) for a specified topic/

subject of interest, or a set of terms. The Origin

will be able to specify whether it wants the

search to be:

- restricted to the Topic names and descrip-

tions of the various categories;

- restricted to the abstract/preview portion

of the documents in each topic category,

or;

- free to search across the entire full-text of

the documents in each category.

CGTI User Model

There are two classes of users who gain access to

LEXIS-NEXIS services via the CGTI: direct and indi-

rect. This classification of users is important to the

model ofCGTI CAP services outlined in this paper,

so it is described in some detail below.

A direct (end) user is an individual user who ac-

cesses the system via a direct CGTI connection, ei-

ther through a workstation which contains a Z39.50

Origin, or via a multi-user (server) system which

executes the Origin within the server, but 'passes

through' any information from the user dealing

with ID, password, and/or token authentication, so

that the user is still directly attached to the system.

The attributes of a direct user are:

• data about the end user is contained in the cus-

tomer information database; it is entered by an

administrator at the time the user signs up for

the service, and it is modified whenever chang-

es are required;

• in order to access LEXIS-NEXIS services, a user

must first go through an individual sign-on

process and provide identifying information to

the Authentication Service, which will return a

ticket to the user's system, granting permission

to access authorized services and products;

• records are logged for billable events initiated

by the user, specifically identifying the user as

the billable party;

• typically, invoices for charges incurred by the

user for usage of services will be delivered di-

rectly to the user (or the user's firm with item-

ization by user);

• when users experience difficulty connecting to

the system or using a particular service, they

will contact Customer Services (i.e, the CAP

114

Provider supplies the first line of Customer

support).

An indirect user, on the other hand, is one who ac-

cesses the system via some intermediate (or agent)

system, which may or may not be owned, serviced,

and/or managed by the Provider. The intermediate

system is (logically) the direct user of the system,

as it contains the knowledge of the user ID(s) and

password(s) needed to access Provider services,

and it is responsible for managing the CGTI inter-

actions with the Target system. The customer's sys-

tem must provide the access points to its end users,

including local authentication and authorization,

communications connectivity, customer support,

customer sign-up and subscription services, indi-

vidual user billing and invoicing services (generally

via a charge back system of some type) and any-

thing else which requires identification and track-

ing of individual end users and their activities. The 2.

unique attributes of an indirect versus a direct user

are:

• the Information Provider (IP) maintains no

persistent information about indirect end users

- they are known only within the administrative

domain of the customer firm; the IP also has no

involvement in signing up or subscribing indi-

rect users to specific services;

• a system within the customer's firm is respon-

sible for 'signing on' to the Provider's service;

the end user interacts directly only with his/her

local system to login and enter a password (if

necessary);

• events visible to the IP will be logged (for bill-

able events initiated by any user attached to the

customer system), but no data is logged specif-

ically identifying the end user;

• typically, invoices for charges incurred by us-

ers for usage of Provider services will be deliv-

ered to the customer firm or the third party 2*

agent, who is responsible for any charge back

billing or invoicing to individual end users

within the firm, or under the administrative

control of the agent;

• when users experience difficulty connecting to

the system or using a particular service, they

will contact their local administrator or help

desk (i.e, the IP provides only the second line

of Customer support).

For those CGTI services which require that the au-

thenticity of the Origin system's identity needs to

be verified, the IP will return a ticket to the Origin,

which must be attached to the Origin's request in

order to access the service (for both direct and indi-

rect users).

Multiple User ID's may be permitted from a single

Origin system; depending on the classification of

the end user according to the descriptions above:

• for indirect users, the Origin system manages

User IDs to grant different spans of authority to

different users and/or local applications. The

IP will follow a standard Authorization process

for these IDs. As a part of this process, the Or-

igin system will be given tickets for each of

these IDs, which will permit access to different

groups of Provider services and products.

• for direct users, the end user's workstation

manages User IDs to allow multiple users to

use the same workstation.

How CGTI Uses the Z39.50 Standard

The CGTI is one LEXIS-NEXIS implementation of

the Z39.50 search and retrieval standard. At

present, CAPs are delivered using only the follow-

ing Z39.50 facilities of CGTI:

• Initialization

• Extended Services

• Resource Control

• Retrieval

• Termination

CGTI also supports the Z39.50 Search facility, but

as it is not required for delivery of Current Aware-

ness products, it is not discussed in this document.

The following sections provide brief descriptions of

the five facilities listed above, and tell how the

CGTI utilizes these facilities to provide access to

Current Awareness Products.

1 Initialization Facility

The CGTI Target supports the Z39.50 Initialization

facility exactly as defined in Version 3 of the stan-

dard. The Origin sends an Init request to the CGTI
Target, including setup information such as opera-

tions that should be supported, user authentication,

and message size.

An "accept" result from the Init response indicates

that the association is established and the Origin

can proceed to access CAPs for which it is autho-

rized. If the association is unsuccessful, the Origin

can attempt another initialization.

115

Extended Services Facility

The Extended Services facility implemented in the

CGTI system allows the Origin to:

• Set up a delivery notification mechanism (no-

tifying the user of additions and updates to a

CAP) by issuing an Alert Specification Ex-

tended Service;

• Send confirmation of billable information de-

livery to the user via a Final Delivery Notice

Extended Service;
\ ,•

• Send a Usage Accounting Report Extended

Service to the Target indicating CAP usage

within the confines of the external delivery

system provider;

• Send a Subscription Accounting Report Ex-

tended Service to the Target containing end

user subscription requests.

Resource Control Facility

As mentioned earlier, Resource Control is used in a

non-standard way by the CGTI, and as such it is

only discussed here to provide completeness to the

overall CAP delivery system description. In a fu-

ture release, there is a plan to migrate this feature

over so that it uses more standard Z39.50 facilities

(e.g.. Search and Present against a standard data-

base containing 'product update' records, as well as

discontinuing the use of Resource Control for de-

livery of alerts, in favor of email and FAX alert de-

livery).

The Resource Control request is issued by the

CGTI Target to notify the Origin of the availability

of new information topics or additional documents

for a CAP. In response, the Origin sends a Resource

Control response which indicates to the Target that

the Origin is ready to receive another alert. The Or-

igin can send a request to retrieve the information

after the Resource Control response is sent to the

Target.

In order to start this CAP notification process, the

Origin must first establish an 'Alert Profile' by

sending an 'Information Alert Specification' Ex-

tended Service request to the Target (see Section

5.1 "Creating and Sending an Alert Specification").

Retrieval Facility

The CGTI Target supports the Present and Segment

services. As with any standard Target, these servic-

es define how result records appear when retrieved

from the appropriate database.

Information retrieved firom a CAP is contained in a

result set maintained by the Target. The result set is

a data structure with a pointer indicating where a

record is located within the appropriate database;

therefore, records are referenced by their position

within the result set.

The Present service allows the Origin to request the

retrieval of records from a specified result set. The

Origin issues a Present request specifying a range

of records that should be retrieved. The request

message can also specify subsets of the records that

define the "view" of what the user sees. These

"views" include Cite, Preview, and Full.

Full database records may consist ofdocument text

or metadata. See Section 6. 1 for an explanation of

the various classes of metadata.

The CGTI Target supports Level 1 Segmentation,

which allows large documents (records) to be bro-

ken down into manageable "fragments" for transfer

to the Origin.

2.5 Termination Facility

In the CGTI system, the Close service operates ac-

cording to the Version 3 standard, allowing either

the Origin or Target to terminate a Z39.50 associa-

tion. Reasons for termination include system prob-

lems, security violations, protocol errors, lack of

activity, and completion of a 'user session'. The

Close request terminates a single Z39.50 associa-

tion between the Origin and Target. The recipient

of the Close request responds with a Close response

confirming the termination.

3.0 How to Access Current Awareness Products

via Z39.50

To retrieve information from one or more Current

Awareness Products, a Z39.50 Origin initiates a se-

quence of Z39.50 request/response exchanges with

the Target. The following list defines the functions

which must be implemented when developing a

CGTI Origin:

• Establish an Association

• Identify new information

• Retrieve information

• Provide notification, usage, and subscription

information

• Provide diagnostic and error message informa-

tion

• Terminate an association

116

In order to start a Z39.50 Association, the Origin

will first need to establish a physical connection

with the Target system, and then send a Z39.50 Init

request to establish an (application level) Associa-

tion. Once an Association has been established, the

Origin will typically set up a delivery notification

mechanism for new CAP information. Given the

fact that CAPs are regularly updated, a client will

most likely want the Target to create an alert which

notifies the Origin/client when new information is

available.

Once the Target sends notification of new CAP in-

formation, the Origin can retrieve that information

from the CAP Provider. Documents (records) can

be retrieved at different hierarchial levels (topics/

subtopics) and can be delivered in different "views"

(e.g., cite lists, previews, full document text), by

specifying different Element Set Names in the

Z39.50 Present request.

After setting up retrieval options, the Origin should

specify how it wants the Information Provider to

track CAP usage and activity for billing and ac-

counting purposes. In many cases, it will be desir-

able to allow the Origin to create and send notices/

reports that provide notification, subscription, and

usage information to the Target for processing.

Establishing a CGTI Association

Before attempting to access Current Awareness

Products, an Origin must first establish a Z39.50

connection with a CGTI Target, just as it would

with any other Target. This process consists of

these steps:

• Making a physical connection between the

Target and Origin environments using TCP/IP

or X.25 (using either a leased line or a dial-up 5

connection)

• Establishing a Z39.50 association between the

Target and Origin

In order to conform to the CGTI model, the client

must set the proper Init Option flags to indicate that

it supports Present, Resource Control, Extended

Services, and Close.

In order to distinguish among LEXis-NEXis Targets

which support different functionality, the three Init

parameters implementation^, implementation-

Name, and implementationVersion may be used to

specify a particular LEXIS-NEXIS Target implemen-

tation with which the Origin desires to interact.

This is only used for testing out new implementa-

tions of Target functionality, such as a beta release

of CAP capabilities.

For backwards compatibility, new values may be

used to allow new CAP features lo be provided to

Origin systems wishing to take advantage of the

new features. For Origin systems not wanting to

implement or take advantage of new features, the

Target continues to support the previous Target im-

plementation, which the Origin indicates by speci-

fying null (default) values in these three parame-

ters.

5.0 Identifying New Information

Once the Origin has established an association with

the Target, the next step is to set up an automated

notification facility that alerts users of changes to

the CAP(s). The effectiveness of a CAP is degraded

if the product information is inaccurate and/or out-

of-date. A CGTI product domain can update CAPs
on a daily, weekly, or monthly basis.

CAPs may change due to the availability of new

source information, the roll-out of new CAPs, and

scheduled promotions. Since a key component of a

product's value is determined by the CGTI server's

ability to deliver that product in a timely manner,

CGTI provides an automated notification capability

via the Z39.50 interface.

This process of identifying new information con-

sists of these steps:

• Creating and sending an Alert Specification to

the Target using Extended Services;

• Receiving one or more alerts from the Target

using Z39.50 Resource Reports.

The following sections describe the alert notifica-

tion cycle and other related functions.

.1 Creating and Sending an Information Aleit

Specification

The Present service allows product information

records/documents to be retrieved via a synchro-

nous request from the Origin. Product Alerts (usu-

ally delivered via Resource Control reports in the

current release) provide an asynchronous notifica-

tion mechanism to an Origin system.

An Origin system must send an Alert Specification

('profile') to initially activate delivery of Product

Alerts from the CAP Provider system to the Origin

system. The Alert Specification instructs an agent

within the CAP Provider domain to search for new

information in a specified subject area (or attributed

to a particular CAP) and to notify the Origin when-

ever any relevant information is found.

117

The Origin specifies how alerts are to be managed

by the Target by the setting of the Action parameter

in the Alert Specification Extended Service. When
this parameter is set to 'queued', the Target is in-

structed to send all queued alerts related to the spec-

ified product and topic immediately upon comple-

tion of the Extended Service exchange.

The functional flow of the Product Alert capability

is as follows:

• First, the Origin sends an Extended Services

request to establish an Alert Specification at

the CGTI Target system,

- as a part of the request, the Origin speci-

fies a set of parameters, to be used by the

Target in delivering notifications of new,

relevant information: 5.

• The Alert Delivery Vehicle, which is

generally set to 'Z39.50 Resource

Control' for the first release of CGTI
CAP services;

• the Product Name, which specifies

the name of the CAP to be tracked;

• an Action, which contains either

'queued' (meaning that all the alerts

on the 'new information' queue at the

Target are delivered to the Origin, but

once the queue is cleaned out, addi-

tional alerts will not be sent until an-

other Alert Specification is sent), 're-

altime' (meaning that alerts can be

delivered to the Origin at any time af-

ter the Alert Specification is created,

and will continue to be sent until the

Alert Specification is deleted), or 're-

fresh' (meaning re-send or 'refresh'

' ' ' the entire CAP, including Topics and

documents previously delivered to

the Origin);

• a flag (alertCombinations Desired)

specifying whether the Origin is pre-

pared to handle multiple topics and/or

multiple topics for multiple products

in a single alert, or whether it will

only handle one topic per alert (a top-

ic is a single category of information

in a CAP which covers a single sub-

ject area - e.g., baseball scores under

the Sports CAP);

• ifalertCombinationsDesired specifies

"multipleTopicsPer Alert", the max-

TopicsPerAlert parameter indicates

the maximum number of Topics

which are allowed to be packaged

into a single Resource Control

'Alert'.

• the Target will next save the Alert Specifica-

tion (if valid) and reply with an Extended Ser-

vices response specifying that the request is

valid and has been processed (i.e, the Alert

Specification has been created);

• once the Specification is created, the Target

then proceeds to send alerts to the requesting

Origin system (based on the setting of the ac-

tion parameter) whenever new documents are

received for the specified product(s), using

Z39.50 Resource Control 'Alert' reports.

2 Sending Information (Product) Alerts

Once an Alert Specification is created, the Target is

responsible for sending alerts to the Origin whenev-

er new topics are added to a CAP, or a CAP is up-

dated with new records/documents.

Resource Control requests, each containing one or

more Alerts, are issued by the Target to notify the

Origin of the availability of new CAP topics, delet-

ed topics, or additional documents added to an ex-

isting CAP topic. In response, the Origin sends a

Resource Control response telling the Target

whether or not it wants to continue receiving Alerts.

The Origin can then send a Present request to re-

trieve the new records, after sending the Resource

Control response to the Target.

As stated earlier in this paper, this use of Resource

Control for sending alerts is not conformant with

the use of Resource Control as defined within the

Z39.50 standard. These Resource Control 'alerts'

do not correlate with any specific request (as re-

quired by the Z39.50 state tables) nor do they relate

to a Resource Report pertaining to the entire asso-

ciation. In future releases of the CAP delivery sys-

tem, notification mechanisms (such as FAX and E-

mail) will be used for delivery of alerts, thus depre-

cating Resource Control as an alert delivery mech-

anism.

The Target will issue a request with a referenceld,

a resourceReport ('Alert', see definition in 5.3 be-

low), and a responseRequired flag set to 'ON'.

Within each alert is an alertAction parameter; it can

be set to either "new", "update", or "remove". If it

is set to "new", this is a new Topic (i.e, it has not

been retrieved by this Origin previously). If alert-

Action is set to "update", this is an existing Topic

which has been updated with new documents. "Re-

move" indicates that the designated TopicID has

118

been removed from the Product; if the Topic is a hi-

erarchy node, it indicates that all the 'child' nodes

have been removed from the Product as well.

ResultSetID, of course, indicates the ID of the Re-

sult Set which corresponds to the latest version of

the Topic 'set'. The Origin uses this as the Result

Set ID when it builds the Present request to retrieve

records from the Result Set (see the Note on 'virtual

Persistent Result Sets' below). Numltems specifies

the total number of records in the 'Topic' result set.

AlertsQueue is a parameter which indicates how
many remaining alerts are waiting to be sent rela-

tive to this Product Alert Specification. If alert-

CombinationsDesired is set to "multipleTopicsPer-

Alert" or "multipleProductsPerAlert" in the Alert

Spec, then the Topics structure will carry a se-

quence of potentially multiple pairs of topicPath,

resultSetId parameters. The Origin will send a re-

sponse by returning the referenceld received during

the request, in addition to a continueFlag set to

"ON".

Note: Each of the resultSetlds conveyed in an

Alert represents an identifier for a Tran-

sient Result Set. However, in this imple-

mentation of CGTI, the Target performs

an automatic service for the Origin. It

maintains a Persistent Result Set Task

Package for each of the Transient Result

Sets it reports to the Origin in an Alert.

Then, when the Origin issues a Present

against the Result Set (using the Transient

Result Set ID), the Target calls the back-

end retrieval service to create a Transient

Set from the Persistent Set. This Transient

Set may then be accessed via Present us-

ing a result set name that is actually asso-

ciated with the Persistent Result Set Task

Package. Thus the Target and its associat-

ed back-end services present a 'virtual

Persistent Result Set' image to the access-

ing Origin.

The SetType parameter indicates whether this set

(which is the subject of this alert) is a hierarchy

'node' or a leaf 'node' in the Product structure (see

"Understanding CAP Hierarchy" in Section 6.1 be-

low). In simple terms, a leaf node set always con-

tains only records/documents (or pointers to

records), whereas a hierarchy node set may contain

records, but also contains pointers to sets subordi-

nate to itself in the Product hierarchy.

5.3 LN-RR-1 Resource Report Deflnition

The following is the LN-RR- 1 Resource Report

definition, which is a privately-registered Resource

Report (RR) type to be used by LEXIS-NEXIS for

asynchronous notification of events (in this case,

Information Alerts).

RR (1 .2.840. 1 0003.7. 1 000. 14.3) DEFINI-

TIONS::= BEGIN

LNResourceReport ::= IMPLICIT SEQUENCE
{

resourceRe port Id IMPLICIT OBJECT
IDENTIFIER,

" specifies an OID to identify this Resource

- Report type. The following is the structure

-- of the CAP 'Information Alert', which

-- is used to notify the Origin of newly-received

-- relevant CAP infornnation.

operation [0] IMPLICIT VisibleString,

--set to "alert" for this RR class

alertTopicsQueue [1] IMPLICIT INTEGER,

numTopicsThisAlert [2] IMPLICIT INTEGER,

topicNodeRecord [3] IMPLICIT SEQUENCE
OF SEQUENCE!

topics [1] IMPLICIT SEQUENCE OF
SEQUENCE

{

topicid [0] IMPLICIT VisibleSthng,

resultSetId [1] IMPLICIT VisibleString,

numltems [2] IMPLICIT INTEGER

alertAction [3] IMPLICIT INTEGER {

new (1),

update (2),

remove (3) },

setType [4] IMPLICIT INTEGER
{

hierarchy (1),

leaf (2)

}

OPTIONAL} },

}

~ End of LN-RR-1 Resource Report definition

END

119

6.0 Retrieving Information

Retrieving CAP information is the primary objec-

tive of an Origin system which is accessing Current

Awareness Products. Each Origin has a defined set

of CAPs that it is authorized to access. This is veri-

fied through the user ID of the Origin system (see

discussion of CGTI User Model in Section 1.4).

Each set of user CAPs is known as a root product

set. Each root product set consists of:

• Descriptive information about the root product

(result) set

• Product (result) sets accessible to the end user

and the topics associated with each product set

You can retrieve information from these product

sets with or without alert notification. The proce-

dure for retrieving information is similar; however,

you must understand the hierarchal nature of a CAP
before attempting to retrieve CAP information.

6.1 Understanding CAP Hierarchy

A CAP is designed as a hierarchical product with a

tree-like structure. The top level of the tree is a topic

or information category associated with the prod-

uct. Subsequent levels of the tree consist of subtop-

ics associated with the topic or subtopic at the next

higher level. Each topic that contains one or more

subtopics is considered a hierarchy node. The low-

est level of a hierarchal system consists of leaf

nodes. There are no subtopic levels associated with

leaf nodes.

A CAP can also be a flat product with no underly-

ing tree structure (no hierarchy nodes).

From a Z39.50 perspective, each version (e.g., daily

update) of a CAP topic corresponds to a unique re-

sult set and has a corresponding result set ID. Each

version of a subtopic at a hierarchical level also cor-

responds to a result set. An Origin can request dif-

ferent 'views' or subsets of the records in a CAP re-

sult set, depending on what 'views' it wants to see.

Records in a result set can contain the following

types of information:

• Set metadata information

• Documents relating to a topic

• If available, the parent of the topic and any oth-

er child subtopics

As stated previously, each CAP Topic/subtopic set

contains set-level metadata and document data. To

access the set-level metadata, the Origin issues a

Present request against record (document) 0 of a

valid CAP result set.

Note: The use of Record 0 for access to and re-

trieval of set metadata is not conformant

with the Result Set model specified in the

Z39.50 standard. However, it is being

used as a convenient mechanism for ac-

cess to this metadata. It is foreseen that the

set metadata will be accessed via more

conventional (and standard) Z39.50 facili-

ties in future releases of CGTI. For in-

stance, one possible solution would be to

allow the set-level metadata to be re-

trieved from any valid record in a set (1-

N), simply by specifying the correct set

meta-element names/tags.

At a hierarchy node, the Origin can request the fol-

lowing elements of metadata describing a CAP top-

ic or subtopic:

• Set class indicating whether the CAP is flat or

hierarchal

• Topic or subject name of the CAP

• Result set name or ID

• Description of the result set or topic

• Existing child subtopics

• the root ancestor of this topic (the Product

Name/ID) [future]

• an (optional) list of related/associated topics/

subjects [future]

A hierarchy node (result) set contains only "direc-

tory" information such as the data structure with a

pointer indicating where a record is located in the

CAP Provider database. Records are referenced by

their relative position within the result set.

At a leaf node, you can request different views of a

document such as a:

Cite list

• Preview

• Full Document text

A leaf node result set is made up of the individual

records (documents) in the set. Each record con-

tains the full document content and descriptive in-

formation such as author, title, document publica-

tion date, and so on. The format of the document

can be in ASCII text, SGML, or in any other type

supported by the CGTI system.

Figure 6- 1 illustrates the CAP hierarchy concept.

120

Business
Week

Current
Awareness
Product

I

— Technology

I

'Wall

Street

' Market-
Review

I— Chemical I|— Article 1

Retail- -Article 2

• Book '— Informatioriil— Article 3

Review Systems

Editorial — Article 4

Hierarchical Nodes ! Leaf Node

Figure 6-1 CAP Hierarchy

6.2 Retrieving Data Information

The CGTI Target allows an Origin to initiate data

retrieval using the Present and Segment services.

When the Origin issues a Present request, it uses

designated Present elements to define the view of

the retrieved information. A typical flow looks like

this:

• Suppose you want to know what topics are as-

sociated with a product. The Origin sends a

Present request specifying the result set ID of

the product;

• The Target generates internal retrieval re-

sponses and returns an aggregate Present re-

sponse, i.e, zero or more Segment responses

followed by a Present response. A single docu-

ment (within a CAP topic category) is sent to

the Origin in each response.

• You can choose to view any level of the prod-

uct hierarchy, or documents associated with a

topic, by issuing additional Present requests.

Note: Level 1 Segmentation is used by

CGTI services to break down large

result sets into segments (records)

which fit into the specified maximum

message and record sizes.

6.3 Retrieving New or Updated Information

Suppose the Origin receives an alert triggered by

the availability of new CAP topics or the addition

ofnew documents to a CAP. The flow for retrieving

alert information is similar to retrieving data infor-

mation. You still need to send the Present request;

however, you need only the result set ID for the new

topic alert or new document alert (see the Note in

Section 5.3 on the use of 'virtual Persistent Result

Sets' within the current CAP implementation). Like

the data information retrieval process, you can se-

lect different views of the new or updated informa-

tion.

The Origin initiates the Z39.50 Present service by

sending a Present request to the Target. Typically,

the Origin returns to the client application when the

Present response is received in full.

The preferredRecordSyntax parameter in the

Present request is not currently used by the Target.

The current release of CGTI supports only a 'de-

fault' record syntax (using a LEXIS-NEXIS private

OID) which does not provide encapsulation of the

record contents; however, in future releases, both

SUTRS and GRS-1 will be supported.

The presentElements parameter is used to specify

the desired subset/view of the records expected in

the present response. For Release 1 , this will simply

consist of an elementSetName, which will be struc-

tured to contain the desired document/record

'view', in addition to the desired document format.

In future releases, the eSpec-1 structure will be

used in place of elementSetName to describe more

complex composition specifications by which to re-

trieve the records.

The following are the document 'views' supported

in the current release of CGTI:

• CITE - retrieves "headline" information about

a topic

• PREVIEW - retrieves an abstract of a docu-

ment

• FULL - retrieves entire document contents

• SUBINFO - retrieves subtopic information

• TOPICINFO - retrieves set metadata informa-

tion

The Origin can also specify the text format of the

retrieved documents using these values as part of

the Element Set Name:

• FASCII - formatted ASCII text

• UASCII - unformatted ASCII text

GSGML - text tagged with SGML tags using

the 'generalized CAP DTD'

So, using the legal values above, an example of an

ElementSetName is 'CITE;FASCir, which would

be used to request retrieval of headline information

in formatted ASCII.

121

7.0 Delivery Notification, Usage, and

Subscription Information

Delivery and document usage activities are traclced

by LEXIS-NEXIS to provide usage, billing, and sub-

scription information. These activities provide rev-

enue based on price schedules for documents, doc-

ument usage, delivery services, and subscription

services. Various notices and reports are generated

by the Origin to provide tracking information. The

Extended Services facility allows the Origin to send

this information to the Target and to generate a

Final Delivery Notice, Usage Accounting Report,

and Subscription Accounting Report.

7.1 Providing Delivery Notification

The Final Delivery Notice (FDN) is an Extended

Services task that allows the Origin to send confir-

mation to the Target that a document has been de-

livered. This confirmation contains the following

types of information:

• The delivery status

• The date and time the document was delivered

• The retail price, in cents, charged to the end

user

• The suggested wholesale price

The FDN is used in situations where the Origin ini-

tiates a Present request to retrieve a document and

passes the document directly to one or more end us-

ers.

The process of creating and sending an FDN to the

CGTI Target is similar to the alert specification

process. The Origin builds an FDN Extended Ser-

vices request, which creates an FDN parameter

package at the CGTI server that captures the report.

After processing, the Target returns an Extended

Services response indicating whether or not the no-

tice was delivered.

7.2 Providing Document Usage Information

Mostly on behalf of Indirect end users (see Section

1 .4), external delivery systems within the Origin

domain are required to capture data about CAP doc-

ument usage. They then send this data to the Target

in the form of a Usage Accounting Report (UAR).

The UAR contains these types of information:

• The number of copies of a document that were

delivered to the Origin

• The date and time the document was delivered

• The retail price, in cents, charged to the end

user

• The suggested wholesale price

The UAR is used in situations where the Origin ini-

tiates a Present request to retrieve a document and

stores the results (document) locally. The Origin

then delivers these documents to end users directly

from local storage, rather than from the Target. The

Origin periodically sends UARs to the Target indi-

cating what and how many documents have been

delivered.

Similarly to the FDN, the Origin builds a UAR Ex-

tended Services request, which creates a UAR pa-

rameter package at the CGTI server that captures

the report. After processing, the Target returns an

Extended Services response indicating whether or

not the report was delivered.

7.3 Providing Subscription Information

End users have the ability to request subscriptions

to specific CAPs. Mostly on behalf of Indirect end

users (see Section 1.4), external delivery systems

within the Origin domain capture subscription re-

quest data and send the data to the Target in the

form of a Subscription Activity Report (SAR). The

SAR tracks subscription information such as:

• The number of requested subscriptions

• The length of the subscription in months

• The retail price, in cents, charged to the end

user

• The suggested wholesale price

Similarly to the FDN and the UAR, the Origin

builds an SAR Extended Services request, which

creates an SAR parameter package at the CGTI

server that captures the report. After processing, the

Target returns an Extended Services response indi-

cating whether or not the report was delivered.

8.0 Terminating a CGTI Association

The preceding sections have described the CGTI

Z39.50 profile which allows an Origin system to es-

tablish an association, identify new information, re-

trieve information, and create administrative re-

ports. As with the Initialization of a Z39.50 associ-

ation, termination of the association conforms to

the Z39.50 Version 3 specification. Reasons for ter-

mination range from a security violation to internal

system errors at the Origin or Target.

122

The termination process consists of these steps:

• Terminating the Z39.50 association between

the Target and Origin using the Close request

• Terminating the TCP/IP (or X.25) connection

between the Target and Origin environments

A Close request can be issued from either the Ori-

gin or Target. The reason for termination is speci-

fied within the Close request. After processing the

request, the Origin or Target returns a Close re-

sponse.

•U.S. GOVERNMENT PRINTING OFFICE: 19 9 5-386-627/^7911 123

f

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SYSTEMS TECHNOLOGY

Superintendent of Documents

Government Printing Office

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Institute of Standards and Technology Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notification key N-503)

Technical Publications

Periodical

Journal of Research of the National Institute of Standards and Technology—Reports NIST research

and development in those disciplines of the physical and engineering sciences in which the Institute is

active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a

broad range of subjects, with major emphasis on measurement methodology and the basic technology

underlying standardization. Also included from time to time are survey articles on topics closely related to

the Institute's technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the

Institute's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) devel-

oped in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NIST, NIST annual reports, and

other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical

properties of materials, compiled from the world's literature and critically evaluated. Developed under a

worldwide program coordinated by NIST under the authority of the National Standard Data Act (Public

Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published

bimonthly for NIST by the American Chemical Society (ACS) and the American Institute of Physics (AIP).

Subscriptions, reprints, and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, DC
20056.

Building Science Series—Disseminates technical information developed at the Institute on building

materials, components, systems, and whole structures. The series presents research results, test methods, and

performance criteria related to the structural and environmental functions and the durability and safety

characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of

a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the

subject area. Often serve as a vehicle for final reports of work performed at NIST under the sponsorship of

other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce
in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized

requirements for products, and provide all concerned interests with a basis for common understanding of

the characteristics of the products. NIST administers this program in support of the efforts of private-sector

standardizing organizations.

Order the following NIST publications—FIPS and NISTIRs—from the National Technical Information

Service, Springfield, VA 22161

.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series

collectively constitute the Federal Information Processing Standards Register. The Register serves as the

official source of information in the Federal Government regarding standards issued by NIST pursuant to

the Federal Property and Administrative Services Act of 1949 as amended. Public Law 89-306 (79 Stat.

1 127), and as implemented by Executive Order 1 1717 (38 FR 12315, dated May 11, 1973) and Part 6 of

Title 15 CFR (Code of Federal Regulations).

NIST Interagency Reports (NISTIR)—A special series of interim or final reports on work performed by

NIST for outside sponsors (both government and nongovernment). In general, initial distribution is handled

by the sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161,

in paper copy or microfiche form.

gs
e
e
o

H
B
ed

-3

e

e .

c u
. o -c

4) 5
.s

.2 2^
2-5 .a 13

O

