
NAT L INST, OF STAND & TECH R.I.C.

PUBLICATIONS

AlllDM MflT7aS

L^ompuier
Systems
Technology
U.S. DEPARTMENT OF
COMMERCE
Technology Administration

National Institute of

Standards and
Technology

Nisr

MIST Special Publication 500-223

A Framework for the

Development and Assurance

of High Integrity Software

Dolores R. Wallace

Laura M. Ippolito

QC
100

.U57

«0. 500-223

1994

The National Institute of Standards and Technology was established in 1988 by Congress to "assist industry

in the development of technology . . . needed to improve product quality, to modernize manufacturing processes,

to ensure product reliability . . . and to facilitate rapid commercialization ... of products based on new scientific

discoveries."

NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's

competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the

agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and

provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce,

industry, and education with the standards adopted or recognized by the Federal Government.

As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied

research in the physical sciences and engineering, and develops measurement techniques, test methods, standards, and

related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's

research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303. Major technical operating units

and their principal activities are listed below. For more information contact the Public Inquiries Desk, 301-975-3058.

Office of the Director
• Advanced Technology Program

• Quality Programs

• International and Academic Affairs

Technology Services
• Manufacturing Extension Partnership

• Standards Services

• Technology Commercialization

• Measurement Services

• Technology Evaluation and Assessment

• Information Services

Materials Science and Engineering
Laboratory
• Intelligent Processing of Materials

• Ceramics

• Materials Reliability'

• Polymers

• Metallurgy

• Reactor Radiation

Chemical Science and Technology
Laboratory
• Biotechnology

• Chemical Kinetics and Thermodynamics
• Analytical Chemical Research

• Process Measurements^

• Surface and Microanalysis Science

• Thermophysics^

Physics Laboratory
• Electron and Optical Physics

• Atomic Physics

• Molecular Physics

• Radiometric Physics

• Quantum Metrology

• Ionizing Radiation

• Time and Frequency'

• Quantum Physics'

Manufacturing Engineering Laboratory
• Precision Engineering

• Automated Production Technology

• Intelligent Systems

• Manufacturing Systems Integration

• Fabrication Technology

Electronics and Electrical Engineering
Laboratory
• Microelectronics

• Law Enforcement Standards

• Electricity

• Semiconductor Electronics

• Electromagnetic Fields'

• Electromagnetic Technology'

• Optoelectronics'

Building and Fire Research Laboratory
• Structures

• Building Materials

• Building Environment

• Fire Safety

• Fire Science

Computer Systems Laboratory
• Office of Enterprise Integration

• Information Systems Engineering

• Systems and Software Technology

• Computer Security

• Systems and Network Architecture

• Advanced Systems

Computing and Applied Mathematics
Laboratory
• Applied and Computational Mathematics^

• Statistical Engineering^

• Scientific Computing Environments^

• Computer Services

• Computer Systems and Communications^

• Information Systems

'At Boulder, CO 80303.

^Some elements at Boulder. CO 80303.

NIST Special Publication 500-223

A Framework for the

Development and Assurance

of High Integrity Software

Dolores R. Wallace

Laura M. Ippolito

Computer Systems Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899-0001

December 1994

U.S. Department of Commerce
Ronald H. Brown, Secretary

Technology Administration

Mary L. Good, Under Secretary for Technology

National Institute of Standards and Technology

Arati Prabhakar, Director

Reports on Computer Systems Technology

The National Institute of Standards and Technology (NIST) has a unique responsibility for computer

systems technology within the Federal government. NIST's Computer Systems Laboratory (CSL) devel-

ops standards and guidelines, provides technical assistance, and conducts research for computers and

related telecommunications systems to achieve more effective utilization of Federal information technol-

ogy resources. CSL's responsibilities include development of technical, management, physical, and ad-

ministrative standards and guidelines for the cost-effective security and privacy of sensitive unclassified

information processed in Federal computers. CSL assists agencies in developing security plans and in

improving computer security awareness training. This Special Publication 500 series reports CSL re-

search and guidelines to Federal agencies as well as to organizations in industry, government, and

academia.

National Institute of Standards and Technology Special Publication 500-223
Natl. Inst. Stand. Technol. Spec. Publ. 500-223, 75 pages (Dec. 1994)

CODEN: NSPUE2

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1994

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402

ABSTRACT

The purpose of this document is to recommend a framework for the development and assurance

of high integrity software. The framework addresses the fact that these processes must take into

account properties and requirements of a high integrity system and the processes and standards

used in developing other system components. This framework provides guidance to developers,

assurers, and buyers of software, researchers for high integrity software systems, and vendors of

Computer Aided Software Engineering tools and integrated environments.

KEYWORDS

High integrity software, project management, software assurance, software configuration

management, software development, software hazard analysis, software quality assurance,

software verification and validation.

ACKNOWLEDGMENTS

NIST acknowledges the contributions by SoHaR, Incorporated to section 5 of this report.

iii

EXECUTIVE SUMMARY

The National Institute of Standards and Technology (NIST) has been working for several years

on providing information to government, industry, and academia regarding high integrity

software. Efforts in this area have included development of guidance on software verification,

validation and testing [e.g., NIST165], hosting a workshop on high integrity software

(proceedings are documented in [NIST190]), and conducting studies on high integrity standards

and guidelines, software quality assurance documentation and reviews, and software error analysis

(results of these studies are documented in [NIST204], [NIST4909], and [NIST209], respectively).

NIST recognized the need to develop a single document which would address developing and

assuring high integrity software. This document provides a technology independent framework

to assist government, industry, and academia in addressing the issues of providing software for

high integrity software systems. This framework proposes the activities that comprise software

development and software assurance processes, independent of the technology used to perform

them. Users of the framework may implement these activities with methods which are most

appropriate to the software application domain.

This framework is also a starting point on which to initiate the activities supporting the Center

for High Integrity Software Systems Assurance (CHISSA) established by NIST. CHISSA will

foster and coordinate activities relating to high integrity software technology. It will help guide

research in development, analysis, and testing techniques, conduct assessments on software

system technology, and provide transfer of those technologies deemed useful to the industrial

sector. CHISSA will work in cooperation with other Federal agencies, industry, and the research

community to develop standards and guidelines for high integrity software. CHISSA will also

address issues concerning the link between software assurance and the systems in which that

software is embedded.

This document provides an initial framework for the development and assurance of high integrity

software for use by CHISSA and developers, assurers and buyers of software for high integrity

software systems, and by Computer Aided Software Engineering (CASE) vendors. This

framework addresses two primary and concurrent processes, software development and software

assurance, which each consist of several processes. In this document the software development

processes are described separately from the software assurance processes although many activities

may be occurring concurrently, and perhaps are performed by the same people. The software

development processes build the software, while the software assurance processes provide the

activities to plan, monitor and assess the software. This separation of processes in this

framework is only for the purpose of identifying the actual activities of each process; all

processes contribute to the quality of the software.

This framework proposes the major objective(s) and a detailed list of activities for each software

development and software assurance process. The processes and activities occur regardless of

the life cycle or methodologies. Different life cycle approaches (e.g., iteration; incremental

development) may affect the choice of m.ethods for performing the processes. The choice of

technology (e.g., object-oriented) may affect how the requirement and design processes and

activities are performed. In both cases, the processes and activities of this framework are

applicable and form the basis for specific methods. The software development processes include

v

the software requirements process, software design process, code process, software integration

process, software installation process, and software operation and maintenance process.

The software assurance processes include the project management process, software quality

assurance process, software verification and validation process, software configuration

management process, and software hazard analysis process. The software verification and

validation process includes independent verification and validation, software requirements

verification and validation process, software design verification and validation process, code

verification and validation process, unit test process, software integration test process, software

system test process, software installation test process, and software operation and maintenance

verification and validation process. Complete system validation is outside the scope of this

document.

This document provides an initial set of topics for functionality of software that should be

considered when specifying software for use in a software-intensive system, especially where

high integrity attributes are important. This framework discusses software engineering practices

that aid in the development and assurance of high integrity software. It provides a basis from

which to identify strengths and weaknesses in current software engineering techniques relative

to high integrity software and to indicate where further research is needed.

This framework does not address procurement issues directly, that is, it does not describe

processes for the acquirer of software. Its focus is deliberately on the technical engineering

processes that are used to build software-intensive systems, and includes those processes for

assuring the quality of the resulting system. The framework is a composite of many standards,

draft standards, technical reports, journal articles and experience. The terminology in these

documents is not consistent; for example, the terms developer and producer are often used to

refer to those who provide software. A later version of this framework may include a mapping

of principal software life cycle terminology to the most common usages found in other related

documents.

As an initial document for CHISSA, on which CHISSA may base some of its activities, this

framework will undergo substantive change and expansion. Future work in expanding this

framework includes, but is not limited to, the following tasks:

definition of the interfaces and the related technical problems between software and

system

development of a profile of functionality for high integrity software systems which may
be further refined for application domains and may be used to identify specific technical

problems

identification of appropriate software engineering methods (or practices) mapped to

application domains or technical problems which those methods resolve

identification where current methods are inadequate and further research is needed

vi

examination of types of CASE tools for implementing recommended software engineering

methods supporting these activities

examination of integration capabilities of CASE tools

definition of a comparable framework for system development and assurance both as an

entity and specifically for each system component, followed by similar tasks identified

for software.

vii

GLOSSARY

Accuracy. A qualitative assessment of correctness, or freedom from error [IEEE610].

CASE (Computer Aided Software Engineering) tools. Software tools that assist with software

design, requirements traceability, code generation, testing and other software engineering

activities [IEEE610].

Completeness. The degree to which all of the software's required functions and design

constraints are present and fully developed in the software requirements, software design, and

code [SOFTENG].

Component. One of the parts that make up a system, some of which may be broken down into

more components or units; it may be personnel (e.g., operator, user), procedures, materials, tools,

equipment (hardware), facilities, and software [IEEE610, MIL882B].

Consistency. The degree of uniformity, standardization, and freedom from contradiction among
the documents or parts of a system or component [IEEE610].

Correctness. The degree to which software or its components is free from faults and/or meets

specified requirements and/or user needs [IEEE610].

Criticality. The severity of the failure mode.

Debug. To detect, locate, and correct faults in a computer program [IEEE610].

High integrity software. Software that can and must be trusted to work dependably in some

critical function, and whose failure to do so may have catastrophic results, such as serious injury,

loss of life or property, business failure or breach of security. Some examples include software

used in safety systems of nuclear power plants, transportation systems, medical devices, electronic

banking, automatic manufacturing, and military systems [NIST204].

Quality attributes. Requirements that software must meet such as usability, efficiency,

reliability, maintainability, and portability [NIST4909].

Redundancy. The presence of backup components that perform the same or similar functions

as other components [IEEE610].

Risk. A measure derived from the probability of failure occurring and the severity of failure

modes.

Software configuration item. An aggregation of software that is treated as a single entity in

the software configuration management process [IEEE610].

Software quality assurance. The planned systematic pattern of all actions necessary to provide

adequate confidence that the product, or process by which the product is developed, conforms

to established requirements [NIST204].

ix

Software verification and validation. See verification and validation.

System. A composite, at any level of complexity, of personnel, procedures, materials, tools,

equipment, facilities, and software. The elements of this composite entity are used together in

the intended operational or support environment to perform a given task or achieve a specific

production, support, or mission requirement [MIL882B].

Testability. The degree to which software or a software component facilitates the establishment

of test criteria and the performance of tests to determine whether those criteria have been met

[IEEE610].

Test case. A set of test inputs, execution conditions, and expected results developed for a

particular objective, e.g., to exercise a particular program path [IEEE610].

Test coverage. The extent to which the test cases test the software requirements [ISO12207].

Test design. The test approach and associated tests [IEEE610].

Test procedure. Detailed instructions for the set-up, execution, and evaluation of results for a

given test case [IEEE610].

Understandability. The extent to which the meaning of the software requirements, software

design, and code are clear to the reader [SOFTENG].

Unit. A separately compilable piece of code [ISO 12207].

Validation. The process of evaluating a system or component (including software) during or at

the end of the development process to determine whether it satisfies specified requirements

[IEEE610].

Verification. The process of evaluating a system or component (including software) to determine

whether the products of a given development process satisfy the requirements imposed at the start

of that process [IEEE610],

Verification and validation. The process of determining whether the requirements for a system

or component (including software) are complete and correct, the products of each development

process fulfill the requirements or conditions imposed by the previous process, and the final

system or component (including software) complies with specified requirements [IEEE610].

X

ACRONYMS

CASE Computer Aided Software Engineering

CHISSA Center for High Integrity Software Systems Ass

CI Configuration Item

CSHA Code-level Software Hazard Analysis

DBDD Database Design Description

IV&V Independent Verification and Validation

NRC U.S. Nuclear Regulatory Commission

PM Project Management

PMP Project Management Plan

SCM Software Configuration Management

SCMP Software Configuration Management Plan

SDD Software Design Description

SDHA Software Design Hazard Analysis

SQA Software Quality Assurance

SQAP Software Quality Assurance Plan

SRHA Software Requirements Hazard Analysis

SRS Software Requirements Specification

SV&V Software Verification and Validation

SVVP Software Verification and Validation Plan

SVVR Software Verification and Validation Report

xi

Table of Contents

ABSTRACT iii

ACKNOWLEDGMENTS iii

EXECUTIVE SUMMARY v

GLOSSARY ix

ACRONYMS xi

1 INTRODUCTION 1

1.1 Framework Content 2

2 SOFTWARE DEVELOPMENT 7

2.1 Software Requirements Process 7

2.2 Software Design Process 9

2.3 Code Process 11

2.4 Software Integration Process 12

2.5 Software Installation Process 13

2.6 Software Operation and Maintenance Process 13

2.7 Software Development Process Inputs and Outputs 14

3 SOFTWARE ASSURANCE 17

3.1 Project Management Process 17

3.2 Software Quality Assurance Process 21

3.3 Software Verification and Validation Process 22

3.3.1 Independent Verification and Validation 24

3.3.2 Software Requirements Verification and Validation Process 25

3.3.3 Software Design Verification and Validation Process 26

3.3.4 Code Verification and Validation Process 27

3.3.5 Unit Test Process 28

3.3.6 Software Integration Test Process 28

3.3.7 Software System Test Process 29

3.3.8 Software Installation Test Process 30

3.3.9 Software Operation and Maintenance Verification and Validation

Process 31

3.4 Software Configuration Management Process 31

3.5 Software Hazard Analysis Process 33

3.6 Software Assurance Process Inputs and Outputs 34

4 SOFTWARE ENGINEERING PRACTICES 37

xiii

5 SOFTWARE FUNCTIONALITY 39

5.1 Definition of System Service 39

5.2 Failure Modes, Error Detection and Fault Tolerance 40

5.2.1 Sensor Surveillance 40

5.2.2 Surveillance of Other System Components 41

5.3 Actions to be Avoided 41

5.4 Human Interfaces 42

5.5 System Test Provisions 43

5.6 Attribute Requirements 43

6 SUMMARY 45

7 REFERENCES 47

APPENDIX A. BIBLIOGRAPHY OF HIGH INTEGRITY SOFTWARE
DOCUMENTS 53

A.l Standards and Guidelines 53

A.2 Books 64

A.3 Papers 65

Tables

Table 2-1. Software Development Process Inputs and Outputs 15

Table 3-1. Major Processes of SV&V 24

Table 3-2. Software Assurance Process Inputs and Outputs 35

Figures

Figure 1-1. Software Development as a Part of System Development 4

Figure 1-2. Software Assurance Relationship to Software Development 5

xiv

1 INTRODUCTION

High integrity software (e.g., software which must and can be trusted to work dependably and

whose failure would have catastrophic results [NIST190]) is a critical factor in all aspects of

modem society. It controls a wide range of essential activities including banking and commerce,

manufacturing, education, transportation, health care, and entertainment. Currently, the body of

knowledge required to build high integrity software is distributed among standards, guidelines,

technical reports, conference presentations, and information proprietary to organizations

[NIST204]. The National Institute of Standards and Technology (NIST) has been working for

several years on providing information to government, industry, and academia regarding high

integrity software. Efforts in this area have included development of guidance on software

verification, validation and testing [e.g., NIST165], hosting a workshop on high integrity software

(proceedings are documented in [NIST 190]), and conducting studies on high integrity standards

and guidelines, software quality assurance documentation and reviews, and software error analysis

(results of these studies are documented in [NIST204], [NIST4909], and [NIST209], respectively).

NIST recognized the need to develop a single document which would address developing and

assuring high integrity software. This document provides an initial framework to assist

government, industry, and academia in addressing the issues of providing software for high

integrity software systems. NIST has built a database' of standards, guideUnes, technical

articles, and books that were used to provide a basis for the software development and software

assurance activities described in this framework.

This technology independent framework can be used as:

a guideline for developers and assurers of the software

an evaluation tool by reviewers of the software

a basis for identifying software engineering practices (techniques) that satisfy an activity,

or aggregates of activities

a basis for mapping high integrity assurance requirements against the software engineering

techniques to identify requirements not satisfied by current software engineering practices

guidance for developers and assurers in selecting Computer Aided Software Engineering

(CASE) tools appropriate for their project

a basis for identifying interrelationships among the activities, hence aiding the CASE tool

integrator.

This framework is also an initial starting point on which to initiate the activities supporting the

Center for High Integrity Software Systems Assurance (CHISSA) established by NIST. CHISSA
will foster and coordinate activities relating to high integrity software technology. It will help

'This database includes current U.S. and international documents that address high integrity software systems.

1

guide research in development, analysis, and testing techniques, conduct assessments on software

system technology, and provide transfer of those technologies deemed useful to the industrial

sector. CHISSA will work in cooperation with other Federal agencies, industry, and the research

community to develop standards and guidelines for high integrity software. Issues concerning

the link between software assurance and the systems in which that software is embedded will be

addressed as well.

CHISSA will promote research, development, analysis, testing, and transition of software system

technology which will improve the development, maintenance, and operation of software based

systems. CHISSA will coordinate activities for:

identification of high leverage research topics and potentially beneficial research results

identification of technology issues between software and other system components

communication between the software community and systems community to identify

technologies for use by both communities

assessment of technology in real application projects

identification and possibly limited implementation of mechanisms for insertion of

technology

promotion of continuous training for engineers and scientists

promotion and development of guidance and standards.

1.1 Framework Content

This framework identifies processes for the primary and concurrent processes of development and

assurance of high integrity software. The processes and activities occur regardless of the life

cycle or methodologies. Different life cycle approaches (e.g., iteration; incremental development)

may affect the choice of methods for performing the processes. The choice of technology (e.g.,

object-oriented) may affect how the requirement and design processes and activities are

performed. In both cases, the processes and activities of this framework are applicable and form

the basis for specific methods. Software development processes are those processes that are used

to construct the software, that is, define the software, design it, implement the design into

software code, and integrate the software into the system. Their purpose is to build the software,

and make corrections as needed. Each software development process produces outputs which

ultimately lead to the final software product which is integrated with other system components

and is executed in the installed system.

Software assurance processes are those processes that are used to plan and manage the software

development processes, and some, like the project management and software quality assurance

processes, also oversee other software assurance processes. Their purpose is to provide assurance

that the software will meet its requirements and consequently support the system requirements.

Software assurance processes check and analyze the decisions regarding the software and its

2

relationship to the system, the plans and their implementations, and they analyze and test the

software outputs. Software assurance processes are an integral part of software development, that

is, their execution occurs concurrently with development processes.

In some instances, software development and assurance processes appear to be intertwined, (e.g.,

depending on project organization, programming and unit test may appear to occur almost

simultaneously.) Yet, the purpose of programming is to build, and the purpose of unit test is to

provide checking. The software assurance processes verify step by step that each evolving

software output is consistent with its predecessor, and hence meets system requirements.

Software assurance processes provide controls to ensure that verified outputs are not replaced by

other versions. Other processes (e.g., test) are used to validate that the software meets its

requirements. Total validation against the system requirements must be performed as part of

system development.

This fi"amework treats the software development and software assurance processes separately to

enable better planning and implementation of the activities supporting these processes. This

separation of processes in this framework is only for the purpose of identifying the actual

activities of each process; all processes contribute to the quality of the software and may be

performed by more than one organization.

This framework identifies key information about the software and its relationship to other system

components. The equivalent information for establishing requirements, designing, building, and

validating a system are outside the scope of this document and should be contained in another,

similar document. However, the software development and software assurance processes must

take into account properties and requirements of the system. Figure 1-1, based on the system

framework of IFUJIIl, FUJII2], shows the relationship between the system and software

development processes. Figure 1-2 shows the relationship between the software development and

software assurance processes.^

The software development and software assurance processes are iterative^ They may also be

used to build the resulting system incrementally, that is, portions of the software are developed

in an evolutionary manner, with each addition increasing the system capability. These figures

accommodate every life cycle methodology; no matter how software is developed all these

processes must be achieved for high integrity software assurance. Even with rapid prototyping

(where someone defines what is wanted, designs how to build it, builds some part of it or a

skeleton of it, and checks that things are going as planned), which may take only an hour, all

these processes will have been performed.

The activities of the software development and software assurance processes are implemented

with the methods most appropriate to the software application domain. Software quality

*rhis framework describes only the software processes which are shaded in figures 1-1 and 1-2. And, while both

the software installation process and the software operation and maintenance process involve the entire system, this

framework only addresses those process with respect to software.

'See section 2.

3

-5 £

plP ,<P
CD

CD U- O
X

CD

E Q)
CO QX

(1) .

CO 2i2

k_ 0) «
Q) O 0)

-J
OL T3

Q CO

CO

^ 2 w

-J 0) E

1 =

if
a

CO
0)
CO
CO
0)
CJ
o

ca

c
03

CD

I
O
e
CO

c
.o

E

LU

E
CD

0) CD

^—

•

c o
O CO

CD

CD-

c 5

(D CD

:3
^

cr
0)

tr

e

Ea
o

>

Q

172

C

a
o

>

Q

03

o
V3

4>

4

k i

o

5P

V)

o
p

CO

c

I

I
TO

c
.o

CD

4J

u

C8

o

H
a

c
o

u

AAA

H

G

O

CQ

;>

G
O
4ii<

o

•c

>

o

B

a

G
O

i
G

o
U

4i
o
C/3

N

o

G

C/3

CO

03

03

o
III

G
O

G

a

o

42
o

e

s
a.
o

o

o

M
c
'•S

"S

c

CO
CA

<
4)
b<

o

4>

3

5

assurance monitors the usage of methods selected, and all software assurance processes monitor

software outputs for appropriate results.

This framework does not specify which processes are performed by which organizations or

whether or not they must be performed by separate development and assurance organizations.

Definitions for independent verification and validation (technical, managerial, and financial

independence between the software verification and validation team and the software

development team) are provided.

This framework does not address documentation of the software development and assurance

activities as a separate process. Instead, each software process addresses recording its activities

in documents such as a software requirements specification or software design document.

[NIST4909] provides more information on what should be included in each process's

document(s). Exactly how documentation should be provided, for specific application domains,

with the use of modem technology and new development paradigms is itself a major research

topic and hence outside the scope of this framework.

This framework discusses software engineering practices that aid in the development and

assurance of high integrity software. It is not intended to be a complete representation of

accepted software engineering practices but is a basis for such a representation. It can be used

to identify strengths and weaknesses in current software engineering techniques relative to high

integrity software, and indicates where further research or improvement is needed.

This framework was originally produced to address activities for developing software systems

where safety is the predominant issue, which is why the term "hazard" is used. For security the

more fitting term is "threat." A later version of this document will expand upon computer

security activities. One purpose of CHISSA is to identify technology issues between the software

and its system. This document provides an initial set of topics for functionality of software that

should be considered when specifying software for use in a software-intensive system, especially

where high integrity attributes are important.

This framework does not address procurement issues directly, that is, it does not describe

processes for the acquirer of software. Its focus is deliberately on the technical engineering

processes that are used to build software-intensive systems, and includes those processes for

assuring the quality of the resulting system. The framework is a composite of many standards,

draft standards, technical reports, journal articles and experience. The terminology in these

documents is not consistent; for example, the terms developer and producer are often used to

refer to those who provide software. A later version of this framework may include a mapping

of principal software life cycle terminology to the most common usages found in other related

documents.

Sections 2 and 3 describe the software development and software assurance processes,

respectively. Section 4 addresses software engineering practices. Section 5 discusses software

functionality for high integrity software systems. Section 6 provides a summary of this

framework and a recommendation for further research. Section 7 contains references. Appendix

A contains a bibliography of the documents that provided a basis for the processes and activities

of this framework.

6

2 SOFTWARE DEVELOPMENT

The development of high integrity software includes the software requirements process, software

design process, code process, software integration process, software installation process, and

software operation and maintenance process. These processes inherently include some software

assurance activities (e.g., some analysis, some test), but the software assurance processes

themselves are described in section 3. This framework does not specify who performs any of

the processes, only what needs to be accomplished.

The software development processes are independent of any specific life cycle model, and the

concepts described in this section can be applied regardless of life cycle management style. Each

process is not necessarily completed before the next process is started. For example, the software

may be developed incrementally, i.e., a group of requirements are specified, designed, coded, and

tested, and then another group follows the same pattern. The software development processes

are also iterative. Software requirements may be added, deleted or altered any time during

software development. For example, a new software requirement may be found to be necessary

during the software design process or after software hazard analysis has been performed.

(Changes in the software requirements or software design may also necessitate a re-classification

of the software criticality'* level.) Modifications to the software requirements in turn affect all

subsequent processes. Software assurance processes should be invoked according to the

development processes.

For each software development process, this framework provides inputs and outputs (see

Table 2-1 at the end of this section for a summary), the major objective(s) of the process, and

activities within the process. The following documents were used in compiling this section:

[ANS7432], [ANSP7432], [FIPSlOl], [IEC880], [MIL4981, [NIST4909], [NIST2041,

[RTCA178B], and [SOFTENG].

The outputs of the software development processes can be represented in a variety of ways. For

example, a software design description may be a paper document or a graphical representation

stored in a computer aided software engineering (CASE) tool or some combination of text and

graphics, in paper form or CASE tool repository. A user's manual may actually be part of the

software, accessed online using windows and/or menus. This section does not describe the

medium used to represent the outputs of a software development process, and will hereafter refer

to the representation of the outputs as documentation. This section only includes the relationship

of the documentation to each software development process.

2.1 Software Requirements Process

The major objectives of the software requirements process are to fulfill the system and software

objectives, develop software requirements based on, and traceable back to, the system

requirements, and to provide complete, consistent, correct, testable, and understandable

information from which the software may be designed. This process uses the system

^Criticality analysis is not addressed in this document except under software requirements verification and

validation (section 3.3.2). Later versions may include more detailed activities related to assessing criticality.

7

requirements (e.g., hardware, mechanical, user interfaces to software) and system design

(including the system safety assessment (contains system hazard analysis) and the safety-related

and security-related requirements), the initial project management plan (PMP), and software

requirements standards identified in the software quality assurance plan (SQAP), to develop the

requirements for software. The software requirements encompass functional, performance,

interface, safety, security, and quality requirements [NIST180]. The software requirements

process ends when its objectives and the objectives of any software assurance processes

performed concurrently with it are met. The software requirements process produces a software

requirements specification (SRS). A user's manual is also started, but not completed, during this

process. Depending on the PMP, this process and other development and assurance processes

may produce several outputs before completion of a process, resulting in a final product.

The following are activities of the software requirements process (software assurance activities

listed in section 3 are performed concurrently with these activities):

identify the system and software objectives that the software must meet

define the measurements that will be used to assess whether the software requirements

meet the system and software objectives

check that each system requirement allocated to software should truly be allocated to

software

check that all system requirements that should be allocated to software have been

allocated

establish mechanism for traceability of system requirements and software requirements

and software documentation

implement the trace mechanism (i.e., execute the procedures that will establish the link

between the system requirements and software requirements and software documentation)

refine definition of each system requirement allocated to software to the level of detail

necessary for software requirements

specify other software requirements based on analyses of the system requirements, system

interfaces, system safety assessment (including system hazard analysis), computer security

assessment, and required functions for verifying system and data integrity

specify software requirements allocated to interfaces between the system, software, and

human operators

specify database requirements

describe each software requirement giving enough information to design each component

(e.g., initiator of action, action, object of action, conditions, constraints, source,

destination, mechanism, reason)

8

specify requirements and assertions for addressing the safety algorithms and the states and

integrity of the system and identify appropriate responses to unfavorable results of

assertions

specify and flag software requirements associated with safety or security; specify software

response to hazards, threats, including fault tolerance and error recovery

specify any constraints or assumptions associated with the software requirements (e.g.,

time responses for each safety function)

analyze each system requirement allocated to software for understandability, correctness,

testability, consistency, and completeness (relate any ambiguities, inconsistencies, etc. to

system personnel)

confirm that the software requirements are developed according to standards for software

requirements and do not violate any standards and requirements (e.g., time responses) for

other system components

analyze the software requirements for understandabihty, correctness, testability,

consistency, and completeness, and any other quality attributes defined in the software

requirements process

report on any outstanding problems with the software requirements back to the system

requirements process

evaluate software requirements for test coverage and testability

identify, explain and document any open issues between system and software

requirements

generate software requirements documentation to capture all of the information from the

activities and draft a user's manual

make any necessary changes to the software development processes and outputs based on

the results of the software quality assurance (SQA), software verification and validation

(SV&V), and software hazard analysis processes^

2.2 Software Design Process

The major objectives of the software design process are to develop the software design based on,

and traceable back to, the software requirements, and to provide complete, consistent, correct,

testable, and understandable information from which the software code may be generated. This

process uses the SRS, the initial PMP, and software design standards identified in the SQAP to

^Software hazard analysis will most likely reveal that changes or additions to system requirements, software

requirements, and test plans, at a minimum, are needed.

9

develop the software design. System documentation is available for reference. The software

design process ends when its objectives and the objectives of any software assurance processes

performed concurrently with it are met. The software design process produces a software design

description (SDD), a database design description (DBDD), and possibly a revised SRS and/or

updated PMP.

The following are activities of the software design process (software assurance activities listed

in section 3 are performed concurrently with these activities):

allocate software requirements (including interface requirements) to design components

decompose components to their lowest level of detail necessary for coding the component

describe external and internal interfaces for each component

flag components associated with safety or security

design assertions, responses to assertions and other required system algorithm and

integrity checks or fault tolerance protections into the software in such a manner that will

not adversely affect system performance

plan and design the structure of any necessary databases

implement the trace mechanism (i.e., execute the procedures that will establish the link

between the software design and software requirements and software documentation)

define the measurements that will be used to assess whether the design meets its

requirements and quality attributes

analyze the software design for understandability, correctness, testability, consistency, and

completeness, and any other quality attributes defined in the software requirements

process

evaluate software design for feasibility of testing

report on any outstanding problems with the software design (including interfaces) back

to the software requirements process

modify, if necessary, the SRS, user's manual, and/or PMP

generate an SDD and DBDD

10

make any necessary changes to the software development processes and outputs based on

the results of the SQA, SV&V, and software hazard analysis processes^.

2.3 Code Process

The major objective of the code process is to develop the source code based on, and traceable

back to, the software design and software requirements. This process uses the SRS, SDD,
DBDD, the PMP, and code standards identified in the SQAP, to develop the code. The code

process ends when its objectives and the objectives of any software assurance processes

performed concurrently with it are met. The code process produces the source code, a source

code manual, and supporting documentation for source code. While the code process and unit

test process are often associated with each other, the unit test process is a software assurance

process and is described in section 3.3.5.

The following are activities of the code process (software assurance activities listed in section 3

are performed concurrently with these activities):

develop source code for each software design component, including external and internal

interfaces

define, procure or generate, validate, and enter data into databases, if applicable (this may
be done by the end-user)

establish measures for assessing code

flag source code components associated with safety or security

code assertions, responses to assertions and other required system algorithm and integrity

checks or fault tolerance protections into the software in such a manner that will not

adversely affect system performance

implement the trace mechanism (i.e., execute the procedures that will establish the link

between the code, software design and software requirements and software

documentation)

examine the test coverage of units

examine the feasibility of software integration

debug the source code

report on any outstanding problems with the source code back to the software design

process

^Software hazard analysis will most likely reveal that changes or additions to software requirements, software

design, and/or test plans, at a minimum, are needed.

11

modify, if necessary, the user's manual

generate the source code manual and any supporting documentation for source code

make any necessary changes to the software development processes and outputs based on

the results of the SQA, SV&V, and software hazard analysis processes^.

2.4 Software Integration Process

The major objectives of the software integration process are to produce executable code, and to

integrate the executable code into other software or other system components. This process uses

the source code to integrate software components with other software components and with the

hardware in preparation for installation into the system. The software integration process ends

when its objectives and the objectives of any software assurance processes performed

concurrently with it are met. The software integration process produces the executable code and

a software installation plan. A software maintenance manual is started, and a user's manual is

completed during this process. The software integration process occurs also in accordance with

the overall system integration and test plan which may mean several iterations of this software

integration process until all software components have been integrated with other system

components.

The integration process described in this section pertains to software and must be coordinated

with system integration.

The following are activities of the software integration process (software assurance activities

(especially software integration test execution) listed in section 3 are performed concurrently with

these activities):

produce the executable code

integrate components (e.g., integrate source code with other source code, prepare

executable code for integration with other system components)

evaluate the feasibility of software installation

provide information on installing and executing the software for each site

modify, if necessary, and complete the user's manual

generate a plan for addressing software requirements when system is installed at its

operating site, and draft a software maintenance manual

^Software hazard analysis will most likely reveal that changes or additions to software requirements, software

design, code, and/or test plans, at a minimum, are needed.

12

make any necessary changes to the software development processes and outputs based on

the results of the SQA, SV&V, and software hazard analysis processes^

2.5 Software Installation Process

The major objective of the software installation process is to install the software at each site, and

to determine whether the software will perform as required at all the sites in which it will

operate. The software installation process ends when its objectives and the objectives of any

software assurance processes performed concurrendy with it are met. The software installation

process produces a software installation report, and a software maintenance manual is completed.

The installation procedures described in this section pertain only to software and may need to be

coordinated with system installation procedures.

The following are activities of the software installation process (software assurance activities

listed in section 3 are performed concurrently with these activities):

install the software at each site

run software configured to each installation to confirm that the software meets its

operating requirements at each site

verify that the operator understands the user's manual

generate a software installation report, and complete the software maintenance manual

make any necessary changes to the software development processes and outputs based on

the results of the SQA, SV&V, and software hazard analysis processes'.

2.6 Software Operation and Maintenance Process

The major objective of the software operation and maintenance process is to ensure that the

software meets its requirements throughout its operation and when modifications are made to it.

This process uses the integrated software, software documentation, and software operation and

maintenance standards to monitor the software throughout its operation, and modify the software

as necessary (e.g., for error correction, enhancements, changes to operating environment) for

every site at which the software is installed. Essentially, this process will repeat groups of the

preceding processes. The activities below refer to the software installed at each different site.

The software operation and maintenance process ends when its objectives and the objectives of

any software assurance processes performed concurrently with it are met. The software operation

and maintenance process produces a software operational procedures manual (if additional

^Software hazard analysis will most likely reveal that changes or additions to code and/or test plans, at a

minimum, are needed.

'Software hazard analysis may reveal that changes or additions to certain software development processes are

needed.

13

information is needed beyond the user's manual), and supporting documentation for modifications

of the software (e.g., anomaly reports, modification feasibility reports).

The following are activities of the software operation and maintenance process (software

assurance activities listed in section 3 are performed concurrently with these activities):

provide information on operating the software, and generate a software operational

procedures manual

provide training to users of software

assess validity of proposed modifications (e.g., technical feasibility, impact upon software

and/or hardware, possibility of additional hazards)

use the traceability records to identify the processes from section 2 and 3 that need to be

applied to the software

.. identify schedule, resources, and software assurance requirements for proposed

modifications

execute approved modifications and repeat the necessary software development and

software assurance processes (e.g., a change made to the software requirements

necessitates re-examining the entire software development process and their corresponding

software assurance processes, especially test)

generate supporting documentation for modifications

make any necessary changes to the software development processes and outputs based on

the results of the SQA, SV&V, and software hazard analysis processes'".

2.7 Software Development Process Inputs and Outputs

Table 2-1 lists inputs and outputs for each software development process. The inputs may be

from the system development process, system assurance process, software development process,

and/or software assurance process. Inputs from each previous process should be available for use

by the current process. The outputs are only from the software development process. The table

also Usts what software development outputs (created during a preceding software development

process) may be modified, and what software assurance outputs (created during a preceding

software assurance process) may be impacted by the particular software development process

(this mainly includes changes to software assurance plans; creation of any software assurance

reports is listed in table 2-1). This table is not intended to show who creates or modifies

documentation (e.g., those personnel performing software development processes may produce

some software assurance documentation).

^"Software hazard analysis may reveal that changes or additions to certain software development processes are

needed.

14

C/3

C/3

C/3 OO C/3

o S

c o
3 C
8 i

^

E

a o

E i

o 2
.3 on

C/2

00

c
•a
E

i

E

15
c
o _
'2 o
2 = £

§ c
o E w) o g

1 1 i 1 .§

c/) y V5 o ^
o. E

a

13

Q
Q
Q o o

(/3 Crt C«

c

= 1

3 3

c
o

- ^ S3

^ 3 ^
•9x0
O <U (/3

c
a
E

i

s I
E

5^ 73 ^
</} cq iM

I

o

s

T3
2i

Q m 2 a
on c/5 Q (X on

r 1

5 -a

O <L>

E

^1

8^

a

E
u
'3

O"

I
o

s
*55

Q

I
o
c/3

4>

u

4>
U

I
O o

C/2

e
o

2 i
o. s
O 2i

0, .E

4: -o
o e
C/2 «

15

3 SOFTWARE ASSURANCE

The software development processes described in section 2 are accompanied by processes that

assure the quality of the software produced from those processes. These software assurance

processes include project management, software quality assurance, software verification and

validation (includes test), software configuradon management, and software hazard analysis.

Software assurance processes locate problems in the software development process and their

outputs, and provide evidence that the software complies with its specifications [NIST204].

These processes are separate from but performed concurrently with, and have a direct impact on,

the software development processes. This framework does not specify who performs the software

assurance processes, only what needs to be accomplished. An explanation of "independence" is

provided in section 3.3.1.

Software assurance processes are separate fi-om, but performed concurrently with, software

development (see fig. 1-1), and can cause an iteration (see sec. 2) of the software development

processes (which may in turn cause a change in the system requirements or system design).

Several of the software assurance processes overlap (e.g., some project management information

may also be addressed in the software quality assurance process), however, this does not alleviate

the need for all of these software assurance processes. Part of assurance is monitoring that all

the processes are planned and implemented.

For each software assurance process, this framework provides inputs and outputs (see Table 3-3

at the end of this section for a summary), the major objective(s) of the process, and activides

within the process. The following documents were used in compiling this section: [ANS7432],

[ANSP7432], [BERLACK], [DUNNl, [ESA], [FIPSlOl], [FIPS132]'\ [FUJII31, [IEEE610],

[IEEE1042], [ffiEEP1059], [NIST209], [NIST4909], [NIST204], [NUREG6018], [RTCA178B],

[IEC880], [SOFTENG], [THAYER], and [WALLACE].

3.1 Project IVIanageinent Process

The major objective of the (software) project management (PM) process is to establish the

organizational structure of the project and assign responsibilities. This process uses the system

requirements documentation and information about the purpose of the software, criticality'^ of

the software, required deliverables, and available dme and resources, to plan and manage the

software development and software assurance processes. The PM process begins before software

development starts and ends when its objectives have been met. The PM process overlaps and

often reiterates other software assurance processes. It establishes or approves standards,

monitoring and reporting practices, high-level policy for quality (process improvement and output

quality), and cites regulations. The PM process produces a project management plan (PMP)

which includes references to all other software assurance documentadon.

"[FIPS132] formally adopts [ffiEE1012].

*^ee footnote 5.

17

It is outside the scope of this document to specify who is responsible for completing each

software assurance process. However, one of the most important functions of the project

management process is to ensure that all software development and software assurance processes

are performed and monitored. This framework does not address the differences in project

management for each type of manager (e.g., customer oversight, system project manager, IV&V
manager, software project manager). Instead, this document addresses the responsibilities of the

software project manager; if there is only a system manager, then the system manager must

address the issues for software project management. Regardless of project organization, the

manager responsible for the software must ensure that all software processes in development and

assurance have been addressed.

The following are activities of the PM process:

Planning

set objectives or goals - determine the desired outcome for the project

:
^ analyze and document the system and software requirements; define the

relationships between the system and software activities

determine management requirements and constraints (resource and schedule

limitations)

define success criteria; always includes delivery of software that satisfies the

requirements, on time and within costs

plan for corrective action

develop project strategies - decide on major organizational goals (e.g., quality) and

develop a general program of action for reaching those goals

develop policies for the project - make standing decisions on important recurring matters

to provide a guide for decision making

determine possible courses of action - develop and analyze different ways to conduct the

project; anticipate possible adverse events and project areas; state assumptions; develop

contingency plans; predict results possible courses of action

make planning decisions - evaluate and select a course of action from among alternatives

choose the most appropriate course of action for meeting project goals and

objectives

make tradeoff decisions involving costs, schedule, design strategies, and risks

18

select methods, tools, and techniques (both technical and managerial) by which the

output and final product will be developed and assured, and the project will be

managed (may also be included under software quality assurance)

set procedures and rules for the project - establish methods, guides, and limits for

accomplishing the project activities

select scheduling process appropriate for development and assurance methods and

language

prepare budgets - allocate estimated costs (based on project size, schedule, staff) to

project functions, activines, and tasks, and determine necessary resources

document project plans - generate, implement, update, and distribute a PMP; the SQAP,
SCMP, staffing and test plans may also be generated at this time

Organizing

identify and group required tasks - tasks are grouped into logical entities (e.g., analysis

tasks, design tasks, coding tasks, test tasks) are mapped into organizational entities

select and establish organizational structures - define how the project will be organized

(e.g., line organization, staff organization) using contractual requirements and the

principles of independent verification and validation

create organizational positions - specify job titles and position descriptions

define responsibilities and authorities - decide who will have the responsibility of

completing tasks and who has the authority to make decisions related to the project

establish position qualifications - identify the qualities personnel must have to work on

the project (e.g., experience, education, languages)

document organizational structures - document lines of authority, tasks, and

responsibilities in the project plan

Staffing

fill organizational positions - fill the job positions established during organizational

planning with qualified personnel

assimilate newly assigned personnel - familiarize newly assigned personnel with any

project procedures, facilities, or plans

educate and train personnel as necessary (may also be included under software quality

assurance)

19

ji provide for general development of project staff members

evaluate and appraise personnel

compensate project personnel (e.g., salary)

terminate project assignments - reassign or terminate personnel at the end of a project

document staffing decisions - document staffing plans, training policies, etc.

Leading

provide leadership - the project manager provides direction to project members by

interpreting plans and requirements

delegate project authority

, build project teams

coordinate project activities - for example, define the software development and software

assurance activities and their relationships to each other; determine how third party

software, subcontracting, IV&V, safety and security will be managed

facilitate communications - establish and implement mechanisms for communication

within the software project, between software and system personnel, etc.

resolve project conflicts

manage changes - monitor progress of processes and implement changes; study and

incorporate recommendations from development and assurance processes concerning

processes and outputs

document directing decisions - document decisions concerning lines of communication

and coordination

Controlling

develop standards of performance - select or approve standards to be used for the

software development and software assurance activities (may also be included under

software quality assurance)

establish monitoring and reporting systems - establish and implement mechanisms and

measurement practices for monitoring and reporting on software development and

software assurance activities (e.g., milestones, deliverables, schedules)

analyze results - compare achievements with standards, goals, and plans

20

apply corrective actions - bring requirements, plans, and actual project status into

conformance

document the controlling methods listed above.

3.2 Software Quality Assurance Process

The major objectives of the software quality assurance (SQA) process are to ensure that the

software development and software assurance processes comply with software assurance plans

and standards, and to recommend process improvement. This process uses the system

requirements, and information about the purpose and criticality'^ of the software to evaluate the

outputs of the software development and software assurance processes. It begins before the

software requirements process and ends when its objectives have been met. A software quaUty

assurance plan (SQAP) and review and audit reports are produced during the SQA process.

The following are activities of the SQA process:

select/approve standards, practices, methods, and tools to be used during the SQA process

(including the standards used during the software development process)

train programming staff in new techniques, methods, and tool use (may also be included

under project management)

review software development and software assurance plans for completeness and

appropriateness

evaluate effectiveness of current development and assurance methods and tools

review software development and software assurance processes to ensure they comply

with software assurance plans

plan project management, quality, and test programs as policy or standards dictate

apply, in accordance with the PMP, statistical process control techniques for process

measurement

use audits and reviews (e.g., software requirements review), analysis tools, and test to find

defects at the earliest possible time

enforce library control, change control, distribution, and storage per project management

plan and relevant policies or standards; audit to verify that results are reported completely

and accurately

record all defects found and follow-up to make certain they are corrected

"See footnote 5.

21

collect defect data and subsequent analysis of defect, fault detection, and failure modality

use defect data to improve processes

recommend changes to those software development and software assurance processes that

do not meet their objectives

apply error analysis and statistical analysis techniques to data collected from processes

and products

generate and analyze various data for early indication of adverse product or project

control trends

gather, analyze, and evaluate user feedback

survey potential software vendors and their performance

evaluate the fidelity with which plans and applicable standards are followed

empower staff to prevent defective code, outputs of development and user documentation

from being entered into the software or delivered

generate and implement an SQAP.

3.3 Software Verification and Validation Process

The major objective of the software verification and validation (SV&V) process'"* is to

comprehensively analyze and test the software concurrently with processes of software

development and software maintenance to determine that the software performs its intended

functions correctly, ensure that it performs no unintended functions, and measure its quality and

reliability [NIST1651. SV&V is a detailed engineering assessment for evaluating how well the

software is meeting its technical requirements, and in particular its safety, security and reliability

objectives and for ensuring that software requirements are not in conflict with any standards or

requirements applicable to other system components. There are SV&V activities to analyze,

review, demonstrate or test the outputs of every software development and maintenance process;

these SV&V activities may directly impact software development processes.

In this framework, the terms software verification and software validation are used together, i.e.,

software verification and validation. Software is verified at the end of each software

development process (or increment of the process) to determine if the outputs of that software

development process meet the requirements established at the beginning of that software

development process. Validating (or "evaluating," in this framework) that the software correctly

implements the system requirements for which the software is responsible is conducted

^*For consistency within this framework concerning usage of the word "process," process as used in section 4.3

is equivalent to the word "task" in [WILEY] and [IEEE1012].

22

concurrently with and at the end of all the software development processes. The SV&V planning

and analysis processes are conducted against system requirements at the highest level of planning,

and then at the software requirements, which may be traced to the system requirements. Many
SV&V processes, such as planning for software system test, require activities during processes

generally associated with early development. Often, staff who perform verification of the

requirements may be staff who prepare preliminary plans for software system tests; the

development of the test plans and designs may lead to discovery of requirements errors. Planning

and managing an entire SV&V process requires understanding of interrelationships among the

SV&V activities and the advantage of applying knowledge from one activity to another. While

in some instances this framework separates out software verification processes from software

validation processes, these may be performed concurrently. The final, and ultimate, system

validation must be planned in conjunction with test of all system components.

In the recently approved standard for digital computers in safety systems for nuclear power

generating stations [IEEE7432], figure El shows the relationship of SV&V activities to other

development activities and describes SV&V in Appendix E. SV&V in this framework expands

on those V&V activities, for detailed software V&V processes. The SV&V process includes

testing but is much more thorough than testing alone. The intention of the SV&V process is to

ensure the absence of errors and measuring the quality and reliability of the system, which testing

alone does not accomplish [RTCA178B]. The final goal of the SV&V process is that system

objectives have been attained. This is evident only once system validation is completed (see

fig. 1-1).

Table 3-1 provides a summary of the major processes of SV&V, as defined in [PIPS 132] and

expanded in [WALLACE]. SV&V analyzes the data from the SV&V processes to assess the

quality and reliability of the software [WALLACE]; many techniques for performing these

analyses are described in [NIST209]. Other guidance for assessing the reliability of the system

may be found in [MUSAl, MUSA2, BUTLER]. According to [FIPS132] and [WALLACE],

SV&V has some responsibilities during early system processes, as indicated also by figure El

in [IEEE7432]. SV&V addresses verification of the initial project documentation, sometimes

referred to as concept documentation (i.e., system concept, system requirements, and system

design documentation). Activities supporting this SV&V activity are included for simplicity in

the requirements verification process.

The SV&V process produces a software verification and validation plan (SVVP), individual

plans and reports for activities, summary reports, anomaly reports, and a final software

verification and validation report (SVVR). Some of the test documentation is prepared in

advance of the test execution. For example, the system test plan for the software is developed

concurrently with the software requirements process. Different management and technical staff

may be responsible for different types of test (see sec. 3.3.1.).

The major objective of the SV&V process is stated at the beginning of this section. The

activities unique to each sub-process of SV&V are identified in subsections of section 3, which

are based primarily on [BEIZER], [ESA], [FIPS132], [FUJII3], [IEC880], [IEEEP1059],

[NUREG6018], and [WALLACE]. Details on test documentation are provided by [F1PS132] and

[IEEE829].

23

Table 3-1. Major Processes of SV&V

Verification that outputs of each development and operations and maintenance process:

comply with previous software development process requirements and outputs (e.g., for

completeness, correctness, consistency, and accuracy)

satisfy the standards, practices, and conventions of its software development process

establish the proper basis for initiating the next software development process activities.

Validation that each output complies with established software and system requirements and

assessment of the quality and reliability of the software.

Unit test - test of an individual software element or groups of software elements (units) to verify the

implementation of the design.

Software integration test - test of software units that have been integrated with themselves and,

according to the specific system integration plan, with hardware units, after each integration step, to

verify that the integrated software correctly implements software requirements and design.

Software system test - test the complete system to validate that the software as a complete entity

complies with its operational requirements and satisfies system objectives.

Installation test - examination of installation materials to ensure all software is included, testing to

verify all site parameters or conditions, and checking that the installed software is the software

subjected to SV&V.

3.3.1 Independent Verification and Validation

Some SV&V processes may be performed by two different groups (or different individuals within

a group) whose objectives and activities for the process will have some differences, resulting in

different evaluation strategies to demonstrate the objectives. While three types of independence

are described in this framework, assignment of the processes is a management activity, which

may be influenced by regulation and contract, and is outside the scope of this framework.

The use of a different organization for SV&V is called independent verification and validation

(IV&V). The revision of [IEEE 101 2] may include the explanation of IV&V from the chapter

on IV&V in [WILEY] for managerial, technical, and financial independence, as shown in the

remainder of this section.

Technical independence requires that members of the IV&V team (organization or group) may
not be personnel involved in the development of the software. This team must have some

knowledge about the system design or have related experience and engineering background

enabling them to understand the system. The IV&V team must not be influenced by the

development team when the IV&V team is learning about the system, problems encountered, and

proposed solutions for building the system. This technical independence is crucial in the team's

ability to detect the subtle software requirements, software design and coding errors that escape

detection by development testing and quality assurance reviews.

24

The technical IV&V team may need to share tcx)ls from the computer support environment (e.g.,

compilers, assemblers, utilities) but should execute qualification tests on these tools to ensure that

the common tools themselves do not contain errors which may mask errors in the software being

analyzed and tested. The IV&V team uses or develops its own set of test and analysis tools

separate from the developer's tools whenever possible.

Managerial independence means the responsibility for IV&V belongs to an organization outside

the contractor and program organizations that develop the software. While assurance objectives

may be decided by regulations and project requirements, the IV&V team independently decides

the areas of the software/system to analyze and test, techniques to conduct the IV&V, schedule

of activities (within the framework of the system schedules), and technical issues to act upon.

The rV&V team provides its findings in a timely fashion simultaneously to both the development

team and the systems management who acts upon the reported discrepancy and findings.

Financial independence means that control of the IV&V budget is retained in an organization

outside the contractor and program organization that develop the software. This independence

protects against diversion of funds or adverse financial pressures or influences that may cause

delay or stopping of IV&V analysis and test activities and timely reporting of results.

The extent that each of these parameters is vested in the IV&V team's responsibilities defines

the degree of independence achieved. Based on the definitions of IV&V and how much IV&V
a specific project requires, some SV&V processes may be conducted by both the developer and

another organization. An example may be unit test. Unit test by one organization may focus

on demonstrating that specific objectives have been met (e.g., safety objectives), which may
differ from the objectives of the developer (e.g., logic structure, test coverage) [IEEEP1059].

3.3.2 Software Requirements Verification and Validation Process

Verification of the software requirements may also include an examination of documentation

produced earlier in the system life cycle (e.g., initial feasibility studies, concepts on which the

system has been designed). Inputs to the software requirements verification and validation

process may be documents written in natural languages, formal mathematical languages, graphics

and charts. When formal mathematical languages are used, other forms of representations may

be provided to different users of the specifications. In this case, requirements verification must

ensure fidelity between the forms of representation.

The following are activities of the software requirements verification and validation process:

conduct a software traceability analysis^^ - trace software requirements to system

requirements (and vice versa) and check the relationships for accuracy, completeness,

consistency, and correctness; check that allocation is appropriate and complete

conduct a software requirements evaluation - evaluate the software requirements for

accuracy, completeness, consistency, correctness, testability, and understandability; assess

''This is an analysis of the trace established during the software requirements (development) process.

25

how well the software requirements accomplishes the system and software objectives;

identify critical areas of software by assessing criticality of software requirements

for individual requirements, measure completeness by verifying existence and correctness

of defining properties: initiator of action, action, object of action, conditions, constraints,

source, destination, mechanism, reason

verify correctness and appropriateness of requirements and assertions for addressing the

safety algorithms and the states and integrity of the system and responses to unfavorable

results of assertions and that the operation of the assertions will not adversely impact

system performance

verify correctness and appropriateness of fault tolerance requirements and that their

operation of the assertions will not adversely impact system performance

conduct a software interface analysis - evaluate software requirements with hardware,

user, operator and software interface requirements for accuracy, completeness,
' consistency, correctness, and understandability

coordinate with system software test planning.

3.3.3 Software Design Verification and Validation Process

Software design verification occurs after the software requirements have undergone the

verification process. By verifying that the software design meets its software requirements, the

software design verification and validation process also supports validation that the software

design meets system requirements, which was an objective of software requirements verification

and validation. There may be several instantiations of the software requirements and software

design verification before all of the system is verified.

The following are activities of the software design verification and validation process:

conduct a software design traceability analysis'^ - trace software design to software

requirements, and vice versa, and check the relationships for accuracy, completeness,

consistency, and correctness

conduct a software design evaluation - evaluate the software design for accuracy,

completeness, consistency, correctness, and testability; evaluate design for compliance

with software design standards (and, if appropriate, language standards) and software

engineering practices; assess software design against assigned quality attributes

conduct a software design interface analysis - evaluate software design with hardware,

operator and software interface requirements for accuracy, completeness, consistency, and

correctness

^*rhis is an analysis of the trace established during the software design (development) process.

26

verify that requirements for assertions, responses to assertions and other required system

algorithm and integrity checks or fauh tolerance protections have been designed into the

software and are complete and accurate and will not adversely affect system performance

apply software error, measurement, and statistical analysis techniques

coordinate with software integration test planning.

3.3.4 Code Verification and Validation Process

Many of the activities to verify correct implementation of software design into code require

tedious checking of details within the code; automation provides protection against human error

in gathering the code information for analysis and also can speed the process. Code verification

is the last opportunity to find and remove errors that could cause unnecessary costs and delays

from advancing poor code into any of the test processes.

Code validation is accomplished through unit test which is described in section 3.3.5.

The following are activities of the code verification process:

conduct a source code traceability analysis'^ - trace source code to software design, and

vice versa, and check the relationships for accuracy, completeness, consistency, and

correctness

conduct a source code evaluation - evaluate the source code for accuracy, completeness,

consistency, correctness, and testability; evaluate source code for compliance with code

standards (and, if appropriate, language standards) and software engineering practices;

assess source code against assigned quality attributes

conduct a source code interface analysis - evaluate the source code with hardware,

operator, and software interfaces for accuracy, completeness, consistency, and correctness

apply software error, measurement, and statistical analysis techniques

apply algorithm analysis and timing and sizing analysis techniques

evaluate draft code-related documents (e.g., user manual, commentary within the code)

with source code for completeness, consistency, and correctness

coordinate with unit test^^.

"This is an analysis of the trace established during the code (development) process.

^*Unit test is actually a part of code verification and validation.

27

3.3.5 Unit Test Process

Unit test is the test of the software elements at the lowest level of development. Units may be

aggregates of software elements. Planning for unit test should occur concurrently with the

software design process.

The following are activities of the unit test process:

test planning - establish the objectives of the unit test, the strategies to be employed, the

coverage requirements, reporting and analysis, and close-out of anomalies

generate, monitor, and update an unit test plan to accomplish objectives

trace design to test design, cases, procedures, and execution results

confirm that anomalies during test are software anomalies, and not problems detected for

other reasons

test case and procedures generation - develop test cases and procedures for unit test and

continue tracing as required by software test plans

perform unit test - check software components individually for typographical, syntactic,

and logic errors to ensure that each correctly implements the software design and satisfies

the software requirements; execute the test cases; analyze results to verify anomalies;

recommend changes to software design or code and conduct re-testing as necessary

apply software error, measurement, and statistical analysis techniques

document test activities and results.

3.3.6 Software Integration Test Process

Software integration test is performed to examine how units interface and interact with each other

with the assumption that the units and the objects (e.g., data) they manipulate have all passed

their unit tests [BEIZER]. Software integration tests check how the units interact with other

software (e.g., libraries) and hardware. The software integration test schedule depends upon the

development and integration schedules for software units, hardware, and other components. For

large systems, software integration test planning may require intense communication among all

system personnel to ensure that the overall test objectives can be achieved by the selected test

strategy. For each major integration that has passed interface and interaction tests, functional

tests may be developed and executed [BEIZER]. When all system components have been

integrated and have successfully passed software integration tests, then the system moves into

system test for testing of the system through the complete system process.

28

The following are activities of the software integration test process:

test planning - establish the objectives of the software integration test, the strategies to

be employed, the coverage requirements, reporting and analysis, and close-out of

anomalies

generate, monitor, and update a software integration test plan to accomplish objectives

trace software requirements to test design, cases, procedures, and execution results

test case and procedures generation - develop test cases and procedures for unit test and

continue tracing as required by software test plans

perform software integration test - check the inter-component communication links and

test aggregate functions formed by groups of components; confirm that anomalies during

test are software anomalies, and not problems detected for other reasons; ensure any

changes to software requirements, software design or code are made and conduct re-

testing as necessary; conduct functional, structural, performance, statistical and coverage

testing of successfully integrated components after each software integration process and

successful testing of interfaces and interactions

apply measurement and statistical analysis techniques

document test activities and results.

3.3.7 Software System Test Process

Software system test, in the context of SV&V, involves the conduct of tests to execute the

completely integrated system. Software system test is the validation that the software meets its

requirements. Validation of the complete system may involve many tests involving all system

components. The software system tests exercise only those system functions that invoke

software. The perspective is on the software aspects of the system, and whether the software

behaves as intended relative to complete system performance. These tests must be conducted in

such a manner as to stress and break the system based on software responses to system inputs

(e.g., from sensors, operators, databases). Tests and data collected from the tests are designed

to provide an operational profile of the system which support a statistical analysis of the system

reliability [MUSAl, MUSA2, BUTLER]. This section of the framework addresses only the tests

that validate that the software implements the system requirements; other tests for other

components and perspectives are necessary for complete system validation.

While software system tests are conducted once the system has been built, it is imperative that

planning for these tests is conducted concurrently with the software requirements process

because:

analyzing the software requirements for test requirements may result in finding

requirements errors and/or discovery of untestable requirements

29

development or procurement of test facilities (e.g., model of operational environment) and

CASE tools (e.g., test case generators, test data base) may require as much time as

development, and these resources must be planned.

The following are activities of the software system test process:

test planning - establish the objectives of the software system test, the strategies to be

employed, the coverage requirements, reporting and analysis, and close-out of anomalies

ii generate, monitor, and update a software system test plan to accomplish objectives

trace system and software requirements to test software design, cases, procedures, and

execution results

B test case and procedures generation - develop test cases and procedures for unit test and

continue tracing as required by software system test plans

test the operation of the software as an entity (sometimes a simulated environment may
be used); confirm that anomalies during test are software anomalies, and not problems

detected for other reasons; ensure any changes to software (software requirements,

software design, code, or test cases) have been made and conduct re-testing as necessary

apply measurement and statistical analysis techniques

document test activities and results.

3.3.8 Software Installation Test Process

Software installation test is the final step before launching full customer acceptance testing. The

intent of software installation test is not system validation nor acceptance testing. The purpose

of installation test is only to demonstrate that the correct software has been delivered and that

the software interfaces are correct relative to any interfaces at the installation site. Acceptance

testing, which involves the user/customer, is outside the scope of this document.

The following are activities of the software installation test process:

conduct an installation configuration audit - determine that all software outputs needed

to operate the system is present; check that the software installed in the system is the

software that underwent SV&V

develop and execute tests that will examine and stress site-unique parameters (e.g., printer

interface, operating system interface, monitor interfaces)

generate applicable documentation

generate an SVVR (or generate it at the end of the SV&V process).

30

3.3.9 Software Operation and Maintenance Verification and Validation Process

The operation of computer software requires periodic checks that the integrity of the system has

been maintained, that any changes to the system which affect its operation have been documented

and operators have received training in new or changed procedures.

SV&V of the maintenance of software, (e.g., adaptive, corrective, perfective [FIPS106]), requires

planning for SV&V based on the extent of the maintenance and hence a revisit of all the software

development processes to identify to what extent each SV&V processes must be performed.

The following are activities of the software operation and maintenance verification and validation

process:

conduct an anomaly evaluation - evaluate the severity of anomalies during software

operation and their effect on the system

conduct a proposed change assessment - assess proposed changes to the software and their

effect on the system to determine SV&V activities to be repeated and conduct them again

develop a SV&V plan and repeat processes according to section 3.3.

3.4 Software Configuration Management Process

The major objectives of the software configuration management (SCM) process are to track the

different versions of the software, and ensure that each version of the software contains the exact

software outputs generated and approved for that version. It must be established before software

development starts and continues throughout the software development processes. SCM is

responsible for ensuring that any changes to any software outputs during the development

processes are made in a controlled and complete manner.

The SCM process produces a software configuration management plan (SCMP). When the

software is integrated with system components, system configuration management begins.

However, any changes to the software necessitates that SCM be invoked.

The following are activities of the SCM process:

generate an SCMP

Software configuration identification

identify configuration items (CIs), i.e., select the most significant and critical functions

that will require constant attention and control throughout software development

assign a unique identifier/number to each CI

31

establish baselines for CIs, i.e., documents that have been formally reviewed and agreed

upon, that thereafter serve as the basis for further development, and that can be changed

only through formal change control procedures

functional baseline - the completion and acceptance of the system requirements

specification—the prerequisite for the development of the software requirements

specification (SRS) for each CI

allocated baseline - the review and acceptance of the SRSs~the prerequisite of the

development of the software design description (SDD) for all components making

up a CI

developmental configuration (developer-controlled "rolling" baseline) - all of the

documents and code accepted and committed for configuration control up to the

establishment of the product baseline

product baseline - established with the successful conclusion of a configuration

audit—prerequisite to the operation and maintenance of the software

Problem reporting, tracking and corrective action

document when a software development activity does not comply with its plan, output

deficiency, or anomalous behavior, and the corrective action taken

Change control

document, evaluate, resolve, and approve changes to the software

Change review

assess problems and changes, implement approved changes, provide feedback to processes

affect by changes

Traceabilitv analysis

trace forward and backward through the current software outputs to establish the scope

of impacted software

Configuration control

delegate authority for controlling changes to software; determine method for processing

change requests

32

Configuration status accounting

keep records detailing the state of the software product's development, e.g., record

changes made to the software, status of documents, changes in process, change history,

release status, etc.

Configuration audits and reviews

audit configuration items before release of product baseline or updated version of product

baseline; review to determine progress and quality of product

functional configuration audit - prove that a CI's actual performance agrees with

its software requirements stated in the SRS

physical configuration audit - ensure that the documentation to be delivered with

the software represents the content of the software product

Archive, retrieval and release

archive software outputs (with backups) so it can not be changed without authorization

and it will not deteriorate data to ensure it can be retrieved if necessary; describe software

being released to ensure it is authorized

3.5 Software Hazard Analysis Process

The overall objective of the software hazard analysis process is to ensure that software hazards

and hazards related to interfaces between the software and the system have either been eliminated

or their risk has been mitigated. This process uses the system requirements, preliminary hazard

list, preliminary hazard analysis, system hazard analysis, SRS, SDD, DBDD, and safety-related

history of similar systems to identify software hazards and evaluate the risk of software hazards,

and then eliminates or reduces the risk of the hazards. It begins before the software requirements

process and ends when its objectives have been met. The software hazard analysis process

produces a software safety plan and documents that report on the results of the different software

hazard analyses (i.e., software requirements hazard analysis report, software design hazard

analysis report, code-level software hazard analysis report, software safety testing report,

software/user interface analysis report, software change hazard analysis report).

The following are activities of the software hazard analysis process:

for software requirements hazard analysis (SRHA) examine the system requirements,

software requirements and software design to ensure that system safety requirements have

been properly defined, and that they can be traced from the system requirements to the

software requirements, software design, user's and operational procedures manuals;

incorporate recommendations and requirements into the software design description and

the software test plans

33

for software design hazard analysis (SDHA) define and analyze safety critical software

components (e.g., assessing their degree of risk, relationships to other components) and

the design and software test plans (e.g., ensuring safety requirements are properly defined

in the design); make changes to the software design description and the software test

plans; make recommendations for coding

for code-level software hazard analysis (CSHA) analyze the source and object code,

system interfaces, and software documentation to ensure safety requirements are included;

make recommendations to change the software design, code, and software testing

for software safety testing test safety-critical software components under normal

conditions and abnormal enyironment and input conditions; after the software is corrected

it is then retested under the same conditions

for software/user interface analysis make modifications to the design to control hazards

that were not eliminated or controlled in the system design phase by implementing, e.g.,

the ability of the operator to terminate an event or process

for software change hazard analysis analyze all changes (resulting from preceding

software hazard analyses) made to the software to ensure they do not create new hazards

of effect existing hazards

make any necessary changes to those software development process outputs that do not

meet the above software hazard analysis objectives.

3.6 Software Assurance Process Inputs and Outputs

Table 3-2 lists inputs and outputs for each software assurance process. The inputs may be from

the system development process, system assurance process, software development process, and/or

software assurance process. The outputs are only from the software assurance process. The table

also lists what software assurance outputs (created during a preceding software assurance process)

may be modified, and what software development outputs (created during a preceding software

development process) may be impacted by the particular software assurance process. This table

is not intended to show who creates or modifies documentation.

34

s

C/3 'v, Q
on

o

e 1

o p

o o3 C/3 00 CO £
i3
o<

c

e

-a ^
c/3 T3

3

3
o

E I S
(D S «5

c

•r; >

-a
00 4)

C
o
•a

3
c

3 ^ ^
O. t/) «^ o o 33 w ^
O <U U

g
E i s i i i
2i .B 52 .B Io o

a

u

on

<

J

1
3;

1/3 C/5 ca
<u ow w ^

D ID 00

Oh c3 c3 2^

C/j or) c« X

3

<L>

O
00
C
(SO

c C o
t:

Cl,

>
> o
on GO

i s 1
E ^_ <u
3 ^-

<4 ^ i3 o ^
§

^ ^ s <^

s a 8. g. s

< <
Q c/5

on O o ^

" a

o ^
00 ra

!2
c

E

C
<U

^ E
<u a.
^ 13 o

o
2 s
= E

- -C «

<M

S S S

3
&
o Jg

00 ^

3
&
3
O
oo
<U

E
<u
.b

5. -

1-1 4)

E I

>. o
oo vi

3

O § CO
nl •-« != *J

>
•o

^ oo ? OD
00 oo

3
D.
3
O

OO
oo
PL)

CL,

B
e

en .2

E >> a 3
ec

e
n B
B s © B
Ma

>
ida

u a>

E
- i Val

U <u

w cs n
«

a = 1 1 B
"O ao B o

i: (/3 (Z3 99 !/3

35

4 SOFTWARE ENGINEERING PRACTICES

Software engineering practices are those techniques recommended either to prevent errors from

being entered into the software during development, or are properties to be built into high

integrity software [NIST204]. The following is a summary of some software engineering

practices that may enhance the quality of the software/^

Formal methods may be used to specify/model the requirements mathematically. A recent study

supports the concept that formal methods may eliminate ambiguity in the requirements but cannot

ensure completeness. The report suggests that better methods of technology transfer and better

automated support are needed before formal methods can be widely used [NIST626]. [FUJII]

includes a methodology for describing software specifications in English. The use of either

formal methods or the [FUJII] approach requires analyzing the completeness and meaning of each

requirement. However, one example in [FUJII] demonstrates that neither method can eliminate

all ambiguity nor prove the completeness of the total set of requirements. Formal methods can

also be used for verifying the requirements and for design proof of correctness.

Prototyping, simulation, and modeling can be used in developing software requirements, and in

the software design process. The software requirements process may use simulation and

modeling to determine if it is feasible to build a product to the requirements [NIST213]. The

software design process can use simulation and modeling to determine the effectiveness of

alternative designs [NIST213]. Rapid prototyping and simulation analysis are useful in the

verification and validation of the software requirements, software design, and code. The project

management process may use simulation and modeling to perform tradeoff studies of alternative

strategies [NIST213].

The way in which the software is designed contributes greatly to its quality. Component

isolation separates safety critical components from other components, making analysis of, and

changes to, these components easier to accomplish. Modularity ensures that changes to one

component minimally affect other components. Information hiding prevents components' actions

from interfering with other components. Redundancy is used to prevent or recover from failures.

Interaction with the operator or user of the software system during the design of the

software/human interface can also be helpful.

Using a software design methodology that is well suited to the software application is important.

Today, new technology is forcing a second look at design methods, specifically object-oriented

design (OOD). NIST conducted a study of the attributes of OOD relative to safety-critical

software for the United States Nuclear Regulatory Commission (NRC). The purpose was to

describe attributes of OOD (e.g., classes, encapsulation, inheritance) relative to their capability

for supporting features desired in software for safety systems (e.g., modularity, functional

diversity, traceability, and non-ambiguity). The results were presented at the NRC/NIST
workshop in September 1993 and published in the workshop proceedings [NIST216].

^'See section 5 for a discussion on more work with software engineering practices.

37

The use of high-level languages has also been recommended for quality software [NIST204].

Using high level, standard languages and their standards lessens programming errors. Eliminating

programming practices that have been demonstrated to be problematic (e.g., floating point

arithmetic, use of interrupts) simplifies analyzing system behavior. It is also important to use

a language with a thoroughly tested compiler.

Reverse engineering can aid in developing software requirements, recreating documentation for

preexisting software, and providing a basis for reusability of software. Re-engineering can be

used to change software design when software requirements change [NIST213].

There are also software engineering practices that apply to the software assurance processes. Use

of cost-modeling and risk assessment techniques can aid the project management process. The

use of selected software hazard analysis techniques (e.g., software fault tree analysis, petri nets)

can aid in software assurance by identifying the critical parts of the software. Inspections,

reviews, and audits can be applied to all software processes under the software quality assurance

process. Software error, measurement, statistical, algorithm, database, technical, control and data

flow, and timing and sizing analysis techniques are useful in the software verification and

validation process. Test strategies such as equivalence partitioning, cause-effect, boundary value,

stress, event directed, data flow, logic flow, performance, timing, sizing, random, top-down,

bottom-up, sandwich, statistical testing, functional testing, and performance testing, when applied

appropriately, contribute to the quality of the software.

38

5 SOFTWARE FUNCTIONALITY

While this framework does not address development of the entire system, information about the

system must be provided to the software development and software assurance teams. This

section of the framework is not complete and is intended only as an overview of aspects about

high integrity software systems that these teams should be provided^*^. This section was

developed in cooperation with SoHaR, Inc.

The software activities are dependent on the system engineering functions to define requirements

in at least the following areas:

the service to be performed by the system in each operating mode

failure modes of the hardware required for these functions, fault detection requirements

(including calibration and self-test) and fault tolerance provisions and algorithms

specification of actions to be avoided by the system

identification of the human interfaces for (a) normal operation, (b) exceptional operating

states (recovery from hardware failures, etc.), and (c) maintenance and other

non-operational states

system level test activities and the software support required for these (test drivers,

simulators, enabling/disabling provisions for certain functions)

attribute requirements: quality assurance, configuration management, reliability, and

availability.

For each of the above items both the system requirements and the specific subset to be

implemented in software must be identified. Other information that must be provided to the

software developers includes description of the external system interfaces, user procedures, user

and maintainer skill levels, safety and security requirements and any functions designed to

mitigate or check for problems during system operation.

5.1 Definition of System Service

The definition of system service enables the software designer to provide required software

functions. The following are specific items that apply to high integrity software:

operating modes (system start-up, routine operation, maintenance or test mode, shut-down)

allowable transitions between modes

The information in this section is appropriate for systems which are software-intensive and whose failure may

cause significant social, environmental, or financial damage.

39

method and frequency of invocation in each mode (cyclic, by event, operator command)

possible states of the controlled system at time of invocation.

5.2 Failure Modes, Error Detection and Fault Tolerance Requirements

In some high integrity software systems, hardware installation may provide for redundant

channels for specific functions relative to attributes like safety or security. Software may be

required to validate operational channels, identify faulty channels to the operators, perform

automatic switching between channels to maintain the system operation after a fault has been

diagnosed, and to initiate alerts when the system is no longer fully functional. These activities

are collectively referred to as surveillance. Sensors are substantial contributors to the system

failure probability, and frequently sensors have a higher degree of redundancy than other

hardware components. Sensor surveillance is therefore discussed in a separate subsection below.

5.2.1 Sensor Surveillance

Sensors operate under more severe environmental conditions than other parts of the system.

Their output normally contains a noise component—it can drift, and it is frequently affected by

variations in the power supply. In addition, the sensor can experience transient or permanent

failure. In analog systems sensor surveillance is a labor intensive activity that is usually

automated (i.e., implemented in software) in digital systems. The sensor surveillance software

typically analyzes a time series of sensor outputs, extracts a current estimate of the true value of

the sensed quantity from the noisy raw measurements, and must make decisions about the validity

of the current estimate (i.e., whether the sensor has failed). If a failure has been identified there

may be further decisions required about the value of the affected variable that is utilized in the

system, e.g., to minimize sensor switching for transient failures it can be temporarily held at the

last valid level and the affected sensor sampled again during the next interval. The design of

sensor surveillance software requires identification of sensor and power supply redundancies, the

preferred sensor configurations, and the following data:

sensor failure modes

sensor range under normal plant conditions

sensor range under abnormal plant conditions

mechanical and electrical limits on sensor output

maximum expected change in output between samplings

noise characteristics of the sensor and power supply

worst expected drift characteristics of the sensor

allowable time interval between abnormal sensor output and safety (security) action

40

typical time history of conditions requiring safety (security) action.

Sensor surveillance normally includes the wiring to the control components; i.e., a failure in the

connection will be treated as a sensor failure. Where separate surveillance of the wiring is

desired, the software designer will need data that permit a differentiation between sensor and

wiring failures.

5.2.2 Surveillance of Other System Components

Other system components typically include the computer and output devices, such as a relay

network. In some cases the output interface includes actuation of control rods or pumps.

Surveillance of computer operation includes at least a self-health check, but it can also include

monitoring of computers in other channels, of analog-to-digital interfaces, and of intra- and

inter-channel communications.

The surveillance of the output devices involves comparison of the commanded state (as generated

within the computer) with the actual state and reported by an independent measurement. For

relay networks this measurement is usually provided by an auxiliary contact that operates in

synchronism with the main contacts; rod position can be determined from dedicated sensors, and

pump operation from centrifugal switches or tachometers.

The software designer needs the following data to support required functionality:

computer and output device failure modes

error detection and correction requirements arising from these

the topology of the intra- and inter-channel communications

alternate allowable topologies to deal with component failures

E data formats used by each communications path

maximum expected delay between output command and output activation

allowable delay between detection of a faulty state and annunciation.

5.3 Actions to be Avoided

Actions to be avoided fall into two broad categories:

actions to be avoided in normal computer operation

actions to be avoided after computer or software failure.

41

The first category includes actions that may result from failures outside the computer, such as

an erroneous sensor measurement or inappropriate operator actions (mode changes). Examples

are:

s prohibition of repeated output commands (sending a command twice)

s definition of prohibited output sequences

actions to be avoided during or immediately following a mode change

prohibition of actions after detection of a sensor failure

prohibition of actions after detection of an output device failure.

Examples of the second category are:

actions to be avoided after self-diagnosis of a failure

actions to be avoided after detecting failure of another computer

prohibited actions after entering a software exception handler.

In addition to these requirements that are derived from the system specification certain actions

to be avoided may be established on the basis of software considerations, e.g., prohibition of

certain calling sequences.

5.4 Human Interfaces

Although some systems are frequently intended to serve functions in which the human response

may be too slow or uncertain, they are not insulated from interfaces with operators and

maintainers. Under failure-free conditions of these systems the operator initiates mode changes

and monitors plant and system status indications furnished by the automated system. Under

exceptional states of these systems, such as recovery from a hardware failure, the operator is

responsible for taking corrective action, such as initiating maintenance. And once the system is

in a maintenance mode, human skill and judgment is required to bring it back to operation. These

essential human interfaces demand that the software developer be aware of:

ffl availabihty and capabilities of the operational staff

desired staff inidated test provisions for the system

human interfaces of present or predecessor systems (to avoid introduction of inconsistent

input or display formats)

alternate actions that may be inidated by the operational staff for a given plant condition

(including remotely initiated acdons)

42

alternate indications of a given plant condition available to the operators

training facilities for the operational staff (to permit integration of training for the system

under development

availability and capabilities of the maintenance staff

diagnostic provisions desired by the maintenance staff

plant operating procedures while system maintenance is in progress

procedures for restoring the system to operation following maintenance.

5.5 System Test Provisions

To facilitate system test it is frequently desirable to (a) disable or modify certain software

controlled functions, (b) add temporarily functions normally supplied by the system environment,

and (c) provide indications and records of test progress. If these requirements are realized at the

outset, patching or other irregular software structures can be avoided. Requirements for the

following functionality should be provided, associated with the test phases for which they will

be activated:

functions to be disabled or modified, e.g., feedback of output actuation

differences in input timing or sequencing

single channel operation (vs. multiple channels in the plant)

fault insertion capability (including superposition of noise)

simulation of operator commands

programmed or random generation of inputs or internal states

indications or recording of internal states, test sequence numbers, and generated outputs.

5.6 Attribute Requirements

System level attribute requirements must be propagated and interpreted for the software

development. The primary attribute requirements arise from quality assurance, configuration

management, reliability and availability. Security and portability (ability to operate on multiple

computer types) requirements may also be invoked. In most cases these requirements must be

interpreted for software development, and this interpretation is a joint system engineering and

software engineering responsibility.

The most stringent requirements are usually intended only for the code associated with the

activation of a particular safety function (e.g., in a nuclear power plant, a reactor shut-down). But

43

the extent of that software segment and the attribute requirements for other segments must be

identified by joint system engineering and software engineering analysis techniques. Typical

topics are:

status (safety-critical or not) of:

sensor surveillance software

software for monitoring and diagnostic indications

mode change software.

attribute requirements for:

the above functions judged to be not safety-critical

test support software (subsection 5 above)

software exclusively used in non-operational modes.

44

6 SUMMARY

This framework proposes the activities that comprise software development and software

assurance processes, independent of the technology used to perform them. Users of the

framework may implement these activities with methods which are most appropriate to the

software application domain.

This document is an initiating activity in support of the Center for High Integrity Software

Systems Assurance (CHISSA), whose purpose is to foster and coordinate activities relating to

high integrity software technology. High integrity software needs to be developed and assured

in a plaimed and systematic manner. Development of this software includes processes for the

software requirements, software design, code, integration of the code, installation of the software,

and the continuing operation and maintenance of the software.

The development of the software is controlled and monitored by assurance processes which

encompass managing the entire software project, assuring the quality of the software, verifying

and validating the software against its requirements, managing the different configurations of the

software, and eliminating or mitigating software hazards.

The processes of software development and assurance are not stand-alone tasks; information

about the system must be provided to the software team throughout the software development

and assurance processes. Information specific to systems is crucial in developing and assuring

high integrity software; this framework identifies some information for the system that affects

software functionality. This framework does not address software documentation in detail

because the issues of documentation should be addressed in a separate research project.

This framework will undergo substantive change and expansion. Future work in expanding this

framework includes, but is not limited to, the following tasks:

definition of the interfaces between software and system

development of a profile of functionality for high integrity software systems which may

be further refined for application domains and may be used to identify specific technical

problems

identification of appropriate software engineering methods (or practices) mapped to

application domains or technical problems which those methods resolve

identification where current methods are inadequate and further research is needed

examination of types of CASE tools for implementing recommended software engineering

methods supporting these activities

examination of integration capabilities of CASE tools

definition of a comparable framework for system development and assurance both as an

entity and specifically for each system component.

45

7 REFERENCES

[ANS501]

ANSI/ANS-50. 1, "(DRAFT #6) Nuclear Safety Design Criteria for Light Water Reactors,"

American Nuclear Society, January 1993.

[ANS7432]

ANSI/ffiEE-ANS-7-4.3.2-1982, "Application Criteria for Programmable Digital Computer

Systems in Safety Systems of Nuclear Power Generating Stations," American Nuclear

Society, 1982.

[ANSP7432]

P-7-4.3.2, draft 7, "American National Standard - Standard Criteria for Digital Computers

in Safety Systems of Nuclear Power Generating Stations," Sponsor: Nuclear Power

Engineering Committee of the IEEE Power Engineering Society.

[BEIZER]

Beizer, Boris, Software Testing Techniques , Van Nostrand Reinhold, New York, 1990.

[BELTRACCHI]
Beltracchi, Leo, "NRC Research Activities," NIST Special Publication 500-216,

Proceedings ofthe Digital Systems Reliability and Nuclear Safety Workshop (NUREG/CP-
0136), U.S. Department of Commerce/National Institute of Standards and Technology,

March 1994.

[BERLACK]
Berlack, Ronald H., "Configuration Management," Encyclopedia ofSoftware Engineering,

Volume 1, John Wiley & Sons, Inc., 1994.

[BUTLER]
Butler, R. and G. Finelli, "The Infeasibility of Experimental Quantified Life-Critical

Software Reliability," Proceedings of SIGS0FT91 : Software for Critical Systems,

Association for Computing Machinery, December 1991.

[DUNN]
Dunn, Robert H., "Quality Assurance," Encyclopedia of Software Engineering, Volume

2, John Wiley & Sons, Inc., 1994.

[ESA] ESA PSS-05-10 Issue 1, "Guide to Software Verification and Validation," European Space

Agency, February 1994.

[FIPSlOl]

FIPS 101, "Guideline for Lifecycle Validation, Verification, and Testing of Computer

Software," U.S. Department of Commerce/National Bureau of Standards (U.S.),

1983 June 6.

47

[FIPS106]

FIPS 106, "Guideline on Software Maintenance," U. S. Department of Commerce/National

Bureau of Standards (U.S.), 1984 June 15.

[FIPS 132]

FIPS 132, "Guideline for Software Verification and Validation Plans," U.S. Department

of Commerce/National Bureau of Standards (U.S.), 1987 November 19.

[FUJIIl]

Fujii, Roger U., "Software Engineering For Instrumentation and Control," American

Nuclear Society, Nuclear Plan Instrumentation, Control, and Man-Machine Interface

Technologies, Oak Ridge, TN, April 1993.

[FUJII2]

Fujii, Roger U., "How Much Software Verification and Validation is Adequate for

Nuclear Safety?" NIST Special Publication 500-216, Proceedings of the Digital Systems

Reliability and Nuclear Safety Workshop (NUREG/CP-0136), U.S. Department of

Commerce/National Institute of Standards and Technology, March 1994.

[FUJII3]

Fujii, Roger U., "Independent Verification and Validation," Encyclopedia of Software

Engineering, Volume 1, John Wiley & Sons, Inc., 1994.

[IEC880]

lEC 880, "Software for Computers in the Safety Systems of Nuclear Power Stations,"

International Electrotechnical Commission, 1986.

[IEEE603]

IEEE Std 603-1980, "IEEE Standard Criteria for Safety Systems for Nuclear Power

Generating Stations," The Institute of Electrical and Electronics Engineers, Inc.,

November 24, 1980.

[IEEE610]

ANSI/IEEE Std 610.12-1990, "Glossary of Software Engineering Terminology," The

Institute of Electrical and Electronics Engineers, Inc., 1990.

[IEEE1012]

ANSVIEEE Std 1012-1986, "IEEE Standard for Software Verification and Validation

Plans," The Institute of Electrical and Electronics Engineers, Inc., February 10, 1987.

[IEEE1042]

ANSI/IEEE Std 1042-1987, "IEEE Guide to Software Configuration Management," The

Institute of Electrical and Electronics Engineers, Inc., March 10, 1988.

48

[ffiEE7432]

ANSI/ffiEE Std 7432-1993, "Standard Criteria for Digital Computers in Safety Systems

of Nuclear Power Generating Stations," The Institute of Electrical and Electronics

Engineers, Inc., 1993.

[IEEEP1059]

IEEE Std P1059-1994, "(DRAFT 7.1) IEEE Guide for Software Verification and

Validation Plans," Institute of Electrical and Electronics Engineers, Inc., May 24, 1993.

[IEEEP1228-H]

P1228, "(DRAFT H) Standard for Software Safety Plans," Institute of Electrical and

Electronics Engineers, Inc., 4/27/92.

[ISO12207]

ISO/IEC DIS 12207-1, "(DRAFT) Information Technology-Software-Part 1: Software

Life Cycle Process," International Electrotechnical Commission, 1994.

[MIL498]

MIL-STD-498, "Software Development and Documentation," Department of Defense,

30 November 1994.

[MIL882B]

MIL-STD-882B, "System Safety Program Requirements," Department of Defense,

30 March 1984.

[MUSAl]
Musa, J.D., A. lannino, and K. Okumoto, Software Reliability, Measurement, Prediction,

Application , McGraw-Hill, New York, 1987.

[MUSA2]
Musa, J.D., and A.F. Ackerman, "Quantifying Software Validation: When to Stop

Testing?" IEEE Software, May 1989.

[NIST165]

NIST Special Publication 500-165, "Software Verification and Validation: Its Role in

Computer Assurance and Its Relationship with Software Project Management Standards,"

U.S. Department of Commerce/National Institute of Standards and Technology, September

1989.

[NIST190]

NIST Special Publication 500-190, "Proceedings of the Workshop on High Integrity

Software; Gaithersburg, MD; Jan. 22-23, 1991," U.S. Department of Commerce/National

Institute of Standards and Technology, August 1991.

49

[NIST204]

NIST Special Publication 500-204, "High Integrity Software Standards and Guidelines,"

U.S. Department of Commerce/National Institute of Standards and Technology, September

1992.

[NIST209]

NIST Special Publication 500-209, "Software Error Analysis," U.S. Department of

Commerce/National Institute of Standards and Technology, April 1993.

tNIST213]

NIST Special Publication 500-213, "Next Generation Computer Resources: Reference

Model for Project Support Environments (Version 2.0)," U.S. Department of

Commerce/National Institute of Standards and Technology, November 1993.

[NIST216]

NIST Special Publication 500-216, "Proceedings of the Digital Systems Reliability and

. Nuclear Safety Workshop (NUREG/CP 0136)," U.S. Department of Commerce/National

Institute of Standards and Technology, March 1994.

[NIST626]

NIST GCR 93/626, "An International Survey of Industrial Applications of Formal

Methods Volume 1 Purpose, Approach, Analysis, and Conclusions," U.S. Department of

Commerce/National Institute of Standards and Technology, March 1993.

[NIST4909]

NISTIR 4909, "Software Quality Assurance: Documentation and Reviews," U.S.

Department of Commerce/National Institute of Standards and Technology,

September 1992.

[NUREG6018]

NUREG/CR-6018, "Survey and Assessment of Conventional Software Verification and

Validation Methods," U.S. Nuclear Regulatory Commission, April 1993.

[RTCA178B]
RTCA/DO-178B, "Software Considerations in Airborne Systems and Equipment

Certification," RTCA, Inc., December 16, 1992.

ISOFTENG]
"Standard for Software Engineering of Safety Critical Software," Draft, Rev. 0, Ontario

Hydro, December 1990.

[THAYER]
Thayer, Richard H. and Richard Fairley, "Project Management," Encyclopedia ofSoftware

Engineering, Volume 2, John Wiley & Sons, Inc., 1994.

50

[WALLACE]
Wallace, Dolores R., "Verification and Validation," Encyclopedia of Software

Engineering, Volume 2, John Wiley & Sons, Inc., 1994.

[WILEY]
Encyclopedia of Software Engineering, John Wiley & Sons, Inc., 1994.

51

APPENDIX A. BIBLIOGRAPHY OF HIGH INTEGRITY SOFTWARE DOCUMENTS

A.1 Standards and Guidelines

AF800-5

AFSC/AFLCP 800-5, "(DRAFT) Software Independent Verification and Validation

(IV&V)," Air Force Systems Command and Air Force Logistics Command, 1988.

AF800-45

AF PAMPHLET 800-45, "Software Independent Verification and Validation (IV&V),"

Department of the Air Force, 1 May 1991.

AFISC
AFISC SSH 1-1, "Software System Safety," Headquarters Air Force Inspection and Safety

Center, 5 September 1985.

ANS103
ANSI/ANS-10.3-199X, (DRAFT 5), "Documentation of Computer Software," American

Nuclear Society, 3/7/92.

ANS104
ANSI/ANS-10.4-1987, "Guidelines for the Verification and Validation of Scientific and

Engineering Computer Programs for the Nuclear Industry," American Nuclear Society,

May 13, 1987.

ANS501
ANSI/ANS-50.1, "(DRAFT #6) Nuclear Safety Design Criteria for Light Water Reactors,"

American Nuclear Society, January 1993.

ANS7432
ANSI/IEEE-ANS-7-4.3.2-1982, "Application Criteria for Programmable Digital Computer

Systems in Safety Systems of Nuclear Power Generating Stations," American Nuclear

Society, 1982. AND ANSI/IEEE-ANS-7-4.3.2-19XX, Draft 2, as of November, 1991.

ANSP7432
P-7-4.3.2, draft 7, "American National Standard - Standard Criteria for Digital Computers

in Safety Systems of Nuclear Power Generating Stations," Sponsor: Nuclear Power

Engineering Committee of the IEEE Power Engineering Society.

ANSIX99
ANSI X9.9-1986, "Financial Institution Message Authentication (Wholesale)," X9
Secretariat, American Bankers Association, August 15, 1986.

ANSIX917
ANSI X9. 17- 1985, "Financial Institution Key Management (Wholesale)," X9 Secretariat,

American Bankers Association, April 4, 1985.

53

AQAP13
AQAP-13, "NATO Software Quality Control System Requirements," NATO, August

1991.

ASMENQAl
ASME NQA- 1-1989, "Quality Assurance Program Requirements for Nuclear Facilities,"

The American Society of Mechanical Engineers, September 15, 1989.

ASMENQA2
ASME NQA-2a-1990, "Quality Assurance Requirements for Nuclear Facility

Applications," The American Society of Mechanical Engineers, November 1990.

ASMENQA3
ASME NQA-3-1989, "Quality Assurance Program Requirements for the Collection of

Scientific and Technical Information for Site Characterization of High-Level Nuclear

Waste Repositories," The American Society of Mechanical Engineers, March 23, 1990,

ASMESUPP
Supplement 17S-1, ASME NQA- 1-1989, "Supplementary Requirements for Quality

Assurance Records," The American Society of Mechanical Engineers.

ASQCA3
ANSVASQC A3- 1987, "Quality Systems Terminology," American Society or Quality

Control, 1987.

BOEING
"(DRAFT) BA&E (Boeing Aerospace and Electronics) System Safety Instruction - System

Safety Engineering in Software Development," The Boeing Company, 1 1/1 1/89.

BSI89

"89/977 14-Guide to the Assessment of Reliability of Systems Containing Software,"

British Standards Institution, 12 September 1989.

CATEGORY
"Guideline for the Categorization of Software in Ontario Hydro's Nuclear Facilities with

respect to Nuclear Safety," Revision 0, Nuclear Safety Department, June 1991.

CENSUS
"Programming Standards and Guidelines Manual," Bureau of the Census, March 27, 1991.

CSA89
CAN/CSA-Q396. 1.2-89, "Quality Assurance Program for Previous Developed Software

Used in Critical Applications," Canadian Standards Association, January 1989.

54

CSC003
CSC-STD-003-85, "Computer Security Requirements-Guidance for Applying the

Department of Defense Trusted Computer System Evaluation Criteria in Specific

Environments," Department of Defense, 25 June 1985.

DLP880
DLP880, "(DRAFT) Proposed Standard for Software for Computers in the Safety Systems

of Nuclear Power Stations (based on lEC Standard 880)," David L. Pamas, Queen's

University, Kingston, Ontario, March, 1991.

DOD2167A
DOD-STD-2167A, "Defense System Software Development," Department of Defense, 29

February 1988.

DOT86
"Criteria and Procedures for Testing, Evaluating, and Certifying Message Authentication

Devices for Federal E.F.T. Use," United States Department of the Treasury,

September 1, 1986.

ESA
ESA PSS-05-10, Issue 1, "Guide to Software Verification and Validation," European

Space Agency, February 1994. with ESA Guide to the Software Engineering Standards

FAA026
FAA-STD-026, "National Airspace System (NAS) Software Development," U.S.

Department of Transportation, Federal Aviation Administration, March 31, 1989.

FDA89
"(DRAFT) Reviewer Guidance for Computer-Controlled Devices," Medical Device

Industry Computer Software Committee, January 1989.

FDA91
"Reviewer Guidance for Computer-Controlled Medical Devices Undergoing 510(k)

Review," Office of Device Evaluation, Center for Devices and Radiological Health, Food

and Drug Administration.

FIPS74

FIPS PUB 74, "Guidelines for Implementing and Using the NBS Data Encryption

Standard," U.S. Department of Commerce/National Bureau of Standards (U.S.),

1981 April 1.

FIPS81

FIPS PUB 81, "DES Modes of Operation," U.S. Department of Commerce/National

Bureau of Standards (U.S.), 1980 December 2.

55

FIPSlOl

FIPS PUB 101, "Guideline for Lifecycle Validation, Verification, and Testing of

Computer Software," U.S. Department of Commerce/National Bureau of Standards (U.S.),

1983 June 6.

FIPS 106

FIPS 106, "Guideline on Software Maintenance," U. S. Department of Commerce/National

Bureau of Standards (U.S.), 1984 June 15.

FIPS 132

FIPS PUB 132, "Guideline for Software Verification and Validation Plans," U.S.

Department of Commerce/National Bureau of Standards (U.S.), 1987 November 19.^'

FIPS 140

FIPS PUB 140 FS 1027, "General Security Requirements for Equipment Using the Data

Encryption Standard," General Services Administration, April 14, 1982.

FIPS461

FIPS 46-1, "Data Encryption Standard," U.S. Department of Commerce/National Bureau

of Standards (U.S.), 1988 January 22.

FIPS 1401

FIPS 140-1, "Security Requirements for Cryptographic Modules," U.S. Department of

Commerce/National Institute of Standards and Technology, 1990 May 2.

IEC880

lEC 880, "Software for Computers in the Safety Systems of Nuclear Power Stations,"

International Electrotechnical Commission, 1986.

IEC9126

ISO/IEC 9126, "Information Technology-Software Product Evaluation-Quality

Characteristics and Guidelines for their Use," International Electrotechnical Commission,

1991-12-15.

lECSUPP
45AAVG-A3(Secretary)42, "(DRAFT) Software for Computers Important to Safety for

Nuclear Power Plants as a Supplement to lEC Publication 880," International

Electrotechnical Commission Technical Committee: Nuclear Instrumentation, Sub-

Committee 45A: Reactor Instrumentation, Working Group A3: Data Transmission and

Processing Systems, May 1991.

^'See IEEE1012.

56

IECSUPP-94
45AAVG-A3(Secretary)48, "(DRAFT) Nuclear Power Plants - Instrumentation and Control

Systems Important to Safety - First Supplement to lEC Publication lEC 880," EC
SC45A, May 1994.

IECTC56
IECyTC56, "89/97714 - (DRAFT) Guide to the Assessment of Reliability of Systems

Containing Software," British Standards Institution, 12 September 1989.

IECWG9'89
IEC/TC65A WG9, lEC 65A(Secretariat)94, "89/33006 DC - (DRAFT) Software for

Computers in the Application of Industrial Safety-Related Systems," British Standards

Institution, November 1989.

IECWG9'91
IEC/TC65A WG9, lEC 65A(Secretariat)122, "Software for Computers in the Application

of Industrial Safety-Related Systems," Version 1.0, 26th September 1991.

IECWGIO'89
IEC/TC65A WGIO, "89/33005 DC - (DRAFT) Functional Safety of Programmable

Electronic Systems," British Standards Institution, November 1989.

IECWGIO'92
IEC/TC65A WGIO, "(DRAFT) Functional Safety of Electrical/Electronic/Programmable

Electronic Systems," 1992.

IECWGIO'93
IEC/TC65A WGIO, "(DRAFT) Functional Safety: Safety Related Systems

IEEE603

IEEE Std 603-1980, "IEEE Standard Criteria for Safety Systems for Nuclear Power

Generating Stations," The Institute of Electrical and Electronics Engineers, Inc.,

November 24, 1980.

IEEE610

ANSI/IEEE Std 610.12-1990, "Glossary of Software Engineering Terminology," The

Institute of Electrical and Electronics Engineers, Inc., February, 1991.

IEEE7301

ANSI/IEEE Std 730.1-1989, "IEEE Standard for Software Quality Assurance Plans,"

Institute of Electrical and Electronics Engineers, Inc., October 10, 1989.

IEEE730

ANSI/IEEE Std 730-1989, "IEEE Standard for Software Quality Assurance Plans,"

Institute of Electrical and Electronics Engineers, Inc., January 22, 1990.

57

IEEE828

ANSI/IEEE Std 828-1990, "ffiEE Standard for Software Configuration Management
Plans," Institute of Electrical and Electronics Engineers, Inc., February 15, 1991.

IEEE829
ANSI/IEEE Std 829-1983, "IEEE Standard for Software Test Documentation," Institute

of Electrical and Electronics Engineers, Inc., August 19, 1983.

IEEE830-84

ANSI/IEEE Std 830-1984, "IEEE Guide to Software Requirements Specifications,"

Institute of Electrical and Electronics Engineers, Inc., July 29, 1984.

IEEE830-93

ANSI/IEEE Std 830, "(DRAFT) IEEE Recommended Practice for Software Requirements

Specifications," Institute of Electrical and Electronics Engineers, Inc., 8/10/93.

IEEE982-1

ANSI/IEEE Std 982.1-1988, "IEEE Standard Dictionary of Measures to Produce Reliable

Software," Institute of Electrical and Electronics Engineers, Inc., August 10, 1989.

IEEE982-2

ANSVIEEE Std 982.2-1988, "IEEE Guide for the Use of IEEE Standard Dictionary of

Measures to Produce Reliable Software," Institute of Electrical and Electronics Engineers,

Inc., August 10, 1989.

IEEE983

ANSI/IEEE Std 983-1986, "IEEE Guide for Software Quality Assurance Planning,"

Institute of Electrical and Electronics Engineers, Inc., February 20, 1986.

IEEE990

ANSI/IEEE Std 990-1987, "IEEE Recommended Practice for Ada As a Program Design

Language," Institute of Electrical and Electronics Engineers, Inc., October 1, 1987.

IEEE 1002

ANSI/IEEE Std 1002-1987, "IEEE Standard Taxonomy for Software Engineering

Standards," Institute of Electrical and Electronics Engineers, Inc., June 4, 1987.

IEEE 1008

ANSVIEEE Std 1008-1987, "IEEE Standard for Software Unit Testing," Institute of

Electrical and Electronics Engineers, Inc., July 28, 1986.

IEEE1012

ANSI/IEEE Std 1012-1986, "IEEE Standard for Software Verification and Validation

Plans," The Institute of Electrical and Electronics Engineers, Inc., February 10, 1987.^^

'Adopted by the Federal government as FIPS PUB 132.

58

ffiEE1016

ANSI/ffiEE Std 1016-1987, "IEEE Recommended Practice for Software Design

Descriptions," Institute of Electrical and Electronics Engineers, Inc., October 6, 1987.

IEEE1028

ANSI/IEEE Std 1028-1988, "IEEE Standard for Software Reviews and Audits," Institute

of Electrical and Electronics Engineers, Inc., June 29, 1989.

IEEE1042

ANSI/IEEE Std 1042-1987, "IEEE Guide to Software Configuration Management,"

Institute of Electrical and Electronics Engineers, Inc., March 10, 1988.

IEEE1058

ANSI/IEEE Std 1058-1987, "IEEE Standard for Software Project Management Plans,"

Institute of Electrical and Electronics Engineers, Inc., October 6, 1988.

IEEE1074

ANSI/IEEE Std 1074-1991, "IEEE Standard for Developing Software Lifecycle

Processes," The Institute of Electrical and Electronics Engineers, Inc., 1991.

IEEE7432

ANSI/IEEE Std 7432-1993, "Standard Criteria for Digital Computers in Safety Systems

of Nuclear Power Generating Stations," The Institute of Electrical and Electronics

Engineers, Inc., 1993.

IEEE1063

ANSI/IEEE Std 1063-1987, "IEEE Standard for Software User Documentation," Institute

of Electrical and Electronics Engineers, Inc., February 2, 1989.

IEEE1228

IEEE Std 1228-1994, "IEEE Standard for Software Safety Plans," Institute of Electrical

and Electronics Engineers, August 9, 1994.

IEEEP1059

IEEE Std P1059-199X, "(DRAFT 7.1) IEEE Guide for Software Verification and

Validation Plans," Institute of Electrical and Electronics Engineers, May 24, 1993.

IEEEP1228-C

P1228, "(DRAFT C) Draft Standard for Software Safety Plans," Institute of Electrical and

Electronics Engineers, November 13, 1990.

IEEEP1228-D

P1228, "(DRAFT D) Standard for Software Safety Plans," Institute of Electrical and

Electronics Engineers, Inc., March 6, 1991.

59

IEEEP1228-E

P1228, "(DRAFT E) Standard for Software Safety Plans," Institute of Electrical and

Electronics Engineers, Inc., July 19, 1991.

IEEEP1228-G

PI 228, "(DRAFT G) Standard for Software Safety Plans," Institute of Electrical and

Electronics Engineers, Inc., 1/14/92.

IEEEP1228-H

P1228, "(DRAFT H) Standard for Software Safety Plans," Institute of Electrical and

Electronics Engineers, Inc., 4/27/92.

IEEEP1228-J

P1228, "(DRAFT J) Standard for Software Safety Plans," Institute of Electrical and

Electronics Engineers, Inc., 2/1 1/93.

lEEEGUIDE
"Guide to Software Design Descriptions," Institute of Electrical and Electronics Engineers,

1993.

lEEETEST
"(DRAFT) Guidelines for Assuring Testability," The Institution of Electrical Engineers,

May 1987.

IFIP104

EFIP WG 10.4, "Dependability: Basic Concepts and Terminology," IFIP Working Group

on Dependable Computing and Fault Tolerance, October 1990.

ISASP84

ISA-SP84, Draft 10, "(DRAFT) Programmable Electronic Systems (PES) for use in Safety

Applications," Instrument Society of America, August 1992.

ISO9000

ISO 9000, "International Standards for Quality Management," May 1990.

ISO12207

ISO/IECDIS 12207-1, "(DRAFT) Information Technology--Software--Part 1: Software

Life Cycle Process," International Electrotechnical Commission, 1994.

ITSEC89
ITSEC 1.1989, "Criteria for the Evaluation of Trustworthiness of Information Technology

(IT) Systems," GISA - German Information Security Agency, 1989.

ITSEC90
ITSEC 1.1990, "(DRAFT) Information Technology Security Evaluation Criteria (ITSEC),"

Harmonised Criteria of France-Germany-the Netherlands-the United Kingdom, 02 May
1990.

60

JPL93

JPL D- 10058, "Software Systems Safety Handbook," PREPARED BY Jet Propulsion

Laboratory FOR National Aeronautics and Space Administration, May 10, 1993,

MIL347
MIL-HDBK-347, "Mission-Critical Computer Resources Software Support," Department

of Defense, 22 May 90.

MIL498
MIL-STD-498 (DRAFT), "Software Development and Documentation," Department of

Defense, 30 November 1994.

MIL882B
MIL-STD-882B, "System Safety Program Requirements," Department of Defense, 30

March 1984.

MIL882C
MIL-STD-882C, "Systems Safety Program Requirements," Department of Defense,

DISTRIBUTION STATEMENT A.

MIL1521B
[Proposed Updates to] MIL-STD-1521B, "Technical Reviews and Audits for Systems,

Equipments, and Computer Software," Logicon Input to the JLC/CSM, June 16, 1989.

MILSDD
MIL-STD-SDD, "(DRAFT) Software Development and Documentation," Department of

Defense, 22 December 1992.

MILSWM
MIL-HDBK-SWM (DRAFT), "Software Measurement Selection and Use," Department

of Defense, 14 January 1994.

MOD0055'89
Interim Defence Standard 00-55, "(DRAFT) Requirements for the Procurement of Safety

Critical Software in Defence Equipment," Ministry of Defence, UK, May 1989.

MOD0055'91
Interim Defence Standard 00-55, "The Procurement of Safety Critical Software in Defence

Equipment," Parts 1 and 2, Ministry of Defence, UK, 5 April 1991.

MOD0056'89
Interim Defence Standard 00-56, "(DRAFT) Requirements for the Analysis of Safety

Critical Hazards," Ministry of Defence, UK, May 1989.

61

MOD0056'91
Interim Defence Standard 00-56, "Hazard Analysis and Safety Classification of the

Computer and Programmable Electronic System Elements of Defence Equipment,"

Ministry of Defence, UK, 5 April 1991.

NASAMGMT
"Management Plan Documentation Standard and Data Item Descriptions (DID)," NASA,
2/28/89.

NASAPROD
"Product Specification Documentation Standard and Data Item Descriptions (DID),"

NASA, 2/28/89.

NCSC005
NCSC-TG-005, "Trusted Network Interpretation of the Trusted Computer System

Evaluation Criteria," National Computer Security Center, 31 July 1987.

NCSC021
NCSC-TG-021, "Trusted Database Management System Interpretation of the Trusted

Computer System Evaluation Criteria," National Computer Security Center, April 1991.

NIST165

NIST Special Publication 500-165, "Software Verification and Validation: Its Role in

Computer Assurance and Its Relationship with Software Project Management Standards,"

U.S. Department of Commerce/National Institute of Standards and Technology, September

1989.

NIST190

NIST Special Publication 500-190, "Proceedings of the Workshop on High Integrity

Software; Gaithersburg, MD; Jan. 22-23, 1991," U.S. Department of Commerce/National

Institute of Standards and Technology, August 1991.

NIST204
NIST Special Publication 500-204, "High Integrity Software Standards and Guidelines,"

U.S. Department of Commerce/National Institute of Standards and Technology, September

1992.

NIST209

NIST Special Publication 500-209, "Software Error Analysis," U.S. Department of

Commerce/National Institute of Standards and Technology, April 1993.

NIST213

NIST Special Publication 500-213, "Next Generation Computer Resources: Reference

Model for Project Support Environments (Version 2.0)," U.S. Department of

Commerce/National Institute of Standards and Technology, November 1993.

62

NIST216
NIST Special Publication 500-216, "Proceedings of the Digital Systems Reliability and

Nuclear Safety Workshop (NUREG/CP 0136)," U.S. Department of Commerce/National

Institute of Standards and Technology, March 1994.

NIST626
NIST GCR 93/626, "An International Survey of Industrial Applications of Formal

Methods Volume 1 Purpose, Approach, Analysis, and Conclusions," U.S. Department of

Commerce/National Institute of Standards and Technology, March 1993.

NIST4909
NISTIR 4909, "Software Quality Assurance: Documentation and Reviews," U.S.

Department of Commerce/National Institute of Standards and Technology,

September 1992.

NPR6300
NPR-STD-6300, "Management of Scientific, Engineering and Plant Software," Office of

New Production Reactors, U.S. Department of Energy, March 1991.

NSA8616
NSA Spec. 86-16, "Security Guidelines for COMSEC Software Development," National

Security Agency, 10 July 1986.

NSS1740
NSS 1740.13, "(Interim) NASA Software Safety Standard," National Aeronautics and

Space Administration, June 1994.

NSWC8933
NSWC TR 89-33, "Software Systems Safety Design Guidelines and Recommendations,"

Naval Surface Warfare Center, March 1989.

NUREG6018
NUREG/CR-6018, "Survey and Assessment of Conventional Software Verification and

Validation Methods," U.S. Nuclear Regulatory Commission, April 1993.

NUREG6101
NUREG/CR-6101 & UCRL-ID- 114839, "Software Reliability and Safety in Nuclear

Reactor Protection Systems," U.S. Nuclear Regulatory Commission, June 11, 1993.

PES87
"Programmable Electronic Systems in Safety Related Applications," Parts 1 and 2, Health

and Safety Executive, 1987.

RTCA178A
RTCA/DO-178A, "Software Considerations in Airborne Systems and Equipment

Certification," Radio Technical Commission for Aeronautics, March, 1985.

63

RTCA178B
RTCA/DO-178B, "Software Considerations in Airborne Systems and Equipment

Certification," RTCA, Inc., June 29, 1993.

SAFEIT
"SafelT," Volumes 1 and 2, Interdepartmental Committee on Software Engineering,

June 1990.

SOFTENG
"Standard for Software Engineering of Safety Critical Software," Rev. 0, Ontario Hydro,

December 1990.

SOFTENG2
"Software Engineering of Category II Software," Rev. 00, Ontario Hydro, 1993 05.

TCSEC
DOD 5200.28-STD, "Department of Defense Trusted Computer System Evaluation

Criteria," Department of Defense, December 1985.

UL1998
UL 1998, "The Proposed First Edition of the Standard for Safety-Related Software,"

Underwater Laboratories, August 17, 1990.

USEREXP
"User Expectations and Requirements for Software Engineering Standards (Discussion

Draft), Software Engineering Standards Long-Range Planning Study Group, November

22, 1991.

WL-1037
WL-TR-1037, "Evaluation and Validation Reference Manual," Version 3.0, Wright

Laboratory, Wright-Patterson AFB, Ohio, May 1991.

WL-1038
WL-TR-1038, "Evaluation and Validation Guidebook," Version 3.0, Wright Laboratory,

Wright-Patterson AFB, Ohio, May 1991.

A.2 Books

BEIZER
Beizer, Boris, Software Testing Techniques, Van Nostrand Reinhold, New York, 1990.

EWICSl
Redmill, F. J. (ed.). Dependability of Critical Computer Systems 1, Elsevier Science

Publishers LTD, 1988.

64

EWICS2
Redmill, F. J. (ed.). Dependability of Critical Computer Systems 2. Elsevier Science

Publishers LTD, 1989.

EWICS3
Bishop, P. G. (ed.). Dependability of Critical Computer Systems 3 - Techniques Directory ,

Elsevier Science Publishers LTD, 1990.

MUSAl
Musa, J.D., A. lannino, and K. Okumoto, Software Reliability, Measurement, Prediction,

Application, McGraw-Hill, New York, 1987.

RAHEJA91
Raheja, Dev G., Assurance Technologies - Principles and Practices , McGraw-Hill, Inc.,

1991.

WILEY
Encyclopedia of Software Engineering , John Wiley & Sons, Inc., 1994.

A.3 Papers

BELL
Bell, R. and S. Smith, "An Overview of lEC Draft Standard: Functional Safety of

Programmable Electronic Systems."

BUTLER
Butler, R. and G. Finelli, "The Infeasibility of Experimental Quantified Life-Critical

Software Reliability," Proceedings of SIGS0FT'91 : Software for Critical Systems,

Association for Computing Machinery, December 1991.

Fujni
Fujii, Roger U., "Software Engineering For Instrumentation and Control," American

Nuclear Society, Nuclear Plan Instrumentation, Control, and Man-Machine Interface

Technologies, Oak Ridge, TN, April 1993.

HANSEN
Hansen, Mark D., "Survey of Available Software-Safety Analysis Techniques," Annual

Reliability and Maintainability Symposium - 1989 Proceedings , 1989.

JOANNOU
Joannou, P.K., J. Harauz, D.R. Tremaine, N. Ichiyen, A.B. Clark, "The Canadian Nuclear

Industry's Initiative in Real-Time Software Engineering," Ontario Hydro and AECL
CANDU, Ontario, Canada.

JUNK
Junk, William S.. "Annotated Bibliography - Software Safety," April 24, 1990.

65

LEVESON83
Leveson, Nancy G. and Peter R. Harvey, "Analyzing Software Safety," IEEE Transactions

on Software Engineering, Vol. SE-9, No. 5, September 1983.

LEVESON86
Leveson, N.G., "Software Safety: Why, What, and How," Computing Surveys, Vol. 18,

No. 2, June 1986.

LEVESON87
Leveson, Nancy G., Janice L. Stolzy, "Safety Analysis Using Petri Nets," IEEE
Transactions on Software Engineering, Vol. SE-13, No. 3, March 1987.

LEVESON89
Leveson, Nancy, "Software Safety," Presentation to IEEE Software Safety Working

Group, October 1989.

LEVESON91
Leveson, Nancy G., Stephen S. Cha and Timothy J. Shimeall, "Safety Verification of Ada
Programs Using Software Fault Trees," IEEE Software, July 1991.

LEVESON92
Leveson, Nancy G. and Clark S. Turner, "An Investigation of the Therac-25 Accidents,"

University of California, Irvine, CA, November 1992.

LEVINSON
Levinson, Stanley H. and H. Tazewell Daughtrey, "Risk Analysis of Software-Dependent

Systems," Probabilistic Safety Assessment International Topical Meeting , Clearwater

Beach, PL, January 1993.

MUSA2
Musa, J.D., and A.F. Ackerman, "Quantifying Software Validation: When to Stop

Testing?" IEEE Software, May 1989.

PETERSON
Peterson, James L., "Petri Nets," Computing Surveys, Vol, 9, No. 3, September 1977.

SESAW91-1
DeWalt, Michael P., "Comparison of FAA DO-178A and DOD-STD-2167A Approaches

to Software Certification," Software Engineering Standards Application Workshop

sponsored by IEEE Computer Society, San Francisco, May 1991.

SESAW91-2
Sanz, Julio Gonzalez, "Standardization for Safety Software: Current Status and

Perspectives," Software Engineering Standards Application Workshop sponsored by IEEE

Computer Society, San Francisco, May 1991.

66

SESAW91-3
Wright, Cynthia L. and Anthony J. 2^wilski, "Existing and Emerging Standards for

Software Safety," Software Engineering Standards Application Workshop sponsored by

IEEE Computer Society, San Francisco, May 1991.

TYSZER
Tyszer, J., P. Parent, J. Rajski and V. K. Agarwal, "The Hierarchical Description of

Stochastic Petri Nets," Department of Electrical Engineering, McGill University.

67

ANNOUNCEMENT OF NEW PUBUCATIONS ON
COMPUTER SYSTEMS TECHNOLOGY

Superintendent of Documents

Government Printing Office

Washington, DC 20402

Dear Sir:

Please add my name to the announcement Hst of new pubHcations to be issued in

the series: National Institute of Standards and Technology Special Publication 500-.

Name

Company
,

Address

City State Zip Code

(Notification key N-503)

NISTTechnical Publications

Periodical

Journal of Research of the National Institute of Standards and Technology—Reports NIST research

and development in those disciplines of the physical and engineering sciences in which the Institute is

active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a

broad range of subjects, with major emphasis on measurement methodology and the basic technology

underlying standardization. Also included from time to time are survey articles on topics closely related to

the Institute's technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the

Institute's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) devel-

oped in coopjeration with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NIST, NIST annual reports, and

other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical

properties of materials, compiled from the world's literature and critically evaluated. Developed under a

worldwide program coordinated by NIST under the authority of the National Standard Data Act (Public

Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published

bimonthly for NIST by the American Chemical Society (ACS) and the American Instimte of Physics (AIP).

Subscriptions, reprints, and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, DC
20056.

Building Science Series—Disseminates technical information developed at the Institute on building

materials, components, systems, and whole structures. The series presents research results, test methods, and

performance criteria related to the structural and environmental functions and the durability and safety

characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of

a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the

subject area. Often serve as a vehicle for final reports of work performed at NIST under the sponsorship of

other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce
in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized

requirements for products, and provide all concerned interests with a basis for common understanding of

the characteristics of the products. NIST administers this program in support of the efforts of private-sector

standardizing organizations.

Order the following NIST publications—FIPS and NISTIRs—from the National Technical Information

Service, Springfield, VA 22161.

Federal Information Processing Standards Publications (FTPS PUB)—Publications in this series

collectively constitute the Federal Information Processing Standards Register. The Register serves as the

official source of information in the Federal Government regarding standards issued by NIST pursuant to

the Federal Property and Administrative Services Act of 1949 as amended. Public Law 89-306 (79 Stat.

1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of

Title 15 CFR (Code of Federal Regulations).

NIST Interagency Reports (NISTIR)—A special series of interim or final reports on work performed by

NIST for outside sponsors (both government and nongovernment). In general, initial distribution is handled

by the sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161,

in paper copy or microfiche form.

U.S. Department of Commerce
National Institute of Standards and Technology

Gaithersburg, MD 20899-0001

Official Business

Penalty for Private Use $300

