
NIST Special Publication 500-213

Computer
Systems
Technology
U.S. DEPARTMENT OF
COMMERCE
Technology Administration

National Institute of

Standards and
Technology

Nisr

Next Generation Computer Resources:

Reference Model for Project Support

Environments (Version 2.0)

(CMU/SEI-93-TR-23)

NAT L INST, OF STAND S TECH R.I.C.

NIST

PUBLiCATJONS

QC —
100

.U57

500-213

1S95

7he National Institute of Standards and Technology was established in 1988 by Congress to "assist

industry in the development of technology . . . needed to improve product quality, to modernize

manufacturing processes, to ensure product reliability . . . and to facilitate rapid commercialization ... of

products based on new scientific discoveries."

NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S.

industry's competitiveness; advance science and engineering; and improve public health, safety, and the

environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national

standards of measurement, and provide the means and methods for comparing standards used in science,

engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized

by the Federal Government.

As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic

and applied research in the physical sciences and engineering and performs related services. The Institute

does generic and precompetitive work on new and advanced technologies. NIST's research facilities are

located at Gaithersburg, MD 20899, and at Boulder, CO 80303. Major technical operating units and their

principal activities are listed below. For more information contact the Public Inquiries Desk, 301-975-3058.

Technology Services Manufacturing Engineering Laboratory
• Manufacturing Technology Centers Program • Precision Engineering

• Standards Services • Automated Production Technology
• Technology Commercialization • Robot Systems

• Measurement Services • Factory Automation
• Technology Evaluation and Assessment • Fabrication Technology
• Information Services

Materials Science and Engineering
Electronics and Electrical Engineering Laboratory
Laboratory • Intelligent Processing of Materials

• Microelectronics • Ceramics
• Law Enforcement Standards • Materials Reliability'

• Electricity
1

• Polymers

• Semiconductor Electronics • Metallurgy

Electromagnetic Fields' • Reactor Radiation

• Electromagnetic Technology

Building and Fire Research Laboratory
Chemical Science and lechnology • Structures

Laboratory • Building Materials

• Biotechnology • Building Environment
• Chemical Engineering' • Fire Science and Engineering

• Chemical Kinetics and Thermodynamics • Fire Measurement and Research
• Inorganic Analytical Research
• Organic Analytical Research Computer Systems Laboratory
• Process Measurements • Information Systems Engineering

• Surface and Microanalysis Science

• Thermophysics^

• Systems and Software Technology
• Computer Security

• Systems and Network Architecture

Physics Laboratory • Advanced Systems

• Electron and Optical Physics

• Atomic Physics Computing and Applied Mathematics
• Molecular Physics Laboratory
• Radiometric Physics • Applied and Computational Mathematics^

• Statistical Engineering^• Quantum Metrology

• Ionizing Radiation • Scientific Computing Environments^
• Time and Frequency' • Computer Services'

• Quantum Physics' • Computer Systems and Communications^
• Information Systems

'At Boulder, CO 80303.

"Some elements at Boulder, CO 80303.

NIST Special Publication 500-213

Next Generation Computer Resources:

Reference Model for Project Support

Environments (Version 2.0)

(CMU/SEI-93-TR-23)

Edited By

Alan Brown, David Carney, Patricia Oberndorf

Software Engineering Institute

and

Marvin Zelkowitz

Computer Systems Laboratory

National Institute of Standards and Techinology

Gaithersburg, MD 20899

November 1993

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

Technology Administration

Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
Arati Prabhakar, Director

Reports on Computer Systems Technology

The National Institute of Standards and Technology (NIST) has a unique responsibility for computer

systems technology within the Federal government. NIST's Computer Systems Laboratory (CSL) devel-

ops standards and guidelines, provides technical assistance, and conducts research for computers and

related telecommunications systems to achieve more effective utilization of Federal information technol-

ogy resources. CSL's responsibilities include development of technical, management, physical, and ad-

ministrative standards and guidelines for the cost-effective security and privacy of sensitive unclassified

information processed in Federal computers. CSL assists agencies in developing security plans and in

improving computer security awareness training. This Special Publication 500 series reports CSL re-

search and guidelines to Federal agencies as well as to organizations in industry, government, and

academia.

National Institute of Standards and Technology Special Publication 500-213
Natl. Inst. Stand. Technol. Spec. Publ. 500-213, 117 pages (Nov. 1993)

CODEN: NSPUE2

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1993

For sale by the Superintendent of Documents, U.S. Government Printing Orfice, Washington, DC 20402

Contents

Preface xi

Acknowledgments xiii

1 BACKGROUND 1

1.1 Project Support Environment Standards Working Group 1

1.2 Approach 2

1.3 Domain of Interest 2

1 .4 Scope of the Model 3

1 .5 Types of Project Support 4

2 DESCRIPTION OF THE MODEL 5

2.1 Key Concepts and Terms 6

2.2 The Reference Model 7

2.2.1 Description of End-User Services 9

2.2.2 Description of Framework Services 10

2.3 Discussion of the Model 10

2.3.1 Conceptual Models vs. Actual Environments 10

2.3.2 Rationale for the Groupings in the Model 11

2.3.3 Place of the Target System in the Model 12

3 NOTES ON READING THE SERVICE DESCRIPTIONS 13

NISTSP 500-213 iii

3.1 On the Relationships Dimension 14

3.2 On Other Aspects of PSE Services 15

4 TECHNICAL ENGINEERING SERVICES 17

4.1 System Engineering Services 18

4.1.1 System Requirements Engineering Service 18

4.1.2 System Design and Allocation Service 19

4.1.3 System Simulation and Modeling Service 20

4.1.4 System Static Analysis Service 21

4.1.5 System Testing Service 22

4.1.6 System Integration Service 23

' 4.1.7 System Re-engineering Service 24

4.1.8 Host-Target Connection Service 25

4.1.9 Target Monitoring Service 25

4.1.10 Traceability Service 26

4.2 Software Engineering Services 27

4.2.1 Software Requirements Engineering Service 27

4.2.2 Software Design Service 28

4.2.3 Software Simulation and Modeling Service 29

4.2.4 Software Verification Service 30

4.2.5 Software Generation Service 31

4.2.6 Compilation Service 32

4.2.7 Software Static Analysis Service 33

4.2.8 Debugging Service 35

4.2.9 Software Testing Service 35

4.2.10 Software Build Service 36

4.2.11 Software Reverse Engineering Service 37

4.2.12 Software Re-engineering Service 38

iv NISTSP 500-213

4.2.13 Software Traceability Service 39

4.3 Life-Cycle Process Engineering Services 40

4.3.1 Process Definition Service 41

4.3.2 Process Library Service 42

4.3.3 Process Exchange Service 42

4.3.4 Process Usage Service 43

5 TECHNICAL MANAGEMENT SERVICES 45

5.1 Configuration Management Service 45

5.2 Change Management Service 47

5.3 Information Management Service 48

5.4 Reuse Management Service 49

5.5 Metrics Service 50

6 PROJECT MANAGEMENT SERVICES 53

6.1 Planning Service 54

6.2 Estimation Service 55

6.3 Risk Analysis Service 55

6.4 Tracking Service 56

7 SUPPORT SERVICES 59

7.1 Common Support Services 60

7.1.1 Text Processing Service 60

7.1.2 Numeric Processing Service 61

7.1.3 Figure Processing Service 62

7.1.4 Audio and Video Processing Service 63

7.1.5 Calendar and Reminder Service 64

7.1.6 Annotation Service 65

7.2 Publishing Service 66

NISTSP 500-213 v

7.3 User Communication Services 68

7.3.1 Mail Service . 68

7.3.2 Bulletin Board Service 69

7.3.3 Conferencing Service 70

7.4 PSE Administration Services 71

7.4.1 Tool Installation and Customization Service 71

7.4.2 PSE User and Role Management Service 72

7.4.3 PSE Resource Management Service 73

7.4.4 PSE Status Monitoring Service 74

7.4.5 PSE Diagnostic Service 74

7.4.6 PSE Interchange Service 75

7.4.7 PSE User Access Service 76

7.4.8 PSE Instruction Service 76

8 FRAMEWORK SERVICES 79

8.1 Object Management Services 80

8.2 Process Management Services 83

8.3 Communication Service 84

8.4 Operating System Services 85

8.5 User Interface Services 86

8.6 Policy Enforcement Services 87

A EXTENDED DEFINITIONS OF KEY TERMS 89

B COMMON PROJECT ACTIVITIES AND THEIR RELATION TO REFERENCE MODEL
SERVICES 93

B.1 Management Activities 93

B.1.1 Acquisition Management 93

B.I.2 Project Management 94

B.I.3 Quality Assurance 94

vi NISI SP 500-213

B.2 Engineering Activities 95

B.2.1 System Engineering 95

B.2.2 Software Engineering 95

B.2.3 Process Engineering 96

B.3 Supportability Activities 96

B.3.1 Logistics Support 96

B.3.2 Operation and Maintenance 97

C RATIONALE 99

D ABBREVIATIONS and ACRONYMS 103

E REFERENCES 107

INDEX 108

SUBMISSION OF COMMENTS 1 1

3

NISTSP 500-213 vii

Comments on this document are welcome. See the last two pages of this document for infor-

mation about submitting comments.

Certain commercial products are identified in this report. Such identification does not imply

recommendation or endorsement by the National Institute of Standards and Technology and

the Software Engineering Institute, nor does it imply that the product, publication, or service

identified is necessarily the best available for the purpose.

NIST SP 500-213 ix

Preface

The objective of the Next Generation Computer Resources (NGCR) program is to restructure

the Navy's approach to acquisition of standard computing resources to take better advantage

of commercial advances and investments. It is expected that this new approach will result in

reduced production costs, reduced operation and maintenance costs, and more effective sys-

tem integration. The program revolves around the selection of commercially-based interface

standards in six areas: multi-system interconnects, multiprocessor interconnects, operating

systems, database management systems, project support environments, and graphics stan-

dards.

The working group concentrating on project support environment standards is the Project

Support Environment Standards Working Group (PSESWG, pronounced "peace-wig"). Like the

other NGCR working groups, the goal of the PSESWG is to establish standards for interfaces;

the particular domain of interest for the PSESWG is project support environment interfaces.

As an initial step toward this goal the members of the working group have produced this

Reference Model for a Project Support Environment (PSE). The first three chapters contain a

general description of the model. The remaining chapters provide detail of individual aspects

of the model.

In releasing this document, there is no intention of providing a model to which any environ-

ment might "conform." The reference model is a way of expressing an understanding of the

functionality of a populated environment. It is not an architectural description to be used in

implementing an environment.

NIST SP 500-213 xi

Acknowledgments

This document has been developed with the help of a large group of people who participated

in quarterly meetings of the NGCR PSESWG during 1991 and 1992. The co-chairs of this

working group were LCDR Vinnie Squitieri and Patricia Oberndorf. Members of this working

group included:

Carole Amos, Todd Barborek, Dennis Barney, Jerry Brookshire, Alan Brown, D. Bruce Macin-

doe, David Carney, Peter Clark, Geoff Clow, Douglas Cook, Charlotte Crawford, Hugh Davis,

Anthony Earl, Michael Edwards, Bob Ekman, Peter Feiler, James Ferguson, Thomas Grobicki,

Dick Grote, Stuart Jeans, George Hacken, Barbara Haleen, Bob Hanrahan, Hal Hart, Richard

Hawkes, Henry Heffernan, Bob Hokanson, Stu Jeans, Judy Kerner, Tammy Kirkendall, Joe

Lomax, Monte Luhr, Steve Lyda, Brad Lyon, Joyce Lyttle, Zyg Martynowicz, John McGregor,

Charles McPherson, Jim Milligan, Les Mopps, Ed Morris, Bob Munck, Philip Nau, Patricia

Oberndorf, Kathy OToole, Bob Page, Judi Peterson, Richard Randall, Jim Reed, Judy Ry-

erson, Michael Shapiro, Mike Snodgrass, Vinnie Squitieri, William Sudman, Linwood Sutton,

Ramiro Valderama, Rosa Weber, Tom Wheeler, William Wong, and Marvin Zelkowitz

The original conceptual basis of the reference model came from Peter Feiler, who also par-

ticipated in the earliest stages of PSESWG. The principal editors of this document were Alan

Brown, David Carney, Patricia Oberndorf, and Marvin Zelkowitz, who are also responsible for

the text of the first three chapters

The concept for the "prism" drawing was a particular contribution of Michael Shapiro.

Many valuable contributions to the body of the document were made by: Dennis Barney, Peter

Clark, Geoff Clow, Barbara Cuthill, Bob Ekman, Peter Feiler, Hal Hart, Bob Hokanson, Jim

Milligan, Carol Morgan, Bob Munck, Carl Schmiedekamp, Michael Shapiro, Bill Sudman, and

Rosa Weber. The Reference Model has also benefitted from the valuable comments made by

other reviewers, including: Ger van den Broek, Anthony Earl, Herm Fischer, Alex Lewin, Maria

H. Penedo, Ian Simmonds, and Ian Thomas.

This list of contributors was compiled from various sources; if any names of contributors have

been accidentally omitted, the oversight is deeply regretted.

NISTSP 500-213 xiii

Chapter 1

BACKGROUND

The U.S. Navy has embarked on the Next Generation Computer Resources (NGCR) program

to fulfill its need for standard computing resources. The program revolves around the selection

of interface standards in six areas. The interface standards will be based on existing industry

standards with multi-vendor support. The objective is to restructure the Navy's approach to

take better advantage of commercial advances and to reduce cost and duplication of computer

resources. This document is part of the NGCR program.

1 .1 Project Support Environment Standards Working Group

One of the areas chosen by NGCR for interface standardization is that of project support en-

vironments (PSEs). The initial focus for the PSE Standards Working Group (PSESWG) is to

identify areas in support environments that are in need of standardization and for which industry

accepted standards may be available within the NGCR's timeframe. The primary goal of the

PSESWG is to provide an interface standard that can be used by project managers as an aid in

procuring or assembling a Project Support Environment (PSE) for a particular project or organi-

zation. This standard will itself consist of several interface standards that have been chosen for

their compatibility and consistency and their ability to support a wide range of project support

environment needs. This standard will use industry standards where possible, promoting use

of commercial off-the-shelf (COTS) and government off-the-shelf (GOTS) products.

The first step towards this goal for PSESWG is the establishment of a reference model that

describes the full scope of functionality that is expected of a PSE. This reference model will

provide the basis for:

NIST SP 500-213 1

Determination of and examination of interfaces for which standards might be included in

the final PSESWG standard.

• Identification of requirements for interfaces which might be beneficial to standardize but

for which no industry standardization activity can be identified.

• Consensus throughout the environments community.

While there are several other reference model activities that are relevant to this goal, none

individually has the scope that is required nor provides a definition of the concepts at a suitable

level of abstraction. Thus the reference model presented in this document is new, although it

builds on those other reference models. The PSESWG activity is being coordinated with those

other activities whenever possible.

1.2 Approach

Prior to developing this reference model, a large collection of existing environment efforts

and models was inspected. This included (but was not limited to) the Software Technology

for Adaptable, Reliable Systems (STARS) program, the National Institute of Standards and

Technology (NIST) Integrated Software Engineering Environment (ISEE) working group, the

European Computer Manufacturers Association (ECMA) TC33 Task Group on the Reference

Model, the Ada Joint Program Office Evaluation and Validation Team, the Air Force Software Life

Cycle Support Environment (SLCSE) project, Honeywell's Engineering Information Systems

(EIS) program, the Conceptual Environment Architecture Reference Model (CEARM) effort, and

the standardization committees within IEEE and ANSI for POSIX and for CASE Tool Integration

Models (CTIM). The products of those efforts have been analyzed and many valuable aspects

have been combined and abstracted.

1.3 Domain of Interest

The approach of this model is most directly comparable to the approach evidenced in the POSIX
Open Systems Environment and the NIST/ECMA Reference Model for Frameworks of Software

Engineering Environments. However, while both of these have a similar approach, they have

different domains of interest. For POSIX that domain is Open Systems Environments,^ and

for the NIST/ECMA reference model it is the domain of PSE frameworks that support software

engineering. The domain of the PSESWG reference model encompasses both the POSIX
and NIST/ECMA domains. Because their approaches are so similar, PSESWG has made
direct use of both models as components of our reference model. This approach led to the

realization that since both efforts developed relatively independently of each other, there are

''Note that this use of the term "environment" is quite different from the sense in which it is used in the phrase

"software engineering environment."

2 NIST SP 500-213

numerous small (but at times critical) inconsistencies between them that must be addressed.

Members of NGCR PSESWG have been active in helping the two communities to resolve these

inconsistencies.

The domain of the PSESWG reference model also encompasses domains of interest that

are not addressed in the work of either POSIX or NIST ISEE. Numerous specifications and

technical reports, describing actual or proposed products, tools and standards, were examined.

While some of these provided valuable ideas for the writing of this document, PSESWG's need

for greater breadth and scope required the development of a different model for a complete,

populated PSE. Thus the majority of the ideas presented in this model are original and are not

derived from any earlier efforts.

Finally, the approach is explicitly aimed at establishing a conceptual basis for an environment,

not at standardizing any particular environment product; our model must be viewed in this light.

This approach is in contrast to many current users of a given environment who, if confronted

with the question "What is your environment like?", would reply by listing the available tools.

The basic premise of the NGCR program is to standardize on interfaces rather than products.

Thus, while tools can help to understand the interfaces on which they depend, they are not

central to this reference model, and there is no part of the intended results of the PSESWG
activities that involves choosing a standard toolset.

1 .4 Scope of the Model

The purpose of the reference model is to describe environments that support projects that

engineer, develop and maintain computer-based systems. There are many varieties of such

projects. They can comprise the work of several dozens of people or can be a solitary effort.

They can be geographically dispersed or concentrated. They also can be institutionally dis-

persed, sharing people and facilities of several organizations, or concentrated within a single

organization. Projects can have widely divergent degrees of automated support. Lastly, the

nature of projects may be essentially exploratory, developmental, or maintenance, or may en-

compass all of these. Yet common to projects of interest to PSESWG is a set of important

characteristics:

• Their province is the exploration, engineering, development, or enhancement of a computer-

based system.

• They require some mature form of management.

• There is computer-based support for the project.

• There is computer-based support for communication during the project's execution.

• There are several stages within the life of the project, often encompassing various engi-

neering activities.

NIST SP 500-213 3

These characteristics do not uniquely apply to software engineering projects, but include

projects involving hardware and firmware, systems engineering, etc. These characteristics

are also not peculiar to Navy or to DoD projects, but are typical of engineering projects in

general.

Although a project support environment can be either automated or manual, the scope of this

reference model is a computer-based support environment. This scope can be further artic-

ulated by distinguishing between different aspects of the automation. For instance, various

project support capabilities alluded to above can be provided on PCs, on workstations, on

mainframe computers, or on networks involving these. The scope of this reference model en-

compasses all these. To the greatest extent possible the concentration has been on capabilities

that are common to all, not applicable to only one.

1 .5 Types of Project Support

Projects require many types of support. Examination of the processes that projects use provides

important information on the PSE support that may be required. The functions of projects that

can be supported by PSEs can be grouped within four major categories:

• technical engineering functions (e.g., system design, simulation)

• technical management functions (e.g., reuse management, configuration management)

• project management functions (e.g., resource scheduling, project tracking)

• support functions (e.g., editing, maintenance of the support facility)

While details about these categories might be debated,^ there is probable agreement that

they represent the types of support functions that projects may require. And given the extent

and complexity of this area, it is probably impossible to find any set of categories that will

find universal agreement. The Working Group has therefore chosen a set of categories that

will be most useful as a means toward its principal goal, namely, selecting interface areas for

standardization.

^For example, some might believe that the "management functions" extend beyond project budgeting to such

accounting functions as payroll; others will disagree. Post-deployment logistics presents a more difficult example.

The purpose of this list is to convey the general scope; the services described in chapters 4 through 8 provide more

detail.

4 NISTSP 500-213

Chapter 2

DESCRIPTION OF THE MODEL

This chapter first establishes the basic premise of the reference model, then describes the

model itself, and lastly discusses several concepts central to an understanding of it.

The reference model is a conceptual description of the functionality provided by a project sup-

port environment. This description is general and is bounded neither by a particular application

domain nor by any specific lifecycle paradigm for a development project. This is in contrast to

an actual implemented environment that is constructed of particular components (i.e., software

and hardware) and that typically does reflect a chosen lifecycle paradigm, at least implicitly.

The distinction between conceptual and actual is of fundamental importance. The conceptual

viewpoint that governs this reference model provides an abstract description of the functionality

expected in a PSE. An actual viewpoint would describe a particular realization of the conceptual

view in terms of a PSE architecture with specific tools and standards. There is a mutually

reflective relationship between the conceptual and the actual views, i.e., between this PSE
reference model and existing environments: one may either consider the model to be abstracted

from many environments or regard a particular environment as a realization of the model.

Figure 2.1 illustrates this distinction. The left-pointing arrow illustrates the activity of studying

several existing environments to derive information for the model. The right-pointing arrow

shows how a particular environment could be a realization of the model. One benefit of

this approach is that it provides a common means of describing environments (e.g., "How is

Conceptual
abstraction

Actual

Model
realization

Environment

Figure 2.1: Conceptual and Actual Distinction.

NIST SP 500-213 5

SLCSE different from EAST?").^ This further provides an ongoing validation of the model; it

is a necessary attribute that the reference model provides an accurate reflection of technology

that exists.

2.1 Key Concepts and Terms

There are several key concepts and terms used in the Reference Mo6e\. This section provides

an overview of them and their interrelationships. These terms are more fully described and

defined in Appendix A. These key terms are indicated below by italics. It should be noted

that some of these concepts are not amenable to simple definition, either because the term

is broadly applicable, forcing description rather than definition, or because the term currently

has conflicting meanings in the environments community. It is hoped that this section of the

Reference Model may help resolve some of this confusion.

An Environment is a collection of software and hardware'* components; there is typically some
degree of compatibility that renders these components harmonious. One can describe an

environment using the contrasting viewpoints of conceptual vs. actual; or in a slightly different

way, one can describe an environment in terms of the way it supports human activities.

When described from the conceptual point of view, an environment's capabilities are referred

to as Services, which are abstract descriptions of the work done. Some of these services are

of direct interest to an end-user (e.g., an engineer, manager, or secretary directly participating

in the execution of a project) while others comprise an underlying infrastructure, or Framework,

comprised of relatively fixed capabilities that support processes, objects, and user interfaces.

When described from the opposite, or actual view, i.e., when a realized environment is consid-

ered, the components that directly support an end-user are generally called Tools. Although no

single definition for "tool" will suffice, that of the IEEE Glossary^ is useful: a computer program

used to help develop, test, analyze, or maintain another computer program or its documen-

tation. As in the conceptual view, the components that comprise an actual infrastructure are

referred to as the Framework. The same term, framework, is thus used in both a conceptual

and an actual sense, and its precise meaning depends on the context.

Finally, when an Environment is considered from the vantage point of how it supports human

activities, then either the environment will provide a Service to a human user or a human user

will perform some Task with the aid of the environment. For instance, one can speak of the

task of testing software, or of using a software testing service.

These different views of an environment result in subtle differences in the meanings of key

terms. In particular, there is a slightly different meaning for service when it is contrasted

with tool and when it is contrasted with task. In the first case, a tool is an actual realization

of one or more conceptual services. While there is no strict correlation between tool and

^Explanations of all acronyms are provided in Appendix D.

*For the purposes of this document, PSESWG concentrates on the software components of an environment.

^lEEE Standard Glossary of Software Er)gir)eering Terminology, IEEE Std 610.12-1990.

6 NIST SP 500-213

Conceptual Actual

(Machine)

Capability
SERVICE » TOOL

(Human)

Activity

TASK

Figure 2.2: Relationship between Service, Tool, and Task.

service (because one tool may realize many services, or one service may be realized by many
tools), there are relatively straightforward correlations between tools' functionalities and service

descriptions. In the second case, a task and a service provide complementary views of the

same activity. For instance, one might consider that the environment provides some capability

(e.g., an environment's testing service); or one might consider that a human user performs

some task using the environment (e.g., the human activity of testing). Whichever view one

takes, both refer to the same notion, e.g., a human using a piece of software to test the output

of an engineering process.

In brief, services are the capabilities of the environment, tasks make use of and provide context

for those capabilities, and tools are the actual executable software components. Figure 2.2

illustrates the distinction between these concepts. Service can be contrasted with Tool along

an axis of Conceptual vs. Actual, or it can be contrasted with Task along an axis of Capability

vs. Activity.

2.2 The Reference Model

The PSE reference model is a catalog of service descriptions spanning the functionality of a

populated environment. The service descriptions are grouped by several different categories,

including degrees of abstraction, granularity, or functionality. The highest-level division classi-

fies services either as end-user or framework services. When realized (i.e., when implemented

by tools), the end-user category includes services that relate to direct support for the execution

of a project, e.g., that would be needed by engineers, managers, and secretaries. By contrast,

framework services (when realized) more often pertain to users who facilitate, maintain, or

improve the operation of the computer system itself (e.g., a human user performing such tasks

as tool installation) or are used directly by other services in the environment. As a heuristic for

understanding the differences between framework and end-user services, framework services

in actual environments tend to be understood by studying "program logic manuals" or by read-

ing the source program and looking for procedure invocations. On the other hand, end-user

NIST SP 500-213 7

Framework
Services

Figure 2.3: An Illustration of Service Groups.

services are recognized by reading user manuals for the actual environment. However, these

rules are only implicit and not part of the model itself. It is certainly reasonable for a user

command to have direct access to a framework facility and it is also possible for an internal

function call to have access to an end-user service.

End-user services are further subdivided into Technical Engineering, Technical Management,

Project Management, and Support services. The first three of these groups partition the

execution of a project into engineering, management, and a middle category that partakes of

both. The fourth group, Support services, is orthogonal to the other three, since it includes

capabilities potentially used by ail users, such as word processing, mail, and publication.

Figure 2.3 illustrates the logical relation of these service groups. Framework services form

a central core with a potential relationship to all other services in the environment. Support

services underlie the other end-user services. The remaining three groups, Technical Engi-

neering, Technical Management, and Project Management, surround the Framework services

and make use of the Support services. In addition, services from these three groups may have

relationships with each other.

It is not the intention that the boundaries of the parts of this drawing explicitly indicate interfaces.

8 NISTSP 500-213

Support Services

Project

Management
Services

Technical
Management
Services

Technical
Engineering
Services

Framework Services

Figure 2.4: Another Illustration of Service Groups.

since this figure is drawn at the level of service groups, not of individual services. Thus, it must

be stressed that while a drawing such as this attempts to suggest in a very general manner how
the high-level service groups relate to each other, there is an express intention to avoid any

sort of architectural implication. The Reference Model is a conceptual, not an actual, model,

and no architectural choices are intended by this figure. To emphasize this point the same set

of service groups, with the same set of potential relationships, could also be illustrated by figure

2.4.

The key point is that the figures are illustrative only and do not in any way connote layering of

services, architectural decisions, or implementation choices for an actual environment.

2.2.1 Description of End-User Services

Each of the end-user service categories (Technical Engineering, Technical Management,

Project Management, and Support services) is further subdivided by engineering domain,

user role, or life-cycle phase.

Technical Engineering services focus on the technical aspects of project development. These

services are subdivided by specific engineering domains (e.g., Software Engineering). Within

an engineering domain the processes used in the life cycle of a project define a series of tasks,

each requiring services for its support. Thus, within the software engineering domain, tasks

typically include designing and coding, which require services such as compilation and testing.

Technical Management provides services that are closely related to engineering activities; these

services provide a managerial complement to engineering activities in the areas of configuration

management, reuse, and metrics.

Project Management services are relevant to the overall success of the enterprise. They

include such things as scheduling, planning, and tracking the overall progress of a project.

Support services focus on tasks and activities common among all users of a PSE, regardless of

NIST SP 500-213 9

the domain, role, or life-cycle phase in which the activity is taking place. They include a group

of common services for information processing, as well as publishing, user communication,

presentation, and administration services.

2.2.2 Description of Frameworl(Services

The framework service categories include Operating System, Object Management, Process

Management, Policy Enforcement, User Interface, and Communication services. Service de-

scriptions for these groups are abstracted from the reference model developed by ECMA and

modified by NIST in the "Reference Model for Frameworks of Software Engineering Environ-

ments," Edition 3, NIST Special Publication Number 500-21 1, August 1993 [NIST]. In addition,

the Framework Administration services that are included here in the chapter on Support ser-

vices are also abstracted from that document.

2.3 Discussion of the Model

The following sections discuss the conceptual basis of the model and provide a rationale for

how the service groupings were decided. A final section discusses how a target system is

considered in the Reference Model.

2.3.1 Conceptual IVIodels vs. Actual Environments

Since the reference model is conceptual as opposed to actual, the service descriptions tend

neatly to partition the functionalities of a PSE. When an actual environment is examined,

however, these neat conceptual groupings are seldom found. Real software components span

various service groups, with many components considered to be end-user tools also providing

capabilities properly regarded by the Reference Model as framework services. The likelihood

of this functional overlap is the reason that a conceptual model is necessary: one of its principal

values is that it provides a common conceptual basis against which to examine many different

environment implementations. Figure 2.5 illustrates the distinction between conceptual service

descriptions, having no duplication of functionality, and a set of actual software components,

many of which may overlap in their functional capabilities. As the figure shows, tools may
duplicate other tools' functionality, and a tool often provides both framework and end-user

services.

Note that even if actual environments show this mixing of framework and end-user functionality,

it is nonetheless true that framework services tend to be a relatively fixed set of infrastructure

services found in most environments, regardless of domain or tool content.

10 NIST SP 500-213

Conceptual

Model

End-user
Services

Framework
Services

service c service d

service a service b

Actual

Environment

End-user toois and
framework implementation

Figure 2.5: Conceptual Service Groups and Actual Software Components.

2.3.2 Rationale for the Groupings in the Model

In the widest sense, all users of the computer system are ultimately participating in project

execution. However, the reference model distinguishes end-user services as those that are

directly related to project execution. For example, managing computer memory clearly is nec-

essary to facilitate an eventual (computer) engineering process. However, services that directly

support the management of computer memory are conceptually different enough from services

that directly support high-level engineering activities that the Reference Model considers the

classification of memory management appropriately as a framework service and not as an

end-user service.

There are other criteria by which services are grouped in the Reference Model. Often a collec-

tion of services provides the functionality needed to support a common resource. For example,

there is a large group of services in this reference model related to accessing data objects in

a common repository. These services are all considered part of the Object Management ser-

vices group. Since these services are related by creating, accessing, manipulating and using

objects from a repository, their classification as a single group allows for a better conceptual

understanding of the requirements imposed on any realization of these services and ultimately

on any standards that address these services.

Another motivation for grouping some services together might be the roles individuals take

in using them. Thus, the activities that go into designing and producing executable source

programs will use services that are grouped under the heading of Software Engineering. In

this case, the group is determined by the users of the service rather than the management of

a common resource.

The boundary between service groups, particularly the boundary between end-user and frame-

work services, is a dynamic one that changes over time. There is a general tendency for greater

NIST SP 500-213 11

functionality to be gradually assumed by the underlying framework. For instance, historically

most operating systems have included a directory structure and file system for data storage;

a relational database is only occasionally added to a basic operating system. In the future,

however, relational database functionality may be part of every operating system. It is precisely

this growth of functionality that leads toward the notion of "framework," in contrast to the notion

of "operating system."

2.3.3 Place of the Target System in the Model

While the target system may be the same as the development system, there is no requirement

that this be so. The PSE reference model therefore differentiates between the services available

on the host system used in the development of computer-based projects and services on the

target system upon which the developed project will execute.

Within the NGCR program, some of the details of target system functionality are described

elsewhere. One source for these details is the "Operating Systems Standards Working Group

Reference Model," June, 1990 [OSSWG]. Other services, in particular those involving the

development system's connection to the target system and the monitoring of the target system

by the development system, are part of the PSE reference model.

12 NISTSP 500-213

Chapter 3

NOTES ON READING THE SERVICE
DESCRIPTIONS

The remainder of this document consists of descriptions of the services of a PSE. The descrip-

tions are grouped according to the division already noted, i.e., Technical Engineering, Technical

Management, Project Management, Support, and Framework services. Each service group is

prefaced with a general overview of the service group, followed by a detailed description of the

services. For consistency throughout the model, PSESWG has adopted the convention of the

NIST/ECMA Reference Model, by which a service is described through its dimensions:^

The term "dimensions" is used for the kinds of description the reference model

emphasizes with regard to the services. This is to stress different dimensions are

somewhat distinct (if not orthogonal) from one another. That is, if a feature in one

service has changed in one dimension, it should not be assumed that changes

had to be made to that part of the service in another dimension. Dimensions offer

different ways of looking at a whole service....To provide descriptions of services

from various perspectives a set of dimensions is associated with each service in

the RM.

The eight dimensions are:

Conceptual: the semantics (e.g., functionality) of a service without reference to either its

possible implementation or to its relation to other services.

Operations: a subset of the expected operational capabilities of an implementation that

realizes the service. This subset is not intended to be complete, but only to provide examples

of the typical operations of the service.

Rules: the set of rules that constrain the states the data may reach and the changes to states

that operations may make.

^NISXp. 14

NIST SP 500-213 13

Types: the possible types of data or data model used by an implementation of that service,

information about those types (for example, metadata), as well as the data (for example,

instances of those types) used in an implementation.

External: how the implementation of the service is made available to be used, e.g., by other

services, by tools or application programs, or directly by users.

internal: the place in which to discuss implementation issues such as whether the service

might be supplied by the underlying framework.

Relationships to other services: the ways in which implementations of one service might

interact with implementations of another service; this may include examples of typical relation-

ships, as well as separation of static and dynamic relationships between services.

Examples: particular examples that implement a service, such as existing standards, inter-

faces, products, etc.

These dimensions are purely a conceptual means to extract different facets of information about

a service in a consistent way. This information may not be apparent from a single detailed prose

narrative, hence the choice of using dimensions. The reference model does not prescribe that

a system described using the reference model must have every service, nor that every service

must be explained from all dimensions. Some dimensions may be more important than others

when dealing with particular services. Often, services or dimensions may not apply.

3.1 On the Relationships Dimension

Throughout the Reference Model, relationships between services are usually described by such

words as: "This service may interact with the XXX service..." This wording has been chosen

for several reasons. First, the nature of the relationship may be of many types, including

dependency (mutual or otherwise), data sharing, or control. Since different implementations

of services might make different choices, the use of "interact" is a neutral way of indicating a

relationship without making an implementation choice.

Similarly, the existence of relationships between services is (or is nearly) an architectural deci-

sion. Since the Reference Model expressly avoids making architectural decisions, relationships

between services are listed only as suggestions and are in no way intended to indicate imple-

mentation or architectural decisions.

Finally, almost all of the end-user services of an environment will typically have some relation-

ship to implementations of the framework services, and especially on the object management

system; they will also typically have some relationship with the Support services described in

Chapter 7. In general, such relationships are noted in the Reference Model only when they

might be of particular relevance to the service.

14 NISTSP 500-213

3.2 On Other Aspects of PSE Services

The services included in this reference model tend to be discrete, describing functionality that is

explicitly invoked and that provides a standalone service. There are, however, some services

that are ubiquitous, in which case their functionality is implicitly invoked and whose influence

permeates many other services. A significant example of ubiquitous services can be seen in

the Policy Enforcement services. While these services are described in a separate section

(section 8.3), their operation can affect most other services in the model, even though that

interaction may not be documented in the service descriptions. Where the influence of security

and policy enforcement is documented, it is most often done through either the Rules or the

Internal dimension.

A different example of ubiquitous services lies in the question of integration services. Sharing

information among the services of a PSE is directly related to the degree of integration that

the PSE exhibits. Integratedness is usually described by three integration attributes: data

integration (sharing of data objects); presentation integration (a common interface with the

user of a PSE); and control integration (appropriate sequencing among several services of the

PSE). While integration is recognized as an important aspect of a PSE, there are few actual

integration services that can be separated as discrete services. Data interchange within the

framework's Object Management services (section 8.1) and some of the Life-Cycle Process

Engineering services (section 8.2) are known to be related to integration, but the complete set

of needed services to appropriately develop a fully integrated PSE is still an important research

topic and not fully understood today.

While reading the service descriptions in the chapters that follow, it is important to keep this

distinction between discrete and ubiquitous services in mind, in an actual environment, the

influence of services such as policy enforcement and security could be relevant to most or all

of the other services, and could have a significant impact on the architecture of any system

that implements that service.

NIST SP 500-213 15

Chapter 4

TECHNICAL ENGINEERING
SERVICES

Technical Engineering services support activities related to the specification, design, imple-

mentation, and maintenance of systems. In addition to "traditional" engineering domains, the

reference model also considers life-cycle processes to be an area for which an engineering

discipline is appropriate, and services related to that domain are included here as well. The

following services are defined in this chapter:

• System Engineering Services

- System Requirements Engineering

- System Design and Allocation

- System Simulation and Modeling

- System Static Analysis

- System Testing

- System Integration

- System Re-engineering

- Host-Target Connection

- Target Monitoring

- Traceability

• Software Engineering Services

- Software Requirements Engineering

- Software Design

- Software Simulation and Modeling

- Software Verification

- Software Generation

- Compilation

NISTSP 500-213 17

- Software Static Analysis

- Debugging

- Software Testing

- Software Build

- Software Reverse Engineering

- Software Re-engineering

- Software Traceability

• Life-Cycle Process Engineering Services

- Process Definition

- Process Library

- Process Exctiange

- Process Usage

There are many other engineering domains, e.g., mechanical, electrical, and manufacturing.

Although these are omitted in the present edition of the model, future revisions of the Reference

Model may be expanded to include them.

4.1 System Engineering Services

The System Engineering services support projects that engage in substantial development

or maintenance activities involving both hardware and software.'' These services comple-

ment those in the specialized engineering domains (e.g., software engineering) by providing

preparation for consistency between those specializations and for integration of their results.

4.1.1 System Requirements Engineering Service

Conceptual: This service provides the capabilities to capture, model, analyze, represent, and

refine the system requirements that will ultimately be realized as some combination of software,

hardware, facilities, people, and data. This service creates and manipulates representations

of system requirements, which may include: system capabilities (such as design and related

manufacturing, test, and support capabilities), data elements, internal, external, functional, and

physical system interfaces, system software and hardware configuration items that communi-

cate with software components, and system states and modes within which the specific system

operates.

^There are many parallels between services in this section and services in the Software Engineering section;

these parallels may indicate that the same conceptual service is actually common to the two engineering domains.

In the present version of the reference model, it was deemed preferable to include these apparent duplications.

In future revisions of the reference model, however, some of these services may be collapsed into descriptions of

conceptual services common to both System and Software Engineering.

18 NISTSP 500-213

operations: Examples of requirements engineering operations include:

• Elicit and capture system requirements

• Create, modify, and delete system requirements representations

• Model a system's requirements, including characteristics such as evolving interfaces,

performance, and evaluation of risk impact; risks may be based on such factors as

changing technology, supportability considerations, or financial risk

• Check consistency of system requirements

• Allocate system requirements

Types: The types used to represent system requirements may take the form of a diagram,

textual description, table, icons, graphics, hologram, etc. The representation may be expressed

in terms of a modeling notation with explicit rules.

External: This service includes the forms (such as textual, graphical and interchange) in

which the service both accepts and provides representations of system requirements, their

properties and their interrelationships. The styles of interface (such as command language,

query language, message passing, procedure calling and graphical browsing) that the service

provides to its operations are another external aspect.

Internal: Checking the consistency of system requirements, both internally (within a set of

requirements) and externally (between sets of requirements), may include external constraints,

which may impact the implementation of this service. If the service supports simultaneous

alternative views of the same information, there may be complexities in the implementation

regarding the impact that changes to one representation have on the other representations in

order to keep the views of the same information consistent. In a secure PSE, the integrity of

the data and traceability between data objects may be of primary significance.

Relationships to other services: This service may interact with the Traceability service,

and also with the System Design, Software Design, and Software Requirements Engineering

services.

4.1.2 System Design and Allocation Service

Conceptual: This service provides the capabilities to capture, represent, create, analyze,

and refine an architectural design of a system's components. System designs describe the

interrelationships between system components, including a partitioning of system functionality

and constraints between hardware and software. Designs represent objects such as hardware

and software components, component invocations, invocation parameters, component com-

position, data elements, internal and external interfaces, hardware and software configuration

items, integrated logistics support elements, and states and modes within which the specific

hardware and software sub-components execute.

NISTSP 500-213 19

The results of the system design service include a definition of the hardware and software

sub-components that comprise a specific system component. Application of this service can

also result in automatic generation of specification documents and work products from source

information.

A system design may also accommodate issues related to product development and integrated

logistics support.

Operations: Examples of system design operations include:

• Translate requirements into design elements

• Validate consistency of requirements to design

• Create, modify, and delete system design representation

• Define and manage system interface definitions, including those to the support system

and their attributes (e.g., reliability, size, power requirements)

• Allocate system component to hardware or software

Types: The types used to represent system designs may take the form of a diagram, textual

description, table, graphics, icon, hologram, etc. The representation may be expressed in

terms of a modeling notation with explicit rules.

Internal: In a secure PSE, it may be critical to use labels and mandatory access controls to

prevent unauthorized formal access to classified design components.

Relationships to other services: Typically, design activities are based on requirements analy-

sis, and this service and the System Requirements Engineering service may have several levels

of interrelatedness or may even be realized by a single tool or tool cluster. This service may
also interact with the System Integration, System Testing, Traceability, Software Requirements

Engineering, Software Design, Software Compilation, and Software Testing services.

4.1.3 System Simulation and Modeling Service

Conceptual: The ability to model a system concept in its entirety before implementation takes

place is an important service needed in many phases of project development. This modeling

may include both resources needed to create a product as well as the resources needed to

deploy, support, and maintain it after development. Project management activities such as

scheduling and estimation, as well as system design activities may need the ability to perform

tradeoff studies of alternative strategies. During requirements analysis it must be determined

if it is feasible to build, operate, and maintain the new product, and during design it must be

determined which alternative is most effective. Starting with a high-level description of the

component, the System Simulation and Modeling service creates a model of the component at

a lower cost and in less time, in order to perform a quick evaluation of the product. In order to

20 NISTSP 500-213

build the model quickly, functionality required of the full product may be sacrificed or the model

may execute with less than optimal performance. A design may be modeled to establish such

quantified information as predicted and demonstrated failure rates and repair times.

Besides modeling, the terms prototyping or simulation are often used for similar services. A
prototype usually has a structure that will be similar to the final product while a simulation is a

model where we are mostly interested in the results and not in the structure of the system that

produced it. Both terms, however, are often used interchangeably.

Operations: Examples of modeling operations include:

• Build model from requirements

• Execute model

• Compare design relative to required attributes (e.g., cost, performance, supportability)

• Capture results of model

Internal: Simulation models are generally either continuous or discrete. A continuous sim-

ulation is usually based upon some mathematical equation where output is produced based

upon the independent time variable. In a discrete simulation, a finite state design is usually

employed, and the system steps through execution based upon discrete "ticks" of the clock.

Prototyping models usually have a structure that is representative of the feature in the final

product that is being studied.

A simulation model and the tool that generates it may require safety features for security

purposes. These features might be, for instance, that the model runs to completion or, if an

error occurs that the simulation can be rerun either from the start or from before the point of

failure.

Relationships to other services: This service may interact with Project Management services

and with the System Requirements Engineering and System Design and Allocation services.

Examples: Performance Oriented Design (POD) and Synthetic Environments for Require-

ments and Concepts Evaluation and Synthesis (SERCES) are examples of system modeling

tools.

4.1 .4 System Static Analysis Service

Conceptual: The System Static Analysis Service provides for the static analysis of system

designs and components in order to determine attributes of the system. Information derived

from the service includes:

NIST SP 500-213 21

• Product characteristics, such as component size, function calis, and operations.

• Complexity characteristics, such as cyclomatic complexity, spanning measures, other

control flow and data flow measures, and other relationships derived from product char-

acteristic measures.

• Cross reference lists and graphs, such as define/use graphs, call graphs, data flow

graphs, and structure charts.

Operations: Examples of System Static Analysis operations include:

• Collect raw statistics from system representations

• Compute complexity measures

• Produce cross reference li,st

• Graph cross reference list

External: This service (especially cross reference information) is often provided as part of

system generation or integration tools; however, it also can be provided by separate static

analysis tools.

Relationships to other services: This service may interact with the System Design service,

and the Software Static Analysis and Design services.

4.1 .5 System Testing Service

Conceptual: This service supports testing of systems. The purpose of testing is to insure

that all specifications have been met and that systems are operationally effective and suitable

for intended use. Such testing may be intrusive (e.g., accomplished by instrumenting code

or hardware elements), non-intrusive (i.e., accomplished by running the system in normal

operational configurations or through the use of real-time non-intrusive instrumentation (RTNI)

equipment), destructive (e.g., for survivability or ruggedization), or non-destructive (for both

intrusive and non-intrusive tests).

Operations: Examples of System Testing operations include:

• Generate system test cases

• Generate test requirements matrix

• Perform system test

• Perform system regression test against all previous test cases

• Analyze completeness of test coverage

22 NISTSP 500-213

• Capture system test results

• Validate system test results against anticipated results

• Produce summary report of results

Internal: In a secure PSE, confidentiality of stored test data may be required if results are

sensitive in nature.

Relationships to other services: This service may interact with the System Requirements En-

gineering, Traceability, Software Test, Configuration Management, and Risk Analysis services.

It may also interact with the Host-Target Connection and Target Monitoring services.

4.1.6 System Integration Service

Conceptual: The product of an engineering process is often composed of a number of different

pieces, each developed separately. This may be a result of a fundamental difference in nature

of some of the pieces of a project (e.g., thie hardware and software for an embedded real-

time application), a technical distinction between the pieces (e.g., the control software and

user interface software), or a pragmatic decision (e.g., to allow a group of people to work

concurrently on portions of a large system). In any case, it must be possible to combine those

pieces into a product. The resultant product must be identified as a new item of interest, and

hence it can be tracked as a significant object from that point on. If the pieces exist in multiple

versions, the correct version of each piece must be selected in creating the full product.

A description is required that defines which logical pieces make up a product and how those

pieces are related (e.g., chapters in a document, a product-oriented family tree). As some of

the pieces may need to be transformed before they are combined, this description may contain

details of how that transformation takes place.

Operations: Examples of integration operations include:

• Identify the components and incremental builds that make up a product

• Define the transformations that are required to integrate the components of a product

• Build a product from its components

• Create product

e Audit product

Types: Objects that comprise a product may be CSCIs, textual or graphical components of

documents, or technical data packages and parts lists. A product can consist of originated

("source" in its real meaning) objects as well as derived objects.

NIST SP 500-213 23

Internal: The use of labels and mandatory access controls may be necessary to prevent the

unauthorized linkage of classified system components in a system build. If the product release

needs to be controlled, the build tape might require a cryptographic checksum to ensure that

the build is not corrupted in distribution.

Frequently occurring transformations are often provided as an internal component of an inte-

gration service. This helps to simplify the integration descriptions used and to automate the

building process.

Relationship to other services: This service may interact with the Configuration Management
service, since the pieces used in a product may be part of a new configuration. It may interact

with the Traceability service to determine which components need to be processed. It may also

interact with the System Design and the Software Build services.

4.1.7 System Re-engineering Service

Conceptual: The System Re-engineering service is required when a system's requirements

change. The changes may be related to functionality, performance, reliability, cost; to such

factors as obsolescence, nonavailability of parts, changed manufacturing or logistics circum-

stances; or to the need to take advantage of technological improvement and evolution. This

service takes as input an existing design and a new or modified set of requirements and

produces a new or modified design according to the changed requirements. The System Re-

engineering service encompasses hardware, software, manufacturing, and support elements

of a system.

Operations: Examples of System Re-engineering operations include:

• Perform fault analysis and verification

• Analyze impact of modified requirements on existing design and implementation

• Modify design representation

• Analyze impact of new design on existing system components

Internal: In the re-engineering of secure systems, special precautions are likely to be required.

These may include labelling and mandatory access controls, maintenance of confidentiality

and integrity, and careful auditing of all changes to existing designs and implementations.

Relationships to other services: This service may be interact with the System Simulation and

Modeling service, the System Static Analysis service, the System Requirements Engineering

service, and the System Design and Allocation service.

24 NISTSP 500-213

4.1.8 Host-Target Connection Service

Conceptual: The Host-Target Connection service is required to ensure the ability of a host

PSE to communicate with a target system for the purpose of software downloading, system test

or debug, and system monitoring.^ The minimum capability for this service is for two one-way

links. One is for the host PSE to be able to convey to the target such items as the loadable

or bootable software executable image or test and debug commands. The other permits the

target to convey to the host PSE the results of test or debug operations and target monitoring

information.

Operations: Examples of host-target connection operations include:

• Establish system-to-system communications

• Maintain, control, and relinquish host-target connection

External: The host-target communication can be realized as a direct or indirect link. A direct link

might consist of a cable or satellite connection. An indirect link might consist of an agreement

on a particular format for floppy disk or magnetic tape.

Internal: In a secure PSE, this service may require authentication, both mandatory and discre-

tionary access controls, careful attention to network security management, and more to ensure

that no security breach occurs because of the host-target connection.

Relationships to other services: This service may interact with all other PSE services that

rely on the ability to communicate with a target system. These would include at least the

System Testing, Target Monitoring, and Software Debugging services.

Examples: A simple example of this service would be for a PSE to generate magnetic tape

cartridges in a form for which the target system has a compatible drive. Likewise, when the tar-

get needs to convey information back to the host, it generates another magnetic tape cartridge.

A more sophisticated capability would use a network link directly to download information to

the target, dynamically interacting with it in real time.

4.1.9 Target Monitoring Service

Conceptual: The Target Monitoring service provides the ability of the host PSE to receive and

interpret specified execution and performance information from an operational target system.

^It is assumed, for the purposes of NGCR, that the target systems are built using the other NGCR standards.

Eventually, that list of standards will include at least two levels of performance for local area networks, at least

two levels of performance for backplane busses, an operating system interface standard, a database management

system interface standard, and a graphics interface standards.

NIST SP 500-213 25

operations: Examples of monitoring operations include:

• Specify target system monitoring information

• Acquire and accumulate target system monitoring information

• Correlate and analyze target system monitoring information

• Report monitoring information

Types: These would include any types critical to the target system. These could include:

frequency or length of calls, missed deadlines, length of queues, CPU time used, dynamic

paging activity, number of requests, block sizes, fragmentation, and other types of data.

Relationships to other services: This service may interact with the Host-Target Connection

Service for the acquisition of the information reported by the target system.

4.1.10 Traceability Service

Conceptual: The Traceability service supports recording of relationships between artifacts of

the development process. These artifacts may be representations of requirements or designs,

software items, hardware, test items, etc. The relationships permit other services to perform

such operations as verifying existence, establishing dependencies, and similar operations

whose aim is establishing and maintaining factors of constraint. This service may be used in

maintaining consistency as well as performing change impact analysis.

The Traceability service generally imposes additional properties on the types of object defined

for the other development process services. Thus, this service is similar to the framework's

Object Management services, but is at a higher level of abstraction, since this service presumes

additional semantic information than that present in the QMS.

Environments may provide a traceability service automatically, wherein development process

activities inform the traceability service as derivations occur. More loosely coupled systems

may require user convention or intervention to record relationships, such as the use of naming

schemes that permit the deduction of relationships between artifacts. One common use of this

service is to establish that a system's requirements can be traced throughout other stages of

the lifecycle process.

Operations: Examples of traceability operations include:

• Create, update, and destroy relationships between two items

• Query current status of relationship or relationship history

• Navigate relationships and items

• Detect and report violations of traceability constraints

26 NISTSP 500-213

Rules: Relationships must point at existing items.

Internal: Fully automated trace recording will likely imply the sharing of schema and a data

repository between multiple development process activities. In a secure environment, the

integrity of the data links is especially important. Care must also be taken that a user navigating

the traceability trees cannot infer information from relationships in the data.

Relationships to other services: This service may interact with most other engineering

services. It may also have an important relationship with the framework's Process Support

services and with the Lifecycle Process Engineering services.

Examples:

• ORCA (Object-based Requirements Capture and Analysis).

• RETRAC (REquirements TRACeability).

4.2 Software Engineering Services

The services in this category support the specification, implementation, debugging, and main-

tenance of software.^

4.2.1 Software Requirements Engineering Service

Conceptual: This service provides the capabilities to capture, represent, analyze, and refine

those system requirements that are allocated to software components. This service creates

and manipulates representations of requirements. These may include: software capabilities,

data elements, internal and external software interfaces, system software and hardware con-

figuration items that communicate with software components, and system states and modes
within which the specific software executes.

Operations: Examples of software requirements engineering operations include:

• Elicit and capture software requirements

• Create, modify, and delete software requirements representations

^There are many parallels between services in this section and services in the System Engineering section; these

parallels may indicate that the same conceptual service ie actually common to the two engineering domains. In the

present version of the reference model, it was deemed preferable to include these apparent duplications. In future

revisions of the reference model, however, some of these services may be collapsed into descriptions of conceptual

services common to both System and Software Engineering.

NIST SP 500-213 27

o Check consistency of software requirements

• Allocate software requirements

Types: The types used to represent software requirements may take the form of a diagram,

textual description, physical artifact, graphical computer representation, hologram, etc. The

representation may be expressed in terms of a modeling notation with explicit rules.

External: External aspects of this service include the forms (such as textual, graphical and

interchange) in which the service both accepts and provides representations of software require-

ments, their properties and their interrelationships. The styles of interface (such as command
language, query language, message passing, procedure calling and graphical browsing) that

the sen/ice provides to its operations are another external aspect.

Internal: In a secure PSE, the integrity of the data and traceability between data objects may
be of primary significance.

Relationships to other services: This service may interact with the System Requirements

Engineering and System Design services. It may also interact with the Software Traceability,

Software Design, Software Re-engineering, and Software Simulation and Modeling services.

Examples: OOATool and DCDS are examples of tools providing software requirements engi-

neering.

4.2.2 Software Design Service

Conceptual: This service provides the capability to capture, represent, create, analyze, and

refine the design attributes of the software components of a system or subsystem. These

attributes can be the structure or functionality of the software or other characteristics such as

user interface design or performance considerations. Software designs are typically dependent

on a set of requirements; they describe interrelationships of software components, including

interfaces, invocation parameters, data elements, and the states and modes within which

the specific software sub-components execute. The outcome of the software design service

includes definition of the software components and subcomponents.

Operations: Examples of software design operations include:

• Translate requirements into design elements

• Create, modify, and delete software design representation

• Validate design to requirements

• Produce structure charts, graphs, screens or other design information from design repre-

sentation

• Evaluate design representation

28 NISTSP 500-213

Types: The types used to represent software designs may take the form of a diagram, textual

description, physical artifact, graphical computer representation, screen display, hologram, etc.

The representation may be expressed in terms of a modeling notation with explicit rules.

External: The external dimension includes the forms (such as textual, graphical and inter-

change) in which the service both accepts and provides representations of software designs,

their properties and their interrelationships.

Internal: In a secure PSE, it may be critical to use labels and mandatory access controls to

prevent unauthorized formal access to classified design components.

Relationships to other services: Typically, design activities are based on requirements

analysis, and this service and the software requirements engineering service may have several

levels of interrelatedness or may even be realized by a single tool or tool cluster. This service

may also interact with the System Requirements Engineering and System Design services and

with the Compilation, Debugging, and Software Testing services. It may also interact with the

Software Simulation Service.

This service may also interact with the Software Reverse Engineering and the Software Re-

engineering services, both of which have as goals the modification of an existing design into a

new design.

Examples:

IDE's Software through Pictures (StP), Teamwork, ObjectMaker, and the Hierarchical Object-

Oriented Design (HOOD) method and its associated design tools provide examples of this

service.

4.2.3 Software Simulation and Modeling Service

Conceptual: The ability to model a component or software system before implementation is

an important service needed in many phases of project development and in many engineering

domains. Project management planning services may need simulation and modeling to perform

tradeoff studies of alternative strategies. Requirements engineering can use simulation and

modeling to determine if it is feasible to build a product to the requirements. Design services

can use simulation and modeling to determine the effectiveness of alternative designs with

respect to such attributes as user interface characteristics or execution flow.

Starting with a high-level description of the component, the Software Simulation and Modeling

service creates a version of it that is less expensive than the desired product and built in less

time in order to perform a quick evaluation. In order to build the model quickly, it either sacrifices

functionality required of the full product, reduces the capability of the product, or executes with

less than optimal performance.

Besides modeling, the terms prototyping, emulation, or simulation are often used for similar

services. A prototype usually has a software structure that will be similar to the final product.

An emulation tends to be relatively complete, in the sense of a rival, while a simulation is a

NIST SP 500-213 29

model where one is principally interested in the results and not in the structure of the software

that produced it. All three terms, however, are often used interchangeably.

Operations: Examples of Software Simulation and Modeling operations include:

• Build model from requirements

• Execute model

• Capture results of model

Internal: Simulation models are generally continuous or discrete. A continuous simulation is

usually based upon some mathematical equation where output is produced based upon the

independent time variable. In a discrete simulation, a finite state design is usually employed,

and the system steps through execution based upon discrete "ticks" of the clock.

Prototyping models usually have a software structure that is representative of the feature in the

final product that is being studied (e.g., a user interface design similar to the window structure

the system will execute in). Often a high level language with easy modeling capabilities but

slow execution characteristics is used to build a prototype (e.g., SetL, 4GLs).

A simulation model and the tool that generates it may require safety features for security

purposes. These features might be, for instance, that the model runs to completion or, if an

error occurs that the simulation can be rerun either from the start or from before the point of

failure.

Relationships to otiier services: This service may interact with the Planning and Risk Analy-

sis services, and with the Software Requirements Engineering, Software Design, and Software

Re-engineering services. The System Simulation and Modeling Service provides similar func-

tionality at the system level.

Examples:

• Simula, Simscript, and CPL (Common Prototyping Language) are example simulation

and prototyping languages for software systems.

• Menu or screen simulators (DEMO program, TeleUse, Rapid/Use in IDE's StP) also

provide examples of this service.

4.2.4 Software Verification Service

Conceptual: It has long been demonstrated that a posteriori testing of software is most

effective in showing the presence of errors and not their absence. Software verification uses

formal mathematical methods to prove a priori that the software must execute according to

its specifications. While proving that software does indeed meet its specifications has been

30 NISTSP 500-213

shown to be an extremely hard problem, there are many critical applications where the needed
reliability of the software simply requires it.

Formal verification first requires that a formal specification of a program be generated and then

that a formal model exists that maps between the specification and the eventual design or

implementation language. Given these two descriptions, a mathematical proof is generated

that the written software and the specification are equivalent.

Operations: Examples of software verification operations include:

• Analyze specifications (for consistency to the formal model)

• Read source component (either source programming language or design language)

• Identify errors (between specifications and verified object)

• Produce summary report

Rules: Verification systems are based upon one of a few formal models:

• Axiomatic models which extend the predicate calculus with programming language con-

structs.

• Functional and denotational semantic models which assume that programs are mathe-

matical functions with an input and output domain.

• Algebraic models which formally define the interface between program components as

mathematical equations.

Relationships to other services: Verification may interact with Software Requirements Engi-

neering, Software Design, Software Testing, and Software Debugging services.

Examples: VDM (Vienna Development Method), based upon denotational semantics, and Z,

based upon the axiomatic model, are used to show the equivalence between a specification

and a design. Affirm was a research system that used the algebraic model to show equivalence

between a specification and a source program. Gypsy is a language that includes a verifier as

part of its system.

4.2.5 Software Generation Service

Conceptual: Software generation provides automatic and semi-automatic production of soft-

ware components using existing components or component templates.

NIST SP 500-213 31

The use of a Software Generation service is most frequently seen in well-defined application

areas such as language parser generation, database application generation, and user interface

design and production.

Operations: Examples of Software Generation operations include:

• Generate parser from a syntactic language description (e.g., a BNF representation of a

language grammar)

• Generate script for the composition and interconnection of software components

• Generate rule-based system from a set of rules

• Generate user interface component for a software system

• Generate schema for database

Internal: In a secure PSE, the Software Generation service must insure data integrity of

the descriptions, scripts, rules, schemata, etc. so that the documentation can be trusted to

represent the software.

Relationships to other services: This service may interact with the Software Design and

Software Compilation services.

Examples:

• Parser generators (LEX, YACC) for producing compilers.

• 4th Generation Languages (4GLs) and application generators provided by many relational

database systems.

• IDL tools to generate the I/O for specific data formats.

• Application-specific language generators.

4.2.6 Compilation Service

Conceptual: The Compilation service provides support for the translation and linking of soft-

ware components written in various programming languages. Source code is created either

by means of text processing services, or by the automatic generation services described in the

Software Generation service.

The principal outputs from this service are executable programs supporting some target system.

Other products of this service may include metrics data and documentation aids such as

compilation listings.

Operations: Examples of software compilation operations include:

32 NiSTSP 500-213

• Find code and inheritance dependencies among a set of software components

• Preprocess source code to produce modified source code

• Apply macro expansions to source code

• Translate a source program (e.g., Ada, COBOL, C, Pascal, Assembly language) into

some target object code language

• Produce report on the translation; this may include source listings of various complexity,

including cross-reference data, compilation speeds, CPU usage, etc.

• Link object code into executable images. When intended for use on a remote target, link

code into loadable/bootable images.

• Incrementally update compiled system to reflect new changes.

Rules: The Compilation service enforces the rules of the programming languages that it

processes.

Types: Source code directly created by a human user is typically written in ASCII text. Source

code produced by source code generators may rely on internal data types known to the compiler.

Internal: The compilation of object code must be free from insertion of malicious code. Com-
pilers may not be trusted to the degree necessary for secure systems, but system integrity

controls can be used to provide additionsi protection.

Relationships to other services: This service may interact with the Software Design, Software

Generation, Debugging, Software Traceability, and Software Testing services. It may also

interact with the System Testing service and the Host-Target Connection service. It may

also interact with the Configuration Management, Project Management, and Lifecycle Process

Engineering services.

Examples: Examples of compilation services include:

• Compiler systems (including linkers) for standard languages (Ada, COBOL, C, Pascal,

etc.)

• Unix's Lint preprocessor

4.2.7 Software Static Analysis Service

Conceptual: The Software Static Analysis service provides for the static analysis, or source

code analysis, of software components in order to determine structure within the component.

Information derived from the service includes:

NIST SP 500-213 33

• Code characteristics, such as component size, number of statements, statement types,

variables, function calls, operations, operands, data types and other programming language-

specific data.

• Complexity characteristics, such as cyclomatic complexity, software science measures,

spanning measures, other control flow and data flow measures, and other relationships

derived from product characteristic measures.

• Cross reference lists and graphs, such as define/use graphs of variables, call graphs of

functions and other subprograms, data flow graphs, structure charts, and variable and

type definition lists.

• Software characteristics, such as: testability, completeness or consistency, reachability,

reusability, and maintainability.

Complexity measurements are based upon various underlying graph models of the source pro-

gram. Even simple measures, like lines of code, have different interpretations, so comparisons

between two tools providing this service must be carefully analyzed before such comparisons

are used.

Operations: Examples of Software Static Analysis operations include:

• Collect raw statistics from component

• Compute complexity measures from component

• Produce and graphically represent cross reference lists

Internal: Data is often collected from internally parsed forms of the source program.

Data and the traceability between data objects must be preserved and non-corruptible in a

secure PSE.

External: This service (especially cross reference information) is often provided as part of

compilation tools; however, it also can be provided by a separate static analysis tool.

Relationships to other services: This service is often provided as part of the Software

Compilation service. This service may also interact with the Software Design service, the

IVIetrics service, and with the System Static Analysis service.

Examples: NASA's SAP program for analyzing Fortran code is an example of this service.

34 NISTSP 500-213

4.2.8 Debugging Service

Conceptual: The Debugging service is for the location and repair of software errors in individual

software components by controlled or monitored execution of the code. Unlike the the Software

Testing service, which determines that an error is present, the Debugging service supports

tracking down errors and replacing code.

Operations: Examples of Debugging operations include:

• Instrument source programs by inserting breakpoints, instruction traps, printing out data

values, and modifying source text

• Execute programs incrementally

• Monitor and save execution output

• Analyze properties of programs and their current data values

Relationships to other services: This service may interact with the Text Processing service,

with the various Software Engineering services such as the Software Design, Compilation,

Software Test, and Software Generation services, and with the Host-Target Connection service.

Examples: The Unix of^x debugger is an example of this service.

4.2.9 Software Testing Service

Conceptual: This sen/ice supports the testing of software systems. Testing is performed on in-

dividual software components (unit testing), on collections of software components (integration

testing), and on complete software systems (system testing).

A particular situation in which software testing occurs is when the target operating environment

for an application is different from the environment on which the application is being devel-

oped. In this case, the system's Host-Target Connection and Target Monitoring services will be

required for software testing.

Operations: Examples of software testing operations include:

• Generate test cases and test harness. Depending upon the testing method used (e.g.,

path testing, functional testing, statement coverage, boundary value testing), capabilities

may be implemented to analyze source programs and generate such test values.

• Instrument source programs to output test results, depending upon testing method used.

For example, each path (or branch or statement) can output data showing that each path

was executed.

• Perform tests for resource utilization, reliability, and path and domain selection

NISTSP 500-213 35

• Perform timing analysis and real-time analysis (missed deadlines, deadlock, race)

• Perform mutation analysis

• Perform regression testing of all previous test cases on the tested object.

• Validate test results with expected results

Internal: In a secure PSE, confidentiality of stored test data may be required if results are

sensitive in nature.

Relationships to other services: The System Testing Service may be needed to test systems

involving both hardware and software components. The Debugging service may be used to re-

pair errors found by testing. The Host-Target Connection service may be used to communicate

testing data with a target system different from the host system being used for development.

This service may also interact with the Compilation service, the Configuration Management
service, the Build service, and the Lifecycle Process Engineering services. Formal proofs of

correctness are handled by the Software Verification service.

Examples: Software TestWorks is an example of this service.

4.2.10 Software Build Service

Conceptual: The product of software development is often composed of a number of compo-

nents, each developed separately. Size of resulting product, number of personnel assigned to

development, schedule, and development method (e.g., top down design, structured design,

object oriented design) all influence the development of a software product into a set of sepa-

rately compilable components. In any case, it must be possible to combine those pieces into

a product, often called a release. The resultant product release must be identified as a new
item of interest, and hence it can be tracked as a significant object from that point on. If the

components exist in multiple versions, the correct version of each must be selected in creating

a full release.

In the building of a release it is often possible to perform some transformations to the com-

ponents automatically before they are combined. For example, the source code is typically

converted to object code via compilation before the object code is combined through linking.

A description is required that defines which logical pieces make up a product and how those

pieces are related (e.g., phases in a multi-phase program). As some of the pieces may need

to be transformed before they are combined, this description may contain details of how that

transformation takes place. Specific data, such as default file names, may be added to the

product at this time.

The product release can be compared with the build description that was used to derive it. A
list of the actual versions of components used in that build should be recorded, together with

the operations that were used in transforming the components and deriving the release.

36 NISTSP 500-213

The resultant product release may also be versionable.

Operations: Examples of Build operations include:

• Define the relationships among the components that make up the product

• Transform the components that make up the product

• Build a product from its components

• Create product release

• Audit product release

Types: Objects that comprise a release may be source code, binary code, and textual or

graphical components of documents. A release can consist of originated ("source" in its real

meaning) objects as well as derived objects.

Internal: If the software product release needs to be controlled in a secure PSE, the build tape

may require a cryptographic checksum of the build to ensure that the build was not corrupted

in the distribution of the system.

Frequently occurring transformations are often provided as an internal component of the Soft-

ware Build service. This helps to simplify the build descriptions used and to automate the

building process. Components used by the Software Build service may themselves be collec-

tions of objects in an Object Management System.

Relationship to other services: This service may interact with the Configuration Management
service, since the pieces used in a build may produce a configuration. It may also use the

Software Traceability service to determine which components need to be processed. It may
also interact with the System Testing and System Integration services.

Examples: The Unix make tool is a well known example for software construction.

4.2.11 Software Reverse Engineering Service

Conceptual: The Software Reverse Engineering service provides the capabilities to capture

design information from source or object code and produce structure charts, call graphs,

and other design documentation of that information. The goal is to generate a design that

represents an existing program which may then be re-engineered (using the Software Re-

engineering service) to provide new functionality, perhaps retargeted to execute on a new

hardware platform or translated into another source programming language.

It is sometimes necessary to also reverse engineer source code from executable object code.

Disassemblers are tools that produce assembly language from such object code, and decom-

pilers produce source programs from such object code.

NISTSP 500-213 37

Decompiling object code that was originally compiled In one language into another is an ex-

tremely difficult operation. It is often better to reverse engineer the object code and then use

the Software Re-engineering service to produce the code in the new language.

Operations: Examples of Software Reverse Engineering operations include:

• Generate design from source code

• Generate source program from object code

Rules: Abstracting and partitioning the design will require specific rules and methods. These

rules will have a significant effect on the usefulness of the design in future re-engineering

efforts.

Types: This service produces a new design and uses as input either a source program or an

object program. The types of design for reverse engineering are the same as the types used

in the Software Design service, such as Data Flow diagrams and ER diagrams.

External: Software code and its language definition are the primary input interfaces to this

service. Standard output formats (e.g., the Common Data Interchange Format) are required

for sharing a design with other services in the environment

Internal : The most difficult problem in this service is the definition of the boundary of the existing

software to be reverse engineered. In the case of very large amounts of code, current reverse

engineering techniques would require extensive processing, possibly similar to the processing

needed to compile it. This situation implies partitioning of the code space and further implies a

partial design as a result.

Relationships to other services: The Software Compilation service may be used to translate

a source program into another source programming language. The Software Re-engineering

service may be used to modify the reverse-engineered design. The Software Static Analysis

service may be used to produce some of the design information, such as structure charts and

call graphs. This service may also interact with the Software Design service.

4.2.12 Software Re-engineering Service

Conceptual: The Software Re-engineering service is used when software requirements

change. This service takes as input an existing design and a new or modified set of re-

quirements and produces a new or modified design according to the changed requirements.

The service may also check that the new set of requirements is consistent with the existing

system and may determine the impact of the altered design on the existing set of components.

Such concepts as altered functionality, modified performance, and new capacities may also be

evaluated. Use of this service may also be appropriate when source code is deemed in need

of restructuring for improved maintainability. It may also be used when code is to be translated

from one notation into another.

38 NIST SP 500-213

Operations: Examples of Software Re-engineering operations include:

• Revise or restructure existing code

• Perform impact analysis of new design on existing software components

• Translate from one notation into another (e.g., a COBOL-to-Ada translator)

Types: The input to this service is a design, an altered set of requirements, and possibly a set

of source code components. The output will be a design. The format of a design may be a

diagram, textual description, physical artifact, graphical representation, hologram, etc.

Internal: In the re-engineering of secure software, special precautions are likely to be required.

These may include labelling and mandatory access controls, maintenance of confidentiality and

integrity, and careful auditing of all changes to existing designs and implementations.

Relationships to other services: This service may interact with the Software Design service

to perform some of the design activities associated with re-engineering. It may also interact

with the Software Requirements Engineering, Software Simulation and Modeling, and System

Re-engineering sen/ices.

4.2.13 Software Traceability Service

Conceptual: The Software Traceability sen/ice supports recording of relationships between

artifacts of the development process. These artifacts may be representations of requirements

or designs, code items, test items, etc. The relationships permit other sen/ices to perform such

operations as verify existence, establish dependencies, and similar operations whose aim is

establishing factors of constraint.

The Software Traceability sen/ice generally imposes additional properties on the types of object

defined for the other development process services. Thus, this service is similar to the frame-

work's Object Management services, but is at a higher level of abstraction, since this service

presumes that additional semantic information is present in establishing the relationships than

is present in the OMS.

Environments may provide a traceability sen/ice automatically, wherein development process

activities inform the traceability sen/ice as derivations occur. More loosely coupled environ-

ments may require user convention or inten/ention to record relationships, such as the use of

naming schemes that permit the deduction of relationships between artifacts. One common
use of this sen/ice is to establish that requirements can be traced throughout other stages of

the lifecycle process.

NISTSP 500-213 39

Operations: Examples of traceability operations include:

• Create, update, and destroy relationships between two items

• Query current status of relationships

• Query relationship history

• Navigate relationships and items

Rules: Relationships must point at existing items.

Internal: Fully automated trace recording will likely imply the sharing of schema and a data

repository between multiple development process activities. In a secure environment, the

integrity of the data links is especially important. Care must also be taken that a user navigating

the traceability trees cannot infer information from relationships in the data.

Relationships to other services: This service may interact with many process-related ser-

vices, both at the Lifecycle Process Engineering level as well as at the framework's Process

Support level. It may also interact with the System Traceability service. It may also interact

with the Software Requirements Engineering and Software Design services.

Examples:

• ORCA (Object-based Requirements Capture and Analysis).

• RETRAC (REquirements TRACeability).

4.3 Life-Cycle Process Engineering Services

The Life-Cycle Process Engineering services support projects in achieving discipline, control,

and clear understanding in their life-cycle development processes and individual process steps.

The activities of the role of Process Engineer are sometimes shared by various management
and technical roles on a project and are sometimes performed by a distinct role (Process

Engineer). The services in this section distinguish process-driven (or -managed, -sensitive, -

centered, or -controlled) PSEs from collections of project tools. Life-Cycle Process Engineering

services include Process Definition, Process Library, Process Exchange, and Process Usage.

The Life-Cycle Process Engineering services differ from the framework's process management
services in several ways. At the framework level, the process management services produce

and manipulate the basic data needed to define processes. These include: definition of pre-

and post-conditions for enactment of processes; definition of project data needed for process

enactment; specification of relevant events; and creation of both the basic process elements

that define the life-cycle processes and the basic primitives to enact processes. At the end-user

level, the Life-Cycle Process Engineering services described in this section use the framework's

40 NIST SP 500-213

process management services to define tlie relationships among the various services in the

PSE and various roles users take in developing a product in order to implement a process for

achieving that development.

4.3.1 Process Definition Service

Conceptual: This service provides the capabilities for projects to create, maintain, tailor,

adapt, and validate definitions of processes in formal, semiformal, and informal forms. This is

a comprehensive service that provides for process definition the analogy of a wide range of

systems or software development services, from requirements activities through architecture,

design, instrumentation, and verification activities.

A process definition prescribes the interaction between process participants (managers, en-

gineers, etc.), technology (framework services, tools, etc.), and the methods, organizational

policies, and procedures used to create the interim and final products that result from the

execution of the process.

The features of a process definition notation can lead to the automation of, guidance for,

control over, and enactment of the defined process. The process mechanism will be driven by

formal detailed specifications of the process that include definitions of the triggers, activities,

work products, completion criteria, and other elements of the process (e.g., data schemata for

project databases).

Operations: Examples of process definition operations include:

• Analyze process requirements, including domain-specific analysis and application-specific

analysis

• Instantiate, compose, decompose, tailor, and modularize process definitions

• Simulate, model, and validate process definitions

Internal: Discretionary access control might be used to provide need-to-know protection.

Relationships to other services: This service may interact with the Process Library and

Process Exchange services. It may also interact with the System Traceability and Software

Traceability services.

Examples: Existing notations and languages for representing processes include:

• Structured Analysis and Design Technique (SADT), data flow diagrams, state transition

charts, Petri nets. Work-flow

• Marvel, APPL7A

• Action diagrams, HlPO, PMDB

NISTSP 500-213 41

4.3.2 Process Library Service

Conceptual: The Process Library service supports reuse capabilities for processes, analogous

to software reuse. The process reuse concept is that life-cycle processes need not always be

defined from scratch and that previous instances of process assets may be made available

in libraries that may be national, organizational, or local in scope and that may be intercon-

nected by networks. Process assets may range from complete life-cycle process definitions to

individual process steps. Process assets may also be objects that can be versioned.

Operations: Examples of process library operations include:

• Create, update, and delete process assets

• Certify, measure, and manage process assets

Relationsliips to other services: This service may interact with the Process Definition and

Process Exchange services. It may also interact with the System Traceability and Software

Traceability services.

Examples: The Process Asset Library (PAL) currently under development at the SEI will

provide a library of process assets and will involve infrastructure capabilities (e.g., guidelines,

library access mechanisms). The PAL will be a national library available through software

repository services, but it is also designed to be retrieved and instantiated for organization- or

projects-specific purposes.

4.3.3 Process Excliange Service

Conceptual: The Process Exchange service supports interchange of process definitions be-

tween projects and between PSEs. It deals with transformations between different represen-

tations, integration of heterogeneous representations, and interchange formats for process

assets. This service is principally intended for representations that are machine processable,

that can be electronically transmitted between environments, and that embody formal syntax

and semantics.

Operations: Examples of Process Exchange operations include:

• Encode and decode process metamodels

• Encode and decode process language syntax

• Transfer process definitions (output, export, import)

• Manage a "foreign language" interface for process exchange

42 NIST SP 500-213

Relationships to other services This service may operate in conjunction witli the Process

Definition or Process Library services and may interact with the Framework's Network and Data

Interchange services.

4.3.4 Process Usage Service

Conceptual: The Process Usage service supports the carrying out, enactment, or execution

in a PSE of a project's defined and installed process. Installed project processes are typically

carried out by a combination of manual human activities and PSE automated capabilities;

hence, both humans and machines may serve as "enactment agents." The scope of this

service includes capabilities for:

• users' selection, guidance, and control of process steps

• navigational and help facilities for users to query the installed process for information on

succeeding actions

• varying the rigidity of enforcement of policies and constraints

• process metrics specification, collection, and reporting

• interactions of process definitions, simulations, and high-level representations with PSE
data management

Operations: Examples of process usage operations include:

• Manage help and guidance facility for process users

• Query and report on process utilization and status

• Manage analysis and decision aids for users

Relationships to other services: This service may interact with the Process Definition service

and the Process Library service. It may also interact with the System Traceability and Software

Traceability services.

Examples: Emerging PSEs with process enactment support include ProSLCSE, EAST, and

Cohesion.

NIST SP 500-213 43

Chapter 5

TECHNICAL MANAGEMENT
SERVICES

The services in this chapter fall into a middle category that partakes of both Technical Engi-

neering and Project Management. These services pertain to activities that are often equally

shared by engineers and managers; the operations of these services do not clearly fall into one

or the other category.

This chapter describes the following services:

• Configuration l^anagement service

• Change IVIanagement service

• Information Management service

• Reuse IVIanagement service

• Metrics service

5.1 Configuration Management Service

Conceptual: The goal of configuration management is to identify, document, and control

the functional and physical characteristics of configuration items to ensure traceabillty and

reproducibility of a project's end products. This involves controlling, recording, and auditing

the baseline and changes (pending or made) to the components of these end products. In

the context of a PSE, an end product could be any of a wide range of items, including soft-

ware, hardware, or a manufacturing process. A configuration item may be an aggregation

of hardware, firmware, or software, or any of their discrete portions that satisfy an end user

function. An item required for logistic support and designated for separate procurement may
be a configuration item. A configuration item may also include a unique signature.

Examples of the end products or configuration items to be managed include:

NISTSP 500-213 45

• a computer program (e.g., operating system or application program)

• an integrated micro circuit device (e.g., ASIC, gate array, or hybrid)

• a board or circuit card assembly (e.g., graphics engine, microprocessor, signal processor,

memory, or local area network)

• an equipment item that may be comprised of the above items (e.g., mini- or microcom-

puter, workstation, or network bridge)

• a system that is a collection all the above mentioned items that when interconnected

support a specific domain (e.g., command and control system, missile guidance system,

or jet propulsion system) or that is the evolving developmental support environment used

to generate, test, and maintain the product.

This service provides the management required to maintain a product's many constituent

pieces, including requirements statements, specifications, designs, drawings, CAD/CAM files,

source code files, test documentation, logistic documentation, baseline definitions, and end-

user documentation. This service supports identification and management of interrelationships

between system components, any of which may themselves be composite objects. For various

reasons a component with the same logical function may have several (sometimes alternative)

implementations. This may be the result of fixes to errors, different operating requirements,

and variety of interfacing requirements.

Configuration control measures may be applicable to configuration documentation for each

configuration item, e.g., software identification numbers could be embedded in source code

headers, and included with the engineering drawing of a product.

Operations: Examples of Configuration Management operations include:

• Create a new configuration

• Modify a configuration

• Recover an older configuration

• Delete a configuration

Internal: Each version of a configuration will have a unique identifier. The external names used

for configurations may be different from internal identifiers used for consistency and tracking.

Hence, external names may be changed, or multiple names may be defined for the same
internally identified configuration.

For clarity and control, a configuration may be identified by identification number, release date,

or by means of descriptive documents such as manuals.

In a secure PSE, all changes to items would be audited. Mandatory and discretionary access

control services can be used to support need-to-know.

46 NISTSP 500-213

Relationships between configurations may be through a naming convention, held as relation-

ships between nodes in a version graph, or in some other form.

Rules: There are dependency rules that govern the deletion of a configuration.

Relationships to other services: This service may interact strongly with the framework's

Version service, as well as the Access Control and Concurrency Control sen/ices.

5.2 Change Management Service

Conceptual: The Change Management service supports the creation, evaluation, and tracking

of change requests generated in response to errors, omissions, or required enhancements to

a product. This service provides support for the resolution of a change request in terms of any

decisions, task assignments, and product changes.

Change requests are evaluated for their criticality and benefit to provide an understanding of

the potential impact if they are not addressed. An estimate of the resources required to carry

out the change request may also be provided. Such decisions often involve complex human
activities such as review boards or change control boards.

Based on the evaluation of a change request, one or more change orders may be created for

It. Typically information recorded with a change order includes the date of the change order

and the identifier of the change request initiating the order.

When a product is in use, new releases of the product will need to include changes made in

response to particular change orders.

Operations: Examples of change management operations include:

• Create a change request in response to a reported error, omission, or required update

• Evaluate, classify, and retain historical record of a change request

• Create, evaluate, and track a change order for a change request

• Provide selection support for controlling elements from different configurations

• Generate a report or document; this may include:

- change request status

- change order status

- audit trails of changes to a product component

Internal: A way to uniquely identify each change order is required. This allows the progress

of the change order to be tracked. A status indicator allows new, in progress, and completed

NISTSP 500-213 47

change orders to be distinguished. A priority level helps users to determine the importance (or

otherwise) of non-completed change orders.

In a secure PSE, all changes to items would be audited. Mandatory and discretionary access

control services can be used to support need-to-know.

Relationships to other services: This service may interact with the Configuration Manage-

ment service.

Examples: Nethenworld and ChangeVision provide examples of this service.

5.3 Information Management Service

Conceptual: The Information Management service provides the ability to manage, classify,

and retrieve information within a PSE. Unlike the framework object management services which

are concerned with the organization and storage of data objects and the relationships among
them, the information management service provides for higher-level relationships among the

information components within an information base. While the object management services

are concerned with the internal data model (e.g., relational, object-oriented, hierarchical),

information management provides for user-level manipulation of information needed to support

tasks within the PSE.

There are many applications of this service found in most existing environments. Applications

whose principal work is to perform some kind of database lookup or modification, e.g., a

computerized telephone directory or namelist, are typical instances of this service. While the

Reference Model considers these as potentially significant support services, it was considered

impractical to enumerate each instance as a separate service.

Operations: Examples of information management operations include:

• Create, access, modify, and delete metamodels of information objects.

• Create, access, modify, and delete information objects.

• Create, access, modify and delete relationships among information objects.

Types: Information consists of objects, relationships among those objects and schema (meta-

data) describing composite objects.

External: Access to information is often via user command language queries describing con-

straints on the information base. Commands generally contain information about what data is

needed rather than how it is to be retrieved.

Internal: This service generally uses the facilities of the framework object management system

to implement such services. The embedded data model is often hidden from the user.

48 NIST SP 500-213

In a secure PSE, all changes to Items would be audited. Mandatory and discretionary access

control services can be used to support need-to-know.

Examples:

• Remote information query services such as Archie, Gopher, WAIS

• Directory systems such as phone directories, parts lists, catalogs, etc.

5.4 Reuse Management Service

Conceptual: The Reuse Management service supports the storage, inspection, and reuse of

assets related to many stages of engineering processes. These assets include such artifacts

as requirements, designs, software components, test cases and documents.

There are three elements of Reuse Management: (1) storage, (2) indexing and classification,

and (3) browsing and retrieval. The storage facility in which the assets are kept is commonly

referred to as a repository or library. Indexing and classification are done through one of several

competing strategies for reusable assets, such as "faceted" and "knowledge-based." Browsing

and retrieval are related to the actual mechanism by which the Reuse service is provided to

users.

Although management of a reuse repository may occur in a local sense, a useful reuse reposi-

tory will likely be a virtual construct, with reuse operations taking place throughout a distributed,

heterogeneous network of actual repositories. Any reuse management operations that occur

in such a larger context are necessarily bound by constraints external to an individual PSE.

Operations: Examples of reuse management operations include:

• Deposit, acquire, or submit asset into the repository

• Catalog, register, classify, accept, or index the asset

• Search or browse the repository

• Browse, examine, or extract the asset

• Register the user, extractor, or submitter

• Report problem with or use of an asset

Rules: The Repository administration must define the policies and rules with regard to all the

operations, such as: who may extract an asset; the criteria for asset deposit; and the policies

for charging and liability. The Reuse Management service must support and enforce these

policies and rules.

NISTSP 500-213 49

The indexing strategy for browsing (e.g., faceted or knowledge-based) may greatly affect the

management and user view of the assets.

Types: The primary unit of concern for the Reuse Management service is the asset. An asset

is composed of elements linked together to form a reusable entity. The elements of an asset

are themselves typed, such as Ada code, tagged document, or executable binary.

External: The external interface to the Reuse Management service is similar to a database

system providing search and retrieval services. It is usually managed by an organization

dedicated to providing reusable assets to a broad set of customers. The formats of the

reusable assets are defined by their types.

Internal: The implementation of the Reuse Management service must provide reasonable

performance and capacity. The relationship between the local repository and the external

repository (connectivity and networks) must also be considered.

A common implementation model is the client-server model. In this model, the server can

be located inside or external to the PSE. The client provides the user interface to the reuse

operations.

In a secure PSE, all changes to items would be audited. Mandatory and discretionary access

control services can be used to support need-to-know.

Relationships to other services: The Reuse Management service may interact with many of

the Software Engineering services, in particular with the Software Design service.

Examples (storage facilities): The Asset Source for Software Engineering Technology (AS-

SET), Reusable Ada Packages for Information System Development (RAPID), and Central

Archive for Reusable Defense Software (CARDS) are examples of storage facilities for reusable

assets. InQuisiX and the Reuse Library Framework (RLF) are examples of classification and

retrieval mechanisms.

5.5 Metrics Service

Conceptual: The ability to manage project development in a PSE depends upon the collection

and understanding of quantitative data. Facilities are provided by the service both for primitive

data collection as well as the organization of that data into information meaningful to end-users

of the PSE.

Data is generally organized into three classes, of which the first and third class are typically the

output of the System or Software Static Analysis services.

• Resource data provides information about product characteristics, such as number of

components, size, and various static analysis measures.

50 NISTSP 500-213

• Performance data provides information about time-dependent processes, such as com-

puter usage costs, error reports and personnel time charges.

• Complexity data provides information about the structure of the development project, both

static analysis measures of the source documents and dynamic measures (e.g., of the

executing program).

This data must then be transformed and used by various models. Various reliability models,

often derived from hardware reliability theory, can be used to predict errors. Resource models

depend upon various regression models, and various complexity models are based upon

information theory, entropy or other finite state processes. These models are then used by

other services, particularly the various Project Management services.

Operations: Examples of metrics operations include:

• Insert and delete data from data set

• Pick appropriate model for given data set

• Compare data set to predicted model

• Compute standard error and deviation in data set

• Graph data set

• Predict next point(s) in data set

Rules: The underlying model usually represents some formal mathematical property or equa-

tion.

Types: Data usually represents: product characteristics (e.g., size), process characteristics

(e.g., errors), or structure (e.g., software science or cyclomatic complexity measures for a

module).

Confidentiality of stored metric data may be required if the results are considered sensitive in

nature.

Relationships to other services: The raw data of this service may be provided by the

Metrication service and by the Software Static Analysis service. The models produced by this

service may be used by the various Project Management services.

Examples:

• COCOMO cost estimation model

• Software science or cyclomatic complexity structure models

NISTSP 500-213 51

Chapter 6

PROJECT MANAGEMENT SERVICES

The services in this chapter support these activities related to planning and executing a project.

Project planning is the activity by which efforts of all personnel responsible for a project are

coordinated and integrated. Coordination and integration occur through a comprehensive plan

for fulfilling the project's need in a timely manner and at a reasonable cost. Project planning

takes place throughout the life of a project, from the project inception to completion. Typically,

one of the first steps in a project involves assessing customer needs, examination of strategies

to meet these needs, and discussion of the implications and effects of such strategies. A plan

for producing a proposal may also be necessary.

A project may be carried out by a number of cooperating or subcontracting organizations.

If this is the case, planning is necessary to manage the request for and selection of those

organizations. Following project initiation (e.g., contract award) detailed planning of the project

activities will be necessary, together with ongoing monitoring and re-planning of the project to

ensure its continued progress.

This chapter describes the following services:

• Planning service

• Estimating service

• Risl(Analysis service

• Tracking service

The activity of planning a project also requires definition of the process or processes that will

support the project; services related to those activities will also contribute to project manage-

ment.

NISTSP 500-213 53

6.1 Planning Service

Conceptual: The Planning service provides operations tiiat permit lianclling of data according

to a set of chronological constraints relevant to a project (i.e., describing the sequence of work

and identifying significant task interdependencies). These include start and finish times for the

project (as well as all component parts of the project). This service will support creation of

structures such as a Work Breakdown Structure (WBS), the most common means for planning

and scheduling a project.

Operations: Examples of planning operations include:

• Generate key project events

o Quantify inputs and outputs for work activities

• Compute event lead times (from manpower and cost models)

• Calculate start and finish dates

• Analyze critical path

• Generate part or all of the WBS in a database; this may include generation of detailed

event schedules

• Register assignment of work responsibilities to individuals or organizations

• Modify work breakdown structure based on actual vs. scheduled progress

Rules:

• Project schedules may not have cycles or loops.

• Start and end dates for all work activities must be not be contradictory (e.g., no activity

can be scheduled to complete before it begins).

• Individual work assignments can constrain the schedule.

• Some events may be unchangeable

Types: A work schedule may be created as a graph with nodes being individual activities

and the edges being constraints that one activity has on another. Such graphs are commonly

nested, with a node on a higher-level graph representing entire lower-level subgraphs. The

data structure for this service may or may not use such a representation, but at least some
equivalent for it will probably be necessary.

Internal: Creating and modifying the WBS may be implemented through a "Work Breakdown

Structure editor" or an expert system. Such tools wi[l have built-in knowledge of the normal

components of a WBS, such as start/stop dates, no cycles, etc.

54 NIST SP 500-213

Relationships to other services: This service may interact with the Life-Cycle Process Engi-

neering services. It may also interact with the Risk Analysis and Tracking services, as well as

with the Configuration Management and Metrics services.

Examples: Examples of this service are Timeline and MacProject.

6.2 Estimation Service

Conceptual: The Estimation service supports quantification, analysis, and prediction of project

cost and resource needs. These include estimates for the size of a project, labor, equipment,

facilities costs, and cost of computer resources allocated throughout the project lifecycle. Esti-

mates may need to factor in the concept of multiple activities assigned to the same entity. This

is more likely to concern a person being assigned two or more parallel jobs, although the same
is possible for hardware allocations as well.

Operations: Examples of estimation operations include:

• Create cost, size, and resource estimates for product development, production, installa-

tion, operation, and support

• Generate estimates for variable parameters such as workload mixes or for differing design

characteristics (e.g., safety, standardization, maintainability, survivability)

• Produce impact analyses based on alterations to variable parameters

• Perform sensitivity analysis on variable parameters

• Modify cost and size estimates and resource allocations

Internal: The principal component of an Estimation service could be an expert system. An im-

plementation of this service may also choose that estimates from one area (e.g., size estimates)

can constrain estimates in another area (e.g., cost).

Relationships to other services: This service may interact with the Numeric Processing

service through the use of spreadsheets, etc. It may also interact with the Tracking service and

with the Metrics services.

Examples: Tools that implement the Constructive Cost Model (COCOMO) estimation model

provide examples of this service.

6.3 Risk Analysis Service

Conceptual: The Risk Analysis service supports those planning activities that consider ele-

ments related to the success or failure of a project. Tracking of items such as expected resource

NISTSP 500-213 55

usage (e.g., productivity, reliability errors) versus actual usage allows for predictions of total

system needs. This service also includes calculation of various probabilities, such as those for

budget overrun and technological failure, and such commonly used indices for success as the

Mean Time Between Failures (MTBF) of a system or a system module.

Operations: Examples of risk analysis operations include:

• Perform trade-off analyses based on differing parameters for resource allocation and

scheduling data

• Produce cost, schedule, and performance risk statistics and analyses

• Create decision trees, alternative and payoff matrices

• Calculate probabilities and generate reports for various allocation strategies

Relationship to other services: The Risk Analysis service may interact with the System

Testing service, as well as with the Planning, Estimation, Numeric Processing, and Metrics

services.

6.4 Tracking Service

Conceptual: This service supports correlation of estimated cost and schedule data with actual

performance of a project; it also provides the capability to track action items to closure. It may
provide triggers or alarms when actual data differ from planned resource usage, or when action

items have not been closed after a certain period.

This service also supports the presentation of such data in human-readable form. Presentation

will typically include transformation of project information into specific formats, such as Gantt

or Pert charts. It could also include hardcopy generation of a WBS, interim briefing charts on

project status, and the like.

Operations: Examples of tracking operations include:

• Gather metrics related to current status of a project and its constituent work activities

• Compare cost, size, and resource estimates with actual amounts

• Read and display status of all project variables (e.g., milestones met, cost, labor hours,

etc.)

• Produce project data and summary information in various formats (e.g., according to the

formatting rules of a given template, as a group of slides, based on a WBS, etc.)

56 NISTSP 500-213

Types: This service may need input from a personnel or an accounting database. As project

personnel change through the life of a project, the cost for individuals will change, thus altering

the overall cost estimates.

Relationships to other services: This service may interact with the Estimation and Planning

services. It may also interact with the Software Requirements Engineering service for providing

prototyping capabilities and with several of the Support services for manipulating and presenting

project data.

Exampies: SME (Software Management Environment) from NASA/GSFC allows for a knowledge-

based approach to compare current resource expenditures to historical baselines. Presentation

tools that produce Gantt and Pert charts are also examples of the operations of this service.

NIST SP 500-213 57

Chapter 7

SUPPORT SERVICES

Support services include services used by all users. They generally include those services

associated with processing, formatting, and disseminating human-readable data; they also

include services that provide support for use of the computer system itself.

This chapter describes the following services:

• Common Support services

- Text Processing service

- Numeric Processing service

- Figure Processing service

- Audio and Video Processing service

- Calendar and Reminder service

- Annotation service

• Publishing service

• User Communication services

- Mail service

- Bulletin Board service

- Conferencing service

• PSE Administration services

- Tool Installation and Customization service

- PSE User and Role Management service

- PSE Resource Management service

- PSE Status Monitoring service

- PSE Diagnostic service

- PSE Interchange service

- PSE User Access service

- PSE Instruction service

NISTSP 500-213 59

7.1 Common Support Services

Interaction among PSE users is generally based on a set of standard representations. Of

these the most important are textual information, numbers, and figures. In addition, a number

of emerging technologies indicate that PSE users will also make growing use of digitized audio

and video information. The Common Support services create representations relating to all of

these information media that other services may use in providing their services.

Most of these services, as well as some other Support services, have a set of basic oper-

ations, such as create, modify, delete, move, copy, or save. The item in question for each

service, however, is considerably different, and though there is an apparent duplication in the

descriptions of these operations, there is a substantial difference in the nature of the operations

themselves. The redundancy in the service descriptions below is, therefore, a necessary one.

7.1.1 Text Processing Service

Conceptual: The ability to create and manipulate textual information within the PSE is a

service of primary importance. It is involved in supporting the activities of planning, design,

documentation, engineering, and most management activities throughout the lifecycle of any

project.

Text may be viewed either as characters on a two dimensional plane, with operations available

to navigate on the plane, inserting and modifying text as needed, or as structured objects (e.g.,

graph, tree, table, or formula) with operations available to also navigate around this structure

making changes as needed.

Operations: Examples of text processing operations include:

• Create, modify, delete, and save text for future use

• Import externally produced text into a format usable by this service

• Export text in various formats

• Format or print text or documents

• A collection of text manipulation primitives including

- move, copy, or input text

- include or merge previously saved text with current text

- search for, replace, or compare text strings

• Format document, create template, print

• Check spelling and grammar, lookup (i.e., in dictionary or thesaurus)

60 NIST SP 500-213

• Create and manipulate textual table

• Scan externally produced text into a format that can be manipulated by this service.

Rules: Depending upon the services implemented in the PSE, the Text Processing service

may need to implement text format or template design format rules, spelling or grammar rules,

thesaurus substitution rules, tool or file format rules, and textual table design or format rules.

Types: The Text Processing service requires an underlying character set for representing text

as well as any required special symbols. Schema may be defined giving templates for words,

paragraphs, chapters, tables, equations and other design template aspects.

External: This service may be used by other services within the PSE (e.g., electronic mail) or

may be invoked directly by the user of the PSE to create textual objects.

Internal: Objects referenced by the Text Processing service are often files in the file system or

objects in the object management system. More complex structures can also be used, such

as graphs or tree structures linking parts of a document, such as in a syntax-directed editor.

Relationships to other services: Text Processing services may interact with any PSE service

requiring the use and manipulation of textual information for user input, display, output or tool

or file textual format conversion.

Examples:

• General editors such as vi or emacs

• Specialized editors, such as context sensitive editors

• Syntax-based editors (DEC'S LSE, research editors like Mentor, SUPPORT, or CPS)

• Text manipulation tools such as awk and grep.

7.1.2 Numeric Processing Service

Conceptual: The ability to create and manipulate numeric information (e.g., spreadsheets,

libraries of standard mathematical functions, statistical packages) within the PSE is one of the

major services involved in supporting the activities of planning, budgeting, and management of

projects.

Operations: Examples of numeric processing operations include:

• Create, modify, edit, delete, and save formulas and spreadsheets

• Import or export spreadsheet data in various tool or file formats

• Format or print numbers, formulas, or calculated results

NIST SP 500-213 61

• A collection of number and formula manipulation primitives including

- move, copy, or input numbers or formulas

- include or merge previously saved spreadsheets with current values

- search for, replace, or compare number or formula strings

• Create, manipulate, calculate, and print mathematical formats and templates

• Calculate general arithmetical operations such as square root, logarithm, sine, cosine,

etc.

• Create and manipulate numeric tables

Rules: Depending upon the services implemented in the PSE, the Numeric Processing service

would need to implement mathematical format or template design format rules, including math-

ematical function input parameter or calculation rules, spreadsheet tool or file format rules, and

numeric table design or format rules.

Types: The Numeric Processing service would need to define valid number formats, that is,

integer, fixed point, floating point or scientific and limits, implemented mathematical functions

and their parameters, the basic formula format or symbol definitions and calculation rules, and

the specific spreadsheet or non-spreadsheet token model implemented.

Internal: The Numeric Processing service would normally be implemented by means of runtime

libraries of mathematical functions, as well as by separate PSE tools, such as a spreadsheet

or calculator applications, designed to be enacted whenever numeric processing services are

needed.

Relationships to other services: Numeric Processing sen/ices may interact with any PSE
service requiring the use and manipulation of numeric information for user input, display, output,

tool or file format conversion.

Examples: Spreadsheets such as Lotus 1-2-3, Microsoft Excel, Borland's Quattro pop-up cal-

culators, and separate tools for creating equations or tables (e.g., EQN and TBL) are examples

of this service.

7.1.3 Figure Processing Service

Conceptual: The Figure Processing Service deals with the creation and manipulation of

graphic, image, or documentation figures within the PSE. It involves supporting images for any

other end-user service and activity.

62 NISTSP 500-213

Operations: Examples of figure processing operations include:

• Graphic or image creation, modification or editing, deletion, and saving for future use

• Graphic or image manipulation primitives such as zoom, size, shrink, rotate, fill, align,

move to foreground or background, compose or decompose, include or merge previously

saved graphic or image objects with current graphics or images; search for, replace or

compare graphic or image objects

• Import or export graphics or images in various formats

• Format or print graphics, images or documents

• Scanning externally produced pictures into a format that can be manipulated by this

service.

Rules: Depending upon the services implemented in the PSE, the Figure Processing service

would need to implement graphic or image or figure format and template design format rules,

tool or file format rules, and graphic, image or figure table design or format rules.

Types: The Figure Processing service may need to define valid graphic, image or figure object

primitives and special graphic object representations, as well as the basic graphic, image or

figure token model implemented.

External: The PSE would automatically invoke Figure Processing service functions whenever

needed by other services; these services may also be invoked directly by the PSE user.

Internal: The Figure Processing service would normally be implemented as separate PSE
tools, that is, graphic, image or figure editor applications, designed to be invoked by the

framework whenever figure processing services are needed by other services, tasks, functions

or tools active in the PSE.

Graphic data is often stored either as a bit-mapped (or raster) data object representing the

pixels that will be the picture, or as a set of rules for drawing the picture (e.g., as a set of

vectors).

Relationships to other services: The Figure Processing service may interact with any PSE
service requiring the use and manipulation of graphic, image or figure information for user input,

display, output, tool, file format conversion or directly by the PSE user.

Examples: Examples of the Figure Processing service include independent drawing tools such

as MacDraw, MacPaint, xfig under X Windows, and pic for Unix troff.

7.1.4 Audio and Video Processing Service

Conceptual: The ability to capture, create and manipulate data that is based on audio- or

video-based sources will soon become a necessary capability of PSEs. There are numerous

NIST SP 500-213 63

technologies now emerging, including enhancement of graphical devices, animation, "ink"

(computer manipulation of hand-written text), and similar means of computer processing of

digitized audio and video data. Although these capabilities are all currently in relative infancy,

many of them will soon be common. It may be the case that some of these capabilities

will eventually be regarded as proper either to the Framework or even platform or hardware

services.^°

The integration of these services with currently existing services will also be likely. For instance,

voice tagging of an ASCII text file, or freezing a video image containing numeric data and

then capturing that data for inclusion in a spreadsheet, are likely possibilities for integrating

multimedia operations with "traditional" computer tools.

Operations: Examples of audio and video processing operations include:

• Create, modify, and delete sound and video data objects

• Record, playback, and transmit audio and video data objects

• Transform data from one form (e.g., audio) into another form (e.g., ASCII text).

• Store audio and video data in other formats (e.g., PostScript)

Relationships to other services: This service may have a close relationship with the Frame-

work's Dialog service. This service may also interact with the Text, Numeric, and Figure

Processing services, the Publishing service, the Mail service, and any other services in the

environment that deal with human-readable information.

7.1 .5 Calendar and Reminder Service

Conceptual: This service provides the means for a user to keep an electronic schedule of

meetings, deadlines, and similar important dates and times. This service may be a passive

one, i.e., simply an electronic form of a traditional desk schedule. It may also be a more active

service, such as sending automatic reminders of dates and times for deliverables to project

members, initiating actions on objects, or automatically triggering process steps.

Operations: Examples of operations of this service include:

• Insert and delete items in an electronic calendar

• Select actions for execution at a given date and time

^°There has been a proposal to modify the NIST/ECMA Framework's Presentation ser.'ice to accommodate some
of these emerging technologies.

64 NIST SP 500-213

• Display and print calendar information in different modes (e.g., entire year, particular

months, weeks, and days)

• Select actions for execution when specified event occur (e.g., alarms)

Rules: Entries are associated with a date and time

External: The external interface to the Calendar and Reminder service is based on the display

of a calendar. This calendar can be displayed at different levels of granularity (day, week, year).

Relationship to other services: This service may interact with the other Common Support

services, with the Mail service, and with several of the Project Management services.

Examples: Synchronize is an example of this service.

7.1.6 Annotation Service

Conceptual: The Annotation service provides for associating comments with existing objects.

The comments may be in the form of text, diagrams, audio, or video.

Operations: Examples of operations of this service include:

• Add, delete, or modify commentary associated with an object

• Copy or display object with or without commentary

• Order commentary by date, time, size, or author

• Connect commentary to multiple objects

Rules: Attaching a comment to an object cannot adversely affect existing uses of that object.

Modification of a comment may be limited to the author or administrator.

Reading of comments or certain aspects of the comments may be restricted to specific individ-

uals.

Types: The comment may be text, diagram, audio, video, or a mixture of these.

Internal: A common implementation model is the use of a central comment database (e.g.,

RDBMS, OODBMS). All comments are gathered and managed in that database, although the

objects to which the comments apply may be external to it.

Relationships to other services: The Annotation service may interact with the Text, Numeric,

Figure, and Audio and Video Processing sen/ices.

NIST SP 500-213 65

7.2 Publishing Service

Conceptual: The basic function of the Publishing Service is to create and print documents.

Until recent times, documents have been understood to be collections of printed pages. But

with the advent of digital technology, this definition is no longer satisfactory. A more abstract

notion of what "documents" are sees them as structured, portable collections of related objects

that intend to communicate information. This includes books, letters, brochures, hypermedia

collections, and on-line services. It includes both documents that are read (e.g., papers, etc.,

consisting of pages and divided into multipage segments called chapters or sections) and

documents that are viewed (e.g., slides, etc. where one page is independent of another page,

documents with video content, etc.).

Given this broad definition, the function of the Publishing service must be equally broad; it is

therefore:

• to create, edit, and delete the objects that compose documents;

• to structure these objects in relation to each other;

• to deliver the resulting document in a portable form.

Publishing involves three aspects of a document:

1 . ContentThe actual content of the objects that compose documents can be created, edited,

and deleted by the Publishing service. The objects that the Publishing service manipulates

includes textual objects, vector graphics, bit-mapped images, data-driven charts, and

equations. Thus, the Publishing service requires other services for editing each of these

types of object (i.e., text editors, graphics editors, etc.). In addition, document objects

can be temporal in nature, such as audio or video objects, or animations. Documents

may also include finding aids, such as tables of contents, hyperlinks, or full-text query

facilities.

2. Format Each object in a document has not only content but appearance as well, which

we refer to as "format." Format for text objects includes attributes such as font, type,

size, face, and leading, format for bit-mapped objects includes color/gray-scale, size,

and resolution. Format for audio objects includes amplitude and dynamic range.

3. Structure The objects in a document are related to each other in well-defined ways. The

rule base (implicit or explicit) that describes document structure defines the type of doc-

ument in question. For exaample, if the document is a business letter, it has exactly one

date followed by exactly one address, etc. If the document is a technical manual, it has a

different structure, one that includes rules such as "When an illustration object is included,

it must be followed by exactly one descriptive caption." The Publishing service requires

tools for creating the rule base for each type of document that it publishes.

66 NIST SP 500-213

Operations: Examples of publishing operations include:

• Create, modify, delete, and save text for future use

• Import or export text in various formats

• Create tables of contents, indices, bibliographies, and glossaries

• Format or print text or documents

• A collection of text manipulation primitives including:

- move, copy or input text

- include or merge previously saved text with current text

- search for, replace or compare text strings

• Import figure, graphic or table into document

• Create or modify layout or style for document

• Format document, create template, print

• Check spelling and grammar, lookup (i.e., in dictionary or thesaurus)

• Create and manipulate textual table

• Build document

• Preview document

• Print template

Rules: In producing a document, many visual design decisions must be considered. Issues

such as font selection, format and structure rules, and page layout are very important to

producing quality documents. These decisions are supported by the Publishing Service.

Types: The page is the basic element of the Publishing Service. Pages contain items with

specific semantics, such as words, paragraphs, titles, and figures.

Documents are defined as a collection of pages. Documents have parts with specific se-

mantics, such as title page, abstract, preface, table of contents, section, bibliography, and

appendix. There are types of documents, such as memoranda, projection charts, technical

reports, presentation slides and letters. Documents may also contain data whose sources

include multimedia data objects, such as a frozen image from an animated video data file.

Often style guides (i.e., schema) are used to represent the semantics of the parts of a document.

^^These are often the same operations available through the Common Support services such as Text Processing,

Figure Processing, Audio and Video Processing, etc.)

NISTSP 500-213 67

External: The contents of documents are constructed by an author entering it via the keyboard

or by importing it from another service. The output of the Text Processing Service may serve

as input to the Publishing Service.

The Publishing Service produces data directly to a printing device or into a file for subsequent

processing. The Publishing Service may produce a variety of output formats depending on the

target printer.

Documents may be electronic and should be able to be viewed in that manner. Documents

also may have sound and video content.

Internal: Because of the complexity of the Publishing Service, significant attention is placed

on internal performance and construction of the visual presentation.

There are generally two models for building Publishing Service products. In one case, format-

ting information is inserted directly into the document (e.g., troff, WordPerfect). In the other

case, editing commands are external to the document (e.g., TeX style guides) and can be

altered independently to altering the document itself.

Relationships to other services: The Publishing Service may interact with the Text, Numeric,

and Figure Processing services.

Page items and document parts (e.g., paragraphs, figures, abstracts, appendices) may be

objects visible to the framework Object Management services.

Examples: InterleafS from Interleaf, Framemaker from Frame Technology, Pagemaker from

Aldus, Tex, Latex, and troff are all examples of this service. Freelance, the Slitex variant of Tex,

and PowerPoint are examples of Publishing service tools that emphasize slide presentation.

Postscript is an example notation for describing text and graphics within such documents.

7.3 User Communication Services

Interaction between individuals is accomplished by many mechanisms. When such interactions

are pertinent to the activities of a project and are supported by services of the PSE, they are

handled by the User Communication services.

7.3.1 Mail Service

Conceptual: The Mail Service provides for simple communications of notes between computer

system users. It follows a paper letter mail paradigm, while taking advantage of the speed and

connectivity of wide area computer networks. Automatic note fonwarding and collecting are

also part of the Mail service.

68 NIST SP 500-213

Operations: The Mail service has the common set of operations needed to create and save

textual information. In addition, the Mail service has the following unique operations:

• Receive, compose, send, reply, fonward, broadcast, and acknowledge mail

• Electronically review mail

• Customize the mail's send and receive capabilities

Types: Mail is often stored in objects called folders. Folders are usually related to specific

subjects or addressees.

Mail can be sent to individuals, or mailing lists of many individuals can be created to broadcast

messages to many users at one time.

The basic object of the Mail service is the message; a message is the item that is mailed.

Messages have subfields, such as addressee, author, date, subject, salutation, body, and

closing.

External: The external view of the Mail service is via simple, easy to use tool kits (or utilities).

The Mail service is also the primary connection for most users who are communicating across

LAN and WAN networks.

Internal: The major distinguishing feature of the Mail service among the User Communication

services is that it represents one way asynchronous communication between two users. Mail is

sent by one user and the PSE stores the mail until retrieved by the receiver. An acknowledgment

is sometimes sent to the sender stating that the message is waiting for the receiver, but whether

the receiver actually read the message is generally not known.

In a secure distributed PSE, authentication of the sender by the receiver is required. There are

also other security considerations, such as Secure Mail and Privacy Enhanced Mail, that are

still research topics.

Relationships to other services: The Mail service may use the Text Processing service to

create messages. It may also interact with the Figure Processing and Numeric Processing

services for creating complex messages. Other services in the PSE may use the Mail service

to communicate with other users, e.g., informing a test team that a program build is completed

and ready for testing.

Examples: Unix mail, MailTool, and Andrew Tool Kit are examples of this service.

7.3.2 Bulletin Board Service

Conceptual: The Bulletin Board service is a form of mail with a single sender and multiple

recipients. Information is mailed to the bulletin board and users access the bulletin board as

desired. Unlike mail, which prompts receivers to read the message and may acknowledge

NIST SP 500-213 69

receipt to the sender, a Bulletin Board service simply posts the information, and it is up to each

intended receiver to interrogate the Bulletin Board for new information.

Operations: The Bulletin Board service has the common set of operations needed to create

and save textual information. In addition, the Bulletin Board service has the following unique

operations:

• Subscribe and post messages

• Browse a bulletin board's messages

• Reply or add information to posted messages

• FoHA/ard messages

Types: Often users can "subscribe" to certain bulletin boards, and therefore lists of such users

must be maintained. There are often multiple bulletin boards and the names of such bulletin

boards must be maintained also.

External: Access to the Bulletin Board service is often via an interface that looks very much
like a Mail service interface.

Internal: There are generally two methods for implementing a Bulletin Board service. One way
is via the Mail service. Lists of users subscribing to a given bulletin board are maintained, and

a post operation is simply a Mail service broadcast operation to all users who have subscribed

to this service.

A second method is for the Bulletin Board service to post items into an object in the object

management system, and the browse operation reads that object.

Like the Mail service, this is also an asynchronous communication service.

Relationships to other services: The Bulletin Board service often uses the Mail service to

broadcast messages and the Text Processing service for creating messages. The framework

Communication service is used to send messages across a l_AN or WAN.

Examples: Readnews, VAXnotes, and Unix notefiles are examples of this service.

7.3.3 Conferencing Service

Conceptual: Often it is necessary for users to engage in interactive synchronous communica-

tion. This is handled in the PSE by the Conferencing service. While the model implemented

often resembles a two-way telephone call, the service could also be implemented to permit

computer-based conferencing for many users.

70 NIST SP 500-213

Operations: Examples of conferencing operations include:

• Open connection

• Send message

• Close connection

Types: Objects that can be sent and received through this service may include ASCII text,

sound, video, and graphical objects.

External: This is often a separate service that creates multiple viewing areas on the screen,

each representing one end of the conversation.

Relationship to other services: This service may use the framework's Communication service

to permit synchronous communication to proceed.

Examples: The Unix talk program is an example of this service.

7.4 PSE Administration Services

The administration of a computer system includes services that span all of the levels of the

system. They include services whose province is low-level operating system support, as well

as services that affect the engineering and management users of the environment.

While these services provide administration capabilities that pertain to an overall environment,

they also have considerable overlap with the functionality of the Framework Administration

services originally described in the ECMA/NIST reference model. Most of those services have

now been subsumed by the service below.

7.4.1 Tool Installation and Customization Service

Conceptual: This service supports the installation, testing, and registration of tools into a PSE.

The service provides the necessary operations to set up default resource limits, default names,

and other operational characteristics for a tool to be used in a PSE. The installation of a tool

may involve significant changes to the tool's implementation or encapsulation of the tool in

some form of tool wrapper. Installation of a tool may also involve specific vendor constraints,

such as the operation of tool-specific daemons to ensure that the number of users agrees with

the number of licenses purchased.

Tools are designed to operate with a specific user interface. However, it is desirable to have

consistency of user interface style and operation across a number of tools. Hence, in addition

to the work required to install a tool, customization of a tool's user interface may be required.

NISTSP 500-213 71

Being able to define a test environment for a recently installed tool protects the PSE from errant

behavior on the part of the new tool. For example, names and defaults are kept local to the

tester and may not affect other versions of the tool present in the PSE.

It may be possible to access alternate versions of the same tool within a single PSE.

Operations: Examples of tool installation operations include:

• Install tool by setting default resource limits (e.g., CPU time, objects manipulated, file

sizes, and default names) for that tool, or according to a vendor's licensing regulations

• Customize tool, e.g., by providing a new user interface

• Create a test environment for a recently installed tool

• Register a new tool in a PSE by making it known to potential tool users

• Provide access to multiple versions of the same tool

• Unregister an existing tool in a PSE, making it unavailable for use

Internal: Installing a tool in a PSE may involve a major amount of work on the part of the

installer. Amongst other things, the amount of work required is dependent on the compatibility

of the internal architecture of the tool and the PSE. In addition, porting an existing tool to a PSE
may require encapsulation of the tool in some form of tool wrapper.

Registering a tool makes that tool known to potential users. This may take a number of forms,

including making the tool's name known in a public directory, placing the tool itself in a well-

known place in the PSE, extending the project schema of a database-centered PSE, and so

on.

Relationships to other services: In installing and testing a tool it may be necessary to make
use of the User and Role Management service to partition the PSE and Policy Enforcement

services to protect other users of the PSE. User and Role Management and Policy Enforce-

ment services are needed to ensure that only authorized individuals can access these Tool

Registration Services and the registered tools themselves.

7.4.2 PSE User and Role Management Service

Conceptual: Users of a PSE must be made known to the system through some form of

registration. Users may be grouped according to particular user roles within the PSE (e.g.,

developer, designer, manager). Each role may require particular tools, permissions, data, and

so on. These provide (potentially) overlapping partitions of the PSE.

The utility of this service may be to facilitate security, to aid partitioning of the PSE data for

distribution purposes, to allow easier communication between groups of PSE users, to allow

tasks to be assigned to groups, and so on.

72 NISTSP 500-213

Operations: Examples of role management operations include:

• Register a new PSE user

• Deregister an existing PSE user

• Create a new role of PSE user

• Delete an existing role of PSE user

• Assign a user as a member of a PSE role

• Deassign a user from being a member of a PSE role

• Select a view or partition of the PSE tools, data, etc., as visible (i.e., accessible) to a
particular role

• Amend the view defined for a role

Rules: A user can be assigned to more than one role.

Internal: Many of these operations could be provided by (or complemented by) framework

mechanisms for the administration of mandatory or discretionary access control.

Relationships to other services: This service may interact with the Tool Installation and

Customization service and with the Lifecycle Process Engineering services.

Examples: Most available PSEs have user registration facilities. Grouping services are avail-

able to Unix groups and as roles in ISTAR, ASPECT and other PSEs.

7.4.3 PSE Resource Management Service

Conceptual: The Resource Management service provides the ability to monitor, add, change,

or delete resources available to a PSE. The resources supported include disks, memory, tapes,

quotas, and workstations.

Operations: Examples of resource management operations include:

• Add a resource to the PSE

• Delete a resource from the PSE

• Amend a resource of the PSE

• Query status of a resource in the PSE

NIST SP 500-213 73

• Provide statistics on a resource of the PSE

• Make a resource available to user and/or role

• Interrogate PSE for availability of a resource

Types: The following are types of resources: disks, memory, tapes, user quotas, workstations,

tape drives, terminals, mainframes.

External: Other services will use the resource management service to determine availability

of resources for an operation.

Internal: This service is concerned only with the user, role, and tools levels; it does not address

the system level platform resource management.

Relationships to other services: This service may interact with the User and Role Manage-

ment and the PSE User Access services.

7.4.4 PSE Status Monitoring Service

Conceptual: During execution of the PSE it is necessary to monitor and control the actions

that take place. The information obtained can be used to adjust, or tune, the PSE to improve

its availability and performance. Particular information of use to the PSE administrator may
include statistics on the uptime of the PSE, overall tool usage, resource usage by individuals,

average response time, and so on. This service is analogous to the monitoring functions

performed by a database administrator or a system administrator.

Operations: Examples of status management operations include:

• Log actions and events that occur during normal execution of the PSE

• Produce report on PSE usage

Internal: This service may be heavily dependent on the underlying monitoring services of the

operating system on which the PSE is implemented.

Relationship to other services: This service may interact with the Metrics service.

7.4.5 PSE Diagnostic Service

Conceptual: A PSE must be able to perform self-testing and diagnosis to determine irregular

conditions. The PSE may then be able to correct problems automatically or to send messages

to a PSE administrator for human intervention. The irregular conditions may include inability

to achieve expected network connections, lack or fragmentation of disk or secondary storage

facilities, or inconsistent relationships in the environment (e.g., missing tools).

74 NIST SP 500-213

Operations: Examples of diagnostic operations include:

• Initiate self-test of PSE facilities

• Collapse fragmented storage

• Send diagnostic message to system administrator

• Perform automatic rollback from an invalid environmental condition

Relationships to otiier services: The service may interact with the PSE Status Monitoring

service, the PSE User Access service, and the Framework's Archive service.

7.4.6 PSE Interchange Service

Conceptual: Communication and sharing between PSEs requires services for interchange

between PSEs. For example, tools and data from one PSE may be transferred to another PSE
to facilitate reuse. This requires external protocols from the PSE to the outside world.

Also, initial loading of data and tools into a PSE must be handled by this service.

Operations: Examples of interchange operations include:

• Transfer data between PSEs

• Transfer a tool between PSEs

• Transfer user/role between PSEs

• Transfer task description between PSEs

Rules: Consistency of the receiving PSE must be maintained following the interchange.

internal: Some form of encryption may occur between the PSE and the outside world in order

to ensure greater security.

Relationships to other services: This service may interact with the framework's Data Inter-

change service. Also, the PSE user access service may constrain access to transfer operations

to trusted users.

NIST SP 500-213 75

7.4.7 PSE User Access Service

Conceptual: The PSE needs to know who is accessing resources and to provide control over

access to the PSE.

Operations: Examples of user access operations include:

• Login a user into the PSE

• Authenticate a user of the PSE

• List all current users of the PSE

• Logout a user from the PSE

• Set privileges of a PSE user

• Set access to resources by another PSE user

Rules: All access to a PSE must be preceded by a login operation.

Users often have a predefined role associated with a login operation, constraining the PSE
resources available to them.

External: Authentication of a user by a login or authentication operation is typically by a

password, but can include other characteristics such as personal facts, fingerprints, ID cards,

handwriting, etc.

Relationships to other services: This service may interact in many ways with access control

at the framework level.

Example: Unix root privileges provide an example of the set-privileges operation, and the Unix

chmod function for altering file access attributes is an example of the set-access operation.

The ASPECT PSE uses publi£h and acquire operations to allow other roles to have access to

private data.

7.4.8 PSE Instruction Service

Conceptual: The appropriate use of tools often requires online information to be given to the

user of the tool. This information may either be in the form of an interactive tutorial run by the

user in order to learn the features of a new tool or may be invoked within the tool as part of a

"help" facility.

Often the Instruction service will enact the actual tool and guide the user through the use of that

tool with specified input. In other cases, the Instruction service may simply display a predefined

76 NISTSP 500-213

file of information on the desired topic (and tlius behave much like the Information Management
service).

Operations: Example operations of this service include the following:

• Display information

• Browse (search for) information

• Explain (interpret) program output, command input, or data item

• Simulate (with input and output) tool activity

Internal: This service is often implemented as a separate tool from the tool it is explaining.

However, at other times it may be implemented as a "hot key" within the tool itself. Enacting

this key causes the tool to enter a "help" mode where it displays useful information to the user.

Relationship to other services: This service may interact with the Information Management

service as well as the framework User Assistance service in intercepting and explaining error

and warning messages. This service may also interact with any tool supporting any service of

this reference model, as described in the Internal dimension, above.

Examples: Examples of online instruction include the following classes of tools: Computer

Aided Instruction (CAI) and online tutorials; and Browsers and online help facilities (e.g., UNIX

man utility).

NIST SP 500-213 77

Chapter 8

FRAMEWORK SERVICES

These services comprise the infrastructure of a PSE. They include those services that jointly

provide support for applications, CASE tools, etc. and that are commonly referred to as "the

environment framework." The source for these service descriptions is the "Reference Model

for Frameworks of Software Engineering Environments, Edition 3," NIST Special Publication

Number 500-21 1 , August, 1 993. Although most of the following text has been extracted directly

from this source, the text has been substantially abbreviated. For a full description of each

service, the reader should consult the NIST/ECMA Frameworks Reference Model itself.

In the case of one section of the NIST/ECMA reference model, (section 10, Framework Ad-

ministration services), it was felt that most of the services were essentially subsumed by other

services already described in the PSE reference model. These included the following:

• Registration service (section 10.1): for this service, see section 7.4.1, Tool Installation

and Customization Service.

• Resource Management service (section 10.2): for this service, see section 7.4.3, PSE
Resource Registration service.

• Metrication service (section 10.3): for this service, see section 5.5, Metrics service.

• Sub-Environment service (section 10.4): for this service, see section 7.4.2, PSE User

and Role Management service.

• Self-Configuration Management service (section 10.5): for this service, see section 7.4.1

.

Tool Installation and Customization service.

One remaining service from this section of the NIST ECMA reference model (License Manager

service, section 1 0.6) is not duplicated in the PSE reference model. This service provides for the

enforcement of licensing requirements on PSE components. As with all of the other abbreviated

framework service descriptions, the reader should consult the NIST/ECMA reference model for

Its full description.

NIST SP 500-213 79

This chapter describes the following services:

• Object Management services

• Process Management services

• Communication services

• Operating System services

• User Interface services

• Policy Enforcement services

8.1 Object Management Services

NB: These service descriptions tiave been abstracted from ttie NIST/ECMA Reference Model,

section 4.

Conceptual: The general purpose of the object management services is the definition, storage,

maintenance, management, and access of object entities and the relationships among them.

These services are generally built upon the database and file system services of the platform.

These services include the following:

8.1.1 Metadata service (NIST/ECMA, section 4.1): provides definition, control, and mainte-

nance of metadata, typically according to a supported data model. Metadata (e.g., schemas) is

data about the structure and constraints of data and objects in the object manager. A Metadata

Service allows generic tools to be written which operate according to the structure of the objects

in a particular environment.

8.1.2 Data Storage and Persistence service (section 4.2): provides definition, control, and

maintenance of objects, typically according to previously defined schemas and type definitions.

It is this service which permits an object to live beyond the lifetime of the process that created

it and allows access to it by that process or by other processes until it is deleted. This service

provides the essential storage characteristic of a "database" or object management system.

8.1.3 Relationship service (section 4.3): provides the capability for defining and maintaining

relationships between objects in the object management system. These relationships provide

the links to move between objects in the object management system. For models, like the

E-R data model, they provide the essential links for building such models. For others, like

object-oriented models, they provide a mechanism for building inheritance and like properties.

8.1.4 Name service (section 4.4): supports naming objects and associated data and maintains

relationships between surrogates and names. This service provides for the translation of exter-

nal names known to users and tools within an environment to internal, often arbitrary, identifiers

of those objects. The external names can be file names, function names, process names, etc..

80 NISTSP 500-213

while the internal names often represent physical locations in the object management system,

arbitrary counters or hash-coded table-lookup values.

8.1.5 Distribution and Location service (section 4.5): provides capabilities that support man-
agement and access of distributed objects. The Location Service may have both a physical and
logical model of the object management system. Distributed software development support is

firmly established as a requirement for PSE frameworks, and this service permits users and
tools to locate necessary objects in the environment.

8.1.6 Data Transaction service (section 4.6): provides capabilities to define and enact trans-

actions. Transactions are units of work made up from a sequence of atomic operations. Such
operations must not terminate in a half-completed state. Implementation of such operations is

handled by this service via operations like commit and rollback.

8.1.7 Concurrency service (section 4.7): provides capabilities that ensure reliable concurrent

access (by users or processes) to the object management system. In multiprocessing systems

and distributed networks it is imperative that certain critical operations execute to comple-

tion before their data can be interrogated by another process. This service provides these

capabilities via operations like acquire and release locks.

8.1.8 Operating System Process Support service (section 4.8): provides the ability to define

OS processes (active objects) and access them using the same mechanisms used for objects.

This provides integration of OS process and object management. This service provides the

basic support mechanisms for enacting and controlling active objects in addition to the more

static data in the object management system.

8.1 .9 Archive service (section 4.9): allows on-line information to be transferred to off-line media

and vice-versa. This service allows users to determine which objects are readily available

via the object management system and which require increased access time by retrieval from

off-line media such as tape. Size of the object management system and size of the individual

objects determines whether and how often the Archive service needs to be used.

8.1.10 Backup service (section 4.10): restores the development environment to a consistent

state after any media failure. While the Archive service is often viewed as one used by users of

an environment to manage the objects under their control, the Backup service is often viewed

as an administrative function that provides reliability and integrity to the data in the object

management system and is generally transparent to the users of an environment.

8.1.11 Derivation service (section 4.11): supports definition and enactment of derivation rules

among objects, relationships or values (e.g., computed attributes, derived objects). Many

objects in the object management system are often related (e.g., type definitions, source code,

object code, executable modules), and changes to one often affect the others. This service

provides the capabilities to link these objects in such a way that rules are established for

deriving the related objects from other objects.

8.1.12 Replication and Synchronization service (section 4.12): provides for the explicit replica-

tion of objects in a distributed environment and the management of the consistency of redundant

copies. The basic operations of this service are to provide synchronization of multiple objects

NIST SP 500-213 81

and manage replicated objects so that ownership is not hindered.

8.1.13 Access Control and Security service (section 4.13): provides for the definition and

enforcement of rules by which access to PSE objects (e.g., data, tools) can be granted to or

withheld from user and tools. This service utilizes the operations within the Policy Enforcement

services of the framework.

8.1.14 Function Attachment service (section 4.14): provides for the attachment or relation of

functions or operations to object types, as well as the attachments and relation of operations to

individual instances of objects. This provides the basic functionality to implement inheritance

properties in the object-oriented data model.

8.1.15 Common Schema service (section 4.15): provides mechanisms for integrating tools

into a PSE by providing a means to create common (logical) definitions of the objects (and

operations) these tools may share from the underlying objects in the object management
system. This service provides the capabilities for creating and modifying such schema in order

to integrate new tools into an existing set of tools and their related data in an environment.

8.1.16 Version service (section 4.16): provides capabilities for managing data from earlier

states of objects in the OMS. Change throughout development has to be managed in a PSE
and the inclusion of versioning is one of the means of achieving this. This service provides the

capabilities to create new versions of objects and to recover earlier versions of objects.

8.1.17 Composite Object service (section 4.17): creates, manages, accesses, and deletes

composite objects, i.e., objects composed of other objects. It may be an intrinsic part of the

data model or a separate service. Complex objects in a PSE (e.g., source code, a report)

may consist of collections of other objects linked in specific ways. This service allows for such

objects to be considered as either a single composite object (e.g., a report) or as subsets of

this object (e.g., a chapter, a table).

8. 1 . 1 8 Query service (section 4.18): an extension to the Data Storage and Persistence service's

read operation. It provides capabilities to retrieve sets of objects according to defined properties

and values. These capabilities can be fairly simple navigation operations (e.g., "Get all objects

linked to X") or more complex inference rules (e.g., "Get all objects linked to X and Y but not to

Z").

8.1.19 State Monitoring and Triggering service (section 4.19): enables the specification and

enaction of database states, state transformations, and actions to be taken should these states

occur or persist. This service provides an asynchronous event mechanism among independent

tools and provides the capabilities for the object management system to become an inter-tool

signalling channel.

8.1.20 Data Subsetting service (section 4.20): enables the definition, access and manipulation

of a subset of the object management model (e.g., types, relationship types, operations if any)

or related instances. The PSE framework may provide support for selecting parts of the OMS
necessary to carry out specific subprocesses of the overall project.

8.1.21 Data Interchange service (section 4.21): offers two-way translation between data repos-

82 NISTSP 500-213

itories in the same or different PSEs. This permits the object management system to transfer

data to other PSEs.

8.2 Process Management Services

NB : These service descriptions tiave been abstracted from the NIST/ECMA Reference Model,

section 5.

Conceptual: The general purposes of the Process Management services in a PSE are the un-

ambiguous definition and the computer-assisted management of project development activities

across total project lifecycles. In addition to technical development activities, these potentially

include management, documentation, evaluation, assessment, policy-enforcement, business

control, maintenance, and other activities. The services are:

8.2.1 Process Development service (section 5.1): provides for creation, control, and mainte-

nance of process definitions, sometimes represented in a process formalism. These definitions

correspond to process assets needed by an organization; these assets may be definitions of a

complete process, a subprocess (or process element), a process model, a process architecture,

or a process design.

8.2.2 Process Enactment service (section 5.2): provides for the instantiation and execution

of process definitions by process agents that may be humans or machines. It also provides

services to access, maintain, and control the persistent state of the process.

8.2.3 Process Visibility service (section 5.3): provides facilities for the definition and mainte-

nance of visibility and scoping information associated with enacted processes. Several enacting

processes may cooperate to achieve the goal of a higher level process or a complete process;

the extent of such cooperation is part of the definition of processes and may be provided by

integrated visibility features in a particular process definition representation; however, inde-

pendent services may be provided to deal with interprocess interactions such as visibility of

common data, common events, and propagation of information.

8.2.4 Process Monitoring service (section 5.4): observes the evolving enactment state of

processes, detects the occurrence of specific process events, and enacts other processes to

respond to these detected events.

8.2.5 Process Transaction service (section 5.5): supports the definition and enactment of

process transactions, which are process elements composed of a sequence of atomic process

steps, and which are to be completed in their entirety or rolled back to their pre-enactment

state.

8.2.6 Process Resource service (section 5.6): supports the assignment of process agents (e.g..

NISTSP 500-213 83

tools or user roles or individual users) to enact various processes and process elements, which

is typically done under constraints of time, budget, manpower assignments, equipment suites,

and process definition technology (e.g., insufficient formality may be used for totally automated

enactment).

8.3 Communication Service

NB: This service description lias been abstracted from the NiST/ECMA Reference t^odel,

section 6.

Conceptual: This service provides a standard communication mechanism that can be used for

inter-tool and inter-service communication. The services depend upon the form of communica-

tion mechanism provided: messages, process invocation and remote procedure call, or data

sharing. This service may be built upon the framework network services, but it is also relevant

when the environment does not involve a network. Communication is provided tool-to-tool,

service-to-service, tool-to-service, or framework-to-framework. The services are:

8.3.1 Data Sharing service (section 6.1): Data sharing is supported via data sharing operations

within the ON/IS or memory by other data manipulation services. Data sharing often occurs

because of common agreement on the location of the data, either in memory or in various

forms of secondary storage, including the OMS.

8.3.2 Interprocess Communication service (section 6.2): provides primitive operating system

process communication via the RPC mechanism of the network service.

8.3.3 Network service (section 6.3): supports communication among collections of processes.

If the processes are executing on different computers, then this service must be invoked to

cause the actual transfer of data between machines.

8.3.4 Message service (section 6.4): supports managed communication among a large number

of elements of a populated environment framework. The Message service provides commu-
nication over a distributed (in both the logical and physical senses) collection of services and

tools.

8.3.5 Event Notification service (section 6.5): supports the notification of messages based

upon certain triggering conditions. This service provides a consistent way for various services

to report information, as in an asynchronous event, a "return code" upon exiting a program, or

standard error messages reported to the user.

84 NISTSP 500-213

8.4 Operating Sysiem Services

NB: These service descriptions liave been abstracted from the NIST/ECMA Reference t^odel,

section 7.

Conceptual: These services include those services that are usually considered part of an

operating system or executive. The set of services includes system process management, file

management, input and output, memory management and print spoolers. These services also

include timing mechanisms, device drivers, and services related to distributed systems.

Operating System services include the following:

8.4.1 Operating System Process Management service (section 7.1): provides the ability of an

operating system to create processes and to schedule each independently for execution.

8.4.2 Operating System Environment service (section 7.2): provides for passing of information

between operating system processes.

8.4.3 Operating System Synchronization service (section 7.3): provides for appropriate syn-

chronization of the execution among all operating system processes in a PSE.

8.4.4 Generalized Input and Output service (section 7.4): provides basic operations to transfer

data between processes and input and output devices attached to a PSE.

8.4.5 File Storage service (section 7.5): provides the basic operations to read and write files

and to store and access them in directories.

8.4.6 Asynchronous Event service (section 7.6): provides for the creation and sending of

signals between operating system processes.

8.4.7 Interval Timing service (section 7.7): provides for the ability to set and test timers on

individual operating system processes.

8.4.8 Memory Management service (section 7.8): provides the ability to manage the main

memory of the framework.

8.4.9 Physical Device service (section 7.9): provides the ability to manage the physical devices

attached to the framework.

8.4.10 Operating System Resource Management services (section 7.10): provide general

computer system management, including:

• System Operator services to access and control the system to allow the platform to

perform properly.

• System Administration services to assume management and allocation of system services

to system users.

• Capability and Security services that support the ability to control usage such that system

integrity is protected from inadvertent or malicious misuse. This includes prevention of

NIST SP 500-213 85

unauthorized access, prevention of data compromise, prevention of service denial, and

security administration.

8.5 User Interface Services

NB: These service descriptions hiave been abstracted form tiie NIST/ECMA Reference Modei,

section 8.

Conceptual: These services involve all aspects of the PSE and provide for the integration of

the object management system, the process management services, and the tools themselves

into a consistent set of presentation attributes between tools and users of the PSE.

8.5.1 User Interface Metadata service (section 8.1): provides for describing the objects used by

the User Interface Services. While similar to the object management system Metadata service,

for efficiency, many systems will create presentation schema outside of the object manager.

8.5.2 Session service (section 8.2): provides the functionality needed to initiate and monitor a

session between the user and the environment. It provides the tool-to-session transformations

needed to run multiple tools on multiple Ul devices. This provides the essential characteristics

viewed by the user (e.g., windows, colors, menus, icons).

8.5.3 Text Input service (section 8.3): provides for textual input processing by application

programs. Lines of text are entered by the user via a keyboard, and the application reads the

text one character, or line, at a time.

8.5.4 Dialog service (section 8.4): provides the interface between the application program

and physical display devices. It includes operations for controlling execution of applications,

such as starting, suspending, or aborting execution, or moving execution from foreground to

background. It is the function of this service to seamlessly pass information between programs

and users.

8.5.5 Display Management service (section 8.5): provides for interaction among individual

windows. In general, each application writes to a specific set of windows. This includes

services for capturing and redirecting command-line input and output. This includes interacting

with other windows and enforcing integrity constraints between the user and the framework.

8.5.6 Presentation service (section 8.6): provides capabilities to create and manage the phys-

ical interface between the user and the PSE. This includes the screen display area as well as

sight, sound, touch or other sensory interfaces in the PSE.

8.5.7 Ul Security service (section 8.7): provides the security constraints needed by the Ul. This

requires authentication, via the Policy Enforcement services, of the user to the environment

and creation of a trusted path between the user and the data to which the user has access.

8.5.8 User Interface Name and Location service (section 8.8): permits the framework to manage

multi-user and multi-platform environments. It permits various sessions to communicate with

86 NISTSP 500-213

various tools and various display devices. It provides the mechanism f^r tools to link to the

appropriate display device (e.g., correct window).

8.5.9 Internationalization service (section 8.9): provides capabilities concerned with different

national interests. This includes local formats for dates and other data, collating sequences
and national character codes, scanning direction, and other country-specific symbols or icons.

8.5.10 User Assistance service (section 8.10): provides a consistent feedback from various

tools to the user for help and error reporting.

8.6 Policy Enforcement Services

NB: These service descriptions iiave been abstracted from the NIST/ECMA Reference Model,

section 9.

Conceptual: The Reference Model uses the term "policy enforcement" to cover the similar

functionality of security enforcement, integrity monitoring, and various object management
functions such as configuration management. The PSE reference model regards security as a

service that intersects many of the boundaries of the reference model service groupings. The

set of services is:

8.6.1 Security Information service (section 9.1): supports the establishment of security infor-

mation for use within the PSE. It provides the basis upon which different operational roles for

users (e.g., administrators, subcontractors, programmers, managers) can be built, provides the

ability to grant the same security-related privileges to groups of users, and provides confiden-

tiality levels, which represent security classifications, and integrity levels, which represent the

"purity" or "goodness" of an object, for each subject and object in a secure PSE.

8.6 2ldentification and Authentication service (section 9.2): provides for the ability to identify

users and to properly associate them with appropriate access rights prior to any operations

being carried out on their behalf.

8.6.3 Mandatory Access Control Service (section 9.3): provides capabilities to assign access

values by a security officer to govern access to the information contained in an object.

8.6.4 Discretionary Access Control service (section 9.4): provides the ability to permit users to

control (i.e., permit and deny) individual modes of access to objects that they own by individual

users and all members of sets of users.

8.6.5 Mandatory Integrity service (section 9.5): provides the capabilities to protect objects from

unauthorized or unconstrained modification as determined by the PSE security officer.

8.6.6 Discretionary Integrity service (section 9.6): provides the capabilities to protect objects

from unauthorized or unconstrained modification as determined by a user. Since we can never

NISTSP 500-213 87

be completely sure that some part or feature of the product has not been maliciously corrupted,

this service provides assurance that a user may determine that a PSE maintains the "purity" or

"goodness" of an object owned by the user.

8.6.7 Secure Exportation and Importation of Objects service (section 9.7): provides the ability

to export and import objects in a secure manner. This is especially important since data often

must pass through non-trusted channels.

8.6.8 Audit service (section 9.8): provides the ability to record information about calls on the

PSE facilities in order to track and control security-related actions.

88 NISTSP 500-213

Appendix A

EXTENDED DEFINITIONS OF KEY
TERMS

Environment

An environment is a collection of software and hardware^^ components; there is typically

some degree of commonality that renders these components harmonious. There are certain

characteristics, evidenced in the goals and aims of many existing research efforts, that an

environment is likely to exhibit. The definition of an environment is actually a description based

on three key characteristics of an environment.

First, environments are not restricted to facilitating engineering, but provide software support

for many other processes, managerial as well as engineering, necessary to complete projects.

The second characteristic is that the components of the environment will have some degree of

integration, facilitating the interoperation and communication between components, sharing of

data, and showing a common appearance to a user.

The third characteristic is that environments contain components at different levels of size,

purpose, and complexity. Some portions of an environment comprise an infrastructure, whose
main role is to provide support only for other software components rather than for end-users.

These capabilities may even be invisible to an end-user. Other capabilities, however, will more

likely be directly accessed by the end-user and will provide explicit support for the various

activities of a project. This distinction is not always clear, and the gap between the two

categories is really a spectrum, with some components spanning both rather than simply being

in one or the other. Still, the distinction provides a useful structuring device for the model.

Process and Task

The concepts of "process" and "task" are based on the following definitions:^^

Process: A set of partially ordered steps intended to reach a goal. A process is decomposable

^^For the purposes of this document, PSESWG concentrates on the software components of an environment.

^^These definitions are borrowed from [FEILER].

NIST SP 500-213 89

into process steps and process components. The former represent the smallest, atomic level;

the latter may range from individual process steps to very large parts of processes.

Task: A process step typically enacted by a human, requiring process planning and control.

The work carried out by a project can be considered to be a set of tasks that support some
particular development process. Since environments of interest to this reference model will be

used in widely differing application domains to support many types of project, it is necessary

that the model be general enough to be widely applicable. The model therefore does not

represent particular processes or their constituent tasks; instead, it models the functionality

provided by a populated environment in support of any chosen process.

Service

A service is an abstract description of work done by one or more software components; it is

the term we use to describe the functional capabilities of an environment. By using an abstract

description, we can enumerate the capabilities of an environment without reference to any

particular implementation choices.

A service is self-contained, coherent, and discrete. In addition, the notion of service is es-

sentially relative, and thus services can be composed of other services, creating a service

hierarchy. Decisions about the scope of a service description, i.e., on the appropriate func-

tional area of any particular service, are made through ad hoc knowledge of the expected

capabilities of a populated environment. Key factors for these decisions are lifecycle phase of

a project and end-user roles in the lifecycle.

There is a close relationship between services and tasks: in some ways, these two terms pro-

vide different views of the same activity. For instance, one view might be that the environment

provides an editing service, another view being that to perform the task of editing a user re-

ceives support from the environment. Whichever view one takes, both refer to the same basic

activity, e.g., a human making use of a piece of software, such as emacs, to create or revise

textual data. We can contrast these viewpoints by noting that services are the capabilities

of the environment, while tasks make use of and provide context for those capabilities. For

example, in the domain of Quality Assurance, it is reasonable to refer to such things as testing

a new release of a software system as a task that requires the support of services such as test

case generation and report production.

Framework

The most widely accepted use of this term derives from the NIST/ECMA Reference Model

[NIST]. Current [environments] distinguish between the set of facilities in support of the life-

cycle project, denoted tools, and a set of (relatively) fixed infrastructure capabilities which

provide support for processes, objects, or user interfaces, denoted frameworks.

The N IST/ECMA model describes a set of fifty services common to Software Engineering frame-

works. These services manage information and computing resources, and also provide for tool

execution, inter-tool communication, user access, and input and output for all user interactions

with a computer-based collection of tools. With minor modification in the service groupings, this

90 NISTSP 500-213

document has accepted the NIST/ECMA definition of a framework and framework services.

The extent of a framework can vary both in its complexity and in the breadth of its services. In the

case of complexity, a framework can span the spectrum from a minimal set of services needed

for software operation to a more complete set of services that represent data and operations

at higher levels of abstraction. The first of these extremes might be an operating system

kernel providing minimal support for input and output and data access (e.g., POSIX 1003.1);

the second extreme might be an implementation that includes a full data repository, complex

user interfaces, life-cycle process management services and other comparable services (e.g.,

framework implementations incorporating ECMA PCTE, X Window System, etc.).

In the case of the relative breadth of framework services, an overriding factor is the domain that

the framework must support. In general, the more restricted the domain, the more a service will

become apparent as a common one, and thus be considered for inclusion in the framework. In

the PSESWG Reference Model, the set of services included are thought to be general enough

to be common to the engineering domains that are included. This may change over time,

however, as more is understood about all of the domains and how they relate to one another.

Interface

The definition of interface from IEEE Software Engineering Standards [IEEE] is:^"*

A shared boundary across which information is passed; [a software] component that connects

two or more other components for the purpose of passing information from one to the other.

This boundary, or interface, provides an external entry point for a software component that

permits either invocation of the software, insertion of input to it, or reception of output from it.

When the software is described in an abstract manner (as when we use the term "service"), then

the interface is at a conceptual level. For instance, in the case of a data storage service and an

access control service, one might assume some relationship between them that would permit

one service to make use of the other; this implies a mechanism by which data or control might

pass between these services. But at the conceptual level, the specific choice of mechanism by

which this occurs is not of interest.

By contrast, in an actual environment, the choice of mechanism by which an interface is realized

is a vital issue. The realization of an interface might include choices of formats or protocols,

or could include procedures that exchange invocations and data across the shared boundary.

In either case, this is called a specified interface. As an example, a requirements definition

service and a design definition service in a particular environment might share data through a

common format such as the proposed Common Data Interchange Format (CD IF) standard or

by using a shared Schema Definition Set in PCTE.

Finally, it is useful to note the distinction between a specified interface and implementations of

it by different vendors. Different implementations of the same interface may exhibit different

characteristics that may have a significant effect on the practical utility of an implementation for

a given project.

Glossary of Software Engineering Terminology, ANSI/ISS Std 610. 12-1990

NISTSP 500-213 91

Tool

The definition of a software tool is of great importance to an environment Reference Model,

since the intuitive picture of a populated environment is a framework with a set of installed

tools. However, the definition of a tool is very difficult to achieve. The IEEE definition is:^^

A computer program used to help develop, test, analyze, or maintain another computer program

or its documentation.

This definition is useful, but is not complete. For example, it does not specify whether tools can

be part of the framework. Said differently: must tools be independently executing programs

(such as a compiler or editor) or can they be interfaces into the operating system (e.g., is the

PC-DOS file system a tool? Is an X-Windows implementation a tool?)? These questions are

probably not susceptible to simple answers, nor to answers that will have broad acceptance.

For the purposes of this reference model, however, it may be sufficient to note that whether

perceived as realizing a framework service or an end-user service, a tool is an actual realization

of one or more conceptual services. But there is no strict correlation between a service and a

tool, since one tool may realize many services, or a single service may be realized by several

tools. Tools and services are in many ways similar, but are not the same thing.

'^ibid.

92 NISTSP 500-213

Appendix B

COMMON PROJECT ACTIVITIES AND
THEIR RELATION TO REFERENCE
MODEL SERVICES

The purpose of this appendix is to describe several activities typically performed by users of

a PSE as part of project execution. The need for this description is that, while many project

activities occur with a one-to-one agreement between Reference Model services and a user's

tasks, this correspondence between task and service is not evident for all activities. For

example, there is a one-to-one agreement between the Software Design service and the task

of creating a design before building a software product. Similarly, programmers need to compile

source programs, and they make use of the Compilation service through the functionality of

such tools as compilers and preprocessors. However, not all tasks have corresponding services

in the reference model. For example, a common task is often called quality assurance, yet there

is no Quality Assurance service in the model. This is because the task of quality assurance

uses existing services already present in the model.

The following presents several common tasks and the set of services that may be used to

implement parts of them. In almost all cases, common support services like Text Processing

and User Communication services will be needed and will not explicitly be mentioned.

B.1 Management Activities

B.1.1 Acquisition Management

Acquisition management supports the activities necessary to develop, award, and track pro-

curements. While some of the examples used here are expressed in terminology common to

government acquisitions, the concepts are applicable to acquisition activities in general.

NIST SP 500-213 93

Generally, these acquisition activities are developed in conjunction with the Proposal Prepa-

ration activity, described later. That is, an organization, typically a governmental unit, will

plan for an acquisition (Acquisition Planning) and develop a request for procurement (RFP)

by performing RFP Generation. In response, other organizations will respond to the RFP with

the Proposal Preparation task. The acquiring unit then performs a Proposal Evaluation task,

choosing from among the submitted proposals.

Examples of Acquisition Management activities include:

Acquisition planning. Creation of the acquisition plan -Services: Project Management Plan-

ning, Estimation and Risk Analysis services.

RFP generation. Create, maintain and modify the statement of work - Services: Technical

services such as System Requirements Engineering and Software Requirements Engi-

neering services as well as Project Management services such as Estimation Service

and the Numeric Processing service.

Proposal evaluation. Evaluate set of submitted proposals - Services: Numeric Processing

and Estimation services.

Acquisition tracking. Monitor contract once it is awarded - Services: Project Management
Estimation, Planning, Risk Analysis and Tracking services.

B.1.2 Project Management

Project Management activities are those that track and manage the development of a project

from concept to completion. Examples of these activities include:

Proposal preparation. Develop proposal in response to RFP - Services: Technical Engi-

neering services such as System Requirements Engineering, Software Requirements

Engineering, System and Software Design services. Project Management Planning, Esti-

mation and Risk Analysis services and Numeric Processing, Publishing, and Presentation

Preparation services.

Project Management. Plan and execute project from concept through deployment - Ser-

vices: Project Management Planning, Estimation, Risk Analysis and Tracking services.

Configuration Management. Ensure traceability and reproducibility of a project's end prod-

ucts - Services: System Integration, Software Build, System and Software Traceability,

Configuration Management, Change Management, and Reuse Management services.

B.1.3 Quality Assurance

The purpose of Quality Assurance (QA) is to assure that the product meets certain standards

before it is delivered by the developer or accepted by the purchaser. Reliability and correctness

94 NISTSP 500-213

of the source programs are certainly important components of QA, but QA includes many other

attributes.

Examples of Quality Assurance activities include:

Quality assurance planning. Quality objectives must be determined and data needed to mea-

sure such quality must be determined - Services: System Requirements Engineering,

Software Requirements Engineering, Metrics, and Risk Analysis services.

Develop test plans. Develop test plans for achieving quality objectives - Services: System
Requirements Engineering, Software Requirements Engineering, System and Software

Testing, Code Verification, Configuration IVIanagement and Traceability services.

Quality assurance testing. Quality objectives are monitored and tested - Services: System

and Software Testing and Metrics services, as well as Project Management Estimation

and Tracking services.

B.2 Engineering Activities

B.2.1 System Engineering

System engineering involves those activities that support the technical development and main-

tenance of hardware and software components of a project. For the most part, these activities

fall into the services described by the System Engineering services, but include other services

as well.

Typical System Engineering activities include:

System requirements analysis. Develop requirements and specifications - Services: Sys-

tem Requirements Engineering, System Design and Allocation, and System Simulation

and Modeling Service.

System development. Build the product - Services: System Engineering services with soft-

ware components developed by the Software Engineering services.

System deployment. Operation and maintenance of the product - Services: System and

Software Traceability and Testing services. Configuration Management and System and

Software Design services.

B.2.2 Software Engineering

Software engineering activities are those activities involved in building and maintaining the

software components of a product. For the most part, these tasks use the Software Engineering

Services.

NISTSP 500-213 95

Typical Software Engineering activities include:

Software requirements engineering. Develop software requirements - Services: Software

Requirements Engineering, Software Design and Software Modeling services.

Software development. Build the software components - Services: all of the Software En-

gineering Services.

Software deployment. Operation and maintenance of the software - Services: Software

Traceability and testing services, Configuration Management Services, Reuse Manage-
ment, Software Reverse Engineering and Software Re-engineering services, and the

Software Design service.

B.2.3 Process Engineering

Process engineering activities develop the steps in the development process that are to be

taken by other members of the development group. The process may be relatively fixed

(e.g., following a strict "waterfall" development using specific design method, specific compiler,

specific testing and validation tools) or may be partially or totally dynamic (e.g., testing method

depends upon the results of the previously performed code verification activity). For the most

part, these tasks make use of the Life Cycle Process Management services.

Process Engineering activities include:

Process definition. Define development process - Services: Process Definition, Process

Library and Process Exchange services. Processes may be enacted using the Process

Usage service.

Process enactment. Perform the set of development processes - Services: Process Usage

service.

B.3 Supportability Activities

B.3.1 Logistics Support

Supportability and logistics activities ensure the operational availability of systems, including

supportability, readiness and survivability. For computer-based products, logistics supports the

operation and maintenance of such systems. Although many logistics operations are outside

of the purview of a PSE (e.g., several aspects of personnel training, payroll issues), many are

fully covered by existing PSE services.

The following are those logistics tasks that will undoubtedly be part of the operational charac-

teristics of a PSE.

96 NIST SP 500-213

Supply support. Support the identification, selection for acquisition, cataloging, receipt and

storage, provisioning, issue and disposal of the connponent parts of a computer-based

product - Services: Configuration Management, Numeric Processing, Estimation, Risk

Analysis services, as well as most of the Acquisition Management tasks mentioned above.

Personnel support. Support personnel requirements including training and operational re-

quirements - Services: Mostly outside the purview of a PSE, although data may be

stored in and make use of PSE object management system. May use Project Manage-

ment Planning, Estimation, and Tracking services.

Documentation support. Maintain logistics support and product technical documentation -

Services: Text, Numeric and Figure Processing services, Publishing and Presentation

Preparation services, and Configuration Management services.

Computer resources support. Support the management of the logistics support facility -

Services: Project Management Services of Planning, Estimation, Risk Analysis and

Tracking services.

B.3.2 Operation and Maintenance

Post-deployment logistics maintains the product in the field. Errors or anomalies must be

tracked from their source to the maintenance organization, and the distribution of corrections or

new system enhancements from the maintenance organization to the field must be supported

and monitored.

Error correction. Correction of errors and anomalies found using the product - Services:

Change Management and Configuration Management services. Project Management

services, such as Planning, Estimation and Tracking, and Technical Engineering services

for correction of errors.

System enhancement. Modification of the product due to changed requirements - Services:

Configuration Management, Re-engineering, Reverse Engineering and all other Technical

Engineering services to produce a new version of the product.

NIST SP 500-213 97

Appendix C

RATIONALE

1. What different users/uses are tfiere of the reference model?

The PSESWG intends to use this reference model as a source document for the identification

of interfaces in a PSE. Once those interfaces have been identified, it will be possible to examine

them and determine those that it would be beneficial to standardize. There are likely to be two

sorts of interfaces in this category: those for which candidate standards exist or which are being

actively examined by organized standardization efforts and those for which no such activity can

be identified. The first kind will drive the organized selection process PSESWG will use to

determine the contents of the military standard it is chartered to produce. The second kind will

be used as the basis for encouraging appropriate research, development, and standardization

efforts.

In addition to identifying potential standards, this reference model can be used in many other

ways:

• To understand the architecture of a proposed or realized system.

An actual or proposed product (for example, a tool or framework) can be characterized in

terms of the elements (services and relationships) of the reference model and the explicit

realization of those elements as a set of operations and data objects. In some ways

we can see this as a cross-section or instantiation of the PSE reference model. Such a

characterization can help others to better understand the product thus described.

• To compare products

Comparing different PSE products is difficult without a consistent conceptual model within

which to analyze all products. The descriptions of products through services provides a

common vocabulary for discussing them and helps to ensure that any comparison com-

pares like with like. In addition, the categorization of services into end-user and framework

services means that products can be compared at different abstract levels: comparison of

abstract functionality (end-user services) and comparison of support mechanisms (frame-

work services).

NISTSP 500-213 99

• To describe a proposed or required system.

The PSE reference model can be used as the basis for describing a set of PSE re-

quirements by giving the services corresponding to a required system, as opposed to

an actual system. This allows the requirements to be described in an abstract way, in

terms of required services and the interface among those services. This is independent

of particular implementation constraints, which can then be examined in the light of the

abstract requirements.

• To discuss implementation of services.

The separation of end-user and framework services means that particular tools and

framework realizations will be characterized as providing essentially equivalent end-user

services using different framework services. For example, the end-user service on inter-

tool communications can be realized via different framework services: a remote procedure

call mechanism, message server facilities, data sharing with triggers, and so on.

• To examine product integration issues.

By describing services of actual PSE products a characterization of both their abstract

functionality and implementation mechanisms is provided. When users wish to determine

the extent to which those products can be integrated, these descriptions provide the

necessary basis for answering important questions regarding the ease with which the

integration can take place. For example, the end-user service aspects can reveal the

extent to which the products provide similar services, while the framework aspects allow

issues of mechanism interoperation to be discussed. Hence, a PSE integrator may
use the PSE services reference model to determine, for a collection of tool products to

be integrated, what services each tool provides and, based on the overlap of provided

services and available base computing environment, to develop a strategy for integration

in terms of a particular environment architecture, identifying interfaces relevant for its

realization.

In summary, we note that in presenting the PSE reference model we abstracted from a notion

of tools and framework realizations towards higher level concepts of services and interfaces. In

examining an actual tool or PSE product, the reference model can be used to reflect issues of

functionality and architecture by allowing an abstract description of that product to be produced.

2. Why a service-based approach?

The approach taken in deriving this reference model is one based on services. There are a

number of reasons why this was chosen as the most effective means:

- Path of least resistance and most familiar: Functional decomposition is a straightforward

approach for most people working in this area. Many people think of their environments in

terms of '^what the PSE does" for them, and this thinking is well-captured in a service-based

approach.

- Nature of related reference models: The PSE reference model builds upon the work of other

related models. Both the NIST/ECMA reference model and the reference model in the POSIX

100 NISTSP 500-213

Guide to Open Systems Environments had already (independently) taken very similar service-

based approaches. In order to be able to capitalize on this wealth of available work, it made
good sense to adopt a compatible approach.

- Natural fit with end goal: A major goal of the PSE reference model is to help identify interface

areas for standardization. Although such standards are largely known as "interface standards,"

they are by-and-large described from a service-based viewpoint. This consistency will make it

much easier to use the reference model in the identification of candidate interface standards

than other approaches.

It should also be understood that taking a service-based approach at this point in the evolution

of the reference model does not mean that other viewpoints were not considered or will not

be found to be important in the future. Early discussions about the approach to be taken

recognized that a complete reference model might well include a number of different points of

view of a PSE. But it was concluded that one of them had to be first and that a service-based

approach was at least as viable as any of the others.

A data-oriented approach is often mentioned as an alternate to the service-based approach

used here. It is highly likely that such an approach will become very important in the process

of understanding the data interface requirements of the services articulated in this reference

model, and may play a role in the future.

A process-oriented approach is also mentioned as an alternate. It is actually not far removed

from the approach taken. As described in chapter three, the determination of end-user services

was driven largely by knowledge and consideration of end-user processes and the service re-

quirements they generate.

3. How did we select services?

The selection of services has been guided by a number of important principles. These include:

• By considering typical activities that a PSE supports, it is possible to define the function-

ality that is necessary in order to support those activities. For example, in considering

the maintenance activities of a typical software development project, it is possible to ask

yourself the question "what functionality would I need or expect from a PSE to support

software maintenance activities?". It is those support services that we have captured in

this reference model.

• There are a wide range of potential users of a populated PSE. This includes many

forms of project engineers, project managers, administrative staff, and PSE support

staff. Considering the required functionality of a PSE from each of these PSE users'

perspectives provides a useful way to describe a set of PSE services.

• A number of existing studies have described the expected functionality of some part of a

populated PSE in terms of a set of service descriptions. We have analyzed and expanded

on this work.

NISTSP 500-213 101

The result is a model that provides a description of the functionality that can be expected from

a populated PSE without being tied to a particular architecture for implementing a PSE, tools

that must be part of the PSE, or expected uses and users of the PSE.

4. How did we group services?

Grouping of services has been based on a combination of factors which imply a coherence to

those services. In many cases this coherence is a result of a functional relationship between

the services (e.g., the OMS services), a temporal relationship (e.g.. System Requirements

Engineering services), or based on the expected role of the users (e.g., PSE User and Role

Management service). In all cases the aim of the group is to provide an abstraction of those

services that allows them to be discussed as a whole without concern for the details of which

services form part of that group.

5. How do interfaces facilitate/relate to integration?

The use of the reference model for PSESWG is to act as a basis for identification of interface

areas where existing standards exist, or where future standards might be profitable. By iden-

tifying these standards, the possibility exists that tools (potentially from different vendors) will

be available that support the standard.

The consequence of this tool support for standards is that a basis is provided through which

sharing is possible. Integration of tools is facilitated by selecting and agreeing interface stan-

dards, but it is not a necessary consequence of standard interfaces. In general, the interfaces

provide the syntactic agreements on which semantic agreements between tools can be built.

Without the interface standards providing that syntactic level agreement, the more useful se-

mantic agreements that are needed are less likely, and more costly to implement.

102 NISTSP 500-213

Appendix D

ABBREVIATIONS and ACRONYMS

4GL Fourth Generation Language

ANSI American National Standards Institute

APPLVA A Process Programming Language based on Ada
APSE Ada Programming Support Environment

ASCII American [National] Standard Code for Information Interchange

ASIC Application Specific Integrated Circuit

ASSET Asset Source for Software Engineering Technology

CAD/CAM Computer-Aided Design/Computer-Aided Manufacture

CAI Computer-Aided Instruction

CARDS Central Archive for Reusable Defense Software

CASE Computer-Aided Software, System Engineering

CSCI Computer Software Configuration Item

CDIF CASE Data Interchange Format

CEARM Conceptual Environment Architecture Reference Model

CM Configuration Management

COCOMO Constructive Cost Model

COTS Commercial off-the-shelf

CPL Common Prototyping Language

CPS Cornell (University) Program Synthesizer

CPU Central Processing Unit

DCDS Distributed Computing Design System

DOD Department of Defense

DOS Disk Operating System

EAST Environment of Advanced Software Technology

ECMA European Computer Manufacturers Association

EIS Engineering Information Systems

EON Equation preprocessor for nroff and troff

GOTS Government off-the-shelf

GSFC (NASA) Goddard Space Flight Center

HlPO Hierarchical Input Process Output

NIST SP 500-213

MUUU Mierarcnicai UDject-urientGd uesign

lUt inieraciivG usveiopmGni bnvironments
ir\ilUL Interface Description Language

insiiiuie OT ciecincai ana tiecironics engineers
II c iniegraiea Logistics ouppon

lobe integrated Software Engineering Environment
1 A MLAN Local Area Network

LcX Lexical Analysis Program Generator

LSE Language Sensitive Editor

M 1 or Mean time oetween Taiiures

M A O A National Aeronautics and Space Administration

Next generation uomputer Resources

NIO 1 iNaiionai insiiiuie ot oianaaras ana lecnnoiogy

VjlVlO UDjeci ivianagemeni oysiem

wDjeci-L^rieniea uaTaoase ivianagemeni oysiem

UHUA UDject-Dasea Requirements uapture ana Analysis

Uo Operating System
DA 1rAL Process Asset Liorary

rU Personal oomputer

rU It Portable Common Tool Environment

PIvIDd Project Master Data Base
DOOlVrUolA ponaDie uperaiing oysiem iniertace tor uompuier bnvironments

rob project ouppon bnvironment

rotoWo projeci ouppon tnvironmeni oianaaras worKing uroup

UA uuaiiiy Assurance

RAPID Reusable Ada Packages for Information System Development

HUdMo Relational DataBase Management System

RbTRACr Requirements Traceability

nrr Request ror proposal

nM rteierence Moaei

nPO Remote proceaure uaii

DTM 1MINI Real- 1 ime Non-inirusive instrumentation

oADT Structured Analysis and Design Technique

obb Software Engineering Environment
CI occoLUob oOTiware Lite-uycie ouppon bnvironment

oME Software Management Environment

oUW Statement of Work
StP Software Through Pictures
TDI

1 dL Table formatting preprocessor for nroff and troff

TOoo Technical Committee 33

TCOS Technical Committee on Operating Systems

Ul User Interface

VDM Vienna Development Method

WAN Wide Area Network

WBS Work Breakdown Structure

104 NISTSP 500-213

WYSIWYG "what you see is what you get"

YACC Yet Another Compiler Compiler

NIST SP 500-213

Appendix E

REFERENCES

NIST Reference Model for Frameworks of Software Engineering Environments. NIST Special

Publication 500-211, August 1993; ECMA TR/55 Edition 3, June 1993.

POSIX Draft Guide to the POSIX Open Systems Environments. P1 003.0, June 1992.

OSSWG Reference Model for Embedded Operating Systems. NGCR Operating System Stan-

dards Working Group, June 1990.

FEILER Software Process Development and Enactment: Concepts and Definitions. Peter

Feiler and Watts Humphrey, SEI, 1991.

IEEE Glossary of Software Engineering Terminology. ANSI/ISS Std 610.12-1990.

NIST SP 500-213 107

Index

Abbreviations, 103

Acquisition Management Activities, 93

Acronyms, 103

Activities

Acquisition Management, 93

Engineering, 95

Logistics Support, 96

Management, 93

Operation and Maintenance, 97

Process Engineering, 96

Project Management, 94

Quality Assurance, 94

Software Engineering, 95

Supportability, 96

System Engineering, 95

Activities and Services, 93

Administration Services (of PSE), 71

Annotation Service, 65

Audio and Video Processing Service, 63

Authentication, 76

Background, 1

Build Service, Software, 36

Bulletin Board Service, 69

Calendar and Reminder Service, 64

Change Management Service, 47

Comments on RM, Submission, 113

Common Support Services, 60

Compilation Service, 32

Conceptual Dimension, 13

Conferencing Service, 70

Configuration Management Service, 45

Customization and Installation (of Tool) Ser-

vice, 71

Debugging Service, 35

Definitions of Key Terms, 89

Diagnostic Service, see PSE Diagnostic Ser-

vice

Dimension

Conceptual, 13

Examples, 14

External, 14

Internal, 14

Operations, 13

Relationships, 14

Rules, 13

Types, 14

End-User Services, 9

Engineering Activities, 95

Engineering Services, Technical, 17

Environment, 6, 89

vs. Conceptual Model, 10

Estimation Service, 55

Examples Dimension, 14

External Dimension, 14

Figure Processing Service, 62

Framework, 90, 91

Framework Services, 6, 10, 79

Grouping, 11

Host-Target Connection Service, 25

Installation and Customization (of Tool) Ser-

vice, 71

Interchange Service, see PSE Interchange

Service

Internal Dimension, 14

Key Terms, Definitions, 89

Life-Cycle Process Engineering Services, 40

Logistics Support Activities, 96

108

Mail Service, 68

Management Activities, 93

Management Services

Project, 53

Teclinical, 45

Metrics Service, 50

Model, 7

Conceptual vs. Actual Environment, 1

0

Discussion, 10

Model Description, 5

Modeling

Software Simulation and Modeling Ser-

vice, 29

System Simulation and Modeling Ser-

vice, 20

Next Generation Computer Resources, see

NGCR
NGCR,xi, 1, 12

Numeric Processing Service, 61

Operation and Maintenance Activities, 97

Operations Dimension, 13

Planning Service, 54

Process, 89

Process Definition Service, 41

Process Engineering Activities, 96

Process Exchange Service, 42

Process Library Service, 42

Process Usage Service, 43

Project Activities, 93

Project Management Activities, 94

Project Management Services, 53

Project Support Environment Standards Work-

ing Group, see PSESWG, 1

PSE Administration Services, 71

PSE Diagnostic Service, 74

PSE Interchange Service, 75

PSE Resource Management Service, 73

PSE Status Monitoring Service, 74

PSE User Access Service, 76

PSE User and Role Management Service,

72

PSESWG, xi, 1-3

Quality Assurance Activities, 94

Rationale, 99

Re-engineering

Software Re-engineering Service, 38

System Re-engineering Service, 24

Reading the Service Descriptions, Notes,

13

Reference Model, 7

References, 107

Relationships Dimension, 14

Reminder and Calendar Service, 64

Resource Management, see PSE Resource

Management Service

Reuse Management Service, 49

Reverse Engineering Service (Software), 37

Risk Analysis Service, 55

Role Management, see PSE User and Role

Management Service

Rules Dimension, 13

Scope of the Model, 3

Service, 6, 7, 90

Administration (of PSE) Services, 71

Annotation, 65

Audio and Video Processing, 63

Bulletin Board, 69

Calendar and Reminder, 64

Change Management, 47

Common Support Services, 60

Compilation, 32

Conferencing, 70

Configuration Management, 45

Customization, see Tool Installation and

Customization

Debugging, 35

End-User Services, 6

Estimation, 55

Figure Processing, 62

Framework Services, 6

Host-Target Connection, 25

Information Management, 48

Installation, see Tool Installation and Cus-

tomization

Life-Cycle Process Engineering Services,

40

NIST SP 500-213 109

Mail, 68

Metrics, 50

Numeric Processing, 61

Planning, 54

Process Definition, 41

Process Exchange, 42

Process Library, 42

Process Usage, 43

PSE Administration Services, 71

PSE Diagnostic, 74

PSE Interchange, 75

PSE Resource Management, 73

PSE Status Monitoring, 74

PSE User Access, 76

PSE User and Role Management, 72

Publishing, 66

Reminder, see Calendar and Reminder

Service

Reuse Management, 49

Risk Analysis, 55

Software Build, 36

Software Design, 28

Software Engineering Services, 27

Software Generation, 31

Software Re-engineering, 38

Software Requirements Engineering, 27

Software Reverse Engineering, 37

Software Simulation and Modeling, 29

Software Static Analysis, 33

Software Testing, 35

Software Traceability, 39

Software Verification, 30

System Design and Allocation, 19

System Engineering Services, 18

System Integration, 23

System Re-engineering, 24

System Requirements Engineering, 18

System Simulation and Modeling Ser-

vice, 20

System Static Analysis, 21

System Testing, 22

System Traceability, 26

Target Monitoring, 25

Text Processing, 60

Tool Installation and Customization, 71

Tracking, 56

User Communication, 68

service

Framework Services, 79

Service Descriptions, Notes on Reading, 13

Service Groups, 8

Simulation

Software Simulation and Modeling Ser-

vice, 29

System Simulation and Modeling, 20

Software

Build Service, 36

Design Service, 28

Engineering Activities, 95

Engineering Services, 27

Generation Service, 31

Re-engineering Service, 38

Requirements Engineering Service, 27

Reverse Engineering Service, 37

Simulation and Modeling Service, 29

Static Analysis Service, 33

Testing Service, 35

Traceability Service, 39

Verification Service, 30

Static Analysis Service

Software, 33

System, 21

Status Monitoring, see PSE Status Monitor-

ing Service

Submission of Comments on RM, 113

Support Services, 59, see Common Sup-

port Servies

Supportability Activities, 96

System

Design and Allocation Service, 19

Engineering Activities, 95

Engineering Services, 18

Integration Service, 23

Re-engineering Service, 24

Requirements Engineering Service, 18

Simulation and Modeling Service, 20

Static Analysis Service, 21

Testing Service, 22

Target Monitoring Service, 25

110 NIST SP 500-213

Target System, 12

Task, 6, 7, 89

Technical Engineering Services, 17

Technical Management Services, 45

Testing Service

Software, 35

System, 22

Text Processing Service, 60

Tool, 6, 92

Tool Installation and Customization Service,

71

Traceability Service

Software, 39

System, 26

Tracking Service, 56

Types Dimension, 14

User Access Service, see PSE User Access

Service

User and Role Management Service, 72

User Communication Services, 68

Verification, see Software Verification Ser-

vice

Video, see Audio and Video Processing

NIST SP 500-213 111

SUBMISSION OF COMMENTS

When you submit comments on Version 2.0 of the Reference Model, please send them by

electronic mail to the following address:

djc@sei.cmu.edu

If you do not have access to an electronic network, please send the comments by postal mail

or FAX to:

David Carney

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213-3890

Phone:(412) 268-5758

fax: (412) 268-6525

To assist us in the processing and tracking of your comments, please use the format below for

each comment.

NAME . .

.

PHONE . .

.

FAX . .

.

EMAIL ...

MAIL

multi-line address

DATE . .

.

SECTION . .

.

VERSION 1.0

TOPIC . .

.

COMMENT

text of comment
RATIONALE

text of rationale

END

The NAME line contains your name or affiliation (or both).

The PHONE line contains your phone number.

NIST SP 500-213 113

The FAX line contains your FAX phone number.

The EMAIL line contains your electronic mail address.

The lines following the MAIL line contain your postal mailing address.

The DATE line includes the date of you comment. It should be in ISO standard form (year-

month-day), for example, 4 July 1992 is 92-07-04.

The SECTION line should include the Reference Model section number and title, for example,

"4.2.7 Software Static Analysis Services." To help identify it better, this line can also include

the page number.

The TOPIC line should contain a one-line summary of the comment. This line is essential.

The lines following the COMMENT line contain your request for a change, an addition, a

deletion, or anything else about the Section. This can be as long or as short as necessary.

When you make suggested wording changes or additions, please be as specific as possible.

The lines following the RATIONALE line explain why the suggested change(s) (if any is re-

quested) should be made. Please be as clear and concise as possible.

The END line marks the end of the comment form.

A sample comment is shown below for illustration.

I NAME A. Reviewer, ABC Inc.

I PHONE 909-555-5555

! FAX 909-555-4444

! EMAIL reva@lizard.abc.com

! MAIL
A. Reviewer

ABC Inc.

MS:23AB-WX
1234SomestreetSt.

Somecity XX 98765

I DATE 93-11-03

! SECTION 7.1 .2 Numeric Processing Service

! VERSION 1.0

! TOPIC Numeric Processing should not include formatting of formulae

! COMMENT
The text discussing the formats and formula strings should be removed or moved to the

section on Text Processing. Also the examples of EON and TBL should be removed.

I RATIONALE
The Numeric Process Service should provide calculation operations of a numerical nature it

should not include the operations that are purely text formatting and document processing

in nature.

! END

114 •ir U.S. GOVERNMENT PRINTING OFFICE: 1993 -J 00 -568/83107 NISTSP 500-213

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SYSTEMS TECHNOLOGY

Superintendent of Documents
Government Printing Office

Wasliington, DC 20402

Dear Sir:

Please add my name to tlie announcement list of new publications to be issued in

the series: National Institute of Standards and Teclinology Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notification key N-503)

llJ^ kJ JL Technical Publications

Periodical

Journal of Research of the National Institute of Standards and Technology- Reports NIST
research and development in those disciplines of the physical and engineering sciences in which
the Institute is active. These include physics, chemistry, engineering, mathematics, and computer
sciences. Papers cover a broad range of subjects, with major emphasis on measurement
methodology and the basic technology underlying standardization. Also included from time to time
are survey articles on topics closely related to the Institute's technical and scientific programs.
Issued six times a year.

Nonperiodicals

Monographs — Major contributions to the technical literature on various subjects related to the
Institute's scientific and technical activities.

Handbooks — Recommended codes of engineering and industrial practice (including safety codes)
developed in cooperation with interested industries, professional organizations, and regulatory
bodies.

Special Publications — Include proceedings of conferences sponsored by NIST, NIST annual
reports, and other special publications appropriate to this grouping such as wall charts, pocket
cards, and bibliographies.

Applied Mathematics Series — Mathematical tables, manuals, and studies of special interest to

physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others
engaged in scientific and technical work.

National Standard Reference Data Series — Provides quantitative data on the physical and chemical
properties of materials, compiled from the world's literature and critically evaluated. Developed
under a worldwide program coordinated by NIST under the authority of the National Standard
Data Act (Public Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data
(JPCRD) is published bimonthly for NIST by the American Chemical Society (ACS) and the

American Institute of Physics (AIP). Subscriptions, reprints, and supplements are available from
ACS, 1155 Sixteenth St., NW, Washington, DC 20056.

Building Science Series — Disseminates technical information developed at the Institute on building

materials, components, systems, and whole structures. The series presents research results, test

methods, and performance criteria related to the structural and environmental functions and the

durability and safety characteristics of building elements and systems.

Technical Notes — Studies or reports which are complete in themselves but restrictive in their

treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive

in treatment of the subject area. Often serve as a vehicle for final reports of work performed at

NIST under the sponsorship of other government agencies.

Voluntary Product Standards — Developed under procedures published by the Department of

Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all concerned interests with a basis

for common understanding of the characteristics of the products. NIST administers this program
in support of the efforts of private-sector standardizing organizations.

Consumer Information Series — Practical information, based on NIST research and experience,

covering areas of interest to the consumer. Easily understandable language and illustrations

provide useful background knowledge for shopping in today's technological marketplace.

Order the above NIST publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NIST publications—FIPS and NISTIRs—from the National Technical Information

Service, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB) — Publications in this series

collectively constitute the Federal Information Processing Standards Register. The Register serves

as the official source of information in the Federal Government regarding standards issued by
NIST pursuant to the Federal Property and Administrative Services Act of 1949 as amended.
Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315,

dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NIST Interagency Reports (NISTIR)—A special series of interim or final reports on work
performed by NIST for outside sponsors (both government and non-government). In general,

initial distribution is handled by the sponsor; public distribution is by the National Technical

Information Service, Springfield, VA 22161, in paper copy or microfiche form.

U.S. Department of Commerce

National Institute of Standards and Technology

Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300

