
Software Reengineering:

A Case Study and Lessons Learned

Mary K. Ruhl and Mary T. Gunn

100

500-193

1991

Computer
Systems
Technology
U.S. DEPARTMENT OF
COMMERCE
National Institute of

Standards and
Technology

NIST

NIST

i
PUBUCATiONS

V

DATE DUE

'11// fr

.

—

>^c"n.u, jnc. i(8-293 ~ 1—

NIST Special Publication 500-193

Software Reengineering:

A Case Study and Lessons Learned

Mary K. Ruhl and Mary T. Gunn

Computer Systems Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

September 1991

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

Reports on Computer Systems Technology

The National Institute of Standards and Technology (NIST) has a unique responsibility for computer
systems technology within the Federal government. NIST's Computer Systems Laboratory (CSL) devel-

ops standards and guidelines, provides technical assistance, and conducts research for computers and
related telecommunications systems to achieve more effective utilization of Federal information technol-

ogy resources. CSL's responsibilities include development of technical, management, physical, and ad-

ministrative standards and guidelines for the cost-effective security and privacy of sensitive unclassified

information processed in Federal computers. CSL assists agencies in developing security plans and in

improving computer security awareness training. This Special Publication 500 series reports CSL re-

search and guidelines to Federal agencies as well as to organizations in industry, government, and
academia.

National Institute of Standards and Technology Special Publication 500-193
Natl. Inst. Stand. Technol. Spec. Publ. 500-193, 39 pages (Sept. 1991)

CODEN: NSPUE2

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1991

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402

Abstract

This report is aimed at managers and technical personnel (both Federal Government and

industry) who need to understand:

• the concepts and issues of software reengineering,

• the use of Computer-Aided Software Engineering (CASE) tools in the reengineering

process,

• and the application of this technology to organizational problems.

Software reengineering involves the use of existing software and documentation to specify

requirements, design, documentation, and to produce software for a target platform. CASE
tools are expected to play an important role in automating parts of the reengineering process.

In this report software reengineering and other related terms are defined and possible benefits

that relate to this technology are described. The use of CASE tools for reengineering are

examined. A case study that examines the feasibility and cost-effectiveness of software

reengineering is described. Study results are addressed along with recommendations for

organizations that are considering the use of reengineering.

Keywords

CASE (Computer-Aided Software Engineering) tools, design recovery, reengineering

strategies, reverse engineering, software reengineering.

Acknowledgments

Special thanks to Wayne McCoy and Bruce Rosen of NIST for their valuable comments and

guidance. We would also like to thank our reviewers: Dolores Wallace, and Neva Carlson of

NIST; George Baird and Dr. Paul Oliver of Booz, Allen, and Hamilton Inc.; and Dolores

Martinez, Cathy McKinney, Dan Scott, and George Wall of IRS.

iii

Executive Summary

Software reengineering involves the use of existing software and documentation to specify

requirements, design, documentation, and to produce software for a target platform. Many
Federal government agencies and other organizations are evaluating the migration of older

software to more powerful, more open computing environments. Additional system concerns

include the high cost of software maintenance, the need to gain a better understanding of

existing systems, and the impact of reduced computer systems budgets. Federal agencies are

looking to software reengineering as a solution to these problems.

A case study conducted by the National Institute of Standards and Technology (NIST) and the

Internal Revenue Service (IRS) indicates that software reengineering can be a cost-effective,

viable solution for extending the lifetime of an application system. The degree to which it is

cost-effective depends on the goals for reengineering, the condition of the original application

system and documentation, available automated tool support, and the involved personnel.

The context for reengineering should be established in terms of the corporate goals for the

organization before undertaking the task of reengineering. It is also important to clearly

define the system goals and motivations for reengineering. Clearly defined goals are needed

to determine a suitable approach for reengineering.

A variety of approaches can be employed to gain the benefits of reengineering. These

approaches differ by the amount of design that is to be retained from the original system, the

organization's reengineering goals, the condition of the current system, and the resources to

be allocated to the project. Before determining a reengineering approach, the application

system should undergo a thorough evaluation to determine what is worth retaining for future

use and what is not. During the evaluation, data definitions and usage, code, documentadon,

maintenance history, and appropriate metrics should be analyzed to determine the current

condition of the system.

The case study indicates that full support for software reengineering from CASE tools is

currently lacking in several aspects. Most currently available CASE tools are directed at one

particular aspect of software reengineering and are targeted for a certain environment.

Therefore, expectations for automated support from CASE tools must be realistic. Provisions

in terms of personnel, effort and tools must be made to compensate for the lack of full

support of the reengineering process by currently available off-the-shelf tools.

Performing reengineering requires a highly trained staff with experience in the current and

target system, the automated tools, and the specific programming languages involved.

Application system experts must be involved throughout the reengineering process; they are

essential for design recovery.

Software reengineering is a complex and difficult process. The success of an organization's

application of this technology wiU be determined by the level of commitment made by the

organization.

iv

Table of Contents

1. Introduction 1

2. Software Reengineering and CASE Technology 2

2. 1 Definitions and Related Terms 2

2.2 Motivations For Reengineering 3

2.3 The Use of CASE Tools for Reengineering 4

2.4 The Repository 5

3. A Government Case Study 7

3.1 Background and Goals 7

3.2 Technical Approach 8

3.3 Issues 9

3.4 Findings 10

3.4.1 Process 10

3.4.2 Metrics Analysis 11

3.4.3 Reengineering Tools 12

4. Conclusions and Recommendations 13

4.1 General 13

4.2 Corporate, System, and Reengineering Goals 15

4.3 Condition of Original System and Documentation 17

4.4 Resources 20

4.4.1 Automated Tool Support 20

4.4.2 Personnel 22

5. Final Remarks 23

6. References 25

Appendix A: Function Point Analysis 27

Appendix B: Result Metrics Analysis 29

Appendix C: Glossary 33

V

1. Introduction

Many federal agencies are faced today with the problem of operating and maintaining

obsolete software and hardware. Gains in microprocessor, operating system, and

communication technologies have enabled faster and more flexible computing than that which

was possible when many of today's operational government systems were created. To
achieve improvements in system operation and performance while protecting their software

investment, many organizations want to migrate existing software to new computing

platforms.

The high cost of software maintenance (enhancement, adaptation to new environments, and

error correction) is another problem facing many organizations. Usage of disciplined design,

implementation, testing and maintenance methodologies helps to ease the maintenance costs,

but estimates for software maintenance are still high — consisting of 60 to 80% of today's

total software cost.

The documentation of a software system is rarely up-to-date. Changes to the code are

typically made without a corresponding change to the documentation. Inconsistency between

documentation and code can make software maintenance difficult. In addition, the

documentation may be incomplete. Unrecorded information may be known only to those who
deal with the system on a daily basis and this information can become lost over the years due

to personnel changes. Inconsistent and incomplete documentation complicates and lengthens

the maintenance process and cause a dependence on certain system personnel for operation.

In the 1960s, 80% of the total system cost (amount expended over the lifetime of the system)

was appropriated for hardware and 20% for software. In 1985 these estimates had been

reversed, with software consuming 80% of the system budget [FAIR85]. The reasons behind

this trend are the dramatic decrease in hardware costs (due to advances in semiconductor

fabrication technology), the labor-intensive nature of software, and the increase in personnel

costs. The proportion of expenditure on software emphasizes the importance of structure and

maintainability of software, and demands that software have a long lifetime.

There is another economic factor driving the use of software reengineering. Cuts in

government and industry budgets have reduced the resources available for the development of

new software systems. Adapting suitable systems to include new functionality can lead to

cost savings for organizations.

To address these problems and others, a number of federal agencies are looking to software

reengineering, which is directed at extending the lifetime of software. Reengineering enables

the salvaging of past work for future use, thus retaining the software's value to the

organization.

In this report software reengineering and other related terms are defined and the possible

benefits that can be gained from this technology are described. The use of CASE tools for

1

1

reengineering and various issues related to the application of CASE technology to

reengineering are discussed. A case study that examines the feasibility and cost-effectiveness

of software reengineering is described. Study results are discussed along with

recommendations for organizations that are considering the use of reengineering.

Various market products will be mentioned for clarification purposes only.^
'

2. Software Reengineering and CASE Technology ^

2.1 Definitions and Related Terms

The term "software reengineering" and related terms currently mean rather different things to

different people. This is the cause of much confusion in this area. Elliot Chikofsky and

James Cross n provided specific definitions for many terms related to reengineering in

[CHIK90]. For the purposes of this document, the definitions of reengineering and related

terms that Chikofsky and Cross have defined will be used.

Forward engineering is "the traditional process of moving from high-level abstractions and

logical, implementation-independent designs to the physical implementation of a system"

[CHIK90].

Reverse engineering is "the process of analyzing a subject system to identify the system's

components and their interrelationships and create representations of the system in another

form or at a higher level of abstraction" [CHIK90]. It is the derivation of system design

specifications based on the physical system description. This involves analyzing the code, all

documentation, and recording relevant information from the human users and maintainers.

Reverse engineering does not involve modification to the system, only examination of the

system. Also, it is not necessary to start reverse engineering at the lowest level description

(code) — it may be started at a higher level (such as design). When abstracting low-level

information to higher-level descriptions, optimization mechanisms or environment

dependencies necessary for the original environment are removed. Those mechanisms that are

applicable for the target environment can be added during forward engineering.

There are a number of sub-areas of reverse engineering, two of which are redocumentation

and design recovery. Redocumentation is "the creation or revision of a semantically •

equivalent representation within the same relative abstraction level" [CHIK90]. Design \

recovery is undertaken when "domain knowledge, external information, and deduction of

fuzzy reasoning are added to the observations of the subject system to identify meaningful

higher level abstractions beyond those obtained directly by examining the system itself'

[CHIK90]. Design recovery is essentially combining all information pertinent to a system —

^NIST does not recommend or endorse products and nothing herein is intended as an endo
rsement of any product.

2

what it does, how it does it, why it does it, etc. This area of software reengineering is the

most difficult part since it deals with such a wide range of information, some of which is not

easily attainable.

Software reengineering is defined as "the examination and alteration of a subject system to

reconstitute it in a new form and the subsequent implementation of the new form" fCHIK90].

Software reengineering consists of reverse engineering and then some form of forward

engineering or modification. Enhancements to meet new requirements that were not in the

original system may subsequently be performed.

Another related term is restructuring which is "the transformation from one representation

form to another at the same relative abstraction level, while preserving the subject system's

external behavior (function and semantics)" [CHIK90]. Code restructuring is often performed

on poorly structured code in order to make it more maintainable. Today there are automated

utilities available that, with the guidance of a human analyst, will alter code so the rules of

structured programming are closely followed. For example, GOTOs are removed or software

modules are modified to ensure one entry and one exit.

Reengineering a system involves not only the process or procedure side, but also the data side

of an application system. Process reengineering is a code-level procedure that analyzes

control flow. A program is examined to create an overview architecture with the purpose of

transforming undesirable programming constructs into more efficient ones. Restructuring can

play a major role in process reengineering. Data reengineering examines and alters the data

definitions, values and the use of data. Data definitions and flows are tracked through the

system, and through this process, may reveal hidden data models. Data names and definitions

are examined and made consistent. Hard-coded parameters which are subject to change may
be removed [RICK89]. This process is important because data problems are typically deeply

rooted within systems.

Many of the steps involved with system reengineering are being addressed through the

application of Computer-Aided Software Engineering {CASE) Technology. CASE technology

is the automation of the software development processes. It automates many analysis and

design tasks, thus seeking to increase productivity in the areas of software development,

implementation and maintenance. CASE technology is a combination of development

methodologies and automated tools.

2.2 Motivations For Reengineering

There are many reasons why an organization might consider the use of software

reengineering. The primary motivational factor is the possible cost savings from the use of

this technology. Cuts in govemment and industry budgets have reduced the resources

available for the development of new software systems. Consequentiy, organizations are

seeking ways to adapt current systems to accommodate new functionality to meet changing

3

needs. Reengineering software essentially salvages the past work for future use, thus

retaining the software's value to the org£uiization.

One reason to consider reengineering is possible reduction of maintenance costs. In many of

today's systems, maintenance changes have been directly implemented in the code and have

not been carried back to the design documentation of the systems. Lack of documentation

and complexity of code force maintainers to devote an extensive amount of time trying to

understand the functions of a system. Reengineering provides a means of reworking the

documentation and code into a more maintainable format that allows maintainers to quickly

gain a better understanding of the system.

It is not necessary to apply the entire reengineering process to achieve the benefit of reducing

maintenance costs — accomplishing part of the process, such as design recovery and

restructuring, can have a significant impact on maintenance costs. Design recovery, for

example, can be performed to recover and record lost system information. This can reduce an

organization's dependence on those individuals who understand the present software, and

shorten the time necessary for new individuals to learn the system.

Reverse engineering can be used to gain a better understanding of the current system's

complexity and functionality, and to identify "trouble-spots." Errors can be detected and

corrected, or modifications made to improve system performance. The information gained

during reverse engineering can be used to restructure the system, thus making the system

more maintainable. Maintenance requests can then be accomplished more easily and quickly.

Another area in which it is useful to consider the use of software reengineering is that of

migrating the functionality of an older system to a new computing environment. This is

especially true in those cases where it is necessary to enhance the system to satisfy new
requirements. By reverse engineering, information for the development of the application on

a new environment is collected. An analysis of current functionality in light of new system

requirements may permit redesign of the system. The software can then be forward

engineered to the target environment directly from the gathered information (if the

information is sufficient).

Software reengineering also enables the reuse of software components from existing systems.

The knowledge gained from reverse engineering can be used to identify candidate systems

composed of functions (reusable components), which can then be used in other applications.

Reverse engineering can also be used to identify functionally redundant parts in existing

applications.

2.3 The Use of CASE Tools for Reengineering

Computer-Aided Software Engineering (CASE) tools are automated tools that organize,

structure, and simplify the software life-cycle. The automation of tedious software

engineering tasks by CASE tools has enabled better control of software development and its

4

management. A broad range of CASE tool products has emerged including planning,

designing and modeling tools, as well as code generators and some reverse engineering tools.

Users are now considering CASE tools to automate the reengineering process.

At the present time, many software engineering tools are being developed and marketed for

business systems environments. Tools and methodologies for technical scientific

environments are minimal [HAUG91]. The business system tools carry out the functions of

reengineering at varying levels, with a majority concentrating on the forward engineering

process. The typical CASE tool automates only a portion of the software life cycle. More
than 200 CASE vendors support the conventional forward engineering process, but very few

tackle the difficult problems of reverse engineering [MART90b].

Currently, the available reverse engineering products are typically analyzers that examine the

structure of source code and generate a more abstract specification, like pseudo-code or

structure charts. Such tools are oriented towards a particular set of machines or environment

(e.g., mainframe COBOL applications, multi-user LAN applications). Available CASE tools

do not implement the full scope of design recovery; abstraction based on the recognition of

certain structures is currendy achievable. Analysis by humans is essential for identifying

what information is important, determining the functionality of each program and the entire

system, and judging whether the functionality is necessary. Also, some information will

probably not be in a format recognizable to an automated tool. It is doubtful that design

recovery can be fully automated because of the human judgment element needed for

observation and fuzzy reasoning.

Tools today support a variety of development methodologies. Before reengineering a system,

it is important to identify the methodologies and life-cycle stages supported by a tool or set of

tools. Some tools will enforce adherence to a strict development methodology whereas other

tools enforce no methodology. Reengineering may cause drastic changes to the environment

and methodology of an application system which could lead to frustration for individuals

currently working with the system. The tools chosen for reengineering should support

methodologies which are applicable to the requirements of a particular organization.

2.4 The Repository

The typical reengineering environment consists of multiple tools and a repository that serves

as the focal point for all development activities. The repository serves as a system

information resource across applications and tools for the entire system life-cycle.

Reengineering tools are used for analyzing a subject system and storing relevant information

gathered during analysis in the repository. If the stored information is sufficient, a new
system could be forward engineered directly from knowledge contained in the repository.

Reengineering a system may require the use of multiple tools developed by different vendors.

The use of multiple tools raises concerns with how well the tools handle data interchange.

Data interchange is the transfer of data among different CASE tools and repositories.

5

Typically each repository will handle the storage and definition of data structures that support

data in a different manner. These differences make data interchange extremely difficult or

costly. In addition, it is common to suffer a loss of data when transferring data among
repositories. It is critical that in the future CASE tools provide a standard method and

functionality for transferring data between tools and repositories.

When using automated tools for reengineering, consideration should be given to how well the

tools handle data integration. Data integration is the unification of data used by an entire

organization. This allows an organization to improve productivity by utilizing the same data

across all business systems. For data integration to succeed, standard data administration

policies and practices must be enforced by the organization. Integrated software engineering

tools and repositories should assist an organization in establishing and enforcing data

administration policies which regulate the definition and structure of data.

There are several standardization efforts underway that are significant to repository. Both the

American National Standards Institute (ANSI) and International Organization for

Standardization (ISO) are working on a standard for Information Resource Dictionary System

(IRDS), which is essentially a set of software specifications for a standard data dictionary

system [ROSE89]. The ANSI standard was approved in 1988 (X3. 138- 1988) and was

adopted as FIPS 156. ISO SC21 IRDS Working Group is developing a different Services

Interface, to be used for communication between the IRDS and other relational model based

software (e.g., DBMS).

Additional standards efforts are focusing on the development of an integrated CASE
environment allowing for the integration of different tools to support various life cycle

development activities. Working groups have been formed within the Institute of Electrical

and Electronics Engineers (IEEE), ISO, ANSI, and other industry organizations to develop

standards for tool integration, tool to tool information exchange, open architectures and

portability [SHAR91]. The repository will serve as a key component within these standards

activities, providing a facility for the storage, maintenance, and exchange of data.

NIST has established a program to develop a Reference Model (RM) for an Integrated

Software Engineering Environment (ISEE). The ISEE RM will provide a framework for tool

integration. The European Computer Manufacturers Association (ECMA) Reference Model
has been adopted as a base document. An anticipated use of the RM will be to identify the

areas in which relevant standards currently exist or need to be developed to support integrated

CASE.

6

3. A Government Case Study

3.1 Background and Goals

In order to investigate the feasibility and cost-effectiveness of reengineering existing code, a

case study was performed in which a structured COBOL application system was reengineered

and migrated to a more disciplined, more open environment. The application system was

provided by the Internal Revenue Service (IRS). The purpose of the case study was to

evaluate the applicability of reengineering technology for use in the Federal Government.

NIST conducted a competitive procurement to award a Labor Hours contract for performance

of the case study. The ceUing price for the contract was set at $250,000.

It is important to note that this is only one case study conducted on one application system,

using a particular set of tools and reengineering methodology. Also, the approach was based

on a certain set of goals for the study. Additionally, this case study focused on a business

oriented application. Reengineering military applications with demanding real-time

constraints and embedded assembly code would require different tools than those used in this

study. Different goals, application systems, CASE tool selections, and methodologies may
have very different results. Thus, the results documented in this publication neither

recommend nor condemn the CASE tools or employed practices of the contractor selected.

Our hope is that, despite such differences, other organizations can apply lessons from this

case study to aid in determining an appropriate approach for their organization.

The reengineering project was conducted on the IRS Centralized Scheduling Program (CSP)

system. This system was written in 1983 using structured COBOL 74 for Unisys 1100

hardware. It includes batch jobs, database queries and updates, and on-line processing. The

application system is made up of 37 source programs consisting of approximately 50,000

lines of COBOL code, along with 53 subroutines of MASM assembly language, consisting of

2,738 Unes. The database is a DMS 1100 network database. The application system is

currently in use at the IRS and is one of several currently operating on the Unisys 1100

which serves approximately 1000 users. Documentation for the original application system

that was provided to the contractor included Data Flow Diagrams (DFDs), Functional

Specification Packages (FSPs — in a structured English format). Computer Programmer

Books (CPBs), relevant schema definitions from the DMS 1100 database, and Nassi-

Schneiderman diagrams. All relevant documentation that was available within IRS was

provided.

The contractor was to examine the effort needed and issues by attempting to reengineer the

CSP system to a more open target environment and convert the network data base to a

relational database, normalized to Third Normal Form (3NF). The target environment and

reengineering tools were to be chosen by the contractor. Selections were to address the

Government's interest in the extent to which Federal Information Processing Standards (FTPS)

are included or considered. Particular standards of interests for this study included SQL
(FIPS PUB 127), Portable Operating System Interface (POSIX, FIPS PUB 151), Government

7

open Systems Interconnection Profile (GOSIP, FIPS PUB 146) and IRDS (FIPS PUB 156).

It was realized that implementations do not currently exist for some of these standards.

Therefore, an evolutionary path to these standards was to be shown for the proposed target

environment. Additionally, the use of custom tools was to be limited— off-the-shelf tools

were preferred. The contractor was required to demonstrate that the reengineered system was

equivalent to or better than the original in behavior, outputs, and performance. Application

system experts for the current system were on-site throughout the project to provide expertise

on system operation. IRS and NIST personnel were on-site to receive training in the

methodology and tools.

It was assumed that for software reengineering to be considered cost-effective, the process

should, in principle, be achievable in a fairly short period of time. Accordingly, an

aggressive 17 week time schedule was set for the project. Following a competitive

procurement, the contract was awarded to Booz, Allen & Hamilton Inc. of Bethesda,

Maryland.

3.2 Technical Approach

Two major off-the-shelf tools were selected for this project, one to support reengineering the

data side of the application system, and the other to support reengineering the process side.

Each of these tools has high visibility for its functionality and a fairly large market base (as

compared to other tools). Additional tools (some proprietary) were used to analyze COBOL
procedure division code, develop higher-level design documentation, and produce metrics data

from the COBOL source programs. The need for some of the additional tools was not

apparent at the start of the project. As the project progressed and difficulties were

encountered with some off-the-shelf tools, on-hand, proprietary tools were utilized as a

solution.

The reengineering methodology was broken down into the five steps listed below:

Step 1: baseline the original system;

Step 2: extract/analyze data, code functionality and documentation;

Step 3: produce documentation;

Step 4: generate new code;

Step 5: execute and test code.

In the context of the defined terms of section 2. 1 of this document, reverse engineering is

accomplished in Steps 1 through 3 while forward engineering is completed in Step 4.

8

Portions of the system were identified and prioritized for reengineering. Programs were

categorized by level of complexity and the interfaces between programs. The categories, in

order of increasing complexity, were:

• batch programs not accessing the database, not using COBOL's Report Writer or

Sort;

• batch programs accessing the database;

• batch programs using Report Writer;

• interactive programs (included database access and screen interface).

3.3 Issues

Difficulties were encountered during the reengineering process. It was discovered that the

original DFDs were out-of-date. In order to gain a consistent understanding of the system

and to obtain a dependable set of documentation, the DFDs were analyzed and corrected.

These analyses and corrections were based on information collected from the application

system experts and the documentation, particularly the FSP.

It was concluded that any database redesign can have a significant impact on the manner in

which application software accesses and processes data. Thus, any database redesign will

force changes to the code that performs these functions. For example, in order to normalize

the database to First Normal Form (INF), it was necessary to eliminate repeating groups in

each record definition. The original database definition was cluttered with repeating groups,

making frequent use of the "OCCURS" clause in the DMS 1100 definition. Eliminating the

redundancy forced changes to the application code that accessed the database and processed

the data. In addition, redesign of some application code was necessary because of the change

in navigation strategy. For example, one program sequentially processed database records by

traversing the network structure of the database (i.e., get one record, process it, get next, and

so on). This is perfectly suitable for hierarchical and network model databases, but not for

relational databases in which record selection is based on the satisfaction of some criteria.

Once a relational database design that met our normalization requirements was developed, it

was observed that the normalized design was not an optimum one. A more optimal design

would have required a major redesign of the application code. It was realized that many
design solutions were possible, and in order to adhere to the goals of the case study and time

constraints, an optimal design was not necessary. Therefore, a database design solution that

met the goal of 3NF was devised in which the impact on the application code was minimal.

The database conversion stressed to the members of the project team the importance of data

reengineering and the essential coordination of the data side and process side of an

application system during reengineering. When reengineering a system, it was felt that

9

emphasis should be placed on data reengineering because it will drive the reengineering of the

data processing code. This suggests that perpetuation of the data will be more useful than

preservation of the original application process.

3.4 Findings

3.4.1 Process

It was determined that the complexity of the reengineering process increased in relation to the

complexity of the programs. The most complex programs required the most manual effort.

The program groups are listed below in order from the easiest (highly automated process

overall) to the most difficult (much manual process required), with the breakdown of the

required automated and manual effort provided as percentages. Note that the calculations

below reflect the effort on the part of Booz, Allen only. The time dedicated by NIST and the

IRS personnel is not included in these computations because the focus for the Government

employees' time was on training and providing application system expertise to the contractor.

Program Group Automated Manual

Batch 96% 4%
Batch with SORT 90% 10%
Batch with DBMS access 88% 12%
Batch with SORT and DBMS access 82% 18%
Interactive 50% 50%

The majority of interactive programs were written in assembly language and therefore, this

category required the most manual effort. Much time was spent determining the functionality

of the assembler code and whether that functionality was still necessary in the target

environment. It was calculated that overall 20% of the reengineering process was performed

manually and 80% was performed automatically.

The following chart identifies the level of effort that was required to reengineer the system

for each step in the methodology.

Step Percentage of Total Hours

Total Effort

Step 1 Baseline current system 19.76% 780

Step 2 Extract/analyze ... 43.26% 1,708

Step 3 Produce documentation 4.05% 160

Step 4 Generate new code 26.34% 1,040

Step 5 Execute and test new code 6.59% 260

10

Some of the CASE tools did not perform as advertised and required a greater than expected

amount of manual intervention. On-hand, proprietary tools were modified to produce high-

level design documentation. Some steps in the reengineering process seemed cumbersome
and time-consuming. It was possible to automate some steps, but human effort was needed

for analysis and tool operation. As a result of these difficulties, reengineering of the entire

application system was not completed. Approximately 56% of the CSP system was reverse

engineered to a design level and approximately 38% of the CSP system was reengineered

(source code produced). Reengineering was completed on a representative sample of

programs from each group. During an extended 18 week period, 24.7 staff months were

expended. After accounting for the learning curve and problem resolutions, it was estimated

that an additional 10 staff months would be necessary to complete the reengineering process.

Realizing the existence of other approaches for extending software lifetime, estimations were

made in order to compare the effort required for reengineering with the effort for other

approaches. The effort needed to convert the CSP system was calculated using the Office of

Technical Assistance (OTA) Conversion Cost Model Version 4 and assuming the utilization

of CASE tools. It was determined that approximately 30 staff months would be necessary to

convert the CSP system. Possible reasons for this low number could be attributed to the large

degree of automation of the conversion effort and that analysis would not be performed to

gain higher-level design documentation.

The effort to redesign and redevelop the CSP system was calculated using the Constructive

Cost Model (COCOMO) [BOEH81] for system development. It was assumed that CASE
tools and 4GLs would be employed in this effort. Approximately 151.9 staff months would

be necessary to redesign and redevelop a new system to meet the CSP requirements. The

estimate of 34.7 staff months for reengineering compares favorably with these estimates.

The case study indicated that intimate knowledge of the original and target system platforms,

the automated tools, and the implementation language is essential to carry out the

reengineering process.

3.4.2 Metrics Analysis

In order to relate productivity and the quality achieved through the reengineering process, two

analyses were performed on the accumulated measurements. Function point analysis was

used to formulate indicators of productivity. Result metrics (metric counts before and after

reengineering process) were analyzed to evaluate the degree to which the reengineering

process affected maintainability and code flexibility. Caution must be used when evaluating

the relevance of these calculations. Proper consolidation of function point measurements

requires a significant sample size of similar reengineering projects that were all performed

under the same conditions. Accordingly, this single project sample should not be regarded as

sufficient for proper calibration. The metrics analysis is discussed in detail in Appendices A
and B.

11

Through function point analysis on the reengineered programs, the following productivity

measurements for the CSP system were derived:

• 164 function points per staff-year;

• 11.68 staff hours per function point;

• 1,516 executable statements per staff-year,

• 6,387 COBOL statements per staff-year.

As the sample size for this project is insufficient for drawing conclusions on the productivity

of reengineering, the measurements above are presented for the purpose of information only.

Result metrics indicate that the reengineered programs are more complex than the original

programs. This is evident in the increased number of logical NOT and GOTO statements.

Also, the decision density is alarmingly high. Reasons for the increased complexity could be

attributed to certain practices of the forward engineering tool. While the forward engineering

tool has certainly eased the task of code generation, it has increased code complexity. It is

important to note that increasing the code complexity may have a direct effect on the

complexity of testing the code. The additional complexity could be justified if the code,

hereafter, will be maintained at the design level and then forward engineered with the forward

engineering tool. If maintenance returns to manual practices, then the task has been made
more complex.

3.4.3 Reengineering Tools

The study indicated that the off-the-shelf tools used in this case study do not fully support the

entire reengineering process. It was necessary to augment the off-the-shelf tools with

modifications to available, proprietary tools. Most reverse engineering tools are analyzers,

based on the recognition of certain structures, and are oriented towards a particular set of

machines or environments (e.g., mainframe COBOL applications). However, this case study

indicates the ability to maintain programs at a higher level of abstraction than at the source

code level. Also, the code that was produced by the tool contained functions that can be

time-consuming to code manually (i.e., record counting, file status checking, cleanup and

housekeeping functions). This case study indicates that present CASE tools provide some
efficiency and productivity gains, but further development of the reengineering technology is

necessary. Human effort for design recovery and analysis is essential and can not be

overlooked.

12

4. Conclusions and Recommendations

4.1 General

The following conclusions and recommendations are largely based on findings of this case

study. Experience gained from other NIST projects involving reengineering also contributed

to these recommendations. During the case study, only one application system was
reengineered using a particular set of tools and a particular methodology. Accordingly, it

would be incorrect to infer from this study absolute rules for when to reengineer and when to

redesign. It must also be noted that the approach taken to reengineering was based on a

certain set of goals for the study. Other reengineering approaches could be employed to

achieve a different set of goals.

By comparing the efforts required to reengineer, convert, and redesign and develop the CSP
system, it was concluded that software reengineering can be a cost-effective and viable

solution to extending the hfetime of an application system. The cost-effectiveness and

feasibility for reengineering a particular software system will be dependent on a number of

variables that are specific to that system and the approach taken. These variables are: the

goals for reengineering, condition of current application system and documentadon, tool(s)

support, and involvement of knowledgeable personnel.

NIST experience indicates that there is a spectrum of approaches that could be applied to

extend the lifetime of a software application system as illustrated in figure 1. At one end of

the spectrum is straight code conversion and at the opposite end is total redesign and

development. In the middle of the spectrum are varying approaches of reengineering. These

approaches are positioned between the endpoints in correspondence to the degree the original

design and implementation is to be retained. The placement and separation between

approaches on the spectrum is not clear cut. In each approach across the spectrum, higher-

level abstractions of the system, in the form of analysis and design documentation, are

derived. Reengineering approaches that are positioned on the spectrum include:

• reengineering with no change in design or functionality — design of original

implementation is fully retained;

• reengineering with minimal change to design — only modifications necessary for

target environment;

• reengineering with modifications to optimize the functionality and performance.

This case study focused on maintaining the functionality of the original system. Some
redesign was necessary in order to convert the network database to a relational database

structure that is normaUzed to 3NF. By positioning the approach for this case study around

13

Straight

conversion

Reengineering

with no change

in design

Reengineering with

minimal change

to design (only

Reengineering with

modficalions to

optimize the functionality

and performance

Total redesign

and development

modifications necessary

for target environment)

Figure 1. Spectrum of Reengineering Approaches.

the center of the spectrum a set of guidelines for various reengineering approaches across the

spectrum can be inferred.

The effectiveness of a reengineering approach is dependent on the variables of:

• corporate and system goals;

• condition of current application system and documentation;

• available resources (automated tool(s) support and personnel).

When determining if reengineering is an appropriate alternative for a particular application

system and a given organization, the condition of these variables must be determined. The

reason behind the success of this case study could be attributed to the strong correlation

between the approach taken and these variables. This case study was supported by the

following factors:

• well-defined focus and goals for this case study;

• original CSP system recently designed and implemented (1983);

• majority of original CSP code was well-structured (modularized with a minimum

• CSP was fairly well-documented — the primary documentation, the FSP, was up-to-

date and complete;

• CASE tool support automated a majority of reengineering tasks;

• operations people who had excellent understanding of the original CSP system were

involved throughout this project.

number of GOTOs);

14

Reengineering can help an enterprise change its business functionality to meet its corporate

goals. Through reengineering, changes to the way current business is done can be put into

place. In order to be effective, upper management support is imperative. The degree of

success of reengineering will be determined by the level of commitment made by the

organization.

4.2 Corporate, System, and Reengineering Goals

When considering reengineering, one of the first tasks is to set the context for reengineering

in terms of the corporate goals of the organization and the dependencies between application

systems. For example, some Federal agencies (e.g., DoD) wish to implement some "corporate

information management" policy in which the information used across the organization is

effectively and efficiently controlled to eliminate inconsistencies, redundancies, and

duplication of effort. The organization need not be global in scope, but could be at a local

scope. Software reengineering is applicable in this context and would be most effective if

directed at the information and its usage. A suitable approach for reengineering in the

context of a corporate information management policy may be to reengineer the data and

redesign the application processes. The various groups and application systems that use the

same information should be identified along with their dependencies (i.e., what system creates

the information, and what others display it or use it for further computations). Some redesign

of the data and its usage may be necessary to implement a corporate information management

policy. The processing of data in the original system is highly likely to change based on the

redesign of data usage. Therefore the processing in the original system should not be a major

influence on redesign or reengineering decisions. Organizations may have different corporate

goals that will influence the effectiveness of software reengineering. These corporate goals

and system dependencies must be considered to establish a context for reengineering.

Recommendation: Establish the context for reengineering by considering the corporate

goals of the organization and how reengineering could be applied to

achieve the mission. Information dependencies between application

systems must be identified.

When examining the functional aspects of the current system, it is crucial to investigate the

possibility of new solutions. Perhaps, using new technology, there is a better way to do

business. The business may have been constrained, in the past, by technology. Indeed, the

old manual methods, before computers, constrained the way business functions could be

carried out. It was a mistake then to carry the manual methods into automation. Today it

may be incorrect to carry current methods to newer architectures and approaches. If the

current environment is driving the business approach, then it would be wise to reevaluate the

technology currently being applied, the current business approach, and the business goals.

Recommendation: Analyze system requirements from a functional viewpoint and

consider new technology to improve current business practices.

15

When determining a target computing architecture, conformance to government and

industry standards should be considered. Because of the history of a computing environment,

an organization may feel tied to a particular vendor for future purchases in order to achieve

system compatibility. However, this argument is no longer accepted by the Government

Accounting Office (GAO) in procurements for Federal agencies. Requiring equipment

(hardware and software) to conform to appropriate standards (e.g., FTPS) can ehminate

incompatibility problems, provide buyers with more flexibility when selecting equipment, and

ease future migrations. Increasingly, Federal agencies are being mandated to procure

equipment that conforms to FIPS, in particular the FIPS for POSIX, GOSIP, and SQL.

Recommendation: When procuring equipment, require conformance to applicable

standards (e.g., FIPS) to achieve flexibility and ease future

migrations.

It is important to have clearly defined motivations in order to determine a suitable

reengineering approach. There are a number of factors to be considered. They include:

current problems, the functional requirements and how they are currently met, new technology

and how it can be exploited to improve satisfaction of the functional requirements, and an

appropriate target environment. During the investigation of these factors, various motivations

for reengineering will become clear. Because of the complexity of the reengineering process,

the goals an organization expects to accomplish should be clearly stated before attempting to

reengineer an application system. As discussed earlier, there are numerous reasons to

consider reengineering such as:

• migrate to a new target environment;

• reduce maintenance costs;

• gain understanding of the current system's complexity;

• improve system performance;

• reduce software errors;

• recover information.

The selection of what is to be achieved by reengineering will assist in determining a suitable

reengineering approach.

Recommendation: Identify motivations and what is to be achieved by reengineering.

16

4.3 Condition of Original System and Documentation

It is essential that the current condition of an application system be examined to determine

if reengineering is practical, and if it is, how much redesign is required. Analysis of the

dependencies between an application system and others that it may impact, in terms of

information creation and usage, and functionality is needed. This calls for the system to

undergo a thorough evaluation. In actuality, reverse engineering — gathering information

about the system— is a large part of the system evaluation. The evaluation should be

approached with the intent of discovering what is worth retaining for future use and what is

not. Determining the extent to which modification is needed will narrow the field of choices

of reengineering approaches. The system evaluation will determine if reengineering is

practical and if it is, will identify the parts of the original design that should be retained, and

necessary steps in the process. It is important to budget plenty of time for system analysis

(reverse engineering) — it is a complex task and there are numerous aspects to consider.

Recommendation: Evaluate application system with the intent of discovering what is

worth retaining for future use and what is not.

This case study stressed the importance of data and its usage in driving the application

system. During evaluation, emphasis should be placed on the data side of the application

rather than the process side. A functional perspective of data usage should be taken, and the

system should be analyzed as to whether redesign of the data is needed. Redesign may be

necessary because of poor original design, continual enhancements that have obscured the

original design, inconsistent naming conventions, inconsistent data definitions, migration to a

database of a different structure or the need to improve data management. Data redesign

forces redesign of the processing code because of the change in definitions, access, and

processing functionality. In some cases, data redesign will facihtate the removal of data

processing code.

Considering the influence that the data side has on the application code, it would be practical

to first evaluate the original data design and determine how much redesign is needed. Then

an impact analysis should be performed to determine what programs are impacted and how.

It may be that only the data access code will be effected, which is a minimal change. If the

database is converted to a database of different structure, the functionality of how the

application processes data may need to be modified. This evaluation strategy will narrow the

choices of reengineering approaches.

Recommendation: Stress data design because it will force modifications to the process

design.

Maintenance data and appropriate metrics should be analyzed for information concerning

the system's history and performance. It should be determined whether the system conforms

17

to software standards and the degree to which it conforms. To be reengineered the software

should be in an extractable state — modularized software components with well-defined

interfaces. Restructuring of the system may be necessary in order to prepare it for further

reengineering. One possible reengineering approach is based directly on the application

system's maintenance history. In this incremental strategy, the code that has the highest

maintenance cost is reengineered first and work progresses on code segments that have

decreasing maintenance costs.

Many organizations are currently operating application systems that are older than the CSP
system and the code and documentation are in poor condition. Many older programs contain

programming "tricks" for purposes of avoiding constraints of the environment or optimizing

performance, such as saving memory or processing cycles. Reverse engineering from such

code is dependent on an analyst's ability to recognize such sections of code.

It is possible that the results from the reverse engineering will indicate that the system is so

error-prone and complex that perpetuation of the system is not practical. This conclusion

eliminates the applicability of reengineering and narrows the choices to continue the use of

the existing system or redesign and develop a new system. Another possibiUty is that the

evaluation may indicate the need for some redesign. In those cases where a large percentage

of redesign is required, it is better to scrap the system and redesign from scratch. A study of

maintenance costs at IBM suggested that if 12% of a system has to be changed, then it is

cheaper to redevelop [MART90a]; the study was too limited to support 12% as a generally

applicable threshold.

Determining what parts of the system merit future use may also uncover redundant code

segments. These segments do not have to be exactly the same, but may still be redundant

even though they have slight differences. It may be possible to eliminate the redundancy by

combining the redundant segments into one reusable part. Creating a reusable part from

several redundant parts depends on whether the component can be extracted without

significant effort. A redundant component that can be extracted as a distinct module with

well-defined interfaces will be easiest to combine with other similar components. It may be

valuable to create a library of reusable parts for use across application systems.

During system evaluation, asking the following types of questions will assist in determining if

reengineering of an application system is suitable:

1. Does the original system's design and implementation merit reuse in a future

system?

2. Are new technologies or methodologies exploitable that would improve

satisfaction of the system requirements over the original application system?

3. Is the target environment vastly different from the original environment and if so,

how?

18

4. Is redesign of the data necessary? If so, what parts on the process side will be

impacted?

5. What parts of the system require redesign for operation in the target environment?

6. Is the system well-structured (modules with 1 entrance, 1 exit; no GOTOs)? If

not, could it be improved by restructuring?

7. Is the system well-maintained?

8. Is the current performance of the system acceptable?

9. Is the documentation consistent and accurate with current system functionality?

Recommendation: Evaluate the code, documentation, maintenance history, and

appropriate metrics to determine the current condition of the

application system.

One motivation for reengineering is to gain a better understanding of the application

system. The DFDs for the application system used in this study were out-of-date. In order to

gain a more complete knowledge of the system and make the documentation consistent with

the code, the documentation was analyzed, the application system experts were consulted and

the DFDs were corrected. This was a long and difficult process because some information

was recorded in other documentation forms while some was not recorded at all. This design

recovery process served two purposes: to recover lost information and to assist the contractor

personnel in gaining insight into the functionality of the application system.

Recommendation: While design recovery is difficult, time-consuming, and essentially a

manual process, it is vital for recovering lost information and
information transfer.

That information which is the most critical for understanding the system should be

identified for preservation. All documentation forms should be analyzed to determine what

information is stored and how important it is to understanding the system. For example, the

application system experts relied most heavily on the FSP for functional information of the

system — hence it represented the most up-to-date documentation. The focus here is not on

documentation form, but on the content. It is important not to be strongly tied to a certain set

of documentation forms. It is useful to have standards for documentation, but it is critical to

be open for better ways of representing and maintaining information. Current documentation

practices are quite limited in the types of information that are maintained. While it may be

necessary to restrict information in a documentation form to ensure consistency and

completeness, it is important to analyze other perspectives of the system to gain as complete

19

an understanding of the system as possible. Currently formal description techniques, such as

SDL [CCITTRB], SPEC [BERZ90], Estelle [ISO9074], LOTOS [ISO8807], are being utilized

for design and documentation of systems. Some of these techniques may be more appropriate

for documentation and maintenance than the current practices.

In addition, current document practices should be analyzed as to how useful each is for

various purposes. For example, DFDs are useful in the software design phase for identifying

processes and the data needed by each process. However, DFDs can quickly become overly

complex. This was evident in this study — the highest level DFD looked like the physical

layout of a micro-chip, despite consolidation of the data streams and process bubbles. This

complexity might well be the reason why reliance during maintenance is placed on the FSPs,

rather than the DFDs.

Recommendation: Identify critical system information. Do not be tightly tied to a

certain set of documentation forms; focus on information content

and usage.

4.4 Resources

It became apparent during this study that resources (automated tools support and personnel)

are a critical factor in the successful completion of a reengineering project. The selection of

a software engineering methodology and the associated CASE tools is of paramount

importance because of their impact on the future operation and maintenance of the

reengineered system. The reengineering process can add additional overhead to the system

(i.e., more documentation, increased complexity of the generated code). This additional

overhead is justifiable if the system will be maintained at the design level and then forward

engineered with the methodology used in the reengineering process. If maintenance returns to

manual practices or employs different tools that do not use the information recorded in the

repository, then much of the gains from the reengineering effort will be lost.

4.4.1 Automated Tool Support

This case study indicates that the support for software reengineering from currently

available off-the-shelf CASE tools is far from the ideal situation of totally automated

reengineering — building high-level design and analysis information based on low-level

descriptions (code) and then forward engineering to an environment of choice. Although

present CASE tools do provide much efficiency and producdvity gains, the technology needs

further development to provide a complete set of needed functions. CASE tools do not

always perform as advertised, may require manual intervention, and some steps may be

cumbersome and time-consuming. It was necessary to augment the CASE tools used in this

study with on-hand proprietary tools. In many cases, modifications were made to the

proprietary tools to resolve problems encountered or lack of support from off-the-shelf tools.

20

Recommendation: Provisions in terms of personnel and effort must be made to

compensate for the lack of full support of the reengineering process

by currently available off-the-shelf tools.

Most currently available CASE tools are directed at one particular aspect of software

engineering (and reengineering) and are targeted for a certain environment. Application

systems within an organization may differ drastically in terms of environment and

methodology. Because of the differences across applications and the targeting of tools, it

should not be assumed that a single toolset will apply uniformly well across all appUcation

systems. It may be suitable to utilize a number of tools, each being used for its particular

strength in the reengineering process and supported environment.

Recommendation: Considering the focus of most CASE tools for a particular

computing environment, one set of CASE tools should not be

depended on for uniform applicability to all needs across an

organization.

It is essential that the hardware that supports the reengineering process have adequate

storage capacity and processor speed. With the methodology and tools used in this study,

large files were generated during the reengineering process. If sufficient processor speed is

not used, the reengineering process could be inhibited.

Recommendation: Adequate storage capacity and processor speed in equipment

supporting the reengineering tools are essential to facilitate the

reengineering process.

Before reengineering a system, decision makers should consider if the tools chosen to

handle this procedure follows any particular methodology. The current methodologies utilized

by an organization may change drastically once an application system is reengineered. These

changes may cause fiiistration for individuals working with the system.

Recommendation: Consider CASE reengineering tools that provide methodologies

which are compatible to the requirements of the particular

enterprise.

When reengineering an application, it may be necessary to use multiple tools from different

vendors. This may cause problems with the interchange and integration of data and data

models across different tools. A data model provides a method for representing the data

structures used in a software engineering toolset or repository. Different tools may not

21

support the same data models and methodologies resulting in the need for data model

integration.

There are additional CASE tool features that are worthy of consideration, such as

export/import and appropriate metrics analysis. This, of course, is dependent on the

functional requirements of the CASE tools. For example, in order to accomplish data model

integration when using different software engineering tools, the user organization must be

able to recognize the similarities and differences between the different data models in use.

One means of achieving data model integration is by identifying the differences between the

data models and building a target data model that will be sufficiently robust so as to be

capable of capturing both data models. When toolsets or tool dictionaries have fixed, non-

extensible data models, then data model integration becomes difficult or even impossible to

accomplish. An export/import interchange facility can provide some support for interchange

of data models and data. Also, it is beneficial to utilize CASE tools that support data

collection and appropriate metrics analysis. Having an automated means for data collection is

superior to manual methods because of savings in time and labor. Also, automated methods

ensure that the data are collected and measurements are made in a consistent manner.

Recommendation: Additional features that merit consideration include a data

interchange facility and appropriate metric analysis utility.

4.4.2 Personnel

Reengineering requires a highly trained staff that has experience in the current and target

system, the automated tools, and the specific programming languages. It is not necessary that

all the reengineering team members have all of these skills, but these skills must be present

across the team. If it is desired to automate the reengineering process as much as possible,

team members who are able to write additional software to bridge the gaps between the

CASE tools and/or provide special support for the tools may be required.

Recommendation: Reengineering requires a highly trained staff that has experience in

the current and target system, the automated tools, and the speciflc

programming languages.

Human knowledge and understanding of the application system to be reengineered is

extremely important. Without the involvement of the application system experts, this study

could not have been completed. While the documentation was helpful, some sections were

out-of-date and the application system was quite complex. With their knowledge and

experience, the human experts were able to supply complete information of the system that

could not have been gained from the documentation alone. However, shifting application

system experts from maintenance to reengineering impUes that considerable staff hours may
need to be diverted from operational work.

22

Recommendation: It is critical that the application system experts be involved

throughout the reengineering process. They are essential for design

recovery.

5. Final Remarks

This document discusses software reengineering (and related terminology) and how
reengineering can be used to extend the lifetime of existing software. The use of CASE tools

for the support of reengineering and various tool considerations have been examined.

Through the completion of a case study directed at evaluating the feasibility and cost-

effectiveness of software reengineering, some preliminary results have been determined.

Software reengineering can be a cost-effective and viable solution for extending the lifetime

of an application system. The degree to which it is cost-effective is dependent on the goals

for reengineering, the condition of the original application system and documentation,

available automated tool support, and the involved personnel. These variables must be

thoroughly analyzed before selecting a reengineering approach. This approach determination

analysis is essential and must not be overlooked. Factors to be considered when determining

a reengineering approach were addressed. These factors range from corporate goals to the

condition of the original system and resource support.

23

6. References

[ARAN85] Arango, G., Baxter, L, Freeman, P., and Pidgeon, C, "Maintenance and Porting of

Software by Design Recovery," Proceedings from Conference on Software Maintenance 1985 .

[ARNO90] Arnold, R., Notes from Seminar on Software Reengineering.

[BACH88] Bachman, C, "A CASE for Reverse Engineering," Datamation, July 1, 1988.

[BASI90] Basili, V., "Viewing Maintenance as Reuse-Oriented Software Development," IEEE

Software , January 1990.

[BERZ90] Berzins, V., et al, "An Introduction to the Specification Language Spec," IEEE

Software , March 1990.

[BIGG89] Biggerstaff, T., "Design Recovery for Maintenance and Reuse," COMPUTER , July

1989.

[B0EH81] Boehm, B.W., Software Engineering Economics , Prentice-Hall, Inc., 1981.

[B00Z91] Booz, Allen & Hamilton, Reverse Engineering Evaluation Process Report , January

15, 1991. This is an internal, restricted report.

[CCITTRB] CCITT Red Book Volume VI-Fascicle VI. 10, "Functional Specification and

Description Language (SDL)."

[CHIK90] Chikofsky, E., and Cross, J., "Reverse Engineering and Design Recovery: A
Taxonomy," IEEE Software . January 1990.

[CHOI90] Choi, S., and Scacchi, W., "Extracting and Restructuring the Design of Large

Systems," IEEE Software , January 1990.

[DIEH89] Diehl S., et al, "Making a Case for CASE," BYTE , December 1989.

[FAIR85] Fairley, R., Software Engineering Concepts . McGraw-Hill Book Co., 1985.

[GANE90] Gane, C, Computer-aided Software Engineering the methodologies, the products,

and the future. Prentice-Hall, Inc., 1990.

[HAUG91] Haugh, J., "A Survey of Technology Related to Software Reengineering,"

Proceedings from Systems Reengineering Workshop , Naval Surface Warfare Center, Silver

Spring, Maryland, March 25-27, 1991

[IFPUG90] Sprouls, J., (ed.), IFPUG Function Point Counting Practices Manual . Release 3.0, 1990.

25

[ISO8807] International Organization for Standardization, "Information processing systems —
Open systems interconnection — LOTOS — A Formal description technique based on the

temporal ordering of observational behavior," 1988.

[ISO9074] International Organization for Standardization, "Information processing systems —
Open Systems Interconnection — Estelle — A formal description technique based on an

extended state transition model," 1989.

[JONE88] Jones, Capers, "A Short History of Function Points and Feature Points," Software

Productivity Research, Inc., Version 2.0, Feb. 20, 1988.

[K0ZA91] Kozacynski, W., "A Suzuki Class in Software Reengineering," IEEE Software

January, 1991.

[MART90a] Martin, J., "The Beauty of Re-Engineering: Continual Enhancements," PC Week ,

April 30, 1990.

[MART90b] Martin, J., "Restructuring Code Is a Sound Investment in the Future," PC Week ,

May 7, 1990.

[RICK89] Ricketts, J.A., DelMonaco, J.C., Weeks, M.W., "Data Reengineering for

Application Systems," Proceedings from Conference on Software Maintenance , 1988.

[ROSE89] Rosen, Bruce K., and Law, Margaret H., "Information Resource Dictionary System

(IRDS) and Modeling Tools," Proceedings of 3Rs of Software Automation, Re-engineering,

Reusability, Repositories, An Extended Intelligence, Inc. Conference and Tool Exhibition ,

1989.

[RUHL91] Ruhl, M., IRS Software Reengineering Report and Strategy Plan , January 30,

1991. This is an internal, restricted report.

[SHAR91] Sharon, D. "CASE Standards: Is Anyone Listening?," CASE Trends , March/April

1991.

[SNEE87] Sneed, H., and Jandrasics, G., "Software Recycling," Proceedings from Conference

on Software Maintenance , 1987.

[WEIN91] Weinman, E., "The Promise of Software Reengineering," InformationWeek , April

22, 1991.

26

Appendix A: Function Point Analysis

Function point analysis was chosen to measure the productivity achieved in the reengineering

process, as well as to measure the degree of functionality of the original CSP system.

Function point analysis has, in many cases, been proven to be superior to conventional

metrics based on lines of code (LOG) count. Such conventional metrics would have posed

several problems in this reengineering study since:

• CSP consisted of COBOL, assembly language code, and DBMS commands, making

a reduction to normalized LOC difficult;

• LOC is usually a meaningless measure for systems making significant use of

DBMS;

• there are no standard scope of effort guidelines [B00Z91].

Function point analysis is based on measurements of inputs, outputs, inquiries, master files,

and interfaces, each of which is appropriately weighted. The impacts of possible influential

factors are analyzed to determine the level of system complexity. This provides a

dimensionless number as an indicator of functionality. The International Function Point Users

Group (IFPUG) publishes counting rules and guidelines to ensure consistent definitions and

counting methodology [IFPUG90]. As the sample size for this project is insufficient for

drawing conclusions on the productivity of reengineering, the measurements below are

presented for the purpose of information only.

Function point analysis was first performed on the CSP system before reengineering in order

to gain some idea of its condition. Function point analysis was also performed on the 14

programs that were reengineered.

A final function point count of 1,192 for the entire CSP system before reengineering was

derived. Considering the size of the reengineered program inventory (approximately 50,000

total COBOL source statements), the function point total is high. Most published reports

associate 100 COBOL source statements per function point. Following this estimate, less

than half the function points found would be expected for this application system. The main

conclusion that can be drawn from this is that it is incorrect to expect a high correlation

between function points and lines of code count. Secondly, the analysis of the original

inventory indicated that the original code was well- structured with a high degree of

functionality. It is not improbable to derive a high function point count to code ratio for

well-structured, highly functional programs.

Reengineering was completed on 14 programs. The measurements for these programs before

the reengineering process are as follows:

• 13,131 COBOL source statements.

27

• 3,116 executable statements,

• 338 function points.

The following measurements were obtained for the sample programs after reengineering:

• 21,480 COBOL source statements,

• 4,062 executable statements.

The reengineering process required a total of 3,948 staff hours. Assuming 1,920 staff-hours

per work year, 2.056 staff years were expended. Because the goal was to reengineer without

any changes to the functionality and the high level of automation of the reengineering

process, the productivity measurements were based on the measurements before reengineering.

The productivity measurements are listed below:

• 164 function points per staff-year,

• 11.68 staff hours per function point,

• 1,516 executable statements per staff-year,

• 6,387 COBOL statements per staff-year.

Because of the significant use of DBMS in this application system, the statements per staff-

year measurements should not be considered highly meaningful. Rather, the 164 function

points per staff-year is the key parameter [BOOZ91].

28

Appendix B: Result Metrics Analysis

The result analysis focused on how the reengineering process affected maintainability and

code flexibility. The classifications chosen for the totals reflect this focus. The

measurements were made using an automated tool which collects and categorizes statement

counts.

The following counts were used as a basis for comparison:

• ELOC: Executable lines of code;

• CLOC: ELOC divided by 100;

• Size: CLOC**2 (Note: the choice of power 2 was arbitrary; the intent was to

penalize programs exceeding 100 ELOC by a significant margin);

• Decision count: Count of all decision statements (if, do-while, do-until, etc.);

• Decision density: Number of decision statements per CLOC;

• Function count: Number of COBOL functional statements (call, perform, compute,

sort, merge, etc.);

• Number of COBOL I/O statements;

• Entry/Exit Ratio (EER): Number of ENTRY statements per program exit (EXIT,

GOBACK, and STOP RUN statements).

Computed values were normalized to a base of 100 executable lines of code (CLOC). This

was done to allow meaningful analysis between before and after measurements and so that

structured code would not be penalized — structured code typically results in more lines of

code than equivalent unstructured code, although the number of executable lines of code is no

higher. Additionally, these derived metrics were divided by the number of reengineered

programs in order to provide an averaged measurement.

Decision counts are closely related to complexity and testability. A decision density

(decisions per CLOC) of 10 or less is desirable. When decision density exceeds 20-25, it is

likely that maintenance problems will be experienced. The number of functional statements

in a program is an indicator of a module's function strength. A function density of over 20%
is a good indicator of a highly functional, and therefore easily maintainable, module.

Conversely, a GOTO count of over 10 will cause maintenance problems — a count of 2-3 is

desirable. Additionally, a large number of NOT logical statements wiU cause problems since

NOT statements test what is not and give no indication of what is. Well-modularized

29

programs will contain balanced counts of ENTRY/EXIT statements. A comment density of

10% or more is desirable for COBOL code [BOOZ91].

Table 1 displays the key result metrics counts before and after the reengineering process.

Table 1. Key Result Metrics Counts

Metric Before

IVccllglllcci lilg

After

Jxccllglllcci lllg

^1 1 on 4069 00

iNumoer or rrograms 1 A on 1 4 00

L.Lj 0 on

Total Decision Count Tin nr\ 13 /o.LKJ

Decision Density Zz. /4 33.89

Total Function Count (COBOL) C'^'? f\f\537.00 1407.00

Total I/O Count 384.00
o o ^ r\f\
335.00

Entry/Exit Ratio (EER) 0.50 0.66

Si7e 4 95 8 41

GOTO Density 0.25 6.67

NOT Clauses 159.00 466.00

Functions/Programs 38.36 100.50

Function Density 17.20 34.66

Total Number of Files 46.00 57.00

Total Number of Calls 42.00 8.00

Comments Density 118.87 318.04

The metrics before reengineering present a mixed picture. The size is relatively small (1 is

ideal). The GOTO density is very small, but there are a large number of NOT clauses.

Function density is high, which is good, but decision density is also high. A high decision den

sity is indicative of complex code. The relatively high I/O count also indicates a high level

of complexity. These sample programs could be characterized as well-written, highly

structured and modular, overly documented, and somewhat complex.

30

The result metrics indicate that the reengineered programs are more complex then the original

programs. This is evident from the increase in the number of logical NOT and GOTO statem

ents. Also, the decision density is alarmingly high. Size has increased while the I/O count

has decreased slightly. Function density is nearly doubled (mostly due to PERFORMS)
[BOOZ91].

Reasons for this added complexity could be attributed to certain practices of the forward

engineering tool. While the forward engineering tool has certainly eased the task of code

generation, it has increased code complexity. It is important to note that increasing the code

complexity may have a direct effect on the complexity of testing the code. The additional

complexity could be justified if the code, hereafter, will be maintained at the design level and

then forward engineered with the forward engineering tool. If maintenance retums to manual

practices, then the task of maintaining the program has been complicated.

31

Appendix C: Glossary

CASE Computer-Aided Software Engineering

The creation of software systems using a well-defined design technique and

development methodology, supported by computer-based automation tools.

CASE tool

A software program that provides partial or total automation of a single function

within the software life cycle.

Data reengineering

"a system level process that purifies data definitions and values." This process

"establishes meaningful, nonredundant data definitions and valid, consistent data

values" [RICK89].

Design recovery

"a subset of reverse engineering in which domain knowledge, external information,

and deduction of fuzzy reasoning are added to the observations of the subject system

to identify meaningful higher level abstractions beyond those obtained directly by

examining the system itself" [CHIK90].

Forward engineering

"the traditional process of moving from high-level abstractions and logical,

implementation-independent designs to the physical implementation of a system"

[CHIK90].

GOSIP Government Open System Interconnection Profile

This Federal Information Processing Standard is intended to simplify and ease the

process of assimilating OSI technology in the Federal agencies. GOSIP defines and

describes a common set of data communication protocols which enable systems

developed by different vendors and enable the users of different applications on these

systems to exchange information.

IRDS Information Resource Dictionary System

The IRDS Standard is a set of software specifications for a standard data dictionary

system. It "establishes the requirements for a software tool that can be used to

describe, document, protect, control, and enhance the use of an organization's

information resources" [ROSE89].

POSIX Portable Operating System Interface

This is an ongoing effort within IEEE to standardize an operating system interface for

the purpose of development of portable software. A number of government agencies

plan to achieve portability by conforming to this Federal Information Processing

Standard (FIPS).

33

Redocumentation

"the creation or revision of a semantically equivalent representation within the same

relative abstraction level" [CHIK90].

Restructuring

"the transformation from one representation form to another at the same relative

abstraction level, while preserving the subject system's extemal behavior (function and

semantics)" [CHIK90].

Reverse engineering

"the process of analyzing a subject system to identify the system's components and

their interrelationships and create representations of the system in another form or at a

higher level of abstraction" [CHIK90].

Software reengineering

"the examination and alteration of a subject system to reconstitute it in a new form

and the subsequent implementation of the new form" [CHIK90]. Reengineering is

also known as renovation and reclamation.

34

4. TITLE AND SUBTITLE

Software Reengineering: A Case Study and Lessons Learned

5. AUTHOR(S)

Mary K. Ruhl and Mary T. Gunn

6. PERFORMINQ ORQANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
QAITHERSBURQ, MD 20899

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED
Final

NIST-114A

(REV. 3-90)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1. PUBUCATION OR REPORT NUMBER
NIST/SP-500/193

2. PERFORMINQ ORQANIZATION REPORT NUMBER

3. PUBUCATION DATE

September 1991

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE. ZIP)

Same as item #6

10. SUPPLEMENTARY NOTES

11. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOGRAPHY OR
UTERATURE SURVEY, MENTION IT HERE.)

This report is aimed at managers and technical personnel (both Federal Government and

industry) who need to understand:

• the concepts and issues of software reengineering,

• the use of Computer Aided Software Engineering (CASE) tools in the reengineering

process,

• and the application of this technology to organizational problems.

Software reengineering involves the use of existing software and documentation to specify

requirements, design, documentation, and to produce software for a target platform. CASE
tools are expected to play an important role in automating parts of the reengineering process.

In this report software reengineering and other related terms are defined and possible benefits

that relate to this technology are described. The use of CASE tools for reengineering are

examined. A case study that examines the feasibility and cost-effectiveness of software

reengineering is described. Study results are addressed along with recommendations for

organizations that are considering the use of reengineering.

1i KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITAUZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

CASE (Computer-Aided Software Engineering) tools, design recovery, reengineering strategies,

reverse engineering, software reengineering.

13. AVAILABIUTY 14. NUMBER OF PRINTED PAGES

X UNUMITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).
39

X ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

IS. PRICE

X ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD,VA 22161.

ELECTRONIC FORM

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SYSTEMS TECHNOLOGY

Superintendent of Documents
Government Printing Office

Washington, DC 20402

Dear Sir:

Please add my name to the annotmcement list of new publications to be issued in

the series: National Institute of Standards and Technology Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notification key N-S03)

1 1 JLkJ X Technical Publications

Periodical

Journal of Research of the National Institute of Standards and Technology— Reports NIST
research and development in those disciplines of the physical and engineering sciences in which
the Institute is active. These include physics, chemistiy, engineering, mathematics, and computer
sciences.

Papers cover a broad range of subjects, with major emphasis on measurement methodology and
the basic technology underlying standardization. Also included from time to time are survey

articles on topics closely related to the Institute's technical and scientific programs. Issued six

times a year.

Nonperiodicals

Monographs — Major contributions to the technical literature on various subjects related to the

Institute's scientific and technical activities.

Handbooks — Recommended codes of engineering and industrial practice (including safety codes)

developed in cooperation with interested industries, professional organizations, and regulatory

bodies.

Special Publications— Include proceedings of conferences sponsored by NIST, NIST annual
reports, and other special publications appropriate to this grouping such as wall charts, pocket
cards, and bibliographies.

Applied Mathematics Series — Mathematical tables, manuals, and studies of special interest to

physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others
engaged in scientific and technical work.

National Standard Reference Data Series— Provides quantitative data on the physical and chemical
properties of materials, compiled from the world's literature and critically evaluated. Developed
under a worldwide program coordinated by NIST under the authority of the National Standard
Data Act (Public Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data
(JPCRD) is published bi-monthly for NIST by the American Chemical Society (ACS) and the

American Institute of Physics (AIP). Subscriptions, reprints, and supplements are available from
ACS, 1155 Sixteenth St., NW., Washington, DC 20056.

Building Science Series — Disseminates technical information developed at the Institute on building

materials, components, systems, and whole structures. The series presents research results, test

methods, and performance criteria related to the structural and environmental functions and the

durability and safety characteristics of building elements and systems.

Technical Notes— Studies or reports which are complete in themselves but restrictive in their

treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive

in treatment of the subject area. Often serve as a vehicle for final reports of work performed at

NIST under the sponsorship of other government agencies.

Voluntary Product Standards — Developed under procedures published by the Department of
Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all concerned interests with a basis

for common understanding of the characteristics of the products. NIST administers this program
as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series — Practical information, based on NIST research and experience,

covering areas of interest to the consumer. Easily understandable language and illustrations

provide useful background knowledge for shopping in today's technological marketplace.
Order the above NIST publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.
Order the following NIST publications—FIPS and NISTIRs—from the National Technical Information
Sen^ice, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB) — Publications in this series

collectively constitute the Federal Information Processing Standards Register. The Register serves

as the official source of information in the Federal Government regarding standards issued by
NIST pursuant to the Federal Property and Administrative Services Act of 1949 as amended.
Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315,
dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NIST Interagency Reports (NISTIR) —A special series of interim or final reports on work
performed by NIST for outside sponsors (both government and non-government). In general,

initial distribution is handled by the sponsor; public distribution is by the National Technical
Information Service, Springfield, VA 22161, in paper copy or microfiche form.

U.S. Department of Commerce
National Institute of Standards and Technology

Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300

