
Computer
Systems
Technology
U.S. DEPARTMENT OF
COMMERCE
National Institute of

Standards and
Technology

Nisr
NAT L INST OF STAND & TECH R.I.C.

A111D3 b33EDD

N!ST

NIST Special Publication 500-190

Proceedings of the Workshop on

High Integrity Software;

Gaithersburg, MD; Jan. 22-23, 1991

Dolores R. Wallace

D. Richard Kuhn
John C. Cherniavsky

-QC
100

.U57

500-190

1991

C.2

NIST Special Publication 500-190

Proceedings of the Workshop on ^
High Integrity Software;

Gaithersburg, MD; Jan. 22-23, 1991

Dolores R. Wallace

D. Richard Kuhn

John C. Cherniavsky*

Computer Systems Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

* National Science Foundadtion

August 1991

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

Reports on Computer Systems Technology

The National Institute of Standards and Technology (NIST) has a unique responsibility for computer
systems technology within the Federal government. NIST's Computer Systems Laboratory (CSL) devel-

ops standards and guidelines, provides technical assistance, and conducts research for computers and
related telecommunications systems to achieve more effective utilization of Federal information technol-

ogy resources. CSL's responsibilities include development of technical, management, physical, and ad-

ministrative standards and guidelines for the cost-effective security and privacy of sensitive unclassified

information processed in Federal computers. CSL assists agencies in developing security plans and in

improving computer security awareness training. This Special Publication 500 series reports CSL re-

search and guidelines to Federal agencies as well as to organizations in industry, government, and
academia.

National Institute of Standards and Technology Special Publication 500-190
Natl. Inst. Stand. Technol. Spec. Publ. 500-190, 85 pages (Aug. 1991)

CODEN: NSPUE2

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1991

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402

ABSTRACT

This paper provides information related to the National Institute of Standards and

Technology (NIST) effort to coordinate an effort to produce a comprehensive set of stan-

dards and guidelines for the assurance of high integrity software. The effort may include

adapting or adopting existing standards as appropriate. In particular, the paper presents

the results of a Workshop on the Assurance of High Integrity Software held at NIST on

January 22-23, 1991. Workshop participants addressed techniques, costs and benefits of

assurance, controlled and encouraged practices, and hazard analysis. A preliminary set of

recommendations was prepared and future directions for NIST activities in this area were

proposed.

Keywords: assurance; computer security; controlled practices; cost-benefit; criticality

assessment; formal methods; hazard analyses; high integrity systems; software safety;

standards.

iii

TABLE of CONTENTS

1. INTRODUCTION 1

2. THE FIRST NIST WORKSHOP 2

3. THE TECHNIQUES SESSION 4

3.1 Overview 4

3.2 Review of Techniques 4

3.3 An Assurance Model 7

3.4 Economics and Practicality of Techniques 7

3.5 Safety vs. Security 8

3.6 Recommendations 9

3.7 Session Summary 10

3.8 Resources on High Integrity Issues 10

4. THE COST-BENEFIT SESSION 1

1

4.1 Definitions 11

4.2 Relationship of Working Groups to a Framework 14

4.3 Model 14

4.4 Experiment 16

4.5 Session Summary 16

5. THE CONTROLLED AND ENCOURAGED PRACTICES SESSION 17

5.1 Encouraged Practices 18

5.2 Software Integrity versus Controlled and Encouraged

Practices 18

5.3 Liaisons With Other Working Groups 18

5.4 Intemational Issues 19

5.5 Classification of Controlled Practices 19

5.6 Session Summary 20

6. THE HAZARD ANALYSIS SESSION 20

6.1 Basic Notions of Hazard Analysis 21

6.2 Lifecycle Hazard Analysis Activities 23

7. RELATIONSHIPS AMONG THE SESSION TOPICS 24

8. SUMMARY 24

REFERENCES 26

V

APPENDIX A. WORKSHOP PARTICIPANTS A-

1

APPENDIX B. MODERATOR PRESENTATIONS B-1

APPENDIX C. DRAFT TEMPLATES of TECHNIQUES C-

1

APPENDIX D. PAPER SUBMITTED AT WORKSHOP D-

1

vi

LIST of FIGURES

Figure 1. Proposed template for describing techniques. 5

Figure 2. Assurance levels with formal methods. 8

Figure 3. Proposed cost-benefit model for technique selection. 15

Figure 4. Proposed structure for trial use of draft standards. 16

Figure 5. Hazard Criticality Chart. 22

vii

EXECUTIVE SUMMARY

The Workshop on Assurance of High Integrity Software was held at the National

Institute of Standards and Technology (NIST) on January 22-23, 1991. The purpose of

the workshop was to address problems related to dependence by individuals and organi-

zations on computer systems for their physical health and safety, their financial welfare,

and their quality of life. There is a proliferation of standards activity for topics such as

software safety, computer security, software certification, and software quality manage-

ment. The standards being developed may overlap in areas of application, and make
varying or conflicting demands on software producers. The workshop explored the

development of a consistent framework for standards that will be useful in assuring that

critical software can be trusted to work as required. This report contains the proceedings

and recommendations of the workshop.

High integrity software must be trusted to work dependably in some critical func-

tion, and whose failure to do so may have catastrophic results, such as serious injury, loss

of life or property, business failure, or breach of security. Some examples include

software used in automated manufacturing, avionics, air traffic control, corporate deci-

sions and management, electronic banking, medical devices, military communications,

and nuclear power plants.

Many organizations are currently developing standards to address software safety or

computer security. In the United States, standards have been developed for military

security, electronic banking, nuclear power, and other applications. The twelve nations

of the European Community are planning an integrated market at the end of 1992 and

have recognized the need for quality standards. It is expected that the European nations

will require certification of quality systems employed by computer and software vendors.

It is important to understand how this proliferation of standards will affect the abil-

ity of U.S. companies to compete in the international marketplace. While many stan-

dards address individual concerns (e.g., safety or security) or specific application

domains (e.g., weapons software), there is little consistency in levels of assurance or

methods of showing conformance. Some standards may have conflicting requirements,

leading to increased costs for companies doing business in different areas. An effort

must be undertaken to ensure there is an integrated framework of standards whose

requirements are technically feasible and economically practical. The NIST workshop

identified technical issues that need to be resolved.

Opening presentations at the workshop described the goals of the workshop. Four

working groups then addressed separate issues:

• techniques for assuring high integrity software,

e development of a cost-benefit framework of techniques,

• criticality assessment and hazard analyses, and

• controlled and encouraged practices for designing and building high integrity software.

viii

The four working groups presented their results at a closing session. Each group

arrived at some consensus for its specific issues; on the more general topics discussed in

groups or at the final plenary session, the four groups had similar perspectives. Principal

results included:

• NIST should undertake coordination of a framework of standards on high integrity

software.

• NIST should organize liaison activities with other standards organizations.

• Similarities and differences between security and safety issues need to be studied.

• Research is needed to identify technology that is sufficiently mature for standardization.

• Methods, techniques and tools need to be put together in a framework that enables

selection according to the benefits of using one or more for a particular application.

• NIST should administer trial use of a draft standard to ensure that its requirements may
be implemented successfully in a cost-effective manner.

• NIST should prepare a bibliography of relevant standards and guidelines.

• NIST should conduct additional workshops to study particular issues, to address prob-

lems with coordinating standards, and to discuss the contents of a standards framework.

• Supporting research in specific techniques and trial use of the techniques to study their

effectiveness and cost will be needed.

ix

1. INTRODUCTION
In today's world, both individuals and organizations have become dependent on

computer systems for their physical health and safety, their financial welfare, and their

quality of life. Today there is a proliferation of standards activity for topics such as

software safety, computer security, software certification, and software quality manage-

ment. The standards being developed may overlap in areas of application, and make
varying or conflicting demands on producers. To address the problems that may result

from this situation, the Workshop on the Assurance of High Integrity Software was held

at the National Institute of Standards and Technology (NIST) on January 22-23, 1991.

The workshop explored the possibility of developing a consistent framework for stan-

dards that will be useful in assuring that critical software can be trusted to work as

required. This report contains the proceedings and recommendations of the workshop.

High integrity software is software that must be trusted to work dependably in some

critical function, and whose failure to do so may have catastrophic results, such as seri-

ous injury, loss of life or property, or disclosure of secrets. Examples include software

used in automated manufacturing, avionics, air traffic control, electronic banking, mili-

tary communications, nuclear power plants, and medical devices. Failure of any

software which is essential to the success of an organization can be catastrophic; such

software should be considered critical software whether it is a stand-alone system or a

part of another system. Such software requires the assurance of high integrity [1].

High integrity software specifications are complete and correct and the software

operates exactly as intended without any adverse consequences, including when cir-

cumstances outside the software cause other system failures. High integrity software

will have firm adherence to the principles of its application (e.g., principles and algo-

rithms of civil engineering for building technology, nuclear engineering for the nuclear

industry). The direct user will have a complete description of the software and its

descriptions (e.g., architect using software for building design has full description of

algorithms and limits of the software). High integrity software is incorruptible (e.g., per-

forms correctly, reliably, responds appropriately to incorrect stimuli; if external cir-

cumstances cause system failure, software operation shutdown does not cause any physi-

cal damage or loss of data). The indirect user (e.g., patient receiving medical treatment

via automated devices, airline passenger) has reasonable assurance that the software will

behave "properly," and will not cause problems due to any external malfunction.

The National Institute of Standards and Technology (NIST) has developed and

adopted standards for software verification and validation [2-4] and standards for com-

puter security [5-11]. NIST has been monitoring the development of other standards for

computer security, software safety, and related disciplines. In the United States, particu-

lar attention has been placed on systems handling classified data, military weapons sys-

tems, and nuclear reactor control systems. Some standards address the integrity of these

systems [11,12]; research has begun in the area known as software safety [13].

The European nations, through the Esprit program, are active in research for pro-

ducing high integrity software and in standardization, both at the international level and

in preparation for the European Community (EC) in 1992, of methods for producing such

software. The standardization efforts range from the very specific proposals embodied in

the DEE STAN 00-55 and DEE STAN 00-56 [14] to generic quality standards embodied

in the ISO 9000 series of quality standards [15].

1

Many standards address specific application domains or categories of concerns.

There is a need to bring all these efforts together in a comprehensive framework of stan-

dards to address requirements for assuring high integrity software. The framework would

reduce duplication of effort, improve the understandability of the requirements, and

enable demonstration of conformance to standards in the framework.

The NIST Workshop on the Assurance of High Integrity Software on January 22-

23, 1991, involved a broad community of interested parties in the development of gui-

dance for assuring high integrity software. The purpose of this, and future, workshops is

to provide a forum for the discussion of technical issues and activities that NIST plans to

undertake in the development of guidance. Participants in workshops will be asked to

comment on technical contributions as these evolve.

NIST will distribute the workshop report to appropriate communities (e.g., stan-

dards bodies, industries that use critical software. Federal agencies with regulatory

authority, developers of software). NIST will participate either direcdy or indirectly in

related standards activities.

2. THE FIRST NIST WORKSHOP
Participants at the first workshop represented Federal agencies, the Canadian

government, academia, and industry. In the opening plenary session the participants

learned of the scope of efforts undertaken at NIST toward the evolution of guidance

addressing the assurance of high integrity software. After the opening session, four

parallel working groups addressed technical topics.

The participants in the four working groups discussed issues concerning techniques

for developing and assuring high integrity software, a cost-benefit framework for select-

ing techniques, criticality assessment and hazard analysis, and controlled and encouraged

practices for use in development. The Techniques working group was charged to deter-

mine a method for describing techniques and to identify candidate techniques. The

Cost-Benefit group was charged to investigate means for selecting techniques and

assurance methods. The Hazard Analysis group was charged to identify both criticality

assessment and hazard analysis techniques. This group was asked to discuss differences

and similarities that would be encountered if the assurance concerns were primarily

security-related or safety-related. The Controlled and Encouraged Practices working

group was charged to study the forbidden practices of DEF STAN 00-55 [14] and iden-

tify how best to handle them. The list of participants is provided in Appendix A; the

opening remarks of the moderator of each session are provided in Appendix B.

The consensus of workshop participants was that no existing or evolving standard

will satisfy the breadth of needed standards and guidance and that NIST should coordi-

nate an effort to produce an integrated body of guidance. NIST should adapt or adopt

existing standards as appropriate. Questions arose regarding the sequence of develop-

ment of standards and guidance based on information the community needs:

• what the requirements are,

• demonstration that the requirements can be achieved reasonably.

2

• how to demonstrate conformance and to certify software.

Workshop participants will help frame the requirements for the needed standards.

To help demonstrate that the requirements can be achieved, one group has proposed that

NIST oversee an experiment of applying a draft standard on a real project to record feasi-

bility and associated needs. The draft standard would be modified accordingly. Partici-

pants would include academia to help develop the experiment and industry to perform

development and assurance activities. NIST is looking into the possibility and costs of

conducting this experiment.

A possible vehicle for addressing some of the conformance and certification ques-

tions is the National Voluntary Laboratory Accreditation Program (NVLAP) admin-

istered by NIST. Although originally intended for accrediting laboratories that do testing

of materials, NVLAP has been expanded to accredit laboratories for testing conformance

to Government Open System Interconnection Profile (GOSIP) [33] and portable operat-

ing system interface (POSDC) [34] software standards. NVLAP-accredited laboratories

may be a cost-effective means of ensuring that software products conform to a standard

for high integrity software.

Other activities in which workshop attendees recommended NIST should have an

active role included:

• Coordination of standards bodies with computer science departments to ensure that gra-

duates are trained in assurance techniques required by standards and guidelines.

• Interaction with international standards bodies and Computer Aided Software Engineer-

ing (CASE) vendors.

• Coordination of standards bodies with vendors to enable development of tools that sup-

port requirements of standards.

• Increased visibility for high integrity software through a presentation at COMPASS '91

and by speaking to Federal agencies and at other conferences regarding these efforts for

high integrity software.

• Production of a bibliography of standards and references.

• Clarification of the scope of guidance of high integrity software by establishing

definitions of the basic terms.

The workshop expressed concem that a new standard may be used to tie many

issues together and may also deviate from some international work.

There was consensus that this workshop did not adequately identify differences and simi-

larities between security and safety issues. This topic required too much detail for the

first meeting; the task remains an objective for future workshops. Other important topics

that will be addressed in future workshops and in guidance include software process

assessment, software certification, the role of accredited testing laboratories, and risk

assessment.

3

3. THE TECHNIQUES SESSION

3.1. Overview

The Techniques working group considered development and verification techniques

that can be effective in the production of high integrity systems. A diversity of experi-

ences and interests among participants helped make this an interesting and productive

session. A survey of participants showed the following interests and application areas:

security, communication protocols, nuclear power systems, weapons systems, formal

methods and tools research, railway systems, avionics, independent validation and

verification, and quality assurance. There were no Techniques session participants from

medical or financial application domains, or from CASE tool vendors, although these are

equally relevant areas.

Session leader Dr. Susan Gerhart proposed a template for describing the characteris-

tics of various techniques (fig 1). In addition to describing features of the various tech-

niques, the template looks at how a technique fits into a development organization by

considering the personnel roles involved in its use (e.g., specifier, verifier, coder).

Advantages and disadvantages of tools are also considered. Members of the working

group discussed the template categories and suggested a few modifications, leading to the

template shown in figure 1. To evaluate the effectiveness of the template, small groups

were formed to review seven methods considered useful for high integrity systems: Har-

lan Mills' Cleanroom method [16]; the formal specification languages EHDM [35],

FDM/Inajo [36], Estelle [37], and Larch [38]; the Petri-net based tool IDEFO [39]; and

traces [18], which can be used to formally describe a system by specifying externally

observable events.

Detailed evaluations of these techniques are included in Appendix C. Working

group discussions of several techniques are given in section 3.2.

3.2. Review of Techniques

Small groups completed templates on seven techniques which are given in Appen-

dix C. After completing the templates, some of the techniques were discussed by the full

working group, although time did not permit a discussion of all techniques.

Verification and Validation: Software verification and validation (V&V) was dis-

cussed relative to experience with it in the nuclear power industry. The IEEE Std. 1012-

1986, "Software Verification and Validation Plans," [3] is used as guidance. The main

objectives are to ensure that requirements are met, to minimize common mode errors,

and to detect unintended functions. An independent organization uses a requirements

matrix to trace requirements to implementation, conducts tests, and prepares discrepancy

reports and test reports. Any discrepancies must be resolved before a certification docu-

ment can be issued. The V&V effort often involves independent generation of code by

two separate teams, then a comparison of the two implementations using a large number

of tests. In some cases, only object code is generated independently, using two different

compilers. In others, two source programs are prepared, but the same algorithms are

used in each.

Verification and Validation Assessment: V&V is thought to be effective in the

nuclear industry. V&V has been conducted on very large systems, some in excess of

1,(X)0,0(X) lines of non-comment source code. Its main disadvantage is its high cost.

4

HOW IT WORKS
Conceptual basis

Representations used

- Text, graphics, etc.

- Executable

Steps performed
- Mechanics - "transform this to that"

- Synthesis and analysis steps

- Tools used

Artifacts produced
- Documents
- Data

- Representations

Roles involved

- Person to task mapping - example: specifier, verifier

- Skills required

WHAT IT ACHIEVES WITH RESPECT TO HIGH-INTEGRirY
Positive

- Errors identified

- Evaluation data produced

- Reuse possibilities

Negative

- Fallibility - common failures, gaps in knowledge, ...

- Bottlenecks - sequential steps, limited resources, skills, ...

- Technical barriers

Other techniques

- Required

- Supported

CURRENT APPLICABILITY OF TECHNIQUE
- Domain of application?

- Where is it being used? How? Where is it taught?

- Who is researching it? Why are they doing this?

- If not in use but has potential, then what changes are needed?

- Maturity:

Adapt/deal with change? How well does it scale?

Who can use it? How does it fit with, e.g., prototyping?

Figure 1. Proposed template for describing techniques.

Cleanroom: The objective of Cleanroom software development [16] is to create

high quality software with certifiable reliability. The term "Cleanroom" is derived from

the cleanrooms used in integrated circuit fabrication, where the production process must

be free from all traces of dust or dirt. Cleanroom software development attempts to

prevent errors from entering the development process at all phases, from design through

5

operation. Three roles are involved: specifiers, programmers, and testers. A
specification is prepared in formal or semi-formal notation. Programmers prepare

software from the specification. A separate team prepares tests that duplicate the statisti-

cal distribution of operational use. Programmers are not permitted to conduct tests; all

testing is done by the test team.

Cleanroom Assessment: NASA Goddard's experience with Cleanroom has been

successful, with higher quality software produced at lower cost than previous projects

[17]. The initial project was approximately 30,000 lines of non-comment source code.

The technique is now being used on several other projects, including one with 100,000

lines of source code. The power of the method results from having a separate party do

statistical testing, plus the design simplification that results from the use of formality and

from the prohibition on testing by programmers. The primary disadvantage of Clean-

room is the cost of educating programmers and testers.

Traces: A trace [18, 19] for specifications is a history of external events, in text

form or logic table form. Traces are implementation independent; internal states are not

specified. Traces are prepared by identifying external events and the possible sequences

in which they are allowed. A set of "canonical" or non-reducible traces is used to specify

the behavior of a module or function. Internal consistency is shown by verifying that all

event sequences allowed by the module can be reduced to one of the canonical traces.

The ability to show soundness and completeness of a specification helps to remove errors

at the specification stage.

Traces Assessment: Traces were successfully used on the evaluation of the Ontario

Hydro plant for the Atomic Energy Control Board of Canada. Participants also noted

that they have been used at Naval Research Lab and Bell Northern Research. The

Ontario Hydro project was a small shutdown system, approximately 7,000 - 10,000 lines

of code. Traces have also been used to specify a communication application. Traces work

well with an information hiding design and are useful for testing. Work is needed to deal

with timing issues, and better notation and tools are needed as well. It is not clear how
well the technique would scale up for larger projects, but participants familiar with traces

believed it would be effective. Traces seem to work best at a fairly low level. Some peo-

ple questioned whether it is sufficient to specify only extemal events, since it may some-

times be necessary to indicate internal states. While this may be a limitation in some

cases, it was noted that by ignoring internal states, the representation can be changed

easily, and that traces can be mapped into a state-based representation. Traces are under-

standable to some users, and most programmers can be taught to use them for

specifications.

Statecharts: Participants were familiar with the use of statecharts [32] at ARINC,
the University of Maryland, NIST, and Rail Transportation Systems. Projects included a

transaction processing protocol and railway system, although the project abandoned the

use of statecharts before the project was complete. Statecharts can be used to specify and

design systems using a graphical interface to show control flow, data flow, and condi-

tions. They seem to be effective for clustering states. A commercial product implement-

ing statecharts includes a graphical editor, reachability analyzer, and some code genera-

tion capability. A flexible document producer is also included.

6

Statecharts Assessment: Statecharts appear to be a good tool for initial design, but

are not effective for detailed specifications. They are easy to learn and available tools are

easy to use for prototyping. Statechart specifications are adaptable to changes in require-

ments. Statecharts do not seem to scale up well since large specifications become

difficult to read. They are hard to use for applications that require multiple copies of the

same type of object because a copy must be built of each instance.

IDEFO: IDEFO [39] is a Petri-net tool that is useful for specifying real-time sys-

tems. It was developed for the U.S. Air Force and has been used primarily on nuclear

weapons systems. It can be used for design of concurrent and distributed systems. A
graphical editor is used to prepare Petri net diagrams. Reachability analyses can be con-

ducted on the nets to look for timing problems and race conditions. It includes a report

generator that can produce reports required by MIL-STD 2 167A [20], diagrams, and

error reports. A data dictionary that can be exported to other tools is also included.

IDEFO Assessment: IDEFO is useful for identifying race conditions and incomplete-

ness. It assists in reuse of specifications by identifying "like" portions of the nets. IDEFO
does not scale up well because of the complexity of its diagrams.

3.2.1. Discussion

The tools and techniques discussed have different strengths. All are useful for

assurance of high integrity software, although none is comprehensive enough to be used

alone. Proper matching of techniques to problems is needed. Application domain, pro-

ject organization and personnel skills must also be considered. A high integrity software

assurance standard could identify a set of techniques and associate them with the prob-

lems the techniques are considered acceptable for addressing. Participants did not

believe that any particular set of techniques should be required for all high integrity

software. Technologies are not equally applicable to all types of applications, so applica-

tion domain specific standards may be useful. Working group participants sought to

make the template categories sufficiently detailed for intelligent selection of techniques,

either by developers or for application specific standards.

3.3. An Assurance Model

A model of assurance levels was proposed, shown in figure 2. Working group parti-

cipants agreed that the proposed model does a good job of structuring assurance levels

based on formal methods. But no claim is made that increased integrity is guaranteed by

higher levels of the model, since the model represents only one axis of a many dimen-

sional problem.

3.4. Economics and Practicality of Techniques

Working group members pointed out that techniques that are not economically prac-

tical today may become so with improvements in technology and education. An

economically profitable field such as computing evolves rapidly. Advances in technol-

ogy such as improved software tools, faster processors, and better graphics may make

some techniques more practical. Education is perhaps an even more important

7

Level Technique Examples

3 mechanical verification ASOS, LOCK, FM8502

2 formal spec + hand proof VIPER, Leveson's method, traces

1 formal spec only Z, VDM, control law diagrams

1/2 pseudo-formal spec statecharts

0 static code analysis SPADE, MALPAS

Figure 2. Assurance levels with formal methods.

determinant of the usefulness of a technique. Many programmers today do not have

computer science educations, and often even those who do may not have the necessary

background to use techniques such as formal verification. As more people become avail-

able with the necessary skills, developers with undergraduate educations may be able to

use techniques that often require graduate level education today.

These facts have several implications for a high integrity software standard. The

standard must be written to accommodate improvements in technology and education. It

would be a mistake to prescribe only a limited set of techniques that are in use today.

Instead, advanced techniques can be included as options to be selected as the user deter-

mines necessary. The standard must be coordinated with university curricula as well.

Appropriate education must be available for techniques specified in the standard.

3.5. Safety vs. Security

Many people appear to be unhappy with the Trusted Computer Security Evaluation

Criteria (TCSEC), or "Orange Book" [11]. It was noted that much of the dissatisfaction

with the TCSEC results from its rather "technology specific" approach to assurance.

Designed for evaluating multi-level security in mainframe operating systems, the TCSEC
is becoming outdated now that many systems are distributed and network-based. (The

Trusted Network Interpretation does not address all problems of distributed systems.)

Also, multi-level security is not relevant to many commercial applications. As a result,

the TCSEC is inadequate for evaluating security in many commercial systems.

The group considered this experience relevant to development of high integrity

software standards, since any such standard might have similar limitations. The standard

must be flexible to deal with advances in technology. The second lesson to be drawn

from the TCSEC experience is that probably no standard could be applied to all applica-

tion areas. A "Framework" proposal developed by the U.K. Department of Trade and

Industry [21] describes an approach to developing a set of standards for high integrity

software. Industry-specific components of the standards set will need to be developed

because different applications have different needs and different approaches to assuring

integrity may be necessary.

The aircraft industry safety standard D0178A [22] is now being revised to

D0178B. The nuclear industry has relatively littie in safety standards applicable to

software but is in the process of developing standards and recommendations on tools.

German and French CASE tools for specification and requirements were mentioned.

8

The railroad industry is looking for standards. The industry distinguishes between

safety-critical and failsafe. Currently there are no standards with which a safety

assurance level can be judged. There are four types of design for assurance: check

redundancy for hardware failure; diverse methods across platforms; different platforms

to compare operations; numerical assurance allows errors but calculate the probability

that error wiU have an undesired effect. The industry uses experience to know that a

design is right, but there is still a difficulty in knowing if the system will be safe in the

event of a hardware failure.

The nuclear industry assumes that no component is fully safe. It doesn't believe any

failure probability figure less than 10"^ (a practical limit of measurement techniques), so

systems must be designed to limit the consequences of failure.

3.6. Recommendations

The group prepared a set of recommendations for inclusion in a standard for high

integrity software. The recommendations are necessarily preliminary, but there was a

good deal of consensus among participants.

Respect the "practical assurance" limit. With current technology it takes about one

year of testing to assure a system of correct operation for Ih with a failure probability of

KH. It was noted that this can be bettered with N-version programs if one assumes

independence of versions. Based on empirical studies, group participants doubt the vali-

dity of N-version independence [40].

A standard should state characteristics of techniques and require arguments as to

why a technique selected is appropriate. The group felt that techniques are not equally

applicable to all application domains. A developer who wishes to claim conformance to

a high-integrity software standard will need to describe the characteristics of the applica-

tion and give a convincing argument as to why the techniques used are appropriate.

A clear implication of this recommendation is that a single all-encompassing stan-

dard for high integrity software is not practical unless it is simply a catalog of techniques.

Requirements for specific techniques will need to be based on application domain charac-

teristics. This is in line with the "framework" approach of having a standard that gives

general requirements, supplemented by standards to an appropriate level of specificity for

different application areas.

Evaluate and track on-going application of techniques. It is essential to monitor

applications of different techniques to determine which are most cost effective for dif-

ferent applications. An equally important aspect of tracking application is to make tech-

niques more widely known in the industry. Many significant techniques are little used

today because practitioners are not aware of them, or because they are perceived as too

expensive or impractical. Measuring the costs and benefits associated with various tech-

niques will allow decisions to use techniques to be based on sound data rather than guess-

work.

Distinguish between techniques used to eliminate design flaws and techniques used

to maintain quality in the presence of physical failures. High integrity systems will

require the use of both types of techniques. Determining the optimal tradeoff between

fault tolerance and fault elimination for a particular application is a challenging problem.

9

Experience and empirical research will be necessary for designers to make this tradeoff.

A standard should provide a selection of both types of techniques, and guidance should

consolidate experience to help developers make choices between the techniques.

It was noted that the most important part of a recommendation on techniques is to

point out fallibilities. All techniques have limitations; by noting these, developers will be

able to compensate for the limitations or at least attach appropriate caveats for pur-

chasers.

It was also recommended that a notation to express what techniques were used at

different stages of the lifecycle be developed. Such a notation would facilitate

specification of development requirements, and could also be used to characterize

developments to make it easier to compare projects.

3.7. Session Summary

The group selected seven techniques to describe with the template. Group members

thought a catalog of techniques described using the template would be essential for a

standard for high integrity software. A critical aspect of the template is the description of

the limitations and areas of applicability for each technique. Technologies are not equally

applicable to all types of applications.

A useful reference list for practitioners and researchers was also prepared. The list,

given in section 3.8, includes names of annual conferences and workshops as well as

books and articles that address high integrity software. The group requested that NIST
prepare a bibliography of safety and security related standards.

A discussion of experiences with safety and security standards was helpful in build-

ing recommendations for a high integrity software standard. The set of recommendations

given in the previous section will help avoid some of the pitfalls associated with safety

and security standards in the past.

3.8. Resources on High Integrity Issues

Members of the working group selected reading material for an initial resource list.

Proceedings of at least three annual conferences occurring in the Washington, DC area

are usually available in libraries or from the conference sponsors:

• the COMPASS conference series,

• NASA Goddard Software Engineering Laboratory Workshops,

• National Computer Security Conference.

A book that may be of interest is by C. Sennett, High Integrity Software [1]. Three

IEEE publications were synchronized so that the September 1990 issues of COMPUTER,
IEEE Software, IEEE Transactions on Software Engineering addressed formal methods.

Wallace and Fujii edited the May 1989 issue of IEEE Software which addressed software

10

verification and validation.

A report that should be read by anyone interested in high integrity systems is Com-
puters at Risk, edited by D. Clark, (National Academy Press, 1991.) Other publications

on assurance issues include the FM89 Proceedings (Springer-Verlag), from a conference

on formal methods, and the IFIP Working Group 1 - Protocol Specification and

Verification Series (1981 - present.)

4. THE COST-BENEFIT SESSION

The Cost-Benefit group, chaired by John Knight, outlined a basic set of studies and

tasks to support development of a cost-benefit framework for assuring high integrity

software. Consensus was reached that such a framework will have to address many
application domains as well as specific quality concerns. In this sense, there is concern

that no single standard that may evolve from a framework will satisfy the needs of all

application domains. The framework will have to provide direction relative to selecting

techniques and practices that are appropriate, within a reasonable cost, for levels of

assurance.

The Cost-Benefit group selected topics relevant to making more specific the general

concepts of such a framework. First, definitions of key words are essential for establish-

ing the scope of a framework. Second, selection of an initial cost-benefit model requires

understanding of key elements of the model and the types of contributions from the other

workshop groups. Hence, relationships among the groups must be understood. Third,

usage of the model and any draft standard(s) that may evolve from it should be shown to

be feasible. Discussions of these topics are presented in the remainder of section 4 of this

report.

4.1. Definitions

Definitions of the basic terms and concepts need to be established so that the scope

and frame of reference for a cost-benefit framework will be clear. Such a framework may

eventually be used in standards addressing high integrity software. The working group

has suggested definitions for cost, benefit, high integrity, software, relevant application

domains, and users of a cost-benefit framework. While there are several definitions of

software safety, one must be chosen that will encompass the scope of any cost-benefit

framework and subsequent standard on the assurance of high integrity software. Any
new standard must identify terms and their definitions that may already exist with dif-

ferent definitions in other standards.

Cost: The definition of types of costs is more appropriate than expressing costs in

dollars. While project data on costs may exist, locating the data and getting companies to

release the data will be extremely difficult. Work should progress on an alternative cost-

benefit model using general concepts. This approach wUl describe the positive and nega-

tive attributes of techniques in different application domains.

Part of the charter for this group was to determine what should be automated based

on the cost of automation. The costs of automating a function are related to the costs of

the techniques used to develop and assure those functions. The decision of whether a

11

function can be economically developed as a high integrity function should be based on

an understanding of the overall process involving both development and assurance.

Some functions may be too expensive to automate without using automated techniques.

While many techniques have been used as research tools and in industrial applications,

many have not been automated. Some functions currently may be too costly to automate

but as the demand for automated functionality increases, so will the demand for automa-

tion to build and assure the functionality. When those automated techniques become

economically practical, then new functionality also may become practical.

Other costs associated with building and certifying systems may be very difficult to

quantify due to their political or long term safety and economical natures. One example

is the choice between building a certified nuclear plant which is not affordable versus the

risk that the loss of nuclear power in future years may be a greater cost. Another exam-

ple comes from the business community. Sometimes a company may not even attempt to

automate certain functions that would gready enhance business opportunities because of

uncertainty that the confidentiality and integrity requirements can be fulfilled. One
approach to the problem of quantifying cost may avoid the issue by identifying positive

benefits and negative consequences. Some items in either category may be quantifiable

but others may be immeasurable.

Two categories of cost that were itemized are the cost of failure and the cost of

failure prevention. Again, cost in these contexts may not always be measurable.

The cost of failure includes:

Immediate costs: loss of property; injury; cost to restore service; cost of failure investiga-

tion.

Intermediate Costs: root cause analysis; product improvement; assurance of improved

service.

Long Term Costs: loss of reputation; loss of market; political costs; replacement costs;

litigation costs.

The cost of failure prevention includes:

Direct Costs: cost of software development (includes assurance activities); cost of train-

ing, cost of money.

Indirect Costs: opportunity costs, throughput penalties; development delays.

Benefit: Benefits may not always be measurable. A framework must take into

account all benefits, which may be perceived as the avoidance of the cost of failure.

High Integrity: A concise definition of high integrity may not be appropriate.

Rather, the sense of high integrity is important and there should be guidelines explaining

appropriate, but not exclusive, applications. The group accepted the description of high

integrity provided in the introduction of this report.

The approach that "high integrity systems include those whose failure could lead to

injury, loss of life or property" is acceptable. The sense of high integrity that is evolving

also appears to be very closely related to the definition of dependability suggested by

Carter: "trustworthiness of a computer system such that reliance can justifiably be placed

on the service it delivers [23]."

12

While this group's primary concern was in developing a cost-benefit model, it

recognized that the model may affect standards on high integrity software. For that rea-

son, it is important to identify a definition of software safety that will be used for this

work on high integrity software. Different definitions will determine different scopes of

work to be covered by standards.

Software: The definition for software in IEEE Std. 729-1990 Standard of Software

Engineering Terms [24] is the following: Computer programs, procedures, and possibly

associated documentation and data pertaining to the operation of a computer system.

While the definition for software in ISO Std. 2832/1 [25] is similar, it contains a

clause related to legal aspects: The programs, procedures, and any associated documenta-

tion pertaining to the operation of a data processing system. Software is an "intellectual

creation" that is independent of the medium on which it is recorded.

A cost-benefit framework for assuring high integrity software should address all

types of software (e.g., microcode). Any standard using this framework should also dis-

tinguish between software for the application being developed and software support tools

(e.g., compiler). There may be a substantial cost factor when the support software is also

considered high integrity software.

The consensus was that for now a standard should leave it to the user to determine if

support software is covered by the standard. Other draft standards need to be examined

with respect to their requirements for support software. This issue raises the question

about the requirements for sub-suppliers to the principal suppliers of support software.

In particular, the ISO 9000 series [15] addresses some of these issues and needs to be stu-

died carefully.

Relevant Application Domains: Obvious relevant domains are those in which

failure may mean loss of life or property. Medical devices, air traffic control systems,

nuclear power plants are relevant applications. When loss of mission is the consequence

of failure, then criticality of that system may be in the "eyes of the beholder." The con-

sensus of the working group is that a standard should not specify the application

domains. Agencies who adopt the standard may specify the application domains for

which the standard is required. Other users may determine if high integrity software is

appropriate for their systems.

Users of the Cost-Benefit Framework: The cost-benefit framework should be used

by both buyer and the supplier. (For this workshop, supplier will be used to refer to any-

one who develops systems, maintains systems, or provides assurance functions.) The

buyer needs to identify to what degree the proposed system requires high integrity; the

guidance on criticality assessment and hazard analysis will be of value. The framework

will help the buyer to determine if, dependent on the level of high integrity, the system is

affordable or if its requirements should be reconsidered. The buyer may also wish to use

the framework to check the proposed assurance approach.

The suppliers may use the framework either because a contract requires them to use

it or to determine what approach is suitable for the system they are going to build, main-

tain, or provide assurance for.

13

4.2. Relationship of Working Groups to a Framework

The Cost-Benefit working group recognized that their ability to develop a frame-

work for selecting techniques is contingent upon the quality of data provided from the

other working groups. The workshop session on Hazard Analysis has provided various

perspectives on how to determine if a system needs high integrity software. The appli-

cation of criticality assessment and hazard analyses can provide a mechanism for deter-

mining which parts of the system are especially risky. These parts require strongest

assurance. The Cost-Benefit working group recognized that the outcome of the Hazard

Analysis session is crucial for establishing a foundation on which any framework selec-

tion techniques will be based.

The Techniques session will provide information about specific assurance tech-

niques. In particular, the Cost-Benefit group will rely on the technique templates to iden-

tify the types of errors a given technique is most likely to prevent or to uncover. It is

important to identify the application domains where these errors are likely to occur. The

Controlled and Encouraged Practices session will provide guidance on design methods

and code practices. The Cost-Benefit group must identify other parameters and must

coordinate results from the various working groups to build a selection framework.

4.3. Model

The Cost-Benefit working group was pessimistic that one standard can satisfy all

application domains, development environments, and user environments. A basis for a

set of standard for high integrity software may be a cost-benefit framework flexible

enough to satisfy many users. The framework would include sufficient guidance on

selecting development and assurance techniques that are affordable and suit the

assurance needs of a user. A mathematical model was proposed as a foundation for such

a framework [26,27,28]. The model, shown in figure 3 as modified by the group, seeks to

find the minimum of the total cost of two costs, that is, the cost of failures per unit time

plus the cost of development and assurance. The cost components must be assessed over

the estimated life of the software or the system, with discounting of the costs which are

incurred at a future time (the discounting reduces the sensitivity of the model to errors in

the estimation of life.) Alternatively, the cost components can be assessed for a limited

period of time, say a year, if the cost of development and assurance can be apportioned to

be less than the full life interval. The working group recommends use of this model only

as a starting point for identifying the parameters that must be built into a selection frame-

work.

A complete model must associate techniques with error types, application domains,

and other items to consider relative to a supplier's environment. One suggestion is to

associate a probability of failure with a set of techniques as indicated in figure 3. Consid-

erable research is necessary to determine exactiy what those techniques are. The original

objective was to associate a required level of assurance with a set of techniques. Is a

level of assiu^ance identical with a probability of faUure per unit time? That is, is all

assurance simply a matter of reliability?

Another issue concerns the grouping of methods in general. For example, will tech-

niques highly suited to locating timing errors, a concem of many critical real time sys-

tems, be included in Set A? Will others be included in Set B? Extrapolation of this

thought brings up the question: What error classes will be covered by techniques in each

14

Cost

10-9

Set A

Pr [Hazard OccurrenceAJnit Time]

Figure 3. Proposed cost-benefit model for technique selection.

of the sets? Can application domains be characterized by their error classes? Does a set

of methods then refer equally to application domains and to error classes? Of course, this

model focuses on errors, whereas other requirements for assurance may focus on specific

qualities (e.g., maintainability, portability, efficiency). It is not immediately obvious that

this model, even with sets of techniques, will accommodate selection of techniques based

on the qualities they support. How should applicability of any set of methods be

described?

An issue that was barely touched concerns the tradeoffs of techniques. The tem-

plates that are to be developed by the techniques working group should provide interest-

ing data as to what a specific technique can do, but someone will have to study all the

techniques to further categorize them in terms of their best partners or worst partners

according to what their purpose is. The proposed model does not appear to address any of

the concerns about the capability of a supplier to perform specific techniques. While the

templates may address this concern because the template does have a parameter called

training, the group recommends discussion on whether or not the Software Engineering

Institute's levels of maturity [29] should be incorporated into the overall sets of tech-

niques.

Further development of this model requires the collection of data on failures of sys-

tems, types of techniques for development and assurance and the errors they prevented or

discovered, and the costs associated with the failures and successes. One possible

source of data is the NASA Goddard Space Flight Center's Software Engineering

15

I

Laboratory [30]. It is not clear if the data collection task should be pursued with the

intent that such data would result in a "hard-coded" framework or if the objective should

be to lay out a model that users may tailor to their own projects. In this case, users would

study data from their environment; that data would have to be of the same type already

identified but on a much smaller scale. According to Dr. Victor Basili, due to differences

in environments, experiences satisfactory in one environment may become unsatisfactory

in another [31]. The working group needs to study how problems such as these will

affect generic models.

4.4. Experiment

Implementing a standard may mesin major changes in the way software is developed

and assured. Suppliers may have to provide specialized training for their staffs, and may
have to invest in software tools. Training may be needed to help managers understand

scheduling for new tasks or new ways of doing traditional tasks and other resource

changes. Some of the proposed requirements may be difficult to implement and may not

be affordable. The working group strongly recommends that a draft standard should be

applied to an industry project. Data from the experiment should influence changes to the

draft. The basic structure of the experiment is shown in figure 4.

WHY
• Trial run of the standard to show feasibility

• Acquire performance and cost data on advocated methods

WHAT
• Development according to a draft standard of a realistic sample product in a typical

industrial setting

• Measurement of predefined metrics and acquisition of relevant artifacts.

HOW
• NIST, industry, academia form a team

• Find funding

• Prepare strawman draft standard in parallel with planning/preparing experiment

Figure 4. Proposed structure for trial use of draft standards.

4.5. Session Summary

The Cost-Benefit group strongly recommends that the fundamental terms be defined

first, especially software safety. The definitions will define the scope of standards that

will be proposed by NIST for high integrity software.

16

The Cost-Benefit group considers the model in figure 3 a starting point for deter-

mining selection of techniques. Support of this concept will require the collection of

data, much of which may not be easily available. Cost may not be quantifiable or even

predictable (i.e., it might be intangible) because of factors like political effects. Cost

analysis may require quantification of even intangible items like political fallout. The
group will consider other ways of measuring the input to a framework. The concept of a

framework itself implies the development of several standards and guidelines.

Development of any standards for high integrity software must also include means
of demonstrating conformance to the standards. It must be shown that the requirements

of these standards can be met at reasonable cost.

The final point the Cost-Benefit group emphasized is their belief that while a stan-

dard may support certification of high integrity software, no procedures or standards can

guarantee that a specific system achieves total freedom from defects.

5. THE CONTROLLED AND ENCOURAGED PRACTICES SESSION

This session was charged to review the history and international standing on prac-

tices which have been forbidden or discouraged by some software development stan-

dards. Examples of these practices include interrupts, floating point arithmetic, and

dynamic memory allocation. A well known example of a standard containing such

prohibitions is the British Ministry of Defence DEF-STAN-0055.^ The DEF-STAN-(X)55

prohibitions were based upon the difficulty of assessing code that uses these program-

ming practices, not because the practices themselves are inherently dangerous. Initial

proposals and assumptions consisted of moderator Arch McKinlay's prepared tutorial on

international standards and their background, proposed definitions, and proposed forbid-

den practices based on his experience in software safety engineering.

After review and discussion of other standards and their approach to error-prone

practices, the group redefined "forbidden practices." The new definition hinged on the

concept of "controlled" versus "forbidden" practices. No one beheved that all instances

of the "forbidden practices" were in fact unsafe, and those that currentiy are, may be safe

next year if certain technologies develop. This view reflects the comments from the

Institution of Electrical Engineers and others conceming the DEF-STAN-0055 standard.

Other standards discourage but do not prohibit certain practices.

The group adopted this definition of a Controlled Practice:

A Controlled Practice is a software development procedure which, when used

in safety-critical systems in an inappropriate manner, results in an increased

level of risk. This practice is one which can reasonably be expected to result in

a safety hazard, or, is not demonstrably analyzable.

^ At the time of the workshop, the participants had access only to the Draft DEF-STAN-0055,

and addressed the "forbidden practices" issue accordingly. The recently-released INTERIM

STANDARD DEF-STAN-0055 has relaxed its policies on discouraged or forbidden practices.

17

5.1. Encouraged Practices

Certain software practices, although not inherently dangerous, are generally recog-

nized as increasing the incidence of software failure and hence the risk in safety-critical

systems. These same practices may be less error prone when certain checks and balances

are employed in their use. That is, these "risky" practices inject a certain error type and

may only be used in conjunction with other practices which have been shown to detect,

mitigate, or counter the error type injected.

Initially the group thought that "encouraged practices" could also be required to

offset "controlled practices" in certain circumstances. Later discussion showed that some

"good" practices (e.g., use of higher order languages), should be encouraged but not

forced or controlled as tightiy. Thus, group consensus allowed the change to "Controlled

and Encouraged Practices." It was later noted that this would allow developers to choose

various combinations of techniques (some familiar to them and others not familiar) as

long as the error types were "covered."

5.2. Software Integrity versus Controlled and Encouraged Practices

The group decided many factors influenced the risk of the same practice in different

domains and applications. A matrix idea was formed in which such factors would allow a

developer to select enough countering practices to allow the use of a "controlled" (not

forbidden) practice. This matrix concept will be driven by the level of software integrity

required. The required software integrity level is further a result of the hazards identified

with the system and allocated to the software (and hardware) (sub)system under design.

5.3. Liaisons With Other Working Groups

It was noted that these definitions and matrices depend on other groups for

definitions and declarations of hazards, safety-criticality, and integrity level. Required

definitions include hazards, risk, and integrity levels. Originally it was thought that an

integrity level would determine the controlled practices. On further reflection, the group

reached the consensus that there may be different levels of rigor, or controlled practices,

in a technique required for a particular integrity level. The briefing by the Hazard

Analysis session moderator at the plenary session implied that the Hazard Analysis ses-

sion would not address integrity levels.

Given that a controlled practice is used, the next step is to select mitigating tech-

niques. The Techniques Session addressed coverage (and what the technique does not

find), input requirements, output, and integrity level rigor. This information may be used

to select offsetting techniques when one of the "controlled practices" is to be used in

development. To use the Techniques output in this way requires a considerable amount

of experience and studies of the various techniques. It may be many years before such an

experience base exists.

The Cost-Benefits session must somehow determine the costs of each technique

such that the selection of mitigating techniques versus the controlled practice can be con-

strained by prudent cost considerations. There may be correlation with DEF-STAN-0055
in that "forbidden practices" may be the most expensive practices to implement under

"controlled practices," after selection of the techniques required for the integrity level.

18

5.4. International Issues

There was a consensus that the view of "controlled and encouraged practices"

expressed in the working group is different from that in the international standards

reviewed. Accommodation of this difference requires two definite steps:

1. The definitions of controlled and encouraged practices must map onto all known
standards which have such concepts, and

2. The international community must be made aware of the intent of these

redefinitions.

Item 2 raises a particularly strong issue because the DEF STAN 0055 forbids prac-

tices while a U.S. standard will probably allow practices with certain rigorous develop-

ment practices. This seems to be diametrically opposed and may preclude mapping one

to the other. While the DEF STAN 0055 is a draft standard with comments being

addressed, it is being considered as a baseline for EC standards. Thus, NIST must move
earnestly to promote public discussion of differences and coordinate less strict status on

certain practices.

5.5. Classification of Controlled Practices

The moderator presented the concept of identifying certain error types found in gen-

eric software development processes. These processes are not identified with a develop-

ment paradigm (waterfall or spiral); rather these processes are required in any paradigm

in whatever order or parallelism.

These processes are:

• Management Process

• Concept Definition Process (system level)

• Requirements Specification I*rocess

• Design Process

• Implementation Process

• Integration and Change Process

• Testing/Safety Validation Process

• Use Process (system robustness)

For example, the management process includes practices related to configuration

management, quality management, risk management, and training/staff qualifications and

requirements.

In addition, the concept of linking controlled or encouraged practices to integrity

levels and application domains will define a minimum set of practices required for one to

develop high integrity or safety-related software. The life cycle model and other

specifics are still left to the developer's choosing due to the generic nature of the

processes and the long list of alternating coverages provided in the techniques matrix

while still achieving the required integrity level.

19

5.6. Session Summary

The group advised continuing group efforts on development of concepts, mapping

of integrity level to techniques to controlled/encouraged practices and mapping to other

standards. A list of controlled/encouraged practices should be prepared for consideration

by the Techniques group. Liaisons should be established with other groups. There must

be discussion of unresolved issues (e.g., indirect effects of proposed control of listed

activities and indirect hazards of such software as finite element analysis tools used on

passenger aircraft or highway bridges). The relevant national/international organizations

developing related or similar standards need to be contacted. It is recommended that

workshop representatives participate in COMPASS '91 and send notices to CASE ven-

dors and universities.

6. THE HAZARD ANALYSIS SESSION

The working group on Hazard Analysis was chaired by Michael Brown of the Naval

Surface Warfare Center. This session had the task of defining the terms and techniques

for hazard identification and analysis of software for which assurance of high integrity is

desired. Experts from both the military and civilian sector were present. Two different

documents were used as initial examples of the sort of activities that might be present in

dealing with this sort of analysis. The first was the "Orange Book" [11]; the second is

MIL-STD-882B, the DoD systems safety handbook [12]. Although the Orange Book
does not directly address hazards, the fact that it describes assurance levels for certain

t}^es of potential security breaches makes it relevant because, as mentioned in DEF-
STAN-0055 [14], security breaches can be viewed as hazards. The initial objective of

the session was to identify techniques for

1. identifying hazards,

2. classifying hazards,

3. identifying critical systems,

4. determining how much analysis is necessary,

5. determining where to do analysis, and

6. conducting trade-offs.

In order to accomplish this objective, agreement was needed on many of the terms.

In particular, the terms hazard, risk, and criticality all needed definition in the context of

high integrity software. Analogies were drawn from a number of areas in pursuit of com-

mon definitions to apply to high integrity software. From the system safety area hazards

and risks are well defined in MIL-STD-882B. The events to be avoided are injury and

death; the hazards are elements of the environment that can cause these events. From the

perspective of a mission during wartime the events to be avoided are the inability to

fulfill a mission and the hazards are elements of the mission environment that can cause

these events. From the perspective of security the events to be avoided are security

breaches and the hazards are elements of the environment whose presence or absence can

20

allow these events to occur. From the perspective of the manufacturer of consumer pro-

ducts containing embedded software, the events to be avoided are losses caused by
insufficiencies in the product that result in financial losses and the hazards are elements

of the products environment that could allow these events to occur. These events could

be as simple as, say, a ROM error in a chip in a washing machine requiring a recall cost-

ing $100/machine. The events to be avoided are called mishaps.

6.1. Basic Notions of Hazard Analysis

Given the wide variation in the events to be avoided, the following definitions of

mishap and hazard were adopted.

Mishap - An unintended event that causes an undesirable outcome.

Hazard - A condition that may lead to a mishap.

Given this definition of hazard, the notion of risk is defined to be a function of the

hazard, the vulnerability to the hazard, and the opportunity of the associated mishap

occurring. The vulnerability and opportunity are assessed together to obtain a probability

of the mishap occurring. Once a rough probability has been obtained, decisions are made
as to the criticality of the hazards in order to determine whether actions are necessary to

mitigate the hazard (or if the consequences are sufficiently severe, not to build the sys-

tem). As an example, consider a nuclear power reactor and the hazards posed by meteor

strikes and earthquakes. The vulnerability of the reactor to a meteor strike is high while

the opportunity of the mishap occurring is very low. Thus actions aren't taken to miti-

gate the hazard (reactors aren't built under a mile of rock) even though the consequences

of reactor failure are severe. The vulnerability of a reactor to an earthquake is high and

the opportunity for occurrence, particularly on fault lines, is sufficiendy high with conse-

quences sufficiently severe (a function of the hazard) that actions are taken, such as

building away from fault lines, to mitigate the hazard.

One method of performing this analysis involves building a hazard criticality chart,

as illustrated in figure 5. The method is described further in MIL-STD-882B. The letters

A-E stand for probabilities of a particular hazard resulting in a mishap. A is the most

frequently occurring (nominally "frequent") while E is the least frequently occurring

(nominally "improbable"). The Roman numerals I through IV represent the severity of a

mishap caused by the hazard. For the safety concerns of MIL-STD-882B, 1 stands for

death or system loss, II stands for a severe occupational illness or major system damage,

in stands for minor injury or minor system damage, IV is negligible injury or damage.

The regions labeled 1 to 4 are determined by policy. In MIL-STD-882B region 1 is unac-

ceptable, region 2 is undesirable, region 3 is acceptable with approval, and region 4 is

acceptable. For each hazard, determined by a careful analysis of the environment in

which the system is operating, such a chart is drawn up. Values for the probabilities of a

hazard occurring and the severity of a mishap arising from the hazard are determined. If

these are in the unacceptable or undesirable range then steps must be taken to mitigate

the severity of the mishap and/or reduce the probability of the hazard resulting in a

mishap.

21

A B C D E

I 1 2

n 2

III 2 3

IV 3 4

Figure 5. Hazard Criticality Chart.

This same hazard analysis chart can be adapted to high integrity domains outside of

safety. What needs to be identified are the roman numeral categories I to IV. For exam-

ple, to analyze hazards for military missions I would correspond to an inability to fulfill

the primary mission capabilities (e.g., field an army in a war zone), II would correspond

to an inability to fulfill a secondary mission (e.g., an impaired offensive capability

against a collection of targets), in would correspond to an inability to fulfill support

functions, and IV would correspond to an inability to fulfill administrative functions. In a

consumer product the categories I to IV could correspond to /.* product causes death or

injury, II: product causes damage resulting in financial loss to consumer, III: product

does not perform itsfunction resulting in financial loss to company, IV: product does not

satisfy some consumers in ways unrelated to functionality, cost, or death or injury.

Techniques for identifying and classifying hazards and for determining the risk

associated with hazards is domain dependent. Generic methods include "lessons learned"

(historical information about previous mishaps), analysis of energy barriers and the trac-

ing of energy flows (mishaps are frequendy associated with energy release or contain-

ment), previous system analyses, adverse environment scenarios, general engineering

experience, and tiger team attacks (essentially brainstorming).

Specific techniques in tracing possible effects of hazards and isolating those effects

have been developed over the last 40 years. These include fault tree analysis, failure

modes, effects and criticality analysis, event tree analysis, and hazard and operability stu-

dies. At the code level formal proof of correctness and various data and control flow ana-

lyses can be performed [13]. Isolating parts of the system responsible for assuring high

integrity is an important method of limiting the complexity of the analysis necessary for

assurance. This is exemplified in the notion of a Trusted Computer Base that is integral to

the TCSEC ("Orange Book") [11] standards. The design techniques for this sort of isola-

tion include the isolation of critical functions in kernels, assurance of module indepen-

dence ideally through referential transparency of modules, and the general isolation from

access of critical software and data.

22

6.2. Lifecycle Hazard Analysis Activities

The criticality assessment must be carried throughout all of the software develop-

ment phases, implying a strong traceability requirement for hazards that must be avoided

or mitigated. This also implies documentation requirements at all lifecycle phases for

hazards being traced. Modifying the language of the software systems safety community,
it is necessary to have a Software Integrity Preliminary Plan, Software Integrity Subsys-

tem Plans, Software Integrity Integration Plans, etc. as described in MIL-STD-882B and
below.

Taking a typical software product and using Ufecycle stages from the above figure

we can categorize, according to lifecycle state, the types of analyses that must be per-

formed to assure high integrity.

During initial project planning, two decisions are made. The first is whether to auto-

mate a system to satisfy that need. The second is to determine, roughly, the integrity

requirements for the product. Both of these decisions involve a high level hazard

analysis. For example, in the planning of an airliner and its avionics, a decision must be

made concerning the degree to which the pilot's duties should be automated. The conse-

quences of a computer failure during critical flight maneuvers and the capability to actu-

ally automate pilot's duties are taken into account at this pre-requirements stage. The

early planning largely defines the system and its environment allowing hazards to be

identified. It is at this stage that an integrity policy should be put in place. This policy

would identify the personnel responsible for the integrity of the system, the level (and

thus required activities) of integrity desired, and the resources required for assuring the

desired level of integrity.

At the requirements stage an integrity model should be put in place. This model

should reflect the integrity policy put in place at the conceptual stage. The model should

be sufficientiy analyzed to ensure that it accurately reflects the desired type and level of

integrity. A preliminary integrity analysis would be performed at this level. The need for

isolation of system components critical to the integrity of the system is decided at the

requirements stage as well. Requirements traceability policy and high level test require-

ments for hazard coverage are determined at this stage. Test plans are constructed and

test cases to stress the system are developed. Formal methods may be used as required by

the integrity policy and model.

At the preliminary design stage, components critical to the integrity of the system

are identified and traced back to the requirements. It is at this stage that the isolation of

components critical to the integrity of the system is enforced. Test cases and test code are

again generated to ensure that the hazards are covered. Standard techniques such as

software fault tree analysis are used to identify critical software components, and the

design is analyzed to ensure that no new hazards are introduced as a result of design deci-

sions. Formal methods may be used as required by the integrity policy and model.

At the detailed design level futher analysis is conducted to evaluate traceability for

the identified hazards, and to ensure that no new hazards are introduced at this stage.

Again test cases and test code is generated to ensure that the hazards arc covered. For-

mal methods may be used as required by the integrity policy and model.

At the code stage traceability is enforced and coding practices adopted that reduce

the possibility of hazards being introduced at this stage. Formal methods may be used as

23

required by the integrity policy and model.

Throughout this process, standard software quality assurance activities are followed.

Quality assurance is a prerequisite for high integrity software. Assurance includes check-

ing that the software addresses the hazards, and developing tests that "exercise" the

software in response to external events that may lead to a hazard. This testing requires (as

does traceability, etc.) that the software addressing hazards be properly isolated. This iso-

lation also allows for more intensive validation activities, such as the use of formal

specification or even the formal proof of high integrity properties, to be used.

At the operation and maintenance stage any changes in the environment of the sys-

tem or in the code itself must be subjected to additional hazard analysis to ensure that the

environment changes and/or code changes don't result in unacceptable risk. Records

should be kept of the entire development effort in order to build an experience base for

the development of high integrity systems.

7. RELATIONSHIPS AMONG THE SESSION TOPICS

While each working group had a specific charter, there are strong relationships

among them. Selection and description of techniques is perhaps the most fundamental

task. The cost-benefit model will use data on techniques to develop a model in which

techniques are classified according to the level of assurance they provide. Hazard

analysis and criticality assessment help to determine the needed level of assurance. Risk

management analyses will contribute not only to the criticality assessment but also to

information regarding controlled practices. Knowledge of practices that should be

encouraged or used in controlled environments will need information from data supplied

in descriptions of techniques. A topic that lay in the background of workshop sessions is

the capability and skills required for various application domains and levels of assurance.

The development of guidance will be an iterative process requiring that all information

coming from a variety of sources be integrated. Separate standards may be developed for

topics shown in figure 4.

8. SUMMARY
NIST's first workshop on the assurance of high integrity software was successful in

helping NIST to identify the topics that are most important to the development of federal

standards and guidance in this area. There will necessarily be several standards, with one

that points to standards addressing specific topics. Any framework for selection will be

flexible to allow for differences in apphcation domains and user environments.

NIST will continue its other activities that provide opportunities for information

exchange. NIST serves as a co-sponsor of the COMPASS and National Computer Secu-

rity conferences which address issues of systems security, software safety, and process

integrity. NIST has also initiated a lecture series on high integrity systems at which

eminent speakers present potential solutions that may be applied to assuring high

integrity software. The purpose of these lectures, which are open to the public, is to

increase public awareness of the need to consider high integrity as the goal for many

24

kinds of software applications.

To help practitioners become aware of existing standards for high integrity

software, NIST will prepare a bibliography of relevant standards and guidelines. NIST
plans to strengthen its liaisons with national and international standards bodies, and to

work toward adopting or adapting appropriate standards. NIST will coordinate an effort

to produce an integrated body of guidance adapting or adopting existing standards as

appropriate. Doing this will require identification of topics ready for standardization, and

of areas where more research is needed. Workshop participants also recommended con-

duct of an experiment that implements a draft standard on a real project.

After high integrity software standards are developed, NVLAP-accredited labora-

tories will be considered as a cost-effective means of providing conformance evaluation.

To conduct these and other activities, NIST will seek funding and will encourage

collaborative efforts with other agencies, industry, and academia.

25

REFERENCES

[I] Sennett, C.T., High Integrity Software, Plenum Press, Lx)ndon, 1989.

[2] "Guideline for Lifecycle Validation, Verification and Testing of Computer Software,"

FIPSPUBlOl, National Bureau of Standards, Gaithersburg, MD 20899, 1983.

[3] "Guideline for Software Verification and Validation Plans," FIPSPUB132, National

Bureau of Standards, Gaithersburg, MD 20899, 1987.

[4] Wallace, Dolores R., and Roger U. Fujii, "Software Verification and Validation: Its

Role in Computer Assurance and Its Relationship with Software Project Management

Standards," NIST SP 500-165, National Institute of Standards and Technology, 1989.

[5] "Data Encryption Standard," FIPSPUB 46-1, National Bureau of Standards, Gaithers-

burg, MD 20899, 1988.

[6] "Guidelines for Security of Computer Applications," FIPSPUB73, National Bureau of

Standards, Gaithersburg, MD 20899, June 1980.

[7] "Guideline for Computer Security Certification and Accreditation," FIPSPUB 102,

National Bureau of Standards, Gaithersburg, MD 20899, 1985.

[8] "Standard on Password Usage," FIPSPUB 112, National Bureau of Standards, Gaith-

ersburg, MD 20899, 1985.

[9] "Standard on Computer Data Authentication," FIPSPUB 11 3, National Bureau of

Standards, Gaithersburg, MD 20899, 1985.

[10] "Security Requirements for Cryptographic Modules," Draft FIPSPUB 140-1,

National Institute of Standards and Technology, May 1990.

[II] U.S. DOD Trusted Computer System Evaluation Criteria, DOD 5200.28.STD,

December 1985.

[12] MIL-STD-882B with change notice 1, Task 308, Software Safety Requirements Tra-

ceability Matrix and Analysis - DOD HBK-SWS, 20 April 1988, Software System

Safety, Department of Defense.

[13] Leveson, N.G., "Software safety: Why, what and how," ACM Computing Surveys

18, 2 (June 1986), 25-69.

[14] Draft Interim Defence Standards 00-55 and 00-56, Requirements for the Procure-

ment of Safety Critical Software in Defence Equipment, Requirements for the Analysis

of Safety Critical Hazards, Ministry of Defence, Room 5150A, Kentigem House 85

Brown Street, Glasgow G2 SEX, May 1989.

26

[15] Quality Management and Quality Assurance Standards - Guidelines for Selection

and Use, ISO 9000 (ANSI /ASQC Q90).

[16] Mills, H. D., M.Dyer, and R.C. Linger, "Cleanroom Software Engineering," IEEE
Software, September 1987, pp. 19-24.

[17] Kouchakdjian, A., V.R. Basili and S. Green, "Evaluation of the cleanroom metho-

dology in the SEL," Proceedings of the Fourteenth Annual Software Engineering

Workshop, Report SEL-89-007, November, 1989.

[18] Bartussek, W., and D.L. Pamas, "Using Traces to Write Abstract Specifications for

Software Modules," Report TR 77-012, U. of North Carolina, Chapel Hill, NC,
December 1977.

[19] McLean, J. "A Formal Method for the Abstract Specification of Software," J. ACM ,

Vol. 31, No. 3, pp. 600-627, July 1984.

[20] DOD-STD-2167A Military Standard Defense System Software Development,

AMSC No. 4237, Department of Defense, February 29, 1988.

[21] "Safelt, A framework for safety standards," ICSE Secretariat, Department of Trade

& Industry, ITD7a - Room 840, Kingsgate House, 66/74 Victoria Street, London SWIE
6SW, England, June, 1990.

[22] Radio Technical Commission for Aeronautics, "Software Considerations in Air-

borne Systems and Equipment Certification," DO-178A, RTCA, Washington, DC, 1985.

[23] Anderson, T. and J.C. Knight, "Software Fault Tolerance In Real-Time Systems,"

IEEE Transactions on Software Engineering, 9(3), May, 1983.

[24] IEEE STD. 729 -1990, Revision: A Standard Glossary of Software Engineering

Terminology, IEEE, 1990.

[25] ISO/IEC Standard 2832-20:1990, "Information Technology - Vocabulary System

Development."

[26] Hecht, H., "Figure of Merit for Fault-Tolerant Space Computers," IEEE Transac-

tions on Computers, Vol. C-22, No.3, March, 1973, pp. 246-251.

[27] Hecht, H., "Allocation of Resources for Software Reliability," Proceedings COMP-
CONFall'81, IEEE, 1981.

[28] Hecht, Herbert, "Effectiveness Measures for Distributed Systems," Symposium on

Reliability ofDistributed Software and Database Systems, IEEE, 198 1.

[29] Humphrey, W.S., et al., "A Method for Assessing the Software Engineering Capa-

bility of Contractors," CMU/SEI-87-TR-23, Software Engineering Institute, Pittsburgh,

27

PA, 1987.

[30] Proceedings of the Annual Software Engineering Workshop, Volumes 1-15, God-

dard Space Flight Center, National Aeronautics and Space Administration, Greenbelt,

MD 20771, 1976-1990.

[31] Basili, V.R. "Software Development: A Paradigm for the Future," Proceedings, 13th

Annual International Computer Software & Applications Conference (COMPSAC),
Orlando, FL, IEEE, September, 1989.

[32] Harel, D., "Statecharts: A Visual Formalism for Complex Systems," Science of

Computer Programming 8, (1987), 231-274.

[33] "GOSIP: Govemment Open System Interconnection Profile," Federal Information

Processing Standards Publication FIPSPUB 146, 1988.

[34] "POSIX: Portable Operating System Interface for Computer Environments," Federal

Information Processing Standards Publication FIPSPUB 151-1, 1990.

[35] Crow, J.S., R. Lee, J.M. Rushby, F.W. von Henke, R.A. Whitehurst, "EHDM
Verification Environment: An Overview," Proceedings, 11th National Computer Security

Conference, National Security Agency, October 1988.

[36] Kemmerer, Richard A., "Integrating Formal Methods into the Development Pro-

cess," IEEE Software, V 7, September 1990.

[37] Budkowski, S., and P. Dembinski, "An Introduction to Estelle: A Specification

Language for Distributed Systems," Computer Networks and ISDN Systems, North Hol-

land, V 14, N3, 1987.

[38] Borgida, Alexander, "Features of Languages for the Development of Information

Systems at the Conceptual Level," IEEE Software, Vol.2 No. 1, pp 63-72, July 1985.

[39] Marca, D.A. and C. L. McGowan, SADT. Structure Analysis and Design Technique,

McGraw-Hill Co., 1987, ISBN 0-07-040235-3.

[40] Knight, J.C., and N.G. Leveson, "An Experimental Evaluation of the Assumption of

Independence in Multi-version Programming," IEEE Transactions on Software Engineer-

ing, 12(1), January, 1986.

28

APPENDIX A. WORKSHOP PARTICIPANTS

TECHNIQUES

Susan Gerhart, MCC (Moderator)

Rick Kuhn, NIST (Recorder)

Richard Taylor, Atomic Energy Control Board of Canada
Cynthia Wright, MITRE
Martin Bailey, Naval Surface Warfare Center

Jo Adee, University of Maryland

Rick Buder, NASA Langley Research Center

John Baumert, Computer Sciences Corp.

Bill Nieh, Logicon

Leo Beltracchi, Nuclear Regulatory Commission

Jon Luedeke, Battelle

Rob Ayers, ARINC
Ian Sutherland, Odyssey Research

John McLean, Naval Research Laboratory

Mark Ardis, Software Engineering Institute

Patty Trellue, Sandia Laboratory

J. Bret Michael, George Mason University

Madhu Rao, Westinghouse

Bill Majurski, NIST
Wayne McCoy, NIST
Scott Green, NASA Goddard Space FUght Center

David Rutherford, Rail Transportation Services

COST-BENEFIT

John Knight, University of Virginia (Moderator)

Dolores Wallace, NIST (Recorder)

Charles Baynard, Food and Drug Administration

Christopher Dabrowski, NIST
Dario DeAngelis, Logicon, Inc.

Herbert Hecht, SoHaR, Inc.

Linda Lauterbach, Research Triangle Institute

Ted Ralston, MCC
Philip Sedgwick, Control Systems Analysis

A 1

CONTROLLED AND ENCOURAGED PRACTICES

Arch McKinlay, McDonnell Aircraft Company (Moderator)

Neva Carlson, NIST (Recorder)

Rob Ayers, ARINC
Robert Bagwill, NIST
Protagoras Cutchis, JHIJ/APL

John Dirks, CSC
Bill Christ, Westinghouse Electric

Henry Heffeman, EDPNS
Dan Juttelstad, NUSC
Vince Streckler, Logicon

Laura Strigel, NIST
Gordon Symonds, BRMD (Canada)

HAZARD ANALYSIS AND CRITICALITY ASSESSMENT

Michael Brown, Naval Surface Warfare Center (Moderator)

John C. Chemiavsky, National Science Foundation (Recorder)

Betty Chao, Sandia National Laboratories

Janet Dunham, Research Triangle Institute

Dave Ferraiolo, NIST
Frank Houston, Food and Drug Administration

Grady Lee, Vitro, Incorporated

Bob Pierce, Air Force CSC/SRM
Heinz Rosen, U. L. Inc.

Mel Smyre, FMC Corporation

A2

APPENDIX B. MODERATOR PRESENTATIONS

B 1

TECHNIQUES for assuring and demonstrating high integrity

Susan L. Gerhart

(Manager, MCC STP Formal Methods Project)

NIST Workshop on
Assurance of High-integrity Software

22-23 January 1991

• Standards and frameworks define objectives and processes

. 0055, SafelT, etc.

Orange Book, etc.

Experience in certification

• US industrial practice and educational system is the target

- High-tech CASE thru low-tech C
Differences among industry sectors (medical, avionics)

Common (reviews) thru specialized (security verification) practices

FewSE schools, many CS programs, overlap other engineering

• International research perspective should be maintained

- Lessons from UK for FM and FT, Esprit for PCTE, etc.

Technical aspects (tools, theory) are international but US-biased

Collaboration is possible, beneficial, on-going

B2

I

I

• Recommended techniques for high-integrity

Now " wliat is usable and credible?

Future -- what changes needed for more usability and credibility?

• Technique "catalog" could be the product

• Named in various standards and frameworks

Common and newer in industrial practice and education

Reflect (international) research trends

• Provide a format for descfiption and assessment

Basis for technique assessment criteria

• This group "sets up" more complete and detailed technique analysis

Technical description and assessnent (our charter)

Cost-benents (another group) •• identify factors for them

Hazard analysis (another group) - other techniques, flnd interface

Forbidden practices (another groap) •• correlate with techniques

Future - NIST coordination, more detailed analysis of techniques

• General input (5 minute max): "where are you coming from?"

Background factors - standards, practice,^

Statement of interests research, marketplace, national needs,...

• Technique catalog and assessment criteria

Pooled experience of group members -- as advocates and critics

Techniques for consideration

Important criteria

- Workable format for TECHNICAL aspects

Illustrative descriptions (5-10)

B3

Enumeration - proposal

• "Brand names"

Individuals (Jackson, Dijkstra, Leveson)

Schools (VDM, Cleanroom, semantic analysis, mutation testing)

Generic (refinement, state machine, n-version)

• Current practice per industry sector

Medical, Avionics, Security,...

Widely taught in CS and engineering programs

• Named In standards

- See BSI 89/33006

Mode: free associate without filtering for high integrity or

practicality

• How it works

• What it achieves wrt high integrity

• Current applicability (practice, education, experience)

• References

B4

How it works

• Representations used

Text, graphics, etc.

Executable, unsalable

• Steps performed

Mechanics —
"transform (his to that"

Synthesis and analysis steps

Tools used

Roles involved

• Artifacts produced

Documents

- Data

Representations

• Roles involved

Person to task mapping
Example: specifier,

veriflcation system operator

- Skills required

What it achieves wrt high-

integrity

Positive

Errors identified

Evaluation data produced

Reuse possibilities

Negative

- Fallibility -
common failures, gaps in knowledge,—

Bottlenecks -

sequential steps, limited resources, skills,—

Technical barriers

Other techniques

Required

Supported

/

Assessment -- proposal

• Current applicability of a technique

Where is it being used? How?
Where is it taught?

Who is researching it?

Why are they doing this?

If not in use but has potential, then what changes are needed?

• Recommendations to NIST

General -- an approach to identifying and assessing techniques

Several specific techniques' evaluations

» Eliminate from high integrity consideration

» Develop more detailed description

» Perform cost-benefit analysis (wrt what?)

B5

1. Afternoon-1

- Introductions, position statements

- Planning

2. Afternoon-2

• Identification of techniques

- Description format

3. Morning-l

- Specific techniques

4. Morning-2

- Comparison

- Evaluation of approach

5. Afternoon-3

- Summary for plenary

1. Are detailed techniques really needed? How much detail?

How will they be used?

2. Is integration with other groups well enough defined

- What biases does our group have?

- Missing -- CASE vendors?

- Too much formal methods?

3. Oversell or undersell tendencies?

4. System (vs. software) considerations how to include?

B6

COST BENEFIT ANALYSIS
OF

ASSURANCE TECHNIQUES

John C. Knight

Department of Computer Science

University of Virginia

DEPENDABLE SOFTWARE

Safety-Critical Systems:

A system where the consequences offailure are extremely serious.

Examples Include:

- Avionics Systems

- Nuclear Power System Control

- Medical Devices

Safety-Critical Systems Are Required To Be Dependable:

Dependability is the property ofa computing system that allows reliance to be

justifiably placed on the service thai it delivers (Laprie).

Dependable vs. High Integrity

Dependability Requirement May Be Mandated

"As Good As We Can Make It" Might Not Be Good Enough

UVA ^
Department of Computer ScienceIII

B7

THE PROBLEM

Is It Worth Computerizing A Given Application?

Prescribed Dependability Requirements:

- FAA, NRC, FDA, DoD, NIST

Development Cost Has To Be Compared With:

- Operational Benefit

- Cost Of Operational Failure

' - Prescribed Dependability Levels

But, Development Costs Change With Time:

- Bener Algorithms, E.g., Theorem Provers

- Better Equipment, E.g., Much Faster Computers

- Better Software

- Different Perceived Or Actual Worth

• Reliability:

- Probability That The System Operates Correctly Up To Time t

• Availability:

- Probability That System Operates Correctly At Time t

Software Safety:

- Property That The Software Does Not Cause A Safety Failure

- There Are Systems Where No Action Is Preferable To Wrong Action

• System Safety:

- Property That The System Does Not Suffer A Safety Failure

• A System Might Be Very Safe But Have Low Availability

• A System Might Be Higjily Available But Have Low Reliability

• These Are Fundamentally Different Concepts

ASPECTS OF DEPENDABILITY

m UVA
Department of Computer Sa'ence

B8

SOFTWARE SAFETY vs SYSTEM SAFETY

Application

Equipment

13

Computer .xxxxxxxxxxxxx

SOURCES OF COST

Detemiine

Dependability

Goals Develop

System

TJ Assess

Dependability

Can Dependability Always Be Assessed?

Can Dependability For The Systems Of Interest Ever Be Assessed?

What Are The Cost Tradeoffs?

UVA
Department of Computer SderKd

B9

PROPOSED APPROACH

• Define Applications Domains To Be Covered:

- All "High Integrity" Systems?

- Medical?

- Commercial Transportation Systems?

• Determine Dependability Requirements For Each Domain:

- Safety, Reliability, Availability Or What?

• Hypothesize Appropriate Development Processes:

- Some System Properties Can Be Achieved In Many Ways

• Attempt To Quantify Costs

• Determine Feasibility:

Are There Classes OfSystems That Are Beyond Our Ability To Create?

UVA
Department of Computer Science

BIO

NIST FIPS "FORBIDDEN PRACTICES" SESSION
GOING-IN PROPOSALS

January 1991

FORBIDDEN
PRACTICES

Federal Information Processing Standard

January 22-23, 1991

O Faciliiaior:

Arch McKinlay

McDonnell Aircraft Company
St. Louis, MO
(314)233-0829

DEFINITIONS

Safety

Quality

Error

Safety

Freedom From Those Conditions

That Can Cause

Doth, Injury. Oco^tiona] Illness, or

Damage to or Lon al Ej^uipmcni or

Propeny

Bll

NIST FIPS "FORBIDDEN PRACTICES" SESSION
GOING-IN PROPOSALS

January 1991

Quality

ReliabiUty and Maintainability

Usability and Reusability

Generality, Portability and Extendabflity

Efficiency and Flexibility

Integrity and Correctness

Complexity, Undersiandability,

Modifiability, s^d Testability

Error

Discrepancy Between a Cctnputed.

Observed, or Measured Value or

Condition and the Twc, Specified, or

Theoretically Correct Condition

(ANSI)

Collect and Analyze

United Kingdom's IT

United Kingdom's DEF-STAN-OQ55

United States MIL-STD-882B

U.S. Air Force Space Center Jovial

Language Standard

Errors From Other Sources

United Kingdom's IT

Forbidden:

Not Expecting Human Fallibility

Q Architecture: Inteinipts,

Communication, Concurrency, Self-Test

Q Level of Complexity Versus

Mathematical Analysis

Unqualified Tools

Single Safety Analysis Technique and

NcK Determining Safety Relationships

Q Single Point Failure

B12

NIST FIPS "FORBIDDEN PRACTICES" SESSION
GOING-IN PROPOSALS

January 1991

United Kingdom's
DEF-STAN-0055

Classes of Forbidden Practices:

Programming

Design

Processors

Processes

Programming

Forbidden:

Lack of Defensive Programming

Q Assembly Level Programming

Recursion

Floating Point Math

Loops

Data Flow
• lis Bclon Sa. bt md Nol Vmd

Design

Forbidden:

O Not Using Formal Math

Specification and Design

uj Cede DiaocpancM

Dynamic Memory Allocation

O Interrupts

Processors

Forbidden:

Multiprocessing on Single Processor

Distributed Processing

B13

NIST FIPS "FORBIDDEN PRACTICES" SESSION
GOING-IN PROPOSALS

January 1991

United States

MIL-STD-882B
No "Forbidden Practices" Section

System Must Consider
• UOrnat.kUti-.Oiii-ot'la^aBa.Piilaa.iaWKi^

Design Must Compensate For

Mate (icH IW OpnE). VO

Commercial Off-the-Sbelf and

Non-Developmenial Software

• Tral la< On SoAm

U.S. Air Force Space Center
Jovial Language Standard
Forbiddens:

Loose Control of GlobaJ and Status Variables

Mixed Parameter Types or Precisions, Lack of

Variable Initial Value, Renaming or Aliasing,

Table Packing, and Derived Types

Rearrangement of Mathematical Sequences

Q No Loss-of-Ptecision Compensation

Lack of IAD Buffer Synchronization

Recursion

Errors From Other
Sources

Requirements

Specification

Design

Implemeniatiao

DEFINITION

What is a "Forbidden Practice"?

A "Practice" Which Can Reasonably

Be Expected to Result in a Safety

Hazard.

A "Practice" Which is NOT
Demonstrably Analyzable.

B14

NIST FIPS "FORBIDDEN PRACTICES" SESSION
GOING-IN PROPOSALS

January 1991

ANALYZE and GROUP

Analysis ResulU

Procesia

EiTor Typei

Groupings

Procoi Groupf

Eiiof Type
Gnupt

PROCESS GROUPS

Management Process

Concept Dennition and Design FYocess

Q Requirements and Specification Process

Implementation and Manufacturing Process

Integration Process

Testing Process

Use Process

Management Process

Errors in:

Configuration Control

Quality

Risk Management

Concept Definition and
Design Process

Errors in:

Requirements Capture

Q Coupling, Dependencies, and Cohesion

Control and Data Flow

Architecture and Resources

Interfaces

Timing

Normal and Abnormal Environments

Redundancy and Integrity Goals

Q Intended Use, Constraints, and Designer Bias

B15

NIST FIPS "FORBIDDEN PRACTICES" SESSION
GOING-IN PROPOSALS

January 1991

Interfaces
Requirements and

Specification Process

Internal Errors in:

• ivw-vw Performance

• vw - tvw Q Arithmetic or Logic

• VW-S/W
Requirements AUocation and Traceability

External Interfaces (User. H/W, S/W) and Partitions

• H/w-S/w ^ Q Combinational Events

• SJW-WW
Redundancy Management and Integrity Level

User Inierface Q Normal and Abnonnal Environments

Completeness of Specification

It
Requirements and Specification Writer Bias ,

Implementation and
Manufacturing Process

Errors in:

Sequence, Logic, Syntax, and Structure

Control Flow. Coupling, Cohesion, and

Dependencies

Tools

Traceabihty

Abnormal Environments

Programmer Bias

Integration Process

Errors

Code Patching

• fuiction*! TIuckI mm) Unenpeattl
DepouloKy

Common Cauc

B16

NIST FIPS "FORBIDDEN PRACTICES" SESSION
GOING-IN PROPOSALS

January 1991

Testing Process

En-ors in:

Failure "Bursts"

Emulation and Models

Envifonment Asaunptions

Q Whole or Partial Configurations

Test Case and Procedure Bias

Use Process

Errors in:

Correctness Leads User to False

Assumption About Extensions of the

Domain.

• VERIFICATION &
VALIDATION PROCESS

Looking for Error Types.

Using Effective and Verified Technology?

Q Requirements Traceability

Timing and Sizing

Simulations

Equations. Algorithms, Environment Models

Q Modularity. Complexity, Dependency.

Cohesion, and Coupling

B17

NIST FIPS "FORBIDDEN PRACTICES" SESSION
GOING-IN PROPOSALS

January 1991

• GENERALIZED ERRORS
BY ENTITY

Processes and Environment

Q Hardware

User Interface

Interfaces

Architecture, H/W and S/W

Q Code

Processes and Environment

Processes Either Inject or Overlook Errors.

Concept and Design

Requirements Specifications

Implementation

Q Integration

Test and Release

Hardware

Hardware Hosts and Determines

Redundancy IN CONJUNCTION
WITHSoftware-

Q Failure Sensitivities, Decay. Wearout

Architecture

Interfaces

Interfaces Need "Exquisite" Definitions

of Assumptions of Machine and

Environment States.

a Buffer

Information Flow

Complf^ty

B18

NIST FIPS "FORBIDDEN PRACTICES" SESSION
GOING-IN PROPOSALS

January 1991

Architecture, HAV and SAV

Redundancy and Partitioning Goals Should

Provide Mutual Suppon Across Interfaces.

Communications

Concurrent Interaction

Modularity

Language

Multi-Processing

Q ReconfiguTBtion

Q Deadlocks

Q Paniiiooing

Code

Higher Order Languages are Tools and Should

Be Treated As Such. Language is Imperfect

and Requires More Stringent Guideliries

Beyond Requirements to Allow Compilation.

Logic

a Tools

Data

Logic

Algorithms Should Be Appropriate,

Logically Correct, and Fault Tolerant

Algorithm

Sequence

Q Syntax

Structure

Semantics

Timing and Interrupts

Recursion

Control Flow

Tools

Tools Are Produced By Fallible

Humans and Arc Domain Specific.

Applicability

Q Interoperability

Verificaiion and Certification

Missed Executions in V&V:

B19

NIST FIPS "FORBIDDEN PRACTICES" SESSION
GOING-IN PROPOSALS

January 1991

Data

Structure

• aolalnd Local

• Tibia

• %im

Parameters

• Typi

• Vm
• UtkliaUo ad S«4baM>ta|

Data Flow

"FORBIDDEN
PRACTICES" SUMMARY
International Definition
• to VtmmtytMt KiM. let U»«c»M» Pliii— WMtt >fcy

Q Technology
• TitrndoQ M«7 Allo» Aah™ "C " Ci«nw to. PliKly

Ctmlitoed Vlibb...

Regulated Practice Features

NoBiAlloaW.

Process to Identify A "Fortidden Practice"

Process to Identify A
"Forbidden Practice"

Ran WiUi OBTakna. Qaali

fUx Rac WI (t A Haart Of
Hi|l>-lK(n>> S/W D«' r III m. Aia<> «a.
alTaa.

B20

HAZARD ANALYSIS SESSION

Michael Brown
Naval Surface Warfare Center, Dahlgren, Virginia

Few advances in technology have impacted our lives as profoundly as the computer has:

virtually every aspect is affected in one way or another. Devices from toasters and coffee

makers to wide body jets use computers to control their operation. In recent years, com-

puters have replaced control systems in which a failure can result in a disaster. In some

applications, computer software makes decisions that are safety or security critical,

whose errors could possibly endanger hundreds or thousands of lives. In others, the

operation of the computer is essential to the successful completion of the system's mis-

sion. Theme types of systems may be classified in one or more categories including

Safety Critical, Security Critical, Mission Critical, or any of several others. These terms

all imply that the system must provide a high degree of assurance that it will operate in

its intended environment without producing an unacceptable level of risk. We can group

all of these systems together under the heading of High Integrity systems. Unfortunately,

the software engineering technology available today is not able to provide the required

levels of assurance with any degree of confidence.

I have a recurring vision of a disaster occurring within the U.S. Military community that

will have the same impact on the Department of Defense (DOD) as the Challenger had

on the National Aeronautics and Space Administration (NASA). When the possibility of

the loss of a shuttle was discussed, few envisioned that it would virtually put NASA out

of business for over 2 years. I refer to this disaster as the USA Challenger. As with all

mishaps, there will be a Joint Adjunct General's, or JAG, investigation. However, instead

of the usual attempt to place blame on an individual, the investigation will reveal that the

disaster was the result of an error in the computing system. Further investigation will

find that an error in the software resulted in the disaster. Unfortunately, the desire to

have a "scapegoat" will surface and the investigation will turn to identifying the guilty

party. Who will receive the blame? The systems engineer whose responsibiUty it is to

develop the system and ensure the proper integration of the hardware and software? The

Software Engineer who designed and developed the software? The Programmer who
translated the software design requirements into code? The System Safety Engineer

whose responsibility it was to identify, analyze and make recommendations to mitigate

the hazards? Or will the blame fall on the safety review authority who certified the sys-

tem for fleet use?

High integrity systems have been a major concern of the DOD for many years. The

safety of weapon systems is critical to their effective deployment. With the increasing

applications of software to weapon systems, and the increasing authority being given the

software. Software Systems Safety has evolved into a recognized discipline within Sys-

tem Safety Engineering to provide a high degree of assurance that the software control of

these systems will be safe. Similarly, a high degree of assurance must be maintained for

computers that store or manipulate classified data.

B21

NASA also has many applications in which the integrity of the software is essential to the

successful execution of a system's mission. Systems such as interplanetary satellites,

requu-e that the software execute for years without any flaws that may result in the loss of

the satellite or communications with that satellite.

NASA and the military are not the only government agencies that face potential disasters

related to software. The Food and Drug Administration (FDA) and the Red Cross luckily

found an error in the national blood supply databank that almost resulted in the distribu-

tion of thousands of pints of AIDS-tainted blood. Numerous other medical devices also

contain software that could have or has had disastrous results due to failures. The Therac

25 Radiation Therapy machine is a good example. The Federal Aviation Adminstration

(FAA) must rely daily on thousands of computer programs to keep our air traffic control

system functioning safely and efficiently. Communications companies such as AT&T
must rely heavily on computer systems to monitor and control their communication net-

works. Failure of such systems can result in a partial or complete lockout of the com-

munications network, costing the company thousands or millions of dollars in lost reve-

nues, serious damage to the company's reputation, and possibly even endanger lives or

property. In other cases, the control of nuclear power plants is gradually switching to

software.

The safety, security and availability issues associated with these systems are significant.

Yet we find that we lack many of the tools and techniques necessary to effectively

analyze and test these complex systems. Yet, even as we continue to tackle these prob-

lems daily, technological advances will soon present an entirely new set of issues.

Multi-process or chips containing hundreds of microprocessors executing programs in

true parallel fashion, that consist of billions of lines of code, not the millions of lines of

code that we must deal with today. Execution speeds will soon be in the billions of

instructions per second, with the programs stored on chips containing gigabytes of

memory. Soon, practical applications of neural networks will be presenting new chal-

lenges for those trying to assure the integrity of the host systems.

The DOD has developed the 300 series tasks to MIL-STD-882B, System Safety Program

Requirements, to address the integrity of safety critical applications of software [1].

Although the methodology behind these tasks is generally accepted, the tasks themselves

are not This stems partly from the level of effort required to perform the tasks and from

a lack of understanding of the intent behind the tasks. There are also some issues sur-

rounding the intrusion into another discipline: Safety engineering versus software

engineering versus systems engineering. In addition, MIL-STD-082B describes what to

do but does not describe how to do it.

The National Computer Security Center handbook, commonly referred to as the "Orange

Book", provides evaluation criteria for trusted computer systems for security applications

[2]. Classification levels are assigned according to the degree of protection provided to

various levels of classified data. However, as the title implies, it is a set of evaluation cri-

teria, not a how-to book or a description of what to do. These documents, along with

several others including the British DEF-STAN-00 55 and 00 56 will be examined by

B22

this session as a possible basis to accomplish our objectives for the Hazard identification

and criticality assessment session [3,4].

However, ihe issues that must be addressed for high integrity systems must extend

beyond the issues of safety and security. It also must encompass any aspect of the sys-

tem operation in which a failure could result in an unacceptable risk, whether personal,

financial, or otherwise. This session will attempt to address the issue of what a Hazard is

in terms of reliability, safety, availability, process security, and other high integrity sys-

tem requirements. How do we define the term "hazard"? Once we have identified a

hazard, how do we preclude its occurrence or reduce its associated risk? How do we
determine its probability of occurrence? All of these issues will be addressed by the ses-

sion.

The objectives of this session will be to:

o Identify techniques for identifying and classifying critical systems and com-
ponents.

o Identify analysis methodologies to identify hazards

0 Identify assessment program requirements

- How much analysis is required

- How much analysis is enough
- How much additional testing is required

- Scope the portion of the system requiring analysis

- Identify systems that require a high degree of integrity.

Last week, I had the opportunity to attend the Inaugural Convocation of the Irvine

Research Unit in Software. A portion of that Research Unit will be a Software Safety

Research Center. I was asked to provide a government perspective on the Research

Center and the needs of the Software Safety community in general. In discussing the

government needs, I pointed out the vast differences in each agency's needs. Regulatory

agencies need a methodology by which they can assess the safety or security or availabil-

ity of these high integrity systems. "Developing" agencies also need analysis tools, tech-

niques, and methodologies for analyzing and testing these systems. Certification agen-

cies need risk assessment methodologies.

1 also noted that there are several caveats that must apply to the establishment of the

Software Safety Research Center. First, a full systems engineering approach must be

taken to ensure that the software is analyzed and tested in a system perspective and that

tools, techniques and methodologies are designed to support this approach. Next,

analysis techniques must be cost effective or they will not be used. Tools must be user-

friendly and transportable. Expectations of the users and testers must be realistic.

Finally, there must be full industry and government participation in the research efforts.

Many of these same caveats apply to the work being undertaken by this workshop.

B23

The Hazard Identification and Criticality Assessment session will begin with introduc-

tions and brief position statements by the participants. We will attempt to define a

hazard for safety, information security, process security, dependability, availability, and

integrity. Next we will examine the classification of hazards and attempt to determine

what is required for a criticality assessment. We will address what is required to perform

a risk assessment. Finally, we will summarize our efforts for the plenary session.

B24

APPENDIX C. Draft Templates of Techniques

The Techniques working group developed a draft template which can be used to describe techniques

for assuring high integrity software. The template requires a considerable amount of information about a

technique. The working group tried to describe seven techniques with the template. The group recognizes

that more information is needed to fully describe most of the seven techniques and that some of the infor-

mation included here may not be accurate. The descriptions are provided here for two reasons. One is to

make people aware of the existence of these techniques. The second is to test how well the template will

work for describing techniques. Comments on both the template and the information about the techniques

may be sent to:

Dolores Wallace or Rick Kuhn
National Institute of Standards and Technology

Technology Building, B266

Gaithersburg, MD 20899

CI

TECHNIQUE: CLEANROOM

HOW IT WORKS

"'Representation Used
-Box structures

-Usage profile

Steps Performed

-Separate teams

-Formal specifications

-Incremental builds (design, implement, certify)

-Reliability assessment

Artifacts Produced

-Formal Specifications (Box abstraction)

-Design Notation (Box refinement)

-Certification of SfW (MTTF)

Roles Involved

-Person to Task Mapping:

-Development team

-Certification team

-Specifications team

WHAT IT ACHIEVES WITH RESPECT TO HIGH INTEGRITY

Positive

-High quality S/W
-Certified reliability

Negative

-Psychological impact

-Dynamic requirements

-Reliance on builds

Other Techniques

-Inspections

-Box structures

-Statistical testing

-Stepwise refinement

CURRENT APPLICABILITY OF A TECHNIQUE

-Limited exposure

-Successful results (SEL, IBM, University of Maryland)

-Who is researching it:

-SEL, SET, University of Maryland, University of Tenn.

-Related to other research/education (inspections, stepwise refinement)

Recommendations
-Input from SET and H. Mills

-Examine current success in production environments

C2

HOW IT WORKS

TECHNIQUE: EHDM

""Representations Used

-Text (no graphics)

-Syntactically enhanced "typed Higher Order Logic",

Hoare sentences, Ada Code Synthesizer, hierarchical

mappings

-Built in theorem prover centered around decision

procedures for linear arithmetic, propositional

calculus, etc.

Steps Perfornaed

-Mechanics:

-Construct top-level formal spec

-Construct formal algorithmic-level

(executable) specification

-Map abstract objects of formal spec

onto algorithmic-level spec

-Construct proof that algorithmic level

implements top-level formal spec

-Push proof through theorem prover

-EHDM tool synthesizes Ada Code from

low-level spec

-Tools:

-Type-checker

-Prover

-Proof-chain analyzer

-Ada synthesizer

-Roles:

-Specification done by people

-Proofs discovered by people

-Theorem prover "understands" linear arith-

metic and propositional calculus, so

proofs must be reduced to this level

but not down to the axioms of arithmetic

-Code synthesis (Ada) by tool from Hoare-

sentences

Artifacts Produced

-SPECS Formal

-Proofs

-Built-in tool to translate from EHDM syntax to more

traditional mathematical notation (a .tex file)

*Roles Involved

-Person to Task Mapping:

-Abstract specification

-Detailed design (making design decisions)

-Matiiematical spec of design and mappings

-Hand proofs

-Pushing proofs through theorem prover

C3

-Skills Required (Understanding of Applied Logic)

-Requires some mathematical "maturity"

-Requires specialized knowledge of tool-

skolemization of formulas, instantiation. Lambda
calculus, etc.

WHAT IT ACfflEVES WITH RESPECT TO HIGH INTEGRITY

Positive

-Errors Identified:

-Very expressive specification language

-Design and implementation errors identified and removed

-Mathematical proof between abstract spec and detailed

algorithmic spec

-Connection between code and spec through synthesis

-Correctness depends upon "validity" of the synthesis

-Algorithms

-Reuse Possibilities:

-EHDM has direct support for "parameterized" modules

making it suitable for verification of generic Ada modules

Negative

-Fallibility:

-Depends correctness of theorem prover and

synthesis algorithms

-Bottlenecks:

-Proof process tedious

-Technical barriers:

-Need decision procedures which encompass

larger portions of typical formula to

minimize need for human effort

Other Techniques

-Testing

-SimulaticMi

-Reliability Analysis due to physical failure

CURRENT APPLICABILrrY OF A TECHNIQUE

-Domain of Applicability:

-Universal but with various degrees of difficulty

-Where is it being used:

-NASA, Langley, NRL, SRI International

-Who is researching it:

-SRI International

-Why are they doing this:

-Believe abstract specifications and refinement mapping

is the proper framework for designing High Integrity

Software

-To make money

-Critical subsystems:

-Fault-tolerant clock synchronization

C4

HOW IT WORKS

TECHNIQUE: FDM

""Representation Used

-Text

-First order logic with types and equality

-Finite state machine paradigm

Steps Performed

-Synthesis and Analysis Steps

-Specify security invariant, transition

constraints

-Write pre and post conditions for

"transforms" (state machine transitions)

-Refine transforms to more detail

-prove transforms against im.

-Tools Used:

-ITP theorem prover

-Inaflo flow analysis tool

-Tools available for verifying

multi-level security properties

Artifacts Produced

-Formal Specification

-Proof transcript

Roles Involved

-Person to Task Mapping:

-Domain expert, S/W developer, code expert, FM expert

-Skills Required:

-Ability to translate requirements into

mathematical logic

-Requires some mathematical "maturity"

-Requires specialized knowledge of tool-

skolemization of formulas, instantation

-For MLS tool requires understanding of multi-level

security concepts

WHAT IT ACHIEVES WITH RESPECT TO HIGH INTEGRITY

Positive

-Errors Identified:

-Ambiguities uncovered

-Design and implementation errors identified and removed

-Mathematical proof between abstract spec and detailed

algorithmic spec

-Connection between code and spec through synthesis.

-Correctness depends upon "validity" of the synthesis

-Algorithms

Negative

C5

-Fallibility:

-Depends on correctness of theorem prover and

synthesis algorithms

-Bottlenecks:

-Proof process tedius

-Technical barriers:

-Need mechanisms to handle concurrent systems

-Need decision procedures which encompass

larger portions of typical formula to

minimize need for human effort

CURRENT APPLICABILITY OF A TECHNIQUE

-Domain of Applicability:

-Security initially

-Could be applied to any system expressible as

a finite state machine

-Non-real time

-Where is it being used:

-NCSC/NSA, NIST, Unisys (SDC), vendors of

secure systems

-Where is it taught:

-National Computer Security Center offers courses

-Who is researching it:

-R. Kemmerer, MCC (Asian)

-Why are they doing this:

-Formal verification considered necessary for

secure systems

-To make money

C6

TECHNIQUE: ESTELLE

HOW IT WORKS

"'Representations Used

-Text:

-Nested Pascal style source (packed similar to Ada and

Modula2)

-Graphics:

-Accepted popular format for presentation of module

layout and communication paths

-Executable:

-Yes, Model

Extended state transition, asysnc

infinite queue, message parsing

hierarchical execution model(priorities)

atomic transitions, formal modular

interface with interaction points

*Steps Performed

-Mechanics:

-Tools exist for: simulation, concurrency analysis

prototype distributed code generation, graphical

front end

-Translates extended state machines into

c/c++/smalltalk for simulation etc..

-Synthesis Steps:

-Create specification, compile, simulate(execution

compilation with library support), separately

specify structure for distribution of modules,

run in distributed "mode" to identify "real"

timing issues

-Artifacts Produced:

-Structured process/module layout of system, details

of communication path semantics

-Executable form(simulation/true distributed

execution)

-State machine analysis(tools exist for analyzing

source)

'''Roles Involved

-Person to Task Mapping:

-Could involve the entire life cycle(since it can

be used as high-level programming language), only

supports process structure(location, interface,

state model, communication)

-No support for data management or user interface

-Specifier of communication/process structure

(specification is executable->specifier=programmer)

-Skills Required:

-CS degree, Pascal, familiarity with finite state

machines and queued message passing semantics

C7

WHAT IT ACHIEVES WITH RESPECT TO HIGH INTEGRITY

Positive

-Errors Identified:

-Simulation simplifies testing, inherits strong

typing from Pascal

-Structure syntax enforced

-Evaluation Data Produced:

-State execution traces in simulation

-Reuse Possibilities:

-Modular design enforced, information/structure

hiding, process is a type with instances created

dynamically, process interface is constant

(implementation chosen at run time)

Negative

-Fallibility:

-Does not model time or timing, deadlocks possible

(detectable sometimes only within FSM [analysis

of queued communications more difficult])

-Bottlenecks:

-Cannot model all useful process combinations/

structures (includes own process semantics)

-Technical Barriers:

-Very strict execution semantics

Other Techniques

-Data descriptions (ASN.l, ACTl), data management model

CURRENT APPLICABILITY OF A TECHNIQUE

-Domain of Application:

-Communication protocols, distributed system

structure

-Use/Research:

-ISO protocol documents(formal description for

protocol standards)

-University of Delaware, NIST, ESPRIT/SEDOS, NCR,
Phoenix Technologies

-Why:

-Resulting documentation of protocol/system

interfaces, correcmess testing, automated

implementation, conformance testing of protocols

-Scalability:

-Have applied it fifteen independent state machine

systems, practicality for large systems, similar

to high level languages

-Prototyping:

-Has been used

-Changes:

-Recommendations for its evolution within standards

community

-Adapt/deal with change:

-Superior to most programming languages (more

C8

similar to them than to Formal Methods)

I

1

C9

HOW IT WORKS

TECHNIQUE; LARCH

*Representation Used

-Text

-Non-executable

Steps Performed

-Synthesis and Analysis Steps:

-Trying to Define Data Types

-Identify constructors

-Identify behavior

-Identify modifier

-Write axioms

-Check consistency, completeness

-Attempt to prove deductions (theorems)

-Specify Module Operations

-Write pre and post conditions for routines

-Use the theory you have already specified

-Construct a mapping between levels (give def)

-Check the mapping via commutative diagrams

-Tools:

-Different tools for different languages

-Penelope uses Larch for ADA

Artifacts Produced

-Specific documents

-Proofs

-Some results of analysis

Roles Involved

-Domain expert (source of info, informal spec)

-Method expert (translation to formal)

-Code expert (translation to code)

WHAT IT ACHIEVES WITH RESPECT TO HIGH INTEGRITY

Positive

-Inconsistencies and incompleteness(know the behaviw

of any sequence of operations)

-Satisfaction of specifications can be demonstrated

-Ambiguities uncovered

-LSL allows reuse of theories

Negative

-Hard to reuse

-May be hard to write axioms (indirect)

-Highly trained personnel required

-Very little feedback from technology

CURRENT APPLICABILITY OF A TECHNIQUE

-Domain of Application:

C 10

-Small-medium size programs

-Non real-time, sequential

-Where is it Used:

-Research

-Where is it Taught:

-Universities (CMU, MIT, MD)
-Who is Researching it:

-Wing, Guttag and Homing
-Digital

-Gerhart

-Scalability:

-Sometimes it dies, sometimes it doesn't

-Some ideas scale, some are terrible

-Adaptability:

-Suffers like scaling

C 11

TECHNIQUE: DESIGN IDEFO (PETRI NET)

HOW IT WORKS

^Representation Used

-Text and Graphics:

-FSM with tokens (graphical) V IDEFO block diagrams

-Automatically translatable into IDEFO diagrams

from Petri nets

-Automatically translatable into Petri nets from

IDEFO diagrams

-Data dictionary contains textual description of

system

-Executable:

-Usable for small to mid-size systems design and

analysis

Steps Performed

-Mechanics:

-IDEFO -> resources, control, inputs, outputs

-Petri net -> places, arcs, transitions, colors

-Synthesis and Analysis Steps:

-Create quotient machines (group "like" states to

reduce the complexity of the directed graph)

-Look for deadlock, starvation of the processes, etc.

-Tools Usea.

-Editor (graphical or textual)

Artifacts Produced

-Documents:

-MIL-STD 2167A reports, diagrams, error reports,

(syntactic checking, dynamic testing)

-Data:

-Data can be exported to other tools

-Representations:

-Either IDEFO, Petri net or textual description

Roles Involved

-PCTSon to Task Mapping:

-Usually the entire specification of the diagram

is done by one or a few analysts

-Skills Required:

-Mathematics background with familiarity of automata

theory and tractability/decidability theory

(especially for colored Petri nets)

-Systems engineering background for using IDEFO

notation

WHAT IT ACHIEVES WITH RESPECT TO HIGH INTEGRITY

Positive

-Errors Identified:

-Race conditions, incompleteness

-Reuse Possibilities:

C12

-Provides the analyst with a way to identify

"like" portions of a diagram

Negative

-FallibUity:

-The larger the diagram, the longer it takes to

identify all errors (computationally intensive

process other then for purely syntactic checks)

-Bottlenecks:

-Hard to manage diagrams once they get large

-Technical Barriers:

-Theory underlying color Petri nets is still

evolving -> no standards

Other Techniques

-Required:

-Simulation of the net or IDEFO diagram

-Supported:

-Algorithm design for sequential and parallel

systems; control and resource analysis

CURRENT APPLICABILITY OF A TECHNIQUE
-Use:

-By DOD (especially the USAF) for specification

and design of systems

-Where is it taught:

-You must teach yourself IDEFO notation from

standards; Petri nets are usually taught in

university courses on automata theory or

decidability theory

-Who is researching it:

-University community, design IDEF vendor, DOD
-Scalability:

-Does not scale very well

-Why are they doing this:

-Required by the DOD
-Flexibihty:

-Not very flexible

-Domain of Applicability:

-Complex systems with strict controls and resource

requirements

C 13

TECHNIQUE: TRACE SPECIFICATIONS

HOW IT WORKS
I

i

""Representation Used {

-Text and Graphics:
j

-Sequences of input [output] events
|

-Tables
j

Steps Performed

-Specifications:

-Identify external events

-Identify legal traces

-Identify command forms

-Show how to reduce legal sequences to command forms

-Define output for command forms

-Analysis:

-Analyze specifications for soundness and

correctness

-Rapid prototyping (tools)

-Implementation:

-Refinement of command forms into states

-Implement state machine

-Verification:

-Prove program satisfies specifications

-Tools:

-Rapid prototyping tool, table manipulation tools

Roles Involved

-Person to Task Mapping:

-Fits well with some other methods (e.g. cleanroom)

-Provides front end for state based tools

-Skills Required:

-Ability to think about what you want not how

to do it (abstract/formal)

WHAT IT ACHIEVES WITH RESPECT TO HIGH INTEGRITY
Positive

-Errors Identified:

-Survivor change

-Detects interface level errors before time/energy

spent on design/implementation

-Reuse:

-Modularity (decreases compiling)

Negative

-FallibiUty:

-Hard work

-Bottlenecks:

-Can be long for certain appUcations

-Technical Barriers:

-No performance analysis on initial specifications

-No provisions for timing consideration

C14

CURRENT APPLICABILITY OF A TECHNIQUE
-Use:

-AECB, Northern Bell, NRL, Ontario Hydro

-Where is it taught:

-University of Victoria/Queens

-Who is researching it:

-University of Victoria/Queens, NRL, AECB, Ontario Hydro

-Why are they doing this:

-Verifiabihty

-Information hiding (promotes simple design)

-Testability

-Changes:

-Notation

-Tools

-Timing

-Scaling:

-Should be O.K. if information hiding is used

-Understandability:

-People need special training

-Domain of Application:

-Small SAV control systems

-Device drivers

-Communication protocols

C 15

APPENDIX D. PAPER SUBMITTED AT WORKSHOP

Cobb, Richard H., Mills, Harlan D., and Jesse D. Poore, "Comments Prepared for Partici-

pants in Workshop on Assurance of High Integrity Software"

D 1

COMMENTS PREPARED FOR PARTICIPANTS IN
WORKSHOP ON ASSURANCE OF HIGH INTEGRITY SOFTWARE

by

Richard H. Cobb
Harlan D. Mills

Jesse D. Poorc

Software Engineering Technology, Inc.

Vero Beach, Flcvida

(407)569-3722

We believe that there is sufficient evidence to indicate thai very high quality software is

developed when Qcanroom Engineering practices arc used. Tbcrcforc, we wish we were able to

participate in the woiicshop on Assurance of High Integrity Software in order to help develop

perspectives that included Cleanroom ideas. Since schedule conflicts prevent this we would like to

make some points for consideration by each of the working groups.

For workshop participants who are not familiar with Qeanroom Engineering we have

included two attachments. First is a summary of Oeanroom Engineering principles and second is

a copy of a recent paper (November 1990 IEEE Software) by Cc^ and Mills which discusses

"Engineering S<rftware under Statistical Quality C^tror.

Techniques for assuring, demonstrating high integrity

Standards should require:

The use of software construction processes and practices that have been demonstrated to

have a high expectation that engineers will produce software that exhibits less than 5

failures per KLOC before any compilation or unit testing by an independent testing

(certification) team.

The preparation of formal specifications which include at the minimum the following:

A precise statement of the mission (requirements) the sofn^ are is to fulfill

A definition of the stimuli and responses invented so the software can fulfill its

mission.

A function which defines software re^nses in terms of stimuli histories.

A rigorous argument that the software as defined will fulfill its defined mission.

The expected usage profile of the software when it is being used to fulfill its

assigned mission.

Apian for constructing the software in a series of accumulating increments such

that each accumulation of increments is executable by user stimulus and the resuhs

arc observable as user responses.

The use (rf statistical quality control techniques to estimate the mean rime to failure for the

software as developed.

D2

The requirement that if during certification testing more than 5 errors per thousand lines of

code are found in any increment that the code and design for that increment will be
discarded and the increment will be redeveloped

Our rational for setting an ui^r limit on the number of faults per KLOC thai can be

tolerated is that fixing software is the most error prone activity associaicd with software

development. See our ccwnments in relation to Forbidden PrswDtices. The only engineering

practices we know of that lead to producing software that has a high probability ^ producing

software that has less than 5 defects ICLOC prior to any compilation and testing is Qeanroom.

Cost • BeneHt Analysis of Automation

To date no specific automation tools to support the Qeanroom Engineer have yet been
constructed. The required tools have been identified. The next step is to complete prototypes to

finalize the specifications.

Until tools are developed it is possible to develop sofr^ are using Cleanroom Engineering

practices at the rate of some 750 lines of code per staff month over the entire project cycle. This

productivity is much higher than conventual practices can produce so there are significant savings

even with out specific Cleanroom tools. In a few years time the organizations urOizing Cleanroom
practices can look forv,'ard to productivity gains as tools come on line and their skiDs improve. We
feel it is safe to assume productivity increases to bring total productivity to near 1500 lines of code
per staff month over the entire {ffoject cycle.

Forbidden Practices

No debugging or compilation by the development team. Debugging is the most
error prone activity associated with software development It is vital that software developers stop

this activity. Experience indicates that on the average that for every 5 fixes made in the software at

least one of the fixes inserts a deep fault into the system that will remain in the system through all

testing and only be found by some user during operational usage. The same data also indicates that

the best an organization can hope for in debugging is that they will only insert 1 deep fault for each

10 debugging fixes made. The Washington Post recently reported that Lotus Development had to

fix 20,000 problems alone in the new release of 1-2-3 following initial customer usage. That
means that these developers inserted at least 2,000 deep latent failures into the system and more
likely 4,000. That is terrible legacy from debugging to give the users of such an important product

as 1-2-3 that is representative of all software development using cc»vcntional practices. It is

possible that the Lotus engineers introduced no latent failures since wc are discussing expectations

but that is very unlikely.

There is no action software developers can take that would inprove quality more than

replacing private debugging by functional verification.

Hazard identification and criticality assessment

There are two issues relative to software. There is the specificaiion of the function the

software is to perform and then there is the development of the rule to implement the specification.

The second of these two requirements is by the far the easier problem. Using Qeanroom
Engineering there is a very high probability that the software as devetoped will be of contain very

few latent failures and th^e is even a reasonable probability that for systems in the 50 to 100

D3

KLOC range the software will be failure free in operational use. It may be desirable for safety

critical systems to develop the rule with practices that say that if any significant fault is found in die

software the code and design for that increment wiO be discarded and the increment will be
redeveloped nx)Sl likely by another team.

The difficult problem is preparing the specifications. This is where hazard analysis must be

performed to insure the function the software is to implement takes into account all the hazards that

may occur. In this way the proper design trades can be made.

Sammary

We hope these comments are helpful in developing a perspective to guide the development

of high integrity software.

We know the Cleanroom Engineering practices we are reawnmending are not widely used

in software devdopment but they are only evolutionary improvements of the practices that arc now
in common use. In the following diagram we characterize the practices used in three classifications

of software development practices used by many observers of the industry. Traditional practices

uere the practices used by early developers. Modem practices are those used by many
organizations today. Cleanroom practices are the ones we are advocating. The recognition of the

benefits of Structured Programming were the principal driving force between the movement from

traditional to structured programming. The driving force behind the recommendation to write

structured programs was program verifiability. The move to structured programming was so great

that verifiability seemed to get lost The movement to Cleanroom Engineering is to continue the

structured strategy but add verifiability.

The data presented in the following table is derived from a study by Dyer and

Kouchakdjian of a number of software projects. This study provides some interesting data in

terms of quality and productivity measures for projects using traditional, modem and Cleanroom
practices.

It is not uncommon that small evolutionary changes lead to revolutionary improvements in

performance. Consider the impact of the match over flint and steel as a portable fire starting

device. That is the case for Cleanroom Engineering.

D4

Cleanroom Engineering Goals and Principles

Gcannx)cn Engineering is a set of rigorous software engineering development and
certirication practices developed and perfected over the past 25 years. A rigorous engineering

practice is one that is based upon sound scientific and nnathematical principles.

Cleanroom Engineering goals include:

To permit organizations to produce failure-free software by replacing heuristic based
develc^ment practices with rigorous software engineering practices.

To permit organizations to certify software quality by applying statistical quality control

practices to Ae software design process.

To permit organizations to improve software productivity by avoiding design errors since

error removal is a significant portiwi of development time.

Experience indicates these are achievable goals. Project experience permits us to project that more
often than not organizations using Clearu-oom Engineering should be able to produce a 50 KLOC
software system so that no failure is ever experienced by a user of the software. We already have
examples of failure free programs. For example, the software for the IBM Wheelwriter typewriter

is a 63 KLOC system operating on 3 processors which was released in 1983. Since then it has

had billions of uses and no failure has ever been detected.

The principles that guided the development of the Cleanroom technologies are:

1 . Exploit the fact that a program is a rule for a mathematical function by

identifying and recording in the product specifications the function the software

must satisfy to perform its mission,

expanding the function top-down in small steps until following the final expansion

the complete rule for the function exists in the target programming language, and

following each expansion with a verification to show that no "algebraic" error was
made as a result of the expansion.

2. Utilize sound mathematical principles to guide software development

The mathematics of a program is defined in the book Structured Programming :

Theory and Practice by Linger, Mills and Win, Addison-Wesley, 1979.

The mathematics of a system of programs is defmed in the book Principles of

Information Systems Analysis and Design by Mills, Linger and Hevner, Academic
Press, 1986.

3 . Avoid the most error prone activity associated with soft\^-are development by not compiling

or debugging the software before independent certification.

4. Exploit the fact that usage testing is at least 20 times more effective than coverage testing

when searching for failures left in the software as a result of human fallibilities.

D5

5. Exploit the fact that software use is stochastic in software certification by

applying statistica] quality theory to plan usage tests,

applying statistical inference theory to determine software quality, and

applying statistical quality control theory to apprise the software design and
development process.

6. Organize tluee engineering teams to facilitate the developnoent of high quality software as

follows:

SpecificaticNi Team to prepare, enhance and maintain the specification and
construction plan.

Development Team to design and implement software increment by increment in

accordance with the specification and verify that each increment meets the

specification using logical argument.

Certification Team to certify that the accumulated increments satisfy the

specification by performing independent usage testing with tests developed in

accordance with the expected usage profile by applying appropriate statistical

theory.

Some people react to Qeanroom Engineering when they hear a discussion of functions and
function rules by saying that must be esoteric mathematics and cannot be for serious software

development That is the wrong impression since we are talking about practical engineering

practices that are based on serious mathematics but which have been speciabzed for the real world
of software development.

We believe that sufficient evidence now exists to reach a conviction that any effort devoted

to improving software engineering practices that does not utilize Qeanroom Engineering practices

will yield only marginal returns. TherefOTC, we believe that this conviction should be central to the

deliberations of the Woricshop on Assurance of High Integrity Software.

D6

NIST-114A

(REV. 3-90)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1. PUBUCATION OR REPORT NUMBER

NIST/SP-500/190
2. PERFORMINQ ORGANIZATION REPORT NUMBER

3. PUBUCATION DATE

August 1991
4. TITLE AND SUBTITLE

Proceedings of the Workshop on High Integrity Software; Gaithersburg, MD; Jan. 22-23, 1991

5. AUTHOR(S)

Dolores R. Wallace, D. Richard Kuhn, John C. Cherniavsky

6. PERFORMINQ ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MD 20899

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

Final
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

Same as item #6

10. SUPPLEMENTARY NOTES

11. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOGRAPHY OR
UTERATURE SURVEY, MENTION IT HERE.)

This paper provides information related to the National Institute of Standards and
Technology (NIST) effort to coordinate an effort to produce a comprehensive set of
standards and guidelines for the assurance of high integrity software. The effort
may include adapting or adopting existing standards as appropriate. In particular, the
paper presents the results of a Workshop on the Assurance of High Integrity Software
held at NIST on January 22-23, 1991. Workshop participants addressed techniques, costs
and benefits of assurance, controlled and encouraged practices, and hazard analysis.
A preliminary set of recommendations was prepared and future directions for NIST activities
in this area were proposed.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITAUZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

assurance; computer security; controlled practices; cost-benefit; critical ity assessment;
formal methods; hazard analyses; high integrity systems; software safety; standards

13. AVAILABIUTY

UNUNITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

X

X

X

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS). SPRINGFIELD, VA 22161.

14. NUMBER OF PRINTED PAGES

85

15. PRICE

ELECTRONIC FORM

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SYSTEMS TECHNOLOGY

Superintendent of Documents
Government Printing Office

Washington, DC 20402

Dear Sir:

Please add my name to the annoimcement list of new publications to be issued in

the series: National Institute of Standards and Technology Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notification key N-503)

11 A. kJ JL Technical Publications

Periodical

Journal of Research of the National Institute of Standards and Technology— Reports NIST
research and development in those disciplines of the physical and engineering sciences in which
the Institute is active. These include physics, chemistry, engineering, mathematics, and computer
sciences.

Papers cover a broad range of subjects, with major emphasis on measurement methodology and
the basic technology underlying standardization. Also included from time to time are survey

articles on topics closely related to the Institute's technical and scientific programs. Issued six

times a year.

Nonperiodicals

Monographs — Major contributions to the technical literature on various subjects related to the

Institute's scientific and technical activities.

Handbooks — Recommended codes of engineering and industrial practice (including safety codes)
developed in cooperation with interested industries, professional organizations, and regulatory

bodies.

Special Publications— Include proceedings of conferences sponsored by NIST, NIST annual
reports, and other special publications appropriate to this grouping such as wall charts, pocket
cards, and bibliographies.

Applied Mathematics Series — Mathematical tables, manuals, and studies of special interest to

physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others

engaged in scientific and technical work.

National Standard Reference Data Series — Provides quantitative data on the physical and chemical
properties of materials, compiled from the world's literature and critically evaluated. Developed
unaer a worldwide program coordinated by NIST under the authority of the National Standard
Data Act (Public Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data
(JPCRD) is published bi-monthly for NIST by the American Chemical Society (ACS) and the

American Institute of Physics (AIP). Subscriptions, reprints, and supplements are available from
ACS, 1155 Sixteenth St., NW., Washington, DC 20056.

Building Science Series — Disseminates technical information developed at the Institute on building

materials, components, systems, and whole structures. The series presents research results, test

methods, and performance criteria related to the structural and environmental functions and the

durability and safety characteristics of building elements and systems.

Technical Notes — Studies or reports which are complete in themselves but restrictive in their

treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive

in treatment of the subject area. Often serve as a vehicle for final reports of work performed at

NIST under the sponsorship of other government agencies.

Voluntary Product Standards — Developed under procedures published by the Department of

Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all concerned interests with a basis

for common understanding of the characteristics of the products. NIST administers this program
as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series— Practical information, based on NIST research and experience,

covering areas of interest to the consumer. Easily understandable language and illustrations

provide useful background knowledge for shopping in today's technological marketplace.
Order the above A75T publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NIST publications— FIPS and NISTIRs—from the National Technical Information

Service, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)— Publications in this series

collectively constitute the Federal Information Processing Standards Register. The Register serves

as the official source of information in the Federal Government regarding standards issued by

NIST pursuant to the Federal Property and Administrative Services Act of 1949 as amended.
Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315,

dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NIST Interagency Reports (NISTIR)-A special series of interim or final reports on work
performed by NIST for outside sponsors (both government and non-government). In general,

initial distribution is handled by the sponsor; public distribution is by the National Technical

Information Service, Springfield, VA 22161, in paper copy or microfiche form.

U.S. Department of Commerce

National Institute of Standards and Technology

Gaithersburg. MD 20899

Official Business

Penalty for Private Use $300

