
NIST Special Publication 500-188

Guide to Expert System
Building Tools for

Microcomputers

Christopher E. Dabrowski

EHzabeth N. Fong

I
N!ST

f PUBLICATIONS

-QC
100

.U57

//500-188

1991

Computer
Systems
Technology
U.S. DEPARTMENT OF
COMMERCE
National Institute of

Standards and

Technology

Nisr
NATL INST OF STAND S TECH R.I.C-

REFERENCE

mi
NIST Special Publication 500-188 /p/'/(

Guide to Expert System
Building Tools for

Microcomputers

Christopher E. Dabrowski

EHzabeth N. Fong

Computer Systems Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

July 1991

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

7^

Reports on Computer Systems Technology

The National Institute of Standards and Technology (NIST) has a unique responsibility for computer

systenns technology within the Federal government. NIST's Computer Systems Laboratory (CSL) devel-

ops standards and guidelines, provides technical assistance, and conducts research for computers and

related telecommunications systems to achieve more effective utilization of Federal information technol-

ogy resources. CSL's responsibilities include development of technical, management, physical, and ad-

ministrative standards and guidelines for the cost-effective security and privacy of sensitive unclassified

information processed in Federal computers. CSL assists agencies in developing security plans and in

improving computer security awareness training. This Special Publication 500 series reports CSL re-

search and guidelines to Federal agencies as well as to organizations in industry, government, and
academia.

National Institute of Standards and Technology Special Publication 500-188
Natl. Inst. Stand. Technol. Spec. Publ. 500-188, 147 pages (July 1991)

CODEN: NSPUE2

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1991

PREFACE

The Computer Systems Laboratory (CSL) (formerly the Institute
for Computer Sciences and Technology (ICST)) within the National
Institute of Standards and Technology (NIST) has a mission under
Public Law 89-306 (Brooks Act) to promote the "economic and
efficient purchase, lease, maintenance, operation, and utilization
of automatic data processing equipment by Federal departments and
agencies." When a potentially valuable technology first appears,
CSL may be involved in research and evaluation. Later on,
standardization of the results of this research, in cooperation
with voluntary industry standards bodies, may best serve Federal
interests. Finally, CSL helps Federal agencies make practical use
of existing standards and technology through consulting services
and the development of supporting guidelines and software.

This report provides system managers, planners, and potential
expert system developers with a readable description of expert
system building tools for the microcomputer environment. Certain
commercial software products and companies are identified in this
report. Such identification does not imply recommendation or
endorsement by the National Institute of Standards and Technology,
nor does it imply that the products identified are necessarily the
best available for the purpose.

iii

ACKNOWLEDGMENTS

The technical work for this report was done through extensive
review of published literature and hands-on analysis of commercial
expert system building tools. We would like to thank the vendors
for their cooperation and for their donation of these tools to the
CSL Knowledge-Based Systems Laboratory.

We would also like to acknowledge the contributions of David
Jefferson, Steven Ray, Daniel Benigni, Joseph Collica, and Bruce
Rosen, of NIST who reviewed earlier versions of this paper and
provided valuable advice. Candy Leatherman and Jennifer Lindeman
proofread the document and helped with preparing figures and
tables. Special thanks is also due to Steven Oxman, whose advice
in preparing the final version of this report was particularly
valuable. We also wish to express appreciation to Kenneth Reddy
who provided programming assistance during the analysis and
evaluation of tools.

v

ABSTRACT

Microcomputer-based expert system building tools
(microcomputer-based ESBTs) , sometimes known as expert system
shells, are software packages for development of expert systems
that run on microcomputers. This report provides system managers,
planners, and potential expert system developers with a readable
description of ESBTs for microcomputers including a detailed
description of specific tool features and the capabilities they
support. The technical content of this report is based on analysis
of commercially available ESBTs. However, individual commercial
products are not described, compared, or ranked.

Keywords: artificial intelligence; expert system; expert system
building tool; expert system shell; inference; knowledge base;
knowledge-based system; knowledge engineering; knowledge
representation; microcomputer; object-oriented programming;
production rule.

vii

TABLE OF CONTENTS

1. INTRODUCTION 1
1.1 Motivation 1
1.2 Scope 2

1.3 Organization 3

1 . 4 How to Read This Report 4

2. EXPERT SYSTEM CONCEPTS . . 7
2 . 1 Background and History 7
2.2 What Are Expert Systems? 8

2 . 3 The Role of Heuristic Knowledge 9

2.4 The Elements of an Expert System 10
2.4.1 The Knowledge Base 11
2.4.2 The Inference Engine 12
2.4.3 Expert System Interfaces 14

2.5 Differences Between Expert System Programs and
Conventional Computer Software 14

2.6 The Role of Expert System Building Tools 15

3. EXPERT SYSTEMS IN OPERATION 17
3 . 1 The Need for Expert Systems 17
3.2 An Example of an Expert System 18
3 . 3 How an Expert System Solves a Problem 19

3.3.1 Use of an Inference Strategy 19
3.3.2 Arriving at a Solution 19

3.4 Expert Systems and Problem Complexity 2 2

3.5 How Expert Systems Explain Their Actions 2 3

3.6 Interfacing Expert Systems to Other Software . . 24
3.7 Embedded Expert Systems 27

4. APPLICATIONS OF EXPERT SYSTEM TECHNOLOGY 2 9

4.1 Classes of Expert System Applications 29
4.1.1 Expert Systems That Select Solutions 29
4.1.2 Expert Systems That Construct Solutions . . 3 0

4.1.3 Selection vs. Construction in the
Microcomputer Environment 31

4.2 Deploying Expert Systems Within the Organization . 32
4.3 Characteristics of Appropriate Problems 3 2

4.4 Characteristics of Knowledge Used to Solve the
Problem 3 3

4.5 The Scope and Size of the Problem 34
4.6 The Source of Expertise 34
4.7 Areas to Avoid 3 5

4 . 8 Summary and Further Sources 3 6

5. DEVELOPING EXPERT SYSTEMS 3 7

5.1 The Expert Systems Development Paradigm 3 7

5.2 Stages of Development 3 9

5.3 The Domain Expert as System Developer 4 0

5.4 General Categories of Software for Expert Systems
Development 41

ix

5.5 Differences Between ESBTs and Programming
Languages 42

6. ANALYZING MICROCOMPUTER-BASED EXPERT SYSTEMS BUILDING
TOOLS 45
6.1 General Categories of ESBTs 45
6.2 Contrasting and Comparing Categories of ESBTs ... 46
6.3 The "Downscaling" of ESBT Capabilities 47
6.4 The ESBT Architecture and Its Major Features ... 48
6.5 Criteria for Analyzing ESBT Features 51

7. FEATURES OF THE DEVELOPER INTERFACE 53
7.1 Knowledge Entry Facilities 53
7.2 Features for Knowledge Base Analysis 55

7.2.1 Facilities for Syntactic Analysis During
Program Compilation 55

7.2.2 Facilities for Analyzing Structure of
Knowledge Bases 56

7.2.3 Facilities for Analyzing Execution of
Expert Systems 57

7.3 A Typical Development Session Using an ESBT ... 58
7.4 Learning to Use an ESBT 59
7.5 The Development Interface and Application

Prototyping 60
7.6 ESBTs and Long-term Maintenance of Knowledge

Bases 61
7.7 Summary of Development Interface Features 62

8. SUPPORT FOR BASIC INFERENCE CAPABILITIES 65
8.1 Backward Chaining 65

8.1.1 The Backward Chaining Process 65
8.1.2 Supporting Search in Backward Chaining

Systems 67
8.1.3 Control Knowledge 70

8.2 Forward Chaining 71
8.2.1 The Forward Chaining Process 71
8.2.2 An Example of Forward Chaining 72
8.2.3 Supporting Search in Forward Chaining

Systems 75
- 8.2.4 Daemons 75

8.3 Other Inference Strategies Supported by ESBTs ... 76
8.4 Support for Reasoning Under Uncertainty 77

8.4.1 Certainty Factors '

. 77
8.4.2 Other Methods for Reasoning About

Uncertainty 78
8.5 Inductive Systems 79

. _ 8.6 Analysis of ESBT Inference Capabilities 82
8.7 Summary of Features Supporting Inference

},:;. Capabilities ,: , 83

X

9. SUPPORT FOR KNOWLEDGE REPRESENTATION 8 5

9.1 Production Rules That Use Simple Variables 86
9.2 Representing Complex Information 87

9.2.1 Basic Structures Supported by ESBTs 88
9.2.2 Defining Generic Types of Structures 89

9.3 Production Rules and Complex Information 90
9.3.1 Patterns 9 0

9.3.2 Pattern Matching in Production Rules 91
9.3.3 The Power of Pattern Matching 92
9.3.4 Pattern Matching and Forward Chaining ... 93
9.3.5 Pattern Matching and Backward Chaining ... 94

9.4 Representing Knowledge in Frames 9 5

9.4.1 Capabilities Supported by Frame Systems . . 95
9.4.2 Generalization/Specialization Hierarchies . 96
9.4.3 Integrating Rules and Frames 98
9.4.4 Analysis of Frame Systems and ESBTs 99

9.5 ESBTs and Object-Oriented Programming 99
9.5.1 Summary of Features of Object Systems ... 99
9.5.2 Analysis of Object Systems 100

9.6 Summary of Features for Knowledge Representation . 101

10. FEATURES FOR CONSTRUCTING END USER INTERFACES 105
10.1 Features of Simple End User Interfaces 105
10.2 Constructing Advanced End User Interfaces 107

10.2.1 Advanced Features Currently Available . . . 108
10.2.2 Using Advanced User Interface Construction

Facilities 109
10.3 Hypertext 110
10.4 Explanation Generation Facilities 110
10.5 Summary of End User Interface Construction

Features Ill

11. SUPPORT FOR CONSTRUCTING INTERFACES TO OTHER SOFTWARE
SYSTEMS 113
11.1 Interfaces to Microcomputer DBMSs 114
11.2 Interfaces to Procedural Programming Languages . . 115
11.3 Interfaces to Other Microcomputer-Based Software . 116
11.4 Accessing Remote Software Systems 117
11.5 Support for Development of Embedded Expert

Systems 118
11.6 ESBTs and Application Portability 119
11.7 Summary of External Interface Construction

Features 119

12. SELECTING ESBTs FOR USE IN AN ORGANIZATION 121
12.1 Factors in Selecting an ESBT 121
12.2 Selection Steps 122
12.3 Level of Effort in the Selection 124
12.4 Other Considerations in Selection 124

xi

13. CONCLUSIONS AND FUTURE TRENDS 127
13.1 The State of the Art in Microcomputer ESBTs . . . 127
13.2 Near-Term Evolution of Microcomputer-Based ESBTs . 128
13.3 Other Possible Near-Term Additions 129
13.4 The Need for Standardization .13 0

13.5 Final Remarks 131

14. REFERENCES .13 3

INDEX 13 9

xii

LIST OP FIGURES

Figure 1.1. Road Map to Assist Readers of This Report. ... 6

Figure 2.1. Expert Systems and Artificial Intelligence. . . 7

Figure 2.2. An Example of a Heuristic 9

Figure 2.3. The Architecture of an Expert System 11
Figure 2.4. An Example of Using a Rule to Do Inference ... 13
Figure 3.1. A Simple Knowledge Base 18
Figure 3.2. The Sequence of Inference 21
Figure 3.3. Explaining How a Conclusion Was Reached 2 3

Figure 3.4. Explaining the Meaning of a Term 2 4

Figure 3.5. Expert System Interfaces 2 6

Figure 3.6. An Embedded Expert System 27
Figure 5.1. Iterative Development of an Expert System. ... 38
Figure 5.2. Classes of Software Tools 43
Figure 6.1. Comparison of ESBT Classes 47
Figure 6.2. An ESBT Architecture 50
Figure 8.1. Model of Goal Directed Backward Chaining. ... 66
Figure 8.2. Depth-First Search 68
Figure 8.3. Breadth-First Search 69
Figure 8.4. Rules for Assembling Machine Components 7 3

Figure 8.5. A Rule With a Certainty Factor 78
Figure 8.6. The Structure of the Resulting Decision Tree . . 81
Figure 9.1. A Production Rule With Variables 86
Figure 9.2. Generic Types and Instances 89
Figure 9.3. Example of Pattern Matching 9 2

Figure 9.4. An Example of a Frame 95
Figure 9.5. Example of a Simple Frame Hierarchy 97
Figure 11.1. ESBT Bridges to Other Software Systems 113

xiii

LIST OF TABLES

Table 7.1. Summary of Development Interface Features 63
Table 8.1. Set of Examples for an Inductive System 80
Table 8.2. Summary of Features Supporting Inference

Capabilities 84
Table 9.1. Some Possible Values for Production Rule

Variables 87
Table 9.2. Summary of Selected Knowledge Representation

Features 102
Table 10.1. Summary of End User Interface Construction

Features 112
Table 11.1. Summary of External Interface Construction

Features 120

xiv

1 . INTRODUCTION

Recent years have seen substantial growth in the number of
expert systems being developed and fielded in the microcomputer
environment. This growth is due, to a great extent, to the advent
of expert system building tools (ESBTs) designed for use on
microcomputers. ESBTs, sometimes referred to as expert system
shells, are special purpose software packages that are used to
develop expert systems. Currently, there are a large number of
commercial ESBTs available for the microcomputer environment.

While the structure and appearance of many of these products
are similar, there are differences in individual tool features and
the specific capabilities the features support. These differences
influence selection and use of ESBTs for expert system projects.
Selecting and using an ESBT requires both an understanding of how
ESBTs are used and an in-depth knowledge of many of the features
and capabilities of currently available tools. This report
fulfills these needs by providing the following:

(1) A description of expert system technology in the microcomputer
environment including an overall picture of expert systems
development and use of microcomputer-based ESBTs.

(2) A detailed analysis of microcomputer ESBTs, including
individual features and their capabilities.

(3) An identification and explanation of important trends and
developments in this area of technology.

The report was compiled as a result of extensive review of
published literature on expert system technology and ESBTs, through
experiences in developing expert systems, and through analysis of
commercial ESBTs.

1.1 Motivation

This report is motivated by a desire to provide a broad range
of computer professionals, including project managers and potential
application developers, with an in-depth understanding of
microcomputer-based ESBTs. This motivation arises from important
trends occurring in the development and utilization of expert
systems in the microcomputer environment.

Expert systems are computer programs that store human problem
solving knowledge, or expertise, and use it to solve difficult
problems. As such, expert systems have proven to be a successful
means of automating human expertise. Increasingly, organizations
are beginning to see the value of developing and implementing
expert systems on microcomputers. In the decade of the 1980s,
microcomputers have become an inexpensive, reliable, and convenient

1

mechanism for providing computer processing power. The combination
of expert system technology and microcomputers, used when and where
appropriate, is an effective means of raising productivity of an
organization. In recent years, the proportion of expert systems
being developed on microcomputers has increased [WEIN90].

ESBTs provide some important advantages in developing expert
systems. ESBTs provide a customized software development
environment and a set of prepackaged software components for
constructing individual expert system programs. Using an ESBT can
allow an expert system to be developed more easily and quickly than
would be possible using a programming language such as LISP or
FORTRAN. However, this is true only if the capabilities of the
ESBT match the requirements of the application being developed.
Therefore, an in-depth understanding of ESBTs, as well as expert
system technology in general, is an important prerequisite to the
success of an expert systems development project. In many cases
this understanding is lacking.

ESBTs have been commercially available only since the middle
of the 1980s. Being a relatively new and still evolving area of
technology, there is a lack of a thorough understanding about the
capabilities and limitations of existing ESBTs in general and about
those of microcomputer-based ESBTs in particular. This is
especially true when it comes to understanding tool capabilities
at the level of detail necessary to judge their usefulness for
specific applications.

The lack of understanding is due, in part, to long-standing
misconceptions about the nature of expert system technology. It
is also due to the relatively small number of publications that
provide detailed descriptions of ESBT features and their
capabilities. Finally, understanding of ESBTs is made difficult
by continuing changes taking place in this new technology. Nowhere
is the pace of change more rapid than in microcomputer-based ESBTs.

1.2 Scope

The capabilities of microcomputer-based ESBTs cannot be fully
understood apart from other areas of expert system technology.
Therefore, it is important to provide a general discussion of
expert system technology. The discussion seeks to address some
important questions listed below.

o What are expert systems, and how do they work? How do expert
systems differ from conventional software? What benefits are
provided by expert system technology?

2

o What are appropriate applications for expert systems on
microcomputers? What are inappropriate applications? What
kinds of applications are most suitable for development using
ESBTs? When should other kinds of software be used instead?

o What is the role of ESBTs in the development of expert
systems? What kinds of programming skills are necessary to
learn to use ESBTs? To what extent can ESBTs be used by non-
computer professionals?

This general discussion will be of particular value to managers,
planners, and others in organizations with an interest in expert
system technology. For readers less familiar with expert system
technology, the discussion provides background for a detailed
analysis of individual features of microcomputer-based ESBTs.

The detailed analysis seeks to address the following relevant
questions.

o What is the state of the art in microcomputer-based ESBTs?
What are the limitations? What features are commonplace and
can be expected in a commercial microcomputer-based ESBT?

o What features are currently being introduced in the
microcomputer ESBT market? What new features, or enhancements
in current capabilities, can be expected in the future?

o How can particular ESBT capabilities be used to fulfill
specific requirements and implement specific functions of an
expert system?

o How do individual features in ESBT development environment
support development of expert system applications? What
features are most, or least, important in development?

o Which ESBT features require well-developed computer skills to
use? Which features can be used by non-computer specialists?

The detailed descriptions of features are also useful for
formulating criteria to select ESBTs for specific projects.

1.3 Organization

The first five chapters provide the foundation for
understanding expert system technology in the microcomputer
environment

.

o Chapter 2 contains an overview of expert systems concepts,
including a description of how expert systems work. The
benefits offered by expert system technology are discussed.

o In chapter 3, the operation of an expert system is illustrated
by means of an example.

o Chapter 4 focuses on applications of expert systems in the
microcomputer environment. The major kinds of expert systems
that can be developed are described. Criteria for selecting
expert system applications are discussed.

o Chapter 5 provides an overview of the expert systems
development process and introduces the major classes of
software used in development. The role of software for
development of expert systems, including ESBTs, is discussed.

o In chapter 6, the characteristics of the ESBT architecture
are presented. The major components of ESBTs are identified
and described. Categories of ESBTs are introduced. The
criteria used in analyzing microcomputer-based ESBT features
are described.

The remaining chapters concentrate on detailed description and
analysis of ESBTs. Each major component of the ESBT architecture
is covered in a separate chapter.

o Features of application development environments provided by
ESBTs are covered in chapter 7

.

o ,, Expert system methods for applying knowledge to solve problems
•

. through inference procedures are covered in chapter 8.

o Features used to represent and store expert knowledge are
covered in chapter 9.

o ESBT features for constructing interfaces between expert
systems and humans who use them are covered in chapter 10.

o ESBT features for constructing external interfaces for
communicating with other software systems are covered in
chapter 11.

Chapter 12 contains a discussion about guidelines for selecting
ESBTs. Finally, chapter 13 presents conclusions and discusses
future trends.

1.4 How to Read This Report

The development of an expert system can involve different
groups in an organization, including managers, application
developers, persons who provide expertise for the expert system,
and users of the finished product. The use of ESBTs can therefore
be examined from a number of different perspectives. Managers and
others engaged in program planning may need background in expert

4

system technology and general information about ESBTs. Application
developers with experience in expert systems development may wish
to focus on detailed descriptions of features. Application
developers with no experience in expert systems development may
need both general background as well as detailed information on
ESBT features and their capabilities. For these persons, here are
some guidelines about how this report may be read.

o Many managers and program planners are in the process of
learning about expert systems and are considering future uses
of this technology. These people may be most interested in
chapters 2-5, parts of chapter 6, and chapter 12.

o Other people in managerial positions may be members of
organizations that are currently developing expert systems.
These persons may wish to focus on application development and
use of ESBTs. For these people, chapters 4, 5, and 6 will be
of interest. Portions of chapters 7-11 that describe specific
features of interest may also be read. Chapter 12 on
selection of ESBTs should be of special benefit.

Developers of expert systems may be divided into several
categories based on background and interests. Therefore, each may
view expert system technology and ESBTs differently.

o Experienced expert systems developers may need in-depth
knowledge about ESBTs. These persons should read chapter 7

to the end. Chapter 12 on selection of ESBTs may be of
special interest.

o For computer specialists with little experience in expert
systems or AI, the entire report may be read.

o In some cases, persons who are not computer specialists, but
who have some knowledge about computers, may wish to develop
expert systems. These persons may need to learn about both
expert systems and ESBTs. For these people, chapters 2-5
should be read for background purposes. Selected portions of
chapters 6-13 may also be of interest, particularly those that
discuss ESBT features requiring little or no programming
skill.

Figure 1.1 provides a "road map" to assist readers of this
report

.

5

Managers and
program planners
investigating expert
systems technology

Managers supervising
ongoing expert system
projects

Experienced expert
system developers

Computer specialists

experienced in

conventional software
development

Non-computer
specialists

Figure 1.1. Road Map to Assist Readers of This Report

6

2. EXPERT SYSTEM CONCEPTS

This chapter provides an introduction and overview of the main
concepts underlying expert system technology. The methods employed
by expert systems are described, and the features of a typical
expert system architecture are summarized. The role of ESBTs is
discussed. The next chapter will present an example of an expert
system in operation and examine how this technology can be applied
to solve real-world problems.

2.1 Background and History

Expert systems are a branch of the discipline of artificial
intelligence. Artificial intelligence (AI) can be described as the
study of theories and methods for automating "intelligent"
behavior. AI has been a research discipline for over three
decades, with other major subfields such as robotics, machine
vision, and natural language understanding.

Artificial inteiiigence

Figure 2.1. Expert Systems and Artificial Intelligence.

7

Research in expert systems began in the late 1960s and early
1970s. MYCIN, an experimental system for diagnosis of blood
diseases [SHOR76], was an early demonstration of the potential of
expert systems. The beginning of the 1980s saw the first practical
applications of expert systems in real-world environments.

Since the middle of the 1980s, there has been a modest boom
in the development of expert systems, both in government and
industry. Initially, expert systems were perceived by some as
holding forth the promise of revolutionizing the computer industry.
Some hoped that expert systems could provide computers with a
general capability for intelligent problem solving that could be
applied to almost any problem. Such predictions proved to be
misleading. As the technology matured, these views have gradually
been corrected. More and more, expert systems are being realized
for what they are: specialized software systems for automating
expert problem solving for specific types of problems.

2.2 What Are Expert Systems?

An expert system is a computer program that provides
assistance in solving difficult problems normally handled by human
experts. An expert system stores knowledge about how a particular
type of problem is solved. When an example of the problem is
presented, the expert system uses the stored knowledge to find a
solution.

Expert system programs differ from conventional computer
programs. Conventional programs are designed to solve problems
for which all the factors used in the decision-making process can
be completely analyzed. Typically, this analysis can be expressed
in an algorithm that, when its steps are executed, will arrive at
a correct solution. A good example is a payroll calculation
program. Algorithms for performing such a task can be encoded in
a conventional programming language.

In contrast, expert systems are aimed at problems that cannot
always be solved using a purely algorithmic approach. These
problems are often characterized by irregular structure, incomplete
or uncertain information, and considerable complexity. In such
cases, the method of problem solving either cannot easily be
expressed in algorithmic form or algorithms are altogether unknown.
Solutions must be obtained by reasoning from available evidence
and sometimes making subjective "best guesses." Examples of
problems with these characteristics are medical diagnosis,
equipment troubleshooting, and database design.

The ability to solve such problems requires considerable
knowledge or expertise about a specific domain of endeavor.
Typically, such ability is possessed by only a few human experts,
who are referred to as domain experts .

8

2.3 The Role of Heuristic Knowledge

Much of the knowledge of domain experts in solving practical
problems consists of heuristics acquired through learning and
experience. A heuristic is a rule of thumb, fact, or even a
procedure that can be used to solve some problem, but it is not
guaranteed to do so. It may fail. Heuristics can be conveniently
regarded as simplifications of comprehensive formal descriptions
of a real-world system.

For example, it is conceivable that all aspects of the
operation of a machine could be completely described in a complex
physical or mathematical model, including circumstances under which
machines malfunction. In principle, this model could be used to
analyze machine problems and (algorithmically) determine
malfunctions with virtual certainty. In practice, complete models
are often difficult to develop due to lack of necessary information
about the problem and its inherent complexity. Therefore, for many
problems, domain experts find it practical and necessary to
substitute heuristic knowledge for a complex model.

IF smoke is coming from the machine
THEN the machine has overheated

Figure 2.2. An Example of a Heuristic.

9

Though expert system programs do utilize conventional
techniques, their overall problem-solving strategy is driven by
application of heuristic knowledge. Expert systems can be thought
of as software systems that (1) maintain heuristic knowledge about
solving certain kinds of problems and (2) apply this knowledge to
solve specific instances of the problem, usually using some form
of automated inference. The expert system's problem-solving
ability is a function of the quality and quantity of knowledge it
internally represents and uses. To internally represent knowledge
and carry out inference, expert systems utilize specialized
programming techniques developed from AI research.

It should be pointed out that an expert system can seldom
completely replace a human expert. Rather, its knowledge base
contains knowledge about solving the most commonly encountered
problems. Furthermore, the expert system's problem-solving ability
cannot usually be extended to solve problems that are outside the
scope of its knowledge.

2.4 The Elements of an Expert System

Expert systems store expert knowledge and apply it "on demand"
to solve problems. Most often the user of an expert system is a
person. The user may also be another software system or even a
mechanical device. A human user, known as an end user , usually
provides information to the expert system via a computer terminal.
The expert system uses inference procedures to apply its stored
knowledge to the facts describing a problem. The systematic
application of inference leads to solutions that are then displayed
at the terminal.

The operation of an expert system can be viewed in terms of
the interaction of distinct components. The knowledge base stores
knowledge about how to solve problems. Inference procedures are
executed by a software module called the inference engine . If the
user of the expert system is a person, communications with the end
user are handled via an end user interface . Figure 2.3 provides
a graphical illustration that summarizes the architecture of a
typical expert system.

10

Expert
System

END
USER

Facts About
Problem

Solutions

USER INTERFACE

acts About
Problem

i Solutions

INFERENCE ENGINE

i Knowledge
i (Rules)

KNOWLEDGE BASE

Figure 2.3. The Architecture of an Expert System.

If the user of the expert system is another software system

instead of a person, different external interfaces will be

required.

Each of the major parts of the expert system architecture can

be further elaborated.

2.4.1 The Knowledge Base

Knowledge is stored in the knowledge base using symbols and

data structures to stand for important concepts. The symbols and

data structures are said to represent knowledge. Knowledge

11

representation can take many forms. The most common form is the
production rule , shown below:

IF MACHINE Is Smoking
THEN MACHINE Is Overheating.

Production rules are a particularly convenient way of expressing
heuristic knowledge. The overall scheme for organizing and
representing knowledge is sometimes called a knowledge
representation system . The knowledge base refers to the actual
store of knowledge for a particular expert system.

A knowledge representation system may be simple, consisting
only of data structures for representing rules. Or knowledge
representation may incorporate other more complex structures, which
are discussed later in the report. Knowledge represented in data
structures, such as rules, is said to be stated declaratively

.

Declarative knowledge is knowledge that is stated explicitly and
is intended to be accessible to persons who may need to see it,
such as domain experts. The ability to make its declarative
knowledge accessible and understandable is one of the most
important services provided by a knowledge representation system.

Declarative knowledge representation states what is known
about how to solve a problem. As such, this knowledge is static
and remains the same, as the expert system solves different
problems. However, an expert system must also store information
about the individual problems as it works on them. This
information is maintained in a structure sometimes called a context
file [MART88] . Information in a context file is specific to the
problem the expert system is working on and changes as new
information is acquired.

2.4.2 The Inference Engine

The inference engine is a software module that executes
procedures for applying knowledge to produce new information about
a problem. In production rule systems, an inference engine
compares rules against known facts in the context file to determine
if new facts can be inferred. The conditions in the premise, or
IF part, of a production rule are compared against known facts.
If these conditions are satisfied, the facts in the conclusion, or
THEN part, can be inferred. The newly concluded facts are then
added to the context file of the expert system. Figure 2.4 shows
how inference takes place.

12

KNOWLEDGE BASE

IF MACHINE Is Smoking
THEN MACHINE Is Overheating

Update of
Context File

INFERENCE ENGINE

MACHINE is Smoking
therefore conclude:
MACHINE Is Overheating

Conclusion

C
MACHINE Is Overheating

Figure 2.4. An Example of Using a Rule to Do Inference.

The process of inference is sometimes described in terms of
reasoning with symbols, or reasoning symbolically. Symbolic
reasoning refers to the manipulation of symbols that takes place
during the process of inference. Symbolic reasoning is intended
to emulate, albeit crudely, the way humans might manipulate
concepts and ideas when reasoning. In the example above, symbolic
reasoning is very simple, consisting of a simple comparison and
update to a database of facts. Other forms of symbolic reasoning
are more complex.

To solve a specific instance of a problem, a large number of
rules may have to be examined. An inference engine uses an
inference strategy to guide the order by which rules are examined
and inferences made. Inference strategies are an important aspect
of expert systems. Inference strategies provided by ESBTs are
discussed more fully in chapters 8 and 9.

13

2»4.3 Expert System Interfaces

Expert systems communicate with human users as well as other
software and hardware systems.

Expert systems communicate with human users via an end user
interface. The purpose of the end user interface is to obtain
information about the problem from the end user and to display
solutions. To obtain information, the interface may display
questions at a terminal and prompt the end user for answers.
Solutions may consist of text statements. More elaborate end user
interfaces may use graphics and hypertext.

A useful function of an expert system is the ability to
explain its actions. While using an expert system, the end user
may wish to know why questions are being asked or why certain facts
were concluded. When the solution is displayed to the end user,
the user may request an explanation of how the solution was
reached. The end user interface contains procedures that generate
explanations that can be shown to the end user.

In many practical applications, an expert system must
interface, and exchange data, with other software and hardware
systems. The number of expert systems that have nonhuman users,
such as other software systems or electronic process control
devices, is increasing. External interfaces between expert systems
and other systems are discussed further in chapter 3

.

2.3 Differences Between Expert System Progrcuns and Conventional
Computer Software

Expert system programs differ from conventional software in
four important ways. First, knowledge is separated from program
control; i.e., the knowledge base and inference engine are
separate. Second, knowledge is represented declaratively . Third,
expert systems perform computation through symbolic reasoning. And
finally, expert systems can explain their actions. Each of these
distinguishing capabilities are elaborated below.

o Separation of Knowledge From Program Control

In conventional programs written in languages such as FORTRAN
or C, knowledge about a problem domain is contained in
programming language statements. As such, knowledge about how
a problem is solved is combined directly with specifications
for control of program execution. In an expert system,
knowledge is represented in data structures, such as
production rules, which are stored in a knowledge base. The
knowledge base is separate from the inference engine, which
controls program execution.

14

o Declarative Representation of Knowledge

Knowledge represented using symbols and data structures, such
as rules, is explicit in the sense that it states what
knowledge exists, not how the knowledge is applied. By
representing knowledge declaratively , the knowledge of an
expert system can be more readily understood and accessed by
individuals who are not specialists in programming languages.

o Symbolic Reasoning and Inference

Symbolic reasoning refers to the manipulation of symbols and
data structures by the inference engine. Symbolic reasoning
is intended to emulate the way humans might manipulate
concepts when solving a problem. In the simplest case, this
may involve testing a rule to determine if its IF part is
satisfied. If so, the conclusion of the rule may be added to
the expert system's context file. Expert systems can also be
characterized by use of defined inference strategies. These
strategies are more fully described in chapters 8 and 9.

o Explanation of Actions

Declarative knowledge and symbolic reasoning support the
ability of an expert system to explain its actions by showing
the chain of reasoning created by the rules used to solve a
problem. An example is provided in the next chapter.

In addition to these capabilities, some expert systems represent
knowledge that is uncertain as well as apply this knowledge to
uncertain data. Reasoning under uncertainty, as this capability
is known, can be used for heuristic knowledge. ESBT support for
reasoning under uncertainty is discussed in chapter 8

.

ESBTs are designed to support the development of software
systems that require the capabilities described in this chapter.

2.6 The Role of Expert System Building Tools

To develop an expert system, it is necessary to implement the
major components of the expert system architecture described in
section 2.3. This work is often made easier by using an ESBT.

ESBTs provide a customized software development environment
and a set of prepackaged software components, or building blocks,
for implementing individual expert system applications. The
development environment supports construction of the expert system
program and includes facilities for entering the expert's knowledge
into the knowledge base. The building blocks supplied by the ESBT
are derived directly from the expert system architecture. They
include:

15

o A knowledge representation system for creating a knowledge
base.

o The inference engine.

o Software components for constructing interfaces between the
expert system and its external environment.

ESBTs are often referred to as "shells." An expert's knowledge is
stated declaratively . It is therefore distinguishable and
separable from the knowledge representation system provided by the
ESBT. The expert's knowledge may be inserted in, and removed from,
the ESBT at the discretion of the developer. This is why ESBTs are
referred to as "shells."^

ESBTs greatly speed implementation of individual expert
systems. By providing prepackaged components, the ESBT spares the
developer the necessity of programming a large part of an
application from scratch. ESBTs can thus be distinguished from
conventional programming languages and from artificial intelligence
languages such as LISP or Prolog precisely because they provide a
development environment and the building blocks necessary to
support construction of expert systems.

In this report, the term ESBT will be used instead of
"shell." The term ESBT conveys the idea of a more comprehensive
development tool for expert systems. This is consistent with
ongoing developments in commercial microcomputer-based ESBTs.

16

3. EXPERT SYSTEMS IN OPERATION

This chapter describes how expert systems are employed in an
operational environment. First, the circumstances under which an
expert system might be used to solve real-world problems is
illustrated. This is followed by an example of how an expert
system solves a problem. The example reinforces the concepts
presented in the preceding chapter. Then, this chapter discusses
the increasingly important subject of expert system interfaces to
other software systems, including issues pertaining to the
integration of expert systems in larger computing environments.

3.1 The Need for Expert Systems

In many organizations, problem-solving expertise is scarce.
Training people to become proficient in solving specialized
problems takes time and requires substantial investment. Hence,
experts are always in short supply. In an operational setting, the
frequency with which problems occur often exceeds the capabilities
of a limited number of experts. In some situations, experts may
be geographically distant from the site of the problem, or problems
may occur during times experts are unavailable. Consequently,
problems must be handled by less qualified personnel. This can
cause delays and lead to inconsistent or uneven decision making.

One example is a factory floor in which highly specialized
equipment problems must be diagnosed and repairs effected.
Normally, this task is performed by a trained expert having years
of experience. Work proceeds normally if the frequency of
malfunctions is relatively low and the expert is readily available.
However, a company may have factories at different locations, or
the factories may operate around-the-clock. Under these
circumstances, demand for experts may quickly exceed their
availability, resulting in delays and problems.

One solution is to develop an expert system to help identify
frequently occurring machine malfunctions and suggest solutions.
Such an expert system could be deployed on the factory floor and
used to solve routine problems that would otherwise have to be
handled by the expert. If the expert system could solve 8 0% of
the problems the expert normally solves, delays could be eliminated
and productivity improved. Copies of the expert system could be
distributed throughout the company, making expertise available at
several locations around the clock.

This is a simplified description of the productive use of an
expert system. Certainly, there are potential problems in this
scenario that could defeat effective use of expert system
technology. Chapter 4 discusses criteria for selecting expert
system applications for the microcomputer environment. But first,
let's see how an expert system might diagnose a machine problem.

17

3.2 An Example of an Expert system

This section expands on the equipment failure example
introduced above to illustrate an expert system in operation. Let
us assume a simplified knowledge base, consisting of the rules
depicted in figure 3.1 below.

EQUIPMENT PROBLEM RULES

Ruiel
IF COOLING SYSTEM WARNING LIGHT Is On
& MACHINE Is Overheating
THEN PROBLEM Is Cooling System Failure

SOLUTION Is Call Technician

Rule 2
IF GENERATOR LIGHT Is On
& MACHINE Is Overheating
THEN PROBLEM Is Generator Burned Out

SOLUTION Is Replace From Inventory

Rules
IF CONVEYER BELT VIBRATION OBSERVED is True
& CONVEYER BELT Is Motionless
THEN PROBLEM Is Jammed Part

SOLUTION Is Open Door And Remove Part

MACHINE OVERHEATING RULES

Rule 4
IF TEMPERATURE LIGHT Is On
THEN MACHINE Is Overheating

Rules
IF MACHINE Is Smoking
THEN MACHINE Is Overheating

Figure 3.1. A Simple Knowledge Base.

18

A problem-solving session is initiated when a machine on the
factory floor is observed to be malfunctioning. Let us assume that
the following facts are observed: smoke is coming from the machine,
and the generator light is on. To find out what has gone wrong,
a factory employee sits down at a computer terminal and activates
the expert system program.

3.3 How an Expert System Solves a Problem

A common problem-solving approach used by an expert system is
to propose a solution and then attempt to prove it. In this case,
possible causes of the machine's problem (and appropriate remedies)
may be proposed and examined. To determine the cause, or causes,
the inference engine accesses the knowledge base and systematically
applies its rules to facts about the problem. These facts may be
obtained from the end user or external software system and stored
in the expert system's context file.

3.3.1 Use of an Inference Strategy

Many expert systems follow this problem-solving approach by
using a strategy for inference known as backward chaining . (Forward
chaining and other possible strategies are described in detail in
chs. 8 and 9.) Backward chaining begins by first attempting to
infer a solution using rules that conclude the cause of the
malfunction (Rules 1, 2, and 3 in fig. 3.1). The inference engine
attempts to satisfy the conditions of these rules with facts that
are either available in its context file or that can be inferred.
When a needed fact can be inferred by another rule, its conditions
are, in turn, examined. The strategy thus continually "works
backwards" from a rule's conclusion to its conditions, and "chains"
to other rules that infer needed facts.

3.3.2 Arriving at a Solution

The sequence of steps below (illustrated graphically in fig.
3.2) shows how backward chaining is used to find the cause of the
malfunction.

Step 1 . The inference engine attempts to prove that the
problem is in the cooling system by satisfying the conditions
of Rule 1. The end user is asked if the cooling system
warning light is on. The user replies no, causing Rule 1 to
fail.

Step 2 . The inference engine then tries to satisfy the
conditions of Rule 2. In this case, the first condition is
satisfied when the user replies that the generator light is

19

on. The inference engine must then determine if the machine
is overheating, the second condition of Rule 2. Rules 4 and
5 can be used to infer that the machine is overheating.
Therefore, the inference engine "backward chains" to each of
these rules.

Step 3 Rule 4 fails because the temperature light was not
on

.

Step 4 . Rule 5 is tried. The user is asked if the machine
is smoking and replies yes, thus satisfying the single
condition of this rule. The inference engine can then
conclude that the machine is overheating and add this fact to
the expert system's context file.

Step 5 . Rule 2 is reexamined. Since its conditions are now
satisfied, the inference engine concludes that the source of
the problem is the generator, thus providing a solution to the
problem. The conclusion is also added to the context file.

Step 6 . This conclusion, together with the advice to check
the inventory for a replacement part, is displayed at the
terminal via the end user interface.

20

[

DETERMINE WHY THE MACHINE
IS MALFUNCTIONING? 1

Steps to Infer the

Cause of the Malfunction

OBSERVED FACTS

COOLING SYSTEM LIGHT Is Off

GENERATOR LIGHT Is On
MACHINE Is Smoking

I

Try Rule 1

COOLING SYSTEM LIGHT Is NOT On
(Rule 1 fails)

I

Try Rule 2
GENERATOR LIGHT Is On
(MACHINE Is Overheating is an
unknown fact that can
be inferred)

RULE 2 Succeeds - (THE
PROBLEM IS THE GENERATOR.
DISPLAY REMEDY)

Display Solution to End User

THE GENERATOR HAS BURNED OUT,
CHECK INVENTORY FOR REPLACEMENT.

Inferring that the

MACHINE Is Overheating

ry Rule 4
TEMPERATURE LIGHT Is NOT On
(Rule 4 fails)

Try Rule 5
MACHINE Is Smoking

(Rule 5 succeeds -
MACHINE Is Overheating)

Figure 3.2. The Sequence of Inference.

This simple example is meant to give the reader some idea of
how an expert system works. Actual expert systems may have
hundreds or even thousands of rules.

21

3.4 Expert Systems and Problem Complexity

The difficulty of many real-world problems tackled by expert
systems can often be described in terms of (1) the large number of
facts that can potentially be examined, (2) the many different
solutions that can be found, or both. Examining the consequence
of each fact or combination of facts and investigating every
possible solution could result in following many alternative lines
of reasoning. The systematic examination of different lines of
reasoning in an effort to find a solution can be viewed as a search
process. For very large problems, exhaustively searching every
possibility might be impractical. Solving such problems thus
depends on reducing their size.

In many cases, the expert limits the size of the problem by
focusing on a small subset of facts and a few relevant lines of
reasoning. This allows the expert's knowledge to be captured in
a succinct set of rules. The resulting "expert systems" are small,
and the knowledge they contain can be expressed in decision tables
or decision trees.

^

For larger, more complex problems, finding a solution requires
examining considerably more information and/or considering a much
larger number of solutions. To reduce the size of the problem, an
expert system may have to select only a few lines of reasoning to
pursue from a much larger number that may be available. Heuristics
provided by the expert are used to select those lines of reasoning
with the best chance of producing a solution.

The use of heuristics to limit search is known as heuristic
search . One way heuristics can reduce search is to shift the focus
of the problem-solving effort on the most important evidence or the
most likely solutions. In the example above, the domain expert may
provide the knowledge that the machine is more likely to overheat
than it is for the cooling system to fail. Hence, the expert
system could reduce the amount of work it has to do by trying Rule
2 first. Other lines of reasoning would be tried if it was found
that the machine had not overheated. In a larger expert system,
heuristic search could be an important factor.

Search is an important area of research in AI [BARR81],
[FOX90], [RICH91], [WINS84]. ESBTs provide direct support for only
a subset of search techniques that have been developed. This topic
is discussed in chapter 8.

Such systems are often distinguished from expert systems
because of their simplicity and small size. Some specialists
prefer to call these systems knowledge systems .

22

3.5 How Expert Systems Explain Their Actions

Explanation is a helpful capability in understanding how a
complex expert system works. For instance, the end user may
request an explanation of the line of reasoning used to identify
the source of the problem. Figure 3.3 shows how an expert system
may display its line of reasoning.

USER REQUEST:

EXPLAIN HOW THE
SOURCE OF THE
PROBLEM WAS CONCLUDED?

EXPERT SYSTEM RESPONSE:

PROBLEM IS Burned Out Generator

was inferred by Rule 2 because

GENERATOR LIGHT Is On
was observed, and

MACHINE Is Overheating
was inferred.

MACHINE Is Overheating

was inferred by Rule 5 because

MACHINE Is Smoking
was observed.

Figure 3.3. Explaining How a Conclusion Was Reached.

As the figure shows, explanation of concluded facts is

accomplished by essentially "playing back" the sequence of
inferences previously made by the expert system.

Similarly, an end user may not understand certain terms and
phrases used by the expert system. For instance, the end user may

23

not understand what a Generator Light is, or where to find it. An
expert system can allow the end user to interrupt execution of the
system and request an explanation of a term. Figure 3.4 shows an
explanation of what a Generator Light is and where it is located.

USER REQUEST:

EXPLAIN WHAT THE
GENERATOR LIGHT IS.

EXPERT SYSTEM RESPONSE:

EXPLANATION

The Generator Light signals

a problem with the generator.

It Is located below the
Conveyer Belt.

Figure 3.4. Explaining the Meaning of a Term.

Explanation can be an important capability provided by an
expert system. In addition to explaining solutions to end users,
explanation can be used to verify that the expert system is working
correctly. For these reasons, ESBTs provide explanation facilities
that can be used during the development of an expert system
application and incorporated into the finished product. These
facilities are discussed in chapters 7 and 10.

3.6 Interfacing Expert Systems to Other Software

Early expert systems, for the most part, were stand alone
computer programs that did not interface with other software
systems. However, this has changed in recent years. As more and
more corporate information resources become computerized and as the
demand for expert systems increases, the necessity and importance
of expert system interfaces have also increased. Many problem-

24

solving tasks performed by expert systems now require communication
and exchange of data with other software systems.

External interfaces must therefore be considered an important
component of the overall expert system architecture. Expert
systems may require a variety of external interfaces. A few are
summarized below.

o Interfaces to Database Management Systems

Many problem-solving tasks require accessing data residing in
a DBMS. For instance, in the example above, the expert system
might check an inventory database to find out if replacement
parts are available. The expert system could initiate a call
to a DBMS or access an ASCII file.

o Computer Network Access

Many problem-solving tasks require interfacing to an
organization's DBMS or special-purpose software system that
is located on a large mainframe computer. Microcomputer-
based expert systems may access these systems via a local area
network (LAN) or other remote computing system.

o Interfaces to Procedural Computer Programs

While expert systems carry out inference procedures well, they
are not as good at performing other computations. For
instance, inference procedures are inefficient for extensive
numerical calculations or iterative processing. If such
computations are required, the expert system should initiate
calls to external software modules written in languages such
as C or FORTRAN. The external modules can then perform the
necessary computations and return the result. In some cases,
ESBTs provide libraries of mathematical functions that can be
used instead.

o Graphics and Hypertext Packages

Interfaces to graphics software packages may be necessary for
some expert system applications. Graphics packages are
important aspects of engineering software such as computer-
aided design (CAD) systems. Expert systems to perform tasks
in the engineering domain have proven valuable. Hypertext
systems enhance an expert system's explanatory capability and
provide links to text information systems.

o Other Commercial Software Packages

This includes spreadsheet programs and a variety of other
special-purpose commercial software products.

25

Figure 3.5 summarizes the various types of interfaces.

END USER

1 USER
1 INTERFACE

EXTERNAL 1

INTERFACES 1

1 INFERENCE ENGINE |

I
KNOWLEDGE BASE

|

PROGRAM FOR
MATHEMATICAL
COMPUTATIONS

Figure 3.5. Expert System Interfaces.

26

Because of the important links between expert systems and
other software systems, ESBTs should provide mechanisms to
construct external interfaces. ESBT support for construction of
external interfaces is discussed in chapter 11.

3.7 Embedded Expert Systems

In addition to expert systems that initiate calls to other
software systems, it is possible that conventional software
applications may initiate calls to expert systems to perform
special-purpose problem solving. Increasingly, expert systems are
being developed and configured as components in large complex
software applications. These systems are referred to as embedded
expert systems . In contrast to the example presented in section
3.2, the primary user of an embedded expert system is another
software application. Figure 3.6 below illustrates this concept.

MAIN PROGRAM FOR APPLICATION

MODULE

Problem
Information t

Solutions

EXTERNAL INTERFACES

INFERENCE ENGINE

i
KNOWLEDGE BASE

i
MODULE

II
MODULE MODULE

Embedded
Expert
System
Module

MODULE

Figure 3.6. An Embedded Expert System.

27

Embedded expert systems are becoming increasingly important.
ESBT facilities for constructing embedded expert systems are also
discussed in chapter 11.

28

4. APPLICATIONS OF EXPERT SYSTEM TECHNOLOGY

Expert system technology can be used to automate certain kinds
of tasks. For expert systems technology to be applied effectively,
there must be a benefit to the organization in doing so. Also,
certain factors and identifiable characteristics must generally be
present in the problem to be solved. Not all tasks can be or
should be implemented as expert systems. Some tasks rely on
knowledge that cannot be easily captured by expert systems, while
other tasks are more suitable for implementation using alternative
computing methods.

This chapter begins with a discussion of the different types,
or classes, of expert systems that can be implemented using ESBTs.
Then, criteria for selecting applications of expert system
technology are discussed. Characteristics of tasks that are
appropriate for implementation as expert systems are presented.
Finally, tasks that are not appropriate for development as expert
systems are also discussed.

4.1 Classes of Expert System Applications

What kinds of expert systems can be developed? What kinds of
tasks can they perform? To answer this question, it is helpful to
categorize expert systems on the basis of application type.

Expert systems employ two broad categories of problem solving
strategies that provide a basis for describing classes of expert
system applications. The two strategies are solution selection and
solution construction.

The two strategies can differ in terms of program size,
program complexity, and amount of processing required. These
differences influence which kinds of expert systems can best be
implemented on microcomputers as well as the characteristics of the
microcomputer-based ESBTs that are used.

4.1.1 Expert Systems That Select Solutions

The most basic strategy employed by expert systems is to
select solutions from among a larger list of possible outcomes.
Simple versions of such systems may work by essentially matching
facts describing a problem to individual solutions. Rules can be
used to directly infer individual solutions with little or no
chaining.

More complex problems require use of abstract problem
characterizations as intermediate steps in finding a solution.
The expert system examines supporting evidence in an attempt to
characterize, or classify, a problem according to abstracted

29

descriptions of problem types. The characterizations are then used
to infer solutions. The abstract characterizations and rules of
inference are based on heuristics obtained from domain experts.
This method, often called heuristic classification [CLANS 6] , forms
the basis for the way many expert systems solve problems. Section
3.2 presents a simple example of such a system.

Several kinds of expert system applications that select
solutions using heuristic classification may be identified. A few
are listed and discussed below.

o Recognition ©f System Malfunctions

Determining causes of malfunctions is a generic task commonly
performed by expert systems. Examples include medical
diagnosis and troubleshooting equipment failure.

o Evaluation of Applications for Benefits

These systems determine eligibility for credit applications,
insurance claims, and pensions. There are several examples
of such systems implemented on microcomputers. See [HARM88].

o - Selection of Items From a Catalog

In many organizations^ expert systems are used to select goods
or services from a larger list of possibilities to meet
specific user needs [F0NG88], [ALUR90], [POTT90], [RADA90]

.

.o Monitoring and Control

System monitoring, closely related to diagnosis, compares
actual system behavior to a model of preferred behavior,
operating on a continuous basis [TSUD90]

.

Examples of other kinds of expert systems that select solutions
can be found in [HAYE83] and [CLAN86]

.

4.1.2 Expert Systems That Construct Solutions

A second method employed by expert systems is to construct
solutions from individual components or pieces. This method is
used to perform configuration, design, planning, or scheduling
tasks. A simple example of a construction type expert system is
presented in chapter 8

.

Expert systems that construct solutions must first select
individual components (or have them provided in the problem
description) . Components may have complex relationships, many of
which recur in generic patterns. Similarly, constraints may be
placed on relationships. The knowledge base may contain

30

generalized rules that specify allowable arrangements of components
or express constraints.

The problem-solving strategy of some moderate to large
construction type systems requires consideration of many
alternative component combinations. For larger configuration
problems, the number of potential combinations can exceed the
computational resources of the largest computer systems. To solve
these problems, many construction expert systems employ heuristics
to help identify the most promising combinations, thus reducing the
overall amount of search effort that must be expended (described
in sec. 3.4). Types of construction tasks are listed below.

o Design

Expert systems have been developed to perform a number of
design tasks including: designing maps [R0BI85] ; configuring
hardware components of computer systems to satisfy customer
requirements [MCDE82], [MCDE84]; physical database design
[DABR88]; and other areas [COYN90], [LIEB90].

o Planning and Scheduling

The goal of expert systems that plan and schedule is to find
an acceptable arrangement of events so as to minimize use of
time and resources. A typical example is finding optimal
travel routes for delivery trucks [ROTH9 0]

.

Most, though not all, construction-oriented tasks require extensive
processing. Small scale configuration tasks are largely procedural
and do not require extensive computing to perform.

4.1.3 Selection vs. Construction in the Microcomputer Environment

The two strategies described above can be combined to some
extent. For instance, design systems may employ heuristic
classification to first select component parts. Recommending goods
from a catalog may require configuring or assembling related items
to suit a particular user's needs.

As a generalization, construction systems that must explore
large numbers of alternatives require more computer processing and
possibly more memory than do most systems that employ selection.
Construction system programs also tend to be larger and more
complex, often requiring more powerful microcomputer systems and
additional memory capacity. Partially for this reason and
partially because construction systems are generally less common,
most microcomputer-based expert systems developed with ESBTs are
selection systems.

31

4.2 Deploying Expert Systems Within the Organization

Determining how and where to use expert systems are based on
analyzing the information processing needs of an organization.
Identification of places to apply expert system technology is based
on finding critical points within an organization where automation
of expertise can lead to improvements in operational efficiency.

o Alleviating "Knowledge Bottlenecks"

"Knowledge bottlenecks" occur when existing expertise cannot
be brought to bear on regularly occurring problems that
require expertise to solve. That is, "knowledge bottlenecks"
happen when the number of experts is too small for the number
of problems that need to be solved. Or experts may be
geographically distant from the site of the problem. The
example in chapter 3 illustrates such a "bottleneck."

o Providing a Means for Consistent Decision Making

By deploying expert systems throughout an organization,
expertise about narrowly focused problems can be disseminated.
This can be used to ensure consistent implementation of
policies and procedures.

o Automating Repetitive Tasks That Are Difficult for Humans

In many operational situations, certain tasks are performed
by continuous repetition over long periods. One example is
monitoring computer systems for illegal access attempts
[TSUD90]. Such tasks require a certain level of expertise,
but they are performed poorly by people because they require
constant attention. In these situations, expert systems have
proved useful.

o Freeing Experts for More Important Tasks

An expert system can perform many relatively mundane tasks
normally handled by an expert. This allows the expert to
devote time to other work that may also be important to the
organization.

4.3 Characteristics of Appropriate Problems

In determining whether or not expert system technology should
be used, it is important to examine the characteristics of the
problem to be solved. Problems whose solution can be automated
using expert systems methods generally have the following
characteristics listed and discussed below.

32

o Finding Solutions Requires Expertise

The level of difficulty involved in solving the problem must
be high enough to pose some barrier to individuals who are not
experts. Finding solutions to problems depends on the use of
expertise accumulated through training and/or practice.

o Problem Solving May Have Uncertain Aspects

Information about the problem may be uncertain, imprecise, and
incomplete. A typical problem may have more than one
solution, each of which may have a significant amount of
uncertainty associated with it.

o The Problem Cannot Be Solved by Established Computing Methods

Analysis of the problem may show that it can be completely
solved by mathematical techniques, operations research
methods, or other established computing methods. In this
case, expert system technology should not be used. Problem-
solving activity that is based on well-defined procedures or
that involves only simple decision making can often be more
easily automated using conventional software methods.

In summary, expert system methods should be considered when
the problem is difficult, the problem domain is characterized by
uncertainty, and when well-defined procedures that produce
solutions do not exist or cannot easily be developed.

4.4 Characteristics of Knowledge Used to Solve the Problem

Closely related to the characteristics of the problem to be
solved are the characteristics of the knowledge used to perform
the problem-solving task. These characteristics may be summarized
as follows.

o The Knowledge Necessary to Solve the Problem Depends on
Heuristics

Not all the knowledge that goes into an expert system is
heuristic. Often, however, a large part of it is. An
exception may be applications such as claims benefits
processing where much of the knowledge consists of laws,
regulations, and procedures.

o The Knowledge Can Be Stated or Represented Declaratively

It must be possible to clearly state important concepts,
rules, and procedures used to solve the problem of interest.
It must also be possible to express this information
symbolically in data structures.

33

o The Problem-solving Process Is Based on Reasoning

As discussed earlier, expert systems are specifically designed
to represent heuristic knowledge and reason with it in the
manner of a human expert. In most cases, heuristics should
be representable in rule form.

4.5 The Scope and Size of the Problem

In practice, the size of completed expert systems is often
very large, consisting of hundreds or thousands of rules. If the
task is too broad, the development effort may take an inordinate
amount of time, or even be impossible. Two important guidelines
on evaluating the scope and size of the problem are listed below.

o The Task Must Be Narrowly Focused

The problem to be solved must be restricted and specific. An
expert system should be dedicated to a limited domain. For
example, an expert system to diagnose factory machine failures
may be dedicated to problems for a very specific kind of
machine. Or it may diagnose malfunctions of only very
specific parts.

o The Task Should Be Decomposable

A well-known problem-solving approach is to decompose a
problem into components and work on each component separately.
Tasks that utilize the "divide and conquer" approach can be
implemented as expert systems in pieces, or phases. This
greatly eases development of an application.

In general, selection of a problem having sufficiently narrow scope
is critical to success in developing an expert system application.

4.6 The Source of Expertise

To develop an expert system, an established source of
expertise must exist. Without an existing base of expertise to
solve the problem, expert system technology cannot be applied. The
necessary expertise is normally possessed by a recognized human
expert or is found in a written source, such as a manual.
Sometimes expertise can be obtained from both sources.

34

o The Core of the Prol>leii-*solvin9 Knowledge Must Be stable

While specific aspects of the problem-solving knowledge might
change over time, the underlying concept and basic problem-
solving method must remain stable. It is also important to
state that expert systems are designed to apply only existing
expertise to solve problems. They are not intended to create
or invent expertise that did not exist previously.

o There Must Be Substantial Agreement on Solutions Between
Experts

If several experts exist and disagree on the solutions for the
most important or common problems encountered, this may
indicate that the problem-solving knowledge is unstable.

o The Knowledge Provided by the Source of Expertise Must Be
Clear

The problem-solving method and the underlying knowledge must
be understandable to developers.

o The Domain Expert Must Be Able to Allocate Time

Too often, the amount of time required to develop an expert
system is underestimated. In most cases, it is necessary to
have a domain expert committed to a project for its duration.

The availability of the source of expertise depends greatly upon
management decisions about allocation of resources.

4.7 Areas to Avoid

Some categories of problem-solving activity have been
identified as being inappropriate for expert system methods. These
are listed below.

o Tasks Based on Common Sense or Real-World Knowledge

The amount of knowledge about the real world is so vast as to
be virtually impossible to implement in a computer
application. Representation of common sense knowledge is a
topic of AI research.

o Tasks Requiring Perceptual Knowledge

Problems that require actually seeing or touching information
about the problem are beyond the scope of expert systems.

35

o Creativity or Inventiveness

Expert systems are not creative in the same sense as humans.
As a rule, they are not designed to invent new concepts or
ideas beyond those that are encoded in its knowledge base.

Each of these categories involves processes that are too poorly
understood to be implemented using current AI programming methods.

4.8 Siumary and Further Sources

The discussion contained in this section can be summarized as
a list of questions to consider when assessing a candidate task for
development as an expert system.

o Can the task be clearly defined? Is the task narrow in focus?

o Does the task fall into one of the expert system categories
described in section 4.1?

o Is there a benefit to the organization in automating the task?
How will it help improve productivity?

o Does a domain expert exist who can perform the task? Can the
domain expert clearly state the knowledge necessary to solve
the problem? (If not, an expert system may not be possible.)

O;. Can the task be expressed in a straightforward algorithm that
can be encoded using established computing methods? (If so,
an expert system may not be necessary.)

o Does the task depend on heuristic knowledge? Does it require
reasoning and inference?

o Does the task require skills that are difficult to automate?
(If so, an expert system may not be possible.)

Q, Is the task small enough to automate? Is it decomposable?

Further references to books and articles that deal with this
subject include [BECK90], [CUPE88], [HARM88], [LAUF90] , [MART88],
[MOCK90], [MURD90], and [PRER89].

36

5. DEVELOPING EXPERT SYSTEMS

This chapter provides a brief description of the expert
systems development paradigm and presents an overview of the
development stages. The major classes of software used to develop
expert systems are introduced, and the role of expert systems
development software is discussed. To those unfamiliar with expert
systems development, the chapter provides background needed for
detailed understanding of ESBTs, particularly in regard to the
features of the development interface.

5.1 The Expert Systems Development Paradigm

The process of building an expert system is called knowledge
engineer incf . Correspondingly, developers of expert systems are
referred to as knowledge engineers .

Knowledge engineers develop expert systems by entering
knowledge in the form of rules or other representation structures
into the knowledge base. Knowledge engineers perform three
essential functions:

(1) They interview domain experts to acquire knowledge about
solving a particular problem (or in some cases, obtain
information from text sources) . This process is known as
knowledge acquisition .

(2) Knowledge engineers determine system requirements and
formulate an overall scheme or model of the problem-solving
method employed by the expert. This scheme provides the basis
for the design of the expert system.

(3) The third major task of the knowledge engineer is actual
system development. Data structures must be chosen to
represent knowledge, and inference procedures must be
identified that mirror the problem-solving process employed
by the expert. This provides a basis to encode knowledge into
the selected data structures and develop the expert system
software

.

For the purpose of this discussion, two related aspects of
knowledge engineering will be described: iterative development and
prototyping.

Expert systems are developed iteratively in a series of
repeated steps. These steps roughly consist of knowledge
acquisition, followed by system design (or modification of an
existing design)

,
system development (including knowledge entry)

,

and system testing and evaluation. As figure 5.1 illustrates, the
relationship between these steps is cyclic.

37

Knowledge
Acquisition

System
Design &
Concept

Testing and
Evaluation

Software
Development

DEVELOPER
INTERFACE

USER INTERFACE
|

|;nference engine

KNOWLEDGE BASE

Expert System

Figure 5.1. Iterative Development of an Expert System.

The process of testing and evaluation should involve both the
domain expert and end users. Domain experts test the performance
of the developing expert system, while end users test both
performance and the effectiveness of the end user interface. In
practice, user interface design is often a critical, time-consuming
task that must be carefully done to ensure system delivery and
acceptance.

38

Prototyping refers to the creation of limited or "scaled down"
versions of the final system, designed to display essential system
characteristics or performance. During the initial stages of the

*

development effort, prototypes can be used to help understand
system requirements and evaluate preliminary designs. Prototypes
are also useful for providing demonstrations to managers and others
interested in the progress of the development effort. In the early
part of a project, it may be necessary to "sell" the project to
managers. Therefore, support for prototyping facilities is an
important aspect of ESBTs, particularly in regard to knowledge
entry and construction of end user interfaces.

Knowledge engineers use iterative development to create a
series of prototypes, if necessary. The system design obtained by
prototyping provides the basis for full-scale development of the
expert system. Like prototyping, large-scale development is also
iterative and proceeds incrementally. This process continues until
the expert system grows to maturity.

The description of expert systems development phases can be
elaborated by dividing the process into distinct stages.

5.2 Stages of Development

As yet, there are no formal methodologies defined for expert
systems development. A possible description of the stages of
development in an expert system project is presented below.

(1) Initial Problem Analysis . Initially, a general problem area
appropriate for expert systems must be selected. This
involves assessing the needs of the organization, determining
what tasks can be automated, and determining if expert system
technology should be used. In some cases, alternative
software methods may be preferable. If an expert system is
to be developed, a domain expert must be selected. Knowledge
engineer (s) and other participants must be identified and
trained, if necessary.

(2) Preliminary Knowledge Enqineerincr . In this phase, knowledge
engineers meet with potential domain expert (s) and end users
to acquire necessary background and understanding of the
problem domain. Using the guidelines discussed in chapter 4,
a specific task is identified as a target for development as
an expert system. The task is analyzed and precisely defined.

(3) Prototype Development and Requirements Analysis . Detailed
knowledge acquisition begins. Meetings with domain experts
and end users take place. As described above, a series of
prototypes are developed to obtain enough information about
the problem to define requirements and develop an overall
system design.

39

(4) Large-Scale Development . Large scale knowledge acquisition
and knowledge entry begin. As described above, the process
proceeds iteratively until the system performs in a
satisfactory fashion. End user involvement becomes essential.
During this phase, further work on the end user interface
takes place with heavy input from end users. Screen layouts,
questions, and system responses are reviewed to insure that
they are understandable to end users.

(5) System Delivery and Acceptance . The system is deployed and
organization personnel begin to use it. System documentation
should be completed and the end product packaged. Packaging
includes user training and user acceptance testing. Even in
this stage, additional refinements may be necessary,
particularly in the end user interface.

(6) System Maintenance . The expert system is permanently deployed
and integrated into operation of the organization. Long-term
maintenance and update of the knowledge base take place as
needed.

Picking the right tool for building the expert system is an
important step. Sometimes, more than one tool will be used during
the course of a project. Typically, one tool is used for
prototyping, but a different tool is chosen for large-scale
development and delivery. This topic is addressed in chapter 12.

For general information on expert systems development
methodology and life cycle, readers should consult [CUPE88],
[HARM88], [MART88], [WATE83].

5 . 3 The Domain Expert as System Developer

For smaller expert systems, it is sometimes desirable for a
domain expert to develop the knowledge base directly without a
knowledge engineer as an intermediary. This makes the domain
expert the system developer. In many cases, domain experts are
willing to do this for several reasons.

o Familiarizing a knowledge engineer with certain domains such
as chemistry or physics, can be very difficult. Often,
knowledge engineers, who are trained as computer
professionals, do not have the necessary background to
comprehend key concepts associated with a domain. This may
force the knowledge engineer to undergo a learning curve and
make knowledge acquisition time-consuming and difficult.
Under these circumstances, it may be easier to develop a
correct knowledge base if domain experts can directly encode
the knowledge base by themselves.

40

o Acquiring knowledge from an expert often consists of a
prolonged series of intense interviews, sometimes extending
over a period of many months. This process can become a
bottleneck in expert systems development. Allowing the domain
expert to do software development directly can save time.

o Many domain experts may simply wish to do new and interesting
things, such as develop expert systems.

If the domain expert is to develop the expert system, choosing
the right ESBT is essential. The ESBT must be easy to learn and
to use, or the domain expert may not be able to do the job. In
many cases, it is advisable to have a knowledge engineer or
computer programmer develop other parts of the expert system
program that require low level coding, such as the end user
interface or any external interfaces that may be necessary. Large,
complex expert system projects cannot normally be developed in this
manner. Larger applications often require the efforts of one or
more knowledge engineers.

5.4 General Categories of Software for Expert Systems Development

Several major categories of software for developing expert
systems exist.

o Conventional Programming Languages

This includes traditional languages such as Pascal, C, and
Modula-2. While these languages were not designed for
development of expert systems, it is possible to use them for
this purpose [BUTL88], [HU89], [SAWY86], and [SCHI87].

o Programming Languages With Development Environments

The term "environments," when applied to programming
languages, refers to an integrated set of interactive software
tools used to support programming activities. In addition to
editors and compilers, environments can include facilities for
file management, browsing program code, debugging and tracing
program execution, and graphics programming.

o Artificial Intelligence Programming Languages

This includes languages used for artificial intelligence
applications, such as LISP [BETZ85], [CHAR87], [WILE84],
[WINS89], and Smalltalk [GOLD83], [PARC89]. These languages
have sophisticated capabilities for creating and manipulating
information represented in symbols and structured types.
Often, they also provide sophisticated programming
environments

.

41

o Prolog and 0PS5

Prolog and 0PS5 are general-purpose AI programming systems
that provide a means to represent knowledge and perform
inference. Prolog is based on the concepts of logic
programming [COLM82], [STER86]. 0PS5 was developed for
implementing production rule systems using the powerful Rete
algorithm for inference [FORG77], [FORG82]. Both languages
support development of a wide variety of artificial
intelligence and knowledge-based systems, including expert
systems [BRAT86] ,

[BROW86], [MARC88], [MERR89]. Many ESBT
products have incorporated features offered by these
languages, as is discussed in chapter 9.

o Expert System Building Tools

Like Prolog and 0PS5, ESBTs provide a means to represent
knowledge and carry out inference. Like AI languages, ESBTs
provide a development environment. However, unlike Prolog,
0PS5, and AI languages, ESBTs are more focused on supporting
expert systems development and include features specifically
for this purpose.

While each of these categories of software can be used to develop
expert systems, there are important differences between each.

5.5 Differences Between ESBTs and Programming Languages

ESBTs specify how knowledge can be represented, what forms of
inference are possible, and what types of interfaces can be
created. Thus, to a great extent, ESBTs specify the structure of
the applications. By doing so, an ESBT can restrict the kinds of
applications that can be created. When selecting an ESBT to use,
application characteristics must be matched to the capabilities
offered by the ESBT (discussed in ch. 12) . If there is a good
match, low-level programming is minimized, simplifying and
accelerating application development. This is particularly
important for creating expert systems prototypes, since prototyping
requires the ability to construct software quickly.

In contrast, when developing an expert system using, an AI
language, both the knowledge representation system and the
inference engine must be programmed from scratch using low-level
language primitives. Although this means more programming, most
programming languages, especially AI languages, are more general
than ESBTs and provide more flexibility in creating knowledge
representation structures and inference procedures. This added
generality and flexibility permits development of a wider range of
applications. However, using a language sometimes requires a
considerable amount of programming skill and effort.

42

Prolog and 0PS5 can be thought of as being "in between" AI
languages and ESBTs. Because they provide specific knowledge
representation structures and inference procedures, Prolog and 0PS5
impose more structure on application development than do languages.
However, Prolog and 0PS5 impose less structure than most ESBTs.
Often, their powerful capabilities can be used to develop expert
systems whose requirements cannot be met by ESBTs. Prolog and 0PS5
are more general than ESBTs and can be used for other AI
applications besides expert systems. They are also valuable as
programming tools for research purposes. Figure 5.2 summarizes
some of the differences between AI languages and ESBTs.

Degree of
Structure

C
ESBTs

^ 0PS5
j

C
C

AI

Languages

Generality and Flexibility

In Application Development

Figure 5.2. Classes of Software Tools.

The contrast between structure and flexibility presented above
is a generalization useful in understanding ESBTs as well. As
discussed in subsequent chapters, more sophisticated ESBTs provide
the structure of rule-based systems as well as the generality and
flexibility of programming languages.

43

6. ANALYZING MICROCOMPUTER-BASED EXPERT SYSTEMS BUILDING TOOLS

The purpose of this chapter is to define the ESBT architecture
and provide a framework for detailed analysis of microcomputer
tools

.

This chapter begins by describing commonly accepted categories
of ESBTs. These categories and the differences between them are
discussed in this chapter, and microcomputer ESBTs are placed
within this context. Relevant trends that are causing changes to
these categorizations and affecting the capabilities of
microcomputer-based tools are described. The architecture common
to microcomputer-based ESBTs is then presented in detail, and its
components are explained.

The discussion of the ESBT architecture and tool categories
provides a background and framework for the detailed analysis of
microcomputer-based tools. The last section of this chapter
describes the criteria used in this analysis and sets the stage for
the remainder of the report.

6.1 General Categories of ESBTs

ESBTs are sometimes grouped into general categories based on
cost, the kinds of platforms they run on, and their level of
sophistication. A representative categorization is described
below.

o Small Rule-Based ESBTs

This class of tools supports construction of expert systems
of relatively modest size that consist primarily of rules.
To date, most of the ESBTs available for the microcomputer
environment fall into this category. These tools are, for the
most part, relatively inexpensive, costing less than $1000.
Publications describing examples of such tools include
[BROD89], [COFF90], [GEVA87], [HARM88], [MART88], and
[VEDD89]

.

o Mediim-Sized ESBTs

ESBTs in this category are generally intended to operate on
medium-sized workstation platforms and mainframe computers.
Besides rules, they support additional features for knowledge
representation and reasoning (described in ch. 9) and can be
generally used to implement larger expert systems. Relevant
references that include examples of such tools include
[GEVA87], [HARM88], and [MART88].

45

o Large-scale Hybrid Systems

In the past, this has been regarded as the most powerful
category, providing the widest range of capabilities. Hybrid
systems combine production rules, sophisticated knowledge
representation capabilities, a complete programming language,
and graphics. Hybrid systems were originally developed for
powerful workstation environments such as those provided by
LISP machines [KUNZ84], [MART88].

In addition, ESBTs that use a technique known as induction are
sometimes recognized as another class. Induction is a procedure
by which a decision tree (or set of rules) is generated from a
series of examples of problem solutions. Each example consists of
a complete description of a problem occurrence and its solution
(see ch. 8) . Currently, relatively few ESBTs rely solely on
induction [BIEL88], [BROD89]. In some cases, existing ESBTs have
been extended to incorporate inductive subsystems.

6.2 Contrasting and Comparing Categories of ESBTs

Section 5.4 contrasted general classes of expert systems
development software. These classes were distinguished by (1) the
degree of structure the software tool imposed in limiting the kinds
of applications that could be developed and (2) by support for
generality and flexibility. The major categories of ESBTs can also
be distinguished using these criteria.

An ESBT permits generality and flexibility by supporting a
variety of knowledge representation features, the ability to
implement complex forms of inference, and procedural programming.
To permit as much generality as possible, an ESBT may provide a
complete programming language (in addition to inference) with rich
data representation capabilities. Often, the language is object-
oriented.^ Using a programming language, the developer can
implement representation structures and procedures that are not
possible in purely production rule tools. Traditionally, only
ESBTs running on more powerful computer platforms have combined the
capabilities offered by programming languages with production rule
processing. Figure 6.1 summarizes these differences among classes
of ESBTs.

^Object-oriented programming is becoming more important in
ESBTs and is described in more detail in chapter 9.

46

^Degree of
Structure

Inductive
ESBTs

(Small
I

Rule-Based ESBTs J

(Medium-Sized |
ESBTs J

(Large-scale |
Hybrid ESBTs J

Generality and Flexibility in

Application Development

Figure 6.1. Comparison of ESBT Classes.

The categorization of ESBTs presented in this chapter is
affected by two factors. The first factor is the progressive
development of smaller, more powerful varieties of relatively low-
cost computers and computer workstations. The second factor is the
advancements in software technology that have led to more efficient
implementations of ESBT software based on programming languages
such as C.

6.3 The "Downscaling" of ESBT Capabilities

These advances in hardware and software technology are making
it possible to add new features to ESBTs that operate on smaller
hardware platforms. Features once available only for large,
expensive computers are now being offered by ESBTs designed for
smaller environments.

Features such as object-oriented programming, advanced forms
of knowledge representation, and graphics were once provided only

47

by ESBTs that ran on LISP machines and other specialized computers.
These features are now becoming available in ESBTs running on
smaller, less-expensive platforms. Some vendors are adding
features to small rule-based ESBTs that were once supported by
medium-sized and large-scale tools. This is rapidly altering
traditional tool category distinctions and "blurring" the lines
between them.

The evolution of ESBTs, in general, has been greatly affected
by this "downscaling" of capabilities from larger, more powerful
platforms to smaller platforms. This has also been true of
microcomputer ESBTs. Microcomputer-based tools have emerged that
support many of the capabilities once found only in medium-sized
and large hybrid ESBTs.

The "downscaling" of ESBT capabilities has also made it
difficult to think of microcomputer tools as a category with a
fixed set of tool features and capabilities. Instead, it is more
appropriate to discuss state-of-the-art ESBT technology in terms
of what features are becoming available as well as what features
are currently available.

6.4 The ESBT Architecture and Its Major Features

The major use of the ESBT is to develop expert system
programs. The architecture of the ESBT is designed to fulfill this
function. The architecture presented below is shared by most,
though not all, microcomputer-based ESBTs. This architecture
consists of the several components.

o The Development Environment

The ESBT provides a customized development environment for
knowledge engineering. The developing expert system program
is stored in one or more files that can be accessed and edited
through the development environment. This environment
includes

:

(1) Facilities for creating and updating the knowledge base
and other parts of the program using file editors and
other knowledge entry tools.

(2) Facilities for testing and debugging including a variety
of software "aids," such as explanation systems and
possibly graphics utilities for representing and browsing
the structure of the knowledge base.

The development environment is analogous to the development
environments of many sophisticated programming languages
available for computer workstations. ESBT development
environments are discussed in detail in chapter 7.

48

o The Inference Engine

The ESBT provides an inference engine that can be used by the
developing expert system. When application development is
completed, the inference engine can be incorporated as a
software component in the finished expert system program.
ESBT features for supporting inference capabilities are
discussed in chapters 8 and 9

.

o The Knowledge Representation System

The knowledge representation system is used to represent rules
as well as other forms of knowledge. Typically, an ESBT
provides a high-level, English-like language for encoding
knowledge. The language can be used to declare rules and
other representation structures that are stored in the
knowledge base of the developing expert system. ESBT support
for knowledge representation is discussed in chapter 9.

o Software Facilities for Constructing End User Interfaces

This includes facilities for defining what the end user sees
at the terminal while using the expert system, including
display of questions generated by the expert system, display
of solutions, and display of explanations. Typically, the
ESBT provides a high-level programming language for developing
end user interface software. ESBT support for development of
end user interfaces is discussed in chapter 10.

o Software Facilities for Creating External Interfaces

This includes facilities for defining interfaces between
expert systems and other software systems, such as DBMSs.
Typically, these facilities are programmed with a high-level
language provided for this purpose. ESBT support for external
interfaces is discussed in chapter 11.

o Facilities for Application Delivery

To support delivery of completed expert system applications,
most ESBTs provide facilities to create delivery versions of
the completed expert system. The delivery version consists
of those parts of the ESBT and expert system application that
are needed for actual operation of the finished system.
Delivery versions usually include compiled code for the
knowledge base, inference engine, end user interface and other
external interfaces. Delivery versions of expert systems
often exclude the developer interface. This means that the
end user cannot modify the expert system program. This is

often desirable to prevent end users from making unwanted
changes to the knowledge base.

49

The knowledge engineer uses thft development environment to
develop an expert system. This environment provides access to the
knowledge representation system, inference engine, end user
interface construction facilities, and external interface
facilities. The knowledge engineer uses these components as
software building blocks for constructing an expert system program.
Use of these building blocks can reduce the amount of programming
and enhance the ease and speed of development.

When development of the expert system is finished, the
delivery facilities are used to create copies of the expert system
program for distribution. Figure 6.2 below illustrates the
process.

Knowledge
Engineer

End User

DEVELOPER INTERFACE

Components

for End User

Interfaces

Coniponents

for External

Mnterfaces^

Knowledge

Representation

System

I J
Inference

n
I I

Engine

i

Expert System
Building Tool

Runtime Version
of Expert System 1

Figure 6.2. An ESBT Architecture.

50

A single ESBT may be used and reused to create many expert
system applications. The ESBT can maintain files for many
different expert system programs at the same time.

6.5 Criteria for Analyzing ESBT Features

The criteria for analyzing ESBT features must be discussed
before proceeding with ESBT analysis. In chapter 1 (sec. 1.2), a
list of questions was provided that could be used to analyze
features and capabilities of microcomputer-based ESBTs. Below,
this list is modified and extended to take into consideration
additional factors introduced in the preceding chapters. These
factors include: the "downscaling" trend, support for expert system
functions, the type of expert system to be developed, and
development activities such as prototyping.

o What features exist to implement characteristic aspects of
expert systems such as explanation and end user interfaces?

o What capabilities does each feature support? Can it be found
in some, most, or all products? To what extent is it a
subject of ongoing research? Has the feature been recently
introduced? Is the feature considered "state-of-the-art?"

o Which ESBT supported capabilities are necessary to implement
the different classes of expert system applications (discussed
in ch. 4)? Is a particular capability appropriate for
selection expert systems? For construction expert systems?

o Does a feature support the capability to develop large
applications? Or is it limited to smaller applications that
are customary for microcomputer-based ESBTs?

o How do features of the development environment support
specific aspects of expert systems development? What features
support application prototyping? What features are important
in other application development activities, such as
debugging?

o To what extent are well-developed computer skills required to
use a feature? Can the feature be used by a non-programmer?

o Was the feature "downscaled" from larger platforms? If so,

how well does the feature work in a microcomputer environment?
To what extent are microcomputer resources stretched; e.g.,
memory, processing power, etc.?

The actual criteria used may differ from chapter to chapter, as
appropriate for the subject matter.

51

7. FEATURES OF THE DEVELOPER INTERFACE

The development environment provides a means for the knowledge
engineer to develop individual expert system applications. The
development environment consists of an integrated set of features
to aid the knowledge engineer in creating the knowledge base, end
user interface, and external interfaces. Development environments
may also provide a means for managing different expert system
programs under development.

Features of the development environment include facilities for
supporting knowledge entry, knowledge base analysis, and other
program development support facilities. Knowledge entry refers to
the ability to access, augment, and change the knowledge base of
an individual expert system under development. Knowledge base
analysis facilities provide a means to analyze, test, and debug
knowledge bases and other parts of the expert system program. The
development environment provides a menu-based file system interface
to permit display and access of individual expert system programs.

As a whole, the development environment can be viewed as an
integrated software package whose individual features are
accessible via a menu interface. In the first two sections of this
chapter, the individual features of the development environment are
discussed. Section 7.3 presents an example of how the development
environment is used. Section 7.4 describes facilities for learning
how to use ESBTs. Section 7.5 focuses on the important subject of
application prototyping. In section 7.6, ESBT support for long-
term maintenance of knowledge bases is discussed.

7.1 Knowledge Entry Facilities

Like conventional computer programs, expert system programs
are stored in files maintained on permanent storage media. In the
course of developing an expert system program, individual files
must be accessed, edited, and updated. ESBT can provide several
different ways to do this, three of which are listed below.

o Word Processing Type Editors

Some ESBTs supply a text editor that allows production rules
and other knowledge structures to be entered and edited in a

buffer. This method of knowledge entry is the same as
provided by a programming language editor or a text word
processor.

An ESBT may either provide its own text editor or permit use
of an outside commercial word processing package. An
important capability is use of multiple edit buffers.
Separate buffers can contain different parts of a knowledge
base, allowing the developer to work on larger applications.

53

o struetursd Knowledge Entry

This method permits production rules and other structures to
be entered systematically through use of menus and prompts.
Groups of rules can be displayed and accessed through a system
of hierarchical menus. Parts of individual rules may be
entered in separate operations. Individual rule conditions
and rule conclusions can be entered in response to prompts or
selected from menus.

A structured entry system can also support type checking and
enforcement of structural constraints. The effectiveness of
structured entry systems is dependent on a well-designed
sequence of menus and commands.

o Graphics Interfaces

More advanced ESBTs use graphics facilities to display the
structure of the knowledge base as a network of related rules.
Within a group of interconnected rules, the complete text of
each rule may be shown, or rules may be represented by
graphics icons that can be expanded. An individual rule can
be selected for editing by the developer. Once selected, the
rule can appear in a text edit buffer or structured entry
interface. Larger collections of rules cannot always be
placed entirely on a single screen; therefore, pan and zoom
capabilities are sometimes provided.

Graphics interfaces presuppose the use of specialized graphics
software that can support the construction of sophisticated
window interfaces. Until recently, sufficiently powerful
graphics software packages were available mostly for larger
computer platforms.

Text editors are available in nearly all microcomputer-based ESBTs.
Structured knowledge entry is becoming more commonly supported.
With the improvements being made to graphics software available for
microcomputers, graphics interfaces are also beginning to appear
at the microcomputer level.

Small rule-based systems can be easily developed using only
text editors. However, for larger, more complex expert systems,
graphics interfaces provide advantages in managing substantial
numbers of rules and knowledge structures.

Structured interfaces generally do not require extensive
programming skills. A well-designed structured interface can often
be used by a non-computer specialist to implement rule-based expert
systems of modest size and complexity.

54

7.2 Features for Knowledge Base Analysis

Knowledge bases with even a modest number of rules can be
quite complex and difficult to understand. This section describes
facilities that the ESBT development environment may provide for
analyzing and understanding the contents of the knowledge base.

Three categories of facilities are identified: (1) facilities
to help analyze the syntactic correctness of the knowledge base,
(2) facilities to analyze the structure of the knowledge base, and
(3) facilities to analyze the execution of the developing expert
system to determine correct performance. Individual ESBTs may
contain some or all of these features.

7.2.1 Facilities for Syntactic Analysis During Program Compilation

Some ESBTs compile production rules directly into low-level
executable images. ESBTs may also translate knowledge bases into
the source code of a programming language, such as C or Pascal, and
then compile it. Other components of the expert system program,
including those that specify end user and external interfaces, must
also be translated and compiled. During translation or
compilation, syntactic errors should be diagnosed and displayed to
the developer. Completeness and accuracy in providing compilation
diagnostics is an important factor in being able to develop
applications easily.

Many smaller microcomputer ESBTs require the compilation of
an entire file, as takes place in the traditional program
development. When developing larger expert systems, it is
sometimes an advantage to be able to recompile small segments of
the expert system program file individually. This process, known
as incremental compilation, is useful when only a single rule in
a large file must be changed. The rule can be located in the
buffer, modified as appropriate, and recompiled separately without
affecting the rest of the file.

An ESBT may provide a programming language interpreter (in
addition to a regular compiler) that can be used in the manner of
an incremental compiler.^ Generally, incremental rule compilation
or language interpretation facilities are available in more
sophisticated microcomputer-based ESBTs.

Interpreted programs generally execute more slowly than
compiled programs. Usually compiled code is used for production
of runtime copies of large expert system applications.

55

7.2.2 Facilities for Analyzing Structure of Knowledge Bases

During knowledge engineering, the contents of the knowledge
base and its interrelationships need to be examined and analyzed.
Some features designed for this purpose are listed below.

o Graphics Rule Interfaces for Display of Rule Networks

As discussed in section 7.1, the structure of a knowledge base
may be illustrated using graphics to display a rule network.
In a network, links between rules can be represented using
symbols such as arrows. These links can be followed using a
mouse (mouse facilities will be discussed in ch. 10) , thus
allowing the developer to browse the contents of the knowledge
base and examine interrelationships between its components.

o Facilities for Querying the Knowledge Base

Querying a knowledge base is a desirable capability. For
instance, it may be necessary to retrieve all rules . that
conclude a particular fact. Similarly, it may be desirable
to retrieve rules that have a certain condition. Despite
their utility, conditional query capabilities are not widely
supported by microcomputer-based ESBTs. A limited query
capability can be attained by using the text editor to search
for text strings.

o Facilities for Verifying Consistency and Completeness of
Knowledge Bases

Verification of knowledge base consistency involves detecting
problems such as contradictory rules, circular rules,
redundant rules, and subsumed rules. Contradictory rules are
rules that have identical conditions but contradicting
conclusions. Circular rules are rules whose conditions and
conclusions form a cycle. Elimination of redundant rules and
rules that subsume other rules makes a knowledge base clearer
and more maintainable. Verifying completeness means ensuring
that there are no gaps in the knowledge base. That is, the
knowledge base is complete if its knowledge covers all
reasonable combinations of conditions that may occur in an
actual problem. In a rule-based system, the knowledge
engineer can then add rules to fill gaps. Verifying knowledge
bases manually can be tedious and time-consuming. Automatic
procedures for knowledge base verification are, for the most
part, in the research stage [NGUY87], [STAC87]. However, some
commercial products are beginning to appear that support
verification capabilities.

It is possible that knowledge base query facilities and automatic
verification of knowledge bases may attain greater support among
microcomputer-based ESBTs in the future.

56

7.2.3 Facilities for Analyzing Execution of Expert Systems

In microcomputer-based ESBTs, facilities for analyzing
execution of expert systems are used to debug and test developing
applications. Some of these facilities are listed below.

o Facilities to Trace the Execution of Expert Systems

The ability to display the sequence of rule invocations and
actions during the execution of an expert system is valuable
in debugging an expert system. Most ESBTs provide a trace
facility to display the rules being tested and the facts being
concluded. Well-designed trace facilities permit the
developer to limit the amount of information displayed, to
control the speed of execution, and to interrupt execution
when desired. It is also useful to be able to write the
contents of a trace to a file for later analysis.

o On-Line Examination of Facts and Explanation of Conclusions

Many ESBTs permit an executing expert system to be halted to
examine the contents of its context file and see what facts
have been concluded. The explanation facility may then be
used to generate explanations of particular conclusions. A
context file can also be examined after the expert system has
finished executing. This capability is especially helpful for
testing a developing expert system.

o Facilities for Breaking E^ecutioin

Some ESBTs permit the developer to specify that an executing
program should halt under certain conditions—such as when a
particular rule is being tested or a variable is set to a
particular value. Once the predetermined "break" in execution
occurs, the developer can examine the context file and other
system variables. During the "break," the developer may also
change values assigned to variables, add facts to the context
file, or remove facts from the context file. The developer
may then resume execution, ending the "break."

o Generation of ^*Wliat if" Queries

"What if" queries are used to examine how an expert system's
answer changes when the set of problem facts is altered. To
execute a "what if" query, the developer must first access the
context file of an expert system that has finished executing.
The developer can then change selected variable values and re-
run the expert system without repeating other answers. "What
if" query features permit rapid evaluation of system
performance with many different combinations of facts, a

useful capability in ensuring the expert system performs
correctly.

57

Many inexpensive ESBTs support most or all of the execution
analysis features presented in this section. If bit-mapped
graphics displays of rule networks are supported, the execution of
an expert system can be traced by highlighting sections of the rule
network as they are tested by the inference engine.

7.3 A Typical Development Session Using an ESBT

The iterative style of expert systems development (discussed
in ch. 5) involves gradual revision and augmentation of the
application over a period of time. During development, the
knowledge engineer will repeatedly need to edit, test, and debug
the knowledge base and other parts of the program. A typical
session using an ESBT is described below.

(1) The ESBT is accessed. Usually a command is typed at the
computer terminal that invokes the ESBT program.

(2) Typically a top level menu of options is displayed. The menu
may consist of a list of expert system program modules under
development. The menu may provide options to edit, compile,
or execute individual modules. The developer may also be
permitted to create an entirely new module.

(3) If the developer chooses to edit a particular module, an edit
buffer with the corresponding file is created. In a less
expensive ESBT, the editor will be similar to an editor
available in a commercial word processing package.

(4) During the edit session, individual rules, data structures,
and other programming language statements may be viewed,
modified, or deleted. Additional rules may be entered.

(5) After the edit session is complete, the file is saved and
compiled. If syntax errors occur during compilation,
appropriate messages are displayed, usually with references
to line numbers. Some ESBTs automatically reenter the edit
buffer and display the rule or code in error.

(6) Once the program compiles correctly, the developer may then
execute the module to test the operation of the system. When
the expert system is operating, execution trace facilities may
be employed to display which rules are being tested and to
show what information has currently been concluded. In many
ESBTs, trace information may be stored in files for later
review by the developer.

(7) After the module has finished executing, the top level menu
is redisplayed. The developer may choose to edit the module
again or to edit other modules. Alternatively, the developer
may exit the ESBT.

58

7.4 Learning to Use an ESBT

An often overlooked aspect of ESBTs is the support they may
provide (or fail to provide) for learning to use the product. This
is particularly important to users with little or no previous
computer experience. Support for learning to use ESBTs may be
provided in several ways.

o Manuals

All software products provide manuals that describe how they
should be used. Manuals for ESBTs must be as clear and
nontechnical as possible. A description of every feature
should be provided together with references in an index.
Examples of how individual features are used are also helpful.

o Tutorials

A tutorial is an excellent way to learn how to use an ESBT.
A thorough tutorial provides a sequence of steps that takes
the developer through the process of using an ESBT (similar
to the session described in sec. 7.3). A tutorial may assist
the developer in constructing a sample expert system. ESBT
manuals frequently have tutorial sections for developers to
read and follow.

o Sample Demonstration Programs

Most ESBTs provide a few examples of small expert system
programs for demonstration purposes. If source code is also
provided, the developer may use these small working programs
as a basis for creating larger programs.

o On~Line Help Facilities

During a development session, on-line help facilities are
essential in explaining the use of various development
environment features. Help facilities are often implemented
using menus to display a list of features for which help can
be provided. When the developer chooses a feature, an
explanation of its function may be displayed.

o Training

Many ESBT vendors provide training classes to assist
developers in learning to use their product. Training classes
can accelerate the learning process and are particularly
useful for novice developers.

Not all ESBTs support these features to the same degree. For
example, tutorials are sometimes limited or even omitted. Manuals
and on-line help facilities may also be incomplete.

59

7.5 The Development Interface and Application Prototyping

As discussed in chapter 5, application prototyping is an
important aspect of expert systems development. Therefore, it is
critical for an ESBT to support prototyping. Some useful features
for prototyping are listed below.

o Support for Accessing the Knowledge Base

Rapid and convenient access to specific portions of a
knowledge base under development allows the knowledge
engineers to quickly comprehend the structure of a knowledge
base and make modifications. Though not widely available in
ESBTs designed for microcomputer environments, graphics
interfaces and query facilities (discussed in sec. 7,2.2) can
be used to support knowledge base access capabilities.

o Effective Application Debugging Facilities

As with any programming environment, facilities for syntactic
analysis of knowledge bases speed program development. Rapid
program development is essential to the prototyping process.
Facilities for syntactic analysis include a compiler with
accurate diagnostics as well as utilities to trace and analyze
the execution of an expert system (also in sec. 7.2.2).

o Incremental Compilation

Incremental compilation (and language interpretation) support
the expert systems development cycle (discussed in sec. 5.1)
by making possible rapid alteration and testing of small
portions of a knowledge base. This capability is especially
important for development of larger knowledge bases.

o Software Libraries for Procedural Components of Expert System
Programs

To some extent, ESBTs can promote reusability of procedural
components (such as end user interface software, external
interface communication modules, etc.) by providing the
ability to create software libraries for programming language
modules (in addition to the menu-based file systems discussed
at the beginning of this chapter) . This allows knowledge
engineers to easily incorporate previously developed
procedural code into new applications.

o Configuration Management and Control Facilities

Configuration management and control facilities enable
different files associated with a particular expert system
application to be more easily maintained. In particular.

60

configuration management facilities provide the ability to
maintain consistent versions of knowledge bases which are made
up of many files. At the present time, few ESBTs extensively
support configuration management.

While the development interface can provide essential features for
prototyping, other aspects of the ESBT are egually important for
quickly developing expert system programs. Among the most
important are the software components that the ESBT provides for
creating the expert system program code itself. These components,
introduced in chapter 6, are discussed in the following chapters.

7 . 6 ESBTs and Long-term Maintenance of Knowledge Bases

One of the major benefits attributed to expert system
technology is long-term preservation of knowledge. For example,
it is potentially desirable to be able to preserve the knowledge
of domain experts for use after they retire from an organization.
At the writing of this report, there has been less experience with
long-term preservation and maintenance of knowledge than with other
aspects of expert system development.^ Hence, this area is not
completely understood and remains a research topic.

However, it is known that even knowledge bases of moderate
size can have many complex interrelationships between rules. It
can therefore be stated with some confidence that, over a period
of time, gradual evolution of problem-solving knowledge can make
long-term maintenance of larger expert systems a difficult task.
To support long-term maintenance, the following features are
desirable:

o Configuration management and control,

o Facilities to assess the impact of changes to the knowledge
base, such as "what if" facilities that can be used to
determine the effect of updates to the knowledge base,

o Automatic verification facilities for analysis of changes to
the knowledge base,

o Conditional query facilities similar to those supported by
DBMSs that permit retrieval of subsets of the knowledge base,
such as all rules that conclude a particular fact, and

o Advanced explanation generation facilities for extraction and
display of parts of the knowledge base are useful in showing
what solutions can be reached. For example, advanced

^One case study of the evolution of a knowledge base over time
is [MCDE84].

61

explanation facilities may include the capability to display
and browse rules that represent lines of reasoning used to
reach particular solutions. At present, however, few of
these facilities are provided by ESBTs.

7.7 Summary of Development Interface Features

In the following table, the major features of the development
environment are summarized. Each feature or capability is
characterized by:

o The level of computer skill required to use it effectively,

o Its frequency of occurrence in microcomputer-based ESBTs.

o Computer resource requirements.

o Whether or not the feature is especially useful for
development of large applications.

Two of these categories require some additional explanation. The
level of required computer skill is divided into three categories.
The term "Computer Literate" refers to individuals who regularly
use microcomputers but are not professional programmers. This
includes users of word processing packages, computer spreadsheet
programs, and other software analysis packages intended for non-
programmers. The term "Computer Specialist" refers to someone who
is proficient in designing and developing computer programs using
a conventional programming language—such as COBOL, FORTRAN, C,
Pascal, etc. A "Computer Specialist" may be a professional
computer programmer or a systems analyst. The term "AI Specialist"
refers to a computer professional whose area of specialization is
expert systems or artificial intelligence.

Resource requirements are rated "Low" if the feature can be
effectively used on a standard PC with 640K memory, "Medium" if
1-4 megabytes of memory are required, and "High" if a 386 processor
and 4 megabytes or more of memory are required.

62

Table 7.1. Summary of Development Interface Features

Feature Required
Skill
Level

Occurrence
Of
Feature

Computer
Resource
Require-
ments

Supports
Large
Application
Development?

Menu-Based File
System

Computer
Literate

Common Low No

Basic Word
Processing Editor

Computer
Literate

Common Low No

Structured Knowledge
Entry Facility

Computer
Literate

Becoming
Common

Medium No

Facilities For Type &

Constraint Enforcement
Computer
Specialist

Becoming
Common

Medium No

Graphics Interface Computer
Specialist

Less
Common

High Possibly

Knowledge Base Query
Facilities

Computer
Literate

Rare High Possibly

Knowledge Base
Compilation Diagnostics

Computer
Specialist

Common Low No

Incremental
Compilation

Computer
Specialist

Less
Common

High Yes

Verification AI

Specialist
Rare Unknown Possibly

Basic Execution
Tracing Facilities

Computer
Specialist

Common Low No

Control Of Speed &

Content Of Tracing
Computer
Specialist

Less
Common

Low No

On-Line Examination
Of Facts & Conclusions

Computer
Specialist

Common Low No

Configuration
Management Facilities

Computer
Literate

Rare Unknown Yes

63

8. SUPPORT FOR BASIC INFERENCE CAPABILITIES

In an expert system, inference is carried out by the inference
engine, introduced in chapter 2. An inference engine is a software
module that encodes specific procedures for carrying out inference
in a systematic way, most often using production rules. Unlike the
knowledge base whose contents can be easily changed, an inference
engine is a more or less fixed program that cannot be modified
substantially. It is possible that the same inference engine can
be used in many expert systems, each of which has a different
knowledge base. For this reason, one of the most important
advantages of an ESBT is that it provides an inference engine
program module for direct incorporation into a developing expert
system.

This chapter focuses on features of inference engines commonly
provided by microcomputer-based ESBTs and discusses the basic
inference capabilities that are supported. ESBT support for major
inference strategies, including both forward and backward chaining,
are discussed in some detail. Other inference strategies are
mentioned briefly. Support for reasoning about uncertainty, an
important capability in some expert systems, is introduced and
discussed. Similarly, inductive systems are also presented. The
discussion of pattern matching, a feature that supports more
powerful inference capabilities and involves complex forms of
knowledge representation, is deferred to chapter 9.

8.1 Backward Chaining

Chapter 2 introduced the backward chaining strategy and
provided an example. In practice, many expert systems that select
solutions, including those that employ heuristic classification,
can be implemented using backward chaining. (Selection type expert
systems and heuristic classification were described in ch. 4.)
This is because the backward chaining process permits consideration
of alternative problem solutions and examination of supporting
evidence in a systematic manner. For this reason, a number of
smaller microcomputer-based ESBTs provide inference engines in
which backward chaining is the predominant inference strategy.
These tools can be used to implement small to moderate-sized expert
systems that select solutions.

8.1.1 The Backward Chaining Process

The backward chaining process can be described as decomposing
a problem into goals and subgoals that must be systematically
fulfilled. A subgoal is created whenever an inference engine must
determine a fact or other piece of information. The needed fact
can be determined by: checking the context file (explained in sec.

2.3), using a production rule to make an inference, or by asking

65

the end user. When a rule is used, its conditions must be
satisfied—therefore, finding facts that satisfy the rule's
conditions become new subgoals that must be fulfilled first. This
process may repeat many times, working "backwards" from a rule
conclusion that matches a subgoal to the rule's conditions that
become new subgoals.

Figure 8.1 illustrates the decomposition of the factory floor
example. In this figure, rules and subgoals appear as nodes
connected by arrows = The arrows show the direction of chaining.

J-
CAUSE OF

MACHINE FAILURE

lo*t«rmln« uj^
SUBQOAL

Pftterntin* H

Pooling "^^^ni
Failure 1

V. J
Burnad Out
Ganerctor

L J

D«t«rmln* if

Jammed
Part

8UBQOAL
D«tsrtnln« If

I^^UbSa^^^^UBQOA^I^^UBqSl^ / 8UBQOAL 1
|^D<rtannln» IIJl^Patermfne IfJ|^D«t«rnitn9 IfJ I Datwmirw tfl

Cooling Sy«t«m Machine Generator Conveyer Belt Conveye^Bolt^
Warning Light On? Overheating? Light On? Movement? Vibration? I

V , / \ J \ J ^ J V J

^ASI^J/ M\ 1 1^ ^AS^I fAS'^^ ^^8K^

I SUBQOAL 1
1

r 8UBG0AL 1

[OBtermlnt l{J
j

I Determine If 1

Temperature Machine
Light On? Smoking?

V J L J

W ASK 1 W ASK J
Iend-userI Ieno-userI

Figure 8.1. Model of Goal Directed Backward Chaining.

66

When the subgoals associated with a rule's IF part are
fulfilled, the rule conclusions can be added to the context file.
These conclusions can then be used to satisfy a previously
established subgoal. In this way, the direction of the flow is
reversed, leading back to the original goal.

Figure 8 . 1 depicts the structure of a knowledge base and the
interconnections between rules. This structure forms a graph in
which subgoals and rules are the nodes, while the edges are formed
by the connections between rules and subgoals. Backward chaining
attempts to find a solution by creating a path through this graph
in which all the subgoals in the path are satisfied. This path
then constitutes a complete solution. However, to find the
solution path, many alternative paths may have to be tried. In a
large backward chaining system, each path can be quite lengthy.
Finding the right path (or paths if multiple solutions exist)
requires search.

8.1.2 Supporting Search in Backward Chaining Systems

The concept of search in expert systems was introduced in
section 3.4. It is possible to describe how search works in a
backward chaining system in terms of subgoals and paths. In the
graph depicted in figure 8.1, a subgoal may be fulfilled by more
than one rule. Backward chaining on any one of these rules
initiates a different path through the knowledge base. (For
instance, in fig. 8.1, Rules 1 and 2 initiate alternative paths
for fulfilling the initial goal.) If a particular subgoal along
the path cannot be satisfied, the result is a dead end. (For
instance, if the cooling system light is OFF, the path initiated
by using Rule 1 fails.) When a dead end occurs, a new path must
be tried.

A graph may be searched in more than one way. Three basic
methods for doing search are listed below.

o Depth-First Search

In depth-first search, the graph is traversed by successively
following each path to its maximum length before exploring any
other path. The order of the paths examined (which
corresponds to the order in which rules are examined) is said
to proceed from "left to right" as is shown in the figure 8.2.

In this figure, the sequence of actions taken is indicated by
the labeled numbering. The graph is searched until all
possible paths are exhausted or unti.T a solution is found.

67

O«t0rmln« I

CAUSE OF
MACHINE FAILURE

I Reply YES I

Figure 80 2 » Depth-First Search.

o Breadth-First Search

Breadth-first search^, shown in figure 8.3, is the opposite of
depth-first. In breadth-first, all paths are explored at the
same level before proceeding to the next level. That is, the
node, or rule, at the same level in each path is explored
before proceeding to the next level. The direction of the
search is left to right, as the labeled numbering indicates.
Breadth-first search has the effect of evenly generating a

•

. broad search pattern across the graph. As with depth-first
search, breadth-first search exhaustively examines all
possible paths.

68

0«t»miln« B

CAUSE OF
MACHINE FAILURE

Ttmperatur*

Light On?
Uachint
Smoking On?

Figure 8.3. Breadth-First Search.

o Using Heuristics to Reduce Search

The depth-first and breadth-first procedures are designed to
search an entire graph exhaustively. To reduce search effort,
heuristic knowledge may be used to try to pick the "best" path
leading to a solution. That is, the rule representing the
path judged to have the best chance of resulting in a solution
is selected first. For instance, if conveyer belt jamming is
known to be the most frequent cause of machine failure, the

69

path initiated by Rule 3 might be tried before Rules 1 and 2

.

The same decision may be repeated at other subgoal nodes in
the graph (such as for machine overheating with Rules 4 and
5) . If more than one solution is possible (as it frequently
is in diagnostic problems) , less promising paths may be tried
later. In addition to reducing search effort, use of
heuristic knowledge has the effect of more closely emulating
an expert's behavior in solving a problem.

However, backward chaining does not always follow one of these
search procedures exactly. Sometimes, the end user may wish to
restart the expert system program and remove or change certain
facts that have been provided. This may be necessary if incorrect
or contradictory information has been entered in response to a
question. To meet this need, ESBTs often provide a "system
restart" feature. Using this feature, search can be interrupted
by the end user and selected facts can be removed or replaced in
the expert system's context file. When the system is "restarted,"
the inference engine resumes backward chaining at an appropriate
subgoal. (Sec. 10.1 discusses other end user options in making
responses

.

)

Many rule-based ESBTs that support backward chaining use
depth-first search. In simple tools that permit only depth-first
search, heuristics can be used to place the rules in the knowledge
base in a particular order. (Since the inference engine will
examine rules in the order that they were stored and subsequently
compiled, it is advantageous to place the rules most likely to
succeed first.) However, for larger expert systems with many
rules, a more sophisticated use of heuristics is required to reduce
search. This is achieved by providing explicit control knowledge
to the inference engine.

8.1.3 Control Knowledge

In a backward chaining system, control knowledcfe represents
the heuristics used to select the rule most likely to lead to the
solution; i.e., the rule that represents the most promising path.
As such, control knowledge is sometimes considered to be of a
"higher level" than the rest of the knowledge base. Therefore, it
is sometimes referred to as meta-knowledqe . ESBT support for
control knowledge (or meta-knowledge) is particularly useful in
large knowledge bases with many rules. Control knowledge can take
several different forms. Some of these are described below.

o Rule Prioritization

ESBTs may permit the knowledge engineer to assign numeric
priorities to rules. When two or more rules have their
conditions satisfied, priorities may be used to determine
which rule should be used.

70

o Built-in Control Strategies

ESBTs may provide "built-in" criteria for selecting a rule
based on rule characteristics, such as the number of
individual conditions that must be satisfied. Several
alternative methods may be provided by the ESBT, one or more
of which can be chosen by the developer.

o Meta-Rules

A few ESBTs allow explicit specification of control knowledge
in rules. Such rules are called meta-rules (after meta-
knowledge) . Meta-rules are maintained separately from the
rest of the knowledge base. During the operation of an expert
system, meta-rules may specify or change priorities among the
"regular" rules in the knowledge base. Meta-rules may also
state conditions under which other rules are used.

At the present time, relatively few microcomputer-based ESBTs
support features for explicit representation of control knowledge.
However, even without control knowledge capabilities, it is
sometimes possible for a knowledge engineer to modularize and
partition the knowledge base to control the way in which search is
done.

8.2 Forward Chaining

In contrast to goal-directed backward chaining, forward
chaining proceeds in the opposite direction—from facts to rules.
Among microcomputer-based ESBTs, forward chaining inference is
somewhat less prevalent than backward chaining.

8.2.1 The Forward Chaining Process

Forward chaining begins with a given set of facts describing
the problem and a set of production rules. A goal condition can
be specified which, when achieved, causes inference to terminate.
Forward chaining can be described in the following steps:

(1) The conditions in the IF part of each rule are compared
against known facts to determine which rules have their
conditions satisfied. In a forward chaining system, rules
whose conditions are entirely satisfied are said to have been
triggered. If no rule can be satisfied, inference terminates.

(2) Otherwise, the rule(s) whose conditions are satisfied are
collected and ordered in a conflict set .

71

(3) If more than one rule is triggered, the inference engine must
decide which rule(s) in the conflict set should have its
conclusions added to the expert system's context file. In a
forward chaining system, such rules are said to be "in
conflict." The process of determining which rule to use is
known as conflict resolution . In forward chaining systems,
the control knowledge for selecting the rule to use is called
a conflict resolution strategy . Different conflict resolution
strategies may be employed.

(4) The rule selected through conflict resolution is said to fire.
The facts concluded by the selected, or fired, rule are added
to the context file. If the conflict set contains other
rules, their conditions now may no longer be satisfied after
the selected rule changes the facts in context file. Such
rules may be removed from the conflict set. (For instance,
the conclusion of a fired rule may result in changing a
variable value that previously satisfied a condition of
another rule in the conflict set.)

(5) If a goal condition has been met by the newly concluded facts,
inference can stop. Otherwise, the cycle repeats beginning
with step 1.

Because the conclusion of facts causes examination of rules,
forward chaining is sometimes described as being data driven .

8.2.2 An Example of Forward Chaining

This section illustrates the forward chaining process using
a very simple example of a construction type expert system.
(Construction type expert systems were described in sec. 4.1.2.)
Figure 8.4 shows a simple knowledge base of 10 rules to select
compatible components and assemble a factory machine. The rules
select a platform and a conveyer belt (Rules 1 and 2) , a motor
(Rules 3, 4, 5, and 6), and a connector between the motor and the
conveyer belt (Rules 7, 8 and 9). Rule 10 specifies a goal
condition.

Please note that Rule 7 contains "OR" conditions in its IF
part. For this rule to be satisfied, the value of the MOTOR
variable can be equal to either "Motor_X2 , " "Motor_X3 , " or
"Motor_V23," while the CONNECTOR_TYPE must be "Unknown." "OR"
conditions are discussed in section 9.1.

In a forward chaining system, rule conclusions may also
specify retraction of facts. A retracted fact is removed from the
context file.

72

PLATFORM SELECTION RULES

Rule 1

IF FLOOR = Concrete
& PLATFORM = Unknown
THEN PLATFORM = Type_A

CONVEYER.BELT = Alpha

Rule 2

IF FLOOR = Ralsesd
& PLATFORM s Unknown
THEN PLATFORM = Type_B

CONVEYER BELT = Gamma

MOTOR SELECTION RULES

Rule 3
IF PLATFORM = Type_A
& ROOM_TYPE = Non_Coolecl
& MOTOR = Unknown
THEN MOTOR = Motor_X2

Rule 4
IF PLATFORM = Type_A
& ROOM_TYPE = Cooled
& MOTOR s Unknown
THEN MOTOR r Motor^XS

MOTOR CONNECTOR TYPE
SELECTION RULES

Rule 5

IF PLATFORM = Type_A
& ROOM_TYPE = Cooled
& NOISE_REGULATIONS = Yes
& MOTOR = Unknown
THEN-MOTOR s Motor_X4

Rule 6

IF PLATFORM = Type_B
& MOTOR = Unknown
THEN MOTOR = Motor V23

Rule?
IF

OR
OR
&
THEN

Rule 8
IF

&
THEN

Rule 9
IF

&
&
THEN

MOTOR = Motor_X2
MOTOR = Motor_X3
MOTOR = Motor_V23
CONNECTOR_TYPE = Unknown
CONNECTOR TYPE - Connector Z1

MOTOR = Motor_X4
CONNECTOR_TYPE = Unknown
CONNECTOR TYPE = Connector Y1

MOTOR B Motor_X4
24HOUR_OPERATION s Yes
CONNECTOR TYPE = Unknown
CONNECTOR TYPE = Connector L5

GOAL CONDITION

RulelO
IF PLATFORM <> Unknown
& CONVEYER_BELT <> Unknown
& MOTOR <> Unknown
& CONNECTOR_TYPE <> Unknown
THEN GOAL CONDITION = True

Figure 8.4. Rules for Assembling Machine Components.

73

The inference engine of this expert system utilizes the method
of forward chaining described above. The conflict resolution
strategy determines that if two rules are in conflict, the more
specific rule—or the rule with more conditions in its IF part

—

is selected.

Let's assume the expert system is asked to select components
for assembling a machine in a cooled factory room with a concrete
floor. Furthermore, the factory has noise restrictions in effect
and must operate on a 24-hour basis. Thus, the following facts are
placed in the context file of the expert system when it is first
activated:

FLOOR = Concrete ROOM_TYPE = Cooled
NOISE_REGULATIONS = Yes 2 4HOUR_OPERATION = Yes

To perform its task, the expert system must determine the value of
the following variables:

PLATFORM = Unknown CONVEYER_BELT = Unknown
MOTOR = Unknown CONNECTOR_TYPE = Unknown

The steps in the expert system's solution to the problem, in
which the forward chaining process outlined in section 8.1.1 is
repeated four times, can be described as follows:

(1) Initially, only the conditions of Rule 1 are satisfied by the
value of the FLOOR fact, and this rule is triggered. Since
it is the only rule in the conflict set, it fires, concluding
that the PLATFORM should be "Type_A" and that the
CONVEYER_BELT should be an "Alpha." These facts are added to
the context file.

(2) Rules 4 and 5 are triggered by the value of PLATFORM and the
values of ROOM_TYPE and NOISE_REGULATIONS facts. These rules
are placed in the conflict set. Since Rule 5 is more
specific, it fires, concluding that the MOTOR should be of
type Motor_X4 . This fact is added to the context file.

(3) Rules 8 and 9 are triggered by the values of MOTOR and
24HOUR_OPERATION and put in the conflict set. Rule 9 is more
specific and therefore fires, concluding that CONNECTOR_TYPE
should be Connector_L5

.

(4) This satisfies the goal condition (Rule 10) . The expert
system terminates execution.

The expert system has constructed a machine assembly consisting of
a "Type_A" platform and an "Alpha" conveyer belt. Motor_X4 was
selected for the Motor slot. Connector_L5 was selected as the
connector between the motor and conveyer belt.

74

This is a simple example. ESBTs that support forward chaining
as a primary strategy often support representation of information
using more complex data structures and carry out inference through
pattern matching. These features are discussed in chapter 9.

8.2.3 Supporting Search in Forward Chaining Systems

In a forward chaining system, interconnections between rules
can be complex. As with backward chaining, these interconnections
form a graph (not shown) that represents the structure of a
knowledge base and the interconnections between rules and facts.

As the example above shows, the conclusion of a new fact can
result in the triggering of several rules, each of which represents
the beginning of a new path through the graph. When a rule is
selected through conflict resolution, a new path is initiated in
the graph.

In principle, forward chaining systems may search the graph
using the depth-first or breadth-first procedure. However,
conflict resolution strategies usually rely on some form of
heuristic information to select a path to follow. Conflict
resolution may be based on one of the kinds of control knowledge
discussed in section 8.1.3. In the machine assembly example, the
conflict resolution strategy required selection of the more
specific rule; i.e., the rule with more conditions. The more
specific rule was selected because it was more likely to be
applicable to a situation than a more general rule.

ESBTs that support forward chaining may provide several
alternative conflict resolution strategies. The developer may
choose one strategy for a particular application or, in some cases,
even define a new strategy.

8.2.4 Daemons

Daemon forward chaining refers to a restricted form of rule
chaining. Daemons or demons are forward chaining rules that are
triggered by an event that occurs while an expert system is

executing. Daemons may be used to display messages or give
warnings. In some ESBTs, daemons can trigger other daemons only
under restricted conditions, thus limiting the amount of chaining
that can be done.

Unfortunately, the term "forward chaining" is sometimes used
loosely. Forward chaining usually refers to the inference
procedure described in section 8.2.2. This is the most commonly
accepted meaning of forward chaining. However, "forward chaining"
is used by some to refer exclusively to daemon capabilities. In
still other cases, forward chaining may be emulated using methods

75

that are different than those described in section 8.2.2. Thus,
different usages of the term "forward chaining" can cause
confusion.

8.3 Other Inference Strategies Supported by ESBTs

Two other less common inference strategies may be supported
by ESBTs. These are described below.

o Mixed Forward and Backward Chaining

A mixed forward and backward chaining ESBT can support both
strategies equally. The developer may create an expert system
that uses either strategy exclusively. Or an expert system
can be developed that utilizes both strategies together

—

hence, the term "mixed inference." In a "mixed inference"
system, the two inference strategies can be used
cooperatively. For example, the expert system can begin
solving a problem by backward chaining until a particular
event happens, such as the conclusion of a new fact. This
event then triggers forward chaining inference. After a
sequence of forward inferences terminates, backward chaining
can resume. A forward chaining rule can also initiate
backward chaining by establishing a new goal.

0 Blackboard Systems

Blackboard systems use a multiplicity of inferencing
structures to solve problems. In a blackboard system, these
inferencing structures act as autonomous agents that interact
through a common memory area, called a blackboard. Typically,

. each agent is specialized to solve part of the problem and has
its own knowledge base and inference strategy. As a
particular problem is being worked on, the blackboard contains
information about the problem and the current state of the
solution being developed. Each agent monitors the blackboard
and may use its expertise to propose actions that are relevant
to finding a solution. A controlling agent manages the
solution of the problem by determining which agent's action
should be executed. For interested readers, appropriate
references are [ENGE88], [HAYE83], [NII86].

Smaller ESBTs available for microcomputers generally do not
support mixed inference strategies, though more sophisticated
microcomputer-based ESBTs are beginning to appear that do. The
potential user of ESBTs should examine this capability carefully
to understand the method of operation.

Microcomputer-based ESBTs that directly support blackboard
strategies are also less common. Both of these strategies normally
require considerable software skills to use.

76

8.4 Support for Reasoning Under Uncertainty

In some expert system domains, problem solving based on
heuristic knowledge is inherently uncertain. For instance, in
factory machine diagnosis, heuristics are used to link observed
symptoms to possible causes. Since in most cases the actual state
of the machine is unknown, the cause of failure cannot be
determined with absolute certainty. More than one cause may appear
to be possible. Under these circumstances, it is appropriate to
conclude that each possible cause of malfunction has an element of
uncertainty. It is also appropriate to estimate what the level of
uncertainty is for each cause. Hence, some ESBTs provide the
capability to represent uncertainty.

In recent years several coherent systems for representing and
reasoning under uncertainty have been proposed. The most common
method employed by ESBTs is based on certainty factors , sometimes
called confidence factors. Certainty factors are provided by many
ESBT products, including those that are microcomputer-based, and
have the advantage of being relatively easy to learn and use.

8.4.1 Certainty Factors

A certainty factor is a numeric coefficient that describes
the strength of belief assigned to a fact. That is, a certainty
factor specifies the level of confidence with which a fact is
believed. The expert system may use rules to assign certainty
factors to individual facts.

Typically, certainty factors are specified within a range,
such as -1.0 to +1.0. A certainty of -1.0 corresponds to total
disbelief that a fact is true. A certainty of +1.0 corresponds to
absolute certainty that the fact is true.

Figure 8.5 shows an example of how a certainty factor (CF)

may be assigned by a rule. The rule states that if its conditions
are satisfied, the fact "Generator_Burned_Out" is concluded with
a certainty factor of 0.7. In a range of -1.0 to +1.0, 0.7 may be
interpreted as signifying a high level of confidence.

77

IF GENERATOR_LIGHT = On
& MACHINE.OVERHEATING = True
THEN PROBLEM = Generator_Burn_Out OF - 0.7

Figure 8.5. A Rule With a Certainty Factor.

The combination of inference and certainty factors is known
as evidential reasoning . A simple example of evidential reasoning
occurs when two different causes of machine failure are concluded,
each having a different level of certainty. First suppose one rule
is used to conclude generator failure with a certainty of 0.70.
Then another rule is used to infer cooling system failure with a
lower factor of 0.40. The expert system can rank these conclusions
on the basis of confidence level and present the results to the end
user. The rankings provide additional guidance about the possible
cause of the problem.

Certainty factors were originally derived from Carnap's theory
of confirmation [CARN50] . The MYCIN system adapted Carnap's theory
for expert systems [SHOR85] to produce a system of evidential
reasoning. MYCIN included formulas for combining certainty factors
of two or more rules and formulas for propagating certainty factors
during rule chaining. The formulas used to calculate certainty
factors in MYCIN have since provided the basis for calculation of
certainty factors in some commercial ESBTs.

8.4.2 Other Methods for Reasoning About Uncertainty

In addition to certainty factors, other methods for reasoning
about uncertainty have been developed. These methods are more
complex and less commonly supported by microcomputer-based ESBTs.
Three methods are briefly mentioned below.

o Fuzzy Logic

Fuzzy set theory , developed by Zadeh [ZADE65], provides a
mathematical method for representing ambiguous or vague
concepts such as "coolness" or "warmth." In fuzzy set theory,
such "fuzzy" concepts are quantified using fuzzy sets—

a

graded set membership function expresses the degree of
ambiguity or "fuzziness" of a proposition such as "The machine
is overheating at 13 0°." Fuzzy set theory also provides set

78

operations that can be applied to fuzzy sets. Fuzzy logic
extends fuzzy set theory to permit inexact or approximate
inference with fuzzy concepts. The utility of fuzzy logic for
expert systems has been described in [YAGE84]. Fuzzy logic
is supported by some microcomputer-based ESBTs [SCHW91].

o The Dempster-Shaffer Theory

The Dempster-Shaffer theory of uncertainty was developed by
A. P. Dempster [DEMP67] and extended by Glen Shaffer [SHAF76]

.

Formally based on probability theory, the Dempster-Shaffer
theory attempts to describe uncertainty using ranges of
probabilities instead of one number. At present, methods of
uncertain reasoning based on the Dempster-Shaffer theory are
supported by very few ESBTs.

o Bayesian Methods

Bayes theorem, which has given rise to extensive research in
Bayesian inference and Bayesian decision making, is based on
the use of conditional probability; that is, the probability
of one event occurring given prior knowledge of the
probability of one or more other events occurring. Bayesian
methods have been applied to expert systems, including the
Prospector research expert system [DUDA79]. However, the
application of Bayesian inference is based on exact knowledge
of the probabilities of events. In some practical problems,
the number of events can be numerous, and the data necessary
to establish reliable probabilities is often inadequate.

A comparative analysis of these methods and certainty factors is
found in [HENK88]. Of the three methods described in this section,
fuzzy logic is perhaps finding the most real-world application.
Fuzzy logic has also been applied to problems outside expert system
technology such as industrial process control [MAIE85]

.

8.5 Inductive Systems

Inductive ESBTs were briefly mentioned in chapter 6.

Induction is a procedure by which rules are automatically generated
from a set of examples [QUIN79]. Each example contains a problem
situation and an associated solution. Typically, each example has
a set of attributes, each of which has a value. The inductive
process is based on an algorithm that analyzes the examples and
determines the degree to which each attribute is used in the
decision-making process. The attributes are ordered by the extent
to which they influence the decision making. This ordering then
serves as the basis for the generation of a decision tree.

79

Table 8.1 displays a set of examples associated with a small
induction problem, while figure 8.6 shows the structure of the
resulting decision tree.

Table 8.1. Set of Examples for an Inductive System

No. Conveyer Temp

.

Machine Cooling Generator Malfunction
Belt Light Smoking? System Light On?

On? Liaht On''

1) No No Yes No Yes Generator Burn Out
2) No No Yes Yes No Cooling System Failure
3) No Yes No No Yes Generator Burn Out
4) No Yes No Yes No Cooling System Failure
5) No ?? ?? No No Unknown
6) No No No ?? ?? Unknown
7) Yes ?? ?? ?? ?? Jammed Part

80

Conveyer

Temperature
Light On?

Yes —

Figure 8.6. The Structure of the Resulting Decision Tree.

81

As the example shows, the structure of the induced decision
tree is essentially hierarchical. Solutions are reached by taking
paths through the tree. In some tools, an equivalent set of
production rules can be generated. Once induced, the decision tree
or equivalent set of rules can be applied to find solutions for
individual instances of a problem. From the end user's point of
view, the inductive expert system operates in a manner similar to
a rule-based system.

ESBTs that use induction as a primary method are commercially
available [BIEL88], [MART88]. These systems support the ability
to create multiple decision trees that can be linked together.
Some rule-based commercial ESBTs have also added an inductive
component for generating production rules.

Induction is a convenient method for developing expert systems
in which problem-solving knowledge can be described in a series of
examples. For induction to be effective, the examples should cover
all or most of the possible attribute and value combinations and
provide a solution for each. However, if the problem-solving
knowledge cannot be expressed in examples, or if the examples cover
a small portion of the range of attribute value possibilities,
induction systems are less useful. Under these circumstances,
other forms of knowledge representation may be more appropriate.

ESBTs that utilize induction are useful to developers that
have little or no programming skill or to domain experts who wish
to develop expert systems themselves.

8.6 Analysis of ESBT Inference Capabilities

In this chapter, alternative inference capabilities offered
by ESBTs have been examined in detail. Interested readers,
including those tasked with selecting ESBTs and implementing expert
systems, may wish to know when each strategy is appropriate. The
following provides some brief guidelines.

o When to Use Backward Chaining

Backward chaining is most useful for problem-solving tasks
that have relatively few solutions and a moderate to large
amount of information about the problem to examine. These
conditions often occur in problems where solutions are
selected and where heuristic classification is employed
(discussed in ch. 4). Hence, many expert systems that select
solutions employ backward chaining. For problems with few
solutions and a small amount of problem information, forward
chaining may also be used.

82

o When to Use Forward Chaining

In contrast, forward chaining is most often used when the
number of potential solutions is as large or larger than the
amount of information about the problem. Forward chaining is
particularly desirable for larger construction type expert
systems that must consider components in alternative
configurations. Such systems may require representation of,
and reasoning about large amounts of structured information
having complex patterns and interrelationships. These systems
are examined more closely in the next chapter.

o When Is Control Knowledge Useful

Control knowledge is useful for large expert systems in which
a great deal of search is required. Small expert systems
which have traditionally been implemented on microcomputers
generally do not require ESBTs that support control knowledge.

o When Is Induction Useful

Induction is useful for problem domains that can be described
in a series of examples in which problem characteristics can
be mapped directly to solutions. The examples should cover
nearly all possible cases. Induction is particularly
appropriate when the implementor has little or no programming
skill.

For selection type expert systems with relatively few rules, an
ESBT that supports backward chaining is used most often.

8.7 Summary of Features Supporting Inference Capabilities

Table 8.2 summarizes the features used to support basic
inference capabilities. Each feature is characterized by:

o The level of computer skill required to use it effectively.

o Frequency of occurrence of feature among microcomputer
products

.

o The major category of expert system application that the
feature can be used to support.

o Whether or not the feature is especially useful for
development of large applications.

The categories used for level of skill were described in section
7.7. Resource requirements are rated "Low," "Medium," and "High,"
also as described in section 7.7.

83

Table 8.2. Summary of Features Supporting Inference Capabilities

Feature Required
Skill
Level

Occurrence
Of
Feature

Suitable
Application
Type

Supports
Large
Application
Development?

Support For Backward
Chaining Depth First

Computer
Specialist

Common Classification Possibly

Support For Backward
Chaining w/Heuristics

Computer
Specialist

Less
Common

Classification Yes

System Restart
Facility

Computer
Specialist

Less
Common

Classification No

Daemons Computer
Specialist

Common Classification No

Certainty Factors Computer
Specialist

Common Classification
& Construction

No

Fuzzy Logic AI
Specialist

Rare Classification
& Construction

No

Induction Computer
Literate

Becoming
Common

Classification No

Support For Forward
cnaining

Computer
op6CXa±XS

U

Less
uouiinon

Classification
Of i^ons crucu j-on

Possibly

Support For Mixed
Inference

Computer
Specialist

Less
Common

Classification
& Construction

Possibly

84

9. SUPPORT FOR KNOWLEDGE REPRESENTATION

This chapter focuses on the different forms of knowledge
representation found in microcomputer-based ESBTs.

The most basic form of knowledge representation is the
production rule, introduced and discussed in earlier chapters. In
the production rules discussed so far, facts have been represented
by individual variables. Rule conditions have been represented by
variables that are compared to specific values. (The comparison
checks if a fact is known.) Rule conclusions have been represented
by variables that are assigned values. (A new fact is concluded.)

Other forms of knowledge representation represent factual
information by grouping related pieces of information into a single
data structure that can be viewed and processed as a unit. These
structures are complex and may consist of many variables. An
example might be a data structure that holds information about a
machine component, such as its name, weight, and position. Such
structures provide a basis for more complex systems of knowledge
representation that are useful in many domains, including
manufacturing, medicine, and CAD.

Production rules that reason about information contained in
such structures are often large and elaborate. Correspondingly,
the algorithms necessary to support inference with these rules can
be complex. For large applications with many structures, the
inference process can consume considerable computer resources.

In the early 1980s, ESBTs that supported these capabilities
operated mostly on larger platforms and were implemented in
languages such as LISP. The few microcomputer-based ESBTs that
offered similar capabilities were hindered by poor performance in
larger applications. In recent years, more powerful microcomputer
processors have been introduced. At the same time, microcomputer-
based ESBT software has become more efficient, often implemented
in programming languages designed to enhance performance. As a
result, microcomputer-based ESBTs have expanded the knowledge
representation and inference capabilities they support.

This chapter first reviews representation of knowledge in
production rules. Then, data structures for representing complex
information are discussed. Use of complex structures in production
rules is presented. Use of pattern matching techniques to support
inferencing is explained. ESBT support for pattern matching in
connection with both backward and forward chaining is discussed.
Finally, frame systems and ESBT support for object-oriented
programming are discussed.

Perhaps an important consideration regarding knowledge
representation in ESBTs is the lack of a standard terminology.
This sometimes makes understanding of features and capabilities of

85

different ESBTs harder. Although it is beyond the scope of this
publication to present a standard terminology, it is hoped that
this chapter will help promote common understanding of important
concepts and terms. (Standardization in expert systems is discussed
in ch. 13.)

9.1 Production Rules That Use Simple Variables

This section describes production rules that represent facts
using individual variables. Production rules have already been
introduced to the reader in previous examples in this report. The
variables used in these rules are similar in appearance and
function to programming language variables. Two basic types of
rule variables may be identified.

o Boolean Variables

Boolean variables can take on only TRUE or FALSE values.
Almost all ESBTs support boolean variables in some form.

o Attribute Value Variables

Also known as attribute/value pairs, attribute value variables
can take on many different values. A simple example of an
attribute value variable is Color=Blue, where Color is the
attribute, while "Blue" is one of the many different values
Color can have. Some ESBTs support storage of attribute value
variables in arrays and permit array elements to be referenced
and manipulated in rules.

Figure 9.1 shows a production rule which uses attribute value pairs
and boolean variables. On the following page, table 9.1 contains
some possible values that may be assigned to the rule's variables.

IF GENERATOR_LIGHT = On
MACHINE.OVERHEATING = True

THEN PROBLEM =Generator_Burn_Out

Figure 9.1. A Production Rule With Variables.

86

Table 9.1. Some Possible Values for Production Rule Variables

Variable Name Possible Values Variable Type

GENERATOR_LIGHT On, Off Attribute Value

MACHINE_OVERHEATING True, False Boolean

PROBLEM Generator_Burn Out
Coo ling_System_Fai lure
Jammed_Part

Attribute Value

To recapitulate: the IF part of the production rule can
consist of conjunctive conditions, also known as AND conditions.
Each condition tests the value of an individual variable. All
conditions linked by an AND must be satisfied for the rule to be
used. Conditions can also be disjunctive conditions, also called
OR conditions. When conditions are linked by an OR, only one
condition must be satisfied for the rule to be used.

In addition, individual conditions can be negative or "NOT"
conditions. For instance, the rule condition - "GENERATOR LIGHT
<> On" or "NOT GENERATOR LIGHT is On," is true when the variable
GENERATOR LIGHT is found to be equal to a value other than "On."
The use of negation sometimes varies among ESBTs and should be
examined carefully when evaluating a tool.

The knowledge representation requirements of many expert
system applications can be met by production rules that use
individual variables to represent facts. This is partially the
reason why many microcomputer-based ESBTs rely primarily on this
form of knowledge representation.

9.2 Representing Complex Information

As stated at the beginning of this chapter, factual
information that is naturally grouped together may be represented
in data structures with multiple attributes. For instance,
information about a machine component can be represented in a data
structure with attributes for the component's name, the machine the
component is part of, the component's weight, and its position.
Such structures allow more efficient representation of complex
information than is possible using only attribute value variables.

87

Use of structures is important for another reason—when used in
conjunction with sophisticated pattern matching techniques, complex
structures support more powerful inference capabilities. Pattern
matching will be discussed in section 9.3.

9.2.1 Basic Structures Supported by ESBTs

Two basic kinds of structures for representing complex
information may be identified.

o Object-Attribute-Value Triplets

Object-attribute-value'' (0-A-V) triplets consist of:

(1) The object that the attribute belongs to.

(2) The name of the attribute.

(3) The value of the attribute.

Several 0-A-V triplets may be used to represent information
about the same fact or object. A simple example of the use
of 0-A-V triplets might be:

MACHINE_COMPONENT Component_Name = Generator,
MACHINE_COMPONENT Machine_Name = Grinder_l,
MACHINE_COMPONENT Weight = 100.

In these triplets, the object is MACHINE_COMPONENT , its
attributes are Component_Name , Machine_Name, and Weight, and
the attribute values are "Generator_27 , " "Grinder_l," and
"100" respectively.

o Multiple Attribute Expressions

Instead of 0-A-V triplets, structured information can be
grouped in a record-like format, as illustrated below.

{MACHINE_COMPONENT Component_Name = Generator_27
Machine_Name = Grinder_l
Weight = 100
Position = position-y}

The structure describes a generator component for the machine
"Grinder_l" that has a weight of 100 and is located at
position y.

The term "object" used in this context is not the same as
the term "object" used in object-oriented programming. Object-
oriented programming is discussed later in this chapter.

88

Among microcomputer-based ESBTs that support representation of
complex information, multiple attribute data structures are
somewhat more prevalent than O-A-V triplets.

9.2.2 Defining Generic Types of Structures

An important feature associated with the use of multiple
attribute data structures is the ability to define generic types
or kinds of data structures. The generic type serves as a template
from which many individual instances of the type may be created.
Thus, a generic type for MACHINE_COMPONENT might be defined as
shown in figure 9.2 below. This type describes the set of
attributes that a machine component must have. The type serves as
a basis for the creation of many individual instances of a
MACHINE_COMPONENT , each with individual values for different
attributes. The role of a generic type or template is analogous
to a database record definition where individual records that fit
the definition are stored in a file.

Speclfl^nstances ^

{MACHINE„COMPONENT
Component_Name: Generator_27

Machlne_Name: GrindeM

Weight: 100

Position: Posltlon.X}

{MACHINE_COMPONENT
Component_Name: Motor_A2

Machlne_namo: Chopper_7

Weight: 200

Position: Posltlon_Y}

{MACHINE_COMPONENT
Component_Name: Generator_28

Machlne_name: Lathe_4

Weight: 100

Position: Posltlon_Z}

Figure 9.2. Generic Types and Instances.

Generic Type Deftnftion

{MACHINE_COMPONEr4T

Component^Name
Maehine.name

Weight

Position}

89

The ability to represent factual information in complex
expressions requires a corresponding ability to execute inference
operations with these data structures. This topic is addressed in
the next section.

9e3 Production Rules and Complex Information

Rules that reason about information represented in multiple
attribute expressions can specify complex comparisons. For
example, the IF part of a rule may contain several multiple
attribute expressions and compare the values of several attributes.

In addition to direct comparisons, ESBTs may support even more
powerful capabilities for doing comparisons with rule variables.
These capabilities center around the ability to represent patterns
and match them to facts represented in multiple attribute
expressions.

9.3.1 Patterns

A pattern is a generalized data structure that can be used to
match many specific instances of the same thing. Patterns can
contain constants which must match specific values. Patterns can
also contain variables, called free variables for the purposes of
this discussion. In contrast to variables that are compared to
specific values, a free variable can match many different values.
The simple pattern shown below is intended to match multiple
attribute expressions of the type MACHINE_COMPONENT. It has two
free variables, denoted by symbols beginning with "?":

{MACHINE_COMPONENT Machine_Name = ?machine_name,
Component_Name = ?component_name}

If the attributes Weight and Position^ are disregarded, this simple
pattern can match all three multiple attribute expressions in
figure 9.2 above.

In a rule, the IF and THEN parts are considered to have two
separate patterns. The pattern in the IF part can be composed of
several individual conditions, just as a simple rule is. For
instance, the rule below has two conditions:

IF {MACHINE_COMPONENT Machine_Name = ?machine_name

,

Component_Name = ?component_name}
& {OVERHEATING Component_Name = ?component_name}
THEN {SHUTDOWN Machine_Name ?machine_name}

These attributes will be discarded from now on to simplify
the discussion.

90

Each condition is intended to match multiple attribute expressions
that represent specific facts. A free variable can appear in more
than one place, and can thus be used to link the individual
conditions in a meaningful way. For example, in this rule, the
free variable ?component_name links the two conditions in the IF
part by specifying that both conditions must apply to the same
component. Likewise, the variable ?machine_name , which appears in
the patterns for both the IF and THEN parts of the rule, is used
in the same way. The entire meaning of the rule is:

If the component "?component_name" belongs to the machine
"?machine_name, " and the component "?component_name" is
overheating, then shut down the machine "?machine_name .

"

9.3.2 Pattern Matching in Production Rules

Pattern matching is the process of matching the pattern in the
IF part of a rule to specific multiple attribute expressions in an
expert system's context file. During pattern matching, free
variables are assigned specific values. For the IF part of a rule
to be satisfied, its pattern must be successfully matched. If the
pattern in the IF part matches, the variable assignments—called
variable bindings—can be substituted into the pattern in the
rule's THEN part. This results in the creation of a new multiple
attribute expression that represents the inference of a new fact.
For instance, suppose the context file contains the following:

{MACHINE_COMPONENT Machine_Name = Grinder_l,
Component_Name = Generator_2 7

}

{OVERHEATING Component_Name Generator_2 7

>

The pattern in the IF part of the rule shown in section 9.3.1 can
be matched as follows:

(1) The free variable ?machine_name is bound to "Grinder_l."

(2) The free variable ?component_name is bound to
"Generator_27 .

"

The variable binding for ?machine_name can now be substituted into
the pattern in the THEN part. The result is the creation of a new
multiple attribute expression:

{SHUTDOWN Machine_Name Grinder_l}

The expression is then added to the expert system's context file.

In addition, patterns can incorporate functions, specify
constraints on values that can be matched, and specify that free
variables match lists of elements of variable sizes. Pattern
matching, when applied on a wide scale, can have a powerful effect.

91

9.3.3 The Power of Pattern Matching

A rule with free variables can match different sets of facts.
Each set of facts that satisfies the condition portion of a rule
is said to instantiate the rule. As figure 9.3 shows, a rule can
be instantiated to produce more than one conclusion.

CONTEXT FILE

(MACHINE_COMPONENT Maohlnt.Nairw « Grinder_1
Coniponent_Name « Generator_27}

{MACHINE.COMPONENT Maohlne_Name . Chopper.?
Coinponent_Nain0 a Motor_A2)

(MACHINE_COMPONENT Machine.Name > Uthe_4
Componant_Nama = G«nerator_28)

(OVERHEATINQ Component _NaiTW > Ganerator_27}

(OVERHEATING Connponent_Nanw > Motor_A2)

KNOWLEDGE BASE

(MACHINE.COMPONENT Maohln»_Nanw - ?maohln«_nan»
Component ?oomponent_Mme)

(OVERHEATINQ Component_Name s ?component_nanM)

THEN (SHUTDOWN HUohlne.NanM - ?machlne_name)

Facts Rule

INFERENCE ENGINE

For {MACHINE_COMPONENT Machine.Name . GrinderJ
Component_Name s Generator_27}

and (OVERHEATING Comoonent Name = Generator 271.

Grlnder_1 matches ?machine_name
Generator_27 matches 7component_name

CONCLUDE {SHUTDOWN Machine.Name s Grinder_1}

The INFERENCE
ENGINE matches
facts to patterns
in the mien

For {MACHINE_COMPONENT Machlne_Name - Chopper.?
Component Name s Motor A2}

and {OVERHEATING Component_Name b Motor_A2],

Chopper_7 matches ?machlne_name
Motor_A2 matches ?component_name

CONCLUDE {SHUTDOWN Machine.Name u Chopper_7}

Conclusion

/SHUTDOWN Machine Nama^Grtndar 11

/SHUTDOWN Machlns Namo. Chopper 7t

Figure 9.3. Example of Pattern Matching.

92

Pattern matching provides some important advantages for
developing expert system programs.

o Definition of Generalized Rules

Instead of having specific rules to handle each instance of
a problem or situation, pattern matching permits specification
of generalized rules that can be applied to many instances.
For some applications, this permits the knowledge engineer to
specify a smaller number of general rules instead of many
specific rules.

o Representation of Complex Relationships

As the example above illustrates, generalized rules can be
used to match many repetitive sets of facts. Such rules can
be used to reason about recurring relationships in complex
physical systems, a capability necessary for many design and
configuration applications.

o Links to Databases

An expert system that supports multiple attribute expressions
and free variable pattern matching can represent and reason
about information in a record-like format. Multiple attribute
expressions can be mapped into database structures such as
tables. This is an advantage if an expert system must use
large amounts of information stored in a DBMS. ESBT support
for interfaces to DBMSs is discussed in chapter 11.

The power provided by pattern matching permits the development of
many expert system applications that would be difficult to develop
with only production rules that represented facts in individual
variables

.

9.3.4 Pattern Matching and Forward Chaining

An increasing number of forward chaining ESBTs designed for
the microcomputer environment support pattern matching of multiple
attribute expressions. These tools utilize the basic forward
chaining procedure, or a variation thereof, discussed in section
8.3. The tools are intended for larger, more complex expert system
applications. Some characteristics of these tools are summarized
below.

o Types of Applications That Are Appropriate

ESBTs that support forward chaining and pattern matching are
particularly useful for implementing applications that must
manipulate significant amounts of data, including expert

93

systems that perforin construction type tasks. This includes
expert systems that design computer systems [MCDE82], [MCDE84]
or that perform planning and scheduling functions.

o Efficiency and Use of the Rete Algorithm

The Rete Algorithm [FORG77], [F0RG81] was originally developed
in connection with the 0PS5 language. This algorithm provides
an efficient means of matching production rule patterns to
multiple attribute expressions. Many ESBTs that support
forward chaining and representation of factual information in
multiple attribute expressions use the Rete algorithm or a
close derivative. A detailed description of this algorithm
is beyond the scope of this report.

o Greater Computer Resource Requirements

Expert system applications developed with ESBTs employing a
variant of the Rete algorithm generally require more processor
power and more memory than applications developed with simple
rule-based ESBTs. Because of these extensive resource
requirements, large applications can be efficiently
implemented only on the largest microcomputer platforms.

o Control Knowledge in Large Forward Chaining ESBTs

Control knowledge and its role in managing search in large
applications was discussed in chapter 8. Control knowledge
is necessary because of the correspondingly greater resource
requirements of large forward chaining expert system
applications. Typical control strategies supported by ESBTs
include prioritizing rules and providing built-in conflict
resolution strategies (discussed in sees. 8.1.3 and 8.2).

ESBTs that support forward chaining and pattern matching provide
a capability to develop large, complex applications. However,
because of their greater resource requirements, applications that
use this capability may sometimes have to be implemented on larger
platforms

.

9 . 3 s 5 Pattern Matching and Backward Chaining

Some ESBTs support pattern matching in backward chaining
systems. As with forward chaining systems discussed in the
previous section, backward chaining systems that support pattern
matching are also intended for larger, more complex applications
and have correspondingly greater computer resource requirements.

These systems utilize the basic backward chaining algorithm
given in section 8.1. Instead of the Rete algorithm, pattern
matching in backward chaining systems has traditionally been

94

implemented using the Unification Algorithm [ROBI65] , or variations
thereof. The unification algorithm underlies inference procedures
in the Prolog language and other programming systems that support
logic programming. The control strategies discussed in section
8.1.3 are applicable to backward chaining systems that support
variable pattern matching as well.

In some cases, ESBTs support variable pattern matching
capabilities and both forward and backward chaining.

9.4 Representing Knowledge in Frames \

Frames and frame systems are partly based on representation
of knowledge in multiple attribute expressions, presented in
section 9.2. Like multiple attribute expressions, frames are data
structures that are also "record like." The attributes of a frame
are often called slots . Slots can be assigned specific values.
Figure 9.4 shows an example.

MACHINE MALFUNCTION

SlSlSl Problem:

Location of Machine:

Time of Occurence:

Source of Malfunction:

Figure 9.4. An Example of a Frame.

In addition, frame systems generally provide other
capabilities for representing and manipulating information.

9.4.1 Capabilities Supported by Frame Systems

Frame systems offer the ability to define frame types and to

specify links, or relationships, between them. These systems can

be designed to reflect the organization of real-world phenomena.

95

o Frames Types Can Be Created to Serve as "Templates"

As with generic types of structures (discussed in sec. 9.2.2),
frame systems provide the ability to define frame "types" and
to create specific instances of particular frame types. Each
instance has the same structure as its type. However, the
specific values that are assigned to the frame slots can
differ. These assignments can be made when the frame instance
is created or at any time after.

o Frames Can Be Linked

Frame types can be defined to have links to other frame types.
Links may describe existing real-world relationships that must
be represented in a knowledge base. Thus, individual links
can be interpreted to have specific meanings, such as:

(1) Natural relationships between real-world objects such as
between machines and the factories they are located in.

(2) Pointers from frame slots to other frames that elaborate
the slot description. (For instance, a frame for a
machine may have a slot fot a generator that points to
a frame that describes the generator component.)

o Daemons Procedures for Frame Slots

Frames can have Daemon procedures defined that are activated
when individual slots are accessed or updated. These
procedures may be used to compute values or to update other
slots. Slot daemons are analogous to daemons in forward
chaining rules.

Readers familiar with the database technology will recognize that
frame systems bear similarity to some database data models
implemented in commercial DBMS products. For instance, the ability
to define frame types and to specify relationships between frame
types bears similarity to the capabilities provided in the entity-
relationship model [CHEN76] . It is therefore not surprising that
some experimental and applied expert systems store frames in
conventional DBMSs.

9.4.2 Generalization/Specialization Hierarchies

Frame types can be defined that are specializations of other
frame types. For instance, it is possible to define a frame type
that describes a general malfunction of a machine generator
component. In a real-world system, this description can be
specialized to identify particular kinds of generator malfunctions,
such as failure of specific generator subcomponents. In a frame

96

system, it is possible to define a different frame type for each
more specific malfunction. A frame for a more specific malfunction
is automatically given the slots of the general malfunction frame.
However, the more specific frame may also define additional slots
for information about its particular malfunction.

The mechanism by which a more specific frame acquires
properties from the more general frame is called inheritance .

Inheritance can be used to create extensive hierarchies of frames.
Figure 9.5 shows a simple example of a two element frame hierarchy.

General Frame
MACHINE MALFUNCTION

Sl2lSl Problem:

Location of Machine:

Time of Occurence:

Source of M&lfunctlon:

\Inheritance

Specialized Frame
GENERATOR MALFUNCTION

Inherited Slots from
Machine Malfunction

Locally Defined Slots:

State of Power Source:

Current Temperature:

Figure 9.5. Example of a Simple Frame Hierarchy.

Most microcomputer-based ESBTs that support frame systems also
support inheritance of frame types, though exceptions may exist.

Like other features of frame systems, inheritance is found in
data models that underlie other programming systems. In
particular, inheritance is an important feature of object-oriented
programming systems and object-oriented DBMSs. Object-oriented
systems and their relationship to frame systems are discussed below
in section 9.5.

9.4.3 Integrating Rules and Frames

In contrast to DBMSs, frame systems interact with rules. This
interaction can take place in different ways.

o Rules Can Be Associated With Individual Frame Types

Frame types can be associated with specific rules or groups
of rules. Rules can by used to give specific values to frame
slots, to create instances of frame types, and to link frames.

o Inference Can Be Guided by the Structure of a Frame Hierarchy

A hierarchical organization of frames can reflect the problem-
solving method of a human expert. For instance, a
generalization/specialization hierarchy of frames might be
used to represent a taxonomy of machine malfunctions. This
hierarchy could be used to narrow down the cause of specific
cases of malfunction problems. To identify a malfunction,
rules associated with a more general frame would determine a
more specific frame to examine. The process could be repeated
until a path is created through the hierarchy leading to a
solution

.

o Frames Can Be Linked by Rule Chaining

Frames can be linked by rules during rule chaining. For
instance, during backward chaining, conditions in a rule
associated with one frame may match information stored in an
instance of a different frame. In this way, backward chaining
can traverse a series of frames. The traversals may follow
defined real-world relationships between frames (discussed in
sec. 9.4.1) instead of a generalization/specialization
relationship

.

ESBTs in which production rules can reference information in frames
may support pattern matching. However, frame systems are not
always accompanied by pattern matching capabilities as described
in section 9.3.

98

9.4.4 Analysis of Frame Systems and ESBTs

Some frame systems supported by ESBTs provide a rich set of
representational capabilities including the ability to define
generalized frame types, specify relationships between frames, and
create generalization/specialization hierarchies. However, these
capabilities are not necessary or advantageous in every
application.

Frames are useful for organizing larger knowledge bases.
Associating groups of rules with frames permit modularization of
expert system programs. By representing knowledge in frame
hierarchies instead of rules, the overall number of production
rules that must be maintained by the system can sometimes be
reduced

.

However, there are tradeoffs associated with use of frame
systems. More complex frame languages require added system
software overhead, resulting in slower execution. Large frame
systems with many frame types and hundreds of rules may require
larger, more powerful microcomputer platforms.

9.5 ESBTs and Object-Oriented Programming

A complete discussion of object-oriented programming is beyond
the scope of this report. However, object-oriented programming
systems have been incorporated in a number of microcomputer-based
ESBTs and have proven to be powerful tools for developing
sophisticated expert system applications. Therefore, a brief
treatment of the subject is in order.

9.5.1 Summary of Features of Object Systems

Object systems are named after their most essential feature:
the "object." An object can be thought of as a piece of structured
information, like a multiple attribute expression or frame.
However in contrast to most frame systems, individual objects have
specific behavioral aspects. The behavior is carried out by
procedures that perform specific operations. Taken together, the
object's structure and behavior can be defined to model real-world
entities. For example, a machine can be represented by an object.
The object can have attributes to describe the machine's essential
properties and have procedures to simulate the machine's function
(and possibly malfunction)

.

In addition to the ability to create objects, object
programming systems also have the following capabilities, many of

which are similar to frame systems.

99

o Definition of Object Classes

Object types can be defined, often called classes. Like frame
types, classes can represent abstract specifications that are
intended to capture the essential characteristics of real-
world objects. Classes can be used to declare generic types
of multiple attribute expressions (discussed in sec. 9.2).
In contrast to many frame systems, a class can also define a
behavioral component described by a set of procedures.

o Creation of Individual Objects From Class Definitions

Class definitions serve as "templates" from which objects are
created. Each object has the structure (represented by its
attributes) and behavior (described by its procedures) defined
for its class.

o Computation Through Message Passing

Message passing is a computational mechanism that allows
individual objects to communicate with each other and yet
preserve their independence. Message passing is closely
associated with the object's behavioral aspect. A message is
directed to an object resulting in invocation of a procedure,
called a method . The method performs a predefined operation
that exhibits some aspect of the object's behavior.

o Inheritance and Class Hierarchies

Class hierarchies can be created using the mechanism of
inheritance (described in sec. 9.4.2). Like frame systems,
object system hierarchies permit definition of classes that
are specializations of other classes. Class hierarchies are
very similar to generalization/specialization hierarchies in
which both attributes and behavior are inherited.

Object programming systems possess other unique features. For a
complete treatment of object programming systems, the reader may
consult [DABR90], [GOLD83], [PARS89].

9.5.2 Analysis of Object Systems

ESBTs that support object-oriented programming provide both
greater flexibility and generality in defining representation
structures as well as the advantages of production rules.

100

o The Advantages of Computationally Complete Programming
Languages

In principle, a prograitmiing language is computationally
complete, whereas a production rule system alone is not. For
practical purposes, this means that there are some algorithms
that can be implemented in an object-oriented programming
language but cannot be implemented using rules and frame
systems. Additionally, an ESBT that provides a built-in
programming language eliminates the necessity of developing
external software modules that perform conventional
programming tasks. This allows an entire application,
including conventional components, to be developed using a
single self-contained software package.

o Object Systems and Frame Systems

Object systems have many properties in common with frame
systems. In fact, some authors consider object systems and
frame systems to be essentially equivalent. However, in
contrast to most frame systems, object-oriented programming
systems have complete programming languages that provide
powerful capabilities for implementing a wide variety of
software applications. Object systems also possess features
which some frame systems do not, such as message passing.
The generality of object-oriented programming systems can be
used to implement a wider variety of real-world systems than
is possible with most frame systems. Object-oriented
programming systems can be used to implement frame systems.

Production rules, frame systems, and object-oriented programming
were first combined in large hybrid ESBTs that appeared on LISP
machines [KUNZ84].

9.6 Summary of Features for Knowledge Representation

It should be emphasized that the capabilities discussed in
this chapter are not uniformly supported by all ESBTs. For
instance, some tools may support use of multiple attribute
expressions (discussed in sec. 9.2), but provide incomplete support
for pattern matching (sec. 9.3). Similarly, specific features of
frame systems and object-oriented programming systems may vary
among different ESBTS.

Table 9.2 below summarizes key knowledge representation
features. Each feature is characterized by:

o The level of computer skill required to use it effectively,

o Computer resource requirements.

101

o The major category of expert system application that the
feature can be used to implement.

o Whether or not the feature is especially useful for
development of large applications.

Most of the features summarized below are currently offered in only
a few, more expensive microcomputer-based ESBTs. The categories
used to describe level of skill were described in section 7.7.
Resource requirements are rated "Low," "Medium," and "High," also
as described in section 7.7.

Table 9.2. Summary of Selected Knowledge Representation Features

Feature Required
OA. a.X -L

Level

Computer
Ow Li X. wcs

Require-
ments

Suitable

Type

Supports

Application
Development?

Simple Rules Computer
Specialist

Low Classification No

Rules With Multiple
Attribute Expressions

AI

Specialist
Medium Classification No

Support For
Pattern Matching

AI

Specialist
High Classification

& Construction
Possibly

Support For Forward
Chaining & Rete Algorithm

AI

Specialist
High Classification

& Construction
Possibly

Support For Backward
Chaining & Pat. Matching

AI

Specialist
High Classification

& Construction
Possibly

Support For Definition
Of Simple Frames

AI

Specialist
Medium Classification

& Construction
Possibly

Support For
Frame Hierarchies

AI
Specialist

High Classification
& Construction

Possibly

Object-Oriented
Programming

Computer
Specialist

Medium To
High

Classification
& Construction

Possibly

102

Support for representation of complex information, pattern
matching, and object-oriented programming substantially increases
the complexity of expert systems that can be developed using an
ESBT. Accordingly, it is generally not possible for the non-
programmer to develop expert systems that rely on the more
sophisticated forms of knowledge representation discussed in this
chapter. Generally, a team of developers is required, consisting
of one or more knowledge engineers and skilled programmers.

103

10. FEATURES FOR CONSTRUCTING END USER INTERFACES

This chapter is about end user interface construction
facilities provided by microcomputer-based ESBTs. Perhaps the most
important single factor in successfully deploying an expert system
is acceptance of the end user interface by those who will use the
system on a regular basis. Therefore, development of the end user
interface can be a critical and time-consuming part of an expert
system project. An ESBT that provides good end user interface
construction facilities is important to a successful effort.

ESBTs can generally support development of three types of end
user interfaces:

o The most basic are text-based end user interfaces, available
in inexpensive ESBTs.

o More sophisticated end user interfaces support creation of
elaborate menu and window systems. Bit-mapped computer
graphics provide the ability to create pictures, charts, and
drawings for display to the end user.

o Hypertext systems provide the ability to access and display
large amounts of relevant information that cannot be provided
easily using text-based interfaces.

In addition to text-based end user interfaces, microcomputer-based
ESBTs may support either sophisticated end user interface
construction facilities or hypertext or both.

In this chapter, each of these kinds of interfaces is examined
in turn. Features for implementing explanation, another useful
aspect of end user interfaces, are also discussed.

10.1 Features of Simple End User Interfaces

Display of character text is a basic form of communication
between any computer system and an end user at a terminal. Display
of text is also the basis for end user interface construction
facilities supported by many microcomputer-based ESBTs.

The example in section 3.3 can be extended to show the use of
character text. For instance, suppose the inference engine must
determine the status of the cooling system warning light (Step 1)

.

Since this fact is not known and is not inferred by any rule, the
inference engine displays the following question:

Is Cooling System Warning Light On?

YES
NO

105

The end user may respond to the question by selecting YES or NO
using the cursor key.

Most ESBTs also provide additional features for constructing
end user interfaces using character text. These features are
usually implemented with the high-level programming language
provided by the ESBT. Some of these features are listed below.

o Displaying Multiple-Choice Questions

To determine the value of an attribute value variable with
possible several values (discussed in sec. 9.1), an ESBT may
display a multiple-choice question, similar to what would
appear on a paper form. During backward chaining, an ESBT
displays the multiple-choice question when a variable with an
as yet undetermined value is first encountered. Once the
answer is selected, the variable receives the corresponding
value. The value is retained, and the question need not be
asked again.

o Text Substitution

The substitution of more extensive text for rule variables and
for values is important for phrasing questions in terms that
are understandable to end users. Therefore, ESBTs support the
ability to declare text substitutions in an expert system
program. When the expert system is working on a problem, text
substitutions are displayed if the associated variables and
values must be shown to the end user. Some ESBTs may limit
the length of the text that can be substituted or impose other
restrictions on this capability.

o Text Placement

The ability to specify the position where text appears on the
terminal screen is important for displaying information in a
clear, understandable way. Some ESBTs also permit drawing
borders around blocks of text using special characters. This
provides a more finished, professional look.

o Explanation of Terms and Concepts

Sometimes, the expert system may display a question that
contains a term or phrase the end user does not understand.
To provide further information, some ESBTs support display of
additional explanatory text that can be made to appear by
depressing a function key. After the additional text has been
read, the end user may depress another function key to
redisplay the question and provide an answer. (Sec. 3.3
contains an example of explanation capabilities.)

106

o Permitting End Users to Answer "Unknown"

Sometimes, the expert system may ask a question for which the
end user does not know the answer. To handle this situation,
the ESBT may provide a "built-in" feature that permits the end
users to answer "unknown." The ESBT inference engine must
also provide a method to account for "unknown" facts during
inference. Possible ways of handling "unknown" responses by
the end user are:

(1) Causing rules with "unknown" conditions in its IF part
to fail.

(2) Ignoring the "unknown" conditions and allowing the rule
to be evaluated on the basis of remaining conditions.

Some ESBTs support only one of these options. Others permit
developers to select whether or not "unknown" responses are
to be permitted and, if so, to specify an alternative method
for handling them. A problem may arise if the application
has questions that cannot be answered "unknown." In this
case, the ESBT must allow the "unknown" response option to be
"turned off."

o Retraction of Answers by the End User

Another helpful feature supported by many ESBTs is the ability
to "undo" or retract an answer given by the end user.
Sometimes, this feature is implemented using a function key.
When the key is depressed, the user is given an opportunity
to select the answer to be changed and then provide an
alternative response.

Simple end user interfaces are adequate for many microcomputer
expert system applications and are widely supported.

10.2 Constructing Advanced End User Interfaces

Advanced end user interface facilities can be used to create
extensive systems of windows and menus. To support these
capabilities, ESBTs sometimes use bit-mapped graphics software.
In such cases, the ESBT may utilize a commercially available
graphics package as the basis for a graphics programming subsystem.

The end user interface construction features described below
permit creation of more sophisticated interfaces than are possible
with simple text-based systems. With these features, interfaces
can be constructed that help an end user to use the expert system
in a systematic fashion. The objective is to make the expert
system interface as clear and easy to use as possible.

107

10.2.1 Advanced Features Currently Available

Several features that may be supported by ESBTs are discussed
below.

o Window Design Facilities

A window is a rectangular structure that appears on a computer
terminal screen. Windows can be of any size and have
elaborate borders and title lines. Windows can contain text
or graphics inside them.

o Window Configuration

An important capability associated with using windows is the
ability to subdivide a window into separate areas containing
different information. For instance, a window may be divided
into three parts: a top left-hand part that contains text
describing the diagnosis of a malfunctioning factory machine,
a top right-hand part consisting of a menu of actions the user
can select, and a bottom part showing a diagram of the machine
with the location of the problem.

o Supporting End User Navigation Between Windows

In an expert system, it is often necessary to be able to erase
one window and display another. For instance, the end user
may make a selection from a menu in one window that represents
a request for information about a particular topic. To
satisfy the request, the menu and the window it is in are
erased. A different window is then displayed that contains
the desired information.

o Definition of Menus

Menus are a common device for effecting communication between
the expert system and the end user. The ability to define
customized menus that suit specific needs is important in end
user interface design.

o Support for Use of a Mouse

Today, an increasing number of microcomputer systems are
incorporating use of a mouse into their interfaces. Mouse
facilities permit direct selection of items from menus. They
can also be used to navigate between different windows.

o Additional Facilities for End User Responses

This includes an assortment of specialized, menu-like
facilities that permit the expert system to display questions
and end users to select responses. For example, ESBTs may

108

display a question with a list of possible responses, each
with an adjacent box next to it. The user may select one or
more responses by typing a character in the adjacent box and
thus "checking" the box. Boxes can also be "checked" using
a mouse. The terminology describing these facilities varies.

o Computer Fonts and Icons

Advanced user interface facilities may include the ability to
select different font styles and sizes. This is useful in
customizing interfaces to suit a particular style and to
distinguish important pieces of text. Icons are graphic
symbols provided by the system that can be used to represent
important objects or concepts.

o Bit-Mapped Graphics for Creating and Displaying Diagrams

Bit-mapped graphics provide the ability to create pictures,
drawings, and graphs that can appear in windows. This is
important for illustrating complex diagrams, flow charts, and
processes to end users.

Not all the features described above are supported to the same
extent. For instance, some ESBTs support creation of windows but
may not support navigation between different windows. In other
cases, complete window configuration facilities may not be
provided. Also, the term "graphics" may be used to refer to
different capabilities in different tools.

10.2.2 Using Advanced User Interface Construction Facilities

In general, sophisticated end user interfaces, especially
those with extensive graphics, require more programming effort to
implement than simple text interfaces. Often, the graphics
programming system provided by the ESBT consists of a complete
programming language that is complex and takes time to learn.

Some packages provide high-level programming facilities for
window design that help reduce programming effort. Such facilities
are sometimes referred to as "window painting" tools. A developer
may use a "window painting" tool to draw—or "paint"—a window or
menu directly on the terminal screen. The tool then internalizes
the "painted" design and generates a graphics program that can
later reproduce the window or menu. "Window painting" facilities,
however, are not supported by all ESBTs.

In expert system projects that require the development of more
extensive end user interfaces, it is sometimes advisable to assign
an additional programmer to develop graphics interfaces. Effective
graphics programming usually requires a significant amount of skill
and experience.

109

10.3 Hypertext

Hypertext systems store large text documents and provide the
ability to access, display, and navigate text documents in a manner
that is flexible and natural. Hypertext systems permit the end
user to retrieve a text document, display an interesting part, and
read it in linear fashion, much as one would read a book. The user
is also allowed to link to related parts of the document and read
them, similar to the way a manual or encyclopedia might be read.

In a hypertext database, a text document is divided into
sections of text with each section being assigned to a database
node. Sections of text can be related topically and corresponding
nodes provided with links. When viewing a hypertext document at
a terminal, these links are indicated by highlighting terms that
refer to the related topic. A mouse can be used to follow the
links by selecting on appropriate highlighted terms. Typically,
a hypertext system permits several pieces of text to be displayed
simultaneously at a terminal using different windows (as described
in sec. 10 . 2 . 1)

.

Hypertext can be very useful in an expert system for providing
explanations. A hypertext interface allows the end user to select
a term of interest and to link to the relevant portion of a text
document where the term is described. If display of further
information is desired, appropriate links can be followed to other
parts of the document.

Increasingly, ESBTs are providing hypertext subsystems that
can be integrated into expert system applications. The hypertext
subsystems in some microcomputer-based ESBTs are not as
sophisticated nor as extensive as those offered by many stand-
alone commercial hypertext products. Interfaces to external
hypertext systems can often be implemented via a CALL statement
used to invoke external program modules. For further information
on hypertext, see [CONK87].

10.4 Explanation Generation Facilities

A useful service provided by an expert system program is the
ability to explain its actions. An example of the use of
explanation capabilities was provided in section 3.4. For some
applications, the ability to design and customize explanation
facilities is important. This section summarizes different methods
for generating explanations and presenting them to the end user.

o Basic Explanation Generation Facilities

Explanation facilities that "play back" the sequence of
inferences are provided by most backward chaining ESBTs and
can easily be incorporated into the end user interface.

110

o Use of Graphics Facilities

Graphics packages can be used to provide a powerful
explanation capability. Often, the function of a real-world
system can best be explained to the end user by displaying a
window containing a diagram or drawing.

o Use of Hypertext in Explanation

Perhaps one of the most important benefits provided by
hypertext to expert system applications is explanation. If
the user requires further explanation of a term, a hypertext
window can be displayed that contains detailed information.
The document containing the information about the term can
then be navigated as described in section 10.3.

o Facilities for Querying the Contents of the Knowledge Base

In some cases, an end user may want to know about the contents
of an expert system's knowledge base. That is, the end user
may wish to know what rules the expert system has about a
particular topic. To obtain an answer, it is desirable to be
able to query the knowledge base using a query facility
designed for this purpose. At present, this type of interface
is not widely supported by ESBTs but in some cases can be
created by the developer. As expert systems become
increasingly integrated into the organization's information
resources, query interfaces may become more desirable.

ESBTs differ significantly in the explanation system facilities
they provide and the ease with which these facilities can be
implemented. Development of highly customized explanation
capabilities often requires significant programming effort and use
of a programming language or external software package.

10.5 Summary of End User Interface Construction Features

In table 10.1, characteristics of selected features relating
to end user interface construction are summarized. Each feature
is characterized by:

o The level of computer skill required to use the feature.

o The frequency of occurrence of the feature in microcomputer-
based ESBTs.

o The computer resource requirements of the feature.

Categories for level of computer skill were described in section
7.7. Resource requirements are rated "Low," "Medium," and "High,"
also as described earlier in section 7.7.

Ill

Table 10.1. Summary of End User Interface Construction Features

Feature Required
Skill
Level

Occurrence
Of
Feature

Computer
Resource
Requirements

Display Of Multiple
Choice Questions

Computer
Literate

Common Low

Text Substitution
And Placement

Computer
Literate

Common Low

Support For
"Unknown" Answers

Computer
Literate

Common Low

Support For
Retraction Of Answers

Computer
Literate

Less
Common

Low To
Medium

Support For Text
Explanation Screens

Computer
Literate

Common Low

Support For
Explanation Facilities

Computer
Literate

Common Low To

Medium

Support For
Custom Menus

Computer
Specialist

Recently
Introduced

Low To
Medium

Support For Window
Design & Configuration

Computer
Specialist

Recently
Introduced

Medium

Support For Graphics
Programming

Computer
Specialist

Recently
Introduced

High

Support For Mouse Computer
Specialist

Recently
Introduced

Medium

Hypertext Computer
Specialist

Recently
Introduced

Medium To
High

112

11. SUPPORT FOR CONSTRUCTING INTERFACES TO OTHER SOFTWARE SYSTEMS

Chapter 3 contained a discussion of the different types of
software interfaces that an expert system may have in the
microcomputer environment. The focus of this chapter is on
facilities provided by microcomputer-based ESBTs for creating
interfaces to other software systems. ESBT support for application
portability is also discussed.

Figure 11.1 shows some interfaces between an expert system and
other software that may be developed using an ESBT.

CORPORATE
DATABASE
MANAGEMENT
SYSTEM

REMOTE MAINFRAME

MICROCOMPUTER
DATABASE
MANAGEMENT
SYSTEM

Programming
Language Interface.

INFERENCE ENGINE

KNOWLEDQE BASE

PROGRAM FOR
MATHEMATICAL
COMPUTATIONS

Mathematical
Data

MICROCOMPUTER

Figure 11.1. ESBT Bridges to Other Software Systems.

In general, microcomputer expert systems are somewhat more
self-contained than expert systems running on larger platforms.
The number of commercial DBMSs and other software products that an
expert system can interface with in the microcomputer environment
is somewhat limited. Capabilities for interfacing to software
systems on other platforms are also more limited. However, as
local area networks (LANs) become more prevalent in organizational
environments, this will change.

11.1 Interfaces to Microcomputer DBMSs

Almost all microcomputer-based ESBTs support construction of
interfaces to commercial microcomputer-based DBMSs. Sometimes, the
ESBT provides its own DBMS. Transfer of data from a DBMS to an
executing expert system depends on supporting several capabilities.
These are discussed below.

o Initiating Calls to an External DBMS

ESBTs may support the ability to issue ad hoc queries to a
database. These statements can be embedded in the IF part or
the THEN part of a rule. The query language used can be the
SQL standard [ANSI89] or a proprietary language developed by
the DBMS vendor. Increasingly, commercial DBMS vendors are
providing SQL query languages. Correspondingly, ESBTs are
being enhanced to support SQL interfaces. However, in the
microcomputer environment, the SQL that is used is sometimes
a subset of the complete language. (NIST provides an SQL test
service for determining conformance of SQL implementations to
the ANSI standard.)

o Operations Supported by the ESBT's Query Language

An important factor in evaluating the interface is the
operations that can be performed in the query language. At
a minimum, most interfaces support query statements with
selection criteria. Such queries are usually directed against
a single table, dataset, or file. For example, a simplified
SQL query to determine the availability and location of a
replacement part for a burned out generator might be:

IF PROBLEM = generator_burn_out
THEN ACCESS INVENTORY_DBMS

QUERY = SELECT Part_Availability , Location
FROM Part_Table
WHERE Part_Name = generator

DISPLAY Part_Availability, Location

Many query language interfaces are limited in the number of
selection conditions that can be specified. Also, not all

114

languages permit queries involving two or more tables; that
is, they do not permit database "join" operations. Similarly,
other operations normally supported in commercial DBMS
products may not be provided by the ESBT.

o Mapping Retrieved Data Into Expert System Data Structures

Once database values are retrieved, they must often be stored
in the expert system program for reuse. This means that the
database values must be transferred to program variables or
other structures. DBMSs generally store information in
records. If the ESBT supports representation of complex
information and definition of generic structures (discussed
in sees. 9.2 and 9.3), then database records can be mapped to
expert system data structures. However, if the ESBT supports
only attribute value variables (sec. 9.1), then transfer of
large amounts of data might be somewhat more complicated.

o Support for Updating the DBMS

The ESBT may also support update of database records including
insertion, deletion, and modification of records. However,
capabilities for updating external DBMSs may be limited.

o Importation of Object Class Definitions From External Sources

A few ESBTs that support object-oriented programming
(discussed in ch. 9) also support the ability to import class
definitions stored in an external source, such as a DBMS. For
expert systems that must use record or schema definitions
created in an external application (or one being developed)

,

this is a useful capability. Automatic importation of class
definitions saves the developer the trouble of retyping
definitions that already exist elsewhere.

While a direct interface from an expert system to a DBMS is
desirable, it is not always possible. Though there are many DBMS
products available, microcomputer-based ESBTs typically support
bridges to only one or sometimes two DBMSs.

Instead of a direct interface, it is also possible for the
expert system to call a programming language module which
communicates with a DBMS. The module sends the query to the DBMS,
receives the data, and forwards the data to the expert system
program. To create this kind of interface, the ESBT must support
a programming language interface.

11.2 Interfaces to Procedural Programming Languages

Most ESBTs support interfaces to external program modules
implemented in conventional programming languages. The ESBT

115

provides the ability to call an external program module, pass
values to the module, and receive values.

o Initiation of dalls to Procedural Programs

Calls to external program modules are generally made in the
same manner as in DBMS interfaces. The ESBT provides the
ability to place a "call" statement in the THEN part of a
rule. Similarly, statements for transferring values between
the expert system program and the programming language module
are also provided by the ESBT.

o Calls to Different Programming Languages

The most common interfaces are to C, Pascal, or LISP.
However, other programming language interfaces are also
supported. As discussed in chapter 9, some sophisticated
ESBTs provide a complete programming language that permits
specification of any operation.

Q Limitations of Smaller Microcomputer Environments

A call to an external program module requires that the
executable version of that module be placed in computer
memory. Since the amount of memory in a smaller microcomputer
can be limited, the program module itself must often be
limited in size. Consequently, an application involving an
expert system that communicates with a large procedural
program (or programs) is better implemented on a microcomputer
platform that has (or can be extended to have) more memory and
a sufficiently powerful processor.

In addition to supporting interfaces to external program modules,
ESBTs may also provide a programming language that allows program
modules to be directly incorporated into the expert system
application. (This capability was discussed in ch. 9.)

11.3 Interfaces to Other Microcomputer-Based Software

Microcomputer ESBTs may also provide facilities for
constructing interfaces to other special-purpose software packages.
These include spreadsheet packages, external graphics packages, and
hypertext packages.

o Spreadsheet Packages

Interfaces to spreadsheet packages are commonly supported
among microcomputer-based ESBTs. These interfaces are
particularly useful for expert system applications in
accounting or other areas of business.

116

o External Graphics and Hypertext Packages

Sometimes, expert systems applications have highly specific
requirements that cannot be met by graphics or hypertext
systems provided directly by the ESBT. For such applications,
interfaces to external systems are necessary. Sometimes these
interfaces must be made through a programming language module.

o Special Statistical Graphics Packages

For some applications, it may be desirable to provide an
interface to a statistical graphics package for specialized
analysis. Such a package may provide the ability to
graphically display statistical information about data.

Other special-purpose interfaces may be provided by ESBTs for
development of expert systems in a specific domain. For instance,
ESBTs for engineering expert systems may have interfaces to
software packages that perform specialized analysis functions.

11.4 Accessing Remote Software Systems

At the writing of this report, network communications are not
widely supported by microcomputer-based ESBTs. With the rising
popularity of LANs and other distributed computing systems, this
is changing.

o Remote Access to Commercial DBMSs

Software components for remote access to commercial mainframe
database servers are available with some ESBTs. In some
cases, these interface components are proprietary. In other
cases, third-party software products are used for remote
access to minicomputer and mainframe DBMSs. Commercial ESBTs
vary with respect to which commercial DBMS products they can
access. Currently, a Remote Database Access (RDA) standard
is under development by the International Organization for
Standardization [IS089]. In its initial phase, the standard
specifies a remote database access protocol based on SQL.
This development can be expected to influence trends in
commercial ESBTs.

o General Network Access Capabilities

Open Systems Architectures refer to computer systems
consisting of modular, flexibly interchangeable software and
hardware components that communicate across networks using
standard protocols. At present, computer systems are being
planned and implemented that are based on the Open System
Architecture concept. In keeping with this trend, some ESBTs
are being enhanced with standardized interfaces and support

117

for remote communications. These developments can be expected
to impact the external interfaces that will be provided by
microcomputer-based ESBTs in the near future.

o Distributed Knowledge Bases and Distributed Expert Systems

In a distributed expert system, an individual expert system
may have its knowledge base located on several computers. In
other cases, several expert systems may communicate to solve
a problem, each specializing in a particular task.
Distributed expert systems may be important factors in future
corporate computer environments. At present, development of
distributed expert systems is not generally supported by
commercial ESBTs and is still largely a research topic.

As support for remote communications capabilities increases among
commercial ESBTs, it is expected that microcomputer-based expert
systems will be developed that communicate with a variety of
software systems on remote computer platforms. However, at present
these capabilities are limited and sometimes difficult to use.

11.5 Support for Development of Embedded Expert Systems

Some ESBTs support the development of expert systems that are
embedded in other software systems (discussed in sec. 3.6).
Embedding an expert system means that an expert system program is
integrated into a larger software system from which it can be
invoked, receive arguments, and return values.

ESBTs that support a procedural programming language
(discussed in sec. 9.5.2) provide one way of embedding expert
system applications. By implementing the larger software system
in the language provided by the ESBT, calls to the embedded expert
system can be made in a straightforward manner. This solution is
straightforward if the entire application can be implemented in
the ESBT's language. Otherwise, the programming language provided
by the ESBT must interface to the language in which the larger
system is implemented.

Some ESBTs support development of compiled expert system
programs which can be directly invoked from external software
modules written in conventional programming languages such as C.
In this case, the exact method of linkage may be specific to the
ESBT being used.

Selecting an ESBT for an embedded expert system reguires
detailed understanding of each particular tool's method of support
for developing embedded applications.

118

11.6 ESBTs and Application Portability

A number of ESBTs operate in multiple computer systems and
support application portability across different hardware platforms
and operating system environments. However, sometimes only part
of an application can be ported. For instance, the inference
engine and knowledge base may be portable, while other parts of the
expert system program, such as the end user interface, are not.

o Portability Across Hardware Platforms

The ESBT can be used to develop an expert system application
on a mainframe computer that can later be deployed on a
microcomputer, and visa versa.

o Portability Across Operating Systems

ESBTs are also being developed that can be used in two or more
commercial operating system environments.

o Knowledge Base Interchange Formats

Currently a topic of research, knowledge base interchange
formats are intended to facilitate transfer of knowledge bases
between different knowledge representation systems. Thus,
knowledge from one expert system could first be translated
into the interchange format and later translated from the
format into another expert system. In principle, a standard
knowledge interchange format could allow transfer of knowledge
bases between expert systems developed using different ESBTs.

As expert system technology becomes more widespread, application
portability will correspondingly become more necessary and
desirable. This will give an advantage to ESBT products that
support portability across different hardware platforms and across
different operating systems. In the future, ESBT support for
translation of knowledge bases into standard knowledge interchange
formats will also be desirable.

11.7 Siimmary of External Interface Construction Features

In table 11.1, selected features for supporting construction
of external interfaces are summarized. Each feature is

characterized by:

o The frequency of occurrence of the feature.

o The computer resource requirements of the feature.

o Whether or not the feature is especially useful for
development of large applications.

119

Resource requirements are rated "Low," "Medium," and "High," as
described earlier in section 7.7.

Table 11.1. Summary of External Interface Construction Features

Feature Occurrence
Of
Feature

Computer
Resource
Requirements

Supports
Large
Application
Development?

Interfaces To Commercial
Microcomputer DBMS

Common Low Possibly

SQL Interface Less
Common

Low To
Medi\im

Yes

Support For
Microcomputer DBMS Update

Common Low Possibly

Interface To External
Modules Written In

Conventional
Programming Language

Common For C

Language. Less
Common For
Others

Low Yes

Interface to
Spreadsheet Package

Common Low No

Interface To External
Hypertext System

Less
Common

Low To
Medium

Yes

Interface To External
Graphics Package

Less
Common

Low To
Medixim

Yes

Support For Access To

Remote Computers
Rare Low To

Medium
Yes

Support For Application
Portability

Portability
Between Micro
And Mainframe
Becoming More
Common

Low Possibly

120

12. SELECTING ESBTs FOR USE IN AN ORGANIZATION

Previous chapters of this report covered applications of
expert systems in the microcomputer environment (discussed in chs.
2-4) and expert systems development (ch. 5) . A detailed
description of the features of microcomputer-based ESBTs was
provided in chapters 6-11. This chapter is intended to provide
guidance on how to select ESBTs for development of applications.

12.1 Factors in Selecting an ESBT

Perhaps the most important consideration in selecting an ESBT
is the characteristics of the application (or applications) the
tool will be used to develop. Also important are the capabilities
and skills of the developers who will use the tool. During the
selection process, the characteristics of both application and
developer are compared to capabilities of different tools in an
effort to find an appropriate match.

Today, many commercial ESBTs are available for the
microcomputer environment. These tools are complex, and as is
indicated by the previous five chapters, have many features. It
is therefore helpful to impose some structure on the process of
matching characteristics of applications and developers to those
of candidate tools. One way to structure the analysis is to divide
it on the basis of the major areas of the ESBT architecture
outlined in chapter 6 and discussed in chapters 7-11. These areas
are discussed below.

o Representing Knowledge About the Problem

It must be possible for the ESBT to represent knowledge about
the problem and the way it is solved. In some cases, only
production rules are needed. For complex applications,
pattern matching, frame systems, or object-oriented
programming may also be necessary. Knowledge representation
in microcomputer-based ESBTs was discussed in chapter 9

.

o Selecting an Appropriate Inference Strategy

Determining whether backward chaining, forward chaining, or
mixed inference is required is equally important. Inference
strategies supported by ESBTs were described in chapter 8.

Selecting a strategy to use was discussed in section 8.6.

o Determining Characteristics of End Users

For expert system applications with human end users, the
requirements (and preferences) of end users are important
factors. The developer must determine what kinds of computer
interfaces are needed and select an ESBT that can provide

121

them. For example, if end users are accustomed to seeing
diagrams, it may be appropriate to select an ESBT that
supports graphics capabilities. End user interface
construction facilities were discussed in chapter 10.

o Determining Requirements for External Interfaces

If the application must interface with other software systems,
the ESBT must provide appropriate interfaces. External
interfaces were discussed in chapter 11.

o Selecting the Developer Interface

The development interface supported by the ESBT must be
appropriate for the needs and skills of the developer.
Important considerations include ease of use and ease of
learning. The ability to support application prototyping
(discussed in ch. 5) is particularly important. Features of
developer interfaces were covered in chapter 7.

This organization is suggested as a starting point. The actual
analysis may vary in specific situations, depending on the
characteristics and requirements of applications, developers, and
the organizations they belong to.

In addition, the analysis must take into consideration other
factors. A particularly important consideration is the
microcomputer platform the application will be developed on and the
platform the application will be delivered on. (They may be the
same or different.) The ESBT must be able to run on the platform
intended for development and must also support delivery of
applications on the intended platform.

The analysis must also consider the level of performance
provided by the ESBT. Performance depends on both the efficiency
with which the ESBT was implemented and the power of the
microcomputer platform upon which the application will run.

12.2 Selection Steps

The actual process of selection might be described in a
sequence of steps, summarized below.

o . Determine the characteristics of the expert system application
or applications. Characteristics of applications suitable for
implementation using microcomputer-based ESBTs were discussed
in chapter 4. The organization suggested in section 12.1 may
serve as a basis for this analysis.

o Identify the characteristics of the developers, particularly
in regard to level of software development skill.

122

o Assess the hardware platform (or platforms) that will be used
for application development and for delivery of the completed
system. This analysis may be limited to hardware already
available in the organization or involve purchase of new
computers. Relevant issues include performance, ease of use,
product reliability, and copyright issues. A particularly
important consideration is the operating system (or systems)
that run on the computer. The ESBT and the operating system
must be compatible.

o Create a list of selection criteria based on knowledge of
application characteristics, developer characteristics, and
hardware characteristics. The organization suggested in
section 12.1 may be used.

o Specify the list to identify mandatory features and optional
features that are desirable (as well as features that may
sometimes be supported but are not be needed or wanted)

.

o Research individual products. Information about products can
be obtained by:

(1) Surveying available literature.

(2) Attending computer conferences in which ESBT vendors
display products.

(3) Attending product seminars presented by vendors.

(4) Contacting current users of ESBTs.

(5) Direct examination and evaluation of commercial ESBTs.

Direct examination and evaluation of ESBTs require access to
and use of individual products for a period of time. If a

sample of the target application has been developed, it can
be used for comparative benchmarking.

o The final selection is based on an overall comparative rating
of features.

Once the ESBT is selected, further information about the tool will
be acquired after development begins. Often, prototyping brings
to light previously unknown characteristics of the application,
sometimes making it necessary to change tools. In some cases, it

may be desirable to prototype using one ESBT and use a different

'sometimes, it is better to select the hardware after

selecting the ESBT (although this is not always possible for

practical reasons)

.

123

tool for large-scale development and to deliver the completed
system (discussed in sees. 5.1 and 5.2).

12.3 Level of Effort in the Selection

The level of effort involved in the selection process will
vary depending on the size of the application and the budget of the
particular project. It would not be cost-effective to allocate
hundreds of staff hours to select an ESBT that costs less than
$500. Similarly, it would not be cost-effective to make a hasty
decision on a software package costing thousands of dollars.

If the requirements of the application can be satisfied by
inexpensive tools, it may be cost-effective to purchase several
tools and experiment with them.

12.4 Other Considerations in Selection

Besides the technical feature-by-feature evaluation, there are
other considerations relevant to the selection process. These
areas of concern are discussed briefly below.

o Portability

Though no standards have been developed specifically for
ESBTs, portability across platforms is an effective means of
maintaining long-term, stable usage of the selected ESBT.

o Vendor Support

Evaluation of vendor support should consider such factors as
comprehensiveness of manuals, availability of training, "hot-
line" support, and warranties for the software product, etc.

o Reliability and Product Bugs

It is advisable to procure an ESBT that has been available
for a period of time and has had many users. This helps
ensure that as many bugs as possible will have been discovered
and fixed. New versions of the ESBT should be downward
compatible. This helps assure that the introduction of a new
version of an ESBT product does not require extensive revision
to operational applications.

o Licensing Considerations

Questions about the cost of site licensing (the cost of
obtaining a copy of the ESBT for a particular site) and
runtime licensing (the cost of each runtime copy of a
developed expert system application) may also be important.

124

During the selection process, there are many trade-offs. The
desirability of different features must ultimately be weighed
against the cost of the tool that supports them. Frequently no
single ESBT supports all desired features. For instance, a
particular tool may support a sophisticated development
environment, but it may lack the inference strategy appropriate for
the intended application. In such cases, a sacrifice may be
necessary, or an alternate means of implementing a capability must
be sought

.

125

13. CONCLUSIONS AND FUTURE TRENDS

This chapter presents conclusions about the state of the art
in microcomputer-based ESBTs. Issues relevant to the future
development of microcomputer-based ESBTs are also discussed.

13 . 1 The State of the Art in Microcomputer ESBTs

The summary of the state of the art in microcomputer-based
ESBTs focuses on the following areas: features and the capabilities
supported, kinds of applications that can be developed, and skills
needed to use tools.

o Features of Microcomputer-Based ESBTs

As this report has stressed, it is difficult to characterize
microcomputer-based ESBTs in terms of a stable set of
features. It is true that a number of highly useful
commercial microcomputer-based ESBTs are based on a core set
of features: goal-directed backward chaining, production
rules, and text-oriented end user interfaces with limited
graphics capabilities. However, as discussed in chapter 9,
more powerful features for reasoning and knowledge
representation are being incorporated into microcomputer-
based ESBTs. Advanced end user interface facilities and
sophisticated developer environments are becoming available.
Microcomputer-based ESBTs are increasing their support for
interfaces to external software systems, especially DBMSs.

o Developing Applications With Microcomputer-Based ESBTs

Whether or not a particular ESBT can be used to develop a
specific expert system application depends on matching tool
capabilities to the characteristics of the application
(discussed in chs. 5, 6, and 12) . For relatively small,
simple applications, a number of different microcomputer ESBTs
might be adequate. For more complex applications, it may be
difficult to find a tool that fully satisfies all application
requirements. The developer may be forced to use a more
sophisticated ESBT that provides additional knowledge
representation capabilities and object-oriented programming.
In some cases, the developer may have to use more powerful
(and expensive) microcomputer platforms with extended memory
or switch to a larger computer environment.

o Appropriate Applications for Expert Systems

In chapter 4, two broad kinds of expert system problems were
presented and discussed: problems for which solutions are
selected and problems for which solutions are constructed.
Most often, expert systems developed with microcomputer-based

127

ESBTs are selection type systems of small to moderate size.
Many of these systems can be implemented on smaller
microcomputer platforms. Larger applications, particularly
those of the construction variety, are reserved for more
powerful (and expensive) platforms.

o Skills Required for Using ESBTs

In general, development of all but small, simple applications
requires some programming skill. Using an induction tool, it
is possible for individuals with little or no programming
background to develop an expert system. Most ESBTs, however,
require at least some ability to program and debug.
Development of end user interfaces and external interfaces
often requires considerable programming skills.

In the future, it can be expected that ESBT support for development
of more complex applications in the microcomputer environment will
continue to be enhanced. The number of interfaces to external
software systems will increase. ESBTs will also become easier to
use as development environments become increasingly sophisticated.

13.2 Near-Term Evolution of Microcomputer-Based ESBTs

How will microcomputer-based ESBTs evolve in the next 5 years?
This section provides a summary of trends that are likely to effect
the development of microcomputer-based ESBTs in the short term.

o Continued Migration of Features From Larger Platform to
Microcomputers

As the processing power of microcomputers increases, features
are being added that were previously associated only with
medium-sized or large-scale tools running on larger platforms.
These features are making microcomputer-based ESBTs more
powerful development tools.

o Addition of Features

As microcomputer-based ESBTs continue to evolve, new features
will continue to be added. Over the near term, the following
features will become more commonplace:

(1) Forward chaining and mixed inference as primary inference
strategies (in addition to support for backward
chaining)

.

. 1 (2) Pattern matching.

(3) Induction subsystems.

128

(4) Use of meta-knowledge to control inference.

(5) Use of frame systems for knowledge representation.

(6) Object-oriented programming facilities.

(7) Advanced end user construction facilities (described in
sec. 10.2)

.

(8) External interface construction facilities for
interfacing with mainframe DBMSs and other software
systems on remote computers.

(9) Hypertext subsystems.

Microcomputer-based ESBT development environments can be
expected to provide:

(1) Increasingly sophisticated environments that support
structured knowledge entry.

(2) Graphics facilities to represent the structure of the
knowledge base and permit access to its components.

(3) Support for integration of graphics with other facilities
of the development environment such as rule tracing.

Other features, such as fuzzy logic, may not be supported by
as many commercially available ESBTs.

o The Emergence of Problem Specific ESBTs

Some ESBTs are being specialized to construct expert systems
that solve particular kinds of problems. For instance,
problem specific tools may contain knowledge base components
and other facilities for developing specific kinds of
selection type expert systems. Examples include tools for
developing expert systems that process claims or perform "help
desk" functions [FERR90]. Eventually, problem specific ESBTs
may be developed for many of the types of expert systems
discussed in chapter 4.

It can be expected that, by the mid-1990s, support for the
capabilities discussed in this section will be fairly prevalent.

13.3 Other Possible Near-Term Additions

There are some features that, while generally not supported
at the present time, would be very useful for microcomputer-based
ESBTs. Four of these are listed below.

129

o Configuration Management

Support for configuration management and control was discussed
' in section 7.5. Configuration management has been seen as

being valuable in other software development tools, such as
computer-aided software engineering (CASE) tools, and can be
expected to have a beneficial impact on ESBTs as well.

o Support for Remote Access

External interface facilities for systems operating on remote
computers and support for integration into LANs were discussed
in section 11.4. As distributed computing systems and LANs
become more popular and as access to remote mainframe DBMSs
becomes more necessary, these facilities will become necessary
to support development of expert systems that can access an
organization's information resources.

o Knowledge Base Verification

Knowledge base verification, introduced in section 7.2, is a
research topic with strong potential for future
commercialization. If implemented, this feature would assist
in ensuring the consistency and completeness of knowledge
bases under development.

o Comprehensive Knowledge Management

A desirable addition to future ESBTs will be comprehensive
facilities to support long-term knowledge management and
maintenance (discussed in sec. 7.6).

Another important consideration in the development of commercial
ESBTs and expert system technology is standardization.

13.4 The Need for Standardization

Standardization is important in many areas of software
technology. In expert systems, standardization will be necessary
to support interoperability between individual expert systems,
interfaces between expert systems and other software systems, and
exchange of knowledge. At the writing of this report, standards
are being discussed in the following areas.

o Knowledge Base Interchange Formats

Standardized interchange formats, discussed in section 11.6,
would facilitate application portability and permit transfer
of knowledge bases between expert systems developed with
different ESBTs.

130

o standards for External Interfaces

Specification of standard external interfaces would permit
expert systems to more easily interoperate with external
software systems.

o Standardization of Terminology

Development of a standard terminology would serve to promote
common understanding of various aspects of expert systems and
ESBTs. Lack of such a terminology can make it difficult for
potential developers to compare and evaluate features of
different products. Standardization might help ease these
difficulties.

The development of standards in these areas would aid in the
continued acceptance of expert system technology in traditional
data processing environments. ESBTs that support standards could
be used to develop expert systems that are portable, interoperable,
and more easily integrated into existing software and hardware
environments

.

13.5 Final Remarks

Expert system technology is beginning to stabilize. The
growing acceptance of this technology in industrial data processing
departments bears evidence of this. The process of stabilization
is also reflected among ESBTs in the trend toward support for a

recognized set of capabilities (discussed in sec. 13.2).

At the same time, more and more expert systems are being
implemented using microcomputer-based ESBTs. This trend has been
aided by the continually increasing computational power of
microcomputer platforms. Despite these developments,
microcomputer-based ESBTs still lack potentially useful
capabilities. Developing these capabilities will require research
in the coming years.

131

14 . REFERENCES

[ALUR90] Aluri, R. , and Riggs, D. E. Expert Systems in Libraries .

Ablex Publishing Corporation, 1990.

[ANSI89] ANSI "American National Standard—Database Language SQL
with Integrity Enhancement," No. X3. 135-1989, American
National Standards Institute, 1989.

[BARR81] Barr, A., and Fiegenbaum, E. A., eds. A Handbook of
Artificial Intelligence . Vol. 1, William Kaufman, 1981.

[BECK90] Beckman, T. J. "Methods for Selecting Promising Expert
System Applications," The Fifth Annual AI Systems in
Government Conference , pp. 14-21, Bethesda, MD, May 1990.

[BETZ85] Betz, D. "An Xlisp Tutorial," BYTE . Vol. 10, No. 3, pp.
221-236, March 1985.

[BIEL88] Bielawski, L. , and Lewand, R. Expert Systems Development,
Building PC-Based Applications , QED Information Sciences,
1988

.

[BOLE90] Boley, H. "Expert System Shells: Very-High-Level
Languages for Artificial Intelligence," Expert Systems ,

Vol. 7, No. 1, pp. 2-8, February 1990.

[BRATS 6] Bratko, I. PROLOG Procframminq for Artificial
Intelligence , Addison-Wesley , 1986.

[BROD89] Brody, A. "Product Comparison, the Experts," Infoworld .

June 19, 1989, pp. 59-75.

[BROW8 6] Brownston, L. et al. Programming Expert Systems in 0PS5

:

An Introduction to Rule-Based Programming , Addison-
Wesley, 1986,

[BUTL88] Butler, C. W. , Hodil, E. D. , and Richardson, G. L.

"Building Knowledge-Based Systems with Procedural
Languages," IEEE Expert . Vol. 3, No. 2, pp. 47-58,
Summer, 1988.

[CARN50] Carnap, R. Logical Foundations of Probability . University
of Chicago Press, 1950.

[CHAR87] Charniak, E. ,
Riesback, C. K. , and McDermott, D. V.

Artificial Intelligence Programming , Lawrence Erlbaum
Associates, 1987.

133

[CHEN76]

[CLAN86]

[COFF90]

[CONKS 7]

[COLM82]

[COYN90]

[CUPE88]

[DABR88]

[DABR9 0]

[DEMP67]

[DUDA79]

[ENGE88]

[FERR9 0]

Chen, P. "The Entity-Relationship Model—Toward a Unified
View of Data/' ACM Transactions on Database Systems . Vol.
1, No. 1, pp. 9-36, March 1976.

Clancy, W. J. "Heuristic Classification," in Knowledge-
Based Problem Solvincf . J. Kowalik, ed. Prentice-Hall,
1986.

Coffee, P. "AX Tools for PCs Tackle Application
Development," PC Week . February 26, 1990, pp. 86-89.

Conklin, J. "Hypertext: An Introduction and Survey,"
Computer . Vol. 20, No. 9, pp. 17-41, September 1987.

Colmerauer, A. "Prolog and Infinite Trees," in Logic
Programming , K. L. Clark and S. A. Tarnlund, eds.
Academic Press, 1982.

Coyne, R. D. et al. Knowledge-Based Design Systems

.

Addison-Wesley , 1990.

Cupello, J. M. , and Mishelevich, D. J. "Managing
Prototype Knowledge /Expert System Pro j ects
Communications of the ACM . Vol. 31, No. 5, pp. 534-541,
May 1988.

Dabrowski, C. E., and Jefferson, D. K. A Knowledge-Based
System for Physical Database Design , NBS Special
Publication 500-151, National Bureau of Standards,
Gaithersburg, MD, February 1988. •

Dabrowski, C. E.
,

Fong, E. N. , and Yang, D. Object
Database Management Systems; Concepts and Features , NIST
Special Publication 500-179, National Institute of
Standards and Technology, Gaithersburg, MD, April 1990.

Dempster, A. P. "Upper and Lower Probabilities Induced
by a Multivalued Mapping," Annals of Mathematical
Statistics, Vol. 38, pp. 325-339, 1967.

Duda, R. O. ,
Gaschnig, H. , and Hart, P. "Model Design in

the Prospector Consultant System for Mineral Exploration"
in Expert Systems in the Micro-Electronic Age , edited by
D. Michie, Edinburgh University Press, pp. 153-167, 1979.

Engelmore, R. , and Moran, T. Blackboard Systems . Addison-
Wesley, 1988.

Ferranti, M. "Software Assists in Automation of Help
Desks (AION Corporation Announces Path Builder Expert
System Shell)," PC Week . Vol. 7, No. 40, pp. 33-35,
October 8, 1990.

134

[FONG88] Fong, E. N. , and Dabrowski, C. E. "An Expert System to
Select Data Sources From Chemical Information Databases,"
ASME Computers in Engineering Conference . San Francisco,
CA, August 1988.

[F0RG77] Forgy, C. L. , and McDermott, J. "OPS: A Domain-
Independent Production System Language," Proceedings of
the Fifth International Conference on Artificial
Intelligence . Cambridge, MA, 1977.

[FORG82] Forgy, C. L. "Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem," Artificial
Intelligence . Vol. 19, No. 1, pp. 17-32, 1982.

[FOX90] Fox, M. S. "AI and Expert System Myths, Legends, and
Facts," IEEE Expert . Vol. 5, No. 1, pp. 8-20, July 1990.

[GEVA87] Gevarter, W. B. "The Nature and Evaluation of Commercial
Expert System Building Tools," Computer . Vol. 20, No. 5,

pp. 24-41, 1987.

[GOLD83] Goldberg, A., and Robson, D. Smalltalk-80 ; The Language
and Its Implementation . Addison-Wesley , 1983.

[HARM85] Harmon, P., and King, D. Expert gystems . John Wiley &

Sons, 1985.

[HARM88] Harmon, P. et al. Expert Systems; Tools & Applications .

John Wiley & Sons, 1988.

[HAYE83] Hayes-Roth, F. , Waterman, D. , and Lenat, D. eds. Building
Expert Systems . Addison-Wesley, 1983.

[HENK88] Henkind, S. J., and Harrison, M. C. "An Analysis of Four
Uncertainty Calculi," IEEE Transactions on Systems. Man,
and Cybernetics . Vol. 18, No. 5, pp. 700-714, 1988.

[HU89] Hu, D. C/C-t"i- for Expert Systems . Management Information
Source, 1989.

[IS089] ISO "Information Processing Systems—Open Systems
Interconnection--Remote Database Access--SQL
Specialization," ISO Working Draft, Document
ISO/JTC1/SC21/WG3 N844, June 2, 1989.

135

[KUNZ84] Kunz, J. C. et al. "Applications Development Using a
Hybrid AI Development System," AI Magazine . Vol. 5, No.
3, 1984.

[LAUF9 0] Laufmann, S. C. , DeVaney, D. M. , and Whiting, M. A. "A
Methodology for Evaluating Potential KBS Applications,"
IEEE Expert . Vol. 5, No. 6, December 1990.

[LIEB90] Liebowitz, J. "Expert Configuration Systems: A Survey
and Lessons Learned," Expert Systems With Applications .

Vol. 1, No. 2, pp. 183-187.

[MAIE85] Maiers, J., and Sherif, Y. S. "Applications of Fuzzy Set
Theory," IEEE Transactions on Systems. Man. and
Cybernetics . Vol. SMC-15, No. 1, pp. 175-189.

[MARC88] Marcellus, D. H. Expert Systems Programming in Prolog .

Prentice-Hall, 1988.

[MART88] Martin, J. and Oxman, S. Building Expert Systems. A
Tutorial . Prentice-Hall, 1988.

[MCDE82] McDermott, J. "Rl: A Rule-based Configurer of Computer
Systems," Artificial Intelligence . Vol. 19, No. 1, 1982.

[MCDE84] McDermott, J., and Bachant, J. "Rl Revisited: Four Years
in the Trenches," AI Magazine . Vol. 5, No. 3, pp. 21-
32, Fall 1984.

[MERR89] Merritt, D. Building Expert Systems in Prolog . Springer-
Verlag, 1989.

[MOCK90] Mockler, R. J. "Using knowledge-based systems for
estimating risks inherent in a proposed KBS project,"
Expert Systems . Vol. 7, No. 1, pp. 27-41, February 1990.

[MURD90] Murdoch, H. "Choosing a problem — when is Artificial
Intelligence appropriate for the retail industry?,"
Expert Systems . Vol. 7, No. 1, pp. 42-49, February 1990.

[NII86] Nii, H. P. "Blackboard Systems: The Blackboard Model of
Problem Solving and the Evolution of Blackboard
Architectures," AI Magazine p Vol. 7, No. 2, Summer 1986.

[NGUY87] Nguyen, T. A. et al. "Knowledge Base Verification," AI
Magazine . Vol. 8, No. 2, Summer 1987.

[PARC89] ParcPlace Systems, Inc. The Obiectworks for Smalltalk-
80 Manual . 1989.

136

[PARS89] Parsaye, K. , Chignell, M.
,
Khoshafian, S., and Wong, H.

Intelligent Databases: Object-Oriented and Deductive
Hypermedia Technologies . John Wiley & Sons, 1989.

[POTT90] Potter, W. D. et al. "SLING: A Knowledge-Based Product
Selector," Expert Systems With Applications . Vol. 1, No.
2, pp. 161-169.

[PRER89] Prerau, D. S. "Choosing an Expert System Domain," in
Topics in Expert System Design: Methodologies and Tools ,

G. Guida and C. Tasso, eds. North-Holland-Amsterdam,
1989.

[QUIN79] Quinlan, J. R. "Discovering Rules by Induction From Large
Collections of Examples," in Expert System.s in the
Microelectronic Age . D. Michie, ed. University of
Edinburgh Press, 1979.

[RADA90] Rada, R. "An Expert System for Journal Selection," IEEE
Expert . Vol. 5, No. 2, April 1990.

[RICH91] Rich, E. and Knight, K. Artificial Intelligence (Second
Edition), McGraw-Hill, 1991.

[ROBI65] Robinson, J. A. "A Machine-Oriented Logic Based on the
Resolution Principle," Journal of the ACM , Vol. 12, pp.
23-41, January 1965.

[ROBI85] Robinson, V. B. , and Jackson, M. "Expert Systems for Map
Design," Proceedings of AutoCarto-7 : Digital
Representations of Spatial Knowledge , pp. 430-439,
Washington, DC, March 1985.

[ROTH9 0] Roth, J. "NATIONAL DISPATCHER ROUTER: A Multi-Paradigm
Based Scheduling Advisor," Second Annual Conference on
Innovative Applications of Artificial Intelligence ,

Washington, DC, May 1990.

[SAWY86] Sawyer, B., and Foster, D. Programming Expert Systems in
Modula-2 . John Wiley & Sons, 1986.

[SCHI87] Schildt, H. Artificial Intelligence Using C ,

Osborne/McGraw-Hill, 1987.

[SCHW91] Schwartz, T. J. "Fuzzy Tools for Expert Systems," AI
Expert . Vol. 6, No. 2, pp. 34-41, February, 1991.

[SHAF76] Shafer, G. A Mathematical Theory of Evidence . Princeton
University Press, 1976.

[SHOR76] Shortliffe, E. H. MYCIN: Computer-based Medical
Consultations . Elsevier, New York, 1976.

[SHOR85] Shortliffe, E. H. , and Buchanon, B. G. "A Model of
Inexact Reasoning in Medicine," in Rule-based Expert
Systems . Addison-Wesley

, pp. 233-262, 1985.

[STAC87] Stackhowitz, R. A. et al. "Validation of Knowledge-Based
Systems," Proceedincfs of the Second AIAA/NASA/USAF
Symposium on Automation. Robotics, and Advanced Computing
for the National Space Procfram . Arlington, VA, March 9-
11, 1987.

[STER86] Sterling, L. , and Shapiro, E. The Art of Prolog: Advanced
Programming Techniques . The MIT Press, 1986.

[TSUD90] Tsudik, G. , and Summers, R. "AudES—an Expert System for
Security Auditing," Second Annual Conference on
Innovative Applications of Artificial Intelligence .

Washington, DC, May 1990.

[VEDD89] Vedder, R. G. "PC-Based Expert Systems Shells: Some
Desirable and Less Desirable Characteristics," Expert
Systems . Vol. 6, No. 1, pp. 28-42, February 1989.

[WATE83] Waterman, D. A. A Guide to Expert Systems . Addison-
Wesley, 1983.

[WEIN90] Weinman, E. "PC-based AI Environments," Systems AI . May
15, 1990, pp. 1-3.

[WILE84] Wilensky, R. LISPcraft . W. W. Norton, 1984.

[WINS84] Winston, P. H. Artificial Intelligence . Addison-Wesley,
1984

.

[WINS89] Winston, P. H. , and Horn, B. H. LISP (third edition),
Addison-Wesley, 1989.

[YAGE84] Yager, R. R. "Approximate reasoning as a basis for rule-
based systems," IEEE Transactions on Systems. Man, and
Cybernetics . SMC-14, pp. 636-643, July/August 1984.

[ZADE65] Zadeh, L. "Fuzzy Sets," Information and Control . Vol. 8,

pp. 338-353, 1965.

138

INDEX

Application portability
and ESBTs 119

Artificial intelligence 7

Artificial intelligence programming languages 41
Backward chaining

and pattern matching 94
described 19, 65
when to use 82

Hayes theorem 79
Blackboard Systems 7 6

Carnap's theory of confirmation 78
Certainty factors

defined 77
Configuration management and control 13 0

ESBT support for 60
Conflict resolution 72
Context file 12
Control knowledge

and backward chaining 7 0

and forward chaining 94
when it is needed 83

Daemons
and frames 9 6

in forward-chaining rules 75
Data driven inference 72
Decision table 22
Decision tree 22, 46
Declarative knowledge 12
Dempster-Shaffer theory 79
Developer interface

features of 53
Distributed expert systems 118
Domain expert 3 5, 37, 4 0

defined 8

Embedded expert systems
defined 27
ESBT support for 118

End user 10
End user interface 10, 14, 105
Evidential reasoning 78
Expert system

architecture of 10
differences with conventional software 14

Expert system building tool 1, 42, 45
problem specific ESBT 129

139

Explanation
example of 2 3

explanation facilities in developer interface 57
explanation generation facilities for expert system

applications 110
facilities provided by ESBTs 106
use of hypertext for 111

External interfaces
described 24
facilities provided by ESBTs 113
to database management systems 25
to graphics packages 117
to hypertext systems 117
to procedural programming languages 115
to remote computer systems 117
to statistical graphics packages 117

Firing
in forward chaining 72

Forward chaining
and pattern matching 93
described 71
when to use 83, 9 3

Frames
and organization of knowledge base 98
and rules 98
described 95
frame systems 95
slots 95

Fuzzy logic 78
Heuristics 9

and criteria for selection of problems 33
and reasoning under uncertainty 77
heuristic classification 30
heuristic search 22

Hypertext
and ESBT facilities for explanation 111
facilities provided by ESBTs 110

Incremental compilation 60
Inductive systems (Induction) 46

described 79
when to use 83

Inference engine 10, 12
Inference strategy 13
Inheritance

and frame systems 97
Knowledge acquisition 37
Knowledge base 10, 11

long-term maintenance of 61
Knowledge base interchange formats 119, 13 0

Knowledge engineer 37
Knowledge engineering 3 7

140

Knowledge representation 11
ESBT support for 85
representation of complex information

Lisp 16, 41, 116
Meta-knowledge 7 0

Meta-rules 71
Object-oriented programming 100

and ESBTs 4 6

classes 100
described 99
message passing 100
methods 100

0PS5 42
Pattern matching

advantages of 92
described 91
patterns 90

Product reliability 124
Prolog 16, 42, 43, 95
Prototyping

ESBT facilities for 60
Remote data access 13 0

standard for 117
Rete algorithm 94
Rule

examples of rules 18
firing of 72
instantiation of 92
meta-rules 71
prioritization of rules 70
triggering of 71

Search
breadth-first 68
depth-first 67
heuristic 22, 69

Standardization
need for 13 0

Symbolic reasoning 13, 15
Triggering

in forward chaining 71
Unification algorithm 95
Unknown responses 107
Variables

attribute value 86
boolean 86
free variables 90
multiple attribute expressions 88
object-attribute-value 88
variable bindings 91

Verification of knowledge bases 56, 130

•£r U.S. GOVERNMENT PRINTING OFFICE 1991— 281- 5 5 7 40650

141

4. TITLE AND SUBTITLE

Guide to Expert System Building Tools for Microcomputers

5. AUTHOR (S)

Christopher E. Dabrowski Elizabeth N. Fong

6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
QAITHERSBURG, MD 20899

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

Final

NIST-114A

(REV. 3-90)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1. PUBUCATION OR REPORT NUMBER
NIST/SP-500/188

2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBUCATION DATE
July 1991

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

Same as item #6

10. SUPPLEMENTARY NOTES

11. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOGRAPHY OR
UTERATURE SURVEY. MENTION IT HERE.)

Microcomputer-based expert system building tools
(microcomputer-based ESBTs) , sometimes known as expert system
shells, are software packages for development of expert systems
that run on microcomputers. This report provides system managers,
planners, and potential expert system developers with a readable
description of ESBTs for microcomputers including a detailed
description of specific tool features and the capabilities they
support. The technical content of this report is based on analysis
of commercially available ESBTs. However, individual commercial
products are not described, compared, or ranked.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITAUZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

artificial intelligence; expert system; expert system building tool; expert system shell;

inference; knowledge base; knowledge-based system; knowledge engineering; knowledge
representation; microcomputer; object-oriented programming; production rule

13. AVAILABIUTY

UNLIMITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

X

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD, VA 22161.

14. NUMBER OF PRINTED PAGES

147

IS. PRICE

ELECTRONIC FORM

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SYSTEMS TECHNOLOGY

Superintendent of Documents
Government Printing Office

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Institute of Standards and Technology Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notification key N-503)

11A kj JL Technical Publications

Periodical

Journal of Research of the National Institute of Standards and Technology— Reports NIST
research and development in those disciplines of the physical and engineering sciences in which
the Institute is active. These include physics, chemistry, engineering, mathematics, and computer
sciences.

Papers cover a broad range of subjects, with major emphasis on measurement methodology and
the basic technology underlying standardization. Also included from time to time are survey
articles on topics closely related to the Institute's technical and scientific programs. Issued six

times a year.

Nonperiodicals

Monographs— Major contributions to the technical literature on various subjects related to the

Institute's scientific and technical activities.

Handbooks — Recommended codes of engineering and industrial practice (including safety codes)
developed in cooperation with interested industries, professional organizations, and regulatory

bodies.

Special Publications— Include proceedings of conferences sponsored by NIST, NIST annual
reports, and other special publications appropriate to this grouping such as wall charts, pocket
cards, and bibliographies.

Applied Mathematics Series — Mathematical tables, manuals, and studies of special interest to

physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others

engaged in scientific and technical work.

National Standard Reference Data Series — Provides quantitative data on the physical and chemical
properties of materials, compiled from the world's literature and critically evaluated. Developed
uncier a worldwide program coordinated by NIST under the authority of the National Standard
Data Act (Public Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data
(JPCRD) is published bi-monthly for NIST by the American Chemical Society (ACS) and the

American Institute of Physics (AIP). Subscriptions, reprints, and supplements are available from
ACS, 1155 Sixteenth St., NW., Washington, DC 20056.

Building Science Series — Disseminates technical information developed at the Institute on building

materials, components, systems, and whole structures. The series presents research results, test

methods, and performance criteria related to the structural and environmental functions and the

durability and safety characteristics of building elements and systems.

Technical Notes— Studies or reports which are complete in themselves but restrictive in their

treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive

in treatment of the subject area. Often serve as a vehicle for final reports of work performed at

NIST under the sponsorship of other government agencies.

Voluntary Product Standards— Developed under procedures published by the Department of

Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all concerned interests with a basis

for common understanding of the characteristics of the products. NIST administers this program
as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series— Practical information, based on NIST research and experience,

covering areas of interest to the consumer. Easily understandable language and illustrations

provide useful background knowledge for shopping in today's technological marketplace.

Order the above NIST publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NIST publications—FIPS and NISTIRs-from the National Technical Information

Service, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB) -Publications in this series

collectively constitute the Federal Information Processing Standards Register. The Register serves

as the official source of information in the Federal Government regarding standards issued by

NIST pursuant to the Federal Property and Administrative Services Act of 1949 as amended.
Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315,

dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NIST Interagency Reports (NISTIR)-A special series of interim or final reports on work
performed by NIST for outside sponsors (ooth government and non-government). In general,

initial distribution is handled by the sponsor; public distribution is by the National Technical

Information Service, Springfield, VA 22161, in paper copy or microfiche form.

U.S. Department of Commerce

National Institute of Standards and Technology

Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300

