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EXECUTIVE SUMMARY
The use of computer systems, such as workstations, personal computers, minicomputers,

and mainframes, in a netv/ork environment is pervasive. The Open Systems concept is

a major factor in the evolution of these systems. For a system attached to a network,

the network provides connectivity to many other systems whose file systems may be very

different from the local file system, e.g., the local may be hierarchical and the remote flat. An
application has potential access to information located on file systems beyond the local file

system. However, there is no standard way for that application to be able to transparently

access files on several file systems whose access characteristics may differ from the access

characteristics of the local file system. Transparent file access means that remote files are

accessed as though they were local.

The Institute of Electrical and Electronics Engineers (IEEE) 1003.8 Transparent File

Access (TFA) Working Group of the POSIX Standards Committee (IEEE PI 003) has un-

dertaken the development of an application programming interface specification based on

the IEEE 1003.1-1990 Standard which:

• Provides a standard means of characterizing and profiling file systems.

• Permits access to the widest possible range of file systems which can resemble the file

system of IEEE 1003.1-1990.

• Provides a means for an application program to simultaneously manipulate files whose

access characteristics differ.

The IEEE 1003.8 TFA Standard under development is suitable for use by any application,

regardless of the application's complexity or the complexity of the file system which the

application accesses. For a simple application, such as a word processor, the IEEE 1003.8

TFA Standard provides an access specification for rudimentary file systems, e.g., a flat file

system. At the same time, the IEEE 1003.8 TFA Standard provides an access specification

for robust file systems, e.g., with read/write consistency and record locking, capable of

supporting complex applications, such as a database management system.

This report provides the background needed to understand the IEEE 1003.8 TFA Stan-

dard whose development is ongoing as this report is published. This report presents the

major issues and problems whose resolution forms the basis of the IEEE 1003.8 TFA Stan-

dard. These issues are categorized as:

1. Semantic Issues which arise as a result of attempting to implement some aspects of

IEEE 1003.1-1990 in an environment for which it was not designed, e.g., a network

environment.

2. Performance Issues which arise as a result of the performance penalty that may result

from attempting to implement some aspects of IEEE 1003.1-1990 in an environment

for which it was not designed, e.g., a network environment.
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3. Specific Environment Issues which arise because of the need for IEEE 1003.8 TFA to

be applicable to specific or emerging file systems or network protocols.

4. Miscellaneous Issues.

Some issues are illustrated with examples and demonstrations using NFS, the most widely

used implementation for accessing remote files on a network. The issues chosen for demon-

stration are based on their importance, complexity, and ease of reproducibility.
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Chapter 1

Introduction

The low cost of computer hardware has made the personal computer and the workstation

an integral part of the workplace. As a result, the need for communications between these

systems has increased dramatically. Not only has the quantitative need increased, but the

nature of that need has changed. Previously, the abiUty to log into remote systems and

to transfer files was sufficient for users of personal computers and workstations. Now it is

becoming the norm to access the services available through a communication network in a

manner consistent with accessing the services of the local system.

Such "transparent" services include electronic mail and the use of remote devices, e.g.,

disks, tapes, and printers, as though they were physically local. Previously, access to elec-

tronic mail usually required the user to log into a remote large system in order to send

and receive mail. Now, it is common for a user to run software on the local system which

transparently accesses a remote mail server. The user's mail is actually sent and received by

the mail server. However, the user perceives that the mail is sent and received by the local

system which, in many cases, is too small to act as a mail server.

Previously, access to remote devices, such as disks and printers, was usually provided

only by first transferring files to the system where the device was physically connected.

Now, access to remote devices is provided as though the devices were connected locally.

In the case of accessing remote file systems, such access is referred to as "transparent file

access." A user need not know whether a device is local or remote.

Application programs are the means by which services are provided to users. AppHca-

tion programs that make use of transparent file access require an application programming

interface and the support of network protocols. Network protocols are required in order to

accomplish the communication between systems. This communication is necessary so that

remote file systems appear local. The application program need not be directly concerned

with network protocols. The network protocols are provided as a result of the applica-

tion program's use of the application programming interface. The application programming

interface reflects the semantics of the file system being used by the application program.
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For example, the Network File System (NFS) ^ developed by Sun Microsystems is a pro-

tocol which is layered above the TCP/IP (Transmission Control Protocol/Internet) protocol

suite. The apphcation programming interface for NFS is the Unix application programming

interface which provides most of the the file system semantics of Unix. Another example

is NETBIOS which provides the DOS Redirector network access using the SMB protocol.

Application programs use the DOS apphcation programming interface which provides the

file system semantics of DOS over a network by means of the DOS Redirector.

Both standard network protocols and a standard apphcation programming interface are

necessary for transparent file access in order to ensure interoperability between systems

and portability of applications. The transparent file access environment can be described

by means of a client/server model (see cover illustration). A client, such as the personal

computer in the cover illustration, accesses both local and remote files. Local files, such as

those on C: in the cover illustration, eire resident on a disk which is directly connected to

the client. Remote files, such as those on D: in the cover illustration, are physically located

on a server which is connected to a network as is the chent. The application program need

not be aware of whether a file is local or remote.

Regardless of the physical location of a file, the client accesses the file according to the

file system semantics of the client's operating system. The file system semantics of the client

operating system may differ from the file system semantics of the server. Moreover, the file

system semantics of two clients accessing the same server may be different from each other

and different from the server. It is a function of the client implementation and the server

implementation as to who, i.e., the client, the server, or both, has the responsibility for

guaranteeing the client's file system semantics when server files are accessed.

For example, as illustrated on the cover, a personal computer using DOS and a worksta-

tion using Unix may be accessing files from a VAX VMS server. The personal computer, the

workstation, and the VAX must be using the same network protocols in order to interoperate.

Consider application programs running on the personal computer, the workstation, and the

VAX. The application program on the personal computer must access files using the DOS
file system semantics; the application program on the workstation must access files using

Unix file system semantics; and the apphcation program on the VAX must access files using

VMS file system semantics. Such an environment is not conducive to portable apphcations.

A standard application programming interface is necessary in order for application programs

to be portable among clients and servers in environments such as these.

Under development in the IEEE Transparent File Access (TFA) Working Group, 1003.8

is a revision to IEEE 1003.1-1990 (ISO/IEC 9945-1:1990). The TFA Working Group is

part of the IEEE POSIX Standards Committee (IEEE P1003). This revision provides a

file system access specification which would permit access to the widest possible range of

file systems which can resemble the file system of IEEE 1003.1-1990. The Transparent File

^Because of the nature of this report, it is necessary to mention vendors and commercial products.

The presence or absence of a particular trade name product does not imply criticism or endorsement by the

National Institute of Standards £ind Technology, nor does it imply that the products identified are necessarily

the best available.
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Access Standard of IEEE 1003.8 provides the means for an application to simultaneously

manipulate files whose access characteristics differ because they belong to file systems with

different file system semantics. In addition, the specification for the first time provides a

standard way of characterizing and profiling the capabilities of file systems.

This report provides the background needed to understand the TFA Standard. Because

the development of the TFA Standard is ongoing as this report is published, this report

does not reference any Draft of the TFA Standard and only presents the significant issues

which are motivating the development of the TFA Standard. The report goes beyond the

rationale of the TFA Standard, which summarizes why certain choices were made by the

TFA Working Group in their development of the TFA Standard. This report presents an

in-depth description of the major issues on which the choices were based.

The report assumes that the reader has some knowledge of Unix. Since the issues de-

scribed are common to most Unix implementations, the issues are presented in such a man-

ner as to be understandable to a reader who is familiar with some Unix implementation.

Although all issues presented are issues for IEEE 1003.1-1990, familiarity with IEEE 1003.1-

1990 is not required. Where IEEE 1003.1-1990 differs from a traditional Unix implementation

with regard to an issue, that difference is mentioned. It is not intended that the description

of an issue be a tutorial on the specific Unix functionality involved in the issue. Only those

aspects of Unix functionality which directly impact the issue are highlighted.

Some issues are illustrated with examples and demonstrations using the NFS implemen-

tation of SunOS 4.1 from Sun Microsystems on both the client and the server. In this report,

the term NFS always refers to the NFS Version 2 Protocol. Within the text which describes

each demonstration, the term NFS refers to the client and server implementation of the NFS
Version 2 Protocol in SunOS 4.1. The results of the demonstrations may be different if other

NFS client or server implementations are used. NFS is the most widely used implementation

for accessing remote files in a network environment. For those issues chosen for demonstra-

tion, the choice was based on the importance and complexity of the issue, and how amenable

the issue was to an easily understood and reproducible demonstration.

This report is intended for managers, programmers, and users in government and industry

to assist in their understanding, evaluation, management, and use of the TFA Standard and

systems which provide access to remote file systems. The main body of the report discusses

the issues which arose during the development of the TFA Standard. TFA issues may be

characterized as belonging to one of the following categories:

1. Semantic Issues (ch. 2)

These are issues which arise when trying to implement some aspects of IEEE 1003.1-

1990 in an environment for which it was not designed, e.g., a network environment.

IEEE 1003.1-1990 applies only to local file systems. Some capabilities cannot be im-

plemented within the context of IEEE 1003.1-1990 in a network environment.

2. Performance Issues (ch. 3)

These are issues which also arise when applying IEEE 1003.1-1990 to an environment

for which it was not specifically developed. However, instead of relating specifically
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to capabilities which cannot be implemented within the context of IEEE 1003.1-1990,

these issues concern capabilities whose implementation may result in an unacceptable

level of performance.

3. Specific Environment Issues (ch. 4)

These are issues which arise because of the need for the TFA Standard to be applicable

to specific existing or emerging file systems or network protocols.

4. Miscellaneous Issues (ch. 5)

These are issues which do not clearly fit in any of the other categories or which have

implications for all of the other categories.

While some issues may have impHcations for more than one category, each issue is listed

only within the category where it has the most significance. Chapter 6 summarizes the

results of this report. Appendix A contains references and related reading. Appendix B
contains listings of the programs used in the demonstrations. Assistance in the debugging

of these program Hstings by Dan Nielsen and Craig Sparkman is much appreciated.
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Chapter 2

Semantic Issues

Semantic issues are those issues which arise when trying to implement some aspects of IEEE
1003.1-1990 in an environment for which it was not designed, e.g., a network environment.

IEEE 1003.1-1990 applies only to local file systems. Some capabilities cannot be implemented

within the context of IEEE 1003.1-1990 in a network environment. Semantic issues include

sending a SIGPIPE signal when using a remote FIFO (see sec. 2.1), guaranteeing that data

written by one process will not be interleaved with data written by another process (see

sec. 2.2), and returning the value of Lpid by fcntlf) (see sec. 2.3).

2.1 Remote FIFOs and SIGPIPE

When a process writes to a FIFO (see sec. 4.3 for a definition of FIFO) and no process has

that FIFO open for reading, the write fails with an EPIPE error condition. In addition, a

SIGPIPE signal is sent to the process trying to write to indicate that a write was attempted

on a FIFO with no readers.

In a network environment, it is possible that processes using a remote FIFO on a server

may not all be located on the same client. In this case, since the server coordinates access

to the FIFO, the server notifies the client of the EPIPE error condition and of the necessity

of sending the SIGPIPE signal to the process. Thus, this issue is a protocol issue, not an

issue requiring a modification to the semantics associated with SIGPIPE. The semantics of

SIGPIPE on the client can be maintained as long as the client is notified by the server that

the EPIPE error condition has occurred.

2.2 Non-interleaved Writes

When a process writes data to a file, each implementation determines how much data can

be written in one atomic operation, i.e., a single operation which cannot be interrupted. For

example, a process does a write(fildes,buf,nhytes). The nbytes of data may not be written

as one atomic operation. The implementation may write the nbytes of data in several oper-
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ations or the write operation may be interrupted. This situation leaves open the following

possibilities:

1. The block of data written by one process is interleaved with data written by another

process.

2. Parts of the data written by one process are overwritten by data from other processes

before all of the data from the first process has been written.

For many implementations (not including IEEE 1003.1-1990), there is a value of nbytes

which guarantees that neither of the situations above will occur. In some cases, an application

may need to know how much data it can write without being interleaved or overwritten by

another process. One example of such an application is a server process which uses a pipe

as an input request queue to accept service requests from several other processes.

If the file system is local, it is possible that for all values of nbytes, an implementation may
write all nbytes of data in one operation and that operation is not interruptible. However,

if the file system is remote, it is more likely that there is a majcimum number of bytes that

can be written in one atomic operation. The reason for this is that transparent access to

a remote file system may be implemented using existing network protocols. Such protocols

may already be standardized and specify a maximum packet size. This maximum packet

size may become the maximum number of bytes that can be written atomically. Thus, for

a remote file system, the maximum number of bytes that can be written in a single atomic

operation is usually the minimum of:

1. the maximum number of bytes which the client implementation can write atomically,

and

2. the maximum number of bytes allowed in a packet by the underlying protocols sup-

porting the transparent file access.

One solution to this problem is to specify the maximum number of bytes which may be

written in one atomic operation as a parameter which the application program can obtain.

A similar approach is already used for pipes. Because of the nature of pipes, it is usually

not practical to guarantee that write operations of any size are not interleaved by write

operations from other processes. In IEEE 1003.1-1990, the parameter PIPE_BUF specifies

the maximum number of bytes which can be written atomically to a pipe or a FIFO. A similar

parameter could be used for regular files. Note that in the local environment, the value of

PIPE_BUF applies to pipes and FIFOs. However, in a transparent file access environment,

the value of a parameter for files similar to PIPE_BUF may be different for each remote file

system.

2.3 Lpid Returned by fcntl()

A process can check to see if a file has a lock on any data in the file by using F_GETLK
with fcntlQ. The Lpid field of the flock structure may be used under certain conditions with
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F_GETLK to return the process ID of the process holding the lock. Existing applications

commonly use the Lpid returned to kill the process holding the lock, thereby releasing the

lock.

In a network environment, processes may be running on different nodes. Consider what

would happen if the Lpid returned refers to a process on another node. An application might

kill an innocent process on its own node. This situation arises because F_GETLK with

fcntlQ is being used in an environment for which it was not designed. This is a semantic

issue because the semantics of traditional Unix and IEEE 1003.1-1990 must be modified to

avoid this situation.

There are several ways to modify the semantics oi fcntl() to deal with this problem. One
way would be to have a process ID space which would span several systems on a network, i.e.,

a given pid would uniquely identify both the process and the system on which the process

runs. Then, a pid applied to a kill() could correctly signal the intended process. Another

approach would be to have a unique process ID value which could refer to a process "not

known to the system." When this unique value for pid is used as an argument to kill() (or

any other function which takes pid as an argument), the function would return an error.

Demonstrations were developed using an NFS implementation to illustrate for different

client/server configurations what happens when a file is locked and F_GETLK with fcntl()

is used to show the value of Lpid returned. Figure 2.1 illustrates how the demonstration

proceeds. Commands are displayed in italics and the output of those commands is displayed

in bold. The program setlock locks an entire file, waits for a newline, and then unlocks the

file. The program getlock uses F_GETLK to show the value of Lpid returned for different

client/server configurations. Source code for the demonstration programs {setlock. c and

getlock. c) is located in Appendix B. For the following demonstrations, Process A is the

program setlock, Process B is the program getlock, and testfile is the file which is locked.

In addition to Process A and Process B, another process on the system running Process A
uses the "ps" command to confirm that the value for Lpid returned by Process B is indeed

the process ID of Process A. Note that in these demonstrations, the Status Monitor and the

Lock Manager must be running on both the client and the server.

Table 2.1 illustrates the use of Processes A and B in four different client/server configu-

rations as follows:

• Process A and Process B are on the same client.

Process A and Process B are on the same client and testfile is remote to both processes.

Process A locks testfile and Process B gets the process ID of the process holding the

lock on testfile. In this case, the Lpid returned is indeed the process ID of Process A,

the process holding the lock on testfile. Notice that for the NFS implementation, the

correct Lpid is returned even though the file is remote.

• Process A is on the client and Process B is on the server.

The file testfile is remote to Process A and local to Process B. Process A on the client

locks testfile. Process B on the server gets the process ID of the process holding the

7



Process A
Lock testfUe

Process B
Get Lpid of Process A

% setlock testfile

testfile locked

< newline >
testfile unlocked

% getlock testfile

Lpid is xxxx
%

Figure 2.1: Lpid returned \>y JcntlQ demonstration procedure.

lock on testfile. The l^pid returned to Process B on the server is the correct process ID

of Process A on the client. Even though the correct Lpid is returned on the server, the

process ID does not refer to a process on the server node. Traditional Unix semantics

do not enable a process to be aware that the Ijpid returned in this case is on another

network node.

• Process A is on the server and Process B is on the client.

The file testfile is local to Process A and remote to Process B. Process A on the server

locks testfile and Process B on the client obtains the l.pid of the remote process holding

the lock on testfile. The correct Lpid for Process A is returned but as in the previous

case, Process B may not be aware that Process A is a process on another system.

• Process A is on Client A and Process B is on Ghent B.

The file testfile is remote to both Process A and Process B. Process A on Ghent A
locks testfile. Process B on Ghent B gets the Lpid of the remote process holding the

lock on testfile. The correct Lpid is returned. As in the previous two cases, the Lpid

identifies Process A but does not identify the system on which Process A is running.

The NFS implementation makes F_GETLK and Lpid work correctly in all cases. This is

accomplished by two additional protocols, the Lock Manager protocol and the Status Monitor

protocol, used in conjunction with NFS. The Status Monitor protocol permits both clients

and servers to be aware of what systems are up and running. The Status Monitor informs

interested applications when a system failure occurs on a system which it is monitoring. The

Lock Manager protocol implements record locking on NFS mounted file systems. A process

on a remote system locking a file is identified by the Lock Manager and that value is returned

by fcntlQ. However, fcntlQ does not identify the system on which the process holding the

lock is running.
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Table 2.1: Lpid summary

Case

1

Client

Process A
( setlock y

Process B
( getlock y

1
.

.1

Process A
( setlock y.

V

Gives

Server correct l_pid?

jtestfile)i

Process B

( getlock )

Yes

Yes

Process B
3 ( getlock )*

Client A

Process A
( setlock )

r

J Yes





Chapter 3

Performance Issues

Performance issues are those issues which arise when applying IEEE 1003.1-1990 to a network

environment, an environment for which the standard was not specifically designed. Unlike

semantic issues, performance issues are IEEE 1003.1-1990 facilities that can be implemented

in a network environment, but may result in performance degradation.

Caching is one of the most widely used techniques for improving the performance of data

transfers between a system and an external device. The technique may be appUed to many
different situations. Applying this technique to system and application software means that

data transfers initiated by programs may take place between a program's local memory and

a cache memory instead of directly to the external device. Small data transfers initiated by

a program are combined into large blocks in the cache memory. Data transfer of the large

blocks between the cache memory and the external device is managed by the system. The
use of caching permits data transfers to or from the external device to take place in larger

blocks in order to better overlap CPU operation and external device access, thus improving

system throughput. In addition, since data is temporarily stored in large blocks in cache

memory, the number of accesses to the external device is reduced. The data may already

be available in the cache for reading and each write of a small block of data goes to the

cache. Caching data transfers between system and application software may be useful any

time access is required to an external device whose speed of access differs significantly from

that of memory. For example, caching is typically used to improve the performance of disk

access and network access by both clients and servers. When accessing remote files in a

network environment, client caching is used to write and read data from cache on the client

instead of directly writing to and reading from the network. Using client caching improves

client system performance as well as decreases the number of network accesses.

Client caching plays such an important role in improving performance and decreasing

network access that most clients use some caching mechanism when accessing remote files.

A demonstration was developed using NFS to show the effects on performance by forgoing

chent caching. The program read-file (see Appendix B) reads a file one byte at a time and

displays the byte. For this demonstration, testfile is the remote file being read. The effects

of using client caching and turning off client caching are summarized below.
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• Client caching.

The program readJUe is run from a cHent which is using client caching. Data from the

server is read into the cHent's cache. The program read^file reads testfile one byte at a

time from cache. When all the data in cache has been read, cache is refilled with data

from the server. The network is accessed only when the client cache needs to be filled.

The file testfile is displayed at a speed that is approximately the same as if testfile were

local.

• Turning off chent caching.

The program readJUe is run from a client which has cUent caching turned oflF for the

remote file testfile. For this demonstration, chent caching is turned off by running

setlock testfile as a separate process on the same client. The program setlock applies

an advisory lock to all bytes of testfile. This turns off caching for testfile. The lock on

testfile is initiated before readJUe begins and is maintained until readjile completes.

Because client caching is turned off, each byte of data is read directly from the server.

This means that the client must access the network each time a byte of data is read.

The file testfile is displayed at a speed much slower than if testfile were local. If testfile

is a large file, the decline in performance is even more pronounced than if testfile were

small.

This demonstration shows that the level of performance resulting from not using chent

caching is often unacceptable. Not only may a severe performance degradation result, but

the network is bombarded with packets of data being sent, one byte at a time, between the

client and the server.

This section deals with IEEE 1003.1-1990 facilities that can be implemented in a network

environment, but can incur a performance penalty. Section 3.1 contains demonstrations

which illustrate read/write consistency behavior for different client/server configurations.

The effects of using Unix 10, stdio, and client caching, are summarized. Section 3.2 discusses

the problems associated with the times returned by statQ. This issue is a semantic issues

as well as a performance issue. The reporting of writeQ error conditions is discussed in

section 3.3. Section 3.4 discusses record locking.

3.1 Read/Write Consistency

Read/write consistency, which means that data written by a process becomes "visible" im-

mediately after a write returns, is explicitly guaranteed by IEEE 1003.1-1990. Figure 3.1

illustrates the concept of read/write consistency for two processes, Process A and Process

B, which are running on the same node using Unix 10, not stdio, and are accessing local

data. In this section, the term "Unix 10" is used to refer to file access which does not use

stdio. When Process A or Process B executes a writeQ, the data goes to a cache for the

device. When either Process A or Process B executes a readf), the data is read from cache.

Read/write consistency is maintained because both processes read directly from the same
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No Std I/O Buffering data with Std I/O

Process A Process C

Figure 3.1: Local case for read() and write ().

cache. When the writeQ of Process A or Process B returns, the data is "visible" immediately

to any other process on the system using Unix 10. There is a demonstration of this at the

end of this section (see fig. 3.4). If caching is not used, data goes directly to the device.

There are several situations which involve the concept of read/write consistency when

accessing local files. These are:

1. Single Process.

A process opens a file, writes some data at the beginning of the file, uses lseek() to

position the file pointer to the beginning of the file, and reads. This case is read/write

consistent. The process reads what it just wrote.

2. Processes sharing an open file description.

A process opens a file, writes some data at the beginning of the file, forks a child who

uses IseekQ to position the file pointer to the beginning of the file and reads. This case

is read/write consistent. The child process reads what the parent process just wrote.

3. Processes not sharing an open file description (see Process A and Process B in fig. 3.1).

Process A opens a file and writes some data at the beginning of the file. Some time after

the write of Process A returns, Process B opens the file, positioning the file pointer

to the beginning of the file, and reads. This case is read/ write consistent. Process B
reads what Process A just wrote.

13



Client

Figure 3.2: readQ and writeQ for two processes on the same client.

4. Stdio.

Figure 3.1 shows two processes, Process C and Process D, which use stdio to buffer

data for accessing local files. In order to improve performance, data written using

stdio usually goes to a buffer associated with a process. The data is not visible to any

other process until the buffer is flushed. When an fwriteQ returns, the data may have

been written to disk or the data may still be in the buffer. An initial freadQ will read

data from the disk into a buffer associated with the process. Subsequent freadQs will

read data from the buffer. Once all the data in the buffer has been read, the buffer

is refilled with data from disk. It is possible for data in the buffer to be inconsistent

with data on disk. Therefore, read/write consistency fails when using stdio. There is

a demonstration of this case at the end of this section (see fig. 3.5).

Read/write consistency is also an issue in a network environment. In order to improve

performance, most client implementations use some caching mechanism when accessing re-

mote files. Processes on the same node are usually read/write consistent because they read

from and write to the same cache (see fig. 3.2). However, processes on different nodes using

client caching may not be read/write consistent because the processes read from and write

to different caches.

The lack of read/write consistency when using stdio on the same node is analogous to the

lack of read/write consistency when processes are running on different nodes. Both stdio and

client caching are used to improve performance. With stdio, each process has a set of read

and write buffers. Thus, read/write consistency is usually only maintained at the level of a

14



Client A Client B

Server

Figure 3.3: readf) and writeQ for two processes on different clients using client caching.

single process. With client caching in a network environment, read/write consistency may
only be maintained for the set of processes on a single client. Processes on different clients

may not be read/write consistent when client caching is used. One way to ensure read/write

consistency among processes on different nodes is to forgo the use of client caching. This

means that when Unix 10 is used, all writes are sent to the server before the write () returns,

and all reads are obtained directly from the server before the read() returns. This usually

entails a performance penalty. There are techniques which permit the use of client caching

and still maintain read/write consistency. Appendix B contains references for some of these

techniques.

Figure 3.3 depicts two processes, Process A and Process B, which are running on different

clients and use client caching. Assume that both processes are accessing the same file on

the server. An initial read() by a process will read data from the disk on the server into

the cache associated with each client. Subsequent read()s by a process will read data from

client cache. If Process A executes a write(), the data may not be written immediately to

the server. All writes on the client are cached and are written to the server at some later

time. Therefore, it is possible for data in cache to be inconsistent with the server's data. In
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Process A
Write UnixIO

Process B
Display file contents and size

% WriteUnixIO outjUe

abcde
% cat outfile; echo " "; Is -I outfile

abcde
-rw-r—r- 1 olsen 5 Jul 19 15:26 outfile

%

read/wrote 5 bytes

Figure 3.4: A demonstration of read/write consistency.

order for Process B to see the data that Process A just wrote, Client A would have to write

the data in its cache to the server, and Client B would have to fill its cache with new data

from the server. Processes on different nodes may not be read/write consistent when using

client caching because the data may not be "visible" to all processes after a writeQ returns.

Demonstrations were developed using an NFS implementation to illustrate read/write

consistency. The following demonstrations use the programs WriteUnixIO and WriteStdlO.

Source code for these programs is located in Appendix B. WriteUnixIO is a program which

reads input from the terminal and writes output to outfile. The file name outfile^ which in

the demonstrations refers to either a local file or a remote file mounted under the directory

mni, is a parameter to WriteUnixIO. Data is read and written a byte at a time using Unix

10. WriteStdlO is similar to WriteUnixIO except that the program uses stdio to buffer data

for writing. Periodically, the command "cat outfile; echo " "; Is -1 outfile" is run to display

the contents and the size of outfile. This command shows whether or not data is "visible"

immediately after a writeQ returns. For all the demonstrations. Process A is either the

program WriteUnixIO or WriteStdlO and Process B is a process which displays the contents

and size of outfile. Figure 3.4 and figure 3.5 illustrate how the demonstration proceeds.

Commands are displayed in italics and the output of those commands is displayed in bold.

• Unix 10 on a single system (see fig. 3.4).

Process A and Process B are both on the same single system and outfile is a local file.

Process A is the program WriteUnixIO. After data is entered. Process B displays the

contents of outfile. Data is "visible" to Process B immediately after a writeQ from

Process A returns. Unix 10 on a single system is read/write consistent.

• Stdio on single system (see fig. 3.5).

Process A and Process B are both on the same single system and outfile is a local
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Process A
Run WHteStdIO

Process B
Display file contents and size

% cat outfile; echo " Is -I outfile

-rw-r-r- 1 olsen 0 Jul 19 15:26 outfile

%

% cat outfile; echo " Is -I outfile

abcde
-rw-r-r- 1 olsen 5 Jul 19 15:26 outfile

%

Figure 3.5: A demonstration of the lack of read/write consistency.

file. Process A is the program WriteStdlO. After data is entered, Process B displays

the contents of outfile. Because stdio is used to buffer output, data is not "visible"

to Process B immediately after a write () from Process A returns. Stdio on a single

system is not read/write consistent. The data becomes "visible" when a Ctrl-D is

received which causes the buffer to be dumped to disk.

• NFS with processes on the same node (see fig. 3.4).

Process A and Process B are on the same client and outfile is a remote file. Process

A is the program WriteUnixIO. After data is entered. Process B displays the contents

of outfile. Data is "visible" to Process B immediately after a writeQ from Process A
returns. Two processes on the same node using NFS are read/write consistent.

• NFS with processes on different nodes (see fig. 3.5 replacing WriteStdlO with Write-

UnixIO).

Process A is on Client A, Process B is on Ghent B, and outfile is remote to both

processes. Process A is the program WriteUnixIO. After data is entered, Process B
displays the contents of outfile. Because client caching is used, data is not "visible"

to Process B for several seconds after a writeQ from Process A returns. Processes on

different clients which use chent caching are not guaranteed to be read/write consistent.

The data becomes "visible" to Process B when Client A's cache is written to the

server and Client B's cache is refilled from the server. This is similar to the read/write

consistency issue when using stdio.

% WriteStdlO outfile

abcde

read/wrote 5 bytes
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• NFS with processes on different nodes without chent caching (see fig. 3.4).

Process A is on Client A, Process B is on Ghent B, and outfUe is remote to both Process

A and Process B. Process A is the program Write UnixIO. Before Process A is started,

another process on Ghent A runs setlock outfile to lock outfile in the same manner as

was used in the demonstration on the effect of client caching on performance. Advisory

record locking is one method of turning off chent caching for individual files. Although

Ghent B uses chent caching, each time the conmiand line of Process B is run, outfile

is opened, read in its entirety, and closed. The important thing to note from this

demonstration is that a writeQ from Process A is "visible" immediately to Process B
after the write() returns because the data is written directly to the server instead of to

Ghent A's cache. Also note that even though all bytes in outfile have been exclusively

locked. Process A is able to write to outfile because the locking mechanism is advisory

and not mandatory. Read/write consistency is guaranteed, using NFS, for processes

on different nodes that do not use chent caching.

Processes on different nodes that do not use chent caching are read/write consistent, but

processes on different nodes that do use client caching may not be. Applications that need to

guarantee read/write consistency should use record locking. In some implementations where

client caching is used, record locking is the preferred method of guaranteeing read/write

consistency. Because of possible performance degradation from providing read/write consis-

tency aU of the time, some implementations only guarantee read/write consistency among
processes who use record locking for simultaneous file access.

Table 3.1 summarizes the results of the read/write consistency demonstrations. For those

cases that are not read/write consistent, they may be read/write consistent some of the time,

but read/write consistency is not guaranteed aU of the time. For example, the demonstration

which concerns processes on different nodes using NFS without chent caching is read/write

consistent even though Process B uses client caching. This is because Process B reads the

entire file at once. Processes on different clients using client caching or processes using stdio

may be read/write consistent some of the time, but are not all of the time. The only way

to guarantee read/write consistency for all cases of processes simultaneously accessing files

and for all implementations is to use record locking and forgo the use of stdio.

3.2 Times Returned by stat()

The functions statQ and fstatQ return the following times associated with a file:

1. st-atime - the time when data in the file was last accessed (e.g., by read(J)

2. stjmtime - the time when data in the file was last modified (e.g., by writeQ)

3. st-ctime - the time when the status of the file was last changed (e.g., by chmod(J)
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Table 3.1: Read/write consistency summary

Read/write consistent?

Process A and Process B on Same Node:

Unix 10

Stdio

NFS

Process A and Process B on Different Nodes:

NFS with no record locking

NFS with record locking

Yes

No

Yes

No

Yes

Unix implementations vary somewhat as to which functions update these times. In most

implementations, the same basic set of functions cause a time associated with a file to be

updated. For example, a readQ of a file updates st_atime and a writeQ to a file updates both

stjmtime and st-ctime. For a write, the file status, i.e., the file size, may change. However,

some implementations have functions which update these times that other implementations

do not have. For example. System V has a lockfQ function and IEEE 1003.1-1990 does not.

Not only do implementations vary as far as which functions update the times returned

by stat(), but implementations also vary in the procedure used to do the update. In some

implementations, the times are updated when the function is performed, e.g., when a read()

returns, the st.atime of the file has been set to the current time. In other implementations

(including IEEE 1003.1-1990), the times returned by statQ are only updated periodically as

a performance consideration. For example, when a readQ is performed, the st^atime of the

file is "marked for update." At some later time, e.g., when a statQ on the file is done, the

"mark for update," left as a result of the most recent readf), causes the st.atime of the file to

be set to the current time. For implementations which update statQ times in this manner,

the values of the times are accurate only within the time period in which the "marks for

update" are converted into time value changes. For implementations which update statQ

times when a function is performed, the statQ times are as accurate as possible.

Most applications do not require accurate statQ times. One of the most common uses of

statQ times is make. The make application is successfully used with almost all implementa-

tions.
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The issue of statQ times becomes somewhat more difficult in a transparent file access

environment. A file in a remote file system is physically located on a server. The server

maintains its own clock which may or may not be synchronized with the chent's clock.

If a cHent is caching to improve performance, then it is difficult to make accurate times

available to processes on other clients. Reads and writes to remote files may actually only

involve accessing the local caches. The server must be made aware of these accesses. There

are solutions to these problems. The client could send a packet to the server when an access

occurs or the server could poll its clients for updates whenever a statQ is done on a file.

However, any solution which tries to maintain statQ times as accurately as can be done on

a local file system incurs a performance penalty.

A more serious problem is that a server may not be able to maintain some or all of the

stat() times because the native file system of the server does not have the equivalent concepts

of stat() times. It is not uncommon for a file system to have only a file creation time.

3.3 Reporting of write() Error Conditions

When a write () is performed on a local file, any error condition associated with that writeQ

is reported when the write() returns. However, it may not be possible for implementations

of remote file systems, which cache data on the client and/or the server for performance

considerations, to report all error conditions from writeQ when the writeQ returns. For

example, the ENOSPC error condition from writeQ indicates that the file system is full.

With a local file, this can be discovered easily when each writeQ takes place.

However, when the writeQ is to a remote file and the client implementation caches data

for that file, it is not usually known until sometime later that the file system on the server,

to which the file belongs, has filled. This is because the data from a writeQ to a remote

file is actually written to the client cache. At some later time, the cache is emptied by

sending data from several writes as a single packet to the server to be written to the file on

the server's mass storage. At that time, if space on the server's file system fills, the server

sends an indication to the client who then notifies the appHcation which invoked the writeQ.

Thus, an ENOSPC error condition may be reported to the appHcation as an error condition

returned to a writeQ other than the writeQ which actually caused the ENOSPC.
It may also happen that the ENOSPC error condition is reported on the closeQ of the file.

This is potentially a more serious consequence for an application since most implementations

do not now return an ENOSPC to a closeQ. As a result, most existing appHcations are not

expecting an ENOSPC from a closeQ.

3.4 Record Locking

Record locking is a capability which is required for many applications, notably, for database

appHcations. Many file system implementations support either advisory record locking

and/or mandatory record locking. With advisory record locking, an application must check
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to see if a record is locked before performing an operation on the record. Using advisory

record locking, if an application accesses a locked record, the operation is permitted with no

indication from the implementation that a lock was violated. This is in contrast to manda-

tory record locking where locks are enforced by the implementation. Using mandatory record

locking, an application which attempts to violate a lock is refused access an error condition.

In IEEE 1003.1-1990, record locking is advisory.

A record locking capabihty on either a local or a remote file system requires a file system

implementation more complex than one that just provides input/output to files. For this

reason and for performance considerations, many file system implementations do not provide

record locking. For a remote file system, a record locking capabihty requires support from

the client implementation, the server implementation, and the protocol. One of the goals of

transparent file access is for a client to be able to have access to as many remote file systems

as possible even if the access provided does not support all of the capabihties of the client

file system. This impHes that even if the client implementation supports record locking,

that client may be accessing a server which cannot support record locking and/or may be

accessing a server using a protocol which does not support record locking. In the case of

a client using IEEE 1003.1-1990, not only must the server and the protocol support record

locking, but the server and the protocol must support advisory record locking.
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Chapter 4

Specific Environment Issues

Specific existing or emerging file systems may not support all of the file system semantics

of IEEE P1003. 1-1990. Problem areas include different file system structure (see sec. 4.1),

different file attributes (see sec. 4.2), FIFOs in a network environment (see sec. 4.3), append

mode writeQs (see sec. 4.4), and the last-close semantic (see sec. 4.5).

4.1 Different File System Structures

On a single system, the file system usually has the same structural characteristics through-

out. For example, on a file system with a hierarchical directory structure, directories are

permitted anywhere the access permissions allow. On a file system that is flat, i.e., does not

have directories, directories are permitted nowhere. On a single system, the same structure

semantics usually apply to all accessible files regardless of location.

However, there are exceptions in the single system case. For example, some systems

are capable of mounting different versions of their file systems. A flat file system may
have been used in a system's early development. As the system matured, a hierarchical file

system became the norm. In order to maintain backward compatibihty, the system is able

to simultaneously access both the early and the later versions of the file system. In such

an environment on a single system, the structure semantics would be different depending on

whether the part of the file system being accessed was the early version, i.e., the flat version,

or the later version, i.e., the hierarchical version.

Systems which access file systems with different structure semantics become much more

common in a network environment. Client file systems may have structure semantics different

from server file systems.

Different structure semantics often implies a different syntax for naming files. For exam-

ple, a flat file system hkely has no way of recognizing a pathname as specified in P1003. 1-1990

since a flat file system has no concept of a directory. The cover illustration shows three dif-

ferent file naming syntaxes, i.e., DOS and Unix on the clients, and VMS on the server. Some

mapping between the client's file naming syntax and the server's file naming syntax may be

required.
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Different structure semantics does not prevent the client from being able to have some

level of transparent access. Among the objects in a file system that make up its structure

are directories, file types, and links.

4.1.1 Directories

Some file systems permit a hierarchical directory structure of virtually unlimited depth.

Some file systems are flat and permit no directory structure at all. Some file systems permit

directories but only up to a maximum depth. Other file systems permit directories but the

directory structure is fixed or read-only, i.e., the creation or deletion of directories is not

permitted. This is to be distinguished from a read-only file system in which neither files

nor directories may be created or removed, and in which file data may neither be added nor

modified. In a file system where the directory structure is read-only, files may be created

and removed from directories but the directory structure remains static. Modification of the

directory structure is an operation beyond the semantics of the file system. Some FTAM
File Stores have such static directory structures.

In a network environment, a client may have several remote file systems attached from

different servers and these file systems may vary in their directory manipulation capabilities.

An application should be able to know the structure semantics of all accessible directories.

4.1.2 File Types

Some file systems support numerous file types and some file systems only support a few

file types. For example, VMS supports variable length record sequential files, fixed length

record sequential files, fixed length record random access files, index sequential files, stream

files, and others. On the other hand, IEEE 1003.1-1990 supports only regular files (i.e., byte

addressable random access files), character special files, block special files, FIFO special files,

and directories. In a network environment, all file types on a client may not be supported on

a server and likewise, all file types on a server may not be supported on a cHent. There is a

serious problem if the client does not support any of the file types of the server. Transparent

file access is reasonable as long as at least one file type on the client can be supported on

the server. Otherwise, conversion between file types is required either by the client, by the

server, or by the network.

4.1.3 Links

Links in a file system are additional directory entries or pointers to a file (i.e., those beyond

the minimum required to establish the file's existence in the file system). Usually when the

file is created, an entry is made in a directory. If the file system is flat, then the directory

in this case is some list of all files. If another entry for the same physical file is created in

the same or different directory, this additional entry is called a link. Consequently, the file

is known by more than one name and may be accessed by more than one path through the

directory tree. There are two types of links, hard links and symbolic links.
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Usually, hard links are simply just multiple directory entries which point to the same

physical file. The physical file usually consists of a file header and the data itself. The fiJ,e

header contains information about the file, such as, file access permissions and pointers to

where the data is located. With hard hnks, it may not be possible to distinguish the directory

entry created when the file was created from any other directory entry for the physical file.

All directory entries pointing to the same physical file are equal.

On the other hand, a symbohc link is only a virtual Hnk to a file. The physical file has a

directory entry and may have hard links to it as well. A symbolic link to a file usually has

a directory entry and a file header of its own. However, the file header for a symbolic link

contains the name of a file to which the name of the symbolic link actually refers. Thus,

given the name of a file which is a symbolic link, the system accesses the file pointed to by the

symbolic link by obtaining the symbolic link name from the file header of the symbolic link.

The symbolic hnk name is used to access the physical file. Symbolic links were developed

in order to permit links to be made across different mounted file systems where the use of a

hard link may not be feasible.

Some file systems support neither hard links nor symbolic hnks. Other file systems

support links but the number of links to an individual file may be limited. In a network

environment where several different file systems are mounted, an application may need to

determine whether a hard or symbolic link can be made to a particular file, and how many

links can point to a file.

4.2 Diflferent File Attributes

File attributes are information associated with a file other than the actual data. File at-

tributes may include such things as the owner of the file, the group ownership of the file,

an access control list (i.e., a list of users who have access to the file), the file size, and a file

serial number. Section 4.1 describes how a system in a network environment could have file

systems mounted with different file system structures. Similarly, such a system could have

file systems mounted where the files have different file attributes, or the same file attributes

but with different semantics associated with the attributes. This should not prevent the files

from being accessed transparently.

For example, in Unix and in VMS, there are access permission bits associated with

owner access, group access, and access by others (called world access in VMS). However,

the algorithm for permitting access based on these permission bits differs between Unix and

VMS. In Unix, if the user trying to access a file is the owner, then the system checks only

the owner permission bits. If the owner permission bits do not allow access to the file, then

access is denied even if the owner is a member of the group and the group access is allowed,

or access by others is allowed. In VMS, if the user trying to access a file is the owner and

the owner permission bits deny access, then the system will check to see if the user can be

granted access on the basis of group or world permissions.
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4.2.1 File Access Control

Many operating systems, including Unix, are multiuser. As such, it is necessary to have

mechanisms which protect a user's file from unwanted access. An integral part of an access

control mechanism in a multiuser operating system is the concept of user ownership of a

file and, very often, the concept of group ownership. However, many operating systems,

such as those for personal computers, are single-user operating systems. In a single-user

environment, there is no need for file access mechanisms which protect files from unwanted

access by others because, conceptually, there is only one user. Nonetheless, some single-user

operating systems permit a file to be marked as read-only to protect the file from inadvertent

modification or removal.

Both single-user and multiuser operating systems have been used as servers providing

transparent file access. Most multiuser operating systems are already well suited for use as

a file server since access protection is already an integral part of its design. For a single-user

operating system, it is necessary that some sort of access control mechanism be implemented

when such an operating system is used to provide file service. This is usually accomplished by

creating a separate partition for each user's files. Thus, user identification is not associated

with an individual file but with a partition on the server's disk. File servers which have

single-user operating systems may also have partitions that are accessible by anyone.

Network environments include both servers based on multiuser operating systems and

servers based on single-user operating systems. Application programs on clients may have

transparent access to servers which are based on single-user operating systems which may
neither provide owner information nor group ownership information for a file, but are capable

of imposing some level of file access control. That file aqcess control may be no more than a

read/write permission that applies to any user. A very large group of appHcations are able

to function in such an environment.

4.2.2 Execute/Search Permissions

Unix and other file systems have the concept of an execute/search permission. If a file has

execute permission, then the file is a program which may be loaded and run. If an attempt

is made to run a file which does not have execute permission, then an error condition results.

Execute/search permissions may also be used with directories. If a directory has search

permission, then the directory can become the default directory or may be part of a complete

path reference to a file. This is to be distinguished from a directory with read permission

which means that the contents of the directory may be read.

Not all file systems have the concept of an execute/search permission. This is not so much
of a problem if the server file system has execute/search permissions and the client does not.

However, if the client has execute/search permissions and the server does not, then it will be

difficult on the client to maintain the semantics associated with execute/search permissions.

One solution is to not permit executable files to be run from a server whose file system

cannot support execute/search permissions. Another solution is for the client to interpret

the read permission as the execute/search permission.
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4.2.3 Information Returned by stat()

The function stat() returns read/write and execute/search permissions for the file owner

class, file group class, and file other class. Moreover, it returns the file's user ID and group

ID plus several other things. As is noted in sections 4.2.1 and 4.2.2, a file system may
not support user ID, group ID, and/or execute/search permissions. Consequently, statQ is

unable to return meaningful information in those fields of the statQ structure.

In addition, it is possible that a file system may support the concept of user and group

ownership of a file but the chent's user/group identification information may differ from a

server's user/group identification information. In such a case, in order to accomplish file

access control between client and server, there must be a mapping of the chent's user/group

identification information to a server's user/group identification information.

For example, suppose Ghent A, Ghent B, and Server S all support IEEE 1003.1-1990.

Ghent A, Glient B, and Server S are each separately administered. The individual KO has

an account on both clients and the server. On Glient A, KO has a user ID of 10; on Glient

B, KO has a user ID of 15; on Server S, KO has a user ID of 20. The user KO is known
by a different user ID on each of Glient A, Ghent B, and Server S. Suppose Glient A and

Glient B are using files on Server S. Server S, who knows KO as user ID 20, must be able

to identify KO as user ID 10 when file access is attem.pted from Glient A and as user ID

15 when access is attempted from Glient B. Suppose Server S uses a simple mapping table

which eissociates: (user ID 10, user ID 20) and (user ID 15, user ID 20). Now, Server S gets

an access request for user ID 10, apphes the mapping to get user ID 20, and then applies

the file access control procedure based on a user ID of 20. Using the mapping, file access

control works cis it should for KO's files.

However, suppose an apphcation on Ghent A performs a stat() on a file which has user

ID 20 and is located on Server S. The server is unable to return meaningful information in

the user ID part of the stat() structure. Server S cannot identify the file as owned by user

ID 10 because the mapping is not one-to-one. The inverse mapping of user ID 20 gives both

user ID 10 and user ID 15. Returning user ID 20, which the server knows as the owner of

the file, wrongly identifies the file to the apphcation on Ghent A. User ID 20 is not KO on

Glient A.

It is important to distinguish the functioning of the file access control mechanism of a

file system and the ability of a file system to return meaningful information to a stat().

Note that, in the example, the file access control mechanism functioned as specified in IEEE
1003.1-1990 but the server was unable to return meaningful information about the file's

owner. Most apphcations are capable of performing their primary function as long as they

are able to access files. It is usually not necessary for an apphcation to ascertain how the file

access control mechanism functions. However, an application should be able to determine

the meaningfulness of the information returned by statQ.
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4.2.4 Attribute Manipulation

Most file systems permit the modification of file attributes after a file is created. However,

some file systems do not. In some file systems, some attributes of directories cannot be

changed. In some file systems, some attributes of files cannot be changed. Some file systems

have times associated with file access which may not be changed without the access being

made. FTAM file stores are examples of file systems which may not permit some attributes to

be changed. Consequently, the IEEE 1003.1-1990 functions chmod(), chown(), and utimeQ

may not be able to manipulate the supported file attributes (see sec. 4.2.1 and sec. 4.2.2) by

a file system.

4.3 FIFOs in a Network Environment

A FIFO is a special file whose semantics differ significantly from those of a regular file.

FIFO means first-in-first-out. The semantics of a FIFO can be summarized in terms of the

operations on a regular file as follows:

1. Bytes written to a FIFO are always written as though they were written in append

mode.

2. Bytes read from a FIFO are always read from the beginning of the file and then

removed.

3. When all processes which have the FIFO open close the FIFO, any bytes remaining in

the FIFO are removed.

4. Writing to a FIFO which no process has open for reading results in an error condition

(see sec. 2.1).

Some file systems do not have the concept of a FIFO. In a network environment, a FIFO
could be located on a server. Consequently, processes using such a FIFO could be located

on different clients. Some file systems do no support the capability of processes on different

clients sharing the use of a FIFO located on a server, i.e., the FIFO is interpreted as a

local object. For such a file system, only processes on the same client may share the use of

the remote FIFO even though it is located on a server. An application should be able to

determine whether FIFOs are supported and whether a FIFO is interpreted as a local or as

a remote object.

Demonstrations were developed using an NFS implementation to illustrate the behavior

of a FIFO when it is located on a server and it is accessed by processes on the same client

and processes on different clients. Figure 4.1 illustrates how the demonstration proceeds.

Process A reads from the FIFO and Process B writes to the FIFO. Commands are displayed

in italics and the output of those commands is displayed in bold. The FIFO testfifo is

created on a remote file system mounted at the directory mnt.

Table 4.1 summarizes the results of using a FIFO on two different client/server configu-

rations as follows:
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Process A
Read from FIFO

Process B
Write to FIFO

% mknod mnt/testfifo p
% cat mnt/testfifo

Hello World
%

% cat > mnt/testfifo

Hello World

%

Figure 4.1: FIFO demonstration for processes on the same client.

Table 4.1: Summary of last-close semantic behavior using a FIFO located on an NFS server

Processes A&B Does the

run on FIFO work?

same client Yes

different client No

• Both processes using the FIFO are on the same client.

Process A and Process B are both on Client A. Process A creates a FIFO on the server

and issues a command to read from the FIFO. Process B writes to the FIFO. After

Process B issues a "D, both processes terminate successfully.

• The processes using the FIFO are on different clients.

Process A is on Client A and Process B is on CHent B. Process A creates a FIFO

on the server and issues a command to read from the FIFO. Process B writes to the

FIFO. Process A is unable to read from the FIFO. Neither process is able to terminate

successfully.
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4.4 Append Mode write()

Section 2.2 discussed how, in a network environment, it is more difficult to guarantee that

when several processes simultaneously write to the same file, the block of data from one

writeQ is not interleaved or overwritten by data from another write() before the first writef)

completes. The issue of non-interleaved writes of section 2.2 includes those cases where one

or more of the writes are performed in append mode.

While the issue of non-interleaved writes is one which has implications for all file systems,

the issue of non-interleaved writes in append mode by itself has implications for some file

systems. Some remote file systems may not be able to guarantee multiole simultaneous

append mode writes to the same file for reasons beyond those discussed in section 2.2. An
application should be able to know if it is guaranteed non-interleaved append mode writes.

For example, in NFS, an append mode write () to a file is usually accomplished in two

operations. First, the equivalent of a statQ is done on the file to ascertain the file size. Then,

a write to the location indicated by the file size is performed. Since these two operations are

not usually performed atomically, data from one append mode writeQ could overwrite data

from another.

As an illustration of this, consider the following sequence of events. Process A on Client

A writes 10 bytes to File X on the server in append mode. To accomplish this append mode
write for Process A, Client A effectively does a statQ to the server to obtain the length of

File X. In the meanwhile. Process B on Client B writes 5 bytes to File X on the server in

append mode. Client B also effectively does a statQ to the server to obtain the length of

File X. The server returns to both Client A and Client B the length of File X which is equal

to 15. Client A now sends a request to the server to write 10 bytes at the sixteenth position

of File X, thus appending its 10 bytes to the end of File X. The length of File X is now 25

bytes. Now, Client B sends its request to the server to write 5 bytes at the sixteenth position

of File X. The 5 bytes written in append mode by Process B has overwritten the first 5 bytes

of Process A's append mode write. Were Process A and Process B on the same system and

File X a local file. File X would be of length 30 bytes and consist of its original 15 bytes, the

10 bytes written by Process A, and the 5 bytes written by Process B.

4.5 Last-close Semantic

The last-close semantic is the semantic which requires that an open file remain available to

any process which has the file open regardless of any changes in file or process characteristics

which may take place after the file is opened. It is called the last- close semantic because the

best known consequence of the last-close semantic is that when a file is deleted, the file is

not removed until the file is closed by the last process which has it open.

Table 4.2 lists IEEE 1003.1-1990 functions which have implications for the last-close

semantic. Once a file has been successfully opened, the following conditions hold under

IEEE 1003.1-1990 and traditional Unix for regular files. The function names listed below

are IEEE 1003.1-1990 function names.
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Table 4.2: IEEE 1003.1-1990 functions with last-close semantic implications

Change File Change Process

Change Permission Bits Delete file: Change Process Identity:

and Ownership:

chmodO unlinkO exec file with set UID

chownO rename () exec file with set GID

setuid()

setgid()

1. Changing the file permission bits or ownership of a file does not cause any process with

the file open to lose access.

Once a process has a file open, access to the file is not denied. For example, if Process

A has a file open and Process B uses chmod to change the file permission bits of the

open file to 0, Process A does not lose access to the file. Despite the fact that a

process can not open a file with mode 0, Process A does not lose access to the open

file because file access modes are only checked when a file is opened. Unhke Unix,

under IEEE 1003.1-1990, whether or not Process A would lose access to the open file

is implementation-defined.

The same example applies to chownQ. If Process A has a file open and Process B uses

chownQ to change the ownership or group of the file, Process A retains access to the

file.

2. Deleting the file by an unlinkQ or rename () does not cause any process with the file

open to lose access.

The function unlinkQ removes a link to a file and decrements the link count of the file.

The file is no longer accessible when the file's link count is zero and no process has the

file open. When an unlink() is performed and the link count becomes zero, the file is

removed from the directory entry but the file contents are not removed until the last

process which has the file open closes the file. Processes which have the file open, do

not lose access to the unlinked file.

A rename() can cause a file to be unlinked. A renameQ which generates an implied

unlinkQ of the file removes the directory entry for that file, but the removal of the file
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contents is deferred until all references to the file have been closed and the link count

is zero. If any processes had the unlinked file open, access to the file is not lost until

the file is closed.

3. Changing the user ID and group ID of any process that has a file open does not cause

that process to lose access to the file.

A process can use the ezec family of functions to overlay the current process image with

a new process image. If Process A, which has a file open, calls execlQ to execute fileB,

the file descriptors open in Process A remain open. If fileB has its set-user-ID and/or

set-group-ID mode bits set, then the effective user ID and/or the effective group ID of

the process is changed. However, Process A does not lose access to open files inherited

as a result of the execlQ.

If a process has appropriate privileges, the functions setuidQ and setgidQ can be used

to set the user and group IDs for the process. Regardless of what the new user and

group IDs are set to, access to an open file is not denied. File access modes are only

checked when a file is opened.

To summarize, on a single system, access to a file by any process which has that file open

is maintained regardless of any operation which changes the access conditions of the file (i.e.

the owner, group, and access permissions), removes the file, or changes the effective user ID,

effective group ID, or supplementary group IDs of the process. An exception to this is chmod

under IEEE 1003.1-1990. Under IEEE 1003.1-1990, whether or not the last-close semantic

is guaranteed for chmod is implementation defined.

The last-close semantic for directories is somewhat different than the last-close semantic

for regular files. Directory streams are the file descriptor counterpart for directories in

IEEE 1003.1-1990. IEEE 1003.1-1990 does not require that directories use file descriptors to

implement directory streams. Note that if an implementation does not use file descriptors for

directory streams, such file descriptors may not be used in functions, other than readdirQ,

rewinddirf) , and closedirf), which have file descriptors as arguments (see IEEE 1003.1-1990

B5.1.2). As a result, directories may not have open file descriptions.

Moreover, the use of directory streams inherited from parent to child through execQ is

undefined. IEEE 1003.1-1990 says that a directory stream inherited through a forkQ may
continue to be processed by either the parent or child but not by both. Thus, in a family

tree of processes created by fork(), it is implementation-specific whether a directory steam

in the root of the family tree is available to the root or to the processes which are the leaves

of the family tree. If an inherited directory stream is usable by both parent and child, the

result is undefined. Thus, if the last-close semantic is guaranteed for a directory, all open

directory streams at the time a directory is removed are still available, but this availabihty

among related processes may be considerably different from the application of the last- close

semantic to regular files.
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Consider the following examples:

1. Suppose the implementation is such that after a forkQ, a directory stream continues

to be available to the parent but not to the child. A process opens a directory D and

creates a child using forkQ. The directory stream for D is available to the parent but

not the child. The parent removes D and the directory stream for D remains available

to the parent. The availability of the directory stream for D was lost to the child as

a result of the forkQ and obviously, remains unavailable after D is removed by the

parent.

2. Suppose that the implementation is such that after a fork(), a directory stream con-

tinues to be available to the child but not the parent. A process opens a directory D
and creates a child by means of forkQ. The directory stream for D is still available

to the child but not to the parent. K the child removes D, then the directory stream

for D remains unavailable to the parent even though the parent initially created the

directory stream for D. The parent lost the availabihty of the directory stream for D
after the forkQ.

In these two examples, had the directory been a regular file, the file descriptors for D
would have remained available to all processes. It is implementation-specific as to whether

the system behaves like the first example or the second example. Thus, if the last-close

semantic is not guaranteed, the only thing that is certain is that if the process that removes

a directory has its directory stream available, it retains that availabihty. The availability of

that directory stream to any other related process is implementation-specific.

The meaning of the last-close semantic for a FIFO special file is the same as for a regular

file. However, there is an additional aspect of the last close semantic for a FIFO. The last-

close semantic for a FIFO also implies that when all file descriptors associated with a FIFO
have been closed, any remaining data in the FIFO is discarded. If the last-close semantic

fails for a FIFO, data may remain in the FIFO after all file descriptors referring to the FIFO
have been closed.

There are several common uses of the last-close semantic. For example, it is common
for an application to create a temporary file and then immediately unlink the file. The

temporary file remains available to the application but if the application is aborted, the

temporary file is closed and removed without any further action by the application.

The last-close semantic is also sometimes used for process synchronization and message

passing. The use of the last-close semantic for such apphcations was more common in

earlier versions of Unix where the only facilities available for interprocess communication

and synchronization were pipes and signals. Pipes and signals require that the processes

who wish to communicate know each others process IDs and/or share open file descriptions.

The following example illustrates how the last-close semantic can be used by two processes,

who know nothing about each other, to pass messages of arbitrary length. The two processes

only know a file name, fileX. This example assumes that fileX exists and had a mode of 666.

This message passing example does not queue messages. Messages are written and read

one at a time. Process A writes a message of arbitrary size to a file, fileX, and Process B
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reads a message in its entirety from fUeX.

Process A and Process B proceed as follows (see programs write_msg.c and reacLmsg.c

in Appendix B). When Process A wants to send a message to Process B, Process A checks

to see if the length of fileX is zero. If the length is not zero, Process A waits for Process B
to read the message and truncate fileX to length zero. K the length of fileX is zero, then

Process A opens file X and uses chmodQ to change the mode of fileX to zero. The chmod

0 prevents Process B from reading fileX before Process A has finished writing the message.

Because of the last-close semantic. Process A does not lose access to fileX. When Process A
has finished writing the message, it uses chmodQ to restore the file permission bits of fileX.

When Process B wants to read a message from Process A, Process B checks to see if the

length of fileX is 0. If the length is 0, Process B waits until there is a message to read. If

the length of fileX is not zero. Process B proceeds to try to open fileX. If Process A has

not finished writing the message, fileX will have mode 0 and Process B will have to wait for

Process A to restore fileX's file permission bits before fileX can be opened. After Process B
has read the message, it truncates fileX to indicate to Process A that it has read the message.

Demonstrations were developed to illustrate the behavior of the last-close semantic using

NFS. These demonstrations are presented in the following sections. Section 4.5.1 demon-

strates the behavior of the last-close semantic when an open file's ownership, group, and

permissions bits are changed. Section 4.5.2 demonstrates the results of removing an open

file. Section 4.5.3 shows the results of changing the identity of a process after a file has been

opened. For the demonstrations, commands are displayed in italics and the output of those

commands is displayed in bold.

4.5.1 Changing File Attributes

The program read^file (see Appendix B) opens a file, reads 2000 bytes, and then pauses until

a character of input is received. When the program pauses, the file remains open and another

process can modify file characteristics. The program readjile continues to read the file until

end of file or a read error occurs. An error message is displayed if a read error occurs. For the

following demonstrations, testfile is the file being read, Process A is the program readjile,

and Process B is a process which changes the attributes of testfile when Process A pauses.

Note that before opening the file, the program read^file updates the access and modifi-

cation times of the file. The purpose of this is to invalidate any caching of the file's data by

the NFS cHent implementation. Such caching may yield different results for the demonstra-

tions which illustrate the failure of the last-close semantic. The NFS client implementation

is capable of caching entire files even when they are quite large. Updating the access and

modification times of the file causes the client to go to the server to access the file rather

than access the file in a local cache.

For all demonstrations. Process A is on Client A, Process B is either on Client A or Client

B, and testfile, which is 38400 bytes, is remote to both Client A and Client B. The prompt

for each process in the figures, e.g., "ClientA%", indicates on which client the process is

running. On both Client A and Client B, the remote file system on which testfile resides, is
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Process A
read^file

Process B
chmod

clientA% Is -I mnt/testJUe

-rw-rw-rw- 1 procA_B 38400 mnt/testfile

clientA% readjile mnt/testfile

(read 2000 bytes from testfile)

<retum>

(read testfile until EOF)
read 38400 bytes

clientA%

clientA% chmod 0 mnt/testfile

clientA%

Figure 4.2: Demonstration of the correct behavior of the last-close semantic using chmod
with NFS.

mounted on the directory mnt. For the command "/j -/", the time of last modification for

the file is omitted from the output displayed in the demonstrations. In some cases Process A
is the owner of testfile (i.e., the effective user ID of Process A matches the user ID of testfile),

and in other cases Process A is not the owner of testfile. If both Process A and Process B
are owners of testfile, or if Process A is the owner and Process B has root privileges, the user

ID of testfile is denoted as procA_B in the demonstrations. The user ID of testfile is procB

if Process A is not the owner of testfile and Process B is either the owner of testfile or has

root privileges to modify testfile.

Table 4.3 summarizes the effect on Process A's ability to maintain access to testfile after

Process B uses chmod to change the mode of testfile to 0 as described below:

• Process A is the owner of testfile (see fig. 4.2 which illustrates the results where Process

A and Process B are on the same client).

Process A opens testfile, reads 2000 bytes, and pauses. Process B changes the mode of

testfile to 0. Process A successfully continues to read testfile. Even though Process B
has changed the mode to 0, Process A retains access to testfile regardless of whether

Process B is on the same client or a different client.

• Process A is not the owner of testfile (see fig. 4.3 which illustrates the results where

Process A and Process B are on different clients).

Process A opens testfile, reads 2000 bytes, and pauses. Process B changes the mode of

testfile to 0. Process A continues to read testfile until an error occurs. Process A does

not retain access to testfile after Process B changes the mode to 0 regardless of whether
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Process A
readjile

Process B
chmod

clieiitA% Is -I mnt/testfile

-rw-rw-rw- 1 procB 38400 mnt/testfile

clientA% readjile mnt/testfile

(read 2000 bytes from testfile)

<retum>

(read testfile until an error occurs)

13-Read: Permission denied

read 16384 bytes

clientA%

clientB% chmod 0 mnt/testfile

clientB%

Figure 4.3: Demonstration of the failure of the last- close semantic using chmod with NFS.

Process B is on the same cHent or a different client. If either client is using caching, the

^
effects of changing the mode of testfile may not appear instantly on Client A. Data in

Client A's cache is still readable. This accounts for Process A's abihty to continue to

read data for some time after Process B has changed the access permissions. When the

data in the cache is exhausted, the read error occurs. A file of 38400 bytes is used to

demonstrate that the last-close semantic is not guaranteed. If testfile is small enough

so that the remaining data can fit into cache, the last-close semantic may be met, but

the last-close semantic is not guaranteed for all cases where Process A is not the owner

of testfile.

Table 4.3 shows that using chmodyj'iih. NFS, the last-close semantic is guaranteed when

the process reading a remote file is the owner of that file. It does not matter whether the

process reading the file and the process performing the chmod are on the same system. If

the process reading the file is not the file owner, the last-close semantic is not guaranteed.

Table 4.4 summarizes the effect on Process A's ability to maintain access to testfile after

Process B uses chown to change the owner of testfile as described below:

• Process A is initially the owner of testfile (see fig. 4.4 which illustrates the results where

Process A and Process B are on different clients).

For this demonstration. Process A is always initially the owner of testfile. The remote

file testfile has no group or other permission bits set. Process A opens testfile, reads

2000 bjrtes, and pauses. Process B, which has root privileges, uses chown to change

the owner of testfile to procB. Note that the client where Process B is located must
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Table 4.3: Summary of last-close semantic behavior using chmod with NFS

Is Process A Processes A&B Last-close semantic
File owner? run on guaranteed?

Yes same client Yes

Yes different client Yes

No different client No

No same client No

have the remote file system where testfile resides mounted with root access. Process A
continues to read testfile until an error occurs. Regardless of whether Process B is on

the same client or a different client, Process A does not retain access to testfile after

Process B changes the ownership of testfile. If either client is using caching, the effect

of the change in ownership of testfile may not appear instantly on Ghent A. Data in

Client A's cache is still readable. This accounts for Process A's abiHty to continue to

read data for some time after Process B has changed the ownership of testfile. When
the data in the cache is exhausted, the read error occurs.

Table 4.4: Summary of last-close semantic behavior using chown with NFS

Is Process A Processes A&B Last-close semantic
File owner? run on guaranteed?

Yes same client No

Yes different client No

Table 4.4 shows that with NFS the last-close semantic is not guaranteed for chown.

Unhke the chmod demonstration, the cases where Process A is not the owner of testfile do

not apply. The chown demonstration relies on the fact that Process A initially has access to

testfile because Process A is the file's owner. If testfile were opened based on group or other
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Process A
read^fUe

Process B
chown

clientA% Is -I mnt/testfUe

-rw 1 procAJB 38400 mnt/testfile

clientA% readjile mnt/testfile

(read 2000 bytes from testfile)

clientB^ chown procB mnt/testfile

clientB#
<retum>

(read testfile until an error occurs)

read 16384 bytes

13-Read: Permission denied

clientA%

Figure 4.4: Demonstration of the failure of the last-close semantic using chown with NFS.

permissions, i.e., Process A was not the owner of testfile, Process A would still be able to

access testfile on the basis of group or other access.

Table 4.5 summarizes the effect on Process A's ability to maintain access to testfile after

Process B uses chgrp to change the group of testfile as described below:

• Process A is not the owner of testfile, but initially has group access (see fig. 4.5 which

illustrates the results where Process A and Process B are on different clients).

For this demonstration. Process A is never the owner of testfile. The file testfile has a

group ID of groupA. Process A, which has a group ID of groupA, opens testfile reads

2000 bytes of testfile, and pauses. Process B, which has root privilege, uses chgrp to

change the group of testfile to groupB, a group of which Process A is not a member.

Note that the file system on which testfile is located must be mounted with root access.

Process A continues to read testfile until an error occurs. Process A does not retain

access to testfile after Process B changes the group of testfile regardless of the location

of Process B. If either client is using caching, the effect of the change in the group of

testfile may not appear instantly on Client A. Data in Client A's cache is still readable.

This accounts for Process A's ability to continue to read data for some time after

Process B uses chgrp to change the group of testfile. When the data in the cache is

exhausted, the read error occurs.

Table 4.5 shows that using NFS the last-close semantic is not guaranteed for chgrp.

Unlike the chmod demonstration, the cases where Process A is the owner of testfile do not

apply because if Process A opened testfile based on Process A's ownership, Process A would
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Process A
read^file

Process B
chgrp

clientA% Is -Ig mnt/testfile

rw 1 procB groupA 38400 mnt/testfile

clientA% readjile mnt/testfile

(read 2000 bytes from testfile)

<retum>

(read from testfile until an error occurs)

read 16384 bytes

13-Read: Permission denied

clientA%

clientB:^ chgrp groupB mnt/testfile

clientB#

Figure 4.5: Demonstration of the failure of the last-close semantic using chgrp with NFS.

maintain access to testfile regardless of the change in group. For the same reason, cases

where testfile has other permission bits set do not apply to the chgrp demonstration. Note

that in the case where Process A is the owner of testfile but the file access permissions do

not allow owner access, Process A would not be able to open testfile even if Process A had

group or other access.

The behavior of the demonstrations in this section is a result of the fact that NFS is a

stateless protocol, i.e., an NFS server does not know that a client has a file open. Since the

server can not know that a client has a file open, the NFS client is responsible for maintaining

the last-close semantic for files accessed using NFS. Reads and writes of a remote file by a

chent in NFS are made by sending requests to an NFS server. Each request includes the user

ID and group ID of the requesting process. Access to a file is checked against the file's user

Table 4.5: Summary of last-close semantic behavior using chgrp with NFS

Is Process A Processes A&B Last-close semantic
File owner? run on guaranteed?

No different client No

No same client No
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ID, group ID, and file access permissions by the NFS server when each request is received.

Changes in a file's user ID, group ID, or file access permissions may change while a client

has the file open. Read or write requests received after the change, which previously would

have been accepted, are now rejected. A common method used by NFS servers to assist

clients in maintaining the last-close semantic is to always permit access by a file's owner

(i.e., the process whose effective user ID matches the user ID of a file). This accounts for the

behavior of the demonstrations in this section which manipulate the file attributes of open

files related to access rights.

4.5.2 Deleting a File

Demonstrations were developed to illustrate the behavior of the last-close semantic using NFS
when a remote open file is deleted. The program readJUe, as described at the beginning of

section 4.5.1, is also used in this section. The demonstrations in this section proceed in the

same manner as those in section 4.5.1. Process A is the program read_file, and Process B is

either the command rm or mv. The commands rm and mv are used to delete testfile.

Table 4.6 summarizes the effect on Process A's ability to maintain access to testfile after

Process B uses rm to remove testfile as described below:

• Process A and Process B are on the same client (see fig. 4.2 replacing the command
"chmod 0 mnt/testfile" with "rm mnt /testfile").

, Process A and Process B are on Client A. Process A opens testfile, reads 2000 bytes,

and pauses. Process B uses rm to remove testfile. Process A successfully continues to

read testfile regardless of whether Process A is the owner of testfile.

• Process A and Process B are on different clients (see fig. 4.6).

Process A is on Client A and Process B is on Client B. Process A opens testfile, reads

2000 bytes, and pauses. Process B uses rm to remove testfile. Process A continues

to read testfile until an error occurs. Process A does not retain access to testfile after

Process B removes testfile regardless of whether Process A is the file's owner. If caching

is used, then access to testfile may not be denied immediately. Data in Client A's cache

is stiU readable. This accounts for Process A's abihty to continue to read data for some

time after Process B removes testfile. When the data in the cache is exhausted, the

read error occurs.

Table 4.6 shows that the last-close semantic is not guaranteed for all cases of rm. Compare

table 4.6 to table 4.3, table 4.4, and table 4.5 of section 4.5.1. For the tables of section 4.5.1,

whether the last-close semantic is maintained for an open file when its file access character-

istics are changed is a function of whether the opening process maintains ownership of the

open file. If a process maintains ownership of a file, then the last-close semantic is guaranteed

for the process accessing the open file regardless of changes in file access permissions. On
the other hand, table 4.6 shows that file access is maintained only if Process A and Process
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Process A
read^fUe

Process B
rm

clientA% Is -I mnt/testfUe

-rw-rw-rw- 1 procA_B 38400 mnt/testfile

clientA% readjile mnt/testfile

(read 2000 bytes from testfile)

<retum>

(read from testfile until an error occurs)

read 16384 bytes

70-Read: Stale NFS file handle

clientA%

Figure 4.6: Demonstration of the behavior of the last-close semantic using rm with NFS.

B are on the same client. The ownership of testfile is immaterial. As pointed out at the end

of section 4.5.1, the results of table 4.3, table 4.4, and table 4.5 are a consequence of the fact

that an NFS server helps a client in maintaining the last- close semantic by always granting

access to the owner of a file. In the case of rm, the server is unable to provide a client any

assistance in maintaining the last-close semantic.

Table 4.6 shows that the last-close semantic is guaranteed when the remote open file is

deleted on the same cHent which has the file open. When both processes are on the same

cUent, the implementation on the client may take steps to give the appearance that the file

is not removed immediately. For example, using NFS, when Process A and Process B are

both on Client A, Client A knows that Process A has testfile open. When Process B initiates

a command to remove testfile, Client A renames testfile on the server to a file called .nfsxxx

where xxx is a number. Process A uses the .nfsxxx file as though it were testfile. When
Process A closes testfile (now .nfsxxx). Client A removes the .nfsxxx file as long as no other

process has it open. The .nfsxxx file may be seen by doing an "Is -a" on the directory where

testfile is located. For an NFS implementation, when Process A and Process B are on the

same cHent, last-close semantics are maintained.

Tables 4.7 and 4.8 summarize the effect on Process A's abihty to maintain access to

testfile after Process B uses mv to move the file junk to the file testfile, thus deleting the

original testfile. The procedure is described as follows:

• The file junk is remote and is on the same remote file system as testfile (See fig. 4.6 re-

placing the command "rm mnt / testfile" with the command "mv mnt/junk mi:»t/ testfile"

.

Figure 4.3 illustrates the results of a demonstration where Process A and Process B

cHentB% rm mnt/testfile

cHentB%
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Table 4.6: Summary of last-close semantic behavior using rm with NFS

Is Process A Processes A&B Last-close semantic
file owner? run on guaranteed?

Yes same client Yes

Yes different client No

No different client No

No same client Yes

are on different clients and Process A is the owner of testfile).

Process A opens testfile, reads 2000 bytes, and pauses. Process B uses mvto move junk

to testfile. Process A continues to read testfile until an error occurs. If caching is used,

data in Client A's cache is still readable. When the data in the cache is exhausted, the

read error occurs. Process A does not retain access to testfile after Process B unlinks

testfile regardless of whether Process A is the file's owner or whether Process A and

Process B are on the same or different clients.

Table 4.7: Summary of the failure of the last-close semantic using mv with NFS

Location of junk in Does Process A Processes A&B Last-close semantic
relation to Client A own testfile ? run on guaranteed?

same remote filesystem

as testfile
Yes same client No

same remote filesystem

as testfile
Yes different client

^
No

same remote filesystem

as testfile
No different client No

same remote filesystem

as testfile
No same client No

• The file junk is local (see fig. 4.2 replacing the command "chmod 0 mnt/testfile" with

the command "mv junk mnt/testfile").
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Process A and Process B are both on Client A. Process A opens testfile, reads 2000

bytes, and pauses. Process B uses mv to move the local file junk to the remote file

testfile. Process A successfully continues to read testfile regardless of whether Process

A is the owner of testfile.

• The file junk is remote but is on a different remote file system than testfile (see fig. 4.2

replacing the command "chmod 0 mnt/testfile" with the command "mv mnt2/junk

mnt /testfile").

Process A and Process B are both on Ghent A. Ghent A has the file system containing

junk mounted under the directory mnt2. Process A opens testfile, reads 2000 bytes,

and pauses. Process B uses mv to move the remote file junk to the remote file testfile.

Process A successfully continues to read testfile regardless of whether Process A is the

owner of testfile.

Table 4.8: Summary of last-close semantic behavior using mv with NFS

Location of junk in Does Process A Processes A&B Last-close semantic
relation to Client A own testfile ? run on guaranteed?

local Yes same client Yes

local No same client Yes

different remote file-

system than testfile
Yes same client Yes

different remote file-

system than testfile
No same client Yes

Table 4.7 summarizes the results of using mv to move junk, which in this case is on

the same remote file system as testfile, to testfile, thus removing testfile. The last- close

semantic is not guaranteed for all cases where junk is on the same remote file system as

testfile regardless of whether Process A is the owner, or whether Process A and Process B

are on the same or on a different client.

Using NFS with the files junk and testfile on the same remote file system, mv behaves

similarly to mv on a local system. The file testfile is unhnked, a link is made from junk to

testfile, and then junk is unhnked. On a local system, the last-close semantic is guaranteed

and testfile is not removed until the link count is zero and no processes have the file open.

Using NFS, the server has no way of knowing that the client has testfile open so the original

testfile is removed immediately, thus causing the failure of the last-close semantic as summa-

rized in table 4.7. It is possible for a chent NFS implementation to maintain the last-close
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semantic when Process A and Process B are on the same cUent. The technique used would

be the same used in the case of rm, i.e., an .nfsxxx file could be created when testfile is

effectively unUnked by the mv.

Table 4.8 summarizes the results of using mv to move junk, which is either local to Ghent

A or on a different remote file system than testfile, to testfile when Process A and Process

B are on the same client. Using NFS, when the source and destination files for a mv are on

different file systems, mv behaves differently than if the source and destination files were both

local. Because junk is being moved across different remote file systems, testfile is unlinked,

junk is copied to testfile, and then junk is unlinked from the file system on which it was

previously located. Note that junk is copied to testfile instead of a link being made from

junk to testfile.

For the cases summarized by table 4.8, the NFS implementation on Ghent A takes steps

to give the appearance that testfile is not removed immediately when Process B causes testfile

to be unlinked. Ghent A knows that Process A has testfile open. Ghent A copies testfile

on the server to a file called .nfsxxx before removing testfile. The file name suffix xxx is a

number. Process A uses the .nfsxxx file as though it were testfile. The .nfsxxx files may be

seen by doing an "Is -a" on the directory where testfile is located. When Process A closes

testfile (now .nfsxxx), Ghent A removes the .nfsxxx file as long as no other process has it

open.

Table 4.8 shows that the last-close semantic is guaranteed for cases where Process A
and Process B are on the same client, and junk is either local or on a different remote file

system than testfile. For those cases where Process A and Process B are on different clients,

the last-close semantic is not guaranteed (see comments on table 4.7). The results are not

included in table 4.8 in the interest of minimizing the complexity of the table.

In section 4.5.1, the demonstrations using NFS illustrated that when file attributes of

open files are changed, the last-close semantic is maintained only in those cases where the

process accessing the file was the owner of the file. The conclusion from table 4.6 of this

section is that, using NFS, when an open file is deleted the last-close semantic is only

maintained in those cases where the two processes are on the same chent. Tables 4.7 and 4.8

show that, using NFS, when an open file is deleted as a result of a rename, the last-close

semantic is only maintained in those cases where the source file is on a different file system

from the destination file and the two process are on the same client. For both rm and mv
using NFS, the last-close semantic fails in all cases where the two processes are on different

chents.

4.5.3 Changing Process Identity

Demonstrations were developed using NFS to illustrate the behavior of the last- close semantic

when a process's identity is changed. Programs, which are modifications of readjile, were

written to determine the behavior of the last-close semantic when a process, Process A,

changes its process identity either by using exec to execute a file with its set-user-ID bit or set-

group-ID bit set, or by using setuidQ or setgidQ. Process A is either the program readjn-exec
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Process A
read_n_exec

clientA% readjn.exec mnt/testjUe setjiLser.ID

(read 2000 bytes from testfile)

(exec the file set.userJD)

(read testfile until end of file)

read 38400 bytes

clientA%

Figure 4.7: Demonstration of last-close semantic behavior using exec to execute a file with

set-user-ID bit or set-group-ID bit set.

or readjn.changelD. These programs and the program set^user^ID which is executed by

readjn^exec are listed in Appendix B. The program set_group_ID is not include in Appendix B
because it is identical to set.user.ID with the exception that set.user^ID has its set-user-ID

bit set and set.growpJD has its set-group-ID bit set. The program read-U-exec accepts an

argument for the name of a file to read and an argument for the name of the file to execute.

The program readjri-changelD accepts three arguments: the name of a file to read, the type

of ID to change, and a number which, depending on the previous argument, is either the

user ID or group ID the process is to become. For all the demonstrations, Process A, which

is located on Client A, reads the remote file testfile, which is 38400 bytes and is located on

a remote file system mounted on the directory mnt.

Table 4.9 summarizes Process A's ability to maintain access to testfile after Process A
changes its process identity according to the procedures described below:

• exec a file with its set-user-ID bit set (see fig. 4.7).

Process A is the program rea(f_7i_exec with parameters mnt/testfile and set-user-ID. The

user ID of Process A is 100. The file testfile only permits owner access and is owned

by Process A (i.e., the owner ID of testfile is 100). Process A opens testfile, reads 2000

bytes, and uses exec to execute the file set.userJD. The program set.user^ID, which

has an owner ID of 199 and has its set-user-ID bit on, successfully continues to read

testfile. Process A does not lose access to testfile even though its effective user ID

changes to 199, a user ID that would not normally be able to open testfile. Using NFS,

the last-close semantic is guaranteed for cases where a process executes a file with its

set-user-ID bit set.

• exec a file with its set-group-ID bit on (see fig. 4.7 replacing the parameter set.userJD

with the parameter set_groupJD).

Process A is the program readjri-exec with parameters mnt/testfile and set-groupJD.

The file testfile is not owned by Process A and does not permit owner or other access.
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Process A
readjn^changelD

clientA% readjn.changelD mnt/testfile user 199

(read 2000 bytes from testfile)

(call setuid())

(read testfile until end of file)

read 38400 bytes

clientA%

Figure 4.8: Demonstration of last-close semantic behavior using setuidQ to change process

identity.

but has a group ID of 200 and permits group access. Note that in the case where

Process A is the owner of testfile but the file access permissions do not allow owner

access, Process A would not be able to open testfile even if Process A had group

or other access. Process A, which has a group ID of 200, opens testfile, reads 2000

bytes, and then uses exec to execute the file set.group-ID. The program set-groupJ^D,

which has its set-group-ID bit on and a group ID of 199, successfully continues to read

testfile. Process A does not lose access to testfile even though its effective group ID is

changed to 199, a group that would not normally be able to access testfile. Using NFS,

the last-close semantic is guaranteed for cases where a process executes a file with its

set-group-ID bit set.

• setuidf) (see fig. 4.8).

Process A is the program readjri-changelD with parameters mnt/testfile, user, and 199.

The file testfile has an owner ID of 100 and only permits owner access. The program

readjTi-changelD must be owned by the superuser and have its set-user-ID bit on in

order for Process A to be able to use setuidQ. The file system containing testfile must

be mounted with root access so that Process A, whose effective user ID is the super-

user, can initially open testfile. Process A opens testfile, reads 2000 bytes, determines

which ID to change, and then uses setuidQ to change the real and effective user IDs

of testfile to 199. Process A continues to read testfile even though its effective user ID

is changed to 199, a user ID that would not normally be able to access testfile. Using

NFS, the last-close semantic is guaranteed for cases where a process uses setuidQ to

change its real and effective user IDs.

• setgidQ (see fig. 4.8 replacing the parameter user with the parameter group).

Process A is the program readjri-changelD with parameters mnt/testfile, group, and

199. The file testfile has a group ID of 200 and only permits group access. The program

readjTi-changelD must be owned by the superuser and have its set-user-ID bit on in
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order for Process A to be able to use setgid(). The file system containing testfile must

be mounted with root access so that Process A can initially open testfile. Process A
opens testfile, reads 2000 bytes, and then uses setgid() to change the real and effective

group IDs of testfile to 199. In addition to the change of the group ID of testfile, the

effective user ID is set to the real user ID so that the effective user ID of Process A is

no longer that of the super-user. Process A continues to read testfile even though its

effective group ID is changed to a group ID that would not normally be able to access

testfile. Using NFS, the last-close semantic is guaranteed for cases where a process uses

setgidQ to change its real and effective group IDs.

Table 4.9 shows that using NFS, the last-close semantic is guaranteed when a process

changes its process identity by using exec to execute a file with its set-user-ID bit or set-

group-ID bit set, or by using setuid() or setgid(). Because NFS is stateless, the NFS server

on which testfile resides does not know whether Ghent A has testfile open. Therefore, the

server must do permission checking each time Client A issues a read request to read from

testfile. Client A adds authentication information including the effective user ID and group

ID of Process A to each read request sent to the server. When the server receives each

request to read testfile, the server checks Process A's effective user ID and group ID against

testfile's user ID, group ID, and file access permissions to determine if access to testfile will

be granted.

Table 4.9: Summary of last-close semantic behavior when changing process identity

Change Process Last-close semantic

Identity guaranteed?

exec file with set UID Yes

exec file with set GID Yes

setuidO Yes

setgidO Yes

Client A gets the effective user ID and group ID to include in the read request from

its file descriptor table. The effective user ID and group ID contained in the file descriptor

table are the effective user ID and group ID of the process when testfile is opened. The file

descriptor table does not reflect changes in the process's identity. The program showJDs is

a modification of readjn-changelD which does not display data that is read from testfile, but
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displays the effective user ID and group ID stored in the process table and stored in the file

descriptor table entry for testfile. Source code for show.IDs is located in Appendix B.

Figure 4.9 shows the output from showJDs given the parameters mnt/testfile, user, and

199. The program showdDs has its set-user-ID bit set and is owned by the super-user.

Figure 4.9 also shows that for this demonstration testfile is 38400 bytes, only permits owner

access, has an owner ID of 100, and a group ID of 200. When show.IDs changes it process

identity by setting its user ID to 199, figure 4.9 shows that the change in process identity

is not reflected in the file descriptor table entry for testfile. However, the change in process

identity is reflected in the process table. If Client A got the effective user ID and group ID

to include in the read request from the process table instead of the file descriptor table, the

last-close semantic would not be maintained.
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Process A
showJDs

clientA% Is -Ig mnt/testfile

-rw 1 100 200 38400 mnt/testfile

clientA% show^IDs mnt/testfile user 199

Before setuid() or setgid():

Information from the process table:

The effective uid is 0:

The effective gid is 200:

Information from the file descriptor table:

The effective uid of the user who opened mnt/testfile is 0:

The effective gid of the user who opened mnt/testfile is 200:

Changed the real and effective user IDs to 199

After setuid() or setgid():

Information from the process table:

The effective uid is 199:

The effective gid is 200:

Information from the file descriptor table:

The effective uid of the user who opened mnt/testfile is 0:

The effective gid of the user who opened mnt/testfile is 200:

read 38400 bytes

clientA%

Figure 4.9: Demonstration which shows the effective UIDs and GIDs of the program

showdDs.
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Chapter 5

Miscellaneous Issues

Miscellaneous issues are those which do not clearly fit in one of the other categories. Mis-

cellaneous issues include problems associated with supplementary groups (sec. 5.2), the

set-user/group-ID capability (sec. 5.4), and devices in a Network Environment (sec. 5.5).

Miscellaneous issues also include those problem areas which have implications for all other

categories. These include new error conditions (sec. 5.1) and file location (sec. 5.3).

5.1 New Errors

In accessing files across a network, file access error conditions are more common. For example,

the EIO error conditions would occur much more frequently for remote files than for local

files. Consequently, an application which does not check for EIO or simply fails completely

when an EIO occurs, may have to be modified so that it can continue.

The EIO error condition indicates an unrecoverable situation. Access to a file or device

is lost forever. In traditional Unix and IEEE 1003.1-1990, the EAGAIN error condition

indicates that access to a file or device may be only temporarily lost. The application may
regain access by trying again using the same file descriptor.

In NFS, ESTALE is also used to indicate a recoverable access error condition. ESTALE
in an NFS implementation means that an identification code, the NFS "file handle," has

lost its validity. Consequently, the validity of any file descriptors associated with an invahd

file handle have been lost. One way that this may occur is a server crash. When the server

recovers, file handles which an application may have been using may no longer be valid. New
file handles may be obtained by closing and opening the file.

In addition to requiring an error condition for indicating another kind of recoverable

file access error, transparent file access also needs an error condition to indicate that a

particular type of file access may not be supported. For example, a client whose local file

system supports directories, i.e., a hierarchical file system, may be accessing a file system on

a server which does not support directories, i.e., the server only supports a "flat" file system.

A collection of files from such a server may be mounted in a directory on the client but the

client cannot create a directory in the remote file system. In this case, an application should
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expect an error condition, such as EOPNOTSUPP, indicating "operation not supported"

when attempting to create a directory.

5.2 Number of Supplementary Groups

In the IEEE 1003.1-1990 Standard, associated with a process are its effective user ID, effective

group ID, and a set of supplementary group IDs. Associated with a file is a group ID which

indicates the group ownership of the file. The file access mechanism of the IEEE 1003.1-

1990 Standard includes checking the effective group ID of the process, as well as, each of

the supplementary group IDs of the process, against the group ownership of the file to

see if the process has access to a file based on group permissions. If a process is not the

owner of a file, then access to a file is granted to the process if its effective group ID or

any of its supplementary group IDs match the group ownership of the file, and if the file

group access permissions are set for the operation that the process wishes to perform. The

sysconfO variable NGROUPS_MAX indicates to an application the maximum number of

supplementary groups permitted by the implementation.

In a network environment, the value of NGROUPS_MAX on a client may differ from

the value of NGROUPS_MAX on a server. In particular, NGROUPS_MAX for the client

may be greater than NGROUPS_MAX for the server. The implementation should deal with

this situation in such a manner that a process on the client is not denied access to a file

that it should be able to access based on one of its supplementary groups. For example,

an implementation could check access rights based on supplementary group membership

by accessing the server several times giving the server each time the number of groups

that the server can accept. If the cUent knows that the process is a member of the group

which owns the file, then by always including that group in the list given the server, correct

access verification is assured. In addition, an application should be able to obtain from the

implementation the maximum number of supplementary groups permitted by a file.

5.3 File Location

In Unix, an application accesses a file by referencing a pathname in a single directory tree

which contains all of the names of the files in the file system. In an environment where an

application has access to several different file systems, which may be attached at any position

of the directory tree, it should be able to ascertain whether a file is physically located on

the local system or on a remote server. From an implementation point of view, the physical

location of a file is usually the system on whose disk the inode for the file resides.

5.4 Set-User/Group-ID Capability

Each executable file in a Unix file system is associated with a set-user-ID bit and a set-

group-ID bit. If the set-user-ID bit and/or the set-group-ID bit is set, then the effective user
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ID and/or group ID of the process is set to the owner ID and/or group ID of the executable

file upon execution.

In a network environment, if an executable file is part of a file system which supports

execute/search permissions (see sec. 4.2.2), the administrator of a client may have disabled

the set-user/group-ID capability as a security precaution. An appHcation should be able to

determine for a particular executable file whether the file's set-user/group-ID capabiHty is

functional.

5.5 Devices in a Network Environment

In a Unix file system, the input/output devices, such as, terminals, printers, tape, and disk

drives, are referenced as files in the directory tree which contains the names of all the files

in the file system. All devices are usually located in the /dtv directory. For example, a

terminal device can be accessed by referencing a name usually of the form ttyn where n is

some number. If an application wishes to read or write to a terminal device, it uses the name
/dev/ttyn as the pathname argument to Unix I/O functions.

Some file systems may not be able to support devices as part of a the file system's directory

tree. For those file systems that can support devices, the use of a terminal device as a

controlling terminal may not be supported. In a network environment, where an application

may have access to several different file systems, the application should be able to obtain

the following information associated with devices:

• Whether the file system supports devices.

• If devices are supported, whether the physical location of the device, i.e., the system

to which the device is physically attached, is the local system or a server.

• If devices are supported, whether a particular terminal device can become a controlling

terminal.

• If devices are supported, whether the location of the device file, i.e., where the inode

resides, is on the local system or a server.
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Chapter 6

Conclusion

This report has presented many issues and problems which arise when the IEEE 1003.1-

1990 Standard is applied to environments other than the one for which it was developed,

i.e., the single system accessing a local file system. The issues and problems discussed are

those whose resolution formed the basis of the IEEE 1003.8 Transparent File Access (TFA)

Standard which is under development. This specification provides:

• A standard way of characterizing and profiling file systems.

• Access to the widest possible kinds of file systems which can resemble the file system

of IEEE 1003.1-1990.

• The means for an application program to simultaneously manipulate files whose access

characteristics differ.

With examples and demonstrations using NFS, the most widely used and implemented

remote file system, this report has illustrated some of the features and capabilities of Unix

file systems, in particular, the file system specified in IEEE 1003.1-1990. Many of these

features, e.g., the last-close semantic and non-interleaved writes, are not required for most

applications. Most applications, e.g., word processors, consist of a single process simply

reading and writing files without shared access with any other process. On the other hand, a

database application usually consists of several processes on several systems simultaneously

accessing the same database files. For such an application, the file system which it accesses

must be robust enough to support the shared simultaneous access by many processes to

many files.

The IEEE 1003.8 TFA Standard under development is a specification which is suitable

for use by all applications. For the simple application, such as a word processor, the IEEE

1003.8 TFA Standard provides an access specification for rudimentary file systems, while, at

the same time, provides an access specification for a robust file system capable of supporting

complex applications, such as a database management system.
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Appendix B

Source Programs for Demonstrations

/* Use F_GETLK with fcntlO to get the process ID of the process */

/* holding the lock for the file which is passed as aji argument */

#include <stdio.h>

#include <fcntl.h>

#define ERROR (s) {fprintf (stderr ,
'"/.d-" ,ermo) ; perror(s); exit(l);}

struct flock flstruc;

extern int errno;

main (argc , argv)

int argc;

char *argv[] ;

int fd;

/ Open the file for reading and writing */

if ((fd = open(argv[l] , O.RDWR)) < 0)

ERRORC'open");

/* Set fields of the lock description argument */

flstruc. l.type = F_RDLCK;

fistrue. l_whence = 0;

/*

/*

getlock.c */

*/
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fIstruc. l_start = 0;

fIstruc. l_len = 0;

/* Use F_GETLK to get process ID of the process holding the lock */

if(fcntl(fd, F.GETLK, &fIstruc) < 0)

ERRORC'getlk") ;

printf ("l_pid is '/.dXn" , fistrue. l_pid)
;
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/* read_file.c /
/* */

/* Read_file opens a file which is passed as a parameter, */

/* reads 2000 bytes a bytes at a time, pauses until a /
/* newline is received, and then continues to read data */

/* until end of file or a read error occurs. */

I ^li•i!iifii(.if^^i^^^i1(i^^(i1f^fi^^^^^ifi^^^^^ifi^^1^i^.^^1^^fi^^^^fi^^^^^^

#include <stdio.h>

#define ERROR (s) {fprintf (stderr,"y,d-",errno)
;
perror(s)

;
exit(l);}

#define LC.NOTE {fprintf (stderr , \

"\nNOTE: - last-close demo may not behave as described\n") ;

}

extern int errno;

main (argc , argv)

int argc;

char *argv[] ;

{

int fd, retval, utflag, count=0;

char c;

/* update the access eind modification times of the file to be

/* read to invalidate the cache for the file */

if ((utflag = utimes(argv[l] ,0) ) < 0) perror ("utimes")

fd = open(argv[l] , 0) ;

if (fd < 0)

ERRORC'open");

/* Read file one byte at a time */

while (retval=read(fd, &c, 1)) {

if (retval < 0) {

fprintf (stderr , "read '/,d bytes\n", count);

ERROR ("read");

}

putchar (c)

;

count++;

if (count == 2000) {

if (utflag < 0) LC.NOTE;
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retval = getchaxO
;

}

fprintf (stdout , "read V.d bytesXn", count);
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/* read_msg.c */

/* /
/* Read a message from another process via fileX. */

/* Assiime that fileX already exists amd has mode 666. */

#include <stdio.h>

#include <errno.h>

#include <fcntl.h>

#include <sys/types .h>

#include <sys/stat.h>

#def ine ERROR(s) {fprintf (stderr, '"/.d-" ,ermo)
;
perror(s); exit(l);}

extern int errno;

struct Stat buf

;

main ()

{

int fd_msg, retval, i=0;

char c, buffer [100]

;

/* Exit if stat error, or wait until fileX is not length 0 */

while (1) {

if ((stat ("fileX", &buf)) == -1)

ERROR("Stat" );

if (buf .st.size != 0)

breaJt;

}

/* Try to open fileX for reading */

while((fd_msg = open ("fileX", O.RDWR)) == -1);

/* Read the message from fileX */

while (read(fd_msg,&buffer[i++] ,1) > 0)

;

buffer [i] = '\0'

;

/* Write message to stdout */

write ( 1, buffer,strlen(buffer))

;

close(fd_msg)

;

/* Truncate the file to indicate to the writing process that the
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message was read */

if ((fd_msg = open ("fileX", O.RDWR | O.TRUNC)

)

ERRORC'open");

close (fd_msg)

;

66



/* read_n_chaiigeID */

/* */

/* read_ii_changeID opens a file (passed as the first argument) */

/* and reads 2000 bytes. If the second argument is "user", /
/* the real and effective user IDs axe changed to the value */

/* of the third eirgument. If the second argument is "group", */

/* the real and effective group IDs are changed to the value */

/* of the third axgument. The rest of the file is read until */

/* end of file or a read error occurs. */

#include <stdio.h>

#include <sys/types .h>

#define ERROR(s) {fprintf (stderr , "'/.x-" ,ermo) ;
perror(s); exit(l);}

#define USAGE {fprintf (stderr , "usage: */,s <filename> [groupluser] <ID>\n",\

argv[0]); exit (1);}

extern int errno;

main (argc , argv)

int argc;

char *argv[]
;

{

int fd, retval, count=0;

char c;

if (argc != 4)

USAGE;

if ((strcmp("user" ,
argv[2])) && (strcmp ("group" , argv[2])))

USAGE;

/* Open the file for reading */

if ((fd = open(argv[l] , 0)) < 0)

ERROR ("open");

/* read the file a byte at a time */

while (retval=read(fd, &c, 1)) {

if (retval < 0) { /* access was denied */

fprintf (stdout , "read '/,d bytes\n", count);
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ERROR ("read")

;

}

putchar (c)

;

couiit++;

if (count == 2000) {

if (!strciap("user", argv[2])) { /* set the user ID */

if ((retval = setuid(atoi(argv[3] ))) < 0)

ERROR("setuid");

>

else if (! strcmp ("group" ,
argv[2])) { /* set group ID

if ((retval = setgid(atoi(argv[3] ))) < 0)

ERROR("setgid")

;

/ set effective uid = real uid so the effective

uid is no longer that of the super-user */

if ((retval = seteuid(getuid() ) ) < 0)

ERROR (" seteuid")

;

}

>

}

fprintf (stdout,"read '/.d bytes\n", count);
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/ read_n_exec /
/* /
/* Open a file (passed as the first argument) and read /
/* 2000 bytes. Execute a file (passed as the second */

/* argument) . */

#include <stdio.h>

#include <sys/types .h>

#define ERROR (s) {fprintf (stderr,"'/,x-",ermo)
;
perror(s); exit(l);}

extern int errno;

main ( argc , argv)

int argc;

char *argv[]
;

{

int fd, retval, count=0;

char c;

if (argc! =3) {

fprintf (stderr, "usage: */,s <filenaine> <f ilename>\n" ,argv [0] )

;

exit (1) ;

}

/* Open file for reading */

if ((fd = open(argv[l] , 0)) < 0)

ERRORC'open");

/* Read 2000 bytes, a byte at a time */

while (retval = read(fd, &c, 1)) {

if (retval < 0) { /* access was denied */

fprintf (stderr , "read '/.d bytes\n", count);

ERROR ("read");

}

count++

;

put char (c)

;

if (count == 2000)

break;
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}

/* Execute the file passed as the second argument */

execl (argv[2], argv[2] , NULL);

printf ("y,x-", errno)

;

fflush(stdout)

;

perror ("execl")

;

exit (1)

;
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/* setlock.c /
/* */

/* Set an exclusive lock on the entire file which */

/* is passed as an argument, wait for a character /
/* of input, and then iinlock the file. /

#include <stdio,h>

#include <fcntl.h>

#define ERROR (s) {fprintf (stderr,"'/,d-",ermo)
;
perror(s); exit(l);}

struct flock flstruc;

extern int errno;

main (argc , argv)

int argc;

char *argv[] ;

{

int fd, retval;

/* Open file for reading and writing */

fd = open(argv[l] , O.RDWR)

;

if (fd < 0)

ERRORC'open");

/ Set fields of the lock description argument */

flstruc. l_type = F.WRLCK;

flstruc. l_whence = 0;

flstruc. l_st art = 0;

flstruc. l_len = 0;

/* Set an exclusive lock on the file */

if(fcntl(fd, F.SETLK, ftflstruc) < 0)

ERROR ("wrick")

;

printf("y.s locked\n",argv[l]);

/* Wait for a character of input /
retval = getcharO

;

/* Unlock the file */
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flstnic.l.type = F.UNLCK;

if (fcntlCfd, F.SETLK, ftflstruc) <

ERROR ("unlck")

;

printf ('"/.s unlockedXn" ,argv[l] ) ;

I
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/* set_user_ID */

/* /
/* This program, which is executed by the program */

/* read_n_exec, has its set-user-ID bit on and continues */

/* to read the file specified by file descriptor 3. /

#include <stdio.h>

#include <sys/types .h>

#define ERROR (s) {fprintf (stderr,'*5ix-",ermo) ; perror(s)
;
exit(l);}

extern int errno;

main (argc.argv)

int argc;

char *argv [] ;

{

int retval, count=2000;

char c;

/* Continue to read the file a byte at a time */

while (retval = read (3, &c, 1)) {

if (retval < 0) { /* access was denied */

fprintf (stdout , "read y,d bytes\n", count);

ERRORC'read");

}

put char (c)

;

count++;

}

fprintf (stdout , "read '/,d bytes\n", count);
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/* show_IDs */

/* */

/* This program, which is a modification of read_n_changeID, */

/* displays the effective user ID and group ID stored in the */

/* process table and stored in the file descriptor table entry. */

#include <sys/types .h>

#include <sys/stat.h>

#include <stdio.h>

#include <sys/types .h>

#include <kvm.h>

#include <fcntl.h>

#include <sys/paxam.h>

#include <sys/time.h>

#include <sys/proc.h>

#define KERNEL /* kludge needed to include the file structure */

#include <sys/file,h>

#define ERROR (s) {fprintf (stderr ,
'"/.x-" ,ermo)

;
perror(s); exit(l);}

#define USAGE {fprintf (stderr , "usage: '/,s <filename> [groupluser] <ID>\n",\

argv[0]); exit (1);}

extern int errno;

main (argc.argv)

int argc;

char *argv [] ;

{

int fd, retval, count=0;

char c;

struct Stat buf;

if (argc != 4)

USAGE;

if ((strcmpC'user", argv[2])) ftft (strcmp ("group" , argv[2])))

USAGE;
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/* Open the file for reading */

if ((fd = open(argv[l] , 0)) < 0)

ERRORC'open");

kernel_info( "Before setuid()/setgid() " , argv[l]);

/* read the file a byte at a time */

while (retval=read(fd, &c, 1)) {

if (retval < 0) { /* access was denied */

fprintf (stdout ."read V.d bytes\n", count);

ERROR("read")

;

}

count++;

if (count == 2000) {

if ( ! strcmp("user" , argv[2])) { /* set the user ID */

if ((retval = setuid(atoi(argy [3] ))) < 0)

ERROR ("setuid");

printf ("\nChanged the real & effective user IDs to y,s\n", argv[3]);

}

else if (! strcmp ("group" , 2Lrgv[2])) { /* set group ID */

if ((retval = setgid(atoi(argv[3] ))) < 0)

ERROR("setgid");

printf ("Changed the real and effective user GIDs to '/,s\n" , 2Lrgv[3]);

/* set effective uid - real uid So the effective

uid is no longer that of the super-user */

if ((retval = seteuid(getuid() ) ) < 0)

ERROR("seteuid")

;

printf ("Set the effective uid=real uid so the effective\n")

;

printf ("uid is no longer that of the super-user\n")

;

}

}

}

kernel_info ("After setuid()/setguid() " , argv[l]);

fprintf (stdout ,"\nread */,d bytes\n", count);

}

kernel_info(msg, filename)

/* Display information retrieved from the process table */

/ and the file descriptor table. */
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char *msg, *filenaine;

{

kvm_t *kd;

struct proc *procstruct;

struct user *userstruct;

struct ucred u_cred, u_cred_addr;

struct file file_addr;

int fd, retval;

printf ("\ny.s:\n", msg)

;

/* Get a pointer to a kernel identifier so that the kernel can

be examined */

kd = kvm.open (NULL, NULL, NULL, 0„RDONLY, "kemel_info")

;

/* Get the u-area for this process */

procstruct = kvin_getproc(kd,getpid()) ;

if ((userstruct = kvm_getu(kd, procstruct)) == NULL)

ERROR ("kvm_getu")

;

/* Copy data from the kernel image for process credentials */

if ( (retval=kvm_read(kd, procstruct->p_cred, &u_cred,

sizeof (struct ucred))) == -1)

ERROR("kvm.read")

;

printf ("\n Information from the process table:\n");

printf (" The effective uid is '/,d\n" , u_cred . cr_uid)
;

printf (" The effective gid is */,d\n" , u_cred,cr_gid)
;

/*

printf (" The real uid is '/Cd\n" , u_cred.cr_ruid)

;

printf (" The real gid is '/,d\n" , u_cred.cr_rgid) ;

/

/* Copy data from the kernel image for file structures for open files */

retval = kvm_read(kd, userstruct->u_of ile_arr [3] ,
&file_addr,

sizeof (struct file));

if (retval == -1)

ERROR("kvm.read")

;

/ Copy data from the kernel image for the credentials of the user who

opened the file /
retval = kvm_read(kd, f ile_addr .f_cred, &u_cred_addr,

sizeof (struct ucred));
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if (retval == -1)

ERROR("kvm.read")

;

printf ("\n Information from the file descriptor table :\n");

printf (" The effective uid of the user who opened */,s is y,d\n"
,

filename, u_cred_addr .cr_uid)

;

printf (" The effective gid of the user who opened */,s is '/.dXn",

filename, u_cred_addr . cr_gid)

;

/*

printf (" The real uid of the user who opened '/,s is '/,d\n",

filename, u_cred_addr . cr_ruid)

;

printf (" The real gid of the user who opened */,s is '/,d\",

filename, u_cred_addr .cr_rgid)

;

*/

kvm_close(kd)

;

}
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/* write_msg.c /
/* */

/* Pass a message to emother process through the file fileX. */

/* Assume that fileX exists and has mode 666. */

#include <stdio.h>

#include <fcntl.h>

#include <errno.h>

#include <sys/types .h>

#include <sys/stat.h>

#define ERROR (s) {fprintf (stderr ,
'"/.d-" ,ermo)

; perror(s); exit(l);}

extern int errno;

struct stat buf;

main ()

{

int fd_msg;

char ch;

/* Exit if stat error, or wait until file size is 0 */

while (1) {

if ((stat ("fileX", &buf)) == -1)

ERRORC'stat");

if (buf .st_size == 0)

breaJc;-

}

/* Open fileX and then chmod 0 to prevent the process

read_msg from opening f ileX */

if ((fd.msg = open ("fileX", O.RDWR)) == -1)

ERROR ("open");

chmod ("fileX", 0);

/* Read the message from stdin and write the message to fileX */

while ((ch = getc (stdin)) != EOF)

if (write (fd_msg, &ch, 1) < 0)

ERROR("write")

;
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/* Restore the permission bits so that the process read_msg

can open fileX */

chmod ("fileX", 0666);

close (fd_msg)

;
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*************************************************

/* WriteStdlO.c */

/* */

/* Open terminal for reading raw input. Open the file passed as an /
/* argument for writing output using stdio. Read aind write data, a */

/ byte at a time, until a ~D is recieved. Print the number of */

/* bytes that were read and written. */

/**********************************************************************/

#include <stdio.h>

#include <fcntl.h> -

#define ERROR (s) {system("stty -raw") ; fprintf (stderr ,
'"/.d-" ,ermo) ; \

perror(s)
;
exit(l);}

extern int errno;

main (argc , argv)

int argc;

char *argv[] ;

{

int fd, retval, count = 0;

FILE *ostreain;

char c;

/* Open terminal for reading raw input */

systemC'stty raw")
;

if ((fd = open("/dev/tty", O.RDONLY)) < 0)

ERROR("open input");

ostream = fopen(axgv[l] , "w")

;

if (ostream == NULL)

ERROR("fopen output");

ostream->_bufsiz - 10;

while (retval=read(fd, &c, 1)) { /* Read & write data until "D +/

if (retval < 0){

fprintf (stdout , "read '/.d bytes\n", count);

ERROR("read");

}

if(c == 4) /* ~D */ break;

count++;

retval = putc(c, ostream);
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ifCretval == EOF){

fprintf (stdout , "read */,d bytes\n" , count) ;

ERRORC'write")
;

}

}

systemC'stty -raw");

fprintf (stdout , "read/wrote '/,d bytes\n"
, count);
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******************** ******

/ WriteUnixIO.c */

/* */

/* Open terminal for reading raw input. Open the file passed as an */

/* argument for writing raw output. Read ajid write data, a byte at */

/* a time, until a "D is recieved. Print the number of bytes that */

/* were read and written. */

^**********************************************************************

^

#include <stdio.h>

#include <fcntl.h>

extern int errno;

#define ERROR (s) {system("stty -raw") ; fprintf(stderr, '"/.d-" , errno) ; \

perror(s)
;
exit(l);}

main (argc , argv)

int argc;

char *argv [] ;

{

int fd, fdo, retval, count=0;

char c;

systemC'stty raw")
;

fd = open("/dev/tty", 0_RDONLY)

;

if (fd < 0)

ERROR("open input");

fdo = open(argv[l] , O.CREAT I G.TRUNC I O.WRONLY
, 00666);

if(fdo < 0)

ERROR("open output");

while( retval=read(fd, &c, 1) ) { /* Read & write data until ""D

if (retval < 0) {

fprintf (stdout , "read */,d bytes\n", count);

ERROR ("read");

}

if (c == 4) /* ~D */ break;

count++;

retval=write ( fdo, &c, 1);

if (retval < 0) {

fprintf (stdout , "read '/id bytes\n" , count) ;
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ERROR( "write")

;

}

>

system("stty -raw");

fprintf (stderr/'read/wrote Xd bytes\n", count);
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Journal of Research of the National Institute of Standards and Technology—Reports NIST research

and development in those disciplines of the physical and engineering sciences in which the Institute

is active. These include physics, chemistry, engineering, mathematics, and computer sciences.

Papers cover a broad range of subjects, with major emphasis on measurement methodology and
the basic technology underlying standardization. Also included from time to time are survey articles

on topics closely related to the Institute's technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the

Institute's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) de-

veloped in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NIST, NIST annual reports,

and other special publications appropriate to this grouping such as wall charts, pocket cards, and
bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physi-

cists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in

scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical
properties of materials, compiled from the world's literature and critically evaluated. Developed un-

der a worldwide program coordinated by NIST under the authority of the National Standard Data
Act (Public Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data (JPCRD)
is published quarterly for NIST by the American Chemical Society (ACS) and the American Insti-

tute of Physics (AIP). Subscriptions, reprints, and supplements are available from ACS, 1155 Six-

teenth St., NW., Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Institute on building

materials, components, systems, and whole structures. The series presents research results, test

methods, and performance criteria related to the structural and environmental functions and the

durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treat-

ment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final reports of work performed at NIST
under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Com-
merce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally

recognized requirements for products, and provide all concerned interests with a basis for common
understanding of the characteristics of the products. NIST administers this program as a supplement
to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NIST research and experience, cov-
ering areas of interest to the consumer. Easily understandable language and illustrations provide use-

ful background knowledge for shopping in today's technological marketplace.
Order the above NISTpublications from: Superintendent ofDocuments, Government Printing Office,

Washington, DC 20402.
Order the following NISTpublications—FIPS and NISTIRs—from the National Technical Information
Service, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series col-

lectively constitute the Federal Information Processing Standards Register. The Register serves as

the official source of information in the Federal Government regarding standards issued by NIST
pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law
89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11,

1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NIST Interagency Reports (NISTIR)—A special series of interim or final reports on work performed
by NIST for outside sponsors (both government and non-government). In general, initial distribu-

tion is handled by the sponsor; public distribution is by the National Technical Information Service,

Springfield, VA 22161, in paper copy or microfiche form.
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