
NATL INST OF STAND 4 TECH H.I C

A111D3 MTfiDfi2

Computer
Systems
Technology
U.S. DEPARTMENT OF
COMMERCE
National Institute of

Standards and

Technology

Nisr
I

NIST

I
PUBLICATIONS

NIST Special Publication 500-185

Guide to Design,

Implementation and Management

of Distributed Databases

Elizabeth N. Fong

Charles L. Sheppard

Kathryn A. Harvill

100

.U57

500-185

1991

C.2

NIST Special Publication 500-185 ^/c

5oo-n

Guide to Design,

Implementation and Management
of Distributed Databases

Elizabeth N. Fong

Charles L. Sheppard

Kathryn A. Harvill

Computer Systems Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

February 1991

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

Reports on Computer Systems Technology

The National institute of Standards and Technology (NIST) has a unique responsibility for computer

systems technology within the Federal government, NIST's Computer Systems Laboratory (CSL) devel-

ops standards and guidelines, provides technical assistance, and conducts research for computers and
related telecommunications systems to achieve more effective utilization of Federal Information technol-

ogy resources. CSL's responsibilities include development of technical, management, physical, and ad-

ministrative standards and guidelines for the cost-effective security and privacy of sensitive unclassified

information processed in Federal computers. CSL assists agencies in developing security plans and in

improving computer security awareness training. This Special Publication 500 series reports CSL re-

search and guidelines to Federal agencies as well as to organizations in industry, government, and

academia.

National Institute of Standards and Technology Special Publication 500-185
Natl. Inst. Stand. Technol. Spec. Publ. 500-185, 59 pages (Feb. 1991)

CODEN: NSPUE2

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1991

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402

TABLE OF CONTENTS

ABSTRACT v

ACKNOWLEDGMENTS V

1.0 INTRODUCTION 1

1.1 The Promises and Realities of Distributed DBMS . . 1

1.2 Motivation 2

1.3 Purpose and Scope 3

1.4 Organization of the Guide 4

1.5 Disclaimer 6

2.0 DEVELOPMENT PHASES TO THE DISTRIBUTED DATABASE 7

2.1 Planning Phase 7

2.2 Design Phase 8

2.3 Installation and Implementation Phase 8

2 . 4 Support and Maintenance Phase 8

2.5 Detail Development Phase 8

3.0 CORPORATION STRATEGY PLANNING 10
3.1 Summary of Tasks 11

4.0 OVERALL DESIGN OF DISTRIBUTED DATABASE STRATEGY 12
4.1 Types of Distributed Environment 12
4.2 Selecting an Architecture for a Distributed

Environment 15
4.3 Considerations for Standards 17
4.4 Summary of Tasks 18

5.0 DETAILED DESIGN FOR DISTRIBUTED DATABASE ENVIRONMENT . 2 0

5.1 Hardware Design 2 0

5.2 Software Design 2 0

5.3 Communication Network Design 21
5.4 Summary of Tasks 2 2

6.0 INSTALLATION OF DISTRIBUTED DATABASE ENVIRONMENT 25
6.1 Installation of Hardware 25
6.2 Installation of the Network Communication

Software 2 6

6.3 Installation of the DBMS Communication Software . . 27
6.4 Installation of the DDBMS and Other Support

Software 2 7

6.5 Summary of Tasks 28

7.0 DETAILED DESIGN FOR DISTRIBUTED DATABASE APPLICATION . . 29
7.1 Application Database Architectural Alternatives . . 29
7.2 How to Distribute the Databases 29
7.3 The Role of the Data Dictionary/Directory

for DDBMS 31

iii

7.4 Schema and Data Update Control 32
7.5 Data Administration Functions 33
7.6 Summary of Tasks 34

8.0 APPLICATION DEVELOPMENT ; . 36
8.1 Define Schemas 36
8.2 Populate Database 36
8.3 Application Program Construction 36
8.4 Multi-site Requests Processing . . 37
8.5 Testing and Verifying Correctness 37
8.6 Summary of Tasks 37

9.0 SUPPORT FOR THE DISTRIBUTED DATABASE 39
9.1 Tuning for Better Performance 39
9.2 Backup, Recovery and Security Protection 39
9.3 User Training and Resolving Problems 40
9.4 Summary of Tasks 4 0

10.0 CONCLUDING REMARKS 41
10.1 Critical Success Factors 41
10.2 Future Issues 41

11.0 REFERENCES 45

APPENDIX A - DESCRIPTION OF DISTRIBUTED ENVIRONMENT 47

APPENDIX B - DESCRIPTION OF THE DISTRIBUTED APPLICATION ... 49

iv

ABSTRACT

For an organization to operate in a distributed database
environment, there are two related but distinct tasks that must be
accomplished. First, the distributed database environment must be
established. Then, a distributed database application can be
designed and installed within the environment. This guide de-
scribes both of these activities based on a development life-cycle
phase framework. This guide provides practical information and
identifies skills needed for systems designers, application
developers, database and data administrators who are interested in
the effective planning, design, installation, and support for a
distributed database environment. In addition, this guide in-
structs system analysts and application developers with a step-
by-step procedure for the design, implementation and management of
a distributed DBMS application.

This guide also notes that truly heterogeneous distributed
database technology is still a research consideration. Commercial
products are making progress in this direction, but usually with
many update and concurrency restrictions and often with severe
performance penalties.

The scope of this guide is based on experiences gained in the
development of a distributed DBMS environment using two off-the-
shelf homogeneous distributed database management systems. In
support of the successful installation of the distributed database
environment, a demonstration distributed application was designed
and installed.

Keywords: databases; DDBMS; distributed application; dis-
tributed database management systems; distributed environment;
life-cycle phases.

ACKNOWLEDGMENTS

The technical work for this report was done through hands-on
experimentation with two distributed database management systems.
These distributed database management systems were provided to us
by the system vendors as part of cooperative projects with the
Computer Systems Laboratory (CSL) . The cooperative projects were
performed in the NIST/CSL Database Laboratory.

We acknowledge the contributions of Joseph Collica, and Bruce
Rosen of NIST who assisted us with careful review of this paper and
suggested important improvements

.

v

1 . 0 INTRODUCTION

This guide provides practical information and identifies
skills needed for systems designers, application developers, data
and database administrators, who are interested in the effective
planning, design, installation, and support for a distributed
database management system (DDBMS) environment. In addition, this
guide provides system analysts and application developers with a
step-by-step procedure for the design, implementation and manage-
ment of a DDBMS application. A distributed DBMS application is
a software system which runs in the distributed database environ-
ment.

The procedure is based on a development life-cycle phase
framework. At each phase in the life cycle, this guide describes
the nature of the tasks, who should do these tasks, and some
general guidance on accomplishing each task.

1.1 The Promises and Realities of Distributed DBMS

A distributed database environment consists of a collection
of sites or nodes, connected together by a communication network.
Each node has its own hardware, central processor and software
which may, or may not, include a database management system (DBMS)

.

In the ultimate distributed database computing environment,
a user will be able to access data residing anywhere in the com-
puter network, without regard to differences among computers,
operating systems, data manipulation languages, or file structures
[CERI84]. Data that is actually distributed across multiple remote
computers will appear to the user as if it resided on the user's
own computer. This scenario is functionally limited using today's
distributed database technology. True distributed database
technology is still a research consideration. The functional
limitations are generally in the following areas:

o transaction management,

o standard protocols for establishing a remote connection, and

o independence of network topology.

Transaction management capabilities are essential to maintaining
reliable and accurate databases. In some cases, today's dis-
tributed database software places the responsibility of managing
transactions on the application program. In other cases, transac-
tions are committed or rolled-back at each location independently
which means that it is not possible to create a single distributed
transaction. For example, multiple site updates require multiple
transactions

.

1

In today's distributed database technology, different gateway
software has to be used and installed to connect nodes using dif-
ferent DDBMS software. Thus, connectivity among heterogeneous
DDBMS nodes is not readily available (i.e., available only through
selected vendor markets)

.

In some instances, DDBMS software is tied to a single network
operating system. This limits the design alternatives for the
DDBMS environment to the products of a single vendor. It is ad-
visable to select a product that supports more than one network
operating system. This will increase the possibility of success-
fully integrating the DDBMS software into existing computer
environments.

In reality, distributed databases encompass a wide spectrum
of possibilities including:

o Remote terminal access to centralized DBMS (e.g., airline
reservation system)

,

o Remote terminal access to different DBMSs, but one at a time
(e.g., PRODIGY, COMPUSERVE, DOW JONES , etc.),

o Simple pairwise interconnection with data sharing that
requires users to know the data location, the data access
language, and the logon procedure to remote DBMS.

o Distributed database management with a generic data definition
language and a data manipulation language at all nodes.

o Distributed update and transaction management.

o Distributed databases with replication that support vertical
and horizontal fragmentation.

o "True" distributed database management system with heteroge-
neous hardware, software, and communications.

The definition of DDBMS lies anywhere along this spectrum.
For the purpose of this report, the remote terminal access to data
as discussed in the first two bullets above is not considered as
a DDBMS because a node in the DDBMS has to have its own hardware,
central processor and software.

1.2 Motivation

Some of the problems that currently frustrate managers and
technicians who might otherwise be interested in exploring dis-
tributed database solutions include:

2

o A distributed database environment will have all of the
problems associated with the single centralized database
environment, but at a more complex level.

o The lack of basic step-by-step guides covering the analysis,
design, and implementation towards a distributed database
environment.

As discussed in [FONG88], there are many benefits offered by
a distributed database management system (DDBMS) . However, there
are also many architectural choices which make the application
design for distributed databases very complex. For an effective
and productive distributed database environment, it is essential
that the distributed environment be properly designed to support
the expected distributed database applications. Additionally, an
effective design will depend on the limitations of the DDBMS
software. Thus, implementing today's distributed database technol-
ogy requires identifying the functional limitations of a selected
commercial product. Identification of these limitations are
critical to the successful operations of an application in a
distributed database environment.

1.3 Purpose and Scope

For an organization to operate in a distributed database
environment, there are two related but distinct tasks that must be
accomplished. First, the distributed database environment must be
established. Then, a distributed database application can be
designed and installed within the environment. This guide de-
scribes both of these activities.

This guide is based on the NIST Special Publication 500-154
"Guide to Distributed Database Management" [FONG88] that was
produced to assist managers in both evaluating distributed database
management technology for their individual environments, and in
planning for an orderly migration path into a distributed database
environment. The NIST Special Publication 500-154 report also
outlines the distributed DBMS development life cycle phases.

The purpose of this guide is to provide organizational and
technical guidance in the total life cycle development phases of:

(1) the distributed database environment, and

(2) distributed database applications.

- The scope of this guide is the total development life-cycle
from planning and design through implementation and support. The
level of detail for each phase is very concise and is limited to
brief discussions of issues and summaries of tasks.

3

since each of the different life-cycle phases is often
performed by different persons, the guidance at each development
phase is targeted towards a different audience. For example, the
guidance for the corporate strategy planning phase is given at the
high management level, while the guidance for the installation of
the distributed database environment is targeted at technical
engineers. It is the aim of this guide to cover the total broad
range of scope. Those who are not interested in the technical
engineering details may skip the sections on installation and
implementation

.

1.4 Organization of the Guide

This guide is organized according to the life-cycle develop-
ment phases for a distributed database system. The actual cor-
respondence between the sections of this guide with the develop-
ment phases is shown in figure 1.1.

o Section 1 introduces the guide, its motivation, purpose and
scope.

o Section 2 presents a life-cycle framework for the development
of a distributed database environment and a distributed
database application.

o Sections 3 and 4 describe design issues and present a brief
summary of the tasks to be performed for the planning and
high-level design for a distributed environment that will
incorporate the requirements for the distributed database
application

.

o Sections 5 and 6 describe the issues and the tasks involved
during the design and installation phases of the establishment
of a distributed database environment.

o Sections 7 and 8 describe the issues and the tasks involved
during the design and implementation phases of a distributed
database application.

o Section 9 describes the issues and the tasks for the support
and maintenance of the environment and the applications within
the environment.

o Section 10 is the concluding remarks.

Finally, two appendices are included: Appendix A describes
the sample distributed database environment as installed in the
CSL Database Laboratory. Appendix B contains samples of the schema
description for the demonstration distributed database application.
Also contained in Appendix B are several sample distributed
queries

.

4

(Section 3)

corporate

strategy planning

(Section 4)

overall design of

distributed database strategy

(Section 5) (Section 7)

detailed design

for distributed

database environment

(Section 6)

detailed design

for distributed

database application

(Section 8)

installation of

hardware/software
and networks

I
application

development

(Section 9) I
support of distributed

environment and
applications

Figure 1.1. Organization of the Guide
by Development Phase.

5

1.5 Disclaimer

The discussions covering the two development cycles are
presented at a generic level generalized from experiences. Most
of the guidance provided is derived from experiences gained in the
development of distributed DBMS environments using two off-the-
shelf homogeneous distributed database management systems. In
support of the successful installation of the distributed database
environment, a prototype distributed application was designed and
installed. The use of these products in the preparation of this
guide, does not imply any recommendation or endorsement by NIST for
the products or the companies.

6

2.0 DEVELOPMENT PHASES TO THE DISTRIBUTED DATABASE

Good corporation-wide distributed database processing is not
going to happen overnight. It requires a carefully planned
infrastructure within which an orderly evolution can occur. NIST
Special Publication 500-154 [F0NG88] describes the four major
development phases: planning, designing, installing, and support-
ing.

planning

designing

installing

supporting

Figure 2.1 - Major Development Phases

2.1 Planning Phase

Phase 1 of figure 2.1, the planning phase, consists of the
very high level management strategy planning. During the planning
phase an organization must consider whether it is advantageous to
migrate into a distributed environment. This guide assumes that
a migration to a distributed environment is desirable and feasible,
and the corporate strategy planning issues and tasks have been
identified. The result of this phase is the total management's
commitment for cost, resources, and a careful migration path
towards a distributed database environment.

7

2.2 Design Phase

Phase 2 of figure 2.1, the design phase, consists of the
overall design of the distributed database strategy. The overall
design task involves the selection of a distributed DBMS environm-
ent in terms of the hardware, software, and the communication
network for each node and how they are to be interconnected. The
design of the distributed database environment must incorporate the
requirements for the actual distributed database application. The
overall design will divide into two main tasks: the detailed
design of the distributed database environment and the detailed
design of the initial distributed database application. In certain
cases, the initial application may be a prototype that is intended
to pave the way for the full production distributed database
application.

2.3 Installation and Implementation Phase

Phase 3 of figure 2.1, the installation and implementation
phase, consists of the installation and implementation of the
environment which provides basic software support for the dis-
tributed DBMS application. The task of development of the dis-
tributed database application could occur in parallel with the
installation of the environment.

2 . 4 Support and Maintenance Phase

Phase 4 of figure 2.1, the support and maintenance phase,
consists of support for the distributed DBMS environment and the
support and maintenance of the application. Although these
support and maintenance tasks can be performed by the same people,
the nature of the tasks and responsibilities are quite distinct.
For example, the distributed application may require modification
of report formats while the distributed environment may require
modifcation to add more memory.

2.5 Detail Development Phase

Figure 1.1, as previously shown, is a more detailed view of
the development phases required in establishing a distributed
database environment and the development of an application. The
design and installation phases for the distributed environment
and the distributed application can be incorporated through two
parallel tracks.

The remaining sections of this guide describe each develop-
ment phase in detail. Wherever possible, descriptions of design
alternatives and issues are presented. The actual development

8

tasks are summarized in a box. Each box contains the following
items

:

o a summary of tasks for the subject development step;

o the results of the subject development step;

o the team members who are most appropriate for performing the
subject development step;

o and some general guidelines and advice for the subject
development step.

9

3.0 CORPORATION STRATEGY PLANNING

The main task during the strategic planning phase is to obtain
the commitment of top management. The measure of this commitment
is in terms of the amount of resources (both personnel and equip-
ment) necessary for the development of a DDBMS.

The factors that must be considered during the strategy
planning phase are as follows:

o What will be the objectives of the organization's next 5-year
plan?

o How will technological changes affect the organization's way
of doing business?

o What resources are needed to plan for the development of, and
migration to, a distributed database management system?

o What tools or methods can be employed to develop and implement
the plan?

o How will outcomes be measured relative to the impact on the
organization's state?

The corporate strategy plan must include detailed specifica-
tions of the total system life cycle. It must also have a realis-
tic time table of schedules and milestones. Important considera-
tion must be paid to the allocation of cost for new acquisitions,
training of personnel, physical space requirements, and other
tangible items.

During the strategic planning phase, information must be
gathered on the organization's business functions and goals,
related constraints and problem areas, and the organization's user
groups. Only after the needed information has been gathered is it
possible to develop high-level information categories and their
interrelationships

.

The process of developing the distributed database plan is
very iterative. These activities are often performed by data
administrators or information resource managers. While these
individuals often have the vision to recognize the long term
benefit of a DDBMS environment to an organization, they must rely
on the participation and input of those in the organization who are
directly involved with the business functions who use information
to make decisions and manage operations. There must be con-
siderable interaction among many different people in the organiza-
tion, each of whom provides feedback in order to validate and
refine the plans.

10

3.1 Summary of Tasks

Strategic planning must first provide a sufficient justifica-
tion for the expenditure of resources necessary to migrate to a

distributed environment. Only after this justification is accepted
and fully approved by upper management can the task of initiating
projects to design, develop, and implement a DDBMS environment and
applications start.

Summary of Tasks:

o Obtain top management commitment for the migration into the

distributed environment.

o Develop a detailed specification ofDDBMS life cycle plan, including a

time-table of schedules and mile stones.

o Evaluate various policies for the development of site responsibilities,

including considerations of data sharing and control procedures.

CORPORATION STRATEGY PLANNING

Results:

o Specification ofDDBMS life cycle plan.

o Estimate of cost allocation, human resources and time span required.

Team Members;

o Supervisory managers and data administrators.

Guidelines:

o It is important to involve different groups of people within the organi-

zation in planning for DDBMS.

o Establish realistic expectations for the projects.

4.0 OVERALL DESIGN OF DISTRIBUTED DATABASE STRATEGY

A distributed database environment consists of a collection
of sites or nodes, connected together by a communication network.
Each node has its own hardware, central processor and software
which may, or may not, include a database management system (DBMS)

.

The primary objective of a distributed DBMS is to give interactive
query users and application programs access to remote data as well
as local data.

4.1 Types of Distributed Environment

Individual nodes within the distributed environment can have
different computing requirements. Accordingly, these nodes may
have different hardware, different software, and they may be
connected in many different ways. The characteristics of a DDBMS
are discussed in [FONG88] and will not be repeated here. However,
some of the variations possible in the distributed database
environment are discussed here.

Client-Server Computing

The most basic distributed capability is remote database
access from single users at a node [FINK89]. A node may be a
mainframe, a minicomputer, or a microcomputer (personal computer)

.

The node which makes the database access request is referred to as
a client node, and the node which responds to the request and
provides database services is referred to as the server node. The
association is limited to the two parties involved - the client and
the server.

Figure 4.1 provides a pictorial representation of several
different configurations available under a client-server computing
environment. The following are descriptions of the different
configurations shown in figure 4.1:

o Client Single User Node

The operating environment of an individual node can be single
or multi-user depending upon the operating system of that
node. In a single user operating environment, a node can only
be a client. Such a node may or may not have databases. For
non-database client nodes, the software typically consists of
front-end application programs used to access remote database
server nodes. This front-end software is generally in the
form of end-user interface tools such as a query language
processor, a form processor, or some other application
specific program written in a third generation language (i.e.,
C, Fortran, or Cobol) . The front-end software formulates and
issues user requests. It processes user requests through its

12

client node

single-user

client node

multi-user

client/server node

Figure 4.1.

server node

Client server computing.

established linkage with appropriate communication software.
Thus, the front-end software only captures a user's request
and uses communication software to send that request to a
remote database node requesting its database management system
to process the request. In addition to the capabilities
outlined, single user nodes with databases allow local data
to be included in the same query operations specified for
remote data. Thus, operationally, the query results will
appear as if all data is coming from a single central data-
base.

o Client Multi-User Node

The functional capabilities outlined for the client single
user node are expanded in the client multi-user node. This
is due to the presence of a multi-user operating system at the
user node. Such a configuration generally has several user
processes running at the same time. At peak usage time, the
presence of several user processes can cause slower response
time than is achievable in a client single user node.
However, the client multi-user node is more cost effective
since it can allow multiple remote database accesses at
different sites by different users at the same time. This is
made possible through an identifiable list of remote server
node locations. Additionally, as with the client single user
node, the client multi-user node can include local database
accesses in conjunction with accessing remote databases.

13

o Server Node

The server node is capable of providing database services to
other client requests as well as to itself. It is a special
multi-user node that is dedicated to servicing remote database
requests and any local processes. This means that incoming
requests are serviced, but it does not originate requests to
other server nodes. The functional capabilities of a server
node are as follows: (1) this node must be included in the
server list of some remote client node, (2) there must be an
operating DBMS, and (3) there must be a continuously running
process that listens for incoming database requests.

o Client/Server Node

A node with a database can be a client as well as a server.
This means that this node can service remote database requests
as well as originate database requests to other server nodes.
Thus, the client/server node can play a dual role.

Homogeneous Distributed DBMS Environment

A completely homogeneous DDBMS environment would exist when
all the nodes in the distributed environment have the same DBMS,
but not necessarily the same hardware and operating system.
However, the communication software for each node must use the same
protocol in order to send/receive requests and data.

Design and implementation of a homogeneous DDBMS environment
need only involve a single vendor. Any database request issued at
a client node does not need to be translated since the database
language and data model are the same across all nodes in the
network.

Heterogeneous Distributed DBMS Environment

In a truly heterogeneous DDBMS environment, the hardware,
operating systems, communication systems and DBMSs can all be
different. Different DBMSs may mean different data models along
with different database languages for definition and manipulation.
Any database request issued at a client node would have to be
translated so that the server node responding to the request would
understand how to execute the request.

There can be various degrees of heterogeneity. For example,
within the distributed environment, different DBMSs can still be
compatible if these different DBMSs all support the relational data
model and understand SQL, a relational query language, which is an
ANSI and ISO standard [FIPS127]. However, presently, even among
SQL conforming systems, there is no general communication software
that will accept generic SQL statements from any other SQL conform-

14

ing DBMS. This is an area in which the pending Remote Data Access
(RDA) standards are needed.

4.2 Selecting an Architecture for a Distributed Environment

The design of a distributed database environment can be
evolutionary - by incremental interconnection of existing systems,
or by developing a totally new distributed DBMS environment using
the bottom-up approach. Some of the design issues in adopting
either approach are described below.

Interconnection of Existing Systems

Not all organizations have the luxury of developing the
distributed database environment from scratch. Already existing
database management applications are costly investments which are
not likely to be replaced all at once by new distributed systems.
The existing environment, including hardware, software, and
databases, can be preserved by providing a mechanism for producing
federated systems, that is, systems comprised of autonomous
software components [HEIM85], [HEIL89].

The federated approach is a practical, first-step solution,
towards a distributed database environment. It accommodates a
legacy of existing systems while extending to incorporate new
nodes. Thus, it is very important to select DDBMS software that
supports existing computing hardware and allows for expansion.
Within a federated system, pairs of nodes can be coupled in ways
that range from very loose, where each node is autonomous, to very
tight, where each node interacts directly with the other. The
various forms of coupling affect the design, execution, and
functionality of the distributed applications.

The mode of coupling affects the number of translations
required to exchange information between each site. Zero transla-
tions are needed when both components use the same representa-
tions. Some systems may choose to translate directly the data
produced by one site to the format required by the other site.
However, a more commonly used method is to translate the data first
into a neutral format, and then from the neutral format translate
into the target format.

o Loose Coupling

Loosely coupled systems are the most modular and in some ways
are easier to maintain. This is because changes to the im-
plementation of a site's system characteristics and its DBMS
are not as likely to affect other sites. The disadvantage of
loosely coupled systems is that users must have some knowledge
of each site's characteristics in order to execute requests.
Since there is very little central authority to control

15

consistency, there is no guarantee of correctness. Further-
more, loosely coupled systems typically involve more transla-
tions which may cause performance problems.

o Tight Coupling

Tightly coupled systems behave more like a single, integrated
system. Users need not be aware of the characteristics of the
sites fulfilling a request. With centralized control, the
tightly coupled systems are more consistent in their use of
resources and in their management of shared data. The
disadvantage of tight coupling is that because sites are
inter-dependent, changes to one site are likely to affect
other sites. Also, some sites may object to the loss of
freedom to the central control mechanisms necessary to
maintain the tight coupling of all the systems.

Cooperation Between Sites

For a truly distributed DBMS environment, there can be a
variety of ways to specify "cooperation between sites." One way
of classifying the distributed environment is to define the amount
of transparency offered to the users. Another way is to define the
amount of site autonomy available to each site, and their coopera-
tive process with each other.

o Degrees of Transparency

Transparency is the degree to which a service is offered by
the DDBMS so that the user does not need to be aware of it.
One example of transparency is location transparency which
means users can retrieve data from any site without having to
know where the data is located.

o Types of Site Autonomy

Site autonomy refers to the amount of independence that a site
has in making policy decisions. Some examples of policy deci-
sions include ownership of data, policies for accessing the
data, policies for hours and days of operation, and human sup-
port. Additionally, all modifications to the site's data
structures need to be approved by the cooperating federation
of data administrators.

Interconnection of Newly Purchased Systems

An organization will have a lot more freedom if it decides to
establish a distributed database environment from scratch.
Currently, in the marketplace, vendors are offering homogeneous
DDBMS with a compatible family of software. How to configure the
hardware, software, and communications equipment will be discussed

16

in section 5. However, this approach can lock the organization
into a single vendor's proprietary distributed database products.

Other approaches in selecting distributed architecture choices
are as follows:

o Identical DBMS products at each node, with possibly different
hardware environments, but a single proprietary communications
network to interconnect all sites.

o Standard conforming DBMS products at each node that rely on
standard communications protocols. Considerations for
standard products are discussed in section 4.3.

o Different DBMSs, using the same data model (e.g., relational),
interconnected by a single or standard communications pro-
tocol .

o Different DBMSs, using different data models (e.g., relation-
al, object-oriented, etc), interconnected by a single or
standard communications protocol.

Some distributed DBMS vendors offer a bridge (gateway)
mechanism from their distributed database software to any foreign
distributed database software. This bridge (gateway) may be
obtained at additional development cost if it has not already been
included in the vendor's library of available software.

In the design of a totally new acquisition of distributed DBMS
products, it is advisable to consider a mixture of standard
conforming DBMSs and communications protocols. Since the techno-
logy and products are changing quickly, the designed architecture
must be continuously reviewed to prevent being locked into an
inflexible mode.

4.3 Considerations for Standards

As the trend towards distributed computing accelerates, the
need for standards, guidance, and support will increase. Applica-
tion distribution and use will be chaotic unless there is an
architectural vision and some degree of uniformity in information
technology platforms. This is especially true in client/server and
workstation environments. To achieve this goal, a systems archi-
tecture incorporating standards to meet the users' needs must be
established. This architecture must isolate the application
software from the lower levels of machine architecture and systems
service implementation. The systems architecture serves as the
context for user requirements, technology integration, and stan-
dards specifications.

17

The benefits of standardization for both the user and the
vendor are many. The number and variety of DDBMS products is
increasing. By insisting that purchased products conform to
standards, users may be able to choose the best product for each
function without being locked into a specific vendor. Thus small
to mid-sized vendors may effectively compete in the open market-
place. For effective planning and designing of a DDBMS environ-
ment, it is important for the designers to consider what standards
already exist and what standards will be emerging in order to be
able to incorporate standardized products.

There are many areas of a DDBMS environment in which standards
should be applied. Some of the types of standards relevant to the
design of a DDBMS include: communication protocols, application
programming interfaces, data languages for DBMS, data representa-
tion and interchange format, remote data access, etc.

Communication protocol standards are necessary so that sys-
tems from different products can connect to a communication net-
work and understand the information being transmitted. An example
of a communication protocol standard is the Government Open Systems
Interconnection Profile (GOSIP) [FIPS146]

.

The application programming interface standard is directed
towards the goal of having portable applications. This enables
software applications developed in one computing environment to run
almost unchanged in any other environment. An example of an
application programming interface standard is the Portable Operat-
ing System Interface for Computer Environments (POSIX) [FIPS151].

The data languages commonly supported by a DBMS are the data
definition language, data manipulation language and the data
control language. An example of a standard for data language for
the relational DBMS model is SQL [FIPS127].

In order to exchange data among open systems, a standard
interchange format is necessary. The interchange format consists
of a "language" for defining general data structures and the
encoding rules. An example of a standard data interchange lan-
guage is Abstract Syntax Notation One (ASN.l) [IS087a], [IS087b].

An important standard for the distributed processing environ-
ment is the remote access of data from a client site to a database
server site. A specialized remote data access (RDA) protocol based
on the SQL standard is currently under development [IS089].

4.4 Summary of Tasks

To start the overall design process, a review of the organiza-
tion's existing facilities should be conducted. This review is
done to determine whether the new distributed database environment

18

can use some or all of the existing facilities. In deciding to

move into a distributed environment, requirements for additional
functionalities must be identified. Such organizational issues as

setting up regional offices may also be involved. The distributed
architecture must take into consideration the actual application
to be operating and the characteristics of the user population and

the type of workloads to be placed on the system. Such an archi-
tecture must also incorporate standardized components.

OVERALL DESIGN OF DISTRIBUTED DATABASE STRATEGY

Summary of Tasks:

o Identify existing, installed facilities that are candidates to be included in the

new DDBMS configuration.

o Derive and evaluate several distributed architecture altematives.

o Establish an overall distributed database environment.

Results:

o Specification for a global distributed database architecture in support of the

applications.

Team Members:

o Top Managers, system analysts, DA, DBA and potential users.

Guidelines:

o The design process must incorporate growth trends of the organization to

accommodate future nodes.

o Since the technology and products are changing quickly, the designed

architecture must be continuously reviewed to prevent being locked into

an inflexible mode.

19

5.0 DETAILED DESIGN FOR DISTRIBUTED DATABASE ENVIRONMENT

The detailed development of a distributed database environment
deals with a wide range of issues. This section provides an
overview discussion on some of these design issues.

5.1 Hardware Design

The hardware design issue is centered around the client/server
model discussed in section 4. The node with the fastest or most
powerful computing power is generally assigned the role of server.
As server, it will be responsible for most of the processing and
data storage. Two important aspects to be considered in choosing
server nodes are as follows:

o Processing Power

The processing power of a server is critical to the response
time available to queries; that is, servers should not be
allowed to become bottlenecks of the distributed database
community. Another concern related to the server's processing
power is the fact that there may be other processes competing
for processing time other than database requests. Thus, an
excessive amount of processing traffic on a server can cause
monumental performance problems in the distributed database
community.

o Storage Capacity

The other issue for a server npde is its storage capacity.
This is critical because the server maintains the central
repository for data in the distributed database community.
This central repository may be concentrated locally to this
one server node or it may be spread across several other
remote server nodes.

In comparison to the server node, the client node can be
limited in its amount of processing power and storage capacity.
Client nodes are typically smaller desk top microcomputers or
workstations. The exception to this rule is when a node acts both
as a client and a server. Other issues that can dictate the amount
of processing power and storage capacity on the client node are the
amount of data redundancy kept on the node and the storage require-
ments for its application software.

5.2 Software Design

For most commercially available distributed DBMSs, the
software consists of a family of products that are available on a

20

variety of hardware platforms. A typical family of products might
include the following:

o The basic DBMS and its active data dictionary.

o The communication software that is coupled with the DBMS.
This type of software may be available with different levels
of capability. For example, the minimal capability would be
a protocol for remote data access. The next level of capa-
bility would be a gateway for remotely accessing foreign
databases or files. Foreign databases are those databases
established by other brands of DBMS software. The truly dis-
tributed functionality would be a communication software
product which supports location transparency data accesses
and concurrency control. It would also include features such
as a two-phase commit protocol for ensuring data consistency.

o Some distributed DBMS vendors also offer additional software
utilities such as 4th generation language (4GL)

,
Query-by-

forms or Query-by-examples, fancy report writers, and database
administration tools for monitoring activities, etc.

One of the first decisions the organization must resolve is
the "make-or-buy" decision. To be practical, unless the applica-
tion is so unique that none of the commercially available dis-
tributed DBMSs will suit the needs, it is advisable not to build
a home-grown distributed DBMS. Once the organization decides to
buy, then a survey and feature analysis of the market needs to be
performed. The selection criteria must also take into considera-
tion the amount and the types of software packages that will also
be operating within the same platform.

The family of software packages used in a distributed database
environment is configured according to the role of each node in
the network. For a client node without a database server service,
minimum software packages are required such as the communication
software and software application tools or languages (i.e., FORTRAN
or C) . The communication software allows requests to be sent and
received by the application software. For a database server node,
the minimum software packages not only must have the communication
software and the application tools, but also must have a DBMS. For
a value-added multi-user operating system environment, a full
family of software tools can be configured including fourth-
generation languages, two-phase commit protocol, database ad-
ministrator monitoring tools for tuning, and communication tools
for monitoring database requests and traffic within the network.

5.3 Communication Network Design

The linking of computers which are geographically dispersed
is accomplished by the communication network. The basic function

21

provided by the communication network is to allow a process running
at any site to send a message to a process running on another site
of the network.

Factors which need to be considered in selecting or designing
the communication network include the following:

o Cost

The cost of transmitting the message is usually computed by
an algorithm that is defined by the system administrator. In
general, the cost is proportional to the length of the message
and the distance between the source host and the target host.
There is always a trade-off between the cost of local data
storage and transmitting that data.

o Reliability

The probability that the message is correctly delivered at
its target destination is an important factor to be con-
sidered. Reliable transport service with error correction and
error detection is currently provided by most communications
software.

o Performance

A critical issue in measuring the performance of a network is
the amount of time it takes to deliver a message from its
point of origin to its destination. The time required to
deliver a message depends on such factors as the amount of
traffic on the network, the bandwidth and the capacity of the
communications line, how efficiently the communication
software can perform optimum routing algorithms, and the
mixing of local area network (LAN) with wide area network
(WAN)

.

o Open Systems Interconnection (OSI)

Standard communication protocols are necessary to allow
interoperability among a variety of computer systems without
regard to differences in equipment. As of August 15, 1990,
it is mandatory that federal agencies must acquire computer
network products and services which are in accord with the
Government Open Systems Interconnection Profile (GOSIP)
[FIPS146]

.

5.4 Summary of Tasks

The result of the overall design of a distributed database
strategy is the determination of the distributed database architec-
ture. Alternatives include the client/server model, the homoge-

22

neous DBMS environment, or the truly hetrogeneous distributed DBMS
environment. Establishing site requirements involve the identifi-
cation of the hardware, software and the communication networks for
each site.

Hardware and software configurations must be identified for
each site that is to participate in the distributed database
environment. Decisions on hardware must take into consideration
the utilization of existing hardware versus acquiring new hardware.

The selection of distributed DBMS software and communications
software must depend on the hardware platform supported. For
commercial off-the-shelf software to be utilized, an analysis must
incorporate supporting hardware considerations. These hardware and
software decisions must be made in a closely integrated manner.
For example, it is useless to select one type of hardware, if the
desired software cannot function on that particular hardware.

The feature analysis performed for the selection of the
products, such as a DBMS, involves identifying the features re-
quired for the application, comparing the required features against
the features offered by the contending products and making the best
final selection decision.

23

DETAIL DESIGN OF DISTRIBUTED ENVIRONMENT

Summary of Tasks:

o Identify the hardware platforms for each node participating in the distributed

environment.

o Identify the communications media and the appropriate software for the

connectivities of the distributed network.

o Feature analysis and selection ofDBMS and other software support tools

to be acquired.

Results:

o High level specification of the hardware, DBMS, communications, and other

support software configuration for each site participating in the DDBMS.

Team Members:

o Technical system analysts with inputs from top managers and potential uses.

Guidelines:

o A desirable characteristic is portability of programs, therefore, the distributed

environment should permit flexibility to change configurations without

creating the need to rewrite programs.

o Incorporate as many standard products as possible.

6.0 INSTALLATION OF DISTRIBUTED DATABASE ENVIRONMENT

The technical activities performed during the installation
phase involve the actual implementation and testing of hardware,
software, and communication software for each node of the dis-
tributed database environment. Detailed engineering and physical
tasks of running cables and establishing hardware configurations
will not be described in this report. Summaries of activities for
establishing communications and verifying the functioning of
software are discussed in the following sections:

6.1 Installation of Hardware

Installing a mainframe computer is very different from
installing a microcomputer. If existing hardware is to be employed
as a node within the distributed database environment, additional
hardware modification may be required. Information on any addi-
tional hardware modifications can be determined from the DDBMS
technical requirements as specified by its vendor. For example,
technical knowledge will be required to add any needed additional
random access memory (RAM) , communication cards, and communication
lines

.

The addition of RAM may take the form of installing memory
chips into a memory board or purchasing a memory board with the
memory chips already installed. The appropriate existing memory
cards must be identified and extracted from their position in the
computer's chassis or cabinet. Any new card or existing cards with
the required added-memory must then be installed in the computer
chassis. Depending on the targeted computer, switches or jumpers
on the memory cards may have to be set for proper recognition of
the added memory.

After adding any required memory, diagnostic software should
be run to confirm that the computing software recognizes this
additional memory. In most computers, there is built-in firmware
that will check for the existence of the additional memory during
the initial boot process of the computer.

To establish connection among computers targeted as nodes in
the distributed database environment, a communication card must be
present in each computer. The required features for a communica-
tion card should be confirmed by the vendor of the candidate DDBMS
software. It is advisable to purchase the compatible communication
card used by the vendor in developing the DDBMS software. The
brand of the communication card and the computing platform will
determine any extras that will be required to connect to a network.
For example, on personal computers, the communication cards will
generally allow either an external transceiver connection (a thick-
net cabling connection) or connection to its built-in transceiver
(a thin-net cabling connection) . In the first case, an external
transceiver will have to be purchased in addition to the communica-

25

tion card. In the second case, only thin-net cabling will be
required. On workstations and other larger computing platforms,
the first case is generally the only option.

After installing the communication card, the following tasks
need to be performed:

o Run the hardware diagnostic software, and

o test the remote connectivity capability.

Running the hardware diagnostic software will verify system
recognition of the newly installed communication card. Proper
recognition by the system means that the communication card is
linked to an acceptable address (non-conflicting) and its features
have been recorded by the system.

It is highly desirable to confirm remote connectivity before
attempting to install the DDBMS software. This will eliminate
having to consider local hardware communication problems should
connectivity problems arise after installing the DDBMS software.

6.2 Installation of the Network Communication Software

The primary task of the installation of the network communica-
tion software involves establishment of specific communication
parameters. These parameters are generally specified during the
initial setup process and are contained in various special parame-
ter files. The names and locations of these parameter files are
known to the communication software. For example, one such
parameter file is generally called a HOST file. This file usually
contains specific internet addresses and associated logical names
for locating nodes that are on the local area network (LAN) and the
related wide area network (WAN)

.

In addition to the HOST file, there is generally a SERVICES
file which contains the address of the communication port that is
to be used by the DDBMS 's communication software. Thus, when the
installed network communication software reads the SERVICES file,
the designated communication port will be reserved as a communica-
tion link to the DDBMS ' s communication software.

It is critical that the DDBMS communication software and the
installed network communication software for the operating system
have the same protocol. For example, if the network communication
software uses TCP/IP protocol, the DDBMS communication software
needs to know how to package communication requests accordingly.
If the network communication software uses GOSIP, the DDBMS
communication software requests need to be packaged according to
the appropriate layers of the ISO/OSI seven layer model. Dis-
cussions of these layers and their protocols are beyond the scope

26

of this document. More information on GOSIP can be found in
[B0LA89] and [BOLA90]

.

6.3 Installation of the DBMS Communication Software

No distributed database management system can function in a
network environment unless it is accompanied by the appropriate
DBMS communications software. When purchasing the DBMS software,
it should be confirmed with the vendor whether the communication
features are bundled with the basic DBMS package or are separate
features

.

There must be compatibility between the network communication
software and the DBMS communication software that interfaces with
it. After assuring compatibility, the next step in the installa-
tion is to identify to the DBMS communication software its required
communication parameter file. It is through such a parameter file
that the DBMS communication software will have knowledge of remote
DBMS systems

.

6.4 Installation of the DDBMS and Other Support Software

The DBMS kernel has to be installed before installing the
DDBMS. Installation of the DBMS kernel and its support software,
such as 4th generation languages, report writers, forms processors,
graphics packages, etc. follow the same general procedures:

o Preparation - This task requires super user authority to
first allocate memory space. Generally a separate directory
is established in preparation for loading the software.

o Loading - The initial parameter file is loaded into the
memory

.

o Configuration - The configuration of the shared memory is
adjusted in accordance with the requirements of the chosen
architecture

.

o Compilation - The loaded software, in source form, is compiled
to create an absolute module ready for execution.

o Testing and Verification - The software is executed to test
and verify it for correctness.

o Cleanup - Delete any unwanted files.

After the DBMS kernel and its support software has been
individually installed, there is the task of identifying to the
DBMS kernel a set of logical definitions that will delineate local
and remote data. It is through this association that the support

27

software is capable of transparently accessing data throughout the
global DDBMS schema.

Based on the design considerations, each node may have a
different set of software support requirements. Therefore, the
installation will include only those support software packages as
required.

6.5 Summary of Tasks

After the decision has been made on the equipment necessary
for each node, the acquisition process should begin. The plan for
installation should be coordinated such that each node will be
installed and checked out, followed by the installation of the
networking between nodes.

The installation phase requires very skilled technical
engineers and system programmers.

INSTALLATION OF THE DISTRIBUTED ENVIRONMENT

Summary of Tasks:

o For each node, install hardware and software.

o Install local area network (LAN) or wide area network (WAN) and then install

the appropriate communication software.

o Integrate and test the total environment.

Results:

o The distributed environment properly installed and functioning.

Team Members:

o Skilled hardware, software and communications engineers.

Guidelines:

o To ensure proper installation, each node and each subsystem must be

checked before total system checking for proper functioning.

28

7.0 DETAILED DESIGN FOR DISTRIBUTED DATABASE APPLICATION

Once the distributed environment is in place, the design for
an application that will run under the environment can be fina-
lized. Although the tasks of establishing the environment and the
application may seem to be separate, the planning and design phases
for each of them must incorporate all requirements.

Many distributed database application design issues were
addressed in [FONG85], [TEOR82]. In many cases, distributed
database design issues are still active areas of research. Some
of these issues are discussed below.

7.1 Application Database Architectural Alternatives

The needs of the organization's users must be evaluated in
order to decide which of the different database architectural
alternatives is best for the organization. A database architec-
ture is the way in which data is integrated with respect to an
application. The alternatives include databases that are logical-
ly centralized but physically dispersed, or databases that are
loosely-coupled (or "federated") with each site having local auto-
nomy.

7.2 How to Distribute the Databases

Two of the most critical decisions in distributed database
design are how to partition the data into different fragments and
how to introduce replication of data in order to improve the
performance and reliability of the system.

There are documented techniques for distributed database
design that exist in the research literature today [TEOR89], but,
in practice, the allocation of data is often very ad hoc. Some of
the current approaches to distributed database design consist of:
top-down, bottom-up, backward-forward, and activity analysis.

The top-down approach views the organization's data as a whole
and decomposes the data into various nodes which are physically
dispersed. The decision concerning where to put data is determined
by data entry collection stations. For example, an organization
may have several regional offices, and each regional office
collects and maintains its own regional data. However, only one
unified global schema exists.

The bottom-up approach views each node having databases as a

processing entity. This occurs when existing databases are in-
tegrated into a single global schema, but each database is seman-
tically treated as a whole. This is the same as the federated
approach

.

29

The backward-forward (output driven) approach begins with the
identification of the output of the application and subsequently
determines where the data sources are to be placed.

The activity analysis (process driven) approach begins with
the identification of both manual and automated processes. For
each process, the input and its source are determined. Addition-
ally, the output produced and their destinations are identified.
This information is then used to determine the distributed archi-
tecture.

Data Fragmentation

Almost any distributed database design will require decisions
concerning how data is to be fragmented on several different nodes,
or where data is to be replicated on several different nodes. The
fragmentation of databases usually applies to relational databases,
in which the data are viewed as tables consisting of rows and
columns. The fragmentation can be vertical or horizontal.

Vertical fragmentation involves splitting a table, column-
wise, into several smaller tables with fewer columns, which are
then distributed to different nodes. Horizontal fragmentation
involves splitting a table, row-wise, into several smaller tables
distributed at several different nodes. To fragment a table
horizontally involves storing different rows of data at different
sites depending upon the needs of the application.

The decision to fragment the data is usually done heuristi-
cally by analyzing each relation in term of the data volume being
retrieved and noting where the requests originate. A "best fit"
method can be found in [CERI84].

Data Replication

Redundantly stored data is referred to as replicated data.
The purpose of replicating data is to permit frequent and faster
use of the same data by multiple sites. However, allocating
additional copies of data not only uses more storage space, it also
increases the complexity and the time needed to perform updates.
The decision whether or not to replicate data must include a
consideration of the costs and benefits for each site versus the
entire organization. The benefit at a specific site is measured
by taking the difference in cost between doing a remote query
versus a local query, if the data is replicated locally. This
figure must then be compared against the cost of maintaining
multiple accurate copies of the replicated data.

The other consideration for replicated data is the "availabil-
ity" constraint. Some data may be deemed of such high value that
it must be available at all times. Accordingly, a crash at one

30

site should not cause the loss of data to other sites that may need
the data now.

7 . 3 The Role of the Data Dictionary/Directory for DDBMS

The data dictionary/directory (DD/D) for the distributed
database system plays the crucial role of logically integrating all
the physically dispersed databases. There are two levels of DD/D
schema for the distributed environment. The first is the DD/D
which contains all the schema information for the whole network.
This is known as the global schema. The second is the local DD/D
that contains the schema information pertaining to the databases
located at that individual node. This is known as the local schema.

Global Schema

The global schema, as maintained in the DD/D is used to
support a number of different applications. These applications in
a distributed DBMS environment include all of the services normally
satisfied by the global schema in a DD/D for a centralized environ-
ment, plus the following additional functional requirements:

o identify data location in the network.

o support coordination of distributed data retrieval, consis-
tency, and integrity especially in the case of replicated
data.

o support data translation for user processes if databases
within the network are of different data models.

o support source and target metadata descriptions to be used
for the export and import of metadata and data.

A sophisticated global schema also must have the capability
to resolve data incompatibilities. Examples of data incom-
patibilities include: scale or unit differences, different naming
or encoding methods for semantically equivalent data.

Local Schema

Some of the functional requirements that must be satisfied by
the local schema that is maintained in a local data dictionary are:

o provide accessing of data.

o support security rules.

o provide the presentation of data on screen or in reports.

31

A sophisticated local schema may also have statistical infor-
mation that can be used in optimizing access and performance.

Where to Place the DD/D

To a certain extent, the same considerations that apply to the
distribution of application systems data also apply to the dis-
tribution of the DD/D and its schema specifications of the dis-
tributed databases. The options for coordinating metadata across
nodes of the network include:

o A centralized, or global schema, located at one single node.
Nodes in the network must poll this global schema to find the
desired data.

o Distributed replicated schemas in which a copy of the global
schema is located at each node, containing information con-
cerning the data in the entire network.

o Distributed partitioned schemas, in which each node has its
own local schema. If a request comes in for data not in that
node, the user or the system must query all the other nodes
until the desired schema is found.

o Hierarchy of schemas in which a "master" copy of the global
schema may be located at some nodes, and each local node
maintains a local schema.

Each of these options has advantages and disadvantages in
terms of availability, performance, and cost. Each organization
establishing a distributed database application must select the
best approach with respect to the nature of the application. In
today's commercial products, the definitions for both global and
local schemas coexist on the same computing equipment. Such
coexistence permits site autonomy.

7 . 4 Schema and Data Update Control

When to update, where to update, and how to update data and
metadata are complex design issues. Completing an update transac-
tion in a distributed database environment is technically a complex
issue, since at the same time data may be getting updated, one or
more users might also be performing a query against the same data.
This problem is even more complex when data are replicated since
updating multiple copies of the same data while keeping the data
consistent requires special concurrency control mechanisms.

Distributed concurrency control mechanisms, at present, are
still very much a research issue. One way of ensuring data consis-
tency, which is currently supported in some DDBMS, is an algorithm
called "two phase commit." Two phase commit is a protocol which

32

first sends a message to all involved sites to "prepare" to commit
an update. When all sites involved acknowledge their readiness,
then the second message is sent to "commit" the update.

7.5 Data Administration Functions

For a distributed database application to be successful, it
must be recognized right from the beginning that the overall
management of the data resources within the distributed environment
is a critical task. The guide to the data administration function
for a centralized database environment appears in [ROSE89]. The
data administration function for a distributed environment needs
to be built based on the fundamentals specified in [ROSE89] and
then extended to cover the additional requirements generated by
having multiple locations where data are stored.

The data administration function can be perceived of as many
different roles with various job responsibilities. Depending upon
the size of the organization, these functions may be performed by
one or more persons. There are different terms, or job titles,
associated with these roles. Some of these roles are described as
follows

:

o Top-level data strategist/administrator

For a distributed environment, this position manages and
controls the total corporate-wide data. The responsibilities
include deciding what data resources should be installed
within the distributed environment, determining who will use
the database, establishing data standards, and controlling
global data dictionary access and accuracy.

o Distributed database administrators (DBA)

For each node within the distributed environment which acts
as a database server, there might be a database administrator
role. The responsibilities assigned to this DBA concern the
management and control of the database segment resident at
this node. The role of distributed DBAs may include functions
such as data analysis and modeling, along with enforcement of
policies and standards established by the top-level data
strategist/administrator. Other technical functions include
maintaining integrity and consistency of the resident segment
of the distributed database, and resolving conflicts of
incompatible data, both at the local site and in relation to
data available at other sites.

o Network administrator

The responsibilities of the network administrator are to
manage the distributed networks, ensure smooth communications

33

between nodes, and provide maintenance and support to the
network users.

For the creation and control of the data resources in an
organization, the methodology could be basically said to fall
somewhere between the following two extremes:

o Totally centralized control by top-level data administrator.
This individual sets the database policies and standards for
the accessing and maintenance of all corporate-wide databases
and data dictionaries installed within the distributed
environment.

o Totally decentralized with no overall policies and standards
for the accessing and maintenance of data. Each subgroup or
each node's database administrator owns the database at the
node and each is free to establish their own local database
administration policies.

7 . 6 Summary of Tasks

The design of an application should begin early on when the
organization has decided to migrate to distributed database
processing. The first application may just be a demonstration
prototype to test and verify the correctness of the distributed
database environment.

The design, implementation and support for a large scale
distributed application requires extensive procedures and controls,
which is beyond the scope of this guide. This guide discusses
tasks for the development of a small demonstration application for
the testing of the distributed database environment.

After completing the requirements analysis for the applica-
tion, a logical database design need to be conducted. A step-by-
step procedure for doing logical database design for a centralized
database is given in [F0NG85]. The logical database design
activities consist of the following two main tasks:

o Data flow analysis by identifying each entity and its rela-
tionships with other entities.

o Process flow analysis by identifying each function and
procedure of the operations.

Next, the possible alternatives as to where to distribute the
data need to be analyzed, based upon the available locations of the
distributed nodes and the accessing requirements of the applica-
tions. Additionally, during the design of distributed database
applications, one must also consider where to place the global
schema and how to resolve the data update control problems.

34

For a large scale distributed database application, an
important administrative task is the establishment of appropriate
data administration (DA) functions. This decision has tremendous
implications as to who owns and maintains the databases at each
node.

DETAILED DESIGN FOR DDB APPLICATIONS

Summary of Tasks:

o Perform requirement analysis.

o Establish Logical database design.

o Resolve database and metadata distribution issues.

o Establish DA and DBA functions.

Results:

o Specification of conceptual schema and data design,

o Specification of application system.

Team Members:

o Technical system analysts, potential users, DA and DBAs.

Guidelines:

o Detailed planning for data distribution must consider the

data usage pattern.

o End users must be consulted in the design of applications.

35

8.0 APPLICATION DEVELOPMENT

The actual coding and debugging of the application system
occurs during this phase and is based on the results of the
detailed design of the application. For application development
on the distributed database, the processes are summarized as
follows

:

8.1 Define Schemas

The definition of schemas at each node is the process of
creating an empty container based on a given structure. Different
DDBMS dictate various methods for data definitions. If the DDBMS
is a relational DBMS, then defining data definitions is referred
to as creating tables. The issues to be considered are:

o Identification of needed fields for each table at each node,
and their associated data types.

o Ensuring the naming conventions for each field. A guide to
naming conventions appears in [NEWT87].

o Key fields for the purpose of linking to other tables need to
be identified.

o Schema constraints and data type checking functions need to
be implemented as triggers.

o Define access control restrictions and establish global and
local authorities required to define or modify access control
restrictions.

8.2 Populate Database

After the data definitions are established for each node, the
data is ready to be populated. There are various ways for the
DDBMS to accept data. Large quantities of data are typically bulk
loaded into the database server. If there are existing databases
or files to be loaded into the newly established DDBMS, utilities
such as export/ import or text file loaders can be used. Some DDBMS
provide application development tools, such as forms processing.
This method permits forms or screens to be created so that data may
be entered record-by-record.

8.3 Application Prograun Construction

Certain functions require construction of the application
programs using a host programming language, e.g. , FORTRAN or C,
etc. Coding, debugging, and testing are performed by programmers.

36

8.4 Multi-site Requests Processing

To illustrate multi-site query or update request processing,
the scenario depends on whether the requestor is an application
programmer or an end-user. For the end-user illustration, a
request is issued at node A. If the DDBMS supports location
transparency, then this request is analyzed at node A to determine
where and how to fetch the data. The request is then executed
based upon the most optimal way of retrieving the required data.
The answers are then assembled and displayed to the requestor at
node A. For an application programmer, the global dictionary needs
to be consulted and links need to be established for the process-
ing of the multi-site request.

Solving the problem of choosing the most efficient access
method and guaranteeing data consistency are the responsibilities
of the application programmers and database administrators.

8.5 Testing and Verifying Correctness

Testing and verifying correctness involves writing test cases,
executing each test case, and verifying that the results obtained
are expected answers. For the distributed database application,
testing need to be performed at two levels. For each node, test
cases must be performed to ensure that the application is function-
ing properly. Then, at the next level, test cases must be per-
formed involving multi-sites to ensure that the distributed
application, as a whole, is functioning correctly.

8.6 Summary of Tasks

For a large scale application project, the tasks for the
installation and implementation of the distributed database
application can be very complex requiring knowledge of software
engineering disciplines.

The application implementation phase is typically performed
by programmers. The tasks involved are actual hands-on coding or
generation of database schemas and manipulation of the database
using the DBMS vendor supplied utilities and tools. For a dis-
tributed application, the final debugging and testing involves not
only each single site functioning correctly, but multi-site
requests and data manipulations must be tested to ensure that all
the components of the entire distributed database system are
working together in an integrated manner.

37

APPLICATION DEVELOPMENT

Summary of Tasks:

o Define schemas for all database servers,

o Populate databases with application data,

o Test requests that operate on single site and multi-sites,

o Write and test application code if necessary.

Results:

o Operational distributed application databases and programs.

Team Members:

o Skilled database designers and programmers.

Guidelines:

o The data definition and application programs should be well

documented to avoid confusions.

o Build as many data validation procedures as needed to ensure

data quality and consistency

38

9.0 SUPPORT FOR THE DISTRIBUTED DATABASE

The final stage occurs when the distributed environment and
the distributed application system are ready to be released for
real operational use. It is at that time that the support and
maintenance tasks begin. In practice, it is usually the case that
the support for the distributed database environment and the
support for the application will be done by the same team of system
programmers and database administrators. However, some organiza-
tions may prefer to separate the tasks of supporting the environ-
ment and supporting the applications.

Overall system management and support for the distributed
database environment involves a team of database administrators.
If the distributed environment includes several locations which are
physically apart, then it is desirable to have a local database
administrator and a network data manager at each location. The
network data manager is sometimes referred to as the global
database administrator. The local database administrator manages
the local node support activities. The global database ad-
ministrator coordinates the communications activities and provides
services to other distributed nodes.

9.1 Tuning for Better Performance

One of the main tasks involved in supporting the distributed
database system is to monitor the traffic within the network and
tune the network systems for better performance. There are various
tools supplied by DBMS vendors for gathering system statistics.
Tuning a distributed environment is much more complex than tuning
a centralized system because, not only must monitoring be conducted
at each local node, but it must also be performed at the network
interface level across the entire distributed environment.

9.2 Backup, Recovery and Security Protection

When the distributed DBMS system and the network software
encounter system failure, such as hardware or network problems, the
prompt restoration to proper functioning is a crucial task to
ensure that reliable service is provided to the users.

Providing both physical security and software protection
against unauthorized users are two of the support activities to be
performed by the local and global database administrators. Since
security is an extensive and complex subject, it is beyond the
scope of this report except to say that security requirements need
to be considered at every step in the development of distributed
database systems. See computer security publications issued by
NIST [NIST90].

39

9.3 User Training and Resolving Problems

Another important task for the support phase is to provide
users with adequate training on the use of the distributed database
system. This task could also include the assignment of user
account and password numbers, allocating working and permanent
storage, etc.

When DBMS vendors put out new versions of their software, it
is the responsibility of the local database administrator to
install the new version. When problems are detected, the support
staff must verify and isolate the problem. The problem should
either be fixed or should be reported to the appropriate vendors.

9.4 Summary of Tasks

The support task is of a continuous nature. Therefore, one
or more permanent system programmers or engineers should be on duty
at all times. The skills of the support team members and the size
of that team will depend to a large degree on the size and nature
of the distributed database environment and the applications.

SUPPORT OF ENVIRONMENT AND APPLICATIONS

Summary of Tasks:

o Timing of better performance,

o Backup, recovery and security protection,

o User training and resolving problems.

Results:

o Distributed database environment properly maintained and operational.

Team Members:

o System managers, system programmers, local global database administrators.

Guidelines:

o Support staff must be very technical as well as possess interpersonal skills,

o Designate responsibilities for support at geographically separated locations.

40

10.0 CONCLUDING REMARKS

This guide describes a complete life cycle development for
migrating to a distributed database environment, and the develop-
ment of a prototype distributed application. Organizations may use
any of the strategies described, or a combination of these strate-
gies .

The strategies presented are generic. Their advantages and
disadvantages will depend on the combination of an organization's
internal policy and the proposed applications. Some factors that
must be considered include: cost, simplicity of implementation,
size and scope of the distributed application, and compatibility
with current hardware and software design.

10.1 Critical Success Factors

As it is pointed out in earlier sections of this guide, the
development of a distributed database environment and distributed
applications will only be successful when each phase of the
development is carefully planned and executed. The success of the
development of a distributed environment and applications is
difficult to quantify. Different measures are appropriate for
different application areas. Some commonly perceived measures of
success are listed as follows:

o Adequate performance of the overall distributed DBMS applica-
tions .

o Users are more satisfied with the newly installed distributed
application than the previous non-distributed application.

o Lower costs for resources and better efficiency in the
processing of data with the distributed applications.

o Improved maintenance of the distributed database system and
the distributed data administration procedures.

10.2 Future Issues

The development of such a project from conception to operation
requires a long time span. Some large scale distributed environ-
ments and applications could take more than 2 years to complete.
However, during the 2 year development period, distributed database
technology and the organization's requirements would be changing.
This situation does, of course, present the possibility of having
an obsolete system upon completion. A few observations follow:

41

o The technology of the truly distributed, all-powerful, all-
embracing data model and language to provide transparent
accesses to separate databases and computers is still not as
mature as one might expect. All the present distributed
environments in support of operational distributed database
applications are either homogeneous, or federated with
translation mechanisms.

o Issues of access control, concurrency control, schema and
transaction management, performance, capacity growth, support
for complex environments, etc. are still in the research
stage. In practice, distributed data processing is still
partly a learning process.

o In current practice, there is increased user dependency on
single vendors to supply the DBMS and communications products.
Some very difficult decisions will have to be made by the
system designers in order to achieve the best balance of
functionality, performance, and vendor independence. The use
of standard products will alleviate the vendor dependence
problem.

o In the near term, the release of a RDA/SQL standard will
provide technical specifications on how to package SQL network
service requests. These packages will contain service
elements for:

association control, which includes establishing an
association between the client and server remote sites
and managing connections to specific databases at the
server site,

transfer of database operations and parameters from
client to server, and the transfer of resulting data from
server to client,

transaction management which includes capabilities for
both one-phase and two-phase commit.

The introduction of the RDA/SQL standard will pave the way for
wider interoperability among heterogeneous DDBMS nodes
supporting SQL data languages. A consortium of SQL vendors
known as SQL Access Group hopes to demonstrate interconnection
of working prototypes in 1991.

o The migration from a centralized environment to a distributed
environment will require careful planning. A more important
consideration is that data sharing and resource consolidation
will require cultural changes.

Some of the open questions as listed above cannot be answered until
more experience is gained and documented. The "lessons-learned"

42

in such a project will be very valuable. The authors for this
guide would welcome any further guidelines and comments on the
development of distributed database systems.

43

11.0 REFERENCES

[BOLA89] Boland, T. , Government Open Systems Interconnection
Profile Users' Guide . NIST Special Publication 500-163,
August 1989.

[BOLA90] Boland, T. , Stable Implementation Acrreements for Open
Systems Interconnection Protocols, Version 3 Edition 1

^

NIST Special Publication 500-177, March 1990.

[CERI84] Ceri, S. and Pelagatti, G. , Distributed Databases;
Principles and Systems . McGraw Hill, 1984.

[FINK89] Finkelstein, Richard, "Client/Server Computing - The Best
of Two Worlds," CONNECT Magazine, Summer 1989. pp. 24-
27.

[FIPS127] Federal Information Processing Standards Publication 127-
1, Database Lancfuacre SQL . National Institute of Standards
and Technology, February 1990.

[FIPS146] Federal Information Processing Standards Publication 146,
Government Open Systems Interconnection Profile (GOSIP) ,

National Institute of Standards and Technology, 1989.

[FIPS151] Federal Information Processing Standards Publication 151-
1, POSIX; Portable Operating System Interface for
Computer Environments . National Institute of Standards
and Technology, 1989.

[F0NG85] Fong, E. , et al
. , Guide on Logical Database Desicfn . NIST

Special Publication 500-122, February 1985.

[FONG88] Fong, E. and Rosen, B. K. , Guide to Distributed Database
Management . NIST Special Publication 500-154, April 1988.

[HEIL89] Heiler, S., "The Integration of Heterogeneous Computing
Environments," in chapter 6 of Fong, E. and Goldfine, A.
(editors) , Information Management Directions: the
Integration Challenge . NIST Special Publication 500-167,
September 1989.

[HEIM85] Heimbigner, D. and McLeod, D. , "A Federated Architect-
ure for Information Management," ACM Transactions on
Office Information Systems . Vol. 3, No. 3, July 1985, pp.
253-278.

[IS087a] ISO 8824 - Information Processing Systems - Open Systems
Interconnection -= Specification of Abstract Syntax
Notation One (ASN.l), Reference Number: ISO 8824:-
1987 (E)

.

45

[IS087b] ISO 8825 - Information Processing Systems - Open Systems
Interconnection - Specification of Basic Encoding Rules
for Abstract Syntax Notation One (ASN.l), Reference
Number: ISO 8825 : 1987 (E)

.

[IS089] ISO "Information Processing Systems ~ Open Systems
Interconnection - Remote Database Access - SQL Speciali-
zation," ISO/IEC JTC1/SC21 N4281 Committee Draft 9579 -

Part 2, 1989.

[MART81] Martin, J., Design and Strategy for Distributed Data
Processing , Prentice-Hall, Inc. Englewood Cliffs, New
Jersey 07632, 1981.

[NEWT87] Newton, J. J., Guide on Data Entity Naming Conventions
,

NIST Special Publication 500-149, October 1987.

[NIST90] NIST Publications List 91, Computer Security Publica-
tions . NIST, Revised March 1990.

[ROSE89] Rosen, B. K. and Law, M. , Guide to Data Administration .

NIST Special Publication 500-173, October 1989.

[TEOR82] Teorey, T. J., and Fry, J. P., Design of Database
Structure, Prentice-Hall, Inc., Englewood Cliffs, N.J.
07632, 1982.

[TEOR89] Teorey, T. J. "Distributed Database Design: A Practical
Approach and Examples," in SIGMOD Record . Vol. 18, No.
4, December 1989.

46

APPENDIX A - DESCRIPTION OF DISTRIBUTED ENVIRONMENT

The distributed database environment of the NIST/CSL Database
Laboratory used two commercial DDBMS: ORACLE and INGRES.

The ORACLE distributed node configuration was as follows:

NODE A: A server node on a minicomputer.

Hardware

VAX 11/785
Ethernet Communication Card
Thin net transceiver and cable
2MB memory (recommended)
33,000 blocks of disk space

Software

Oracle version 5.1.22
VMS version 4.0 or later
Wollongong TCP/IP
SQL*NET TCP/IP

NODE B: A server node on a microcomputer.

Hardware

Compaq 286
Excelan Communication Card (205T)
Thin net cable
3MB memory (recommend)
3MB of swap space
25,000 blocks of disk space

Software

Oracle version 5.1.17
Xenix System V, v2.1.3
(Santa Cruz Operation)
Excelan 8011-03 TCP/IP
SQL*Net TCP/IP

NODE C: A client node on a microcomputer.

Hardware

Compaq 286
Excelan Communication Card (205T)
Thin net cable
64 OK memory
4.5MB of disk space

Software

DOS 3.0 or higher
Excelan 8011-03 TCP/IP
SQL*Net TCP/IP

NODE D: A client node on a Macintosh,

Hardware

Macintosh II
Kinetics Communication Card)
Thin net cable
2MB memory
5MB of disk space

Software

Multi-Finder
Kinetics TCP/IP
SQL-Net TCP/IP
HyperCard Version 1.2
Macintosh Programmers

Workshop - optional

47

For the INGRES distributed environment, the configuration was
as follows:

NODE A: A server node on a minicomputer.

Hardware Software

VAX 11/785
Ethernet Communication Card
Thin net transceiver and cable
8 MB memory (recommended)
55 MB of disk space

Ingres 6.3
VMS version 5.0 or later
Wollongong TCP/IP
Ingres*Net TCP/IP

NODE B: A server node on a workstation.

Hardware

SUN 386i
SUN Communication Card
Thin net transceiver and cable
8 MB memory (recommended)
55 MB of disk space

Software

Ingres 6.2
SUN Unix version 4.0.2
SUN TCP/IP
Ingres*Net TCP/IP

48

APPENDIX B - DESCRIPTION OF THE DISTRIBUTED APPLICATION

PROTOTYPE PROJECT OVERVIEW

The distributed database application uses an existing database
file established for the tracking of the Division's Property in
terms of hardware and software equipment. This file, which is
continually maintained, has over 2 0 data elements, with over 3 00
records for the hardware equipment and over 4 00 records for the
software.

The application was defined for both the ORACLE distributed
environment and the INGRES distributed environment. A number of
steps were required to produce a distributed database application.
Some of these steps were similar with both Oracle and Ingres and
some of the steps were different.

DESIGN OF THE APPLICATION

The first steps were similar for both ORACLE and INGRES.
These included identification of the problem, design considerations
for the necessary tables, deciding where the tables would be
located, and what fields were needed.

For the division property application, five data elements were
chosen to serve as keys throughout all of the distributed database
tables. The horizontal fragmented technique was chosen for dividing
the database across the different nodes. Five tables were iden-
tified and installed on five different nodes. These nodes were
created by using five different usernames.

DATA DEFINITIONS AND POPULATING THE DATABASE IN ORACLE

To make each table unique, different data values or records
were entered into different tables. To accomplish this, a dis-
tributed database table was created using SQL. Fields and records
that were needed from the big existing database file were spooled
off into a "dummy file." This file was then loaded into the newly
created distributed database table by using the SQL-loader tool.
After the newly created distributed database file had the records
loaded in, the other tables were created on the other nodes and the
data was copied in by using the following copy command:

COPY FROM NLHARD/NLHARD@T: icst-ise:P to GLHARD/GLHARD@T :
penguin :

P

CREATE GL_HARD -

USING SELECT * FROM NL_HARD WHERE NAME = 'GRAPHIC LAB '

;

In the above example, on the first line, the table is being
copied from the VAX (icst-ise) with the username of NLHARD/NLHARD
to the XENIX (penguin) with the username of GLHARD/GLHARD. On the

49

second line, a new table is being created, entitled : GL_HARD. On
the third line, a select statement is being used to bring over to
the new table only those records that deal with the graphics lab.
This command allows the user to create the table and load the
necessary records on a different node without having to physically
go to that node to do the work.

After all the tables were created and had their records loaded
in, the tables were reviewed and modified so as to finalize what
records were located at each individual table.

DATA DEFINITIONS AND POPULATING DATABASE IN INGRES

For the Ingres application, the tables were created using
the COPY command shown below. The records were then loaded from
a "text file" into the appropriate tables.

COPY TABLE ALL_HARDWARE
(NBS=C7, I=C2, ITEM_NAME=C2 6,OWNER=C11,ROOM=CONL)
FROM 'ALL_HARDWARE.LIS'

In the above example, the table ALL_HARDWARE had already been
created by the usual SQL command. Also, the data being used for
this table is the same data used in the ORACLE database. The data
was spooled from the ORACLE database into a file called ALL_HARDWA-
RE.LIS. The file was then loaded into the INGRES table by using
the above command. This command copied into table ALL_HARDWARE on
a row-by-row basis data value occurrences for the respective
attributes "NBS", "I", "ITEM_NAME", "OWNER", AND "ROOM" from the
file A:: HARDWARE. LIS

.

DEFINED TABLES IN ORACLE

TABLE NAME RECORDS USED USERNAME NODE OS
NL_HARD No lab records NLHARD VAX VMS
VALL_HARD Val lab records VALLHARD VAX VMS
KBL_HARD KB lab records KBLHARD COMPAQ 286 DOS
DBL_HARD DB lab records DBLHARD COMPAQ 2 86 XENIX
GL_HARD Graph lab records GLHARD COMPAQ 286 XENIX

DEFINED TABLES IN INGRES

TABLE NAME RECORDS USED USERNAME NODE OS
ALL_HARDWARE All hardware DIV_HARD VAX VMS
EXCEPT_LAB No lab records DIV_HARD VAX VMS
GRAPH_ONLY Graph lab records DIV_HARD SUN 386i XENIX
TAB SOFT All software DIV HARD SUN 386i XENIX

50

The data element names used as keys across the distributed nodes
are:

NBS NUMBER
SERIAL NUMBER
ITEM NAME
OWNER
LOCATION

MULTI-NODE REQUEST PROCESSING

When dealing with multiple tables and multiple nodes, database
links, synonyms, views, and a command called "JOINDEFS" were very
helpful. They provide the capability to query a table on a node
that is remote, or different, from the current node on which the
user is operating.

ORACLE DISTRIBUTED QUERY EXAMPLE:

In Oracle, database links were used to represent the username,
the password, and the network name. To access a desired table at
a remote node, the name of that table has to be linked to a
designated database link name. Below is a sample of the database
link command:

CREATE DATABASE LINK {database link name}
CONNECT TO {username}
IDENTIFIED BY {password}
USING '{network name} •

;

This is an example using the above command:
CREATE DATABASE LINK GLLAB
CONNECT TO GLHARD
IDENTIFIED BY GLHARD
USING ' @T:penguin: P'

;

A query using a database link might look like this:

SELECT * FROM DBL_HARD@DBLAB

In INGRES a distributed database definition was used. Within
this distributed database definition, the INGRES tables and nodes
were registered. Below is an example of how a table and node is
registered with a distributed database name:

CREATEDB {distributed database name}
REGISTER TABLE {table name}
AS LINK WITH NODE = {node name},
DATABASE = {database name}

51

This is an example using the above command:

CREATEDB DDPROPERTY/D
REGISTER TABLE ALL_HARDWARE
AS LINK WITH NODE = 'VAXNODE',
DATABASE = 'DIV610'

(NOTE: Tables that are not registered are not known to the
distributed database; therefore, they are not accessible by remote
users

.

)

In Oracle, a synonym was used as a tool to represent the
combination of the table name and the database link name. This
tool was used because of its simplicity. Below is an example of
how a synonym is created:

CREATE SYNONYM {synonym name}
FOR {table name} @ {database link name};

This is an example using the above command:

CREATE SYNONYM GL_LAB
FOR GL_HARD@GLLAB;

A query using a synonym might look like this:

SELECT * FROM DBL_LAB

To bring all the information from all the tables together in
Oracle, a view was used. Shown below is an example of how a view
is created:

CREATE VIEW {view name} AS
SELECT {column name 1, column name 2, etc.} FROM {synonym}
UNION
SELECT {column name 1, column name 2, etc.} FROM {synonym}

This is an example using the above command:

CREATE VIEW ALL_HARDWARE AS
SELECT NBS, SERIAL, ITEM_NAME, NAME, ROOM FROM NO_LAB
UNION
SELECT NBS, SERIAL, ITEM_NAME, NAME, ROOM FROM VAL_LAB

INGRES DISTRIBUTED QUERY EXAMPLE

In INGRES, the tool called the JOINDEF, which is similar to
the VIEW was used. Queries, updates, and deletes can be done in
the JOINDEF. However, only queries can be done in the view.

52

A JOINDEF is done within INGMENU and a distributed database
name (in this project DDPROPERTY/D) is used. After selecting the
JOINDEF procedure, menus appear which ask a series of questions.
For example, the series of questions could include: the name of the
JOINDEF, its relationship role (i.e., ONE-TO-ONE relationship or
a ONE-TO-MANY relationship) , and the list of selectable columns.
The tables are then connected by the 'key field'.

ORACLE GLOBAL DATA DICTIONARY

The multi-node request processing is made possible by the
established global data dictionary. The global data dictionary
resides at all database server nodes. The table names of the
ORACLE global data dictionaries are as follows:

TABLE NAME
NL_HARD
VALL_HARD
KBL_HARD
DBL_HARD
GL HARD

DB LINK
NOLAB
VALLAB
xxxxx
DBLAB
GLLAB

SYNONYM
NO_LAB
VAL_LAB
xxxxxxx
DBL_LAB
GL LAB

USERNAME
NLHARD
VALLHARD
KBLHARD
DBLHARD
GLHARD

NODE
VAX/VMS
VAX/VMS
COMPAQ/DOS
COMPAQ/XENIX
COMPAQ/XENIX

(NOTE: Because the Compaq 286 using DOS is set-up as a client, and
not as a server, a database link or synonym could not be created
for the username KBLHARD.)

INGRES GLOBAL DATA DICTIONARY

The multi-node request processing in INGRES is made possible
by the global data dictionary residing at the database server node.
The table names of the INGRES global data dictionaries are as
follows

:

TABLE NAME
ALL_HARDWARE
EXCEPT_LAB
GRAPH_ONLY
TAB SOFT

DB DIFF
DD/PROPERTY
DD/PROPERTY
DD/PROPERTY
DD/PROPERTY

JOINDEF
ALL_HARD
NO_LAB
GRPH_LAB
ALL SOFT

USERNAME
DIV_HARD
DIV_HARD
DIV_HARD
DIV HARD

NODE
VAX/VMS
VAX/VMS
SUN/XENIX
SUN/XENIX

53

4. TITLE AND SUBTITLE

Guide to Design, Implementation and Management of Distributed Databases

5. AUTHOR(S)

Elizabeth N. Fong; Charles L. Sheppard; Kathryn A. Harvill

6. PERFORMINQ ORQANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURQ, MD 20899

7. CONTRACT/QRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED
Final

NIST-114A

(REV. 3-90)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1. PUBUCATION OR REPORT NUMBER
NIST/ Sp 500-185

2. PERFORMINQ ORQANIZATION REPORT NUMBER

3. PUBUCATION DATE
February 1991

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

Same as item #6

10. SUPPLEMENTARY NOTES

11. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOQRAPHY OR
UTERATURE SURVEY, MENTION IT HERE.)

For an organization to operate in a distributed database environment, there are two related but

distinct tasks that must be accomplished. First, the distributed database environment must be

established. Then, a distributed database application can be designed and installed within the
environment. This guide describes both of these activities based on a development life-cycle
phase framework. This guide provides practical information and identifies skills needed for
systems designers, application developers, database and data administrators who are interested
in the effective planning, design, installation, and support for a distributed database
environment. In addition, this guide instructs system analysts and application developers
with a step-by-step procedure for the design, implementation and management of a distributed
DBMS application.

This guide also notes that truly heterogeneous distributed database technology is still a

research consideration. Commercial products are making progress in this direction, but usually
with many update and concurrency restrictions and often with severe performance penalties.

The scope of this guide is based on experiences gained in the development of a distributed
DBMS environment using two off-the-shelf homogeneous distributed database management systems.

In support of the successful installation of the distributed database environment, a

demonstration distributed application was designed and installed.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITAUZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

databases; DDBMS ; distributed application; distributed database management systems;
distributed environment; life-cycle phases.

13. AVAILABIUTY

UNUMITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

XX

XX

KX

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD, VA 22161.

14. NUMBER OF PRINTED PAGES

59

15. PRICE

ELECTRONIC FORM U.S. G.P.O. :1991-281-557:40224

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SYSTEMS TECHNOLOGY

Superintendent of Documents
Government Printing Office

Wasliington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Institute of Standards and Technology Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notification key N-503)

I

1

i 1 A Technical Publications

Periodical

Journal of Research of the National Institute of Standards and Technology—Reports NIST research

and development in those disciplines of the physical and engineering sciences in which the Institute

is active. These include physics, chemistry, engineering, mathematics, and computer sciences.

Papers cover a broad range of subjects, with major emphasis on measurement methodology and
the basic technology underlying standardization. Also included from time to time are survey articles

on topics closely related to the Institute's technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the

Institute's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) de-

veloped in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NIST, NIST annual reports,

and other special publications appropriate to this grouping such as wall charts, pocket cards, and
bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physi-

cists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in

scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical
properties of materials, compiled from the world's literature arid critically evaluated. Developed un-

der a worldwide program coordiriated by NIST under the authority of the National Standard Data
Act (Public Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data (JPCRD)
is published quarterly for NIST by the American Chemical Society (ACS) and the American Insti-

tute of Physics (AIP). Subscriptions, reprints, and supplements are available from ACS, 1155 Six-

teenth St., NW., Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Institute on building

materials, components, systems, and whole structures. The series presents research results, test

methods, and performance criteria related to the structural and environmental functions and the

durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treat-

ment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final reports of work performed at NIST
under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Com-
merce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally

recognized requirements for products, and provide all concerned interests with a basis for common
understanding of the characteristics of the products. NIST administers this program as a supplement
to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NIST research and experience, cov-
ering areas of interest to the consumer. Easily understandable language and illustrations provide use-

ful background knowledge for shopping in today's technological marketplace.
Order the above NIST publications from: Superintendent ofDocuments, Government Printing Office,

Washington, DC 20402.
Order the following NISTpublications—FIPS and NISTIRs—from the National Technical Information
Service, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series col-

lectively constitute the Federal Information Processing Standards Register. The Register serves as

the official source of information in the Federal Government regarding standards issued by NIST
pursuant to the Federal Property and Administrative Services Act of 1949 as amended. Public Law
89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11,

1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NIST Interagency Reports (NISTIR)—A special series of interim or final reports on work performed
by NIST for outside sponsors (both government and non-government). In general, initial distribu-

tion is handled by the sponsor; public distribution is by the National Technical Information Service,

Springfield, VA 22161, in paper copy or microfiche form.

U.S. Department of Commerce
National Institute of Standards and Technology

Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300

