
MIST

PUBLICATIONS

Computer
Systems
Technology
U.S. DEPARTMENT OF
COMMERCE
National Institute of

Standards and

Technology

NAT L INST OF STAND & TECH R.I.C

nil

NIST Special Publication 500-181

PHIGS Validation Tests (Version 1.0):

Design Issues

John Cugini

Mary T. Gunn

Lynne S. Rosenthal

A111D3 M3E3S3

QC

100

U57

500-181

1990

C.2

NATIONAL iNsrmrrE of standards &
TECHNOLOGY

Research Information Center

Gaithersburg, MD 20899

DATE DUE

1

Demco, Inc. 3«-293

NIST Special Publication 500-181

PHIGS Validation Tests (Version 1.0):

Design Issues

John Cugini

Mary T. Gunn

Lynne S. Rosenthal

Information Systems Engineering Division

National Computer Systems Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

July 1990

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

Reports on Computer Systems Technology

The National Institute of Standards and Technology (NIST) (formerly the National Bureau of Standards)

has a unique responsibility for computer systems technology within the Federal government. NIST's

National Computer Systems Laboratory (NCSL) develops standards and guidelines, provides technical

assistance, and conducts research for computers and related telecommunications systems to achieve

more effective utilization of Federal information technology resources. NCSL's responsibilities include

development of technical, management, physical, and administrative standards and guidelines for the

cost-effective security and privacy of sensitive unclassified information processed in Federal computers.

NCSL assists agencies in developing security plans and in improving computer security awareness train-

ing. This Special Publication 500 series reports NCSL research and guidelines to Federal agencies as well

as to organizations in industry, government, and academia.

National Institute of Standards and Technology Special Publication 500-181
Natl. Inst. Stand. Technol. Spec. Publ. 500-181, 21 pages (July 1990)

CODEN: NSPUE2

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1990

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402

ABSTRACT

Conformance testing for the Programmer's Hierarchical Interactive Graphics System (PHIGS)

standard presents certain novel difficulties, especially the indirect effect of many functions, and

the inaccessibility to the program of visual effects. The model of logical inference offers a way

to organize a system of the complexity needed to overcome these problems. This complexity

makes the use of certain database concepts quite valuable in allowing users to comprehend the

system. Special emphasis is placed on allowing the user to associate each test case with some

specific requirement in the standard. Test output consists of a set of formatted messages that

enable the user to assess test results rapidly and accurately.

KEYWORDS: conformance testing; graphics standards; PHIGS; testing of software; validation

of software

iii

CONTENTS

1. INTRODUCTION 1

1.1 The PHIGS Standard 1

1.2 Definitions 1

2. DESIGN GOALS 2

2.1 Scope of Version 1 .0 2

2.2 Comprehensible Conformance Tests 2

2.3 Portability 3

2.4 Host Language 3

2.5 Operator Interaction 3

3. LOGICAL MODEL 4

3.1 Standardization as an Ideal Logical System 4

3.2 Implementation of Logical Concepts in PVT 4

3.2.1 Semantic Requirements 4

3.2.2 Test Cases 5

3.3 Background Assumptions 6

3.3.1 PVT Assumptions 6

3.3.1.1 Validity of SRs 6

3.3.1.2 Validity of TCs 6

3.3.1.3 Validity of Code 6

3.3.2 Implementation Assumptions 6

3.3.2.1 Auxiliary PHIGS Functions 6

3.3.2.2 System Resources 7

4. PVT ARCHITECTURE 9

4.1 Modularity 9

4.2 Tree Organization 9

4.3 Order 10

4.4 Database Model of PVT 10

4.5 Message System 1

0

5. DEVELOPMENT TOOLS 13

5.1 Code Outline Generator 13

5.2 Module and Program Checker 13

5.3 Cross-Reference Tools 1

3

5.4 Re-number SRs 13

6. SUMMARY AND INTENTIONS 14

7. REFERENCES 15

V

1. INTRODUCTION

PHIGS stands for Programmer's Hierarchical Interactive Graphics System. The PHIGS Validation

Test (PVT) suite is a product of the National Computer Systems Laboratory (NCSL) of the National

Institute of Standards and Technology (NIST). The function of this suite is to test whether imple-

mentations of PHIGS conform to die PHIGS standard [PHIGS 88]. This document describes the

major design issues that were encountered during development of version 1.0 of the PVT, the ratio-

nale for their resolution, and some tentative plans for die future evolution of the test suite. The PVT
User's Guide [CUGI90] contains information on the installation and operation of the PVT suite, and

on interpretation of its output.

1.1 The PHIGS Standard

The PHIGS standard defines a set of functions to be used by a programmer to manipulate and dis-

play 3-D graphical objects. For a full description of die features of PHIGS, see [PHIGS88]. The

standard has been approved by the American National Standards Institute (ANSI) as ANSI X3.144-

1988, by the International Organization for Standards (ISO) as ISO 9592:1988, and by the Federal

Government as Federal Information Processing Standard (FIPS) 153.

1.2 Deflnitions

Conformance: the state of having satisfied the requirements of some specific standard(s) and/or

specification(s), e.g., ISO, ANSI, IEEE.

Validation: the process of checking the conformity of an implementation of a standard to its standard

specification through conformance testing and, when compliance is demonstrated, issuing a

certificate.

The following terms are defined with respect to PHIGS and their use within this document.

Generic standard: defines the semantics of the PHIGS functions at an abstract level, independent of

any programming language. In this document, "the standard" refers to the generic standard.

Language binding: supplementary standard, defining the concrete syntax by which PHIGS functions

are invoked from the host programming language.

Host language: the language in which a graphics program is written, and from which PHIGS func-

tions are invoked.

PHIGS implementation: an actual graphics system which generally adopts die PHIGS model of

graphics.

1

2. DESIGN GOALS

This section discusses the global characteristics which were to be built into the system. These goals

do not dictate a unique design, but serve as constraints on the final shape of the test suite.

2.1 Scope of Version 1.0

Because of the size of the PHIGS specification (319 functions in the generic standard), we needed a

test suite design that would allow incremental development. We partitioned the features of the

standard into several areas, for each of which tests can be generated separately:

a. State semantics: tiie manipulation and reporting of data structures specified in the standard,

such as state lists, description tables, archive files, and the centralized structure store (CSS).

b. Traversal: the implicit process in PHIGS that renders a visible image on an output device.

c. Graphical input: accepting data from the operator at run-time.

d. Error system: the detection and processing of erroneous conditions, both by default and by

the user.

e. Metafiles: the generation and interpretation of files containing graphical data.

Since interactive tests (those requiring active judgment on the part of a human operator) are both

more difficuh to write and more difficult to run, we decided to defer testing traversal and graphical

input. The error system and metafiles are separable from the core semantics of PHIGS, and so their

testing is also deferred. Because version 1.0 was limited to tests of state semantics, it could be

developed in a reasonable amount of time, those responsible for development could gain experience

with the simpler features of the standard before going on to the more advanced parts, and the tests

themselves could be almost fully automated.

2.2 Comprehensible Conformance Tests

It should be recognized that a test suite for a software system can be oriented toward several differ-

ent purposes, such as conformance, performance, quality, and debugging. While any test suite is

likely to be somewhat useful in all these areas, there are significant differences of design among test

suites emphasizing each of these purposes.

In particular, conformance tests tend to be less informative than debugging or quality tests. For

conformance purposes, the only issue is whether or not an implementation performs as required -

essentially a pass/fail test. The PVT suite therefore emphasizes error detection, not error diagnosis

or correction.

However, conformance tests do need to be informative about the relationship of the test to the

standard. It is hardly acceptable to a user to execute a large opaque body of code, only to be told

"TEST FAILS" without further explanation. We took it as a central goal not merely that the tests be

logically correct, but also that interested users be given a way to see for themselves that the expected

outcome is correctiy grounded in the specifications of the standard.

2

2.3 Portability

Obviously the tests must be portable, as long as it is understood that this means portability with

respect to the relevant standards (the generic PHIGS standard, the language binding standard, and

the host language standard), not necessarily with respect to all putative implementations. So, even

though the results of the tests are theoretically guaranteed by the standard(s), the code is not written

to be portable in the more practical sense of working on as wide a variety of actual systems as

possible. Only PHIGS features, however, are to be used up to the limit of the standard; the host

language features are to be used conservatively, since they are not the object of the test suite.

2.4 Host Language

Because there will be a need for PHIGS tests for several language bindings, version 1.0 of the PVT
suite will be as language-independent as possible. Specifically, the semantic requirements and

program design (see below) are formulated in terms of the generic standard. Only the source code

itself depends on the language binding. Thus, the documentation is valid for use with all language

bindings.

Full Fortran was chosen as the language of version 1.0 for reasons of standardization. Its language

binding was the most stable, and Fortran itself has the benefit of an established and widely accepted

standard [FORT78]. Because there are few, if any, implementations of the Fortran subset binding,

there are no plans to generate a version of PVT for subset Fortran. We do intend, however, to

convert the PVT to other languages, such as C.

2.5 Operator Interaction

In general, operator interaction is to be minimized, but cannot be totally eliminated. After all, the

primary semantic requirement of the standard is to generate graphic output and accept graphic input

These so-called "real effects" (as opposed to the logical effects on the state of the computation) are

not easily susceptible to automated testing, and for the foreseeable future, their testing must depend

on a human operator.

As discussed above in section 2.1, version 1.0 postpones this problem because it does not contain

traversal or input tests. The major design goals of future versions of the PVT system will be to

simplify operator interaction as much as possible by:

a. displaying clear instructions at run-time,

b. minimizing operator discretion insofar as the operator must be relied upon to judge the

correctness of graphic output, and

c. recording automatically the results of interactive tests (i.e., no manual checklists).

Apart from graphics-oriented operator interaction, many PVT programs must have access to im-

plementation-specific information, such as workstation types and connection identifiers. We took it

as an important goal that such information should be entered only once; the operator should not have

to specify information repetitively each time a test program is executed.

3

3. LOGICAL MODEL

One helpful way of understanding the PVT system is within the framework of deductive logic. In a

logical system, the basic operation is that of inference. From a finite number of given premises, one

can infer (or prove or deduce) a set (possibly infinite) of conclusions. If the premises are true and

the inference is valid, then the conclusions must also be true. Conversely, if the inference is valid

and the conclusion is false, then one of the premises relied upon in the inference must be false. This

latter mode of reasoning is therefore often called falsification testing; it is the one typically used for

checkmg the conformance of a software system against functional specifications.

3.1 Standardization as an Ideal Logical System

The PHIGS standard can be understood as a set of premises for a logical system. The premises are

of the form: "For all X, ifX is a conforming implementation, then X must behave in the following

way: i.e., the standard defines the behavior of a conforming implementation. When we test an

alleged implementation, P, we rely on the additional premise: "P is a conforming implementation."

From these premises we can then infer a great deal about the behavior of P. If we discover that the

actual behavior of P contradicts this theoretical behavior, we can then conclude that either

a. one of the relevant premises of the standard is false,

b. the premise that P conforms is false, or

c. the inference about the behavior of P is invalid.

As a practical matter, we rule out the first possibility: the standard is never wrong. This leaves the

last two possibilities, which mean that, respectively, the implementation is non-conforming or the

test is invalid.

3.2 Implementation of Logical Concepts in PVT

Although this outline is neat in theory, in practice there are a number of difficulties. First and

foremost, the standard is not cast as a series of logical premises, but as a document composed of

English prose. Second, in order to infer a seemingly simple conclusion, one often needs a large

number of premises from the standard including several which are not of direct interest to the test at

hand. Third, the proof involved in deriving the conclusion from the premises may be complex.

Finally, it is difficult to relate all this logical machinery to the actual code.

Despite the impracticality of carrying out the full realization of the pure logical model, it serves as an

ideal case which can suggest ways of structuring the actual system. In particular, the PVT uses the

notion of semantic requirements (SRs), which play the role of the premises of the standard, and test

case (TC) results, which play the role of conclusions.

3.2.1 Semantic Requirements

The PVT system consists of modules (see below), each of which contains a set of semantic require-

ments (SRs). These SRs represent a partial axiomatization of a given topical area of the standard:

the premises, perhaps gleaned indirectly, for that section of the standard. Like logical premises, well-

designed SRs should be:

4

a. Independent - We do not want to have one SR which implies another, if both are valid, we
simply keep the stronger of the two, since the other is redundant.

b. Complete - The SRs should require everything that the standard requires.

c. Specific - Each SR must have some testable consequence, perhaps in conjunction with other

SRs. Broad generalities are to be avoided in favor of lower-level concrete assertions.

d. Consistent - The SRs should not contradict each other.

e. Simple - An SR should not be a long list of requirements; to a reasonable extent, each SR
should state an atomic rule about conforming implementations.

Even given these guidelines, there is no uniquely best way of formulating the SRs for a given mod-

ule. Nor is this process, given the style in which the standard is written, automatable; some human

judgment is required. Once a set of SRs has been generated, however, we do have a clear statement

of the requirements to which an implementation will be held. It is understood, of course, that the

SRs are expressing requirements for a conforming implementation; they are not used to state restric-

tions on PHIGS programs. Nor is it stated explicitly in each SR that "In order to conform, an imple-

mentation must..." - this is implicit.

3.2.2 Test Cases

From a single SR, it is usually impossible to infer any conclusion about the behavior of an implem-

entation. Thus, it is generally not the case that an SR will be testable in isolation. The typical

situation, rather, is that from a set of SRs some conclusion can be drawn which is directly testable.

Such a conclusion is the basis for a test case (TC) within the module. Each module contains, not

only a set of SRs, but a set of programs each of which contains in turn a set of TCs. These TCs are

the executable core of the PVT system. Each TC consists of an explicit conclusion about the behav-

ior of a conforming implementation, worded so as to state what "should" happen.

The important thing is to relate these TCs back to the SRs. Each TC comes with a list of SRs upon

which its validity is based. There is, in general, a many to many relationship between SRs and TCs:

one TC will typically depend on several SRs, and each SR will typically be used by several TCs.

Harking back to the logical model, each TC is associated with a set of SRs in order to suggest how a

proof might be constructed that all conforming implementations succeed in the TC; and conversely,

that failure in the TC hnplies failure to conform to the standard. These proofs are not, in fact, made

explicit; the hope is that the inference is straightforward enough that users can "fill in" the derivation

steps themselves between the premises (SRs) and the conclusion (TC).

As is often pointed out in the literature on validation, passing the TCs is no guarantee that an im-

plementation really does conform; it might well violate the standard in untested areas. But failure in

a valid TC does strictly imply failure to conform.

5

3.3 Background Assumptions

It would be very useful for debugging purposes if we could also conclude, not only that the implem-

entation fails to conform, but that the reason it does so is that it violates at least one of the SRs of the

TC (although without determining which one). Unfortunately, this isn't normally a guaranteed result.

The problem is that the SRs explicitly named in the TC are usually not strictly sufficient to imply

the validity of the TC. More often, there are a series of background assumptions, or implicit prem-

ises, to which we must appeal. This distinction between explicit and implicit testing complicates the

use of the tests for debugging purposes. Below we shall discuss the various reasons that failure

might be reported, other than that the implementation fails to conform to a valid, explicit SR.

3.3.1 PVT Assumptions

The first set of assumptions, about the PVT, amounts to saying that the tests are in fact valid tests of

conformance. If these assumptions are incorrect, then, of course, one may not conclude that a failed

test implies non-conformance on the part of the implementation.

3.3.1.1 Validity of SRs— An SR might be incorrect; that is, it might require behavior that is not

actually mandated by the standard. We have, of course, tried to base the SRs on the standard, but

there are cases in which its intent is questionable. The hope is that even if an SR is incorrect, at least

its meaning is clear. This serves to sharpen any interpretation question which may emerge. These

cases serve as feedback to the standardization process so that inconsistent or incomplete

specifications in the standard may be corrected.

3.3.1.2 Validity of TCs— Even if a set of SRs is correct, a given TC might not be derivable from

them (together with other background assumptions). The resolution would be either to fix the TC, or

perhaps formulate a stronger SR to support the TC.

3.3.1.3 Validity of Code— Even if a TC is correct, the actual code which supposedly embodies it

might not in fact really refiect the condition under test.

3.3.2 Implementation Assumptions

The second set of assumptions concerns aspects of the implementation not under explicit test. If

these assumptions are incorrect, then one cannot conclude that the implementation fails to support

one of the explicit SRs. However, the implementation still would not conform; it just fails to do so

for unanticipated reasons, not those which were the purpose of the test.

3.3.2.1 Auxiliary PHIGS Functions— Very often, the tests rely on the establishment of a

reasonable state of system. The tests and SRs do not refer to the need for "environment-setting"

functions, such as <open phigs>, <open workstation>, and <open structure> when these are not the

ones being tested explicitly. Note that we assume the proper operating state context for execution of

functions in the wording of the SRs. For example, we say "<inquire ...> does X", not "If

workstation is open, then <inquire ...> does X".

One must distinguish, then, between incidental and purposeful uses of PHIGS functions within the

test suite. Most PHIGS functions cannot do anything in isolation, but only in a context established

by other functions. When a routine invokes a function in order to test directly whether it works, it is

a purposeful use. When a function is invoked simply to set up the environment for another function,

it is an incidental use.

6

For example, the basic semantic requirement for <archive structure> is that it copy a structure from

the CSS to an archive file. But in order to test this, other PHIGS functions must be used to set up the

CSS in the first place, to retrieve the structure fi"om the file, and to inspect the resulting CSS. Figure

1 illustrates the way PHIGS functions interact with the program, the various intemal data structures,

and the operator.

When a TC is failed, its SRs identify which feature or combination of features is being purposefully

tested and how so. This is the probable cause of failure, but of course other functions being used

incidentally cannot be ruled out. Nonetheless, even if the cause of failure cannot be certain, the fact

of failure is.

3.3.2.2 System Resources— Virtually every implementation will depend on the proper working of

system software, such as language compilers, linkers, loaders, and the like. Similarly, an actual

system normally has a working terminal and other physical realizations of such PHIGS abstractions

as workstations. Even though these are not used only by PHIGS, they are nonetheless part of the

complete PHIGS implementation. To put it succinctiy, an implementation is not just a subroutine

library. It is, rather, any system capable of accepting a PHIGS program and producing the mandated

behavior, including the intemal results which may be checked directiy by the program, or the

external results which can be checked only by human inspection. The components of such a system

are not relevant to conformance; only the implementation as a whole conforms, or fails to conform,

to the standard.

As an extreme example, note that the PHIGS standard mandates that an implementation have at least

one OUTIN workstation. If there is only one terminal which realizes that workstation and it malfunc-

tions, at that moment the implementation ceases to conform. Any test which relies on the existence

of an OUTIN workstation will correctiy signal failure, even if the reason for failure may not be

found among the explicit SRs.

7

p

r

0

g

r

a

m

inquire, search

insert/replace

CSS elements,

change, delete

Works

retrieve

CSS
archive

post.

update,

redraw

inquire

set

inquire

request, sample

initialize

ation

screen

WSL

WDT

input

sight

touch

event

PHIGS

inquire, get

set

inquire

0

P

e

r

a

t

0

r

Edges are labeled with operation that causes data movement. Except for sight and touch, these are all

PfflGS functions.

CSS: Centralized Structure Store

PSL: PfflGS State List

PDT: PfflGS Description Table

WSL: Workstation State List

WDT: Workstation Description Table

Figure 1. Data flow within PfflGS.

8

4. PVT ARCHITECTURE

Given the design goals and the logical model set forth, the question becomes how to realize these in

an actual system of software and documentation. The representation of the abstract entities should

be easily accessible by both automatic processes and the human user.

4.1 Modularity

The set of all SRs for the entire PHIGS standard is far too large to be handled as a single entity.

Rather, they are divided into topically coherent subsets, which we call modules. Ideally there would

be no interaction between modules and strong logical interdependence within each module.

Recalling the many-to-many relationship between SRs and TCs, we strive to keep each TC depend-

ent mainly on the SRs of its own module (these are the SRs being explicitly tested). Thus, the ration-

ale for grouping a set of SRs and TCs into one module is that their functions and data structures must

be tested together, i.e., their behavior is strongly interrelated. Hence, the module's set of SRs and

TCs form a "natural cluster."

Even though all the SRs of a module are closely related, it will often happen that the TCs are numer-

ous or diverse enough that they need to be further subdivided into several programs. How should

this subdivision take place? At one extreme we could put one TC per program, since a program with

several TCs may terminate abnormally before finishing, thus leaving some conditions untested.

Such an approach would incur a great deal of overhead, however, especially given the fact that often

a complex computational state is set up and then several TCs are executed based on it.

At the other extreme, if we wish to minimize the operator's effort, we could put all the TCs of a

module, or even of the entire system, into one program. This, too, seems impractical, given the

resource limitations of many systems, and the resulting difficulty for human readers. We tried to

strike a reasonable balance, grouping closely related TCs within single programs, yet keeping the

programs fairly small and comprehensible.

Thus, the PVT suite is organized as a set of logically independent modules, each of which contains a

set of SRs and a set of TCs, with the TCs distributed among several programs. Concretely, each

module will consist of a single documentation file containing the statement of the SRs and the design

of the programs, and several source code files, one per program.

4.2 lY-ee Organization

The standard is not just an undifferentiated set of requirements, but has clearly delineated functional

areas. We considered using the sequence of function definitions in section 5 of the standard

[PHIGS88] or the data structures of section 6 as an organizing principle, but it seemed finally that

the more conceptual organization of section 4 provided the best model, especially given the goal that

each module deal with all the strongly related requirements of a topic. For instance, a set and inquire

function often must be tested together and obviously belong in the same module, even though in

section 5 all the inquires are treated as a separate group.

9

The standard, like many documents, has a hierarchical structure. Also, most computer systems

provide a hierarchy for their file systems. It therefore seemed reasonable to take advantage of this

built-in order and organize the modules into a topical hierarchy, or tree, to be realized using the tree

structure of the file system.

4.3 Order

Although it has some advantages for debugging purposes, we have not adopted a test-before-use

regime. First, it is unclear, given the interdependence of the PHIGS functions, whether such a

program could really be carried out. Second, test-before-use does not, as is sometimes claimed,

infallibly isolate the cause of an error, follow-up testing is typically needed to determine exactly

what went wrong. Third, by dispensing with the test-before-use rule we can make the test structure

line up coherently with the standard's own conceptual structure. Given our emphasis on confor-

mance rather than debugging, we believe that it is more important to maintain a simple relationship

between the test system and the standard than to try to isolate the cause of failures more precisely

than is otherwise done.

4.4 Database Model of PVT

Given that the PVT structure is not tied directly to the order of functions in the standard, or to that of

the data structures, it seemed useful to try to provide a cross-reference index into the system for the

functions and data sOiictures. Likewise, even though the PVT structure resembles that of one section

of the standard, it is still useful to have an explicit detailed cross-reference between the SRs and the

text of the entire standard.

The SRs anchor the system; they specify the precise behavior of PHIGS functions and data. There-

fore, the SRs also serve as the reference points for related entities. Specifically, each SR is anno-

tated with a list of related functions, data structures, and text from the standard. By adopting a

canonical numbering of the functions and data structures and documenting the references according

to a well-defined format, we allow the cross-reference tables to be built automatically once the

original annotation is done. Besides enabling users to navigate within the system, an equally

important goal of this approach is that it gives us a good coverage metric: we can see which func-

tions and data structures have been probed by the total PVT system.

It is useful to think of the PVT system as embodying a database. Figure 2 contains a schematic

diagram exhibiting the main features of this database, namely its entities and the relationships among

them. Note the central role of the SRs.

4.5 Message System

If a test program is to be a practical tool for conformance measurement, it must communicate its

findings to the user in a simple and convenient way. We settied on the notion of a message as the

basic unit of output of a PVT program. Besides the English content of each message, the two dimen-

sions of interest are type and destination.

10

Test Module /

Unit Documentation

m

Programs /

Pseudo-code

m

m

Standard
Specs

m

m

Semantic
Requirements

m

m

m

Test Cases

B
m- m Functions

m Data
Structures

A lowercase "m" next to an entry indicates that there may be many instances of the entity. Thus, the

D relationship between Test Module and Semantic Requirements is one-to-many; the B relationship

between Semantic Requirements and Functions is many-to-many.

Relationships: Captured by:

A SR is derived from Standard Specs #SinSR
B SR depends on Function #FinSR
C SR depends on Data Structure #DinSR
D Module tests SR SRinDOC.TXT
E Module contains Program design in DOC.TXT
F Program contains TCs SETMSG in code

G TC directly tests SR SRs in SETMSG
(also#TinSR)

Figure 2. The PVT as a database.

11

While the core purpose of a test program is to notify the user of any failed test cases, there are

several other kinds of information that need to be conveyed. For example, the user might also want

to know which program is running, what test cases were passed, unanticipated circumstances, and

general information about the implementation. To accommodate these possibilities each message is

categorized as one of six types, each type denoted by a two-character code:

1. System (SY) messages note the beginning and completion of execution of each PVT program

and are used to summarize the number of TCs executed and errors detected.

2. OK messages indicate a passed test case. Messages of this type can be suppressed.

3. Error (FA) messages indicate a failed test case, resulting from violation of explicit testing.

4. Unanticipated (UN) messages are generated when the program detects some anomalous

condition that prevents further processing, but does not imply non-conformance.

5. Unanticipated non-conformance (NC) messages are generated when the program detects the

failure of some PHIGS function being implicitly relied on (not explicitly tested) that prevents

further processing.

6. Informational (IN) messages are used for all other communication.

The second dimension is that of destination; where are the messages to be sent? We envisage

several plausible possibilities:

1. The operator may want to see the messages at run-time.

2. There could be an individual message file for each test program execution.

3. There could be a global message file which is used to accumulate the results of all the pro-

grams.

The decision on message destination seemed to be one best left to the operator. Accordingly, we
provide a means during system initialization for the operator to decide which combination of these

three will receive messages. Each time a message is generated it is broadcast to the appropriate files.

Every enabled destination receives exactly the same set of messages.

12

5. DEVELOPMENT TOOLS

Given the highly integrated nature of the PVT system, we could not hope to maintain internal consis-

tency based only on human review. As development progressed, we implemented and relied heavily

on a set of tools to generate and check various parts of the system. Brief descriptions of the more

important of these follow.

5.1 Code Outline Generator

The generator produces a plausible source code outiine from the program design of the documenta-

tion file. All the formatted information, such as program title, and the wording of test cases is

generated in correct Fortran. Other parts of the design are rendered as comment lines, allowing the

program author to follow closely the documented logic.

5.2 Module and Program Checker

The module checker runs a variety of compatibility and format checks on the documentation file and

program files within a single module. The program checker's main job is to perform data type

checking on the parameters in the calls to PHIGS functions.

5.3 Cross-Reference Tools

The module preparation program scans the document file and builds cross-reference files for each of

the various entities to be linked to the SRs. The module post-processing program alters the docu-

mentation file to include some of the cross-reference information. In addition, global cross-refer-

ence files are built from the local files for each module and distributed as part of the PVT documen-

tation.

5.4 Re-number SRs

As a module is designed, it is common to insert, delete, and re-order the set of SRs within it. Since

these are referred to by the TCs, this can become a cumbersome process, because the references

must be updated to agree with the new SR numbers. The re-numbering tool performs this operation

automatically.

13

6. SUMMARY AND INTENTIONS

When developing a validation test suite, the designer(s) must create a test system that "fits" the

standard while also possessing some plausible internal structure. The PHIGS Validation Test suite

was set up as a semantic hierarchy, into which the features ofPHIGS are organized. This document

has presented the rationale for this design, our goals, and the tradeoffs we made. Moreover, we

described the PVT system itself, including the logical model on which it is based and the tools we
used in its creation.

This first version of the PVT system is concemed with state semantics and requires minimal operator

interaction. Future versions would encompass interactive tests, focusing on traversal and graphical

input. To complete the PVT system, tests for the error system and metafiles would also need to be

developed.

Although the PVT suite is designed in a language-independent manner, it is coded in FORTRAN.
We plan to convert the PVT to other languages, with C being the most probable choice as the next

available host language.

Finally, we intend to use this PVT suite to validate PHIGS implementations which have been sub-

mitted for testing and to make it available to other accredited testing laboratories for the same

purpose. Additionally, the suite will be available to other organizations for use in developing and

testing PHIGS implementations.

14

7. REFERENCES

[CUGI90] John Cugini, Mary T. Gunn, Lynne S. Rosenthal, User's Guidefor the PHIGS Validation

Tests, NISTIR-4349, National Institute of Standards and Technology, Gaithersburg, MD, 1990.

[FED88] Federal Information Processing Standards: Conformance Testing Policy and Procedures,

Federal Register, Vol. 53, No. 149, August 3, 1988.

[FORT78] Programming Language FORTRAN, ANSI X3.9-1978, American National Standards

Institute, New York, NY, 1978.

[GKS85] Computer Graphics - Graphical Kernel System (GKS) Functional Description, ANSI
X3. 124-1985, American National Standards Institute, New York, NY, 1985.

[GKST89] GKS Validation Test Suite, Version 2.1, National Institute of Standards and Technology,

Gaithersburg, MD, 1989.

[PHIGS88] Computer Graphics - Programmer's Hierarchical Interactive Graphics System (PHIGS)

Functional Description, Archive File Format, Clear-Text Encoding ofArchive File, ANSI
X3. 144-1988, American National Standards Institute, New York, NY, 1988.

15

. III 1 1 <; nPPARTIUIFNT OF PDMMFRPF 1. PUBUCATION OR REPORT NUMBER

(REV. 3-89) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY NiST /sp- son /I 81
2. PERFORMINQ ORQANIZATION REPORT NUMBER

RIRI inriDAPHIP RATA QHPPT
3. PUBUCATION DATE

July 1990
4. TITUE AND SUBTITLE

PHIGS Validation Tests (Version 1.0): Design Issues

5. AUTHOR(S)

John Cuqini, Mary T. Gunn, and Lynne S. Rosenthal

6. PERFORMINQ ORQANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURQ, MO 20899

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

Final
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

Same as item 6.

10. SUPPLEMENTARY NOTES

DOCUMENT DESCRIBES A COMPUTER PROGRAM; SF-1B5, FIPS SOFTWARE SUMMARY, IS ATTACHED.

11. ABSTRACT (A 200-WORO OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOQRAPHY OR
UTERATURE SURVEY, MENTION IT HERE.)

Conformance testing for the Programmer's Hierarchical Interactive Graphics System (PHIGS)

standard presents certain novel difficulties, especially the indirect effect of many functions, and

the inaccessibility to the program of visual effects. The model of logical inference offers a way
to organize a system of the complexity needed to overcome these problems. This complexity

makes the use of certain database concepts quite valuable in allowing users to comprehend the

system. Special emphasis is placed on allowing the user to associate each test case with some

specific requirement in the standard. Test output consists of a set of formatted messages that

enable the user to assess test results rapidly and accurately.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITAUZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

conformance testing; graphics standards; PHIGS; testing of software; validation of software

13. AVAILABIUTY

7 UNUMITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD, VA 22161.

14. NUMBER OF PRINTED PAGES

21

IS. PRICE

ELECTRONIC FORM

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SYSTEMS TECHNOLOGY

Superintendent of Documents
Government Printing Office

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Institute of Standards and Technology Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notification key N-503)

i ^JLkJ Technical Publications

Periodical

Journal of Research of the National Institute of Standards and Technology—Reports NIST research

and development in those disciplines of the physical and engineering sciences in which the Institute

is active. These include physics, chemistry, engineering, mathematics, and computer sciences.

Papers cover a broad range of subjects, with major emphasis on measurement methodology and
the basic technology underlying standardization. Also included from time to time are survey articles

on topics closely related to the Institute's technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the

Institute's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) de-

veloped in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NIST, NIST annual reports,

and other special publications appropriate to this grouping such as wall charts, pocket cards, and
bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physi-

cists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in

scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical
properties of materials, compiled from the world's literature and critically evaluated. Developed un-

der a worldwide program coordinated by NIST under the authority of the National Standard Data
Act (Public Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data (JPCRD)
is published quarterly for NIST by the American Chemical Society (ACS) and the American Insti-

tute of Physics (AIP). Subscriptions, reprints, and supplements are available from ACS, 1155 Six-

teenth St., NW., Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Institute on building

materials, components, systems, and whole structures. The series presents research results, test

methods, and performance criteria related to the structural and environmental functions and the

durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treat-

ment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final reports of work performed at NIST
under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Com-
merce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally

recognized requirements for products, and provide all concerned interests with a basis for common
understanding of the characteristics of the products. NIST administers this program as a supplement
to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NIST research and experience, cov-
ering areas of interest to the consumer. Easily understandable language and illustrations provide use-

ful background knowledge for shopping in today's technological marketplace.
Order the above NIST publications from: Superintendent ofDocuments, Government Printing Office,

Washington, DC 20402.
Order the following NIST publications—FIPS and NISTIRs—from the National Technical Information
Service, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series col-

lectively constitute the Federal Information Processing Standards Register. The Register serves as

the official source of information in the Federal Government regarding standards issued by NIST
pursuant to the Federal Property and Administrative Services Act of 1949 as amended. Public Law
89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11,

1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NIST Interagency Reports (NISTIR)—A special series of interim or final reports on work performed
by NIST for outside sponsors (both government and non-government). In general, initial distribu-

tion is handled by the sponsor; public distribution is by the National Technical Information Service,

Springfield, VA 22161, in paper copy or microfiche form.

U.S. Department of Commerce
National Institute of Standards and Technology

(formerly National Bureau of Standards)

Gaitfiersburg, MD 20899

Official Business

Penalty for Private Use $300

