
NIST Special Publication 500-180

Computer
Systems
Technology
U.S. DEPARTMENT OF
COMMERCE
National Institute of

Standards and
Technology

A111D3 3TfitDMfl

NIST

PUBLICATIONS

100

.U57

500-180

1990

C.2

Guide to

Software Acceptance

Dolores R. Wallace

John 0. Cherniavsky

NATIONAL INSTITUTE OF STANDARDS
TECHNOLOGY

Research Mormation Center
Gaithersburg, MD 20899

&

DATE DUE

Demco, Inc. 38-2<•93

NIST Special Publication 500-180

Guide to

Software Acceptance

Dolores R. Wallace

John C. Cherniavsky*

National Computer Systems Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

*Professor of Computer Science

Georgetown University

Washington, DC 20057

April 1990

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

Reports on Computer Systems Technology

The National Institute of Standards and Teclinology (NIST) (formerly the National Bureau of Standards)

has a unique responsibility for computer systems technology within the Federal government. NIST's

National Computer Systems Laboratory (NCSL) develops standards and guidelines, provides technical

assistance, and conducts research for computers and related telecommunications systems to achieve

more effective utilization of Federal information technology resources. NCSL's responsibilities include

development of technical, management, physical, and administrative standards and guidelines for the

cost-effective security and privacy of sensitive unclassified information processed in Federal computers.

NCSL assists agencies in developing security plans and in improving computer security awareness train-

ing. This Special Publication 500 series reports NCSL research and guidelines to Federal agencies as well

as to organizations in industry, government, and academia.

National Institute of Standards and Technology Special Publication 500-180
Natl. Inst. Stand. Technol. Spec. Publ. 500-180, 42 pages (Apr. 1990)

CODEN: NSPUE2

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1990

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402

ABSTRACT

Software acceptance is a life cycle process which includes acceptance of interim

and final software products for both new and maintained software systems. This

guide assists buyers in understanding acceptance issues relative to a basic life cy-

cle model and some of its variants. The guide identifies six categories (func-

tionality, performance, interface quality, overall quality, security, and safety) for

which acceptance criteria must be defined. The guide identifies issues to be con-

sidered when in establishing acceptance criteria. Finally the guide directs

managers in planning and implementing a software acceptance program, with em-

phasis on the final software acceptance testing.

KEYWORDS: acceptance categories; acceptance criteria; life cycle models;

software acceptance; software acceptance plan; software acceptance testing;

software product assurance; software quality

iii

PREFACE

The Guide to Software Acceptance is intended to assist buyers and develop-

ers in preparing for software acceptance. It addresses software acceptance of

interim, as well as final, software products. This Guide:

• defines software acceptance;

• establishes procedures for acceptance of interim and final products;

• establishes software acceptance as a life cycle process for both new and

evolving software systems;

• clarifies the role of software acceptance testing as part of software

acceptance; and

• identifies generic criteria for products to be presented for final accep-

tance.

The Government increasingly relies on software to administer services, to

manage its programs, and to control products which its personnel use. Industrial

users rely on software systems for inclusion in their products or to aid in design-

ing and building the products, to administer their services, and to manage their

companies. The ability to compete in a world economy requires reliable software

systems. Improvement in both Government's and industry's software practices

improves the ability to support the nation's economy and to compete in a highly

competitive world market.

The use of this guide is recommended for the managers and technical staffs

of organizations that provide or purchase software systems or that perform

software product assurance activities. Software product assurance organizations

typically provide services for software quality assurance, software configuration

management, and software verification, validation, and testing (W&T).

The use of this guide is also recommended to the management of companies

who produce off-the-shelf software as their business product. These managers are

responsible for releasing their companies' software products to the marketplace.

By applying software acceptance during the development of their products, they

may contribute to their companies' success which depends upon the quahty and

timeliness of the developed software.

V

CONTENTS

1. INTRODUCTION 1

1.1 Terminology 2

2. SOFTWARE ACCEPTANCE 4

2.1 Acceptance Reviews 4

2.2 Software Products for Acceptance 5

2.3 Buyer's Role in Software Acceptance 6

3. SOFTWARE DEVELOPMENT STAGES AND ACCEPTANCE 9

4. SOFTWARE ACCEPTANCE ACTIVITIES AND CRITERIA 13

4.1 Categories for Acceptance 14

4.2 System Criticality 15

4.3 Acceptance Criteria 17

4.4 Collection and Analysis of Data 19.

5. SOFTWARE ACCEPTANCE TESTING 20

5.1 Planning and Administration 20

5.2 Objectives 21

5.3 Location 21

5.4 Approach 22

5.5 Staff Responsibilities 22

5.6 Acceptance Test Documentation 23

6. SOFTWARE ACCEPTANCE PLANNING AND MANAGEMENT 26

6.1 The Software Acceptance Plan 26

6.2 Project Description 27

6.3 Management 28

6.4 Administration 28

6.5 Software Acceptance Description 28

6.6 Software Acceptance Activities 29

6.7 Software Acceptance Testing 29

7. SUMMARY 30

REFERENCES 31

vii

TABLES

m 1 1

i able 1. litles oi requirements documents 5

Table 2. Generic software products for acceptance 6

Table 3. Buyer responsibilities 7

Table 4. Buyer preparation for acceptance 8

Table 5. The basic model stages 9

Table 6. Basic model variations 11

Table 7. Acceptance with basic model and variants 12

i able 8. bstabiishmg and usmg acceptance criteria 14

Table 9. Categories of acceptance requirements 15

Table 10. Airplane control system criticality 16

Table 11. Batch payroll system criticality 17

Table 12. Acceptance issues by category 18

Table 13. Final acceptance management activities 21

Table 14. Test plan requirements 23

Table 15. Test design information 24

Table 16. Test procedure information 25

Table 17. Acceptance plan contents 27

ix

1. INTRODUCTION
Computers and their associated software control services that affect life, pro-

perty, and the national defense. Software (referred to as software system or sys-

tem) also supplies services that allow companies to function in highly competitive

business environments. The systems must exhibit a high level of reliability if a

business is to compete in the world-wide marketplace. In spite of substantial

resources invested in system development and maintenance, delivered systems

often do not meet requirements for operating capability, reliability, overall

software quality, security, and software safety [1].

Software acceptance testing at delivery is usually the final opportunity for

the buyer to examine the software and to seek redress from the developer for

insufficient or incorrect software. Frequently the software acceptance test period

is the only time the buyer is involved in acceptance and the only opportunity the

buyer has to identify deficiencies in a criticalf software system. This exposes the

buyer to the considerable risk that a needed system will never operate reliably

(because of inadequate quality control during development). To reduce the risk

of problems arising at delivery or during operation, the buyer must become
involved with software acceptance early in the acquisition process.

Software acceptance requires procedures for identifying acceptance criteria

for interim life cycle products and for accepting them. Final acceptance not only

acknowledges that the entire software product adequately meets the buyer's

requirements but also acknowledges that the process of development was ade-

quate, a life cycle process, software acceptance enables:

• early detection of software problems (and time for the buyer to plan for

possible late delivery);

• preparation of appropriate test facilities; and

• early consideration of the user's needs during software development.

Based on the results of a Software Acceptance Test Workshop [2], this guide

presents information on software acceptance testing [3] and applies its fundamen-

tal concepts to the larger process of software acceptance. This process may need

to be modified for several reasons, including:

• The user's organization may not be prepared to expend the effort for a

complete acceptance activity.

• The project for which this guide is to be used may already be in pro-

gress.

• Off-the-shelf software or other reusable software may be a major com-

ponent of the software system.

While a software acceptance program requires a major effort on the part of

the accepting organization, the organization may not be able to expend this effort

t The term critical conveys the meaning of economic or social catastrophe (e.g., loss of

life) and in this guide also conveys the meaning of strategically vital to an agency's or

company's long term economic welfare.

-1-

Guide to Software Acceptance

because of insufficient staff, time, or experience. A possible solution is to contract

a third party to develop and manage an acceptance program. A variation is to

require developers to provide data from their software product assurance activi-

ties; this approach depends on the developer's performance on previous software

system projects and on the scope of the current project. The accepting organiza-

tion remains responsible for acceptance decisions when oversight is delegated.

While the approach to software acceptance defined in this guide assumes the

buyer has built acceptance considerations into the project from its beginning, it

can be adapted to situations in which a project has not been started with an

acceptance program and has encountered difficulties (e.g., missed deadlines or

poor performance on a demonstration test). This may require new contractual

agreements, especially to obtain information concerning the requirements, design,

and software assurance activities of the developer. The buyer may have to

adjust schedules to allow time for construction of acceptance tests.

Existing guidelines on selecting third party software and on software accep-

tance testing should be applied to off-the-shelf software and other reusable

software prior to acceptance of the software system [4,3]. This guide also applies

for the adaptation of off-the-shelf packages to a buyer's environment.

The software system acceptance activities described in this guide can be

used in any development environment. The guide describes how differences in

development environments and life cycle models may affect software acceptance

activities and concerns. Life cycle models and environments include a basic

model developed from the waterfall model [5,6,7] f, the spiral model [8], the evolu-

tionary model [9], prototyping [10], and application generators [11,12].

This document provides a framework from which managers may identify

their requirements for software acceptance, including:

• special issues dependent on methodology and project features;

• products for acceptance;

• acceptance criteria;

• acceptance reviews;

• acceptance testing; and

• acceptance plan, including the acceptance test plan.

1.1. Terminology

The term accepted and its variants are used in several contexts. Accepted

means that interim and final software products are examined to determine

whether they meet specific criteria. If they do, then they have passed acceptance

t The description of the waterfall model was presented by W. W. Royce in "Managing

the Development of Large Software Systems: Concepts and Techniques" at IEEE WES-
CON, August 1970, reprinted in IEEE TUTORIAL: Software Engineering Project

Management and in Proceedings of the Eighth International Conference on Software En-

gineering. The references in this guide describe variants appearing in Federal guidelines

and standards.

Guide to Software Acceptance

and may be accepted. The term acceptance decision refers to the decision made
after a software product has been evaluated; the decision may include rejection,

partial acceptance, or total acceptance. Within the context of acceptance test

activities, contractual acceptance of a software product means payment or relea.se

from further development tasks, and imphes that the developer has satisfied the

buyer that the completed system is performing correctly. Some operational test-

ing may occur as part of this process.

Software system refers to the software, with all associated documentation

and support tools, operating in its intended environment. In many cases (e.g.,

weapons systems), testing of the complete system in the intended environment

may be beyond the scope of the software testing addressed in this guide. The
size of the software systems considered in this document range from a few

thousand to many millions of lines of instructions. This document does not

address the initial selection and certification issues of off-the-shelf software for use

in larger systems or as stand-alone systems; these issues are discussed in [4].

In this guide the terms organization, developer, buyer, user, and manager
refer to specific participants in the software development and acceptance process.

An organization is an individual or a group of individuals responsible for some
aspect of software development, maintenance, product assurance, or acceptance.

The developer is the organization responsible for the development of the software.

The buyer is the organization representing those who need and may use the sys-

tem and those who are associated with the contractual procurement of the sys-

tem. (The buyer may be the organization responsible for marketing a product.)

The user is the organization that will be using the software system. The
manager is the organization responsible for acquiring and accepting the software.

When the buyer and manager are different, the buyer has final accountability for

the acceptance decision.

Buyer and user may be the same organization or there may be a separation

between procurement and actual users. The user and developer may be the same

(e.g., systems software developed by the systems staff). The users may be person-

nel with expert or non-expert skills related to software evaluation. The buyer

may be the contracting officer. The persons determining the quality of the

software may be systems analysts who will not actually use the procured system.

The manager may be representatives of the user or experts hired as system

integrators or other contractual experts. System integrators are independent

organizations who are hired to manage the complete software acquisition; this

task may include responsibility for overseeing the software acceptance process.

This guide does not assign specific organizations for various product assurance

activities; each project establishes those relationships according to project needs.

This guide encourages the buyer to ensure user involvement throughout the

software acceptance process.

-3-

Guide to Software Acceptance

2. SOFTWARE ACCEPTANCE
Software acceptance is an incremental process of approving or rejecting

software systems during development or maintenancef, according to how well the

software satisfies pre-defined criteria. Acceptance decisions occur at pre-specified

times at which processes, support tools, interim documentation, segments of the

software, and finally the total software system must meet pre-defined criteria for

acceptance. Subsequent changes to the software may affect previously accepted

elements. The final acceptance decision occurs with verification that the

delivered documentation is adequate and consistent with the executable system

and that the complete software system meets all buyer requirements. This deci-

sion is usually based on software acceptance testing: "formal testing conducted to

determine whether a software system satisfies its acceptance criteria and to

enable the buyer to determine whether to accept the system" [3]. Formal final

software acceptance testing must occur at the end of the development process. It

consists of tests to determine whether the developed system meets predetermined

functionality, performance, quality, and interface criteria. Criteria for security or

safety may be mandated legally or by the nature of the system.

Software acceptance also provides development managers a tool for monitor-

ing development of quality software. Developers may apply measurement criteria

to results from the product assurance activities (e.g., configuration management,
quality assurance, and W&T) to support decisions regarding the progress of

software development activities.

2.1. Acceptance Reviews

Software acceptance is specified in a formal plan during the earfiest activity

of the software life cycle. The software acceptance plan identifies products for

acceptance, the specific acceptance criteria, acceptance reviews, and acceptance

testing throughout the entire life cycle.

Acceptance decisions need a framework in which to operate; items such as

contracts, acceptance criteria, and formal mechanisms are part of this framework.

The software acceptance must state or refer to specific criteria that products

must meet in order to be accepted. A principal means of acceptance in the

development of critical software systems (e.g., weapon systems, defense informa-

tion networks, robotic control software) is a periodic review of interim software

documentation and other software products [13].

t In this guide, for the purpose of software acceptance the activities of software mainte-

nance are a;ssumed to share the properties of software development. "Development" and

"developer" include "maintenance" and "maintainer."

Guide to Software Acceptance

Table 1. Titles of requirements documents

• Functional Requirements Description; Data Requirements

Specification [7]

• Functional Description [14]

• Software Requirements Specification [15, 16]

• Software Requirements Specification; Interface Requirements

Specification [6]

• Software Requirements Specification; Information System
Product Specification; External Interface Requirements Data
Item Description (DID) [17]

A disciplined software acceptance program for software of any type may use

acceptance reviews as a formal mechanism. When the acceptance decision

requires change, another review is necessary to ensure that the required changes

have been implemented and properly configured and that any affected pieces pass

acceptance. For large or complicated projects several reviews may be necessary

during the development of a single product. This guide does not specify the

specific names of products for review because, as illustrated in table 1, the formal

names of products vary according to the life cycle and standards applicable to a

project. At the least, reviews should occur for software requirements, software

designs, source code, system integration, and acceptance testing [18].

2.2. Software Products for Acceptance

While software acceptance activities apply to all products of the software

system, scheduled activities may vary according to the type of product. Exam-
ples of product types are listed in table 2. The guidance in this document applies

primarily to development products but may sometimes apply to other product

types. Acceptance activities for off-the-shelf software, support software, and

environment products occur early in the system planning activities. For selection

and acceptance of many support products, (e.g., whether a specific design tool is

appropriate), the issues addressed in chapter 5 of this guide and in [4] must be

considered. Tools acquired to support software acceptance testing must pass

acceptance. Guidelines of [4] apply to off-the-shelf products that will be used as

stand-alone systems and to products considered for reuse. Acceptance activities

identified in this guide apply to changes to off-the-shelf packages and reusable

software and their integration into the software system.

-5-

Guide to Software Acceptance

iable 2. (generic SOI tware products tor acceptance

Product Type Examples

• . Development Products Software Requirements, Maintenance Manual

• Process Products Development Schedules, Acceptance Criteria

• Support Products Design Tools, Application Generators

• Environment Products Operating Systems, Databases

• Assurance Products Test Plan, Test Case Generators

The buyer organization may accept software products produced by the

buyer or other organizations for project management, software product assurance

activities, and software acceptance. Acceptance activities may also apply to the

receipt of documents, the documentation of software product assurance activities

by the developer and other organizations, intermediate product testing (usually

supplied and performed by the developer), results or summaries of intermediate

product testing, software quality criteria measures of acceptance, the results or

summaries of evaluating the software against the criteria, and the final accep-

tance test plans. The software acceptance plan describes the options available

for acceptance decisions and the documentation requirements for accepting a pro-

duct that has not met all of the acceptance criteria.

2.3. Buyer's Role in Software Acceptance

Accountability for software acceptance belongs to the buyer, whose responsi-

bilities are listed in table 3. The buyer may delegate some responsibilities to an

acceptance manager who may be a user, a systems integrator, a developer, or

some other third party (e.g., V&V). The buyer must be actively involved in

defining the type of information required, evaluating that information, and decid-

ing at various points in the development activities if the products are ready for

progression to the next activity. Preparation activities, as indicated in table 4,

enable the buyer to fulfill software acceptance responsibilities.

Guide to Software Acceptance

Table 3. Buyer responsibilities

• Ensure user involvement in developing system requirements and ac-

ceptance criteria.

• Identify interim and final products for acceptance, their acceptance

criteria, and schedule.

• Plan how and by whom each acceptance activity will be performed.

• Plan resources for providing information on which to base accep-

tance decisions.

• Schedule adequate time for buyer staff to receive and examine pro-

ducts and evaluations prior to acceptance review.

• Prepare the acceptance plan.

• Respond to the analyses of all project entities before accepting or

rejecting.

• Approve the various interim software products against quantified

criteria at interim points.

• Perform the final acceptance activities, including formal acceptance

testing, at delivery.

• Make an acceptance decision for each product.

The buyer (through the acceptance manager) identifies the software products

and the criteria for software acceptance. Acceptance of the system requirements

must involve examining data from all means appropriate to the project (e.g.,

requirements verification, prototyping) to ensure that they adequately represent

the user's needs. Acceptance criteria derived from these requirements quantita-

tively describe the functional, interface, performance, and quality measurements

that the software must satisfy. Depending on the specific project, security and

safety criteria may be necessary.

While the user or a third party may perform many of the planning and

acceptance test activities, the buyer's technical role, manager, is non-trivial. The

-7-

Guide to Software Acceptance

buyer must ensure that all planning activities and documentation are complete.

The buyer must either perform the acceptance tests or observe the tests.

The acceptance manager is responsible for ensuring test procedures have

been completely defined and implemented and that all resources are ready for the

acceptance testing. In the case of final acceptance testing, the tests should be per-

formed in the operational environment. If that is impossible, contingencies must
be built into the acceptance agreement to ensure that the developer is responsible

for deficiencies discovered in the operational environment.

Final acceptance of software based on software acceptance testing usually

means that the contract and project are completed, with the exception of any

caveats or contingencies at acceptance. Final payment for the software occurs

and the developer has no further development obligations. (Of course there may
be maintenance agreements but these are a separate issue.)

Table 4. Buyer preparation for acceptance

• Acquire full knowledge of the application for which the sys-

tem is intended.

• Become fully acquainted with the application as it is current-

ly accomplished by the buyer's organization.

• Identify similar applications in other organizations.

• Understand the risks and benefits of the software develop-

ment methodology that is to be used in building the software

system.

• Fully understand the consequences of adding new functions

to enhance an existing system.

Guide to Software Acceptance

3. SOFTWARE DEVELOPMENT STAGES AND ACCEPTANCE
This guide uses the basic model of software development stages of

FIPSPUB132 [19] as a basis for software acceptance. Variations which either

modify the basic model to incorporate more of the process of software develop-

ment or to incorporate new technology to improve software development are

addressed. Table 5 lists the stages of the basic model. Table 6 describes several

variations of the basic model and their characteristics. Discussion of variations

which concern the management of the software development process is outside

the scope of this guide.

In the basic model, software development is partitioned into distinct stages

(table 5). The end of each stage is an interim acceptance point. For large pro-

jects, there may be several acceptance points within a stage. The variations of

the basic model also generate acceptance documentation at similar points. The
variations differ in the mechanism that creates the documentation and in the tim-

ing of the acceptance points. For example, rapid prototyping, while possibly

delaying the development of a requirements document, may lead to a require-

ments specification or may evolve directly into a system that accurately reflects a

user's needs [9].

Table 5. The basic model stages

• Concept Stage

• Requirements Stage

• Design Stage

• Coding Stage

e Integration and Test Stage

• Final Acceptance Test Stage

• Maintenance and Enhancement Stage

Variations on the basic model incorporate risk management strategies. The

spiral variant captures uncertain technology (go/no go decisions) and explicitly

allows for changes in early stages. Variants using incremental or evolutionary

development reflect constrained technology or resources [9]. Development starts

with a simple system and adds functionality with each successive vereion. If the

functionality is planned, the variant is incremental; if the functionality is not

-9-

Guide to Software Acceptance

completely known at the beginning of system construction, it is evolutionary.

Both are referred to as evolutionary. The prototyping variant fully integrates the

buyer's requirements into the development of requirements specifications and is

especially important if the user interface is a major component of the system.

Variants that emphasize the reuse of software focus on functionality (and cost)

concerns. Variants using fourth generation languages increase productivity

through more expressive languages which often require less code than third gen-

eration languages. These variants may also be combined. Rapid prototyping, for

example, is very useful in the evolutionary variant.

-10-

Guide to Software Acceptance

Table 6. Basic model variations

Variation Description

Prototype Software development with prototyping defines require-

ments by providing programs that simulate functionality

[10]. A system that uses prototyping for the entire

software development refines the programs into a fully

working system.

Fourth Generation Fourth generation languages are very high level languages

for specific application domains [11,12]. Their defining
AT IT Ir L J

characteristic is a major reduction in the amount of code

to be written. Performance issues may arise [20,21].

Evolutionary The evolutionary variant explicitly addresses the develop-

ment of successive versions or enhancements, with consid-

erable reuse of requirement and design documents [9]. It

may require extensive use of rapid prototyping, re-

verification and regression testing.

Spiral The spiral variant explicitly includes acceptance points at

stages of the basic model where decisions, with document-

ed rationale, are made whether or not to continue

development [8]. The decisions are frequently technology

dependent.

Reusable Software reuse either reuses generic software, where inter-

faces must be constructed to other parts of the system, or

is primarily a modification process where generic software

is modified in constructing the software system. This in-

cludes modification of off-the-shelf software [22].

-11-

Guide to Software Acceptance

Each variant in developing a software system may require a different focus

in the acceptance process; several are indicated in table 7. The stages in the basic

model define points at which products can be examined for acceptance. The vari-

ants produce similar products, but the acceptance procedures may be somewhat

different. In all cases the acceptance plan must provide for iteration throughout

the development process and in the acceptance activities.

A development process that emphasizes early system definition (e.g., proto-

typing) requires that the buyer be especially active during the requirements

definition. A development process using fourth generation languages requires

vigilance in the acceptance of the fourth generation language because of the trust

that will be placed in the functionality that is automatically generated. Care in

designing the system for performance may be needed, with performance testing of

the resultant software system. The use of the evolutionary variant requires the

production of robust regression tests and some measure of system extensibility.

The use of the spiral variant must provide for tests for changing requirements

and specifications; configuration control is particularly important. When system

development takes advantage of extensive software reuse, interface testing and

performance testing of generic software are important.

Table 7. Acceptance with basic model and variants

Model or Variant Sampling of Acceptance Concerns

• Basic Acceptance at all stages of the basic model.

• Prototype Special attention towards the performance of

the prototyped system.

• Fourth Generation Certification of the fourth generation develop-

ment system. Performance of the final system.

• Evolutionary Testing for extensibility and regression testing.

• Spiral Quantifiable tests concerning project feasibility.

• Reusable Performance and interface testing.

-12-

Guide to Software Acceptance

4. SOFTWARE ACCEPTANCE ACTIVITIES AND CRITERIA
Acceptance decisions for software products usually occur at, or as a result of,

major reviews when products and activities are completed (e.g., the requirements

document, the architectural design, integration testing, acceptance testing). The
buyer and acceptance manager evaluate the products and other product informa-

tion from the developer and other organizations. The information includes

results of software product assurance activities which are matched against accep-

tance criteria. The acceptance criteria specify the values that a product must

meet for acceptance (e.g., a performance requirement that a function must be

executed within one second).

Sometimes buyers may schedule reviews of partial products, acknowledging

that documents or products have been received and tentatively accepting them
until all evaluation data have been analyzed. For example, the buyer may accept

a draft of the user manual at the requirements or design review and accept the

final version at installation or final acceptance testing of the system. Demonstra-

tions (e.g., prototype) may sometimes serve as an acceptance activity. Because

some products may not be fully accepted, procedures for iteration of preceding

development activities and for acceptance of the changes may need to be esta-

blished. Buyers must follow configuration control procedures, even for the occa-

sional times that products are evaluated at some time other than a formal review.

At the minimum, an acceptance activity must be scheduled after system or

operational testing or upon installation of off-the-shelf software, depending upon

the nature of the software system.

Typical acceptance decisions include:

• Changes are required and accepted before progression to the next

activity.

• Some changes must be made and accepted before further development

of that section of the product, but other changes may be made and

accepted at the next major review.

• Progress may continue and changes are to be accepted at next review.

• No changes are required and progress may continue.

While the goal is to achieve and accept only perfect software, more likely

some criteria will not be completely satisfied for each product. The buyer may
choose to accept software with unsatisfied criteria. The buyer must establish

values in advance for individual requirements and for collections of requirements

(e.g., design description may have no more than five module descriptions with

missing information on constraints). Many requirements of the latter category

are quantitative requirements for quality attributes.

The remainder of this section describes the steps for establishing and using

acceptance criteria as outlined in table 8.

-13-

Guide to Software Acceptance

Table 8. Establishing and using acceptance criteria

• Identify system requirements for categories of acceptance require-

ments.

• Determine the system criticality and that of its components.

• Identify quantifiable measures of system requirements.

• Estabhsh acceptance criteria for each measure for each product.

• Collect and analyze evaluation data.

4.1. Categories for Acceptance

Acceptance requirements that a system must meet can be divided into six

categories as listed in table 9. Requirements for functionality relate to the func-

tions that the system must execute. Requirements for performance relate to

operational requirements such as time or resource constraints. Interface quality

requirements relate to any interface (e.g., human/machine, module/module).

Overall software quality requirements are those that specify limits for factors or

attributes such as reliability, testability, correctness, usability [23, 24, 25, 26, 27,

28, 29, 30, 31]. The criterion that a requirements document may have no more

than five statements with missing information is an example of quantifying the

quality factor of completeness. Security requirements relate to authorized access

of system resources and to process integrity. Software is frequently used in sys-

tems whose failure could result in personal injury or death, that is, systems whose

failure may afi^ect public health and welfare. Software safety requirements are

necessary when injury or death may occur as a result of system failure.

-14-

Guide to Software Acceptance

Table 9. Categories of acceptance requirements

• Functionality

• Performance

• Interface Quality

• Overall Software Quality

• Security

• Software Safety

Documentation for software acceptance requirements is not always organized

according to these six categories. For example, in the past security and software

safety have been addressed as software quality attributes. The Computer Secu-

rity Act [32] requires all Federal agencies to identify computer systems that con-

tain sensitive information. For the identified systems explicit requirements deal-

ing with security are appropriate. For systems where safety is a concern,

separate requirements for safety are important. Regardless of the organization of

the software requirements documentation, buyers must consider these six

categories of acceptance criteria.

4.2. System Criticality

The criticality of a system is important in determining quantitative accep-

tance criteria. The buyer should determine the degree of criticality of the

requirements in the six categories. By definition, all safety criteria are critical

and by law, certain security requirements are critical [32]. Some typical factors

affecting criticality include [33,34]:

• importance of system to agency or industry;

• consequence of failure;

• complexity of the project;

• technology risk; and

• complexity of the user environment.

Products, or pieces of products, with critical requirements do not qualify for

acceptance if they do not satisfy their acceptance criteria. A product with failed

noncritical requirements may qualify for acceptance depending upon quantitative

-15-

Guide to Software Acceptance

acceptance criteria for quality factors. Clearly if a product fails a substantial

number of noncritical requirements, the quality of the product is questionable.

Examples in tables 10 and 11 illustrate how criticality changes according to

project features. Table 10 lists some critical features for a software controlled

control system in an airplane while table 11 lists some critical and non-critical

features for a payroll system. In this example, the acceptance criteria for the air-

plane control system will be more rigorous than many criteria for the batch pay-

roll system.

Table 10. Airplane control system criticality

• Functionality is critical to mission accomplishment.

• Performance is critical for control system response times.

• Interface quality is critical for flight ergonomics.

• Overall software quality is critical for some attributes but not all.

• Security is critical due to the possibility of sabotage.

• Software safety is critical because failure may cause injury or death.

Another example of different acceptance criteria for a similar performiance

requirement demonstrates the need to identify critical features for each software

system. Two systems, a courthouse docket system and an embedded weapons

control system, have a requirement for a screen to display information 1 second

after the system receives it. The response of the software program for a court-

house docket clerk that displayed information 5 seconds after receipt under a full

system load, but operated within 1 second for standard system load, is a noncrit-

ical performance failure. A 5-second response for a screen display for a weapons

control software system contained in a airplane under any circumstances would

be a critical failure if the 5-second delay meant the possible destruction of the

airplane. In the case of the courthouse system, the acceptance criterion may al-

low acceptance if the system fails the performance requirement only under a full

system load. For the airplane, the acceptance criterion would require rejection for

any failure to meet the performance requirement.

-16-

Guide to Software Acceptance

lable 11. Batch payroll system cnticality

• JNumeric lunctionality is critical; other lunctions may be less impor-

tant.

• Performance is noncritical unless the payroll cannot b 5 met.

• Interface quality may not be critical at the ergonomic level.

• Overall software quality may be critical for maintainability.

• Security is critical due to the possibility of fraud.

• Software safety is probably not an issue.

4.3. Acceptance Criteria

The buyer has the responsibility of ensuring that functional, performance,

software safety, security, and interface requirements contain numeric criteria.

The buyer must also ensure that quality requirements are quantified, especially

in the collective sense of assessing the acceptability of a product. The buyer

must be careful in writing the contract. The buyer believes that the worst

acceptable system is being defined; the developer uses the same criteria as the

definition of the best system that will be produced for the buyer. Similarly a

contract with absolute values for some criteria rather than a range of acceptable

values could result in an expensive system or a system that would never satisfy

the acceptance criteria. Monetary penalties may be effectively used to ensure

that the failure of noncritical criteria is kept to a minimum.

Table 12 identifies some acceptance issues for each of the six generic

categories with respect to the basic model stages. For a specific software system,

buyers must examine their projects' characteristics and criticality in order to

develop expanded tables of issues and concerns for acceptance of that software

system. Some of the issues may change according to the part of development for

which criteria are being defined. For example, for requirements the quafity "tes-

tability" may mean that requirements are expressed in quantified specifications

but for design and code "testability" may mean that test cases can be automati-

cally developed. Successful development of acceptance criteria tables may lead to

their adoption as a baseline for future acceptance products.

-17-

Guide to Software Acceptance

After the issues and concerns have been identified, the buyer must estabhsh

acceptance criteria, both for individual elements of a product and for summary
information. These criteria should be the acceptable numeric values or ranges of

values. The buyer should compare the established acceptable values against the

number of problems presented at acceptance time. For example, if the number
of inconsistent requirements exceeds the acceptance criterion, then the require-

ments document should be rejected. At that time, the established procedures for

iteration and change control go into effect.

Table 12. Acceptance issues by category

Samnlint? of Ai^opntanop Tssnps

Functionality Document and code consistency internally and between

stages. Traceability of functionality. Adequate verification

of logic. Functional evaluation and testing. Preservation of

functionality in the operating environment.

Performance Feasibility analysis of performance requirements. Correct

simulation and instrumentation tools. Performance

analysis in the operating environment.

Interface Quality Interface documentation. Interface complexity. Interface

and integration test plans. Interface ergonomics. Opera-

tional environment interface testing.

Overall Software Quality Quantification of quality measures. Criteria for acceptance

of all software products. Adequacy of documentation and

software system development standards. Quality criteria

for operational testing.

Security Security requirements identification. Security test plans.

Formal verification of security [35].

Software Safety Identification of safety requirements. Fault tree construc-

tion and tracing. Elimination of development methods or

technology inappropriate for safety-critical systems. Incor-

poration of safety interlocks and fail safe code to prevent

and recover from potentially unsafe states.

-18-

Guide to Software Acceptance

4.4. Collection and Analysis of Data

Once the acceptance criteria are established, the buyer may be dependent on

others to supply the evaluation information for the project's products. Even
though the data are provided by others, the buyer has the responsibility of ensur-

ing that the data are correct and provide appropriate information. The buyer

has the ultimate responsibility for acceptance.

While error-free software is desirable, experience indicates that for large sys-

tems it is unattainable using current methods of software development. Instead,

it is necessary to determine appropriate statistics to use in determining accepta-

bility. It is outside the scope of this document to describe statistical methods

and reliability models; information on these topics may be found in several docu-

ments [36, 37, 38, 39, 40]. The historical profile of discovery of errors throughout

the software life cycle for similar systems may give some evidence of the number
of errors that are likely remaining. This also applies to final acceptance testing

where the criterion for acceptance may be the mean time between failures or the

volume of errors.

The determination of what data to collect, how to collect it, and the analysis

of that data to determine whether a quality metric has been satisfied is a

difficult, though necessary, task. Since many metrics are simple counts of

discrepancies or percentage calculations (e.g., 3 errors per thousand lines of code),

many metric calculations can be automated. Whenever possible this should be

done. Otherwise the manager will be inundated with data and will not be able to

make a reasoned acceptance decision. Modern technology (e.g., application gen-

erators, project management tools) may provide mechanics for data collection

and analyses. Some tools, especially application generators, have underlying

databases and provide statistical functions. The Software Acceptance Test

Workshop [2] recommended a minimum set of tools for software acceptance test-

ing.

-19-

Guide to Software Acceptance

5. SOFTWARE ACCEPTANCE TESTING
While some software acceptance activities may include testing of pieces of

the software, formal software acceptance testing is the point in the development

life cycle that if the buyer accepts the software, then a contractual requirement

between the buyer and seller has been met. Final software acceptance testing is

the last opportunity for the buyer to examine the software for functional, inter-

face, performance, security, software safety, and quality features, prior to the

final acceptance review. The system at this time must include the delivered

software, all user documentation, and final versions of other software deliverables.

The review of software acceptance testing results is often the final step in the

software acceptance process. Major differences exist in the responsibilities of

buyers for acceptance of interim products and software acceptance testing. A
contrast of key points from an overview of software acceptance testing [3] against

other acceptance activities indicates how the buyers are involved at a detailed

technical level for software acceptance testing. These key points include planning

and administrative responsibilities, objectives, approach, location and automation

requirements, staff responsibilities and documentation for software acceptance

testing.

5.1. Planning and Administration

In software acceptance, buyers accept interim and final software products

based on how well those products meet established acceptance criteria. For many
acceptance activities, buyers approve the plans for development and software

product assurance activities while relying on others to implement those plans and

deliver the information (the products and evaluations of products) for their

acceptance reviews. In contrast, two exceptions, prototyping and software accep-

tance testing, involve the buyer in administering the technical activities to

prepare for acceptance. Sometimes users evaluate prototypes at various stages of

development for acceptance and progression to the next stage; in these cir-

cumstances, prototyping should be conducted as rigorously as acceptance testing.

In any case, the buyers have a direct role in:

• the planning and administration of software acceptance testing;

• the execution of the software acceptance tests; and

• the review of the test results to determine acceptance or rejection.

The planning and administration include:

• facility requirements;

• test documentation requirements; and

• stafTmg requirements.

These issues are addressed in more detail in table 13.

-20-

Guide to Software Acceptance

Table 13. Final acceptance management activities

• Planning and making arrangements for facilities, special equipment,

and other resources.

• Scheduling personnel time for training and for acceptance testing.

• Planning for automation to facilitate test documentation, execution,

and analysis.

o Planning for training for users and anyone involved with operating the

system during acceptance testing.

• Establishing criteria for each acceptance test.

• Assigning responsibility for

• Acceptance stop and restart decisions,

• Designing tests, establishing test cases and detailed test procedures,

• Administering, executing, analyzing acceptance tests.

5.2. Objectives

A primary objective of software product assurance is to locate errors and

potential trouble spots in the software products. The initial analysis of require-

ments, which includes verification that they will result in a product satisfying the

users, is important because the requirements are the basis for acceptance criteria.

Later software product assurance activities do not focus on direct demonstration

that the system will operate as the user expects. These activities concentrate on

ensuring that each successive development product is consistent with previous

products and that the requirements will be met. Acceptance testing provides a

final opportunity to observe system operation relative to the users' needs. The

primary objective of formal acceptance testing is to demonstrate that the imple-

mented software system satisfies the user's requirements for the software system.

If the earlier acceptance activities were successfully followed, then the acceptance

testing phase should be little more than a formality. Users must be involved to

meet this primary objective. They are the most knowledgeable about the current

and new methods and practices of their environment which the system must

satisfy.

5.3. Location

Usually data for accepting interim software products are developed and col-

lected at the developer's site or at the site of independent organizations for

software product assurance activities. Planning and providing the facilities and

equipment for development and software product assurance activities is usually

the responsibility of other organizations, with approval by the buyer. The buyere

rarely provide more than a meeting room for reviews or the capability for a

demonstration of interim software. However, software acceptance testing usually

Guide to Software Acceptance

occurs at the installation site. Some exceptions (e.g., missile defense systems,

transoceanic communications systems) require unique simulation or other testing

methods which are outside the scope of this document. Facilities needed for

software acceptance testing may include more than the delivered system and sup-

port software and hardware necessary for its operation in the production environ-

ment. The need to check out all peripheral equipment used for testing and to

ensure staff familiarity with this equipment is frequently overlooked. Planning

for special rooms and the equipment needs for test execution, collection, analysis

and verification of test results is the responsibility of the buyers. For all the

acceptance activities, the use of automation may be necessary to manage all the

information and in the case of acceptance testing, to generate the information [2].

5.4. Approach

The complete set of system requirements and acceptance criteria form the

basis for determining the overall approach to acceptance testing and the specific

testing and examination methods. Features of the installation site and the

software system affect how the software acceptance testing will be done. Unique

arrangements are necessary when the software cannot be completely installed and
executed in a live environment (e.g., missile defense systems). Multiple

configurations may have to be distributed at several installation sites. The set of

test cases may not be identical for each site; configuration management of test

documentation requires special attention.

When the new system is a replacement for one already in use, buyers must
assure the integrity of their business operations while placing the replacement

into operation. For example, the old system and the new system are used in

parallel until complete functionality has been verified. In some cases the task

may take several months to ensure that a complete business or accounting cycle

has occurred. This concern will influence the approach to software acceptance

testing. Often, a new computer is delivered shortly before the application

software is presented for acceptance testing. Advance planning is necessary to

ensure that operations staff have been trained sufficiently so that acceptance test-

ing of applications residing in the new computer can proceed without interrup-

tion.

5.5. Staff Responsibilities

Buyers are involved in establishing how acceptance testing will be done, even

when a third party is contracted for software acceptance testing. At the

minimum their facilities and staff will be involved in the actual testing. The

buyers must ensure that the users create scenarios of how they perform their

functions and how the software system is expected to be used. Even when the

system provides a new capability, only the users can provide the information

necessary for constructing scenarios that will be implemented during operation of

the system. The buyer must provide additional managerial time for monitoring

the process from its beginning. The buyer must allow time for developing and

reviewing the test documentation, whether developed by a third party or by the

users.

-22-

Guide to Software Acceptance

5.6. Acceptance Test Documentation

Software acceptance testing, like other testing of the system, must be docu-

mented carefully, with traceability of test cases to the system requirements and
the acceptance criteria. Several guidelines provide information for test plans, test

designs and cases, and test procedures [5, 7, 19, 41]. Each of these documents
contains specific types of information. Together they form the basis for

thorough, controlled acceptance testing.

The test plan, prepared along with the complete software acceptance plan,

identifies requirements that must be addressed such as those listed in table 14.

Table 14. Test plan requirements

• The organizations and their responsibilities for software acceptance

testing.

• Identification of methods for traceability of requirements to test cases.

• Administration of the process.

• Completeness of test cases and test procedures.

• Descriptions of error reporting and error analysis techniques.

• Location, testing approach, facilities, equipment, and training.

• Acquisition of special purpose testing equipment and software.

• Cost estimation of testing.

When a third party is involved, the acceptance plan establishes the interrela-

tionships of all involved parties and a review schedule for materials developed by

the third party. Planning for staff time to develop and review test documenta-

tion is often overlooked; when this happens, the project increases its risks of hav-

ing inadequate acceptance testing. The plan should be updated as the project

progresses, both to reflect changes in project status and to complete definition of

tasks that depend on evolving information.

The acceptance test plan must be cited or included in the overall software

acceptance plan. For long term projects, the acceptance test plan may be

separate but for short term projects, the acceptance plan may include the details

Guide to Software Acceptance

for software acceptance testing. It is reasonable to keep the two plans in one

document if either of the two following events is likely to occur:

• acceptance test planning is left until late in the development; or

• acceptance planning and implementation are ignored while preparing for

acceptance tests.

The users of the software system must be involved in defining the test

designs, at the minimum approving scenarios which an independent organization

may have designed. The users must identify most frequently used functions,

most difficult functions to execute from a user perspective, and other features of

the system that are essential to its successful operation. Table 15 identifies typi-

cal contents of test designs and cases. Table 16 lists typical information to be

included in the software acceptance test procedures.

Table 15. Test design information

• The design of the tests.

• The objectives and constraints for each test.

• The traceability of test designs and cases to system requirements.

• The supporting tools required for each test.

• The inputs and expected outputs of each test case.

• The specification of initialization and stopping conditions.

• The extent to which interfaces are tested.

• The acceptance criteria for the tests.

-24-

Guide to Software Acceptance

Table 16. Test procedure information

• The association of each procedure to the appropriate test designs and

cases.

• The location and scheduling of the testing.

• The identification of required pretest procedures.

• The availability of peripheral support items (e.g., printers, modems).

• The detailed procedures for execution of each test.

• The procedures for the collection of test results and problem resolution.

The goals of the test documentation are to provide all necessary information

to the tester at the time of execution and to enable a test to be easily repeated

under the same conditions.

-25-

Guide to Software Acceptance

6. SOFTWARE ACCEPTANCE PLANNING AND MANAGEMENT
Managers responsible for software acceptance must ensure that the results of

software acceptance activities demonstrate whether contractual requirements

meet buyer needs, and whether the delivered software system meets the contrac-

tual requirements. Software acceptance managers apply elements of traditional

management (e.g., planning and organizing, monitoring and controlling, providing

support, performing cost-benefit and risk analyses) to managing the contractual

process of acquiring software. Software acceptance managers use their technical

knowledge of the proposed software system, of risks associated with its develop-

ment and maintenance, and of its expected use to establish the criteria for accep-

tance. If an acceptance manager does not have the required knowledge or techni-

cal skills for establishing the requirements of the acceptance plan, then a techni-

cal staff person should assist the manager during the planning period, and

perhaps for the entire project!

6.1. The Software Acceptance Plan

The first step in effective software acceptance is the simultaneous develop-

ment of a software acceptance plan, general project plans and contractual

requirements. This will ensure that user needs are represented correctly and

completely in the contractual requirements. This may involve only the user and
acceptance manager organizations and may be completed before the contract for

development is awarded; approval must be as rigorous as for other acceptance

activities. Further, this simultaneous development will provide an overview of

the acceptance activities to ensure that resources for them are included in the

project plans. The initial plan may not be complete and may contain estimates

which will need to be changed as more complete project information becomes

available.

Acceptance managers define the objectives of the acceptance activities and a

plan for meeting them. The contractual requirements, knowledge of how the

software system is expected to be used in the operational environment, and

knowledge of risks associated with the project's life cycle approach provide a

basis for determining the acceptance objectives. Because most of this informa-

tion may be provided by users, initial planning sessions may be interactive

between acceptance mangers and users to assure that all parties fully understand

what the acceptance criteria should be. After the initial software acceptance plan

has been prepared, reviewed and approved, the acceptance manager is responsible

for implementing the plan and for assuring that the acceptance objectives are

met. The plan may have to be revised for this assurance to occur.

Table 17 provides examples of information which should be included in a

software acceptance plan. The first section provides an overview of the software

development or maintenance project. Then there are major sections for the

management responsibilities and for administrative matters. The plan has an

overview section describing the technical program for software acceptance.

Details for each software acceptance activity or review appear in separate sec-

tions as a supplement to the overview.

-26-

Guide to Software Acceptance

Table 17. Acceptance plan contents

Project

Description

Type of system; life cycle methodology; user community
of delivered system; major tasks system must satisfy;

major external interfaces of the system; expected normal

usage; potential misuse; risks; constraints; standards and

practices.

Management
Responsibilities

Organization and responsibilities for acceptance activi-

ties; resource and schedule requirements; facility require-

ments; requirements for automated support, special

data, training; standards, practices and conventions; up-

dates and reviews of acceptance plans and related pro-

ducts.

Administrative

Procedures

Anomaly reports; change control; record keeping; com-

munication between developer and manager organiza-

tions.

Acceptance

Description

Objectives for entire project; summary of acceptance

criteria; major acceptance activities and reviews; infor-

mation requirements; types of acceptance decisions;

responsibility for acceptance decisions.

Each Acceptance

Review
Products for acceptance; objectives for each review; ac-

ceptance criteria; source of additional information about

each product; acceptance requirements; general ap-

proach; test and examination techniques and required

automated support.

Final Acceptance

Testing

Test plan and acceptance criteria; test cases and pro-

cedures; test results and analyses; facilities; tool acquisi-

tion and checkout; staff.

6.2. Project Description

The project description provides information on the project parameters

which are binding on software acceptance. Project information in the software

acceptance plan identifies the purpose of the software system to be accepted and

its relationship to any existing software already in operation, the external inter-

faces the system must satisfy within the operating environment (e.g., with other

computer systems, with users), and major functions the system must satisfy.

Two other types of information in the plan's project description will help accep-

tance managers plan acceptance criteria. One concerns the development activi-

ties and the other concerns the intended operation of the system. The plan

should describe the nature of the development (e.g., a completely new system, a

major enhancement, error corrections and changes due to new regulations or

-27-

Guide to Software Acceptance

algorithms) and the assignment of organizations for development and software

product assurance activities.

The software acceptance description in turn establishes the relationship of

the acceptance activities to the project and establishes the necessary elements for

performing software acceptance activities. From this information and descrip-

tions of the life cycle methodology and automated support, acceptance planners

may perform the following activities:

• determine potential weak spots in the software;

• plan acceptance activities for the product forms likely to be produced;

• establish acceptance reviews based on interim products from all

involved organizations; and

• plan facilities and estimate schedules for software acceptance testing at

delivery of the system.

6.3. Management

The management section of the plan identifies how the software acceptance

will be managed. It identifies the role of each organization in software accep-

tance and specific responsibilities for each acceptance procedure, including

developing and updating the acceptance plan. This section of the plan identifies

the facilities, software and hardware, and training requirements. It identifies any

risks or constraints associated with the project and with the acceptance activities.

The plan presents the resource requirements in terms of finances, staff, and
schedule. Contingencies should be addressed.

6.4. Administration

The administration section of the plan identifies the procedures that the staff

will execute as they perform acceptance activities. Some of the procedures that

need to be explained are the following:

• conduct of reviews;

• management and control of project data (e.g., version control on incom-

ing products for acceptance and on any documents generated by the

software acceptance staff);

• handling of deviations from the plan; reporting of any anomalies or

problems;

• tracking resolution of anomalies; and

• communication between software acceptance staff and other organiza-

tions involved with the project.

6.5. Software Acceptance Description

The overview of software acceptance establishes the objectives that the

software acceptance activities will be designed to meet, and the general accep-

tance criteria the software system must meet. The overview identifies the

interim and final products for acceptance and the technical activities and pro-

cedures which will be used during acceptance. The overview identifies the types.

Guide to Software Acceptance

sources, and form of information needed for acceptance activities. The overview

identifies who will be responsible for acceptance decisions and the types of deci-

sions that are allowable. Usually the acceptance activities for software products

involve evaluation of information from development or product assurance activi-

ties and possibly some interactive effort (e.g., prototyping) by the users. Then
some decision is made regarding acceptance of the products. The final accep-

tance review may use all of the previous information and focus attention on the

results of the software acceptance testing. The acceptance overview identifies

acceptance criteria which are the top level features the system must satisfy. Cri-

teria at a detailed level for individual products are described in the plan section

with their respective acceptance procedure description.

6.6. Software Acceptance Activities

The software acceptance plan provides a section for each acceptance pro-

cedure with specific information about the objectives for each activity. The plan

may include a description of the products to be accepted through that activity,

the criteria the products must meet, the evaluation method to be used, the source

of other information that may be used to judge the product (e.g., verification

results or integration test results), and any facility or software requirements for

the acceptance activity. Product descriptions identify the source of the product

and the form in which it will be presented.

6.7. Software Acceptance Testing

The most extensive period for implementing any given portion of the plan is

hkely to be the acceptance testing. The acceptance plan may either include the

acceptance test plan, or may cite it as a separate document. When a separate

document is used, ihe acceptance plan should reference it and provide at least an

overview of the approach, resources, and estimated time for the acceptance test-

ing. The initial acceptance test plan should be ready with the acceptance plan.

Other test documentation (including test designs, cases and procedures) may be

prepared separately from the acceptance plans. In fact, their preparation is a

continuing process throughout the software project. It is important for the

acceptance management to plan for review and approval of all acceptance test

documentation. An important part of readiness for acceptance testing is moni-

toring preparation of facilities, ensuring equipment used only for the acceptance

tests is available md checked out, and checking that testers are trained to use all

parts of the system.

-29-

Guide to Software Acceptance

7. SUMMARY
Software acceptance is a contractual process with buyers and developers

identifying products and criteria for the acceptance of software systems. Some
software may have to pass acceptance before the software requirements have

been fully specified. Examples include:

• software used to support the development of the system;

• software for operating the system; and

• existing software for incorporation into the system.

Developers agree to acceptance criteria which the buyer has developed. The
buyer must define the acceptance criteria based on the system requirements for

functionality, performance, interface quaUty, overall software quality, security,

and software safety. Other project characteristics such as the specific methodol-

ogy (or variant) must be considered in defining the acceptance criteria. The
buyer bases acceptance decisions on analyses and reviews of the products and of

results from software product assurance activities.

-
- The buyer must plan and manage the software acceptance program carefully

to assure that adequate resources are available for the software acceptance activi-

ties. The buyer must include detailed planning for software acceptance testing in

the early planning for the entire software acceptance program. The procedures in

managing software acceptance enable all those involved in the software project to

focus on the system requirements and how well the evolving system is satisfying

the requirements. Software acceptance requires buyer's resources and commit-

ment from the beginning of the project. As an interactive process especially

involving the user, its completion will result in delivered software that offers its

users the services they require.

-30-

Guide to Software Acceptance

REFERENCES

[I] Rothfeder, Jeffrey, "Using the Law to Rein in Computer Runaways: More
Unhappy Buyers Are Taking Systems Suppliers to Court," Business Week, April

3, 1989.

[2] Wallace, Dolores R,, and John C. Cherniavsky, "Report on the NBS Software

Acceptance Test Workshop April 1-2, 1986," Natl. Bur. Stand. (U.S.) Spec. Publ.

500-146; 1987 March.

[3] Wallace, Dolores R., "An Overview of Software Acceptance Testing," Natl.

Bur. Stand. (U.S.) Spec. Publ. 500-136; 1986 February.

[4] Frankel, Sheila, "Guidance on Software Package Selection," Natl. Bur. Stand.

(U.S.) Spec. Publ. 500-144; 1986 November.

[5] "Guideline for Lifecycle Validation, Verification, and Testing of Computer
Software," Federal Information Processing Standards Publication 101,

FIPSPUBlOl, Natl. Bur. Stand. (U.S.) 1983 June.

[6] DOD-STD-2167A Mihtary Standard Defense System Software Development,

AMSC No. 4327, Department of Defense, Washington DC, February 29, 1988.

[7] "Guidelines for Documentation of Computer Programs and Automated Sys-

tems," Federal Information Processing Standards PubHcation 38, FIPSPUB38,
Natl. Bur. Stand. (U.S.) 1976 February.

[8] Boehm, Barry W., "A Spiral Model of Software Development and Enhance-

ment," COMPUTER, IEEE Computer Society, May 1988, Vol. 21, No. 5, pp.

61-72.

[9] Davis, A. M., E. H. Bersoff, and E. R. Comer, "A Strategy for Comparing

Alternative Software Development Life Cycle Models," IEEE Transactions in

Software Engineering, Vol. 14, No. 10, October 1988, pp. 1453-1461.

[10] Fisher, Gary E., "Application Software Prototyping and Fourth Generation

Languages," Natl. Bur. Stand. (U.S.) Spec. Publ. 500-148; 1987 May.

[II] Fisher, Gary E., "A Functional Model for Fourth Generation Languages,"

Natl. Bur. Stand. (U.S.) Spec. Publ. 500-138; 1986 June.

[12] Gray, Martha Mulford, "Guide to the Selection and use of Fourth Genera-

tion Languages," Natl. Bur. Stand. (U.S.) Spec. Publ. 500-143; 1986 September.

[13] Wallace, Dolores R., and Roger U. Fujii, "Software Verification and Valida-

tion: An Overview," IEEE Software, May 1989, pp. 10-17.

-31-

Guide to Software Acceptance

[14] DOD-STD-7935A Military Standard DOD Automated Information Systems

(AIS) Documentation Standards, Department of Defense, Washington, DC, 31

October 1988.

[15] ANSI / IEEE Std. 730-1984, "Standard for Software Quality Assurance

Plans," The Institute for Electrical and Electronics Engineers, Inc., 345 West
47th St., New York, NY 10017, 1984.

[16] ANSI / IEEE Std. 830-1984, "Guide to Software Requirements

Specifications," The Institute for Electrical and Electronics Engineers, Inc., 345

West 47th St., New York, NY 10017, 1984.

[17] Information System Life-Cycle and Documentation Standards and Manage-
ment Plan Documentation and Data Item Descriptions (DID); Release 4.3, Febru-

ary 1989, NASA Headquarters, Washington, DC.

[18] Wallace, Dolores R., and Roger U. Fujii, "Software Verification and Valida-

tion: Its Role in Computer Assurance and Its Relationship with Software Project

Management Standards," Natl. Inst. Stand. Technol. Spec. Publ. 500-165; 1989

May.

[19] "Guideline for Software Verification and Validation Plans," Federal Informa-

tion Processing Standards Publication 132, FIPSPUB132, Natl. Bur. Stand. (U.S.)

1987 November.

[20] Misra, Santosh K., and Paul J. Jalics, "Third-Generation versus Fourth-

Generation Software Development," IEEE Software, IEEE Computer Society, Los

Alamitos, CA, July, 1988, pp 8-14.

[21] Babcock, C, "New Jersey Motorists in Software Jam," Computerworld, Sep-

tember 30, 1985, pp 1,6.

[22] Wong, William, "Management Guide to Software Reuse," Natl. Bur. Stand.

(U.S.) Spec. Publ. 500-143; 1988 April.

[23] Cavano, Joseph P., and James A. McCall, "A Framework for the Measure-

ment of Software Quality," The Proceedings of the ACM Software Quality

Assurance Workshop, November 1978, pp 133-179; reprinted in Chow, Tsun S.,

Tutorial Software Quality Assurance, IEEE Computer Society.

[24] Birrell, N. D., and M. A. Ould, A Practical Handbook for Software Develop-

ment, Cambridge University Press, New York, NY 1985.

[25] Bowen, Thomas P., et al , "Software Quality Measurement for Distributed

Systems," Rome Air Development Center Air Force Systems Command, Griffiss

Air Force Base, NY 13441-5700, RADC-TR-83-175, Vols. I-III, July 1983.

-32-

Guide to Software Acceptance

[26] Bowen, Thomas P., et al
,
"Specification of Quality Attributes," Rome Air

Development Center, Air Force Systems Command, Griffiss Air Force Base, NY
13441-5700, RADC-TR-85-37, Vols. I-III, February 1985.

[27] Cavano, Joseph P., and James A. McCall, "A Framework for the Measure-

ment of Software Quality," The Proceedings of the ACM Software Quality

Workshop, November 1978, pp. 133-139; reprinted in Tutorial: Software Quality

Assurance: A Practical Approach, ed. Tsun S, Chow, IEEE Computer Society

Press, 1985.

[28] Dobbins, James H., and Robert D. Buck, "The Cost of Software Quality,"

and Dobbins, James H., "Inspections as an Up-Front Quality Technique," Hand-

hook of Software Quality Assurance, Eds, C. Gordon Schulmeyer and James L
McManus, Van Nostrand Reinhold Company, Inc., 1987.

[29] IEEE P1061, "Draft Standard for a Software Quality Metrics Methodology,"

The Institute for Electrical and Electronics Engineers, Inc., 345 West 47th St.,

New York, NY 10017, 1984.

[30] Pressman, Roger S., Software Engineering: A Practitioner's Approach,

McGraw-Hill Book Company, New York, NY 1982.

[31] Watts, Richard, Measuring Software Quality, NCC Publications, The
National Computing Center Limited, Oxford Road, Manchester Ml 7ED, Eng-

land, 1987.

[32] Computer Security Act of 1987, Public Law 100-235, 100th United States

Congress, Washington, DC, January 8, 1988.

[33] AFSC / AFLCP 800-5, Software Independent Verification and Validation,

Air Force Systems Command and Air Force Logistics Command, Washington DC
May 1988.

[34] Hankinson, Allen L., "Computer Assurance: Security, Safety, and Econom-

ics," Proceedings of the Fourth Annual Conference on Computer Assurance, June

19-23, 1989, National Institute of Standards and Technology, Gaithersburg, MD,
The Institute for Electrical and Electronics Engineers, Inc., 345 West 47th St.,

New York, NY 10017, 1989.

[35] Bell, D. E., and L. J. LaPadula, Secure Computer Systems: Unified Exposi-

tion and Multics Interpretation, MTR-2997 Rev. 1, Mitre Corp., Bedford, Mass.,

March 1979.

[36] Cho, C. K., An Introduction to Software Quality Control, John Wiley, 1980.

[37] Cho, Chin-Kuei, Quality Programming - Developing and Testing Software

with Statistical Quality Control, John Wiley, 1987.

-33-

Guide to Software Acceptance

[38] IEEE Std. 982.1 - 1988, A Standard Dictionary of Measures to Produce Reli-

able Software, The Institute for Electrical and Electronics Engineers, Inc., 345

West 47th St., New York, NY 10017, 1984.

[39] IEEE Std. 982.2 - 1988, Guide for the Use of Standard Dictionary of Meas-

ures to Produce Reliable Software, The Institute for Electrical and Electronics

Engineers, Inc., 345 West 47th St., New York, NY 10017, 1984.

[40] Musa, John D., Anthony lannini, and Kazuhira Okumoto, Software Reliabil-

ity: Measurement, Prediction, Application, McGraw Hill Book Company, 1987.

[41] ANSI/ IEEE Std. 829-1984, "Standard for Software Test Documentation,"

The Institute for Electrical and Electronics Engineers, Inc., 345 West 47th St.,

New York, NY 10017, 1983.

-34-

NBS-n4A (REV. 2-ec)

U.S. DEPT. OF COMM. 1 mini i/~A~rir^ki D
1. PUBLICATION OK 2. Performing Organ. Report No. 3. Publication Date

BIBLIOGRAPHIC DATA
REPORT NO.

SHEET (See instructions) NIST/SP-500/180 April 1990
4. TITLE AND SUBTITLE

Guide to Software Acceptance

5. AUTHOR(S)

Dolores R. Wallace^ John C. Cherniavsky (Georgetown University)
6. PERFORMING ORGANIZATION (if joint or other ttian NBS. see instructions)

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
(formerly NATIONAL BUREAU OF STANDARDS)
U.S. DEPARTMENT OF COMMERCE
GAITHERSBURG, MD 20899

7. Contract/Grant No.

8o Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)

Same as item #6

10. SUPPLEMENTARY NOTES

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200'Word or /ess factual summary of most si gnificant information,
bi bliography or literature survey, mention it here)

If document includes a si gnificant

Software acceptance is a life cycle process which includes acceptance of interim and
final software products for both new and maintained software systems. This guide
assists buyers in understanding acceptance issues relative to a basic life cycle
model and some of its variants. The guide identifies six categories (functionality,
performance, interface quality, overall software quality, security, and software
safety) for which acceptance criteria must be defined. The guide identifies issues to
be considered when establishing acceptance criteria. Finally the guide directs
managers in planning and implementing a software acceptance program, with emphasis
on the final software acceptance testing.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

acceptance categories; acceptance criteria; life cycle models; software acceptance;
software acceptance plan; software acceptance testing; software product assurance;
software quality

13. AVAILABILITY

[J\ Unlimited

I I

For Official Distribution, Do Not Release to NTIS

[jX] Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.

20402.

Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

42

15. Price

USCOMM-DC 6043-P80

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SYSTEMS TECHNOLOGY

SuperiBtendent of Documents
Government Printing Office

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Institute of Standards and Technology Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notification key N-503)

i y AkJ JL Technical Publications

Periodical

Journal of Research of the National Institute of Standards and Technology—Reports NIST research

and development in those disciplines of the physical and engineering sciences in which the Institute

is active. These include physics, chemistry, engineering, mathematics, and computer sciences.

Papers cover a broad range of subjects, with major emphasis on measurement methodology and
the basic technology underlying standardization. Also included from time to time are survey articles

on topics closely related to the Institute's technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the

Institute's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) de-

veloped in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NIST, NIST annual reports,

and other special publications appropriate to this grouping such as wall charts, pocket cards, and
bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physi-

cists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in

scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical
properties of materials, compiled from the world's literature and critically evaluated. Developed un-

der a worldwide program coordinated by NIST under the authority of the National Standard Data
Act (Public Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data (JPCRD)
is published quarterly for NIST by the American Chemical Society (ACS) and the American Insti-

tute of Physics (AIP). Subscriptions, reprints, and supplements are available from ACS, 1155 Six-

teenth St., NW., Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Institute on building

materials, components, systems, and whole structures. The series presents research results, test

methods, and performance criteria related to the structural and environmental functions and the

durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treat-

ment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final reports of work performed at NIST
under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Com-
merce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally

recognized requirements for products, and provide all concerned interests with a basis for common
understanding of the characteristics of the products. NIST administers this program as a supplement
to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NIST research and experience, cov-
ering areas of interest to the consumer. Easily understandable language and illustrations provide use-

ful background knowledge for shopping in today's technological marketplace.
Order the above NIST publications from: Superintendent ofDocuments, Government Printing Office,

Washington, DC 20402.

Order the following NIST publications—FIPS and NISTIRs—from the National Technical Information
Service. Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series col-

lectively constitute the Federal Information Processing Standards Register. The Register serves as

the official source of information in the Federal Government regarding standards issued by NIST
pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law
89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11,

1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NIST Interagency Reports (NISTIR)—A special series of interim or final reports on work performed
by NIST for outside sponsors (both government and non-government). In general, initial distribu-

tion is handled by the sponsor; public distribution is by the National Technical Information Service,

Springfield, VA 22161, in paper copy or microfiche form.

U.S. Department of Commerce
National Institute of Standards and Technology

(formerly National Bureau of Standards)

Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300

