
A111Q3 IMbOb?

NATL INST OF STANDARDS & TECH R.I.C.

A1 11 031 46067
Invitational Worksho/Report of the Invit

QC100 .U57 NO.500-168 1989 C.2 NIST-PUB-

U.S. DEPARTMENT OF
COMMERCE
National Institute of

Standards and
Technology

ST

ATIONS

Nisr

NIST Special Publication 500-168

Report of the Invitational

Workshop on Data Integrity

Zella G. Ruthberg

William T. Polk

J

NATIONAL INSTITUTE OF STANDARDS &
TECHNOLOGY

Research Mormation Center

r—

Gakhersburg, MD 20899

he National Institute of Standards and Technology^ was established by an act of Congress on March 3,

1901. The Institute's overall goal is to strengthen and advance the Nation's science and technology and
fecilitate their effective application for public benefit To this end, the Institute conducts research to assure interna-

tional competitiveness and leadership of U.S. industry, science and technology. NIST work involves development
and transfer of measurements, standards and related science and technology, in support of continually improving

U.S. productivity, product quality and reliability, innovation and xmderlying science and engineering. The Institute's

technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, the

National Computer Systems Laboratory, and the Institute for Materials Science and Engineering.

The National Measurement
>

Provides the national system of ph
coordinates the system with measu
and furnishes essential services leai

physical and chemical measuremei
commimity, industry, and commer
services to other Government agei

research; develops, produces, and
Materials; provides calibration ser

Standard Reference Data System,

following centers:

The National Engineering

Provides technology and technical

sectors to address national needs ai

conducts research in engineering a

efforts; builds and maintains comp<
required to carry out this research

neering data and measurement cap

ment traceability services; develop

neering standards and code change

engineering practices; and develop
transfer results of its research to tii

consists of the following centers:

The National Computer Sys

DATE DUE

Conducts research and provides sc

Federal agencies in the selection, a

computer technology to improve e

ment operations in accordance wit]

relevant Executive Orders, and otb

by managing the Federal Informati

developing Federal ADP standards

participation in ADP voluntary sta

tific and technological advisory services and assistance to Federal

agencies; and provides the technical foimdation for computer-related

policies of the Federal Government The Laboratory consists of the

following divisions:

The Institute for Materials Science and Engineering

tc Standards^

jation Research

mical Physics

Jytical Chemistry

nputing and Applied
Jiematics

ctronics and Electrical

,meenng^
lufacturing Engineering

ding Technology
J Research
.mical Engineering^

irmation Systems
.ineering

;ems and Software

hnology
aputer Security

[ems and Network
hitecture

danced Systems
Demco, Inc. 38-293

Conducts research and provides measurements, data, standards, refer- • Ceramics
ence materials, quantitative understanding and other technical informa- • Fracture and Deformation^

tion fundamental to the processing, structure, properties and perfor- • Polymers
mance of materials; addresses the scientific basis for new advanced • Metallurgy
materials technologies; plans research arovind cross-cutting scientific • Reactor Radiation

themes such as nondestructive evaluation and phase diagram develop-

ment; oversees Institute-wide technical programs in nuclear reactor

radiation research and nondestructive evaluation; and broadly dissem-

inates generic technical information resulting from its programs. The
Institute consists of the following divisions:

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address

Gaithersburg, MD 20899.

^me divisions within the center are located at Boulder, CO 80303.
^ Located at Boulder, CO, with some elements at Gaithersburg, MD.

(Ji^ra. NIST Special Publication 500-168

ftC i 00 :

Report of the Invitational

Workshop on Data Integrity

Zella G. Ruthberg and William T. Polk, Editors

National Computer Systems Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

September 1989

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Kammer, Acting Director

Nisr

Reports on Computer Systems Technology

The National Institute of Standards and Technology (NIST) (formerly the National Bureau of Standards)

has a unique responsibility for computer systems technology within the Federal government. NIST's

National Computer Systems Laboratory (NCSL) develops standards and guidelines, provides technical

assistance, and conducts research for computers and related telecommunications systems to achieve

more effective utilization of Federal information technology resources. NCSL's responsibilities include

development of technical, management, physical, and administrative standards and guidelines for the

cost-effective security and privacy of sensitive unclassified information processed in Federal computers.

NCSL assists agencies in developing security plans and in improving computer security awareness train-

ing. This Special Publication 500 series reports NCSL research and guidelines to Federal agencies as well

as to organizations in industry, government, and academia.

Library of Congress Catalog Card Number: 89-600756
National Institute of Standards and Technology Special Publication 500-1 68

Natl. Inst. Stand. Technol. Spec. Publ. 500-168, 377 pages (Sept. 1989)

CODEN: NSPUE2

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1989

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402

Report of the Invitational Workshop
on

Data Integrity

January 25-27, 1989

EXECUTIVE SUMMARY ix

1. INTRODUCTION 11
1.1 BACKGROUND 1-1
1.2 OBJECTIVES OF THE WORKSHOP 1-2
1.3 AGENDA OF THE WORKSHOP

.

1-3
1.4 SUMMARIES OF PRESENTED PAPERS 1-7

1.4.1 Some Informal Comments about Integrity and the Integrity

Workshop by Robert H. Courtney, Jr. (Strawman Paper) 1-7
1.4.2 Evolution of a Model for Computer Integrity , by David D. Clark

and David R. Wilson . 1-7
1.4.3 On Data Quality , by Viiveke Fak 1-8
1.4.4 Terminology, Criteria, and System Architectures for Data Integrity ,

by Ravi Sandhu 1-8
1.4.5 Integrity Controls for Military and Commercial Applications, II ,

by Robert R. Jueneman 1-9
1.4.6 Security Classes and Access Rights in a Distributed System , by

Roy W. Jones (presented by Tom Parker) 1-11
1.4.7 DBMS Integrity and Secrecy Controls , by Rae K. Bums 1-12
1.4.8 Work-In-Progress: Transformation Procedure (TP) Certification , by

Maria Pozzo and Steve Crocker 1-12
1.4.9 Toward a Model for Commercial Access Controls , by Stan

Kurzban 1-13
1.5 GUIDE TO REPORT'S CONTENTS 1-14

2. THE DEFINITION OF INTEGRITY 2-1
2.1 INTRODUCTION 2-1
2.2 CLARKAVILSON DEFINITION OF INTEGRITY 2-1
2.3 STRAWMAN DEFINITION OF INTEGRITY 2-2
2.4 INTEGRITY DEFINITIONS: THE WORKSHOP PAPERS 2-2

2.4.1 Modified Definitions 2-3
2.4.2 Is Data Integrity the Appropriate Topic? 2-3
2.4.3 Is Integrity Binary? 2-4
2.4.4 Is It Possible To Converge on a Single Definition? 2-4
2.4.5 Perhaps the Strawman Is Unnecessarily Complicated 2-5
2.4.6 Is Integrity Stateless? 2-5
2.4.7 A Mathematical Model 2-5
2.4.8 Consensus Items 2-6

2.5 THE POST-MORTEM/CONCLUSIONS 2-6

iii

3. INTEGRITY FRAMEWORK ELEMENTS (DAY 1) 3-1
3.1 SUMMARIES OF FIVE GROUPS' DISCUSSIONS 3-1

3.1.1 Operating Systems Working Group (Group 1)

Prepared by Tom Berson 3-1
3.1.2 Telecommunications Working Group (Group 2)

Prepared by Z. G. Ruthberg 3-3
3.1.3 System Services Working Group (Group 3)

Prepared by Sylvan Pinsky 3-4
3.1.4 Applications Working Group (Group 4)

Prepared by Karl Krueger 3-7
;

3.1.5 ImplementationsA^odels Working Group (Group 5)

Prepared by Stewart Kowalski 3-9
3.2 CONSENSUS VIEW FROM FRAMEWORK ELEMENTS DISCUS-

SIONS 3-12
3.2.1 Policy and Objectives for Quality 3-13
3.2.2 Common Mechanisms for Quality 3-13

4. INTEGRITY IMPLEMENTATION REQUIREMENTS, APPROACHES,
MODELS 4.1-1
4.1 OPERATING SYSTEMS AND SYSTEMS - GROUP 1 REPORT

Prepared by Tom Chen 4.1-1
1. INTRODUCTION 4.1-1
2. OPERATING SYSTEM CONTROL OBJECTIVES 4.1-3
3. CHARACTERIZATION OF OPERATING SYSTEM FEATURES 4.1-6
4. GUIDELINES 4.1-9
5. SUGGESTED RESEARCH TOPICS 4.1-9
6. SUMMARY AND CONCLUSIONS 4.1-10
7. REFERENCES 4.1-10

4.2 TELECOMMUNICATIONS - GROUP 2 REPORT
Piepared by Ted Lee 4.2-1

1. INTRODUCTION 4.2-1
2. SCOPE 4.2-1
3. STATEMENT OF INTEGRITY POLICY 4.2-2
4. THREATS AND VULNERABILITIES 4.2-3
5. INTEGRITY MECHANISMS 4.2-5
6. ASSURANCE MEASURES 4.2-6
7. NEED FOR GUIDANCE 4.2-7
8. LOOSE ENDS 4.2-8
9. NON-TECHNICAL BARRIERS 4.2-8
10. CONCLUSIONS 4.2-9

4.3 SYSTEM SERVICES - GROUP 3 REPORT
Prepared by Grant Wagner 4.3-1

1. SCOPE 4.3-1
2. DBMS INTEGRITY CONTROLS AND CLARK & WILSON . 4.3-1
3. SOME THOUGHTS ON CONFIDENTIALITY AND INTEGRITY 4.3 - 3

4. REFLECTIONS/RECOMMENDATIONS 4.3-3

iv

5. EXAMPLE - GENERATING CHECKS 4.3 -3
4.4 APPLICATIONS - GROUP 4 REPORT

Prepared by William Murray 4.4-1
1. CHARGE 4.4-1
2. PRINCIPLES AND CONSTRUCTS 4.4-3
3. CONCLUSIONS 4.4 -5
4. REQUIREMENTS 4.4-6
5. RECOMMENDATIONS 4.4-9

4.5 IMPLEMENTATION/MODELS - GROUP 5 REPORT
Prepared by Carl Landwehr 4.5-1

1. CHARGE 4.5-1
2. THE CHOSEN FRAMEWORK 4.5-1
3. RECOMMENDATIONS 4.5-3

5. CONCLUSIONS, ISSUES, RECOMMENDATIONS 5-1
5.1 INTRODUCTION 5-1
5.2 OPERATING SYSTEMS AND SYSTEMS (GROUP 1) 5-1
5.3 TELECOMMUNICATIONS (GROUP 2) 5-2
5.4 SYSTEM SERVICES (GROUP 3) 5-3
5.5 APPLICATIONS (GROUP 4) 5-3
5.6 IMPLEMENTATIONS/MODELS (GROUP 5) 5-4
5.7 SUMMARY 5-5
5.8 MAJOR AREAS OF AGREEMENT 5-6
5.9 MAJOR AREAS OF CONFLICT 5-7

6. REFERENCES 6-1

Appendices

A. THE PRESENTED PAPERS A

Some Informal Comments About Integrity and the Integrity Workshop ,

by Robert H. Courtney, Jr A.l

Evolution of a Model for Computer Integrity ,

by David D. Clark and David R. Wilson A.2

On Data Quality , by Viiveke Fak A.

3

Terminology, Criteria, and System Architectures for Data Integrity ,

by Ravi Sandhu A.4

Integrity Controls for Military and Commercial Applications, n ,

by Robert R. Jueneman A.

5

Security Classes and Access Rights in a Distributed System ,

by Roy W. Jones A.

6

DBMS Integrity and Secrecy Controls , by Rae K. Bums A.7

Work-in-Progress: Transformation Procedure (TP) Certification ,

by Maria Pozzo and Steve Crocker A.

8

Toward a Model for Commercial Access Controls ,

by Stan Kurzban A.9

v

1

B. THE POSITION PAPERS B
j

Data Integrity Position Statement , by Marshall D. Abrams B.l

Process Execution Controls as a Method of Ensuring Integrity .

- by Eugen Mate Bacic B.2
Naming and Abstraction for Large Security Configurations ,

" by Robert W. Baldwin B.3

The Clark-Wilson Integrity Policy Model as a Model for Trusted

Applications , by Deborah J. Bodeau . B.4 i

On the Adequacy of the Clark-Wilson Definition of Integrity . I

' ~ ^ by Dayid A. Bonyun B.5

Achieying Integrity In Automated Systems , by Nander Brown B.6
Other Informal Comments About Integrity and the Integrity Workshop ,

by Thomas M. Chen B.7

Security Protection Based on Mission Criticality ,

by Howard L. Johnson B.8

untitled position paper, by Stewart Kowalski B.9

Position Statement on Data Integrity Issues , by Karl Krueger B.IO

Issues in Data Integrity , by Jan Kruys B.ll

Position Statement: WIPCIS II, by Theodore M. P. Lee B.12

Data Integrity Issues , by Kurt H. Meiser B.13

Data Integrity Issues , by Dale W. Miller B.14

Integrity Isn't Black or White , by Lee Ohringer B.15

Integrity Concepts Within the Framework of Information Security ,

by Donn B. Parker B.16

Integrity Workshop - Outline Contribution ,

by Tom A. Parker B.17

Data Integrity Issues , by Thomas R. Peltier B.l

8

Workshop Position Paper , by Sig Porter B.19

Why Integrity Is Important to Me: A Position Paper for the Inyitational

Workshop on Data Integrity , by Marvin Schaefer B.20

Importance Of Mandatory Integrity Controls ,

by W. R. Shockley B.21

Definitions and Concepts of Data Integrity ,

by Stelio Thompson-Sittas B.22

Data or Information Quality , by Eya Sparr B.23

Comments on Data/Information Integrity Issues ,

by John M. Thurlow B.24

Position Paper on Data Integrity , by Douglas Vamey . B,25

Integrity and Information Protection ,

by S. R. Welke, W.T. Mayfield and J.E. Roskos B.26

C. CALL FOR PAPERS C

D. THE WORKSHOP ATTENDEE LIST D

yi

LIST OF FIGURES

Figure Page

1-1 Workshop Subject Matter Relationships 1-2

3-1 Input/Output Process Approach 1-2

3-2 Framework for Integrity 3-5

4.4- 1 Boundary of Trust 4.4-2

4.5- 1 Can Quality Attribute X Be Represented/Controlled in Model Y? 4.5-6

4.5-2 Can the Specified Mechanism Contribute to the Maintenance of

the Corresponding Quality Attribute? 4.5-7

vii

ACKNOWLEDGMENTS

The editors wish to thank the many people who assisted them in the creation and
assembly of this document. Karen Moran created the figures and typed extensive portions of

the document. Lawrence Bassham provided tireless and invaluable assistance during the

assembly of the camera ready copy, as well as proofreading many passages. The efforts of

our many reviewers, especially those of Charles Dinkel and Alan Goldfine, were greatly

appreciated.

viii

EXECUTIVE SUMMARY

This report contains the proceedings of the second invitational workshop on computer

integrity issues which took place on January 25-27, 1989 at NIST. The first invitational

workshop took place on October 27-29, 1987 and addressed Integrity Policy in Computer
Information Systems. This sudden increased interest in integrity issues was brought on by a

landmark paper by David D. Clark of MIT and David R. Wilson of Ernst & Whinney
[CLARK87] in April 1987. Their paper set forth the thesis that the current emphasis on the

confidentiality aspect of computer security, found in the DoD criteria document [TCSEC] did

not adequately address the integrity aspect of computer security and was therefore not serving

the needs of the commercial sector. The model suggested by Clark/Wilson in their paper was
discussed by scientists and practitioners at the first integrity workshop under the topics of

Assurance, Granularity and Functions, Identity Verification, Auditability, and Correspondence

of a System to Reality. These discussions generated more questions than answers and can be

found in NIST Special Publication 500-160 [NIST160].

A significant other result of this first workshop was the decision by NIST to nurture the

integrity policy activity by organizing and hosting one or more subsequent invitational

workshops on this subject. The NIST Computer and Telecommunications Council estabUshed

a Working Group, chaired by Robert H. Courtney, Jr., which devoted its time to the subject

of data integrity. Its numerous discussions were instrumental in deciding on data integrity as

the subject matter for this first follow-on workshop. A Planning Committee with many
individuals from the Working Group (see Section 1.2 for member names), drew up an outline

of the scope of this follow-on workshop. It was to discuss 1) Integrity Framework Elements

(including (a) concepts of integrity, quality, and value, (b) integrity requirements, (c) quality

metrics); 2) Implementation Requirements and Approaches (emphasizing functionality and

properties); and 3) Implementation/Models (in relation to the Integrity Framework to be

developed). (See Section 1.2 for more details).

A Call for Papers (in Appendix C) and a Strawman Paper by Robert H. Courtney, Jr. (in

Appendix A) were distributed to the relevant communities and as a result eight papers were

selected for presentation to stimulate discussions. These papers fit into the Planning

Committee's outiine and addressed such topics as data integrity models, data quality, integrity

controls, and certification of transformation procedures that preserve data integrity. Invitations

to the workshop were issued to persons who had a keen interest in integrity issues and were

working in some aspect of it. As part of the attendee preparation for the workshop a position

paper was requested on some related topic. The submitted position papers can be found in

Appendix B.

The workshop took place over a period of two and one-half days with 66 attendees. With

the further assistance of the Planning Committee, it was decided, prior to the workshop, that

the attendees would be divided into five discussion groups and that their forcus would be 1)

Operating Systems and Systems, 2) Telecommunications, 3) System Services, 4) Applications,

and 5) Implementations/Models respectively. On Day-1 of the meeting, each discussion group

addressed the Integrity Framework Elements in an effort to draw some consensus view on

ix

these elements. The Strawman Paper presented a definition of data integrity and a view of
data quality and data value which received mixed responses from the five discussion groups.

Consequently, no consensus was reached on these aspects of the Integrity Framework
Elements.

The consensus that was reached was concemed with 1) policy and objectives for data

quality and 2) common mechanisms for data quality.

The policy and objectives consisted of:

. Authorization

. Accountability

. Auditability

. Internal Consistency

. Separation of Duties

. 'Real World' Correspondence

. Concepts of: Constrained Data Items

Well-Formed Transactions

Recoverability

. . Prevention of MissingAVrong/Extra Data

. Change Occurs If and Only If Appropriate

The common mechanisms suggested were:

. Means of Attribute Measurement

. Trusted Transformation Processes

. Constrained Data Items

. Object/Subject Authorization

. Event Signalling

. TCB

. Application Specific Reference Monitors

. Separation of Duties

. Privilege Mechanisms

. Audit Trails, Logging Mechanisms
This consensus formed the basis for the Day-2 discussions.

In the Day-2 discussions of the five groups, only Telecommunications concluded that no

new technological advances were necessary to achieve data integrity objectives. The System

Services group, which focused on DBMS for lack of more time, concluded that existing

mechanisms in DBMSs could be used for integrity control, but technological advances are

needed to make that control more effective and flexible. The Applications and Operating

Systems groups concluded that technological advancement is needed in those areas to achieve

satisfactory integrity control. The Implementations/Models group appears to be furthest from

meeting their goals. The theory and models for confidentiality do not apply well to integrity

and there is thus far no completely satisfactory proposed integrity model.

Major areas of agreement were expressed as the need for 1) research in the area of

separation of duties, 2) research in the area of interfaces that preserve integrity, 3) integrity

guidelines, and 4) ways to implement the ClarkAVilson access triples. (The access triples refer

to the need to tie together user, program and data so that integrity is maintained during system

operation.)

Major areas of conflict were 1) a definite opposition to creating at this time a data

integrity evaluation criteria document parallel to the DoD Orange Book for confidentiality

[TCSEC] since it would be premature and 2) a lot more discussion of Integrity Framework
Elements and integrity definition(s). Section 5 summarizes the workshop Day-2 reports in

more detail.

xi

1. INTRODUCTION

1.1 BACKGROUND

In April of 1987, a paper entitled "A Comparison of Commercial and Military Computer
Security Policies," written by David Clark of M.I.T. and David R. Wilson of Ernst &
Whinney [CLARK87], was presented at the annual meeting of the IEEE Technical Committee
on Security and Privacy. The paper suggested that previous work on data security had

favored confidentiality policy in response to the needs of the defense establishment (see the

DoD Trusted System Criteria document, also known as the Orange Book [TCSEC]) and that

this was done at the expense of integrity policy required by the commercial and non-defense

government sectors. The paper proposed an integrity policy based upon requirements for

separation of duties, well-formed transactions, and audit trails.

The intense interest of the computer security community, created by this paper, was
channelled into the invitational Workshop on Integrity Policy in Computer Information Systems

(WIPCIS), which was held at Bentley College in Waltham, Massachusetts on Oct. 27-29,

1987 and was sponsored by the IEEE Computer Society Technical Committee on Security and

Privacy, the Special Interest Group on Security, Audit, and Control of the Association for

Computing Machinery (SIGSAC/ACM), the National Computer Security Center at the National

Security Agency (NCSC/NSA), and the Institute for Computer Sciences and Technology at the

National Bureau of Standards (ICST/NBS) [now called the National Computer Systems

Laboratory at the National Institute of Standards and Technology (NCSL/NIST)]. After a

number of presentations, the workshop dissolved into five working groups, each discussing a

different area of concern with respect to the ClarkAVilson model. The areas of concern

consisted of Assurance, Granularity and Functions, Identity Verification, Auditability, and

Correspondence of a System to Reality.

The workshop attendees agreed that this was a good beginning to build upon but that the

Clark/Wilson model was not a sufficient foundation for an integrity policy. In fact,

Clark/Wilson, in a post workshop paper, suggested that 'integrity framework' rather than

'integrity model' might be a better description for their work. One major concern expressed

at the workshop was that computer security involves the triad of confidentiality, integrity, and

availability and this piecemeal approach (i.e., addressing confidentiality, and now integrity)

might not enable one to eventually encompass all three aspects of security simultaneously.

However, the workshop did provide a valuable dialogue between 'scientists' and 'practitioners',

and combined ideas about information systems from the business sector with concepts from

the military and general security research sectors. NIST has published the proceedings of this

workshop in its Special Publication 500-160 [NIST 160].

At the close of the WIPCIS workshop, NBS [now NIST] agreed to nurture the integrity

policy activity, and recommended a plan of action, including the organization and hosting of

one or more follow-on integrity workshops. A data integrity working group (WG), chaired

by Robert H. Courtney, Jr., was formed within the NIST Computer and Telecommunications

Security (CTS) Council and many discussions on data integrity and data quality ensued within

this group. These discussions were instrumental in formulating the subject matter for the first

1 - 1

follow-on integrity workshop organized and hosted by NIST. The WG members are listed in

Endnote 3 in the Courtney Strawman Paper presented at the follow-on Data Integrity

Workshop.

The follow-on workshop, an invitational Data Integrity Workshop, was held at NIST on

Jan. 25-27, 1989, was co-chaired by Robert H. Courtney, Jr. and Zella G. Ruthberg, and

is the subject of this document.

1.2 OBJECTIVES OF THE WORKSHOP

The Planning Committee for the foUow-on workshop contained many members of the

WG and was responsible for outlining what should be achieved at the workshop, what should

appear in the Proceedings, and the Agenda for accomplishing these things. The following

material was decided upon at a Dec. 8, 1988 meeting of the Planning Committee. The
members of the Planning Committee were:

Thomas A. Berson (Anagram), Carl Landwehr (NRL), Zella G. Ruthberg

(NIST), David Clark (MIT), Steven B. Lipner (DEC), Dennis Steinauer (NIST),

Robert Courtney (RCI, Inc.), William H. Murray (Ernst & Whinney), Anne
Todd (NIST), Stuart Katzke (NIST), Donn Parker (SRI), WiUis Ware (Rand),

Stan Kurzban (IBM), Sylvan Pinsky (NCSC), Larry Wills (IBM)

It was agreed that the workshop should work on the ideas illustrated in Figure 1-1:

INTEGRITY
FRAMEWORK

EVALUATION
CRITERL\

i
FUTURE

IMPLEMENTATIONS

EXISTING
INTEGRITY
MODELS

Figure 1-1 Workshop Subject Matter Relationships

1 - 2

Outlining the material to be addressed by the workshop in the form of a subsequent Pro-

ceedings, the Planning Committee arrived at the following:

I. Integrity Framework Elements

1. Introduction

- Scope and Objectives

2. Concepts
- Integrity, Quality, Value
- Policy and Principles

- Attributes of Quality

- Roles of People

3. Basic Integrity Requirements

4. Quality Metrics

II. Implementation Requirements and Approaches

(emphasizing functionality and properties)

1. Operating Systems and Systems

2. Telecommunications

3. System Services (e.g., DBMS, TP Monitors, etc.)

4. Applications

a) Highly Structured

b) Not Highly Structured

Appendix: Implementations/Models - should be discussed in relation to the Integrity

Framework developed in I.

The Proceedings would, at a minimum, then consist of the papers presented, the Integrity

Framework developed in I, the Implementation Requirements and Approaches developed in II,

and an Appendix on the Implementation/Models discussion relating these models to the

Integrity Framework developed in I.

1.3 AGENDA OF THE WORKSHOP

The following Agenda for the workshop was then arrived at, based on the Proceedings

outline in Section 1.2:

1 - 3

DATA INTEGRITY WORKSHOP
JANUARY 25-27, 1989

at NIST

AGENDA

Wednesday, Jan. 25, 1989

8:00am - 9:00ain REGISTRATION

PART I - INTEGRITY FRAMEWORK ELEMENTS

9:00ain - 9:15ain Introduction - Workshop Objectives
Dennis D. Steinauer
NIST

9:15ain - 9:45ain Some Informal Comments About Integrity
and the Integrity Workshop (Strawman)

Robert H . Courtney , Jr

.

RCI
9:45am - 10:15am Evolution of a Model for

Computer Integrity
David R. Wilson
Ernst & Whinney

10:15am - 10:30am On Data Quality
Viiveke Fak
Linkoping Univ., Sweden

10:3 0am - 10:45am - Orientation for Part I Discussions
Zella G. Ruthberg
NIST

Divide into Parallel Working Groups.
Get Room Assignments.

COFFEE BREAK

Part I- Parallel Discussions on
Integrity Framework Elements

LUNCH

Part I- Parallel Discussions
(continued)

COFFEE BREAK (available at will)

Joint Session - Reports from Groups

CASH BAR & DINNER

Group Chairs and Recorders Have
Discussion to Arrive at Consensus
on Integrity Framework Elements

10:45am - 11:00am

11:00am - 12:30pm

12:3 0pm - 1:30pm

1:30pm - 4:00pm

3:00pm ~ 4:00pm

4:00pm - 6:00pm

6:30pm - 8:30pm

8 : 3 0pm -

1 - A

DATA INTEGRITY WORKSHOP
JANUARY 25-27, 1989

at NIST

AGENDA

Thursday, January 26, 1989

8:30ain - lOrOOam Consensus Report on Part I-
Integrity Framework Elements

by One or More Group Chairs

PART II - IMPLEMENTATION REOUIREMENTS & APPROACHES
APPENDIX - IMPLEMENTATIONS/MODELS & THE INTEGRITY

FRAMEWORK CONSENSUS

10:00am - 10:30am Terminology. Criteria and System
Architectures for Data Integrity

Ravi Sandhu
Ohio State University

10:3 0am - 10:45am COFFEE BREAK

10:45am - 11:15am Integrity Controls for Military and
Commercial Applications

Robert R. Jueneman
Computer Sciences Corp.

11:45am - 12:15pm Security Classes and Access Rights in a
Distributed System

Roy. W. Jones
ICL Defence Systems, UK

12:15pm - 12:30pm Orientation for Part II and Appendix
Discussions

Zella G. Ruthberg
NIST

Divide into Five Discussion Groups on Five Different Topics.
Get Room Assignments.

12:30pm - 1:30pm LUNCH

1:30pm - 6:00pm Five Different Discussion Groups

1) Operating Systems and Systems
Steven Lipner, Chair

2) Telecommunications
David Clark, Chair

3) System Services, eg DBMS, TP Monitors
Grant Wagner, Chair

DBMS Integrity & Secrecy Controls
Rae K. Burns
Kanne Associates

1 - 5

DATA INTEGRITY WORKSHOP
JANUARY 25-27, 1989

at NIST

AGENDA

Thursday, January 26, 1989 (cont'd)

l:30pin - 6:00pm Five Different Discussion Groups (cont'd)

4) Applications - Highly Structured
Unstructured

William H. Murray, Chair
Transformation Procedure (TP)
Certification

Maria Pozzo
UCLA
Steve Crocker
Trusted Information Systems

5) Implementations/Models - and the
Integrity Framework Consensus
Carl Landwehr, Chair

Toward a Model for Commercial
Access Control

Stan Kurzban
IBM Corporation

3:00pm - 4:00pm COFFEE BREAK (at will)

6:30pm - 8:00pm CASH BAR COCKTAIL PARTY

Friday, Jan. 27, 1989

8:30am - 10:00am Five Discussion Groups Continue
10:00am - 10:30am Reports of Conclusions Begin

by Five Discussion Groups

10:3 0am - 10:4 5am COFFEE BREAK

10:45am - 12:30pm Reports of Conclusions are Completed
by Five Discussion Groups

WORKSHOP ADJOURNS

Afternoon - Session Chairs and Recorders meet to start writing
reports for Proceedings.

1 - 6

1.4 SUMMARIES OF PRESENTED PAPERS

Section 1.4 provides a concise report on the papers presented at the workshop. The Call

For Papers (see Appendix C for text), which came out in mid-September 1988, briefly de-

scribed the background and objectives of the workshop and referenced the Courtney Strawman
Paper (see Section 1.4.2 for brief description and Appendix A for text), which defined data

integrity and data quality. The Courtney paper was sent out in late September and stimulated

responses in the security community in the form of submitted papers and requests to attend.

All submitted papers were either selected for presentation (see Appendix A for texts) or placed

in a pool of Posidon Papers (see Appendix B for texts). In addition, Position Papers were

requested from all attendees prior to the workshop. The criterion for selecdon of presented

papers was how well the paper fit into the objectives of the workshop (see Section 1.2 for

objectives).

1.4.1 Some Informal Comments about Integrity and the Integrity Workshop , by Robert H.

Courtney, Jr. (Strawman Paper)

The Courtney strawman paper had two major objectives: 1) to present a definidon of 'data

integrity' arrived at by his Integrity Working Group within the NIST Computer and Tele-

communications Security Council and 2) to limit the scope of the workshop by stating ten

issues for discussion. The presented definition of integrity was:

Integrity — The property that data, an information process, computer equipment, and/or

software, people, etc., or any collection of these entities, meet an a priori expectadon of

quality that is satisfactory and adequate in some specific circumstance. The attributes of

quality can be general in nature and implied by the context of a discussion; or specific and

in terms of some intended usage or application.

The ten issues in the strawman addressed the following concepts: 1) information and data

are different; 2) data value and data cost are different; 3) the attributes of accuracy, com-

pleteness, and umeliness contribute to data value; 4) data value does not necessarily increase

with data quality; 5) a cost-benefit relationship between data quality and data value should be

established; 6) policy should guide attaining data integrity and data quality; 7) policy should

reflect principles guiding conduct of functions under that policy; 8) there exists a large body

of such principles from which to select for a particular application; 9) need to identify these

principles for inclusion in a shopping list; and 10) need to understand appropriate roles relative

to data quality and data integrity, i.e.. Quality Control, Quality Assurance, Data Base

Administration, the MIS Management, the functional area managers supported by the data, the

internal audit functions, the external auditors, and the computer security group. For a

discussion of the Courtney paper's definition of data integrity as well as others presented at

the workshop, see Section 2.

1.4.2 Evolution of a Model for Computer Integrity , by David D. Clark and David R. Wilson

The original Clark/Wilson paper [CLARK87] defined integrity as "those qualities which

give data and systems both internal consistency and a good correspondence to real world

expectations for the systems and data." Because of this, integrity controls can never be strictiy

1 - 7

internal to the computer, but must also include cross-checks with external reality. The
computer system can be expected only to preserve the integrity once data has been externally

verified.

Methods for assuring internal consistency should be based on 1) prevention of change,

2) attribution of change by binding data to its author, 3) constraint of change via certified

Transformation Procedures (TPs), and/or 4) partition of change to insure separation of duties.

Three key ways to relate a system and data to the world they represent are: 1) via an Integrity

Verification Procedure (IVP) that not only ensures that a system is initially in a valid state,

but also verifies the consistency between the data and external reality; 2) via a Trajisformation

Procedure certification that assures a) the TP does what it is supposed to do and b) the TP
specification really corresponds to the 'real-world' process it models; and 3) via Separation

of Duty rules that assure a sufficient breakdown of tasks so that people with different motives

and perspectives necessarily handle these component tasks.

Many of these principles can be carried forward into an integrity features list that could

be incorporated in evaluation criteria for future computer systems. These are, in brief:

1) Data author label, Data change logs, Data integrity label

2) Support of access triple (user-ID, TP, (CDIi,CDl2,...))

3) Enhanced user authentication (for partitioned changes, without forgery, and without shared

identity)

4) Control of privileged users - to enforce separation of duties

5) Application program control - to prevent administrative or technical corruption of a program

6) Dynamic separation of duty related TPs - some at the application level and some at the

operating system level.

The paper then attempts to build on the existing Orange Book [TCSEC] requirements for

disclosure levels C, B, A by mapping integrity features into this structure and then categor-

izing these features as Mandatory or Discretionary and Required or Optional. Much research

needs to be done to achieve a satisfactory mapping. Finally, the paper states that the third

piece of the security triad, i.e., denial of service, needs to be addressed for a complete security

model.

1.4.3 On Data Quality , by Viiveke Fak

The author, in a very reasoned manner, discusses the words 'data integrity', 'security',

'confidentiality', and 'data quality' and decides to accept 1) the common usage for security

that includes confidentiality, and integrity as independent components, and 2) the strawman

paper definition of data integrity that relies on measuring data quality. She concludes that

data quality has the measurable attributes of accuracy, completeness, timeliness, interoperability,

and relevance, and discusses aspects of these attributes.

1.4.4 Terminology, Criteria, and System Architectures for Data Integrity , by Ravi Sandhu

The author accepts the strawman definition for integrity, but introduces the terms 'trust'

and 'mandatory controls' in a manner different from the strawman paper and the Orange Book

1 - 8

[TCSEC]. He proposes using 'trust' as a binary term, applicable to active entities and

synonymous with 'integrity'. He argues that 'trust' is not synonymous with 'confidence'.

This view of 'trust' emphasizes two distinct issues in evaluating trust, functionality and degree

of confidence. He proposes that 'mandatory controls' be used to mean controls based on

properties of the object and/or the subject. Label-based controls are then a special case of this

more general notion. Discretionary controls can be excluded by excluding properties based

on identity of the subject and/or the groups to which it belongs. Otherwise, discretionary con-

trols can be viewed as a very special case of mandatory controls.

With this perspective, criteria for evaluating trusted systems must clearly separate the

issues of functionality and degree of confidence. While some joint progression may be

inevitable, it is inappropriate to couple these two issues too tightly. Also, the criteria need

to be finer than those found in the DoD Criteria document [TCSEC].

With regard to trusted systems architecture, experience has shown that trusted code is

needed above the security kernel so that mandatory controls can be by-passed in certain

legitimate circumstances. Policy and mechanism should be separated in the kernel. Policy

should be specified by static policy tables which can only be changed, under careful control,

when the system is built. A built-in notion of types should be provided for specifying these

policies.

Much research in the above areas is needed. It appears that mandatory controls for

integrity will be an order of magnitude more complex than label-based mandatory controls

for non-disclosure except for the covert channel problem which makes non-disclosure such a

difficult problem.

1.4.5 Integrity Controls for Militarv and Commercial Applications, 11 , by Robert R. Jueneman

This is a very extensive paper in which a system of integrity controls is presented that

is intended to be suitable for both commercial and military applications. The implicit context

of the ClarkAVilson paper [CLARK87] was that of a monolithic mainframe computer proces-

sing the traditional MIS programs (e.g., accounts receivable and payable, inventory control,

payroll) and did not cover such critical activities as computer program development,

CAD/CAM, robotics, nuclear reactor control, hospital patient monitoring, air traffic control,

embedded tactical applications, the Strategic Defense Initiative, or even simple word proce-

ssing. In addition, there was no discussion by ClarkAVilson of the requirement for Electro-

nic Data Interchange of purchase requisitions, invoices, or contracts between disparate

organizations which would necessitate the use of digital signatures that would stand up in court

if challenged. This paper is somewhat biased toward single user dedicated workstations

embedded in very large and dynamic networks of interconnected Trusted Computing Bases

(TCBs) which communicate over a virtual network of arbitrary non-secure media. The paper

assumes the TCBs provide the equivalent of a B2 level of trust in accordance with the DoD
Criteria document [TCSEC] and have an embedded cryptographic functionality which can be

used to protect both the secrecy and integrity of data stored locally or exchanged via a

network.

1 - 9

Integrity threats that are present in a large and dynamic network of TCBs are examined

and the point made that the DoD Criteria [TCSEC] address only the TCB and not programs

and data. After much discussion, the conclusion is drawn that a containment mechanism rather

than extensive Access Lists is the more feasible approach to prove the negative proposition

that no other program or agent, either internal or external, could possibly alter a Constrained

Data Item (CDI), except as permitted by the Ust of the Clark/Wilson access permission triples.

The class of containment mechanisms suggested is that of detection mechanisms which would

invalidate the data if such a change were to occur, plus the use of normal recovery/restoral

mechanisms to repair the damage.

The definition of integrity proposed is adapted from the CourtneyAVare definition found

in the strawman (see Appendix A) and is:

"Integrity is a property of those processes (subjects) and information (objects) that meet

an a priori expectation (specification) of a level of quality that is considered acceptable

for a particular application."

A discussion of this definition leads to a description of a metric for integrity, i.e., it must

consist of 1) a specified set of rules and 2) a measure of trust or confidence, 3) that is deter-

mined by an acceptable authority.

The integrity requirement generates a need for having valid data operated on by a valid

transformation process (TP) that results in valid data. This leads to the introduction of the

concept of an Integrity Domain - the set of allowable inputs to a process together with the

syntactic and semantic rules used to validate or reject these inputs and optionally produce

one or more outputs. The conclusion is then drawn that the integrity of a process is

probabilistic, not binary, and can only be defined relative to a specified integrity domain.

An extensive discussion of integrity threats and countermeasures leads to an enunciation

of thirteen rules, fashioned after but more comprehensive than those found in the Clark/Wilson

paper. These are claimed to be necessary and sufficient for integrity concerns in a networking

environment. The rules briefly are:

Rule 1 Immutability - Must have the ability to verify that contents of an object are

unchanged.

Rule 2 Attribution - Objects must be attributable to an authorized user or "originator."

Rule 3 Validation - Trusted Transformation Procedures (TPs) shall either validate or reject

objects in their integrity domain.

Rule 4 Certification - TPs shall be certified by an approval authority to perform their

function correctly.

Rule 5 Separation of Duty - Must be able to constrain who can execute a trusted process

and/or create or modify certain data so that change is partitioned among users.

Rule 6 Identification - All users of a system shall be uniquely enrolled into and identified

to the system by a trusted registrar.

Rule 7 Authorization - An individual's clearances, rights, privileges, and authority shall

be authenticated.

1 - 10

Rule 8 Trusted Date/Times - TCB shall provide a trusted Date/Time function that is

maintained within N seconds of Greenwich Mean Time (GMT).
Rule 9 Trusted Sequencing - TCB shall provide sequencing mechanisms sufficient to assure

that programs are applied to data in prescribed order.

Rule 10 Auditing - TCB shall at a minimum create an audit log entry for each file imported

into the system. This entry should contain comprehensive data on the file, i.e.,

user, process, date, time, TCB used, cryptographic checksum, etc.

Rule 11 Pedigree - TCB shall provide the option to capture in an integrity label the audit

log level (pedigree) of the file.

Rule 12 Provenance - TCB shall provide a means for a user to indicate his/her approval

of the contents of an object and enter associated data (e.g., description of

object's contents, associated documentation). This information is called the

provenance and shall be recorded in both the audit log and the integrity label.

Rule 13 Human-Readable Output - TPs shall be certified to correcdy display and print the

desired human-readable output. If other non-certified programs intervene

between the TP and final display or printout, the human user must be

responsible for the integrity of the output.

A set of implementation mechanisms for these rules are then proposed and discussed at

length. These include such considerations as integrity labels, a hierarchical integrity level

(defined as an estimated probability that the object met defined syntactic and semantic rules),

a set of non-hierarchical integrity categories or attributes corresponding to a set of integrity

domains, a reference monitor for integrity, the dynamic mapping of integrity categories, a set

of global integrity attributes (e.g., VERIFY, RECORD, PEDIGREE, DELETION-SENSITIVE,
and the digital signature related attributes of NON-REPUDIATION and NOTARIZED), and

integrity covert channels.

It is concluded that a system of Mandatory Integrity Controls consisting of the Biba

hierarchical integrity policy with integrity categories and multilevel integrity-trusted subjects,

plus Discretionary Integrity Controls which allow a subject to specify which objects are to be

accepted or believed, implemented on a TCB that meets Orange Book requirements for B2
with respect to security, can provide integrity controls well suited to the networking

environment. The author believes that this paper represents a reasonable consensus approach

of work already done in the integrity area and that it is "do-able" using current technology.

1.4.6 Securitv Classes and Access Rights in a Distributed Svstem , by Roy W. Jones (pres-

ented by Tom Parker)

The paper describes a general design for a secure system using a distributed network of

computing resources and does so with a combination of set theory and logic. It provides an

appropriate notation which enables the requirements of the secure system to be related to its

design in a mathematically more precise manner. In order to accomplish this, the paper

defines a number of terms and ideas that can be used in secure system design (e.g., class,

classification, access right). Finally, it describes the ClarkAVilson integrity model in these

terms and notation.

Some of the key notions developed are:

1 - 11

1) Definition of a generic mathematical form for a security class

2) Definition of a total security class for a particular system

3) How to classify all the components (data items, computing resources, end users) of a

system into subclasses

4) How to assign access rights to a class

An active component is defined as one which may operate upon other components. All

others are classed as inactive. Each active component has a clearance which is a class with

associated access rights. A security policy can then be described as a set of rules which

associate classification class with maximum permitted clearances.

The value of this work is that it presents a model for describing a secure system in a

logical manner and uses a mathematical notation to do so. A more rigorous description of

the model is needed as well as the development of real world examples in detail.

1.4.7 DBMS Integrity and Secrecv Controls , by Rae K. Bums

This paper briefly discusses three areas overlooked in current discussions on data integrity.

The first is that the ClarkAVilson paper is addressing the same domain as database

management systems. The ClarkAVilson principles of well-formed transactions and separation

of duties, which lead to notions of constrained data items (CDIs), transformation procedures

(TPs), and integrity verification procedures (IVPs) are not directly found in data communica-

tion systems, operating systems, or even applications. Database management systems, on the

other hand, have vehicles for expressing all three of these concepts (CDIs, TPs, and IVPs).

The second area is the notion that application secrecy requirements and integrity

requirements are interrelated and must be handled in a unified context. A fundamental

relationship between classification constraints and integrity constraints is that a classification

constraint is basically an integrity constraint that applies to a secrecy label attribute rather

than a data value attribute. It is not feasible to isolate secrecy and/or integrity semantics

from the overall application semantics.

The third area involves the inappropriate separation of discretionary access controls for

operations that modify data (integrity) fi^om those controls for operations that only read data

(secrecy). As an example, within many database applications, ad hoc queries are no more
appropriate for read-only transactions than they are for modification of the database.

1.4.8 Work-in-Progress: Transformation Procedure (TP) Certification , by Maria Pozzo and

Steve Crocker

A primary component of the ClarkAVilson Model [CLARK87] is the Transformation Proce-

dure (TP), which corresponds to the notion of a well-formed transaction. A TP is a program

that has been certified to change the data it manipulates in constrained ways. This paper

discusses a proposal for a TP certification mechanism based on formal specification and

verification techniques. The general idea is to build a filter program which examines a poten-

tial TP to determine 1) if it manipulates only those Constrained Data Items (CDIs) that it is

1 - 12

supposed to manipulate and 2) if it does so in a manner that is consistent with the system's

integrity policy for GDIs.

The issues in building this filter fall into three classes: specification, analysis, and

acceptance. Separation of the integrity component of what the program does from general

program correctness issues simplifies the specification process under consideration. In the

context of integrity, a primary concern is to restrict the data that a program can manipulate.

This less general form of specification is called a restriction. The filter then analyzes a

program to determine if the program stays within its restriction. The next step is to decide

whether the restriction permits acdons that are acceptable according to the system's integrity

policy. A program then becomes a TP if it can be shown that it implements the integrity

policy associated with the GDIs it manipulates. The paper then discusses some of the ways
that the specification might be constructed (e.g., list, pattern match, complex rule, type).

In the analysis area, the paper recommends that a TP use software engineering techniques

to limit its acdons so that open-ended capabilities such as dynamically generated code that it

branches to or the ability to make operating system incisions do not occur. In the acceptance

area the conclusion is drawn that it is not possible to draw up a single integrity policy for a

wide range of information and applications and that such policy is most likely application

dependent.

Two examples are then presented: one in an accounting domain where GDIs are highly

structured data items; and a second from the viewpoint of computer virus protection where

the GDIs are generally unstructured entities. Gurrent work underway is investigating the

feasibility of applying the filter approach to virus protection.

1.4,9 Toward a Model for Gommercial Access Gontrols , by Stan Kurzban

This paper presents a set of objects that are suitable for use in rigorous descriptions of

access control software to meet commercial requirements. The most important of these

requirements can be expressed in terms of the following four principles (abbreviated):

1. Least Privilege (LP) - People must be authorized to do all and only what they must

do to perform their assigned tasks.

2. Separation of Duties (SD) - If a set of acts can jeopardize the organization, then multi-

ple individuals with conflicting motives must be involved in performing sets of acts.

3. Ease of Use (ESU) - The easiest way to do something should always be the safest

way as well.

4. Adequate InvulnerabiHty (I) - Deliberate circumvention of security measures will be

demonstrably less attractive than other means of achieving the same objectives.

GlarkAVilson [GLARK87] used these principles to derive their model for commercial com-

puter security and their work and this paper suggest the following access control fundamen-

tals (abbreviated):

1 - 13

1. The facilities of access control must be available to application software (LP).

2. Access control software must permit the aggregation of both users and resources into

groups (ESU).

3. Users must be able to prove their identities easily (ESU) as well as with certainty (I).

4. The separation of administrative tasks by scope and responsibility (SD) is vital to

placement of small burdens on administrators (ESU).

The users of systems can be classified as Application Developers, Application Users, and

Administrators. The paper enumerates their corresponding security needs. The model's objects

of interest for commercial access control are User Profiles, Group Profiles, Resource (and

Resource Set) Profiles, Programs, Processes, and System-Wide Security Data. The paper

describes each of these objects.

The next step would be to map these objects to some formalism that would permit the

development of a model. Such a model would then enable one to develop an approach to

rating access control products, establish an architecture for access control, verify the

functioning of an access control product, and even automate such verification via theorem

provers.

1.5 GUIDE TO REPORT'S CONTENTS

. This document takes the reader through the entire process of organizing, holding and

reporting the results of this Invitational Workshop on Data Integrity. Section 1 gives the

reader background on the work on integrity policy that preceded this workshop, what the

objectives of this workshop were, how the agenda was developed, and, via summaries, the

major ideas presented by the Strawman and the eight papers presented at the workshop. The

Call for Papers that lead to the selection of the presented papers can be found in Appendix

C.

Since a consensus on the definition of data integrity was not reached, Section 2 was

written to present some thoughts on the various views on the definition of this term. Section

3 contains summaries of the five Day-1 discussion groups' deliberations on Integrity

Framework Elements and briefly presents the consensus arrived at for data quality related

policy/objectives and common mechanisms. These consensus items were to be used as the

basis for Day-2 deliberations. Section 4 contains the reports by the five groups on their Day-

2 discussions.

The Day-2 reports each contain conclusions, recommendations, and statements of major

issues that need further work. Section 5 attempts to summarize the results of the workshop

efforts and points towards areas needing more research. Section 6 contains an integrated

reference list derived from all the group reports.

Appendix A contains copies of all the papers that were presented at the workshop. As
part of the admission to the workshop, invitees were asked to write a brief position paper,

if possible. Appendix B contains all of the papers that were submitted for this purpose.

Appendix D provides the reader a detailed attendee list.

1 - 14

2. THE DEFINITION OF INTEGRITY

2.1 INTRODUCTION

The definition of data integrity is not a new subject. FTPS PUB 39 [FIPS39], the Glossary

For Computer Security Systems Security, defined data integrity as "The state that exists

when computerized data is the same as in the source documents and has not been exposed to

accidental or malicious alteration or destruction." This definition has grown narrow, as the

capabilities of computer systems evolved. It is no longer acceptable to limit our discussion

of data to source documents. The integrity of data which has been processed, modified or

restructured is of importance in modern computing. So, this definition must be superseded by

a more comprehensive definition.

[Note: This section refers to many documents contained in the Appendices. Those documents

are noted by author or title; any other reference is in the References, Section 6]

The subject has, however, languished in relative obscurity as the field of Computer Security

grappled with the more immediate problem of confidentiality. Confidentiality is the primary

concern in the handling of classified information. A set of criteria was developed by the U.S.

Department of Defense for the classification of computer mechanisms to provide control of

classified information. This set of criteria is contained in a popularly DOD publication known
as the Orange Book [TCSEC]. The field has now turned to the problem of control of

unclassified information, where it is agreed that data integrity is the primary concern.

This grappling with the problem of integrity began with an attempt to use the types of

access controls described in the Orange Book for enforcement of the Biba integrity closure

rules. Most notably, Steve Lipner of DEC presented the paper "Non-Discretionary Controls

for Commercial Applications" [LIPNER82] at the 1982 IEEE Symposium on Security and

Privacy. Additional work was done in the area by other researchers, but computer security

specialists have, for the most part, concluded that these controls are simply inappropriate for

the task. (For a dissenting opinion, see William Shockley's position paper "Importance of

Mandatory Integrity Controls" in Appendix B.)

While there is consensus that the FIPS 39 definition is inadequate, there is no consensus

upon what would be adequate. Since the publication of FIPS 39 in 1976, "data integrity" has

been used to mean many and varied things. In general, the phrase has been used to describe

the security policies of commercial (unclassified) systems. The requirements of those policies

and the controls used to implement them are subject to some dispute. As a result, there is

no agreed definition or model for data integrity ready to replace it.

2.2 CLARKAVILSON DEFINITION OF INTEGRITY

The ground swell of interest in data integrity was spurred by the recent paper "A

Comparison of Commercial and Military Computer Security Policies" [CLARK87] presented

at the 1987 IEEE Symposium on Security and Privacy by David Clark and David Wilson.

While the ClarkAVilson paper did not state a specific definition for data integrity, it did

2 - 1

introduce a more formal model of data integrity. The Clark/Wilson paper concluded that a

distinct set of security policies relating to data integrity were required in the commercial

sector. In addition it concluded that these policies, and the mechanisms for their enforcement,

were disjoint from the criteria presented in the Orange Book.

The ClarkAVilson model defines the data items to which the model must be applied as

"Constrained Data Items" (CDIs), and defines two classes of procedures, "Integrity Verification

Procedures" (FVPs) and "Transformation Procedures" (TPs). The model assumes that there are

a set of valid states for the collection of CDIs in the system. If the CDIs are in a valid state,

then the system meets the integrity requirements. In this model, the IVP is used to verify the

state of the CDIs (eg, in an accounting system, an IVP would balance and reconcile the

books). A TP is a procedure that will modify a set of CDIs, transforming them from one

valid state to another. In this way, a system validated by an IVP and acted upon by TPs will

remain in a valid state. This model describes the progression of data through a system and

defines its integrity at every point. Implicitly, this model describes data integrity as binary,

and applies this to a system as a whole rather than specific data items.

A second paper by Clark and Wilson, "Evolution of a Model for Computer Integrity"

[CLARK89] presented a definition for computer integrity. This definition stated that computer

integrity is related to both an internal and external consistency standard. External consistency

means that the data conforms to the real-world situation it describes; internal consistency states

that any modifications to the data have been performed in a controlled manner.

2.3 STRAWMAN DEFINITION OF INTEGRITY

The Strawman paper detailed a definition of integrity that was in some ways a parallel

of that implied in the ClarkAVilson model. This definition incorporates three basic concepts:

data quality; expectations of quality; and data integrity. Data quality is a new term introduced

to describe such attributes as accuracy, timeliness and completeness. Data quality is an analog

(continuously valued) function. Expectations of quality are the minimally acceptable value of

data quality (as defined by the user). Finally, data integrity is defined as a purely binary

value determined by the data quality's relationship to expectations of quality. The data has

a certain degree of quality, and the user has some expectations of quality. If the data quality

equals or exceeds the expectations of quality, the data has integrity; otherwise it does not.

Certain features of the strawman definition were especially controversial; most notably,

the introduction of a new term "data quality" and the proposal that data integrity is a purely

binary idea.

2.4 INTEGRITY DEFINITIONS: THE WORKSHOP PAPERS

The responses fell into several overlapping groups. One group of papers assumed
ClarkAVilson or the strawman and proposed methodologies for maintaining data integrity in

a system based on that definition. (These papers will not be discussed further in this section.)

Another group commented on the model proposed by ClarkAVilson or the strawman definition,

and proposed alternatives or modifications. This group may be further divided into those

addressing the binary nature of integrity in the strawman and those viewing data integrity as

2 - 2

a data correctness issue. A third group outlined issues that they feh should be addressed at

the workshop, and several additional definitions of integrity were also proposed. A fourth

group chafed noticeably at the constraint that they address data integrity, feeling compelled to

broaden or narrow the focus. A few authors consciously avoided the strawman or

ClarkAVilson paper to constrain themselves to their instinctive opinions, rather than be

influenced by those positions. Finally, while the Clark/Wilson paper's basis is the idea that

current methods cannot be reasonably applied to the problem, one author (Shockley) argues

that those methods can be reasonably applied now. He argued that their imperfection for the

task should not rule out their use until more suitable methods are devised.

2.4.1 Modified Definitions

Robert Jueneman 's presented paper "Integrity Controls For IS^ilitary and Commercial
Applications, 11" includes a detailed definition for data integrity that is based on the same
concepts as the strawman definition. This definition is based on a priori expectations of

quality, as in the strawman. However, integrity is measured as two components. [The first

component is scalar and the second is hierarchical. The scalar component specifies the

integrity category corresponding to the integrity domain.]

Ravi Sandhu presented the paper "Terminology, Criteria and System Architectures for

Data Integrity", in which he proposed an alternate definition for trust. This new definition

did not alter the relationship of integrity and confidence, but rather altered the relationships

between trust, integrity and confidence. Sandhu 's definition of trust is binary, and is evalu-

ated accordingly by comparing the expected and actual level of confidence. This new
definition formed the basis for his argument that functionality should be separated from

assurance in criteria for the evaluadon of trusted systems.

2.4.2 Is Data Integrity the Appropriate Topic?

The workshop had been restricted to the subject of data integrity. In retrospect, this

restriction seems to have posed a problem in and of itself. The strawman defines data

integrity in terms of data quality. Data quality is undefined itself. On the other hand, data

integrity is but one piece of the larger puzzle of commercial security requirements. Those

requirements are the subject of continuing discussion as well. Perhaps the scope should have

been wider, or more narrow, but not in the middle ground that was chosen.

Some authors felt that data integrity could not be discussed in an entirely isolated fashion.

Others felt that it was too early to discuss solutions, and proposed questions instead. One

author found it necessary to narrow the scope and address quality issues only.

Both Donn Parker and Nander Brown found it necessary to describe the larger world to

obtain an appropriate framework to define data integrity. For Parker, the definition of integrity

is based upon your role in the larger scheme of things. Integrity is binary and invariant as

required by clients; integrity is variable from the view of the security specialist and those

attacking the system. For Brown, integrity is the appropriate measures required to meet the

objectives of the system. In "Achieving Integrity In Automated Systems", Brown defines data

integrity, processing integrity, software integrity and systems integrity. The definition of data

2 - 3

integrity includes the notions of accuracy, completeness and timeliness. (These are all

QUALITY attributes in the strawman.)

Stewart Kowalski states that integrity is a system concept; data can only be correct or

incorrect. David Bonyun's paper presented the status of work on integrity in ISO standards.

The ISO definition assumes multiple perspectives for integrity depending upon application

(examples are mainframe operating systems vs. database vs. communications systems).

Thomas Chen did not explicitly define data integrity in "Other Informal Comments...",

but listed several requirements for a system to have/maintain integrity [that a definition for

data integrity should enforce]. Jan Kruys chose to pose questions, rather than propose

answers, in his position paper.

Eva Sparr , on the other hand, narrowed the scope in her position paper. "Data Or
Information Quality" presents a model for data quality where there are :wo major attributes:

relevance; and validity. Relevance is a measure of the appropriateness of the data in relation

to the user's problem. This is a function of such factors as "what the data involves, under

what circumstances they were gathered and the number and type of errors the data contains."

Relevance is a binary attribute; data has relevance to a particular application. Validity is

similar to the ClarkAVilson notion of external correspondence. Validity is a continuously

valued function. Data may be valid but not relevant, or may have low validity but still be

relevant.

The Strawman definition of data integrity may easily be extended for the Sparr model of

data quality. The expectation value for quality would simply be applied to the validity

attribute. For data to have integrity, the data must have relevance and the validity attribute

must be equivalent to, or in excess of, the specified expectation.

2.4.3 Is Integrity Binary?

Several position papers, including those by Theodore Lee, Lee Ohringer and Sig Porter

took issue with the binary nature of the strawman definition. Theodore Lee of TIS questioned

the idea that integrity could reasonably be described as binary. Lee Ohringer liked the concept

of quality and integrity, but still felt integrity should not be binary. Sig Porter expressed the

opinion that multi-leveled integrity is often a valid approach. Stelio Thompson-Sittas proposes

that integrity be continuous, rather than a multi-valued discrete function.

2.4.4 Is It Possible To Converge On A Single Definition?

Several authors expressed doubt that a single acceptable definition could be found.

Thomas Chen states 'Since integrity comes in "different flavors", a proliferation of definitions

is somewhat unavoidable' Sig Porter feels that we should avoid converging on a single

definition at this time. The many definitions have evolved over time because each definition

has a basis in certain types of systems. Rather, it is important to understand the differences

and similarities between the definitions. Once these are well understood, a single definition

may fall out.

2 - 4

2.4.5 Perhaps The Strawman Is Unnecessarily Complicated

There were also a few authors who seemed to feel that the strawman definition for data

integrity involves unnecessary complication. Marv Schaefer discussed the importance of the

Biba rules and "the fundamental importance of considering integrity as a data correctness

issue". For Stewart Kowalski , data is correct or incorrect, period. Integrity is a systems issue.

It is probably worth noting that this "back to basics" approach is a return to the very general

FIPS 39 definition (albeit without the restriction to data entry).

2.4.6 Is Integrity Stateless?

State, or lack of state, is an important distinction in the classification of computing models.

There are important ramifications for the implementation of the model. A stateless model
requires no memory of previous actions or occurrences. The ClarkAVilson model and
Strawman definition are both stateless models. However, it would be possible to build both

IVPs and expectation mechanisms which used history to maintain, adjust and apply themselves.

Kurt Meiser expressed the idea that maintenance of data integrity was a "status quo"

problem. Data has integrity if "the data presented by the system ... is good (identical with

the data received by the system during previous operations)". This is an important departure

from other definitions presented - in all other definitions, integrity is stateless, but here

integrity is stateful; i.e, history of presented data is required to calculate the integrity value.

Stelio Thompson-Sittas proposes an alternate definition in the position paper "Definitions

and Concepts Of Data Integrity". Thompson-Sittas defines integrity as "The ability of an

element, or system of elements, (whether data, programs, hardware, personnel, etc.) to retain

its attributes, and associations and guard against non-intended changes as the element proceeds

through its lifecycle." As in Meiser' s definition, integrity is stateful, so history is required.

It differs in that it requires a history of the data itself.

It seems clear that situations might require either type of stateful Integrity. There is

obvious power in definitions that are explicitly stateless, but are flexible enough to do so

implicitly, such as ClarkAVilson or the strawman. Either stateful model (Meiser or Thompson-

Sittas) could be supported by a stateless model if the expectations could be dynamically

adjusted. This would allow the mechanisms for checking integrity to be very simple, but the

mechanisms for selecting the expectation values might be quite complex. The ramifications

on systems design (requiring maintenance of expectation mechanisms as application or data

dependent) are quite extreme, though. It is unclear where this functionality would be

appropriate.

2.4.7 A Mathematical Model

The search for an appropriate definition continued into the workshop itself. The first

day's working groups re-visited the subject. Thomas Berson 's group approached the question

from a new tack, and created a mathematical definition for "acceptability of data".

Acceptability of a data object was a function of three ordered lists of length n. The ordered

lists represented the a priori expectation of quality, measured quality and confidence.

2 - 5

respectively, for each of the n attributes. The acceptability is computed by summing the

confidence factor for each attribute whose measured quality met or exceeded the a priori

expectations.

2.4.8 Consensus Items

After the first day of the workshops, the results were examined for areas of agreement.

The attendees were able to agree on a set of policy objectives and a list of common mechan-

isms used for policy enforcement (see Section 3.2). There was no agreement about the

definition itself, but the objectives and mechanisms imply support for two definitions of data

integrity: accuracy and the Clark/Wilson model. The policy objectives included notions of

privilege and accuracy of data as well as the ClarkAVilson concepts of constrained data items

and well-formed transactions. The mechanisms noted were those for access control and the

ClarkAVilson enforcement mechanisms (Constrained Data Items and trusted Transformation

Processes). (Audit trails and auditability were also mentioned; this does not affect the

definition chosen for integrity.)

2.5 THE POST-MORTEM/CONCLUSIONS

The most important conclusion to be drawn from this compilation of papers and working

group notes: don't draw too many conclusions about the appropriate definition for data

integrity just yet. All of the definitions incorporate the concept of accuracy; but all of the

definitions include additional concepts as well. It isn't even clear that a single definition will

suffice. A single definition may be so broad that it is not implementable. Multiple

specialized definitions would be easier to implement but might not be interoperable.

On the other hand, don't try to propose an Integrity interpretation of the Orange Book as

a stop gap measure - the mechanisms are just not applicable. It may be necessary for lab

implementations to be constructed with various definitions, to see how they hold up under real-

use conditions. In the mean time, papers addressing integrity issues should present or

reference a definition of integrity applicable to that paper.

2 - 6

3. INTEGRITY FRAMEWORK ELEMENTS (DAY 1)

3.1 SUMMARIES OF FIVE GROUPS' DISCUSSIONS

3.1.1 Operating Systems Working Group (Group 1)

Prepared by Tom Berson

Tom Berson (Anagram) Chair

Steven Lipner (DEC) Recorder

Tom Chen (Wang) Ken Eggers (MITRE/McLean) Stu Katzke (NIST) Jan Kruys (NCR) Kurt
Meiser (C&L) Tom Parker (ICL) Paul Peters (NCSC) Sig Porter (Consultant) Damian Saccocio
(NRC) Gary Smith (GMU) Steve Welke (IDA)

1. Framework Scope and Objectives

The group decided that a suitable objective for the framework being established by this

workshop was for it to serve as a target to encourage further research and refinement.

It was strongly agreed that it would be inappropriate to give the current framework any

sort of status beyond that of target. Members expressed the view that the evolving framework
was young and untried. They were unwilling to say that it was a correct framework, much
less that it was the correct framework.

The group viewed with alarm its perception that NIST was rushing to institutionalize the

results of this workshop through some sort of legislation (e.g. guidelines or criteria). The
manufacturing members were particularly concerned about the potential for unforeseen and
unplanned interference between a putative Integrity Criteria and other government criteria, such

as the Orange Book [TCSEC].

2. System Security

The group observed that the notion that

information system security is comprised of three components: confidentiality;

integrity; and availability

has been around a long time, is widely-held and well-accepted, is taught by many FIPS PUBs
and texts, and is a useful concept.

We concluded that it would be a disservice to weaken or destroy this concept by

introduction of a definition of integrity which does not take its place within this triad. In

particular, we felt that the CourtneyAVare definition, based upon a priori expectation, was

overly broad for something called "integrity" as it might be usefully applied also to confiden-

tiality and availability.

3 - 1

We did feel that while CourtneyAVare is not what we call integrity, it does capture the

useful concept of acceptability.

3. What is Integrity?

We decided that our understanding of integrity includes

(a) constraint (including prevention) of change or creation;

(b) attribution to person or process of change or creation;

(c) authentication of origin;

(d) internal validity;

(e) guarantees of correct sequence

We observed that this notion is similar to that described in the generalized ClarkAVilson

model.

4. Data Quality

Courtney and Ware instruct us to consider the acceptability of data for a particular

application by taking measurements of their quality and comparing these with our expecta-

tions.

Quality, Q, is comprised of measurable quality attributes q,, q„. Note it is important

that the q; be measurable, for if they are not then no calculation can be based upon them.

Examples of data quality attributes include: accuracy, pedigree, self-consistency, validity,

and correspondence with other components of the system or with the "real world."

5. Acceptability of Data

We generalized the notion of acceptability of data as follows:

For a set of n quality attributes

Let QP = qpi, qp„ be the a priori expectation of quality,

Q = Qi' —> On be the measured quality, and

C = Ci, c„ be the confidence in each measure.

Then, in general

Acceptability = F(QP, Q, C). [1]

Note especially that our generalized acceptability is potentially a continuous function, may
give different weights to different quality attributes, and may take note of the confidence on
a measurement.

3 - 2

CourtneyAVare acceptability is a special case of equation [1] in which the function is

binary (i.e. either TRUE or FALSE), all quality attributes receive equal weight (each has

veto power), and confidence in measurement is not considered.

n

CourtneyAVare = AND (q^ >= qpj) [2]

i = 1

While equation [2] may be an appropriate data acceptability measure for some applications,

we saw no reason to believe that it is universally appropriate. We encourage those concerned

with measuring acceptability of data to use the generalized form of equation [1] and to

formulate an F which is appropriate to their needs.

3.1.2 Telecommunications Working Group (Group 2)

Prepared by Z. G. Ruthberg

David Clark (Chair)

Ted Lee (TIS), Eugen Bacic (Comm. Sec. Est.), Viiveke Fak (Linkoping U.), Howard Johnson

(Info. Intell. Sci. Inc.), Stewart Lee (U. of Toronto), John Thurlow (Exxon), David Wilson

(Ernst & Whinney)

1. Why is meeting important?

Basically, we do not trust our systems. Yet, such areas of endeavor as computerized

medical systems and white collar productivity require systems with integrity. Loss of integrity

in medical systems can lead to personal injury and even loss of life, while loss of integrity

in white collar activities such as business records can impose serious and sometimes irrever-

sible damage on organizations that are dependent on their computerized records.

2. A Policy for Integrity

A system maintains integrity when change occurs, if and only if that change is appropriate .

One form of appropriateness is that which tracks real world expectations for completeness,

accuracy, timeliness, consistency, interoperability, and/or relevance of the system and its data.

The current state of the system and data should also be consistent with an earlier state. An
organization's integrity policy should embody these concepts.

3. Notions of Universal Mechanisms for Integrity

The following types of mechanisms may be necessary and are certainly useful for

achieving integrity:

a. Application Specific Reference Monitor

b. Trusted Computing Base (TCB)

c. Detection and Recovery vs. Prevention

3 - 3

d. Individual Accountability

e. Separation of Duties 1 .
.

Dual Control }
Redundacy

Least Privilege

4. Assurance

As with the assurance of higher levels of confidentiality of data, higher levels of data

integrity require further cona-ols. Work needs to be done to enumerate these.

3.1.3 System Services Working Group (Group 3)

Prepared by Sylvan Pinsky

Sylvan Pinsky (NCSC) Chair

Grant M. Wagner (NCSC) Recorder

Deborah J. Bodeau (Mitre), David A. Bonyun (AIT), Rae K. Bums (Kanne Assoc.), Terry

Mayfield (IDA), Roger L. Miller (IBM), Lee Ohringer (Dept of Treas.), Carl Pabst' (Touche

Ross Int'l), David Rosenthal (Odyssey Res. Assoc.), Marvin Schaefer (TIS), William R.

Shockley (Gemini Comp. Inc.), Gary Smith (George Mason U.)

We immediately decided to focus on the technical meaning of integrity instead of the

"English" definition. We felt that there was a need to include the notion of data properties;

however, it was necessary to do this with respect to some context. In particular, integrity

must be viewed in terms of a specific application and then the meaning of data properties will

be examined within the context of the application. We also attempted to separate integrity

from confidentially. This was not entirely possible; sometimes there was a dependency

between these concepts.

Our limited discussion of Bob Courtney's definition resulted in agreement that his

definition was a good basis to initiate deliberations on database applications. The only area

of contention concerned Bob's assertion that integrity was "binary". Some members of our

group felt it was binary; however, several had difficulty accepting the suggested binary nature

of integrity. I believe that our group's acceptance of Bob's definition and the lack of

agreement concerning the binary nature was typical of the entire group's feeling.

Early discussion was centered on the perceived threats to systems or applications involving

integrity. We came up with the following list:

THREATS
Tampering

Fraud

Misappropriation

Misuse (Inappropriate use with respect to application)

Loss

Damage
Delay

3 - 4

Errors

Contamination

We were not completely satisfied with this approach, so we went to an Input/Output

process approach:

CONTROL

PROGRAM OUTPUT

Figure 3-1: Input/Output Process Approach

To understand this approach better, we began to examine integrity requirements, quality

attributes, etc. and characterized the following concepts:

QUALITY ATTRIBUTES
Accuracy (correctness or precision)

Pedigree

Self Consistency

Validity

Correspondence with other components of system

Timeliness

Completeness

Consistency among elements

Relevance

Interpretation

Robustness (relating to redundancy)

3 - 5

INTEGRITY REQUIREMENTS
Internal Consistency

Disclosure vs. Undisclosure

MLS DBMS (secret vs. unclassified views)

Accuracy

Completeness

Well-formed Transactions

Permissions and Authentication

Monitoring (eg. distributed systems)

CONTROLS
Separation of Roles

- supervisory

content or value ,

- authorized interruption (DBMS rollback)

overrides

CONTROL STRUCTURES
Separation of Roles

Monitoring

Automated Interrupt

Permission and Authorization

Constraint to be enforced

View Mechanisms
Referential

Configuration Management/Controls and Updates

Also, with respect to the potential dependence between integrity and confidentially and

availability of services, we felt that a "layered" approach may be helpful to discuss the

interaction between application specific integrity concerns and the mechanisms provided by

the operating system environment. We felt that a "layered set of abstract machines" could

be useful in discussing successful refinements of the integrity concepts. We were looking at

this in a fashion similar to the "assured pipeline" approach used by Earl Boebert for LOCK.

We also categorized integrity failures in the following manner:

Tvpes of Integritv Failures Degree

Missing Known
Wrong Unknown
Extra

3 - 6

3.1.4 Applications Working Group (Group 4)

Prepared by Karl Krueger

Dennis Steinauer (NIST) Chair

Karl Krueger (World Bank) Recorder

Nander Brown (SBA), Peter Capek (IBM), Dale Miller (Irongate), Bill Murray (Ernst &
Whinney), Maria Pozzo (Aerospace Corp.), Peter Wild (Coopers & Lybrand).

[Ed. Note: The Applications Working Group chose to focus on Quality Metrics. Applica-

tions was considered to be too broad for meaningful discussion]

1. The objective of the working group was to deliver more specifically worded definitions

applicable to measurement of data integrity (DI) in an applications systems and operating

systems environment. This is a new field; the Orange Book concentrates on confidentiality

and does not provide useful guidance.

2. The definitions of Quality Metrics could be either broadly set or technically focussed; a

broader consideration was considered more appropriate at this stage. A basic evaluation

criterion is the "level of trust". We did not see significant crosslinks with software quality

assurance, but similarities with the quality control concerns of manufacturing.

3. The terms Quality, Integrity, and Goodness have to be carefully separated. Quality looks

at individual properties. Integrity at the composite picture of various qualities. Goodness

implies a desirably high level of quality or qualities, whereas Integrity is concerned with

quality in line with expectations, which in itself could be for low quality.

4. A priori expectations must be decided and specified. Data Integrity would provide us

with Reliance, Trust and Comfort; contributing to the value of the data. In that way, it is

similar to the value of an audit of financial data, which gives us a limited written opinion

with a lot of intangible value attached. Business must be sold on Data Integrity in order to

attract attention and funding for measures to improve DI.

5. Ernst & Whinney surveyed users on their ranking of computer security components, and

found them to judge availability as High ranking, integrity, defined as correctness and freedom

from corruption, as Medium ranking, and confidentiality as Low.

6. Coming from a different angle to Quality Metrics, we could measure to what extent the

integrity of a process and the resulting data is automatically enforced.

7. The group considered that the more general approach demands that integrity encompasses

the whole business cycle, not just the computer aspects.

3 - 7

8. Integrity needs to address segregation of duties and other known control techniques. The
Generally Accepted Accounting Principles (GAAP) are a general integrity policy. Such
integrity policies statements must:

relate to the wide scope of the real world;

identify the boundaries of integrity;

define constrained data items, label them and preserve the integrity of the labels;

provide an audit trail on the processing steps;

distinguish between transient and persistent data items; and

put constraints on transactions by "forms".

9. Significant transactions need to be independently created and authorized. We need a

statement of principles on "Well-formed Transactions" and "Transformation Processes".

10. The IVP (Independent Validation Process) is one tool to enhance DI. Its timing is

important; a time stamp needs to signal at what time the validation was successfully

completed.

11. The extent to which recoverability is part of DI was considered. Availability includes

the responsibility for a coordinated or integrated recovery of transactions, issues of concern

both to availability and integrity of the data.

12. As a summary, the group listed the following components of DI:

Accuracy

Pedigree / Audit Trail

Self-Consistency

Validity

Correspondence with the real world

13. One of the key aspects of DI is its concern with change. Both confidentiality and

availability address an environment at a given, snapshot time. DI is interested in requiring

change when it is appropriate, and stopping change when it is inappropriate.

14. DI is deeply concerned with controls over data, the processes, and the processing

environment. Controls can be described as

preventive - stopping a DI violation from happening;

detective - recognizing a DI violation; or

corrective - repairing the damage done by a DI violation.

3 - 8

15. Another way of looking at dealing with DI violation distinguished six combinations of
the three types of violations (Missing, Wrong or Added data) with their degree of impact
(Known or Unknown).

3.1.5 Implementations/Models Working Group (Group 5)

Prepared by Stewart Kowalski

Willis Ware (Rand), Chair

Stewart Kowalski (Stockholm U.) Recorder

Marshall Abrams (Mitre) Sushil Jajodia (George Mason U.) Robert Jueneman (CSC) Milan
Kuchta (Defence Comm. Est., Canada) Stanley Kurzban (IBM) Carl Landwehr (NRL) Stelio

Thompson-Sittas (Expert Systems) Ravi Sandhu (Ohio State U.) Anne Todd (NIST)

The group tried as best it could to stick to the agenda laid out in the workshop outline

which was (see Section 1.2):

I. Integrity Framework Elements

1. Introduction - Scope and Objectives

2. Concepts - Integrity, Quality , Value
- Policy and Principles

- Attributes of Quality

- Roles of People

3. Basic Integrity Requirements

4. Quality Metrics

The first item of business on the agenda was an Integrity Framework.

FRAMEWORK

In the ideal situation, design and development should follow the general pattern of first

using accepted principles to formulate policies which are then used to specify requirements

that are implemented and tested.

In reality this design development cycle is generally not followed and often policy is used

as a catalyst for the generation of principles. Thus, in the case of an integrity framework,

policies have been roughly defined by the powers that be and now effort and research is being

applied to establish principles that clarify and refine these policies.

Figure 3-2 shows the hierarchical framework mentioned above. Iteration is shown between

policy and requirements and the design cycle is closed by having testing loop back to

requirements.

3 - 9

It should be mentioned that in this frame-

work, policy goals must be stated independently

of products. This is shown in Figure 3-2 where

implementation and test (i.e., product develop-

ment and evaluation) are not directly looped

back to principles but are fedback into require-

ments, thus averting a situation where products

are directly connected to policy and pohcy is

directly connected to products.

Another explanatory note to the framework

is that it does not require that integrity be

defined as absolute. That is, it should be

possible to specify integrity requirements to the

effect that 95% "integrity", (or whatever term

one wants to use), will be obtainable with the

design.

It should also be pointed out that this type

of framework may be useful for a framework of

security, and that a security framework and an

integrity framework will often overlap one

another.

Principals

Policy

I
Requirements

Implementation

f

Test
Evaluation

Figure 3-2: Framework For Integrity

SCOPE AND OBJECTIVES

It was agreed upon by the group that for the purpose of this workshop the discussion of

integrity will be limited to data in EDP systems, including distributed EDP systems^ but

would not deal with the organizational data system, e.g, MIS. The definition of EDP systems

and distributed EDP systems used is that defined by FIPS PUB 31 [FIPS31].

The group came to a stumbling block with the "a priori expectation" concept introduced

by the workshop's strawman paper. It was the conclusion of the chairman that the concept

"a priori expectation" was only confusing the discussion of integrity.

CONCEPTS

The concept or definition of integrity was more debated than discussed in the group. In

the end, in order to resolve the debate and move on to other items on the agenda, a universal

definition/formula for a property called P was agreed upon.

It was agreed that X can have some property P if it satisfies specification Y with

confidence Z.

3 - 10

X has P

if

X Satisfies Y

with

Probability Z

P = {integrity, acceptability etc}

X = {process, data, systems.. ..etc}

Y = {accuracy, timeliness, completeness ...etc}

Z = (confidence, probability, discrete judgments. ...etc}

By not specifically stating what property P was, the group was then able to jump to

agenda items of "attributes of quality".

THE ATTRIBUTES OF DATA QUALITY

As a starting point for the discussion, the attributes of quality presented in the moming
session by Viiveke Fak were listed. The group then went through this list removing or adding

items.

In general the group had great difficulty in coming to an agreement on a list of attributes

of quality. Many of the attributes were interrelated and one attribute would be said to be a

sub-attribute of another rather then a unique attribute of quality. For example, precision was

said to be a sub-attribute of accuracy.

Since the discussion was slowly evolving into "how many angels can dance on the end

of a pin" discussion, it was decided to use a real world situation of a patient's medical record

to see what attribute of quality could be deduced.

At the end of the discussion a consensus was reached on six attributes for quality. The

six attributes agreed upon were;

- Accuracy

(e.g., spelling errors, numeric ranges)

- Timeliness

(i.e., not stale for intended use, current)

- Consistency

(i.e., intra data elements, intra and inter record)

3 - 11

- Completeness

(i.e., all numeric places filled)

Attributes added to original list;

- Pedigree

(i.e., where the data came from)

- Robustness

(i.e, incorruptibility)

Attributes removed from the original hst;

- Relevance . ,

- Interpretation -

Confidentiality was intentionally excluded from the list of data quality attributes and it

was easily agreed upon by the group that it was an attribute of "process" quality.

PROCESS QUALITY

A brief discussion was held to deal with the problem of process quality. The following

is a point summary.

- data only makes sense in some context and process is the means by which data is

brought into context.

- a process is defined as the transformation of data from one quality domain(i.e, input

data quality) to another (i.e., output data quality).

- in transforming the data from one quality domain to another, the quality of the data can

either be preserved, increased, decreased, or destroyed.

- it was agreed upon that process quality has robustness and pedigree as attributes.

3.2 CONSENSUS VIEW FROM FRAMEWORK ELEMENTS DISCUSSIONS

As can be seen from reading the accounts of the Day 1 discussions (in Sec. 3.1) of the

Integrity Framework Elements, consensus was limited. No agreement was reached on the

framework elements per se. However, discussion among the group chairmen and workshop

chairpersons led to the following consensus so that Day 2 discussions could progress.

3 - 12

3.2.1 Policy and Objectives for Quality

In order to achieve data quality, the following features need to be addressed by the systems

in which the data are processed:

. Authorization

. Accountability

. Auditability

. Internal Consistency

. Separation of Duties

. "Real World" Correspondence

. Concepts of:

Constrained Data Items

Well-Formed Transactions

Recoverability

. Prevention of MissingAVrong/Extra Data

. Change Occurs If and Only If Appropriate

3.2.2 Common Mechanisms for Quality

The following notions of common mechanisms for obtaining data quality in a system

should be considered when data quality is an issue.

. Means of Attribute Measurement

. Trusted Transformation Processes

. Constrained Data Items

. Object/Subject Authorization

. Event Signalling

. TCB

. Applicadon Specific Reference Monitors

. Separation of Duties

. Privilege Mechanisms

. Audit Trails, Logging Mechanisms

3 - 13

4. INTEGRITY IMPLEMENTATION REQUIREMENTS, APPROACHES, MODELS

4.1 OPERATING SYSTEMS AND SYSTEMS - GROUP 1 REPORT
Prepared by Tom Chen

Steve Lipner (DEC), Chair

Tom Berson (Anagram) Tom Chen (Wang) Ken Eggers (MITRE/McLean) Stu Katzke (NIST)

Jan Kruys (NCR) Kurt Meiser (C&L) Tom Parker (ICL) Paul Peters (NCSC) Sig Porter

(Consultant) Damian Saccocio (NRC) Steve Welke (EDA)

1. INTRODUCTION

The group's primary goal was to identify operating system features and mechanisms in

support of integrity. The approach was to: (1) come to a reasonable agreement over a

working definition of integrity properties, (2) develop a set of integrity control objectives, (3)

characterize operating system features and mechanisms for meeting those objectives, (4)

provide suggestions for initial guidance and criteria documents, and (5) recommend topics

for research.

In general, [CLARK89] provides a reasonable definition of integrity that serves well as

a framework for identifying integrity control objectives and corresponding operating system

features and mechanisms.

1.1 BACKGROUND/DEFINITIONS

Although Bob Courtney has questioned how one can decide what to do about integrity

before it is satisfactorily defined, the group sought to avoid getting immersed in a linguistic

"wheel spin" over a definition of integrity. Regardless of what definition was assigned to

integrity, it should still be possible to identify desirable operating system features in need of

more attention. Nevertheless, the group did settle on a framework for integrity. In addition,

we sought to avoid inconsistent use of the terms "mandatory and discretionary" and discussed

the impact of integrity on the definition of a trusted computing base (TCB).

1.1.1 Integrity Framework

While the group agreed that the CourtneyAVare "a priori expectation" definition is a useful

concept, we thought it was too broad an umbrella for integrity. For example, one could argue

that the other two components of the "security triad" (i.e., confidentiality and availability) also

fit under the CourtneyAVare umbrella. Consequently, we preferred to rename their "a priori"

definition as "acceptability".

Essentially, we agreed with ClarkAVilson and focussed on those properties which give

data and systems both internal consistency and proper correspondence to real-world

expectations. (See Section III of [CLARK89])

4.1 - 1

1.1.2 Mandatory and Discretionary

The Orange Book rather narrowly implies mandatory as separation based on lattice oriented

labels and discretionary as separation and sharing based on user identity and need-to-know.

As with the WIPCIS at Bentley College, the group did not want to usurp natural language and
agreed to define mandatory as allowing "no user choice" and discretionary as allowing "user

choice".

1.1.3 TCB

The Orange Book defines a TCB as "The totality of protection mechanisms within a com-
puter system — including hardware, firmware, and software — the combination of which is

responsible for enforcing a security policy", and its rationale indicates that system elements

excluded from the TCB need not be trusted to maintain protection. One viewpoint is that

TCB elements fall into three categories: (1) elements that perform security functions (e.g.,

reference monitor, audit mechanisms), (2) elements that provide the TCB self-protection (i.e.,

protect itself from external interference or tampering), and (3) elements that do not fall into

the previous categories but must still be trusted to perform correcdy (i.e., perform their

specified functions and nothing more).

When the security policy is restricted to unauthorized disclosure, it is often possible to

demonstrate that certain system elements need not be trusted to maintain protection and fall

outside of this "secrecy TCB" boundary. However, if the policy addresses unauthorized

modification and/or other integrity properties, then the "integrity TCB" boundary may
encompass the entire system. Given the notion of a secrecy TCB vs an integrity TCB, the

distinction between the security kernel and the TCB is much wider and more important for

integrity than for secrecy. While the security kernel can (and must) supply some of the

protective functions and services, protective functions will undoubtedly also reside in the

applications. Since the concept of an all encompassing integrity TCB is rather uninformative

and unhelpful, it makes more sense to focus attention on the security kernel (i.e., the operating

system mechanism that controls access, sequencing, etc.).

1.2 OBJECTIVES, SCOPE, AND GROUND RULES

The Orange Book's emphasis on preventing unauthorized data disclosure is reflected in

its control objectives. Consequently, the group agreed to first define a set of integrity control

objectives that were not addressed in the Orange Book Control Objectives. Given agreement

on a set of integrity control objectives, we agreed to characterize corresponding operating

system features and to make recommendations on guidelines and research topics.

The group felt that it should address integrity issues from the operating system's point

of view (i.e., looking bottom up from the OS). Consequendy, integrity issues addressed at

the application level might not be visible or relevant to the underlying OS.

4.1 - 2

The group briefly discussed integrity threat models and essentially declined to thoroughly

examine the issue, taking the view that threats addressed directly by the OS involved TCB
self-protection (already addressed by the Orange Book). We felt that most integrity threats

were specific application level issues and that the group's identification of integrity control

objectives at the OS level should consider a more generic notion of integrity threats.

2. OPERATING SYSTEM CONTROL OBJECTIVES

The group identified integrity control objectives in two categories: necessary and optional.

Integrity control objectives were categorized as necessary when they were clearly operating

system responsibilities. The optional category encompasses those objectives which may not

be compulsory at the operating system level. It is important to note that certain essential

integrity control objectives could be appropriately addressed by the application and may not

require operating system support. Consequently, the term "optional" applies specifically to

whether it must be addressed as an operating system feature; and "optional" does not indicate

that the objective is not essential to the system as a whole. In addition, desirable but

unessential operating system control objectives are also categorized as optional.

2.1 NECESSARY OPERATING SYSTEM CONTROL OBJECTIVES

The following represents integrity control objectives which must be supported (i.e., neces-

sary) by the operating system. The group admits that this first attempt may not be all-in-

clusive.

Protect Objects From Unauthorized Modification

Protect Programs From Unauthorized Execution

Binding of Data to Programs

Accountability

Enhanced User Authentication

Support for Application Level Audit Trails

System Level (i.e., privileged user) Separation of Duties

Assurance

Ease of Correct/Safe Use

2.1.1 Protect Objects From Unauthorized Modification

Protecdng objects (i.e., data and programs) from unauthorized modification (e.g., write,

delete, append) is a classic (and somewhat self-explanatory) integrity control objective in

keeping with any reasonable view of integrity.

2.1.2 Protect Programs From Unauthorized Execution

Several group members were reluctant to specify Clark-Wilson "triples" as a necessary

control objective and suggested a more generic approach that avoided explicitly requiring

triples. In reality, this objective addresses the front half of the triple (e.g., control over which

users can execute which programs). While programs must be protected from unauthorized

4.1 - 3

execution, explicitly requiring triples might be misinterpreted and reduce design and
implementation flexibility at the operating system level.

2.1.3 Binding of Data to Programs

Binding data to programs requires that certain data can only be accessed via specified

programs. This objective when combined with protecting programs from unauthorized ex-

ecution addresses the ClarkAVilson triple. However, in general, with users and n2 programs,

using ACL doublets there are + access statements that can be made about a particular

type of access for a particular object. With triples, there are x nj statements.

2.1.4 Accountability

While accountability is an objective in its own right, it can also be considered as support-

ing other integrity control objectives. The following accountability objectives are both neces-

sary for integrity and not clearly addressed by the Orange Book.

2.1.4.1 Enhanced User Authentication

While passwords may be adequate for some systems, they "should not be considered a

realistic authentication method for a system with high expectations for data integrity"

[CLARK89]. Consequently, systems should, at a minimum, provide appropriate "hooks" for

external authentication devices.

It is also apparent that password mechanisms are not used to their full advantage. Addi-

tional guidance is needed to promote proper password management and use. (See [FIPS112].)

2.1.4.2 Support for Application Level Audit Trails

While the Orange Book identifies auditable events, it does not mention system support

for audit records created at the application level. Audit records specific to an application

and generated by the application program require operating system support for collection and

protection.

2.1.4.3 Control of Privileged Users

Separation of duties in a manner consistent with the principle of least privilege for privileg-

ed system users (e.g., system administrators, security administrators, operators, auditors) is a

necessary integrity control objective. However, any design/implementation must ensure that

total elimination of a "super user/system god ' does not lead to anomalous states in which no

one can access security data or in some instances the system itself. Further research is needed

to develop appropriate guidance.

4.1 - 4

2.1.5 Assurance

Assuring that a system behaves as advertised is certainly a necessary control objective

already addressed in the Orange Book. Consequently, the group avoided any discussion of

theorem provers and formal verification tools, particularly given an integrity policy's depen-

dence on specific applications.

Assurance should also address ease of safe and correct use. Real world experience indi-

cates that the systems with a high degree of security functionality and complexity (e.g.,

RACF/MVS) are often incorrectly installed and poorly maintained from a security perspec-

tive. While much research and work has been done on providing security functionality and

mechanisms, methods to promote ease of proper installation, use, and maintenance require

more research and attention. [PCIE88]

2.2 OPTIONAL CONTROL OBJECTIVES

The following integrity control objectives are categorized as optional at the operating sys-

tem level because they could be performed at the application level and/or the group felt that

they need not be explicitly required. For example, if a control objective is considered

absolutely essential but could be properly addressed by the application, then the objective is

categorized as optional for the operating system.

2.2.1 Bind Integrity Information to Objects

While the ability to bind integrity information (e.g., source, date, revision history, integrity

status regarding IVP execution) may be essential to many environments, the binding could take

place at the application level. For example, if the operating system supports binding of data

to programs such that the data can only be accessed via a specific program, then the program

could perform the integrity information binding.

2.2.2 Sequencing Support and Flow Control for Programs

Supporting separation of duties may require a sequence of programs (e.g., TPs and IVPs)

to be executed in a particular order (e.g., Boebert-Kain assured pipelines). While sequencing

support is highly desirable, it was not clearly identified as a necessary operating system

integrity control objective. For example, all applications may not require sequencing, and it

may be possible to support sequencing at the application level.

When the partition of change and separation of duty involve a sequence of programs (e.g.,

TPs) rather than a single program, the flow of data between the programs must be controlled

by the application, the operating system, or both. For example, if a task is partitioned into

a sequence of TPs with each TP isolated to its own domain, then information flow between

domains must be properly controlled (e.g., Lee's partially trusted subjects [LEE88] or Boebert's

domain definition and transition tables [BOEB85].

The group didn't have time to adequately address sequencing and flow control.

Nevertheless, there was a sense that even if an application could provide the required controls,

4.1 - 5

the preferred approach may be to provide OS support. Sequencing and flow control clearly

require further research.

2.2.3 Dynamic Separation of Duties

Clark & Wilson [CLARK89] indicate that separation of duty is achieved by requiring

various TPs in a sequence to be performed by different people (i.e., the processes acting on
their behalf). While static assignment of duties may be the simplest approach, it is "often

necessary or desirable to reassign people to tasks dynamically" or "to keep track dynamically

of the people who have executed the various TPs in sequence, and ensure, for any particular

execution, that proper separation has occurred" [CLARK89].

3. CHARACTERIZATION OF OPERATING SYSTEM FEATURES

Meeting the identified integrity control objectives requires operating system support. This

section discusses the philosophical points of view within the group, and identifies necessary

and optional integrity features and mechanisms at the operating system level.

As with integrity control objectives, operating system features are characterized as neces-

sary or optional. Integrity features are categorized as necessary when they are clearly oper-

ating system responsibilities. The optional category encompasses those features which may
not be compulsory at the operating system level. It is important to note that an essential

integrity feature could be appropriately addressed completely by the application without

operating system support. In other cases, operating system support might be helpful to the

application, but not required in that the application could support the feature itself. Conse-

quently, the term "optional" applies specifically to the operating system and does not indicate

that the feature is not essential to the system as a whole. In addition, optional can also

categorize desirable but unessential operating system features.

3.1 POINTS OF VIEW

While technical purists might prefer to begin with a "blank sheet of paper" and assume

the design of a system from scratch, the real world seldom allows such luxury. Nevertheless,

it is a worthwhile exercise to consider a technically pure approach as well as real world

pragmatism.

For example, several existing systems currently support enforcement of the Biba Integrity

Model [BIBA77]. While the Biba model provides a "natural" policy for preventing unautho-

rized modification, it is not clear that the Biba model was ever intended to address partition

of change and separation of duties. As Boebert and Kain indicated in [BOEB85], a system

enforcing a Biba-like (i.e., partially-ordered lattice) integrity policy model to achieve separation

of duties "either fails to enforce the desired restrictions or requires an exception from the

policy at each step". On the other hand, Jeuneman [JEUN89] claims that these "criticisms are

now generally recognized as being overstated" and that "the alleged difficulties go away
immediately" when subjects are "trusted to operate within a range of integrity levels and more

particularly integrity categories" (e.g., [LEE88]). While such an approach is feasible, the need

for trusted subjects is unappealing.

4.1 - 6

Given the availability of Biba Integrity as a low level infrastructure in several existing

operating systems, there is no question as to the pragmatic value of efforts such as [JEUN89J,
[LEE88], and [SHOC88] to enforce the Clark & Wilson model using Biba categories. While
such approaches may be reasonably easy to manage, they require trusted processes which must
violate the kernel's integrity policy, indicating that a Biba-like policy is inappropriate for the

underlying security kernel.

It is clear from [BOEB85] and [SAND89] that strong typing and assured pipehnes appear

to be more elegant and better fitting approaches to Clark- Wilson separation of duties than a

Biba-enforcing security kernel. Additionally, avoiding trusted subjects which must violate the

policy enforced by the underlying operating system should allow a higher degree of assurance.

Nevertheless, the existence of Biba enforcement in several existing systems (e.g., DEC,
GEMSOS, ICL's VME) make it impractical to dismiss Biba solutions.

3.2 NECESSARY OPERATING SYSTEM FEATURES

Necessary operating system features include mandatory (i.e., no user choice) integrity con-

trols, interface support for enhanced user authentication and application generated audit trails,

and separation of duties and least privilege support for privileged users (e.g., system security

officer and operators).

3.2.1 Mandatory Integrity Controls

In order to protect objects from unauthorized modificadon, the operadng system must

control the creation, modification, and deletion of data and programs.

In order to "ensure that data is modified only by selected programs" [CLARK89], the

operating system must be able to bind data to programs. Appropriate integrity control also

requires control over the user/processes allowed to execute programs. Binding data to pro-

grams and controlling execute access to programs can be combined to bind user, program,

and data and enforce the Clark-Wilson access control triple.

It is clear that several systems are capable of accommodating the Clark-Wilson triple.

In addition to the type manager/pipeline approach taken by LOCK and the Biba category

approaches suggested by [LEE88] and [SHOC88], RACE and ACF2 also appear capable of

supporting user/program/data bindings.

3.2.2 Interfaces to Authenncation Devices

Users can easily and unilaterally invalidate their own identity by making their passwords

easy to guess, by posdng them, or by storing them in their own PCs. User education must

make it clear that:

o They are responsible for actions authorized by the use of their passwords, and

4.1 - 7

o This responsibility is consistent in nature with their other responsibilities to their

employer or to national security, etc., (as the case may be).

In addition to user education, enhancements should make it more difficult for users to

circumvent authentication mechanisms. This requires methods such as biometric devices

and/or challenge-response tests involving a device (i.e., token) issued to a user that performs

a cryptographic transformation on the challenge [CLARK89]. In addition, consideration should

be given to developing an industry interface standard for external authentication devices.

3.2.3 System Interfaces for Application Audit

The operating system must provide a system interface for collecting audit records generated

by an application program. In addition the operating system must provide appropriate stor-

age media and access control protection for such audit records.

3.2.4 Roles/Structure for Privileged Users

Privileged users include those responsible for registering new users, managing and main-

taining audit records, maintaining operating software, etc. Typical roles include System

Manager, System Security Officer, Operator, and Auditor. The operating system must pro-

vide controls that separation of duty for privileged users is not circumvented. For example,

the system programmers who develop software should not be permitted to install the software

[CLARK89].

3.3 OPTIONAL OPERATING SYSTEM FEATURES

Optional operating system features include integrity tags and support for sequencing of

operations and dynamic separation of duties.

3.3.1 Integrity Tags

Integrity controls will require binding integrity information to objects. For example, "the

author of data should be recorded in an unforgeable way with the data itself", and since data

"may undergo a number of modifications as it resides within the system, the record of

authorship may need to be a record of the total change history of the object" [CLARK89].

3.3.2 Sequencing of Operations

Supporting the principle of least privilege and the separation of duties will often involve

partitioning a task into a sequence of programs. Ideally, each program in the sequence would

execute in its own domain with the operating system providing appropriate isolation. In

addition, the operating system should provide a mechanism for passing data between domains

(e.g., assured pipelines and domain tables [BOEB85], partially trusted subject [LEE88]).

4.1 - 8

3.3.3 Dynamic Separation of Duties

When a task is partitioned into a sequence of programs each in its own domain of execu-

tion, each domain should have a program being executed on behalf of a different user.

[CLARK89] outlines the need for the following support:

o Defining sequences and encoding allowed patterns of separation

o Logging record of each current execution of a sequence

o Require domains to be executed by different users and support dynamic access control

o Support access rights such as create, approve, review, and update

3.3.4 Enhanced User/Manager Interface

The degree to which sites incorrecdy install, use, and maintain existing system security

features affirms the need for enhanced user/manager interfaces. System security features and

controls need more appropriate default setdngs, clearer structure, and user friendliness to

facilitate proper installadon, use, and maintenance. In pardcular, tools are needed to help a

site ensure that their security controls remain in tact.

4. GUIDELINES

It is highly recommended that a set of integrity guidelines be developed that include

amplification on operating system features in support of integrity, a description of best

practices, and suggestions regarding the features required in various environments.

While establishing criteria is a worthwhile goal, integrity criteria must be preceded by

appropriate demonstration and reference implementation. Additionally, it is recommended
that the criteria separate funcdons and assurance.

Given the all encompassing nature of an integrity TCB, an evaluation process based on

such a TCB was frightening to the vendors in the group. There was a pardcular concern

over effects of the anomalies created by literal interpretadons of integrity requirements which

lose sight of the authors' original intent. If we ever get to the point of interpredng "Integrity

Criteria", then evaluators must exercise extra care to avoid misusing the third TCB category

to create bizarre and misguided literal interpretation anomalies. In general, while vendors are

willing to respond to requirements, they have become skeptical of misinterpretation by the

evaluadon community.

4.1 - 9

5. SUGGESTED RESEARCH TOPICS

The group identified three major areas in need of further research:

o Separation of Duties for Privileged Users (see Section 3.2.4)

o Dynamic Separation of Duties (see Section 3.3.3)

o Enhanced User/Manager Interface to Facilitate Ease of Correct Use (see Section 3.3.4)

6. SUMMARY AND CONCLUSIONS

The operating system features identified by the group map well to the computer support

described in Section IV of [CLARK89]. Minor differences arose from the groups operating

system view point. For example, while Clark and Wilson call for support of their

user/program/data triple, we felt that a more flexible and granular approach was appropriate

at the operating system level and identified user/program and program/data binding as the

necessary operating system features. Nevertheless, the group essentially agrees with Clark

and Wilson.

While the group recommends developing integrity guidelines that provide further amplifica-

tion of operating system support for the integrity features described in Section 3, we caution

against issuing premature Evaluation Criteria prior to worked examples and the development

of a referenced implementation.

Areas recommended for research are identified in Section 5.0

7. REFERENCES

BIBA77 Integrity Considerations for Secure Computer Systems, K.J. Biba, MITRE TR-3153,

MITRE Corp., April 1977.

BOEB85 A Practical Alternative to Hierarchical Integrity Policies, W.E. Boebert and R Kain,

Proceedings of the 8th National Computer Conference, Sept 1985.

CLARK89 Evolution of A Model for Computer Integrity", David Clark and David Wilson,

NIST Invitational Workshop on Data Integrity, January 1989.

JEUN89 Integrity Controls for Military and Commercial Applications, n, R.R. Jeuneman,

NIST Invitational Workshop on Data Integrity, January 1989.

LEE88 Using Mandatory Integrity to Enforce "Commercial" Security, T.M.P. Lee, Proceed-

ings of the 1988 IEEE Symposium on Security and Privacy, April 1988.

PCIE88 President's Council on Integrity and Efficiency, "Review of General Controls in

Federal Computer Systems", 1988.

4.1 - 10

SAND89 "Terminology, Criteria, and System Architectures for Data Integrity", Ravi Sandhu,

NIST Invitational Workshop on Data Integrity, January 1989.

SHOC88 Implementing ClarkAVilson Integrity Policy Using Current Technology, W.R.
Shockley, Proceedings of the 11th National Computer Security Conference, October 1988.

4.1 - 11

4.2 TELECOMMUNICATIONS - GROUP 2 REPORT
Prepared by Ted Lee

David Clark (MIT), Chair

Ted Lee (TIS), Acting Chair

Eugen Bacic (Comm. Sec. Est.), Dennis Branstad (NIST), Viiveke Fak (Linkoping U.), Howard
Johnson (Info. Intell. Scie. Inc.), Ted Humphreys (Brit. Telecom.), Stewart Lee (U. of

Toronto), Rob Rosenthal (NIST), John Thurlow (Exxon), David Wilson (Ernst & Whinney)

L INTRODUCTION

Unlike most other groups in this workshop, the Telecommunications group was able to

decide fairly easily what the scope of its deliberations should cover and to conclude quickly

that there are few technological obstacles to attaining arbitrarily high degrees of integrity in

the handling of data within that scope. Accordingly, this report is primarily a summary of the

state of the art and contains few calls for action, although it does note several institutional and

political barriers to the widespread, economically feasible application of the relevant available

technology.

2. SCOPE

The term "telecommunications" by itself means little more than "communicating over a

distance." Neither a dictionary definition of the term nor any formal charge from the workshop
organizers to our group gives the answers to questions like "communicating what?", "how
fast?", "how far?", "between what or whom?", "over what medium?" or "in what form or

representation?" As will be seen, even though the rest of the workshop clearly is intended to

focus on matters having to do with the integrity of information processed by or stored in

computers, the conclusions of our group do not depend strongly on whether computers are the

endpoints of communication or not.

"Communications network", "communications system," "message handling system," and

so forth mean different things to different people and all would seem to have something to

do with the topic of this group. The main reason our group was able to reach its conclusions

quickly was that it decided early on in its deliberations that however one might choose to

define the scope of those terms, the only aspects of them that we need consider are those

solely having to do with the transport of data. In short, we consciously excluded entities like

"distributed processing systems" from our scope: such entities can always and should always,

we contend, be analyzed as one or more dataprocessing systems interconnected by telecom-

munications systems, and it is the latter that we are addressing here. (One way to view our

decision is this: "system" is a recursive term — as everyone knows, any complex system can

be decomposed into various subsystems, and those in turn into more subsystems and so on;

for our purposes the recursion stops when each subsystem in the decomposition is entirely a

telecommunications subsystem or entirely a data processing subsystem.) We recognize, as with

other of our conclusions, that this is somewhat of an over- simplification: no matter how a

4.2 - 1

complex subsystem is decomposed there will almost always be parts that are "primarily" data

processing but which do perform some communications functions, e.g., at the interfaces, and
vice versa. Although it may sound contrived and with malice aforethought, since it coincides

with the statement of integrity policy below in Section 3, our definition of a telecommunica-

tions subsystem is any subsystem whose primary purpose is to communicate information

unchanged in any way from one point to another. Any subsystem that does something else,

whatever it is, is not a telecommunications subsystem, although it may be decomposable into

telecommunications parts and non-telecommunications parts.

(Note: we did not discuss the fine points of this definition much. Thus, for instance, one

cannot conclude from this report, or from our deliberations, whether a module that converted

between EBCDIC and ASCII or between an Autodin formatted message and an Internet SMTP
message, should be regarded as part of telecommunications or as something else.)

3. STATEMENT OF INTEGRITY POLICY

In contrast with the other areas of this workshop the integrity policy desired for

telecommunications is easy to state:

"That received data comes from a known class of source, unchanged (no additions, modi-

fications, deletions, in original order, without repetition, etc.) with an acceptable degree of

confidence."

There are three points to be noted about this statement of an integrity policy:

(1) It is recognized that there are applications where, although completely faithful

("unchanged") transmission of information is desired, it may be acceptable to have a

slightly weaker integrity policy: that either data is received unchanged or if it is changed

the fact that it has been changed is known with an acceptable degree of confidence. A
system required to implement this policy rather than the previous one would have had dif-

ferent design choices made for it, but most of the discussion in this report would apply

unchanged.

(2) The requirement that the "class of source" be knowable with acceptable confidence

may seem at first both vague and unrelated to the central issue of data integrity. The
point there is that no matter how accurately data is received from where it was originated,

the use to which that data is put by its receiver may depend on what the receiver knows
about the sender independent of anything the sender communicates about it (or him or

her)self. Since only the telecommunications system "knows" who the sender (point of

transmission) is in many cases, only the telecommunications system can tell the receiver

something about the sender and thus the requirement to do so accurately becomes an in-

tegrity issue for a telecommunications system. The requirement is deliberately vague

("class of source") concerning what needs to be communicated about the source because

that varies greatly fi-om application to application: in some cases it is necessary to know
the identity of the source (at some level of granularity -network, geographic location,

system, person, etc.) whereas in others it is only necessary to know some property of the

source (e.g., accreditation range of the system, evaluation class of the system) from which

4.2 - 2

one can decide how much to trust the information conveyed. In any case, it is generally

a requirement of the telecommunications system to be able to supply appropriate

information about the source of a given piece of data, (potentially as detailed as saying

exactly who or what the source is) independent of anything the source does, with

acceptable confidence that information is correct and has been correctly received.

(3) Narrowly speaking the injunction above about "acceptable degree of confidence" is

not part of the integrity policy itself. However, it is not very practical to separate the

requirement that information be communicated correcdy fi-om the requirement that one

knows with an acceptable degree of assurance that it has in fact been communicated
correctly. The ability of a telecommunications system to adhere to or support any of the

integrity policies discussed above is vulnerable to attack from a variety of threats. For the

most part the general types of threats and vulnerabilities are not different from those

applicable to the enforcement of a confidentiality policy, although the detailed scenarios

would of course be different. Following is a summary of the major threats; this list is

intended to be comprehensive but it may have overlooked something.

4. THREATS AND VULNERABILITIES

The ability of a telecommunications system to adhere to or support any of the integrity

policies discussed above is vulnerable to attack from a variety of threats. For the most part

the general types of threats and vulnerabilities are not different from those applicable to the

enforcement of a confidentiality policy, although the detailed scenarios would of course be

different. Following is a summary of the major threats; this list is intended to be comprehen-

sive but it may have overlooked something.

4.1 ACCIDENTAL THREATS

The integrity of information being communicated may be compromised or corrupted by

any of several kinds of non-deliberate, accidental events. The major ones to be concerned

about seem to be the following:

"laws of physics" — imperfect communications media (noise), accidental interference from

man-made or natural sources, hardware failures, race conditions, etc. can all cause infor-

mation to be lost or altered.

"human operational error" — at almost any point where a person is involved in the day-

to-day operation or maintenance of a telecommunications system there is opportunity for

human error to cause a loss of integrity of information.

"design and implementation error" ~ even though a given system may be intended to

have mechanisms such as those discussed below in Section 5 to protect itself against the

above two kinds of accidental threats, the design and implementation of those mechanisms

may have errors that either weaken the effectiveness of the mechanisms or themselves

introduce a loss of integrity. Note also that even though the existence of a design or im-

plementation error may be an accident, that error may be exploitable by the malicious

attacks discussed below in Section 4.2.

4.2 - 3

4.2 MALICIOUS THREATS

Even though a given telecommunications system may be designed and implemented to

cope well with the "laws of physics" or other forms of accidental error discussed above, the

information it carries may be sufficiently valuable or important that it is in somebody's interest

to attempt to deliberately cause the system to fail to preserve the integrity of the information

it is communicating in one way or another. The particular kind of loss of integrity (false

attributes of the source, altered information, loss of information, repeated transmission,

completely bogus traffic, etc.) that would benefit an "enemy" most, or would be easiest to

bring about, would vary from case to case. Following are the general kinds of malicious

attacks a telecommunications system may be subject to:

"active wiretapping" — whatever the particular communications medium may be, an attacker

can in principle intercept the legitimate communications on the medium and replace them
in whole or in part with false communications of his own devising, perhaps related to or

derived from the legitimate communication, perhaps not; he may also just settle for intel-

* ligently or randomly adding noise to the communication, although that particular attack

falls more into the denial of service realm. (An attack which simply over-rides the legiti-

mate communication, e.g., through a stronger signal, without capturing and making use of

the legitimate one also falls into the active-wiretapping category.)

V "technical penetration of the interface" — rather than direct attacks on the communications

media, this encompasses any means by which the attacker exploits flaws in the

communications system, its interface to an endpoint, or the endpoint itself to cause false

information to be transmitted, for his benefit, from the sending end or delivered by the

receiving end. An example here might be exploiting a weakness in the protection

mechanisms of a host operating system to modify internal tables or even to directly call

: low-level communications routines and thereby to generate traffic that appears to come
i from someone else.

"subversion of system hfe-cycle" ~ this includes all attempts to interfere with the devel-

opment, distribution, maintenance, or operation of the communications system's hardware

or software in such a way as to cause or allow, directly or indirectly, the intended integrity

, policy to be violated. System lifecycle subversion could be a means of inducing or

planting a flaw (e.g., trojan horse software, faulty hardware) to be later exploited by a

technical penetration of the interface. Note that this includes both cases where the "ene-

my" has direct access to some aspect of the life-cycle and cases where he doesn't but can

somehow make someone who does have access become an unwitting agent (again, the

trojan horse scenario comes to mind) to perform the subversion. Note that if portions of

. the system's software or critical tables are transmitted electronically, the integrity of that

communications itself must be protected lest it be attacked by one of these means to effect

a subversion of the system. (How the level of integrity required for the distribution mech-

anism for a system relates to the level of integrity it is trying to preserve is an interesting

question without an easy answer but seems intuitively related to the question of what level

of classification the TCB of a system handling classified information should be treated as

to protect it from modification.)

4.2 - 4

5. INTEGRITY MECHANISMS

Well-understood technical and procedural mechanisms exist that can effectively counter

all the threats discussed above. (Prevention of design and implementation errors is a sepa-

rate topic, covered below in Section 6.) The primary ones are summarized here, along with

which threats each is intended to deal with.

Error Correcting Codes ~

Error Detecting Codes ~
Protocols (error correction, sequencing, authentication, key management, etc.) ~

The above mechanisms come in two forms: cryptographically strong and cryptographically

weak. A cryptographically weak mechanism is one which is adequate to defend against

accidental errors, such as noise in the communications medium, but which can be relatively

easily circumvented by a conscious attack (such as modifying both a message and its

checksum.) A cryptographically strong mechanism however is one which is computationally

infeasible to circumvent, under the circumstances in which it is used, and thus serves to

defeat active wiretapping. (In some sense the difference between a cryptographically weak
or strong mechanism is in the eyes of the beholder; that topic is discussed below in

Section 6.)

Reliable Media — When physical and personnel security provide an adequate defense against

an active attack, the threat of accidental errors may be reduced to an acceptable level

merely by using a reliable medium (with perhaps only a simple error detecting/correcting

code.) Fiber optics used for LAN's are an example of such a medium.

Trusted Systems Technology ~ Many of the mechanisms used in a trusted computer system

of class B2 or higher, implemented so as to assist in enforcing an integrity policy, are

relevant to defending against a technical attack on the interface, although in many cases

all that may be needed is simple domain isolation. (The issue of correctly coupUng the

information protected by an integrity-policy-enforcing TCB to the communications system

is a separate one and is discussed below in Section 8.)

Physical and Personnel Security — These mechanisms are the primary means of defending

against subversion of the system life-cycle, although they can also prevent active attack

(by using a protected medium) and technical penetration of the interface (by preventing

an "enemy" from having any access at all to either end of the telecommunications system.)

6. ASSURANCE MEASURES

The primary technical protection mechanisms listed above are all vulnerable to exploita-

tion of design and implementation errors. Various measures, more-or-less well-understood,

are available to assure that the mechanisms in a given communication system have in fact

been designed and implemented properly. Without use of these measures, especially in a high-

threat environment, the inclusion of particular integrity mechanisms can only give the illusion

of adequate protection (as demonstrated by the ease with which amateur cryptographic al-

4.2 - 5

gorithms have been broken or the ease with which operating systems not built to TCSEC
standards have been penetrated.) Three particular sets of measures are applicable:

Cryptographic Certification ~ Determining that a particular error-detecting or correcting coding

algorithm and its related protocols (including crypto key management) is cryptographically

strong enough for a given application involving an active wire-tapping threat is presumably

well- understood by the national cryptographic community, but it is a technology that,

unlike anything else discussed here, is not publicly knowable. However, the results of the

technology are available in that particular algorithms are approved for particular purposes

and can be confidently used in systems without knowing the approval process or even the

algorithm itself; the only concern might be that the use of cryptographically-strong al-

gorithms for integrity protection (as opposed to confidentiality protection) is a relatively

recent idea and thus may not be as well-understood, even by the cryptographic community,

as the older confidentiality-prevention technology is. Ameliorating this concern is the

observation that active wire-tapping to compromise integrity must almost always be in real-

time whereas the need to decrypt intercepted material from a passive wire-tap in order to

breach confidentiality is hardly ever so urgent.

Protocol Verification ~ Although somewhat in its infancy, the technology to demonstrate

through formal proofs that a given suite of protocols is "correct" has been successfully

applied to a number of examples. The more complex the interactions involved in se-

quencing, authentication, authorization, and cryptographic key management, the more use

of such approaches becomes attractive.

Trusted System Assurance Measures ~ Any place where software and hardware protection

measures are used to separate trusted parts of a communications system from untrusted

parts and any other places where they must be relied upon to operate correctly in order

that integrity be preserved are candidates for the application of trusted system assurance

measures from classes B2 through Al of the TCSEC.

7. NEED FOR GUIDANCE

One difference between a communications system concerned about preserving the integrity

of information and one only concerned about preserving confidentiahty is that other than the

long well-understood principles for engineering communications systems with specified

(acceptably low) error rates, there does not exist any codified guidance that helps one

determine whether a particular such system is "good enough" for a particular application,

particularly in the face of an active threat. It is assumed this same observation will be made
and discussed more at length by the operating systems group since it applies even more so

there. In short, the problem is that there is no analogue of the TCSEC Environments

Guidelines (Yellow Book) [ENVIR851 for integrity poHcies whereby one could say something

like "given a system handling information requiring protection at integrity level x, accessed

by people trusted at level y, exposed to threat types z and w, a system of evaluation class B2
would provide adequate protection" nor is there an extension of the features and assurances

in the various evaluation classes that covers the kind of error detecting and correcting codes,

protocols, and crypto algorithms relevant here. (It can even be argued that without even going

so far as trying to decide whether a particular system is "good enough" for a given operational

4.2 - 6

environment we do not have any well-codified way of specifying the properties of an

environment that are relevant to the decision: in the realm of preserving the confidentiality of

information the concepts of clearance and classification — even outside the National Security

Establishment — are useful ways of characterizing how severe an operational environment is

in terms of the threats present and how important it is to defend against them; no commonly-
accepted analogous concepts are yet available in the integrity realm.)

8. LOOSE ENDS

Time did not permit our working group to cover, even briefly, a number of other relevant

topics (even within the narrow scope that we defined telecommunications to encompass.)

Without much comment, then, here are four in particular that should be explored before one

could regard the subject as being close to complete:

Oversimplification — We recognize that in summarily defining telecommunications to include

only the transport of information, unchanged, between two endpoints we are both being

imprecise and oversimplifying the problem. Some of that was noted above (is a

format/character set conversion routine part of the telecommunications system or not?); the

consequences of having such a narrow definition of scope should be re-examined. (Even

though the operating systems group has implicitly embraced "distributed systems" as in its

scope, we must make sure that the definitions of scope of all the groups do in fact cover

all relevant areas.)

Composition/Interface Incompatibilities ~ Even though a given telecommunications system

may be designed to adequately preserve the integrity of information in the face of the

threats it is exposed to when considered as an isolated system, the consequences of cou-

pling that telecommunications system into the systems at either end that will be using it

are not obvious. The endpoint systems may have certain expectations about the informa-

tion to be carried (e.g., integrity labels supplied by a trusted part of the end system) that

a routine, even if of high-integrity, communications system design may not anticipate.

Unresolvable trade-offs ~ There are always a number of competing goals for a system; in

this area the ones that come to mind are integrity, confidentiality, availability, bandwidth,

delay, and economics. It is not clear that these can be arbitrarily specified. We have a

suspicion, for instance, that high levels of integrity, which require high amounts of redun-

dancy in a noisy medium, are inherently in conflict with high levels of confidentiality since

redundancy is known to aid in breaking a cryptosystem. The limits here need to be ex-

plored.

Relevance of the TNI - We recognize that the Trusted Network Interpretation (TNI) [TNI871

has something to say on this topic, especially in Part n. Whether it is of much utility or

applicability needs to be examined further.

9. NON-TECHNICAL BARRIERS

As akeady noted, we believe that the technology to provide integrity over a tele-

communications system adequate for any practical application even under an extremely hostile

4.2 - 7

threat environment is readily at hand. However, we see a number of non-technical barriers

to the widespread and economical use of that technology:

Agreement on Interfaces and Protocols ~ Although much progress has been made in specifying

various protocols suites and internal operating system interfaces, e.g., under the ISO
framework or in communications and networking extensions to Unix(tm), it cannot be said

that there currently exists a widely-accepted and implemented set of them that completely

covers the variety of integrity-related service parameters that fall under the responsibility

of a telecommunications system.

Adequacy Guidance ~ As noted above in Section 7, there does not exist either the technical

basis for deciding "what is good enough" for a telecommunications system in terms of

integrity mechanisms and assurance measures nor, as a consequence, any procedures, doc-

trine, or standards institutionalizing that basis. Note, as also discussed earlier, that part of

the reason for this lack is that apart from engineering specifications of an acceptable error

rate in a noisy channel there is no common way of characterizing "how much" integrity

protection is needed for a given class of data or how great the threat it is subjected to in

a given environment, i.e., the common vocabulary and succinct form of characterizing a

confidentiality-preserving environment in terms of clearances and classifications (or analo-

gous concepts) does not exist here.

Certification or Evaluation of Products — Similarly, there is lacking both a metric for

evaluating telecommunications products providing integrity protection and any institutional

way of certifying a given product. Although the TNI [TNI87] provides a start by

providing a partial framework for characterizing a product it does not, as yet, provide a

rating that serves for telecommunications systems the same function that a DoD Criteria

[TCSEC] rating provides (regardless of whether confidentiality or integrity is of concern)

for an operating system.

Export Problems — Cryptographically-strong integrity mechanisms of necessity involve

cryptographic algorithms. The exportability of those algorithms or of equipment using

them is undecided, although there may be precedents in that an algorithm that cannot be

routinely exported if it is used for confidentiality protection (e.g., DES) can be exported

if it is only used for authentication purposes.

Transborder Data Flow - Laws in various jurisdictions require that some kinds of data which

flows over the border must not be encrypted; how those laws apply to data which is

encrypted for integrity protection is not known, although it is noted that a copy of such

data can always be also transmitted unencrypted along with the encrypted data, without

detracting from the telecommunication system's ability to preserve its integrity.

Cost/Performance ~ Even though the technology to provide very high levels of integrity in

a communications system is in principle fairly straight-forward, providing that technology

at an acceptable cost in a system of a given communications rate may depend on

economies of scale that can only be achieved if a wide-spread mai'ket exists, i.e., if many
of the non-technical problems presented above are resolved.

4.2 - 8

10. CONCLUSIONS

The conclusion of the telecommunications working group of the NIST Data Integrity

Workshop is this: protection of the integrity of information handled by a telecommunications

system can be provided to essentially arbitrarily high levels of confidence without the need

for any major technological advances. There are, however, a number of institutional and

cultural barriers to the adoption and wide-spread exploitation of that technology that must be

addressed.

4.3 SYSTEM SERVICES - GROUP 3 REPORT
Prepared by Grant Wagner

Grant M. Wagner (NCSC) Chair

Deborah J. Bodeau (Mitre) David A. Bonyun (AIT) Rae K. Burns (Kanne Assoc.) Terry

Mayfield (IDA) Roger L. Miller (IBM) Lee Ohringer (Dept of Treas.) Carl Pabst (Touche

Ross Int'l) Sylvan Pinsky (NCSC) David Rosenthal (Odyssey Res. Assoc.) Marvin Schaefer

(TIS) William R. Shockley (Gemini Comp. Inc.) Gary Smith (George Mason U.)

1. SCOPE

System services refers to all of the services provided by a system to its users (e.g., data

base support, electronic mail, office automation, transaction processing support, etc.). In this

report we wUl focus upon data integrity issues as they relate to Data Base Management
Systems (DBMSs)'. We make no claim that our discussion of DBMSs will or will not apply

to other system services. We simply chose to address DBMS issues because we felt that the

entire area of system services was too broad to address in the time available and the majority

of group members had done previous work in DBMS controls of one form or another.

This report will not address data integrity controls that are implemented as part of a par-

ticular DBMS application. This report will instead focus on what controls can be implemented

in the underlying DBMS in hopes of reducing the burden of application dependent TP
certifications.

2. DBMS INTEGRITY CONTROLS AND CLARK & WILSON

We chose to look at existing DBMS integrity controls and see how they could be used

to implement the Clark & Wilson notions of Independent Verification Procedure (IVP)^ Tran-

sformation Procedure (TP), Constrained Data Item (CDI), access triple and separation of roles.

2.1 UPDATES AND QUERIES

Since DBMSs allow both updates and queries we decided that we needed to consider

both. We decided that the Clark & Wilson notions could be applied to query-based situa-

tions but that the effect would be to provide some form of inference control. We did not

pursue this further as we felt this was a confidentiality concern and thus outside the scope

of the effort. This allowed us to focus on DBMS operations that were primarily updates.

^
In focusing upon DBMSs, this report will deal only with "traditional" DBMSs (e.g., we will not discuss the special

problems of distributed or multi-processing DBMSs).

^ Note that different authors use different words to explain the acronym IVP, e.g., "I" can mean Integrity, Initial, or

Independent while "V" can mean Verification or Validation. This usage needs to be standardized.

4.3 - 1

2.2 THE ACCESS TRIPLE

Most available DBMSs provide only the capability to specify two component access con-

trols, (e.g., <user, data>, <user, transaction>, or <transaction, data>) whereas the Clark &
Wilson model uses access triples. The group was divided on whether or not one should be

able to construct appropriate groupings of these access doubles such that the function of the

access triple was provided. Unfortunately, no consensus could be reached on this topic.

There was agreement that the "precompiled transaction"or "canned query" capability in some
current DBMSs could serve as triples.

2.3 TRANSFORMATION PROCEDURES

The group quickly agreed that the DBMS must have some capability to bind names to

TPs. This is required to allow TPs to be referenced by access tuples and other TPs.

The group also agreed that the DBMS must have the capability to encapsulate CDIs such

that they are only manipulated by the appropriate TPs. This raised the question of what

happens when two or more TPs designed for different missions (e.g.,payroll and medical

services) manipulate the same CDI (e.g., employee sickleave). The group also described the

problem as multiple "paths"to the same data. If TPs are viewed as independent, when they

in fact reference the same data, data integrity problems will likely arise that can not be ad-

dressed by independent TP certification. This did not mean that only one TP should be

permitted to manipulate a CDI. However, if more than one TP does manipulate any part of

a CDI, then the certification of all TPs which operate on the same CDI must be done in the

context of all of the other TPs which manipulate the same CDI. This led some members to

the conclusion that one may need to expand the triple to include the context of the

certification (i.e., what the TP is certified to do or not do).

2.4 INDEPENDENT VERIFICATION PROCEDURES

The notion of TPs in a DBMS environment implies that the user interface is constrained

to a subset of the entire DBMS interface. In fact, the user will be constrained to the set of

operations on CDIs that were anticipated by the designers of the TPs. When used in real life

applications, in most cases this will not be unreasonable. However things happen in real life

that are not, and frequently cannot be, anticipated by the designers of the TPs. This means

that any real life application will have an uncertified "override" capability that will allow some
user to manipulate CDIs in ways not specified by any TP. Thus, in order to restore data

integrity, the DBMS must provide some support for IVPs. Within the limited time provided,

the group did not identify or propose any DBMS-based mechanisms to support IVPs. In fact,

all of the suggested scenarios required some sort of reliable human reporting that validated that

the override maintained data integrity. If the override did not maintain data integrity, the

human was required to restore data integrity.

2.5 SEPARATION OF ROLES

The group addressed separation of roles by examining how one might implement a DBMS
application to issue checks. (The example can be found in Section 5.) This example showed

4.3 - 2

that some "dynamic" separation of roles constraints can be implemented with mechanisms (e.g.,

data definition languages, data consistency constraints) that are commonly available in today's

DBMSs. However, trying to implement even moderately complex constraints in today's

DBMSs would be awkward and clumsy, probably resulting in a system that would be hard to

maintain and certify.

3. SOME THOUGHTS ON CONFIDENTIALITY AND INTEGRITY

The group also considered how confidentiality and data integrity interact. It has been

said that integrity and confidentiality work against each other and that one must always choose

which is more important. We believe that this is too strong. We finally agreed that fre-

quendy integrity and confidentiality are mutually supportive and in fact often depend upon the

same basic mechanisms. We also agreed that there are circumstances (e.g., where integrity

constraints "cross" mandatory access control levels and vice versa) where integrity and

confidentiality must be traded one for the other. Under these circumstances one must look

for engineering compromises that will allow the proper balance needed for the desired

application. The group observed that one must begin seeking the desired balance very early

in the design of the system because early design and development decisions that ignore either

confidentiality or integrity will limit (or completely preclude) opportunities to provide the

needed protection during later development.

4. REFLECTIONS/RECOMMENDATIONS

While the group was able to use existing DBMS features to implement separation of roles

controls, we were, however, unable to use existing features in a way that would support easy

maintenance and certification. We recommend that data definition and/or consistency check

features be enhanced to provide operators that lend themselves to the expression of integrity

controls and to allow separation of integrity controls and traditional data.

More research and worked examples in real life applications where both integrity and

confidentiality are necessary are needed to expand the currently limited set of engineering

compromises available to DBMS developers.

5. EXAMPLE - GENERATING CHECKS

This section describes an example of how we can achieve dynamic separation of roles

using what exists today at the applications level. We believe that this could be better

performed at the DBMS level, provided the proper tools were made available. For this

example, we assumed two data types, a check and a check register. We want to ensure that:

1. every check is requested, approved, and signed before issue

2. no single user does more then one of the above for any given check

3. no user participates in the processing of a check for themselves

We defined a check to have the following data fields: date, check number, payee, amount,

signature. We defined the check register to have the following data fields: check number,

4.3 - 3

requestor's name, approver's name, and signatory's name. We defined four TPs: re-

quest_check, approve_check, sign_check, and issue_check.

Using commonly available data consistency features we defined some rules that would
insure that our three constraints above were always met.

1. A check cannot be issued unless all fields have a valid value.

2. Requestor's name cannot equal Approver's name.

3. Requestor's name cannot equal Signatory's name.

4. Approver's name cannot equal Signatory's name.

5. Requestor's name cannot equal payee.

6. Approver's name cannot equal payee.

7. Signatory's name cannot equal payee.

Rules 2 - 7 are simple and these types of rules can be enforced by the DBMS provided

the DBMS provides the Data Base Administrator with the ability to define limits on the data

values placed in particular fields. Fortunately, many available DBMSs provide such a

capability in what they call data definition languages or consistency constraints. This means
that only the DBMS and the expression of the rules need be certified. Rule 1, on the other

hand, would likely require some of its enforcement in the issue_ check TP thus additionally

forcing this TP to undergo a certification.

This example did require us to introduce additional "data" fields (e.g.. Approver's name)

into the database for the sole reason of providing separation of roles. We also added a

number of "consistency" constraints solely for separation of roles purposes. This use of

additional data and constraints allowed us to achieve our goal at the expense of mixing "real

data" (e.g., amount, payee) with previously unnecessary "control data" (e.g.. Approver's name).

Existing DBMS languages do not provide an elegant or clean way of separating this "control

data" from the "real data", thus complicating maintenance and certification.

4.3 - 4

4.4 APPLICATIONS - GROUP 4 REPORT
Prepared by William H. Murray

Chair: William H. Murray (Ernst & Whinney)
Group Members: Robert Baldwin (Tandem Comp.) Joseph Beckman (NCSC) Nander Brown
(SBA) Peter Capek (IBM) Karl Krueger (World Bk) Dale Miller (Irongate) Maria Pozzo
(Aerospace Corp.) Dennis Steinauer (NIST) Anne Todd (NIST) Douglas Varney (Kans. St.

U.) Peter Wild (Coopers & Lybrand)

1. CHARGE

This group was asked to look at the application implications of the requirement for data

integrity. We were specifically asked to include both structured and unstructured applications.

We tried to keep a number of examples in mind during our deliberations. These included:

* games
* missile launch and targeting

* aircraft maintenance scheduling

* business applications (e.g., payroll, general ledger, receivables, etc.)

* strategic applications (e.g., reservadon systems)

* medical diagnosis

* document retrieval

* business application program development
* other

1.1 BOUNDARY ASSUMPTIONS

We did, however, make some boundary assumptions that excluded some computer uses.

We focused on multi-user systems to the exclusion of single-application-only machines (e.g.,

arcade games, automatic teller machines, etc.). We also excluded untrusted single-user

machines, and applications where only the owner of the application would rely upon the

results. (David Wilson encouraged us to include this case, but upon reflection we concluded

that the only way to do so would be to push the system into the trusted system case.)

4.4 - 1

In considering the following cases:

CASE 1

USER APPL DATA

CASE 2

USER APPL (^DATA ^

CASES

USER

CASE 4

^ APPL data)

(user APPL DATA ^

Figure 4.4-1 Boundary of Trust

where the line represents the boundary of trust, it is Case 3 that is the interesting case. We
assert that in Case 1 nothing can be said about integrity. In Case 2 it would be required to

restrict all write access. Case 4 does not represent a problem.

The group concluded that there must be mediation between the user and the data. It is

equally clear that access between the user and the application must be mediated. C-W
requires that the TP mediate the user's access to the data ("Access to CDIs must be via TPs).

It is not clear how much of this mediation can be generalized across TPs and applications.

There was some discussion of an application reference monitor, but it was never clear whether

this function would be local to the TP, the application, or the system.

The group considered the level of access that the application had to the data. For ex-

ample:

* physical

* device or device driver

* access method or data set

4.4 - 2

* file server

* structured database
* type manager
* combination of the above

While we felt that it would be easier to make statements about integrity in the presence of

only one of these and that it would be easiest with type managers, we recognized that many
applications would require or reserve low level access.

Finally, we distinguished between applications and tools. We did not consider editors,

formatters, spreadsheet, database managers, etc., independent of their use, were applications.

We concluded that word processing technology applied to inter-office correspondence was
the same application as the tool used to prepare contracts in a law office.

2. PRINCIPLES AND CONSTRUCTS

The group identified three principles that were important to our work.

2.1 LEAST PRIVILEGE

The group felt that the principle of least privilege is necessary to be able to make state-

ments about the integrity of data. C-W suggests this. The group believes that the principle

must be applied at every layer of the system. For example:

* A user should be restricted to necessary applications and TPs (e.g. transaction types)

* TPs should be restricted to only the CDIs required

* the combination of the user and TP might be restricted to only part of a CDI.

2.2 SEPARATION OF DUTIES/SEGREGATION OF FUNCTIONS

2.2.1 Types of Duties/Functions

The group elaborated some of the kinds of separation of duties and segregations of func-

tions that may apply to an application. These include:

2.2.1.1 Origination from Approval

This rule states that sensitive transactions must be independentiy originated and approved.

It is most often seen in business applications but it is also seen in business application

program development where it requires that changes to programs be approved by management

2.2.1.2 Custody from Control Data

This rule requires that access to a resource be divided from access to the data used to

control the resource. This is the rule that says that he who has physical custody of the inven-

tory must not have write access to the inventory control system. It applies even when the

resource itself is data.

4.4 - 3

2.2.1.3 Creation from Maintenance

This rule suggests that it is useful to separate the creation and naming of a record or

other data object from maintenance or update of the object. This is the rule that says that

he who creates the ledger record, i.e., creates vendor records, must not be able to process

transactions against that ledger, i.e., approve invoices for payment. It also suggests that

original development of a computer program should be separate from the maintenance of the

program.

2.2.1.4 Processing from Rules

This rule says that he who can change the rules under which data is processed, i.e., mod-
ify the program, should not be able to process the data, i.e., execute the program. It suggests

that programming should be separated from execution. (The exception to this is the case in

which only one person will rely upon the results as in personal computing.)

2.2.1.5 Static and Dynamic Separation of Duties

The group assumed two kinds of separation of duties, i.e., "static" and "dynamic." The
rule that requires separate origination and approval can be used to illustrate both kinds. Static

separation occurs when duties are divided along the lines of transaction type, for example,

when user A can do only originations and user B only approvals. Dynamic separation of

duties occurs among instances of transactions within a type, as for example when user A can

either orignate or approve as long as it is for different instances.

Dynamic may also include separation based upon the content or the context transaction.

For example, user A might be able to unilaterally approve a transaction for under $1000 but

require a counter for larger transactions. User B might be limited to employees or customers

assigned to his branch.

Historically, systems have often supported division along the lines of transaction type.

However, such separation along the lines of instance, content, or context that have been sup-

ported, have been supported only by applications.

2.3 THE WELL FORMED TRANSACTION

The group acknowledges its debt to C-W for the concept of the well formed transaction.

However, we elaborated the concept to identify some of its characteristics.

2.3.1 Limited in Scope

It is equally indebted to the Working Group on Granularity of the first WIPCIS for its

discussion of the scope of TPs. It agrees with that group that the TP must be limited in

scope.

4.4 - 4

However, we assert that while it is necessary that the TP be limited in scope, it is not

sufficient. It must also be simple, i.e., it must be of limited complexity or simply composed
of things that are.

2.3.2 Obvious

The objective of the first two rules is that the TP, and ultimately the application, be ob-

vious as to their intent.

2.3.3 Whole

Likewise the TP and application must be complete and sound. Only when these conditions

are met can we expect to have data integrity.

While computer applications have seldom conformed to all of these principles, we have

seen sufficient examples to convince us that they can.

3. CONCLUSIONS

3.1 INTEGRITY PHILOSOPHY

The group asserts that it must be possible for management to prevent, attribute, constrain,

and partition change in a manner consistent with the requirements of the application.

3.2 INTEGRITY POLICY

The group believes that integrity policy is likely application dependent. We were unable

to identify any policy statement that seemed to us to be both specific enough to be useful and

general enough to embrace the set of applications that we had under consideration.

3.3 DATA INTEGRITY vs. SYSTEM INTEGRITY

The group agreed with the premise of the workshop that data integrity has not received

the same attention as confidentiality. While focusing on data integrity, the group concluded

that system integrity, controllability, and auditability are all aspects of a single property. Each

is essential to the maintenance of the others.

3.4 APPLICATION KNOWLEDGE

The group concluded that the application had to be accountable for the integrity of its

data. Further, that in order to be effective, that the application would have to have knowledge

of the environment. We used the term "integrity perimeter," and concluded that the boun-

daries of such a domain had to be decidable and known to the application.

4.4 - 5

3.5 LOCALIZATION

We concluded that access to data needed to be localized both inside and outside the ap-

plication. That is, not only should control of data be localized within the system, for example

in a database manager, but also within the application, that is, within one or two modules.

3.6 PARTITION AND CONTENTION

The group concluded that the principle new requirement is the institutionalization of par-

titioning and contention within the system. This includes the concept of "strong separation

of duties" as espoused by Parker and C-W.

3.7 NO "ALL PRIVILEGED" USERS

The group called for an end to the current practice of designing systems in such a way
that there is an "all privileged" user. Whether called the superuser or system manager, the

practice of having such a user is inconsistent with the objective of data integrity. Many
systems not only assume the existence of such an individual but even make it mandatory.

The group recognized that there are cases in which the existence of such a role is ap-

propriate, as in a small sole proprietorship. They also recognized that the absence of such

a user might, in some instances, make corrective action more difficult. In the absence of very

good design, it might even lead to a "hom-lock" or "deadly embrace" in which control of the

system could be lost. However, we have seen sufficient instances of such design to convince

us that the current practice is a designer's crutch.

3.8 ADDITIONAL ABSTRACTIONS

The group identified the need for additional layers of abstraction between that of applica-

tion and that of transaction type. First, it seemed to us that application and transaction type

are too far apart to support many of the administrative and separation requirements. We also

noted that many systems and applications support grouping of users or resources along such

lines as category, department, project. However, most of these appear to be ad hoc rather than

ordered and general. The group feels that useful work can be done in this area.

4. REQUIREMENTS

The working group is indebted to Robert Jeuneman for the identification of the require-

ments. Our list is an elaboration on his.

4.1 IMMUTABILITY

As suggested in our conclusions, as well as by Biba, C-W, and Shockley, the basic re-

quirement for data integrity is control of change. "Integrity is preserved when only ap-

propriate, intended, and authorized changes take place."

4.4 - 6

The working group felt that there are a number of mechanisms available to resist changes

to data. These include non-eraseable media, environmental controls (including binding and

access control), digital signatures, and typed data objects. The latter two are of particular

interest. While they are sparsely used to date, they are both flexible and broadly applicable.

4.2 ATTRffiUTION

Likewise, a key to du-ecting and restraining change is the ability to fix accountability for

all significant and material change to a single individual. As suggested by C-W, among
others, it must be possible to fix accountability to the individual in an unforgeable manner.

While passwords have worked well for some applications and environments, they are clearly

limited. Biometrics can be both effective and efficient for applications where the terminals

are trusted, clustered and shared across users. One-time passwords are preferred where

terminals are not trusted and where the user may appear at many points.

The group questioned whether the application had to authenticate the user or could rely

on some other process in the environment. The closer the authendcation process is to the

user, the more rational it will appear to him, but the less trusted it may be to the applicadon.

The closer it is to the applicadon, the more trusted, but the more different processes the user

must be known to. We concluded that the application should employ the process closest to

the user in which it has sufficient trust. As a normal rule the application will have some trust

in its environment; at a minimum it must rely upon the environment to protect it from

interference and contamination. However, when it has no trust in any process outside itself,

then one-time passwords are the only workable choice (since biometrics require both a trusted

reader and path).

4.3 LOGGING AND JOURNALING

The group resisted the use of the term "auditing" and preferred to have separate require-

ments for logging, joumaling, reporting and signalling. They stressed that these should be

sufficient in number, independence, and immutability to be trustworthy. With Jueneman, the

discussion group believes that digital signatures can be very useful here.

4.4 REPORTING AND SIGNALLING

Reporting and signalling are the second parts of the "audit" requirement. They provide

management with sufficient visibility into the behavior, use and content of the system to

enable them to detect variances from the expected and take timely corrective action.

4.5 PEDIGREE/PROVENANCE

However, the group felt very strongly that while logs and journals are necessary for ac-

countability, they are not sufficient. Neither are they sufficient for proper partitioning. They

felt that the data's pedigree and provenance must be immutably bound to it. [Provenance, as

used here, is defined as the history and record of custody of an artifact that attests to its

membership in a class, its unique identity, or its authenticity. For a data object this includes

4.4 - 7

its author, change history, sources and procedures employed in its preparation, authorizations,

approvals, and other vouchers.]

While much of this data has been recorded in logs and journals, for reasons of economy
of storage, it has usually been kept in archival storage. In order for it to be available for the

purpose of enforcing partitioning it must be bound to the data object and kept in the same
store.

4.6 VALIDATION

Validation, as described by C-W and Jeuneman, appears to be highly application depen-

dent.

4.7 PARTITION/COMPARTMENTATION

The group concluded that the most significant new requirement identified by focusing on
the data integrity requirement is for more granular partitioning and compartmentation. This

includes the ability to separate duties along the lines of role (we define role to be an exclusive

set of privileges associated with a particular duty; the privileges associated with a role should

not be combined with other privileges), department, project, level of management, transaction

type, transaction instance or other useful lines.

While we agreed with C-W that the decision as to how TPs should be separated is a

decision that must be made external to the system, we felt that the enforcement of these rules

at authorization time must be made internal to the system.

4.8 IDENTIFICATION

We agreed with Jueneman that the enforcement of unique identifiers must be done by the

environment, rather than the application itself, in order to insure their exclusiveness over the

widest possible domain. We also agreed that the system was in the best position to provide

confidence in the name, particularly across applications or environments.

4.9 AUTHORIZATION

The group concluded that the authorization function needs to be more responsive to the

requirements of applications. A large percentage of problems result from the rules themselves.

Problems in the rules often result from the knowledge requirement imposed upon the authorizer

in order to map application abstractions onto system controlled objects.

4.10 TRUSTED DATE AND TIME

The group agreed with Jueneman about the requirement for a trusted time-stamp process.

We do not underestimate the difficulty of providing such a function but believe that a large

part of the requirement can be met with a mechanism as simple as the system clock.

4.4 - 8

4.11 SYNCHRONIZATION AND ORDERING

This requirement is an elaboration on Jueneman's requirement for a "trusted sequence

number." It is also more complicated and difficult to achieve than one might conclude from

"sequence number."

4.12 NAMED TRANSACTION TYPE

The group noted that transaction type is the abstraction that is most similar to the concept

of a TP in C-W. While this abstraction is named in some systems, it is often done in an

operating system extension (such as IMS or CICS). The discussion group beheves that this

abstraction should be dealt with in a more general manner.

5. RECOMMENDATIONS

5.1 LINE BETWEEN APPLICATION AND SYSTEM

The group feels that work remains to be done on the requirements above to decide which

must be in the system, which in the application, which c^n be in either, and what criteria

apply.

5.2 ADDITIONAL ABSTRACTIONS

As noted under conclusions, the group feels that there is room for research in structuring

the space between the name of the application and the name of the transaction type.

4.4 - 9

4.5 IMPLEMENTATION/MODELS - GROUP 5 REPORT
Prepared by Carl Landwehr

Carl Landwehr (NRL), Chair

Marshall Abrams (MITRE) Robert Baldwin (Tandem Comp.) Robert Courtney (RCI, Inc.)

Betty Hill (World Bk) Robert Jueneman (CSC) Sushil Jajodia (George Mason U.) Stewart

Kowalski (U. Stockholm, Sweden) Milan Kuchta (Defence Comm. Est., Canada) Stanley

Kurzban (IBM) Donn Parker (SRI) Ravi Sandhu (Ohio State U.) Willis Ware (Rand)

1. CHARGE

HI. Implementation/Models and the Integrity Framework Consensus

How does the (consensus) integrity framework relate to models of integrity policy and

implementation approaches? Group 5 used this question to focus its discussions.

2. THE CHOSEN FRAMEWORK

The lack of structure in the consensus framework presented Thursday morning made it

difficult to pursue this topic as intended, so the group agreed to explore modeling and

implementation issues in relation to the definition of "property P" (the group 5 consensus on

integrity). This definition can be stated as follows: X has property P if it meets specification

Y with confidence Z. A possible instance of this definition is that data in an EDP system

have integrity if they satisfy a specification of quality with adequate probability. Intrinsic data

quality can be specified in terms of their timeliness, accuracy (correspondence with real world

referents), and completeness. Extrinsic characteristics of data that contribute to its quality

include their pedigree (explicit evidence of the origin of the data) and their robustness

(resistance to corruption).

2.2 KURZBAN'S MODEL

Stan Kurzban first presented an access control model based on perceived commercial re-

quirements. The model includes as elements user profiles, group (or "role-surrogate") pro-

files, resource profiles, programs (treated as a generalization of access modes), processes, and

system-wide security data. This structure is specified informally and permits a flexible specifi-

cation of user and group rights and access modes. Particular emphasis is placed on providing

structures that model permissions related to organization responsibilities. This model, as well

as those proposed earlier by group members Bob Jueneman and Ravi Sandhu, were included

in the group's subsequent discussions.

2.3 WHAT IS AN INTEGRITY MODEL?

The group next turned its attention to the relation between integrity models and the at-

tributes of data quality enumerated above. First, there was some discussion concerning the

4.5 - 1

meaning of "integrity policy" and "integrity model" — the former is understood as shorthand

for "a policy intended to establish, maintain, and/or enhance the quality of data in an EDP
system," and the latter is understood as an abstract representation of a policy or system that

is intended to display the aspects of system behavior that affect data quality and to suppress

other aspects. The group listed as examples of models that might be used to model integrity

Bell-LaPadula (B-L), Biba, Clark-WHson (C-W), Harrison-Ruzzo-Ullman (HRU), Biba/Juene-

man(B/J), Kurzban(SK), Sandhu (SPM), non-interference, and flow models. This list is

intended to be representative, not complete.

The group discussed the structure, scope, and degree of formality of the models. All of

the models considered in detail are oriented towards modeling and controlling the access

subjects have to objects rather than the flows of data and information among objects.

Considering whether particular models are appropriate for representing principles, policies,

requirements, designs, or implementations, the group found that some of the models, notably

Clark-Wilson, incorporate ideas from all of these domains, while Kurzban's model is primarily

targeted toward design and implementation concepts. The formal access control models (Biba,

HRU, SPM, Bell-LaPadula) seem to fit best into requirements or design contexts. In degree

of formality, the HRU, B-L, Biba, and SPM are relatively formal, while the C-W and B/J are

less formal. The SK model perhaps lies between these two groups in formality.

2.4 RELATING INTEGRITY MODELS TO THE FRAMEWORK

A key question to ask of an integrity model is whether it is complete with respect to an

application: can it represent all of the quality attributes of concern in that application? Since

there was no specific application under consideration, the group constructed a matrix relating

all the quality attributes defined earlier to the models of interest. The results of this effort

are shown in Figure 4.5-1. Since the matrix entries were derived through relatively brief

group discussion, they are subject to revision, but the matrix structure should prove useful for

comparing the properties of these and other potential integrity models.

As the matrix shows, all of the models can to some degree represent concerns about data

accuracy. In most cases, however, the primary control on data accuracy comes from prev-

enting unauthorized accesses to the data. In the Bell-LaPadula model, object contents are not

represented, but maintaining the accuracy of the security label of an object is a primary

concem. In the Biba/Jueneman model, timeliness can be addressed since timestamps are

provided for, as are methods for associating an access history with a data item (thus provi-

ding a pedigree for it). This model also provides encrypted checksums for robustness.

Clark-Wilson can model timeliness if a time period can be specified for the running of an

Integrity Verification Procedure (IVP) against a Constrained Data Item (CDI). It addresses

data accuracy and completeness through Transformation Programs (TPs) and IVPs.

2.5 RELATING IMPLEMENTATION MECHANISMS TO THE FRAMEWORK

The group next turned its attention to implementation considerations. The "common
mechanisms" posed in the consensus framework were used as the basis for this discussion,

and another table (Figure 4.5-2) was created to record the ability of each of these mechani-

sms to contribute to the maintenance of each of the attributes of data quality. One additional

4.5 - 2

mechanism, checksums, was added to the consensus hst. Note that "consistency" has been

omitted here as an attribute ~ some of the group members feh that consistency was subsumed
by accuracy and completeness, since it seems impossible for a set of data to be simultaneously

accurate, complete, and inconsistent. As with the first matrix, no claim of completeness is

made for this matrix but the structure may be of use to those wishing to study this problem

further.

Evidently there are mechanisms listed that can address all of the specified quality attributes.

This fact should not be taken as an indication that all the tools needed to solve the problem

of assuring data integrity are in hand, however. Some of the mechanisms cited represent

methods that are either abstractions of existing mechanisms (for example, Constrained Data

Items and Trusted Transformation Processes may correlate with mechanisms existing in some
database systems). Some, such as Separation of Duties, are principles that are widely

recognized and applied manually by organizations, but lack support in most EDP systems.

Although some confidentiality TCBs include support for the Biba integrity model, the Integrity

Reference Monitor listed in the matrix is really a hypothetical entity. The application- specific

reference monitor is in a similar state ~ research on the NRL Secure Military Message System

full-scale prototypes, for example, is striving to produce an application-specific reference

monitor based on a security model that includes some integrity constraints on message fields,

but such systems are not likely to be commercially available for some time. In fact, of the

mechanisms listed, it is probably fair to say that only checksums, audit trails, and privilege

mechanisms are routinely available for use in EDP systems today^

2.6 FURTHER CONSIDERATIONS

None of the group members believed that the matrices presented above were complete.

If EDP systems with improved abilities to establish and maintain the integrity of the data

they process are to be built, other considerations, including establishing ease of safe use as

a key design objective and applying sound software engineering principles in their construc-

tion, must also be addressed.

3. RECOMMENDATIONS

To be able to build systems that better preserve the quality attributes of the data they

process, the group recommends:

1. Further investigation of models that can represent a system's ability to preserve the

property P,

2. Development of a glossary of integrity terminology to provide a common reference

frame for work in this area, and

3. Study of mechanisms for flexible logging and processing of logs.

^ The following is a counter comment by Donn Parker: "This ignores the many, commonly used controls for data

integrity including sequence tagging, symbol and syntax tests, bounds controls, limit and range tests, separation, sample testing,

checkpoint restarts, double entry, balancing, verification, consistency, and completeness tests."

4.5 - 3

4. QUESTIONS FOR FURTHER DISCUSSION

Stan Kurzban and Marshall Abrams have contributed the following list of specific questions

that warrant further discussion/investigation in relation to integrity modeling:

1. What are the integrity-preserving principles developed by auditors?

2. Will generalizing "program" in the Clark/Wilson triple to include READ, WRITE, etc.

work?

3. Must a model include a notion of a SAGA (a sequence of atomic transactions)?

4. Is a role merely a collection of privileges?

5. Are roles significantly different from groups, and if so, how?

6. Can a person execute only one role at a time? Does the integrity reference monitor

need to know multiple roles which a person can assume? How is the change of roles

implemented?

7. What are the consequences of allowing one individual to have multiple system iden-

tifiers?

8. What mechanisms are needed to reconcile conflicting permissions and denials?

9. How is the granting of privileges related to employee termination? Does the answer

relate to whether granting of privilege is a role function?

10. Is there a restriction on membership in multiple groups?

11. Need a model describe hierarchies/networks of groups? Has a hierarchy of groups

semantics (e.g., inheritance of permissions)?

12. Need categories be ORed, ANDed, ...?

13. How can the model include administration (e.g., take-grant, audit) permissions? Must

it? Should it?

14. May one wear two "hats" in one session?

15. How should one model surrogates/agents/substitutes etc.?

16. Where should one begin (Biba, B-LP, Kurzban, CAV)?

4.5 - 4

17. Some authors have commented on the relationship of models, as in the ability to

implement one model as a special case of another. Would it be worthwhile to investigate

the relationship of models?

4.5 - 5

Quality \ Model
Attribute \

Bell
I
Biba

LaPadula

I

I
Clark.

I
Harrison

I
Biba IKurzban] Sandhu

I
Wilson IRuzzo Uuenemanl

I
(SPM)

I
lUllman

I | I

I I I

Timeliness

Accuracy

Completeness

Consistency

(Pedigree)

(Robustness)

-+

I

I
X

I

I

I

I I I I

I
X

I I I I I I

X = yes
* = model can represent access to data by authorized individual
= only accuracy of security label, not object contents, can

be represented/controlled
Attributes labeled in parentheses are extrinsic, others intrinsic.

Figure 4.5-1. Can Quality Attribute X be represented/controlled in model Y?

4.5 - 6

\ Quality
| I |

Mechanism\Attribute I Timeliness
| Accuracy

|
Complete-

\ I II ness
(Pedigree) (Robust-

ness)

1, Attribute
Measurement

Trusted
|

Transformation
|

Processes
I

+.

I

X
I

I

+-

I

X
I

Constrained
|

Data Items
I

Object/Subject
|

Authentication
|

5. Event Signaling
|

I
X

6. TCB
I

(Confidentiality
1

Only)
I

7. TCB
I

(Integrity
I

Reference Monitor)

I

8. Application-
I

Specific
I

Reference Monitor
I

9. Separation of
|

Duties
I

10. Privilege
|

Mechanisms
|

11. Audit Trails,
|

Logging
I

12. Checksums
I

I

I I

I

~
I

I
(labels)

I

yes

Figure 2. Can the Specified Mechanism contribute to the maintenance of the corresponding

Quality Attribute?

4.5 - 7

5. CONCLUSIONS, ISSUES, RECOMMENDATIONS

5.1 INTRODUCTION

This section presents a summary of the results of the Day-2 Working Groups. It is not

intended as a substitute for the Day-2 reports themselves, but rather to provide the reader with

an overview of the discussions.

The groups are presented in turn, beginning with the problem targeted by each group,

along with a frame of reference (including definitions) where appropriate. The conclusions

and recommendations of each group are then presented. In addition, the open issues identified

by each group are listed. Where possible, the reason for deferral of discussion is noted (i.e,

due to time constraints or disagreement). Finally, a summary of major areas of agreement and

conflict are presented.

The five Day-2 Working Groups were assigned the areas of Operating Systems and

Systems, Telecommunications, System Services, Applications, and Implementations/Models of

Integrity Policy. These groups were led by Steve Lipner, Ted Lee, Grant Wagner, William

Murray, and Carl Landwehr, respectively.

5.2 OPERATING SYSTEMS AND SYSTEMS (GROUP 1)

The Operating Systems and Systems Group began by selecting an integrity framework.

They assumed the Clark/Wilson definition of integrity, defined mandatory as "no user choice",

and defined discretionary as "user choice". Since a "secrecy TCB" might be a small subset

of a system, but an "integrity TCB" might encompass the entire system, they chose to focus

upon the security kernel that would control access, sequencing, etc.. They further decided to

focus on integrity control objectives since these would then lead to the need for certain

operating system features and in tum would lead to recommendations for guidelines and

research topics. The selected operating system integrity features were divided into those that

were necessary at the OS level and those that were optional (could be in the application or

were not necessarily needed anywhere). The report then discussed several models that

addressed some of the features and not others (Biba, Boebert, Sandhu) and continued on to

characterize the necessary and optional OS features listed earlier.

The group recommended the creation of a set of integrity guidelines describing features

of operating systems for meeting integrity control objectives. These guidehnes were to also

describe best practices and features in relation to environments. They also recommended
against the creation of integrity criteria at this time. Such criteria should be delayed until after

completionon of appropriate demonstration and reference implementation. Additionally, they

recommended that the criteria separate functions and assurance (as in Sandhu).

Open issues requiring further research were identified as: separation of duties for privileged

users; dynamic separation of duties; and enhanced user/manager interfaces to facilitate ease of

correct use of control mechanisms.

5 - 1

They concluded that the operating system features they had identified mapped well onto

the Clark/Wilson model but there were minor differences. For example, rather than supporting

the ClarkAVilson user/program/data triple, a more granular approach was appropriate at the OS
level, i.e., user/program and program/data binding.

5.3 TELECOMMUNICATIONS (GROUP 2)

The Telecommunications Group assumed a unique definition for data integrity. The
primary goal of telecommunications is the communication of information between endpoints

without modifying the information. Given this goal, the integrity policy for telecommunica-

tions can be stated as

"that received data comes from a known class of source, unchanged ... with an acceptable

degree of confidence".

Some additional factors to consider are: 1) there exist applications which might accept changed

data with an acceptable degree of confidence, 2) the use of received data may depend on what

the receiver knows about the sender, and 3) an acceptable degree of confidence may vary with

different components, e.g., class of source or data itself

The Telecommunications Group compiled and described three lists addressing the technical

problems in enforcement of this poHcy: 1) a list of threats and vulnerabilities of two types,

accidental and malicious (Section 4); 2) a list of integrity mechanisms that respond to these

threats (Section 5); and 3) a list of assurance measures for proper design and implementation

of such mechanisms (Section 6).

They also compiled a Hst of non-technical barriers to widespread use of the known
technology and a short list of open issues that were not addressed due to lack of time. Non-

technical barriers included incompatibilityty of protocols and interfaces, lack of integrity

adequacy guidance, lack of metrics for certification or evaluation of telecommunications

integrity products, lack of policy on exportability of algorithms or equipment using them,

conflicting rules about data flow across borders, and cost/performancece trade-off problems.

Major open issues that were not addressed were identified as: oversimplification (thus leading

to the need, for example, to assure the OS group covers distributed systems); interaction

between systems and their interfaces so that integrity is preserved; the trade-offs for a high-

integrity telecommunications system (e.g., between integrity and confidentiality); and the

relevance of the Trusted Network Interpretation [TNI871.

The group concluded from their discussions that there was a need for guidance on Integrity

Policy comparable to the TCSEC Environments Guideline (Yellow Book) [ENVIR85]. The

group also concluded that adequate mechanisms exist to meet the technical requirements for

enforcing the integrity policy for telecommunications. However, they perceive institutional and

cultural barriers to wide-spread implementation and use.

5.4 SYSTEM SERVICES (GROUP 3)

The System Services Group felt their assigned area should include data base support,

electronic mail, office automation, transaction processing, etc. but this was too broad for the

time available. They therefore focused upon the relationship of data integrity issues to the

underlying Data Base Management System controls. They examined how existing DBMS
integrity controls implemented the ClarkAVilson notions of Independent Verification Procedure

(rVP), Transformation Procedure (TP), Constrained Data Item (CDI), access triple, and

separation of roles. The group agreed that DBMS query capabilities affected confidentiality

while the update capability affected integrity. They thus focused on aspects of updates.

With regard to access triples the group agreed that most DBMSs provide two-component

access controls (<user, data>, <user, transaction>, <transaction, data>) but could not agree on

whether triples could be created from these. Precompiled transaction or canned query could

possibly serve as triples in some DBMSs. The requirements for Transformation Procedures

(TPs) include being able to bind names to TPs and being able to encapsulate CDIs so that

they are only manipulated by appropriate TPs. Since it is then possible for two TPs to try

to manipulate the same data, there may be a need for the triple to also include the context of

the TP certification. Although it was agreed that the DBMS must support IVPs, no DBMS-
based mechanisms for this were identified or proposed. All scenarios required reliable human
reporting and intervention. The group agreed that separation of roles can be implemented with

mechanisms commonly found in DBMSs, but that moderately complex constraints would be

awkward and clumsy to maintain.

The group concluded that existing DBMS features could be used to implement separation

of roles, but those features do not support easy maintenance and certification of those controls.

The group also recommended that data definition and/or consistency check features could be

enhanced to be more supportive of integrity controls and to allow separation of integrity

controls from traditional data. Also, the group recommended that, early in the design of a

DBMS, the proper balance between integrity and confidentiality concerns be arrived at, since

later considerations of these issues might preclude being able to resolve them satisfactorily.

Finally, the group recommendeded that more research and worked examples, where both

integrity and confidentiality are needed, be performed to expand on available DBMS
engineering compromises.

5.5 APPLICATIONS (GROUP 4)

The Applications Group was asked to examine the implications of data integrity

requirements for applications. They restricted themselves to multi-user, multi-application

systems. They also restricted themselves to the case where the boundary of trust encloses both

the application and the data, but not the user. All other cases were excluded as having a

trivial solution, or no problem. Finally, after examining the differences between tools and

applications of those tools, the group concluded that the use of a tool was the same application

as the tool itself, no matter the difference in the use (e.g., wp for inter-office memos vs. wp
contracts).

5 - 3

The group reviewed principles and constructs. They stated that "the principle of least

privilege is necessary to be able to make statements about the integrity of data." They also

underscored the importance of separation of duties and segregation of functions. It was
suggested that certain of the separations/segregations could be applied at the system level;

others have heretofore been supported only by applications. They elaborated on the

Clark/Wilson concept of the well-formed transaction.

The group concluded that it must be possible for management to control change consistent

with the application requirements, that integrity policy was tightly coupled to the application

itself, that data integrity cannot be guaranteed without system integrity, that an application

should be accountable for the integrity of its data and that the integrity perimeter should be

known to the appHcation, that control of data should be localized both inside and outside the

application, that there must be institutionalization of partitioning and contention in the system,

and that there should not be any "all-privileged" users.

The group also concluded that application and transaction type are separated by too much
space, and that additional layers of abstraction should be defined between them. They felt

administrative and separation requirements could be better met by assigning them to the

intervening layers. The group recommended additional work in this area.

The group elaborated upon Jueneman's list of requirements for data integrity. These

requirements revolved around systems, applications and data issues and addressed immutability,

attribution, logging and journaling, reporting and signalling, pedigree and provenance,

validation, partition/compartmentation, identification, authorization, trusted date and time,

synchronization and ordering, and names transaction type. The group recommended work be

done on requirements to decide which must be in the system, which in the application, which

can be in either, and what criteria to apply.

5.6 IMPLEMENTATIONS/MODELS (GROUP 5)

' The Implementations/Models Group created yet another integrity definition. They defined

a "property P" such that

"X has property P if it meets specification Y with confidence Z."

A possible instance of this definition is then that data have integrity if they satisfy a

specification of quality with adequate probability. Intrinsic data quality can be specified via

timeliness, accuracy, and completeness while extrinsic data quality relates to pedigree and

robustness. The group used the model proposed by Kurzban as well as the Jueneman and

Sandhu models for their discussions.

In order to answer the question "What is an integrity model?", the group defined an

integrity policy as one intended to establish, maintain, and/or enhance the quality of data in

an EDP system. An integrity model was then an abstract representation of a policy or system

intended to display the aspects of system behavior that affect data quality and suppress other

aspects. The group discussed the three models mentioned earlier and concluded they all

5 - 4

addressed controlling access to objects rather than the flows of data and information among
objects.

They then examined seven models for how well the five quality attributes can be
represented and controlled in each model and put their results in a matrix (Figure 4.5 - 1).

Finally, they used a slightly modified version of the consensus mechanisms (see Section 3.2.2)

to create a matrix specifying which of the five quality attributes are addressed by which
mechanisms (Figure 4.5-2). The group noted that separation of duties lacks support in EDP
systems today, that integrity reference monitors and application specific reference monitors

are hypothetical entities, and that only checksums, audit trails, and privilege mechanisms are

routinely available in EDP systems today.

The group stated three issues of concern: 1) the matrices are incomplete, 2) ease of safe

use must be a key design objective, and 3) sound software engineering principles must be used

in systemss that preserve integrity. The group also had three recommendations : 1) that there

be further investigation of models representing the property P in a system; 2) develop a

consistent glossary of integrity terminology; and 3) study mechanisms for flexible logging and

processing of logs.

Two members of the group (Kurzban and Abrams) compiled a list of 17 open issues .

These issues included such things as looking at the integrity preserving principles of auditors,

whether a model should go down to the atomic transaction level, the proper characteristics of

a role, and mechanisms for reconciling conflicting permissions and denials.

5.7 SUMMARY

Of the five groups, only the area of Telecommunication does not appear to require major

technological advances. The field of telecommunications has been concerned with data

integrity for a long time, and it shows. While they cautioned in their report that several issues

needed to be addressed before "one could regard the subject as being close to complete", they

also concluded that "protection of integrity of information. . can be provided to essentially

arbitrarily high levels of confidence without major technological advances." It is worth nodng

that only Telecommunications failed to identify items for further research. This is indicative

of the maturity of the field of integrity in telecommunications.

Next closest to completion would be System Services' view of DBMS. They concluded

that the existing DBMS features could be used for integrity control, but complex constraints

would be difficult to implement, maintain and certify. Current features also do not allow

effective separation of applications data and integrity control data. In short, technological

advancement would be required for effective and flexible integrity control in a DBMS. (It is

unclear whether this applies to system services in general, or only DBMS.)

Both Applications and Operating Systems appear to require technological advancement

for integrity control. Existing features are insufficient or inappropriate. Both Applications

and Operating Systems identified several areas where further research was required.

5 - 5

The Integrity Models Group appears furthest from meeting the goals. The theory and
models of confidentiality simply do not apply well to the problem of integrity. In addition,

this area has the most difficulty defining the question itself. It is difficult to evaluate models
when there is no agreement on the definition for data integrity. The definition of "Property

P" for the purpose of evaluating models appears to be a useful abstraction, though. Perhaps

it may serve as an effective base for discussion until a single definition falls out.

5.8 MAJOR AREAS OF AGREEMENT

Three of the groups expounded upon the importance of separation of duties. Operating

Systems identified static and dynamic separation of duties as research topics. The Applications

Group suggested work was need to identify which separations or segregations could be

enforced at the system level, and which could only be supported by the application(s).

Systems Services based their report upon a model for enforcing separation of duties through

a database management system.

Three groups expressed concern about interfaces. Operating Systems wanted them to

facilitate correct use of control mechanisms, Implementations/Models wanted them to stress

ease of safe use, and Telecommunications wanted them to preserve integrity.

Both Operating Systems and Telecommunications recommended the creation of a set of

integrity guidehnes. Operating Systems wanted the guidelines to describe features of operating

systems for meeting integrity control objectives, to describe best practices, and to describe

features in relation to environments. Telecommunications pointed to the TCSEC Environments

Guidelines (Yellow Book) [ENVIR 85] as the appropriate model for their guidelines.

Two groups explored the possibility of implementing ClarkAVilson access triples as two
pairs. System Services was unsure that this approach would work; Operating Systems

proceeded upon the assumption that it would.

Several groups recommended the re-examination of the interaction between different

parameters. Telecommunications identifiedd the cost/performance trade-off as a non-technical

barrier, and identified the problem of (possibly) unresolvable trade-offs between design

parameters (such as integrity, bandwidth, and economics) as an open issue. The System

Services Group questioned the conventional wisdom (integrity and confidentiality are mutually

exclusive), and recommended further research and worked examples so as to expand on

currently available DBMS engineering compromises.

As stated earlier in this report (see Section 3.2), the Day-1 discussions on integrity

framework elements did lead to some consensus on 1) policy and objectives for quality and

2) common mechanisms for quality. Although the five groups were unable to agree on a

definition for data integrity, all felt that integrity was intimately related to quality.

5 - 6

5.9 MAJOR AREAS OF CONFLICT

Operating Systems was explicitly opposed to an Orange Book for Integrity. Although

Telecommunications discussed mechanisms and assurances at length, the lack of metrics in this

arena at this time also speaks against an Orange Book. The large number of areas targeted

for research by the other groups would also indicate such criteria to be premature.

The data integrity framework discussions of Day-1 were unable to reach a consensus on

the definition of data integrity. It appears that more work is needed in this area. See Section

2. for the discussion of this issue.

5 - 7

6. REFERENCES

BIBA77 Biba, KJ., Integrity Considerations for Secure Computer Systems , MITRE TR-3153,
MITRE Corp., April 1977.

BOEB85 Boebert, W.E. and Kain, R., "A Practical Alternatiye to Hierarchical Integrity Poli-

cies," Proceedings of the 8th National Computer Security Conference, Sept. 1985.

CLARK87 Clark, David and Wilson, David, "A Comparison of Commercial and Military Com-
puter Security Policies," Proceedings of 1987 IEEE Symposium on Security and
Privacy.

CLARK89 Clark, David and Wilson, David, "Evolution of A Model for Computer Integrity",

NIST Invitational Workshop on Data Integrity, January 1989. [In Appendix A]

ENVIR85 Guidance for Applying the DoD Trusted Computer System Evaluation Criteria in

Specific Environments , CSC-STD-002-85, National Computer Security Center, 1985.

[Also known as the Yellow Book]

FIPS31 Guidelines for Physical Security and Risk Management , PIPS PUB 31, National

Bureau of Standards, June 1974.

PIPS39 Glossary For Computer Systems Security , PIPS PUB 39, National Bureau of

Standards, February 1974.

FIPS112 Password Usage , FIPS PUB 112, National Bureau of Standards, May 1985.

JEUN89 Jeuneman, R.R., "Integrity Controls for Military and Commercial Applications,

II," NIST Invitational Workshop on Data Integrity, January 1989. [In Appendix

A]

LIPNER82Lipner, Steve, "Non-Discretionary Controls for Commercial Applications,"

Proceedings of 1982 IEEE Symposium on Security and Privacy.

LEE88 Lee, T.M.P., "Using Mandatory Integrity to Enforce 'Commercial' Security," Pro-

ceedings of the 1988 IEEE Symposium on Security and Privacy, April 1988.

NIST160 Katzke, S.W. and Ruthberg, Z.G., Editors, Report of the Invitational Workshop on

Integrity Policy in Computer Information Systems fWIPCIS) , NIST Special

Publication 500-160, January 1989.

PCIE88 Review of General Controls in Federal Computer Systems , President's Council on

Integrity and Efficiency, October 1988.

6 - 1

SAND89 Sandhu, Ravi, "Terminology, Criteria, and System Architectures for Data Integrity,"

NIST Invitational Workshop on Data Integrity, January 1989. [In Appendix A]

SHOC88 Shockley, W.R., "Implementing ClarkAVilson Integrity Policy Using Current

Technology," Proceedings of the 11th National Computer Security Conference,

October 1988.

TCSEC Department of Defense Trusted Computer System Evaluation Criteria , DOD
5200.28-STD, December 1985. [Also known as the Orange Book]

TNI87 Trusted Network Interpretation , NCSC-TG-005, Version 1, National Computer
Security Center, July 1987. [Also known as the Red Book]

APPENDIX A

The Presented Papers

i

A

SOME INFORMAL COMMENTS ABOUT INTEGRITY
AND THE INTEGRITY WORKSHOP

by

Robert H. Courtney, Jr.

Box 836

Port Ewen, New York 12466

It is the purpose of this paper to help set the stage for the Integrity Workshop to be held in

January, 1989 and sponsored by the National Computer and Telecommunications Laboratory

of the National Institute of Standards and Technology (formerly the Institute for Computer
Sciences and Technology of the National Bureau of Standards). It is assumed that the readers

are acquainted with the Clark and Wilson paper(l) and are aware of the initial integrity

workshop held at Bentley College in October, 1987(2).

The high level of interest provoked by the Clark and Wilson paper led to the convening of

that first Integrity Workshop. Many data processing professionals see in that paper the genesis

of a rational, systematic and comprehensive approach to needed improvement in data quality.

There is also rather broad agreement that the paper was particularly timely because it appeared

when interest in more systematic approaches to the accuracy, completeness and timeHness of

data was increasing fairly rapidly and becoming more broadly based than it had been in the

past.

There were two things about the Clark and Wilson paper which caught my attention

immediately. First, I had no firm notion of what the authors meant by the word "integrity".

The paper didn't define the term, but there was a clear implication that accuracy and

completeness of data were the primary goals.

Second, the paper posed something of a challenge. It provided an orderly explication of some

sound principles of potential value to those seeking improved data quality and assurance of

that quality. But the set of principles provided there, while quite valuable, was not complete.

This is not a criticism of the paper. It was clearly not the authors' intent to define a set of

conditions which were both necessary and sufficient for the attainment of uniformly adequate

data integrity. Nevertheless, there seemed a clear need for the identification and dissemination

of the other principles not contained in the paper.

THE INTEGRITY WORKING GROUP.

In February, 1988, an Integrity Working Group, chaired by the author, was established by

the National Institute of Standards and Technology's Computer and Telecommunications

Security Council(3). The principal purpose of the group was to lay a solid foundation for the

upcoming Integrity Workshop. The initial tasks selected by that group were the following:

1. The establishment of a suitable definition for the word integrity and

A.l - 1

2. Setting bounds on the scope of the topics to be addressed by the Integrity Workshop.
That was dependent upon the development of an orderly and systematic perspective of

data integrity which would hold reasonable promise of providing both a foundation for

future work and at the same time offer hope of the earliest practicable applicability of
. the work being done.

This paper, then, provides an informal description of the early activities of that Integrity

Working Group. The Working Group hopes to encourage others to provide thoughtful critiques

of what they have accomplished and to invite suggestions of direction and redirection.

INTEGRITY, A PROPOSED DEFINITION.

The definition of "integrity" agreed upon by the Integrity Working Group is as follows(4):

Integrity — The property that data, an information process, computer equipment, and/or

software, people, etc., or any collection of these entities, meet an a priori expectation

of quality that is satisfactory and adequate in some specific circumstance. The attributes

of quality can be general in nature and implied by the context of a discussion; or specific

and in terms of some intended usage or application.

For several years now. Dr. Willis Ware, of the RAND Corporation, and I have been urging

more care and attention to the terminology used by data processing people(5). Data processing

is a field in which both precision of meaning and ease of communication are important. For
that reason, the distortion of the meanings of good, useful, and commonly used words is to

be abhorred as is the invention of any unneeded and, consequendy, poorly understood new
words.

The data processing vocabulary has seen a much needed stabilization over the past few years,

but the terms used and misused by those involved in computer security area for the most part

have not been beneficiaries of this. Confusion in terminology is now interfering with the

evolution of suitably orderly and systematic approaches to computer security.

Both Dr. Ware and I, quite independently, had focussed on the word "integrity" as one

particularly deserving of better understanding and more uniform definition. Thus, we both

welcomed an opportunity to join with others in the working group to propose a definition of

integrity suitable to the data processing environment but which is not in conflict with the

definitions found in the more widely used dictionaries.

For the past seventeen years, I have found it desirable and often essential that I explain to

people with whom I am working or to whom I am talking exactly what I meant by a number
of security-related terms. Integrity has always been among them.

I have tried to convey two notions of integrity. First, the integrity of an object is not

dependent upon its relative goodness, that is, its quality. Second, the integrity of an object

is dependent only on its freedom from unpleasant surprise; that its quality is no worse than

it is thought to be. This is to say that the quality does not have to be high for an object to

have integrity. It is required only that the quality of the object be known and that, whatever

A.l - 2

its limitations, it is useful for its intended purpose. It is not to say that the quality is as good
as we might like or that it is not desirable that it be better. To have integrity it need only be

no worse than we thought it was. This is to say, in Willis Ware's terms, that the quality of

the data meets a priori expectations.

The agreement of the Integrity Working Group on a definition for integrity was reached only

after many exchanges of proposals, their revision, and the consideration of comments offered

by people from outside that group. Notable among that latter group was Donn B. Parker, of

SRI. His patience with our efforts is greatly appreciated.

The task of arriving at a suitable definition for integrity was difficult because the word has

been used to mean so many different things that it became necessary to consider the

availability of other, commonly used words with generally accepted meanings to fill the gaps

that would be left when we proposed a more constrained definition for integrity.

Many people have used integrity to describe the accuracy, timeliness, completeness and other

such attributes of data. We do not accept that use of the word. We specifically exclude the

use of quality and integrity as synonyms. The word "quality" should be used to describe the

goodness" of the attributes of an object which are meaningful to some particular application

of it.

It is highly desirable that the meaning of integrity applied to any object also apply to all

objects and, particularly all objects in the data processing field, including data, systems,

programs, devices, and people, and collections of these.

Most of us have been forced to work with data which are not as good as we want them to

be but which are at least adequate to our needs. Such data have integrity if we understand

the limitations on their quality. Similarly, we have all learned that we can do at least

acceptable work with less-than-great people provided only that we know what their limitations

are. If we know the limitations on the quality of our data and of our people and of other

things on which we are dependent, we can usually operate quite well.

If we do not know the limitations on the quality of those things on which we are dependent

and, as a consequence, we place trust in them in excess of that deserved by their quality, we
may be assuming far greater risk than we anticipated or would find acceptable. Thus, the data

and the people and the other needed objects have integrity when their quality, whatever it

might be, meets our expectations even though it might fall far short of our desires.

As we define integrity here, it has only two states. There are no degrees of integrity. We
either have it or we don't have it.

Integrity reflects trust in quality. There can, however, be degrees of trust.

"Quality" encompasses all of the attributes pertinent to an assessment of the goodness of an

object relative to a particular application environment. Quality can vary. It can degrade without

loss of integrity provided only that there is no expectation that the quality is greater than it

is.

A.l - 3

Quality(6) is usually best described in terms of the relative goodness of each of its component
attributes. For example, if the usefulness of a body of data in a specific application is

dependent upon the adequacy of its accuracy, timeliness, and completeness, the quality of the

data as a whole cannot be assessed except in terms of the quality of each those operable

attributes.

Quality is not synonymous with utility or value. Under some circumstances, quality can be
changed without corresponding changes in utility or value.

Finally, to repeat for emphasis, integrity relates to our expectations of quality. The word
should not be used to express the quality, value, utility, or security of an object.

BOUNDING THE WORKSHOP SCOPE.

Consider the following assertions.

1. Information and data are not synonymous. Data are a collection of facts. Information is

derived from data in response to a particular need.

2. Data have value (worth) which is measurable only in terms of value of the uses which

can be made of those data. Data have no intrinsic value(7). The value of data has no
direct relationship to their initial cost or their replacement cost(8).

3. The particular attributes of data which determine their value are a function of the uses

made of those data. Accuracy, completeness, and timeliness are commonly encountered

attributes, but there are often others equally important to specific applications(9).

4. The value of data does not necessarily increase with each incremental increase in their

quality. There are often instances where the cost of improved data quality exceeds the

value of that further enhancement. Thus, limitless improvements in data quality are not

always justified.

5. The quality of data needed to satisfy specific applications should be evaluated, attribute

by attribute, to establish the cost-benefit relationships between quality and value. If the

threshold is set higher than is actually needed, the cost of data to an application may
seem too great to justify such use when, in fact, less costly quality would be adequate.

6. The attainment of requisite data integrity and data quality should be guided by specific

statements of policy.

7. A policy should be no more than a statement of the principles which will guide the

conduct of functions governed by that policy. A policy should not include procedures and

practices.

8. There is a large body of principles from among which those pertinent to any particular

application environment can be selected for incorporation into a specific policy statement.

A.l - 4

9. There is a need to identify as many as possible of those principles as might be of

sufficiently general benefit to warrant their inclusion in a list of such principles from

which formulators of policy can select, cafeteria-style, those appropriate to their needs.

10. There is a need to develop better understandings of the appropriate roles, relative to data

quality and data integrity, of Quality Control, Quality Assurance, Data Base Administration,

the MIS management, the functional area managers supported by the data, the internal audit

functions, the external auditors, and the computer security group.

We suggest that authors submitting papers for the Integrity Workshop select their topics from

the ten issues listed immediately above. We do not believe that authors will be adversely

constrained by these bounds. We hope that our provision of such gross bounds will increase

the probability that the papers submitted will be mutually supportive and offer promise of

earlier availability of useful products in an area where such products are sorely needed.

A Note from the Author:

I sincerely hope that the work of the Integrity Working Group during its relatively brief

life will provoke a blizzard of constructive controversy leading to a far more broadly based

understanding of the issues involved. It is also hoped that this will lead to a wholly rational

and systematic approach to data integrity and quality, and to a better understanding of the

appropriate roles for the many organizational entities which have interest or involvement in

these matters.

Bob

A.1 - 5

APPENDIX I

The following is a message from Dr. Willis Ware, RAND Corporation, to the other members
of the Integrity Working Group. It is included here because it provides the definition of

integrity on which that group has agreed and also includes some explanatory material which
should be of interest.

Subject: DEFINITION of INTEGRITY
Date: Thu, 18 Aug 88 14:15:12 PDT

To: All

After many agonizing messages back and forth and sometimes including others, Bob Courtney
and I have zeroed in on and agree on the following definition of integrity. We have had

several variations of this, and it now represents some fundamental decisions and reflects some
already debated points.

So before, you jump us read the supporting comments below.

Integrity — The property that data, an information process, computer equipment and/or

software, people, etc. or any collection of these entities meet an a priori expectation of quality

that is satisfactory and adequate in some circumstance. The attributes of quality can be

general in nature and implied by the context of the discussion; or specific and in terms of

some intended usage or application,

SUPPORTING COMMENTS:

1. We did intentionally define the term broadly, rather than restricting it to data integrity.

2. We did intentionally retain the concept of quality as a collective term for the set of

attributes against which integrity is to be judged. It is obviously possible to swallow the

concept of quality into the definition of integrity, but we thought it useful to define a

breakpoint between the two concepts and to have a special term for "set of attributes."

3. We did intentionally retain the adjective a priori even though it is slightly redundant in

conjunction with expectation. We thought it added extra emphasis that the question "does it

have integrity?" is an up-front before-the-fact one to be asked.

4. We did intentionally frame it to be useable in a very general context [e.g., talking with

managers] or in a very specific context [e.g., data to be used for some application]. We
rejected the phrase "... for some intended purpose" as being too restrictive.

A.l - 6

5. We do believe that integrity, as a property, is binary; you "got it" or "you don't."

In this connection recall the item I circulated in April to this group. It was the piece I had

submitted to Ted Lee's Security Forum in October 1984. Recall that therein I distinguished

very carefully between integrity as the property, and our ability to make a judgement about

the measure of the quality. In brief, one may decide that something does/doesn't have

integrity, but his confidence in the decision may not be absolute. Thus, the confidence level

in the decision about determination of presence/absence of integrity is indeed continuous in

nature and might well be called the "level of trust" in the decision that has been made.

6. Finally, we believe that this definition is both consistent and congruent with the ideas

and concepts proposed in Clark- Wilson.

As Bob said in the penultimate message about this: "Let's move on to the next problem."

Just to remind you, I am wrapping up the report of a NRC/DOE committee that I chaired,

and it will contain footnotes that are consistent with the definition above, and will carefully

point out the difference between integrity as a property, and integrity policy (which would

better be called "policy on the assurance of integrity").

I had sent early version of these footnotes to you, and will forward the revisions to anyone

that's interested. Suffice it to say that the definition above and the DOE report will track

precisely.

willis ware

A.l - 7

APPENDIX n

The following is material written in October, 1984 by Dr. Willis Ware, of the RAND
Corporation,, for Ted Lee's Computer Security Forum. It provides useful background material

for readers who want to be fully aware of key prior activities in the data integrity/data quality

areas.

Date: 1 October 1984 13:26 edt

From: Willis Ware <willis at RAND-UNIX>
Subject: [Integrity and Trust]

INTRODUCTION

Below I want to offer some views on the dialogue that has appeared in recent issues of the

Forum with regard to "integrity" and its measurement. It may be too late to persuade anyone

that the words should be used differently, but at least I'll put my views on record. First I

think it important to indicate where I'm coming from.

I feel that the computing field has done itself a disservice from to time over the years by

being careless about its specialized terminology, being inconsistent in terminology, and even

in inventing terms when perfectly adequate other ones existed. It was clearly much worse in

this respect 25 years ago; today standard definitions have appeared, professional societies have

fostered standard usage through their publication and editing policies, etc.

When the Defense Science Board project was done at the turn of the 70s,*

* [available now as an unclassified publication: Security Controls for Computer Systems,

Report of the Defense Science Board Task Force on Computer Security; published as a

classified document, January 1970 and republished as an unclassified document, October

1979.]

we paid very careful attention to defining our terms, to using ones that were known to

traditional security people, etc. The "Orange Book"*

*[DoD Trusted Computer System Evaluation Criteria, 15 Aug 83, Computer Security Center,

National Security Agency.]

has seemingly introduced new words for terms that had already been well defined, and that

are at variance with what were introduced in the DSB report and had been a part of policy

dialogue in government for most of a decade. It seemed so unnecessary.

BACKGROUND

A.l - 8

The computer-security field is really emergent in the sense that it is moving from the R&D
closets of the 70s into the harsh world of reality where it will have to compete for funding

and status with a lot of other things. It has no automatic call to acceptance; it will have to

make its way with clarity of expression to those it will seek to influence. Thus, I would
hate to see its acceptance deterred because of invention of unnecessary terms, of careless and
inconsistent use of terms, of confusion in its communication.

As a historical observation, the research community that has worked the computer security

topic over the years — especially its software aspects - ~ developed a very specialized

vocabulary within itself, and its terminology has now emerged into the world at large because

of the existence of the Computer Security Center and its Orange Book of Criteria. But the

world has trouble understanding very specialized words —especially when they have widely

accepted and established extant meaning. I suspect that most of the world will have trouble

reading the Orange Book intelligently. Regrettably it does not contain a set of standard terms

with well thought-out definitions. The glossary in the back is not adequate for most readers.

Ah, though, the world must understand the CSC, and the Orange Book, and the way the CSC
will talk and influence the world. Especially, managers/ administrators/operators of computer

centers/programmatic people/vendors/ system designers/system specifiers/contract negotiators/

etc. have to realize what computer security is all about and they all have to be able to talk

among themselves consistently and clearly. They must understand it or the whole CSC thrust

will have trouble gaining acceptance and support.

While one can comment critically about the contents of the Orange Book, its substance is

good and it makes a very essential contribution to getting on with system security and

eventually network security. It is a first edition and of course, can be expected to have

shortfalls (as suggested above) that will be taken care of later.

THE ISSUE

I hope that my comments and position do not cause misunderstanding about where I stand.

The way I perceive the Forum discussion is that people are casting about looking for ways

to rate the processes which are components of a trusted system, whether those components are

software processes (other than ones embedded in the operating system), or (at least in

principle) are people functioning within the system as operational individuals or users.

I am not in the least contesting the need to attribute a quality measure to processes in or

components of a trusted system which we expect to enforce a security policy. There is no

question but that such a rating system could be useful and essential.

What I am contesting (below) is the particular word that has sprung up to describe the desired

quality and how to measure it. If I hear the discussion right, at least some group of people

want to call the quality "integrity" and they want to measure it as "levels of integrity". And

A.l - 9

I think that's wrong. And some of the terms proposed to measure it are even more
troublesome.

In any event, when I bumped into the discussion of "integrity levels" in the Forum, I said to

myself "They're at it again, using words in strange ways that non-specialists will not under-

stand. And it need not be." I don't know what phrase should be used to describe measures
of quality but I have a strong conviction that it must NOT be "levels of integrity" for the

reasons set forth below.

We need eventually to be able to measure trustworthiness ~ hopefully in a quantitative way
~ at many places in a system which we call "trusted". There are bound to be instances in

which we'll want to say something more precise than simply a "system is trusted" at the

global level.

As a collateral observation, I'll assert that we would do well to clearly state as an up-front

requirements statement exactiy what we expect a system to be trusted for, so to speak its

functional aspects of trust. Example: in a communicadons controller, it must be trusted

(among other things) not to corrupt the security parameters and not to perturb the association

between a message and its security parameters.

A DIFFERENT APPROACH

I seem to have tuned in late on the current'discussion of terminology; or perhaps I had simply

not noticed it going on. Since computer security is an issue of high interest to me, I'll chime

in.

My thesis is straightforward.

The Center in its Orange Book has established a sequence of Criteria against which to

judge quaHty of computer products in terms of their ability to enforce security and access

controls. [See note below for two that have been rated.] Such rated products will become part

of a system which will be called trusted. What can be more reasonable, therefore, than to

speak of "level of trust" for the components of a trusted system ~ just as one will speak of

the level of trust of the overall system?

In terms of the Center's procedures, system components will be rated on a scale from D to

A-1. [See below for further discussion of the point.] The overall judgement about trustedness

of a system will be in terms of "accreditation" which measure will be in terms of the

sensitivity of the information that the system is allowed to handle. While "accreditation" is

not precisely a measure of trustedness, it nonetheless reflects the level of trust that emerges

from a prescribed procedure; at minimum accreditation will become a surrogate measure of

trustedness until something better comes along.

The Center's established approach uses one scale (D through A-1) for rating a component,

but a different scale (sensitivity of information contained) for rating the system.

A.1 - 10

TERMINOLOGY

There are terms (some were suggested in the Forum) that must not be used to rate software

processes. The terms CONFIDENTIAL, SECRET, and TOP SECRET all have definitions in

an Executive Order in terms of the damage to the country that would be anticipated if

information of a given classification were revealed to an unfriendly opponent. They are

hierarchical with TOP SECRET being the most restricted category and also, that with the

gravest potential damage to the country.

The same 3 labels are also used to denote CLEARANCES of people; they are really defined

implicitly and by reflection; e.g., an individual cleared to SECRET is authorized in principle

to have access to information which is classified SECRET or lower. If his job responsibilities

requires that he needs access to some specific body of SECRET information, then, by
administrative action, he is given NEED TO KNOW for it. There are investigative procedures

that have been established for granting of various kinds of clearances; they are presumed to

establish the degree of trustworthiness of an individual and to do so with the required degree

of confidence, or certainty. A clearance really measures the level of trust for a particular

person that some administrative authority is willing to accept and certify. For example, one

might be trusted to deal with SECRET information, but not TOP SECRET.

So, whatever we (as a computer fraternity) do, the meanings of the these 3 words in both

usages are fixed and cannot be tampered with, and probably should not be extrapolated to

other usages that will only cause confusion.

Next, INTEGRITY is a hard word to define. Various attempts have been made over the

years. One was: The property of being free from surprise. Another: [Something has integrity

if] it is what it is supposed to be. Admittedly these were created at a time when the word was
applied primarily to data or databases or files. The idea was that such things would be what

they were expected to be, had not been trifled with, had not been contaminated accidentally,

etc. This usage is quite consistent with the dictionary definitions which generally talk about

"an unimpaired condition, soundness, state of being complete or undivided, uncorruptability"

and giving "duplicity" as an antonym. Interestingly, the Orange Book from the Computer

Security Center does not define the term.

Usage of the term is largely binary in common parlance. Something has integrity or it does

not; we don't speak of "65% integrity". While I would be the first to agree that language lives

and changes, let's not carelessly or thoughtlessly create a subtle new and different usage for

a term that is widely understood and used. Especially let's not create a new usage that is

largely diametrically opposed to established use. This is particularly important for that large

group of managers, administrators, ordinary computer folks, etc. that do NOT share the inner

workings, thoughts, concepts, constructs, etc. of the quite small technical computer security

community; but must know what it is all about.

Next, TRUST. There is not a really adequate definition of it, although the Orange Book has

one. It speaks of "employing sufficient hardware and software integrity measures for

processing simultaneously..." [This was originated by Steve Walker when he was in the OSD,

A.l - 11

and he is aware of my concern about it.] Only multi-headed machines or some of the big

vector computers process simultaneously; therefore, the right word is really "concurrently".

However, what is an integrity measure? Whatever it is, it has integrity or it doesn't — given

the binary nature of the term as commonly used. If it has it, then it is free from surprise and

it is what it is expected to be. A better word is certainly "safeguards" or "security safeguards".

With this understanding, then the Orange Book definition simply says that the system is

supposed to have the right set of safeguards, and that they are to be what they are supposed

to be; i.e., correct manifestations (or implementations) of some functionally defined entity.

The major flaw in the definition is that it fails to say anything to the effect that the system

with its surprise-free safeguards is supposed to do its thing with a certain level of confidence,

or with a certain probability of success, or with a certain warranty, or with a certain guarantee,

or to oppose a defined threat,

What is missing is just what the Forum discussion is evidently searching for. How trusted

is a trusted system?

It is "LEVEL OF TRUST" or "TRUSTEDNESS" that everyone wants to measure, not level

of integrity. First of all, trust is not a binary attribute as the word is commonly used. It is

understood that someone (or some thing) is trusted for some purpose (but not others); we are

all accustomed to estimating degree of trust in our daily lives. We often say: "Can I trust

someone (or some thing) for"; thus, we make a value judgment in terms of some end goal,

and implicitly the goal has a threat attached to it. This is precisely what trusted systems are

all about; we make a judgment (the CSC calls its certification) that some hardware/software

implementation ~ in the long run the operational environment for it will also have to be

specified - will impose appropriate security rules (security policy or access control rules in

the language of the computer security community) in spite of being faced with some threat.

It is in the characterization of threat that the defense and commercial communities differ

significandy. The defense community has to assume that its threat is a well financed,

intellectually well based, resource rich, etc. one mounted by a formidable military (or foreign

policy) opponent. After all, the world has centuries of experience with intelligence affairs,

counter- intelligence protections, behavior of sovereign powers toward one another... on which

to base such an assumption about threat.

The commercial world can make its own characterization of threat, and that's what risk

analysis is all about ~ as discussed in the NBS FIPS on the subject.

FINAL POSITION

So here's my bottom line after all the discussion.

o Do not use the phrase "integrity levels" as the metric for processes in or components

of a trusted system. To introduce such a concept would add confusion to the already difficult

and complex issue of computer security, and after that, network security.

A.l - 12

o Agree that TRUSTEDNESS is the property that has to be quantized, or estimated,

or measured on some scale, throughout a system from people to component to overall system.

o Acknowledge that TRUSTEDNESS will have to be measured against some scale

at many levels throughout a system; the scale may be but need not be the same. The "scale"

may not be a numerical one but rather one such as implied by the Criteria and the various

levels of certification as specified in the Orange Book. For people it already is embodied in

the process of granting clearances.

o Do NOT adopt the terms CONFIDENTIAL, SECRET, TOP SECRET for levels of

trust. They are already spoken for, and have widely used accepted definitions.

o Do NOT employ the notion of measuring trust for people when the context is the

defense world. The trustedness of people is akeady implicitly measured in the granting of a

clearance. A SECRET cleared person is trusted to have access to SECRET classified material,

and thereby not incur the corresponding damage for the country.

o TRUSTEDNESS OF PEOPLE is a legitimate concept when the context is the

non-defense, non-federal-government commercial/industrial/academic world. It is already in

use in some places; some organizations have defined the level of trustworthiness required of

individuals who fill jobs considered to be sensitive; and therefore, potentially dangerous to the

interests of the organization if the individual-in-the-job divulges information. Interestingly the

"level of trust" is normally defined implicitly in terms of the background investigation that an

individual is required to pass.

It's not hard to figure out that I disagree with the proposals outlined in the Forum recently,

and especially with some of the terms suggested for measuring quality.

Given my convictions as expressed above, clearly one should not measure TRUSTEDNESS
with a term which uses the same root — "trustworthy" and "trusted" are no-no's. Don't for

a moment commingle the notions of "clearance" and "integrity"; they have nothing to do with

one another, and to mix them up will only create major confusion. Any other terms might

do — those suggested by Dorothy Denning, the other ones suggested by Kahn and Millen.

Whatever ones are chosen, make sure that they fit into accepted usage of the words in other

contexts, and that they clearly do not conflict with established usage, and especially, that they

are not ambiguous as to the defense vs. the commercial

world.

A RELATED ASPECT

There is a very different but very important aspect of this whole dialogue. Here it is.

The Orange Book sets forth a series of evaluation Criteria from D through C-1 through A-1.

D is a commercial run-of-the-mill product whereas A-1 is a software product built to carefully

A.l - 13

IIMIilMWIIIilil|»i|i iim ! w

controlled specifications by a carefully controlled process by trusted people in a carefully

controlled environment. This might well be translated in the military environment into cleared

people in a classified environment; for the commercial system, into people whose trust have

been established somehow working in a restricted and controlled environment. While the text

never says it quite explicitly, the criteria are really an ascending scale of trustedness. A C-1

software product has a minimum level of trust; an A-1 is most trusted. Some day the scale

may go beyond A-1. On some numeric scale starting at zero, a D software product would
have a trust value of 0.

For the reader of the Forum who is not familiar with the Criteria, the technical substance of

them is a result of a long dialogue among informed technically competent people who
understand the defense environment, who in the large have been computer security practitioners

for many years (especially researchers), who had a feel for the operational environments of

such systems, and who understood what was reasonable to ask for in terms of vendors being

able to respond. The criteria are not wild dreams of entrenched interests; they reflect the

considered technical judgment of experienced people.

In any discussion of software security safeguards, it is important to note that the "Criteria"

is the only game in town; it is the mechanism by which the Federal government will measure

the products that it buys and influence vendors to produce commercial products that measure

up. Thus, in the long run, the Criteria will set the tone for software safeguards, for the

creation of trusted software, and for evaluating/certifying it. And the Criteria will de facto

set the tone for discussion of software security in commercial/industrial circles. Thus, it

makes no sense to go off in other directions with words, measures of quality, etc.; it will be

fruitless because the Criteria have preempted the ball game.

[As a matter of general interest, two products have been rated: IBM's RACF version 1

release 5 is C-1; ACF2 release 3.1.3 is C-2 (which is higher than C-1). Evaluation summaries

of both are available from the Center.]

Therefore, coming back to the main point, if the Criteria were widely known and if all

software products about which we might wish to discourse had been evaluated by the CSC,
a perfectly acceptable and desirable scale would be D through A-1. The two just mentioned

were rated on just that scale!

INDEPENDENT EVALUATION

Unfortunately, not all products will have been evaluated by the Center for quite sometime to

come, so we might need some other subjective but hierarchical scale against which to rate

things; that's what the Forum discussion is after. But the big questions will become: Who
makes the judgement about level of trustedness - whatever the scale is? And how is the

judgment reached? And against what criteria?

If it's done in less than a carefully controlled and defined process by competent people having

access to extensive facilities equipped with a variety of test tools, the ratings will be

A.l - 14

meaningless. We will have another tower of Babel but this time with respect to trustedness,

rather than programming languages.

A PROPOSAL

Thus, I might take the view that the dialogue to which I have contributed is a vacuous one

that will have little import. Unless, that is, somebody gets busy (like the Institute of

Computer Science and Technology at the National Bureau of Standards) and establishes

procedures that are analogous to the Center's, are correlated with and carefully tied to them,

and can be carried out by suitably equipped people (intellectually and skillwise) in an

appropriate environment.

It may well be that we need an NBS Federal Information Processing Standard for the

evaluation and certification of the "level of trust" of a trusted system. There is precedent

for a co-operative effort between the NBS and NSA -- it's the Data Encryption Standard.

The ICST/NBS has in effect done a similar thing for risk analysis; there is a document that

tells anyone that wishes to do so how to carry out a risk analysis. A companion document
that did a similar thing for rating a software package against the Center's criteria would be

very useful to bring order out of potential chaos -- even though the resultant rating would
have to be carefully phrased in some such fashion as (say) "equivalent to a B-1 CSC
evaluation" — or some other phrase to that effect. "FIPS Criteria" need not be exactly the

same as the Center's Criteria, but the two would have to be consistent although the former

could be adapted to the needs of unclassified (e.g., civil government, industry) users.

One would have to be careful with the words to avoid implying that the Center had actually

rated some item that had been measured against a FIPS Criteria. At the same time the words

should convey the equivalent Center-rating that the doer-of-the-rating believes valid ~

assuming that he had used some standardized process established by the ICST/NBS.

My suggestion might be seen as dangerous by the Center because it can be seen as an

intrusion on its charter. At the same time, though, we ~ the country - cannot afford to

have everyone running around putting trustedness evaluations on software by means that are

not-standardized, not described, and therefore not useful but, on the contrary, confusing and

misleading.

It's a new idea and approach — whatever other problems it might

raise.

Willis H. Ware
Rand Corporation

Santa Monica, CA.

End of COMPUTER SECURITY FORUM ARTICLE

A.l - 15

The following was appended to the article when a copy was sent by E-Mail to the author in

April, 1988 in support of Dr. Ware's position at one juncture in our many and sometimes
rather heated E-Mail exchanges.

OK, so you know where I'm coming from and what I think about words. Let me recast the

whole thing in different terms and then try on some examples which have occurred in the

dialogue already.

My argument goes like this:

1. We have an a priori expectation that something has some property (or set of

properties). E.g., a hull is without holes; an airframe is without cracks; data is without error.

2. If we investigate the expectation that we bring to the situation, we find that it is

true or it is not. If true, we say that situation has integrity; if not true, it does not have

integrity. E.g., an airframe without cracks or breaks has structural integrity after we have

investigated the situation; the data does indeed have the qualities of accuracy and complete-

ness that we a priori expected.

3. Integrity is a binary quality, and common usage is just that way.

4. But suppose that we do not have opportunity to make a full investigation, perhaps

only a partial one. We still must make a judgment of integrity ~ yes or no ~ but on

incomplete evidence. We do indeed make the decision and we decide something has integrity

or not, but admittedly there is uncertainty. BUT the uncertainty is with the decision which

we made, not with the property about which we made the decision.

5. We may well have decided incorrectly, but the question we ask ourselves is: "Do
we trust our judgment?" If we do (we feel that it is a process with high assurance measures

and will function as we believe it should), then we attach a high confidence to our decision

about integrity of the something. Whatever the case, the potential uncertainty is with the

estimate of whether integrity is 0 or 1, not whether integrity has some other fractional value.

The uncertainty is never with the property which we call "integrity" per se. Quite the contrary

the uncertainty equates to the degree of trust that we attach to our decision-making process.

6. "Trust" then is the quality that we somehow must measure in various circumstances

of a secure computing system. It will have to be applied to processes, to paths, to people,

to components and to the overall system. The notion of "trust" as promulgated by the

Center is very narrow and inadequate for delineating and describing the full scope of secure

computer systems.

Final example. We decide that data has integrity; it has all the qualities that our a priori

expectation led us to believe. A trusted process then operates on that data; whatever the

process does, we believe that it will do so as defined and with high confidence. The process

A.l - 16

may well upset some of the qualities on which we based our integrity decision; e.g., the

process may intentionally make the data incomplete or inaccurate.

Does the data have integrity after the process has completed? We know what the process

is supposed to do to the data. If indeed the data has the a priori (i.e., as measured before

the process functioned) expectation for the data exiting the process, then it has integrity;

otherwise not. Thus, the misbehavior of a trusted process can in fact destroy integrity.

In terms of the discussion that I had 4 years ago with the Orange Behevers, they didn't

understand the details of the issue they were discussing. They were not in search of "integrity

measures"; they were in search of "measures for the process that determines whether or not

something has integrity" - loosely speaking, measures of integrity not integrity measures.

OK — where are the flaws in the argument? The loopholes? The inconsistencies?

ENDNOTES

1. A Comparison of Commercial and Military Computer Security Policies. David D. Clark

and David R. Wilson. IEEE Computer Security Conference, 1987.

2. Report of the Invitational Workshop on Integrity Policy in Computer Information Systems,

Bentley College, October 27-29, 1987, by National Bureau of Standards Institute for Computer
Sciences and Technology, 1988.

3. The members of the Integrity Working Group are, in addition to the author. Dr. Willis

Ware, RAND Corporation; Mr. Steven Lipner, DEC; Mr. Stanley Kurzban, IBM; Mr. Peter

S. Browne, Profile Analysis Corporation; and Mr. Carl E. Landwehr, Naval Research

Laboratory. Dr. Sylvan Pinsky joined the group in September, 1988.

4. The text of Dr. Ware's message to the Integrity Working Group and a few others conveying

this definition and some comments on it are included here as Appendix I.

5. A copy of Dr. Ware's paper. Integrity and Trust, which appeared in Ted Lee's Computer

Security Forum of October 8, 1984 is included here as Appendix II.

6. The next task for the Integrity Working Group is to address the definition of quality as it

relates toobjcets in the data processing environment and, more specifically, to data security.

7. It can be argued that value cannot be an intrinsic attribute of anything because value is a

relative thing and it must be relative to something external to the object itself.

8. The commonly encountered notion that data have intrinsic value or that the value of data

bears some relationship to the initial or replacement cost presents a significant barrier to many
data security folks attempting even semi-quantitative risk analyses. We get about fifty to sixty

calls per year from people who have encountered that problem in their attempts to cost-justify

security measures. Most often, their problems are solved when they are persuaded that they

A.l - 17

should consider the value of the functions supported by those data or, conversely, the cost of

not having the support of those data.

9. It is regrettable that the achievement of data integrity and data quality has been so separated

from the provision of data confidentiality in the minds of many people working in the

computer security area that the suggestion that the confidentiality of data, or the lack of it,

greatly effects the quality and value of those data as much as do other, more commonly
accepted attributes of quality. Too often the result is failure to recognize the applicability of

many controls to both confidentiality problems and to integrity and quality concerns. The
notion of that separation seems so ingrained now that we have deemed it unwise to combine

any effort in changing that notion with the other changes we have proposed here.

THE END

A.l - 18

Evolution of A Model for Computer Integrity

by

David D. Clark
Senior Research Scientist

MIT Laboratory for Computer Science

and

David R. Wilson, National Director
Information Systems Consulting Services

Ernst & Whinney

(
c^ 1989 Ernst & Whinney

A.2

Evolution of a Model for Computer Integrity

I . Background

More than 18 months ago we presented a model for data integrity in our
paper, "A Comparison of Commercial and Military Computer Security
Policies," presented at the annual IEEE Symposium on Security and Privacy
[Clark and Wilson]. That model, since known as "Clark-Wilson," encouraged
the information systems and computer security communities to press forward
with integrity- related research. We now wish to give some sense of how
the research is going, and, in light of that research, to clarify certain
issues raised in our original paper. Those issues involve defining a

context for integrity and defining the concept as an aspect of computer
security, achieving "real-world" integrity, identifying the features of
systems in which integrity is the main security goal, and expanding the

U.S. Department of Defense "Orange Book" [DoD] disclosure model to embrace
the idea of integrity.

The original paper has generated some follow-on activities. A Workshop on
Integrity Policy in Computer Information Systems (WIPCIS) was convened
October 27-29, 1987, at Bentley College [WIPCIS]. It was attended by more
than fifty researchers and security professionals. A draft of the
workshop report was published and distributed at the 1988 IEEE Symposium
on Security and Privacy. Three papers were presented at the 1988
symposium describing potential implementations of the Clark-Wilson
integrity model [Karger; Lee; Wiseman, et al] . An informal session on the

future of the model also was held.

The National Institute of Standards and Technology (NIST) has sustained an
interest in the Clark-Wilson Model by releasing the official WIPCIS report
and by making integrity security one of its priorities. The NIST has
established the Computer and Telecommunications Security (CTS) Council to

identify and study key issues and common requirements in the CTS area; a

Working Group has been established within the Council to study the area of

data integrity. Working Group leader Bob Courtney has recently summarized
the results of the group's study.

Other integrity model -related activity includes the recent Canadian
Trusted Computer Product Evaluation Criteria Workshop, held in Ottawa,

Ontario [Canadian] , at which the issues raised by Clark- Wilson were
discussed in relation to the U.S. Department of Defense "Orange Book."

A.2 - 1

II . Context and Definition of Integrity

Because of the precedent set by the United States Department of Defense
Trusted Computer System Evaluation Criteria, or "Orange Book" [DoD]

,
many

of the implementation schemes for the Clark-Wilson model have focused on
computer systems design. This focus has been most necessary and
valuable. However, we had intended the Clark-Wilson model as a broader
mapping of the issues of integrity that bind real -world concerns to

computer system design.

We defined integrity in the original paper as those qualities which give
data and systems both internal consistency and a good correspondence to

real -world expectations for the systems and data [Clark and Wilson]

.

Primarily, the expectation of integrity means that systems and data remain
predictably constant and change only in highly controlled and structured
ways. This concept of integrity is tied to both an internal and an
external consistency standard, and is a key element of the Clark-Wilson
approach. However, with much work on the subject to date focused morB on
internal issues, such key concepts as the role of the IVP (Integrity
Verification Procedure) and separation of duty have become blurred.

This issue is particularly important because many of the enforcement
mechanisms for external consistency require significant internal systems
features as part of the basic software and hardware design. For instance,
a principle of systems design for separation of duty is that the system
must be able to reflect the separation of duty being implemented by
application users in real-world environments. This ability to reflect the

implemented separation of duty within a system is a complex process which
can be greatly simplified if the necessary capabilities are built into the

operating environment from the start.

III. Achieving "Real-World" Integrity

By "real-world" we mean the facts, data, and processes outside tne
computer system which the computer system is expected to reflect,
understand, or emulate in some way. Although both internal and external
consistency are important, the final test of integrity must be to ensure
that the data in the computer is consistent with the world it is intended
to represent. If an internal inventory record does not correctly reflect
the number of items in stock, it makes little difference if the value of
the recorded inventory has been reflected correctly in the company balance
sheet.

It stands to reason, then, that integrity controls can never be a matter
strictly internal to the computer. A cross-check with the external
reality is a central part of integrity control. The computer system can
be expected only to preserve the integrity once it has been externally
verified.

A.2 - 2

Methods for Internal Consistency

In our original paper, we described a set of methods for assuring the
internal consistency of stored data. This section broadens some of the
concepts of internal consistency we introduced in that paper.

Prevention of Change - -The simplest method for ensuring the internal
consistency of data is to prevent data modification. With this form of
control, one need only ensure that the data was correct at one time; since
it cannot change it is possible to trust the data from that time foirward.

This mode of control is often the one needed within a network. While data
is in transit, it is often sufficient to ensure that it does not change at
all. Some form of data check function is often used to verify that data
has been delivered intact. This form of control becomes less obvious if
the network is expected to perform some sort of format conversion of the
data, which suggests that reformatting internal to a network is not
consistent with this simple form of consistency control.

Attribution of Change - -Another important form of control is to bind the
data to its author in an unforgeable way. We call this attribution of
change, a control which applies to the many sorts of data which do not
have a strong internal structure. While accounting records are highly
structured internally, an essay on market opportunities is not. With such
data, the primary assurance of integrity is the knowledge of authorship,
and the assurance that the data has not been modified without the author's
knowledge. In this circumstance, a complete log of the data's
modification history must be associated with the data, along with the
identity of the authors. The system must assure that the data content is

exactly that which was provided by the attributed author.

Constraint of Change --For highly structured data such as accounting
records, the form of control we call constrained change is applicable. In

this mode, the data is modified only by certain programs that have been
certified to change the data in constrained ways. We call these programs
Transformation Procedures, or TPs [See also Clark and Wilson]. In the

example of accounting records, the constraint of double-entry bookkeeping
might be enforced: if one account is credited, another must be debited to

match

.

Partition of Change - -The final form of jcontrol is partition of change. In
this control, the system must ensure that a change is performed by two

different people authenticated through user- identifications . Here the

system enforces the process whereby no one person has the ability or

authority to modify the data and individuals are expected to check each
others' work in some manner. The system thus reflects a common business
practice, which we describe in our original paper as separation of duty.

In each of the cases given above, the computer system provides controls
which enforce internal consistency of the data within the system. These
approaches are necessary but not complete. As described earlier.

A.2 - 3

Integrity also requires a correspondence to the outside world. We now
discuss three key ways in which a system and data are related to the world
they are to represent.

The Integrity Verification Procedure

In our original paper, we introduced the idea of the Integrity
Verification Procedure, or IVP. The IVP has a formal relationship to the
rest of the model. The proposed proof methodology to demonstrate
consistency after running a number of transactions was an inductive one:

if each TP takes the system from a valid state to a valid state, then a

series of them should take the system through a series of valid states, so

the system is finally valid. The necessary condition for this to work is

that the system initially be in a valid state. The IVP was proposed to

ensure that

.

Several people have observed that in a formal sense, this is a redundant
feature, as the IVP is just a specific example of a Transformation
Procedure, or TP. This observation misses the dual role of the IVP, which
is not only to check the internal consistency of the data, but also to

verify the consistency between the data and external reality.

Since the IVP checks external as well as internal consistency, it is not
just a procedure that is internal to the computer. Instead, it is one of
the points where the controls internal to the computer are tied to the
larger context of information controls within the organization.

It was observed in one comment that the only reason we need the IVP is

that we do not trust the rest of our methodology. Yet this lack of trust
does not negate the value of that methodology. Consider again the
comparison with a set of accounting records. The books are balanced
daily, but once a year, even though good controls have been exercised on
normal activities throughout the year, an audit is performed which
independently verifies that the records correspond to reality. We need
the IVP in the model to capture this idea, accepted in practice, that a

system needs a periodic cross-checking.

One other issue associated with the IVP concerns the "reality" a system is

measured against. At the WIPCIS Conference there was extensive discussion
of integrity domains. When using an IVP to compare a system back to
reality, it was recognized that there may be multiple views of that
reality depending on the scope of the IVP. These views were defined as

integrity domains. It may be necessary, therefore, to label data
indicating the particular integrity domain to which it was compared. As
systems become large and complex, this comparison with domains will become
a necessary process.

The challenge of the IVP is to recognize that those integrity activities
that occur outside the computer system must be represented as part of the
process of verifying the mechanisms inside a computer whenever possible.
There is no way to divorce the outside world from the internal controls on
integrity, since integrity is meaningful only in terms of the relation of
data to the outside world.

A.2 - 4

TP Certification

A second major element in assuring the external consistency of data and
systems is the TP certification process. This process appears to have two

key elements. The first is to assure that the TP does what the

specification requests. This includes that source code corresponds to

object code, that the TP has been verified and works properly, and that
all changes are known and proven as correct.

The second is to assure that the specification for the TP itself
corresponds to the "real -world" process it is intended to model. For
example, if the TP is to calculate depreciation, the specification should
correspond to the correct calculation approach and structure.

When both of these requirements for certification of TPs are taken
together, the TP can be assumed to play their part in assuring the
integrity of the system and data. These TP certification comments apply
both to application TPs and operating system TPs.

Separation of Duty

The separation of duty concepts are the third element confirming that data
and systems correspond to the intended real-world model. These concepts
have been difficult for everyone to work through and for good reason.
Even though they are coEomonly used in business everyday, they have not
been well formalized.

For our purposes , there are several rules concerning separation of duty
that are helpful:

1) Adequate separation of duty occurs when the custody of elements
of a transaction or assets is so subdivided that no one person
can commit significant fraud or error without detection or

prevention. For instance, to prevent fraudulent transactions, a

person who has custody of assets does not also have custody of
the accounting record. Similarly, to avoid error, people who
keep subsidiary ledgers do not also keep general ledgers.

2) The best separation of duty occurs when the people involved in

the subdivision of responsibilities have substantially different
sets of motives and perspectives. Two people performing critical
entry-key verification, or two performing the same act to launch
a nuclear missile are examples of the weakest form of duty
separation. Stronger forms would include an electronic funds
transfer where a clerk in the accounting (records) department
initiates a transaction, and a supervisor in the treasury (asset)

department releases the transaction.

3) The system of controls must be so constructed that significant
breakdowns of the system of control can occur only when one or

more key elements of the separation of duty are violated through
the collusion of the people involved. For example, unauthorized
access to the computer center is possible through collusion with

A.2 - 5

the security officer. Without collusion, such access generally
is not possible.

4) The systems of control cannot be violated by the unilateral
actions of one person. This rule is implied by Rule 3.

In the original paper, we acknowledged that the implementation of these
rules depends upon the specific way a computer system is implemented in a
particular setting. But there is enough generality in the ways in which
separation of duty is implemented that it is reasonable to expect the
operating systems of a computer to have general enough capabilities to

reflect almost any particular implementation of separation of duty.

The next section carries many of these principles forward into a features
list for systems and computers.

IV . Computer Support of Data Integrity

So far we have identified a number of mechanisms within the computer " that
provide for data integrity. In this section we gather these features
together, and discuss the manner in which they contribute to the overall
integrity goal. It is these features, with others that may be identified
in future research, that might be incorporated into some evaluation
criteria for future computer systems.

Change Logs and Integrity Labels on Data

To establish that separation of duty has been followed, every important
access to a system should be tied to a specific person and logged. This
means that the author of data should be recorded in an unforgeable way
within the data itself, since in many cases the source of the data is the
best assurance of the quality of the data. Since data, in general, may
undergo a nximber of modifications as it resides within the systenj, the
record of authorship may need to be a record of the total change history
of the object, not just of a single entry. As stated earlier, it may also
be necessary to record the integrity status of data by noting the

execution of an IVP and the domain used. Some systems currently provide a

partial record in the form of two fields, one recording the original
author and the other recording the latest author. Application
requirements will dictate whether a partial record of this sort is

sufficient.

Support of the Access Control Triple

To support the idea introduced above of the constrained change, the system
needs to have a mechanism to ensure that data is modified only by selected
programs which have been verified in some way to perform only acceptable
changes. While TP was intended to capture this idea, the principle of the

access control triple is meant to enforce it. The "triple" binds user,
program, and data together as a single control object, and thus goes
beyond the traditional discretionary control scheme. It may be possible
to create the approximate effect of the access control triple by careful

A.2 - 6

use of traditional access control lists and by representing a program as

both subject and object in the permission list, but the result is neither
obvious nor precise. For this reason, we believe the access control
triple in some form should be a fundamental part of any system oriented
towards ensuring the integrity of data.

Enhanced User Authentication

Any system concerned with security in any form must have some means to

identify the user to the system. The most common method of achieving
these goals is the password. However, if the system is concerned with
integrity, either through enforcement of partitioned change or attributed
change, there are additional requirements for authentication. The system
must ensure that the user's identity cannot be forged and that the
identity cannot be shared.

This requirement has not received direct attention in most of the

literature on computer security, although the concern applies to

disclosure controls as well. But the problem is central to integrity
control, especially in the area of separation of duty. If for any reason
one user gives away his password to another, then that other user can act
inside the system as two people, which may permit him to violate the

separation of duty rules.

Since violation of the separation of duty rules is the key to corrupting
data and committing fraud, any circumvention of authentication must be
viewed with great concern. The problem is that the password system as

generally implemented does not itself meet the separation of duty rules.
The holder of a password can easily and unilaterally invalidate his own
identity by making the password easy to guess, by posting it, or by
storing it in his own PC. A means is required to prevent the user,
through a unilateral action, from circumventing the authentication
mechanism.

Passwords should not be considered a realistic authentication method for a

system with high expectations for data integrity. Better methods include
challenge -response tests involving a device (called the "token") issued to

the user that performs a cryptographic transformation on the challenge.
Since the transformation is sealed inside the device, it is only possible
to loan one's system identity by loaning the actual device, which is a

much less trivial action than telling phe password. A more rigorous
presentation of these principles, called "see-through security," is

provided in an article written in 1986 by Andersen, Clark, and Wilson
[Andersen]

.

Control of Privileged Users

To ensure that the basic protections of the system, such as the access
control triple, are not violated it is necessary to regulate strictly the
actions of privileged users. Privileged users include those who enter
access control triples into the system, register new users, or maintain
the operating software. The goal of the controls must be that separation

A.2 - 7

of duty is not circumvented. For example, people who can add new users to
a system should not know the identifier for those users, and should not be
able to change the access rules for those users. Similarly, systems
programmers who develop software should not be able to install the
software.

Application Program Control

Systems concerned with security must ensure that administrative procedures
do not corrupt the system's software. For example, a false release tape
can be used to insert changes into an operational system. Similarly,
replacement of an object module can cause system behavior that cannot be
anticipated by review of the sources.

In a system concerned with data integrity, the control to prevent this
sort of corruption must be extended to the application programs as well.
Such control, however, constitutes a substantial operational burden, as

the bulk of the applications code usually swamps the system itself. For
this reason, the system should be provided with standard automated aids to

manage application software. These should include tools to enforce source
and object synchronization, locks to prevent changes to object code
without dual controls, logs of changes, and tools to derive flow diagrams
from both source and object code that permit understanding of program flow
and changes to that flow.

It should be noted that these sorts of tools are easy to postulate, but
require significant effort to define and to put into operation. However,
this effort is important not only to integrity, but also to good operating
practices in general.

Dynamic Separation of Duty Related to TPs

Separation of duty requires that TPs be divided into sets which are
executed by different groups of users. In general, a task (for example,
purchasing something or writing a check) will be designed as a sequence of
TPs rather than as one single TP. By requiring the various TPs in this
sequence to be performed by different people, separation of duty is

achieved.

The simplest way to achieve this separation is to assign different people
to different TPs in a static manner, using the access control triple. The
system administrator in charge of maintaining the triples is responsible
for understanding the way the rules achieve separation of duty and for
assigning TPs to individuals. This works, but is limited in functionality
because it is often necessary or desirable to reassign people to tasks
dynamically

.

An alternative approach is for the system to keep track dynamically of the
people who have executed the various TPs in the sequence, and ensure, for
any particular execution, that proper separation has occurred. This might
better model actual, dynamic requirements in the real world.

A.2 - 8

There are, however, several hard problems to solve in order to implement
this function. First, the sequences of valid TPs must be defined in some
way. Next, the allowed patterns of separation must be encoded. Finally,
there must be some record in the system of each current execution of a

sequence, and each TP being executed must be identified as a part of one
sequence. WIPCIS participant Bill Murray has described an
application- level implementation of some of these ideas at IBM [Murray]

.

Finally, there is a possibility some key aspects of separation of duty can
be recognized and implemented at the operating systems level. For
example, if the operating system were able to recognize that an
application is either creating a transaction or approving one, it could
automatically require different people to execute these two functions.
This concept will require a higher level of operating system intelligence
wherein terms like "read," "write," "add," and "delete" are replaced by
higher-level terms such as "create," "approve," "review," and "update."
In this mode the operating system could enforce at least a primitive type
of separation of duty, independent of application controls or even of
overt actions taken by a security officer.

V. Evaluation Criteria for Integrity

The previous section outlined a number of features that might be sought in
a system oriented toward data integrity. We believe these features should
be combined with others used today to provide good support for disclosure
control, such as mandatory enforcement of the lattice model. The result
would be a unified set of evaluation criteria for systems with respect to

integrity and disclosure. In this section, we briefly speculate on an
integrated set of evaluation criteria, using the Department of Defense
"Orange Book" as a starting point.

The problem is to relate the two sets of features, those for integrity and
those for disclosure control. In Figure 1 we have listed the various
system features mentioned in the paper and proposed a possible (and very
speculative) assignment of these features into a three-division rating
system. The lowest listed division, "C", would correspond to the Orange
Book "C", and would represent a system with only user-discretionary
controls for integrity. The "B" level would require a fairly rigorous set
of integrity capabilities within the system which- -and as much as

possible- -are required.

Few additional features are added or made to the "A" level. The major
issue at "A" is the degree of certification done to prove the

functionality described. Throughout, the Orange Book requirements for

operating system certification and other control capabilities are expected
to be the same , This table shows only additions

,

A.2 - 9

[Figure 1]

A Mapping of Integrity Features
to Existing Orange Book Requirements

Feature Division

A B C

Prevention of Change (e.g.,
a message authentication code) R/D R/D 0/D

Data Labels and Logs

--IVP execution log
--Domain logs for data

R/M
, , R/M

. . . . R/M
0/D

R/M
R/D
R/M
0/D

R/D
0/D
0/D

R/M R/M R/D

Application Program Change Control... R/M R/M R/D

Uncircumventable User
Authentication (e.g., tokens)R/- R/- 0/-

R/M R/M 0/D

Dynamic Tracking
0/D 0/D

M - Mandatory 0 " Optional
D = Discretionary R - Required

A.2 - 10

Figure 1 shows the optional and required features to support levels
"C", "B" , and "A". It also reflects our views on those controls which are
mandatory versus those which are discretionary. In this case we
define mandatory as those controls which are unavoidably imposed by the

operating system between user and data. Figure 1 depicts five possible
combinations describing degrees of control:

R/M: Control is required for this level and its use is

mandatory across all applications.

R/D: Control is required for this level but its use is

discretionary (i.e., application-dependent).

0/D: Control is optional at this level and its use is

discretionary (i.e., application-dependent).

R/- : Control is required at this level but is not directly
related to the operating system being imposed between user
and data. (Therefore, there is no mandatory or
discretionary stipulation at this level.)

0/-: Control is optional at this level and is not directly
related to the operating system being imposed between user
and data. (Therefore, there is no mandatory or
discretionary stipulation at this level.)

The feature that most distinguishes the integrity model of our original
paper is the access control triple. Without this feature, the system
cannot effectively enforce constrained changes (our transformation
procedures, or TPs), which we believe are the key to a broad class of
integrity controls. Support of the triple, we argue, is the key indicator
of real support for integrity. The triple becomes mandatory at the "B"

level.

Several of the other related features would presumably be included at the

"B" division in the criteria. For instance, if access control triples are

to be enforced, then the change controls on application programs are
needed. Similarly, control is needed for the privileged users who create
users and TPs if the triple is to be effective. Thus, there is a

consistent set of tools that combine to provide a system which relates to

integrity in the same way the lattice model of the Orange Book "B"

division relates to disclosure control.

The enhancements proposed above for user authentication also are relevant
to systems concerned with disclosure control, and we believe
challenge -response authentication could reasonably be factored into any
security system, regardless of particular security emphases. We make user
authentication tokens required at division "B" because we believe that
support for separation of duty is a minimal capability, and that a

mechanism stronger than passwords is required for effective separation of
duty.

A.2 - 11

There are several sorts of logging in the table. The simplest is a
history log that records the identity of the user of the TP, This level
of logging is effective if separation of duty is fixed in a static manner
in the access control triples. A more powerful form of logging also
records the user associated with each data modification, which provides a

more detailed record of responsibility, and also supports that aspect of
integrity that is based on the attribution of change.

Another form of logging is to record, for each data item, when IVPs have
been executed for that data. This is a variant of a history log which may
be separately retrievable, so that a user can determine the last time the
integrity of the data was verified.

The most sophisticated form of logging, which remains rather speculative,
is the labelling of data to indicate comparison with integrity domains.

The final features are the system support for dynamic partition of TPs to

support separation of duty. As was discussed in the previous section,
this sort of functionality could be very important if we can invent ways
to incorporate it at the operating system level. These features would
then be required and possibly mandatory at the "A" and "B" levels.
But since we do not know how to do this, we have indicated in Figure 1

that these features are optional and discretionary.

VI . Conclusion

We hope this paper clarifies some of the ideas the original paper left
undeveloped. Still more work needs to be done in these areas. We believe
future research should pay more attention to both the internal and
external requirements for integrity. Future research also should focus on
the implications of separation of duty, as we have only just started to

understand the systems implications of this concept.

The Orange Book has been a very important start for setting industry
security standards. Every reasonable attempt should be made to build on
its structure. Because of its requirements, many tough problems- -such as

TP certification- -are being tackled successfully. We believe that in the

future the difficult problems with making and managing good logs and data
labels will need to be addressed as well. Finally, confidentiality and
integrity are only two pieces of the computer system security puzzle. The

third piece, denial of service, needs to be addressed before we have a

really complete approach.

A.2 - 12

Acknowledgments

The authors wish to thank Steve Lipner of Data Equipment Corporation and
Bill Murray of Ernst 6e Whinney for advice and comments on earlier drafts
of this paper. The authors also wish to thank Clark Holtzman of Ernst &
Whinney for assistance in revising and editing the paper.

References

Andersen, Robert G., David D. Clark and David R, Wilson. "See-Through
Security: A New Approach for Authenticating End Users in an Open
Network." MISWeek . 1986.

[Canadian] Proceedings from the Canadian Trusted Computer Product
Evaluation Criteria Workshop . August 4-5, 1988, Ottowa, Ontario.
Govt, of Canada, 1988.

Clark, David D. and David R. Wilson. "A Comparison of Commercial and
Military Security Policies." In Proceedings of the 1987 IEEE
Symposium on Security and Privacy

. April 27-29, 1987, Oakland,
California. Pp. 184-94. Washington, D.C.: Computer Society Press of
the IEEE, 1987.

[DoD] Department of Defense Trusted Computer System Evaluation Criteria .

CSC-STD-011-83
,
Department of Defense Computer Security Center, Fort

Meade, Md. ,
August, 1983.

Karger, Paul A. "Implementing Commercial Data Integrity with Secure
Capabilities." In Proceedings of the 1988 IEEE Symposium on Security
and Privacy . April 18-21, 1988, Oakland, California. Pp. 140-46.

Washington, D.C: Computer Society Press of the IEEE, 1988.

Lee, Theodore M.P. "Using Mandatory Integrity to Enforce 'Commercial'
Security." In Proceedings of the 1988 IEEE Symposium on Security and
Privacy . April 18-21, 1988, Oakland, California. Pp. 130-39.

Washington, D.C: Computer Society Press of the IEEE, 1988.

Murray, William H. "Data Integrity in a Business Data Processing
System," Appendix 6. In Report of the Invitational Workshop on
Integrity Policy in Computer Information Systems (WIPCIS) , October
27-29, 1987, Bentley College, Waltham, Massachusetts. Washington,
D.C: National Bureau of Standards, 1988.

[WIPCIS] Report of the Invitational Workshop on Integrity Policy in

Computer Information Systems (WIPCIS), October 27-29, 1987, Bentley
College, Waltham, Massachusetts. Washington, D.C: National Bureau of

Standards, 1988.

Wiseman, Simon, et al. "The Trusted Path between SMITE and the User." In

Proceedings of the 1988 IEEE Symposium on Security and Privacy . April
18-21, 1988, Oakland, California. Pp. 147-155. Washington, D.C:
Computer Society Press of the IEEE, 1988.

A.2 - 13

On Data Quality

A personal comment on the papers by Robert Courtney and Willis Ware

by

Viiveke F^k
Dept of El. Eng.

Linkoping University

S-581 83 Linkoping

Sweden

This is a discussion about words, not about actions, equipment, methods etc. I

have for years tried to define "data quality" to myself as well as to others. The
strawman paper did not make me change my mind on previous conclusions,

but it made me see them from a new angle, thus making some points clearer to

myself. To start from the very beginning of terminology in computer security:

Security is the not so fortunate term used all over the world for a lot of some-
times competing goals in EDP. In short it means that the correct information

should be available to the correct user within the correct time and everything

else (incorrect user, incorrect data, incorrect time) is not allowed to happen. Is

this data integrity, as it would be if integrity includes quality and quality in-

cludes confidentiality? I can not see integrity and security as synonyms.
Maybe, if you take integrity to be the state of data and security the state of the

system achieving full data integrity. But it does not match too well with either

integrity in "non-data" usage or security as used in the data field. Rather it is a
matter of two main goals: Confidentiality and integrity.

Unfortunately security can today include both confidentiality and integrity, as
when we look at what is included in a computer security conference, and
security can refer to just support for confidentiality, as in the Orange Book. We
can find this regrettable and somewhat confusing, but there it is and we have
lived with it for at least twenty years.

So let us accept the common use of security. Let us also accept the definition

of integrity suggested by the integrity working group. I think that it is a good
one. Often integrity is taken to mean only that data are not cormpted during

their treatment in a computer system. This makes sense only if you add quality

as a third criterion.

If we accept the above we obviously have two things:

integrity can not include confidentiality through data quality. In the real world

measures to improve one may even degrade the other.

Data quality must now be defined, or else we have no definition of integrity.

So what is then data quality? Let us first turn to basic words with all their asso-

ciations and meaning. Quality can mean two entirely different things. To quote

Webster: a) an inherent feature, property, characteristic b) degree of excel-

A.3 - 1

lence, grade. It should be clear that in the integrity definition only b) is meant.
To include a) would be to enlarge the meaning of the definition to a point

where it looses its meaning. But it is necessary to define what qualities of data
should be qualified in order to define data quality.

The characteristics so far mentioned in the US discussion are accuracy, time-

liness and completeness. These should obviously be measurable in some
sense. But it is obvious that they can not be measured without a description of

the ideal that we are comparing them to. Thus data quality divides into two
parts: A description of what data we have tried to collect and a statement on
how the actual data can be expected to conform to this norm.

Let us for a moment suppose that we have got this description of the ideal.

Then we can measure how close registered data are to their description. But to

do so presupposes that we can get the accurate value for each field from other

sources. In many cases this is true, even though it may be laborious. In these
cases it is possible to analyze a small but represantative portion of a larger

aggregation of data, register the percentage of errors, and then state that we
know on the average the accuracy for those data.

Completeness is not as easy to handle. The description must in some sense
define what should be included in such a way that it is also possible to under-

stand what is not included. This will in the end lead us to a discussion of the

knowledge of the user, but let us postpone that for a moment. If we have a
clear and unambiguous description of what the data aggregation should con-
tain, for example a simple list of what fields should exist in a record, then it is

possible to count missing information, for example percentage of fields that are

left blank. But we must recognize that in a modern database some fields

should have a value only if another field has a specific value. We must also

recognize that it may be extremely difficult to find a description that gives a
clear indication of what has been left out completely. One example is when all

data from a certain district are missing because the district name is missing

from the district list. This makes completeness rather complicated to measure.

Timeliness is actually not even directly connected to data as such. It is a func-

tion of the system. Deficiencies in the system may result in too old facts in a
database. But what do we mean by "too old"? Older than specified in the

description? If we are trying to get a quality measure on data as such, this is

the only possible definition. It is also useful in many situations. But what kind of

description do we need? Age of oldest item? Age of freshest item? Average
age? Update frequency? Mean deviation of that frequency? And will it help me
to know all these figures, if I do not know the exact age of the data item I am
fetching compared to the latest change of that value in the real world? Actually

the only possible conclusion is that stored data should contain a declaration

about the time when they were accurate. Then it is up to the user to decide if

that is what he wants or if he can take the chance that data were accurate also

at the time he is really asking about. Can you then imagine the increase of

every database, with a "time registered" field for every item!

Still the ground covered so far has been the easy part. We now come to two

problems: The user and the data description. They are tightly bound to each
other. A user can judge the quality of data only if he can first confirm that the

stored data should in an ideal case answer his questions and then learn the

A.3 - 2

extent to which they can be expected to do so in reality. The latter part is the

one discussed above. The first part depends on if he can interpret the data
description and if he can interpret the data.

It is quite clear that interpretability depends on the previous knowledge of the

user plus further information available in or at the database. How can we
measure or indicate that? How can we improve it and know that the result is

better? In Sweden the demand for interpretability is included in the definition

of data quality without further indications or subdefinitions.

Another basic question: Suppose that a user knows that the contents of a data

base are not assembled for his specific purpose, but that they may still answer
his questions with some reliability. Or suppose that the description is mislead-

ing, so that the user does not know what data he actually is using. This is the

highly user oriented aspect of relevance: using correct, timely, complete data
for the wrong purpose. How do we treat that?

In short: We need a complete, clear and accurate description of the aggre-

gated data in order to measure how complete, timely and accurate these data

are. We must also address the problems of interpretability and relevance.

A.3 - 3

TERMINOLOGY, CRITERIA AND SYSTEM
ARCHITECTURES FOR DATA INTEGRITY

Ravi Sandhu

Department of Computer and Information Science

The Ohio State University, Columbus, Ohio 43210

Abstract. In response to the strawman document [9] we propose that trust be

treated as synonymous with integrity rather than synonymous with confidence. We
also propose that mandatory controls be taken to mean controls based on properties

of the object and/or the subject. Label-based mandatory controls are then a special

case of this more general notion. The TCSEC [11] presents criteria for establishing

prescribed levels of confidence in trusted systems with particular objectives. We con-

sider how these criteria might be generalized to a broader context. Finally regarding

architectures for trusted systems we suggest enhancements to the current security

kernel approach.

1 INTRODUCTION
This paper discusses three interrelated topics pertaining to data integrity. In the

spirit of this workshop the concepts are not presented as final, definitive or absolute.

They do raise many interesting questions which must be confronted, in one form or

another; even if the terminology suggested here needs modification and refinement,

as it almost surely will.

Our first topic concerns basic terminology for which we have specific proposals

regarding "trust" and "mandatory controls." For the most part we agree with the

positions argued in the strawman document [9] for this workshop. The document is

a significant contribution to our understanding of integrity and lays the foundation

for productive debate in future. However we suggest that trust be treated as synony-

mous with integrity rather than synonymous with confidence. We believe the same

arguments used to support a binary view of integrity also apply to the notion of trust.

That is trust is a binary property, relative to some context, in whose evaluation we
have varying degrees of confidence. The main advantage of our proposal is its explicit

recognition that there are two independent issues involved in evaluating trust:

1. What functions is the system trusted to perform or not perform?

2. What is the degree of confidence in our trust?

Regarding mandatory controls we propose the notion be generalized so it is not

tied to labels. In our view label-based mandatory controls are a special case of

A.4 - 1

controls based on properties of the object and/or the subject. In the military non-

disclosure context these properties turn out to be best expressed as partially ordered

labels, obtained by combining levels and compartments. In other contexts these

properties are more naturally obtained in other ways. For instance the type of an

object determines what operations can be executed on it. The security community

has no handy term for "controls based on properties of the object and/or the subject"

although their fundamental importance has often been recognized [3, 5, 18, 24, 26,

for instance]. We propose the term mandatory controls be used in this broad sense

and that it be qualified when a specific property is intended, such as in label-based

mandatory controls.

Our second topic concerns criteria for evaluating trusted systems. The TCSEC [11]

recognizes the separation between functionality and confidence noted above when it

states, "Included are two distinct sets of requirements: 1) specific security feature

requirements; and 2) assurance requirements." However in its criteria this separa-

tion is not clearly maintained. In the transition from one class to the next in the

CI through B3 range both functionality and degree of confidence are simultaneously

increased. Whereas in the B3 to Al transition the functionality is unchanged but

the assurance requirements are substantially higher. In the classified sector, with its

specific objectives for control of documents, there may be a logical joint progression

of functionality and degree of confidence. But in a broader context these two issues

are best kept separate. Especially in the commercial arena, there is a need for sys-

tems with relatively primitive functionality but with high levels of confidence in their

evaluation as trusted. For instance the function might be limited to requiring a audit

trail which can be trusted with a high degree of confidence. We need finer criteria

to enable users to select the combination of functionality and level of confidence in a

trusted system that suit their needs within their budgetary constraints.

Our third topic concerns architecture for trusted systems. The conventional ap-

proach to security kernels [13] places all trusted code in the kernel and does not trust

any code outside the kernel. This approach has been reasonably successful in the

non-disclosure context.^ For a broader context we suggest a multi-layered approach

with a table-driven kernel. The kernel is trusted, with a high level of confidence, to

enforce the policy specified in its policy tables. These tables are static so they can

be placed in read-only memory when the system is "built." Our objective is to sep-

arate policy from mechanism to exploit commonality of mechanism across a variety

of policies. This kernel can support the "access- control triple" called for by Clark

and Wilson [5, 7] as well as separation of duties, perhaps by using transaction con-

trol expressions [29]. Above the kernel are trusted layers of application-independent

and application-specific code. Code for well-formed transactions, application specific

auditing, and policies not directly supported by the kernel tables resides here.

^Even in this context there are significant deviations from this ideal. The notion of a trusted

subject, which is outside the kernel but must nevertheless be trusted, has slowly crept in. So the

architecture is anyway moving in the direction we are suggesting.

A.4 - 2

2 TERMINOLOGY
We have specific proposals regarding the terms "trust" and "mandatory controls."

Our main objective concerning trust is to emphasize two distinct issues in its eval-

uation, viz., functionality and degree of confidence. This distinction is important in

establishing criteria for evaluating trusted systems. Regarding mandatory controls

we attempt to generahze the notion so that label-based controls turn out to be a spe-

cial case. We specifically propose that mandatory controls be used to mean controls

based on properties of the object and/or the subject.

2.1 TRUST

The definition of integrity presented in the strawman paper [9] has two salient features.

I. Integrity is a binary property. An object either has integrity or it does not.

II. Integrity is relative to an a priori expectation of quality in some context. So the

same object can have integrity in one context and be devoid of it in another.

The definition appears intuitively sound and useful and provides much needed clar-

ification of terminology. It does leave open the question of what is quality, which is

noted as the next task for the Integrity Working Group.

The strawman paper goes on to assert, "Integrity reflects trust in quality. There

can, however, be degrees of trust." In appendix I we find the statement of Willis Ware
that, "the confidence level in the decision about determination of presence/absence of

integrity is indeed continuous in nature and might well be called the "level of trust"

in the decision that has been made." The term "degree of trust" is also used in the

TCSEC. For instance one of its objectives is stated to be, "to provide users with a

yardstick with which to assess the degree of trust that can be placed in computer

systems for the secure processing of classified or other sensitive information."

We agree with the spirit of these statements but propose some modifications. The

first, and relatively minor, observation is that confidence levels need not be continuous

in a mathematical sense. ^ We propose the following statement to allow for different

ways of measuring confidence.

III. Confidence in our decision as to whether or not an object has integrity, in some

given context, is a concept to which degrees or levels (qualitative or quantitative,

continuous or discrete, totally ordered or partially ordered) can be assigned. So

it is proper to talk about degrees or levels of confidence.

The second, and more important, proposal is that trust and confidence should

not be treated as synonymous. Instead trust should be treated as a synonym for

^This implication may not be intended but it nevertheless needs clarification.

A.4 - 3

integrity. Trust is a concept applied for the most part to active agents. It implies an

a priori expectation about some aspect of the agent's behavior in a particular context.

To be trusted the agent's behavior need only be no worse than we thought it would

be. Compare this with the statement [9], "To have integrity it (the quality of an

object) need only be no worse than we thought it was." If integrity is treated as a

binary attribute, for consistency trust should also be binary. Contrast the following

statements.

1. This data has integrity with a high degree of confidence.

2. This data has integrity with a high degree of trust.

The appropriateness of the first statement has been well argued in the strawman

paper. We propose the second statement be treated as inadmissible and meaningless,

at least in a technical sense. Trust comes in play when we have no choice but to

use data in whose integrity we have little confidence. What is being trusted in such

cases? We are trusting that all active agents who could have degraded the quality of

this data did not do so.

Is this merely hair-splitting? Perhaps, but the proposal is worth investigating

if only to spell out its consequences. The proposed viewpoint clearly separates two

issues involved in evaluating a system's trust.

1. What functions is the system trusted to perform or not perform?

2. What is the degree of confidence in our trust?

Of course these questions are raised even if trust is viewed as a non-binary attribute.

They do become more explicit if trust is defined as a binary property. Moreover there

is a recognition that these are really two independent issues.

Our proposal is in direct conflict with the concept of trust in the strawman paper.

Consider the following quote from appendix I.

".
. . trust is not a binary attribute as the word is commonly used. It

is understood that someone (or some thing) is trusted for some purpose

(but not others); we are all accustomed to estimating degree of trust in

our daily lives. We often say: "Can I trust someone (or some thing) for

thus, we make a value judgment in terms of some end goal, and

implicitly the goal has a threat attached to it. This is precisely what

trusted systems are all about ..."

It appears inconsistent to us that integrity is a binary property but trust is not. The

strawman paper argues that integrity is a binary attribute, which is relative to some

context, and in which we legitimately can have varying degrees of confidence. The

A.4 - 4

examples quoted above show trust is relative, however, they do not show trust is

non-binary.

If we accept trust as a synonym for integrity, applicable mostly to active entities,

we can specialize the assertions of the strawman paper as follows.

IV. Trust is a binary property usually applied to active agents or subsystems which

contain one or more active agents. An active entity is either trusted or not.

V. Trust is relative to an a priori expectation of quality, particularly quality of

behavior, in some context. So the same agent can be trusted in one context and

untrusted in another.

VI. It is proper to talk about degrees or levels of confidence regarding the decision

as to whether or not an agent is trusted, in some given context.

To be concrete consider the following statements where the term process is used

in the technical operating systems sense of an executing program.

1. This process has integrity with a high degree of confidence.

2. This process can be trusted with a high degree of confidence.

3. This process has integrity with a high degree of trust.

We propose the first two statements be treated as synonymous. The only difference

being that the second statement draws attention to the active nature of a process

and quality of its behavior. The third statement we submit should be inadmissible

and meaningless, at least in a technical sense. On the other hand, if we equate trust

with confidence, statements 1 and 3 above are equivalent while statement 2 can be

rephrased as follows.

4. This process can be trusted with a high degree of trust.

Now this is obviously circular and of questionable value in a technical vocabulary.

It can only serve to confuse the issue. Our proposal is to treat statements 3 and 4

as inadmissible. The strawman paper in effect takes the position that 2 and 4 are

inadmissible. Given a choice between keeping statement 2 or 3 we believe the choice

is clearly in favor of 2.

2.2 MANDATORY CONTROLS

The TCSEC draws a sharp distinction between discretionary controls based on iden-

tity and mandatory controls based on labels. There appears to be a consensus that

a more general notion is needed which is not tied to labels. Consider the following

quote from the first WIPCIS report [22].

A.4 - 5

. . two types of mandatory controls are considered here — label-based

mandatory controls (enforcing separation based on hierarchical or lattice

oriented labels, as in the Orange Book) and general mandatory (which

lies between label-based mandatory and discretionary controls)."

We are troubled by this characterization of general mandatory as lying between label-

based mandatory and discretionary controls. On the contrary we propose that general

mandatory be defined so label-based mandatory controls are a special case of whatever

we call general mandatory."'

A reasonable working definition is given by Clark and Wilson [6] as follows,

".
. . the word "mandatory." In the paper, we want to use it in the more

general way, to describe any mechanism which is not put into place at

the control of the owner of the data, but which is a necessary part of the

operation of the system."

However there are situations where mandatory controls are defined by the owner. For

example the owner of checks is responsible for defining the well-formed transactions

which can operate on checks as well as for defining the separation of duty requirements

for processing checks. Once these decisions have been made, at the owner's discretion,

the resulting controls are mandatory for all other users. Clark and Wilson also have

another working definition [7] as follows.

"In this case we define mandatory as those controls which are unavoidably

imposed by the operating system between user and data."

This is very broad and can be interpreted to include discretionary controls.

We propose to define mandatory controls as controls based on properties of the

object and/or the subject. This is as broad and open ended as the above. However it

does suggest that one can categorize mandatory controls in terms of the properties on

which the controls are based. In the military non-disclosure context these properties

turn out to be best expressed as partially ordered labels. In other contexts these

properties are more naturally obtained in other ways. For instance the type of an

object determines what operations can be executed on that object. Subjects are

divided into two classes for this purpose: the type manager who can execute arbitrary

operations and all others who can only execute operations exported by the type

manager.

Traditional lattice-based controls [2, 10, 17] are obviously a special case of our

definition. Discretionary controls are also a special case. Consider the TCSEC defi-

nition of discretionary controls as "a means of restricting access to objects based on

^It is not surprising the meaning of these terms is still controversial. Many common terms, such

as virtual memory, process, fairness, etc., remain controversial even after years of productive use.

The goal is not so much to discover the Platonic ideal meaning, but rather to assign meanings which

are practically useful, technically consistent and widely accepted (eventually).

A.4 - 6

the identity of subjects and/or the groups to which they belong." So in this case the

property being used is identity and group membership.

We can exclude discretionary controls by refining the definition of mandatory

controls to be "controls based on properties of the object and/or the subject (exclud-

ing identity of the subject and/or the groups to which it belongs)." In our opinion

it is not unreasonable to actually consider discretionary controls as a special case

of mandatory controls. We believe the traditional black and white distinction be-

tween discretionary and mandatory controls is inappropriate in many contexts. All

authority in a system is ultimately obtained by means of somebody's discretionary

decisions [20, 21]. The real difference is to what extent discretionary ability can be

granted and acquired during the normal operation of a system, and to what extent it

gets fixed at system initialization.

Our proposal allows us to categorize mandatory controls along different dimen-

sions. For instance, consider the following progression.

1. Controls based on identity. As discussed above this includes discretionary con-

trols.

2. Controls based on static properties of the object and subject. These properties

are determined at creation and do not change thereafter. Label-based controls

of the Bell and LaPadula model [2] with strong tranquillity (i.e., labels are

static) are a well-known example. The type based controls of the schematic

protection model [26, 28] are a more general example.

3. Controls based on dynamic properties of the object and subject. That is the

properties on which the controls are based are themselves changeable, presum-

ably in some controlled manner requiring proper authorization. Controls based

on the history of an object and the role of a subject, such as enforced by transac-

tion control expressions [29], are one example. Another example is label-based

controls without tranquillity [19] (i.e., labels can be modified).

If we assume identity is immutable, 1 is a special case of 2. Similarly, 2 is a special

case of 3 if dynamic is interpreted to include static. So there is a logical progression.

Group membership does not figure in the above categorization. This is deliberate.

If group membership is a static attribute we could include it in under 2. However

the moment group membership is dynamic a new set of questions is raised [25]. For

example consider the following policy.

1. A project group must have a majority of members from within the department.

2. Any department member can unilaterally join any project group.

3. An outsider can be enrolled in a group only by a project supervisor.

A.4 - 7

This is by no means a complicated policy. Yet there are no systems today which can

conveniently support it. A C2 system is not good enough since it cannot enforce the

specified mandatory controls. Neither do the labels of B or A systems help.

Another categorization might consider the nature of these properties along a dif-

ferent dimension, for instance as follows.

1. Controls based on properties of an object which depend on the value of the data

it contains.

2. Controls based on properties of an object which are independent of the value of

the data it contains.

Such distinctions are important for two reasons. First we can conclude that certain

kinds of controls are needed to achieve particular objectives. For instance dynamic

separation of duties appears to require controls based on the history of an object

whereas static separation can be achieved by controls based on static properties.

This gives us guidelines regarding what features are required to achieve our objectives.

Secondly we can design operating system mechanisms with the fundamental nature

of the controls in mind rather than considering specific applications.

3 CRITERIA

We now turn to consideration of criteria for evaluating trusted systems. There are

two major points we wish to make in light of the preceding discussion. Firstly the

criteria must clearly separate the issues of functionality and degree of confidence.

Secondly we need a finer grain of functionality than provided in the TCSEC.

Separation between functionality and confidence is noted in the TCSEC in its

statement, "Included are two distinct sets of requirements: 1) specific security feature

requirements; and 2) assurance requirements." However in the TCSEC classes this

separation is not clearly maintained. In moving up to higher classes (e.g., from CI

to C2) there is an increase in functionality as well as an increase in the level of

confidence required. The sole exception is the B3 to Al transition which does not

introduce additional functionality but considerably increases the required degree of

confidence. Clark and Wilson [7] have tentatively proposed a similar progression

for integrity evaluation criteria. Since their objective was to arrive at an integrated

set of criteria for evaluation for integrity and non-disclosure it is natural that their

proposal mirrors the TCSEC. Specifically they propose three divisions with the C to

B transition requiring a simultaneous increase in functionality and assurance while

the B to A transition is mostly concerned with assurance.

While some joint progression is inevitable we feel it is inappropriate to couple

these two issues too tightly. Especially in the commercial arena, there is a need for

systems with relatively primitive functionality but with high levels of confidence in

A.4 - 8

their evaluation as trusted. For instance the function might be limited to requiring a

audit trail which can be trusted with a high degree of confidence. This makes breach

of trusted behavior by individual users detectable so threat of punitive action may
be enough to prevent it.

Moreover the progression of functionality defined in the criteria should be finer

grained. This is especially so if an integrated set of criteria are proposed. For instance

consider a user who requires high confidence in authentication but is willing to accept

low confidence for non-disclosure. In the TCSEC the trusted path required for the

former is coupled with the requirement of covert channel analysis. We view function-

ality as inherently multi-dimensional. For instance consider the following progression

of functionality of mandatory controls.

Class Mandatory controls based on

a

b

c

d

e

Dynamic properties including value

Limited dynamic properties (e.g., transaction control expressions)

Almost static properties (e.g., weak typing, labels without tranquillity)

Static properties (e.g., strong typing, labels with tranquillity)

Identity based (i.e., only discretionary controls)

We do not think it proper to require that a system which includes features of class a

must also include all features of the classes below a. The progression is multidimen-

sional. For instance we may require sophisticated support for hierarchical groups [27]

and some little amount of controls from the other classes. As a user one would like

a rating which measures the features provided in each one of these classes so one

can shop for the best match. Levels of confidence might be assigned in a strictly

increasing sequence, for instance as follows.

Class Level of confidence

a Formally verified

b Informally verified

c Extensive testing

d Minimal confidence

e No confidence

However if we have multi-dimension functionality we expect a different level of con-

fidence to be attached to each dimension to give a multi-dimensional rating.

As a general principle of system design a user should be able pay for the func-

tionality and level of confidence in a trusted system that suits his needs. He should

be able to trade one for the other to meet budgetary constraints. The marketplace

and technology will determine what combinations of functionality and confidence get

supported and at what price. With proper modular designs, system vendors should

be able to support large numbers of combinations. It should eventually be possi-

ble to upgrade from one package of functionality and confidence to a superior one.

A.4 - 9

We need finer criteria to enable users to select the combination of functionality and

level of confidence in a trusted system that suit their needs within their budgetary

constraints.

4 SYSTEM ARCHITECTURES
Our third topic concerns architecture for trusted systems. The conventional approach

to security kernels [1, 13, 16] places all the trusted code in the kernel and does not

trust any code outside the kernel. The ideal picture is given somewhat as follows.

Users

Applications

Operating System

Security Kernel

In practise the ideal is often violated by placing some trusted code outside the security

kernel. This gives us the following view.

Everything Else

Trusted Functions

Security Kernel

There are two major reasons why we need trusted functions, or trusted processes,

outside the security kernel.

1. Trusted processes need to bypass mandatory controls of the security kernel in

order to achieve their objective. For example a downgrader must selectively

violate confinement.

2. Trusted processes perform functions which are security related, so we need a

high level of confidence in their correctness, but these do not need to violate

confinement. For example a labeler or a backup utility.

Trusted functions are clearly part of the overall security component of a system.

Trusted functions which are privileged to bypass kernel controls are particularly dis-

turbing. By their very nature, it is difficult to come up with a rigorous definition of

what these processes are supposed to do. Without a precise specification it becomes

somewhat pointless to try and verify them.

It is possible for enforcement mechanisms in the security kernel to help us increcise

the level of confidence in these trusted functions. For instance SCOMP [12] uses "in-

tegrity labels" for this purpose while SAT [4] provides a type enforcement mechanism.

Of course, neither of these can guarantee the correctness of trusted functions. The

A.4 - 10

controls increase our confidence by making it more difficult to plant Trojan Horses in

trusted code as well by limiting the damage that might be done. The SAT approach

is particularly flexible and attractive.

In view of this experience we propose the following idealized architecture for

trusted systems.

Everything Else

Application Dependent

Trusted Functions

Application Independent

Trusted Functions

Enforcement Kernel

For the moment let us ignore the non-disclosure problem. What then might one

expect in these layers? We propose the enforcement kernel implement mandatory

controls which are for the most part based on static properties of subjects and objects.

To separate policy from mechanism the kernel should be table-driven. This is by

no means a new idea [4, 8, 23] and has obvious appeal. The separation of trusted

functions outside the kernel, into application independent and application dependent,

is intended to encourage reuse of trusted functions across applications.

We propose the mandatory policy of the kernel be defined in terms of types of

subjects and objects, and that the kernel enforce strong typing (i.e., the type of a

subject or object is determined when it is created and thereafter does not change).

Type-based controls are surprisingly powerful. They gives us the basis for enforcing

the "access control triple" of Clark and Wilson [5, 7]. They also provide enforcement

of, even dynamic, separation of duties by means of transaction-control expressions [29]

or some similar mechanism. There is also evidence that policies based on types are

easier to analyze for safety [26] as compared with policies specified without a built-in

notion of types [14, 15].

How does non-disclosure fit into this picture? There are several approaches one

might take. If labels are regarded as a special case of types the enforcement kernel

can handle label-based controls. This has been formally demonstrated in [28]. Of

course the covert channel problem remains. So, to achieve B2 or higher ratings,

the enforcement kernel and policy tables must be scrutinized for covert channels.

Another approach could be to run the enforcement kernel above a traditional security

kernel. Such a security kernel could be stripped of all features not related to label-

based confinement and conceivably could be small enough to meet Al criteria. The

enforcement kernel could then be viewed as an integrity kernel sitting above the

security kernel. Since projects such as SAT are proposing similar features it may be

better to split them vertically into two layers.

A.4 - 11

5 CONCLUSION
To summarize we have considered several topics relating to data integrity.

1. In response to the strawman document [9] we propose that trust should be

viewed as a synonym for integrity used mostly to describe active agents or

systems containing such agents. This serves to emphasize two distinct issues in

evaluating trust, viz., functionality and degree of confidence.

2. We propose that mandatory controls be used to mean controls based on prop-

erties of the object and/or the subject. Label-based controls are then a special

case of this more general notion. If we choose we can exclude discretionary

controls by excluding properties based on identity of the subject and/or the

groups to which it belongs. Otherwise we can view discretionary controls as a

very special case of mandatory controls.

3. With the above perspective we have argued that criteria for evaluating trusted

systems must clearly separate the issues of functionality and degree of confi-

dence. While some joint progression may be inevitable we feel it is inappropri-

ate to couple these two issues too tightly. We have also argued that the criteria

need to be finer than those presented in the TCSEC [11].

4. Finally we have considered the security kernel approach to trusted systems ar-

chitecture. Experience indicates trusted code is needed outside the kernel [13].

This is even more so for application specific integrity policies. The architecture

should support a distinct layer above the kernel in which this code resides. Pol-

icy and mechanism should be separated in the kernel. Policy should be specified

by static policy tables which can only be changed, under careful control, when
the system is built. A built-in notion of types should be provided for specifying

these pohcies.

In the spirit of this workshop these proposals are somewhat speculative and need

further work. Many of the questions we have raised must eventually be confronted,

in one form or another, even if the terminology in which they are phrased is modified.

It appears to us that mandatory controls for integrity will be an order of mag-

nitude more complex than label-based mandatory controls for non-disclosure, in all

respects except for the formidable covert channel problem. This is the distinguishing

characteristic which makes non-disclosure such a difficult problem. As a final note we
express our support for the following viewpoint [20].

"Many people have assumed that security policies for commercial systems

are either less friendly versions of academic policies or military policies

with fewer teeth. Neither is true. Considerations for commercial security

policy differ in quality, because the principles of internal control take a

much more sophisticated view of authority."

A.4 - 12

References

[1] Ames, S.R., Gasser, M. and Schell, R.R. "Security Kernel Design and Implemen-

tation: An Introduction." Computer l6{7):U-22 (1983).

[2] Bell, D.E. and LaPadula, L.J. "Secure Computer Systems: Unified Exposition

and Multics Interpretation." MTR-2997, Mitre, Bedford, Mass. (1975).

[3] Boebert, W.E. and Kain, R.Y. "A Practical Alternative to Hierarchical Integrity

Policies." 8th National Computer Security Conference^ 18-27 (1985).

[4] Boebert, W.E., Kain, R.Y., Young, W.D. and Hansohn, S.A. "Secure Ada Tar-

get: Issues, System Design, and Verification." 8th National Computer Security

Conference, 18-27 (1985).

[5] Clark, D.D. and Wilson, D.R. "A Comparison of Commercial and Military Com-
puter Security Policies." IEEE Symposium on Security and Privacy, 184-194

(1987).

[6] Clark, D.D. and Wilson, D.R. "Comments on the Integrity Model." In [30].

[7] Clark, D.D. and Wilson, D.R. "Evolution of a Model for Computer Integrity."

These proceedings.

[8] Cohen, E. and Jefferson, D. "Protection in the Hydra Operating System." 5th

ACM Symposium on Operating Systems Principles, 141-160 (1975).

[9] Courtney, R.H. "Some Informal Comments About Integrity and the Integrity

Workshop." These proceedings.

[10] Denning, D.E. "A Lattice Model of Secure Information Flow." Communications

o/ >1CM 19(5):236-243 (1976).

[11] Department of Defense National Computer Security Center. Department of De-

fense Trusted Computer Systems Evaluation Criteria. DoD 5200.28-STD, (1985).

[12] Fraim, L.J. "Scomp: A Solution to the Multilevel Security Problem." Computer

16(7):26-34 (1983).

[13] Gasser, M, Building a Secure Computer System. Van Nostrand Reinhold (1988).

[14] Harrison, M.H., Ruzzo, W.L. and Ullman, J.D. "Protection in Operating Sys-

tems." Communications ofACM 19{8):m-All (1976).

[15] Harrison, M.H. and Ruzzo, W.L. "Monotonic Protection Systems." In DeMillo,

R.A., Dobkin, D.P., Jones, A.K. and Lipton, R.J. (Editors). Foundations of

Secure Computations. Academic Press (1978).

A.4 - 13

Landwehr, C.E. "The Best Available Technologies for Computer Security." Com-
puter 16(7):86-100 (1983).

Lee, T.M.P. "Using Mandatory Integrity to Enforce "Commercial" Security."

IEEE Symposium on Security and Privacy^ 140-146 (1988).

Linden, T.A. "Operating System Structures to Support Security and Reliable

Software." ACM Computing Surveys 8(4):409-445 (1976).

McLean, J. "The Algebra of Security." IEEE Symposium on Security and Pri-

vacy, 2-7 (1988).

MofFett, J.D. and Sloman, M.S. "The Source of Authority for Commercial Access

Control." IEEE Compwier 21(2):59-69 (1988).

Murray, W. H. "On the Use of Mandatory." Position paper in [30].

Parker, D.B. and Neumann, P.G. "A Summary and Interpretation of the Invita-

tional Workshop on Integrity Policy in Computer Information Systems." In [30].

Popek, G.J. and Farber, D.A. "A Model for Verification of Data Security in

Operating Systems." Communications of ACM 21 (9) :737-749 (1978).

Saltzer, J.H. and Schroeder, M.D. "The Protection of Information in Computer

Systems." Proceedings o/ 63(9):1278-1308 (1975).

Sandhu, R.S. and Share, M.E. "Some Owner Based Schemes with Dynamic

Groups in the Schematic Protection Model." IEEE Symposium on Security and

Privacy, 61-70 (1986).

Sandhu, R.S. "The Schematic Protection Model: Its Definition and Analysis for

Acyclic Attenuating Schemes." Journal o/ ACM 35(2):404-432 (1988).

Sandhu, R.S. "The NTree: A Two Dimension Partial Order for Protection

Groups." ACM Transactions on Computer Systems 6(2):197-222 (1988).

Sandhu, R.S. "Expressive Power of the Schematic Protection Model." Computer

Security Foundations Workshop, 188-193 (1988).

Sandhu, R.S. "Transaction Control Expressions for Separation of Duties." 4th

Aerospace Computer Security Applications Conference, 282-286 (1988).

Report of the Invitational Workshop on Integrity Policy in Computer Information

Systems (WIPCIS), Bentley College, MA, October 1987, NIST.

A.4 - 14

INTEGRITY CONTROLS FOR
MILITARY AND COMMERCIAL APPLICATIONS, II

Robert R. Jueneman

Presented at:

Invitational Worltshop on Data integrity

National Institute of Standards and Technology

25-27 January 1989, Gaithersburg, MD

By:

Computer Sciences Corporation
Special Projects Division

31 60 Fairview Park Drive

Falls Church. VA 22042
703/237-2000

© Copyright CSC 1989. All rights reserved.

Revised: 1 March 1989

A.5

Integrity Controls For Military and Commercial Applications, II

Table of Contents

1 ABSTRACT 1

2 INTRODUCTION 1

3 THREATS AND COUNTERMEASURES 4

3.1 Integrity Threats 4

3.2 Viruses and Trojan Horses 6

3.3 Integrity Containment Mechanisms 10

3.4 A Definition of Integrity 13

3.5 Integrity Domains 14

3.6 Partition of Change 17

3.7 Identification and Authorization 18

3.8 Roles and Aliases 20

3.9 Sequencing and Program Confinement 21

3.10 Auditing and Journalling 22

3.10.1 Integrity Audit Requirements 22

3.10.2 Pedigree and Provenance 24

3.10.3 Evidentiary Requirements 25

3.11 Human-Readable Output 27

3.11.1 Trusted Input/Display 27

3.11.2 Trusted Output 29

3.11.3 Trusted Integrity Labels 31

4 POLICIES AND MECHANISMS 34

4.1 Integrity Labels 34

4.2 Mandatory Integrity Controls 35

4.3 Hierarchical and Non-hierarchical Integrity Components . 38

4.4 Reference Monitor Implementation 41

4.5 Dynamic Mapping of Integrity Categories 45

4.6 Integrity Attributes 48

4.7 Integrity Covert Channels 49

4.8 Discretionary Integrity Policies 53

4.9 Digital Signatures 55

4.10 Human-Readable Output 57

5 CONCLUSIONS AND RECOMMENDATIONS 57

5.1 Reprise 57

5.2 Conclusions 58

5.3 Recommendations 60

A.5 - ii

CSC/PR-89/3001
C:\JUENEMAN\MSS\integrty.mss 1 March 1989 1:07pm

INTEGRITY CONTROLS FOR MILITARY AND
COMMERCIAL APPLICATIONS, ir

Robert R. Jueneman
Computer Sciences Corporation

3160 Fairview Park Drive

Falls Church, VA 22042

703/237-2000

1 ABSTRACT

A system of integrity controls is presented that is

intended to be suitable for both commercial and

military applications involving arbitrary unsecure

networks such as ISDN. The integrity threats

that are present in a large and dynamic network

of TCBs are examined, and a set of rules that are

consistent with those of Clark and Wilson are

proposed to address those threats. A definition

of integrity is provided and an integrity metric

proposed, consisting of a non-hierarchical

component — a set of integrity categories

corresponding to a set of integrity domains, i.e., a

collection of application-specific syntactic and

semantic rules which apply to any objects read

and/or written by a process; plus a hierarchical

integrity component — the estimated probability

that all of the rules of the various integrity

categories are obeyed. Cryptographic checksums

and digital signatures are used to detect and

eventually recover from the unauthorized

modification of data, instead of attempting to

prevent such changes that may occur outside of a

TCB or trusted network. It is concluded that a

system of Mandatory Integrity Controls

consisting of the Biba hierarchical integrity policy

with integrity categories and multilevel integrity-

trusted subjects, plus Discretionary Integrity

Controls which allow a subject to specify which

objects are to be accepted or believed (based on

the identity of the originator of the object),

implemented on a TCB that meets the TCSEC
requirements for B2 with respect to security, can

provide integrity controls that are well-suited to

the networking environment.

2 INTRODUCTION

The present version of the Trusted Computer

Security Evaluation Criteria (TCSEC), DoD
5200.28-STD, commonly called the "Orange
Book," is almost exclusively concerned with

preventing information compromise, i.e., the

release of information to unauthorized users.

Although preventing information compromise is

vitally important to many applications in both the

military and the civilian environment, there is an

increasing recognition that the TCSEC is

seriously deficient in not addressing the concerns

of both the Command and Control community

within the Department of Defense and the

"commercial" data processing requirements

within the Government and the civilian sector.

The Trusted Network Interpretation of the

1. This is a revised and extended version of "Integrity Controls for Military and Commercial Applications," Foarlli Aerospace
Computer Security Applications Conference, Orlando, Florida, December 12-16, 1988; Computer Society of the IEEE,
Washington, DC, 1988, pp 298-322.

CSC/PR.89/3001
A.5 - 1

INTRODUCTION INTRODUCTION

TCSEC. NCSC-TG-005 Version 1 (the TNI, or

"Red Book"), addresses the need for additional

security services for communications integrity

(including authentication, communications field

integrity, and non-repudiation of origin and

delivery), but these services are not sufficient in

and of themselves to satisfy the needs of

"commercial" users.

The differences between the concerns of the

TCSEC for preventing the disclosure of

information to unauthorized users (representing

the "military" requirements) and the accounting

controls usually associated with the control of

errors and the prevention of fraud (representing

the "commercial" requirements, but equally

applicable to the Command and Control
environment^) were highlighted in a landmark

paper by Clark and Wilson-^ at the IEEE Security

and Privacy Symposium in Oakland in April,

1987. Since it was presented there has been much
discussion about the nature of integrity and how
best to control it, but the general principles (if

not all of the mechanisms and conclusions) of

Clark-Wilson have been widely recognized.

However, the implicit context of Clark and
Wilson's observations was that of a monolithic

mainframe computer processing the traditional

MIS programs — accounts receivable and
payable, inventory control, payroll, etc. Little or

no attention was paid to such critical activities

such as computer program development,
CAD/CAM, robotics, nuciear reactor control,

hospital patient monitoring, air traffic control,

embedded tactical applications, the Strategic

Defense Initiative, or even simple word
processing. In addition, there was no discussion

of the requirement for Electronic Data
Interchange of purchase requisitions, invoices, or

contracts between disparate organizations which

would necessitate the use of digital signatures

that would stand up in court if challenged.

The requirements for integrity are relatively

independent of the hardware platform that is

used, whether we are talking about a small

personal computer that is used by a student in

college, or a large supercomputer used to design

nuclear weapons. In fact, given the incidence of

computer viruses, the degree to which modems
and LANs are used, the frequent use of public-

domain software with personal computers, and

the lack of integrity controls provided with the

available operating systems, both the threat and

the vulnerability may be greatest in the PC
environment. Certainly the resources available

per user to solve the problem are minimal. On
the other hand, the tremendous number of

personal computers and workstations that have

been sold, together with the hardware
architecture of the Intel 80286 and 80386 and the

Motorola 68030 chips, may make it easier to

solve the integrity problem on PCs and
workstations than on the more traditional

mainframe and minicomputers. For that reason,

to the extent that there is an unconscious bias in

this paper, it will reflect a single user, dedicated

workstation environment.

In general, if there were no need for

communication and if users wrote all of their own
programs, there would be relatively few integrity

concerns in the single user workstation
environment except for those caused by the

user's human errors. Locking the unit to prevent

access to the hard disk and locking floppy disks in

a drawer to prevent theft and/or malicious

attempts to change the data contents would go a

long way towards providing adequate security and

integrity, at least if potentially erroneous or even

outright malicious programs and/or data were

never brought in from the outside world.

However, in both the commercial and military

environment, the trend is toward greater and

greater degrees of connectivity, through LANs,
dial-up telephone links, packet-switching

networks, electronic mail systems, public domain

bulletin boards, and even hand-to-hand floppy

disk interchange. In this environment, where
users share data and programs and multiple

2. The concept of mission-critical data is discussed at some lengtli in Air Force Regulation APR 205-16. In that document the

treatment of criticality includes both the general notion of integrity and protection against denial of service that would prevent

the system from providing the intended service for an amount of time that would impact the mission adversely. Missions are

categorized as HIGHLY-CRITICAL, CRITICAL, and NONCRITICAL, but there is no specific guidance provided that would
indicate how to build a system that would guarantee that the requirements for a CRITICAL or HIGHLY-CRITICAL mission

will be satisfied.

3. Clark, David D. and David R. Wilson, "A Comparison of Commercial and Military Computer Security Policies," Proceedings of

Ihe IEEE Symposium on Security and Privacy, April 27-29, 1987, Oakland, CA; Computer Society Press of the IEEE,
Washington, D.C., 1987, pp 184-194.

CSC/PR.89/3001
A.5 - 2

INTRODUCTION INTRODUCTION

individuals have the ability to modify other user's

data, either accidentally or deliberately, the old

physical isolation controls are no longer

adequate.

This papier will therefore address the integrity

requirements of very large and dynamic networks

of interconnected Trusted Computing Bases

(TCBs) which communicate over a virtual

network of arbitrary non-secure media.

Cryptographic and other mechanisms will then be

proposed which would satisfy those requirements.

A similar approach based on layered encryption

can be taken to satisfy the secrecy requirements

of interconnected TCBs without imposing the

requirement that the entire network be evaluated

and trusted, but that would exceed the scope of

this discussion.'*

We will assume that the TCBs provide the

equivalent of at least a B2 level of trust in

accordance with the TCSEC, so that mandatory

and discretionary access controls and labels are

provided together with the process isolation

achieved through the provision of distinct

memory spaces under the control of the TCB,
plus the use of memory segmentation and
read/write protection. In addition, in order to

support the concept of separation of duty, we will

require the ability to exclude individuals or

groups of individuals from accessing specified

objects — a feature of B3/A1 systems. Finally, in

addition to the traditional controls of a stand-

alone, multilevel-secure TCB, we will assume that

the TCB is provided with an embedded
cryptographic functionality which can be used to

protect both the secrecy and integrity of data

stored locally or exchanged via the network.

For purposes of discussion, it will generally be

assumed that the objects to be protected are files

that may or may not be seciu-ely installed within

the security perimeter of a TCB. They may be

stored on a network file server or local hard disk

that is not necessarily secure, or they may have

been transmitted or transported over unsecure

media. For that reason, it will be assumed that

the files will be encrypted if necessary to prevent

their disclosure to unauthorized individuals and

that the mandatory and discretionary access

control requirements of the TCSEC are

implemented through a system of access control

labels and personnel clearances.

The details of the particular cryptographic

algorithm{s) and the key management scheme(s)

to be used, although highly important to the

implementation, are not relevant to the

discussion to be presented below. However, it

will be assumed that three specific capabilities are

provided:

1. An encryption algorithm must be

provided to protect the secrecy or

privacy of information. The Data
Encryption Standard (DES) algorithm

would satisfy this requirement for

unclassified data.

2. A cryptographic checksum algorithm

must provide at least a 128-bit checksum

of a file, record, or field, to be used in

verifying that the information so

protected has not been changed since it

was created. This checksum may either

be a Message Authentication Code
(MAC) which makes use of a secret

cryptographic key, or it may use a

Manipulation Detection Code (MDC)
which is independently protected by

encryption or a digital signature

mechanism.^

3. A digital signature mechanism must be

available to provide non-repudiation

protection of both the authorship of a

document and the docimient's contents.

Such a mechanism may also be very

useful in key management. The Rivest-

Shamir-Adleman (RSA) public-key

4. Jueneman, R. R., "End-To-End Compromise and Integrity Controls," Computer Sciences Corp. Technical Report CSC-
TR/87-3001, May 1987.

5. Jueneman, R. R., "Electronic Document Authentication," IEEE Network, vol. 1, no. 2, April 1987, pp 17-23. Note however that

Dr. Donald Coppersmith has recently discovered an attack against the specific MPC algorithm (QCMDCV4) discassed in that

paper which reduces the work factor necessary to defeat it to approximately 10^^ random trials. Although it would require a

non-trivial amount of work to sort or compare all of those trials, it could be done. Unfortunately, as discussed in the paper, the

ANSI standard X9.9 Message Authentication Code suffers from a number of deficiencies, and can be defeated by using

approximately 65536 random trials for the usual 32-bit version, or approximately 10^ random trial for the full 64-bit version,

and is therefore not suitable for general use. As a result, at the present time 1 am not aware of any published cryptographic

checksum algorithm which is completely satisfactory. The rest of this paper will assume that this situation will somehow be
remedied.

A.5 - 3

CSC/PR-89/3001

INTRODUCTION INTRODUCTION

algorithm is the best known example of a

cryptographic mechanism that would

satisfy both the digital signature and key

management requirements.

Although it would certainly be desirable for the

embedded cryptographic capability to be

implemented in hardware, both for reasons of

enhanced security and for speed, there is no

inherent reason why hardware encryption must

be used so long as the encryption, checksum, and

digital signature mechanisms are contained within

the security perimeter of a Trusted Computing

Base (TCB). Implementations of DES in

software are fast enough for many applications,

and although the RSA algorithm is quite

computationally intensive for longer keys,

substantial strength can be achieved with

practical running times with software
implementations.

3 THREATS AND
COUNTERMEASURES

Clark and Wilson's paper proposed a number of

integrity "rules" which attempted to summarize

and synthesize what was stated to be standard

commercial practice, and certainly an enormous

amount of credit must be given to the authors for

their efforts. However, during the detailed

examination of the Clark-Wiison model that was

conducted at the WIPCIS conference^ it became

clear that the business practices that were being

abstracted were primarily the traditional double-

entry bookkeeping systems as implemented on

conventional mainframe computers, and that

many of the concerns of more distributed

processing systems were not adequately

addressed.

This section will analyze the various threats to

integrity that exist in a distributed network of
TCBs, and present a set of rules in the spirit of

Clark-Wilson which are necessary to contain

those integrity threats. Section 4 will then

propose a set of integrity policies and

implementation mechanisms which satisfy those

rules.

3.1 Integrity Threats

The TCSEC requires that the TCB itself be

developed, inspected, and tested in accordance

with demanding criteria (especially at the Al
level) in order to ensure that the TCB will work

correctly. However, those same criteria are not

required to be applied to or enforced upon
application programs and/or data controlled by

the TCB. In particular, the TCSEC does not

require a TCB to implement those mechanisms

that would be suitable to enforce the

fundamental principle of duly authorized changes

to applications programs and/or data. The
TCSEC requires that B2 and higher evaluation

class systems implement the principle of "least

privilege," but that only applies to the TCB code

and relevant data (e.g., tables), and not to

application programs and data. In addition the

TCSEC only requires that strict configuration

control and a trusted distribution mechanism be

applied to the security-relevant portions of the

TCB itself, and then only for class Al TCBs.

As a result, the integrity of a data processing

system could potentially be compromised by

permitting hrigh integrity processes to read low

integrity (corrupted) data or alternately by

allowing low integrity processes to write or

modify high integrity data, where data also

includes programs. These potential integrity

compromises include:

- Active modification attacks against data

by an external adversary during
transmission or storage of the

information outside of the TCB.

- Accidental modification of data within or

outside the TCB during transmission or

while in storage, either by random
hardware errors or by program "bugs."

- Modification, deletion, or renaming of

one user's data by another user, either

accidentally or deliberately, but without

authorization.

6. Report of the InviUtional Workshop on Integrity Policy in Computer Information Svstems (WIPCIS), Bcntley College,

Waltham, Mass. October 27-29, 1987. NIST Special Publication 500-160, GPO, 1989.

A.5 - 4

CSC/PR.89/3001

THREATS AND COUNTERMEASURES Integrity Threats

- Modification of data within tiie TCB by

Trojan horse programs and/or computer

virus attacks. Such malicious programs

may do direct and immediate damage to

data (either by destroying the data, or

perhaps worse, corrupting the data with

insidious changes to the data values), or

they may modify other programs

,

perhaps by infecting those programs
with a copy of themselves.

Loss of accountability for programs and data

could occur, including changes to programs and

data by unauthorized personnel, in addition to

loss of control through the execution of

programs in unauthorized circumstances,^ as

follows:

- Fraud and/or the abuse of authority,

including unauthorized inputs or

program execution, the violation of the

principle of separation of duty, and the

attempted repudiation of responsibility

for commitments made or actions taken.

- Failure of containment, wherein valid

programs are executed in invalid ways,

i.e., run twice, run out of sequence, run

at night or on weekends, etc.

- Failure of control, through the admission

of incorrect data into the system or the

inability to take corrective or restorative

action in the event of an error or failure

through the use of normal transaction

journals, backup files, etc.

Finally, we must not ignore the problem of

ensuring the continuing correspondence between

the computer databases (a model of the external

world) and the external world itself in many
applications. In addition, there may be a need for

a periodic comparison or reconciliation of two or

more databases within the system {e.g., a primary

and a backup copy of a database that are

supposed to be maintained in synchronism with

each other in quasi-realtime on two physically

separated machines, despite possible hardware,

software, communications, and procedural

errors) in order to detect and/or correct any

discrepancies that may occur.

Clark and Wilson rightly point out the need for

what they call an Initial Verification Procedure

(IVP) in those instances. The IVP not only

screens the initial input data to the system, but it

also represents a checkpoint with reality. Even if

the computer system operates absolutely

flawlessly (unHkely, for systems of meaningful

size), and even if the human beings who input the

data to the programs never make a mistake (even

less likely), in the case of an inventory control

system, for example, it is still necessary to

periodically go out to the storeroom and count

the items on the shelves, if only to detect the

possibility of theft. The periodic reverification

of the internal consistency of the computer

model and of the correspondence of the

computer model with the external "real world"

via the IVP is therefore an absolutely essential

element of closed loop control of the overall

system. Without this "balancing of the books,"

the model may slowly lose accuracy as errors

begin to accumulate both inside and outside.

However, the problem of correspondence
between the model and reality is primarily one of

correcting human mistakes and compensating for

internal errors and external events (and

sometimes the design of the model). Other than

being aware of the requirement, the design and

application of the IVP will not concern us greatly

here. Indeed, in some cases there is no external

world to model, yet we can still talk meaiiingfully

about the integrity of a contract, or of the

accuracy of translation of poetry from one
language into another, or even the correctness of

a presentation on a computer screen of an

abstract visual image which is only defined by a

computer process.

'For that reason we will focus primarily on the

threat of accidental errors being introduced

during the storage, transmission, or

transformation of that information, and the

possibility of deliberate errors being introduced

by external agents or through the malfeasance of

authorized users.

7. Cf. Clark and Wilson, ibid., for further discussion and examples.

A.5 - 5

CSC/PR-89/3001

THREATS AND COUNTERMEASURES Viruses and Trojan Horses

3.2 Viruses and Trojan Horses

Within certain segments of the Government, and

despite the lessons taught by the Walker family

and other recent spy cases, there is a point of

view that argues that since their people are all

highly cleared and presumably trustworthy, they

have no need for high levels of computer security

assurance. It is not surprising, therefore, that

many responsible individuals in the commercial

sector have also asserted that they have no need

for high levels of computer security functionality

or assurance. This is not necessarily because the

civil sector trusts all of their users, but because in

general commercial organizations have not

instituted a rigorous policy of clearing or

screening their personnel as to who can have

access to what information, and they therefore do

not have a reliable basis on which to implement

mandatory access controls.

Unfortunately, opinions such as these miss the

point rather badly, both from the standpoint of

security and the less well-recognized threats to

integrity and availability of service. It is not only

untnisted users who are a threat, but also the

untrusted programs which run on behalf of

trusted users that can cause grave damage.

At the lower levels of computer security

assurance (B2 and below), there is no
requirement to carefully partition the operating

system into security-critical and non-critical

portions and to minimize the amount of security-

critical code. As a result, virtually all of the code

in the operating system has to be trusted, and the

sheer size of most operating systems makes it

almost impossible to be sure that all possible

loopholes and security weaknesses have been

closed. As Shockley^ has pointed out, "unless the

TCB is small enough to be thoroughly analyzed

and tested by restricting its contents to security-

critical modules only — i.e., by basing the system

on a Class B3 or Al TCB with a security kernel"

— it is possible that a specific weakness exists

that could be attacked by a virus or Trojan horse

program, and the TCB itself could be subverted.

And although a trusted distribution mechanism

and strict configuration management is required

at the Al level, if the tools that are used to

construct the TCB were ever infected with a

virus, even the security-critical modules of an Al
TCB could be jeopardized.

In Shockley's scenario, the attacker might target

an authorized user of the system by planting a

seemingly benign program on a bulletin board

that the user was known to access, hoping that he

would pick up that program and run it on the

classified machine, thereby infecting it. The
virus-containing program could later be deleted

from the classified system, but the damage would

have already been done. The modified portion of

the operating system might then do nothing but

to lie quietly in wait for an external signal, at

which time it would compromise all of the data

on the system to a confederate on the outside.

Although the thought of a virus allowing all of

the order-of-battle plans to be compromised just

before an important engagement is to be fought

is bad enough, it is important to realize that the

TCSEC does not require even an Al TCB to

provide any mandatory controls to protect those

same order-of-battle plans from being modified

or destroyed. In particular, if a user executes a

Trojan horse program, that program inherits all

of the attributes of the user, so it could

surreptitiously modify or destroy any files that

user would have access to, thereby preventing any

battle planning at all. In the commercial sector, a

virus might wipe out all of the files on the system

just before the books had to be closed at the end

of the year, for example. Significant disruption

could be caused, ranging from the payroll not

being met to a brokerage firm not being able to

settle stock trades on time, with disastrous

results.

The recent publicity given to the efforts

necessary to eradicate the recent Internet

computer virus or worm, the "Christmas" virus

that caused the IBM's corporate electronic mail

system to be shut down in December 1987, and

the spate of attacks against PCs should
convincingly illustrate how vulnerable to virus

and Trojan horse attacks almost all systems are at

present, and why some additional form of

protection is urgently required.

8. Shockley, W. R., R. R. Schell, and M. F. Thompson, "The Importance of High Assurance Computers for Command, Control,

Communications, and Intelligence Systems," Fourth Aerospace Computer Securitv Applications Conference, Orlando, FL,
December 12-16, 1988, Computer Society Press of the IEEE, Washington, DC, 1988,' pp 331-342.

CSC/PR-89/3001
A.5 - 6

THREATS AND COUNTERMEASURES Viruses and Trojan Horses

With regard to the threat of computer viruses

and Trojan horse programs, Cohen^ has pointed

out that it is theoretically impossible to guarantee

the detection of a virus by its appearance alone,

since whatever detection mechanism is proposed

to determine whether a particular program will

infect another program could be used in a

contradictory sense by another virus. Viruses

could also evolve or mutate, so they could avoid

whatever antiviral detection schemes are

introduced and in the process introduce "super-

infections," where a program may be infected by

more than one virus.

In addition, it is difficult or impossible to detect a

Trojan horse program by its behavior, since it

may use services which are legitimate for

legitimate programs. For example, in the MS-
DOS environment any program can dynamically

invoke COMMAND.COM. Therefore any

program can execute the command FOR %X IN
(*.*) DEL %X to delete all files in the current

subdirectory, without a user prompt. In addition,

some personal computer programs bypass the

operating system and directly exercise the disk

controller to implement various copy-protection

schemes, closely mimicking viral behavior.

A particularly pernicious example of a virus

would be a compiler that is used to compile itself

to produce an "improved" version, but which in

fact introduces subtle bugs in all programs that

are compiled subsequently, including itself. It is

conceivable that the TCB itself could become
infected in this manner the next time a portion of

it is recompiled, since the TCSEC does not

require the use of validated compilers or other

program development tools even at the Al level

of trust. In particular, as Ken Thompson pointed

out in his 1984 Turing Award Lecture,^'' if a

compiler were modified to recognize and modify

a portion of its own code the next time it was

recompiled, the offending source code could then

be removed leaving no trace of the modification

except in the object modules of the compiler. If

in addition the compiler modifications generated

a security mechanism bypass or other Trojan

horse function or computer virus that would be

installed in specific programs {e.g., all programs

called "LOGIN"), the effect could be dev3istattng.

Unfortunately, producing compilers that just

work as they were intended sometimes seems to

be beyond the state of the art, as bugs are found

in the output of most compilers, including

certified Ada compilers. Detecting deliberately

introduced compiler viruses would therefore

appear to be a very difficult task, and one that

should be addressed through the use of cleared

and trusted programmers, an independently-

audited formal design methodology that includes

compiler source code review, independent
compiler generation and object module
verification,^^ meticulous configuration control

throughout the life-cycle of the compiler, and a

trusted application development system that is

based on a high-assurance TCB that includes the

principles discussed in this paper. The use of

such validated compilers and other trusted

development tools should be one of the first

requirements for a "beyond Al" level of trust.

Although viruses must be inserted into programs

that are later executed (or potentially into data

files that are later interpreted, including source

programs, command files, spreadsheets, and

database applications) in order to take effect, the

damage function of a virus is not necessarily

confined to programs. In addition to perhaps

denying service to the user by locking up the

9. Cohen, Fred, "Computer Viruses: Theory and Experiments," Computers & Security, North-Holland, Amsterdam, vol. 6, no. 1,

April 1987. 22-35.

10. Thompson, Ken, "Reflections on Trusting Trust," Communications of the ACM, vol. 27, no 8, August 1984, pp 761 -763.

11. The compiler verification team would use an independently-produced "filter" compiler or cross-compiler to compile the source

of the target compiler to produce a woricing if unoptimized version, which would then used to compile the production version.

The object modules produced by this two-pass process would then be compared to those generated and submitted for

verification by the compiler development team. The compiler used to produce the woricing version must be kept strictly

isolated from the compiler development effort itself, in order to prevent the verification compiler from introducing a virus into

the production compiler. Through this technique, three independently-produced certified .Ada compilers capable of compiling
themselves, for example, could bie used to produce and validate each other's object code as beine virus-free. Note thai this

technique docs not preclude a compiler with faulty or malicious source code from including a bug or even a virus in the

compiled programs — it merely confirms that the object code of the compiler itself conforms to its own source code. In

addition, an informal reasonableness review of the compiler-generated assembly language listing vs. the source code should be
performed by the programming team, and an automatic comparison of the generated object module with the assembly
language listmg should be performed to detect any differences. For some additional techniques cf. McDermott, John, "A
Technique for Removing an Important Class of Trojan Horses for High Order Languages," Proceedings lUh National
Compuler Security Conference, NBS/NSA, 17-20 October 1988, pp 114-118.

CSC/PR.89/3001
A.5 - 7

THREATS AND COUNTERMEASURES Viruses and Trojan Horses

machine or destroying hardware (for example by

setting the oscillator chip on the graphics

controller board to a frequency which would burn

,
out the fly-back transformer in a video display

terminal, or by changing the disk controller

parameters to values which would either make
the disk unreliable or would eventually cause it to

fail), both random and specific changes could be

made to source program files, to spreadsheets

and databases, missile launch coordinates, etc. Of
all of the various ill-effects a virus or Trojan

horse program could cause, a slow propagation of

error throughout all of the files on the system

might be the hardest to find and eradicate, and

might do the most damage because it might

contaminate the backup files before the effects

were discovered.

Even encrypting al! of the files and directories

on the disk is not sufficient to prevent a random
data-modification attack if the Trojan horse

program can write to the disk, since the

encryption will merely make the changes more
random.

Ideally, any new program that is acquired should

be provided in source form, so that the code can

be examined and recompiled to eliminate any

existing viral modifications. However, even if the

source code is available, misleading comments
may have been accidentally or deliberately

included which would mask the true purpose of

the code at some point. Even with formal

specifications it is very difficuh to prove that a

source program does exactly what it is supposed

to, and even more difficult to prove that it does

nothing else. At the present time, formally

proving the correctness of a large assembly

language program or object code module is

considered beyond the state of the art, even when
the programmer is actively assisting the proof

process, so trying to prove something about a

program without the specifications and the

source code can be considered essentially

impossible.

Unfortunately, the legitimate proprietary

interests of the vendors prevent the source code

from being available in most cases, giving rise to

the possibility that even shrink-wrapped,

Commercial-Off-The-Shelf (COTS) software is

already infected with a virus, with the vendor

being a (presumably) innocent dupe. Indeed,

shrink-wrapped viruses have already struck the

Macintosh and Amiga user community. A new
program received from an outside source should

be tested as exhaustively as possible but especially

if the source code is not available.

Because a virus that is inserted into a program

may remain passive until some external triggering

event or combination of events occurs, viruses

may be impossible to detect by even the most

comprehensive set of test cases. However, that

should not be used as an excuse to avoid adequate

testing! Although testing is not a sufficient

condition to prove that a program is benign, in

the absence of formal proofs of correctness it is

assuredly a necessary condition.

The major problem in testing a suspected virus is

to assure that an exact simulation of the working

environment is provided during the test, and then

recognizing whether any unexpected effects have

occurred. For example, it is frequently

recommended that the testing of potential viruses

be conducted in a "sterile" environment, e.g., a

system which only uses floppy disks.

Unfortunately, sterile testing may not reveal a

virus which is sensitive to the real operational

environment For example, a virus that waits

until the hard disk is 75% full before destroying

all of its contents, or only alters the content.! of

programs or data if more than 512K of memory is

used, will not be detected by sterile testing. As a

12. Encrypting all of the files on the disk would prevent a virus from replacing or intelligently modifying existing programs, but

only if the virus can be prevented from accessing the encryption/decryption mechanism. For example, in the case of a personal

computer, if an add-on hardware board were used to encrypt and decrypt all files, and if the encryption keys never left that

board and a dedicated controller were used to cause the encryption/decryption, then any attempt to exercise the disk

controller directly to do reads or writes would be foiled, as only random garoage could be read or written. If in addition the

special encryption/decryption software implemented a secure attribute such as READ-ONLY/WRITABLE which would
require the user to enter a password before a file could be modified, then a virus or Trojan horse would be limited to attacking

a file while it was being created. This type of attack would require that the operating system and/or the application programs
used to create the file be modified, perhaps through some form of Terminale-and-Stay-Resident program. But if the operating
system and the applications program were installed securely and write protected, the attack would become quite difficult. Of
course, keeping the operating system, all application programs, and all critical data on floppy disks, protecting them with write-

protect tabs immediately after updating them, and storing the floppies in a safe when they are not in use would accomplish
much the same thing, but with some inconvenience.

13. Highland, Harold J., "Computer Viruses—A Post Mortem", Computers and Security, vol. 7 no. 2, April 1988, pp 117-121.

A.5 - 8

CSC/PR89/3001

THREATS AND COUNTERMEASURES Viruses and Trojan Horses

result, it may be necessary to offer up some "bait"

to the virus, potentially allowing data destruction

to occur, and then carefully checking the entire

state of the system after the program terminates

to see whether any files were modified or

destroyed, any Terminate-and-Stay-Resident

programs were installed, any changes were made
to other resident programs, etc. This may require

a significant amount of effort, of course,

including reformatting and restoring the entire

hard disk.

In addition, in order to be effective virus testing

must exercise all possible parameters and data

inputs, for example by systematically advancing

the system date. Even theft a virus that only

causes damage on February 29th, or on Friday

the 13th, or at 11:11:11 AM on the anniversary of

some programmer's dismissal is not likely to be

found.

For this reason, dynamic flow tracing techniques

in combination with program disassembly should

be used to ensure that every possible branch path

in the program being tested has been exercised at

least once. Branch paths that are never taken

during routine processing should be considered

suspicious and examined more thoroughly.

Although the use of the CASE statement instead

of convoluted IF tests is generally considered to

be good programming practice, programs which

make use of generalized CASE statements using

indexed branch tables are potentially dangerous

unless the branch index is limit tested.

Otherwise, the branch table index could be

modified to point to some other routine, or even

some instructions embedded in data. Procedures

which pass subroutine addresses as parameters

are even more dangerous. Programs which

dynamically invoke routines not contained within

the load module should be likewise be considered

suspicious, and programs which incorporate self-

modifying code should be flatly prohibited.

Programs whose licenses forbid such disassembly

and testing techniques v^ithout offering a full

warranty against consequential damages in return

should be rejected as not being worth the risk.

However, even exercising a suite of test cases

which causes every single instruction in a

program to be executed at least once is not

sufficient to prove that a program is benign,

because we must consider all possible variations

of data input. For example, a program for the

IBM-PC might load a register from a memory

A. 5 -

CSC/PR-89/30®!

address that is near the high end of memory but

outside of the transient area that MS-DOS uses.

In most cases the register would contain 0, since

the memory location would not have been used

since the system was initialized. The program
would then add "N" to that variable before

invoking an I/O routine to write N bytes to the

disk. But if the field that normally contains 0

were changed to something else, say 30,000,000,

by a cooperating virus (or inadvertently, by

another program), all of the disk could be wiped

out. Although loop-free programs offer some
defense against such techniques, not all programs

can be economically loop-free even if all

programmers were disposed to be so security

conscious. In addition, some basic computer

instructions, notably string move operations, are

inherently vulnerable to attack by changing the

length operand. Unless the purpose of every

single assembly-language instruction can be

justified and tested with all possible variations of

input, it is almost impossible to prevent such

effects in a general purpose program.

Unfortunately, these techniques and others can

be combined to form what might be called binary

viruses. Like binary nerve gases, the individual

components of the binary virus are entirely

benign, but when both are run together, or one

after the other, the results are fatal. One
program might contain the viral reproduction

mechanism and another program could contain

the signal which would activate it. A third

program might trigger the act6al damage
function. If data-sensitive rather than
instruction-flow sensitive programming
techniques were used, the individual programs

could be tested forever, even using branch-

tracing techniques, yet the ill-effects would never

be revealed until at least two programs were

combined.

Detailed, instruction-by-instruction simulation

testing may be helpful in revealing such data-

sensitive programming techniques, and of course

these techniques are often used in debugging

complex programs. In particular, if the

simulation includes traps to detect various out-of-

range conditions, such as reading locations that

have not been set, or writing outside of the

allocated memory for that program, these

conditions may be detected. Even then, a clever

virus could perhaps detect the fact that it was

being simulated by checking the clock or reading

9

THREATS AND COUNTERMEASURES Viruses and Trojan Horses

a buffer after a read had been requested but

before the hardware would normally have had

time to respond. Realtime hardware emulation

techniques, logic analyzers, bus monitors, etc.,

can be used, but at an increeisingly greater cost in

time and hardware.

We are therefore forced to conclude that

although viral filter programs may be devised that

will detect specific viruses or classes of viruses, it

is almost impossible to discover or stop all such

attacks through a practical amount of testing or

inspection.

Instead, we should build memory segmentation

techniques and read/write protection into the

basic hardware, and construct the operating

system so that it limits the amoimt of damage that

a virus can cause. In addition, it is obviously

desirable to limit the initial introduction of

viruses into the system by only admitting

programs from presumably trustworthy sources.

It must be emphasized that the viruses and
Trojan horse programs that have appeared to

date have been relatively unsophisticated in terms

of their construction and effect. In particular, the

damage done by the attack has usually been
severe and obvious. More subtle attacks can

probably be anticipated, both by amateurs and

professionals, with both the security and integrity

of data being more directly threatened, but less

visibly so.

Because Trojan horse programs and computer

viruses cannot be reliably detected in advance of

their actions, it is vitally important to use a

defensive containment mechanism that can

prevent or at least detect any change to a subject

or object, but wliich cannot itself be subverted,

in order to prevent such programs from
affecting the rest of the system.

33 Integrity Containment Mechanisms

In order to address the requirement to defend

against such attacks, Clark and Wilson introduced

the concept of a Constrained Data Item (CDI)

together with a trusted program called a

Transformation Procedure (TP), and their rule

E2 states that "The system must maintain a list of

relations associating triples of the form: (UserlD,

TPj, [CDIg, CDIb, CDIp, ...]), which relates a user,

a TP, and the data objects that TP may reference

on behalf of that user. It must ensure that only

executions described in one of the relations are

performed."

However, although a list of such triples can easily

be used to grant permission for a given TP under

the control of a given user to access a given set of

CDIs, a much more general containment
mechanism (similar to the kernel of the TCB that

enforces the mandatory access controls) is

required in order to be able to prove the negative

proposition that no other program or agent,

either internal or external, could possibly access

or aher a CDI, except as permitted by the list of

access permission triples. The difference is

crucial, for while access permission can be

granted (by individual authorized users) through

Discretionary Access Controls that could be

supported by a Class C2 TCB in TCSEC
terminology, access denial must be enforced by a

system of Mandatory Access Controls which

requires the functionality and increased assurance

of a Class Bl or higher TCB, and which can only

be overridden by the security officer or similarly

privileged users.

In addition to the general difficulty of proving a

negative conjecture, implementing a system of

mandatory integrity controls based on the use of

Access Control Lists alone would be impractical

if there are a large number of hosts connected by

some kind of a network, because of the

management problems involved coordinating all

of the triples in the system and keeping them up

to date. In particular, it would be very difficult to

injplement a system that would control the

creation and dissemination of new objects

throughout the global network. In the case of a

network, all of the Access Control Lists

throughout the network would have to be correct

in order to prevent an unauthorized
modification. The synchronization and
management of the required databases

throughout the network would be a very difficult

14. The recjuirement for a Bl or higher TCB does not necessarily mean that a conventional label-based system must be used. A
capabilities-based operating system such as the KeyKOS system being developed by Key Logic and targeted for the B3 level of

assurance would provide the strong firewalls necessary to satisfy this requirement as far as the local TCB is concerned, but the

difficulty of securely coordinating the various capabilities across a global network would remain.

A.5 - 10

CSC/PR-89/3001

THREATS AND COUNTERMEASURES Integrity Containment Mechanisms

problem, since the Access Control Lists

themselves must be Constrained Data Items.

Further, Access Control Lists can neither prevent

nor even detect the accidental modification of

data or programs by hardware or software error,

nor the deliberate modification of such objects

during the transmission or stoiage of the objects

outside of the TCB. In the general case of TCBs
which are connected via untrusted networks, or

networks which include both trusted and

untrusted hosts, it would be almost impossible to

prevent the unauthorized modification of a data

object while it is being transmitted or stored

outside of the security perimeter of a trusted

host. For example, information that is stored on

a floppy disk could presumably be modified by

anyone with access to a personal computer.

Finally, the use of Access Control Lists without

other more powerful integrity containment

mechanisms would require that many sections of

the operating system, including such general

purpose utilities such as Move/Copy, be trusted

for all users and for all files. As a result, we are

either faced with the daunting task of proving

that all such programs do only what they are

supposed to do and nothing else, or else

accepting the risk that they contain a virus or

Trojan horse program.

In summary, although the Clark-Wilson database

of triples is a powerful notational device and may

also be appropriate for certain database

implementations, it is not readily adaptable to a

network implementation. An approach to

integrity tliat cannot cope with floppy disks or

untrusted networks is impractical.

In a sense, this problem is similar to the problem

of writing information onto an unreliable

medium. We recognize that errors may occur

during the writing or reading steps, and we use

checksums to limit the occurrence of undetected

errors. Although random data errors and

hardware failures can be difficult to prevent, in

most cases they can be detected by the use of

simple checksums such as the CCITT CRC-16
cyclical redundancy check polynomial. In many
cases they can not only be detected but corrected

automatically through the use of error detecting

and correcting codes (Forward Error
Correction), or through protocols which require

that the message which is received in error be

retransmitted by the sender.

A.5 -

CSC/PR-89/3001

Deliberate attacks by either external or internal

agents are much more difficult to prevent or even

detect, however, because it has to be assumed

that the perpetrator knows the checksum

algorithm and/or error-correcting code and can

manipulate the information so that the erroneous

data appears to be correct. Only a strong

cryptographic checksum such as a Manipulation

Detection Code (MDC) (which is protected by an

external encryption scheme such as a digital

signature) or a Message Authentication Code

(MAC) (which uses a secret cryptographic key to

authenticate both the sender of the message and

the message contents to the receiver) can detect

such an attack.

Therefore, instead of attempting the almost

certainly futile task of preventing such a change

throughout the entire network (including the

receiving TCB) by controlling who can write or

alter a Constrained Data Item, it might be better

to rely on detection mechanisms which would

invalidate the data if such a change were to occur,

plus the use of normal recovery/restoral

mechanisms to repair the damage. Instead of

relying or global coordination in order to attempt

to control which individuals and processes can

access a data item, we could split the control

responsibility into two parts:

1. Conventional security mechanisms,

including encryption, can be used to

prevent unauthorized individuals from

reading or executing a data object. The

determination of what users will be able

to read or execute the object can be

made by the originator, and enforced by

cryptographic means that include end-

user to end-user file encryption.

2. Cryptographic checksum and digital

signature mechanisms can be used to

allow the recipient of the information to

determine its believability, including an

assessment of the credibility and/or

authority of the originator and the

absence of unauthorized modification.

To reiterate this basic principle: The originator

of an object should be responsible for assuring

its security. The recipient should be responsible

for determining its integrity.

11

THREATS AND COUNTCRMEASURES Integrity Containment Mechanisms

A cryptographic checksum checker that is

contained within the protected TCB can be used

to protect against an undetected modification of

a data item, even if the modifications were to

occur while the object was being transmitted,

transported, or stored outside the security

perimeter of the TCB. By securely affixing a

checksum to the object when it is first created

(within the TCB), and then recomputing the

checksum over the data item and comparing it to

the recorded original whenever the object is

brought into the TCB again, any modifications

can be quickly and accurately detected. The use

of a digital signature mechanism of the type

proposed by Rivest, Shamir, and Adleman,^^ the

so-called RSA algorithm, can also provide non-

repudiation of the authorship and contents of the

particular data item, if that is required.

Although the checksum and digital signature

technique could be applied at any level of

abstraction from a field within a record, to

individual records, individual files, collections of

files (a volume), etc., in most cases protection at

the file level will give adequate granularity

without an excessive amount of overhead. If

the checksum is calculated at the file level, the

checksum calculation must be chained from

record to record within the file in such a manner

as to prevent entire records from being added,

deleted, modified, repeated, or rearranged.

If all of the files accessed by a program were

protected by a checksum and digital signature

recorded in a file label by the TCB and checked

each time a file was accessed, a very significant

degree of protection against undetected

modification would be provided. The extension

to cover multiple TCBs and data that is stored or

transmitted over non-secure media would then be

straightforward, whereas the coordination of

Access Control Lists and similar mechanisms to

prevent such modification across multiple TCBs
would be nearly impossible.

Although it could be argued that an integrity

label that contains a cryptographic checksum or

digital signature is simply a different form of

Access Control List, there is an essential

difference. In the case of a large network, all of

the Access Control Lists throughout the network

would have to be correct in order to prevent an

unauthorized modification. With a digital

signature mechanism, however, once the

originator signs the object any recipient of the

object can verify its contents at any time, and

thereby detect any unauthorized modification.

In addition to protecting data while outside the

security perimeter of the TCB, a digital signature

and checksum technique may facilitate the design

and certification of the TCB itself. A
cryptographic checksum not only provides an

indisputable indication if any tampering has

occurred, it also provides a quantifiable level of

confidence that tampering has not occurred. It

may therefore be significantly easier to evaluate

the integrity of a TCB which incorporates a

cryptographic checksum and digital signature

technique as part of its Mandatory Access

Control and Trusted Distribution procedures

than to attempt to prove the negative conjecture

about the entire system, i.e., that no modification

could have occurred to the TCB or any associated

application programs or data, nor to the various

security labels associated with an object.

However, it is obvious that the use of a digital

signature by itself is not sufficient to guarantee

the integrity of an object, any more than a

signature on a check necessarily means that the

signer is authorized to withdraw funds from that

account, or that there is money in the bank to

cover it. We still have to ensure that the

15. Rivest, R. L., A. Shamir, and L. Adleman, "A method of obtaining digital signatures and public key cryptosystem,"
Communications af the ACM, vol. 21, no. 2, Feb. 1978, pp 120-126.

16. The strength of the RSA digital signature algorithm depends on the difficulty of factoring a large composite number. Present-
day techniques allow the economical factoring of 100 decimal digit numbers, or approximately 330 bits. ITie difficulty of
factoring roughly doubles for every three additional decimal dieits in the composite number, whereas the expense of factoring

a given number has decreased by roughly an order of magnitude per decade. Maintaining adequate security and integrity for

stored records therefore requires many hundreds or even thousands of bits in each digital signature, if the secrecy and /or
integrity of the object is to withstand four or five decades (for a significant fraction of an individual's lifetime) of improvement
in factoring technology. The design implications of this amount of overhead are considerable.

17. A cryptographically strong 128-bit checksum would require generating, sorting, and comparing approximately 2^^ or 10^^

variations of two different sets of data objects in order to have approximately a 50% chance of spoofing the system via a brute-

force or sooUed Birthday Attack. Although the generation of that many variations might be marginally feasible, storing,

sorting, and comparing that many checksums is beyond the present state of the art.

CSC/PR-89/3001
A.5 - 12

THREATS AND COUNTERMEASURES Integrity Containment Mechanisms

originator of the object was appropriately

authorized and that the inputs to the creating

process were valid as well as the process itself,

and we wiU discuss those points in detail later on.

Giving the recipient of a data item the primary

responsibility for determining whether an object

has been tampered with (by verifying the

checksum) and whether it was created by an

authorized individual (by validating the digital

signature) has another significant advantage — it

allows us (the system) to change "our" minds, and

to reject data items that might have previously

been viewed as acceptable. If necessary,

erroneous or malicious programs, incorrect or

modified data items, and untrustworthy data

originators could be "blacklisted" so that they

would no longer be honored. Interestingly, viral-

type dissemination mechanisms could be used to

"spread the word" throughout a network, using

an authenticated blacklist message that is

digitally-signed by an appropriate authority.

Any new object that is entered into the system

from the outside should therefore be
"sponsored" by an authorized user who takes

some responsibility for introducing the item. If

the object is later determined to be a Trojan

horse program or otherwise corrupt, there will at

least be some clear evidence as to where it came

from, and a basis for administrative action or

even prosecution.

The fundamental requirement for system and

application integrity in a global, untrusted

networking environment, Le., to ensure that an

object was created by an authorized user or

process and has not been modified since, can now
be summarized by two rules;

Rule 1 — Immutability:

It shall be possible to verify with a

very high degree of assurance, e.g.,

through the use of a strong
cryptographic checksum, that the

contents of an object (data or

program) have not been changed,

either accidentally or deliberately,

since the object was created, brought

into the TCB, or last modified by an

authorized user. Objects whose
checksums indicate tampering has

occurred shall be rejected.

Rule 2 — Attribution:

All programs and data introduced

into the TCB or subsequently

changed must be explicitly attributed

to an authorized user or
"originator. "^^ Objects which
cannot be attributed to an authorized

user shall be rejected.

3.4 A Definition of Integrity

A number of different definitions of integrity

have been put forth by different authors, and

there has been relatively little agreement as to

what is meant by the term. Some definitions

(notably those before Clark- Wilson) tend to

define integrity in terms of the absence of

modification (immutability), with or without the

notion of attribution. Other definitions tend to

highlight the notion of duly-authorized

modifications, and emphasize the "correctness"

of the information with respect to some external

"reality." In a sense, the argument over

terminology may reflect a disagreement over

epistemology and the nature of truth which

appeals to different dictionaries carmot resolve.

While it doesn't really matter whether we call this

"thing" that we have been talking about

"integrity," or "verity" (which perhaps comes

closest to the notion of correspondence with an

external reality, although it is an uncommon
word), or even "hozzanga," a concrete definition

should at least be provided for the sake of clarity:

Integrity is a property of those processes

(subjects) and information (objects) that meet

an a priori expectation (specification) of a level

of quality that is considered acceptable for a

particular application.^^

A number of observations can be made regarding

this definition:

18. This rule also addresses the Clark-Wilson requirement for an Integrity Verification Procedure, which is intended to ensure the

integrity of data that is input to the system by validating it against the reality of the external world, e.g., by requiring that the

inventory records accurately reflect what is on the shelves.

19. Adapted from a definition suggested by Dr. Willis Ware, in Robert Courtney, Jr.'s "Some Informal Comments At>out Integrity

and the Integrity Workshop," distributed to participants at the NIST Invitational Workshop on Data Integrity,

CSC/PR.89/3001
A.5 - 13

THREATS AND COUNTERMEASURES A Definition of Integrity

1. Integrity is not quality per se (i.e.,

accuracy, precision, timeliness,

completeness, consistency, robustness,

pedigree, etc.), but rather the extent to

which those qualities tal^en together is

considered adequate for a given

purpose.

2. The definition of acceptable quality must

consist of a set of syntactic and semantic

rules that can be either static or dynamic,

but are specific to a given application or

purpose.

3. The integrity of information (objects)

may be intrinsic to the data (within a

given context), but is more often

extrinsic, i.e., a function of the input data

and the subject responsible for the

creation of the object.

4. The more tolerant the syntactic and

semantic rules are for a given
application, the more likely it is that they

will be satisfied by a given program or set

of data. As a result, the integrity of the

information may be high, but the quality

may be low.

5. The integrity of information means
more than just checksums on data. The

integrity of information may, but does

not necessarily, change as the

information changes form. For example,

if a message is received in 7-bit ASCII
code, that message can be translated with

absolute accuracy into 8-bit ASCII, and

except for a few graphic characters that

do not have an equivalent mapping, it

can be translated into 8-bit EBCDIC.
But a message that uses both upper and

lower case characters cannot be

accurately translated into Baudot or

Morse code, for the EMPHASIS given

by capital letters will be missing if only

capital letters can be represented. If a

process changes the form of information,

we must somehow address the integrity

of that process to ensure that the

meaning of the information is not

changed, or changed in a measured way.

6. Integrity is not reliability. Reliability

applies to hardware processes which may
fail due to random, non-deterministic

causes. Software is perfectly reliable and

deterministic, in that it never fails or

deteriorates by itself — a program will

always behave in exactly the same way if

it receives exactly the same inputs.

A metric for integrity must consist of (1) a

specified set of rules and (2) a measure of trust

or confidence, (3) that is determined by an
acceptable authority.

3.5 Integrity Domains

Clark and Wilson did not define integrity, but the

major thrust of their paper was that it is

necessary to ensure that certain objects (data or

programs) or modifications to previously existing

objects are the result of actions by authorized

users, effected through sufficiently trusted

programs as to guarantee the integrity of the

result. They proposed to accomplish this by

requiring that so-called Constrained Data Items

(CDIs) can only be manipulated by a restricted

set of Transformation Procedures (TPs), in

accordance with rules which ensure that all such

transformations are "well-formed".

Clark and Wilson did not define what constitutes

a "well-formed" transaction either, presumably

leaving that to the human certifier of the TP.

However, their concept is obviously one that

involves a completed state transition, and seems

to have been highly influenced by their model of

double-entry bookkeeping as the archetype of a

high-integrity process. Although they do not

stress the point, in some systems which operate in

a distributed environment it may be particularly

important that the well-formed transaction be

carried out as a single atomic activity, so that the

two coordinating processes know exactly what

the state of the system is. This frequently takes

place through a two-step procedure where the

process A essentially says "Prepare to commit X,"

process B replies "Committed to X," and then

Process A instructs either "Commit" or "Abort,"

and B acknowledges. The Clark-Wilson rule C2
therefore requires that the TP must take a valid

Constrained Data Item (CDI) from one valid

state to another, while their rule C5 states that a

TP must take an Unconstrained Data Item (UDI)

{e.g., untrusted user input) to a valid state (a

CDI), or else perform no transformation (a null

or error output, presumably).

CSC/PR.89/3001
A.5 - 14

THREATS AND COUNTERMEASURES Integrity Domains

In combination with their rule CI, which requires

that a set of Integrity Verification Procedures

(IVPs) must properly ensure that all CDIs are in

a valid state at the time the IVP is run, they

suggest that a process similar to mathematical

induction will result: If the system can be shown

to be in a valid state initially; if all UDls are

edited or transformed into CDIs by a TP; and if

all TPs are certified to be valid (i.e,, they must

take a CDI to a valid state, given a valid initial

state); then the system will remain in a valid state

after the TP has executed. Indeed, this "proof by

induction" is seemingly one of the most attractive

results of their paper.

Unfortunately, the Clark and Wilson inductive

model is not very useful, for it cannot be

assumed that a TP has luiowledge of the entire

system. To do so would violate virtually all

modern precepts of modular system design,

controlled interfaces with information hiding,

etc., as well as requiring impracticably large TPs.

Instead, it must be assumed that a TP can only

have knowledge of its explicit data inputs (either

CDIs or UDIs) plus its built-in (programmed)

syntactic and semantic processing rules.

Since a TP cannot have a global view of what

constitutes a "valid" data input but can only

process data in accordance with the information

it has available, it follows that the 'S^alid" output

of one TP may be Judged invalid by another TP
that has a different set of inputs and/or
syntactic or semantic rules.

An example of such an apparent contradiction

would be a Pascal source program that

erroneously called the external ARCSIN function

by its Fortran name ASIN, instead of the

Microsoft Pascal library function ASSRQQ. The

compiler would consider the reference to ASIN
to be perfectly valid, since it was defined with an

EXTERN reference, but the linkage editor would

not be able to find ASIN in the Pascal subroutine

library. The output from the compiler is

syntactically and semantically valid as far as the

compiler (or even the programmer) knows, but

the overall state of the system will not be valid

unless the CDI output by the compiler is rejected

by the link editor.

It is therefore necessary to combine Clark and

Wilson's rules C2 and C5, and require that a TP

perform a valid transformation, or else no

transformation, given either a CDI or a UDI.

The distinction between a CDI, which has already

passed at least some validity tests, and a UDI,

which may not yet have passed any screening

tests, is therefore only a matter of degree with

respect to the internal functioning of the system.

The alternative would be to perform some sort of

an information flow model verification of the

entire system, recognizing that some CDIs are

more valid and/or more critical than other CDIs,

at least with respect to the overall system.

Thus it can be seen that "validity," like "beauty,"

is not absolute but only relative — the question

always has to be asked, "Valid with respect to

what criteria?" As a result, it is very important to

carefully describe the set of allowable inputs and

the syntactic and semantic rules that have been

used to establish the relative validity of a CDI, or

more pragmatically, to establish what validation

program(s) and what data were used to produce a

given CDI.

We will define the set of allowable inputs to a

process together with the syntactic and semantic

rules used to validate or reject those inputs and

optionally produce one or more outputs an

integrity domain.

The Clark-Wilson induction must therefore be

modified to state that if all the IVPs and TPs are

certified as valid with respect to a particular

domain, and if all the CDIs are valid with respect

to that same domain, and if only TPs that have

been certified valid are allowed to access the

CDIs, then all of the CDIs will remain valid with

respect to that domain (only).^^

Because it can be shown that there are programs

whose properties are theoretically indeterminate

{i.e., we cannot even decide in advance whether

the program will terminate or not, much less what

the final state of the system will be if it does), it is

often not possible to say with certainty whether a

given program will obey the syntactic and

semantic rules or not. And as both a theoretical

and a practical matter it usually not possible to

20. Even then we must be careful to state that the TPs must be certified with respect to their dynamic properties. Either the TCB
or the TPs themselves must enforce the proper sequencing of processes against data and protect agamst processes being run

too few or too many limes, or in the wrong order, or the results may still be mvalid.

CSC/PR.89/3001
A.5 - 15

THREATS AND COUNTERMEASURES Integrity Domains

test a program exhaustively, either. The best we

can do in general is to estimate the probabiliiy

that the rules will be obeyed, either by

pragmatically observing the behavior of the

program over a wide variety of inputs, or else by

applying human experience and judgment and

any available formal design and testing tools in

order to arrive at an educated guess.

We can therefore conclude that the integrity of a

process is probabilistic, not binary, and can only

be defined relative to a specified integrity

domain. Further, although the process that

produced a given data item either did or did not

conform to the syntactic and semantic rules, and

therefore it could be argued that the data item

either has complete integrity or it doesn't, we
have no operationally useful way of determining

that fact, either a priori or a posteriori. For that

reason we should consider the integrity of an

object to be probabilistic as well.

When we proposed a definition of integrity, one

of the aspects of quality that was mentioned was

timeliness. Although Clark and Wilson discuss

the necessity of ruiming an IVP periodically, their

model does not specifically address the possibility

of information becoming stale. We will assume

that the rules that make up an integrity domain

are invariant over time, although they may be

dynamic in that they involve previous data inputs,

may maintain a history, and may include time as a

parameter. On the other hand, although we may
have a very high confidence that the computer

model was calculated correctly originally, we may
have a steadily diminishing confidence that the

model continues to correctly mirrors reality if the

reality can change independently of the model.

We can solve this problem by making the

confidence or probability portion of the

definition of integrity a time-dependent
parameter, so as to force the correspondence

between the model and reality to be periodically

revalidated by reranning an IVP.

Finally, as we concluded in our discussion

regarding viruses, we must provide an integrity

confinement mechanism that will ensure that

strong "firewalls," including such techniques as

memory segmentation and read/write protection,

are provided to prevent objects from being

tampered with and subjects from being misled

while they are contained within the TCB.

For these reasons the Clark and Wilson rules CI,

C2, and C5 will be replaced with the following:

Rule 3— Validation:

Transformation Procedures (TPs)

are subjects (processes) that are

trusted to process objects
(information) within a defined scope,

in accordance with the rules of a

specified integrity domain. TPs shall

either validate or reject objects that

fall within the scope of their integrity

domain, or else rely upon the TCB to

provide appropriate integrity

constraints so that the TP can only

access objects which have been
previously validated by other TPs
and not modified since. No TP shall

be allowed to create, modify, rename,

or delete an object whose integrity is

outside the scope of the TP's

certification. The integrity of an

object may diminish over time if the

representation provided by the

computer model begins to diverge

from the external reality, or vice

versa.

Rule 4— Certification:

Transformation Procedures (TPs)

shall be certified by an approval

authority to perform their function

correctly (within some specified

probability of error), properly

screening data inputs and producing

the prescribed outputs in accordance

with a well-defined set of syntactic

and semantic rules that constitute

the integrity domain of that process.

There is a considerable body of art and science

that has been developed concerning the problem

of how to specify, design, develop, test, and

certify application programs to be "correct."

Although much improvement could presumably

still be made in this area, many books have been

written about the subject and we will not concern

ourselves further with this important and
admittedly difficult task. Instead, we will

continue to focus on the confinement
mechanisms that a Trusted Computing Base must

present in order to assure that certified programs

will be executed correctly, i.e., in accordance with

CSC/PR"89/3001

A.5

THREATS AND COUNTERMEASURES Partition of Change

the constraints of Rule 3 and other principles yet

to be discussed.

3.6 Partition of Change

In addition to constraining what data a TP is

allowed to process, Clark and Wilson state that

the system must be capable of enforcing a

principle of separation of duty between duly

authorized users, such that certain programs can

only be executed by certain individuals and

collusion is required to circumvent these

controls. Although collusion is certainly not

impossible, observation of human nature over

many centuries has shown that it is much more

difficult to get two people to agree to commit an

illegal or unauthorized act than one person.

Because conspiracy to commit a fraud is generally

a crime even if the act is not carried out, the

person proposing the collusion can never be sure

that the other person will not turn him in for the

reward, rather than acting as his partner in crime.

It is best, of course, if the separation of duty

involves two people from significantly different

backgrounds and responsibilities, so that they are

less likely to succumb to a common temptation."

Lee^ has pointed out an interesting difference in

the assumptions made about the trustworthiness

of individuals between the military and the

commercial security environment. In the military

it is assumed (more or less) that users are

trustworthy to the extent of their clearances, and

Discretionary Access Controls and
compartmented controls are primarily used in the

exception to limit the dissemination of extremely

sensitive information to those who don't have a

need-to-know. In the commercial world, on the

other hand, the routine imposition of the

separation of duty requirement is a reflection of

the perhaps cynical assumption that eventually

every man has his price, and that at some level all

users must be considered potentially

untrustworthy.

However, there is more to the separation of duty

requirement than just the need to impose checks

and balances and ensure that conspiracy is

required to circumvent the controls, as described

by Clark and Wilson. In this respect we must

respectfully disagree with Johnson,^'' who claims

that "Background investigations for criticality are

unnecessary. A person with a Top Secret

clearance can be trusted to deal with Highly

Critical data and processes. A person with a

Secret clearance can be trusted to deal with

critical data and processes." Unfortunately,

someone may be loyal to his country and yet be

an outright thief, a psychopath, or an
incompetent fool.

For that reason one of the fundamental issues

with respect to separation of duty and the

concept of duly authorized users has to be the

question of our confidence in tlie competence

and judgment of tlie individual performing in

the assigned role. A person may have a Top
Secret clearance with all sorts of special "tickets,"

but that doesn't mean that he is necessarily

qualified to operate a nuclear reactor, to perform

open-heart surgery, or even to have a driver's

license. For example, nuclear weapons crews not

only have to be technically qualified to perform

their assigned functions, but even more
important for the safety of the rest of us, they

undergo frequent psychological Screening to

ensure that they are both sufficiently stable and

well- motivated that they will not release those

weapons except under very carefully defined and

controlled conditions.

An integral part of the concept of Separation of

Duty is the notion of least privilege. The TCSEC
requires the implementation of this concept in

Class B3 TCBs when it requires that "the

21. This requirement may be less important than in the past, once digital signatures and other non repudiation measures are

available to provide irrefutable evidence of who authorized or caused a given action. But an ounce of prevention is worth a

pound of cure, so separation of duty is expected to remain an important tool for the prevention of fraud and usurpation of

authority. After all, it a company fails because of embezzlement, or nuclear missiles are launched without proper authority, the

criminal conviction of the miscreant would provide cold comfort to the survivors.

22. Resorting to caricature to make the point, instead of having two Captains who both went to the Air Force Academy and who
report to the same commander serve as nuclear missile control officers, it would be better to have Gen. Curt Lemay and Jane

Fonda sharing joint control.

23. Lee, T. M. P., "Using Mandatory Integrity To Enforce "Commercial" Security," Proceedings 1988 IEEE Svmposium on
Security and Privacy, Oakland, CA, 18-21 April 1988, p. 140-146.

24. Johnson, Howard L., "Security Protection Based on Mission Criticality", FouHh Aerospace Computer Security Applications

Conference, Oriando, FL, December 12-16, 1988, Computer Society Press of the IEEE, Washington, DC, 1988, pp 228-232.

CSC/PR-89/3001
A.5 - 17

THREATS AND COUNTERMEASURES Partition of Change

functions performed in the role of a security

administrator shall be identified. The ADP
system administrative personnel shall only be able

to perform security administrator functions after

taking a distinct auditable action to assume the

security administrator role on the ADP system.

Non-security functions that can be performed in

the security administration role shall be limited

strictly to those essential to performing the

security role effectively." These requirements are

no less important for many "commercial"

systems.

We therefore have the following requirement:

Rule 5— Separation of Duty:

It shall be possible to constrain the

approval authority for a trusted

process from executing that process,

and in general to specify which
authorized users and/or combination

of users (either as a class or

individually) may or may not initiate

the execution of certain processes

and/or create or modify certain data.

In addition to the requirement to

confine programs to reading and

writing only certain specified data

items, it may be necessary for the TP
to know which human user initiated

the process, as weU as which human
user(s) created or approved the data

object(s) input to the process, and to

be able to limit the acceptability of

such data to specified individuak or

combinations of individuals, or to

exclude data created by specified

individuals.

It should be pointed out that the requirement for

separation of duty imposes a subtle requirement

on the system with respect to the global

identification of users. According to the TCSEC,
unique identification of authorized users is

required for all TCBs of class C2 or higher.

However, only at the B3/A1 level of trust is the

requirement imposed to be able to exclude a

given individual or group of individuals from

accessing an object (discretionary access control).

As a result, at the B2 level and below, naming

techniques may be used that involve the

membership of a person in some group or which

qualify the name with a host name or network

address, in order to ensure the uniqueness of the

name. Although such an approach may properly

qualify the user from the standpoint of inclusion,

it does nothing to rule out the possibility that the

same user may belong to a different group, or

have an alternative network address through
which he or she could access the TCB. In this

manner a single user could appear to be two

different individuals and thereby avoid the

separation-of-duty exclusion.

3.7 Identification and Authorization

The only way to solve this access exclusion

problem is to use a global identifier that is

guaranteed to be unique over a specified domain,

e.g., all of the TCBs under the aegis of a single

Designated Approving Authority (DAA) or

multiple DAAs cooperating under a Memor-
andum of Agreement. In the civilian world, the

DAA would correspond to a corporate-level

security officer or system administrator charged

with overseeing the installation and operation of

a network or system of TCBs. Independent

corporations and/or Government agencies could

also agree to honor each other's security controls

via a Memorandum of Agreement, for example

for the duration and scope of a teaming
agreement or subcontract. Unfortunately, the

practical and political problems associated with

creating and coordinating a master database to

ensure that all UserlDs are globally unique are

probably insurmountable.

In particular, the use of the U.S. Social Security

Number as a global identifier is not acceptable,

because it is not guaranteed to be unique (two

people may have the same number), because it is

too easy for an individual to obtain more than

one such number, and because it isn't universal (a

problem both for multinational corporations and

for the military, which has to interoperate with

NATO and other supranational forces.)

Instead, if users were required to register with

their own DAA-accredited trusted registrar and

produce adequate physical identification

documents including their birth certificate; then

their full name at birth, their mother's full name,

and the date, time, and place of their birth could

be recorded in a uniform, blank-compressed

format and the totality of that information could

reasonably be assumed to be globally unique.

Multiple registration would thereby be prevented,

assuming that corroborating evidence
(fingerprints, footprints, grade school pictures.

CSC/PR»89/3001
A.5 - 18

THREATS AND COUNTERMEASURES Identification and Authorization

the testimony of friends and neighbors, etc.) are

presented as required to confirm that the user

was presenting his or her own birth certificate. In

addition, this technique would continue to assure

the uniqueness of the individual despite marriage,

divorce, name changes, etc.

Becaiise such a lengthy string of data would be

inconvenient in use, and also because its

widespread use might violate various privacy

laws, it would be desirable to transform such a

string into a unique identifier that does not in

itself compromise the individual's privacy. A 128-

bit (16-byte) ID string could be produced by

applying a one-way cryptographic transformation

or checksum technique to this information. This

ID string or "cryptonym" could then be used in

place of or in addition to the person's full name
to assure global uniqueness. The number of

people on earth would have to increase to the

square root of 2^^^, or approximately 10^^, before

there would be a reeisonable chance of even two

people having the same identifier.^^

Although the use of a system of trusted registrars

could assure the uniqueness of an individual's

identity within the domain of cooperating DAAs,
it will probably not be feasible to have those

registrars be responsible for authenticating all of

the particular rights, privileges, and authority

conferred upon that individual, since those

privileges may be application-dependent and

difficult to coordinate globally. Instead, assuming

that an individual may be mobile with respect to

the TCBs deployed throughout a network, it

would be desirable to provide an individual's

clearance, rights, privileges, and authority in the

form of one or more machine-readable and/or

human-readable certificates which the user can

carry with him on something like a credit card or

floppy disk, which would be unforgeably
authenticated (digitally signed) by the

appropriate authorities. Presumably an
authorized sponsor such as the user's security

officer would vouch for the identity (and perhaps

the security clearance) of the individual, and

assuming that the security officer's own

credentials were confirmed satisfactorily, the

user's identity would be confirmed by a digital

signature process, based on the user's physical

possession of his certificate (something that he

holds) plus the knowledge of a secret passphrase

or Personal Identification Number (something

that he knows). As biometric identification

devices such as fingerprint readers become more

economical, the biometric identification

information could be included in the certificate

and digitally signed as well.

Once the identity of the individual has been

established and the authority of the various

individuals in the chain of command has been

confirmed, it would be possible for a centralized

authority (such as a Key Management Center or

KMC) to summarize and confirm the rights and

privileges of that individual in one digitally-signed

certificate. This top-down approach to authenti-

cation would have the advantage of speed of

confirmation since only one digital signature

would have to be checked.

Unfortunately, the top-down approach would

mean that the details of what physical evidence of

an individual's identity was examined, who
authorized an individual to do what, and to what

degree the authorizers can themselves be trusted;

would all be hidden from view from the user who
is trying to decide whether to believe another

user. Only the ultimate yes/no decision made by

some bored clerk would be available to the user

who questions another user's bona fides. While

such a scheme might be suitable to protect

national-level SECRET and perhaps even TOP
SECRET data, it would clearly not be adequate

to address the delicate question of whether
someone working for the CIA was in fact a

"mole" planted by a foreign intelligence service.

A better alternative would therefore be a scheme

for bottom-up authentication that is based on the

use of a pubhc-key or digital signature algorithm.

The user would locally (and securely) generate a

pair of public/private encryption/decryption

keys and a pair of public/private authentication/

25. There are still some societal issues that would remain with this technique, such as the desire of many individuals for anonymity
and/or privacy, and the extent to which the use of a>iv globally-unique identifier would infringe upon those "rights." On the

other hand, the right of society to assume that an individual will be responsible for his actions must be considered, and the right

of a person not to have his good name impugned by someone who has the same or similar name is an equally valid concern. It

is often necessary for those with common names to file affidavits swearing that they are not the "John Jones" against whom
various liens or judgments have been filed. Finally, there are some instances where false identities or pseudonyms are officially

sanctioned. These include sealed adoption records, the federal Witness Protection Program, undercover police officers, and
various activities within the intelligence community. It is not yet entirely clear how to handle these problems, but presumably
the authority which issues the pseudonym would bear some responsibility for its misuse.

CSC/PR-89/3001
A.5 - 19

THREATS AND COUNTERMEASURES Identification and Authorization

verification keys. A local authority or registrar

would then attest to that user's identity and

perhaps his privileges, together with the

possession of the public encryption key and

public authentication key by that individual. If

necessary, a precise summary of all of the

physical evidence examined could be included in

English in the authorization text. The registrar's

own authority and digital signature would be

authenticated in turn by an appropriate

authority, up the chain of command to the DAA
or his surrogate, e.g., the system administrator.

The public authentication key necessary to

validate the digital signature of the DAA would

be securely installed in all of the TCBs under his

jurisdiction, just as in the top-down case.

The difference between the top-down and

bottom-up approach is that all of the intervening

authorizations and digital signatures would be

included in the chain of authorization in the

bottom-up case, and the decision as to the

acceptability of the evidence would rest with the

user who wished to communicate with or believe

that user. Once the accepting user made the

decision as to whether to accept a user's bona

fides, he could authorize that correspondent

himself, using his own private key, and thereby be

able to revalidate the user in the future with only

one step.

In addition to relegating the decision process to

the user, the bottom-up approach has the

advantage that multiple independent chains of

command may be accommodated, for example

where two peer entities agree to honor each

other's affidavits through a Memorandum of

Understanding. A practical example would be

the case where two corporations agree to form a

team or undertake a contractor-subcontractor

relationship.

Finally, and this may be ttie most important

practical point, ttie l)ottom-up approach does not

require the creation and administrative expense

of a centralized Key Management Center, which

must be trusted by all parties who wish to

communicate securely.

3.8 Roles and Aliases

Although it is essential that an individual's unique

identity be used in deciding questions of

discretionary access control and discretionary

integrity control, as well as in auditing that

individual's actions, from time to time the

individual may legitimately take on various roles

and aliases in addition to his own unique identity.

The concept of an alias is closely allied with the

concept of a group. In situations where there is a

certain interchangeability of personnel, any

member of a group may be allowed to access

specified objects, even though such objects are

normally encrypted using the public key of a

specific individual. Messages addressed to a

functional title such as Manager, Department

XYZ, for example, may be read by anyone
authorized to read such messages. Rather than

the all too common practice of sharing passwords

(a practice which should eventually be made
impossible through the use of biometric

identification devices), a manager may explicitly

delegate the opening of departmental mail to a

secretary or administrative assistant, with

instructions to route it to the appropriate

individual for disposition. The secretary or

administrative assistant would then log on with

permission to access any of the manager's

incoming correspondence under the alias of the

manager, but messages marked "Personal" could

only be read by the manager himself.

Although the use of an alias may authorize

someone to read someone else's messages, the

person acting as an alias would not be allowed to

sign the principal's outgoing correspondence,

unless that person has explicitly been granted

permission to act as an agent for or in the role of

the principal, typically under a Power of Attorney

or Delegation of Authority instrument. Again

referring to functional titles, it is possible that an

individual is assigned a particular position or role

for only a limited time, ranging from a particular

shift in the case of a Duty Officer to an indefinite

period in the case of a delegation of authority.

Finally, in order to limit an individual's

responsibility and authority (and Ukewise his

liability), certain caveats may be associated with

an individual's digital signature, including a range

of validity dates. An individual might want to

limit the liability associated with the use of his

digital signature for personal expenses to a few

thousand dollars, while in his role of a Corporate

Officer he might sign checks and other financial

instruments whose value might be in the millions

of dollars.

CSC/PR-89/3001
A.5 - 20

THREATS AND COUNTERMEASURES Roles and AJiases

For these reasons, it is necessary to clearly

establish what role a given user is executing when

performing certain actions, and his or her

authority to perform in that role must be

confirmed by an explicit document of

authorization. The user will normally be required

to sign (either digitally or on paper) an "Affidavit

of Legal Mark," which promulgates the user's

public encryption and public authentication keys

and provides legal notice that the user will be

accept responsibility for his digital signature as

though it were his written signature, subject to

certain caveats with respect to that role. Such a

document should be independently witnessed and

notarized in order to confirm its validity, and if

specific authority is claimed the grantor of that

authority must sign the Affidavit or another

authorizing instrument and must himself be

authorized, ultimately by the DAA.

In addition, the use of a role or alias must not

defeat the intent of the Separation of Duty

requirement. That is, an individual cannot

circumvent a requirement for two unique

signatures by signing once as John Doe, and again

as Manager of Department XYZ. Similarly, if

John Doe is excluded from some action (perhaps

because as Manager of Department XYZ he was

the certifying authority for some program, and

therefore is not permitted to execute that

program), then he must also be excluded in his

role as Manager of Department XYZ. However,

a previous or subsequent Manager of

Department XYZ would not necessarily be

excluded.

In other words, although both roles and aliases

could be thought of as defining a virtual user, the

separation of duty requirement applies to real

users.

We therefore have the following rules:

Rule 6— Identification:

All users of the system shall be

enrolled into the system and uniquely

and unforgeably identified by a

trusted registrar, so that their actions

may be controlled and audited by an

independent auditor. The use of an

alias or role by a user shall not

exempt that user from any
Separation of Duty requirements.

A.5 -

CSC/PR-89/3001

Rule 7 — Authorization: An individual's

clearances, rights, privileges, and

authority shall be authenticated as

having been granted by a duly

authorized individual. The identity

and authority of the individual

granting such authorization,

including the registrar who enrolls an

individual in the system, shall in turn

be confirmed by his or her superior

in a chain of command. Any caveats

associated with the individual's

digital signature should be carefully

noted before accepting the validity of

that digital signature.

3.9 Sequencing and Program

Confinement

Clark and Wilson's rules do not specifically

provide a mechanism to enforce the proper

sequencing of transactions, jior to confine the

processing of data to a particular time of day or

day of the week, but it is clear that programs must

be applied to data items (or vice versa) in the

prescribed order and at the correct times to

ensure the validity of the output.

In particular, it is may be necessary to ensure that

a process or transaction is neither omitted nor

run more than once. The database of triples

(UserlD, TPj, [CDIg, CDI^, CDI^, ...]) proposed

by Clark-Wilson can be implemented in such a

way as to assure that a particular program must

be run against a particular data item before

another program can be run, but only if there is a

unique intermediate output file CDIj which

cannot be output by any other TP.

Similarly, the triples mechanism is not sufficient

in and of itself to protect against a program or

data transaction being executed multiple times.

A bank deposit could therefore be credited twice,

or two checks issued in payment of a single

invoice, without violating the Clark-Wilson

TP/CDI information flow rules. In order to

prevent this from occurring, either the data

inputs must be tested and then marked by the

processing program as having been processed, or

the Access Control Lists themselves must be

21

THREATS AND COUNTERMEASURES Sequencing and Program Confinement

updated to prevent a particular file from being

accessed again.

In addition, running a program at an

inappropriate time, e.g., before the end of the

banking day, or at night or on weekends when the

ADP center is normally shut down, may result in

incomplete or erroneous data and may also be

indicative of an attempt to defraud. Any
technique that can provide an assured pipeline

can provide the necessary assurance of proper

sequencing, but the TCB cannot reasonably be

expected to build in all of the necessary time-of-

day and day-of-week constraints and exceptions

for each TP.

The use of the Clark-Wilson triples mechanism

by itself is neither necessary nor sufficient to

guarantee the proper dynamic performance of

the system.

Finally, serious theoretical difficulties are

involved in attempting to assure the general

sequencing and synchronization of inputs and

processes throughout a network, although these

problems may be solvable in the context of a

particular application.

It is therefore suggested that any requirement

that TPs run in a certain sequence, or only at

certain times of the day or days of the week, be

addressed by the certifier of the TPs themselves.

Instead, we will only provide the necessary

mechanisms to allow the TPs to enforce these

rules:

Rule 8— Trusted Date/Time:

The TCB shall provide a trusted

date/time function that is maintained

to within N seconds of GMT,
together with an offset or correction

to obtain the local time, but which is

not necessarily closely synchronized

with any other TCB. Only the DAA
or his designee shall be allowed to

reset the date/time function, and any

attempt to tamper with the

date/time shall invalidate the digital

signature of the TCB (by destroying

the secret signature key of the DAA
that is stored within the TCB), and

thereby invalidate all data produced

henceforth.

A.5
CSC/PR-89/3001

Rule 9 —- Trusted Sequencing:

The TCB shall provide sequencing

mechanisms that are sufficient to

assure that programs are applied to

data items in the prescribed order.

The trusted Transformation
Procedures themselves should be

certified as implementing any
necessary constraints as to the

permitted times-of-day or days-of-

the-week constraints on the

execution of that TP.

3.10 Auditing and Journalling

Clark and Wilson suggest that all TPs write

sufficient information to a protected data item (a

transaction journal or audit log) to permit the

reconstruction of the operation. Because the

TCSEC requires that all TCBs of class C2 or

higher maintain an audit log, an obvious question

is whether the TCB-provided audit log would be

sufficient for this purpose. Unfortunately, the

answer is no.

3.10.1 Integrity Audit Requirements

The audit log required by the TCSEC is primarily

concerned with detecting various threats that

might lead to a compromise of sensitive or

classified information: "The audit mechanism of

a computer system has five important security

goals. First, the audit mechanism must allow the

review of patterns of access to individual objects,

access histories of specific processes and

individuals, and the use of the various protection

mechanisms supported by the system and their

effectiveness. Second, the audit mechanism must

allow discovery of both users' and outsiders'

repeated attempts to bypass the protection

mechanisms. Third, the audit mechanism must

allow discovery of any use of privileges that may

occur when a user assumes a functionality with

privileges greater than his or her own, i.e.,

programmer or administrator. In this case there

may be no bypass of security controls but

nevertheless a violation is made possible.

Fourth, the audit mechanism must act as a

deterrent against perpetrators' habitual attempts

to bypass the system protection mechanisms. The

fifth goal of the audit mechanism is to supply an

22

THREATS AND COUNTERMEASURES Integrity Audit Requirements

additional form of user assurance that attempts

to bypass the protection mechanisms are

recorded and discovered. Even if the attempt to

bypass the protection mechanism is successful,

the audit trail will still provide assurance by its

ability to aid in assessing the damage done by the

violation, thus improving the system's ability to

control the damage. "^^

The audit log required by the TCSEC is not very

useful for integrity purposes, not only because

insufficient information is recorded, but because

the audit trail is considered sensitive, must be

protected at the highest sensitivity level of the

data contained on the system, and can only be

accessed by audit personnel. The "auditors"

(using the classical accounting meaning of the

term) will probably not have the necessary

clearances to review the TCB's audit log in a

multilevel secure system, and the security

administrators, on the other hand, may not have

the training to investigate possible system

integrity violations.

The TCSEC requirement for an audit log

capability is introduced at the C2 level. Because a

C2 system does not include mandatory access

controls and is therefore not trxisted to separate

data by classification, the requirement to

essentially classify the audit data as system-high

makes sense. In addition, user login and other

identity information may be sensitive, especially if

erroneous passwords or userids are recorded,

since that information might be used to guess the

correct password. Finally, there are a number of

high-bandwidth covert channel mechanisms that

could be used to signal from a classified subject to

a subject of lower classification via the audit log,

if the audit log is not protected

On the other hand, there is important integrity-

relevant information which should be collected,

even though it may have to be classified at the

same level as the originating subject. If this

problem cannot be overcome (perhaps by a

trusted database approach, with the audit log

entries being individually classified objects), then

additional integrity audit logs may be required for

each security classification level and category —
an admittedly awkward approach. Because even

the fact of existence of a classified object may
itself be classified, it is necessary to restrict the

access to a particular transaction (UserlD, input

objects, process, output objects) to the highest

classification of any of the elements of the

transaction. Unfortunately, in the case of a

downgraded or "sanitized" object, the

antecedents of the object may have to remain

classified.

If all Transformation Procedures in fact always

worked correctly, it could be argued that an

integrity audit log would be unnecessary.

Unfortunately, in even the best of systems

sometimes things will go wrong due to human or

mechanical errors, and it may be necessary to

work backward to determine how a particular

error occurred and how to correct it, or forward

from a prior checkpoint by applying the

transaction journal. In this regard, it should be

noted that the Clark-Wilson database of triples is

not constrained so that only one TP or one user

could create a given CDI. Instead, any one of

several TPs operating on behalf of any number of

users could have conceivably created a given CDI,

so if an error occurs the database of triples does

not contain sufficient information to

unambiguously pinpoint the source of the error.

From the standpoint of integrity, the

fundamental audit requirement is to record

which users ran what processes against what
data inputs in order to produce a given output or

outputs (including modification of the input.)

The intent is to record an audit trail (not

necessarily produced all at one time or in one

place) which will clearly and unambiguously

indicate how a particular object came to the

current state, and to be able to derive how
previous versions of that object looked at any

point in the past. For that reason, financial

transactions and processes involving strong

configuration management should also keep a

transaction journal which shows in greater detail

exactly what operations were performed, so as to

allow the data to be reconstructed or "backed-

out" in the event of an error or required restart.

Because it may be important to detect a process

which has been run twice, e.g., printing an
unauthorized set of duplicate payroll checks, it is

necessary to collect all of this integrity-relevant

information on a centralized basis (at least at

each host).

26. A Guide to Understanding Audit in Trusted Systems, NCSC-TG-001, Version-2, National Computer Security Center, 1 June
1988.

A.5 - 23

CSC/PR-89/3001

THREATS AND COUNTERMEASURES Pedigree and Provenance

3.10.2 Pedigree and Provenance

Although a centralized audit trail is necessary, it

is not always sufficient. In particular, in a

networking environment it will frequently be

impractical to attempt to locate and access the

appropriate audit database remotely. This is

particuleu-ly true of data or programs that may be

widely disseminated, where the transaction

journal or audit log that contains the evidence of

that ob ject's creation may not be readily available

to or known by the potential users of that

program or data, or even all contained in one

place.

For that reason, in addition to keeping a

centralized audit log, it would be highly desirable

to incorporate the integrity-relevant audit data

in a portion of an integrity label that is

associated with the object (program or data

item) itself, and for a subject to be able to require

that information be provided in order to establish

how the current instance of that object (and

previous instances, if necessary) was produced.

Therefore, in addition to the cryptographic

checksum, attribution, and integrity domain
markings contained in an integrity label, the audit

data should optionally identify the process that

was used to create the object; all the data inputs

to that process; the date, time, and place of

execution of the process; and the authorized user

who initiated the process and/or approved the

results. We will call such information in the

object's integrity label the pedigree of the object.

The pedigree should be cryptographically bound

(i.e., by a digital signature) to the object's

contents so that there is no question as to its

authenticity.

In many data processing applications, notably

program development, there is a requirement for

strong configuration management control over

the final article. In order to ensure that the right

components were included in the final "build," it

is desirable to be able to work backwards from

the pedigree of the final object to the ultimate

source, i.e., to produce a complete bill-of-

materials. An example of the application of such

a bill-of-materials would be in the generation of a

trusted application program or the TCB itself,

where it is necessary to clearly establish the

identity of all of the base source program files

plus all of the source program revisions (adds,

modifies, and deletes); the macro libraries used;

the compiler(s) used and the object modules

produced; the link editor used and the link library

referenced, plus the set of control statements

used; etc.; so that an complete picture would be

available of what made up that program or

system.

In addition to the strictly process-dependent

derivative information that flows from the source

code to the object modules to the load module

and can therefore be traced backward, there is

often additional ancillary information that is

somewhat more loosely bound to the object.

Examples would include the design specifications;

user documentation; test specifications, test cases

and results; performance specifications and final

data, certification and accreditation information;

restrictions and known problems; etc. In many
cases the association of this ancillary information

with the object occurs after the creation of the

object and represents a result obtained from the

object, i.e., a forward linkage. Whereas the

backward linkage of the pedigree can be

expressed concisely and accurately in machine-

readable form, this ancillary information typically

involves an statement in English or some other

natural language by an authorized user as to

some fact or relationship.

William Murray has referred to the concept of

ancillary information which is associated with an

object as the provenance of the object. Although

the Random House unabridged dictionary defines

provenance as simply "the place or source of

origin," the recent Supplement III to the

definitive Oxford English Dictionary defines

27. Such a scheme was implemented in the configuration management controls of the SAFEGUARD anti-ballistic missile defense
program produced by Bell Laboratories and IBM in the early 1970's. The original rationale for the scheme was to ensure that

programs (which were loaded into read-only memory and therefore were compiled separately from data) were compiled or
assembled after the data objects they referred to, in order to ensure that the proper offsets were used and also to ensure that

recompilation of the program portion did not affect any program address constants stored in the data portion. The scheme was
extended to carry the program identifiers of source and macro statements through to the object modules, and to carry the

object module identifiers through to the "thread" tape that contained the final control program for the SAFEGUARD
computer. Sufficient bill-of-materials information was therefore available to precisely define the entire contents of the system,

together with the origin of each component. However, no cryptographic checksums were used to protect this information, so it

was still possible to patch" the program — a deplorable practice. The author would be interested to learn of other systems

which have implemented such concepts.

CSC/PR.89/3001
A.5 - 24

THREATS AND COUNTERMEASURES Pedigree and Provenance

provenance as "The history or pedigree of a work

of art, manuscript, rare book, etc., concretely, a

record of the ultimate derivation and passage of

an item through its various owners." One of the

references cited by the OED states "Also

included would be all published documents,

catalogues, and journals that contain references

to the painting, along with reproductions,

exhibitions, and sales records, as well as

correspondence, especially of the artist, in which

mention of it may be made." The term is used

similarly in forestry to indicate the origin of a

genetic line, and in etymology to include the

derivation of a word together with illustrative

examples of its use at a particular time. The use

of this term for the present purpose therefore

seems quite appropriate.

A recorded pedigree and/or provenance which is

irrefutably bound to the contents of the object is

a very powerful mechanism. Because it

eliminates any doubt as to where, when, and how
an object was created and what other objects or

conditions were associated with it, it adds greatly

to the concept of closed loop control of the

system. The digital signature of the TCB will

protect the pedigree from modification, but the

provenance is essentially a statement by the

object's originator and/or other parties about the

object, and should therefore be digitally signed by

those parties.

The pedigree and provenance of the object

should be viewed as being part of the "container"

of the object, and must therefore have the same

sensitivity classification as the object itself so that

it cannot be read by anyone who is not authorized

access to the object.

3.10.3 Evidentiary Requirements

In the event that the audit trail discloses an illegal

or unauthorized act by a user, it may be desirable

to prosecute or otherwise punish the offender

under due process of law. If the pedigree or audit

log is to be used for such evidentiary purposes, it

must satisfy two fundamental requirements:

- It must be possible to clearly and
unambiguously establish what actions

were performed by the offender, without

having to resort to circumstantial or

hearsay evidence. In particular, it must

be possible to prove beyond a reasonable

doubt that the offender did in fact

commit the particular act that is alleged,

and that no one could have possibly

tampered with the evidence so as to shift

the blame to an innocent party.

- In order to distinguish betvyeen a simple

mistake and culpable negligence or

malfeasance, it is usually necessary to

show that the offender understood what

he was doing, and that he showed willful

and reckless disregard for the generally

accepted standards and practices of his

peers in the community. For that

reason, it is often necessary to prove

intent.

A digital signature or non-repudiation
mechanism can be particularly helpful in

satisfying both of these requirements.

Both the audit trail and the pedigree should be

digitally signed by the TCB itself, acting as the

agent of the DAA. Anti-tamper mechanisms

should be in place which would prevent anyone

from being able to substitute or modify the audit

trial or forge the digital signature of the TCB
without detection. If this is not possible, then it

may be necessary to periodically print out and

collect a hardcopy version of the audit trail in the

routine course of doing business. In this case it

would be desirable to have the user routinely

review and manually sign or initial the audit

record.

For transactions which are of considerable

importance it would be highly desirable for the

originating user (and/or other users, perhaps) to

digitally sign them as part of the provenance.

This would unambiguously indicate that the

resuhs have the user's approval and represent his

willing and conscious act and are of his own
volition. In this case the digital signature must be

the user's own, and not just the digital signature

of the TCB (which can properly attribute an

object to the originating user, but cannot divine

that user's intent). If the issue is recognized as

being important, the receiving subject may
require that the originator have signed the object

indicating his approval before the object will be

processed.^^

The TCB must be trusted not to save and /or

misapply the user's digital signature key without

CSC/PR-89/3001

A.5 - 25

THREATS AND COUNTERMEASURES Evidentiary Requirements

his consent. Ideally, the user's digital signature

should be computed on a "smart card" or similar

device which the user possesses, so that the user's

secret key is never out of his possession or

control. Unfortunately, the available smart card

technology is not yet capable of supporting a

sufficiently long RSA key to provide adequate

security with reasonable performance.

We therefore require the following auditing

rules:

Rule 10— Auditing:

In addition to the audit data which is

required for security, the TCB shall

at a minimum create an audit log

entry for each file which is imported

into the system or created or

modified within the system. The
audit log shall identify the authorized

user responsible for initiating the

execution of the process; the process

that was executed; and the files

and/or other objects {e.g., tele-

communications sessions) that were

read by that process; together with

the date, time, and the identity of the

TCB on which the process executed.

Each object shall be identified by its

fully-qualified name, including the

device ID and/or volume on which it

resides together with the "path" or

similar directory information, plus an

ID string (cryptographic checksum)

that uniquely represents the object's

contents. Processes (programs that

are executed by a particular user)

must be similarly identified with the

fully qualified program name
including the device ID, volume ID,

and "path," plus the cryptographic

checksum of the program module

that was executed. The originating

user's full name (not his logon

UserlD, which may be assigned

arbitrarily), plus his 128-bit unique

ID string or cryptonym, shall be

recorded. The identity and location

of the TCB shall also be recorded.

The date and time when the file was

created (closed) shall be recorded,

preferably in GMT together with

time zone offset of local time from

GMT. in order to avoid possible

confusion as to time zones and local

Daylight Saving Time practices. The

information contained in the audit

log (either separately or collectively)

shall be classified at the same or

higher level as the information from

which it is derived. Only the TCB
shall be able to write to the integrity

audit log, and only the Security

Administrator shall be able to read,

reset, or erase the audit log.

Rule 11 — Pedigree:

The TCB shall provide the option to

capture, in an integrity label that is

permanently and irrefutably

associated with that file, at least the

audit log level of detail defined above

(the pedigree) as it pertains to that

file. The identity, location, and

approving or controlling authority

(DAA) of the TCB shall also be

recorded in the integrity label so that

the record can be traced back to the

source if necessary. The originating

TCB shall "sign" the pedigree, using

a digital signature or other non-

repudiation mechanism to ensure

that the integrity of the label itself, as

well as the association of the label

with the contents of the file, cannot

be compromised. The pedigree shall

be considered part of the object, and

therefore subject to the same
mandatory and discretionary access

controls as the data object itself.

Rule 12 — Provenance:

Tht TCB shall provide a means for a

user to undeniably indicate his or her

approval of the contents of a

particular object and/or enter other

28. Some objects, e.g., notably documents and forms which are circulated for comments and approval, may require a lower level of

granulanty than just the file. For example, only the originator of a document may be allowed to modify and/or sign a certain

portion of a document. However, the custody of a document may be passed on to other users, who may ada their comments,
propose changes, and agree or disagree with the other comments. Finally, some comments may be incorporated and others

deleted from the final document, with a few being collected to form a minority opinion which may be signed by one or more
users. The overall system and available mechanisms should be flexible enough to accommodate such a process, but such
specialized functions may be relegated to a database management system or an electronic colloquy system instead of the TCB.

CSC/PR-89/3001
A.5 - 26

THREATS AND COUNTERMEASURES Evidentiary Requirements

data (typically in a natural language)

to be associated with the object as

the provenance of the object {e.g., a

description of the object's contents,

associated documentation, etc.) The
provenance shall be recorded in both

the audit log and the integrity label

of the object at the time it is

generated or added to. Any
authorized user (not just the

originator) who can access the object

can create or add to the provenance

of an object and affix his unforgeable

digital signature to it such that both

that user's portion of the provenance

and the contents of the object being

signed are cryptographically bound
together in such a manner that any

change to either the provenance or

the object will be detected. The non-

repudiation mechanism shall require

the explicit volition and consent of

the signing user at the time it is

applied, but at any time thereafter

the cooperation of the user shall not

be required in order to substantiate

the fact of his prior approval. Any
recipient of an object, including an

independent third party, shall be able

to establish the validity of the user's

digital signature beyond any
reasonable doubt. The provenance

of an object shall be considered part

of the object, and therefore subject

to the sane mandatory and
discretionary access controls as the

data object it pertains to.

3.11 Human-Readable Output

The previous discussion has concentrated on the

problem of guaranteeing the integrity of

computer-readable information, but we have not

yet discussed the problem of getting the

information into or out of the computer.

If we make use of cryptographic checksums
attached to files, we can avoid having to trust the

integrity of the network, storage devices, or even

utility routines, since any modification of the

information would be detected the next time the

checksum was verified. The question is whether

we have adequate mechamsms to protect human-

readable input and output.

In both cases, we have what might be called the

What You See Is What You Get (WYSIW^'G)
problem — how do we know that the information

in a computer-readable file corresponds to what

we see on the screen or on the printed page?

The basic problem, of course, is that most of the

time what we see on the screen or on the printed

page doesn't correspond directly to the contents

of a computer file, because we only see the

effects of a computer program operating on the

data. Only a trusted hexadecimal dump program

would show us exactly what is in a file, and for

most purposes that would be impractical.

3.11.1 Trusted Input/Display

In order to limit the scope of the discussion

somewhat, it will be assumed that all human-
readable input will be typed in via a keyboard that

is directly attached to a trusted host or

workstation, so that the cryptographic checksums

that are necessary to protect the machine-
readable information from modification can be

applied at the earliest possible moment. It will

also be assumed that the TCB supports a trusted

path to the user's video display, so that the TCB
can reliably and unambiguously inform the user

of the security and integrity levels associated with

a session, for example.

In general, the problem with trusted input is not

the input itself, but rather the correspondence

between what is displayed on the video display

and what is entered into the electronic record of

the transaction. With the exception of

passwords, which normally are not displayed on
the screen, typing is not expected to be a high-

integrity process. Instead, the human user is held

responsible for reviewing and editing the input,

and we assume that what is displayed on the

screen after the input was edited is what was the

-user intended.

At first, this doesn't seem like too great a

problem. Consider a TP that is used by a bank

officer to certify payments. The TP would issue a

call to the TCB to get the next character of input,

display the character on the display appropriately,

and perform the required function. Assuming

that the TP is trusted for this particular

application, what could go wrong?

From the standpoint of secrecy, we might worry

whether another program, perhaps a corrupted

version of a Terminate-and-Stay-Resident (TSR)

CSC/PR-89/300i
A.5 - 27

THREATS AND COUNTERMEASURES Trusted Input/Display

"pop-up" program such as SideKick, had been

inserted between the keyboard processing

program and the TP, perhaps by replacing the

interrupt vector for the Get Next Character

routine. Such programs are often used to

activate special "hot key" functions and/or

keyboard macros. However, assuming that we

have a TCB of at least a Bl level of assurance,

the keyboard will be connected to the subject that

was created when the user logged on, and the

mandatory access controls will prevent any such

program from communicating any data from that

subject to a subject of lower classification.

Even if the corrupted pop-up program were to

add or delete keystrokes the data would still be

displayed properly, and the user would be

responsible for its correctness. Assuming that

the TP is trusted to properly display whatever it

reads and to take the appropriate action, we can

conclude that no threat to the integrity of that TP
could result from the modified keyboard input.

However, a TSR could conceivably modify the

data that had been read in to the TP after it had

been displayed. In particular, whenever some

particular payee's name was entered, the program

might wait until the next field was entered (after

the information had been displayed on the screen

but before it had been written out or

checksummed), and then search memory for that

payee's name and alter the amount to be paid.

However, if the TCB implements an integrity

containment mechanism (memory protection)

which would prevent a low-integrity subject from

modifying a high-integrity object this attack

would be prevented.

A somewhat more plausible attack would involve

inserting a TSR between the TP and the video

display. For example, suppose that a corrupted

version of a video driver program were installed.

Such a program could conceivably be modified to

search for a particular payee's name and if found

delete the final digit of the amount to be paid.

The user would believe that he mistyped the

amount and would type in the "additional" digit,

thereby multiplying the amount by ten

(approximately). Another approach would be to

simply fail to present on the screen all of the

information that was read in from a file, thereby

tricking the user into approving (and perhaps

digitally signing) something that he never saw.

Corrupting a video display driver to attack a

program or data may sound far-fetched, but it

would not be at all difficult. In fact, some
standard video drivers already allow such attacks

as a system feature!

In MS-DOS, for example, the ANSI.SYS video

display driver program can be installed to allow

the user to conveniently change colors,

manipulate the cursor, and control other aspects

of the display using data that is embedded in the

character stream that is to be displayed. If

ANSI.SYS encounters an "escape" character

(hexadecimal IB) followed by a "[", the

subsequent characters are interpreted as a

command. Among the various video conmiands

is the Set Graphics Rendition command, which

can be used to change the graphics parameters,

including the color of the foreground and/or

background. In particular, if the string

"ESC[8m" is sent to the screen in text mode
(where ESC is the single escape character), the

text that follows will be displayed invisibly.

Although the use of the invisible printing mode is

convenient when entering passwords, it also

offers the opportunity for someone to include

something in a text file which most editors and

other programs would not display on the screen.

Another ANSI sequence could turn the normal

screen display attribute back on, and yet another

could reset the cursor position. A slight

modification to ANSI.SYS would allow the start

of the invisible portion of the text to be signaled

by a character or combination of characters that

would not be printable by most printers, such as

NUL (hexadecimal 00), or space-backspace. In

this manner, the "invisible" text would not be

displayed, but would be printed. Obviously all

sorts of words like "not," "except," etc., could be

inserted with grave damage to the meaning of the

text with this technique, yet the file would appear

to be properly checksummed.

At least one popular operating system fell victim

to this type of manipulation several years ago,

when users discovered that they could send

invisible messages to other users. By including a

command within the invisible portion of the

message and leaving it on the user's screen, the

next operating system command the user sent

would include the invisible command just as

though it had been sent by the user himself. The

CSC7FR-89/3WU
A.5 - 28

THREATS AND COUNTERMEASURES Trusted Input/Display

command could export all of that user's data to

the attacker, destroy or modify files, etc.

Other attacks could involve the character set that

is loaded into the graphics controller card and/or

the operating system. When operating in

graphics mode, for example, MS-DOS uses

software to define what character is to be drawn

in response to a text character input, and this

character table is unprotected in memory. By
changing the representation of a character, for

example "$" to "¥" or "£," or " + " to various

types of fraud could be carried out.

Similarly, most word processors, editors, and

other MS-DOS programs will not process or

display text that occurs after an End-Of-File

character (Ctrl-Z or hexadecimal lA) in the input

text. As a result, an obvious security and/or

integrity compromise may occur if a file is

released that contains additional information not

seen by the human reviewer, but which might be

printed by a program that relies on the physical

file length contained in the directory. In addition,

word processors and editors frequently

incorporate additional bits or characters in their

output in order to represent such printing devices

as superscripts, bold face, underlining, etc.

Depending on the output mode selected, these

characters may or may not appear on the screen,

but they will appear in the output file unless a

special "non-document mode" or ASCII output

file is requested.

In order to deal with these problems, we must

impose four conditions:

- Programs that interface to the user's

display must either be certified as part of

the TP itself (i.e, evaluated as part of the

application, to whatever level of trust is

required), or they must be a high-

integrity trusted part of the TCB itself.

This includes programs which define the

character set and other aspects of the

display, including a trusted reset of those

attributes.

- If a display driver program is

incorporated as part of the TCB, it must

use explicitly defined escape sequences

which involve control characters which

are outside of the normal alphabet, and

can therefore easily be detected by the

TP.

- The TP must ensure that all output is

displayed as intended, including scanning

for escape sequences embedded in the

data that might cause that data to be

displayed in a misleading maimer.

- The syntactic and semantic rules for a TP
must ensure that any output created

reflects the user's intent, particularly

with respect to any information which

was not displayed on the screen.

3.11.2 Trusted Output

In addition to trusted input, it is necessary to be

concerned about the integrity of printed output.

The problem of trusted printed output is

substantially more difficult than the input and

display problem, for several reasons:

First, we normally assume that typed input is

unreliable, and therefore we scrutinize it

carefully. Computer output, on the other hand,

is normally assumed to be reliable, with the

possible exception of page-formatting errors.

For that reason, we tend not to examine printed

output with great care, particularly if only minor

changes are being made to a document that has

been printed and reviewed previously.

Second, the processing required to transform a

computer-readable file into ^ printed document is

quite complex, especially if "desktop-publishing"

quahty of output is expected with the attendant

use of proportional spacing, right margin
justification, multiple columns, different fonts,

superscripts and subscripts, and even embedded

graphics. Although many programs offer a

WYSIWYG capability, i.e., a display on the

screen that is as close as possible to what the

printed output is supposed to look like, there is

relatively little correspondence between what the

document file looks like and what is sent to the

printer.

Third, many newer printers are programmable in

order to permit emulating other popular printers.

The emulation programs are downloaded and put

into operation by means of escape codes sent

over the normal output charmel. Unfortunately,

once a new printer control program is loaded,

there is generally no guaranteed reset sequence

which would put the printer back into a secure

operating mode, other than turning the power

off. (The Centronics printer interface includes a

CSC/PR-89/3001
A.5 - 29

THREATS AND COUNTERMEASURES Trusted Output

Reset line, but this may be interpreted by the

printer control program instead of causing a

reboot of the microcontroller.)

Finally, many printers allow software-defined

fonts to be downloaded, even if the printer

control program (e.g., a PostScript interpreter) is

kept in ROM and cannot be altered. The threat

of some invisible piece of text changing "$" to

"¥" or "£" would therefore exist.

Unfortunately, as is the case with compilers,

sometimes it seems that just getting a word-

processing program or print utility to function in

accordance with its documentation is beyond the

state of the art. Establishing the integrity of a

program with respect to its normal word-

processing function would therefore be difficult

enough, and proving that it isn't sensitive to some

combination of external inputs that would cause

it to misbehave or do something else on

command would be even more difficult.

In the case of the programmable printer, it would

be quite easy to load a Trojan horse printer

control program during a seemingly innocuous

print job, so that it would then lie in wait for

some later combination of data. Such a program

could compromise both the secrecy and the

integrity of the printed output:

- The secrecy of the output could be

compromised by changing the mandatory

labels of the output from say TOP
SECRET to SECRET, or by storing the

data and surreptitiously printing a

second copy of the output.

- In addition to changing selected

characters by redefining fonts, the

integrity of the output could be

compromised by printing selected

records twice {e.g., a check), or not at all

(e.g., a delinquent account notice), or by

modifying the contents of certain fields

(e.g., a customer's account balance, to

cover up an embezzlement).

- An integrity attack would not necessarily

be limited to financial matters. Instead,

if revenge were the primary motive,

various "dirty tricks" might be carried

out to damage an organization's

reputation by printing misleading or

inflammatory messages on the output.

In addition to these potential Trojan horse

attacks, printers sometimes jam, and may either

fail to print part of the output or in some cases

may reprint a portion of the output during the

recovery procedure. Page counts and/or

prenumbered checks can help to ensure that the

right amount of output was printed, but even

then one page or check might be deleted and

another printed twice without affecting the

count.

There are several things that can be done to

provide the greatest possu ie protection for

printed output, depending on the threat, the

vulnerabilities of the system, and the available

resources:

- The printer should be trusted in both the

security and integrity sense, i.e., to print

what it is supposed to and only what it is

supposed to.

* The use of a printer control

program that is contained in

ROM and cannot be altered is

preferred. Passive tamper-

protection in the form of seals

may be necessary to prevent or

at least detect any attempt to

modify the printer's control

program.

* If the printer is programmable,

the TCB should load a trusted

printer control program and all

of the necessary fonts before

any high-integrity printing

commences. Either the TCB or

the installed printer control

program must then block any

attempt to download a new

control program and/or fonts.

* If a trusted printer control

program is not feasible, then the

printer must be reset, if

necessary by turning off the

power and restarting it, before

CSC/PR-89/3001
A.5 - 30

THREATS AND COUNTERMEASURES Trusted Output

any high-integrity output is

printed.

- Only a trusted print program should he

used to transform a high-integrity

document file into a printed image. In

particular, general purpose print

programs, including word processors and

print spoolers, should not be trusted to

format and print a high-integrity file

unless or until it has been extensively

tested and is trusted with respect to the

integrity domain of the CDI which is to

be printed.

- In the absence of these measures, and

preferably in addition to them, the user

must be held responsible for reviewing

the printed output visually, and ensuring

that it agrees with the intent of the

document file.

Obviously all of these concerns apply to plotters

and other output devices as well.

3.11.3 Trusted Integrity Labels

Assuming that we are able to trust the output

that is sent to the printer, perhaps because the

TP outputs the characters directly, how can we

indicate that this output resulted from a trusted

process? In particular, how can we verify that an

integrity label on a printed document is correct,

and not a forgery? Although classified

documents are required to contain the security

classification of the document or page at the top

and bottom of each page, there is no such

requirement for integrity labels. Instead, the

integrity of the output is usually indicated

implicitly, although markings such as "DRAFT'
may be used. For most documents, the most

important integrity label is the signature of the

person who is responsible. However, documents

that are printed on corporate letterhead and

other "official" forms are regarded as legally

binding if used in the normal course of trade,

even though they are not explicitly signed. An
example would be a printed purchase order or

invoice. Presumably it would be useful if we
could provide a more accurate indication of the

integrity of a document — something that would

stand up in court at least as well as someone's

signature or initials on a document.

For TCBs of class Bl or higher, the TCSEC
requires that the beginning and end of all printed

output must be marked with a banner page that

correctly indicates the sensitivity of the output.

The integrity level of the output could also be

displayed on that page. However, as soon as that

page is removed from the output the marking is

lost, and of course anyone with access to a printer

could duplicate that page.

The problem, then, is how to irrefutably bind the

integrity label to the printed document in such a

way that the accuracy of the label and its

association with the document can easily be

verified.

In the case of machine-printed checks we use a

mechanical imprint device to print a signature,

and notarized documents are embossed with a

seal press. In both cases, however, the

technology involved is trivial to duplicate, and we

rely on external controls to minimize forgeries.

Banks clearly cannot verify signatures on every

check that is processed, so the responsibility for

detecting a forgery is left to the customer when

the monthly statement arrives.

Ideally, we would like to be able to directly

calculate a cryptographic checksum and/or digital

signature of a document from the computer-

readable file; print the digital signature in an

appendage to the document, and later verify the

correctness of the document's contents by

reading the document back in with' an optical

scanner and confirming the signature. In the case

of a legal document, for example, this would

obviate the need for the signers to initial every

page of the printed document in order to detect

the possible substitution of one or more pages.

This would also protect against any changes

caused by the word processor or print server, the

printer, and even any erasures or alterations to

the printed text itself.

Unfortunately, most word processors and print

programs support page headings and footings,

footnotes, subscripts and superscripts, multiple

column output, floating section numbers and

cross-references, a table of contents and index,

etc., which rearrange or modify the text. In the

general case, precomputing the checksum would

require a complex program that would essentially

replicate the function of the word processor or

CSC/PR-8V3001
A.5 - 31

THREATS AND COUNTERMEASURES Trusted Integrity Labels

print program, and would be almost as difficult to

certify.

In the case of text-only documents, a compromise

approach that would work reasonably well would

be to create a "file" formatted document. Most

word processors can prepare a version of a

document which is suitable for the simplest kind

of line printers, and then capture that output in a

file. Such a document would not include any

control codes other than carriage return/line

feed and perhaps page eject, but all of the

footnotes and other textual rearrangement would

be performed properly. A cryptographic

checksum program could then be run against that

program, but all control codes and multiple

spaces would be treated as a single space in order

to eliminate line-length and other spacing

differences. The digital signature of the resulting

checksum could then be calculated and printed.

The printed document could be validated by

scanning the input using an optical scanner, or if

necessary by retyping it, and then running the

same checksum program against the result.

This approach has the drawback of requiring two

steps — the creation of the "file" output and the

checksumming of that output — and it still

requires that we trust the word processor or print

spooler. If the word processor has to be trusted

in any case, we could eliminate the creation of the

file output by having the TCB compute the

checksum on the printer output stream after

ignoring all control characters and compressing

blanks, and then print the output upon receiving

an escape character command that essentially

says "print it here." Unfortunately, although

PostScript printer sequences are bounded by

delimiters, most other printer control sequences

are open-ended and of variable length that are

determined by context. The checksum program

would therefore have to be sensitive to the

particular control sequences used by the printer

in order to interpret the output, which would

greatly complicate the certification of the TCB
program.

Another alternative would be to create the

document first, have the user review and approve

it, then scan the character text back in and

compute the user's digital signature over the

result. This signature would then be printed on a

separate page to be attached to the original

document. This would at least get the word
processor or print spooler out of the loop, but it

would mean that the scanning and signing

program would have to be trusted.

In any case, a text-only approach cannot cope

with strike outs , underlining , overprinting (x), or

subscripts or superscripts like H2O and E = MC'^.

Even tabular data {e.g., a features list that places

an X in the appropriate column), cannot be

handled properly unless blanks are significant.

And obviously different fonts and type faceS,

various sizes of pnnt, and embedded graphics cannot

be handled by this approach at all.

What is really necessary is a signature scheme

that would consider a document as a series of

page images. One approach would be to digitize

the printed image as though it were a facsimile

transmission, including every pixel on the page.

Unfortunately, such an approach would be very

dependent on the resolution of the scanner, and

might also be thrown off by incidental smudges or

specks of dirt. Slightly different magnification

ratios, skew, blur, and distortion would also cause

problems.

As a result, a standard pass/fail cryptographic

checksum technique could not be used, and

instead a "fuzzy checksum" or template technique

would have to be used that could accommodate a

certain amount of error. Perhaps a two-

dimensional Fourier transform could be

computed, and the higher frequencies thrown

away to minimize the effects of noise. Because

the resulting coefficients or template might be

quite lengthy, it would be desirable to compute a

checksum of the template, and then digitally sign

the checksum. When the document was to be

verified, the template would be regenerated and

checksummed, and the new checksum compared

to the digitally signed version. If the problems of

magnification, skew, and distortion can be

minimized, the low-frequency components of the

template should be the same, and therefore the

checksums should agree. In addition, we have

the problem of differentiating between the

original and a copy of a document. Until

recently, the differences between the printing and

copying technologies were such that it was

29. Unfortunately, periods and commas are syntactically very important ($1.00 is not the same as $100), and the size of a period in

a footnote may oc smaller than some dirt specks.

A.5 - 32

CSC/PR-89/3001

THREATS AND COUNTERMEASURES Trusted Integrity Labels

relatively easy to distinguish between a copy of a

document and the document itself. However, as

these technologies begin to converge, it is

increasingly possible to produce a copy of a

document which is indistinguishable from the

original.

We would therefore like to be able to

indisputably validate the contents of a document,

including a copy of a document, but still be able

to reject forgeries or unauthorized duplicates of

documents which are inherently valuable, e.g.,

stocks, bonds, currency, receipts, etc.

Assuming that we can authenticate the contents

of the original document it would not be difficult

to validate the contents of a reasonably good
copy. Authenticating a unique document (the

container, not just the contents) is much more
difficult, however, because it requires an
irreproducible token be associated with the

document itself, and irreproducibility is a

function of the technology and resources

available. One approach that has been
proposed^^ would be to make use of the

inherently random aspects of the paper grain or

fiber itself, scanning the fibers within a carefully

delimited area with a high-resolution, contrast-

enhancing microdensitometer, and then
incorporating the result into the digital signature

along with the checksum of the contents of the

document.^^ Another technique might make use

of a random dispersion of magnetic particles or

wires embedded in the paper or other support

medium which could be scanned magnetically, or

embedding short pieces of fiber optics in the

paper in order to cause scintillation to occur at

other spots on the paper whenever one end of

the light pipe was illuminated.^^

All of these techniques are subject to the

problem of noise and various systematic

variations. An exact comparison cannot be made
— instead it is necessary to settle for some

fraction of the bits being in agreement, with a

sufficient number of bits being used to make a

random coincidence extremely unlikely.

Having said all of this, we must reluctantly

conclude that as yet there isn't any good, practical

way of automatically authenticating and

validating the integrity label or the contents of a

printed document, and leave it as a question for

further research. Until such time as an

automated system can be produced, procedural

methods and manual signatures will probably

continue to be required.

We can therefore conclude this section by stating

the following rule, based on today's technology:

Rule 13— Human-Readable Output:

Transformation Procedures shall be

certified to correctly display and

print the desired human-readable

output. To the extent that other

programs may be interposed between

the TP and the video display or

printed page, those programs shall

either be evaluated and certified as

part of the TP certification, or they

shall be a part of the Trusted

Computing Base. Failing that, the

human user must be held responsible

for the integrity of the printed

output.

30. 1 believe this suggestion was made by David Chaum, but I have not been able to track down a reference.

31. When an exceptionally valuable book or other paper document has sustained damage (holes or torn pages), the Library of

Congress repairs such damage by carefully analyzing the constituents of the paper (wood fibers, flax, linen, cotton, etc.), then

makmg up a slurry of those ingrwiients in water. The book is taken apart, ana after measuring the size of the hole the damaged
page is placed on a wire screen of exactly the rijeht size. The appropriate amount of slurry is then poured on the page, and the

mixture is sucked through the hole by a pump. The water is extracted, but the slurry mixture exactly fills the hole and is held in

place by the screen. After the page is dried, the repair is virtually invisible, for that is essentially the way the paper was made in

the first place. A variation on this technique could perhaps be used to cut and paste the scanned portion of the document
onto/into a duplicate, but this would destroy the original. Although a manual signature could perhaps be moved to a spurious

document this way, incorporating the scanned portion in a digital signature would prevent the contents of the object from
being altered without detection.

32. Conversation with Dr. Augustus Simmons, Sandia National Laboratory, 24 January 1989, regarding feasibility studies for new
ways of protecting currency against forgery.

A.5 - 33

CSC/PR-89/3001

THREATS AND COUNTERMEASURES POLICIES AND MECHANISMS

4 POLICIES AND
MECHANISMS

The previous section defined a set of rules in tfie

spirit of Clark-Wilson which are claimed to be

both necessary and sufficient to satisfy the

military and commercial integrity concerns in a

networking environment. A set of

implementation mechanisms will now be

proposed which will satisfy the above rules, not

only in the restricted case of a single, isolated

TCB, but in the more general case of a large

network of interconnected TCBs, not all of

whom necessarily share exactly the same security

and integrity policies. This will be accomplished

through the imposition of a label on each file

which is stored or processed within the TCB,
which will include a digital signature and integrity

markings sufficient to support a mandatory
integrity control policy plus a discretionary

integrity control policy, as will now be defined.

4.1 Integrity Labels

The concept of a file as a collection of objects is

not required of a TCB by the TCSEC, and in fact

it could be argued that the implementation of

such a mechanism should be excluded from the

security-critical kernel of the TCB in accordance

with the notion of least privilege. Nonetheless,

virtually all operating systems implement some
form of aggregation of objects so that they can be

catalogued and manipulated as a more convenient

unit. Although lower level objects, e.g., records,

are sometimes used as the basis for mandatory

access control within TCBs, the file is the most

general and most convenient means of

interchanging data between TCBs.

We would therefore like to have a means of

exchanging files between users and TCBs that

would ensure both security and integrity, no
matter what form the file might take. In

particular, the interchange should support a

virtual network that may range from a hand-

carried floppy disk to a satellite link to a high-

speed fiber-optic LAN. In addition, it would be

desirable if we could support files across a variety

of formats and operating system architectures.

In general, we may assume that the files will be

encrypted for secrecy, or at least authenticated,

and therefore it will be necessary to pass the file

through an encryption/decryption/validation

program as it is being read or written, both to

make it intelligible and to validate it. TTierefore,

rather than worrying about how to squeeze all of

the necessary information into existing operating

system labels (which almost surely do not have

sufficient space reserved, and are generally

incompatible across operating systems), we can

incorporate the necessary security and integrity

information as header and trailer labels within

the encrypted file itself, in a format that only the

file encryption/decryption program needs to

understand. In addition, we may choose to

implement some form of data compression, which

has to take place after the file is authenticated

(so as to include the potentially low-integrity

compression algorithm in the file validation

process), but before encryption (since encrypted

information is essentially random, and carmot be

compressed.) Again, only the encryption/

decryption routine would be involved in the

compression, so there would be no impact on the

operating system code.

Depending on our security, integrity, and

performance requirements, we may require that

all files, even temporary virtual-disk files and

"pipes," be maintained in this format. Or we may

only require that those fUes which are stored on

permanent media or transported outside the TCB
be encrypted and authenticated. Temporary files,

in particular the work files used by a single

program such as a sort program or compiler, or

those that are confined to a "workspace" used by

only one user, might be exempted from these

requirements in the interest of performance if

there are sufficient protective measures to ensure

that an active attack against these files could not

take place while a program was running.

Obviously the file label should include the

mandatory and discretionary access control

information that pertains to the file. In

particular, it is assumed that the file label

contains the classification level of the decrypted

contents of the file, together with the inclusive

and exclusive discretionary access control

attributes necessary to properly control the file

once it is decrypted. -^-^

A.5 - 34

CSC/PR-89/3001

POLICIES AND MECHANISMS Integrity Labels

The integrity label will contain a cryptographic

checksum of the entire contents of the file, unless

the RECORD attribute is specified as discussed

below. The name and unique cryptonym of the

originator will also be included, in order to satisfy

Rules 1 and 2 (Immutability and Attribution).

The identity and authorization of the user will be

established through a bottom-up system of

digitally signed certificates which the user can

carry with him or transport over the network, as

was discussed in the previous section.

At a minimum, a Message Authentication Code

or an encrypted Manipulation Detection Code
will protect the fields within the security/integrity

file label from undetected modification when the

files are contained wdthin the TCB. The digital

signature of the TCB can be applied to the file

label when the file is to be exported (transmitted

or stored) outside of the TCB, e.g., on a floppy

disk or on a LAN-based file server, or optionally

for all files all of the time. The authenticity of

the TCB's digital signature will be confirmed by a

certificate which is signed by the DAA. The
public signature key of the DAA will be securely

installed within the TCB, and protected by a

cryptographic tamper-variable.'^'*

In addition, the necessary markings for a label-

based Mandatory Integrity Control policy will be

provided, as will be discussed below. The
information necessary to implement a

Discretionary Integrity Control policy will also be

provided. Finally, an enhanced audit capability

will be provided through the use of pedigree and

provenance features.

The proposed Mandatory Integrity Control policy

that will govern the transfer of information

between subjects, whether within a TCB or

across the network, will now be discussed.

4.2 Mandatory Integrity Controls

By far the most often referenced model for

integrity is Biba's integrity model, '^ which is

basically the dual of the Bell and LaPadula

security policy model. The Biba model imposes

controls to prevent high integrity subjects from

drawing a false inference as a result of "reading-

down" a low integrity object (simple integrity

property), and to prevent a low integrity subject

from corrupting or "writing-up" to a high

integrity object (integrity confinement property

or *-property).

The Biba integrity policy model has been

criticized as unworkable, both because it allegedly

does not provide for untrusted data input,-'^ and

because it allegedly requires an "excessive"

degree of trust in the executing programs. -^^

Those criticisms are now widely recognized to be

overstated.

It is true that the simplest case of a hierarchical

integrity policy, one where both the subject and

the object are constrained to one integrity level

and there are no integrity categories, is hkely to

give rise to serious operational difficulties.

However, if a subject is described as being trusted

to operate within a range of integrity levels and

more particularly integrity categories, as

33. Because even an Al TCB is not totally trusted, the encrypted file may have a classification level that represents the minimum
that TCB is allowed to output. For example, a 02 level system operating in a closed environment is considered sufficient to

handle information which ranges from Secret to Unclassified, or from Top Secret to Confidential. If Top Secret data is

encrypted under the control of a B2 TCB, the minimum classification level of the output is Confidential, and all systems which
process that data would have to protect the information at that level. Only a TCB which possesses the cryptographic keys

necessary to decrypt the file would be able to read the information, and after decryption the file's contents would have to be
processra as Top Secret again.

34. Particularly in the case of a portable or "laptop" TCB, or one which the user is not sure is trustworthy, it is advisable that the

identification and authentication process that occurs at logon operate in both directions. That is, the TCB should provide
unforgeable proof of its own bona fides to the user at the same time that the user's identity and authorization is being

confirmed to the TCB, without revealing any secret information in either direction before the TCB and the user are mutually
satisfied. TTiis can be accomplished by a challenge and response process, whereby the user enters a challenge phrase (via

floppy disk or smart card) which only he knows, encrypted in the public key of the DAA. The TCB decrypts the challenge

phrase using the secret key loaded by the DAA, and presents it to the user. The user then recognizes the challenge, and can

conclude that the DAA must have accredited the TCB and that no tampering has taken place (otherwise the secret key would
have been zeroized by the TCB's tamper-detecting mechanism.) The user can then enter his normal response password or

passphrase, which is used to decrypt the rest of the information on the smart card or floppy disk and thereby confirm his

identity to the TCB. Only the DAA has to be trusted for this mechanism to work.

35. Biba, K. J., "Integrity Considerations for Secure Computer Systems," Mitre TR-3153, Mitre Corp., Bedford, Mass, April 1977.

36. Clark and Wilson, ibid.

.

37. Boebert, W. E., and R. Y. Kain, "A Practical Alternative to Hierarchical Integrity Policies," Proceedings of (he 8«h National

Compuler Security Conference, 30 September 3 October 1985, Gaithersburg, MD.

A.5 - 35

CSC/PR-89/3001

POLICIES AND MECHANISMS Mandatory Integrity Controls

described by Shirley and Schell,^° Scheli and

Denning,^^ Lee,'*^ Karger,'*^ Shockley,'*^ and the

author/^ the alleged difficulties go away

immediately.

The Biba model of integrity control (i.e., the

simple integrity property and the integrity

confinement property or *-property) can

therefore be extended through the implement-

ation of both minimum and maximum integrity

markings associated with the subject, where the

minimum and the maximum integrity markings

have both a hierarchical and a non-hierarchical

component.

Finally, in addition to preventing a low-integrity

subject from creating or modifying higher-

integrity data. It is desirable (but not always

possible) to prevent a low-Integrity subject from

deleting or renaming a higher-integrity object

It is generally very difficult if not impossible to

detect the deletion of an object unless that object

is somehow chained to another object that is not

deleted. In addition, it is difficult or impossiWe to

prevent such a deletion if the object is stored or

transmitted outside of the TCB or trusted

network. This situation is therefore different

from the other integrity problems that we have

dealt with. Admittedly, it could be argued that

the deletion of an object could result in a low-

integrity subject misleading a high-integrity

subject into believing that the deleted object

never existed, and that therefore this is an valid

integrity problem. However, a much more
conservative way to design the high-integrity

program would be to use an object containing an

explicit null (such as an end-of-file character) as a

signal, rather than rely on the absence of an

object to indicate that no input was intended.

With such a design a "File Not Found" error will

immediately provide a indication that something

that is wrong, and the standard actions can be

taken to restore the object from the archive or

take remedial action to recreate it.

The unauthorized deletion or renaming of an

object will therefore be considered a significant

nuisance, but a denial-of-service issue rather

than an integrity problem.

The mandatory integrity requirement (Rule 3)

can therefore be restated as follows, given a

multilevel integrity policy for subjects:

1. A subject may only access, accept, or

believe an object if the integrity-write-

limit marking of the object dominates

the integrity-read-limit of the subject;

i.e., a subject cannot read down in

integrity below a specified minimum.

2. A subject may not assign an integrity-

write-limit marking to an object that it

creates such that the integrity-write-limit

of the subject would be dominated by the

integrity-write-limit marking of the

object; i.e., a subject cannot write up in

integrity beyond its specified

maximum.'*''

3. A subject within a TCB may not delete

an existing object unless the integrity-

write-limit of the subject dominates the

integrity-write-limit marking of the

object to be deleted.

38. Shirley, L. J. and R. R. Schell, "Mechanism Sufficiency Validation by Assignment," Proceedings of the 1981 IEEE Symposium
on Security and Privacy, IEEE Computer Society Press, Washington, D.C., April 1981, pp 26-32.

39. Schell, R. R. and D. E. Denning, "Inteerity in Trusted Database Systems," Proceedings of tlie 9tli National Computer Security

Conference, NBS/NSA, 15-18 September 1986, pp 30-36.

40. Lee, T. M. P., "Using Mandatory Integrity To Enforce "Commercial" Security," Proceedings of llie 1988 IEEE Symposium on
Security and Privacy, 18-21 April 1988, Oakland, CA; IEEE Computer Society Press, Washington, D.C., p. 140-146.

41. Karger, Paul, "Implementing Commercial Data Inteerity with Secure Capabilities," Proceedings of llie 1988 IEEE Symposium
on Security and Privacy, April 18-21, 1988, Oaklancf CA; IEEE Computer Society Press, Washington, DC, 1988, pp 130-139.

42. Shockley, W. R., "Implementing the Clark/Wilson Integrity Policy Using Current Technology," Proceedings of tlie lltli

National Computer Security Conference, NBS/NSA, 17 20 October 1988, pp. 29-37.

43. Jueneman, R. R., "End-To-End Compromise and Integrity Controls," Computer Sciences Corp. Technical Report CSC-
TR/87-3001, May 1987.

44. A subject may assign an output object an integrity marking that is lower than (dominated by) its own integrity-read-limit. An
example would be the case when a catastrophic error such as a divide by zero exception destroys the meaning of a particular

calculation, yet it is necessary to post some form of result as an indication of abnormal termination. The subject might not

then be allowed to reread or believe that object, which is the intended result.

CSC/PR.89/3001
A.5 - 36

POLICIES AND MECHANISMS Mandatory Integrity Controls

4. Modification, including rename, will be

considered equivalent to reading the

existing object (if necessary), creating a

new or modified instance of that object

with the same or different name, and

deleting the previous object. For that

reason, an object may not be modified or

renamed unless the integrity-write-limit

of the subject dominates the integrity-

write-limit marking of the existing

object, and the integrity-write-limit of

the modified or renamed object is

dominated by the integrity-write-limit of

the subject.'*^

5. If the cryptographic checksum or digital

signature verification fails when an
object is accessed, either the object or

the checksum has been presumably been

modified by an unauthorized user or

process. The integrity of such an object

shall be set to null, i.e., given a

hierarchical integrity level of 0 and given

a null set of non-hierarchical integrity

categories, indicating that it is an

Untrusted Data Item (UDI).

A subject that is trusted to operate over multiple

integrity levels and/or categories corresponds

directly to a Clark and Wilson TP that processes a

UDI, transforming it into a CDI. Such a process

does require trust, and it does have to be certified

to perform its function correctly; but that is

exactly what application processes do routinely

and there is no reason why such a mechanism
should be rejected. Indeed, the raison-d'etre of

almost all data processing applications is to

increase the integrity of the final result.

However, it is most important to realize that just

because a subject is trusted to operate over a

range of integrity levels does not mean that it has

to be trusted in the multilevel security sense, i.e.,

that it must be trusted to violate the Bell-

LaPadula mandatory security constraints.

The fundamental appeal of the Biba integrity

policy is that it can easily be modeled and
implemented through a system of
cryptographically-sealed labels and is therefore

suitable for a network implementation. In

addition, as Shockley points out, by implementing

readclass and writeclass mechanisms the way that

the Gemini Computers' GEMSOS TCB does, the

Bell-LaPadula and Biba models can be combined

into a common lattice representation, and a

common mechanism can be used to enforce both

the mandatory security policy and the integrity

policy with a very high degree of assurance. This

would obviously be very desirable, for it would

implement the integrity confinement mechanLsm

within the highly-trusted security kernel of the

system.

It therefore appears that the requirement to

constrain TPs and CDIs to an assured pipeline

can be implemented through the use of Biba

model, using integrity "categories" that are

restricted to appropriately authorized data

originators in the same way that the Bell and

LaPadula categories are used to restrict

information to appropriately cleared data

receivers.

The difference is that in the Bell and LaPadula

access control model, a subject cannot access

(read or execute) certain categories of

information unless the subject possesses the

appropriate hierarchical sensitivity level and

non-hierarchical sensitivity categories, whereas

in the Biba integrity control model the subject

cannot accept (believe) certain information

unless the object possesses the appropriate

hierarchical integrity level and non-hierarchical

integrity categories, derived in turn from duly

authorized subjects.

One possible use of a multilevel integrity-trusted

subject mechanism would be to filter objects

through syntactic and semantic tests prior to

allowing other subjects to accept (believe) them,

using the assured pipeline approach. Any
program such as an editor, compiler, spelling

checker, or other syntactic or semantic processor

can have as its primary purpose the automatic

scanning of input data and the implicit or explicit

upgrading or improvement in the "quality" of the

data, against whatever integrity domain is desired.

If a simple pass-fail integrity criteria is desired, as

suggested by the Clark and Wilson approach to

trusted Transformation Procedures (TPs), then

the minimum and maximum hierarchical integrity

levels can be set equal to each other, and integrity

45. A trusted subject should normally reject a transaction rather than replacing an existing object with an object of a lower
integrity, but the deliberate downgrading of integrity is allowed and does not constitute a denial -of-service attack.

A.5 - 37

CSC/PR-89/3001

POLICffiS AND MECHANISMS Mandatory Integrity Controls

categories alone could be used to control read

and write access, as proposed by both Shockley

and Lee. On the other hand, if no integrity

constraints are desired, then the minimum and

maximum hierarchical levels of the subject can be

set to system-low and system-high, respectively,

without any non-hierarchical integrity categories

being specified for the integrity-read-limit, and

with "ALL" categories being specified for the

integrity-write-limit.

A much finer degree of control than the strictly

hierarchical Biba integrity model would permit

can be achieved by allowing a multilevel integrity-

trusted subject to specify the integrity level of

some object to any appropriate value, within the

integrity-write-limit constraint of the subject

itself. Whereas the straight Biba model without

multilevel subjects essentially implements a No
Garbage In, No Garbage Out policy, other

poHcies would allow Garbage In, Wisdom Out

(validity checking and correcting data input, or

statistical inference or averaging) or even

Wisdom In, Garbage Out (anti-aggregation, or

Census-type privacy, perhaps by deliberately

adding noise to existing data so as to lower the

precision."*^

It should be pointed out that Garbage In,

Garbage Out is an example of a high integrity

process // a high integrity subject which accesses

a low integrity object sets the integrity of the

resulting object properly.

43 Hierarchical and Non-hierarchical

Integrity Components

As discussed previously, the integrity of a

process, and therefore the integrity of any

resulting data, can only be assessed in relation to

a set of defined syntactic and semantic rules.

Since it is impossible to define the complete

syntactic and semantic rules for the entire

universe, the integrity of a process and any results

it produces must be evaluated against a subset of

the universe of all possible rules, i.e., against a

defined integrity domain.

Consider the case of a spelling checker, for

example. If it encounters a word such as

"tungue," it may suggest the replacement

"tongue." If we pass a document through such a

spelling checker and it finds no such errors, we
have some confidence that there are no grossly

misspelled words, and if that is the metric for

integrity in this case, we are entitled to assign the

modified output a higher integrity level than the

input data or to regrade or promote integrity

level of the original data. But what if the

document were to contain some of the more

awkward constructs of English orthography?

Depending on the techniques employed and the

preference of the program's creator! s), most

speUing checkers would reject "deers," might or

might not accept "memorandums" instead of

"memoranda," and most would probably accept

"mother-in-laws" instead of "mothers-in-law."

The best spelling checkers might suggest that

"tungue" could be either "tung" or "tongue,"

depending on the context.

For that reason, we must put an upper limit on

the integrity that we will allow a spelling checker

to assign to a document, based on an expert

assessment of the extent to which the spelling

checker "correctly" implements the rules of

English spelling. It should be re-emphasized that

the integrity of the object is not inherent in the

object itself, but only when it is evaluated against

the externally-defined set of syntactic and

semantic rules that make up the integrity domain.

As an example of the applicability of these

concepts, a major law firm might use a variety of

such spelling checkers, some of which would use

low-integrity but very fast rule-based algorithms

that would reject "trasnposition" but might

accept "memorandums," while a high-integrity

product might contain the complete Oxford

English Dictionary. Since even the OED-based

checker would probably not catch an error such

as "Deer Mr. Smith," an experienced human
editor would have to be the penultimate

authority, with the final draft being returned to

the author to ensure that the sense of the

46. It is generally assumed that the objective of a system of integrity controls is to assure the highest possible integrity of the data,

but privacy-supporting systems may limit information disclosure to a specified maximum integrity level. There is an

interesting cross-over into access control mechanisms at this point, for highly precise data may have to be more highly

classified so as not to reveal an intelligence-gathering capability or specific system capabilities. It is possible that an integrity

control mechanism could provide a more tractable approach to this inference control problem than presently exists.

CSC/PR-89/3001
A.5 - 38

POLICIES AND MECHANISMS Hierarchical and Non-hierarchical Integrity

Components

document had not been compromised. The firm

might therefore have a rule that would require

that all interoffice correspondence be spell-

checked to at least a level of "2" by the low-

integrity checker, while contracts, wills, and other

legal documents would have to be checked to a

level of "5" before being sent out.

It is conceivable that a draft could receive a "2"

from the rule-based checker, yet upon being

checked by the Oxford checker the integrity as it

stood would be lowered to "0." If the Oxford

checker were allowed to make corrections

according to its rules, an integrity level of "4"

might be assigned, depending on the degree to

which it finds context-sensitive situations which it

cannot resolve. After that, the human editor

could review and/or edit the document, after

which it could be assigned an integrity level of

"5." Finally, the author would be asked to

approve the document by digitally signing it, in

which case the integrity level would remain at

"5," or else he could make corrections, in which

case the integrity would revert back to "0" since

new spelling errors might have been introduced.

Once the document was assigned an integrity

level of greater than "2," the rule-based checker

would not be allowed to modify it; and once the

human editor had reviewed it and assigned it a

level of "5" even the Oxford checker would not

be allowed to modify it.

It might be convenient to be able to assign verbal

labels to the various hierarchical integrity levels

that would correspond to the sensitivity labels of

UNCLASSIHED through TOP SECRET, in the

sense of "God said it," "The Pope said it," "The

Bishop said it," "The Sunday School teacher said

it," "It was written on the bathroom wall," etc.

But that would necessitate much discussion about

the nature of trust, who determines it, what

domain is being referred to, how much damage is

"exceptionally grave damage," etc. Similar

objections apply to the use of HIGHLY-
CRITICAL, CRITICAL, or NONCRITICAL as

mandated by APR 205-16, since there is no
objective determination of how critical is

CRITICAL, and because the same program or

data may be HIGHLY-CRITICAL for one
mission and NONCRITICAL for another mission

since criticality is a function of the mission

requirements and not the information.

A.5 -

CSC/PR-89/3001

However, although the determination of the

classification level of an object is inherently

subjective and may change or be changed as a

function of time (either because the information

has become known, or because it has become
irrelevant), there are objective ways of defining

and measuring the integrity of a process and

therefore the integrity of a data object produced

by that process, and that integrity should not

change unless and accidental or deliberate

modification to the object has occurred, or unless

the external reality has changed.

For that reason, the hierarchical integrity

associated with an object is defined to be the

estimated probability that the process which

created that object did so in accordance with the

defined syntactic and semantic rules of a

particular integrity domain or domains, either as

estimated by an expert evaluator or obtained

though objective measurement. The hierarchical

integrity component is therefore an indicator of

the assurance associated with the evaluation of a

process against a specified integrity domain.

A convenient way of expressing the hierarchical

integrity level would be to compute the number

of leading nines in the decimal fraction of the

estimated probability, computed as

floor[- log(- log(P))]. For example, if a process

were expected to fail on a random basis once in

every million executions, the probabihty that the

process conforms to the rules would be .999999.

Therefore - log(- log(. 999999)) = -

log(4.34295xl0-'')] = 6.36216, and after

truncation the resuU is 6.

With this scheme, a range of probabilities from

less than .9 to .999999999999999 (0 to 15 nines)

can be expressed within one 4-bit hierarchical

integrity field.

This application of a hierarchical integrity policy

with an objective measure for the hierarchical

integrity level overcomes the previous objections

to the Biba model and makes good intuitive sense

for a single integrity domain such as spelling

accuracy. However, suppose that we run the

targeting data for an MX missile through the

spelling checker, even the Oxford dictionary-

based high-integrity version. Other than

informing us that "Peking" is now to be spelled

39

POLICIES AND MECHANISMS Hierarchical and Non-hierarchical Integrity

Components

"Beijing," what does a hierarchical integrity

rating of "5" with respect to spelling accuracy tell

us about the level of confidence we should have

in the target data? Obviously, very little.

Unfortunately, many of the discussions of

integrity in the past have been muddled because

the authors talked about integrity as through it

were some kind of universal truth that would

apply to all programs or data.

The problem is clearly one of specifying the

correct integrity domain for the required

purpose. Spelling accuracy carmot be evaluated

by a missile target validation program, and missile

target data cannot be validated by a spelling

checker. If we wish to quantitatively state the

hierarchical integrity that is assigned to an object,

it is necessary to indicate which integrity domain

was used during the evaluation process.

We can therefore qualify the hierarchical

integrity level of a subject or object with a non-

hierarchical integrity category, letting the name
or other representation of the integrity category

be a shorthand way of identifying the syntactic

and semantic rules of the integrity domain that

applied to that subject or object

Eventually, we will presumably begin to build up

a set of heuristics that will allow someone who
certifies a program to estimate the probability

that the program conforms to the rules of the

integrity domain. In the case of a TCB, for

example, perhaps a CI level of assurance would

correspond to a hierarchical rating of 4, a C2
TCB would have a rating of 5, a Bl TCB would

have a rating of 6, a B2 TCB a rating of 7, a B3

TCB a rating of 10 (because there is a substantial

difference in the assurance requirements between

a B2 and a B3 system), and an Al system would

have a rating of 12. The point is that it is not so

much the absolute accuracy of the hierarchical

integrity component that is important, as it is the

relative comparison between two objects that

have the same integrity domain.

Assuming that a consistent set of evaluation

criteria is established for applications, the DAA
or other approving authority for an application

can easily specify whatever probability or

assurance is must be provided in order to meet

the requirements for a CRITICAL or HIGHLY-
CRITICAL process.

In the example we used previously, if we want to

determine whether a contract is ready to be

signed, we should insist that a given object be

rated a "5" or higher against a specified integrity

domain, in this case spelling accuracy. If we want

to be absolutely sure that the missiles are targeted

for the Kwajalein atoll in the Pacific missile test

range and not Honolulu, we should require a very

high hierarchical integrity level be achieved

against the targeting data integrity domain before

the missiles are released.

If we need to evaluate some data object against

two or more integrity domains, for example for

both spelling accuracy and for target data

accuracy, we could simply run the data through

two different processes serially and combine the

results somehow, but only if the evaluation

processes do not change the input data but only

evaluate it.**^ Since each evaluation process has

only been certified with respect to the particular

integrity domain, we cannot legitimately assume

anything at all about the process with respect to

any other criteria, especially if either process can

modify the data. However, if the evaluation

processes do not modify the data, the TCB could

be trusted to correctly combine the results of two

or more independent evaluations in accordance

with a fixed rule.

In the case of the non-hierarchical integrity

categories which represent the evaluated integrity

domain, the rule for combining evaluations is

simple — the result is the union of the previously

existing integrity categories with the newly

evaluated category.

The hierarchical or numeric ratings can be

combined in accordance with the laws of

47. We might hope that an evaluation program would refrain from changing any data outside of its field of competence, i.e. its

evaluated integrity domain, but in the past the author has suffered from an overzealous (and uninformed) human editor

assigned to "clean up" the first draft of an IBM Technical Reference Manual, who changed a reference to an OS/360 JOB card

to an "Employment Reference Card"; had a secretary transcribing dictation who didn't know the word "compilation" and so

spelled it copulation": and most recently witnessed the result of a spelling checker program which automatically changed
"DEC" (referring to the computer manufacturer) to "December" in an executive-level presentation. According to their

standards, these were all well-intentioned changes.

CSC/PR.89/3001
A.5 - 40

POLICIES AND MECHANISMS Hierarchical and Non-hierarciiical Integrity

Components

compound probability, assuming that the

probability of failure against one integrity domain

is independent of the probability of failure

against another domain. Thus, if I j is the

hierarchical integrity evaluation with respect to

category 1, and is the hierarchical integrity

evaluation with respect to category 2, then the

joint hierarchical integrity 7/2 is

112 = floor[- logd - [1-10-'/] [1-10-^2])]

For example, if the probability that there is a

misspelled word in the target data is one in a

million, then the probability that there is no
misspelled word is .999999, and /; = 6. If the

probability that all of the missile targets are

correct (whatever "correct" is defined to mean) is

.999, then = 3. Since .999999 x .999 =

.998999, if we assume that the probabilities are

independent we would expect the joint integrity

{i.e., that all of the words are spelled correctly

and all of the targets are correct) to be 2.

Applying the formula, 1^2 = floor[- log([1 -

1-10-^] [l-10-3j)] = floor[2.99] = 2.

Although there will be some loss of precision

with this process if a number of integrity

categories are evaluated sequentially, the

calculations are conservative and the alternative

of using floating point notation is not worth the

complexity, especially since the original

probability estimates may not have been all that

precise in any case.

Finally, as we discussed earlier, even if the

hardware, the operating system, the application

programs, and all of the human inputs to a system

are perfect, there may still be a divergence

between the computer model and the external

real world if the real world changes and the model

does not. In order to prevent this from
happening, it is necessary to periodically run an

Initial Verification Procedure (IVP) which

performs a reconciliation between the computer

model and the external world. Although it may
not be possible to predict when the external

reality may change (when someone will steal

something from inventory, for example), we can

set whatever limit we like on how often the

reconciliation must take place by downgrading

the hierarchical integrity of a CDI after a certain

interval, or at a specific date/time.'*®

We will therefore assume that the integrity lai>el

will contain a field that says essentially,

"decrease the hierarchical integrity value of this

object by X every T seconds," or alternately,

"decrease the hierarchical integrity value to Y at

date/time D."

4.4 Reference Monitor Implementation

It is perhaps worthwhile to stop and point out the

value of the integrity containment mechanism
that has been developed so far.

Consider a simple utility program such as a

Move/Copy or disk compaction program. If such

a program is to be at all useful, it must be trusted

to correctly move files around on the disk

regardless of their contents or the various

integrity categories that the objects being moved
or copied might have. However, if our concept of

the TCB as providing an integrity containment

mechanism is valid, we would hope that all of the

various utilities furnished with an operating

system would not have to be trusted in the sense

of being formally evaluated and certified, but

could instead be unevaluated, low-integrity

programs. The problem is that a low integrity

subject could move or copy a high integrity

object, but the resulting object would be marked

as having low integrity, thereby presumably

destroying the value of the moved or copied

object.

There is a way out of this dilemma, however. It is

well recognized that encrypting an object is one

way of allowing the classification of the object to

be downgraded, so long as the corresponding

decryption operation results in upgrading the

classification to a value that is either equal to the

classification of the key, or to the value specified

in a trusted label associated with that object's

contents (which must be dominated by the

classification of the key). It is perhaps not so well

recognized that cryptosealing an object allows the

integrity of the object to be downgraded if we
wish, and that verifying the cryptographic

48. The integrity domains or rules are assumed to be invariant with respect to time, although they may include the time of creation

of an obiect as a parameter. The non-hierarchical component of the integrity marking will therefore not change. It should also

be noted that downgrading the integrity of an object does not require any special privilege, unlike the case of downgrading the

classification level of an object.

A.5 - 41

CSC/PR-89/3001

POLICIES AND MECHANISMS Reference Monitor Implementation

checksum and attached label of an object

amounts to an integrity w/^grad? operation (again

assuming that the integrity of the object after the

upgrade is dominated by the integrity-write-limit

of the cryptographic key(s) used to perform the

verification).

Cryptosealing allows an object to be safely

handled by low-integrity subjects, just as

encryption allows an object to be safely handled

by low-clearance subjects.

Therefore, as soon as a file is closed and the

cryptographic checksum is written out, the file

can be moved, copied, compacted, or whatever

with impunity. The integrity of the resulting

object will be set to null as a result of its having

been written by a low-integrity subject (assuming

the utility is untrusted), but the correctness of the

operations will be verified and the integrity

upgraded the next time the object is accessed and

the checksum verified.

Because cryptosealing the object does not require

or cause the integrity of the object to be lowered,

modification, deletion or renaming of the object

by a low-integrity subject would still be

prohibited. This would not be a problem with a

Copy, but a Move involves a Copy followed by a

Delete of the previous object, so the Move
program would have to be certified with respect

to unauthorized deletion, i.e., the copy must be

completed satisfactorily before the deletion takes

place. In addition, we should require that neither

the Move nor the Copy program are allowed to

create an output file, even a null output file, if

the specified input file was not found.

Finally, we should recognize that many operating

systems allow a previously existing file to be

overwritten by a Move or Copy if the target file

name is the same as the previous file. This may

be unsafe if the Move or Copy fails. Instead, the

user should either Delete the previous file before

the Move/Copy, or else the Move/Copy should

copy the file to the desired volume but with a

temporary name so that the previous file is not

destroyed. After the Move/Copy has completed

successfully (checked if necessary by rereading

the result), the integrity of the copied file can be

upgraded, the previous file can be deleted, and

the new copy renamed.

The subject that performs the Move should

therefore have an integrity lower bound of

0/NULL (it can read anything) and an integrity

upper bound that at least includes the integrity

attribute DELETION-SENSITIVE. On the

other hand, all programs that could be spoofed by

the deletion of an input object {i.e., those that

treat File-Not-found as the equivalent of an

immediate End-of-File) should have the

DELETION-SENSITIVE attribute specified in

their integrity-read-limit, to ensure that they do

not attempt to read files that were output by

programs that were not sensitive to this problem.

If a File-Not-Found condition occurs when the

DELETION-SENSITIVE attribute is set in the

integrity-read-limit, an error will result. If a

program is certified to always output an explicit

null indicator or else an object with a null

integrity, then it could have the DELETION-
SENSITIVE attribute in its integrity-write-limit,

and could either set or not set that indicator in

any objects it creates, as appropriate.

But what about a program that doesn't

distinguish between End-of-File and File-Not-

Found, and therefore should have the

DELETION-SENSITIVE attribute in its

minimum integrity marking to protect itself.

Does this imply that it is entitled to have the

DELETION-SENSITIVE attribute in its

integrity-write-limit? The answer is, "not

necessarily," because the program may fail to

output an explicit null when no output was

intended. A poorly written Move program, for

example, might encounter an immediate End-of-

File on the input and fail to create an output

object, yet it might still delete the input file. We
therefore need to distinguish between what is

required for input, and what is allowed on output.

For that reason, the terminology "minimum" and

"maximum," or "lower bound" and "upper

bound" as applied to the integrity markings of a

subject is misleading. A better set of terms would

therefore be "integrity-read-limit" and "integrity-

write-limit." In particular, there is no
requirement that the integrity-write-limit

dominate the integrity-read-limit. A good

example would be a linkage editor which requires

valid output from a compiler as its input, even

though (or rather, because) it cannot check the

syntax and semantics of a source program. The

linkage editor might require the attribute

"GOOD-COMPILE" in its inputs, but it has no

need or right to set the GOOD-COMPILE

CSC/PR-89/3001
A.5 - 42

POLICIES AND MECHANISMS Reference Monitor Implementation

attribute in its output. Instead, it could set the

attribute GOOD-LINKEDIT in its output.

So far, we have only talked about subjects in the

abstract. If a subject is assigned an integrity-read-

limit, and if objects (files) are labelled with an

integrity marking, then the TCB can mediate all

read accesses by that subject to all objects

through a high-assurance reference monitor, to

ensure that the integrity of the object dominates

the integrity-read-limit of the subject. Similarly,

the reference monitor can mediate all write

accesses, to ensure that the integrity-write-limit

of the subject dominates the integrity marking in

the label of the object.

However, subjects eventually execute objects

(normally programs, but command files and

source programs which are interpreted could be

thought of as being "executed" as well). These

objects may be classified in and of themselves,

and we assume that they have been certified to

have a specified integrity-write-limit or else they

are untrusted. In addition, there may be

constraints (integrity-read-limits) associated with

the program as to the minimum integrity of any

object that is read, in order to guarantee the

proper operation of the program.

Because we want to be able to exchange
programs and other executable objects across the

network, we need to have the classification and

integrity read and write limits bound directly to

the object in question, rather than have the local

Security Administrator set them.

We will assume that when a subject is about to

execute an object, the invoking subject will first

read the object (subject to the mandatory and

discretionary access controls and the mandatory

and discretionary integrity controls), and then

create a new subject which includes that object as

part of its process. The new subject will

therefore inherit the following constraints on
objects it can read:

- The minimum secrecy of any object

which may be read is 0/NULL
(unclassified)

- The minimum integrity of any object

which may be read is the greater (more-

dominant) of the integrity-read-limit of

the object which is about to be executed,

the integrity-read-limit requested by the

user at logon, and the minimum-system-

integrity

- The maximum secrecy of any object

which may be read is the least dominant

of the session classification requested by

the user at logon, the clearance of the

user, and the maximum-system-
classification

- The maximum integrity of any object

which may be read is the maximum-
system-integrity.

Since the minimum secrecy and maximum
integrity that can be read are only constrained by

the system and not by the subject, we can define

the readclass of the subject as the minimum
integrity and maximum secrecy of objects that the

subject can read.

The new subject also has constraints on objects it

can write:

- The minimum secrecy of any object

which may be written is the more-
dominant of the minimum-system-
classif ication"*^ and the session

classification level requested by the user

at logon (assuming that "floating" labels

and user-specified downgrading is not

implemented).

- The minimum integrity of any object

which may be written is 0/NULL
(untrusted)

- The maximum secrecy of any object

which may be written is the maximum-
system-classification^*^

- The maximum integrity of any object

which may be written is the least-

dominant of the integrity-write-limit of

49. The minimum-system-classification is determined by tiie maximum-system-classification and the level of assurance of the TCB,
in accordance with the "Yellow Books" published by NCSC, CSC-STD-003-85 and CSC-STD-004-85 and/or the level that the

system is accredited for by the DAA. For example, a B2 system with a "closed" environment (cleared programmers and good
configuration management controls) that has a maximum-system-classification of Secret could have a minimum-system-
classification of Unclassified, while the same system, if used to process Top Secret information, would require a minimum-
system-classification of Secret. Multilevel security-trusted suojects such as encryption routines and downgraders are

considered part of the TCB, and can write down to the minimum-system-classification.

CSC/PR.89/3001
A.5 - 43

POLICIES AND MECHANISMS Reference Monitor Implementation

the program which is about to be

executed (determined by the certifier),

the integrity-write -limit specified by the

user at logon, and the maximum-system-

integrity.

Since the maximum secrecy of any ob ject that can

be written is also only constrained by the system

and not by the subject, we can define the

writeclass of the subject as consisting of the

minimum secrecy and maximum integrity of

objects that the subject can write.

We can therefore assign a readclass and a

writeclass to an object in the integrity label, so

that we will know what readclass and writeclass to

assign to a subject that executes that particular

object.

It should be noted in particular that the new
subject is not constrained by the integrity-read-

limit of the parent subject. The "integrity" of the

object that is about to be executed is the

integrity-write -limit that it was certified for. If a

subject is trusted to obey the rules of its integrity

domain, then it is trusted to create an object that

has that same integrity domain, and the

hierarchical integrity value associated with the

object is the probability that the creating process

created the object correctly.

It doesn't matter to the invoking subject how a

given program was written — only that it was

certified as having a certain integrity. If the

program is capable of evaluating all possible

inputs {e.g., a UDI), then that is well and good.

On the other hand, if the program relies on the

TCB to protect itself from untrusted input by

means of a specific integrity-read-limit, and it was

certified subject to that assumption, then that is

also acceptable.

Ideally, we might like to restrict a subject's read

access or integrity-read-limit (level and
categories) on a file by file basis. Just because a

TP is prepared to accept and screen untrusted

input (a UDI) coming from the user's terminal,

for example, does not mean that it can validate all

of an existing database before it updates a record.

Similarly, a linkage editor may accept untrusted

input from the terminal that directs it to include

certain object modules in its input and to use a

certain link library, yet the object modules and

link library itself may have a higher level of

integrity

In the case of a subject that reads a file, this

approach might be practical. Most programs
access a file by means of a file descriptor,

"handle," or DDNAME, so that the particular

file name that is to be accessed can be specified at

run time as a parameter. The integrity-read-limit

could be associated with the file descriptor as part

of the program, along with the other attributes of

the file. The TCB could then enforce the

integrity-read-limit when the file is opened,

returning an error if the file does not meet the

integrity requirements. Another alternative

would be for the TCB to return the integrity of

the file at open time, and let the program decide

whether that was sufficient. If the program has

been certified, either approach would be

adequate, and would provide considerable

flexibility.

However, other objects, including simple memory
objects such as parameters, do not have as rich a

structure as a file. With the exception of some

object-oriented operating systems, subjects

generally do not access such objects through a

type-descriptor that could specify the integrity-

read-limit. In addition, one of the objectives of

building a reference monitor is to minimize the

amount of code that has to be trusted, and to

provide a containment mechanism that will

assure the correct operation of untrusted

programs.

For that reason, it suggested that the integrity-

read-limit associated with a subject be applied to

all objects read by that subject, by default, but

that the program be able to override the default

in the case of files. This integrity-read-limit can

be defined in the readclass of the object at the

time it is certified, and will apply to all objects

that are read for which a specific integrity-read-

limit has not been provided by the program. If a

program or other object has not been certified as

a TP, then the integrity-read-limit and the

integrity-write-limit are both 0/NULL.

These controls should be implemented on a high-

assurance TCB that includes a reference monitor.

At a minimum, the system architecture

50. Some subjects may write objects which they cannot later read, e.g., the audit log. Processes may also have to signal (an

interrupt, followed by a read down) to higher classification-level processes for synchronization purposes.

CSC/PR-89/3001
A.5 - 44

POLICIES AND MECHANISMS Reference Monitor Implementation

requirements TCB imposed by the TCSEC for a

B2 TCB are considered necessary for the

protection of objects from viruses running at the

same privilege level as the user, and higher levels

are desirable. The features in bold type are

particularly critical:

"The TCB shall maintain a domain for its own
execution that protects it from external

interference or tampering (e.g., by modification

of its code or data structures). The TCB shall

maintain process isolation through the provision

of distinct address spaces under its control. The
TCB shall be internally structured into well-

defined largely independent modules. It shall

make effective use of available hardware to

separate those elements that are protection-

critical from those that are not. The TCB
modules shall be designed such that the principle

of least privilege is enforced. Features in

hardware, such as segmentation, shall be used to

support logically distinct storage objects with

separate attributes (namely: readable, writable).

The user interface to the TCB shall be completely

defined and all elements of the TCB identified."

When it comes to implementing these concepts

within a TCB, there is a subtlety with respect to

passing parameters to multilevel integrity-trusted

subjects that might be overlooked. Low-integrity

subjects may invoke high-integrity subjects, and

the high-integrity subjects may read or copy low-

integrity objects (parameters) from the low-

integrity subject, if and only if the high-integrity

subject is a multilevel integrity-trusted subject,

and if the integrity of the parameter being read is

greater than the integrity-read-limit of the high-

integrity subject. The high-integrity subject may
return a result by having the low-integrity subject

read up, or else the high-integrity subject could

directly store the result in the low-integrity

subject's memory, assuming the low-integrity

subject passed the address of a variable in its

memory.

However, in order to protect against a virus or

Trojan horse program altering the contents of

memory, a low-integrity subject cannot be

allowed to write into the memory of a high-

integrity subject. As a result, if a high-integrity

subject calls a lower-integrity subject for some
purpose, the passing of parameters can be in one

direction only. The low-integrity subject may not

store a result back in the high-integrity's memory,

so for example the high-integrity program cannot

provide a read buffer for a low-integrity program

to use while reading a disk. Instead, the high-

integrity program will either have to create a low-

integrity buffer for this purpose, or the low-

integrity program will have to provide a buffer

which the high-integrity program can read.

In summary, trusted multilevel-subjects can read

down to their integrity-read-limit, assuming that

they are certified to handle the untrusted

information properly. But no subject can be

allowed to write up beyond its integrity-write-

limit, not only because to do might mislead the

high-integrity subject, but because a virus or

Trojan horse program might alter the programs

used by the high-integrity subject.

4.5 Dynamic Mapping of Integrity

Categories

In order to be useful for commercial purposes,

integrity categories should be "plentiful" and easy

to create. Unlike security categories or

compartments, which are relatively few in

number, usually have very explicit meanings, and

are usually coordinated on a centralized basis,

integrity categories may be used to provide an

assured pipeline between two programs, so that

data is guaranteed to be produced by one trusted

process and read or updated by another. The
intermediate data file may only be written and

read by those two programs, and never
referenced by any others. Nonetheless, it is

desirable that those two programs could create a

unique integrity category, shared only between

those two programs for one instance of the

intermediate output and used strictly for that

purpose, without having to involve a central

coordinating authority.

As Karger^^ correctly observed, "The major

difficulty with using integrity categories to

protect CDIs and TPs seems to be one of

management. A large system, like IBM's AAS,
may have thousands of distinct TPs, while most

lattice model designs to date have considered 64

categories to be a large number! Furthermore,

categories tend to be managed centrally by a

51. Karger. Paul, "Implementing Commercial Data Integrity with Secure Capabilities," Proceedings of the 1988 IEEE Symposium
on Security and Privacy, April 18-21, 1988, Oakland, CA: IEEE Computer Society Press, Washington, DC. 1988, pp 130-139.

CSC/PR-89/3001
A.5 - 45

POLICIES AND MECHANISMS Dynamic Mapping of Integrity Categories

single security authority, while the security policy

in [a] commercial transaction system probably

needs to be more decentralized, with individual

applications managers creating TPs and granting

authorizations." In a very large network, it would

obviously be almost impossible to coordinate the

names of all of the various integrity

compartments that might be desired across the

entire network, for this is the problem that led us

to reject the global Access Control List approach.

Without attempting to constrain possible

implementations, it is apparent that an approach

that assigns a particular bit in a fixed-length field

or label to permanently indicate a particular

integrity category will probably not be adequate,

for the size of the field would tend to grow
without bounds in a large network. In addition,

there is the difficulty of coordinating a particular

integrity category name with all of the other

potential users of integrity categories, in order to

avoid accidentally reusing an integrity category

with unintended consequences. Finally, some
categories of information dealing with financial

records, contracts, and other matters of lasting

import must be protected for an arbitrarily long

amount of time, so integrity categories will tend

to be "eternal," yet the demand for new
applications will require that new categories be

invented from time to time.

For this reason, it is suggested that the "name" of

the integrity category could be a randomly or

pseudo-randomly generated passphrase with 2^^^

(3.4x10^^) or more different possibilities, so that

there would be an extremely low probability that

any other program or process would have

accidentally picked the same name (assuming that

the passphrase is kept secret). Assuming that the

average user's working vocabulary contains

approximately 20,000 words, and that 10,000 or

so are in the convenient range of 3 to 8

characters in length, randomly selecting 10

passwords to make up a passphrase would
provide the necessary variability. According to

the Birthday Problem in statistics, approximately

10^^ randomly chosen passphrases would have to

be selected in order to have a 50% chance that

two passphrases would accidentally be the same.

Assuming such a lengthy integrity category name
is selected, a cryptographic checksum technique

should be used to reduce the passphrase to a 128-

bit label for greater economy in storage and

transmission. We clearly don't want to have a

label that includes 2^^^ bits, one for every

possible category!

Instead, we should dynamically map that huge

name space to a much smaller number of bits as

integrity-labelled data is accessed and deaccessed,

for the sake of efficiency. This is precisely what

compilers do when looking up names in a name
table — a hash table lookup process is invoked

against the already existing names, the name itself

is checked against any previously stored names

that have been assigned to that slot in the table,

and if a collision occurs the new name is moved
to some other position. This name lookup
process only has to occur when a new integrity

category is encountered — after that, an
appropriate bit can be assigned in a standard

label.

The only issue is how many bits have fo i>e

provided in the label, and that is a function of

how many integrity categories have to be

simultaneously accessed at any given point in

time. That in turn depends on how a category is

opened or accessed, and more importantly on
how a category is deaccessed. One possible

mechanism would be for the TCB to increment a

use count associated with the integrity category

each time a subject with that integrity category is

created within the TCB, and to decrement the use

count when a subject with that integrity category

is deleted. In particular, if files are normally

stored in encrypted form and have to be

decrypted when they are read into the TCB, then

the mapping from the 128-bit integrity category

"name" can be performed at that time. When the

user who was using that category logs off, all

unencrypted information will be destroyed, so the

use count can be deleted at that time.

When the use count reaches 0, that category is no

longer in use by any subject, so the entry can be

removed from the hash table (this is a little tricky

to implement) and the corresponding bit in the

access control label could then be reused.

However, if an object previously imported into

the TCB by a subject was still in memory, reusing

the bit in the access control label could cause

possibly allow another subject to access one of

those objects by mistake, so it may also be

necessary to keep a use count of all objects

created with a particular integrity category. Only

when all of the subjects and all of the objects

associated with a given category have been

CSC/PR.89/3001 A.5 - 46

POLICIES AND MECHANISMS Dynamic Mapping of Integrity Categories

deleted from the TCB would it be safe to

reallocate the label bits.

It may seem that this solution is somewhat
extreme, in that it sometimes requires deleting

objects from the TCB that we would like to

protect! But what we are really talking about is

bow to most efficiently manage subjects and

objects within the main memory of the TCB, and

how to check the dominance relationship each

time a subject accesses an object. We may
therefore choose to restrict the implementation

of this dynamic mapping technique to only those

subjects and objects that are stored within main

memory — access to files stored on external

media could compare the 128-bit integrity

category name rather than the dynamically bit-

mapped object label used for memory objects.

The overhead of doing the name table lookup

would only occur when the file is opened, and in

most cases the computation time will be modest

compared to the time required to access the first

record.

If two users privately agree to establish an

integrity category using a secret integrity

passphrase, then only they will be able to create

or reference objects with that category. By
convention, one or more of the words in the

passphrase could be changed to include the date

or a generation or version number in both the

subject and the object, so that previous instances

of a file could not be confused with the current

version. This passphrase technique will be called

an informal integrity category, because the

particular category does not have any formally-

defined or centrally-controlled meaning but is

simply being used to enforce an assured pipeline.

On the other hand, there is also an obvious

requirement for formal integrity categories with

very specific meanings that are controlled

through a centralized registry approved or

controlled by the DAA for that community-of-

interest. For example, we would hope that a

nuclear reactor control program would not be

placed into actual use until its design had been

carefully reviewed by human experts from the

Nuclear Regulatory Commission, and the

implementation tested and certified by a duly

authorized individual or individuals after an

extensive scrutiny of the design, including

simulation testing. Only those authorized experts

would be allowed to assign the "nuclear reactor

control" category to an object, or to upgrade the

hierarchical integrity level of the program from

that required for "test" to a value suitable for

"production."

Because there are a number of independent

national and international agencies who might

have an interest in formally certifying the

integrity of subjects or objects, it is suggested that

up to 255 countries or supranational
organizations {e.g., NATO) be allowed, with 255

national agency codes per country. Up to 65535

different formal integrity categories could then

be made available to be allocated by and for each

national agency. Within each category, an

arbitrary number of subcategories can be

provided through the list technique, with subjects

being granted or denied the ability to create or

modify information with any or all of these

categories and subcategories. Even though

formal integrity categories (like secrecy

categories) can never be reused and must

therefore be eternal, that number of categories

should surely suffice for the foreseeable future.

The DAA would have to make sure that there is

agreement between countries and agencies as to

the meaning of a country code, national agency

code, and integrity category, with a mapping

being defined between the different agency's

numbering schemes if necessary. (A "foreign"

agency cannot spoof a user by creating a false

integrity category, because without the approval

of the DAA the digual Signature of the

originating TCB will not be recognized as valid by

the receiving TCB.)

In addition to this mechanism, integrity

subcategories could be implemented if required

by having each bit in the label implicitly refer to

the beginning of a list of subcategory names.

Presumably subcategories will not be needed very

often, and not very many would ever be created,

so the time to search the list would be short. If

only a small number of categories is anticipated,

the list approach could be used for the categories

instead of the hash table approach, just as was

done for the external files.

The total amount of information required for the

compressed integrity category names in the

object label is therefore 128 bits per informal

integrity category, or 32 bits for each formal

integrity category with no subcategories, which is

not an unreasonable amount of information to

carry in a file label. Assuming that not more than

40 to 50 integrity categories will ever be opened

CSC/PR-89/3001
A.5 - 47

POLICIES AND MECHANISMS Dynamic Mapping of Integrity Categories

simultaneously within one TCB, these categories

can easily be -mapped to a 64-bit access control

field for use by a lattice model.

In those instances where a static separation of

duties is required, the individuals involved can be

separated into two sets, with one set of

individuals being authorized to use one integrity

category and the other set being authorized to

use the other. Either formal or informal integrity

categories could be used. The TP could then be

certified to require two inputs, one with one

integrity category and the other with the other

one, and the separation of duty requirement

would then be satisfied. The DAA or other

approval authority for the particular application

would be responsible for keeping the two sets of

individuals separated, and the DAA would have

to ensure that the approval authority for a

particular program was not granted the unilateral

ability to execute a program he approved.

Such a mechanism still requires that someone
keep a list of what individuals are authorized to

do what, but it allows the list to be decentralized

to the individual application and does not require

global coordination across multiple hosts, since it

is only the host where the process is executed that

has to enforce the separation-of -duty
requirements. On the other hand, if multiple

hosts are required, the individuals in question can

carry their own digitally-signed certificates to the

hosts in question, thereby avoiding the problem

of coordinating a global database of authorized

users for specific applications across the entire

network.

4.6 Integrity Attributes

In addition to the integrity categories used to

represent application-dependent integrity

domains, a small number of predefined categories

may be considered global integrity attributes or

options.

The globally-defined integrity attributes should

include the following;

VERIFY: If VERIFY is specified in the

integrity-read-limit of the subject,

then in the case of a read or modify

operation all other operations by the

subject shall be suspended, the

object read in its entirety by the

TCB, and the cryptographic

RECORD:

checksum recomputed for the entire

object and compared to the
checksum in the integrity label, prior

to the subject taking any effective

action based on any of the
information contained within the

object. If the checksum does not

verify the integrity of the object

being read is defined to be 0/NULL.
and either all further processing shall

be aborted, or the integrity of all

further outputs shall be set to

0/NULL. If VERIFi' is specified in

the integrity-write-limit of the

subject, then in order for the

VERIFY' attribute to be set on the

output object in the case of a write

or modify operation, when the object

is closed the object shall be reread by

the TCB from beginning to end and

the checksum recalculated based on
the data actually recorded, and

compared to the previously
calculated and recorded checksum to

detect any I/O errors while the

object was being written out. If the

checksum does not compare, the

TCB shall write or rewrite the

integrity label of the object to

indicate that an error has occurred.

(The checksum can be included in .an

integrity trailer label placed at the

end of sequential files or tele-

communications sessions which
cannot conveniently be overwritten,

in order to ensure that the correct

checksum and integrity marking is

written out.) The intent of VERIFY
is to assure that applications which

are not prepared to back out the

changes that might be necessitated by

their reading potentially erroneous

data (a fact that might nqt be

discovered a considerable amount of

data had been processed) are not

allowed to access such data until its

integrity has been verified. Because

of the additional overhead, this

option should be used judiciously.

The RECORD attribute implies that

the file contains records that have

been individually authenticated, so as

A.5 - 48

CSC/PR^89/:

POLICIES AND MECHANISMS Integrity Attributes

to permit nonsequential I/O
operations without (re)reading the

entire file to calculate or record a

checksum. In order to detect any

addition, deletion, replication, or

reordering of records in a RECORD
file, each record must contain a

logical record number which is

included in the checksum. The
logical record number must agree

with the physical record number
after adjusting for the location of the

start of the file on the volume, in

order to ensure that records cannot

be inserted, deleted, or reordered.

The total number of records in the

file must be recorded in the file label,

and checked when the file is first

opened (for read) or closed (for

write) to ensure that no records are

missing from the end of the file.

RECORD and VERIFY are
independent of each other, except

that subjects performing non-
sequential I/O may be required to

specify either RECORD or
VERIFY in their integrity-read-limit

in order to ensure that all data are

properly authenticated during read

operations. Programs which
authenticate the individual output

records may set the RECORD
attribute in the object created or

updated.

PEDIGREE:
This option requires (in the case of

the integrity-read-limit) or provides

(in the case of the integrity-write-

limit) the collection of auditing data

in any objects created or modified by

a subject, so that the flow of

information that led to the creation

or modification of such an object can

be clearly identified. This auditing

data includes the name or other

identification of the process used to

create the data; the date, time, and

place of execution; the name and

unique ID of the user accountable

for the process; and the object name
and sufficient other information to

uniquely identify the contents of all

of the objects that were input to that

process to create the result, in

accordance with Rules 10 and 11.

DELETION-SENSITIVE:
This option requires (in the case of

the integrity-read-limit) or provides

(in the case of the integrity-write-

limit) that the subject differentiate

between an End-of-File and a File-

Not-Fonnd condition, so that the

accidental or deliberate deletion of

an object can be detected. If the

subject has the DELETION-
SENSITIVE attribute and it

attempts to read a object that cannot

be found, the process will be aborted

or all further objects created by that

subject will be set to a null integrity

by the TCB. If the DELETION-
SENSITIVE attribute is specified in

the integrity-write-limit, then the

subject is trusted to always provide

an explicit End-Of-File indication if

an only if a null output is intended,

rather than simply failing to output

an object in that case.

4.7 Integrity Covert Channels

Because of the duality between the Bell-LaPadula

security policy model for sensitive data and the

Biba integrity policy model for critical data, it is

necessary to consider whether integrity covert

channels exist, what they would mean, and how
they could be controlled.

The TCSEC defines a covert channel as "any

communications channel that can be exploited by

a process to transfer information in a manner
that violates the system's security policy. There

are two types of covert channels: storage

channels and timing channels. Covert storage

channels include all vehicles that would allow the

direct or indirect writing of a storage location by

one process and the direct or indirect reading of it

by another. Covert timing channels include all

vehicles that would allow one process to signal

information to another process by modulating its

own use of system resources in such a way that

the change in response time observed by the

second process would provide information."^^

CSC/PR-89/3001

A.5 - 49

POLICIES AND MECHANISMS Integrity Covert Channels

From the standpoint of that definition, it is

obvious that integrity covert channels could exist

— whatever covert channels exist in a system that

could violate the Bell-LaPadula policy could

potentially be used to violate the Biba integrity

policy, for example.

Furthermore, if an integrity covert channel were

to exist, it could potentially be much more
harmful than a disclosure covert channel, because

of the difference in sensitivity to the bandwidth

of the covert channel. Although it is conceivable

that a single bit of information could have

devastating consequences if it were disclosed

{e.g., "The Allied invasion of Normandy will/will

not take place via the English Channel."), in most

circumstances an appreciable amount of

information must be disclosed before
considerable damage would result. For that

reason, the bandwidth of the covert channel must

be considered. Because covert storage channels

often arise in conjunction with process
synchronization and other operations that are

intrinsic to the operating system and would cause

considerable performance degradation if they had

to be removed entirely, the TCSEC states that

covert channels of less than 1 bit per second are

generally considered acceptable in most
application environments, particularly if covert

channels whose bandwidth potentially exceeds 1

bit in 10 seconds are subject to audit.^-^

In the integrity case, however, a covert channel

could potentially be very harmful even if only a

single bit were transmitted, since that bit might

serve as an external signal to a Trojan horse

program to carry out whatever damage function

it was to perform. In that sense a single bit might

be the equivalent of the famous "Climb Mount

Niitaka" message that was sent in an open code

to the Japanese forces preparing to attack Pearl

Harbor, directing them to proceed as planned.^"*

Since it is presumably possible for a low integrity

subject to send a signal to a high integrity subject

through a covert channel, we have to consider

what the implications would be. In the case of a

conventional secrecy-type covert channel, an

untrusted Trojan horse program which is

executing on behalf of a cleared user and

processing classified data somehow manages to

signal that information to a confederate (a

subject with a lower clearance) through a covert

channel, and the dangers are obvious.

In the case of an integrity covert channel,

however, we have the situation where the low-

integrity untrusted^^ process is attempting to

signal to a high-integrity trusted process. The
obvious question is, "So what? If the process that

is being signaled to is in fact trusted, shouldn't it

just ignore or reject the untrusted input?"

In considering this question, we have to think

more carefully about the reason for the integrity

confinement property (integrity *-property) that

prevents an untrusted process from writing up in

integrity and attempting to spoof a more trusted

process. If the receiving process is trusted, why is

the confinement property necessary?

The answer has to do with the Sorcerer's

Apprentice problem — a process may be trusted

to do exactly what it is told to do, and only that,

but it may still be "dumb" or unsafe, i.e.,

incapable of rejecting certain inputs as inherently

undesirable. For example, we might hope that

the missile-targeting program for an strategic

52. A brief discussion of the problem of covert channels in networks, together with a good bibliography, is contained in Eggers, K.
W. and P. W. Mallett, "Characterizing Network Covert Storage Channels," Fourth Aerospace Computer Security Applications
Conference, Orlando, FL, December 12-16, 1988, Computer Society Press of the IEEE, Washington, DC, 1988, pp 275-279.

53. It must be noted that these guidelines would still allow more than 1000 bytes of information per day to be signaled over a

covert channel. Hamming codes and other compression techniques could effectively double or triple that figure, depending on
the redundancy in the text. Forward Error Correction techniques could be used to eliminate the effect of a noisy channel, if

necessary. In particular, covert timing channels between cooperating subjects in a multitasking environment would seem to be
almost impossible to eliminate unless an extremely rigid task scheduling discipline is used so that neither any variations in a

subject's CPU utilization nor the use of I/O resources can be communicated to another subject. Tasks must be given a fixed

amount of time every time they are dispatched, whether they can use it effectively or not. Likewise, a WAIT for I/O to

complete must take the same amount of time (sufficient to complete the read or write operation with a high probability) in

every instance, regardless of when the 1/0 operation actually completes. A similar technique in the communications field is

the use of full-penod link encryption to deny the enemy any knowledge of traffic patterns or addresses. It remains to be seen

whether it is possible to build systems that are cost-effective under these constraints. Hopefully, the continuing increase in

performance and decreasing price of personal computers and dedicated workstations will make issues of efficiency and
performance less important than in the past.

54. Kahn, David, The Codebreakers, Macmillan Publishing Co., New York, 1967, p. 41.

55. For the purposes of this discussion, untrusted /trusted is used in the integrity or "correctness" sense, not necessarily having

anything to do with secrecy.

A.5 - 50

CSC/PR-89/3001

POLICIES AND MECHANISMS Integrity Covert Channels

ICBM would check to ensure that the coordinates

of the target that were specified were not within

the boundaries of the country that launched it.

However, a tactical missile might not be subject

to such constraints, since that might limit its

defensive use in the event of an invasion of the

homeland by the enemy. In the case of the

tactical missile it would therefore be quite

important that only trusted data be processed by

the trusted but unsafe subject.

For this reason, it is necessary to enforce the

default integrity-read-limit on all objects that a

higher-integrity process might access. In addition

to applying to files, this constraint will also apply

to signaling mechanisms. A lower-integrity

subject will be allowed to signal or call a higher-

integrity process if and only if the integrity-write

-

limit of the invoking process dominates the

integrity-read-limit of the invoked process.

Otherwise, even the fact of the interrupt, much
less any information passed along with the

interrupt such as the reason, might convey low-

integrity information that the high-integrity

process was not certified to handle.

However, reading data from the normal input

medium is one thing, but for a trusted program to

read and act upon data from a covert channel

mechanism would be quite something else.

Normally there would be no reason to suspect

that a trusted program would ever act upon such

illicit information, even if the data conformed to

all of the syntactical and semantic rules of legal

input as though it had been read via the normal

channels.

Unfortunately, the difficuhy once again is that of

trying to prove a negative proposition, i.e., that a

program does what it is supposed to, and nothing

else. It might be fairly simple to examine the

source code of a cosine routine and conclude that

it would never modify a file or even the input

argument, i.e., it is a pure function and has no

side effects. However, it would be quite a

different matter to prove that a word processing

program or DBMS program that routinely reads

and writes files would never modify any file other

than the user was currently working on. It would

greatly simplify matters if the TCB could provide

a containment mechanism so that we wouldn't

have to worry about such things.

The Mandatory Integrity Controls as previously

defined provide a considerable amount of

A 5
CSC/PR-89/3001

assistance in this area, especially the requirement

that a subject cannot modify, delete, or rename a

object unless the integrity-read-limit of the

subject dominates the integrity of the affected

object (I.e.. the subject can legitimately read the

previous object), and the integrity-write-limit of

the subject dominates the integrity of the

affected object (i.e., untrusted processes cannot

destroy more trusted data), and the integrity

marking of the modified or replaced object is

dominated by the integrity-write-limit of the

subject.

Because a low-integrity subject cannot modify,

delete, or rename a higher-integrity object, and

since the integrity markings include the integrity

categories that correspond to the integrity

domain(s) that a given process was certified

against, it follows that the most obvious form of

what some people (but not all) would consider a

denial-of-service attack, namely the accidental or

deliberate destruction of data by an unauthorized

subject, will be prevented by the TCB through

the application of the Mandatory Integrity

Controls. In order for a subject (program or

human user) to be able to create, modify, delete,

or rename an object, the subject must be certified

as trusted for all of the integrity categories to the

level required by the hierarchical integrity

component of the integrity marking of the object.

The obvious application of the Mandatory
Integrity Control policy to external devices and

actions would be to treat command channels (for

example, the ignition control signal which

launches a missile) or other I/O devices or

actuators as either subjects which can only read

objects whose integrity marking dominates their

integrity-read-limit, or alternatively as existing

objects whose contents can only be modified by a

subject whose integrity-write-limit dominates the

integrity marking of the object.

However, we previously assumed that if a process

was not explicitly designed, constructed, tested,

and certified as conforming to a set of syntactic

and semantic rules that make up an integrity

domain, that process must be considered

untrusted with respect to that domain. For that

reason, unless the rules that make up an integrity

domain are very carefully specified to ensure that

a process does exactly what it is supposed to do

and nothing else, it appears that we cannot

conclude that any process is necessarily safe with

51

POLICIES AND MECHANISMS Integrity Covert Channels

respect to an integrity domain that it was not

specifically designed to handle properly,

regardless of whether the inputs were provided

by an overt or covert channel.

However, we can conclude that the Mandatory

Integrity Controls if implemented properly will

prevent any modification, deletion, or renaming

of any object by a subject of lower integrity, or

the initiation or termination of any external

action under the control of the TCB by a subject

within the TCB which was not certified as having

the required integrity markings.

There is still one significant area where an

integrity covert channel might be a problem, and

that is the case of an accidental or deliberate

denial-of-service situation that might result from

an integrity covert channel being used to signal

from a low-integrity subject to a higher-integrity

subject, causing the higher-integrity process

(which was not designed, constructed, tested, or

certified not to take such actions, perhaps

because no one ever thought of the possibility) to

monopolize scarce resources or cause a deadlock

in such a manner as to deny a specified service to

a group of otherwise-authorized users for a

period of time that exceeds the intended and

advertised maximum waiting time for the service.

As defined by Yu and Gligor^^, "Denial of service

can be both a safety and a liveness problem. It

takes place whenever one or both of the

following situations occur:

- Some users prevent some other users

from making progress within the service

for an arbitrarily long time.

- Some users make some other users

receive incorrect service, i.e., the service

does not satisfy its intended
specifications for the latter users."

Instances of the first case are considered liveness

problems and generally involve the excessive

consumption of resources, while instances of the

second case are- considered safety issues and

include situations such as a permanent deadlock

between user processes. (Note that Yu and
Gligor's use of the term "safety" is slightly at

odds with the previous use of the term "unsafe"

in conjunction with the missile launch program.

)

As an example of how such a situation might

arise, suppose that a subject such as the I/O
scheduler of the operating system has been
certified to read and write data with a very high

degree of integrity. Such a task might run at a

very high priority in the system, and there might

not be any other robustness mechanism in the

operating system that would ensure that a single

task cannot dominate the system. Although such

a program might read and write data flawlessly

for years, an integrity covert channel could

conceivably be used to signal the otherwise

trusted program and suddenly cause it to

consume all of the available processor time,

memory, disk space, or whatever — a liveness

problem. Although such a flaw might be

relatively apparent during a design or code

review, deliberately creating a deadlock between

two cooperating Trojan horse programs would be

much harder to detect because of the difficulty of

analyzing asynchronous, interrupt-driven

processes.

Unfortunately, although secrecy restrictions may
sometimes be ignored during a crisis (for example

during battle to get intelligence information to

the field as quickly as possible), integrity and

denial of service are generally of lesser concern

except during a crisis, when they may be fatal.

The possibility of an integrity covert channel

leading to a denial of service attack therefore has

to be taken quite seriously, especially in a

networking context.^^

Yu and Gligor's paper appears to be very

promising from the standpoint of providing a

formal specification and verification method

56. Saying so in English is not the equivalent of provine these assetlions mathematically, of course. I look forward to someone
reducmg the proposal Mandatoi^ Integrity Control policy to a formal model, and then proving that these assertions follow

from the model.

57. Yu, Che-Fn and Virgil Gligor, "A Formal Specification and Verification Method for the Prevention of Denial of Service,"

Proceedings of the 1988 IEEE Symposium on Security and Privacy, April 18 21, 1988, IEEE Computer Society Press,

Washington, D.C., 1988, pp 187-202.

58. In this connection, it should be observed that the "Yellow Books," CSC STD -003-85 and CSC STD-004-85, "Guidance for

Applying the Department of Defense Trusted Computer System Evaluation Criteria in Specific Environments" issued by the

National Computer Security Center do not address the possibility of either integrity threats or denial of service, but only the

threat of compromise when coming up with the security index matrix (data sensitivity vs. minimum user clearance) which

CSC/PR.89/3001
A.5 - 52

POLICIES AND MECHANISMS Integrity Covert Channels

which features the use of service and user

agreement specifications as a means of addressing

the denial of service problem. It appears that

user agreements can be codified to include a

specification of what constitutes safe-ser^'ice and

live-service invocations, together with a formal

service specification, using a temporal-logic-

based specification language to deal with the

issues of concurrency, scheduling, fairness, etc. If

so, and assuming that these specifications can be

used in a practical way to evaluate cooperating

processes, then it would appear that the denial-

of-service problem can be converted into an

integrity problem, and that would be good news

indeed.

4.8 Discretionary Integrity Policies

In most cases, the proper rejoinder to the

statement "Object X has hierarchical integrity N
with respect to integrity domain A" should be,

"Says who?"

This question is analogous to the Discretionary

Access Control requirement of the TCSEC,
which allows a user to exercise his discretion as to

whether to reveal information to someone who
has the appropriate clearance, based on that

user's assessment of the recipient's Need-To-

Know. In the integrity case we are asking what

individual in combination with what trusted

process created that object, and by implication

assigned that object a specified integrity rating,

because we intend to make a decision as to

whether or not to accept, believe, obey, or trust

that object based on that individual's authority

and believability.

Whereas the Discretionary Access Control policy

deals with Need-To-Know, the Discretionary

Integrity Control policy deals with Need-To-Do.

Discretionary Integrity Controls are identity-

based access controls that operate at the

discretion of the receiving subject, as opposed to

integrity category controls which are imposed on

a mandatory basis by the central accrediting

authority and enforced by the TCB in order to

protect the subject. That does not denigrate the

use of discretionary controls — it just means that

the subject must take on more of the

responsibility in this area. In particular, before a

particular program is accredited or certified as

trusted with respect to some integrity domain, the

use of discretionary integrity controls may have

to be examined in considerable detail. On the

other hand, the human end-user may be free to

accept or reject a particular object based on the

identity of the originator, as he or she sees fit.

In particular, certain individuals may be rejected

as untrustworthy or subject to a potential conflict

of interest. To repeat a point made much earlier,

the fact that Discretionary Integrity Controls are

applied when the data is read means that if the

originator of some object is discredited after the

fact, that object can be easily be rejected even

though it had been accepted previously. In the

intelligence community, for example, it was

revealed during the "Irangate" hearings that the

CIA and the White House staff had continued

dealings with a Mr. Ghorbanifar, even though he

had failed a polygraph examination. A less

sensational example would be a programmer
responsible for the credit/debit program for a

bank. A prudent bank would probably not allow

that programmer to run that program on live data

without other checks and balances, for obvious

reasons.

Similarly, a programmer should not be allowed to

accredit that program, and likewise someone who
accredits such a program should not be allowed to

run it, because of the possibility that either could

potentially take advantage of some flaw. For that

reason, more than one individual may be

required to have approved the contents of the

data object in order to enforce the requirements

for separation of duty.

A combination of mandatory and discretionary

integrity mechanisms can provide the equivalent

function as the triple of (UserlD, TP, and [CDIi

... CDIn]) proposed by Clark and Wilson in their

rule E2 to control who can exercise a given TP
against a given set of CDIs:

- Mandatory and discretionary access

controls can control what users are

allowed to execute a process (TP).

- Mandatory and discretionary access

control categories can also be used to

control which subjects (processes and

users) can access particular input CDIs.

specifies what level of assurance is required for a system processing classified or sensitive information. From that standpoint

the guidelines are not very conservative, and should be regarded as the minimum requirements.

CSC/PR-89/3001
A.5 - 53

POLICIES AND MECHANISMS Discretionary Integrity Policies

- Mandatory integrity control categories

associated with the subject process can

limit what input CDIs a given TP is

allowed to accept or believe, and the

same or other integrity categories can be

used to mark what output CDIs are

created to provide an assured pipeline.

The separation of duty requirement can

be satisfied on a static basis through the

use of two different formal integrity

categories.

- Discretionary integrity controls can make

use of an unforgeable mechanism to

indicate which user executed the process

that created a certain CDI, so that some

later TP will be able to confirm that the

CDI in question was produced by an

authorized user, and accept or reject the

object appropriately.

This mechanism is considerably more flexible

than the database-of-triples mechanism proposed

by Clark and Wilson, in that the TP itself can

access the discretionary integrity control

mechanism to determine whether the input data

is to be considered valid.

For example, suppose that a company's policy is

that the signature of the requester's Manager
must be obtained for all purchase requests, that

in addition the signature of the requester's

Director must be obtained for purchases over

$1000, that a Vice President's signature is needed

for all purchases over $10,000, that the signature

of the Contract Administrator assigned to the

particular contract is required for any purchases

charged to a Government contract, that the

signature of the Comptroller is needed for all

indirect capital acquisitions, and the President's

signature is required for all expenditures over

$100,000. Furthermore, the Contract
Administrator has delegated his signature

authority to the Deputy Contract Administrator

for contracts A, B, and C, and an offsite

Operations Manager can sign for his Vice

President for requests originating within his

organization, up to $5,000.

Such a separation of duty policy would not be

particularly unusual, but it would be dynamic

rather than static since it takes into consideration

the value of the data items themselves. The
complexity of the interrelationships of reporting

organizations, contract amounts, and dollar

values of purchases would undoubtedly require

access to an application database, which would in

turn have to be managed by other programs.

The point is that if a general purpose TCB were

to attempt to provide this level of flexibility in

controlling which users can exercise what
programs and access specified input and output

CDIs, the complexity of the TCB would very

quickly grow to the point that the system could

not be formally evaluated. And if the objects

(CDIs) representing purchase requests were

collected and transmitted over a network instead

of residing at a single monolithic TCB, thereby

requiring the global administration of such a

policy, the task of ensuring the integrity of the

results would probably become impossible.

In contrast, if the TCB were to provide a

mechanism whereby the user who exercised the

TP and/or approved the output was irrefutably

identified in an integrity label associated with

each output CDI, then a certified, trusted

application program could assure itself that the

appropriate levels of signatures were provided,

and the operating system itself would not have to

be involved in maintaining that policy.

It should also be pointed out that such a

mechanism makes it easy to deal with objects

that have not yet been created, whereas the rule-

based mechanism proposed by Clark and Wilson

is obviously constrained to deal with already

existing objects.

However, the proposed system does not provide

quite the degree of granularity suggested by Clark

and Wilson without one modification. In the

lattice model suggested above, if a user has access

to the TP and also has access to a given set of

CDIs, and if the TP can access those CDIs on

behalf of any user, then the access would be

allowed. In contrast, the use of a true triple

consisting of the user, TP, and a set of CDIs

would make it possible to specify exactly which

CDIs a given TP can access on behalf of a

particular user. In other words, in the lattice

model a user who had valid access to a TP and to

a set of CDIs could input any CDI into that TP
that the TP would allow for any user, whereas the

Clark and Wilson model would allow constraining

a user to inputting only specified CDIs into that

TP.

CSC/PR-89/3001
A.5 - 54

POLICIES AND MECHANISMS Discretionary Integrity Policies

An example of such a situation would be a clerk

in a Personnel Department who is allowed to

input salary data into the payroll database. Each

clerk could invoke the TP which updates the

payroll database, and the payroll database would

accept inputs pertaining to any employee in the

company, but a clerk should not be allowed to

input a record which pertains to his or her own
salary level.

Assuming that this application is representative

of those cases where the flexibility of specifying

GDIs that a TP can access on behalf of a specific

user is required, then the functionality of Clark

and Wilson's triple can be provided by requiring

the discretionary integrity control function to

include the capability of excluding an individual

or group of individuals, in a manner that is similar

to the exclusionary discretionary access control

requirement for Class B3. This would allow the

payroll clerk to read his or her own payroll record

(assuming that the Discretionary Access Control

policy did not prohibit it), but the TP would
reject any attempt by a clerk to change his or her

own payroll record.

The dynamic separation-of-duty requirement will

normally be rather somewhat complex, since in

most applications it will deal with records and

fields rather than files, and the granularity of the

TCB may not extend to what amounts to nested

objects within objects.

For that reason, it is suggested tiiat tlie TCB
stiouid not be responsible for enforcing the

dynamic separation of duty requirements
imposed by a TP.

Instead, the TCB should assure that the

originator of an object is accurately identified and

provide a mechanism whereby the trusted

(certified) application program or TP can know
the invoking user as well as the originator of

particular objects and can thereby implement

whatever separation-of-duty policy is required by

the human accreditor.

Because the TP is responsible for enforcing the

dynamic separation of duty requirements,

Discretionary Integrity in this case is at the

discretion of the program developer and
accreditor. The human user can decide for

himself whether he wishes to reject some
information based on the identity and authority

of the originator, but in the case of separation of

duty the human user cannot override the TP and

decide to accept something that the TP decides is

not acceptable.

4.9 Digital Signatures

It is obviously necessary to prevent anyone,

including both the originator and the recipient of

an object (who may know the cryptographic key

used to encrypt the object) from being able to

change the access or integrity control labels of

that object (or contents of the object) without

detection. For that reason, the TCB must

digitally sign both the access and integrity control

labels, which include the name and cryplonym of

the authorized user who initiated the TP which

created a given object. In this respect the TCB is

acting on behalf of the Designated Approving

Authority (DAA) or system administrator to

enforce the immutability rule. Rule 1, and the

attribution rule, Rule 2.

In many cases, the accurate identification of the

originator will be sufficient to ensure that

sufficient integrity is provided. However, in the

case of critical data or processes, it is frequently

necessary to require that a higher standard of

care be exercised, and to impose some liability for

malfeasance by the originator.

But the fact that the user created an object does

not necessarily mean that he or she approved the

contents — the object could have been a rough

draft, a trial balance, a simulation or test, or

simply be incorrect, and this is not sufficient to

prove the intent necessary to establish

malfeasance. It is therefore necessary for the

subject to be able to require a non-repudiation

mechanism which reflects the usual implication

of a written signature in commerce:

A user's digital signature must be of his own
volition; and must express his conscious,

knowing, and willful agreement with the

contents of the signed object

For that reason, the user must be provided the

opportunity to review the output while the object

is being created and is still held securely within

the TCB, and then to add his digital signature

and/or comments to the provenance of that

object if he approves. In addition, a user should

be able to review, comment, and digitally sign the

provenance after the object has been created.

CSC/PR-89/3001
A.5 - 55

POLICIES AND MECHANISMS Digital Signatures

However, in either case the process that is used

to present the data to the user for his review and

signature must be trusted to display ol! of the

information in the file to the user, and not to

modify the information before the digital

signature is affixed. Finally, the TCB must be

trusted not to retain and possibly misuse the

user's private signature key, just as it must not

retain a user's private decryption key.

The fact that an object bears a digital signature

does not necessarily mean that it is trustworthy,

however, for even the best digital signature

scheme is worthless if the individual signing the

document is a pathological liar. Therefore, part

of the discretionary integrity controls associated

with a subject or TP must provide either the TP
or the human user the ability to decide or specify

exactly whose digital signatures must be present

in the integrity control label associated with an

object, and in what combinations, in order for

that object to be believed or not to be believed.

In addition, multiple signatures provide a means

of enforcing separation of duty (approval

signatures) that is in addition to integrity

categories. A multiple signature capability would

also support contract signatures between
multiple parties, and provide a notarization or

witness function. Although the TCB provides

protection against an attempt by one of the

parties to renege on a signature,^^ an additional

human witness may be desirable to attest to the

apparent soundness of mind and absence of any

compulsion over the signer. It should be noted

that someone can witness or notarize a document

that someone else has signed, without necessarily

understanding or even reading it. For that

reason, and to differentiate between those users

who sign a document indicating their approval as

opposed to those who merely witness the

signatures, notarizing signatures should be

applied to the encrypted contents of the object,

in such a way as to confirm the presence and

authenticity of the previously applied digital

signatures.

For the above reasons, the following additional

globally-defined integrity categories or attributes

will be required:

NON-REPUDIATION:
This attribute implies (in the case of

objects) or requires (in the case of

subjects) a verifiable absence of

modification of the object(s), plus

non-repudiation (digital signature)

protection of the contents of the

object; the date, time, and place of

the object's creation; and the identity

of the signing user(s). NON-
REPUDIATION requires that the

originator of the document explicitly

consent to sign the document to

indicate his approval of its contents.

Note that a given user may sign a

document in different ways,

depending on the user's role that is

involved. Multiple users may sign or

be required to sign the document in

the case of a contract or approval

list, as specified by the Discretionary

Integrity Controls. The signature of

the TCB, together with the trusted

date/time mechanism, are sufficient

to protect against a retroactive claim

of compromised key(s) and a back-

dated forgery by the signer(s).

NOTARIZED:
This attribute requires or implies the

presence of both the digital signature

of the signing user(s), plus the digital

signature of one ,or more
independent witnesses. The
NOTARIZED option differs from

the NON-REPUDIATION option in

that the witness is not approving the

contents of document itself, but only

witnessing the voluntary digital

signatures of the other signers.

In general, before a user's digital signature will be

accepted by another individual, the user will be

required to sign a notarized Affidavit of Legal

Mark wherein he or she agrees to be legally

bound by his digital signature, perhaps subject to

certain caveats. This affidavit announces the

individual's public authentication key and is

digitally signed, thereby proving that the

59. Without notarization, one party to a contract could attempt to renege on an agreement by convincing a judge that his digital

signature was a back-dated forgery made possible by an alleged after-the-fact compromise of the signing party's digital

signature key. The TCB's notarization attests to the date of the signature, and makes such a claim impossible in the absence of

collusion with the DAA, who controls the date/time function in the TCB.

CSC/PR-89/3001
A.5 - 56

POLICIES AND MECHANISMS Digital Signatures

individual knows the associated secret signature

key. The affidavit also contains the individual's

public encryption key, so that anyone sending

information to that user can be convinced that it

is going to the intended receiver. Any other users

should carefully examine the caveats, expiration

date, etc., contained in the affidavit and should

check any digital signature using the public key

contained in the affidavit before accepting the

validity of a particular document. Finally, the

affidavit must be notarized, either by the

electronic signature of a Notary Public (who must

in turn be authenticated, and so on up to the head

of a chain of authority deemed acceptable by the

sponsor or owner of the TCB, e.g, the DAA) or

with a traditional paper document, both to

ascertain the integrity of the digital signature

itself and to provide assurance that the individual

whose digital signature is affixed to an object has

been satisfactorily identified and duly authorized

to sign a document.

4.10 Human-Readable Output

The above controls have dealt with the problem

of ensuring the integrity of computer-readable

information, but we are left with the problem of

preserving and attesting to the integrity of the

output on the video display and on the printed

page.

The video display problem can be solved by

treating the display hardware as part of the

subject created on behalf of the user. If the user

logs on with an integrity-read-limit which includes

the attribute "TRUSTED-DISPLAY," any data

which is to be displayed must be filtered through

a program that has been certified as meeting the

criteria established. That is, if any escape

sequences are supported might alter the form of

data presented on the screen, those escape

sequences must involve only control characters

which are outside of the normal alphabet.

Furthermore, any TP which has the TRUSTED-
DISPLAY attribute must scan all data to be

presented and flag any such escape sequences.

FinaUy, any TRUSTED-DISPLAY TPs must be

certified to present all of the data, and only that

data, which is intended to be presented.

The TCB's trusted path mechanism will be used

to unambiguously inform the user of the integrity

level of the display. Note that a trusted path is a

requirement for B2 systems and above — a BL

system will not satisfy this requirement unless

this additional capability is included.

Tne trusted printer output problem can be solved

in the same manner, by supporting the

"TRUSTED-OUTPUT" integrity attribute. If

the user logs on requesting this integrity

attribute, all programs which write output to the

printer must be trusted to transform the

computer-readable files into hardcopy output

"properly." The trusted path will be used to

inform the user of the integrity level of the

output, and in addition, the banner page that is

printed before and after any printed output will

also inform the user of the integrity level of the

output.

However, the trusted facility manual will have to

address what types of printer can be connected to

the system, and/or what precautions are to be

taken to prevent a Trojan horse attack on the

printer itself. The user will also be responsible

for ensuring that the TRUSTED-OUTPUT
attribute is invoked before printing any high-

integrity output such as checks.

Because the TRUSTED-DISPLAY and
TRUSTED-OUTPUT attributes may be

application dependent and hardware specific,

they are not defined as globally-defined integrity

attributes.

5 CONCLUSIONS AND
RECOMMENDATIONS

5.1 Reprise

The previous sections have dealt extensively with

fhe problem of ensuring the integrity of

information as it is processed, transmitted, and

stored within a potentially unsecure network of

interconnected TCBs. In concentrating on the

problem of detecting unauthorized modification

that may occur while the information is being

transmitted or stored outside of a TCB and

highlighting the shortcomings of the TCSEC and

Clark and Wilson's paper in not dealing with

these problems, we should not be unappreciative

of the contributions made by those who have

gone before. Indeed, if it were not for the

contributions of people like Marshall Abrams,

CSC/PR-89/3001 A. 5 - 57

CONCLUSIONS AND RECOMMENDATIONS Reprise

Len Adleman, Jim Anderson, Al Arsenault.

David Bell, Ken Biba, Earl Boebert, Dennis

Branstad, Sheila Brand, David Clark. Don
Coppersmith, Dorothy Denning, Whitfield

Diffie, Virgil Gligor, Marty Hellman, Steve Kent,

Len LaPadula, Steve Lipner, Mike Matyas, Carl

Meyer, Ron Rivest, Marvin Schaeffer, Roger

Schell, Adi Shamir, Bill Shockley, Gus Simmons,

Steve Walker, Willis Ware, David Wilson, John

Woodward, and many others before them, we

would not be where we are today.

In particular, the virtues of the TCSEC should

not be ignored, despite some of its present faults.

Security and integrity must go hand in hand, and

in particular, the system architecture

requirements of the TCSEC for Class B3 and Al
systems, namely the need for the rigorous

decomposition of function and the requirement

for significant system engineering to minimize the

complexity of the TCB and exclude from the TCB
modules that are not protection-critical, are

perhaps even more important from the

standpoint of integrity than they are for security.

In addition, the use of a digital signature

mechanism for integrity implies the need for a

secrecy mechanism within the TCB, so that the

user's secret signature key cannot be

compromised.

Although the emphasis in this paper has been on

the defensive detection of unauthorized

modification of information, whether it occurs

within the TCB (perhaps by a virus that has

somehow slipped into the system) or outside the

TCB, it is obviously better to prevent such

damage if possible. For this reason, the

Mandatory Integrity Controls were formulated in

such a way as to prevent a low-integrity subject

acting within the TCB from modifying, deleting,

or renaming higher-integrity objects within the

TCB, although the Mandatory Integrity Controls

can only detect modifications that happen outside

of the TCB. In addition, although conventional

Discretionary Access Controls with read/write

permission, whether of the simple
self/group/public type or a more comprehensive

Access Control List, were found to be inadequate

as a basis for a strong integrity confinement

policy, they are still useful in supplementing the

Mandatory Integrity Controls to prevent the

modification, destruction, or renaming of an

object by a user who has the necessary integrity

certificates but was not authorized by the owner

of the object.

In the telecommunications environment, the

usual node-to-node transmission checksums and

Go-Back-N or Selective Reject protocols are still

desirable to efficiently correct accidental errors,

and host-to-host or end-to-end packet sequence

numbers and other techniques will still be

required in order to minimize the need to

retransmit an entire file if an error is eventually

discovered. Protection against the physical

interruption of communications (cutting the line)

or the flooding of the network with unauthorized

data (jamming) can be addressed through

mechanisms such as redundant communications,

protected wireline distribution systems, and anti-

jamming techniques such as spread-spectrum

communications.

5.2 Conclusions

The integrity requirements for both military and

commercial applications can be satisfied by the

use of Mandatory and Discretionary Integrity

Control mechanisms that are the duals of the

Mandatory and Discretionary Access Controls

presently defined in the TCSEC, and can be

implemented through the use of integrity labels,

cryptographic checksums, and digital signature

mechanisms, using a Trusted Computing Base

(TCB) that provides both security and integrity

protection:

Mandatory Integrity Control: Before a data

object can be accepted by a process, a convincing

argument must be made that an object has not

been modified since it was created. This

argument requires the verification of a

cryptographic checksum and the digital signature

of the originating TCB each time the object is

accessed. If the verification fails, the integrity of

the object is set to null.

Certain processes, called Transformation

Procedures (TPs), must be certified by an

approval authority with respect to a specified

integrity domain. TPs must either be required to

accept or believe only those objects that have

already been screened with respect to a specified

integrity domain by some other program or

process, or else they must be prepared to validate

(accept or reject) such inputs according to

CSC/PR.89/3001 A.5 - 58

CONCLUSIONS AND RECOMMENDATIONS Conclusions

application-dependent syntactic and semantic

rules; i.e., with respect to some integrity domain.

More generally, an object is to be trusted,

accepted, believed, or obeyed if and only if it was

produced by set of trusted processes, which in

turn accepted only certain trusted data inputs.

The Biba integrity policy model is extended to

include the concept of a multilevel subject which

is constrained to operate within an integrity-read-

limit and an integrity-write-limit that include a

hierarchical integrity level and a set of integrity

categories, where the integrity categories

correspond to the integrity domains for which a

subject was certified. Such a policy can be used

to constrain subjects from accessing (reading or

executing) objects of lower integrity than a

specified minimum level of integrity and from

writing (creating, modifying, or deleting) objects

of greater than a specified maximum level of

integrity; thereby implementing the necessary

constraints upon TPs. However, within those

limits a TP may be accredited by some authority

as carrying out whatever trusted process is

required by the application.

Discretionary Integrity Control: All users of the

system must be enrolled into the system and

uniquely identified before accessing any

resources.

All users must have their privileges (granted to

them by someone of higher authority)

authenticated before they are allowed to perform

any action or any data produced by their actions

may be accepted or believed.

Data introduced into the TCB or created or

modified within the TCB by a subject (TP) under

the control of some authorized user may be

required to be explicitly associated with that user,

who may be held accountable for his actions. An
optional digital signature mechanism is provided

to ensure that the user's signature was of his own
volition, in order to establish intent.

The system must be capable of ensuring that the

input to certain processes (TPs) may only be

accepted (believed) if one or more trusted

individuals approved that input. In some cases

this may require excluding certain individuals

from initiating a process, and/or requiring two or

more trusted individuals to initiate a process, or

only accepting or believing the input data subject

to those restrictions, in order to enforce the

principle of separation of duty.

Additional Controls: Additional controls are

required to ensure proper sequencing and

program confinement, as well as auditing and

journalling capabilities that are suitable for the

networking environment. A trusted date/time

facility is required, and the standard audit trail is

enhanced to more specifically address integrity

concerns. Because it may not be possible for the

recipient of some object to determine how that

object was created by accessing the audit data

base, a portion of that information, called the

pedigree, can optionally be required to be present

in the integrity label of an object. Statements

about the object can be added to the provenance

of the object and digitally signed by an authorized

user.

Consideration was given to the possibility of

integrity covert channels, and it was concluded

that the primary risk is in the area of denial of

service. In this connection, Yu and Gligor's^^

approach to a formal specification of service and

user agreements using temporal logic seems quite

promising, and may provide a means of tying the

denial-of-service problem to integrity.

The above policies and mechanisms implement an

integrity policy that is compatible with the

concepts and rules originally proposed by Clark

and Wilson, but is more flexible and more

complete. Such a policy appears to be easily

implementable in an end-to-end, user-to-user

networking environment of personal computers

60. Yu and Gligor, ibid..

61. Clark and Wilson's most recent paper on the subject, "Evolution of a Model for Computer Integrity," was presented and
informally distributed at the 11th National Computer Security Conference and at the NiST Invitational Workshop on Data
Integrity, January 25-27, 1989, in Gaithersburg, MD. In it, they broadened some of the concepts of internal consistency of data

that were introduced in their earlierpapcr. They now talk about Prevention of Change, Attribution of Change, Constraint of

Change, and Partition of Change. The concept of change logs and integrity labels on data is discussed, along with enhanced
user authentication and dynamic separation of duty. They note that "The most sophisticated form of logging, which remains
rather speculative, is the labelling of data to indicate comparison with integrity domains." Their current position seems to be
gratifyingly close to the policies and mechanisms proposed herein.

A.5 - 59

CSC/PR-89/3001

CONCLUSIONS AND RECOMMENDATIONS Conclusions

and workstations, and it should be highly useful

for both commercial and military applications. It

should be particularly useful for applications such

as Electronic Data Interchange (EDI), where a

large number of disparate organizations wish to

exchange purchase orders and similar

information across an untrusted network, and

there is no central authority to coordinate all of

the security policies and implementations of all

the different organizations.

5.3 Recommendations

I would now like to offer some personal

observations and suggestions regarding national

policy, and what we in the computer security

community should do about the integrity issue.

The publication of the original paper by Clark

and Wilson has served to crystalize the thiitking

of the computer security community about

integrity. Since then, the papers presented in

draft form at WIPCIS in 1987 and published at

the Oakland, Baltimore, and Orlando
conferences during 1988 by Lee, Karger,

Shockley, Clark and Wilson, Johnson, and myself,

plus the discussion at the NIST Invitational

Workshop on Data Integrity in January of 1989

have served to confirm the general validity of an

approach to integrity that makes use of the Biba

model extended to include multilevel integrity-

trusted subjects to address the integrity

confinement problem within the TCB, together

with the use of cryptographic checksums and

digital signatures to detect modification of

information while it is transmitted or stored

outside of the TCB.

While there will no doubt be additional comment

regarding the specific details of this paper, I

believe that it represents a reasonable consensus

as to an approach that is "do-able" using today's

technology for a Trusted Computing Base, and

that in fact the amount of effort required to

implement these concepts on Gemini Computer's

GEMSOS, the Honeywell SCTC LOCK effort.

Key Logic's KeyKOS, and several other high-

assurance kernel developments in progress

should not be all that great.

From the standpoint of the vendors and system

integrators who will be asked to produce, install,

and support these systems, I believe that the first

priority should be for the Government

(specifically the NCSC, with the cooperation of

NIST) to produce a revised TCSEC that explicitly

addresses the integrity issues in a coherent

fashion. I believe that a concerted effort in this

direction is required because of the increasing

problem of computer viruses in our society. For

that reason I would like to see a target date for a

working draft of the revised TCSEC that is no

later than January 1990, with final publication

scheduled no later than June 1990. If necessary,

additional funding should be provided to NIST
and/or NCSC to address this problem. A
business-as-usual approach will not be adequate.

In this regard, I strongly suggest that an TNI-like

"interpretation" of the TCSEC for integrity is not

the best way to proceed. The basic problem is

that the TCSEC does not address the

fundamental issues of integrity, and trying to

"interpret" them into existence risks basing a

complex structure on a shaky foundation. In

addition. I feel that dual ratings or a "separate but

equal" status for integrity as opposed to security

would result in fragmenting the marketplace, and

would be highly undesirable.

Instead, I would suggest that Integrity be

explicitly integrated into the TCSEC as a new

requirement for TCBs of Class B3 and above,

and that developers of systems targeted for lower

ratings be encouraged to support the

functionality of the additional integrity features,

if not necessarily the assurance of those higher

classes.

Such an approach would provide a clear and

unambiguous target for vendors to address,

whereas alternative systems, separate ratings,

etc., would be Ukely to fragment the marketplace

and end up producing few if any useful systems.

By combining a high degree of assurance for both

secrecy and integrity the result should be an

increased demand for high-assurance TCBs,

which would benefit both the vendors and the

user community. Because there are presently no

systems that have been evaluated at the B3 level,

and those that are in the process could easily be

adapted to conform, this approach would

produce the greatest overall improvement with

the least amount of incompatibility with

previously published ratings. Only the Honeywell

SCOMP would have its Al rating potentially

invalidated by this approach, and because

relatively few SCOMPs have been sold that

CSC/PR-89/3001
A.5 - 60

CONCLUSIONS AND RECOMMENDATIONS Recommendations

problem could be handled by a footnote in the

published ratings.

In addition to publishing a revised TCSEC which

addresses integrity, it would also be useful if the

NCSC would sponsor an effort to integrate the

Bell-LaPadula and Biba models into a combined

security/integrity formal policy model along the

lines presented in this paper, so that the TCB
vendor community (which is not necessarily

"into" the business of formal policy model
development and proof) would have the requisite

technical underpinnings for a B3 system in place.

Another issue that must be addressed in this

context is the question of exportability. At the

present time, it is understood that systems of B3
and higher assurance cannot be exported, or that

special licenses are likely to be required. It would

be one thing if only specialized systems intended

for the military were to fall into this category, but

if the introduction and formal evaluation of high-

assurance integrity features into systems that are

intended to be commercially useful would mean
that those systems cannot be exported, then it can

be predicted that virtually every major computer

manufacturer and operating system vendor in the

United States would say "no thanks" to such a

proposition because of the volume of their

international business. It is simply not possible to

develop and maintain two different systems which

support essentially the same user community.

The message to the Department of Defense, the

Department of State, and the Department of

Commerce must therefore be of "Read My Lips"

clarity — if we are to come up with an effective

solution to the problem of computer viruses, we
must overcome the export problem. Otherwise,

the Japanese and/or the Europeans are likely to

solve the problem for us, and then we will be

forced to import the computer software (and

perhaps hardware) that we need. Such a

dependency would clearly not be in the best

interest of the U.S. from an economic,
diplomatic, or military point of view.

Finally, while I would not like to see the

publication of a revised TCSEC held up while the

computer security community debates what a

Class A2 TCB should contain, it is increasingly

obvious that trusted compilers and other program

development tools are badly needed, and that

such systems must be supported by a TCB of the

type described herein at the B3 level or above.

I would therefore recommend that the

Department of Defense Ada Program Office

initiate R&D programs as necessary to develop a

certified Ada compiler which is written in Ada
and can compile itself, one that will run on a B3

or higher TCB and produce code that is

compatible with such systems. A trusted Ada
run-time environment that is compatible with a

B3 or higher TCB is also required. In this

connection, it is recommended that steps be

taken to eliminate the possibility of a compiler

virus of the type described by Ken Thompson and

discussed previously, including the use of cleared

and trusted programmers to conduct a rigorous

Independent Verification and Validation (IV&V)

of the compiler and run-time routines, including

compiler source code review, independent

compiler generation and object module
verification, an informal reasonableness review

of the compiler-generated assembly language

listing vs. the source code, and a comparison of

the generated object module with the assembly

language listing. Finally, it would be desirable if a

suitable subset of secrecy-trusted and integrity-

trusted Ada run-time routines could be developed

and integrated into an Al TCB (including the

formal proof process), so that multilevel-secure

Ada routines can be written for applications like

Automated Message Handling Systems, trusted

downgraders, etc. Eventually, the use of such

tools, running on at least a B3 system that

includes the integrity provisions discussed in this

paper, should be mandated for the development

process for a Class A2 TCB.

If the steps I have recommended are taken, it is

reasonable to expect that solutions to the current

virus problems and other integrity issues will

begin to come under control by the mid-to-late

1990's. The question is therefore not whether we

can afford to develop these kinds of systems, but

rather whether we can afford to wait that long.

CSC/PR-89/3001
A.5 - 61

SECURITY CLASSES AND ACCESS RIGHTS IN A DISTRIBUTED SYSTEM

R W Jones

ICL Defence Systems, International Computers Ltd., Eskdale Road,
Wokingham, Reading, RGll 5TT, U.K.

SUMMARY

A model is described for the management and use of a network of
computing resources in which the control of security is to be
explicit. It is intended to be useful in military and civil
applications. A generic form for a security class is defined.
Using this form a total security class for a particular system may
be defined, in terms of attributes with agreed meanings in the
environment of the use of the system. The total class contains
subclasses which are used to classify all the components of the
system. A subclass is a class which is more specific than its
containing class. For each class a set of access rights is
defined. An access right is a set of operations which may be
performed upon components classified by the class of the access
right. Components include data items, computing resources and end
users. An active component (e.g. a computing resource) is one
which may operate upon other components. Each active component
has a clearance which is a class with associated access rights.
A security policy is defined as a set of rules which associates
classification classes with maximum permitted clearances.

Communication between security domains is discussed in terms of
the model, as is secure system construction. The model is related
to other published models and standards.

A.6

Notes on the Paper ^Security Classes and Access Rights in a
Distributed System'

As the result of the presentation of this paper at the Data
Integrity Workshop and from subsequent conversation with a number
of people, I have become aware of some mistakes which impeded
understanding of the ideas in the paper. I have therefore changed
it in some places and describe the changes in more detail in the
following notes. There are some cases also where comments might
have caused me to describe things differently (in particular to
use different terminology) but where I have left the text as it
was, thinking that a change might be confusing. I have written
notes also on such cases . There is also some text which I omitted
from the version submitted to the Gaithersburg workshop to shorten
the paper.

1. (Section 2). The terms 'security class', 'classification' and
'clearance' have been criticised as having military connotations.
I have not changed them. The term 'security category' has been
suggested instead of 'security class' and 'remit' instead of
'clearance'. In retrospect I believe I should have avoided the
term 'classification' or any substitute and described a component
as being of a security category (which determines the operations
which may be performed upon it) and as having a clearance (or
remit) which determines what it may do).

2. (Section 2). In the original paper an access right was
described as a component. It no longer is, as this seems clearer.

3. (Section 3). Some people have commented that the model I

describe calls for capabilities to describe access rights, but not
access lists. There is no such intention. The model is intended
to be understood at a more abstract level. Both capabilities and
access rights are possible mechanisms for representing rights in
an implementation.

4. (Section 3). In the original paper I tried to use Extended
BNF to describe both the generic form of a security class and for
specific security classes and their relationship to each other.
Some mistakes crept in and, therefore, some misunderstanding.
In the version of the paper printed here I have tried to prevent
the misunderstanding by using BNF only for the first purpose and
correcting the mistakes.

5. (Section 3). Some of the points made later in the paper could
have been put more simply if a the term 'subclass' had been
defined to include the containing class.

6. (Section 4). It is not intended that the mechanisms described
here be the only means of distinguishing individual components,
rather that they be used to distinguish sets of components which
need to be distinguished for reasons of security.

A.6 - i

7. (Section 4). If access is to be allowed the following must be
true

:

i) there must be a class which is contained in both the
accessor 's clearance and the target component's
classification,

ii) that identified class must have rights which are
contained in the accessor 's clearance and they must have been
supplied to the accessor and not subsequently withdrawn (see
section 5.2).

8. (Section 4) It is not clear in the paper when rights defined
for a class should apply to its subclasses and vice versa. I

believe it is necessary to be able to define rights which apply
strictly to a class or to defined subclasses or to a class and its
subclasses. More consideration is needed of this.

9. (Section 4) One criticism made of the paper is that it is not
obvious that a right which appears in a clearance should also need
to be 'supplied'. The motive for the extra flexibility is to
enable components other than the original creator of a resource to
provide and withdraw rights, subject to predefined constraints.
There is an analogy with mandatory and discretionary access
control in military systems.

10. (Section 5.2). It may be useful to be able to authorise a
class of components

.

11. (Section 6.3). This section did not appear in the paper as
presented at Gaithersburg

.

R W Jones

21.6.89

A.6 - ii

Security Classes and Access Rights in a Distributed System

1 . Introduction

1 . 1 Aims and Summary of the Paper

The paper describes a general design for a secure system which
uses a potentially distributed network of computing resources.
The design is based on the idea of a security class , a generic
form for which is defined in the paper. The generic form provides
a notation which may be used to describe specific security classes
for an individual system. The paper describes a model which
applies both to the secure creation and management of a system and
to its secure use. It uses and builds on ideas described in ref.
1 and ref . 2

.

The aims of the paper are to:

i) describe a general design for a secure system (covering civil
and military needs) and the means of tailoring it to a particular
system,

ii) provide a notation which enables the requirements of a secure
system to be related to its design,

ii) clarify terminology and ideas in secure system design.

The paper is organised as follows.

Section 1.2 describes the context of the paper.

Section 2 defines some terms.

Section 3 defines a security class and explains its use.

Section 4 uses the idea of a security class to introduce
access rights, classifications and clearances, these being
used to describe how security relates to the components of a
system

.

Section 5 describes specific access rights which are useful
in most systems. They include those needed for:

change of security class (applicable to identification
and authentication)

,

creating and controlling the components of a system,

delegation of authority.

Section 6 compares the model of this paper with other
published models and standards.

Section 7 provides examples in terms of the paper.

A.6 - 1

Section 8 defines security policies in terms of this paper.

Section 9 defines security domains in terms of this paper.

Section 10 describes secure system construction.

Section 11 draws conclusions and considers future work
needed

.

1 . 2 Background

In non-automated systems where people have to handle confidential
information it is customary to give the information a
classification, for example, 'company confidential'. The people
are then also classified according to the amount of trust that
should be placed in them. This takes into account both the
likelihood that they will abide by the rules which safeguard the
information and their need to know it in order to perform their
function properly. The people in such an environment, therefore,
have both a classification, based on their own trustworthiness,
and a clearance which describes the kinds of information they may
handle

.

There is a management function for the system which decides how
information and people are to be classified, what these
classifications mean, in terms of the characteristics of the
people and the information and objects they manipulate, and which
classes of people may have which clearances. The management also
provides the classifications and clearances based on these rules
and changes and deletes them as necessary. The amount of formality
attached to this management function depends upon the environment.
It may be very informal in a small commercial firm and is very
formal in the armed forces (formal in the sense that the
processes involved are performed according to explicit rules).

If we now consider that a network of computer resources is to be
used as part of the system which handles information securely we
see that we need mechanisms which perform the equivalent of both
the management and the operational functions described above. They
need not mimic them exactly but it must be clear that they allow
the system to be created, managed and operated securely. If we
provide the mechanisms which cause the system to operate securely
but provide them without using centrally provided mechanisms, for
example by building access control checks into application code
rather than by installing them into supporting control software,
we are in the position of the small firm mentioned above. Since
the computer system itself allows us to describe rules precisely
and ensure that they are obeyed we have the opportunity to make
explicit both the provision and the operation of the security
mechanisms . This paper attempts to contribute to this by
describing a model on which mechanisms can be based which perform
both the management and operational security functions.

A.6 - 2

The context, described more precisely, is a community of computer
installations which communicate using telecommunications and
agreed standard protocols (for example those of ref.3). Those
standards formalise a computer installation which communicates
according to its standards as an 'open system'. They allow a

single open system to support a number of software entities and
allow any entity in an open system to exchange messages with an
entity in another open system. This is illustrated in figure 1.

end resource
user \

\
open system-
/

end
user-

/

resource

•network giving access
to other open systems
supporting resources

end
user-

figure 1

2 . Terminology [see note 1

]

In order to discuss the model a set of terms is now defined. The
aim is to depart from accepted usage only to avoid
misunderstanding

.

An end user is a person or entity which is not controlled by a
resource of the network, but which can communicate with a
resource. An end user may be, for example, a person sitting at a
terminal

.

A resource is a logical part of a computer system which can store
data items, which can communicate with other such resources or
with end users and which has a current state which determines its
actions

.

A data item is an item of data which is created with a defined
security class and the parts of which necessarily have the same
class. The term message is used to mean a data item when it is
sent from one resource to another.

A channel is the route by means of which a resource communicates
with another resource or with an end user.

An access right is a collection of operations which is defined
for a particular security class. The holder of an access right has
permission to perform those operations upon components which are
described by the class in question. Where there is no chance of
confusion the term 'right' is used instead of 'access right'.

A.6 - 3

There may be more than one access right for any given class in
order to divide operations into groups and control access to
groups individually.

A component is any entity which has a security class. End users,
resources, data items and channels all have security classes and
are therefore components.

Components may be active or passive depending on whether they can
hold access rights. End users and resources and channels are
active components. Data items are passive components. A channel
may only hold access rights which enable it to transmit messages.

The components named above may be grouped diagrammatically

,

therefore, as follows:

passive components

data items
(messages

)

[see note 2

]

Refs 1 and 2 described a model in terms of rights which enabled
access control rules to be enforced. The present paper builds on
these concepts and adds to them the idea of security classes.
These are compatible with and include the concepts used in data
classifications and clearances in military systems and, with some
modifications, in civil systems. Where there is no chance of
confusion the term 'class' is used rather than 'security class'.
An exact meaning of the term is given in section 3, which also
introduces other terms for the purpose.

A classification is the security class of a component which
determines whether or not it may be operated on by another
component. Every component has a classification.

A clearance is the security class and associated access rights
associated with an active component which is used in determining
whether or not the component may operate on another component. An
active component has a classification and a clearance. A passive
component has a classification but no clearance. The
relationships among a clearance, a classification and an access
right are described in section 3

.

/

components

active components
/

/

resources
\
end users

channels

figure 2

A.6 - 4

The term 'system' is used to mean a communicating set of
components whose access to each other is controlled by mechanisms
which take account of their security classes. There is no
implication that the components are dedicated to work which is all
interrelated, although that is likely to be true in practice.

The term 'subject' is used to refer to an active component which
performs an operation upon another component.

The term 'object' is used to refer to a component (active or
passive) upon which an operation is performed.

3. Security Classes [see note3]

If we consider once more the non automated secure environment we
can see that one way of stating rules of access is to have a
unique identity for each object to which access is to be
controlled and to provide each person with a list of the objects
he may access, together with, in each case, a list of the
operations he may perform. In order to provide clearances to the
people, they themselves are treated as objects and some manager
has the list of people to whom he may give a clearance or whose
clearance he may amend. The procedures needed, therefore, both to
operate and to manage the secure system in this simple way are
similar. For each person who may perform operations, a list of the
permitted objects is needed and, for each of those, a list of the
operations which may be performed. This applies both to operation
and management

.

In a more complicated system clearances are expressed in terms of
attributes of the objects accessed for two reasons:

i) it enables objects to be grouped so that clearances are more
concise

,

ii) the attributes of the object's classification have meanings
which have a relationship to the attributes of the accessor 's

classification (e.g. an object with the attribute 'payroll
information' is to be available only to someone with the attribute
'member of the payroll department').

The definition of a security class which now follows is based on
attributes . The meanings of individual attributes depend upon and
are agreed for a particular system. An attribute may be
sufficient to define the security class of an object uniquely or
may describe one of its characteristics.

Extended Backus-Naur notation is used in the following definition,
the meta-symbols having the following meanings: [see note 4]

'::=' means 'is defined as',

'

I

' means ' or
'

,

A.6 - 5

';' terminates a syntactic rule,

single quote symbols delimit items which appear as written in the
rules defined,

'*' indicates one or more occurences of the item to its left.

a string of (possibly hyphenated) letters is an identifier which
is either defined by one of the rules or is described informally.

The generic form of a security class is then as follows:

class-definition ::= class-name ':' lower-limit qualifier*;

class-name ::= name;

lower-limit ::= integer;

qualifier ::= class-name
|
attribute;

attribute ::= name;

where 1 _< lower-limit < number of qualifiers;

An attribute is a name declared for the definition and control of
the security of the system, as described above.

A name is a sequence of characters generated according to some
rule that ensures that each name generated to describe the
system's security is distinct from all those generated previously
for the same purpose.

A lower limit defines that at least that number of the defined
qualifiers is present in the class being defined or in one of its
subclasses

.

Two particular values of 'lower-limit' are worth distinguishing:

i) the value 1, where the class describes a collection of
qualifiers, any one or more of which may be present.

ii) where the value of 'lower limit' is equal to the number of
qualifiers; this describes a class in which all the qualifiers
are present; a simple case of its use is where the qualifiers are
attributes and describe all those which must always be present to
define the class.

A subclass is derived from the definition of a class

i) by selecting n of its qualifiers such that b £ n £ q, where

b is the lower-limit of the class from which the selection is
made and

A.6 - 6

q is the number of qualifiers in the class from which the
selection is made

and

ii) by selecting a lower-limit for the subclass such that b <

lower-limit < n,

with the restriction that the subclass cannot be identical with
the class from which it is derived. [see note 5]

A subclass is also a class. If a class S may be derived from a
class C then C will be called the containing class of S.

A subclass may also be derived by replacing one or more of the
classes used in the definition of a class by a subclass. See
figure 3 and the subsequent explanation.

The intention behind the definition of a class may be illustrated
by a small example. Let us suppose that a commercial firm creates
documents, access to which is to be controlled, depending on the
trustworthiness and duties of the accessors. The attributes
'confidential', 'pay' and 'plans' are used to classify the
documents so that security controls may be applied. Some documents
about pay are confidential; some are not. Some documents about
plans are confidential; some are not. Some documents are simply
classified as confidential and these are not concerned with
either pay or plans . The people who may use the documents are
cleared in terms of the documents they may access as follows:

all documents,
all confidential documents,

confidential documents not concerned with pay or plans,
confidential documents about pay or plans or both,
only non-confidential pay documents,
only non-confidential plans.

The classes needed to express these needs is are as follows:

all : 1, all-conf, subjects;
all-conf : 1, conf, conf-sub jects

;

conf-sub jects : 2, conf, subjects;
subjects : 1, pay, plans;

A.6 - 7

It is illustrated by the following graph:

all
1

/ \
all conf \

\
/ \ \

/ conf subjects \
2 \

/ \

/ \

\ / subjects
conf 1

/ \

/ \
pay plans

figure 3

[The graph makes it clear that the figure 1 could be replaced in
each case by the 'inclusive or' operation, meaning that one or
more of the qualifiers must be present, and the figure 2 by the
'and' operation, meaning that all the qualifiers must be present.
The syntax could be rewritten to match this and would be trivially
different. The forms where the lower limit lies between 1 and the
number of qualifiers would be more cumbersome to express.]

It will be seen from the above example that the derivation of a
subclass produces a more specific description in terms of
security. The class ' conf -sub jects ' has three subclasses
illustrated graphically below.

subclass 1

/ \
conf subclass

of subjects
1

I

pay

subclass 2

/ \
conf subclass

of subjects
1

I

plans

subclass 3

/ \
conf subclass

of subjects
2

/ \
pay plans

figure 4

A.6 - 8

If a class from which subclasses may be derived is used to
CjLassify a component it means that the component concerns any one
or more of those subclasses. It may be used also to describe the
fact that an active component has a multi-class clearance. This is
described further in section 4

.

A selected subclass may be equivalent to one defined explicitly
and used as a qualifier in the definition of the class from which
the subclass derives, for example in selecting the class
'authorised' from the class 'accessors', where 'accessors' is
defined as

accessors : 1, authorised, unauthorised;

where 'authorised' is defined as;

authorised : 1, Alice, Bob, Charles;

and 'unauthorised' is an attribute defined for the system.

It may be implicitly define, for example the class obtained by
deriving the subclass '1, Alice, Bob' from 'authorised'.

A class is defined explicitly so that it may be used as a
classification or clearance of a component and in order to be able
to define access rights and operations for the class.

Two classes may contain the same subclass without themselves being
identical or one of them containing the other, for example the
classes

'1, Xusers, unauthorised' and '1, Yusers, unauthorised'.

4 Classifications, Clearances and Access Rights

A class is defined for the total system. Each class used in the
system is a subset of this total class.

For each class of the system a set of access rights is declared.
Each of these access rights defines one or more operations for
that class. (In refs 1 and 2 a particular right applies to a
single defined target resource. It is generalised here to apply to
a class, which may, in a particular case, be a class which is used
to classify only one component.)

Each component of the system has a classification which is a
class. The classification defines the operations which may be
performed upon the component (those of its class) and the kind of
component it is in terms of security (because the attributes of
its class have an agreed meaning), [see note 6]

Each active component also has a clearance which is a class. The
clearance defines the operations which the component may perform

A.6 - 9

upon other components (those whose classifications or subc] asses
of whose classifications appear in its clearance) . The clearance
therefore defines the trust which is placed in the component which
possesses it. This is illustrated in figure 4. [see note 7]

classification -active component- •clearance of X
of X X

/

/
\

/

/

/X has access
/ to Y and Z

\

/

component Y
(classification
is class A)

/

subclass
A

\
subclass

B

component Z

(classification
is class B)

figure 4

It is necessary to provide different accessors with different
rights in respect of the same component accessed. Two methods of
doing this are described here.

i) The class used for the classification of the component to
be accessed may be a subclass of more than one other class.
Each of the containing classes has a set of rights which
applies to its subclass. The union of these sets of rights
form the total set which applies to a component classified by
the subclass. This is illustrated in figure 5. [see note 8]

containing rights to containing rights to
class A subclass class B subclass

\ /

\ /

class of component to
be accessed

figure 5

(In an implementation of the design operations other than the
union of the sets of rights may be used for efficiency; for
example, the subclass may define all the applicable rights
and the containing classes those which are not available via
that containing class).

ii) The clearance of a resource defines for its most general
class and for its subclasses individually the access rights
which it is allowed to possess. These are the total set or a

A.6 - 10

subset of those defined for the class. For some of its
subclasses none may be allowed.

Notionally the second method is unnecessary since one may define a

containing class with the selection of rights needed. It implies
that a class may be created as needed and associated with the
clearance. For the purposes of this paper it is assumed that both
methods are available.

By analogy with the idea of providing a clearance with a subset of
the rights defined for its class one might allow the
classification of a component to have a subset of the set of
rights defined for its class, thus restricting the operations
available to all accessors. Again this is notionally unnecessary
since a class may be defined with the required rights. It may be
useful in practice to avoid a large number of classes.

Consider a class defined as follows:

accessors : 1, Alice, Bob, Charles, unauthorised;

There are four subclasses of interest, namely those defined by
the single attributes Alice, Bob, Charles; and 'unauthorised'. Let
us assume that the first three of these more elementary classes
are used to classify data from three authorised users of the
system and that 'unauthorised' is a class which describes data
from any unauthorised person who tries to access the system. The
resource which may be accessed by anyone who approaches the system
has 'accessors' within its clearance. It receives data from a user
who wishes to use the system via a channel whose clearance is
'accessors'. The first message it receives therefore has the class
'accessors', representing the fact that it may come from any of
those sources. The resource which is authorised to receive such a
message then (in our example) engages in some procedure
(authorised by one of its access rights) which allocates to the
data received a subclass of 'accessors' (i.e. Alice, Bob, Charles
or 'unauthorised'), representing the fact that it has
authenticated one of the authorised users or recognised an attempt
at a security breach.

There may be a resource between the accessors and the
authorisation resource which is used to relay the accessors'
messages but which is not authorised to classify the messages as
coming from a particular user or as being unauthorised. This relay
resource, like the channel which carries the messages, has the
class 'accessors' within its clearance but has no rights which

A.6 - 11

apply only to the subclasses (see figure 6).

o relay
--resource

authentication
resource

/ \
(clearance
to transmit
class 'accessors')

(clearance to
assign subset
of class 'accessors')

figure 6

Thus, by defining the most general class for which access rights
may be possessed and by defining rights for that class and its
subclasses a clearance may restrict its owner in both the
generality and the particularity of the classes which it may
handle

.

When a resource is created it is given a classification and a
clearance as part of the creation operation. The clearance must
have the following properties.

i) It must conform to the security policy (i.e. it must be
allowed for a resource of that classification, see section 8). It
may be less than the permitted clearance in terms of classes and/
or access rights.

ii) It must not contain class/access right combinations not
possessed by its creator.

A clearance shows the access rights which the holder of the
clearance is allowed to possess for each of the classes in the
clearance. In order to use an access right it must actually
possess it. The right must be provided, either by the resource's
creator or by some other resource with the right to do so (see
section 5.2). [see note 9]

These two features: allowing a clearance to be less than that
imposed by the security policy and withholding the use of rights
until they are supplied, allow local control of security subject
to an overriding central policy. Since the ability to create a
resource and provide it with a clearance may be inherited a
hierarchy of control over the assignment of clearances is
possible. At any level a creator may pass on a clearance which is
less permissive than the most permissive which it is allowed to
pass on.

If a clearance contains conditions which depend upon the state of
the environment (for example that an access right is available
only at certain times of the day) this is not catered for by the
model as described so far. This kind of condition may be fitted
into the general design by associating an attribute of a class in

A.6 - 12

a clearance with a procedure, whose result must be compatible with
the corresponding attribute in the classification of the component
accessed

.

5 Specific Access Rights

In general the access rights and the operations which they provide
are system specific and not defined by the model. Some, however,
are generally useful and are described here.

5 . 1 Rights which apply to data items

right to change classification

This right provides an operation to change the classification of a
component to a subclass or containing class of its current class.
An example of change to become a subclass has been given in
section 4. An example of change to become a containing class
occurs when a resource sends a message. The classification of the
message must be the class of the clearance of the channel by which
it is sent. This may, for example, be a very general class in
which sensitive data is indistinguishable from any other (in
practice because the procedure which generalises the data involves
encipherment)

.

5 . 2 Rights which apply to resources and end users

These are rights which enable resources to be created and
controlled and which enable resources and end users to be provided
with rights and to be sent data. They are very similar to the
rights described in refs 1 and 2, (q.v. for more details). They
are modified to allow for the introduction of security classes.
They are as follows.

right to control resources

The right provides the following operation:

create resource This creates a resource of the designated class
and with the designated clearance.

activate This makes the resource available to holders of rights
to that class other than 'control';

suspend This makes the resource unavailable except to the holder
of its control right;

change This changes the resource's code;

delete This withdraws the resource from service.

A.6 - 13

right to authorise resources and end users [see note 10]

the right provides the following operations.

supply This supplies to the target component a right held by the
supplier; when the operation has been successfully performed both
the supplier and the recipient possess the right; the right
supplied must be for a class within the clearance of the target
component. The supplier must be a resource.

withdraw This withdraws from the target component a right
previously supplied by the same resource.

right to send messages to active components

This provides the following operation.

send message This sends a message to a resource. The message may
instruct the resource to perform an operation upon data, in which
case the sender must have clearance for the security
classification of the data.

5 . 3 Rights which apply to classes

right to define classes

This provides the following operations:

define class This defines the syntax of the class for which the
right is held. For a particular class only one active component
may hold the right.

create attribute This creates a new attribute by generating a
name. The attribute may be used when defining a class.

This right enables local, dynamically defined classes to be
created. An example is where there is a need to create a file and
exercise local control over access to it by other resources. A
class may be defined for this purpose, where the class's only
member is the file. In a more complicated case a resource may need
to create several resources and enable each of them to create
files and control access to them. This is achieved by passing on
the right to define and create components classified by subclasses
defined for the purpose.

6 . Comparison with other Models and Standards for Secure Systems

6.1 Comparison with the Lattice Model of Information Flow

There are a number of significant differences between the model
described here and the lattice model described in ref.4. They are

A.6 - 14

as follows.

i) A lower limit to the number of attributes of a class is stated
in the model described here. This enables a clearance to be given
for a class which is defined by a particular set of attributes
without providing clearance for the classes which are defined by
fewer of those same attributes. Thus clearance for the class '2,

secret, pay' does not provide clearance for things described as
just 'secret'; only for those which also relate to pay.

ii) Particular rights are defined for individual subclasses in
the present model and may be null or restricted in some clearances
to restrict the power of the component.

iii) In the present model a classification is distinguished from
a clearance.

6.2 Comparison with the Clark-Wilson Model

Ref.5 describes a model for integrity. It has Constrained Data
Items (CDIs) which are operated on by Integrity Verification
Procedures (IVPs) and Transformation Procedures (TPs). The
central ideas are:

i) that data items whose integrity is to be protected are labelled
as Constrained Data Items (CDIs),

ii) that all CDIs are confirmed as conforming to a defined
integrity specification by running Integrity Verification
Procedures (IVPs)

,

iii) that any CDI can be operated on to change its state only by a
Transformation Procedure (TP) which is certified to be valid for
that CDI,

iv) that users, who must be authorised, are constrained to use
only specified TPs on specified CDIs.

Rules are defined to ensure that the mechanisms and programs
needed are certified as valid, that users are authenticated and
that records are kept of the operation of TPs.

The model described in this paper provides a basic framework,
using which a system which follows the rules of ref.5 can be
constructed. This is explained as follows.

i) A CDI is a classification of a data item in order to specify
and constrain the operations which may be performed upon it and
corresponds to the classification of a data item using a security
class

.

ii) An IVP is a particular kind of operation in terms of the model
described here which should be controlled by an access right which
is available only to components with the correct clearance. It is

A.6 - 15

a particular feature of cominercial systems that data is validated
as a separate operation before it is operated upon. This is not a
fundamental requirement of the model described here but the
framework within which it can be done is provided.

iii) A TP is an operation, in terms of the model described here,
which, like an IVP, is controlled by an access right. A system
which is to preserve data integrity must insist that operations
are performed, not only on data of the correct kind but in the
right order. This may be done, using the model described here, by
using a qualifier of the class which classifies the data to
prescribe the sequence in the following way.

Let us define a class as follows:

CDIX : 2, X, sequence;
sequence : 1, unchecked, IVP, TPXl, TPX2, TPX3;

where X, let us say, means that the data belongs to project X and
'sequence' is used to ensure that operations are performed in the
right order. 'X', 'IVP', 'TPXl', 'TPX2' and 'TPX3' are attributes
of the class which describes the total system security.

An authorised user has a right to operate upon the subclass '2, X,
unchecked'. The only operation the right allows him is one which
performs the IVP operation. Part of the effect of this operation
is to change the class of the data to a new subclass of 'CDIX',
i.e. '2, X, IVP'. The user has a right to this class which enables
the first appropriate TP to be performed. This similarly changes
the subclass to '2, X, TPXl'. In this manner the operations are
performed in the correct sequence. It may be noted that the
correct order depends upon the individual TPs behaving correctly.
They operate in an environment in which the whole class 'CDIX' is
valid. If there is a risk that the user of the managerial function
which has the right to provide the TPs will collude with the user
the operations may be located in more than one resource and the
resources managed independently.

iv) Users are constrained to use only specified TPs by providing a
user with a classification and a clearance. The compatibility of
the classification and the clearance are checked using the
security policy (see section 8).

6.3 Relationship to the ECMA TC32/TG9 Security Model [see- note 11]

The ECMA TC32/TG9 model is described in ref . 6 . It is a long
document and it is not proposed here to explore in detail how it
relates to the model of this paper. However, a set of security
facilities are central to the ECMA model. This section therefore
discusses them and relates them to the concepts described here.
The facilities, with comments on them are as follows.

A.6 - 16

I

i) Subject sponsor facility

This sponsors the human user to the secure system during
authentication and monitors his subsequent activities. There is no
distinguished separate entity in the model of this paper which
corresponds to this . A resource may be created by any resource
which has that right. The subject sponsor is a resource
fundamental to the type of system described by ref.6, which is, in
this respect, a particular type of system which may be built using
the model described here.

ii) Authentication facility

This authenticates human users and applications of the system. It
is represented in this model by resources which have a clearance
which enables them to change the classification of a message to
the subclass which identifies an individual user. In this model
there is no insistence either that a single resource should
authenticate all users or that there be a class which defines an
individual user. Such requirements are essential for many systems
and are not precluded by the model.

iii) Association management facility

This sets up and maintains a secure association between entities
of a secure distributed system which exchange information. In
terms of this paper it is part of the functionality which is
implied by the acknowledgement that the resources of the system
may be distributed.

iv) Security state facility

This records the current state of the system which is relevant to
its security. In terms of this paper it is part of the
functionality which is implied to ensure that a system operates
correctly according to the model.

v) Security attribute facility

This records the security attributes assigned to entities of the
system. In terms of this paper its functionality is implied by the
classifications and clearances of the components.

vi) Access Control facility

This associates attributes with entities and also uses them to
check whether an access request is to be granted. In terms of
this paper the first of these functions is achieved by creating a
resource with a particular classification and clearance. The
second function is implied when any access is attempted.

A.6 - 17

vii) Inter-domain facility

This controls access between entities in different security
domains. Security domains are defined in terms of this paper in
section 9 (q.v.)

.

viii) Security audit facility

This records information about the use of the security functions
of the system. This function is not explicit in the model of this
paper. The model makes explicit all operations relevant to
security classes and access rights. In a practical system a
security audit is provided by recording such operations.

ix) Security recovery facility

This facility is to enable a security administrator to take
corrective action in case of a suspected breach of security. The
model of this paper has nothing explicit to say about this. The
assumption is that the required functionality is part of the
definition of the individual system, which is built using the
model described.

x) Cryptographic support facility

This provides the cryptographic functions needed for the operation
of the system. In terms of this paper it is a possible mechanism
for implementing the model.

In general the model of ref.6 is a prescription of facilities
which are needed to provide a secure system of a particular kind
which is likely to be frequently needed. The model of this paper
is more general in that it includes systems which would not
conform to ref.6. The model of this paper is, moreover, more
abstract than ref.6 in that it does not prescribe how the
functionality needed should be provided. It is intended that such
a prescription should be given separately.

6.4 Relationship to other standards and guidelines for security

Ref.7, the US Department of Defense 'orange book', describes 'a
uniform set of basic requirements and evaluation classes for
assessing the effectiveness of security controls built into
Automatic Data Processing (ADP) systems' (ref.7 foreword).. The
model described here aims to aid system design to provide some of
its requirements in an explicit manner. It is concerned in
particular with mandatory and discretionary access control in the
terms of that document.

Ref.8 describes what is called a security architecture for the ISO
reference model for open systems interconnection. It is therefore
worth exploring how a model such as the one described here relates

A.6 - 18

to it. The concerns of ref.8 are:

i) to describe appropriate security services and mechanisms,

ii) to define where they may be provided in the reference model.

The security services described are grouped under the headings:

authentication,
access control,
data confidentiality,
data integrity,
non-repudiation.

All of these except the last relate directly to the model of this
paper in that the open system interconnection standards may be
used to provide communication services between remote resources.
The security services may then be used to ensure that the
communication is secure. The non-repudiation service has no direct
relationship to the model . Its functions are directly relevant to
system users in appropriate cases

.

7 Examples of Use of Classifications, Clearances and Access Rights

Example 1 A class where all qualifiers are obligatory

Take the class defined as follows:

new-product : 2, confidential, cars;

We may imagine that information of this class concerns a new
product which is confidential and relates to cars. Now a resource
which had only the clearance 'conf', defined as:

conf : 1, confidential;

or 'vehicles', defined as:

vehicles : 1, cars, buses;

would be unable to hold an access right to the information.

A resource which had the clearance 'trusty', defined as:

trusty : 1, confidential, cars;

or

trusty : 1, confidential, vehicles;

with vehicles defined as above, would be able to handle
information which was classified by either or both of the
attributes, provided it held the appropriate access rights.

A.6 - 19

A resource which had the clearance 'new product' would be able,
with appropriate access rights, to handle information about the
new product but not other information concerned with vehicles or
other confidential information.

Example 2 A class where all qualifiers are not obligatory

A data item is recorded in the system and, to be recognised as
genuine, must bear the signature of at least two of five possible
signatories. Assume that there is a resource to which such
messages are sent which is able to decide if the message is
properly signed. This resource has, as part of its clearance, the
class 'signed or unsigned', defined as:

signed or unsigned : 1, signed, unsigned;
signed : 2, Alice, Bob, Charles, Don, Eliza;

where the peoples' names are the attributes used to classify the
signatures and 'unsigned' is a class with a single attribute,
used to record that a message is not properly signed (including
the case where it has only one genuine signature). One of the
access rights possessed by the resource which receives the message
permits it to perform an operation which classifies the message as
'signed' or 'unsigned'.

Example 3 A class where only one qualifier is obligatory

This is provided by the example in section 4 of a resource which
communicates with end users in order to authenticate them so that
they may then access parts of the system for which they are
authorised. It must have within its clearance at least the classes
of the channels by means of which it is accessed by the end users
and, therefore, of the end users themselves. One of its rights in
respect of the class which includes the end users it authenticates
is the ability to assign to messages it receives a particular
subclass, corresponding to an end user.

Example 4 Registered 'Users'

A likely design for a secure system is that it records the
clearance of each individual user and ensures that an end user,
when authenticated, can access the parts of the system and the
data for which he is cleared and nothing else. Using the model
described here the information about such a registered user is a

resource with a clearance which represents that of the user. The
resource accessed initially by the end user (or some other
resource or resources with which that in turn communicates
according to the security rules of the system) is trusted to
perform the correct mapping between the end user with his
authenticated class and the class of the resource representing
his use of the system. There is not necessarily a one to one
mapping. On the one hand an end user may have more than one role
to play in the system. On the other hand several end users may

A.6 - 20

perform the same work at different times, for example in a system
where shift work is needed.

Example 5 Hierarchical Classifications

In military security a document is given a classification of
'unclassified', 'restricted', 'confidential', 'secret' etc. A
person who may read such a document has a clearance, for example
of 'confidential', which allows him, if there are no other
restrictions, to read documents whose classification is equal to
or less than his clearance (in this case the documents classified
as 'confidential' or 'restricted' or 'unclassified'). Using the
model described here this clearance is described by defining a
class to represent it thus:

confidential-clearance : 1, confidential, restricted,
unclassified;

where 'confidential' etc. are attributes of the system. It is, of
course possible to define classes that are not useful or which
encourage insecurity, for example combining 'secret' with
'unclassified' and omitting the intervening ones. For this reason
and for efficiency it is likely that the concept of hierarchies
would be built into a practical system.

8 Security Policies

In terms of this model the security policy of a system is defined
as follows. First define the total class of the system, with each
of its subclasses. For each class thus defined state the classes
of the system, with accompanying access rights, which may appear
in the clearance of a component so classified.

This statement gives the maximum allowed clearance for any
component. If a class is to classify only a passive component
its maximum allowed clearance will be null. The total collection
of maximum clearances for all classes is the security policy.

An active component may be created with less than its maximum
allowed clearance in terms of classes, access rights or both.
Since a component may not create another with a clearance more
powerful than it possesses itself, this provides a way of creating
locally security policies which are successively more stringent.

A security policy stated in this form is meaningful if the
attribute used to define the classes of the system have a real
meaning in terms of protection. Thus, for example, one might
suppose that a resource class defined as '2, class-Al, secure-
location' might be allowed a powerful clearance. There is a very
real difficulty in pinning down the needed attributes and their
meanings which is beyond the scope of this paper. Moreover, since
the meanings given to the term 'security policy' vary and are not
always well defined it would be rash to predict that the

A.6 - 21

definition given here will cover all of them. It is proposed as a
tool for discussing security needs and consequent design.

A security policy can thus be represented diagrammatically as
follows

:

total security class (with clearance)
/

I \
subclass subclass subclass (with clearance)
(with (with / \
clearance) clearance) / \

/ \
subclass subclass
(with (with
clearance) clearance

and so on

figure 7

9 Security Domains

Section 8 described a security policy in terms of the ideas of
this paper. When discussing secure distributed systems the term
'security domain' is often used and is usually equated with a
collection of communicating entities which are subject to the same
security policy. In the terms of this paper a security domain is
characterised by its security class and its security policy. This
tells us what kind of domain it is. To identify it uniquely we
need to identify its creator and, if necessary, the name given to
it by its creator to distinguish it from others.

We may now consider the possibility of communication between
entities which are in different domains. We may assume that there
is a practical need to do this if we consider that two different
commercial organisations may set up secure automated systems
separately and may then develop the need to communicate.

Let us assume that, in each case, a total class for the secure
domain has been defined, based on a set of attributes with a
defined meaning in the environment to be automated. For each class
and subclass access rights are defined which allow operations
which are meaningful in the domain, either in terms of software
available to the resources or operations performed by trusted
personnel. For each class and subclass which can classify an
active component the maximum allowed clearance is defined. Now,
for interdomain communication a check must be performed that the
clearance of the subject in one domain is, in some sense,
compatible with the classification of the object in the other
domain

.

A.6 - 22

For the sake of simplicity let us assume that all communication
between the two domains passes through a single resource, which
will be called the interdomain gateway (or simply the gateway when
that is unambiguous). In each of the domains the gateway has a
classification which makes use of the attribute 'gateway'. Each
resource which is allowed to communicate with a resource in the
other domain has, as one of the subclasses in its clearance, the
class which classifies the gateway and at least the access right
which enables it to pass data to the gateway. Conversely the
gateway has a clearance for each domain which enables it to access
the resources which may take part in interdomain communication.
This is illustrated in figure 8.

domain 1 domain 2

resource X
in domain 1

(clearance
to access
gateway)

gateway
(clearance to access
(clearance to access

resource Y
in domain 2

/ (clearance to access gateway)
/

/

/

X in domain
Y in domain

1)

2)

figure 8

The clearance of resource X to access other components is in terms
of the classes of domain 1. To enable X to access components in
domain 2 the gateway must contain information on the equivalence
of classes and access rights in the two domains. The simplest
arrangement is a one to one equivalence between a class /access
right in domain 1 and a class/access right in domain 2. There need
not be an equivalence in each case. Thus there may be classes in
domain 1 which are inaccessible from domain 2 and vice versa.
Similarly not all of the access rights may be made available to
the other domain (e.g. information may be read from, but not
changed in, the other domain)

.

It is conceivable that the gateway may need to recognise an
equivalence between class/ access right combinations in the two
domains where there is not a simple one to one relationship. This
is beyond the scope of this paper.

Thus the gateway must hold a table of equivalences which it
consults, together with the clearance of the would-be accessor,
when access is attempted. The table is agreed and installed by
collaboration of the management of the two domains. Secure domain
construction and management is discussed in section 10.

A.6 - 23

10 Secure System Construction

Ref.l described the secure construction of a system, starting
with a completely trusted 'management entity' which had the power
to create other entities and to devolve rights to them. It did not
deal in classes (or therefore in classifications or clearances as
described here). This section describes a similar process to that
of ref.l, making use of these additional ideas. As a preliminary
it considers what is gained by the additions.

In the description in ref.l and here the starting 'management
entity' which creates a distributed system is an organisation of
people which is trusted to behave as a single entity to create
those separate parts of the system which cannot be created by
entirely automated means. The people perform procedures which
correspond to the operations later performed by automatic entities
to produce resources under their control and distribute rights
among them. An elaboration of the concepts described in this
paper is needed to describe in detail the operations to be
performed both by the trusted people and by the automatic entities
which they create. The comments made in this section therefore
apply to procedures both by people and by automated resources

.

The system of construction of ref. 1 provides the starting
resource ('the management entity') with the ability to:

i) create other resources,

ii) provide them with rights, including the right to create
other resources and to assign rights to them in their turn.

This produces a control hierarchy with which may be associated a
complete record of which resources assign and use all rights in
the system. However it lacks explicitly defined rules which state
what rights may be assigned to particular resources. The
introduction of the notion of a class enables a security policy to
be defined in terms of the class and subclasses of the system
being constructed and their access rights . When any resource is
created it must be given a classification. Its maximum possible
clearance is therefore defined by the security policy and an
attempt to give it a clearance which does not accord with it is
disallowed. In addition, each end user of the system has a
classification and a clearance which derive from the classes of
information he or she is allowed to receive from and send to the
system and the operations to be allowed. Since an explicit
classification is given to the resource which an end user may
access a check is made when the end user receives access rights
that his clearance matches the classification of the system he is
allowed to access.

A.6 - 24

10.1 Creation of a Single Secure Domain

i) A total class is defined for the domain which is to be created.
For the class and each of its subclasses a set of access rights is
defined and for each access right a set of operations.

ii) A security policy is defined for the domain. It defines for
each class /access right combination of the domain the attributes
which must exist in the classification of the component which is
cleared for that combination.

iii) The management entity for the new domain creates the
resources which it is to control directly, assigning to each of
them a classification and a clearance. In each case the
compatibility of the classification and clearance is
automatically checked against the security policy. In the case of
a distributed system these directly controlled resources are those
which exercise local control at individual locations. There are
some resources (called basic resources in ref.l) which are
controlled by the management entity and which exist before it has
created any resources of the domain. These correspond to the
hardware and software to be used and the newly created resources
are given access rights to them as appropriate. Their clearance
to receive these rights is checked automatically against the
security policy. The classification of these basic resources is
decided by the management entity and is part of the basic decision
making on which the security of the system ultimately depends.
The attributes used to classify the basic resources reflect the
judgement of the management entity of the security features
needed in and provided by the equipment for the real world
environment in which the security domain is used.

iv) The directly controlled resources, thus created, create
resources of their own and assign rights to their end users and to
each other, as appropriate. These operations are automatically
checked against the security policy.

10.2 Establishment of Secure Communications between Two Domains

Let us say that domains X and Y are to communicate according to
mutually agreed rules of security. Then the following actions
take place.

i) The management entities of X and Y agree a correspondence of
those of their class/access right combinations which are to be
used for intercommunication.

ii) The gateway between the two domains is formally created by
both management entities and the table of correspondences is
provided to it

.

iii) Within each domain separately access rights are provided to
the gateway and appropriate other resources so that interdomain
communication can take place.

A.6 - 25

11. Practical Considerations and Conclusions

The model described in this paper has been developed bearing in
mind the following principles.

i) Mechanisms which enforce security should be explicit in the
system and separate from other functionality (e.g. from
application code and system code which does not enforce security)

.

There are a number of motives for this. It is more likely to be
right, it is easier to change for those authorised, it may be made
more difficult to change for those unauthorised, it is easier to
check

.

ii) The security enforcement mechanisms should be of as general
an application as is necessary. This has affected the model in
three ways

:

a) the model is intended to apply to both military and civil
applications and is therefore a superset of the features normally
considered in relation to military systems;

b) it unifies some of the concepts of secure systems which have
been elsewhere considered separately; authentication is treated as
an authorised change of classification;

c) the model and the mechanisms which derive from it apply both
to the construction and management of a secure system and to its
subsequent use.

It is hoped to use the model both as the basis of the design of
secure systems and as a means of relating security requirements to
system design. The most immediate tasks are seen as a more
rigorous description of the model and an assessment of its
usefulness by comparing it with practical systems.

References

1. Jones R. W. 'The Design of Distributed Secure Logical
Machines.', ICL Technical Journal, 1986 5(2).

2. Jones R. W. 'The Creation and Use of Explicit Rights in a
Distributed System.', Proceedings of the Fourth IFIP Conference on
Information Systems Security.

3. International Standard ISO 7498. Information Processing Systems
- Open Systems Interconnection - Basic Reference Model.

4. Denning, D.E.R. 'Cryptography and Data Security'. Addison-
Wesley, 1982.

A.6 - 26

5. Clark, D.D. and Wilson D.R. 'A Comparison of Commercial and
Military Computer Security Policies.', IEEE Computer Security
Conference, 1987.

6. ECMA/TC32-TG9/87/60 . Security Framework for the Application
Layer of Open Systems

.

7 . Department of Defense Trusted Computer System Evaluation
Criteria. National Computer Security Center, July 1986.

8. International Standard ISO 7498/2. Security Architecture.

A.6 - 27

DBMS Integrity and Secrecy Controls

Rae K. Burns

Kanne Associates, Inc.

219 Bragg Hill Road
Ashbumham, MA 10430

(508) 874-5291

This paper addresses three areas that are being overlooked in the current discussions on

data integrity:

1. A database management system (DBMS) provides the appropriate level of abstraction

for the implementation of integrity controls as presented in the Clark and Wilson paper

[CLARK87].

2. Application secrecy requirements and integrity requirements are interrelated; they must

be analyzed and presented in a unified context.

3. The same DBMS security enforcement mechanisms apply to both secrecy and integrity.

1. Level of Abstraction

First, in order to discuss data integrity, one must define the domain of data that is of

interest. The issues involved in, for instance, communications data integrity, are in fact

different than those involved in the type of data integrity discussed in the Clark and Wilson

paper. The Clark and Wilson concept of data integrity is based on two underlying principles,

well-formed transactions and separation of duty. These principles lead to notions of

constrained data items (CDI), transformation procedures (TP), and integrity verification

procedures (IVP) for assuring overall system integrity. A distinction is made between

certification procedures, which are performed manually, and enforcement procedures which are

automated within the computer system.

The domain of data found in the Clark and Wilson concepts is precisely the domain that

is addressed by database management systems. The Clark and Wilson notion of a constrained

data item is not directly found in data communication systems or operating systems. It is,

however, fundamental to database management. A database is composed of data items that

are related to each other through a database schema that defines, for instance, records

containing specific fields, tables or relations or files that contain specific records, and views

A.7 - 1

or subschema that define subsets of data items. A database management system provides

numerous vehicles for defining an application's constrained data items. In addition, the notion

of a well-formed transaction is also fundamental to database management. A DBMS
transaction is a basic unit of database consistency and integrity; it is a well-understood concept

that is integral to all database applications. Finally, the notion of integrity verification

procedures maps to the database construct of integrity constraints. Integrity constraints are

generally defined by the application but enforced by the DBMS. For instance, by specifying

a primary key for a relation, an application can be assured that the DBMS will enforce the

entity integrity rule for that relation.

It is clear that domain of applicability of the Clark and Wilson model is not an operating

system or a network or even an application system, it is fundamentally a database management
system. A DBMS provides the appropriate level of abstraction for implementing the

enforcement mechanisms proposed in [CLARK87].

2. Secrecy and Integrity Interrelationships

One of the research results from the SeaView project was a clarification of the relationship

between integrity and secrecy within the database environment. Within the SeaView security

policy model ([DENN86],[DENN88]) there are several properties that relate integrity issues and

secrecy issues. For instance, the referential integrity property [DENN88] requires, in effect,

that all foreign key references "point downward" in classification level (e.g., an UNCLAS-
SIFIED record cannot refer to a foreign key in a SECRET record). Additional SeaView
security properties include the concepts of value constraints, classification constraints, and data

correctness.

A fundamental relationship between classification constraints and integrity constraints is that

a classification constraint is basically an integrity constraint that applies to a secrecy label

attribute rather than a data value attribute. The problem of assuring that a set of such

constraints is internally consistent and complete was discussed in [AKL87]. This is the same
problem that has been a focus of significant database integrity research ([GARD79, [WILS80],

[QAIN88]).

During the design of a database application, all aspects of the semantics of the application

must be considered. To isolate secrecy and/or integrity semantics from the overall application

semantics is fundamentally not feasible.

3. DBMS Enforcement Mechanisms

Within current database management systems, the discretionary access control mechanisms

do not separate controls for operations that modify data (integrity) from controls that only read

data (secrecy). For example, in a relational DBMS using SQL, the GRANT command
includes the specific database operations of SELECT (read), INSERT, UPDATE, and DELETE
(all of which modify the database). The same granularity of data access (e.g., database views)

is used for both disclosure and modification operations.

If a DBMS were to enforce the transaction authorization controls described in the Clark

and Wilson paper, they would be equally useful and effective for transactions that made no

A.7 - 2

modifications to the database. Their usefulness for disclosure, or secrecy controls, is based

on the same separation of duty principle, and relates to what the military calls "need to

know".

The concept of read access to data only by "well-formed transactions" defines the manner

in which the information within a database may be combined and related. In other words,

within many database applications, ad hoc queries are no more appropriate for disclosure than

they are for modifications to the database. The user's role within the application organization

defines which read-only transactions are appropriate as well as which update transactions.

Within a multilevel database, for instance one that contains both SECRET data and TOP
SECRET data, transaction authorization controls can reduce the potential TOP SECRET
inferences a user might make based on solely on SECRET data. A user can be constrained

to execute only "well-formed transactions" that have been "certified" to combine specific

"constrained data items" only in a manner that does not facilitate the derivation of

unauthorized inferences.

Summary

A database management system (DBMS) provides the appropriate level of abstraction for

the implementation of application integrity and secrecy controls. The need for "well-formed

transactions" for secrecy control is just as critical as for the control of data modifications.

While the focus of the government concerns has been primarily disclosure, the need for

secrecy and integrity controls is apparent in both commercial and military database

applications.

A.7 - 3

REFERENCES

[AKL87] Akl, S.G., and Denning, D.E., "Checking Classification Constraints for Consistency

and Completeness", Proceedings of the 1987 IEEE Symposium on Security and

Privacy, IEEE Computer Society Press, 1987, pp 196-201.

[CLARK87] Clark, D.D., and Wilson, D.R., "A Comparison of Commercial and Military

Computer Security Policies", Proceedings of the 1987 IEEE Symposium on
Security and Privacy , IEEE Computer Society Press, 1987, pp 184-194.

[DENN86] Denning, D.E., Lunt, T.F., Neumann, P.O., Schell, R.R., Heckman, M., and

Shockley, W.R., "Security Policy and Interpretation for a Class Al Multilevel

Secure Relational Database System", SRI International, 1986.

[DENN88] Denning, D.E., Lunt, T.F., Schell, R.R, Shockley, W.R., and Heckman, M., "The

SeaView Security Model", Proceedings of the 1988 IEEE Symposium on Security

and Privacy , IEEE Computer Society Press, 1988, pp. 218-233.

[GARD79]Gardarin, G., and Melkanoff, M., "Proving Consistency of Database Transactions",

Proceedings of the Fifth International Conference on Very Large Databases , October,

1979.

[QIAN881 Qian, X., "An Effective Method for Integrity Constraint Simplification", Proceedings

of the Fourth International Conference on Data Engineering , IEEE Computer Society

Press, February, 1988, pp. 338-345.

[WILS80] Wilson, G.A., "A Conceptual Model for Semantic Integrity Checking", Proceedings

of the Fifth International Conference on Very Large Databases , October, 1980.

A.7 - 4

Work-in-Progress:

Transformation Procedure (TP) Certification

Maria Pozzo

UCLA Computer Science Department

Steve Crocker

Trusted Information Systems

November 25, 1988

1 Introduction

Computer integrity is related to both an internal and an external consis-

tency standard[2]. The external consistency aspect of integrity means that

the data conforms to the real-world situation it is intended to describe[8].

Internal consistency is more concerned with the stability of the data, and

the manner in which it is allowed to change. To preserve internal consis-

tency, data should only be manipulated by well-formed transactions, i.e.,

data should never be manipulated arbitrarily by a user, but only in con-

trolled and structured ways. <

Clark and Wilson have proposed a model of data integrity that supports

this definition[l]. A primary component of the Clark-Wilson Model is the

Transformation Procedure (TP) which corresponds to the notion of a well-

formed transaction. A TP is a program that has been certified to change the

data it manipulates in constrained ways. This paper discusses a proposal for

a TP certification mechanism based on formal specification and verification

techniques. The next section provides an overview of the proposed solution.

The general issues fall into three main classes: specification, analysis, and

acceptance. These issues are discussed in detail in sections 3 and 4. Section

5 provides two examples of how this mechanism might work; each example

is taken from a different domain. This proposal represents work-in-progress

and the approach taken to study this proposal is discussed in section 6.

A.8 - 1

1.1 Components of the Clark-Wilson Model

Constrained Data Items (GDIs) are those data items within the system that

come under the auspices of the integrity model. Unconstrained Data Items

(UDIs) are objects whose integrity is not assured by the model. Two types

of procedures can operate on GDIs: Integrity Verification Procedures (IVPs)

and Transformation Procedures (TPs). The role of the IVP is to ensure that

the data is consistent with its real-world counterpart at the time the IVP is

run. This is analogous to an external audit of a bookkeeping system. The
TP takes a GDI from one valid state to another valid state, thus preserving

internal consistency as the GDI changes.

The model further defines five certification rules and four enforcement

rules with respect to these entities. A complete list of these rules can be

found in [1]. The rule that applies to the certification of TPs is rule C2:

G2: All TPs must be certified to be valid. That is, they must

take a GDI to a valid final state, given that it is in a valid state

to begin with. For each TP, and each set of GDIs that it may
manipulate, the security officer must specify a "relation" which

defines that execution. A relation is thus of the form: (TPi,

(GDIa, GDIb, GDIc, . . .)), where the list of GDIs defines a

particular set of arguments for which the TP has been certified.

2 Overview

The goal of the mechanism proposed here is to certify a program as a valid

TP. The general idea is to build a filter program which examines a potential

TP to determine 1) if it manipulates only those GDIs that it is supposed

to manipulate, and 2) if it does so in a manner that is consistent with the

system's integrity policy for those GDIs.

The first part of this examination assumes the existence of some type

of specification of what the program does. The term specification when

applied to programs is usually taken to mean a general specification of all

of the functional and/or other relevant properties of a program. Such a

specification would imply the use of program coriectness proof techniques,

which have traditionally proven difficult to apply. Separation of the integrity

issues from general program correctness simplifies the specification process.

In the context of integrity, a primary concern is to restrict the data that

a program can manipulate. In accordance with rule G2, this specification

would be analogous to the "relation" that identifies the GDIs that a TP is

A.8 - 2

restricted to modify. To distinguish this form of specification from the more

general use, the term restriction is used. The intent is that the filter then

analyzes a program to determine if the program stays within its restriction.

Although such an analysis is an inherently undecidable problem when viewed

in a theoretical setting, the practical situation may not be so bleak. The
specification and analysis issues are discussed in detail in the next section.

Once it has been determined that a given program is within its restric-

tion, the next step is to decide whether the restriction permits actions that

are acceptable according to the system's integrity policy. "The validity of

a TP can be determined only by certifying it with respect to a specific in-

tegrity policy.[l]" For this reason, the integrity policy is seen as coupled with

a CDI or set of GDIs. A program is certified as a TP if it implements the

integrity policy associated with the GDIs it manipulates. These issues are

addressed in more detail in section 4.

3 Specification and Analysis

3.1 Specification of the Restriction

The restriction is created by a program developer, system administrator or

other security personnel, wishing to submit an executable program for cer-

tification as a TP. Each program must carry its own individual restriction

which specifies which system entities the program may change. Syntacti-

cally, the restriction must be simple enough so that it can be machine pro-

cessable by the filter program, and rich enough to represent the full range

of modifications that occur in the real- world. The restriction must also be

easily understood by the filter. This situation has analogy in labeling of

packages containing food. Suppose someone is allergic to raisins and reads

the ingredients list of every package before eating the contents to see if it

contains raisins. If the manufacturer lists dried grapes as an ingredient,

the consumer had better know that dried grapes are the same as raisins.

Furthermore, the raisins may not be listed separately in any form. Some
compound ingredient such as "Trail Mix" or "Swiss Power Fuel" may be

listed. Hence the restriction has to be lucid and unambiguous if it is to be

useful.

In order to gain some insight into the types of system entities that real-

world programs modify, a small preliminary sampling of commonly-used

programs was examined. The results from this sampling are not intended

to provide any specific conclusions but to allow one to imagine what some

A.8 - 3

of the possibilities for a viable restriction might be.

List The restriction might simply be a fixed list of GDIs that are modified

by the program. For some types of programs this might be a adequate.

Pattern Match Some programs such as compilers, editors, etc., create new
files based on the arguments in the calling sequence or command line.

For example, spell is a program that reads its input and creates a list of

misspelled words in a file with a related name, e.g., ""spell foo" creates

the file "foo.sp". For such programs the restriction must identify the

patterns of the names of the GDIs the program will modify. TPs such

as editors, and compilers, often take a UDI as input and produce a

GDI. Programs of this type may need additional certification according

to rule G5[l], or the restriction could be expanded to include UDIs as

well.

Complex rule The example above was based on transforming the argu-

ment list into a list of permissibly modifiable files using a simple ex-

tension of each filename. More complex transformations are possible

and might be needed if the program computes filenames during execu-

tion. This is especially true of temporary files whose names are often

created using some random combination of the program name and the

date or time.

Type In a system where GDIs have a designated (or even hardware sup-

ported) type, the restriction might identify the type of GDI that is

modified and the manner in which the modification is made.

The above list, although not exhaustive, identifies some of the ways that

a specification could be constructed to restrict a program's modification

activity to some set of system entities. In some cases, however, merely

restricting a program to a set of GDIs is not enough. Gonsider a set of

GDIs that contain unstructured Ascii data. In this case it is sufficient to

state only which GDIs are modified; the manner in which the modification

is made is not important. At the other extreme would be a set of highly-

structured GDIs such as those that constitute a database. Here it is equally'

important to restrict the manner in which the modifications are made. An
example of this would be a disk compactification program, which will appear

to modify everything on the system and thus fail to meet any specification

that is based solely on what GDIs are modified. For a program such as

this, a formal specification must be stated in terms of semantic properties

A.8 - 4

to be preserved. In general, as the data contained in the CDI becomes more

structured, the restriction must specify more semantic properties.

An added advantage of the restriction is its potential use as the "relation"

which defines the execution of the TP. According to rule C2, the relation

defines a set of GDIs for which the TP is certified. If the restriction cannot

be used directly as this relation, it can be used to derive the relation which

will be used to enforce the operations of the TP (rule E2 Clark-Wilson[l]).

3.2 Analysis

Once the language and format for the restriction is identified, the analysis

issues must be addressed. How can a program be analyzed to determine if it

is in conformance with its restriction? The filter must analyze the program

and ensure that it modifies nothing except what the restriction specifies. The
program being analyzed might generate code dynamically and then branch

to it. Other problems arise with filename generation, as stated above, since

the program might compute filenames in some very complicated way and

then pass them to the operating system. An even more serious problem is

that the program might make incisions into the operation system so that

the operating system performs differently. Programs that are intended to

operate as TPs should take full advantage of current software engineering

techniques and need not contain these kinds of actions. For purposes of this

paper, it is assumed that reasonably engineered programs will be analyzable.

This is a somewhat large hypothesis and merits further discussion but is

beyond the scope of this paper.

The analysis of even a simple program could prove to be a resource-

intense operation. Since this is not a time-dependent activity, the analysis

could be conducted on a machine separate from the target system. Once a

program is verified to stay within its restriction, the program and the asso-

ciated restriction must be "sealed" or encapsulated in some way to prevent

tampering. One possibility is to encrypt the program and its restriction

as a single unit. This would provide a trusted means for transferring the

program and its restriction to the target system if, in fact, the analysis is con-

ducted on a separate machine. Many issues arise when using cryptographic

techniques for protection, particularly management of the encryption keys.

These issues are well understood and will not be addressed here.

A.8 - 5

4 Acceptance

The process of accepting a program for installation on a particular system

is independent of the analysis performed by the filter. If the program and

its restriction have been properly sealed, it can be assumed that they have

not been tampered with since they were verified by the filter. Given such a

program and its associated restriction, the target system must first "break

the seal" and then decide whether the actions that are specified in the re-

striction are acceptable according to the system's integrity policy for the

GDI or set of GDIs that are manipulated by the program.

The DoD policy[4,5] which controls the dissemination of classified infor-

mation requires protected objects to carry a marking or label which identifies

the security level of the object. This security level implicitly defines how
the object is handled with respect to the security policy being enforced.

Unlike the DoD policy which controls information dissemination, it seems

unrealistic that a single integrity policy can be defined such that it is suf-

ficient to handle a wide range of information and applications[7]. For this

reason, an integrity policy is seen as application-specific, i.e., specific to

the domain in which it is defined, perhaps coupled with the GDI or set of

GDIs to which it applies. The difficult part of this is to define a policy that

is broad enough to cover all the GDIs within the integrity perimeter of a

particular domain and yet constrained enough that it can be implemented

by the variety of TPs that manipulate those GDIs. The next section pro-

vides two examples from different domains and discusses issues concerning

specification and acceptance.

5 Examples

5.1 Accounting Domain

This example is taken from the accounting domain. The potential TP is a

program that posts journal entries to the appropriate ledger accounts in a

double-entry bookkeeping system. The input to the program is a journal

entry that identifies first the account to be debited and then the account to

be credited, followed by the dollar amount^ A sample journal entry is shown

in Table 1. Note that the dollar amount is the same for both accounts; this

is because a credit purchase of equipment debits, cr increases, the amount of

^ Other information such as journal page number, date, explanation, typically found in

real journal entries are peripheral to the discussion and omitted here.

A.8 - 6

equipment by $30,000 resulting in a credit, or increase, in accounts payable

of $30,000.

Table 1: Sample Journal Entry

Page No. Date Description Debit Credit

U 1-20-88 Equipment $30,000

H 1-20-88 Accounts Payable $30,000

The ledger accounts are highly-structured GDIs and the restriction must

specify both the GDIs that will be modified and the manner in which they

will be modified. The ledger accounts are assumed to have one of the fol-

lowing types: Asset, Draw, Dividend, Expense, Liability, Gapital, Gapital

Stock, or Revenue. A /JseuJo-restriction'^ is shown in Table 2. The first item

in the restriction identifies the program to which the restriction applies:

Post. The next item in the restriction. Type, concerns the first argument

in the input journal entry which is the account to be debited. In the ex-

ample in table 1, Argl is the Equipment ledger account which is an Asset

account. The What item identifies the field in the account that is to be

modified, in this case the Balance. The last item states the semantics of

the change to the Balance field. If the ledger account has a type of Asset,

Draw, Dividend, or Expense, a debit constitutes an increase in the balance

by the dollar amount (recall that there is a single dollar amount). If the

account has a type of Liability, Gapital, Gapital Stock, or Revenue, a debit

constitutes a decrease in the balance by the dollar amount. In this example,

a debit to Equipment, an Asset account, results in an increase in the balance

by $30,000. The restriction is repeated for Arg2 which is the account to be

credited.

Note that the restriction does not make any statements about the algo-

rithm. It simply states what is modified and how it is modified: increased or

decreased depending on the type of ledger account and whether it is a debit

or a credit. It is assumed that other tests are performed to determine the

correctness of the algorithm, in this case a simple increment or decrement

of the appropriate account balance.

^The format of the restriction in Table 2 is just an example and may bear no resem-

blance to the final format of a restriction when this work is complete.

A.8 - 7

Table 2: A Possible Program Restriction

Program:

Type:

What:

Post

Argl

Balance Field

Semantics:

(1) Argl = (Asset, Draw, Dividend, Expense)] Balance($)

(2) Argl = (Liability, Capital, Capital Stock,Rev€nue) | Balance($)

Semantics:

(1) Arg2 = (Asset,Draw, Dividend, Expense)
J.
Balance($)

(2) Arg2 = (Liability, Capital, Capital Stock, Revenue) =^ | Balance($)

Given the restriction and the potential TP, the analysis phase of the filter

must verify that the program actually changes only those GDIs as identified

in the restriction and only in the manner identified. Once the program

has been shown to stay within its restriction, the next step is to check the

integrity policy for the GDIs that will be modified. The integrity policy

for the ledger accounts is relatively simple. It states that posting to ledger

accounts occurs in pairs: a debit and a credit; and the dollar amount is the

same for both accounts. In the example given, the Post program implements

this integrity policy for the ledger accounts. Further, if the accounts begin

in a valid state which in this case is Assets = Liabilities + Capital, then any

TP which implements the policy will preserve this property and will take

the GDIs (ledger accounts) to a valid final state. Note that an Integrity

Verification Procedure (IVP)^ is still needed to ensure that the accounts

represent the true state of the real-world entities they correspond to.

5.2 Computer Viruses

One of the biggest integrity threats to general purpose systems is the com-

puter virus[3]. A computer virus is a program that contains some hidden

function that could have harmful side-effects. Recently, viruses have been

attracting substantial attention because they propagate and can affect a

^The role of the IVP, as defined by Clark-Wilson, is to ensure that the data is consistent

with its real-world counterpart at the time the IVP is run.

Type:

What:

Arg2

Balance Field

A.8 - 8

large number of people and systems. The potential is no longer theoreti-

cal. In late 1987, viruses began to attack the PC community destroying user

files, flooding major networks, modifying boot programs, and a host of other

malicious tasks resulting in the loss of thousands of dollars of information,

time and resources [6]. Most recently, a virus has attacked a many systems

on a major world-wide network.

A computer virus causes an integrity violation because it spreads through-

out a system by modifying other executable programs to include a copy (or

a mutated copy) of itself. In this domain, the GDIs are the executable

programs to be protected from unauthorized modification. Executable pro-

grams that are load modules generally contain seme structured header in-

formation followed by the unstructured executable portion. Executable pro-

grams that are interpreter input files can be thought of as unstructured Ascii

data. In either case, the issue is not how these programs are modified, but

what programs are allowed to modify them. The important issue is that

only certain programs are authorized to modify executable programs. Thus,

a program that is potentially a TP, must have a restriction that identifies

the GDIs it modifies. This will result in a restriction that is simpler than

the one proposed for structured GDIs in the accounting example because it

will not contain any semantic properties.

Although specifying the restrictions may be simpler in this domain, defin-

ing an integrity policy, or anti-viral policy, is more difficult. One reason for

this is that it is necessary to distinguish between ordinary modifications

and viral modifications; a problem generally considered undecidable. For

example, suppose the anti-viral policy states that only a trusted compiler

is allowed to perform modification operations on executable programs. A
potential TP that is a run-time debugger would have a restriction that in-

cludes executable programs in the list of GDIs that it manipulates. Such a

debugger would not be accepted since it does not implement the system's

anti-viral policy regarding executable programs. Furthermore, any poten-

tial TP in this domain that is not a trusted compiler would have to exclude

executable programs from the list of GDIs that are manipulated in order to

be accepted by the filter. Thus, viral spread may be greatly reduced or even

eliminated but the trade-off is the loss of some potentially useful programs

such as the run-time debugger.

The proposal for such a filter is being investigated from this domain. The

details of the approach being taken to determine if a virus filter is feasible

is described in the next section.

A.8 - 9

6 Approach

In the case of a virus filter, the restriction states what the potential TP
modifies. It is believed that the vast majority of programs have relatively

simple restrictions, unlike the disk compactification program described ear-

lier, and that it will be straightforward to certify most useful programs as

TPs. This leads to the following hypothesis which is central to the virus

filter proposal:

Hypothesis 1 Is it possible to formulate restrictions for the majority of

useful programs such that the restriction is syntactically simple enough to be

machine processable and fine-grained enough to represent the full range of

authorized modifications made by real programs?

One way to proceed on this hypothesis is to increase the sample size

to a larger set of programs used in some environment, e.g., a hundred or so

programs commonly used in the DOS environment, and attempt to write the

restriction for each one. Programs in the sample which appear to have very

complex specifications such as the disk compactification program wiU be

negative examples with respect to Hypothesis 1. If there are only a few such

programs, then other techniques can be used to examine those programs

and Hypothesis 1 will hold.

The variable of interest in the real-world analysis is what type of entities

does a program modify and what are the characteristics of the modifica-

tion. For example, create vs. append, global variable vs. parameter, fixed

file name vs. randomly generated name. The question to be answered is:

can restrictions be written for a majority of programs in compliance with

Hypothesis 1? Obviously, there is no way to identify if restrictions can be

written for all programs just as there is no way to cover all types of modi-

fications. For these reasons, the initial real-world analysis will be restricted

to a sampling of programs found in one or two environments which are rep-

resentative of the typas of systems that are currently being used extensively,

e.g., an MS/DOS environment and a Unix environment.

Another important factor in such an analysis is the sample size which

must be large enough from which to draw legitimate conclusions, and small

enough to be manageable. Initially, several hundred programs will be ana-

lyzed distributing the selection among multiple environments being sure to

consider a mix of both commercially marketed software and free software

(shareware). Also important is the criteria used to select the "commonly

used" programs. In general, this will be done by selecting programs that

A.8 - 10

users most frequently use in the environment(s) being considered, as well

as the authors' knowledge of users and systems. Lastly, the analysis itself

will involve source code examination, documentation review, conversations

with program developers, and perhaps some program testing but will not

attempt to use any formal method.

Because the restriction is much simpler in this case, it is believed that

most useful programs will be analyzable. This leads to the second hypothesis

which is also at the heart of the virus filter proposal:

Hypothesis 2 Is it possible, on the average, to analyze programs in a

straightforward way?

To test this hypothesis, the virus filter program will be developed in

stages. Each stage will add a deeper analysis than the last. Hypothesis 2

will be true if relatively few stages are needed to yield a filter that correctly

verifies programs according to their restriction.

For the first stage of filter development, a formal description of the in-

struction set of the target computer would be prepared. For example, if the

target computer was built on an Intel 8088, a formal description would be

prepared to include the entire instruction set of the 8088 plus the interactions

with I/O such as the disk, screen and keyboard. Each instruction type would

be characterized by the locations that are modified, e.g., registers, memory

or I/O, as well as the instruction flow control - next sequential instruction,

branch, jump or trap. This characterization needs to be complete. For ex-

ample, it is not sufficient to state that a store instruction modifies memory,

it is also critical to identify what location in memory is changed.

Using the formal description of how the instructions work, a map of

the executable portions of the address space versus the data areas must be

built for each program to be examined. Together, the formal description of

the instruction set and the program's map can determine the portions of the

address space that are subject to modification. Next, all store operations and

all calls to the operating system will be examined to identify the files that

are going to be modified. These questions are likely to be hard since most

programs contain indexed addresses and pointers, and it is possible that such

indirect modifications will be left to subsequent stages of filter development.

However, it is possible that bounds can be identified on what the effective

addresses are using relatively simple analysis techniques drawn jointly from

the fields of compiler optimization and verification. Similarly, some tracing

or symbolic execution may be needed to determine the filenames that are

being passed to the operating system in a system call, but it is anticipated

A.8 - 11

that most benign programs do relatively little transformation of filenames.

Using this information regarding the modifications that the binary actually

makes, the comparison can be made with the restriction. Programs whose

modification operations are not confined to those specified in their restriction

are rejected at this point.

Once the analysis is complete and the filter has verified that a given pro-

gram is within its restriction, the next step is to decide whether the actions

that are specified are acceptable, i.e., according to the target system's policy

regarding viral activity. As previously stated, this is a difficult problem and
involves the ability to distinguish between ordinary modifications and viral

modifications. It may be possible, however, to classify modifications such

that the loss of useful programs, such as the run-time debugger in the pre-

vious example, is minimal. The third hypothesis concerns anti- viral policy

as follows:

Hypothesis 3 Is it possible to classify modifications such that ordinary

changes can be distinguished from suspicious ones and the loss of useful

programs is minimized?

To test Hypothesis 3, the suite of programs from the real-world analysis,

augmented by programs known to contain viruses, can be used to categorize

the types of modifications being performed. Clearly, modifications that

change the program itself, or tamper with the operating system would be

considered suspicious. Hypothesis 3 wiU be true if a large percentage of

modifications performed by programs in the test suite can be classified in

such a way so that few useful programs are rejected, while ALL programs

which actually contain viruses are rejected. ,

Once the acceptance phase is added to the filter, the entire mechanism

must be tested. The programs in the sample can be used as the test suite. A
value of "ok" or "not clearly ok" will be returned for each program. For each

program that is rejected, some indication of why the program was rejected

will be provided. Rejected programs will be analyzed by hand in more detail.

Three results are possible:

1. The system's anti-viral policy is clearly violated - a virus is detected. •

In this case the filter has correctly rejected a program that the system

considers to contain a virus.

2. The program does not violate the system's anti- virus policy but it has

coding practices that are beyond the analysis capability of the filter.

Further analysis techniques may have to be added to the filter.

A.8 - 12

3. The filter exceeds some tolerable time bound for analyzing the pro-

gram. In this case the program is too complex to analyze and the

addition of stronger, and presumably more time-consuming analysis

techniques, is not acceptable.

Based on the list of programs which are falsely rejected and a review of the

reasons for these false rejections, it will be possible to determine whether

this approach to filtering viruses is feasible.

7 Conclusions

7.1 Summary

An approach for certifying TPs has been proposed that is based on formal

specification and verification. Two examples have been presented: one in an

accounting domain where the GDIs are highly structured data items; and a

second from the viewpoint of computer virus protection where the GDIs are

generally unstructured entities. This proposal includes the specification of a

program's modification activity, called a restriction. It has been shown that

as the system entities to be protected become more structured, the specifi-

cation becomes more complex and may also include semantic properties as

well as the identification of the GDIs that are manipulated.

From the two examples shown, it appears that as the restriction becomes

more complex, the integrity policy is simplified. Although this is true for

the two examples described in this paper, it may not be true in general.

Nonetheless, an integrity policy is seen as application-specific, i.e., specific

to the domain in which it is defined, perhaps coupled with the GDI or set

of GDIs to which it applies. At the very least, an integrity policy must

be broad enough to cover all the GDIs within the integrity perimeter of a

particular domain and yet constrained enough so that it can be implemented

by the variety of TPs that manipulate those GDIs. It seems unrealistic that

a single integrity policy can be defined for all domains.

7.2 Work In Progress

Gurrently, work is underway investigating the feasibility of applying the filter

approach to virus protection. The success of a virus filter approach rests on

whether the following three questions all have affirmative answers.

1. Is it possible to formulate restrictions for the majority of useful pro-

grams such that the restriction is syntactically simple enough to be ma-

A.8 - 13

chine processable and fine-grained enough to represent the full range

of authorized modifications made by real programs?

2. Is it possible, on the average, to analyze benign programs in a straight-

forward way?

3. Is it possible to classify modifications such that ordinary changes can

be distinguished from suspicious ones and the loss of useful programs

is minimized?

To answer these questions, experimental work is required to establish

whether a significant fraction of the useful programs are subject to formal

specification and analysis of the form envisioned here. Once the experimen-

tal work is done, it will be clear whether this approach is feasible within the

current state of the art, requires modest extension to the state of the art,

or is likely to remain beyond the state of the art. If this approach is feasible

for filtering viruses, the proposal can be extended to other domains.

References

[1] David D. Clark and David R. Wilson. A Comparison of Commercial and

Military Security Policies. In IEEE Symposium on Security and Privacy,

pages 184-194, April 1987.

[2] David D. Clark and David R. Wilson. Evolution of a Model for Com-
puter Integrity. In Proceedings of the 11th National Computer Security

Conference, October 1988.

[3] Cohen, F. Computer Viruses. In Proceedings of the 7th National Com-

puter Security Conference, pages 240-263, 1984.

[4] Department of Defense. Security Requirements for Automatic Data Pro-

cessing (ADP) Systems, April 1978. DOD Directive 5200.28.

[5] Department of Defense. ADP Security Manual - Techniques and Pro-

cedures for Implementing, Deactivating, Testing, and Evaluating Secure

Resource-Sharing ADP Systems, June 1979. DOD 5200.28-M.

[6] Highland, H.J.,. Random Bits k Bytes. IFIP Computers and Security,

7(2), 1988.

A.8 - 14

[7] Robert H. Courtney Jr. Integrity Workshop. Dockmaster Forum, Jan-

uary 1988. Conversation between Robert Courtney and Stu Katzke con-

cerning the Oct. 1987 WIPCIS Workshop.

[8] William H. Murray. Position Paper: Working Group on Granularity.

In Report of the Invitational Workshop on Integrity Policy in Computer

Information Systems (WIPCIS), October 1987.

A.8 - 15

Toward a Model for Commercial Access C ontrol

Stan Kurzban

IBM Systems Research Iklucalion Center

500 Columbus Avenue

Thornwood, New York 10594

ABSTRACT: Access control software has developed to meet commercial requirements, but no
discipline has made it possible to describe the software rigorously. I liis paper presents a set of

objects that are suitable for use in rigorous descriptions of such software.

Introduction

For fifteen years, access control software has been developing lo meet commercial needs. Software

designers have introduced a diverse collection of mechanisms and facilities in response to impre-

cisely phrased requests for types of control. Making sense of the set of software offerings requires

a uniform and precise set of terms with the power to ex]->rcss Jill of the relevant things that the

software does. Relevance, in this context, depends on perception of commercial needs.

Origins of Requirements

A long history of accounting practice indicates that these needs arise from Generally Accepted

Standards of Good Practice (GASGPs). Most important of these are:

1. Least Privilege (LP)--People must be authorized to (lo all and only what they must do to

perform their assigned tasks.

2. Separation of Duties (SD)--If a set of acts can jeopardi/c the organization, then multiple in-

dividuals with potentially conflicting motives must be involvt d in performing the set of acts.

The first of these GASGPs insures that the organization will net incur unnecessary risk by per-

mitting employees to do things that they need not do to serve the organization's interests. The
second insures that collusion or one person's duping of another will be necessary to the commission

of a dishonest act that injures the organization. History has amply taught that people who do un-

necessary acts often do them inconectly and detrimentally and that individuals who collude to do

harm are often caught. History also makes it clear that security measures that are difficult to use

are omitted. That lesson leads to another fundamental principle:

• Ease of Safe Use (ESU)--The easiest way to do something should always be the safest as well.

This entaUs, for example, the use of safe defaults, that is, specifications such that the failure to

enter a value for a variable results in the variable's assumption of a value that confers least

privilege. It also entails the provision of grouping mcchnnisn-'s that make it possible for people

to enter security-related data with a minimum of commands/keystrokes. The use of list-based

access control rather than resource-related passwords is still another example.

Finally, all is for naugjit if measures are inelTective against attack. Therefore, a sine qua non is ad-

equate invulnerability:

• Adequate Invulnerability (I)—Security measures must be impbmcnted so well that deliberate

circumvention of them will be demonstrably less attractive than other means of achieving the

same objectives (for example, in a particular case, system penetration by sophisticated pro-

grammed attack will be less attractive an alternative than du| 'ing or colluding with an author-

ized individual). While the defmition of in\'ulnerabilit> mi st be precise, specifying what is

permitted and what is prevented, the confidence that one can have in invulnerability is

subjectively quantifiable.

A.9 - 1

First Consequences

Clark and Wilson (1) used the principles mentioned above in deriving a "model" for commercial

computer security. Their work and our own suggest a few fundamentals of commercial access

control:

1. Because applications rather than systems provide the level of granularity needed for effective

limitation of privilege (LP), the facilities of access control software must be available to appli-

cation software.

2. Because administrative ease (ESU) requires abbreviation of administrative statements, access

control software must permit the aggregation of both users and resources into groups. (Thus,

a statement about a group of twenty users and a set of fifty resources is an abbreviated form

of a thousand statements, one for each ordered user-resource pair.)

3. Users must be able to prove their identities easily (FSU), as well as with certainty (I).

4. The separation of administrative tasks by scope (for example, for a set of groups of users),

called "decentralization," and responsibility (SD) (for example, auditing or security adminis-

tration) is vital, to permit the placement of only tolerably small burdens on administrators

(ESU).

Because many people now use diverse systems. Ease of Safe Use requires that they not be con-

fronted by unnecessarily differing access control interfaces. The users concerned are developers of

applications, those who use applications, and administrators. Their needs are:

1. Application Developers:

, a. The ability to learn whether the application's current user is authorized to make the re-

'
' quested type of access to the named application-defined resource and to log the learned

information.

b. The ability to create, associate with a list of those authorized the various types of access,

modify, and destroy collections of access control data, called "profiles," with appUcation-

defined resources.

2. Application Users:

a. The ability to initiate a series of interactions with the system (that is, to "LOGON"), prove

their identities, and associate their work with one of possibly many groups to which they

belong. "System," here, refers to all that a user sees during a series of interactions, whether

that be a single application, a single processor, a network, or even many interconnected

networks.

b. The ability to create, associate with a list of those authorized the various types of access,

modify, and destroy collections of access control data, called "profiles," with resources.

3. Administrators:

a. The ability to modify profiles.

b. The ability to modify the the constituency and semantics of groups of users and resources.

c. The ability to modify the security-related data associated with users and with the system

as a whole.

A vital inference that Clark and Wilson derived is that control of access to application-defmed data

requires that all control of the data be exercised by the application. 'I hey focus on user-program-

data triplets; every privilege has the form: USER may gain access 1o DAI A via PROGRAM. A
simpler interpretation of their view uses PROGRAM as a type of access. In this formulation, we
never say CHRIS may READ EMPLOYEE or CHRIS may READ EMPLOYEE via PAY-
ROLL, but rather, CHRIS may use PAYROLL on EMPLOYi:! ,. The program's name replaces

the type of access in a conventional access control triple. 1 he device is most appealing, but herein,

we retain the explicit notion of program as intennediary.

A.9 - 2

The Model's Objects

The above indicates that the objects of interest for commercial access control arc:

1. User Profiles, which comprise security-related information about users.

2. Grroup Profiles, which we rename "role-surrogate" (RS) profiles to indicate that in commercial

data processing, as Lee (2) has noted, useful grouping depends on users' organizational roles.

Since these reflect the structure of the organization, which is typically hierarchical, we assume

that a net of these must be representable.

3. Resource (and Resource Set) Profiles, which comprise security-related information about (sets

of) resources.

4. Programs, which may be types or conditions of access pennittcd.

5. Processes, which are the units from which requests for access emanate.

6. System-wide Security Data, which comprises at least data on the semantics of RS profiles.

The last of these tells the access control software how to use the other information in answering the

question of whether access is permitted.

Below are listed, in the context of our model, the contents of the items in the above list. Items

marked with stars are not implied by the preceding discussion, but are included because they com-

monly appear in access control facilities and we wish to show how they might logically be grouped

for convenience. The notion of "contents" is used loosely. It can be thought of in terms of the

fields of a control block or the values to which the fields point, [f a model is developed from this

description, the N contents listed below may correspond to an N-tuplc that represents the object

in the model.

A User Profile contains:

1. The user's system-local and *network-wide or global identifiers.

2. Data used to verify the user's identity.

3. The identifiers of the RSs to which the user belongs. (Note: This duplicates information in

the individual RS profiles and, in practice, need not be stored redundantly. It is shown so that

one may make statements about "all the information in the User Profile" and include this item,

even though the information is actually stored elsewhere. The point is that such a statement

implies that the access control software must retrieve the data, from wherever they are stored,

in the process of conforming to such a statement. The same principle applies to all data shown

redundantly below.)

4. For each granting of access to the resource (set):

a. The identifier of the resource (set),

b. The type of access granted, and

c. The conditions (for example, *times of day, day(s) of week, *port of entry, program in

clean (that is, meeting the System Integrity criteria (3) of IHM's Multiple Virtual Storage

(MVS) operating system) calling process).

The presence of this item permits the model to describe a ticket-based access control mech-

anism (as contrasted with one that is list-based). (Note: This duplicates information in the

individual resource (set) profiles and, in practice, need not be stored redundantly. It is shown

because the information may be stored in this way (for example, via capabilities, as in a

capability-based system like AS/400 (4)) and so that one may make statements about "all the

information in the User Profile" and include this item, even though the information is actually

stored elsewhere. The point is that such a statement implies that the access control software

must retrieve the data, from wherever they arc stored, in the process of conforming to such a

statement.)

A.9 - 3

5. Identifiers of all resources and types of access thereto for which the user has GRANT authority

(per Bishop (5)) (that is, those whose profiles' access lists the user may modify and with respect

to which types of access).

6. Audit-control data. (Detail not given here.)

7. *The user's United States Mandatory Access Control (MAC) (Bell and La Padula (6)) clear-

ances.

8. *Conditions under which the user may not be permitted to use the system (for example, out-

side of normal working hours, via telephonic communication lines, on the weekend, on certain

dates).

9. *Default resource profile for newly created objects.

An RS profile contains:

1. The RS's identifier.

2. The identifiers of the users who belong to the RS.

3. The identifiers of the RSs immediately above and below this one in the net of RSs.

4. The identifiers of the resource (set)s for which this RS has GRANT authority.

5. Audit-control data. (Detail not given here.)

6. The scope of the RS (that is, identifiers of the profiles and the types of contents thereof to

which this RS applies; for example, if the scope of this RS is the RS "Payroll" and the field

"Audit-control data" and this RS has access of type I JPDATI ' to the resource set of all profiles,

then making people members of this RS is the same as making them Group Auditors for the

PAYROLL group, in the terminology of IBM's Resource Access Control Facility (RACF)
(7)).

7. *RS-related privilege assigned by default to members of this RS.

A resource (set) profile contains:

1. The identifier of the resource (set) and the type of the resourc3(s). The type is used as an index

into a table of types to determine the bit-correspondences for specified types of access to re-

sources.

.2. Either: ,

• If a single resource, the identifiers of all resource sets to which this resource belongs, or

• If a set, the identifiers of all the resources that belong to this .set.

3. Identifier of the owning RS or user.

4. For each granting of access to the resource (set):

a. The identifier of the user or RS,

b. The type of access granted, and

c. The conditions (for example, '''times of day, day(s) of week, *port of entry, program in

clean (that is, meeting MVS's System Integrity criteria (3)) calling process).

The presence of this item permits the model to describe a list-l)ascd access control mechanism

(as contrasted with one that is ticket-based).

5. The resource's United States Mandatory Access Control (MAC) (Bell and La Padula (6))

sensitivity level and categories.

Associated with each program are:

1 . Its identifier.

2. The identifiers of all resources for which it is the condition of access. (Note: This duplicates

information in individual resource (set) profiles and, in practice, need not be stored redun-

dantly. It is shown to account for the case (for example, AS-400 (4)) where the information

is logically (albeit not quite physically) stored in this way and so that one can make statements

A.9 - 4

about "all information associated with the program" and include this item even though the

information is actually stored elsewhere. The point is that such a statement implies that the

access control software must retrieve the data, from wherever they arc stored, in the process

of conforming to such a statement.)

Associated with each process are:

1 . Its identifier.

2. The identifier of the user on whose behalf the request for access is being made.

3. The identifier of the RS associated with that user.

4. The identifier(s) of the currently active program(s).

5. The "clean" bit (see above).

6. MAC.
System-wide security data are:

1. The rules of search for determining whether access is permitted. Hiis is expressed as an ordered

list of search index and the role of each. Each entry in the list is composed of:

a. A search index, which may be:

1) An identified user or RS profile (for example, PlIBIJC or UACC) to be sought,

2) The current connect RS, or

3) Other RSs of which the user is a member; and

4) RSs below or above those of which the user is a member.

b. A role:

1) An override (that is, if some type(s) of access is (are) specified, use it if (in)sufricient

and search no more), or

2) A default (that is, if some type(s) of access is (are) vspecified, use it if (in)sufficient

unless a more permissive (set of) type(s) is found later.

Note that mechanisms for efficient implementation, like the Global Access Control

(GAC) table in RACF(7) and rules about ownership (that is, "rcvsource's name begins with

user's identifier") are not distinguished in the model, but arc represented by the appropri-

ate information in the appropriate access lists. It is as though the owner's name appears

with total authority in the access list for each owned object.

Note too that detailed presentation of all of RAC^T's (7) and ()S/400's (6) searching rules

is not given here, but the things from which that presentation can be built are, we hope,

given.

Finally, note as well that some of the apparent redundancy described above may gain se-

mantics from a search order. That is, if a piece of information such as "LES may READ
X" is stored multiply, but in places that are separated by one or more others in a search,

the semantics of the multiple instances may differ because of the role that each plays in a

search. This is another problem whose resolution is "not given here."

2. Audit data that have been recorded. (Detail not given here.)

3. *Security switches (for example, the default for the vsetting of the crase-on-scratch" feature)

4. *Password control rules (for example, every password must contain at least one digit, pass-

words must be changed every thirty days).

Further Work
The natural language exposition above is only a step on the road to a formal model. Clearly, a vital

next step is mapping of the items described to some formalism thai would permit the development

A.9 - 5

of a model that the "Discussion" below posits. Whether that step would be unduly difficult is a

matter of conjecture that only its execution can settle.

Discussion

The model, after formalization, refmement, and extension, could serve multiple purposes:

1. An agency could establish criteria, portions of the model that a product would have to imple-

ment to be awarded a rating of some sort.

2. Architects could establish a set of model-defmed facilities tliat would be an sirchitecture for

access control.

3. Verifiers could test an access control product against its vendor's model-based statement of

function to determine whether it functions as claimed.

4. Such verification could be automated via theorem-provcrs and the like.

Conclusion

While forces in the marketplace have led to the development of access control software that appears

quite diverse, certain primitives, formularized in the model dcscrilxxl above, underlie almost all of

the functions they perform. These primitives provide an opportunity for treating their similarities

and differences rigorously, albeit with much effort.

References

(1) Clark, D. D., and Wilson, D. R., "A Comparison of Commcrciai and Military Computer Se-

curity Policies," Proceedings of the 1987 IEEE Symposium on Security and Privacy, April

27-29, 1987, Oakland, California, pp. 184-194.

(2) Lee, T. M. P., "Using Mandatory Integrity to linforce '(Commercial' Security," Proceedings of

the 1988 IEEE Symposium on Security and Privacy, April 18-21, 1987, Oakland, California,

pp. 140-146.

(3) International Business Machines Corporation, Statement oj' MVS System Integrity P73-17,

February 1, 1973.

(4) International Business Machines Corporation, ASI4W) (I'M) Programming: Security Concepts

and Planning, SC21-8083, June 1988.

(5) Bishop, M., and Sntder, L., "The Transfer of Information and Authority in a Protection Sys-

tem," Proceedings of the Seventh Symposium on Operating System Principles, Pacific Grrove,

California, Decejnber 10-12, 1979, pp.45-54.

(6) Bell, D. E., and La Padula, L. J., Secure Computer Systems- Unified Exposition and Multics

Interpretation, MTR-2997, The MffRE Corporation, Bedford, Massachusetts,. July 1975.

(ESD-TR-75-306)

(7) International Business Machines Corporation, Resource Access Control Eacility (RACE) Gen-

eral Information Manual GC2S-0722, May 1987.

A.9 - 6

APPENDIX B

The Position Papers

B

Data Integrity Position Statement

Marshall D. Abrams

The MITRE Corporation

McLean, VA 22102

I think that most of the discussion of integrity has concentrated on describing

functionality. This is important work and needs to be continued. But it is not sufficient. In

order for people and organizations to be able to rely on, or trust, the integrity of their

computer systems and networks, they must be convinced that that the integrity policy is

implemented correctly, that it is error free, and sufficiently resistant to accidental or

purposeful circumvention.

This trust in integrity mechanisms is equivalent to trust in secrecy mechanisms. The

process of establishing the trust is commonly known as assurance.

I think that progress concerning integrity has, so far, concentrated on functionality. I

think that commensurate attention must be given to assurance.

B.l - 1

Process Execution Controls as a Method
of Ensuring Integrity

DRAFT

Eugen Mate Bacic

Software Security Specialist
Communications Security Establishment

copyright 1989

This is a draft of a larger paper discussing a proposed method of ensuring
the integrity of a system. It may ramble at times and for this I

apologize. Hopefully the followup paper will correct these oversights.

B.2

Introduction

Integrity is defined "... as those qualities which give data and systems
both internal consistency and a good correspondence to real -world
expectations for the systems and data" [Clark & Wilso This implies that

the "...system remain predictably constant and change only in highly
controlled and structured ways". What follows is a method of ensuring this
structured and controlled rate of change remain structured and controlled by

means of finite state machine. Any change within the system would be forced

to move from one known steady state to another. Much as a compiler uses a

finite state machine to move from one legal state to another, the method
proposed allows the operating system to ensure that no matter what the user

does with the system, it moves from one known state to another known state.

Process execution controls (PECs) are offered as a method of ensuring the

integrity of the system by limiting the accessibility of a wide range of
data to modification. All data on the system would be governed by various
execution controls which would, from the viewpoint of the program, restrict
who can execute which program. PECs would behave similarly to mandatory
access controls (MACs) and discretionary access controls (DACs) [DoD 85] but

instead of applying the normal accesses of a user to a file or the
classification levels of data, PECs would apply a set of controls to data
restricting what programs or individuals can access them. This restriction
on usage by program or individual has become known as MEC and DEC,
paralleling MAC and DAC.

Process Execution Controls

Mandatory execution controls (MECs) are truly an extension of access control
lists (ACLs). However, their mandatory nature implies that they can not be

changed, unlike ACLs. At the discretion of the user would be discretionary
execution controls (DECs) which could be modified to include certain users
or groups of users in ways meaningful to the owner of the data.

Vtsually represented, PECs could be viewed as requiring an additional step
that MAC and DAC do not require. This extra step, in which an object
becomes the subject for the next object, increases the security and nicely
falls into line with the Clark-Wilson model:

1. Subject Object
2. Subject Object

User ===> Program ===> Data
(Duties) (Req'd Duties) (MAC/DAC)

(MEC/DEC)

B.2 - 1

This diagram shows how a User, with a given set of duties, executes a

Program, with a given set of required duties, which then executes on behalf
of the User and attempts access to the Data. As is indicated, firstly the
User is the subject and the Program the data. After the Program takes over
for the User, the Program becomes the subject and the Data becomes the
object. Although one might indicate that this could collapse down to only
one subject and object, ever, it will be shown that the above method is

required to fully utilize PECs thus ensuring integrity.

2.1 Duties

For this method to work requires that we define what is meant by
duties. Duties are a set of processes for which the given user has
access to. In other words, every given duty, from a «^'mple user to
system administrator, has a set of processes associated with it. In

the case of a developer user these duties might simply define which
processes he can execute:

i.e., loader, link, editor, debugger, cc, pascal

while for a business user might have:

i.e., loader, editor, payroll, cheques-balances.

Now, although this might seem clumsy at first, it can quickly be

simplified by using groups and having the loader, link, editor, ... all

listed under a group name: Developer.

Therefore, a user whose duty was Developer would be able to use the
loader, linker, editor, debugger, c compiler and pascal compiler.
However, a user who's duty is Business-Payroll would not have access to
the linker, debugger, c or pascal compilers but would have access to

the payroll and cheques-balances programs. This description of duties
down to the lowest common denominators -- processes -- is required for
the PEC system to work.

2 . 2 Mandatory Execution Controls

Mandatory execution controls (MECs) are those controls imposed upon
data in the system at the time of creation -- be it creation of the
system or creation of a data entity. MECs, being mandatory, appear
within all files. They can not be modified nor added to. They
dominate discretionary execution controls (DECs) but work in

conjunction with MAC and DAC. If MAC and DAC disallow execution,
neither MEC nor DEC can supersede it.

B.2 - 2

MECs take the form of process names. Every file is considered to be an

object which can be manipulated by some subject. Some objects --

commonly called executables -- can become subjects on behalf of their
executor (at one time a user) and manipulate objects. It is upon the
objects that the MECs are placed. Whenever a file is to be accessed --

even execution is a file access -- the MEC list is examined. If the

current subject's duties is contained within the MEC list of the

object, the object is opened by the calling subject. From this open,

the MAC and DAC lists apply. If the file is not accessible, the open

will fail. If the file is accessible, but an open is attempted in the

wrong mode, the open will fail. With this we can ensure that data is

not overwritten or modified by unauthorized personnel.

Discretionary Execution Controls

Discretionary execution controls (DECs) are user defined execution
controls. They operate at the user level and give access to files
which may be executed. DECs make little or no sense when placed as

access controls on non-executable files, but they serve as a compliment
to MECs and can be viewed as a logical extension to DAC.

The user can define access controls on most TCBs which indicate read,

write and occasionally execute privileges. However, DECs offer an

extension, namely the ability to grant, above the standard MEC list,

access to their files by other users. The DEC allows the user to add a

secondary list of privileged users, which do not conflict with the MEC
list. Thus, if user "A" allows user "B" access to his files, user "A"

can specify exactly what the user can do. By specifying a DEC of:

prog.ru = (MEC = [delete, copy, modify, debug, link, load],
DEC = [eugeniw, don:w, S5B.g:r])

user "A" has effectively said that eugen and don can use all of the MEC
features that prog.ru can be accessed with if and only if they contain
that feature in their duty specification. S5B.g, however, can only
apply those features non-destructively, thus someone in S5B.g applying
the delete process against prog.ru would be met with an error, eugen or

don would be able to delete it without problem.

You might wonder how this "feature" will help integrity. Using the

computer virus [Cohen] as an example, let's examine what would happen
if user "A" executed a program from user "B"s directory:

a) User "A" executes program "X" from user "B"

b) "X" contains a virus which notices "prog.ru"

B.2 - 3

c) it attempts to open the file with update

d) the KB examines the MEC list to see if "X" is listed as

one of the processes privileged enough to access program
"prog.ru"

e) the TCB notices that it is a MEC violation, even though
user "A" has complete access to his own files!

f) an exception is raised and the program terminated

Why is it a MEC violation? Simply put, access to the program "prog.ru"
is restricted to a certain set of known processes. No other processes
may be added. Executables may only be modified by trusted processes
which implies that ONLY trusted executables could be the carriers of
viruses. However, by their very nature -- being trusted -- implies
that they can not be carriers and therefore the system is safe. Even
if a viral ridden program is installed into the system, the system will

remain at a "steady state". Why? Quite simply, in any given operating
system only a handful of programs require access to an executable,
these being:

load: the program which initiates execution of an

executable on behalf of a known user

link: the program which establishes the standard MEC
for all executables. This is one of the most
trusted programs on the system [Wong & Ding].

debugger: this is optional depending whether or not the
debug schema is to be included or not

delete, copy, modify: these are standard system functions to delete
the file from the file system, copy it to
another place and to modify those aspects of the
file which the TCB allows.

Of course, this is not expected to be a complete or even a correct
list, however it is meant to show more clearly exactly what mechanism
is being used to protect the system.

B.2 - 4

2.4 DAC Extension -- The EXECUTE Attribute

Many TCBs do not offer a method of excluding execution of a program for
certain individuals. However, the ability to specify what can be read
and what written is not sufficient. The simplistic premise that read
and write is all that a TCB requires to be safe has been shown to be
fatally flawed [Cohen]. However, the ability to indicate that a file
is executable but NOT readable or writeable is quite useful. A poorly
known operating system CP-6 [CP-6] uses such a method of protection for
its system files. Those files that are executable but should not be
readable are labeled as such. Thus, whenever a user wishes to list his
directory he simply invokes the "1" command but is not capable of
viewing the binary. Any such attempt prompts the system to issue an

error message indicating the file does not exist. The reason it

doesn't exist is that any attempts to read the file don't make sense if
the file is executable only. Thus, nothing can read OR write the file.

Using the virus example once more, it is possible to notice that if the
virus is halted from being able to enter a file due to the fact that
the file is execute only, it only stands to reason that the virus will
not be able to propagate. However, if the only restriction was a

modifiable DAC, a virus could easily modify the DAC to what it required
and then modify it back to its original state.

The inclusion of an execute attribute on the DAC coupled with the MEC
would allow the TCB to halt the spread of a virus created by a user of
the system.

2.5 Inheritance

In the described system, an executed object becomes a subject and
inherits the originating subjects duties and user id. Similarly, for
processes run by other users other than the owner but with sufficient
privilege, the executing user inherits the MEC list of the accessed
process and this supersedes, temporarily, the user's original duties.

3. Dominance Recuirements

The dominance requirements for this model is quite different than for MAC or
DAC. For DEC, the user invoking the process must be contained within the
DEC of the given process:

U <= P where U is the user id

dec dec dec

P is the process's
DEC list.dec

B.2 - 5

Similarly for MEC,

U

duties

in P

mec
where U is the duties

duties this user can
do.

P is the process's
mec MEC list.

The duties of the user indicate what the user can do with a given process.
Anything attempted which does not exist within the user's duty list causes
the system to reject the attempted access.

Separation of Duty

The method of attaching duties to each and every user and defining them in

such a way as to describe their duties fully to the TCB ensures a complete
separation of duty.

User Enhanced Authentication

The entire PEC process is designed as an enhanced authentication device
while at the same time ensuring that illogical data accesses -- writing to

file with an improper subject -- are impossible.

Comparison with Clark and Wilson Integrity Maoping

In an as of yet unpublished paper given to me by David Wilson, Clark and
Wilson outline a mapping which they see as indicating the level of support
offered by an integrity model. This mapping has the following headings.
Those features which are fully met with PECs are so indicated:

Prevention of Change YES

Data Labels and Logs Unknown
Change Log
Change Log with attribution
IVP execution for data
Domain logs for data

Access Control Triple YES

Application Program Change Control YES

Uncircumventable User Authentication YES

Controls on Privileged Users YES

Dynamic Tracking of Separation of Duties Possible

B.2 - 6

1 . Conci usion

As one can see, although the system is simple, it could enhance existing
systems in the area of integrity to the point that various forms of

malicious code could be stopped. Also, unauthorized, Trojan modifications
would be easily halted as well since modifications to any given file would
be halted by a PEC. No user can modify his own files without operating
under the control of a process. This inclusion of an extra layer in which
processes operate on your behalf allows the TCB to ensure the integrity of

the data and audit those changes when they do happen. Also, the amount of
the TCB which must be ensured to be trusted above and beyond the current
norm is minimized to the loader and linker. Although processes such as the
debugger are dangerous and can modify live files, modifications could be

included which ensure that debuggers can not write to the given file. The

MEC list could be extended to include read, and write lists as does the DEC

However, what I hope to have shown is a model of a system which is

implementable using Process Execution Controls and which implements the

Clark-Wilson model

.

8. Bibl ioqraphv

[Cohen]

[Thompson]

[CP-6]

[Sandhu]

[Wong & Ding]

Cohen, Fred

Thompson, Ken

Sandhu, Ravi

Wong, Raymond M,

and
Ding, Y. Eugene

Computer Viruses: Theory and

Experiments Computers and Security,
North-Holland, Amsterdam, vol. 6,

no. 1 April 1987, pgs 22 - 35

Reflections on Trusting Trust
Communications of the ACM, vol 27,

no 8, August 1984, pgs 761 - 763

Honeywell Bull CP-6 Programmers
Reference Manual , DOO

Transaction Control Expressions for
Separation of Duties Fourth
Aerospace Computer Security
Applications Conference, 1988 pgs

282 - 286

Providing Software Integrity Using
Type Managers Fourth Aerospace
Computer Security Applications
Conference, 1988 pgs 287 - 294

B.2 - 7

[Clark & Wilson] Clark, D.D. and
Wilson, D.R.

[Clark & Wilson] Clark, D.D. and
Wilson, D.R.

[Jueneman] Jueneman, Robert R.

[DoD 85]

A Comparison of Commercial and
Military Computer Security Policies
IEEE Symposium on Security and
Privacy, 184 - 194 (1987)

Comments on the Integrity Model
Preliminary Report of the
Invitational Workshop on Integrity
Policy in Computer
Information Systems (WIPCIS),
Bentley College, MA, October 1987

Integrity Controls for Military
and Commercial Applications
Fourth Aerospace Computer
Security Applications Conference,
1988 pgs 298 - 322

Department of Defence Trusted
Computer Security Evaluation
Criteria, DoD 5200.28-STD, 1985

B.2 - 8

Naming and Abstraction for Large Security Configurations

Robert W. Baldwin

Tandem Computers

19333 Vallco Parkway, MS 3-04

Cupertino, CA 94014
408/725-7233

If an information system is going to help a site achieve high data integrity the site

must have high assurance that the system will enforce the desired access policies. One
aspect of that assurance, specifically making sure that the computer will do what it is told,

has received a large amount of attention. This note discusses an equally important aspect:

assuring that the information system has been told the desired policy. A simple extension to

current protection mechanisms is proposed that greatly reduces the difficulty of expressing a

high level security policy.

With current protection mechanism, the high level access policies must be expressed

as a large collection of low-level statements. Collectively these statements make up the

security configuration of the system. As the security configuration gets larger, it becomes
harder to maintain and harder to have any assurance that the desired policies are being

enforced. For example in a large database with dozens of applications, hundreds of tables

and thousands of users, it is hard to manage all the access control lists on the tables.

Consider what happens when one of the users gets a promotion. That user may gain some
additional access as well as lose some of the access that was available to him. To correctly

update the security configuration for such a system, the administrator would need a separate

database describing which application programs can be run by users holding a particular job,

and which tables are accessed by each application. Basically, security configurations are

hard to maintain because of the large gap between the abstractions that form the site specific

access policy and the low-level statements understood by the system's protection

mechanisms.

This note discusses a simple extension to the ANSI SQL protection mechanisms that

allows it to express higher level abstractions. Basically, the extension allows an

administrator to group and name collections of privileges to form named protection domains

(NPDs). A privilege is either a table privilege like the ability to Insert into the Employee
table (i.e., a verb-object pair), or recursively, a privilege can be an NPD. In a conventional

RDBMS table privileges are directly granted to users. With this extension table privileges

can be granted to a user or to an NPD. Similarly, an NPD can be granted to a user or to

another NPD.

This extension allows an administrator to create a directed acyclic graph of privileges

that mimic the abstractions found in the high level access policy. For example, a single

application program might present a screen that allows a supervisor to create, lookup, and

update purchase orders. Clerks use the same application, but accounting clerks can only

create orders and shipping clerks can only lookup orders. This policy could be expressed

using three domains, two for the two types of clerks and a third domain that can both

update orders and exercise all the privileges of the other two domains. That is, the two

B.3 - 1

clerk domains are granted to (are contained in) the supervisor domain. By giving the

domains meaningful names (e.g., order-create, order-super, etc.) it would be easy to grant

NPDs to users based on their job descriptions.

The key idea is that naming and grouping reduces the complexity of the security

configuration by allowing an administrator to create abstractions. This makes the

configuration easier to maintain, and more importantly, it becomes easier to decide whether

the high level access policy has been correctly expressed.

To bridge the abstraction gap between the protection mechanism and the site access

policy, one must group privileges, not individuals. Groups of privileges correspond to

abstract operations that are meaningful in the access policy. Policies may talk about

different kinds of users, but these distinctions would be better expressed as attributes of

users or their jobs rather than a grouping of users. Notice that the NPD mechanism can be

used to group individuals by creating an NPD and granting it to all the individuals in the

group. Any privilege can be granted to that group of individuals by granting it to the NPD.

NPDs are similar to both Roles (in the ACF2 sense) and Access Classes (in the BLP
sense). A Role is a capability that is given to a user which allows him to use a collection

of programs and/or data. Thus, a Role provides a way to name a collection of privileges

just like NPDs, but a Role cannot be made up of other Roles so the abstraction tree can

only get one level deep. If a role could be granted to another role, then that mechanism
would be equivalent to NPDs. Access Classes, like Secret-Crypto, provide a name for a

collection of read and write operations that can be performed on a specific set of objects.

Access Classes only provide for a single level of abstraction.

Granting a privilege to an NPD and attaching an Access Class label to a document

are both operations that must be carefully controlled. The meaning of an NPD is the set of

table privileges it directly or indirectly grants, so granting or revoking a privilege from an

NPD changes the meaning of that NPD.

The overhead associated with NPDs is similar to the overhead found in any

protection system that allows a user to be a member of multiple groups. The set of all

possibly accessible NPDs can be computed when a user logs in, and a list of flags can

express which ones are currently active (directly or indirectly). The objects being protected

would have an access control list that maps user and NPD names into allowed access

modes. The total set of allowed access modes between a given subject and object could be

computed as the union of all the access modes allowed by any one of the NPDs (note: to

enforce certain confinement policies, it is necessary to be able to ignore privileges directly

granted to the user, and only accept privileges that have been granted to one of the active

NPDs).

Named protection domains are an efficient and simple extension to conventional

protection mechanisms. They make large security configurations easier to maintain and

verify, and thus greatly improve an information system's ability to support data integrity

policies.

B.3 - 2

The Clark- Wilson Integrity Policy Model
as a Model for Trusted Applications

Deborah J. Bodeau
Trusted Computer Systems

The MITRE Corporation

Bedford, MA 01730

The Clark-Wilson integrity policy model describes a policy of (i) maintaining

the consistency and correctness of data and (ii) enforcing separation of duties.

The Clark-Wilson model represents the behavior of a system in the broad sense,

including verification of data stored in a computer system against the real world

and certification of processing, as well as the behavior of the computer system

itself. While the pohcy described in the model appUes to mihtary systems, the

model was developed for commercial applications.

Many commercial operating systems have been or are currently being

evaluated against the Trusted Computer System Evaluation Criteria (the "Orange

Book"). Orange Book requirements are stated in terms of two complementary

descriptions of system behavior: (i) access of named users to named objects, and

(for Bl and above) (ii) access of (labeled) subjects to (labeled) objects. Because

evaluated systems provide both useful security functionality and the assurance of

careful scrutiny, their use in commercial appUcations is desirable. However, it

must be demonstrated that such systems can support a policy appropriate to

commercial applications. ,

At an abstract level, that demonstration involves establishing a clear relation

between the Clark-Wilson model and an access control model. One approach is

to treat them as unrelated, and to expect each policy to be enforced by the

operating system. Since this calls for new operating system mechanisms, it does

not allow advantage to be taken of evaluated operating systems. Other

approaches have included attempts to show that the Clark-Wilson pohcy can be

enforced within an access control model such as Bell-LaPadula, or within an

access control model that uses an alternate label mechanism (Biba). These

approaches tend to obscure the key concepts of transaction processing expressed

in the Clark-Wilson model; while those concepts may not be visible at the level of

operating system mechanisms, they are useful.

An alternative to these approaches is to treat the Clark-Wilson policy as an

application pohcy, to be enforced in addition to an access control policy. An
access control pohcy model would be used to describe the behavior of the system

as a whole. A subsystem or appUcation would be trusted to enforce the Clark-

Wilson poUcy, which would apply to defined subsets of the subjects and objects

B.4 - 1

in the system. Transactions, transaction processes (TPs), and constrained data

items (CDIs), as model constructs, would be built from the constructs of the

access control poUcy model where possible.

Work has begun on expressing the Clark-Wilson policy in an application

poUcy model, built on top of an access control pohcy model. If this approach

proves viable, it will provide an example of an application policy model in which

the policy to be enforced by a trusted subsystem is different from that of the

underlying operating system. It will serve as a basis for exploring how access

control mechanisms can be used to support the Clark-Wilson policy, and for

determining what types of additional mechanisms are needed.

B.4 - 2

On the Adequacy

of the

Clark-Wilson

Definition of Integrity

David A. Bonyun

November 1988

AIT Corporation

9 Auriga Drive

Nepean, Ontario

Canada K2E 7T89

B.5

I INTRODUCTION

This paper has been written as the result of two completely independent events:

(a) the movement towards the establishment of "security frameworks"

by an international standards group (IS0/IEC/JTC-1/SC21/WG1 ad hoc Security in

OSI); and

(b) the recent virus attack by a student.

What follows is a statement of concern that NIST work on integrity, ISO work on integrity

and the current concern over the obvious vulnerability of many systems to (presumably

unintentional) virus activity all be brought into a consistent view of the world.

There are, at the present time, two parallel approaches to the question of integrity. Roughly

speaking, these are:

(1) the Clark-Wilson model, first presented at Oakland in 1987 to the IEEE
Symposium on Computer Security and Privacy [1]; more recently this work has been

and the expansion was reported at Bakimore, October 1988;

(2) the Robert Courtney Strawman generated following 1987 WIPCIS.

Each of these activities has proposed a definition of integrity (or data integrity). Both

definitions have tried to focus on the notion of credibility (or expectations) of data; both

have decided to bypass the integrity of the system at large. Both definition are probably

acceptable to a limited degree, but neither indicates in any immediately recognizable way
how it may be used in practice to avoid breaches.

In a larger historical context, a purely methodological approach was proposed in the mid-

1970' s by Ken Biba [2]: he saw integrity as the dual of security with the corollary that

techniques used to ensure security (which means here the relative absence of vulnerability to

disclosure) might be modified slightly (or reversed because of duality) to ensure integrity

(here implying the relative absence of vulnerability to contamination).

What seems to be at stake is the question as to what one can say about integrity. Is it

enough to define the term? Or should something be said about how it can be breached,

what measures are applicable to stop certain breaches from occurring, and how to evaluate

such measures. The whole subject of integrity of computer systems is expected to be the

material in an ISO security framework document and part of the purpose of the present

paper is to indicate the kinds of things that are likely to be contained in this framework; the

goal is to ensure that NIST and the rest of the security world do not lose sight of the

advances in the area that are occurring in other arenas.

B.5 - 1

II THE WORD "INTEGRITY"

Some years ago I spent a number of weeks chasing the multiple common meanings (and

those in more technical and arcane contexts) of the word "risk". To this day there is little

unanimity in the definition of "risk" and how the ideas might be related to "threat" but the

task of determining its sundry usages was far from futile. Let us try to do the same for

"integrity".

The formal (Oxford) definition of "integrity" says, in part:

:
"wholeness; soundness; uprightness; honesty' (where "soundness" is "correct;

orthodox; logical, well-founded")

Webster's dictionary says, in part:

. , "moral soundness; wholeness; completeness, the quality of being unimpaired"

An interesting observation is that "integrity" is an abstract noun used to name an attribute of

some entity. The endties to which the attribute can be applied are of some interest and will

be discussed below. It is usual to have associated with such attribute names an adjective

that can be used directly and more simply; such an adjective does NOT exist in the use of

"integrity"; from the definitions above, "sound" might be taken as an approximation to the

desired adjective.

It is, perhaps, significant that this workshop deals specifically with "data integrity". Does
this mean that the only entity to which the attribute "integrity" ought to be applied while

remaining within the terms of reference of the workshop is data? If so, why invite members
of the computer security community at large? I submit that in order to provide any measure

of assurance that the integrity of data is preserved, the integrity of the system, as a whole,

must be considered. The recent virus attack will be used below to substandate this claim.

Two entides, then, have so far been identified as possibly possessing the attribute of

"integrity". These are data (sets) and systems. Clearly the word is used in everyday speech

to apply to individuals (implying "honest" or "trustworthy") and in more technical context to

a chain or sequence of links (possibly within the realm of communications) where it implies

"continuity" or "wholeness".

Of these varied uses of the word, those that deal with data, systems, and communications

are the most germane to the present paper. In the security framework docunient dealing

with integrity, a number of different "architectures" must be discussed; the principle contexts

are precisely operating systems, database systems, and communications systems.

What is apparent, however, are two points:

(1) the attribute, integrity, means different things in different contexts; and

(2) the different contextual meaning may depend on one another - they are not

B.5 - 2

independent or orthogonal.

If the meanings are neither identical nor independent, they must be related (not surprising

since they all belong to a single noun). But a single contextual definition can be misleading

and if it suffers from a lack of operational direction as to how to deal with deviations, then

perhaps no definition at all ought to be sought. Before offering an alternative plan of

action, I will use the virus incident to indicate the absence of independence among contexts

of integrity.

m THE VIRUS

The recent problem involved a program that had the capacity to replicate itself. That the

incident in question did not do this replication on top of exisdng datasets, but rather used

free space, makes it possible to argue that "data integrity" was not involved. A comment by

someone at Cornell, at the height of the drama, was to the effect that if the program had

had as little as two more lines of code it could have destroyed everything in sight. No one,

then, would have been able to say that it involved "simply" a breach of availability and not

of integrity.

If the system was violated without clear violation of any particular dataset, then we ought to

rejoice, rather than ignore the very real possibility of not being so fortunate next time. If

the system integrity has been breached, it is almost pure luck (and some intentional restraint

on the part of the originator of the virus) that data integrity has not also been breached.

Yet, the definition of data integrity, as proposed, says that data possesses integrity as long as

data meets the expectation of those who use it; indicates that the recent incident did not'

violate data integrity. At no time did the data change so as to fail to meet, in any

measurable way, except in terms of availability (is that in the definition?), the expectation of

its users. Those concemed with a narrow view of data integrity can breathe more easily

now, but they must not ignore the lessons to be learned. Until and unless system integrity

can be preserved, then data integrity is at risk.

B.5 - 3

IV ALTERNATIVE VIEWS OF INTEGRITY

The conclusion I drew above is that a narrow definition of integrity may have negative

value. What I propose instead is the operational approach to integrity that asks how local

conditions could change so as to threaten whatever notion of integrity is applicable in the

context or architecture being considered. The important aspect of this approach is its major

underlying assumption: the necessity of preserving the attribute called "integrity" for some
specific entities. The nature of the entities will affect the nature of the attribute. But the

various ways of removing or reducing the attribute can be studied without having to dwell

on these natures; this study can, in turn, lead to appropriate ways of stopping or containing

the potential breaches that come to light.

The ISO framework document on integrity will, for each of the three initial contexts (OS,

DBMS, Comms) try to deal with what is meant by a breach of integrity. Some examples

are:

OS a modification of one of the internal tables or registers or kernel memory
locations by an unauthorized person or by an unexpected method;

DBMS an entry or modification to a dataset that is inconsistent with other data related

semantically to it. (DBMS integrity is frequently called "internal consistency");

COMMS a message, broken into pieces by the sender, received at its destination

out of order or with missing parts.

I believe that every one of these examples, while constituting a breach of the applicable

contextual notion of integrity, falls beyond the definitions proposed by ClarkAVilson and

Courtney.

Once possible breaches to integrity have been listed as completely as human beings can

anticipate them, techniques for protecting the entities whose integrity attributes are worthy of

preserving can be proposed. This is, of course, classical risk assessment and management,

applied to integrity. Nevertheless, the waiting for incidents to occur, without anticipatory

steps leading to the offsetting of such incidents, is wholly futile even if the time is spent

defining what is meant by "integrity".

In their paper at Baltimore, Clark and Wilson provided some details that enhance their

original paper; these details do, in my opinion, move in the right direction. These details

are concerned primarily with the database context and, one suspects with databases of

accounting figures. Nevertheless, they mention:

(a) prevention of changes (i.e. modifications) to data if the existing material is

consistent and faithful to the world it represents;

(b) attribution of change (logging for subsequent auditing) when changes have to

be made (see [4]);

B.5 - 4

(c) constraint of change - the use of well-defined and restricted methods solely as

the vehicle of modification; and

(d) partition of change to require more than one actor in the scenario of

modification.

While these are all techniques for inhibiting certain kinds of misadventure, they are,

it seems to me, carts placed before horses. None of these is capable of holding back a run-

away virus. And as all cost something to implement, install and maintain, none is justified

by indicating how much of the problem it contains compared with its cost.

Implied by my criticism is the idea that various incidents have different costs associated

with them. If I were to imagine the most malicious form of contamination attack, it would

be one that was very sporadic and as undetectable as possible - a simple slipped bit from

time to time creeping into a datastructure. The detection of the source and the clearing of

all contamination would be very different and expensive (indeed, more expensive than

restoring fully destroyed data, assuming that backups exist). Evaluation of the effects of

various hypothesized incidents can be horrifying, but they can also be used to justify the

cost of (at least partially) effective safeguards or countermeasures.

Current research [5] in the realm of risk management involves the use of expert systems to

assist in gauging the changes to the risk environment that result from changes to the internal

environment (those entities whose integrity and other security-relevant attributes are to be

preserved) or to the external environment (those entities that are able to impact internal

entities in ways that cause a diminution of the desirable attribute). The determination of

changes to the risk environment can now be undertaken without, as before, the request for

many committee man-hours of labour. Moreover, the variety of attributes that might be

attributed to any internal entity does not include one call "integrity". Breaches to integrity

of various entities are defined as events in the risk environment and are evaluated

immediately as conditions change in either of the internal of external environments.

To us, this approach is practical and operationally effective. It may lack the nicety of a

formal definition if "integrity"; or altematively, it may possess the quality of permitting

different definitions to apply as appropriate to different kinds of entities that may be said to

possess integrity.

B.5 - 5

V INTEGRITY IN ISO STANDARDS

The framework document mentioned above is aimed at a discussion of issues and concepts

within the realm of integrity. These certainly include applicable threats (i.e. ways that

breaches to integrity can be realized). In all the framework documents a number of items

(besides applicable threats) will be found, and one of these is a discussion of how the

particular architecture (or context) provides special considerations in the area of framework.

In particular, in the integrity framework, the different perspectives of integrity applicable to

mainframes and their operating systems, database systems, and communications systems are

examined. The examples in the previous sections of this paper are typical.

There is, as has been noted, some dependency noted between the various contextual concerns

for integrity. In a similar vein, there are relationships between the various topics covered by
the frameworks. The most major gf these relationships occurs between confidentiality and

integrity. This relationship is NOT one of duality (as indicated by Ken Biba og cit), but

instead indicates that if encipherment is used to achieve confidentiality (for example in

communications) then the integrity of the message is also guaranteed.

Various techniques may be used to achieve integrity in different contexts. The enumeration

of these techniques is part of the framework; details are considered to be too numerous and

are off-loaded to specific technique- specific documents.

A significant part of a framework document is the enumeration of those gaps in our

knowledge that require further research to fill. Given an expected (and usual) collection of

subheadings for sections of the framework, it quickly becomes apparent where either (a)

insufficient information is available, or (b) too many details essential so as to make separate

specific papers desirable.

Attached as Annex A is the proposed outline (i.e. section headers) for the integrity

framework.

B.5 - 6

VI CONCLUSIONS

This paper has attempted two things:

(1) to indicate the inadequacy of the restricted point of view of data integrity

especially when viruses are considered; and

(2) to provide a summary of work in another standards arena (ISO) also dealing

with integrity.

The appeals made in the paper are threefold:

(1) widen your perspective to consider integrity as a much more comprehensive

area of concern;

(2) use a risk management approach rather than an analytic one so that potential

breaches to integrity can be identified and possible safeguards be implemented; and

(3) keep track of other activity in the realm of integrity - the integrity framework

is just one of the other efforts that should be kept in mind.

B.5 - 7

BIBLIOGRAPHY

[1] Biba, Ken; Integrity Considerations for Secure Computer Systems, ESD-TR-76-372,
USAF Electric Systems Division, July 1975.

[2] ClarkAVilson (IEEE Oakland 87)

[3] Bonyun, David A.; Towards a Standard All Purpose Activity Log, TP-4117-80-1A,

LP. Sharp Associates Limited, February 1980

[4] Bonyun, David A.; A New Look at Integrity Policy for Database Management
Systems, LP. Sharp Associates Limited, May 1986.

[5] Bonyun, David A., Jones, Graeme; Expert Systems Approach to the Modelling of

Risks in Dynamic Environments, AIT Corporation, November 1988.

B.5 - 8

ANNEX A

Proposed Outline for Framework Document in Integrity

(for IS0/IEC/JTC-l/SC21AVGl/ad hoc Security in Open Systems)

1. Introduction

2. Scope and Field of Application

3. Reference

4. Definition

5. Notation

6. General Model of Integrity

6.1 Introduction and Historical Note

6.2 Potendal Threats to Integrity

6.3 Policy Issues

6.4 Alternative Integrity Mechanisms

7. Management of Integrity

8. Architectural Issues

8.1 Integrity in a Single Open System

8.2 Integrity in Communications Systems

(especially, but not limited to, OSI)

8.3 Database Integrity

B.5 - 9

ACHffiVING INTEGRITY IN AUTOMATED SYSTEMS

BY

NANDER BROWN

U.S. SMALL BUSINESS ADMINISTRATION

COMPUTER SECURITY PROGRAM MANAGER

B.6

ACHffiVING INTEGRITY IN AUTOMATED SYSTEMS

INTERNAL CONTROLS AND INTEGRITY

Management and providers of computer services should be held to a high standard of care,

subject to liability in tort. This common law duty prescribes that providers of computer

services should exercise reasonable care in the processing and use of information furnished

by a computer before relying on such data [IJ. This duty becomes particularly important

when reports required by federal laws include data acquired from or processed by automated

systems. Equally important are data which may have a direct impact on the life or

livelihood of an individual.

Various provisions of the Security Act of 1933 (the 1933 Act) and the Securides Exchange
Act of 1934 (the 1934 Act) impose liability for making false or misleading statements of a

material fact or for failing to state a material fact. These provisions create a duty on the

part of reporting companies to file accurate reports and to maintain accurate records. The
Foreign Corrupt Practices Act of 1977 (FCPA) codified this duty to maintain accurate

records [2].

Intemal auditors and accountants place significant reliance on the system of internal control

to provide assurance of the accuracy and reliability of data. The objectives of intemal

control are to provide management with reasonable, but not absolute, assurance that financial

and other resources are safeguarded from unauthorized use or disposition; transacdons are

executed in accordance with authorizations; financial and statistical records and reports are

reliable; applicable laws, regulations and policies are adhered to; and resources are efficiendy

and effectively managed.

Intemal controls should ensure that data produced by a computer are accurate and reliable.

This implies that restrictions should be placed on those who have access to computer records

and on those who have the authority to enter or alter data in the computer. "Audit trails"

should also be used to create documentary evidence of transactions and of who made a

particular data entry. In the context of software, intemal control is all the formal

mechanisms used to ensure the correctness of computer processing and the compliance with

management authorizations and standards.

Integrity is just one aspect of internal control that should be addressed by the system of

intemal controls employed by an organization. Integrity is implemented through the judicious

application of intemal control standards: (1) general controls; (2) application controls; (3)

system control objectives; (4) transaction specific controls; and computer security.

Application controls prescribe generic control requirements, whereas transaction controls

implement application control requirements through specific practices employed by system

owners. See figures 1 and 2 for an illustration of the structure of intemal controls.

B.6 - 1

INTERNAL CONTROLS STRUCTURE

ADMINISTRATIVE CONTROLS

Policies and procedures - Supervision
Responsibilities assigned - Employee training
Separation of duties - Supportive attitudes

ACCOUNTING CONTROLS

TRANSACTION PROCESSING
CONTROLS (MA>r:XL)

GENERAL CONTROLS APPLICATION CONTROLS

ADP

SECURITY

I

I

-APPL #1
-APPL #2
-APPL #3
APPL #4
-APPL #5

I

TYPICAL APPLICATIONS:

APPL #1 - Loan Accounting/Collection and Debt Collection System
APPL #2 Personnel Management System
APPL #3 » Financial Information System
APPL #4 - Administrative Accounting System
APPL #5 - Automated Payroll System and Time and Attendance System

Figure 1. Internal Controls Structure.

B.6 - 2

ADP CONTROLS STRUCTURE

TRANSACTION
PROCESSING
CONTROLS

FINANCIAL PLANNING
- Goals and objectives
- Long range plans
- Short range plans
- Management plan

GENERAL CONTROLS

- EDP Organization
- Physical Security
- Computer Operations
- Systems Development
- Software Maintenance
- Systems Software
- Data Communications
- Internal Audit

APPLICATION
CONTROLS

SYSTEMS DEVELOPMENT
- Cost/Benefit •

- User Involvement
- Testing
- Documentation
- User Training

TRANSACTION
SPECIFIC

(User Oriented)

SYSTEMS CONTROLS OBJECTIVES

- Segregation of function
- Authorized processing

of transactions
- Accurate & timely reports
- Comparison of recorded

data with its population
- Authorized access to data

Protection of data

APPLICATION SPECIFIC
- Input
- Output
- Processing
- Manual

A. Supervisor reviews form 1166.

B. Error report is corrected,
verified, and resubmitted.

C. Sequence check is made on
loan numbers.

D. Edit checks are made at data
entry (name, date, amount, etc)

.

a. Audit trails
b. Backup and recovery
c. Data validation & error handling
d. Controls over input data
e. Controls over output data
f. Confidentiality of data
g. User/operating procedures
h. Authorized access to data
i. Segregation of duties
j . Systems administration

Figure 2. ADP CONTROL STRUCTURE

B.6 - 3

INTEGRITY DEFINED

Integrity is essentially a descriptive, qualitative assessment of the exactness, purity, and
authenticity of a subject. Webster defines integrity as:

"(1) an unimpaired condition - SOUNDNESS; (2) firm adherence to a code

(especially moral or artistic values) - INCORRUPTIBILITY; (3) the quality or the

state of being complete or undivided- COMPLETENESS".

In reference to data, integrity can takes on a litany of meanings:

- Data that is processed or maintained on a storage medium is a true

representation of the source subject.

- Data is complete and without fault.

- Processed data is accurate, correct, and valid. Automated procedures produce

accurate and correct results on valid data items.

- Authorization policies are applied consistently, and reliable results are produced.

- Authorization policies and automated procedures are consistently applied across a

broad spectrum for an extended period.

- Processed results are accepted without question.

FIPS Publication 73 defines data integrity as: The state that exists when computerized data is

the same as that in the source documents or has been correctly computed from source data

and has not been exposed to accidental or malicious alteration or destruction. Erroneous

source data and fictitious additions to the data are also considered violations of data integrity

[3].

Using the foregoing definitions as input, a definition of system integrity can be stated as

follow:

"Integrity is the appropriate balance and application of computer security, internal

controls, and system comphance in order to achieve data and system requirements

in support of the goals and objecdves of the system"

In the broad sense, integrity may be defined as a requirement for wholeness or completeness.

A system can be said to have integrity if it performs according to its specifications.... and

does no more or no less. These specifications must state how the system will ensure that its

components are functioning properly, and what malfuncdons can occur. System integrity is

achieved through the combined integrity of its components. In theory, this kind of integrity

can be demonstrated logically by inspection or testing. The more complex the system,

however, the more difficult it is to achieve system integrity.

B.6 - 4

INTEGRITY CONCERNS

The problem of integrity is the problem of ensuring that data is accurate. There is a problem

in guarding the data against errors caused by the data capturing process and the data update

process. Internal control techniques are incorporated to protect the data from errors in data

entry, mistakes by the computer operator, and incorrect processing by application software.

Security techniques are employed to protect data from deliberate manipulation and

inadvertent software errors and system failures.

Data integrity concerns can be summarized in the following categories:

- Unauthorized disclosure,

- Deliberate errors,

- Unintentional errors,

- Errors of omission,

- Misrepresentation of facts, and

- Unauthorized destruction.

System integrity concerns include the broad spectrum of potential problems that can occur in

an automated environment. Some concerns are general in nature, and some are related to

specific system functions and the mission/purpose of the system. Major concems include:

- Potential for fraud,

- Potential for law suits,

- Legal violations and non compliance with mandated statutes,

- Inefficient reporting to management,

- Improper authorization, and

- Improper financial decisions.

B.6 - 5

INFORMATION INTEGRITY AREAS

There are four basic areas in the automated information environment which must be

addressed when discussing integrity as a subject of automated systems:

- Data Integrity

- Processing Integrity

- Software Integrity

- System Integrity

Data Integrity

Data has integrity if it exists within defined limits of reliability, and is accurate, consistent,

authorized, valid, complete, unambiguous, and processed promptly and according to

specifications. Data integrity is achieved through data control measures that ensure correct

performance of program functions and error prevention. In addition, these controls ensure

that all required data is processed only legitimate data is processed, and no data is distorted

or lost.

Data is normally controlled in systems through various programmed data validation

procedures, which involve the examination of computerized data to determine if it is

accurate, complete, unambiguous, and reasonable.

Errors should be detected and corrected, if necessary, as soon as possible to prevent the

propagation of invalid data through the data base. Because the error correction process is

quite likely to introduce further errors, data vaUdation methods should be applied thoroughly

during the correction process.

In a data base environment, the quality of data is a critical factor. Because data might be

recorded only once and thereafter serve as the input for subsequent processing, a high level

of quaUty must be maintained for all elements within the DBMS.

The data base has integrity if the existence, quality, and privacy of recorded data is

protected. The data base must be protected from hardware, system software, and application

failure as well as from data and user errors.

Processing Integrity

Processing integrity is a necessary component of data integrity. It includes automated

procedures and specifications that ensure data are processed in accordance with rules that are

documented and approved by users and management.

Processing integrity must be maintained throughout the life of the system. Only users and

managers should request changes, and they should have final approval and acceptance before

the change is implemented. Auditors should periodically verify that rules are being applied

as specified.

B.6 - 6

Software Integrity

Software integrity is more than program correctness; it requires a program to be correct,

robust, and trustworthy. A correct program satisfies its mission, requirements, and

specifications. A robust program includes mechanisms for maintaining adequate performance

levels during unexpected behavior in the environment. A trustworthy program is well

documented, not functionally complex, modular, relatively short, integrated into a rigorous

structured architecture, and produced as a result of good programming practices and sensible

standards.

Software procedures and information critical to security and integrity should be well

identified so it can be more easily audited and protected.

A program should explicitly identify all data elements it accesses, whether they provide data

for application purposes or are read to enable the program to cross an access path. The
program should not make assumptions about the number of instances of a record type or

about the presence or absence of record types.

System Integrity

System integrity is the ability of the system to operate according to specifications even in

the face of deliberate attempts to make it behave differently [4]. It includes the combined

integrity of all its components (See system integrity model in Figure 3) System integrity also

includes the properties of a system and management direction that permit effective

development and authorized use; and normally requires a design methodology, structured

development, and operational procedures. These requirements include the:

- Use of programming standards,

- Use of documentation standards,

- Use of Software quality control concepts and procedures,

- Preparation and execution of an acceptable test plan,

- Achievement of acceptable test results,

- Availability of user level and program level documentation, and

- Availability of required data and system backup procedures.

In order to ensure system integrity, a secure operating system and system software

environment is absolutely necessary. This also includes the availability of a secure

communications environment. At a minimum, the operating system must:

- Protect data in memory,
- Protect system software resources from unauthorized access, and

- Perform correct physical input and output processes.

IMPLEMENTING SYSTEMS INTEGRITY

B.6 - 7

Systems are processing networks that interface with different functions of the organization at

various times. Some functions of the organization interface with different parts of the

system more frequently that other organizational functions. These networks are abstract as

veil as physical, and may be quite complex. These complex systems interface and interact

with other systems within and outside of an organization. System integrity is achieved

through the combined integrity features of its components. Thus each subsystem, each

interfaced system, and processing network must have appropriate and effective integrity

components.

Top management support and directions are necessary to ensure that systems integrity

assurance objectives are implemented and effective throughout the life of the system.

Implementing integrity in information systems requires a balance in the application of

computer security, internal controls, and system compliance requirements. Internal control

has been discussed. Brief definitions for computer security and compliance requirements are

as follows:

"Computer security is the protection of automated information against accidental or

intentional disclosure, modification, or destruction. It also includes the protection of

physical facilities and other computing resources. Three general threats areas are

computer processing, natural disasters and personnel".

"System compliance requirement includes mandated Federal and state laws and

regulations; organizational policies and procedures; and industry standards that must

be met. It also includes special and unique control objectives that must be

implemented to protect a given system from unique risks".

Some of the components required to implement systems integrity are illustrated in the matrix

listed on the next page.

B.6 - 8

The matrix below defines some specific techniques for implementing compliance, internal

control, and security in automated applications. These techniques are cross referenced to

appropriate integrity areas.

INTEGRITY IMPLEMENTATION MATRIX

Compliance, Internal Control, Data Processing Software

and Security (C,I,S) Techniques Integrity Integrity Integrity

A. Physical security [S] X X X

B. Separation of duties [I] - XX
C. Required system [C] X X X

functions

D. Governing regulation [C] X XX
E. Standards and [C,I,S] - X X

procedures

F. Control totals [I] X - -

G. Audit trails [I,S] XXX
H. Data Validation [1] X - -

I. Error correction [I,S] X - -

detection

J. Run-to-run totals [I] X - -

K. Access control [S] X

L. Password administration [S] X

M. System testing [C,I,S] X X X

N. Data backup procedures [S] X - -

0. System contingency plans [S] - XX
B.6 - 9

Illustrated below are several application risk areas and various potential adverse conditions

that may occur. Risk items are cross referenced to specific control techniques from the

matrix above.

POTENTIAL RISKS TO SYSTEMS SECURITY AND INTEGRITY

APPLICATION RISK AREAS CONTROL TECHNIQUE REFERENCE*

1. ERRONEOUS OR FALSIFIED DATA INPUT

- Unreasonable data [F,H,I]

- Fraudulent data [B,G,J]

- Inaccurate input of source data [H,I]

- No correction of error transaction [B,I]

2. MISUSE BY AUTHORIZED END USER

- Improper distribution of reports [E,G]

- Management override of application controls [E,G]

- Conversion of information [H,B]

- Destruction of data [E,K,D]

3. UNCONTROLLED SYSTEM ACCESS

- Theft of data or programs [A,B,N,0]
- Compromise of passwords [L,E,G,D]

- No immediate denial of access do to termination [L]

4. INEFFECTIVE SECURITY PRACTICES FOR THE APPLICATION

- Poorly defined criteria for Access [C]

- Careless handling of sensitive data [E]

- Security reports not used [E,L]

- Training with production data [B,E]

5. PROCEDURAL ERRORS WITHIN THE COMPUTER FACILITY

- Data destroyed during disk reorganization [E]

- Operator modification of data [E]

- Operator sabotage of computer [E]

- Wrong version of program used [E]

- Wrong file processed [E]

- Operators do not use safety controls [E]

- Critical tape files not write protected [E]

- Mislabeled media erase [E]

- Tape management inventory inaccurate [E]

* See compliance, Internal Controls techniques A - O on page lo.

B.6 - 10

POTENTIAL RISKS TO SYSTEMS SECURITY AND INTEGRITY

APPLICATION RISK AREAS CONTROL TECHNIQUE REFERENCE

6. APPLICATION SOFTWARE PROBLEMS

- Inadequate program testing

- Inadequate system testing

- User not involved in systems test

- Testing with production data without security

- Inadequate program change controls

- Inadequate application contingency plans

7. OPERATING SYSTEM FLAWS

- Same file processed by two jobs

- System crash exposes valuable information

- System crash recovery does not require

new access and authentication

- User able to get into supervisory mode

8. COMMUNICATION SYSTEM FAILURES

- Undetected communication errors result in

data errors

- Information transmitted to wrong terminal

- No positive identification of sender and

receiver

CONCLUSION

In the context of systems and software, integrity has many meanings. However, one meaning
that is widely accepted that systems integrity implies quality of information, reliability of

service, and confidence in a system"s performance. It is also widely accepted that most

systems fall short in meeting these requirements.

This paper has discussed integrity from a generic viewpoint. The result is a better

understanding of the many facets of integrity as related to automated systems. One aspect

of integrity that is important to remember is that it is a merger of 3 disciplines: internal

control, computer security, and functional user requirements. Finally, a model which blended

these key elements was presented as an approach to achieving systems integrity. The

Appropriate balance in the application of these elements is an overriding system design

consideration. It is also important to consider the dynamics and volatility of the system's

operating environment.

[E,M

[E,M
[E,M
[E,M
[E,G

[C,N,0

[E,J

[B

[I,K,L

[K

[F,I

[I

[L

B.6 - 11

REFERENCES

1. Computer Crime - Computer Security Techniques, U. S. Department

Of Justice, Bureau of Justice statistics, p. II.

2. Ibid.

3. FIPS Pub 73, Guidelines for security of Computer Application, Department of Commerce,
National Bureau Of standards, June 1980.

4. Davida, G. I., "Privacy, security and Database". DATA BASE SECURITY AND
INTEGRITY, Intemational Business Machine, 1985, Addison-Wesley Publishing Company,
NY.

B.6 - 12

OTHER INFORMAL COMMENTS ABOUT INTEGRITY
AND THE INTEGRITY WORKSHOP

Thomas M Chen
Wang Laboratories, Inc.

INTRODUCTION

The Orange Book's emphasis on preventing unauthorized release of information
has forced integrity to receive less attention. While Biba [BIBA77],
Boebert-Kane [BOEB85], and most recently Clark-Wilson [CLARK87] have published
significant papers, the Department of Defense has yet to embrace integrity
policy or controls with the same fervor as lattice models for the prevention of
unauthorized release.

Clearly, we need to begin to focus more attention on integrity, and Bob
Courtney indicates that an initial task in laying a solid foundation for the

upcoming Integrity Workshop is to establish a suitable definition for integrity
CCOURT88]. Following this sage guidance I went home and tried to come up with
a workable set of definitions. Since integrity comes in "different flavors"
CPORT85], a proliferation of definitions is somewhat unavoidable. After a

period of linguistic wheel spinning, frustration drove me to succumb to the
basic principle, "Keep it simple. Stupid" (an approach necessary for those of
us willing to admit to our limitations).

While Courtney and Ware's proposed "a priori expectation" integrity definition
Is a useful concept, it is too broad a definition to assist in identifying
system integrity controls. Nevertheless, no matter what definition is

eventually assigned to integrity, there exists a set of controls that should
receive more attention. If achieving "the earliest practical applicability of
the work being done" is Indeed a goal of the Workshop, we should avoid a

prolonged and futile debate over a definition for integrity.

The bottom line is to identify new integrity controls that will make a system
more secure. Taking a simple-minded approach to confine the problem to a

manageable exercise, I attempted to Identify Integrity controls which the

Orange Book may not already be requiring vendors to build into their systems.

Without getting hung up over integrity definitions, I considered the following:

THE INTEGRITY WISH LIST .

Ability to Prevent Unauthorized Modification

Preventing unauthorized modification of data is an obvious choice for the list

and should fall under any integrity definition (Including "a priori

B.7 - 1

expectation"). The security community has already developed policy and
mechanisms for preventing unauthorized release, and enforcement of Biba's
integrity model [BIBA77] addresses unauthorized modification with a

well-understood, natural extension of existing mechanisms for protecting data
secrecy. The Integrity Workshop's efforts might be better spent elsewhere.

Ability to Know that an Object is Actually from the Alleged Source

Being able to confirm an object's alleged origin also fits the a priori
expectation definition and appears to be a universally desirable integrity
property. However, encryption, digital signatures, and trusted path techniques
are well-understood solutions. The Integrity Workshop should address an issue
in more need of its attention.

Ability to Verify that the System is Behaving Correctly

An a priori expectation is for a system to behave as advertised, and represents
a desirable integrity property. While it is true that formal verification
techniques are not universally understood, the complexities of predicate
calculus (Keep it simple) and a paper by DeMiUo, Lipton, and Perils [DEMIL79]
suggest that the Integrity Workshop should not concentrate on theorem provers
and verification tools.

Separation of Duties/Least Privilege

Clark and Wilson [CLARK87] have highlighted the desirability of "triples" and

separation of duties. Developing mechanisms to enforce these principles is

certainly in keeping with preserving a priori expectations. While It is

unlikely that one specific integrity policy can apply to all situations,
particularly at the application-level; the ability to isolate and protect
subsystems to encourage separation of duties and the enforcement of the

principle of least privilege appears to be a universally desirable principle in

need of more attention.

Lee [LEE88] and Shockley [SHOCK88] have described how to enforce the

ClarK-Wilson policy using Biba categories. Since systems are currently
available that support the Biba model, such approaches are both worthwhile and

practical. Nevertheless, it is not clear that the Biba integrity model

[BIBA77] was ever intended to cover least privilege and separation of duties.

Boebert and Kain [BOEB85] claim that a system using hierarchical integrity
compartments to achieve separation of duties "either fails to enforce the

desired restrictions or requires an exception from the policy at each step".

Their "assured pipelines" and type managers appear to provide a cleaner mapping
to Clark & Wilson. In addition to separate domains for creating and isolating
trusted subsystems and for enforcing separation of duties, Boebert and Kain

included an underlying mechanism for passing data between the domains without
violating the kernel's integrity policy.

B.7 - 2

At the first Integrity Workshop, Boebert demonstrated that assured pipelines
and type managers provide a straight forward enforcement of separation of
duties as well as other security functionality. For example, type managers
could also be used to support enforcement of the Bel 1-LaPadula model [BELL75].

WORKSHOP RECOMMENDATION

The community has already developed mechanisms and implementations to control
write access and to determine if an object is from its alleged source. Formal

verification is an art in itself, and is best left to those with "unique"
skills and motivations. In order to avoid either treading old ground or

getting over extended, the Integrity Workshop could focus on least privilege
controls and separation of duties.

Such an approach should include a study of appropriate operating system
mechanisms. In fact, one could argue that integrity and disclosure protection
might distill down to providing appropriate auditing and isolated protection
domains (e.g., triples) with a means of controlling information flow between
the domains. Such a mechanism would be sufficiently generic to address both

disclosure and integrity, whatever their definitions or policies.

Not getting locked into specific policies avoids forcing applications to

conform to security policies that don't quite fit the security needs of their

real world environments. Concentrating on mechanisms for separation of duties

and least privilege controls could avoid a prolonged debate over terminology
and enhance the probability of "the earliest practical applicability" of the

Integrity Workshop's efforts.

B.7 - 3

REFERENCES

BELL75 D.E. Bell and L.J. LaPadula, "Computer Securi ty Model

:

Unified Exposition and Multics Interpretation",
ESD-TR-75-306, USAF Electronic Systems Div., Bedford, MA,

June 1975.

BIBA77 K.J. Biba, "Integrity Considerations for Secure Computer
Systems", USAF Electronic Systems Div., Bedford, MA,

ESD-TR-76-372, April 1977.

BOEB85 W.E. Boebert and R.Y. Kain, "A Practical Alternative to
Hierarchical Integrity Policies", Proc. 8th National Computer
Security Conference, October 1985.

CLARK87 D.D. Clark and D.R. Wilson, "A Comparison of Commercial and
Military Computer Security Policies", Proceedings of the 1987
IEEE Symposium on Security and Privacy, April 1987.

C0URT88 R.H. Courtney, Jr., "Some Informal Comments About Integrity
and the Integrity Workshop", 1988.

DEMIL79 R.A. DeMillo, R.J.Lipton, and A.J. Perils, "Social Processes
and Proofs of Theorems and Programs", Communications of the

ACM, May 1979.

LEE88 T.M.P. Lee, "Using Mandatory Integrity to Enforce Commercial
Security", Proceedings of the 1988 IEEE Symposium on Security
and Privacy, April 1988.

PORT85 S. Porter and T.S. Arnold, "On the Integrity Problem", Proc.

8th National Computer Security Conference, October 1985.

SH0CK88 W.R. Shockley, "Implementing the Clark/Wilson Integrity
Policy Using Current Technology", Uth National Computer
Security Conference, October 1988.

B.7 - 4

Security Protection Based on Mission Critical ity

Howard L. Johnson

Information Intelliegence Sciences, Inc.

ABSTRACT

This paper reviews developments and reaches several conclusions:

o Assurance of service can be achieved as part of the

design, thereby making availabihty in the presence of malicious

threat an integrity problem

o There are two approaches to simultaneously deal with both

sensitivity and criticality policies: a restrictive combined data flow

policy or a strategy that uses isolation techniques (e.g.,

encryption)

o Criticality attacks almost always allow a detection and

recovery strategy, which can exploit encoding and is less

expensive than a resistance strategy (like sensitivity protection)

o A DoD security objective and accompanying policy should

be based on assuring accomplishment of Nationally critical

missions dealing with loss of integrity and denial of service

threats

o When one considers a "Criticality Orange Book" it is

found that a large part of the Orange Book criteria is equally

applicable to Criticality

o Future criteria should be built independent of specific

security models to the extent possible

o Sensitivity and criticality issues are present in both DoD
commercial security.

Mr. Johnson's position paper, "Security Protection Based on Mission Criticality", appears in

the Fourth Aerospace Computer Security Applications Conference . The paper is copywritten

by the Institute of Electrical and Electronics Engineers.

B.8 - 1

Stewart Kowalski

The purpose of this letter is to outline briefly the work we are doing on Data Integrity at

Stockholm University.

Our research project is called "Project for System Integrity and Information Security" and is

funded in part by the Swedish Department of Defense. The project came into existence on

the first of October this year. There are five individuals involved in the project on a part

time basis. Two individuals, including myself, are representatives from industry. One
individual is from the Swedish Data Inspection Board and the remaining two individuals are

University staff members.

Our prime mandate is to examine different system security models being used in North

America and Europe and to synthesize and to develop models that would be appropriate for

the Swedish society.

In February of 1988 we will be holding a conference to present our preliminary findings and

recommendations. It would be beneficial to the project if one of the members was allowed

to attend the workshop.

As you are well aware, the modelling of secure systems is not an easy task and much of the

first two months of the work in the project has been involved with basic discussion of

system security. The remainder of this letter is a quick synopsis of the results of these

discussions.

What is in a Name?
System Integrity and Information Security

I believe that the selection of the title for the project can give some insight into the goals of

the project.

System Integrity

The project focuses on System Integrity and not "data integrity". In our preliminary

discussions on the issue it was clear to us that "integrity" is a system or meta concept

Data can only be correct or incorrect. By using the term "integrity" with data, one can run

the risk of missing the forest for the trees.

Information Security

Our project found it necessary that a strong distinction be made between data and

information. As to what this distinction is we are still heavily debating the issue but one of

the dominant notions is that information is a verb and data is a noun. To quote on of your

famous philosophers Buckmaster Fuller "I seems to be a verb".

The commonly used expression here is that information is data which changes you. Thus

there is always a strong coupling between information and action. If there is no action there

is no information.

B.9 - 1

These ideas are closely coupled to the Norbets Weiner concept of entropy and thus

information is negative entropy. Information security can only be maintained in a system if

there is some input into the system that stops the system's natural tendency to entropy.

Of the system models we are examining the one that seems to deal the best with the

problem of system entropy (i.e. information security) is the viable system model.

Two of the project participants are working with the viable system model designed by
Stafford Beer. Techniques are being developed to perform System Viability Audits. The
viability system audit basic claim is that in order for a system to be viable (secure) it must
contain five basic subsystems

1) subsystem one is the set of operational elements

2) subsystem two is dedicated to preventing the different operational elements from

affecting each other

3) subsystem three maintains internal homeostasis, ensures that the operational units are in

fact producing what they are supposed to be producing. (This is a subsystem which is

similar to the Clark Wilson IVP.)

4) subsystem four is dedicated to provide a focus of the system's self knowledge.

5) subsystem five's main function is the managing of the tensions between subsystems

three and four.

I realize that the above is not as self-explanatory as I would like and it is difficult to image

how this model can be used to solve the problem of system integrity but preliminary work
in applying this model to a PC security system has shown some promise.

The Projects Practical Approach

We are afraid that the approach outline above is a bit too avant garde for immediate

application and in order to deal with Sweden's immediate security problem the existing

security models such as Bell LaPadula and Clark Wilson should be synthesized and

presented in what we refer to as a "user-friendly-handbook".

The goal of this handbook would not be to specify system integrity as an abstract model but

rather to give the end user the tools needed to prove/demonstrate to themselves and to others

that they have system integrity. We see a common risk/control analysis approach as an

important tool.

The above was a very brief snapshot of the past two months discussions. After the

conference in February we shall be able to provide a clearer notion of system integrity and

information security.

Stewart Kowalski

Researcher

University of Stockholm

Project for System Integrity and Information Security

B.9 - 2

Karl Krueger c/ -World Bank Group
Room H2-062
Washington DC 20A33

INVITATIONAL WORKSHOP ON
DATA INTEGRITY

Position Statement on Data Integrity Issues

From my perspective as the Chief Information Security Officer in a

decentralized IS environment of a medium-size, knowledge-based enterprise,
I perceive the following Issues as important in my information environment:

Continued Integrity of Validated Data over Time
Data can be relatively easily validated at input time against
reference information then in force. How do we maintain the
validity of the data while the reference information is changing?
The data integrity relative to changing validation reference
information may be critically affected, or may not be affected at

all, or some intermediate level of concern may apply.

Integrity after Restart
In a distributed environment, the same common reference data is

used by several processing nodes at the same time. How do you
update the Information "in phase"? How do you restart the
environment after the failure of one or several nodes, so that
what has since been updated in another node is first loaded up
before resuming processing?

User Awareness of Status of Integrity
How do you share system knowledge about the timeliness, validation
and other data qualities with its users, keeping in mind the need
to prioritize what you feed them to avoid Information overload?
This issue refers to both fairly static information at system
design level, and to dynamically changing operational information.

Data Integrity Groundrules for all Information Workers
Should the professionals concerned with data integrity prepare a

statement of "Data Integrity Groundrules" that can be easily
explained, learned and followed by professional and amateur system
developers and users. Spreadsheets and their potential for user

errors have brought to the attention of auditors the need to

follow basic rules to ensure a minimum of integrity in any systems

development that needs more than a quarto size sheet to print out!

I am sure we will discuss Issues like the Security dimension of data

integrity and other issues of the Data Integrity field.

KHKrueg«r:

Mll.IFIP.NISTPos

Orlginil dated 1/18/89

Minor revisions 3/15/89

B.IO - 1

ISSUES IN DATA INTEGRITY
Jan Kruys, NCR

1. The scope of Data Integrity

Is this limited to information held within a system or does it also cover interactions

(transactions between systems? Does it include both intra- and inter- organizational

interactions?

2. The definition of integrity domains, the exercise and delegation of authority within

such domains, interchange between domains under different authorities.

Confidentiality controls are relatively straightforward: they are intended to keep

information secret and cooperation between different authorities to effect a common
high level poUcy is feasible.

With integrity things may be more complicated since the interests of domain
owners/authorities need not be identical or even complementary.

3. A clarification of the relationship between data integrity [rules] and access control

data flow control.

Conventional and widely held interpretations of access control focus on

confidentiality, not integrity. The simple view that integrity is just the complement

of confidentiaUty has been shown to be untrue and therefore there is reason to

assume that access control needs a new interpretation in terms of integrity. The
ClarkAVilson approach is one step in that direction.

4. A clarification of the relationship between integrity oriented controls and the

security levels spelled out in the 'Criteria'.

It has been suggested that a ClarkAVilson type policy could be implemented on the

basis of e.g. a B level system. This view seems to be overly optimistic in that the

B level Criteria imply the enforcement of a mandatory confidentiality pohcy. This

may not leave much room for implementing an integrity policy.

In addition to this technical relationship there is the political relationship: given the

status of the Criteria it may prove difficult to establish a parallel standard for

integrity oriented controls. The ownership of such a standard needs to be resolved.

B.ll - 1

I;;
'

!fi'„

I; :

-.1

Position Statement

WIPCIS II

Theodore M.P. Lee
Trusted Information Systems, Inc.

MiNNETONKA, Mn.
9 January 1989

Demurral

This is being written consciously not having re-read the proceedings of
the first conference, not having really read Bob Courtney's position paper
(although I had heard his impromptu discourse upon it at the last Nat'l
Computer Security Conference and did skim the paper enough to decide to forgo
reading it until after I had written this), nor having any time in recent
memory read any of the fundamental works in the field such as Biba's report.
In short, I wanted all my biases to be mine and to reflect what I have truly
assimilated about the issues, not just that which was most recently brought to
my attention.

On Terminology

Having said that, I do however want to briefly add more confusion to the
argument over what the term "integrity" means. (I did see both Bob and
Willis Ware expounding at length -- and probably deservedly so -- on the
problem of inventing new words etc.; I suspect I will agree with many aspects
of their arguments once I have studied them, and probably did when I first

printed Willis in the CSF, since I also have from time to time complained
about sloppy language in our business, but for the moment I will not really

enter the fray.) Bob's definition of integrity is one that is binary:
whatever it is, something either has it or it doesn't. That strikes me as

being very similar to one of the early notions about "security" (whatever
that is) — early on in this game, one prevailing notion was that something
(e.g., a computer system) either was secure or it wasn't; no notion of

gradation was admitted. And if anyone recalls, real progress in computer
security wasn't made until people accepted that something less than perfection
was useful, and hence achievable (if security is binary, since nothing ever is

perfectly secure you never move off zero.) In talking about a system's

ability to protect against unauthorized modification, and in the confidence we
have that people will not attempt to make unauthorized modifications, I

similarly believe very strongly that a notion of degree is important, i.e.,

that the colloquial way of talking about something or someone as have greater

B.12 - 1

WIPCIS II

1/9/89
T.M.P. Lee

Trusted Information Systems, Inc.

or lesser integrity is indeed appropriate, even if not linguistically
accurate. One of my dictionaries (Britannica edition of Funk & Wagnalls,
1960) even supports that to some extent:

Integrity n. 1. Uprightness of character; probity; honesty. 2. Unimpaired
state; soundness. 3. Undivided or unbroken state; completeness. See
synonyms under FIDELITY, JUSTICE, VIRTUE, WORTH.

Fidelity ... 3. Strict adherence to truth or fact; reliability;
veracity. 4. Electronics. A measure of the accuracy and freedom from
distortion with which a sound reproducing system, such as a radio, will

receive and transmit the input signals; it may be high, medium, or
low....

Enough of that, suffice it to say that a definition which only says
something like "conforms to expectations" (as I recall Bob's) sounds to me
reminiscent of the 60's credo that "it doesn't matter what you believe as
long as you're sincere" and about as useful in guiding our actions.

Where's the problem?

Again, I want to draw a parallel with the early work on computer
security. Although the topic of computer security was discussed a fair

amount (much in the vein it still is in the popular press) no great technical
or conceptual strides were made until people were shown there was a "show
stopper:" -- various proposed ways of using computers could not be allowed
because it was patently obvious that to do so, with the then current state of

computer security technology, would pose an unacceptable risk that sensitive

(classified) information would be made accessible to unauthorized people
(enemies.) Furthermore, it was demonstrated that casual, ad hpc. even if

well-meaning, technically-competent, attempts to "patch" the holes simply
could not be trusted to be sufficient. The awareness that there was a problem
of that degree and kind happened only in the defense/intelligence world. I

believe strongly that most (but not all) of the commercial world is still in

the state the whole world was then: it is not clear to me that very many
important commercial information processing activities and networks remain
unrealized because implementing themwould pose an unacceptable security risk.

So, I must then ask: what commercial, or even government/ DoD/
Intelligence information processing activities remain unimplemented, or are

implemented very inefficiently, because the current state of the art in

computer integrity is insufiicient to adequately reduce the risk that

information will be improperly modified? In other words, is the national

economy or security sufficiently at risk because we do not have adequate
technology to prevent unauthorized (either by accident, sabotage, or

subversion) modification of information? Until we can identify what things we
feel we cannot do because of some lack in the technology (either laboratory or

marketplace) I don't see how we can meaningfully decide what aspects of that

B.12 - 2

WIPCIS II

1/9/89
T.M.P. Lee

Trusted Information Systems, Inc.

technology to pursue.

(I do not mean this to start an argument about pure vs. applied
research, research vs. development, etc. -- all I'm talking about here is

whether their really is an obvious immediate practical problem in need of
some kind of fundamental change in knowledge, technology, or social/ business
structure -- pursuit of knowledge of even only distantly related truths for
their own sake is always good and not what I'm talking about.)

My candidate(s)

First, the problem of protecting against accidental modification of
information is a non-problem: solutions to that are well-understood, even
if not always used when they should be, and I suspect those solutions cannot
be improved upon drastically, (at least, the need to improve upon them is not
such as to be the sole justification to search for new or better technologies
to do so.) I think that statement even applies when the source of error is

human, although perhaps there work on application-specific
knowledge-engineering to perform reasonableness checks might be productive.

Second, even though the Clark-Wilson model is interesting (as is the
Chinese Wall model to be presented, if two others agreed with my refereeing,
in Oakland) I am not convinced that, say, the non-availability of a B2-level
implementation of it is anything that is affecting the future well-being of

any company or government agency. (One of my long-standing biases comes out
here: any security work below B2 fails my definition of a
show-stopper-remover.

)

So, what's left? Apart from some postulated defense applications that

I don't know very much about, which I grant may need better integrity (defense
against unauthorized modification of information) than is currently available,

I think the virus/trojan horse threat has now reached the point where we
collectively have to recognize that the current set of ad hoc measures (and
are they ad hoc!) is inadequate. The problem is not that any single corporate
data base is so valuable that an attack on it alone carries enough risk and
danger to justify heroic measures on a national level but that with the

wide-spread use of computers, actually or virtually networked (by exchanging
media), there is a low but significant risk (significant because of the

consequences) that a well-mounted attack could actually cripple major portions

of the national economy all at once. I believe strongly we know what the

technology is to solve the problem (configuration control through integrity

labels) but the societal, economic, legal, and regulatory aspects of putting

that in place are formidable. (I disagree with a comment Bill Murray made on

the Virus Forum: self-regulation won't work - the equivalent of a government
certification in this arena is just as necessary as in others covered now
by FDA, NBS, FAA, UL, etc. -- {treating UL as a quasi-governmental activity.})

It is also true that even though we know a technical solution, we don't know
the operational consequences of employing it.

B.12 - 3

WIPCIS II

1/9/89
T.M.P. Lee

Trusted Information Systems, Inc.

Miscellaneous Thoughts on Mandatory Integrity Policies

Amplifying on the last few sentences above, I believe it important to
see if the mandatory integrity model can indeed be fleshed out to a usable
solution. (There are loose ends in all the variations on the theme.) Several
systems have implemented it, but it would be misleading to say that anyone has
any real experience with it and certainly there has been little progress at

all in applying the principles in a networking/ data exchange environment,
which is where it is really needed. (The SAT/LOCK type enforcement mechanism
may be equivalent, but I have reservations about its seeming rigidity and
apparent lack of any notion of import/export of integrity labels.)

Although the mathematical duality between the mandatory security and
mandatory integrity models is attractive in itself, examining that duality
further in fact leads to, for me anyway, interesting insights. One of the
first observations one makes about the integrity model is that as soon as
you implement it in a system, almost all the code in the system (e.g.,

terminal handlers, editors, mail systems) has to have suitable integrity
levels and/or categories attached to them or nothing will work, i.e., in

some sense the boundary of an "integrity TCB" includes everything and one
finds almost immediately the need for a lot of trusted (with respect to
integrity) subjects. That shouldn't be surprising and the only reason we
don't notice a similar phenomenon in the dual case is that almost none of
the code in a system is classified, certainly not the operating system and
third-party applications packages. If, on the other hand, the vendor of a
system were to really regard his code as proprietary and to give it a
mandatory security label enforcing that proprietariness, and, say, the vendor
of the mail system and of the data management system were to do likewise, with
two more labels, the way in which one would have to set up and run such a
system would not be a lot different in character from the way one would have
to run a system with the "right" integrity labels.

Another parallel is that associated with both models are "impedance
matching" transforms. Cryptography transforms information of high sensitivity

to information of low sensitivity. Deliberate redundancy in the form of

error-correcting codes and strong-checksumming transforms information of high
frangibility (i.e., information needing careful handling) into information of

low frangibility (able to be foldecf, stapled, and mutilated.) (One could
probably even pursue dualities between the transforms: spread-spectrum
transmission for security seems at least an in informal dual of

retransmissions protocols for integrity.) It is interesting, and perhaps there

even is a reason for it, that in both cases the art of using such transforms
is quite advanced -- only recently has the ability to protect information
without the use of the transforms Been developed for security, and, as noted
above, one can't quite yet say that has been done at all with respect to

integrity in any practical way.

B.12 - 4

WIPCIS II

1/9/89
T.M.P. Lee

Trusted Information Systems, Inc.

A final parallel (or, maybe, antiparallel). For some reason, as soon
as people think about information integrity they want to immediately take a
fine-grained view: rather than trying to protect an entire file they want
to distinguish which parts of it need to be protected to what extent from
whom against what kinds of errors, sabotage, or malicious alteration. I

don't know, since it was before my time, whether the very very early
discussions of information security went down that path, but certainly the
earliest public ideas (e.g., the Ware Report, the various Mitre papers) had
taken a coarse-grained (entire file, paper, etc.) view; had they instead
insisted on the fine-grained view I'm not sure the progress that has been
made would have been. I wonder if there isn't a lesson there.

(Yes, I can hear the counter-argument: "the whole field of computer
security in sticking to such simplified views of the world has led to a
technology of very limited utility; let's start this data integrity business
off on the right foot by diving in and tackling the hardest problems we can
find - that way what is done will be applicable to real-world commercial
problems.") But, when?

On Terminology (encore une fois)

Guess I can't force myself to stay away from the terminology issue
after-all. A couple of observations. It's probably too late to close the
barn door. The security (confidentiality) policy side of the dual is already
sloppy and confused. We have "security", "sensitivity", "classification", and
"clearance" levels and labels, all meaning roughly the same thing. And we
also have "compartment" and "category" (and "access approval" as distinguished
from "clearance".) At various times there have been doomed attempts to be
precise about these things and to have each of the above terms have a
specific, different meaning. (I'm not sure that the distinction between
"security level" and "sensitivity level" was ever precise in anyone's mind,
but at one time there were definitions of the two different enough to be
useful to a Criteria Lawyer; "clearance" and "classification" have always been
fairly precisely understood by anyone having to deal with classified

information to a reasonable extent, even if they get confused by more ordinary
folk, although as soon as compartmentation gets introduced even the
cognoscenti get muddled.)

A further complication is that the TCSEC has (quite explicitly

appropriated the term "security" to refer only to confidentiality. (See the

mandatory access control policy paragraphs.) For as long as I've been in

this business, however, the term 'security" always included the three aspects

of confidentiality (protection against unauthorized viewing of information),
integrity (protection against unauthorized modification of information and
availability (protection against unauthorized denial of service.) It would be
interesting to find the first appearance in print of that triad.

In any case, when dealing with information integrity, the

B.12 - 5

WIPCIS II

1/9/89 Trusted Information Systems, Inc.

T.M.P. Lee

confidentiality qua security dual and the model of the TCSEC leads one, in

my mind, to recognize there are three aspects of the topic that ought to
have separate terms but which can be (or, at least, are, in colloquial usage)
informally all lumped under the single term "integrity":

a measure of the consequences of unauthorized modification of
the information in question (analogue of classification or
compartmentation) -- note that this is only indirectly related to
the reasons why unauthorized modification is bad, in the same
sense that the reasons for classifying information at a certain
level can vary greatly.

confidence that a particular person can be trusted to enter or
modify a particular kind of information (analogue of clearance
or access approval.)

assurance that a particular program (in a particular system,

(including those of its users) can be entrusted to modify that
information properly, (analogue of evaluation class)

Note that the principle of compartmentation in the confidentiality world
has a useful parallel in the integrity world: a person (or, a program) is

only entrusted to deal with a particular kind of information

a) if one "understands" the consequences of dealing with that

information, (has been properly programmed to process it) and,

b) it has been determined that one needs to have access to that

information (must use it for its computations)

operated under particular lar inputs

B.12 - 6

DATA INTEGRITY ISSUES

POSITION STATEMENT

01-03-1989

Kurt H. Meiser

Coopers & Lybrand

Auditing Directorate

1251 Avenue of the Americas

New York, New York 10020

Phone (212) 903-3221

B.13

il

J

1

Ifi

CONTENTS

1 . 0 Background and Limitations 1

1.1 Information Security Terminology 1

1.2 Commercial Computing Environment 1

1.3 System Perspective 1

Operating System 1

Access Control Systems 1

2 . 0 MVS Integrity 1

2.1 Basic Data Integrity 2

2.2 System Integrity 2

2.3 Application Integrity 2

3 . 0 Application Integrity Requirements 3
3.1 File Integrity 3

3.2 Program Integrity 3

3.3 Verification Procedures 3

4.0 File Integrity Considerations 3
4.1 Available Controls 3

4.2 Typical Exposures.. 3

4.3 Evaluation 4

5 . 0 Program Integrity Considerations 4

5.1 Available Controls 4

5.2 Typical Exposures 4

5 . 3 Evaluation 4

6.0 Verification Considerations 4

6.1 Available Controls 5

5.2 Typical Exposures 5

6 . 3 Evaluation 5

7 . 0 Observations and Conclusions 5

7.1 Definitions and Models 5

7.2 Products and Features 5

7.3 Commercial User Community 6

B.13 - i

1.0 Background and Limitations

This position paper summarizes my position on data integrity. It has been written within

certain limitations and is based on practical experience in specific system environments, as

outlined below:

1.1 Information Security Terminology

While writing this statement, I do not have access to the Strawman paper or any other

related document, e.g. the Clark-Wilson paper. My "working terminology" may conflict with

terms and definitions agreed and used in other discussions and papers.

1.2 Commercial Computing Environment

I have gained my data security and integrity experience strictly in commercial computing

environments, within and outside the U.S.

1.3 System Perspective

These integrity considerations are discussed from an operating system perspective (as

opposed to networking or DB/DC) in the context of the following specific software

environments:

Operating System

The operating system discussed is MVS, IBM's premier operating system for large

commercial main frame systems. I have recently performed a great number of

security/integrity reviews in this environment.

Access Control Systems

The following discussion is based on the functionality currendy available in the

major access control systems for MVS, CA-ACF2, RACF and CA-Top Secret.

2.0 MVS Integrity

Integrity in an MVS system consists, in my view, of three different types of integrity which

are achieved or addressed at three different system levels or layers:

o Basic data integrity - the quahty of stored data elements

o System integrity - the separation of system and user programs

o Application integrity - the quality of application data and programs

B.13 - 1

2.1 Basic Data Integrity

Basic data integrity is the system property that guarantees the quality of basic data elements

handled by the system, e.g. data fields in main storage, data records written by DASD, etc.

Computer users have, based on this property, the expectation that data presented by the

system to their programs is good (identical with the data received by the system during

previous operations) unless error conditions are raised.

The responsibility for basic data integrity is with hardware and software (operadng system)

vendors.

It is generally assumed that today large computing systems have been extensively tested by

the vendor and have a high degree of basic data integrity when released.

2.2 System Integrity

MVS system integrity, as announced by IBM, is the assurance that programs that are not

specifically authorized cannot assume system privileges or alter/bypass storage protection or

access controls.

Based on this property, system users have the expectation that the system will guarantee

address space isolation and has the ability to enforce (RACF/ACF2/Top Secret) access

control rules.

The responsibility for system integrity is with the computer installation, because the major

mechanisms for system integrity are under customer control.

Experience shows that, although the necessary controls are available, currently, most MVS
installations do not use them properly to achieve a high degree of system integrity.

2.3 Application Integrity

Application integrity is the quality of data processed and maintained in an application.

Application users have the expectation that data is only processed in a controlled way and

that it represents reality.

In my view, no single well defined set of functions and controls to achieve application

integrity is currently available. The following sections will discuss requirements, available

controls and common exposures in this area.

B.13 - 2

3.0 Application Integrity Requirements

The three elements necessary to achieve apphcation integrity are, following the thoughts of

the ClarkAVilson model, file integrity, program integrity and verification procedures.

3.1 File Integrity

Application file integrity exists when all files of an application have valid states; this

requires that, once a file has a valid state (determined by adequate verification procedures),

it is only manipulated by validated programs (TPs) which, by definition, leave the file in a

valid state.

Controls are required to allow the definition and enforcement of file/program relations.

3.2 Program Integrity

Program integrity exists when an executable program cannot be changed or replaced

(invisibly) without changing its external characteristics such as name, version, level, etc.

Controls are necessary to protect executable programs from any hidden changes or, at

minimum, to automatically detect modifications and prevent the execution of a modified

program.

3.3 Verification Procedures

Verification techniques and procedures are necessary to establish (and re-verify periodically)

the validity of data and programs.

Controls are required to identify (tag) the quality of data and to prompt automatically for a

re-verification.

4.0 File Integrity Considerations

In an MVS environment with access control software installed, file integrity can be

addressed in the following way:

4.1 Available Controls

The major access control packages offer today the necessary mechanisms to grant and limit

access to files through specific programs (data pathing, conditional access, etc.).

4.2 Typical Exposures

B.13 - 3

A variety of access control privileges such as OPERATIONS and NON-CNCL, often

granted to a large number of users, bypass the above controls.

4.3 Evaluation

Basic (discretionary) controls exist; they can be bypassed by privileged users and are often

difficult to implement and maintain. True system enforcement would require easy-to-use

mandatory controls.

5.0 Program Integrity Considerations

In an MVS environment with access control software installed, program integrity is a major

concern because programs are, in general, treated as data rather than as separate and specific

objects.

5.1 Available Controls

Access controls are implemented at the library level; there are no practical controls available

for the protection of executable programs directly. Although rough manual audit techniques

exist, they do not qualify, in my opinion, as control mechanisms.

5.2 Typical Exposures

Executable programs, like any other data, can be accessed and modified through standard

access methods, and no meaningful audit trail is generated by the system. Superzap is only

one convenient IBM-supplied utility program for this purpose which in fact does create a

limited audit trail.

5.3 Evaluation

With currently available techniques, program integrity can practically not be achieved in

MVS. It does, however, not appear too difficult to implement adequate controls in MVS
and the access control packages. Cryptographic authentication techniques might lend

themselves to good technical solutions for this problem.

6.0 Verification Considerations

The validity of data and programs must be established initially, and re-verified periodically

or after events have occurred that might have invalidated the information.

B.13 - 4

6.1 Available Controls

I am not aware of any automated controls or mechanisms to manage the validity and quality

of information other than through basic format checking. Although manual inventory and

control procedures have been developed in many varieties, there is still a need for system

enforced controls.

6.2 Typical Exposures

Data quality may be inadequate in the sense of a stricter definition of data integrity than

commonly used today, because the information may never have been verified initially, after

being processed by unknown programs, or after an appropriate period of time.

6.3 Evaluation

Techniques must be defined and developed for system-managed information verification.

More research appears to be necessary before software implementations can be considered.

In my view, these techniques must involve extemal interfaces (e.g. with an auditor) as well

as the monitoring of the programs and processes handling the information.

7.0 Observations and Conclusions

In summary, these are my observations and conclusions (fi-om a systems perspective):

7.1 Definitions and Models

Whilst commonly accepted definidons and models are available for the protection of the

confidentiality of data, initial data integrity models exist basically in their development and

discussion states.

7.2 Products and Features

Similarly, security products in the MVS arena contain good data access controls (from a

confidentiality point of view), while offering only few and incomplete features for managing

data integrity. MVS provides mechanisms to establish system integrity as a basis for all

other software based controls.

B.13 - 5

7.3 Commercial User Community

It is my experience from a large number of MVS security and integrity reviews in the

commercial environment that, in a technical sense, the majority of installations have, so far,

not adequately addressed system integrity issues nor properly implemented their access

control software.

Executive management, however, is usually unaware of such problems and even assumes that

their computers have good application integrity.

B.13 - 6

DATA INTEGRITY ISSUES

for

1989 INVITATIONAL WORKSHOP ON DATA INTEGRITY

submitted by: Dale W. Miller

Data integrity in a commercial organization is very much dependent upon controlling

changes to the application programs and operating systems that process that data. A method
of change control based on the Clark and Wilson Model can possibly be used to define the

roles of all personnel involved in the process of installing or modifying applications in

commercial organizations.

Businesses lose a considerable amount of time and money resolving problems caused by
changes in the software that are not expected by the user of the information. These changes
in the software, whether deliberate or accidental, usually affect the integrity of the

information. Often the impact on the integrity of the organization's data is not fully

discovered until cosdy decisions, processes, or Q-ansactions have been completed on the basis

of that information.

I believe that in order to achieve DATA INTEGRITY as defined by the INTEGRITY
WORKING GROUP, (and I agree with that definition), in a large commercial organizadon,

it is first necessary to achieve data integrity for the application software and operadng
system software that is used to process the organizadon's data.

The difficulty of achieving integrity is compounded by the fact that many of the applicadon

systems are large scale integrated systems. This means that diverse subsystems often have

an impact on the informadon and it is not easy to establish bounds for applying change

control rules. Applicadon development teams in commercial organizadons use a variety of

application development methodologies, many of which are not rigorous enough to enforce

rules which would ensure data integrity.

I believe it will be helpful if the Workshop can address the integrity of software as a

prerequisite for the integrity of data. It seems that the Clark and Wilson Model can

possibly serve as the basis for the development of a software change control structure which

will contribute to achieving integrity in applicadon software and eventually in the data

processed by that software.

B.14 - 1

Integrity Isn't Black or White

Submitted by Lee Ohringer

Chairman

DC/ACM SIGSAC

Trying to define computer system integrity is similar to having the blind men describe the

elephant. Each person tends to define the total concept in terms most familiar to the part of

the problem with which he/she is most familiar. As a result, we may end up with only a

partial definition of the problem that we are addressing.

A computer system is a combination of at least the following: hardware, systems software,

applications software, data, the physical environment, and people. It then follows that

computer system integrity is some combination of the integrity of the components of the

computer system. (But security should also be one of the parts of every computer system.

It is therefore quite possible that integrity is not part of security but instead integrity is a

consequence of good security and other factors. Further discussion of this possibility is left

for another time.)

The purpose of this paper is to discuss data integrity issues. I therefore focus on sections of

the Strawman that address data integrity directly. On page 3, the third paragraph from the

bottom contrasts data quality and data integrity. I agree with the Strawman that this is an

important distinction to make. Integrity is not the same as quality.

The Strawman identifies the following attributes of data: accuracy, timeliness and

completeness. I would add consistency, source, reliability, correctness, structure, and

precision as relevant properties. Of these, consistency seems to be particularly relevant to a

discussion of integrity. It is different from the other items in that (1) it seems more likely

to apply to a collection of data rather than to a single entry, and (2) it is the only item on

the list that, by itself, can destroy the integrity of the data. i.e. If the data is inconsistent,

then regardless of what can be said for its other properries, the data will lack integrity. I

therefore propose that consistency is a necessary, although maybe not a sufficient, component

of integrity. Identifying other necessary conditions and sufficient conditions for integrity will

help us broaden our understanding of integrity and could provide us with means for

achieving it.

In spite of the questions that I have raised, I can accept the definition of integrity proposed

by the Strawman and do so in order to move on to more important matters. I do emphasize

however that the Strawman definition does include the words "meets an a priori expectation

of quality that is adequate." The inclusion of the concept of quality in the definition,

albeit limited, is necessary so that our definition of integrity corresponds to general accepted

notion of the term.

B.15 - 1

The point where I have a real problem with the Strawman is when it states "that integrity

has only two states. There are no degrees of integrity."

At this meeting we are addressing data security. I offer the following scenario as a basis

for considering degrees of integrity rather than having it be either present or absent.

Suppose we begin with a computer system that by the Strawman's definition has integrity.

Then suppose that some one-time event occurs that changes some data in an isolated portion

of the data base. In most ways the system continues to perform as before, but occasionally

gives unexpected, unexplained results. For example, we could have a payroll system in

which the zip codes for some payees were altered. There is no denying that the integrity of

the data has been changed. But I contend that it would be counterproductive to say that the

data, and therefore the entire computer system, no longer has any integrity. I would prefer

to say that the data now has less integrity than before, but still has high integrity. For me,

this system would still be preferable to a system with moderate, low, or even unknown
integrity.

Because of these kinds of considerations, I think that models in which the measure of

integrity is based on a continuum will provide us with a more useful concept for measuring

security than those models where the concept of integrity is based on a binary value. It is

for this purely practical reason that I urge the rejection of the "all or nothing" concept of

integrity put forth in the Strawman.

B.15 - 2

INTEGRITY CONCEPTS WITHIN THE
FRAMEWORK OF INFORMATION SECURITY

Position Paper

January 23, 1989
Donn B. Parker

SRI International

Menlo Park, California

Introduction

Several definitions of information integrity are unsatisfactory to me because

they do not address the roles of stakeholders (those who use and are

affected by the definition), are not set in the context of the definitions of the

other purposes of information security, and do not recognize the intrinsic

integrity attributes. The level of abstraction of the definition of information

integrity also has a bearing on its scope of applicability. The integrity of the

systems that process the information and the integrity of the enterprise of

organization itself would be treated differently, and the definition would be

put in a different context and might be changed. (I will address this subject

in an extension of this paper; I believe it is a sufficiently important concept

to mention here, however.)

Stakeholders and Their Roles

It is generally agreed that three distinct purposes of information security

exist: preserving the integrity, maintaining the confidentiality, and ensuring

the availability of the information assets of an organization. Information

security is the responsibility of the people who have authority over the

information and are held accountable for its prudent care. Information

security professionals, technicians, and scientists (security specialists) are

responsible for advising the users in security, providing the users with

controls and practices, and for safeguarding the information in their own
direct care, such as audit logs and control specifications. Because security

specialists are advisors and providers, I call users, custodians, and owners ot

information their clients.

The sources of information loss are people--with and without intent--and

forces; I call these, collectively, the enemy. Clients are responsible for

protecting their information from the enemy with the advice and assistance

of security specialists. Clients may delegate the responsibility for protecting

some of their information to security specialists, in which case the specialists

have the dual role of client and consultant.

The fourth stakeholder in security is the auditor. Auditors report on the

state of and deficiencies in security, and they may be internal or external

auditors or regulatory agents.

I believe information integrity concepts must be considered with respect t()

all four of these stakeholders. Clients view integrity as a state to be

achieved relative to their and others' information use and associate integrity

B.16 - 1

with quality. Security specialists attempt to learn the integrity needs of

their clients in a clear, precise way, and are not involved in clients' quality

concerns. They can then analyze the needs relative to the potential threats

from enemies (also based on input from clients.) The results help them

offer controls and security practices that will contribute to the preservation

of the integrity requirements of the client, be effective against the enemy,

and meet with the favor of the auditor. The security specialist does not

engage in or advise the change or improvement of the clients' information

quality or integrity as a primary concern; that is usually outside the

specialist's area of expertise and authority.

Auditors view integrity from the perspective of meeting standards, prudent

care, and regulatory or legal requirements where, again, integrity is

expressed in terms of commonly accepted intrinsic attributes. The
accidental enemy views integrity from the perspective of ways to avoid

penalties of accidentally violating integrity attributes. The intentional

enemy is concerned with the work factors, risks, and means of avoiding

impediments in meeting his goals of violating integrity attributes. Given the

client's fixed integrity requirements, the enemy's view of integrity is the

most important for the security specialist in determining necessary controls

and practices.

In summary, integrity is binary (exists or it does not) and invariant as

required by clients, and acknowledged and preserved by security

specialists. However, integrity is variable as defended by security

specialists with controls and attacked by the enemy in terms of work factor,

motive, strategy, and other factors.

Relationship of Integrity to Confidentiality and Availability

Information security concepts must also be considered with respect to the

two other purposes of security (maintaining confidentiality and ensuring

availability), because integrity controls and practices affect the

confidentiality and availability of the information. This relationship is not

discussed further here. However, definitions of confidentiality and

availability are included in the next section to demonstrate and emphasize

the need to differentiate among intrinsic, extrinsic, and external attributes

among the three purposes of security.

Definitions

The three purposes of information security are defined below in terms of

the stakeholders' use of them (especially as specified by clients and

preserved by security specialists).

• Information integrity is the intrinsic completeness, validity,

wholeness, correctness, timeliness, accuracy, consistency, and

precision of the information.

B.16 - 2

• Information confidentiality is the extrinsic secrecy of the

information (who is allowed to know or possess and not know or

possess the information and under what circumstances).

• Information availability is the degree of assurance that information

will be where, when, and in the form it is required to be in terms of

external conditions.

Intrinsic. Extrinsic, and External Attributes

Consistency with common use and dictionary definitions of integrity,

confidentiality, and availability requires that integrity be limited to intrinsic

attributes of information, including those identified in the Clark-Wilson

paper of internal consistency (e.g., completeness, wholeness) and good

correspondence to real-world expectations (e.g., accuracy, correctness, and

precision). Attributes of confidentiality are extrinsic. Confidentiality is

independent of internal attributes. It concerns such attributes as lists of

people authorized to read it, forms of the information that make it

unintelligible to some people and readable to others, and labeling its level of

sensitivity. Availability attributes are external conditions to ensure the

correct form of the information is where it is supposed to be and when.

These external attributes are different from the extrinsic attributes of

confidentiality. The confidentiality attributes focus on access to the

information, whereas availability attributes pertain to places and time.

References to Integrity. Confidentiality, and Availability

• "Data Security-It's Evolution and the Job at Hand," William H.

Murray, Computer Security Journal, Vol. V, No. 1, 1988 (Computer

Security Institute, Publisher).

"Data security can be defined as provision for the integrity and

confidentiality of data.. . .

"

Robert H. Courtney, Jr., says that "data has integrity when it is

as good as we think it is."

".
. . data can be said to have integrity when it agrees with that

which it is supposed to describe."

• "Computers: Crimes, Clues and Controls," Prevention Committee.

Presidents' Council on Integrity and Efficiency, March 1986.

Page 9: "Information security provides assurances that the

following are achieved:

Confidentiality of sensitive information

• Integrity of information and the related processes

(origination, input, processing, and output).

• Availability of information when needed; and

• Accountability of the related information processes."

B.16 - 3

• Building a Secure Computer System . Morrie Gasser, Van Nostrand
Reinhold, 1988.

"Overview. What is Computer Security? Secrecy, integrity, and
denial of service."

• "Security In Open Systems: Security Framework for the Application

Layer of Open Systems," European Computer Manufacturers

Association, December 1987.

Page 2--"The task of the Security Facilities is twofold:

- to protect the integrity and confidentiality of Security Objects

(data and programs) in the logical sense, e.g., limiting access to

certain users and applications.

- to protect the integrity and confidentiality of Security Objects

(data and programs) where they are subject to physical or other

external attacks, e.g., when stored on magnetic media or when
transmitted over communications links."

• Trusted Network Interpretation (Red Book, NCSC-TG-005, Version

1), National Computer Security Center, July 31, 1987.

Other Security Services:

1) Communications Integrity

Data origin authentication and field integrity

2) Denial of service prevention

Continuity, protocols, and network management

3) Compromise protection

Data and traffic flow confidentiality and selective

routing

• Information Systems: Agencies Overlook Security

Controls During Development . U.S. General Accounting Office

(GAO/IMTEC-88-11), May 1988

Glossary

Data Integrity: The state that exists when computerized data are

the same as that in the source document and have not been

exposed to accidental or malicious alteration or destruction.

(2) The property that data have not been exposed to accidental or

malicious alteration or destruction.

(3) In a data base system, avoidance of simultaneous update where

two concurrently executing transactions, each correct in itself, may
interfere with each other so as to produce incorrect results.

B.16 - 4

FIGURE 1 INFORMATION SECURITY FRAMEWORK

Purposes

1

Organization Methods Controls

FIGURE 2 VULNERABILITY MODEL

FIGURE 3 FRAMEWORK PURPOSES

Theorv Practices

3 Purposes
Domains
Definitions

Framework
Goals
Objectives
Scope

Purposes

Policies

Codes
Procedures
Standards
Glossary
Laws

B.16 - 5

FIGURE 6 FRAMEWORK CONTROLS

Categories
Control models
Principles Controls
Characteristics
Functions
Application domains
Purposes

Practice

Sources of

controls
documents

B.16 - 6

FIGURE 4 FRAMEWORK ORGANIZATION

Theory

Stakeholders
Relationships
Missions
Accountability
Authority

Practice

Guides on
Organization
Missions
Functions
Position descriptions

Operations
Risk management
Security reviews
Recovery
Investigation

Administration
Implementation
Controls operation
Maintenance
Training

FIGURE 5 FRAMEWORK METHODS

Theory

Universal review steps
Identify assets
Identify threats

Identify present controls

Tabulate vulnerabilities

Analyze risks

Identify control objectives

(10 functions)

Select controls

(20 control principles)

Obtain approval
Implementation planning
Maintenance planning
Reevaluate

Practice

Baseline
Modeling
Checklist
Risk analysis

Quantitative

Qualitative

Tiger team
Scenario
Matrix
Gestalt

Empirical
Standards

B.16 - 7

INTEGRITY WORKSHOP - OUTLINE CONTRffiUTION

JTHOR: Tom A Parker

ICL Defence Systems

Eskdale Road
Winnersh

Wokingham
Berkshire RGll 5TT
England

My interest in this workshop stems from two distinct activities:

- design and development of a Bl secure version of ICL's proprietary Operating

System - VME, and further planned enhancements to provide better support for a

Clark-Wilson style policy.

' - international standards work on secure distributed systems which has produced

!
results which show how the ideas of Clark and Wilson generalise to distributed

systems.

I shall cover each of these topics in turn.

VME support of Clark-Wilson

The VME system with its High Security Option supports a Mandatory Integrity Policy

which partly but not fully supports C-W 'triples'. Under this policy users and the

software they use to access data are both given an integrity category clearance. Write

access is permitted only if the clearances together satisfy the Mandatory Policy check.

ICL can demonstrate, (and does so on a regular basis to customers) how this approach

can be used to control typical commercial transaction sequences like: accept-order,

authorise, despatch, invoice, receive-payment, authorise-receipt; or in a program

development environment: develop, handover, test, handover, live.

Extensions have been proposed and will be implemented over the next year which extend

VME's Discretionary Policy to include explicit statements along the lines of: 'this user

may access these resources via this application'. The policy is discretionary in the sense

that it is not label based, but the proposed ACL triples can be centrally controlled by a

Security Manager.

In our design of an integrity policy for we have drawn an implicit distinction between

two kinds of lack of integrity (it would be interesting to speculate if it would be useful to

define more). They are:

- correctly formatted but inappropriate (spoof data)

- incorrectly produced but appropriate (genuine unedited data)

B.17 - 1

An application can be written to defend itself against the last form of data input;

input-edit programs are designed just to do that, but it is the job of the Operating

System to provide the secure environment which defends against the first form of

input.

On a more general point, it might be interesting to discuss why C-W decided to leave

the enforcement of TP sequencing to the applications themselves (using CDI values).

'Well formed' sequencing could have been made an explicit feature of the model.

Distributed Systems

The European Computer Manufacturers Association (ECMA) has a group working on

an Application Layer security framework for distributed systems. The group is called

TC32/TG9; its work is well advanced and has produced some requirements on
distributed systems which look very much like generalised C-W concepts.

The ECMA work has shown that access authorisation decisions, whatever the way in

which the access control policy is expressed, are always made in the context of access

privilege attributes possessed by the accessing subject and control attributes associated

with the object being accessed. The nature of a distributed system demands that

subject-related attributes be capable of being communicated via communications

protocols, and much of the attention of TG9 is now being turned towards the

standardisation of these and related protocols. It is also a common requirement in a

distributed system for subjects to request other subjects (active software entities) to

perform actions for them on their behalf. In some cases the intermediate subject

requires no additional authority from the initiating subject to perform the action; in

other cases additional authority to perform the action is required.

The figure below shows such a situation:

Subject Subject Access Object
A B Control X

(AC)

Subject A wishes to access an object X which is protected by an access control policy

implemented in AC. Subject A is using Subject B as his/her/its agent for doing this.

Both A and B may possess privilege attributes that are relevant to the access, and AC
may require to be presented with the attribute both parties.

For example if A is a human user (or software representation of one) asking Print

Server B to read file X from a File Server whose access control logic is AC, then AC
may require evidence of both the requestor A's identity and, the security clearance of

B (if the file is a Secret file the File Server may only release the file to a Print Server

that has Secret clearance).

B.17 - 2

This two-subject picture, which together with the object looks remarkably like a C-W
triple, generalises to any number of subject 'components', with the access control logic in

the end application making its authorisation decision in the light of the privilege attributes

of each subject component. Notice also that whereas the C-W model considers only the

identities of the components involved, a more general model is one based upon their

access privilege attributes (in the TG9 model a subject's identity is one such attribute).

Conclusion

Although this note skates over a number of basic concepts which are better described in

the VME and TG9 documentation, I hope that the flavour of the work being undertaken

in these areas has come across. Clearly I will be happy to present some or all of the

above ideas in more (or even less!) detail at the workshop.

Tom Parker

10 June 1988

B.17 - 3

Invitational Workshop on Data Integrity

General Motors

Thomas R. Peltier

Data Integrity Issues

While discussing the scope and topic of this paper, a number of data integrity issues were
identified. Although many issues were considered and continue to remain concerns, a consensus was
reached on the importance of the following three issues:

1. Maintaining the accuracy of information in the integrated mega systems being developed today.

2. Failure of upper management to treat data as a crucial resource.

3. Excessive access to Corporate Data.

Maintaining the Accuracy of Information in Major Integrated Systems.

As systems get more integrated and therefore do more things, a number of data set owners may
be present and the assignment of overall system ownership becomes more difficult. A simple change

in the application programming can have a multiplier effect on other systems because of the increasing

level of system integration. Because of this complexity, policies and procedures must be established

to ensure that proper controls are built into an application at the start of system development. It is

essential that the development of new information systems and major enhancements of existing systems

be carefully managed. These are complex tasks involving many people over extended periods of time.

Management of these "mega" information systems can be made simpler if the controls are

prioritized early in the development process. The GM System Development Process emphasizes the

system user's responsibility for the development of the systems. Each system is seen as a joint

undertaking by the user departments and the data processing entity, who work together and share

responsibility. While this system of controls is effective in the development of new systems, a

concerted effort must be made to retrofit these controls on existing systems.

Some of the concerns for both new and existing systems are:

1. Establishment of a system "owner" to ensure that changes or enhancements are implemented

in a controlled environment:

2. Audit trails are sufficient to determine where, when and by whom changes, accesses or

deletions to the system data or programs were made;

3. The data has been reviewed by the "owner" and proper classification has been assigned;

4. System, Corporate and legal requirements for the back up and storage of data offsite has been

reviewed and is being met on a timely basis; and

5. A business resumption plan has been completed and coordinated with data processing.

Failure of Upper Management to Treat Data as a Crucial Resource

The growth of integrated data processing systems has happened so quickly that upper management

often is not aware on its reliance on computer systems and the information they process. Daily decision

making, as well as long term strategies, are based in part on computer generated information. The

ability to conduct business in a manual environment is no longer a viable alternative. Without the

ability to access information in a timely and effective manner, business efficiency will almost

B.18 - 1

immediately be halted and the on going survival of the business may be jeopardized by longer term

disruptions.

Corporate information must be viewed by management as an asset just as important to the corporate

well being as cash reserves. Upper management must support a level of controls associated with the

true value of the information processed in the corporate activity.

Management has the ultimate responsibility to ensure that corporate data is properly protected from

unauthorized access, modification, disclosure and/or destruction. There is a clear and present need for

upper management to accept the extent business is dependent on computer data and take commensurate
action to protect computer data and systems. There must emphasis on establishing policies and

procedures and movement away from the "trusted employe" syndrome.

Excessive Access to Corporate Data

The complexity of access control administration in the current data processing environment is often

too slow and cumbersome to allow the employees to complete their tasks in a timely and efficient

manner. With the proliferation of users trying to access corporate data, the controls often suffer so

that departments can "get the job done".

As remote access, networks and distributed processing make possible still greater access to

computer generated data, the potential for unauthorized access to confidential and proprietary data

increases. Therefore access control procedures are becoming more important. Even with the

development of procedures to address security and business resumption issues, the question of continued

adherence to controls and procedures remain. A proactive program informing and reminding the user

community of their responsibilities is an important part of the over all security picture. This, coupled

with the efforts of the Audit Staff, will increase the overall information security posture of the

corporation.

B.18 - 2

Workshop Position
Sig Porter

Paper

This note defines positions which I would undertake to assert or
defend at the Integrity workshop. This is a response to
Courtney's request (in his strawman paper [1]) for "constructive
controversy". My principal object in sections 1 and 2 is to
point out that the Courtney definition is too confining. In
section 3, I briefly suggest that human factors can be profitably
applied in integrity policy.

1. Avoiding A Single Definition of Integrity

Courtney's strawman suggests a definition for integrity. This is
one more of the many meanings which have been proposed in the
past [2]. In my opinion, effort to find a single definition is
misdirected. It is, however, of great value to know what is
meant when various authors use the term integrity.
Consequently, we should not focus our attention on a single
definition of a word, and then restrict our attention to the
concepts in that definition. We should, instead, look at the
various useful concepts which different people associate with
that word. Only then will we be equipped to consider what word
(or words) most felicitously expresses those concepts.

Courtney puzzles about what Clark & Wilson [3] meant by integrity
in their paper. It seems unlikely that Clark & Wilson would
settle (given a choice) for using their mechanisms to insure, for
example, that as a result of a Transformation Procedure (TP) , 90
percent of the data in a Constrained Data Item (CDI) is correct.
Thus, contrary to what Courtney would apparently like to assume,
Clark & Wilson did not mean a firm knowledge of the failings in
quality of data.

For reasonable commercial utility, integrity in a C&W CDI must be
the assurance that the CDI is the result of a traceable
authorized action (Transformation Procedure) on input data (from
an identified and authenticated source) and pre-existing CDIs.
Note that the integrity of the result (output CDI) depends on the
integrity (by various appropriate definitions) of the input and
process

:

1. The TP has integrity. (It is certified to perform the
required function and only the required function)

.

2. The system has integrity. (Only an authorized user is able
to execute the TP. CDIs are altered only as a result of TPs.)

3. The input data (UDI) has integrity. (It is known to be
from the claimed source, and is the same as was entered by that
source.

)

4. The input data (CDI) has integrity. (It results from the
process which we are now recursively defining.

B.19 - 1

2. Levels of Integrity

Courtney and others view integrity as an absolute state with no
levels or degrees. While I do not claim that this is never
valid, I feel that some useful definitions of integrity
inherently have a measure, and hence degrees, and possibly
levels. Rather than discussing "knowing" or preventing", I would
talk about "knowing with some degree of certainty" , or
"preventing with some probability". I regard these
probabilities as measures of integrity. (It is not clear what
Courtney means by "There are no degrees of integrity. . .

.

Integrity reflects trust... There can, however, be degrees of
trust. ")

The field of communication provides useful examples in this area:
When we receive a message, we are concerned about its integrity.
Here the integrity is generally viewed as assurance (or
probability) that the message is the one originally sent and is
from the claimed source. (We do not talk about "degree of
assurance that a message has integrity" (or "degree of assurance
that only half the characters in the message have been altered")

.

Cryptography and error correcting/detecting codes provide
frequently applied integrity assurance tools. These tools permit
the system designer to specify parameters (e.g. , key length)
which will determine probabilities that specified assurances are
provided.

The field of security is not enhanced by defining away the
probabilistic aspects of integrity.

3. The Application of Human Factors to Security Design

In this section I would like to suggest an approach to security
which I believe will be helpful for integrity. This approach is
based on concerns about (1) the effect of the Orange Book on the
security art, and (2) the common view that security is
incompatible with a comfortable user environment.

I believe that the OB, by converting the best techniques of the
late 70s and early 80s to theology, has actually slowed the
development of the security art. Too much time and talent is
spent interpreting the OB and trying to accommodate its
mechanisms. Much of this time and talent would be more
productively spent developing new approaches to security. I am
concerned that some people may want to approach integrity by
defining a sort of Orange Book for Integrity. I would prefer to
see, as will be discussed below, a finer grained policy than
found in the OB.

Most people view security as interfering with a comfortable mode
of working. An example of this can be seen in the reaction to
the recent Internet virus, namely concern that if the (integrity)
holes are plugged, the net will not be as usable.

B.19 - 2

Solutions can often be found by considering security as a human
factors problem [4]. An example can be found in [5], where
consideration is given to what users actually need and want in
their normal activities. When such consideration is given,
security can be achieved without undue inconvenience to the user.
Based on these needs, a security policy with finer granularity of
control was proposed to better control Trojan horses without
imposition of MAC.

[5] also includes policy proposals which are intended for
protection against viruses, and hence in support of both system
and data integrity. (The policy rules are explicitly present,
but not discussed in [5].) These proposals require a program to
have explicitly granted (by hand) privilege to create (or alter)
an executable program. This does not inconvenience the user
(except slightly, perhaps, for compiler developers) , since most
programs do not require this privilege. The few programs which
reside in user space and require the privilege can have it
specially applied. Obviously, users will not grant the privilege
to untrusted imported programs, such as games and editors.

1 Courtney, R. , "Some Informal Comments about Integrity and the
Integrity Workshop", undated.

2 Porter, S., and Arnold, T. , "On The Integrity Problem", 11th
National Computer Security Conference, 1985.

3 Clark, D. , and Wilson, D. , "A Comparison of Commercial and
Military Computer Security Policies", 1987 IEEE Symposium on
Security and Privacy.

4 Porter, S., "A Password Extension for Improved Human Factors",
Crypto 81 and Computers & Security, Vol. 1 No. 1, 1982, North
Holland Press

5 Porter, S., "Dac Not Inherently Flawed", Dockmaster Criteria
Forum, Transaction 1194, 10/26/88

B.19 - 3

I

I

Why Integrity is Important to Me:
A Position Paper for the

Invitational Workshop on Data Integrity

Marvin Schaefer

Trusted Information Systems, Inc.

Glenwood, MD 21738

It has been a tenet of traditional computer security that the "TCB boundary" forms a

partition between security-relevant and non-security-relevant code. The non-security-relevant code
is often called "untrusted" code, in the sense that die properties of untrusted code should not be
capable of subverting the security policy implemented by the TCB.' Recently, discussions have
raised questions as to whether such a TCB boundary could be made to exist for integrity-critical

applications.

I beheve that with the exception of certain simphstic label-based definitions of integrity,^

the concept of an integrity TCB is too difficult to implement. That is, I believe that in the general

case, it is not possible to implement a mechanism that will either (a) guarantee the legitimacy of

aU data updates derived from data introduced into a system by users or user-written programs; or,

(b) guarantee the legitimacy of all data updates derived from data introduced into a system only by
authorised sources or authorised programs, if the update transactions are driven by user commands
or user-written programs. Alternative (b) represents an extremely pessimistic hypothesis, for it

claims that even if a set of data were ever placed in a legitimate or consistent state it is doubtful

that even the drastic measiure of restricting system operation to only a small set of authorised

system state changes and the introduction of no new external data would prevent subsequent cor-

ruption of the database.

My more recent professional activities have identified me as a member of the computer
security community. However, the path that led me into computer security touched on the tech-

nologies and practices of languages and compilers, operating systems, database management
systems and formal verification. Those early experiences really emphasised the fundamental

importance of considering integrity as a data correctness issue.

There was a time when the meaning of 'integrity' was closely identified with the concept of

'computer security'. This can be seen by reading classics like Don Parker's Computers and Crime .

There was concern over the unauthorised manipulation or modification of data, especially for

purposes of fraud. It was also recognised that people who made unauthorised use of computing
resources often did so either by exploiting an error in the operating system or by corrupting or

manipulating the data relied upon by die operating system for its correct operation. The latter form
of attack would employ or exploit a smaller 'hole' or vulnerability (generally not considered

important to the system's developers) as a means to get the still 'correctly functioning' operating

'When the term "security kernel" was used in lieu of TCB, it was contended diat the kernel

should be capable of protecting the system from security violations, even if the adversary were to

write all of the untrusted code permitted to nm on the system.

^'Simplistic' ought not to be read as a pejorative in tliis context. In many applications, there is

value in being able to determine that data has not been modified since it was created and sealed

with a cryptographic label. In other cases, modeled by Biba, Lee, and Shockley, it is assumed that

the value or correctoess (integrity) of data can be preserved or improved only by a few very

special classes of program or data, that all other modifications wUl lower its value, and that a

lattice-based system of labels can be used as the basis for integrity-preserving access control

mechanisms.

B.20 - 1

system code to perform new acts on behalf of the interloper.

Though few would have classified it as such in the early days, the act of systematically

feeding bad data to an operating system (or of changing good data to bad) is arguably a necessary

part of the penetration scenario. The generated bad data images may be within the computer's

primary or secondcU^ store, and may include portions of the control data (central tables) or could

take tlie fomi of modified or new instructions.' Modifications to the system's memory may take

effect immediately, while changes to data in secondary store may not subvert the system until the

next time it is generated or booted.

The DoD Trusted Computer System Evaluation Criteria (TCSEC) does not provide an
explicit enumeration of the many integrity requirements that are implicitly assumed necessary for a

trusted system. The TCSEC requirements suggest that the TCB and its data must be implemented
reasonably correctly, that the TCB code and internal data must be protected and kept reasonably

correct and consistent, and that unauthorised users and subjects ought not be capable of penetrating

the system or modifying key protection-critical data.* The TCSEC integrity requirements need to

be reexamined in light of current understandings and presented in a more unified form.

Database administrators often observe that data, once corrupted, tends to propagate
additional data corruption throughout a database. Tliis is because new data is often generated as a

function of existing data values (often by copying some existing data into new data records), or

data records to be modified are selected based on the values of existing data that is not to be
changed. The rapidity with which "dirty data" can beget further dirty data is the basis for the

legendary saw: "Garbage in. Garbage out".' It is so difficult to prevent the generation or incor-

poration of dirty data into a database because it is generally impossible to produce an algorithm

that differentiates between legitimate and illegitimate data values.

Systems often crash following a penetration or penetration attempt. Sometimes the crash is

caused consciously by the interloper: a secondary image of system data is modified and it is neces-

sary to the penetration for the secondary version of the system to become the primary version.

A system may also crash because of an inconsistency in its internal data residting from an

incomplete modification to the central data. Such crashes may even result because the system read

and used some partially modified data as the basis for state changes even while the interloper was
in the process of modifying other data values. [System penetrators do not often have the luxury of

^It is consistent to classify executable code as data, since von Neumann architectures are

machines that execute [some of] their data. Necessarily, interlopers would consider microcode as

data.

*The TCSEC requirements include: [CI] the need for "features ... that can be used to

periodically validate the correct operation of the ... elements of the TCB"; [CI] the need for "a

domain for its own execution that protects it [and its data structures] from external interference or

tampering"; [Bl] the need to eliminate flaws that would "permit a subject extemal to the TCB to

read, change, or delete data normally denied under die mandatory or discretionary seciuity policy";

[C2] the need to prohibit "unauthorised access to the audit or authentication data"; [B2] die need
for the TCB to be "relatively resistent to penetration"; and [B3] the need for "procedures and/or

mechanisms ... to assure that ... recovery without a protection compromise is obtained".

'A computer virus can be thought of as code that is introduced into another body of code such

that its action is not'^consistent with the specification of the latter body of code. As such, its

properties are not significantly different from the general dirty data propagation problem. If a body
of code reads (executes) an executable virus, the [data value of the] virus may result in the

corruption of the process that executes the virus as well as any data structiu-e modified by that

corrupted process, including other executable data structures.

B.20 - 2

modifying data as diough with a DBMS that can lock a transaction as an "atomic" act!] In such

cases, the very act of attempted penetration may succumb to the side effects of dirty data

propagation.

This would suggest that systems should take strong measures to prevent the unvalidated

modification of their own central data structures. Pamas, Hoare, Dijkstra and Homing have all

advocated disciplines of mutual suspicion in system design and implementation so that data values

received as parameters are checked for validity for reasonableness) prior to being used, even at the

potential for a significant drop is system efficiency. While some forms of vaUdity check are easily

characterised (e.g., is the variable within its acceptable range of values?), it is rare that it can be

determined that a reasonable value is also a correct value. Given that a system calamity can occur

even if only there are two different concurrent values for the number of active processes on the

machine at some time, the correctaess problem must be considered significant.

Of course, much attention must go into the problem of protecting a system and its users

from potentially malicious users. While this is a valid concern, the experiences of database

administrators with the dirty data problem has shown that concern need also be accorded to the

problem of honest users (who may misinterpret the meaning of some data) using honestly con-

ceived, but incorrect, applications programs.

B.20 - 3

IMPORTANCE OF MANDATORY INTEGRITY CONTROLS

W, R . Shockley
Gemini Computers, Inc.

Box 222417, Carmel, CA 93922

Recent initiatives in the commercial data integrity arena (such
as this workshop) seem entirely appropriate in the context of our
nation's increasing dependence upon automated information
systems, their increasing interconnectivity , and the continuing
proliferation of malicious and and mischievous attacks upon
I question, however, the proposition that the single most
appropriate response to these threats is the definition of a
long-term research agenda while currently available measures
for the abatement of the threat remain unexploited. I am
speaking specifically to the definition, by end-user
organizations, of appropriate mandatory integrity policies
so that currently available technology can be applied to
their enforcement by their suppliers.

Traditionally, the attainment of computer security rests
upon a triad: policy, mechanism, and assurance. Sound
enforcement mechanisms, and the techniques for assuring that
they work, (that is, that the associated policy is enforced)
have been with us now for a long time for so-called
mandatory integrity policies. Such a system of controls has,
however, been consistently rejected by commercial policy
makers (or their advisors). The usual arguments advanced
are that 1) they don't actually ensure correctness of data,
and/or 2) they are inconsistent (or irrelevent) to
commercial needs.

The first argument is intellectually equivalent to arguing
that it isn't useful to fence a cornfield because the fence
won't help the corn grow. The essence of mandatory
integrity is that it allows one to define who the outsiders
are (even within your own organization) and keeps them out
of the critical data. Although this doesn't ensure the
correctness of data, it certainly limits the threat of how
the data might come to be incorrect.

The second argument has never, to my knowledge, been
successfully maintained once an adequately clear counter-
example has been proposed. Generally, what is shown is that
some subset of a full mandatory policy (e.g., levels alone)
is inconsistent with the counterexample. What is being
claimed is that if the commercial policy itself is sound,
the "mandatory part" of the policy can be identified -- and
there are significant advantages in assurance available for
enforcing this part separately. As an example of what can

B.21 - 1

be done, Steve Lipner's paper on "Non-Discretionary
Controls for Commercial Applications" (1982 IEEE Symposium
on Security and Privacy) is of interest as a carefully
worked-out mapping.

The advantage of explicitly recognizing the mandatory
integrity component of a commercial policy, is that much
stronger assurances (essentially, a closed technical
demonstration) can be provided that a particular system
unequivocally enforces the policy (a stronger statement than
that it implements some mechanism correctly.) This is one
of the few arenas where a body of techniques exist to
demonstrate the correctness of the specification, as opposed
to the correctness of an implementation against possibly
incorrect specifications.

The most appropriate immediate step for organizations to
take is simply to define an appropriate mandatory policy for
labeling organizational data, defining the circumstances for
clearing users to modify the data, and defining the
circumstances for certifying procedures (e.g., manual
procedures) for making changes to the data. Such a policy
is meaningful even without the utilization of automated
systems for enforcing it, and serves as the essential
prerequisite for establishing what is required of a new
automated system (e.g., will it process data of different
integrity? be accessible by users with different
clearances?) so that risks and appropriate countermeasures
can be selected for new acquisitions. Among the
countermeasures that can be considered is the use of a
trusted system, capable of enforcing the policy internally.

The measurable benefits of such systems are that they are
demonstrably robust in the face of Trojan Horse and virus
attacks in the sense that, while they remain vulnerable
to "infection" (as a system), when the infection is
eliminated, the protected data stands a good chance of being
found intact. The only way for a newly-arrived virus to
modify protected data is to attach itself to an uncertified
program in such a way that it slips through the

organization's program certification process undetected -- a

process that can be made as stringent in its requirements as
the organization may wish to make it. Discretionary-only
systems can make no such claim.

B.21 - 2

DEFINITIuN AND CONCEPTS OF DATA INTEGRITY

by

Stelio Thompson-Si ttas

INTRODUCTION

The concepts and definitions or data integrity developed by
the working group and as articulated bv Robert Courtney and Dr.
Willis Ware, are thought-provoking. Therefore. I would like to
propose the foilowina alternative concept of data integrity.

DEFINITION

The ability of an element, or system of elements, (whether
data. programs. hardware. personnel. etc.) to retain its
attributes. and associations and guard against non-intended
changes as the element proceeds through its lifecycle.

DISCUSSION

The integrity of an element can be considered on a
continuous scale, ranging from extremely high to extremely low
retentive ability (At the risk of offending the gods. I would
like to state that integrity is not a dichotomous, binary
functionl) To follow Dr. Ware's example of the holes in the boat
and cracks in the airplane, it can be demonstrated that the body
of an airplane always has cracks present, even though some cracks
are so small they can only be detected by use of precision
instruments. Likewise, every boat has some leaks, however, both
the cracks and the leaks are of an acceptable level which allow
the boat and plane to be considered "safe" for their intended
use, and can be considered to have integrity.

Additional, incremental levels of integrity can be obtained
in most situations. However, the costs associated with
these increasing levels of integrity could increase at such high
levels that the additional integrity level would become
prohibitive

.

In relation to any element or data integrity, the term
"trust" could be used only as a common use synonym to express
degrees of integrity. That is to say. an element with high
levels of integrity, where the attributes are retained under any
condition, and could be trusted to be as expected (a priori). The
term "guality" is generally used to express the relevance,
fitness for use, or confidence level of an element. Generally,
quality is a design function or a result of a low integrity
process

.

B.22 - 1

The multiple attributes associated with an element generally
requires a combination or sateq-uards to ensure its ability to
retain its properties ana associations and guard against non-
intended chanaes . The contribution level ot each of the.

corresponding safeauards combine to produce the total level ot
integrity. This also supports the concept that integrity is not
binary.

The authors of the Orange Book (DoD Trusted Computer System
Evaluation Criteria, 15 Aug 83) provided some excellent
guidelines for computer security, and in fact, also treat "data
integrity" as a continuous process with differing degrees.

The Department of Defense, over the years, having varied
needs for security has provided a great deal of definition and
common use language dealing with security concepts. In reworking
old definitions, and addressing new areas, we need to take
advantage of the precedent use of terms.

SENSITIVITY

A relationship can be established between integrity and
sensitivity in the following manner:

* Unauthorized access to sensitive elements will result in
high impact and high losses.

* One of the attributes of an element or combination of
elements (system) is the ability to control access to only
defined and authorized subjects to prevent unauthorized
disclosure.

* The losses that can be attributed to the failure of the
controls and the resultant disclosure of the sensitive

•• element is disproportionately high due to its overall grave
effect

.

* A higher level of integrity of the element or the process
and its associated higher cost, is justified as a result of
the disproportionately high estimated losses.

For example, it is clear that the higher the integrity of
the control access system or process, the smaller the likelihood
that sensitive elements will be disclosed resulting in lower
potential losses.

Integrity is related to sensitivity whenever we consider the
access attributes of integrity in any element, that could result
in disc losure

.

B.22 - 2

The Swedish National Audit Bureau

Audit Department 3

Section for Information Processing

Peter Nilsson

Eva Sparr

DATA OR INFORMATION QUALITY

The following report from the RRV (the Swedish National Audit Bureau) forms the basis for

a proposal for the standardization of the terms used in information quality in Sweden. The
terms and the model are to be published in a technical report to be issued by the Swedish

Standards Association (SIS). It has also been proposed that these terms and their definitions

are to be included, where necessary, in the next edition of their Data Processing Glossary

(SS 01 16 01).

1, Introduction

Quality is a matter of characteristics. The quality of received information is a function of

its characteristics. It cannot be stated that certain information is better than other

information. The perception of quality depends upon the purpose for which the information

is to be used.

The starting point is that all information which is collected is always related to a question or

a problem. Thus, the process of data collection is goal-oriented. The system acts as a

channel between the process of collection and the use of this data. The perspective is the

user who needs information to solve a problem.

The most relevant term to use in this context is information quality. Seen against the

definitions of data and information, the term data quality covers the quality of the processing

of the data in the data processing system. The quality of information concerns the quality

of the content of the information up to the point where it reaches the user, and includes the

user's interpretation and application of the data received. Thus, data quality is a subset of

information quality. However, as it is used today, data quality has the same meaning as

information quality. Accordingly, the terms "data quality" and "information quality" will be

regarded as synonymous.

B.23 - 1

2. The Model

In principle, there are two aspects to information quality: they are relevance and validity.

Problem solver

Relevance

Stored

Data

Validity

Reality

Relevance describes whether stored data is appropriate, i.e., whether it is relevant to the

problem which the user wishes to solve. Before he can determine whether information is

relevant the user needs to know, for example, what the data involves, under what

circumstances they were gathered and the number and type of errors the data contains. The
term validity describes whether the stored data are "true", whether they are an accurate

description of reality. Arriving at a measurement of validity involves making a comparison

between stored data and some reference material which gives a better description of reality.

This may be a comparison based on data gathered from forms, a direct comparison with

reality, or from corresponding data stored in another register (which is considered to be of

better quality).

Data may be valid but not relevant, i.e., they may not be appropriate to the problem which

the user wishes to solve. Moreover, there may be shortcomings in validity, for example, ten

percent of the information is wrong, but in a given context this causes no problems. Error-

free data may not be required in order to solve the given problem. In this case, the

information is relevant. The problem definition is what determines the inforination is

relevant and thus what degree of validity is required.

Below is a description of the information flow from the point at which the information was

collected, to the user, and the effect which occurs when the user applies the information

received in his activities. Errors may occur at all stages in the flow from the information

collecting stage to the user. Too large errors will distort the content of the information,

which may have negative results.

B.23 - 2

REALITY

0. Environment

THE INFORMATinN ^^Y.^TF^

2. Data preperation 4. Person/System
and feed-in Interface

1. Measurement,

perception of

reality

3. System

(one/several)

5. Function:

Use of

Information

Effect I

0: Environment, or that which one wishes to transfer certain information about.

1: One selects, estimates and measures that part of the environment which is appropriate

to the problem that must be solved; problem definition. Descriptive parameters may be:

coverage, accuracy and timeliness.

2: The interface between collecting information and the system. Collected information

is coded classified, aggregated etc., to adapt it to the system.

3: The data processing system. A collection of hardware units, methods and procedures

and, possibly, even people. Stored data must be valid.

4: The interface between the user and the system. Data must be physically and

logically accessible (retrieving the data and the data retrieved being susceptible to

interpretation). It may also be desirable to have other functions which the user may require

to control and check information received.

5: The function in an organization or agency. Information received is used in a variety

of activities, here called problem solving. In order to find out which information is

required, the problems must be analyzed and specified in a problem definition, and a precise

definition of the information required then set out in a needs specification. The needs

specification, which should be documented, may contain details on what subjects and

characteristics are desired, the degree of detail with which reality is to be described, when

data are to be received and how old they may be, and how many errors the data is

permitted to contain (coverage, accuracy, timeliness and error tolerance). Problem solving

which is dependent on information received has some effect: internal or external, positive or

negative, expected or unexpected.

0 compared to 1: Problem definition. Information is always collected to provide answers to

problems.

B.23 - 3

1 compared to 5: Relevance. Compare the collectors' and the functions' problem
definitions. Information which is collected must correspond to the question which the

function wishes to answer.

Measurement

I
Problem Definition Relevance ^— Problem Definition

I
Function

1 to 5: Errors may occur in the entire communication process from measurement to user (1,

2, 3, 4 and 5). The transfer must be objectively correct.

2 to 4: Correct data processing. The data fed into the system must be processed according

to the specification. The data processing must be objectively correct.

3. Definitions

Some of the definitions below are already published in the current version of the Swedish

Standards Association (SIS) Data Processing Glossary.

INFORMATION QUALITY: The degree to which information is usable to a given user and

for a given problem, including the effect on the user and the environment.

INFORMATION: The content of data.

DATA: The representation of facts, terms, or instructions in a suitable form for transfer,

interpretation or processing by people or automatic aids.

SYSTEM: A collection of hardware units, methods and procedures (manual or automatic)

and possible also people, organized to perform data processing.

FUNCTION: A role in an organization. A user solves problems according to his/her

function. The system should provide the information required. The function specifies the

user's problem definition.

OBJECTIVE CORRECTNESS: That no errors occur to affect the quality of the information.

Errors may occur anywhere in the flow from the information collecting point to the user.

Errors may systematic or unsystematic. Systematic errors are errors caused by one or more

factors whose effects obey some law or follow some pattern. Repeated measurement will

cause the same systematic error to occur. Unsystematic errors are caused by chance,

negligence and the like.

B.23 - 4

PROBLEM DEFINITION: Specifies the problem to be solved and thus the quality of

information needed. The needs specification for the information may be expressed in terms

such as accuracy, timeliness, coverage and error tolerance. The terms used must be
unambiguous.

RELEVANCE: A is relevant to B if A's problem definition agrees with B's. Knowledge
of the problem definition is essential before the relevance of given information can be
assessed. It is appropriate to give details of the relevant timeliness, accuracy, coverage and
the number of errors that can be tolerated before the information is irrelevant.

COVERAGE: That all relevant objects with characteristics are fed into the system. Loss is

a subset of coverage. When a characteristic or variable is missing from an object existing

in the system.

ACCURACY: How well the specified characteristics are measured are given a value.

Measurement is done with certain accuracy on a scale (according to the nominal, ordinal,

interval or quota' scale), which may be more or less detailed.

ERROR TOLERANCE: A measurement of the number of errors that can be tolerated

before the information is irrelevant.

STABILITY: The stability of a variable when repeated measurements are taken.

DEGREE OF DETAIL: The amount of resolution in describing reality. May be expressed

as, for example, the number of classes which describe the phenomenon. The more classes

there are, the greater the degree of detail. The degree of detail is in fact periodicity. A
scale with a high degree of detail, e.g. many classes, involves a higher risk of error.

PSEUDO PRECISION: A degree of detail which is too high in relation to the stability.

Gives an impression of greater precision than is appropriate.

TIMELINESS: The time aspects of the information. Timely data is data which reflects the

point in time which the user wants information on. This may be the latest, most current

data, or data on a given point in the past.

TIME OF EVENT: The time at which the event one wishes to measure occurred. Data

relates to that time.

TIME OF MEASUREMENT: The time on which the actual measurement is based e.g. a

period of measurement of a week to represent the whole year of the collecting of

information after an event has occurred. The time of measurement may be the same as the

time of event.

TIME OF USAGE: The time at which the information is used. The difference between the

time of event and the time of usage is the age of the data.

B.23 - 5

UPDATING: Modifying a volume of data with current data according to a specified

procedure. Initiated by changes in time or in one of several variables specified in the

degree of detail.

VALIDITY: The degree to which the data reflects reality. A weakness in, for example,

updating, can result in less validity.

RELIABILITY: A measurement of the degree with which the system supplies the

information of a given quality which it is said to deliver.

ACCESSIBILITY: That the user has access to the information. The interface between

system and user.

RETRIEVABILITY: The system produces relevant data. A measurement of the search

function in the system.

INTERPRETABILITY: That data received can be interpreted, that they have a structure

which gives the user the correct information.

OBSERVABILITY: The possibility of observing the behaviour of the system and its

interaction with other systems.

MEASURABILITY: The possibility of measuring/checking a variable, component or

function in a system. Information is received on its status but this does not mean that it

can be influenced.

CONTROLLABILITY: The possibility of controlling or changing a variable, component or

function as desired.

CONSISTENCY: The degree to which data stored in a system agrees or are consistent.

Data may be objectively correct but logically inconsistent.

B.23 - 6

COMMENTS ON INFORMATION INTEGRITY ISSUES
for the NIST-hosted 1989 Invitational Workshop on Data Integrity,

January 25-27, Gaithersburg , MD

John M. Thurlow, Exxon Central Services

Disclaimer

The following discussion of priorities for resolving various
aspects of managing information integrity reflect my opinions, and not
necessarily those of Exxon management, but the discussion is derived from
issues present in a modern commercial organization.

Primary Issues

For me, the most important issue is improving the appropriate
use of information systems technology on behalf of the objectives of a

commercial concern. In this general arena, the two aspects of the problem are:

1) providing simple concepts of integrity for not only those who specify,
design, and deliver applications of I.S. technology but the end-users of those
applications as well, and 2) providing a clear statement of requirements to the
suppliers of the underlying IS technology.

For those concerned with applications delivery and usage, the

concepts need to be augmented by general approaches for understanding the value
of information integrity in specific circumstances, and achieving the
appropriate level of integrity. That is, they need systematic approaches to

identifying information integrity needs and the benefits of corresponding
levels of integrity to balance against the costs of an effective approach to

achieving those levels.

Because improved organizational productivity is also a

requirement, users of IS technology will seek out suppliers who have recognized
the needs to support information integrity, and provide suitable products.
Application deliverers who use more compliant technology will be more
productive by the amount of work which they do not have to provide, because
required facilities have been provided by the supplier.

In a typical commercial concern, one can identify a considerable
proportion of the efforts to introduce and maintain IS applications which is

devoted to ensuring the requisite information integrity in spite of

shortcomings of the underlying technology. A good example is found in common
systems for delivering electronic mail to users in an environment where

multiple nodes are connected by telecommunications links. Vendor-supplied

systems, including the supporting operating systems, typically are not

explicitly designed to ensure the mail is delivered to the intended recipient,

and is not lost or delayed to point of being effectively lost. Additional

work, both one-time and ongoing, is often needed to provide the required level

of int grity (no lost mail)

.

B.24 - 1

"Integrity" and "quality"

I would like to move away from using "quality" as a term having
a parallel meaning to integrity in this context. For converts to quality
management thinking (Deming, Crosby, et al

.

) . "quality" means "meeting
requirements" . The appropriate level of information integrity is one of the

requirements to be met in an application of I.S. technology. Other
security- related requirements could include appropriate availability and
confidentiality. It is helpful in gaining attention to integrity issues to

keep the terminology simple and consistent with general usage.

Models

Models are useful aids in establishing issues for attention and
a common language for discussing them. For identifying information integrity
requirements, the structure of the Clark-Wilson model seems to be a very good
starting place. It is relevant to the interests and experience of a commercial
organization, and recognizes the role of humans in information management
processes in its discussion of segregation of duties.

I believe that the Clark-Wilson model merits the further thought
that is being applied to it, and can b6 the basis for systematic processes
designed to elicit information integrity requirements and approaches to meeting
them. I think that as more practitioners become familiar with the principles
of the model, and it is translated into less-rigorous terminology, it will be
applied to great advantage.

3/31/89

B.24 - 2

Doug Varney, Kansas State University

Position Paper on Data Integrity

One of the most difficult aspect of the Clark and Wilson model for

data integrity is the certification of Transformation Procedures (TPs).

Since there is probably not a great desire to rewrite application

programs that make it easier to certify we are left with the daunting

task of certifying existing application programs. Compounding our

problem is that for much software the source code is not available.

The certification process can be broken into two areas: that the

correct data is being modified and that that data is modified in a

manner that preserves its integrity.

Correct Data: Most of this can be pushed off on the access control

triple to enforce that only correct data can be modified. Obviously

this depends on the granularity of the CDIs in the access control

triple, but it is a good starting place.

Correct Modification: Unfortunately program proving is not going

to provide a silver bullet for proving that only correct modifications

can occur. Without program proving we are left with testing and

code walk throughs as the means of certification.

Testing: A testing criteria and method should be chosen to

correspond to the level of integrity desired. CO or CI should be

considered the minimum while for higher levels of integrity further

methods such as revealing subdomains, boundary testing or C-

reliable testing should be chosen. The amount of testing may also be

influenced by the past history of the program. If there is a close

relationship with the developer then access to the developer's testing

data would be invaluable. Obviously this is easiest with the

specification of new programs.

A close relationship with the developer does not exist in every case

(shrink wrapped software for example). In the cases where certifier

does not have access to the source code he can either trust that the

developer has certified that program works according to specification

or can disassemble the code and test that. Neither of these options

are very desirable. The choice rests on the level of integrity desired

for the system and the reputation of the developer.

B.25 - 1

Code Walk Throughs are also an essential part of certification.

Preferably done in conjunction with the developer. Unusual

programming practices should be questioned extensively. This

assumes that compilers maintain integrity, which may not be a valid

assumption in some cases.

There is a further question whether integrity can be maintained in a

programming environment without great programmer
inconvenience. The high rate of introduction of new objects makes
maintaining integrity difficult. There is a threat of viruses. A
method of such as a knowledge based name checker [Karger] and/or

protection of executables by a manipulation detection code [Pozzo

and Gray] is a possibility to limit viruses. Once in a nonprogramming
environment the access control triple should be able to limit the

spread of viruses.

Conclusion: Certifying Transformation Procedures and testing are

closely linked. Certifying TPs is easier the more test data that is

already accessible. The lack of source code makes certification very

difficult. Special care should be taken in fluid environments to

prevent the infection by viruses.

B.25 - 2

Integrity and Information Protection

S. R. Welke
W. T. Mayfield

J. E. Roskos

Institute for Defense Analyses

This paper is a response to the Strawman document "Some Informal Comments About Integrity and

the Integrity Workshop" by Robert H. Courtney from the perspective of the Institute for Defense

Analyses (IDA). IDA is currently being funded by the National Computer Security Center to analyze

integrity and availability issues in tactical/embedded computer systems. This project is an outgrowth

of requirements set forth in Department of Defense Directive 5200.28, Security Requirements for

Automated Information Systems. The directive states that "safeguards shall be applied so that

information retains its content integrityinformation shall be safeguarded against tampering, fraud,

misappropriation, misuse, loss, and destruction."

IDA'S framework for information protection uses the triparite set of integrity, confidentiality, and

availability. These three aspects are inexorably linked; we can not look at one without considering all

three. The "Orange Book" is particularly remiss in addressing only confidentiality issues and essentially

ignoring integrity and availability. Many computer system protection mechanisms exist which support

all three aspects, but these mechanisms have been primarily touted as supporting confidentiality.

For our purposes, data integrity is defined in directive 5200.28 as follows:

Data integrity - the state that exists when data is unchanged from its source and has not been

accidentally or maliciously modified, altered, or destroyed.

This definifion reinforces the view that integrity is a binary property. Integrity is concerned with

damage to data by actions that are malicious, fraudulent, accidential, or environmentally induced. These

actions can be either internally or externally initiated.

We agree with the Counmey's Strawman paper on several points.

o Integrity is binary; either you have it or you don't. Confidentiality and availability are also

binary properties.

o The three aspects are closely linked to one another.

0 Integrity is based on expectations of specified attributes. These expectations must be identified

before any evaluation of integrity can be made.

0 Trust is a relative measure that can be used to convey the degree of confidence one has in the

safeguards applied to achieve data integrity, confidentiality, and availability. It is used in this

maimer in the Orange Book with respect to confidentiality.

0 There are mechanisms upon which integrity, confidentiality, and availability safeguards can be

implemented; some are unique to one of the three aspects, while others are shared between

them.

B.26 - 1

We differ with the Strawman paper on what the point of focus should be at the upcoming Workshop.
Courtney suggests that the next point of focus should be to attempt to "redefine" data quality. Quality

is a primitive concept that has been shown to be undefinable, so attempting to redefine it might be a

frustrating task. Instead, we recommend using the seemingly acceptable terms "consistency", "accuracy:,

and "dmeliness" to examine the possible contributions of known protecfion, reliability, and recovery

mechanisms. By consistency, we mean that data is unchanged and agrees with itself internally; by
accuracy, we mean that data is precise within specified tolerances; by timeliness, we mean that data

is available for its intended use within specified periods.

Ensuring integrity requires dealing with data structures, data contents, process and user authorizations

and authentications, and data constraints. Many protection mechanisms that are currently used to

achieve confidentiality were originally designed to achieve integrity. We should examine the focus of

each type of protection mechanism and ascertain its role in providing for one or more aspects of

informafion protection. Many existing mechanisms focus on all three aspects of protecfion (e.g., control

of access, damage prevention/detecfion/recovery). Other mechanisms focus on both integrity and

confidenfiality (e.g., separation of processes, separation by sensifivifies or other categorizations). Sfill

other mechanisms focus on integrity and availability (e.g., denial prevenfion/detection/recovery). These

machanisms should be discussed to determine what they provide, and what is still needed.

B.26 - 2

APPENDIX C

The Call for Papers

c

APPENDIX C

CALL FOR PAPERS

Invitational Workshop on Data Integrity

January 25-27, 1989

Sponsored by and Held at

National Institute of Standards and Technology
(formerly National Bureau of Standards)

Gaithersburg, Maryland

The National Institute of Standards and Technology is sponsoring an Invitational Workshop
on Data Integrity to be held at NIST in Gaithersburg, Maryland on January 25-27, 1989.

The Workshop will focus on the concepts of data integrity and data quality, and the

characteristics, metrics, and principles needed to define and provide a suitable framework for

data integrity and data quality.

This invitational workshop is a follow-on to the October 27-29, 1987 invitational Workshop
on Integrity and Privacy in Computer Information Systems (WIPCIS). The latter originated

as a response to a paper by Clark and Wilson presented at the IEEE Security and Privacy

Conference in April, 1987. That paper compared commercial and military computer security

policies. The 1987 Workshop focused on commercial sector interpretations of the issues of

Assurance, Granularity and Function, Identity Verification, Auditing, and System Correspon-

dence to Reality and related these to a data integrity model.

A subsequently-formed data integrity working group of the NIST Computer and Telecom-

munications Security (CTS) Council has proposed definitions for data integrity and data

quality. These have been incorporated, along with other conclusions, in a paper written by

the working group chair Robert H. Courtney, Jr. It is intended that this paper serve as a

strawman to stimulate responses in the form of papers to be given at the January Workshop.

The Clark & Wilson paper would form an example within this framework. Although computer

and telecommunications system integrity is broader than data integrity, consensus findings

about data integrity would contribute significantiy to our understanding and handling of the

broader concerns of integrity.

Papers are being sought from the computer security community for presentation at the

Workshop. Papers could address but need not be limited to the following topics:

o Key principles for achieving data integrity,

o Key principles for achieving data Quality.

o The application of principles to achieve integrity and quality of data.

o The attributes of data quality (other than accuracy, timeliness and completeness).

o Is confidentiality an attribute of data quality?

C - 1

o Connection between Quality Assurance and data integrity,

o Connection between Quality Control and data quality,

o Relation between data quality and the value of data.

o Organization-specific data integrity/data quality policies derived from a body of

principles.

o Cost-Benefit Relationships between security controls and data quality and integrity,

o Organizational structures for assigning data integrity, quality assurance, and data quality

functions.

o A realistic internal audit role relative to data integrity and quality,

o A reasonable external auditor role relative to data security and its subset data integrity,

o The relation of people roles (ADP staff, user, internal auditor, quality assurance, quality

control) to data integrity and quality.

Papers should be submitted by November 17, 1988 to:

National Institute of Standards and Technology

Computer Security Division

Attn: Zella Ruthberg

A-216 Technology

Gaithersburg, Maryland 20899

Approximately six papers will be selected for presentation and discussion. Selections will

be made by December 7, 1988.

The strawman paper will be sent on request. For further background, people may also request

a copy of the report of the 1987 WIPCIS workshop. The paper and report are available from

Robin Bickel at the above address or 301-975-3359. For further information on the Workshop,

contact Zella Ruthberg at 301-975-3361.

C - 2

APPENDIX D

The Workshop Attendee List

D

APPENDIX D

ATTENDEES AT DATA INTEGRITY WORKSHOP

January 25-27, 1989

Key to last line of each attendee's data:

phone no. e-mail address fax no.

1. Marshall Abrams
Principal Scientist

The Mitre Corp.

7525 Colshire Drive

McLean, VA 22102
703-883-6938 abrams@mitre.org 703-883-5687

2. Eugen Bacic

Software Security Specialist

Communications Security Establishment

P.O. Box 9703, Terminal

Ottawa, Canada KIG 3Z4
613-991-7208

3. Robert Baldwin

Tandem Computers

19333 Vallco Parkway
MS 3-15

Cupertino, CA 95014
408-725-7233

4. Joseph M. Beckman
Computer System Analyst

National Computer Security Center

9800 Savage Rd.

Fort Meade, MD 20755-6000

30 1 -859-448 8 beckman@dockmaster.arpa

5. Thomas A. Berson, Pres.

Anagram Laboratories

P.O. Box 791

Palo Alto, CA 94301

415-324-0100 berson(a)kl.sri.com 415-324-0121

6. Deborah J. Bodeau

Lead Engineer

The Mitre Corp.

Burlington Road
Bedford, MA 01730
617-271-8436 djb{S)mitre-bedford.arpa

D - 1

7. David A.Bonyun
Director of Computer Security

AIT Corporation

9 Auriga Drive

Nepean, Ontario

Canada K2E 7T9
613-226-7800 dbonyun@ncs.dnd.ca 613-226-3066

8. Dennis K. Branstad

Senior Computer Science Fellow

NIST
Technology A216
Gaithersburg, MD 20899
301-975-2913 dkb@ecf.icst.nbs.gov 310-948-1784

9. Nander Brown
Agency Computer Security Program Mgr
OIRM/SBA
Rm 906A
1441 L St., NW
Washington, D.C. 20416
202-653-6747

10. Rae K. Burns

Principal Consultant

Kanne Associates, Inc.

219 Bragg Hill Road
Ashbumham, MA 01430
508-874-529 1 burns(S)dockmaster.arpa

11. Peter G. Capek
Research Staff

IBM Research

P.O. Box 218

Yorktown Heights,

914-945-1250
N.Y. 10598

capek@ibm.com 914-945-2141

12. Thomas M. Chen, Mgr
VS/OS Sec. Development Mgr
Mail Stop 013-790

Wang Laboratories, Inc.

1 Industrial Ave.

Lowell, MA 01851

508-967-7684 tmchen@dockmaster.arpa

13. David Clark, Sr. Research Scientist

M.I.T. Lab for Computer Systems

545 Main St., Room 540
Cambridge, MA 02139
617-253-6003 ddc@lcs.mit.edu 617-258-8682

D - 2

14. Robert H. Courtney, Jr. (Workshop Co-Chair)

President

RCI Inc.

Box 836

Port Ewen, N.Y. 12466

914-338-2525 rhcx(2)lanl.gov or courtney@ecf.icst.nbs.gov

15. Viiveke Fak, Assoc. Prof.

Dept. of Electrical Engrg

Linkoping U.

S-581 83 Linkoping

Sweden
46 13 281000 (o) v.fak@linnea.liu.se 46 13 139282

16. Ken Eggers

The Mitre Corp.

MITRE C3I Division

Washington C3I Operation

7525 Colshire Drive

McLean, VA 22102-3184

703-883-7080

17. Betty C. Hill

Information Security Officer

The World Bank Group
1818 H Street, N.W.
Washington, D. C. 20433
202-473-2790 202-4771572

18. T. J. Humphreys
British Telecom

St. Vincent House
1 Cutler St., Ipswich

Suffolk, UK
+44-473-224466 -H44-473-214035

19. Assoc. Prof. Sushil Jajodia

Information Systems & Systems Engrg Dept

George Mason University

Fairfax, VA 22030-4444

703-764-6192 jajodia@gmuvax2.gmu.edu

20. Roy W. Jones (paper given, not present)

ICL Defence Systems

ICL (UK) Limited

Eskdale Road Winnersh

Wokingham Berkshire RGll 5TT
(0734)693131

D - 3

21. Howard Johnson, Pres.

Info. Intelligence Sciences, Inc.

15694 East Chenango Ave.

Aurora, Colorado 80015
303-693-8291 howardj(a)csugreen (bitnet) or colostate.edu

22. Robert Jueneman, Dir. of Infosec. Technology
Computer Sciences Corp.

3160 Fairview Park Drive

Falls Church, VA 22042
703-876-1076 703-876-0878

23. Stephen Kane, Sr.

Product Mgr, Secure Systems
Wang Laboratories, Inc.

1 Industrial Ave.

Lowell, Mass. 01851
Mail Stop 013-A2A
508-967-0318 kane@dockmaster

24. Stuart Katzke, Chief

Computer Security Division

NIST
Bldg 225, Room A216
Gaithersburg, MD 20899
30 1-975-2929 katzke@ st 1 .icst.nbs.gov

25. Stewart Kowalski

Researcher, Proj. for System Integrity & Information

Stockholm University

Dept of Computer & System Sciences

S-106 91 Stockholm
Sweden
46 8 759 4600 (o) stewart@suadb.se (internet)

46 8 162040 (u)uucp:mcvax!enea!suadb!stewart(univ.?)

46 8 159726 (h) 46 8 15 97 26 fax

26. Karl Krueger

Chief Information Security Officer

Room H2062
The World Bank Group
1818 H Street NW
Washington, D.C. 20433
202-473-2317 krueger(a)ibrdvml (bitnet) 202-4771572

D - 4

27. Jan Kruys

Senior Consultant

NCR Systems Engineering B.V.

Zadelstede 1-10

343 IJZ Nieuwegein

Netherlands

31 3402 76529 31 3402 39125

28. Milan S. Kuchta, Proj. Mgr
System Security Centre

Communication Security Establ.

P.O. Box 9703, Terminal

Ottawa, Canada KIG 3Z4
613-991-7331 kuchta(a)ncs.dnd.ca 991-7500

29. Stanley A. Kurzban, Sr. Instructor

IBM Corp.(798/TEC)

500 Columbus Ave.

Thomwood, N.Y. 10954

9 14-742-5638 kurzban(a)ecf.icst.nbs.gov

30. Carl Landwehr
Computer Scientist

Naval Research Lab
Code 5542

4555 Overlook Ave., S.W.

Bldg 16, Rm 111

Washington D.C. 20375-5000

202-767-3381 landwehr@nrl-css.arpa or (5) itd.nrl.navy.mil

31. E. Stewart Lee, Prof.

Computer Systems Research Inst.

University of Toronto, C.S.R.I., Rm 2002

10 King's College Rd.

Toronto, Ontario M5S 1A4
416-978-5035 stew@hub.utoronto.ca 416 978 4765

32. Theodore M. P. Lee

Trusted Information Sys., Inc.

P.O. Box 1718

Minnetonka, MN 55345-0718

or 15301 Willowood Drive

Minnetonka, MN 55345

612-934-5424 lee(5) tis.com

D - 5

33. Steven B. Lipner, Mgr.

Secure Sys. Development
Digital Equipment Corp.

85 Swanson Road
BXB1-2/D04
Boxboro, MA 01719-13426
508-264-5090 lipner%ultra.dec(5)decwrl.dec.com 508-264-5100

34. Terry Mayfield, Assist. Dir.

Computer & Software Engrg Div.

Institute for Defense Analyses

5 Skyline Place, Suite 300

5111 Leesburg Pike

Falls Church, VA 22041
703-824-5524 mayfield(5)ida.org 703-845-2588

35. Kurt Meiser

Coopers & Lybrand

1251 Ave. of the Americas
. New York, N.Y. 10020

212-536-1788 or 914-542-4280 MCI:351-6344

36. Dale W. Miller

Director of Consulting Services

Irongate, Inc.

7 Mt. Lassen Dr., Suite C-126
San Rafael, CA 94903
415-491-0910 415-479-0866

37. Roger L. Miller

Senior Programmer
IBM DB2 Design

IBM Santa Teresa Lab J67/B45

P.O. Box 49023
San Jose, CA 95161-9023

or 555 Bailey Ave.

San Jose, CA 95141

408-463-2371

38. William H. Murray, Fellow

Info. System Sec.

Ernst & Whinney
21 Locust Avenue
Suite 2D
or Stepping Stones

705 Weed Street

New Canaan, CT 06840
203-966-4769 whmurray(5)dockmaster.arpa

D - 6

39. Lee Ohringer

Ass't Automated Info. Security Mgr
Department of Treasury

Bureau of Engraving & Printing

P. O. Box 5667

Washington, D.C. 20016
or 14th & C St. SW
Washington, D.C. 20228
202-447-0516

40. Carl A. Pabst

Principal Consultant in EDP
Touche Ross International

1000 Wilshire Boulevard

Los Angeles, CA 90017-2472

216-688-5201

or 17620 Rayen St.

Northridge, CA 91325
818-886-2506

41. Donn Parker

Sr. Mgmt. Sys. Consultant

SRI International

333 Ravenswood Ave.

Menlo Park, CA 94025

415-859-2378 dparker@kl.sri.com 415-326-5512

42. Tom A. Parker

ICL DEFE Principal Consultant

ICL Defence Systems

Eskdale Road, Winnersh

Wokingham, Berkshire RGll 5rr
+44-249-693131 fax same phone, ask for fax extension

43. Tom Peltier (not present, sent paper)

General Motors Corp.

3044 General Motors Blvd

Rm 13-257

Detroit, Michigan 48202
313-556-1627

44. Paul Peters

Deputy Director

National Computer Security Center

9800 Savage Road
Fort Meade, MD 20755

or 8802 Churchfield Lane

Laurel, MD 20708
301-859-4372 ppeters(a)dockmaster

D - 7

45. Sylvan Pinsky

Senior Scientist

National Computer Sec. Center

8331 Streamwood Drive

Baltimore, MD 21208

301-859-4485 pinsky@dockmaster.arpa

46. Sig Porter

Consultant in Security

614 Santa Alicia

Solana Beach, CA 92075
617-755-7814 sporter(a)dockmaster.arpa

47. Maria M. Pozzo
Member of Technical Staff

Aerospace Corp. M8\0SS
2350 E. El Segundo Blvd

El Segundo, CA 90245-4691

213-336-3096 pozzo@aerospace.arpa or pozzo@cs.ucla.edu

or 1013 Ocean Park Blvd. #8

Santa Monica, CA 90405
213-452-4904

48. David Rosenthal, Logician

Odyssey Research Associates

301A Harris B. Dates Drive

Ithaca, N. Y. 14850
607-277-2020 davidr@cu-arpa.cs.cornell.edu

49. Robert Rosenthal

Electrical Engineer

Computer Security Division

NIST
Technology A216
Gaithersburg, MD 20899
301-975-3603

50. Zella G. Ruthberg .

Computer Scientist

NIST
Bldg 225, Rm A216
Gaithersburg, MD 20899
301-975-3361 ruthberg@ecf.icst.nbs.gov 301-948-1784

51. Damian Saccocio (observer)

Staff Officer

National Academy of Sciences

Computer Science & Technology Board

National Research Council

2101 Constitudon Avenue, N.W., Room HA 560
Washington, D.C. 20418
202-334-2605 dsaccoci@nas(bitnet) 202-334-2791

D - 8

52. Ravi Sandhu, Asst. Prof.

Dept of Computer & Info. Science

The Ohio State University

2036 Neil Avenue Mall

Columbus, OH 43210-1277

614-292-0394 sandhu@cis.ohio-state.edu

53. Marvin Schaefer, Vice Pres.

Trusted Information Sys. Inc.

3060 Washington Rd., Rte 97

P.O. Box 45

Glenwood, MD 21738
301-854-6889 marv(a)tis.com 301-854-6889

54. William R. Shockley, Dir.

Trusted Database Sys.

Gemini Computers, Inc.

P.O. Box 222417
Carmel, CA 93922

or 60 Garden Ct., Suite 1 10

Monterey, CA 93940
408-373-8500 408-373-5792

55. Gary Smith

Information Systems & Systems

Engineering Department

George Mason University

Fairfax, VA 22030-4444

703-764-6296(0) gwsmith@pentagon-opti.army.mil

703-803-6870(h)

56. Eva Sparr (submitted paper, not present)

RIKSREVISIONSVERKET
National Audit Bureau

Box 34105

S-10026 Stockholm

Sweden
46 8-7384193 46 8-56 04 25

57. Dennis Steinauer

Computer Scientist

NIST
A-216 Technology

Gaithersburg, MD 20899

310-975-3357 steinauer@ecf.icst.nbs.gov 301-948-1784

58. Stelio Thompson-Sittas

President/CEO

Expert Systems Software, Inc.

P.O. Box 15967

Long Beach, CA 90815
213-494-2573 or 213-499-3347(messages)

D - 9

59. John M. Thurlow

I.S. Security & Control Coordinator

Exxon Corporation

P.O. Box 153

Florham Park, NJ 07932-0153

201-765-7095 fax 201-765-7612 (765-7021 for assistance)

60. Anne Todd
NIST
Bldg 225, Rm B363
Gaithersburg, MD 20899
301-975-3366 todd(5)ecf.icst.nbs.gov 301-948-1784

61. Douglas Vamey
Kansas State University

417 Westview Drive

Manhattan, Kansas 66502
913-539-1510 or 913-776-5705 varney@ksuvaxl.cis.ksu.edu

62. Grant M. Wagner
Chief Evaluator

National Computer Security Center/C12

9800 Savage Road
Fort Meade, MD 20755-6000
301-859-4458 gwagner@dockmaster.arpa

63. Dr. Willis Ware
Corporate Research Staff

The Rand Corp.

1700 Main St.

Santa Monica, CA 90406
213-393-0411 x6432 willis@rand-unix.arpa 213-393-4818

or rand.or

64. Stephen R. Welke
Research Staff Member
Institute for Defense Analysis

5 Skyline Place, Suite 300
5111 Leesburg Pike

Falls Church, VA 22041

703-845-3597 welke@ida.org 703-845-2588

65. Peter Wild, Mgr
Coopers & Lybrand
1251 Avenue of the Americas

New York, N.Y. 10020
212-903-3259

D - 10

66. David R. Wilson

Principal

Ernst & Whinney, Inc.

2000 National City Center

Cleveland, OH 44114

216-861-5000 216-861-4966

I'

W :
-

NBS-n4A (REV. 2.60)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NIST/SP-500/168

2. Performing Organ. Report No. 3. Publication Date

September 1989

4. TITLE AND SUBTITLE

Report of the Invitational Workshop on Data Integrity

5. AUTHOR(S)

Zella G. Ruthberg and William T. Polk

6. PERFORMING ORGANIZATION (If joint or other than NBS. see instructions)

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
(formerly NATIONAL BUREAU OF STANDARDS)

U.S. DEPARTMENT OF COMMERCE
GAITHERSBURQ, MD 20899

7. Contract/Grant No.

8. Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City. State. ZIP)

Same as item #6

10. SUPPLEMENTARY NOTES

This document describes the results of the January 25-27, 1989 workshop on data

integrity both via attendee reports and editor interpretation.
Library of Congress Catalog Card Number: 89-600756

I I

Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here)

This report contains the proceedings of the second invitational workshop on

computer integrity issues and is the second response to the Clark/Wilson paper

entitled "A Comparison of Military and Commercial Data Integrity Policy." The

NIST Computer and Telecommunications Security Council established a Working Group

on Data Integrity in late 1987 whose deliberations were the primary source for

deciding on Data Integrity as the subject of the second workshop. The Planning

Committee, composed primarily of Working Group members, outlined the scope of this

workshop as discussions of 1). Integrity Framework Elements, 2). Implementation

Requirements and Approaches, and 3). Implementation/Models in the light of the

agreed upon integrity framework. The five discussion groups covered: Operating

Systems and Systems, Telecommunications, System Services, Applications, and

Implementations/Models. No consensus was reached on the definition of data

integrity but consensus was reached on quality oriented 1). Policy and Objectives

and 2). Mechanisms. Using the consensus, the five discussion groups came up with

recommendations for future research.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

commercial computer systems; computer information system; constrained data item;

data integrity; data quality; data value; integrity framework; integrity interface;

integrity verification procedure; separation of duties; transformation procedure

13. AVAILABILITY

Unlimited

I I
For Official Distribution. Do Not Release to NTIS

fX~| Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.

20402.

Order From National Technical Information Service (NTIS). Springfield, VA. 2216!

14. NO. OF
PRINTED PAGES

377

15. Price

USCOMM-DC 9043-P80

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SYSTEMS TECHNOLOGY

Superintendent of Documents
Government Printing Office

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Institute of Standards and Technology Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notification key N-503)

ft U.S. GOVERNMENT PRINTING OFFICE: 1989— 21+2 - 2 0 0 '05071

Demco, Inc. m

NISTTechnical Publications

Periodical

Journal of Research of the National Institute of Standards and Technology—Reports NIST research
and development in those disciplines of the physical and engineering sciences in which the Institute

is active. These include physics, chemistry, engineering, mathematics, and computer sciences.

Papers cover a broad range of subjects, with major emphasis on measurement methodology and
the basic technology underlying standardization. Also included from time to time are survey articles

on topics closely related to the Institute's technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the

Institute's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) de-

veloped in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NIST, NIST annual reports,

and other special publications appropriate to this grouping such as wall charts, pocket cards, and
bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physi-

cists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in

scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical
properties of materials, compiled from the world's literature and critically evaluated. Developed un-

der a worldwide program coordinated by NIST under the authority of the National Standard Data
Act (Public Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data (JPCRD)
is published quarterly for NIST by the American Chemical Society (ACS) and the American Insti-

tute of Physics (AIP). Subscriptions, reprints, and supplements are available from ACS, 1155 Six-

teenth St., NW., Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Institute on building

materials, components, systems, and whole structures. The series presents research results, test

methods, and performance criteria related to the structural and environmental functions and the

durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treat-

ment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final reports of work performed at NIST
under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Com-
merce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally

recognized requirements for products, and provide all concerned interests with a basis for common
understanding of the characteristics of the products. NIST administers this program as a supplement

to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NIST research and experience, cov-

ering areas of interest to the consumer. Easily understandable language and illustrations provide use-

ful background knowledge for shopping in today's technological marketplace.

Order the above NIST publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NISTpublications—FIPS and NISTIRs—from the National Technical Information

Service, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series col-

lectively constitute the Federal Information Processing Standards Register. The Register serves as

the official source of information in the Federal Government regarding standards issued by NIST
pursuant to the Federal Property and Administrative Services Act of 1949 as amended. Public Law
89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11,

1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NIST Interagency Reports (NISTIR)—A special series of interim or final reports on work performed

by NIST for outside sponsors (both government and non-government). In general, initial distribu-

tion is handled by the sponsor; public distribution is by the National Technical Information Service,

Springfield, VA 22161, in paper copy or microfiche form.

U.S. Department of Commerce
National Institute of Standards and Technology

(formerly National Bureau of Standards)

Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300

