
AlllDE T7STEb

NATL

A1 11 02975926

(formerly National Bureau of Standards)

Computer Science
and Technology

N»sT . NIST Special Publication 500-1 60
PUBLICATIONS

Report of the Invitational Workshop
on Integrity Policy in Computer
Information Systems (WIPCIS)

Dr. Stuart W. Katzke and Zella G. Ruthberg, Editors

-QC—
100

.U57

#500-160

1989

NATIONAL mSTITUTE OF STAMDARDS &
- - TECHNOLOGY

Research ^formation Center
Gaithersbiirg, MD 20899

Computer Science
and Technology

CiCloo

NIST Special Publication 500-160

Report of the Invitational Workshop
on Integrity Policy in Computer
Information Systems (WIPCIS)

Dr. Stuart W. Katzke and Zella G. Ruthberg, Editors

Computer Security Division

National Computer Systems Laboratory

National Institute of Standards and Technology
Galthersburg, MD 20899

Sponsored by:

ACM/Speclal Interest Group on Security,

Audit and Control

IEEE/Computer Society, Technical

Committee on Security and Privacy

National Computer Security Center

National Institute of Standards and Technology

January 1989

* W ^ NOTE: As of 23 August 1988, the National Bureau of

U.S. DEPARTMENT OF COMMERCE
C. William Verity, Secretary

Ernest Ambler, Acting Undersecretary for Technology

National Institute of Standards and Technology
(formerly National Bureau of Standards)

Raymond G. Kammer, Acting Director

Standards (NBS) became the National Institute of

standards and Technology (NIST) when President

Reagan signed Into law the Omnibus Trade and

Competitiveness Act.

Library of Congress Catalog Card Number: 88-600606

National Institute of Standards and Technology Special Publication 500-160
Natl. Inst. Stand. Technol. Spec. Publ. 500-160, 195 pages (Jan. 1989)

CODEN: NSPUE2

U.S. GOVERNMENT PRINTING OFRCE
WASHINGTON: 1989

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402

REPORT OF THE INVITATIONAL WORKSHOP ON
INTEGRITY POLICY IN COMPUTER INFORMATION SYSTEMS (WIPCIS)

October 27-29, 1987
Bentley College

Waltham, Massachusetts

ABSTRACT

This is the Report of the Invitational Workshop on
Integrity Policy in Computer Information Systems which was
sponsored by the IEEE Computer Society's Technical Committee on
Security and Privacy, the Special Interest Group on Security,
Audit, and Control (SIGSAC) of the Association for Computing
Machinery, the National Computer Security Center, and the
Institute for Computer Sciences and Technology at the National
Bureau of Standards. The workshop established a foundation for
further progress in defining a model for information integrity.
The workshop was held in response to the paper by David Clark of
M.I.T. and David Wilson of Ernst and Whinney entitled "A
Comparison of Military and Commercial Data Security Policy." The
report's 10 sections contain an introduction, the composition of
the organizing committee with a list of participants and a
workshop agenda, a summary report by Donn Parker and Peter
Neumann of SRI International, the reports of the five working
groups, a response by Clark and Wilson, and a proposal by the
National Bureau of Standards for continuing the effort to define
an integrity policy. The appendices include a copy of the
original Clark-Wilson paper, a summary of the Clark-Wilson rules,
a number of position papers submitted in advance of the workshop,
several papers submitted during and following the workshop, and a
Xist of reference materials related to the integrity policy
effort.

iii

TABLE OF CONTENTS

1.0 Introduction 1-1

2.0 The Committee 2-1

2.1 Workshop Participants 2-2

2.2 Workshop Agenda 2-5

3.0 A Summary and Interpretation of the Invitational
Workshop on Integrity Policy in Computer Information
Systems by Donn B. Parker and Dr. Peter G. Neumann . . 3-1

4 . 0 Report of the WIPCIS Working Group on Assurance
by Earl Boebert 4-1

5.0 Report of the WIPCIS Working Group on Granularity and
Functions by Dorothy Denning, Cheryl Helsing,
Paul Karger, Kurt Meiser, Rolf Moulton, William
Murray, and Simon Wiseman 5-1

6.0 Report of the WIPCIS Working Group on Identity
Verification by Tom Berson, Peter Capek,
Jim Schweitzer, and Clark Weissman 6-1

7.0 Report of the WIPCIS Working Group on Auditing by
Peter D. Wild 7-1

8 . 0 Report of the WIPCIS Working Group on Correspondence
of a System to Reality by David R. Wilson 8-1

9.0 Comments on the Integrity Model by David D. Clark
and David R. Wilson 9-1

10.0 An Integrity Policy: The Workshop as a Beginning by
Stuart W. Katzke 10-1

Appendices

Al A Comparison of Commercial and Military Computer
Security Policies by David D. Clark and David R.
Wilson A-1-1

A2 Summary of Clark-Wilson Rules A-2-1

A3 Position Paper: Working Group on Granularity by
W. H. Murray A-3-1

A4 Position Paper: On the Use of Mandatory by
W. H. Murray A-4-1

iv

A5 Position Paper: Agreement with the External
Environment by W. H. Murray A-5-1

A6 Data Integrity in a Business Data Processing System
by W. H. Murray A-6-1

A7 Using Mandatory Integrity to Enforce "Commercial"
Security by Theodore M. P. Lee A-7-1

A8 Thoughts on the Concept of Integrity and Integrity
Policies by Robert H. Courtney, Jr A-8-1

A9 Position Paper: Implementing the Clark/Wilson
Integrity Policy Using Current Technology by
William R. Shockley A-9-1

AlO A Practical Alternative to Hierarchical Integrity
Policies by W. E. Boebert and R. Y. Kain A-10-1

All Documents Available from the Workshop on Integrity
Policy in Computer Information Systems (WIPCIS) A-11-1

v

Acknowledgments

The editors wish to thank Robin Bickel for her careful
handling of all editorial changes in this machine readable
document.

Note: Subsequent to the holding of this workshop, the name of the
Institute for Computer Sciences and Technology at the National
Bureau of Standards was changed to the National Computer Systems
Laboratory at the National Institute of Standards and Technology.
Because the text of this document was written when the old name
was in force, all references to these names are in their old form.

vi

REPORT OF THE INVITATIONAL WORKSHOP ON
INTEGRITY POLICY IN COMPUTER INFORMATION SYSTEMS (WIPCIS)

October 27-29, 1987
Bentley College

Waltham, Massachusetts

1 . 0 INTRODUCTION

In April of 1987 a paper was presented to the IEEE Technical
Committee on Security and Privacy by David D. Clark of M.I.T. and
David R. Wilson of Ernst & Whinney. The paper suggested that
previous work on data security had favored confidentiality policy
in response to the needs of the defense establishment at the
expense of integrity policy as required by the commercial and
non-defense sectors. It proposed an integrity policy based upon
separation of duties, well-formed transactions, and audit trail.

The paper created a great deal of interest in the security
community and in order to further the approach, a committee was
formed to convene an invitational workshop of about forty to
fifty professionals to test and further the ideas presented in
the paper. (The composition of the committee is included in the
next section.)

The workshop was held October 27-29, 1987 at Bentley College
in Waltham, Massachusetts and was sponsored by the IEEE Computer
Society's Technical Committee on Security and Privacy, the
Special Interest Group on Security, Audit, and Control (SIGSAC)
of the Association for Computing Machinery, the National Computer
Security Center, and the Institute for Computer Sciences and
Technology at the National Bureau of Standards. (The
participants are likewise listed in the next section.) It was
opened in plenary session by David Callaghan, host and local
arrangements chairman. After a number of presentations (see
agenda in the next section) the workshop dissolved into five
working groups plus a sixth group of floaters. The principal
work of the workshop was done in the working groups; the floaters
served to keep each working group aware of the direction and
progress of the other groups. There was a progress report on the
second morning and final reporting out on the third day.

The working groups were given both a general charge and one
that was specific to each group. In general they were asked to
test the Clark-Wilson Model on the basis of the requirement for
such a model and how well the model met the requirement. They
were also asked to test each rule of the model and the model as a

whole, and to determine if the rule was properly stated and the
model was complete. One group was asked to comment on the
granularity and mandatory functions of the data objects and
processes (transformation procedures) , initial validation

1-1

procedures (IVPs) , and constrained data items (GDIs) . A second
was asked to comment on end-user authentication in general and
its effect on the C-W model. A third was asked to consider the
issue of assurance, a fourth User Authentication, and the fifth
Auditability

.

This NBS Special Publication is the proceedings report for
the WIPCIS and contains ten sections and several appendices. The
sections consist of an introduction, the composition of the
organizing committee with a list of participants and a workshop
agenda, a summary report by Donn Parker and Peter Neumann of SRI
International, the reports of the five working groups, a response
by Clark and Wilson, and a proposal by the National Bureau of
Standards for continuing the effort to define an integrity
policy. The appendices include a copy of the original Clark-
Wilson rules, a number of position papers submitted in advance
of the workshop, several papers submitted during and following
the workshop and a list of reference materials related to the
integrity policy effort.

The National Bureau of Standards' proposals for continuing
this effort (see Section 10) outlines a set of steps for
continuing with the development of an integrity policy and a set
of activities for implementing this policy in user applications.
In addition to identifying additional issues, the Organizing
Committee expects to solicit papers that will clarify and/or
modify the Clark-Wilson view and form a starting point for
discussion at the second WIPCIS workshop. The National Bureau of
Standards will host and organize this second WIPCIS workshop at
its facilities in Gaithersburg, MD.

1-2

REPORT OF THE INVITATIONAL WORKSHOP ON
INTEGRITY POLICY IN COMPUTER INFORMATION SYSTEMS (WIPCIS)

October 27-29, 1987
Bentley College

Waltham, Massachusetts

2.0 THE COMMITTEE

Sheila Brand
National Computer Security Center

David Callaghan
Bentley College

David D. Clark
M.I.T.

Stuart Katzke
National Bureau of Standards

Stanley A. Kurzban
IBM Corp,

Carl E. Landwehr
Naval Research Laboratory

Steven Lipner
Digital Equipment Corp.

William H. Murray
Ernst & Whinney

David R. Wilson
Ernst & Whinney

Mr. Paul Woodie
National Computer Security Center

2-1

2.1 PARTICIPANTS

D. Elliott Bell
Trusted Information Systems

Thomas Berson
Anagram Laboratories

Deborah Bodeau
Member of Technical Staff
The MITRE Corp.

Earl Boebert
Chief Scientist
Honeywell SCTC

Sheila Brand
Special Asst. to Director
National Comp. Security Center

David Brewer
Dept. Trade & Industry Commercial Computer Security Cell
Royal Signals and Radar Establishment

David Callaghan
Bentley College
Computer Information Sys. Dept

Peter Capek
IBM Research

Leslie Chalmers
The Bank of California

David Clark
Sr. Research Scientist
M.I.T Lab for C.S.

Dorothy Denning
Digital Equipment Corporation

John Fitzgerald
Ernst & Whinney

Cheryl Helsing
President
Cheryl W. Helsing, Inc.

Keith Howker
STC/ICL
ICL House

2-2

Robert Jueneman
Dir. of Infosec. Applications
Computer Sciences Corp.

Paul Karger
Digital Equipment Corp.

Stuart Katzke
Division Chief
National Bureau of Standards

Stan Kurzban
Senior Programmer
IBM

Theodore Lee
Trusted Information Sys. Inc.

Steven Lipner
Mgr, Secure Sys. Development
Digital Equipment Corp.

Kurt Meiser
Coopers and Lybrand

Dale Miller
Bank of America

Rolf Moulton
Mgr, Corp. Infor. Sys. Sec.
BP America

William Murray
Fellow, Info. System Security
Ernst and Whinney

Peter Neumann
SRI Int., Computer Science Lab

Donn Parker
Sr. Mgt. Sys. Consultant
SRI International

Paul Peters
National Comp. Security Center

Maria Pozzo
UCLA (also the Aerospace Corp.)
Computer Science Dept.

2-3

Marvin Schaefer
Trusted Informations Sys. Inc.

Jim Schweitzer
Xerox

William Shockley
Director, Trusted Database Sys
Gemini Computers, Inc.

Dennis Steinauer
Computer Scientist
National Bureau of Standards

Phil Terry
TSL Communications

Clark Weissman
UNISYS, Defense Systems

Peter Wild
Manager
Coopers and Lybrand

David Wilson
Ernst & Whinney

Simon Wiseman
Royal Signals & Radar Estb.

Paul Woodie
Network Integration and Test
National Comp. Security Center

2-4

2.2 AGENDA

Workshop on Integrity Policy
in Computer Information Systems

(WIPCIS

)

TUESDAY, OCTOBER 27

7 : 15

7 : 45

8:30

10 : 30

10:45

11:45

12:15

1:00

5: 30

6:30

7 : 30

Bus leaves Quality Inn for campus

Buffet Breakfast LaCava 325BC

Plenary Session:
Welcome, Orientation
The Program
"The Paper"
An Implementation

Coffee Break

Graduate Center Commons
Dave Callaghan
Stan Kurzban
David Clark
Earl Boebert

Graduate Center Commons

Plenary Session continues Graduate Center Commons
"A Contest for Integrity" Bob Courtney
"The Workshop as a Beginning" Stu Katzke

Keynote Address
"The Work of this Workshop"

LUNCH

Working Sessions

Recept i on

Dinner

Bus returns to Quality Inn

Bill Murray

LaCava 325BC

LaCava 305AB
Grad Ctr. 161, 163, 164

LaCava 300

LaCava 325BC

2-5

Workshop on Integrity Policy
in Computer Information Systems

(WIPCIS)

WEDNESDAY, OCTOBER 28

6:45 Bus leaves Quality Inn for campus

7:15 Buffet Breakfast LaCava 325BC

Graduate Center Commons8:00 Interim Reports and Discussion
Stan Kurzban

10:00 Coffee Break

10:15 Working Sessions

Graduate Center Commons

LaCava 300AB
Grad Ctr. 161, 163, 164

12:00 Buffet Lunch

1:00 Working Sessions

6:00 Dinner

7:15 Bus returns to Quality Inn

LaCava 325BC

LaCava 300AB
Grad Ctr. 161, 163, 164

LaCava 305AB

2-6

Workshop on Integrity Policy
in Computer Information Systems

(WIPCIS

)

THURSDAY, OCTOBER 29

6:45 Bus leaves Quality Inn for campus

7:15 Buffet Breakfast

8:00 Final Reports and Discussion
Stan Kurzban

10:00 Coffee Break

11:30 Wrap-up

LaCava 325BC

Graduate Center Commons

Graduate Center Commons

Graduate Center Commons

12:00 Bus leaves for Quality Inn
for those needing to catch early flights

12:00 Lunch

1:00 Bus leaves for Quality Inn

LaCava 325BC

2-7

3.0 A Summary and Interpretion of the Invitational
Workshop on Integrity Policy in
Computer Information Systems
27, 28 and 29 October 1987
Waltham, Massachusetts

Donn B. Parker and Peter G. Neumann
SRI International, Menlo Park CA 94025-3493
Written 6 November 1987 for 1-4 members

Revised 4 April 1988 for the WIPCIS report

This summary was originally written for the members of the
International Information Integrity Institute (1-4) under the
auspices of SRI International. It is reproduced with permission
of the 1-4 member organizations. It has been modified for
inclusion in this report.

INTRODUCTION

The invitational Workshop on Integrity Policy in Computer
Information Systems (WIPCIS)

, sponsored by the IEEE Computer
Society, the Association for Computing Machinery (ACM) , the
National Computer Security Center (NCSC) , and the National Bureau
of Standards (NBS) , was organized by Bill Murray of Ernst &

Whinney, Stan Kurzban of IBM, and several others who had attended
the presentation of the paper by David Clark and David Wilson, "A
Comparison of Commercial and Military Computer Security
Policies", at the 1987 IEEE Symposium on Security and Privacy.
The workshop was attended by 3 8 computer security researchers,
system designers, computer security managers from several large
companies, and computer security consultants.

In their paper Clark and Wilson described a unified data
integrity model that had created considerable interest in the
computer security field. Some participants believed that the
model could form the basis for integrity criteria in the sense
that the Orange Book (TCSEC [85]) provides security criteria for
trusted computer systems for the U.S. Department of Defense, as
promulgated by the National Computer Security Center. Others
sought to demythologize it.

The purpose of the invitational workshop, as stated in the
initial information, was to respond to the ideas presented in the
Clark-Wilson paper and to reach a consensus on a model or set of
rules for data integrity in commercial data processing. Later,
the term "commercial" was eliminated in order to permit
application of the model to any organization engaged in secure
use of computers where integrity is of concern as well as
confidentiality.

3-1

The model and the workshop findings are of extraordinary
interests The concepts can be directly applied to day-to-day
development of computer applications providing greater protection
from fraud and abuse. In addition, several of the individual
ideas could be applied to enhance information and computer
security activities within a business organization. For example,
implementation of the concept of separation of duties as a
fundamental means of protection in financial and other
transaction-oriented systems was described in the Workshop in
complete and practical ways.

For the purposes of this document, we make a distinction
among different types of policies. The two main types involve
mandatory and discretionary controls, as is customary. However,
two types of mandatory controls are considered here — label-
based mandatory (enforcing separation based on hierarchical or
lattice oriented labels, as in the Orange Book) and general
mandatory (which lies between label-based mandatory and
discretionary controls, i.e., not requiring labels but also not
permitting any user discretion over the use of the controls)

.

For simplicity, the term "mandatory" when used alone implies the
general case. (The Orange Book influenced the background
thinking of many workshop attendees and was frequently
referenced. For example, one discussion about mandatory versus
discretionary policies reminded us of the natural language
meaning of mandatory; the Orange Book definition is too narrow
and usurps the natural language meaning. Workshop participants
agreed to use "mandatory" in the more general sense, to imply a
policy that is enforced by the system without user alterability

.

The rather awkward term "nondiscretionary" is also used elsewhere
to connote label-based policies, e.g., Lipner [82].)

THE CLARK-WILSON INTEGRITY MODEL

The basis for the Clark-Wilson paper was that the Orange
Book does not define adequate integrity policy for business
applications. The Clark-Wilson integrity model attempts to
define a (general-sense) mandatory integrity policy for such
applications

.

Although there had been considerable dispute on the relative
roles of the Orange Book and Clark-Wilson before the workshop,
the ensuing discussion during the workshop (described here)
produced a view of general compatibility rather than antagonism.
The key notion is that the Orange Book addresses the notion of
security of an operating system or trusted subsystem that
underlies a given application, while Clark-Wilson generally
addresses the notion of integrity in the application itself.
(David Wilson has suggested that Clark-Wilson could be applied to
the integrity of the underlying operating system, e.g., using
separation of duties for system configuration control, but there

3-2

is also a notion of system integrity in the Orange Book, so some
overlap is evident.)

The primary goal of the Clark-Wilson data integrity model is
to preserve the consistency and validity of structured data items
both internal and external to an application. The Clark-Wilson
model is described as a set of rules, of two types: C rules, for
certification (although workshop participants agreed that was
probably a misnomer) , and E rules, for enforcement. The primary
mechanisms of integrity are identified as well-formed
transactions, separation (or segregation) of duties, and logging
of transactions for audit purposes. Well-formed transactions are
illustrated by consistently balanced double-entry bookkeeping
operations that must be completed in an atomic fashion —
completely, or not at all.

The terminology used by Clark-Wilson is summarized as
follows.

CDI = Constrained Data Item [Trusted data]
UDI = Unconstrained Data Item [Untrusted data]
TP = Transformation Procedure

[although it might have been Transaction
Procedure or Process!]

IVP = Integrity Verification Procedure

The rules are summarized briefly as follows [where we have
interpolated familiar concepts from the literature of software
engineering to help in the explanations]

.

Clark-Wilson Enforcement Rules

El. Users may operate on trusted data (CDIs) only through
operations (TPs), never directly. ["Encapsulation" and "Abstract
data types"]

E2 . Users may perform operations only if explicitly
authorized. ["Authorization"]

E3 . User identities must be authenticated.
["Authentication"

]

E4. Authorizations may be changed only by a security
officer. ["Mandatory controls"]

3-3

Clark-Wilson Certification Rules

CI. Trusted data must be verified to be consistent
representations of the real world. (IVP validates CDI state.)
["Data validation"]

C2 . Programs implement operations as "well-formed"
transactions. (TPs preserve valid state.) ["Consistent
transformation"

]

C3 . The system must enforce separation of duties.
["Separation of privilege" and "allocation of least privilege",
e.g., according to user roles]

C4. All operations (TPs) must be audited. ["Complete,
nontamperable auditing"]

C5. Operations validate inputs, or reject them. (TPs
validate UDIs.) ["Input validation" and "atomicity": Untrusted
operation with untrusted data must be atomic-made valid or
aborted.

]

Separation of duties was described through the example of
purchasing within a business, whereby the submission of a
requisition, cutting of a purchase order, receipt of goods, and
authorization of payment are each to be done by a separate
person.

Separation of duties in a computer application requires (for
example) that the programmer of the application system not be
permitted to be a user of the program in a real production
environment.

Assurance functions within the system are intended to reduce
the cost of external assurance of correct functioning and to
reduce the need to trust people unnecessarily by providing an
application system in which engaging in fraud or causing errors
would be difficult. The system can be preprogrammed and is
highly predictable, whereas people cannot be preprogrammed and
are not particularly predictable.

Logging for audit purposes is meant to assign responsibility
and accountability for transactions after the fact. The logging
process itself is a well-formed transaction and the log produces
a genealogy of transactions.

In the Orange Book model security is based on doublets of
subjects and objects, whereas the Clark-Wilson model integrity is
based on a triplet of user, program, and data. Separation of
duties is accomplished by strictly assigning users to programs
and programs only to specified data bases. This is not

3-4

incompatible with the lattice model in the Orange Book, which
permits different interpetations of subjects, but the triplet is
not directly evident in the Orange Book. The integrity model
requires that programs be unique items different from subjects
and objects. One of the purposes of the integrity rule structure
is to minimize the certification rules and maximize the
enforcement rules, in that certification is generally much more
difficult to achieve than enforcement.

The application of this model both internally within the
system and externally among the users of the system presents an
important dichotomy. The concept of an external data item was
identified as valuable in a computer system for which there is an
external equivalent. A difficulty with the model involves
questions about the meaning of a partially completed sequence of
transactions and the capacity of the model to deal with this.

DEMONSTRATIONS OF IMPLEMENTABILITY

A new computer system, LOCK, is being developed by Honeywell
(distinct from the Honeywell -Bull computer manufacturer) . (The
LOCK effort is sponsored by the National Computer Security
Center, and its results will be available to all —including
other interested vendors.) This is the first attempt to develop
a computer system that could be certified beyond the Al level of
the Orange Book. Earl Boebert of Honeywell showed how readily
LOCK can implement the Clark-Wilson integrity model, as well as
meet all requirements of the Orange Book and beyond. This
discussion demonstrated that integrity and confidentiality are
closely related, and can be compatibly achieved in the same
system. However, integrity is provided as an extension of the
basic kernel that enforces confidentiality, and uses LOCK'S
strong typing mechanism to ensure what might be called type-based
mandatory integrity. (This is a less restrictive notion of
mandatory integrity than the label-based mandatory integrity
proposed by Biba [77]. We note here that a Biba-like two-level
label-based mandatory integrity policy is found in Clark-Wilson,
separating the trusted CDIs from the potentially untrusted UDIs,
but requiring a Trusted Process in the Orange Book sense [namely
a Transformation Procedure in Clark-Wilson — conveniently
acronymed TP!] to convert UDIs to CDIs. Sceptics of the
significance of label-based mandatory integrity and security,
even in unclassified applications, should see the important paper
by Lipner [82] cited at the end of the bibliography.)

LOCK easily accommodates the closure concept of
encapsulating a program and all the data that it uses and
processes. For example, the Clark-Wilson model proposes that a
program completely encapsulate its own objects so that they
cannot be directly accessed by any other programs. By
establishing types and domains properly, LOCK enforces this

3-5

desired encapsulation through the type mechanism and other system
controls. The Honeywell LOCK approach uses hardware specially
designed for security intended to go beyond the Orange Book Al
rating. (See the cited contributions by Earl Boebert.)

Other position papers on the implementability of Clark-
Wilson on top of TCB-oriented systems were presented by Ted Lee
and by Bill Shockley. Boebert, Lee, Shockley, and other
participants concluded that given suitable mandatory security
TCBs, the implementation of Clark-Wilson could be achieved with
relative ease and could operate efficiently.

It is extremely interesting to note that all three of these
have no trouble in accommodating the Clark-Wilson triplets, i.e.,
they go beyond what is required by the Orange Book.

Security is a reactive process that continually escalates.
That is, a threat not met is addressed with a new security
refinement, which leads to a new threat and a new refinement, and
so on. Consequently, better understanding of the potential
threats is necessary to improve security but cannot guarantee it.

WORKSHOP GROUP TOPICS ASSIGNED

The workshop was organized in five groups to address the
Clark-Wilson rules:

(1) Reality (agreement of the internal model with its external
environment) — Rules CI, C3 and C5.

(2) End-user authentication — Rule E3.
(3) Assurance — Rules El, E2 , C2 and C5.

(4) Granularity — Rules E2, E4, and C3.

(5) Logging for auditability — Rule C4

.

Each group initially addressed the following Questions. These
questions have been heavily paraphrased because of the
ambiguities in the original statements. [For the benefit of the
reader, we also anticipate the answers generally agreed upon by
the participants at the end of the workshop.]

* Is the Clark-Wilson model an appropriate one? [It is a
useful first approximation, but needs much more work.]

* Is the model consistent within itself (and perhaps complete)?
[No, it is neither completely consistent nor complete.]

* Are the individual rules appropriate, and properly stated?
[Many of the rules are indeed appropriate, and do reflect a
meaningful sense of integrity.

]

* Does the model satisfy the requirement for integrity?
[Partially.]

3-6

* What enforcement mechanisms are implied such as closed
systems, and which rules are mandatory -- and in what sense?
[Effective implementation requires some sort of underlying
trusted computing base; furthermore, the implementation of
the integrity rules requires a trusted environment. The
integrity rules are indeed mandatory in the general sense.]

REALITY GROUP

The reality group discused how a computer system represents
reality (the real world in which it functions) . The importance
for achieving this is heightened by the strategic use of
computers in electronic data exchange among enterprises, where
sources of data and output are widely disparate. Diagramming a
large banking system network is no longer a reasonable task,
because of the continual and undocumented extensions of the
network.

This section seems disproportionately long compared with the
others that follow. However, much of the background necessary
for understanding of the other groups is included here, so we
have not attempted to equalize the apparent coverage given each
group

.

Security Domains. Semantic and syntactic issues of data were
discussed. Layers of abstraction are important to consider
because definitions of losses and control objectives may have the
same names but have different meanings depending on the
abstraction layer. A concentric set of rings constituting
domains within a business was proposed, whereby the management
and participants at each layer are accountable for the integrity
of the data in that layer. To define the perimeter of a domain,
the concept of reversibility of conversion to loss was suggested:
for every transaction within the domain, a corresponding
transaction must occur to prevent loss; outside that domain the
loss would be irreversible.

In developing the concept of domains, the group addressed
the question of how to define the immediate domain of the system
so that an application could be tested for integrity against the
reality of the external world that it represents. The domain is
defined by:

(1) The structure of the organization engaged in the use of,
and affected by, the application.

(2) The potential threats the security model is to counter.

(3) A scope sufficient to encompass all effects of, and
methods for, reversing a loss or impending loss.

3-7

(4) All motives, functions, and capabilities for separation
of duties as required by the security model.

(5) All other concerns that have an effect on or are
affected by the application.

After the domain of reality has been determined, the control
objectives can be identified relative to the potential threats
and risks to complete the model.

Separation of Duties. Once this framework was established,
the group addressed separation of duties and its meaning within
this concentric domain structure. In accounting, separation of
duties is illustrated by one worker having access to assets, a
different worker having access to accounting records of those
assets, and a third worker being responsible for authorization.
A definition of separation for our purposes was the assignment of
functions to different people that would achieve conflicts of
motives and independent confirmation of results of the
transaction activity. Separation is adequate when no harmful
action can be instigated by a person acting unilaterally. Every
verification process must involve more than one person, and the
separation of duties must produce the greatest possible conflict
in the motives and abilities of the persons involved. The test
of adequacy in the latter case is that two people who could
collude would have the least likely motives and abilities to do
so.

An attendee suggested, however, that system attackers seek
well-defined domains and are happy with fixed security perimeters
that identify areas to avoid in their attacks.

The subject of measuring the strength of separation of
duties was introduced. The weakest form of separation would be
dual control, for example, identical data entry by two persons.
(An even weaker use ~- or misuse — would be the case in which
the same person or process was able to gain control over two
separated duties, perhaps through indirect paths or by exercising
a system flaw.) The strongest form of separation would be the
assignment of tasks to a larger number of individuals with the
greatest differences in motives and abilities.

The group considered means of defining the strength of
separation of duties and developed the following examples of how,
stronger separation might be accomplished:

(1) Break down the duties into smaller segments assigned to
more people.

(2) Require that certain duties be assigned dynamically and
randomly to different sets of people so that in any complete
transaction no information worker would know which sets of people

3-8

are performing it.

(3) Periodically rotate workers' assignments so that workers
would never know when a coworker would be replaced v/ith someone
else.

(4) Reduce the total value of exposed assets to any one
worker.

Research topics recommended by the group included
developing integrity labels for cross-domain movement of GDIs;
establishing a metric of strength for separation of duties;
examining the possibility of putting more substance into
invariant enforcement (E) rules rather than application-oriented
certification (C) rules; and expanding the scope of the model to
cover the security purpose of availability as well as integrity
and confidentiality. On this last point, a group member
commented that availability is in a trade-off relationship with
integrity and confidentiality.

Others supported the extension of the model to include all
three purposes (or the incorporation of the model into a more
general model that contains all three)

, citing the complaints
that the Orange Book addresses only a subset of the security
purposes. Therefore, if the Clark-Wilson model is to be
successful, it must overcome this shortcoming by addressing all
three purposes.

Well-formed transactions. The relevance of the well-formed
transaction to reality of the world it represents was considered.
One of the properties of a well-formed transaction is that
integrity verification is minimal in terms of balancing the
results of the functions it performs. Such an audit requires
that an audit be performed in real-time systems. If a snapshot
is taken at arbitrary times, this can be extremely complex —
because the system is likely to be out of balance in a global
sense at any point in time. A recommended audit technique is to
take a snapshot at Time Tl; all balancing would be accomplished
except for suspense items resulting from transactions incomplete
at Tl and from transactions that require others before a balanced
state is achieved. A snapshot would then be taken at the next
time increment, T2 . Suspense items from Tl would be cleared if
balanced from T2 information. At Time T3 , additional suspense
items would be reconciled for Tl and T2 . Ultimately, all suspense
items for Tl would be accounted for and complete balancing could
occur. (Note that theoretical situations exist in which
balancing will never occur, but these generally represent poorly
designed systems. Note also that in certain applications, much
more reliable strategies can be developed, using knowledge about
the application.)

3-9

Threat Analysis. A presentation on a computer abuse loss
event model and taxonomy of computer methods stimulated a
discussion of threat analysis of the Clark-Wilson model. The
purpose would be to determine whether the model covered all known
threats to flaws in the model that would necessitate changing the
model or extending its scope.

A participant asked whether the well-formed transaction
concept and separation of duties are sufficient to assure the
integrity of an application. A threat analysis might indicate
that additional mechanisms are required to achieve this. For
example, a potential threat might be the theft of the entire
system from the domain, an irreversible loss. An additional
mechanism on the physical computer system might be required to
signal the operating system and controls in it that the system
has been removed from its authorized site; when power was
reestablished, the system would automatically go into a
protective mode. This brought up the idea of instrumenting the
domain of reality of a system to assure the integrity of that
domain during system operation.

The group concluded that the most it could achieve in this
workshop would be to recommend that a methodology be developed
for testing the model against all known experience of loss, to
prove its effectiveness.

Other Discussions. The possibility that GDIs and UDIs might
cross domain boundaries was considered. One possibility was the
need for tokens or labels for each UDI/CDI identifying its domain
source and domain location.

Also considered was the possibility of requiring a
specialized form of IVP (integrity verification procedure) that
would perform a reality check of a GDI relative to the world it
represents in the domain. This is the practice of confirmations
in accounting audits, and the IVP could be similar. Auditors
send confirmation slips to ensure that the party ultimately
benefitting from or affected by a transaction has in fact been
satisfied. The IVP would be a means of checking cross-domain
integrity as long as the clocks are synchronized from one domain
to another and the logs are available.

A question that arose in considering the reports of other
workshop groups concerned the process in the model of
transforming from one valid state to a new valid state. For any
number of reasons, a valid state could become invalid.
Therefore, it may be necessary at any time during the application
execution to transform an invalid state into a valid state. The
group concluded that correcting TPs may be required. Two
possibilities arise: the application system is in balance but
still an error has occurred, and the balancing is not valid after

3-10

an error has occurred. The question is whether the processes are
reversible

.

USER AUTHENTICATION GROUP

The user authentication process group developed the
following set of rules for user authentication:

o Every user ID must be unique within the reality domain for
the retention period of the audit log.

o Every user must have an ID. Each can have multiple IDs
but only one per reality domain.

o The confidentiality and integrity of the authentication
server and communications must be maintained.

o The authentication server must be considered as a TP with
an encapsulated database.

o Enrollment must add to the base each name, ID,
authenticator , and enrolling authority.

o IDs must be reconciled periodically against reality.

The problem of name changes must also be considered, as when
a person divorces or marries arose.

The group also concluded that a separation of duties is
required, (e.g., user and enrollment administrator). Areas
identified for further research were privacy implications and
estimating user security profiles.

ASSURANCE GROUP

"Assurance" is defined as the ability to reason about a
system and predict its behavior. The group developed its
recommendations from good engineering practices, as follows:

(1) Postulate the "properties" (e.g., Clark-Wilson rules).
The properties must be invariant across systems; the Clark-Wilson
model is an example of an invariant set of properties. The model
would be an application. Fundamental errors must be avoided, and
this can be aided by defining the security perimeter within which
controls are affected and outside which there the implementing
authority has no control. Part of this step is performing a
stress analysis or testing of the postulates, and from this the
specifications are derived .

(2) Factor the specifications into layers. In the Clark-

3-11

Wilson model, one layer would be the E Rules, which must be
underlying, invariant, complete, and enclosed. A higher layer
would enforce the C Rules, which would be adapted to the
application system.

(3) Decompose the TP, IVP, CDI, and UDI and diagram these
entities.

(4) Provide unit assurance of these decomposed parts.

(5) Recompose the TP, IVP, CDI, and UDI and perform
subsystem assurance.

(6) Iterate on each of these steps to recompose the entire
application system.

The group had some serious doubts about these steps. For
example, in steps (2) and (3) the structures may be changing
rapidly; a dynamic situation makes these steps difficult. A
severe doubt about success is with step (5) : Is a group of well-
formed transactions in itself a well-formed transaction? Many
experts at the workshop agreed that this is the most difficult
step.

The most severe doubt concerned whether the notion of a
security perimeter could be achieved at all, and whether the
inductive hypothesis given in the Clark-Wilson paper was sound
for any but toy systems. The spokesman for this group concluded
that there are "lots of toy systems that seem to look secure."
Full-scale demonstrations of successfully designed secure systems
are needed. Someone from the audience suggested that the fact
that 747s can fly is proof that a complex system can be
successful even if it is not formally verified! But the 747 went
through assurance steps that are very similar in concept to
formal assurances, and if those steps had not been taken, the 747
probably wouldn't fly! But the spokesman remarked that anything
as sloppily implemented as OS/3 60 would not fly. The response to
that was something like OS/360 's don't have to fly, only operate
a computer on the ground, i.e., the assurance requirements are
not that high.

Another comment was that the availability function of
restarting the system should be in the discipline of system •

reliability rather than in security. The meaning of the term
"reconstructed" in the C4 rule was clarified. It should be the
reconstruction of the audit trail to determine whether a loss has
occurred or to answer other audit questions and not to be
considered the reconstruction of the application after a failure.

3-12

GRANULARITY GROUP

The group on granularity concluded that the model rules are
reserved for management not for security officers. The security
officer is a special surrogate of management. The group also
determined that TPs are, in fact, GDIs and developed the
following specifications:

o TPs must be small enough to preserve minimum granting of
authority.

o TPs must be small enough to categorize in terms of
origination, procedure, assets, approval, maintenance, data, and
records.

o TPs must be reasonably sized in terms of other units of
logic and programs.

o Limited, well-formed, and single-function are attributes
of TPs. (There was disagreement on this point.) TPs will not
work without an underlying trusted computer base (e.g.,
superzapping is a successful attack method if an organization
does not have a trusted computer base)

.

o TPs and GDIs must have owners for granting and permit
authority. Ownership transference and repudiation or

withdrawal of protocols must be possible. Assigning ownership
incorrectly is better than not assigning it at all. (?)

The group on granularity concluded that it did not know how
to address the availability purpose of security along with
integrity and confidentiality (this purpose was called continuity
by the group)

.

The spokesman had one last admonition that if words are
chosen for special meaning, they should still retain their
English dictionary meanings. As an example, "sensitive but
unclassified" is a classification that should be abandoned.

AUDITABILITY GROUP

The group on auditability reported that the four related
purposes of logging and audit trails are to facilitate:

(1) Recovery following an abnormal system or application state
(2) Post-hoc auditing
(3) Real-time system monitoring

(a) For threat monitoring
(b) For performance monitoring

(4) Accounting and billing.

3-13

The group noted that the logging mechanisms and databases must
themselves be nontamperable (e.g., nonbypassable and
nonalterable)

.

Any application of the Clark-Wilson model must be based on
some underlying trust, because the auditability requirements of
the model require user process identification, defined
interfaces, event logging, and protection of the logging
mechanism and recording media. Logging must take place according
to the object information being recorded. In the language of
abstract data types and object-oriented computing, each data or
object type has its own needs for logging. Changes were
recommended in the wording of Rules C2 , C4, and C5 that are
described in the study group report (Peter Wild, Chaimman) . That
document suggests that Rule E3 must be provided by the TCB and
that El, E4, and C3 were covered by other rules, e.g., as
implementation instances.

One of the most significant changes in rules was the
suggestion to replace CI with the statement, "for every CDI there
must be a set of IVPs that ensures that the CDI is in a valid
state at some defined point in time." This is essentially an
audit procedure, but it is not necessarily restricted to an
auditor's use. Execution of an IVP is a loggable event. The
group noted the redundancy of three rules -- Rules El (which is
subsumed under E2) , E4 (which is an implementation instance of
E2) , and C3 (which is an implementation instance of E2) . These
three rules could be deleted and subcased as indicated, although
they may be useful as special cases for clarity.

A considerably simplified figure when compared with the
figure in the original Clark-Wilson paper (p. 192) for the System
Integrity Rules was recommended, based on the observation that an
IVP is really a special case of TP. The resulting suggested
diagram looked like this:

User

Authorization E2, E4

CI V C2 ,E1
CDI > CDI

TP
UDI > > LOG

C5 C4

Authentication E3
Separation of duties C3 :

(a) in design; (b) dynamically

3-14

Note that in order to provide assurance for the integrity of
the implementation of the Clark-Wilson layer itself, some sort of
Trusted Computing Base is required, to prevent compromise of the
implementation. For example, there must be noncompromisable
mechanisms for separation of duties (C3) and authentication (E3),
upon which the Clark-Wilson implementation must depend. For
auditing to be noncompromisable, the integrity layer must itself
be protected from its users. This can be done most effectively
by an underlying TCB, e.g., an Orange Book TCB for security, and
otherwise by the Clark-Wilson Integrity layer itself.

It is important to keep in mind the distinction between a
policy item (e.g., separation of duties) and the mechanisms that
enforce it. In the case of separation of duties, design
decisions must be made on when and what to enforce in the general
policy; mechanisms must also exist to enforce that policy
(presumably in the underlying TCB, to prevent compromise)

.

In general the logging group believed that the results of
the entire workshop would have been more accessible to the
workshop participants if the model had been couched explicitly in
the framework of abstract data types and commonly used software
engineering concepts. In that case, the Clark-Wilson rules would
have been much clearer, as would the dependence upon some sort of
underlying security TCB for implementation of the above-depicted
integrity TCB, together with the relationships among mandatory
and discretionary policy issues. Such a recasting was strongly
recommended by the auditability group, and is suggested in our
annotated list of the Clark-Wilson Enforcement Rules and
Certification Rules given above, which hints at the notions of
encapsulation and information hiding, strong typing, and
hierarchical abstraction.

WORKSHOP WRAP-UP SESSION

The wrap-up session was organized so that only negative
comments were permitted. This gave the advantage in conclusions
to those with the most negative positions on further progress on
the Clark-Wilson integrity model.

A tentative conclusion of the meeting was attempted: "The
model is a coherent and useful foundation that has now been laid
for further progress." This tentative conclusion was destroyed,
however, by the negative comments. The general belief was that
the results of the workshop were only a bare beginning toward a
coherent and useful foundation. The participants achieved not
much more than agreement on a common vocabulary, and did not
reach closure on the completeness of the model. No significant
examples of the concepts developed have been produced to
demonstrate even the viability of this type of model. One
participant pointed out that the current scope of applicability

3-15

of the model is unstable, considering that it addresses only one
of the three security purposes. This was reinforced by comments
from others. Someone mentioned that the Clark-Wilson model has
opened Pandora's box; for example, we do not even know what a CDI
is yet. Another comment was that the contents of Robert
Courtney's letter (part of the WIPCIS report) are quite
compelling.

OUR OWN CONCLUSIONS

This workshop was extremely valuable for attendees and the
information security community. It provided a dialog and created
greater understanding between the "scientists" and the
"practitioners" in our field. Just as the Clark-Wilson Model is
an important attempt to combine concepts, the workshop combined
ideas about information systems from the business sector with
concepts from the military and general security research sectors.

The participants agreed that the Clark-Wilson model requires
considerable refinement, extension to the other purposes of
security at the application layer, and more rigorous and complete
definitions of items in the model. In addition, it can be
adequately secure in a serious sense only if applications using
the model concepts are executed in a protected domain, and
optimally on top of an adequate trusted computing base. However,
in the less-than-perfect environment of current business systems,
invoking only some of the model concepts in new business
applications can materially increase integrity — as long as the
underlying operating system cannot be compromised. (There is
strong sentiment in the research community that it is dangerous
to have a secure application running in a system that can be
easily overcome by system programmers or intruders by accessing
the underlying hardware and operating system layer, e.g., by
superzapping, by becoming superuser, or by exploiting system
flaws .

)

In the final analysis, there is much progress being made
with respect to the Clark-Wilson Model and various other
security/integrity models under development or previously
published. The NCSC Criteria Books (currently the Orange Book
and the Red Book — TCSEC-TNI [87] — together with a Trusted
Database Interpretation in preparation) , the ECMA Framework,
UK/DTI, and the ISO OSI Reference Model reflect steps in the
right direction (more or less) —although there are still many
problems. Some of these concepts are practical and usable today
for increased security and integrity — even though imperfectly.
Others will not be effectively utilized until they appear in
systems that are more secure, e.g., rated at least at the Orange
Book B level. However, it will be essential to integrate into a
common system framework all of the vital security-related

3-16

requirements -- confidentiality, integrity, availability,
performance, reliability, some notion of correctness, etc.

The opinions represented here are those of the authors, and
do not reflect any official positions whatever. Any
misrepresentations of what actually transpired at WIPCIS or
factual errors are ours.

SOME PRACTICAL IDEAS

(*** This section was written for 1-4 members, but is included
here for possible general interest. ***)

Some practical ideas are suggested below that may be
amplified through reading of the WIPCIS report and backup
material listed in the bibliography.

o The Clark-Wilson model along with suggested changes can
be used as the basis for writing effective guidelines or
improving existing guidelines for business-application
development groups, to assure more-secure applications with
better controls.

o Familiarity with the model and its concepts can provide
computer security personnel with a guide and checklist when they
participate in requirements, specifications, and design efforts
for new or revised applications. For example, facilitating
separation of duties externally can be supported by appropriate
data entry design and controls derived from the model. For
example, returning the full-text meaning of parameter values
chosen can reduce error: Input by the data-entry operator of
Customer Number "087643-1" returns

"XYC Corp.
Receiving Dept.
Attn: Joe Danks
P.O. Box 433
Anytown, PA 00484"

to the supervisor who is making decisions about delinquent
accounts

.

o Guidelines or company standards are needed to establish
separation of duties among information system users. This could
be especially important for departments with many microcomputer
users because they tend to use informal, careless practices,
assuming that the computers somehow solve problems with minimal
human controls. A spectrum of separation practices is suggested,
from weak to strong:

3-17

Weak

o Work sample reviews

o Dual controls

o Segregation of workers for each sequential transaction
function

o Frequent rotation of segregated workers

o Different but equivalent data integrity checks

o Dynamic transaction function assignments

o Random control of workers rotation

Strong

o Reviews of current production systems comparing controls
with the Clark-Wilson Model are an excellent way to identify
security shortcomings. This was done by Bill Murray for the IBM
AAS application (see

^

' Data Integrity in a Business Data
Processing System'', W.H. Murray, 24 Oct 87).

o Awareness of and movement toward adoption of different
security criteria in different market segments will cause great
problems for computer manufacturers and could result in export
exclusion internationally. Such impositions could cause severe
problems for customers as well as security criteria
incompatibilities among systems. Vendors and users alike must
start exerting their influence to cause convergence rather than
the current divergence.

BIBLIOGRAPHY

WIPCIS Documents:

1. David R. Clark and David R. Wilson, A Comparison of
Commercial and Military Computer Security Policies, IEEE
Computer Security Conference, 1987.

2. O. Tami Saydjari, Joseph M. Beckman, Jeffrey R. Lesman,
Locking Computers Securely, NCSC 1986.

3. W.E. Boebert, Practical Alternative to Hierarchical Integrity
Policies, Proceedings of the Eighth National Computer
Security Conference, 30 Sept 85.

4. W.E. Boebert, LOCK Implementation of the Clark-Wilson Rules,
WIPCIS, 27 Oct 87. Vugraphs Only.

3-18

5. T.M.P. Lee, Using Mandatory Integrity to Enforce "Commercial"
Security, (Draft) Trusted Information Systems, Inc., 26 Oct
1987.

6. W.R. Shockley, Implementing the Clark/Wilson Integrity Policy
using Current Technology, Gemini Computers Inc.

,
prepared for

WIPCIS, Oct 87.

7. W.H. Murray, Data Integrity in a Business Data Processing
System, 24 Oct 87.

8. W.H. Murray, Position Paper for Working Group on Granularity,
WIPCIS, 27 Oct 87.

9. W.E. Boebert, Outline for the Verification Working Group,
WIPCIS, 27 Oct 87.

10. David R. Wilson, Agreement with the External Environment,
WIPCIS, 27 Oct 87.

11. Peter Wild, Availability Issues, Final Report, WIPCIS, 29 Oct
87 .

12. W.H. Murray, Working Group on Granularity and Functions,
Final Report, WIPCIS, 29 Oct 87.

13. Donn B. Parker, Proposal to Extend the Scope of the Clark-
Wilson Model to Include Availability, WIPCIS, 29 Oct 87.

14. Donn B. Parker, Clark and Wilson Commercial Integrity Model
Slides, SRI International.

15. WIPCIS List of Invitees to IEEE/ACM Invitational Workshop on
Trusted Commercial Systems Criteria.

16. WIPCIS Participant Listing, WIPCIS, 29 Oct 87.

17. European Computer Manufacturers Association, Framework for
Secure Open Systems, Second Draft, Aug 87.

Other Relevant Documents:

TCSEC [85] DoD Trusted Computer System Evaluation Criteria,
Department of Defense, National Computer Security Center, DOD
5200.28-STD, Dec 1985. (The Orange Book)

TCSEC-TNI [87] Trusted Network Interpretation [of the TCSEC],
National Computer Security Center, NCSC-TG-005 Version-1, 31 July
1987. (The Red Book)

3-19

Biba [77] K.J. Biba, Integrity Considerations for Secure
Computer Systems, USAF Electronic Systems Division, Bedford MA,
ESD-TR-76-372, April 1977.

Lipner [82] Steven B. Lipner, Non-Discretionary Controls for
Commercial Applications, Proc. 1982 IEEE Symposium on Security
and Privacy, pp. 2-10, 26-28 April 1982.

3-20

4.0 REPORT OF THE WIPCIS WORKING GROUP ON ASSURANCE

by Earl Boebert

Group Members: Deborah Bodeau, David Clark,
Robert Jueneman, Theodore Lee, Steven Lipner,

Dale Miller, Maria Pozzo, William Shockley

1. Introduction

The working group defined assurance as the ability to reason
about a particular system or to predict its behavior. We took
the position that assurance was always a matter of degree, and
attempted to draw conclusions that were independent of specific
assurance technologies, such as testing or formal methods.

We observed that in general, the preconditions for methodical
testing, informal analysis, and formal verification of a computer
system or subsystem are the same: namely, that a series of
increasingly detailed design descriptions exist. These
descriptions are related at one end to objective and meaningful
requirements and at the other to the implementation. The
assurance process consists of generating and analyzing evidence
that each iteration of increased detail is sound.

We noted that assurance is achieved by good engineering practice:
orderly development, in steps, with the results checked at each
step. We noted that the steps in this process are traditionally
described as if they happen in sequence; in actual fact they
almost always happen iteratively.

The major steps in the development process, and the assurance
steps that go along with them, form the framework for our report.
We begin by sketching the development and assurance process, and
then present, for each step, the doubts raised in our minds by
Clark and Wilson's definitions of integrity. For each doubt we
then issue a challenge in the form of a proposed research
activity that we feel will address the area in question.

2 . Development and Assurance

2.1 Demonstration of Invariant Properties

The first step in the process is to postulate a set of
properties, or invariants, that the system must exhibit: things
that happen with suitably small (approximating "never") or large
(approximating "always") probability. The desirability of these
properties is seldom in dispute when they are discussed in
general terms (e.g., "safety," "security," or "integrity"). An
example is the midair failure of a commercial airliner's
structure (an instance of "safety") . The specified probability

4-1

of this occurrence is so small that it should "never" happen
within the service life of a given aircraft.

Once a property is selected and a definition established (e.g.,
the actual allowed probability of structural failure) then the
system to be constructed is modelled in some suitable
mathematical notation, and a mathematical argument is presented
that the model exhibits the properties. Continuing our
commercial aircraft analogy, this first step is the stress
analysis of the structure, which is based on an abstract
representation of the aircraft. The step in no sense guarantees
a safe airplane because people do not fly in abstract
representations. Weaknesses can be introduced in later
development steps through errors in detailed design, poor
materials, or shoddy workmanship. The level of assurance at this
point is that the aircraft is not inherently unsafe in a way that
no amount of skill in detail design or construction can overcome.

The output of this step is a specification for the entity to be
constructed which is consistent in the sense that it does not
contradict itself and is relevant in the sense that it describes
a useful and feasible system.

The importance of this first step should not be underestimated.
Without this step, the project runs the risk of building an
inappropriate system that is entirely correct (in the sense that
the implementation meets the specifications) , but does not
perform any useful function. The specification may be thought of
as defining a family of systems, that is, those that correctly
implement the specification. The goal of the first assurance
step is to show that any member of this family will have the
desired properties.

In the case of the properties proposed by Clark and Wilson, the
entities of interest are computer information systems which
perform specific tasks with integrity. In the remainder of our
report we will call these entities "applications subsystems," to
distinguish them from other parts of the computer information
system such as the hardware. We note that this definition is
inherently imprecise, in that the entities discussed by Clark and
Wilson involve elements of both the automated system and the
organizational context in which it resides. This imprecision, as
we shall describe later, was a source of difficulty.

We also note that the term, as we use it, encompasses a vertical
"slice" of the system from the user interface to the lowest
levels, and does not refer to just a program "sitting on top of"
a general-purpose computer system. This latter point is
important when considering the general topic of assurance: The
degree of assurance that can be associated with the applications
subsystem depends upon the degree of assurance that can be
associated with the underlying facilities. An applications

4-2

subsystem consisting of strong programs using the facilities of a
weak operating system inherits the weakness of the operating
system and not the strength of the programs.

We also restricted our consideration of invariant properties to
those which fall under the general term "integrity," and
specifically integrity as defined by Clark and Wilson.

2.2 Factoring and Allocation of Requirements

The specification developed in the above step incorporates basic
decisions about the functional characteristics of the
applications subsystem and the integrity properties it is to
exhibit. That specification is then "factored" into levels and
major requirements implied by the specification are assigned to
the various levels. Typical levels encountered in computer
information systems (from the bottom up) , are the hardware, the
operating system nucleus, general operating systems services,
protected subsystems, and user programs.

We noted that Clark and Wilson's framework strongly implies a
general allocation of the "E-rules" to an applications-
independent enforcement mechanism and the "C-rules" to the
applications subsystem itself. We then considered the nature of
the enforcement mechanism. We noted that elementary support for
protected subsystems, such as a simple two-state processor and
segmented memory management, is not sufficient for an enforcement
mechanism in all cases. These features do not protect against
"active" or "technical" attacks by programmers, because while
they provide assurance that the enforcement mechanism cannot be
tampered with, they provide no assurance that the enforcement
mechanism cannot be bypassed.

We examined, to the degree that time allowed, the integrity
mechanisms of a range of Trusted Computing Bases (TCBs) and
discovered several whose built-in policies could, enforce the "E-
rules" of Clark and Wilson. The mechanisms included the use of
hierarchical integrity policy augmented by "trust" and "integrity
categories" in Gemini GEMSOS and VAX VMS/SE, the table-based
approaches of LOCK and RACE, and the "capability" approach of
Paul Karger's design and the RSRE SMITE machine. These TCBs
ranged from paper designs to off-the shelf systems, and spanned
the formal assurance ranges of the Trusted Computer System
Evaluation Criteria (TCSEC) from C2 to Al and beyond. Thus we
were able to point to actual and potential systems which would
withstand only unsophisticated attacks (those at the C2 level,
with corresponding lower cost) to those which were designed to
withstand highly technical assaults (those at the Al level and
beyond, with corresponding higher cost) . We were satisfied that
the cost/benefit tradeoff space was sufficiently populated, and
accordingly declared the construction and assurance of an "E-
rule" enforcement mechanism to be a solved problem.

4-3

In effect, we concluded that the Clark and Wilson requirements
can be factored into two classes of simpler requirements: those
concerned with access control (i.e., prevention of unauthorized
access to GDIs) , and those concerned with the preservation of the
consistency of GDIs. The access control requirements, we found,
can be met with appropriately high assurance by current or
planned trusted systems. The remainder of our report restricts
itself to the topic of how assurance might be gained that an
application subsystem, supported by adequate access control
enforcement, might be assured to preserve the integrity of the
data it manages.

Having reached this conclusion, we then focused our attention
upon the applications subsystem and the "G-rules."

2.3 Decomposition into Functional Elements

Concentrating now on the applications subsystem, the next step is
to decompose it into elements that fit into Clark and Wilson's
framework: TPs, IVPs, CDIs and UDIs. For each element a
specification is developed that defines the element sufficiently
to allow it to be constructed (detailed design and coding) as an
independent unit of work. This detailed specification is derived
from the overall specification produced in the second step, by
partitioning those requirements, adding detail to them, and
allocating them to the functional elements defined by the
decomposition process. Essential to this process is the writing
of an interface specification which describes the interactions
between the elements.

Once constructed, each element is examined (through either formal
methods such as program proof or informal methods such as
inspection and test) to insure, to the required degree of
assurance, that the element corresponds to its detailed,
"allocated" specification.

2.4 Composition and Subsystem-level Assurance

A set of elements (TPs, IVPs, UDIs, CDIs) that perform adequately
to their individual specifications is then composed into
successively larger units and steps (generally testing) are taken
to gain assurance that the assemblage both corresponds to its
overall specification and exhibits the required integrity
properties

.

We wish to stress that this step is the highest-risk step in any
system development activity and the point at which such
activities most commonly collapse. The standard failure mode for
software projects is to have a collection of elements, each of
which works in isolation, but which cannot be made to work
together. Historically, successful projects are those which have
been careful to decompose the system and arrange the order of

4-4

composition or "integration" so that it proceeds in small and
controlled increments. The worst situation is that of so-called
"big bang" integration, in which all or a major subset of the
elements are assembled at once; the attempts to get the resulting
system to work invariably end in the explosion which gives the
approach its name.

3. Doubts and Challenges

3 . 1 Demonstration of Invariant Properties

In the case of security and integrity properties for computer
information systems, we noted two motives for putting forth a
definition. The first motive is that the definition represents a
universal truth, which places the definer in the attractive
position of being the conduit for received wisdom. The second
motive is more humble, and can be informally described as "truth
in advertising:" offering to a potential user a more precise
definition of the sense in which one's system "is secure" or "has
integrity.

"

We stress that in the case of security and integrity properties
the content of the definitions is much less important than their
clarity. All computer information systems are embedded in a
larger context in which security and integrity measures (e.g.,
restriction of physical access) can be taken. A system that
exhibits a clearly defined but inadequate security or integrity
property may still be safe in context, because the inadequacy of
the system is evident and other steps may be taken to compensate
for it. The real danger lies in illusion: security or integrity
properties whose definitions are vague, inflated, or both. In
these cases the user will be lulled into that most dangerous of
states: a false sense of security.

In the discussion to follow, we treat the properties outlined in
Clark and Wilson's paper with the second motive in mind: clarity
and openness with regard to the implications of the rules. In
this light we first examined the rules themselves to see if they
represented an correct and appropriate definition of that which
we individually visualized as "integrity."

3.1.1 Correctness

Being an assurance group, we defined "correct" as "corresponding
to the definition of some higher authority," as in "a correct
program is one which corresponds to its specification." We noted
the difference between the confidentiality properties defined in
the TCSEC, which are derived from a highly codified environment
of Presidential Directives and Department of Defense regulations,
and the properties proposed by Clark and Wilson, which come from
a much less formal, "common law" kind of authority.

4-5

3.1.1.1 Doubt: Correctness

We doubted that an initial version of a policy would properly
distill and abstract the intent of the diverse authorities which
apply to the general area of data integrity, and saw no credible
argument at this time that the Clark and Wilson rules are
"correct" in any widely-understood sense.

3.1.1.2 Challenge: Collect Policy Statements

One way to produce such an argument is to find specific examples,
similar to the example of double-entry bookkeeping advanced in
the paper, that are mandated by some authority, and can be
represented as instantiations of the rules proposed by Clark and
Wilson.

We therefore recommend that representative examples of directives
for information integrity be sought out and Clark and Wilson's
rules be examined in their light. Examples of such directives
are the Generally Accepted Accounting Practices, the Code of
Federal Regulations, the Uniform Commercial Code, various stock
exchange regulations on the reporting of earnings. Federal
Aviation Regulations, OSHA regulations, and military directives.

In addition, this exercise would build an authority base for a
national consensus as to the requirements for integrity in both
commercial and military practice. The result should be a
statement of accumulated policy similar to Chapter 7 of the
Orange Book.

3.1.2 Appropriateness

We noted two definitions of "appropriate." The first was
appropriateness to the applications area, i.e., applicability to
a set of subsystems of interest. The second was appropriateness
to the assurance task, in particular the crucial first step of
demonstrating that one's system is not fundamentally unsound.

With regard to applicability, we observed that there exist
numerous applications subsystems whose informally specified
integrity properties correspond to those defined by Clark and
Wilson. We further note that these applications subsystems exist
in more areas than just commercial information processing, such
as quality engineering and configuration management, maintaining
the internal integrity of a system whose main objective is
confidentiality (such as a TCB or a communications security
system) , and performing command authentication in a military
environment. We accordingly view Clark and Wilson's
characterization of their rules as providing a "commercial
security policy" as being excessively narrow.

4-6

3.1.2.1 Doubt: Completeness

On the other hand, we observed that in order for the rules to be
appropriate they must be complete. Our first doubt with regard
to appropriateness was raised when we noted that Clark and Wilson
did not mention the need for something as basic as a signature
mechanism. As a result, applications such as electronic mail,
the growing field of Electronic Document Interchange (whereby
corporations can exchange invoices, purchase orders, etc.
electronically) , and other similar applications are omitted from
their proposed definition of integrity. It appeared to us that
Clark and Wilson had been unduly influenced by existing batch
processing accounting programs and practices, and that they made
relatively little attempt to abstract the commercial interchange
of conventional paper documents and signatures into the digital
world.

In particular, we noted that Clark and Wilson seem to assume a
single accrediting authority, such as in some large corporation
which certifies its own internal accounting system. But what if
two corporations wish to exchange purchase orders, invoices, and
ultimately credits and debits via Electronic Funds Transaction
systems? Who then is the ultimate accrediting authority? This
appeared to us to be an instance where a scheme such as that
proposed by Clark and Wilson, which rests on a notion of
centralized mediation, could turn out to be completely
inadequate.

3.1.2.2 Challenge: Decentralized Control

Our challenge in this area is to demonstrate that the Clark and
Wilson rules are appropriate in an environment in which control
is decentralized. In particular, the Clark and Wilson
formulation should be examined in the light of transactions
between peers, such as separate corporations, which do not share
a common accrediting authority.

3.1.2.3 Doubt: Consistency

It was with regard to appropriateness to the first assurance step
that our serious doubts first began to be raised. If a set of
rules is to provide a useful basis for assurance of an invariant
property, they must be clearly defined and internally consistent.
We found the definition of an IVP ambiguous with regard to
purpose, in that it was not clear (nor resolved in the plenary
sessions) whether the IVP was to check internal consistency,
external consistency, or both. We were also uncertain about
logging requirement of rule C4 , in which the purpose of the log
(accountability, backup, or both) was not clear. Again, this
ambiguity was not resolved in the plenary session. We also felt
rule E2 was possibly inconsistent with other rules. Its wording
strongly implies the binding of individual names to programs

4-7

while other discussions indicated that it was the organizational
role (a derivative value) that should be the determinant of who
may initiate a given TP.

While we were not able to point out internal inconsistencies in
the short time available, we noted areas of overlap in the rules
that we felt could lead to such inconsistencies. We questioned
the need for rule CI and the need to distinguish IVPs from TPs at
this high level of abstraction. Likewise, we felt that rule C5
was subsumed by C2 , and again questioned the need for the
distinction between a UDI and a GDI, or indeed the ability to
state criteria which would enable us to distinguish one from
another. We felt that rule El was subsumed by rule E2, and that
rule E4 was an instance of rule C3 applied to the enforcement
mechanism. The latter case raises the interesting question of
circularity in the definitions, which we will touch upon in a
later section.

3.1.2.4 Challenge: Formal Analysis

Our challenge to resolve these doubts is to recast the rules in
some notation more formal than English and demonstrate internal
consistency.

3.1.2.5 Doubt: Open-Endedness

Our second area of doubt centered on the feasibility of
performing the crucial first assurance step at all in actual
practice. We noted that central to the step was the striking of
an "integrity perimeter" which bounded the portion of the
applications subsystem to be reasoned about. That is, at all
stages of the assurance process, including the first, it must be
absolutely clear exactly which entities are within the system
being reasoned about, and which are not: the "integrity
perimeter" separates the two. This notion is crucial.

For example, a system that enforces the rules given in the paper,
but does not treat the results presented to human users as
protected data items through the entire path from generation to
presentation to users, could not, in our opinion, be said to
preserve integrity in any meaningful sense. It does not matter
how carefully the internal representation of the data is kept
consistent, if the programs presenting the data are not
certified. Uncertified display programs provide no assurance
that the data presented to users (and upon which their decisions
were based) are accurate copies of the consistent internal data
items

.

A well-defined perimeter is necessary both for clarity of
definition ("these are the things we protect and these are the
things that protection depends upon") and to keep the assurance
task within bounds.

4-8

We observed that Clark and Wilson's rules have a strong
"embedded" flavor to them, in that the properties they define
often apply to the interaction between the applications subsystem
and the larger context in which it operates. This in turn
implies that certain crucial operations will be outside any
feasible integrity perimeter and therefore cannot be subjected to
any form of a priori assurance. The rules rest on the
fundamental principles of redundant integrity verification (IVPs,
as set forth in rule CI) and separation of duties (rule C2) . We
foresee circumstances in which little or no assurance can be
given that these principles are actually enforced by the system,
because the enforcement mechanisms are outside the system's
control. An example in the case of (one definition of) an IVP is
that of the letters sent by a bank's auditors to the bank's
customers, asking that they verify the balances in their
accounts.

3.1.2.6: Challenge: A Worked Example

Our challenge then is to pick that oft-cited instance, a "real
world" system with all its asymmetries and ad hoc features, and
demonstrate that for at least one such system a satisfactory
perimeter can be drawn.

3.2 Factoring and Allocation of Requirements

3.2.1 Doubts: Manageability of the Assurance Task

Our first doubt in this area had to do with the linkage between a
global property such as separation of duties and the structure of
the system. In particular, we noted that many "real world"
systems have rules which, when applied to Clark and Wilson's
structure of TPs, IVPs, CDIs, and UDIs, will yield a dynamic
structure. In particular, one is able to cite cases in which
separation of duty is invoked based on the value of the CDI
(e.g., one signature on checks under $1000, two above that). The
structure itself is then a function of the values being
processed, and may not "stand still" to be defined, decomposed,
and have requirements allocated to its elements.

Our second doubt was that the structure may change not because of
linkage between CDI values and the configuration of TPs and IVPs,
but because the integrity perimeter of necessity includes part of
a changing management context. Of particular concern here is the
definition of roles which in turn support the crucial concept of
separation of duties. Organizations reorganize, and an invariant
property which is a function of an organization chart may not be
very invariant.

Our third doubt was that the structure of the system may be
stable but may be too complex to be understood. We were informed
of the LOCK experience, in which structures very similar to those

4-9

proposed by Clark and Wilson are used to maintain internal
integrity of a TCB, and in which even very simple applications
subsystems yield large numbers of TPs and GDIs. We also observed
that Clark and Wilson's formulation, like earlier models, omits
the crucial topic of synchronization and atomicity of operations.
The inclusion of mechanisms in these areas (e.g. , semaphores,
message queues, and protocols) also tends to increase the number
of TPs and GDIs in the structure. Furthermore, these "support
TP/CDIs" are critical to the integrity by the system, and
therefore cannot be ignored by the assurance task.

We noted that the requirement for separation of duty imposes a
subtle requirement on the system with respect to the
identification of users. In particular, the identification
system, if it uses the notion of "groups," must rule out the
possibility that the same user may belong to a different group,
or have an alternative network address through which he or she
could access TPs. Otherwise a single individual could appear to
be two different people, and thus avoid the separation of duty
exclusion.

We also had doubts about the practicality of the IVP concept. We
noted that the IVPs which check internal consistency of CDIs
would most likely be constructed to a mirror image of the
specification of the TP which produced the CDI. Given the rate
of occurrence of specification errors, and the characteristic
that the vast majority of them are errors of omission, we
question whether the redundancy implied by the IVP concept is
real or illusory.

3.2.2 Challenge: Continue the Worked Example

Our challenge to resolve the above doubts is to carry out the
decomposition of the "real world" system proposed in step one,
and to do so to a level of detail which included the
synchronization mechanisms, and to demonstrate that the IVPs in
the system do indeed verify the integrity of the data they
examine.

3.4 Composition and Subsystem-level Assurance

This was the step in the assurance process where the group had
its deepest doubts, which was discouraging because of the
previously stated observation that it is the step in the overall
development process that carries the highest risk.

3.4.1 Doubts: The Inductive Hypothesis

We severely question the ability, either formally or informally,
to carry out the induction described by Clark and Wilson. We
noted the extreme vagueness of the definition of "valid" and
"well formed" in the paper, and doubt that there exists a non-

4-10

trivial definition of a "well-formed transformation" such that a
sequence of well-formed transformations is itself well-formed.

For example, one definition of 'valid' for accounting systems,
namely, 'the books are balanced' was used extensively throughout
the paper and the plenary sessions. This definition, indeed,
would appear to lead to a notion of validity that might be
preserved if the rules were enforced. However, if that were the
only meaning of 'valid' preserved by the application subsystem as
an invariant, there would seem little reason to call the system a
"high-integrity system:" it would be possible for users to
corrupt the accounts in arbitrary ways, provided that their
actions always left the books balanced.

It should be clear that the relevance of the Clark and Wilson
proposal depends upon the existence of a great many application
invariants that have the desired inductive property: if every
transaction preserves some local invariant, a corresponding
global and persistent invariant is also preserved. The informal
induction presented in the paper appeared to us to use the word
'valid' in an ambiguous way: 'validity' for a particular TP
seems to involve the preservation of the local consistency of the
GDIs it operates on, while 'validity' in the conclusion seems to
imply the preservation of global consistency for all of the GDIs
taken together. It was not clear to us that a large set of
useful invariants (i.e. those for which preservation of validity
locally implies preservation of validity globally) can be
defined, and we issue a challenge that such a set be described.

We note that the above problem exists in other areas: the
confidentiality property exhibited by a computer network is often
substantially weaker than the properties exhibited by its
components, and the reliability of an assemblage of parts is
generally far below the reliability of an individual part.

If our doubt in this area is valid, then there exists an upper
limit to the degree of assurance that may be associated with an
applications subsystem as an entity, and that degree of assurance
may be unacceptably low in that no useful conclusions about the
subsystem can be made. In such cases, then, even the minimal
requirement that the security policy enforced by the system be
clearly stated is not met.

Another doubt dealt with circularities in the dependencies
between parts of a system. We have noted previously the
necessity of incremental composition ("integration") and
assurance. To perform such incremental operations requires a
system design that can be "unwrapped" so that elements can be
added to the whole in a sensible order. In particular, elements
upon which other elements depend must be incorporated early and
assurance about them gained in context.

4-11

circularities are pathological cases in the overall structure in
which element A depends for its correctness on the correct
behavior of element B and element B likewise depends on element
A. Circularities are pathological in that they force the
development team into variations of "big bang" integration; in
this case, the simultaneous incorporation of A and B into the
system. From the point of view of assurance, of course, the
assurance steps (however informal) must be applied to A and B
together as there is no way to gain evidence that either is
correct without considering the other.

We noted the potential for circularities in the rules themselves
because of the E4/C3 relationship. Another example of a possibly
inherent circularity is that of the user authentication data
base, which is a CDI maintained by a TP whose correctness depends
on the user authentication data base. We also noted that the
path of the circularity may go outside the integrity perimeter
and back in, because essential operations (such as a basic step
in one alternative definition of IVP) can take place outside any
feasible integrity perimeter. We also note that circularities
are fatal to the inductive verification proposed by Clark and
Wilson, in that they lead to indefinite recursive descent.

3.4.2 Challenge: A Rigorous Demonstration

Our challenge in this regard is to demonstrate that the induction
is indeed possible, by taking a representation of even a trivial
system in an appropriate formal notation, performing the
induction, and submitting the result to the social process. An
inductive proof of the overall integrity of an applications
subsystem which had been checked by the Boyer-Moore theorem
prover would be a convincing demonstration.

4. Summary and Conclusion

We end our report with a question, two admonitions, and a
concluding observation.

The question addresses the issue raised often in the plenary
sessions, to wit, what the economic value of all this is, and
forms a final challenge: If one has a mechanism which enforces
the E-rules to some degree of assurance, and one has an
applications subsystem whose elements all exhibit Clark and
Wilson's properties to varying degrees of assurance, and this
system is to protect assets of a known value, then how does one
estimate the insurance premium to cover loss?

The first admonition is to repeat the theme of the challenges
that run through this report: work some examples. The history
of computer science is replete with proposals for programming
languages, system structuring techniques, notations, and
assurance technologies which seemed plausible and even desirable

4-12

when described at the level of detail used by Clark and Wilson,
but which collapsed utterly under the stress of actual use. In
particular, we admonish the various organizations which are
considering the establishment of standards, criteria, and
certification mechanisms not to do so until considerable
experience has been gained in the implications of these rules.

The second admonition is not to treat assurance cavalierly or as
an afterthought. If one omits orderly and well-defined assurance
steps, then one runs the considerable risk of providing just
illusory security. Illusory security is adequate only if one's
adversaries share in the illusion; if they do not, then it is
worse than no security at all.

Our concluding observation is that the Clark and Wilson paper
provides a useful first step toward codifying practices that have
been informally incorporated in manual and automated systems for
years. We feel, however, that a substantial amount of research
and definitional effort must be expended before these rules can
be used as the basis for any orderly or meaningful assurance
activity.

4-13

5.0 REPORT OF THE WIPCIS
WORKING GROUP ON GRANULARITY AND FUNCTIONS

Dorothy Denning
Cheryl Helsing
Paul Karger
Kurt Meiser
Rolf Moulton

William Murray
Simon Wiseman

INTRODUCTION

In addition to sharing direct work on the Clark-Wilson
Model, this working group was asked to address those issues
relating to the granularity of Tranformation Procedures [TPs] and
Constrained Data Items [GDIs] . Specifically, we were asked to
provide guidelines as to the size of data objects that would
provide appropriate separation of duties while not imposing an
undue administrative burden. We were also asked to deal with
the functions all TPs could be expected to perfoinm.

Granularity

The extent, scope, degree or effect of a control must be
appropriate to the intended application. In a security context,
"The test of granularity requires that the size of the resource
to be controlled be small enough to constitute an acceptable
risk." [Data Security Controls and Procedures, IBM Corporation,
March 1977, G320-5649] In general, the more granular the control
or the smaller the object controlled, the lower the risk.
However, there is a limit: there is a point at which increased
granularity increases both the level of administrative effort and
the level of complexity. The first can result in inaccurate or
untimely rules, while the second can mask error or malice.

Functions

The group was also asked to comment upon what functions
should be expected of all TPs. In a system that is composed
exclusively of TPs, there might be some functions that all TPs
would be expected to perform. Examples suggested, and addressed
later, included parsing, consistency checking and logging. If
these functions were sufficiently general, then each might simply
call a generalized TP to perform it; if they were TP specific,
then each would have to call a function to perform it.

Ownership

Finally the working group was asked to look at the issue of
ownership of TPs and GDIs.

5-1

RESPONSE TO THE CLARK-WILSON MODEL

The group spent it's first four hour meeting, discussing the
Clark-Wilson model and responding to the questions about the
model that had been posed to them.

General

In general, the group strongly supported the ideas advanced
by Clark and Wilson. They felt that the paper represented a
great deal of progress on a "difficult problem." They did not
identify any invalidating flaws or deficiencies. They
recommended some rewording of the rules and those are included in
an appendix to this report. Nonetheless, there was a strong
sense of caution and that more testing of the ideas is indicated.

Issue of a Separate Integrity Model

The group expressed a strong preference for a single
computer security model embracing confidentiality, integrity and
continuity as peer functions. They felt that earlier models
had concentrated too heavily on confidentiality. Previous
models (ie: Bell and LaPadula) concentrated on
confidentiality because integrity was just not understood
well. At the time they were developed, both integrity and
confidentiality were equally high priorities. However, a
solution to confidentiality was found then (early '70s), but
Clark and Wilson seems to be the first good model for
integrity.

On the other hand, there seemed to be a concensus that it
was not productive to consider each in isolation from the
others. It was felt that the same mechanisms could be
useful in achieving each. In addition, since one objective
might be achieved at the expense of the others, then
considering them independently might be dangerous.

The group felt that the issue was completeness of whatever
model or set of objectives might be used. They rejected the
proposition that the requirements or desires of military
systems were substantively different from those in
commercial systems, as might have been inferred from reading the
Clark-Wilson paper. Likewise, they did not believe that there
was an issue around whether particular controls were
"mandatory" or "discretionary." Instead the issue was seen as
whether there were a sufficient number of people involved and
when the rules are bound. For example, the necessary and
accepted concept of "mandatory" as used in the national security
context, can be described as a special case of separation of
duties bound at a very early time.

5-2

similarity to the Confidentiality Model

While noting that the same control primitives might be
useful for both integrity and confidentiality, they indicated
that a new model would be required to relate the access control
primitives to integrity.

The group took note of a working paper, "Using Mandatory
Integrity to Enforce 'Commercial' Security" by T.M.P. Lee. This
paper suggested that "when properly applied" the mechanisms
described in the Trusted Computer System Evaluation Criteria
would be effective in enforcing the Clark-Wilson model. While
accepting that this was likely, the group still indicated that
the model used should closely match the objective. The user
should not be required to invent or force a fit. Force -fitting
the Clark-Wilson model into the framework of the Biba integrity
model (so as to use DoD-type access control mechanisms) , while
possible (as shown by Lee) , is not particularly useful or
enlightening. Similarly, the group felt that the mechanisms
suggested by Clark-Wilson might be sufficient to enforce the DoD
Security Policy but that an unnecessarily large amount of work
might be required to do so.

Certification vs. Enforcement

The group registered some concern about the distinction
drawn by Clark-Wilson between those rules that were labelled as
"C" and those labelled "E." It seemed as though there was an
implicit assumption that the former could be attested to by
competent authority but not enforced by the system. Yet, the
group found two "C" rules which they felt might in time be
enforced by the system. They suggested that the distinction
might be based in part upon Clark and Wilson's view of what was
practical and that it might discourage attempts at enforcement.
The group felt that while certification is both indicated and
necessary, that its use should not be mandated where enforcement
might also be an equally appropriate choice. Certification was
seen as one tool among others, and not to be automatically
preferred. (A subsequent discussion suggested that perhaps the
distinction was between those rules that were application
specific (C) and those that were specific only to the system
(E)).

GRANULARITY

The working group concluded that granularity of TPs and CDIs
was ultimately an application issue. While it is difficult to
conclude exactly what granularity is required except in the
context of a particular application, the group identified useful
guidance.

5-3

single Function

The group concluded that TPs should be limited to a single
well-defined function or be composed only of like or related
functions. While too many small particles may be messy and
administratively burdensome, in computer systems, it is far
easier to group things than it is to divide them.

Another test that was agreed to was that a manager should
never be forced to grant privilege A simply for the purpose of
conferring B. A and B should be separate units. In that case,
sets A-B could be formed as could A-A and B-B. On the other hand
if AB was the smallest named unit, that would fail the test.

Separation of Duties

The group took note of the generally accepted standards of
good business practice for separation of duties (see position
paper by W. H. Murray, attached) . These practices require that
at a minimum managers must be able to separate the following:

* origination from approval

* creation from maintenance

* procedure from data

* assets from records

Obvious Intent

The TP should be small enough that it is obvious in its
intent. The larger the object, the more difficult it is to
comprehend. When administering the TP, the manager should be
able to predict its effect and the effect of delegating authority
over it from the information in its name and the name of the TPs
to which it is to be joined. However, Clark-Wilson requires
[rule C3] that the set of TPs delegated to any single user must
be certified to meet appropriate separation of duties.

Explicit Conflicts

In a position paper submitted to the Workshop, this reporter
suggested that the list of conflicts should be made explicit and
enforced by the system. When the number of data objects reaches
the hundreds, and the activity to access control lists is high,
then "certifying" the absence of conflicts would rapidly become
overwhelming

.

5-4

similar in Size to Traditional Data Items

The group suggested that TPs should be similar in size to
objects that managers are accustomed to dealing with. Examples
submitted included: business transactions, pages, forms,
screens, and documents.

IMPLICATIONS

It seems clear that in many business applications, both TPs
and GDIs will be smaller than the data objects that are named or
controlled by most operating systems. They are likely to be
more of the size and type that are most often associated with
such operating system extensions as database managers,
transaction monitors and communication monitors. However, the
Clark-Wilson model permits these extensions, as well as
application processes to be described as TPs.

There is no clear delineation in Clark-Wilson between that
function that must be provided by the "operating system," its
extensions and subsystems, or the application. There is an
assumption that any contained and orderly function will be
trusted for that which it has been assured to do. Since these
processes can be arbitrarily granular, and since arbitrarily
limited and simple processes can always be assured to perform
their function, (e.g., most primitive computer instructions can
be demonstrated, by inspection or exhaustion to do what is
intended) then any required degree of confidence can be achieved.

However, there are functions that the "operating system"
must provide to support Clark-Wilson. These center around the
notion of protected subsystems to ensure that TPs can do their
jobs without inteference. Examples of operating systems with
such protected subsystems include IBM's System/38, Honeywell's
Secure Ada Target (now called LOCK) , and other capability-based
systems

.

On the other hand, it appears that, unlike the claims made
for Bell-LaPadula, no single process can be relied upon to
enforce Clark-Wilson. The Clark-Wilson model ultimately depends
on the correct implementation of the applications specific TPs.
In a community that has traditionally held that no applications,
and only a few operating systems are trustworthy, this may
account for some of the reservations that were expressed about
the model

.

MANDATORY FUNCTIONS OF TPS

Validate Inputs

Clark-Wilson requires that "TPs which accept UDIs must be
certified to perform only valid transformations, or else no

5-5

transformations, for any value of the UDI. The TP should take
the UDI to a CDI or reject it." Specifically, this must include
validating formats and codes. It also includes proper encoding
and validation of that encoding.

Logging

Logging of what happened is a key component of Clark-Wilson.
Reconciliation of logs to the environment is a key mechanism for
ensuring agreement with the external environment. Clark-Wilson
requires that "TPs must be certified to write to an append-only
CDI all information necessary to permit the nature of the
operation to be reconstructed [rule C4]. Our group agrees that
writing to a log is indicated. However they questioned the
wording of the rule. First, we were concerned about the idea of
"append-only CDI." While we recognize the requirement to make
the log tamperproof, we could not agree that "append-only" was
the only way to make the log safe. Second, the group felt that
the ability to read the log was important; they wanted to
caution against wording that might appear to restrict it.
Third, we felt that the integrity of the system is improved when
there are multiple independent logs; we want to caution against
too much reliance on the log kept by the TP and encourage the use
of other logs.

Nonetheless, there are significant application events and
content that are visible only to the TP. It must be held
accountable for the logging of those events. It should also be
the logging process of last resort.

Alarms

Similarly, the TP must be the responsible process for
alerting management to those events which only it can see.

Termination Report

Finally, the TP must report the nature of its termination.
It must indicate in the log whether it went to normal completion,
was terminated by the user, terminated itself because it could
not leave all CDIs in a valid final state, or was terminated by
the environment.

OWNERSHIP

The working group was asked to deal with the issue of
ownership. We used the definition "the exclusive right to use."
The "owner" is the individual that exercises the organization's
proprietary rights over the data object. In access control, the
owner is the individual that exercises GRANT or PERMIT privileges
over a data object. These privileges are similar to those
associated with Clark-Wilson rules El, E2 and C2

.

5-6

6.0 REPORT OF THE WIPCIS
WORKING GROUP ON IDENTITY VERIFICATION

Tom Berson (Leader)
Peter Capek

Jim Schweitzer
Clark Weissman

INTRODUCTION

Every reader of this report has at some time verified his or
her identity to a computer system. Entry of a userid and
password in response to computer prompting is the almost
universal model for this simple but essential act.

Although the (userid, password) model is nearly universal,
it is often unsatisfactory from an information security
standpoint. Passwords may be intentionally given away,
accidently revealed, or even successfully guessed. Spectacular
computer crimes of fact (Jeremy Rifkin at Security Pacific Bank)
and of fiction (the film War Games) are based upon the assumption
by the attacker of a fraudulent identity.

Verification of a user's identity supports two key security
requirements in an information processing system. First,
control. Access control mechanisms of all sorts (e.g. RACE and
Multics ' ACLs) are parametric on the user's identity, thereby
providing means for differentiated user authorization and
permission. Second, accountability. Audit and investigation
rest upon correct linking of information system events to the
users who prompted those events.

Our working group was asked to consider identity
verification in the spirit of WIPCIS. We found that the demand
for high integrity information processing, as represented by the
Clark and Wilson paper, does have an effect on requirements for
identity verification. Two strong themes of WIPCIS were: 1)

separation of duties and 2) reality checking. Both of these have
found their way into this report.

Careful inspection of Clark and Wilson shows that while
identity verification is required (rule E3 is totally devoted to
the subject) it is not modeled. From our working group's
parochial point of view it seems fair to summarize C-W as simply
stating a requirement for high integrity identity authentication.

The body of this report is a set of statements we have
boldly called "Principles of High Integrity Authentication."
Each represents the conclusion of our discussion on one aspect of
authentication. Many are accompanied by a capsule summary of the
discussion.

6-1

Some of these principles may seem to be "simply" common
sense. We think that information system security is a field
where common sense can be applied. We expect that our
articulation and compilation of these principles will prove
useful to system designers and evaluators.

We think that these principles are correct, but have no
evidence that they are complete. We invite readers to send us
their comments and to suggest additions.

For purposes of organization we view the identity
verification subsystem as composed of three components: the user,
the communications path, and the authentication server.
Principles have been assigned to the component which they most
effect. There is a fourth category, system issues, for aspects
of the problem which are not easily assigned to a single
component

.

Note that we talk in terms of authentication of a user to a
system. Some applications may also require authentication of a
system to a user (mutual suspicion) . The same principles apply.

Further, some applications may require the authentication of
system parts (e.g. portions of a distributed TCB, smart crypto
controllers) to one another. The same principles still apply,
although the wording may require de-personification.

DEFINITIONS

User •— the person whose identity is to be verified. For
example, the flesh and blood accounts payable clerk.

User name The name by which a user is generally known to
other people. For example, "Jubilation T. Cornpone."

Id -- the name by which a user is known to a computer
system. For example, "123-45-6789", or "jubi".

Authenticator — evidence which a user provides as a bona
fide of his/her identity. For example, a password.

Authentication server — the mechanism that performs
registration of users, authentication of users, and
maintains the authentication data base (adb) . The authentication
server may be a process, a dedicated host on a network, or
something in between.

PRINCIPLES OF HIGH INTEGRITY AUTHENTICATION

— USER

1. Every id must be unique within a reality domain (e.g. a

6-2

single administration) [see the Reality Working Group's report
for more on reality domains] and within the retention period of
the audit log.

If an id were not unique in the space of a reality domain
and over the time of an audit log then control decisions and
efforts to assign accountability would suffer from ambiguity.

2. Every id must have a single (human) user assigned.

Again, we seek to avoid ambiguity. This rule forbids "group
ids." When users in similar functions must be granted similar
access this should be arranged through the access control
mechanism.

3. A user may have multiple ids, but not within a single
reality domain.

Our goal here is to preclude aliases by which a user might
subvert a separation of duties policy. We note that there
appears to be a tension between separation of duties and those
privacy mechanisms which provide a user with multiple unlinkable
identities so that his various actions cannot be correlated. For
the moment, we come down on the side of supporting separation of
duties.

4. Multiple roles should be handled by a "change roles" TP
external to authentication.

Some people fall to the temptation of assigning an
individual user multiple identities as a way to acknowledge that
a user may have multiple roles, each with its own access. This
could lead to failure of a separation of duties policy. We
believe that the multiple roles should be explicitly acknowledged
by the access control mechanism.

5. Every id should have a single authenticator associated
at any particular time.

This is a simplifying principle. Cancellation or expiration
of an authenticator becomes procedurally equivalent to revocation
of access from an id. The principle may be ignored in cases
where the simplification is unwanted, such as the temporal
overlap of encryption keys or n-party authenticators used in "no
lone zones."

6. The authenticator is a function of what the user knows
(e.g. a password) or what the user has (e.g. a badge) or what the
user is (e.g. a fingerprint) or what the user can do (e.g. a
voiceprint)

.

6-3

We expect that authenticators will increasingly come to be a
mix of all four.

7. Different sorts of authenticators have different
characteristics in terms of strength, convenience,
transferability to other users, etc.

8. When authentication succeeds (the user's identity is
verified)

,
positive feedback should be given that provides

information for user self-audit (e.g. date and time of last
login) . The feedback should be given in user-relevant terms.

It does not seem of much use to tell a person in the Pacific
time zone that he last logged in on 87241 at 0902 GMT.

9 . When authentication fails care must be taken in whatever
negative feedback is given to avoid revealing information of use
to attackers.

Specifically, care must be taken to prevent independent
attacks on the id and the authenticator

.

10. The authenticator must be changed periodically.

We think that the period for which an authenticator is of
value should be related to the exposure which the authenticator
has suffered. The objective is to prevent spoof and playback
attacks. Some network applications may call for change of
password as often as after a single use (automatic mechanisms are
available for assistance with this) . Systems which allow users
to invoke programs of their own manufacture or choice are so
vulnerable to spoof or playback that reusable passwords are
almost never a safe choice of authenticator.

11. Authentication may take place whenever needed.

We tend to think of authentication as being something that
takes place at "login" time, but there is no reason why it should
not take place at application entry, at transaction entry, or
several times during a transaction. Or at any appropriate
combination of these times.

12. After quiescent periods user may be required to re-
authenticate.

This raises the interesting question: How "long" is an
identity verification valid? The answer might be in terms of
idle time, elapsed time since last authentication, number of
transactions, value of transactions, etc. The answer to this
question also depends, in part, on whether the system is
operating synchronously or asynchronously at the application

6-4

layer. Asynchronous transactions must each carry evidence of
their authenticity (and origin, and integrity)

.

13. Different transactions may require differing levels
(quality) of identity verification. For example, access to the
stock ticker may require only casual verification, while ordering
a trade may be occasion for more severe scrutiny of the user's
identity.

— PATH —
14. Authentication messages should be viewed as a protocol

suite.

We would like to subject the message exchange to analysis
for correctness, liveness, recovery from error, etc. We would
also like to view the end points of the protocol (i.e. the user
(or an authentication engine in the user's possession) and the
authentication server as communicating peers.

15. Authentication communication between user and
authentication server must be protected against disclosure of
authenticators, modification of messages, and insertion of
messages

.

This goal may be assisted by end-to-end encryption, by
protected wirelines, by one-time passwords, etc. We want to
prevent attacks on the authentication process from taking
place via the communications path. The path is less observable
than either the user or the server, and, therefore, more
vulnerable. Good security engineering practice encourages attack
in easily observed places.

Note that the terminal itself is part of the path.

— SERVER —
We envision authentication services being provided by one or

more "authentication servers" against which a few transactions
are defined.

16. Authentication services should be realized as a set of
TPs encapsulating a set of GDIs comprising an authentication
data base (adb)

.

Strong typing is not sufficient. The TPs that control the
adb GDIs must be subject to some sort of "certification" and
operated in a security architecture to provide assurance
against misuse of the adb.

6-5

17. An enrollment transaction adds to the adb a relation
binding the user name, id, a reference authenticator , and
enrolling authority.

The reference authenticator is the data to which the
authenticator is compared. For example, (a non-reversible
transform of) a password is compared to the reference
authenticator. For another example, a freshly collected
signature may be compared to a reference authenticator
collected earlier. The reference authenticator may be
supplied by the user (e.g. a bank signature card) or by a
trusted party (e.g. the state) using a forgery resistant
token (e.g. a driver's license).

The enrolling authority is the id of the person on whose
authority the user is enrolled. This should be a person in a
relevant line or command position. It should not be the
enrollment administrator, who doesn't get paid enough to
take the rap for an unauthorized enrollment. An example of
separation of duty: one person authorized, another executes.

18. Privilege is granted and adjusted independently of
enrollment (by the access control system, not by the
authentication system)

.

This is another example of separation of duties: one set of
people and TPs enrolls a user, a different set of people and TPs
empowers the user.

19. The update transaction — Adb data may be changed only
by appropriate parties.

In password schemes, a user may be allowed to change his
reference authenticator. In token schemes the reference
authenticator is the token's secret identity. The user has
beneficial use of this secret, but he is not a party to it, he
cannot recover or duplicate it, and must not be allowed to change
it. Most adb data should be changed only by the enrollment
administrator

.

20. The authentication transaction uses the adb and an
exchange of messages to determine the validity of the user's
claimed identifier.

This is the payoff -- a judgment by the authentication
service on the validity of the user's claimed identity.

Care must be taken by the authentication server to protect
itself from exhaustive attacks and playbacks.

Care must be taken by the user to protect himself from being
duped into surrendering secrets to processes other than

6-6

legitimate authentication server processes. This was simple to
do in closed systems. It is so difficult to do in open
systems that the user is best not made a party to the
secret.

Care must be taken by processes relying on the
authentication service to prevent spoofing by a spurious
authentication service, to prevent accidental or malicious
modification of the authentication service's judgment
between the time it is given and the time it is used, and
that the judgment is used correctly.

21. The authentication transaction must be over-designed to
avoid incomplete transactions, incomplete adb updates, exposure
of passwords (e.g. must enter old password to activate the new
password) , etc.

The authentication server and its transactions are keys to
the kingdom. They require special "trust" attention.

22. Enrolled users must be periodically reconciled to
reality.

Yes, you have to go out and "find" each of your enrolled
users. Are they still living, still employees, and still
authorized to use the system?

—SYSTEM ISSUES

—

DURESS. Some applications require that the identity
verification system enable the user to pass a subliminal
(not noticeable to an outside observer) message that the
user is under duress. We observe that this is possible to
provide, but seldom needed, and seldom used when provided. We
recommend that if a duress facility is provided users be
instructed that its use is optional.

TRUSTED DISTRIBUTION. It is often wise to authenticate the
provenance and contents of an update to operating software or
data. Cryptographic and protocol techniques are available to
support this requirement. We believe that no WIPCIS working
group discussed this.

Code updates may be thought of as "external" TPs, where the
update modification is a transaction against a CDI called
"the operating software" by an authorized user properly
authenticated and authorized. Unlike the "internal" TPs,
which have omnipresent hardware and software enforcement,
these "external" TPs escape these enforcements and therefore
require a greater level of human diligence. This is another
arena for separation of duties.

6-7

DELEGATION. At one of our presentations to the plenary
session a lively discussion took place about delegation,
acceptance, revocation of delegation, and override. We think
that delegation should be accommodated by an explicit transfer of
access rather than by allowing the delegatee to operate under the
delegator's identity. Revocation can then be handled as a
properly authorized and executed "de-enrollment" transaction.

RESEARCH TOPICS ,

1. Relation between separation of duties and anonymity.
Separation of duties drives the requirement for mononymity,
(monoidentity would be better) , of users. Privacy may
require multinymity, in the sense that in order to prevent "big
brother" type of attacks, a user may wish to use multiple linked
untraceable unforgeable aliases [see Chaum]

.

2 . Estimation of security problem leading to adaptive
reaction. For example, Capek's login bandwidth choke, a
scheme wh^re failed authentication attempts are delayed in
proportion to the number of previous failed authentication
attempts involving either the id, the authenticator , or the
access path.

3. Understanding the complex trade-offs between Type 1

(false acceptance) and Type 2 (false rejection) errors for
different authentication schemes and for different security
policies. For example, a requirement for very low Type 1

error rates will inevitably result in high Type 2 errors
rates. In other words, the system is adjusted to refuse some
authentic users so that it also will refuse most inauthentic
users.

FURTHER READINGS IN IDENTITY VERIFICATION

David Chaum. Security without identification: Transaction
systems to make Big Brother obsolete. Communications of the ACM
28 (10) ; 1030-1044 , October 1985.

DoD 5200.28-STD. Department of Defense Trusted Computer
System Evaluation Criteria. DoD Computer Security Center,
Fort Meade, MD, December 1985. The "Orange Book."

DoD CSC-STD-002-85. Department of Defense Password
Management Guideline. DoD Computer Security Center, Fort
Meade, MD, April 198 5. The "Green Book."
Charles Hemphill Jr. and John M. Hemphill. Security
Procedures for Computer Systems, chapter 10. Dow Jones-
Irwin, Inc. , 1973

.

6-8

Lance J. Hoffman. Modern Methods for Computer Security.
Prentice Hall, Inc., 1977. See especially chapter 2,
"Authentication.

"

David K. Hsiao, Douglas S. Kerr, and Stuart E. Madnick.
Computer Security. ACM Monograph Series, Academic Press,
Inc., 1979. See especially section 4.3. This reference
contains a review of relevant articles through 1979.
Harry Katzan, Jr. Computer Data Security. Van Nostrand
Reinhold Co., 1973. See especially Section 6.3, "The
implementation of access management."

James Martin. Security, Accuracy and Privacy in Computer
Systems. Prentice Hall, Inc., 1979. Chapter 11 contains a
full description of identification by what you know, what
you are, and what you carry. See also chapters 12 and 13.

W.H. Murray. End User Authentication. Ernst & Whinney,
Cleveland, Ohio, September 1987.

National Bureau of Standards. Password Usage Standard.
Federal Information Processing Standards Publication 112,
U.S. Department of Commerce, National Bureau of Standards, May
1985.

James A. Schweitzer and Charles R. Symons. A Proposal for
an Automated Logical Access Control Standard. In Proceedings of
the 1984 IFIP Conference, Toronto (1984)

.

Raymond M. Wong, Thomas A. Berson, and Richard J. Feiertag.
Polonius: An Identity Authentication System. In Proceedings of
the 1985 Symposium on Security and Privacy, IEEE Computer Society
Order Number 629 (1985)

.

Helen M. Wood. The Use of Passwords for Controlled Access
to Computer Resources, NBS Special Publication 500-9, U.S.
Department of Commerce, National Bureau of Standards, May
1979.

6-9

7.0 REPORT OF THE WIPCIS WORKING GROUP ON AUDITING

prepared by:
Peter D. Wild

November, 1987

Group Members:
Peter D. Wild, Leader

Peter Neumann
Dennis D. Steinauer

INTRODUCTION

Originally The Audit Group (the Group) was given only one
Rule to consider:

C4 : TPs write to Log.

All TPs must be certified to write to an append-only GDI
(the log) all information necessary to permit the nature of the
operation to be reconstructed.

Very early on, in the discussions, the Group felt that it
was important that the audit implications of all the Rules should
be considered. It was on this basis that the Group discussions
then continued and this also is reflected in the structure of
this report.

We felt that the requirements for auditability within any
system are very similar, if not identical, to the requirements of
management and the user. This not only applies to the
availability of information and data, produced by the system,
but also the level of confidence which can be placed in the
system in order that it will behave according to description. An
audit will use the necessary data and information to compare the
actual behavior of the system with expectations after considering
whether those expectations are appropriate. An important
implication of this statement is that we are not suggesting
change or enhancement of the Clark Wilson Model solely for the
purposes of auditability, but more in order that the precepts of
good management control can be implemented and followed.

We felt that the following prerequisites for good management
and control, and also auditability, could be stated as follows:

There must be unequivocal identification of users and
processes within the system.

There must be clearly defined interfaces between all the
components which comprise the system. This must define.

7-1

among others, the degree to which the component is secure and
therefore its "right" to use an interface without compromising
security. It was felt that there may be a parallel here with the
"domains" which were mentioned and discussed by the Working Group
on 'Agreement with the External Environment'.

Division of Duties, or Segregation of Duties, is an
important concept discussed in the Model. The fundamental
requirement for this concept to be understood, in the context of
a particular organization, is the presence of an Organization
Chart with the appropriate Job Descriptions for each Job
Function. In many places the term 'user' is mentioned, in the
Clark Wilson Model, and we felt it should be replaced with the
term Job Function.

In order for any of the concepts, described in the Clark
Wilson Model, to work and, perhaps more importantly, to be seen
to be working, the foundation, upon which the application system
operates, must be secure. In modern computer environments this
is another way of saying that the Operating System environment
must be secure and one definition of such a secure environment is
a Trusted Computer Base (TCB) as specified in the 'Orange Book'
(The Department of Defense, Trusted Computer System Evaluation
Criteria) . It can therefore be said that the Application
System, as envisaged by the Clark Wilson Model becomes an
extension of the Trusted Computer Base and may be called the
Integrity Trusted Computer Base (ITCB) . (Please see Diagram at
end.)

The Individual Rules.

Here begins a summary of the comments made in respect of
each of the individual rules. Our objectives were to clarify,
not only our own understanding, but also that of others who may,
in the future, read the Paper. We have, therefore, suggested a
rephrasing where we considered it appropriate. We also felt that
the sequence of the Rules was important and we have attempted to
reflect this in the list that follows. We feel, however, that
more consideration should be given to this as the Model matures.
An example of this is the Rule CI about IVPs, we think that this
should be last if only because it presumes an understanding about
CDIs and TPs.

C2: TPs Preserve Valid CDI State

Suggested Rewording:

Execution of a TP will only result in a valid CDI state.

Comments.

The execution of a TP is, of itself, a loggable event.

7-2

TPs and also IVPs are also GDIs with special
characteristics

.

The rule commentary, which mentions the role of the security
officer, should be changed. The reference to the security
officer is probably too narrow since the role of the security
officer is one which is delegated by the owner or custodian of
the data and the programs which operate upon it. The security
officer's role is to ensure proper separation of duties during
the process by which the TP is promoted to production status and
the TP is then only made accessible to authorized Job Functions
(i.e. users) . This promotion process must also ensure that the
nature of the access of the TP to the GDI (such as Read Only,
Update, Delete and Greate) is also appropriately authorized by
the owner or custodian.

G4: All TPs Write to Log

Suggested Rewording:

The invocation of a TP is a loggable event.

Gomments

.

The original rule commentary appears to envisage the log
being used only for the purposes of reconstructing the nature of
the operation. This was felt to be too narrow since we were
aware of other, very important, uses of a log. These would
include:

Recovery of the data files.

Auditing of operations.

Investigation of operations and events, after the fact, as
well as providing evidence of same.

System Monitoring for either Performance considerations or
perhaps for Threats to the system.

Accountability and/or Billing requirements within the
system.

It was noted that it is very likely that different data
would be required for each of these purposes and it would be
ideal if all the necessary data could be logged at one time, in
one place, to meet these requirements. Goncern was expressed as
to the resulting volumes, but this would be likely to be
minimised, in the future, with the maturation of new mass-storage
technology such as GD ROM. What was of more concern, however,

7-3

that any particular purpose could be efficiently achieved.

We also stated that the integrity of the log data itself was
at the very foundation of the Model. This data must be the most
secure and attract the highest level of integrity in order that
the application data could be recovered or investigated without
any doubts as to its authority. Therefore the logging mechanism,
itself, must be trusted. Another important point which was
stated was that the retention periods for this logged data must
be seriously considered, but we did not have the opportunity to
define any guidelines in this respect.

C5 TPs validate UDI.

Suggested Rewording :

A UDI can be transformed to a GDI only through a valid TP.

Comments

.

Since a TP, at an early point in its life, can be regarded
as a UDI, the Group felt that it would be advantageous to use
this type of mechanism to promote such a TP to production status.
The TP to achieve this would probably have to be a part of the
Trusted Computer Base. The Division of Duties over this process
would, of course, be a critical part of the whole Model.

CI IVP validates CDI state.

Suggested Rewording :

For every CDI , there must be a set of IVPs that ensures that
the CDI is in a valid state at some defined point in time.

Comments

.

We felt that the Clark Wilson paper should be further
developed in the definition of all the components that comprise
an IVP. This is because we felt that while an IVP has a
computerized component, which in and of itself should be a TP -

even though it would not change the CDI, there were also other
essential clerical components to the succesful execution of an
IVP. Also it is obviously possible that the execution of an IVP
could lead to adjustments being made to computerized records.
These adjustments must be made by either regular or special TPs.
The effectiveness of an IVP is also directly dependent upon the
Division of Duties exercised during that execution.

The Group also felt that the execution of an IVP was an
important - and therefore - loggable event. We also felt that the
quality and integrity of the CDI was enhanced by virtue of the
execution of an IVP upon it. The converse of this is that a CDI

7-4

becomes increasingly questionable in its integrity and accuracy
as time passes since the last IVP. It may therefore be relevant
to time stamp the GDI as a result of the execution of a IVP upon
it. It is also clear that the appropriate time period between
IVPs on a GDI must be determined in relation to the importance of
the GDI, and the non-execution of an IVP within the specified
time period should be a reportable event.

An IVP is a part of the normal application system, it can
also be identical - or very similar - to a procedure used by an
internal or external auditor. Perhaps there is a case to be made
for saying that an IVP, when executed by an auditor, has, in some
way, more "value" since it could be argued that a greater degree
of Division of Duties was observed during that execution.

E2 Users authorized to TP.

Gomments

.

As mentioned above the Paper makes reference to "Users".
The Group felt that this word should be replaced, in many cases
with Job Function, the concept being that individual users
should only acquire access to GDIs, through approved TPs, by
virtue of their Job Functions. The Job Functions, as mentioned
above, are specified in Job Descriptions and the "map" of the
Division of Duties is shown in the Organization Ghart for that
organization.

The Division of Duties over the whole process by which TPs
are set up and users acquire access to them is obviously critical
to the stature of the Integrity Trusted Gomputer Base (ITGB)

.

The Group also felt that there should be a series of IVPs to
periodically check the integrity of these definitions of access
to TPs and GDIs.

E3 Users must be authenticated.

Gomments

.

The Group felt that this is a function which must be
performed by the Trusted Gomputer Base (TGB) . The user must be
authenticated before any opportunity is provided to invoke a TP.

The Group felt that the remaining rules which are listed
below should be deleted for the reasons given.

El GDIs changed only by authorized TPs.

7-5

Comments

.

This rule is subsumed by E2 , and this was generally agreed
by all Groups during the general discussion.

E4 Authorization Lists changed only by Security Officer.

Comments

.

This was regarded as only a particular implementation
example of Rule E2 . It was seen as being an advantage to have a
similar procedure as for normal TPs, since the Authorization
Lists would have to be changed by a TP.

C3 Suitable separation of duties.

Comments

.

This is another implementation example of Rule E2

.

Other Issues and Questions.

The Group considered that it was important to define, more
clearly, the relationship between the Clark Wilson Model and the
Trusted Computer Base (TCB) . We felt that the Clark Wilson Model
could only successfully exist in an environment where the TCB was
the foundation. Also, as mentioned above, some of the
functionality described in the Clark Wilson Model could only
successfuly operate at the TCB level. As part of an answer to
this we provide a redrawing of the diagrammatical representation
of the Model whch appears on Page 192 of the original Paper. Our
objectives were not only to demonstrate this point but also to
attempt to simplify the picture for clarity. (See Appendix 1 to
this report.)

We felt that the implications of the Clark Wilson Model
should be made clearer for the purposes of providing guidelines
for the Systems Development process and also for the Vendors who
are developing any type of product which operates in the future
commercial systems environment. These products would not only
include Systems Software such as operating systems and access
control software but also application systems and such
environments as Fourth Generation Languages. We also expressed a
concern as to the difficulty of implementation of this Model in
the light of current environments and also what is currently
known about imminent developments such as OS/2 on the Personal
Computer, and Systems Application Architecture which will provide
a structured environment for running a system on almost any
combination of microcomputer and mainframe. The early involvement
of the developers of these environments would be highly

7-6

advantageous to the future of the Model.

Possible Research Projects.

The Group felt that there would be great benefit in
encouraging Research Projects in the following areas:

The definition of the data necessary for logging in the
light of all the possible uses which could be made of that data.
An important part of this project would be the appropriate
navigation methods available for the use of this data for a given
purpose.

The use of the log data for audit purposes, particularly in
the area of what has been referred to as "Audit Reduction"

.

This is taken to mean how to reduce, what is presumed to be the
high data volumes, into a form which is useful to the auditor to
provide a necessary commentary on the quality of control and the
integrity of the data.

Other Groups, apart from ours, felt that that much would be
learned from the building of a prototype of the Model.

Conclusion

The whole Group unanimously felt that the opportunity to
participate in the Workshop was an extremely valuable experience,
and one that none of us would have liked to miss. We feel that
some extremely useful progress has been made, and, at an absolute
minimum, we are beginning to develop a useful vocabulary which
can be used to discuss the problem. We would like to sincerely
thank the organizers for the opportunity and would like to
express an eagerness to continue our participation in the future.

On a personal note, as the Group Leader, I would like to
sincerely thank the members of the Group, and Stuart Katzke who
joined us for some of our discussions, for providing a very
exciting forum and what I consider to be some very valuable
ideas

.

7-7

Appendix 1.

7.1 Suggested Redrawing:

E2

Separation Olr IDuties. C3.

E3

Trusted Computer Base
TCB

7.2 Summary of System Integrity Rules.

7-8

8.0 REPORT OF THE WIPCIS WORKING GROUP ON
CORRESPONDENCE OF A SYSTEM TO REALITY

by David R. Wilson

December 1, 1987

Introduction

The Clark-Wilson model, using Rule Cl, called for an integrity

verification procedure to occur periodically to test the integrity of

the data. The integrity verification procedure really had two parts,

a test of the internal consistency of the data, and a test of the data

back to real world values. For example, an integrity verification

procedure for an inventory system might include both an internal

balancing procedure, and reviewing actual bin counts of items within

bins within a storeroom. The Clark-Wilson model, in Rule C3 , also

called that adequate separation of duties be established as the

primary mechanism by which external integrity could be assured. This

workgroup was to examine the completeness of Rule Cl and C3 , and to

suggest some approaches to their implementation. The workgroup

consisted of Paul Peters, John Fitzgerald, Marv Schaeffer, David

Brewer, Donn Parker, David Bell, Leslie Chalmers, Keith Howker, and

David Wilson as reporter.

Reality Domains

Definition

The workgroup recognized that conversations about the correspondence

of a computer system to reality can move into broad discussions of

human nature, the nature of perceptions of reality, etc. We

8-1

therefore, needed some meaningful and workable definitions of

reality. As a result, we came to the conclusion that a helpful

mechanism to examine the correspondence of an information system to

reality would be to examine systems within the context of reality

domains .

This concept is analogous to a security perimeter. It suggests that

reality correspondence for an information system involves its

correspondence to some specific domain. For example, a reality domain

might be the keypunch operator. In this case, the obligation for

reality testing would be to assure that the keypunch operator entered

the data correctly. Broader issues such as whether or not the

information was given to the keypunch operator correctly in the first

place, or whether or not the transaction was properly processed, is

the kind of test that does not apply to that domain. On the other

hand, a demand deposit system for a bank might have a reality domain

which includes all of the tellers in the bank and several other

departments. In that case, we might be concerned about whether or not

the demand deposit system was in fact in balance, accurate, and

reflected properly the customers accounts. Thus the reality domain

represents the dimension of the real world against which the system is

to be tested. It was recognized that for the same system there could

be several different reality domains.

Domain Content

With the general concept of domain defined, what is the content of a

domain? For any chosen domain, one needs to understand the threats,

vulnerabilities, assets, risks, controls, organizational structure,

8-2

organizational functions, the functions of the system that are in a

reality domain.

Selecting a Domain

To select the dimensions of a domain, one should consider such issues

as organizational structure, the scope of the threats and risks, the

scope of the computer systems which supports one domain, the

possibilities for proper Implementation of segregation of duties

within the domain, the assets that are controlled by the domain, and a

reversibility concept. The reversibility concept suggests that for

items that are being controlled within the domain, that the domain's

scope must be large enough so that errors can be corrected for items

that are being controlled by a domain before those detected errors

leave the domain.

Related Domains

For any system, there could be more than one domain. Multiple domains

could be viewed as concentric circles like peels of an onion, where

for any domain there was another domain that was completely contained

within that domain, or was completely contained by another domain.

This model effectively explains such situations as the relationship

between a bank teller, a branch office, and the whole bank when

looking at a demand deposit system. On the other hand, it is quite

possible that reality domains would not be concentrically contained

within each other, but instead be separate individual domains. These

two different relationships of domains could lead to different

implementation approaches.

If the domains were concentric then the interface between domains

could be fairly simple and straightforward. But if the domains were

8-3

not concentric, then there would need to be a formal hand- off of

transactions as they enter and exit a domain. A simple example of

this kind of hand- off is the process of delivering cash through a

teller's window. First, the teller counts the cash - that is one

domain; the money is then passed through the window and the person

receiving the money counts it again - the second domain. There was a

formal exchange process at the domain boundary. This need for a

formal domain boundary process for the flow of transactions from

domain to domain may drive the need for the labeling of data within an

information system. It may be necessary for the application system to

be able to formally recognize its own internal subcomponents in a way

that ties back to reality domains.

There also needs to be formal boundary recognitions as transactions

cross from domain to domain, especially when they are not concentric.

Finally, there needs to be some mechanism established for dealing with

error recovery of transactions that cross domains.

Domain Summary

The group worked with this domain model and applied it to a number of

different examples to see if it seemed to make sense. Although the

nature of this review was admittedly limited, the reality domain

concept seems to hold up well as a way to look at problems and seek

practical implementation approaches. It also corresponds well to the'

concept of security perimeter which is well understood, and other

similar concepts found in audit and evaluation of systems of internal

control

,

8-4

Segregation of Duties - Checking the Correspondence of a Domain to Reality

Once a domain has been selected, and the appropriate threats,

vulnerabilities, assets, risks, organizational structure and

functions, and controls have been understood, the next step is to

identify what information from the information system is needed to

check the correspondence of the information system to the reality

domain. The correspondence checking could involve the review of

appropriate inputs to the system, review of appropriate outputs from

the system, and indicators that the system processed properly. Other

checks to the domain include review of the values of the data and

information within the system, as well as the proper functioning of

programs

.

Once it is determined what data is needed from a system, the actual

checking of the correspondence of an applications system to a reality

domain must follow Rule C3 for suitable segregation of duties. The

segregation of duties concept implies the following:

1. No individual can have such capabilities and functions to

cause substantial damage unless the person is in collusion

with someone else. By damage, this implies both errors as

well as intentional acts

.

2. Every verification process which verifies the reality domain

to the application system must be a process itself which

involves two or more people, working independently.

8-5

There was consensus in the workgroup that the segregation of duties

principle was reasonable. If two or more people independently verify

correspondence to an input transaction, review output reports, or

review process results, that constitutes a reasonable process that

meets generally accepted standards. There was a discussion for which

there was no real closure about weak vs. strong segregation of

duties. Specifically, segregation of duties which involves straight

dual control where two people do exactly the same thing twice, such as

key verification, is a weaker form of segregation of duties than when

two people use different independent processes to come to the same

result, which is felt to be a much stronger segregation of duties.

The group felt that this would be an area for further research.

The Clark-Wilson Rules

The group's next discussion focused on the adequacy of the rules that

apply to the correspondence of the system to reality. These rules are

CI and C3. CI states that all IVPs must properly ensure that all GDIs

are in a valid state at the time the IVP is run. C3 states that the

list of relations in E2 must be certified to meet the separation of

duty requirement. It was the feeling of the group that CI should be

more explicitly stated to recognize both the need for an internal

integrity as well as external integrity when an IVP is run. Further,

the external integrity process may actually involve some manual

procedures such as the counting of inventory that need to

8-6

be defined as part of an IVP. Clearly, this is a highly application

dependent kind of activity. There was a general feeling that C3 was an

adequate rule as stated.

Future Research

Finally, the group turned its attention towards future research

required. Several areas of research were identified:

1. More research is needed in the concept of domains. In a way

that is analogous to the implementation criteria outlined in

the D.O.D. Evaluation Criteria for Trusted Systems, there

may well be a need for integrity labeling of data. For

instance, it might be reasonable to identify the date and

time that an IVP was run to check the validity of specific

GDIs. It might also be appropriate to label information so

that its origins could be tracked as it passes across

domains. More work must also be done on mechanisms for

across domain error recovery.

2. The assertions about weak and strong segregation of duties

should be further explored and understood. Clearly,

segregation of duties can be implemented in a right way and

a wrong way, and maybe some of the right ways are better

than other right ways. More definitive research needs to be

done to articulate specific implementation approaches for

segregation of duties.

8-7

3. A major area of research is to determine how much of the

functionality in implementing the certification rules of CI

and C3 can be transferred to become enforcement rules. This

means the codification of things which are currently being

viewed as application dependent. There are several

approaches to dynamic segregation of duties that tie back to

the authorization process for individuals.

Summary

Although we recognize that the correspondence of a computer system to

reality is highly dependent upon specific applications, the model

seemed to provide reasonable guidance in defining a set of practices

so that systems can be certified to consistently meet generally

accepted practices for data integrity.

8-8

9.0 COMMENTS ON THE INTEGRITY MODEL

David D. Clark and David R. Wilson

While it is still a bit premature to provide a complete
revision of the original paper, a number of observations
have been made about the model which contribute substantially to
the understanding and development of the ideas. We attempt to
capture some of those here.

We would like to express our appreciation to those who have
taken the time to read and comment on our work. Both at this
workshop and elsewhere, the comments we have received have
reflected a very considerable effort by workers in the field,
and we want to thank those who have contributed to our better
understanding of our original efforts.

Spheres of Applicability

It is clear that the distinction between military and
commercial practices should not be made a central issue in the
development of the model . While the proposed model of integrity
arose from a study of commercial practices, both the military and
the commercial world have clear and obvious need for both
assurance of integrity and control of disclosure.

The development in the paper is based on the fact that the
only formal model available for security is the lattice model,
which arose out of military practice and is not well understood
in the commercial sector. This approach to presenting the
material has led some to conclude that we believed that the
military was not concerned with integrity. Clearly, this is not
the case. In fact, our goal was quite the reverse: by proposing
an approach to data integrity, we hoped to increase the chance
that a single system might prove useful in both sectors.

Terminology

A number of terms used in the paper have been a cause of
confusion. To some extent, this is because several words have
taken on highly specialized meaning within the field of
security.

Most obvious is the word "mandatory". In the paper, we
want to use it in the more general way, to describe any
mechanism which is not put into place at the control of the
owner of the data, but which is a necessary part of the
operation of the system. To some people, however, the word has
come to mean the specific example of that sort of mechanism which
enforces the lattice model

.

9-1

Another word is "certification". The paper used the word
with a general meaning; a program was certified if some
procedure had been used, acceptable in the context, to assure
that the Transformation Procedure operates correctly. But
certification has come to mean a particular procedure, developed
as part of the Orange Book methodology. Perhaps some other word
might better be used for this function in the paper:
verification, validation or assurance. But most seem to have
overly rich implications. In any case, the intent of the authors
was to admit a broad range of techniques.

Perhaps the most basic word problem centers on "model". To
some, a model has a degree of completeness which our model lacks.
Because we must mix together application level functions with
system enforcement, it was suggested that "framework" might be a
better word to capture our approach to integrity.

Initial Verification Procedures

There has been much confusion as to the purpose and
requirement for the IVP. Indeed, the form and function has
become much clearer since the writing of the paper. In the
book-keeping example, the IVP corresponds to balancing the
books. It is a procedure which is run outside the normal
pattern of transactions to verify the consistency of the system.

The IVP has a formal relationship to the rest of the model.
The proposed proof methodology to demonstrate consistency after
running a number of transactions was an inductive one: if each-
TP takes the system from a valid state to a valid state, then a
series of them should take the system through a series of valid
states, so the system is finally valid. The necessary condition
for this to work is that the system be initially in a valid
state. The IVP was proposed to insure that.

However, one could use a very limited IVP if this were its
only purpose. For example, one could postulate an initial state
in which the system was empty of data, which by definition is
valid, and then use TPs from then on to operate the system. (An
empty system is valid because we are concerned with data
integrity: if there is no data there can be no corrupted data.)

In fact, we saw the IVP as a much more practical tool. It
was observed in one comment that the only reason we need the IVP
is that we do not trust the rest of our methodology. In fact,
this is true as a practical matter. Consider again the
comparison with balancing the books. The books are balanced once
a year, even though good controls have been exercised on normal
activities throughout the year. We need the IVP in the model
to capture this idea, accepted in practice, that a system needs a
periodic cross-checking.

9-2

In fact, the need for the IVP can be seen as yet another
example of separation of duty. By having two, distinct
procedures to insure integrity, it is necessary to subvert both
of them to permit undetected corruption. While the detection
provided by the IVP may not be timely, it is none the less a
deterrent.

If the IVP is to play this role as a serious cross-check, it
is necessary that it not only check the internal consistency of
the data, but verify the consistency between the data and
external reality. The paper does not discuss this idea, and
indeed it is hard to discuss it in any formal way; activities
outside the computer system, such as verifying inventory, are
hard to cast as a part of computer integrity model. Through
separation of duty, we deal indirectly with the issue of external
consistency, but when direct actions are taken externally, we
can only address these peripherally.

Given this, the importance of the external component of the
IVP must be understood in the larger context of integrity.
Normal business practice make verification of the real state of
the world a central part of an audit. If the IVP is the computer
manifestation of an audit function, then the IVP must be seen as
a part of larger function which verifies the consistency of the
total system: computer and reality.

Most interesting, from a study of methodology, are those
systems in which the internal data has no obvious external
equivalent. It is difficult, for example, to talk about the
integrity of predictions of the future (such as forecasts of the
weather or elections) until the time has elapsed and a cross-
check with reality is possible. Perhaps one of the limits of
this model is that it is most effective only in those cases
where an external reality is part of the context.

Separation of Duty

A major component of this model is that the correspondence
between computer and real-world information is insured by having
several people perform distinct parts of the computerized
actions. This separation prevents one person from adjusting the
computer system so that it is internally consistent but
divergent from the real world. This adjustment can happen by
intent or by error. Separation of duty is effective both in
detecting errors and in detecting fraud.

As a noraal practice, this principle is well understood,
but it is very difficult to formalize. Indeed, one working
group of this workshop addressed only the issue of how to better
characterize the function of separation of duty. This area is
probably the least well understood part of the model.

9-3

As the paper points out, the most basic rule of separation
is that the person who can create a TP cannot be permitted to
run it. That is, it takes two people to bring a TP into
execution.

There are several points to be made about separation of
duty, particularly as it relates to the control of fraud. As the
above example indicates, separation rules are stated in terms of
people. It is people who commit fraud, not processes or
principals. If we are to use separation of duty to control
fraud, then the rules must be stated in terms of people. But
this raises a fundamental problem about the computer and the real
world. Jiow is a computer to tell if two principals registered
on the system in fact belong to the same person? The only
mechanism available is a further use of separation of duty:
insure that two people are required to register a user on the
system, and construct procedures to insure that all users are
associated with a computer-visible and unique identification of
the person.

This need to tell which actual person goes with which
computer registered entity represents a further problem. In
some cases it may be unacceptable or impossible to force a
person to prove who they are in such a way that their identity
can be assured. One is not expected to produce a birth
certificate to get a computer account, and even that level of
check can fail; people do succeed in getting multiple Social
Security numbers or passports. In other cases it may be an
invasion of privacy to ask persons to identify themselves to
that extent. Especially within computer systems, there is a
concern that providing the computer with a unambiguous identifier
for a person would permit undesirable forms of cross-correlation
of information.

There are degrees of separation. The most primitive is to
have same operation performed twice, by different people. A more
complex and effective version is to structure the overall tasks
and arrange the parts so that the persons performing the
different parts have conflicting motives. This creates a tension
between them which helps prevent collusion from arising. But
the computer system is not going to be capable of deducing such
things as conflict of motive, so the determination that the
separation is sufficient is usually going to involve human
assessment; another form of certification.

That need being recognized, there is still a role for
computer enforcement of separation. Essentially, what is needed
(by analogy with the lattice model for disclosure) is a partition
model, in which the users performing the parts of an action are
verified by the system as being partitioned into disjoint sets.
The partition model might well be the mandatory component of the
separation of duty enforcement, with further assessments such as

9-4

conflict of motive being left as a discretionary constraint on
the partitions.

Mandatory Mechanisms

A matter which received little attention in the paper is
the question of what aspects of the integrity model ought to be
viewed as mandatory. In the early days of developing mechanisms
for disclosure control, it was not clear that having only levels
and categories as mandatory controls was sufficient. Only after
much discussion and evaluation was this consensus reached.

A similar uncertainty applies to the integrity case.
Especially in the enforcement of separation of duty, it is not
clear which facilities should be a part of the mandatory core of
the system. The previous section suggested that a simple
partition model might be mandatory, while additional constraints
might be discretionary. This degree of functionality is
suggested by a parallel to the mandatory aspect of disclosure
control. But even a simple partition model would require a
great deal of information in the security kernel. It would be
necessary to characterize all possible sequences of TPs for which
a partition check would apply. (Such sequences are not now made
explicit to the system, since separation of duty is not directly
checked by systems of today.)

Alternatively, separation of duty might not be a part of
the mandatory enforcement at all. Tools could be made available
to the system auditors to inspect the degree of separation, but
no run-time checks would be made to see that the rules had been
properly set.

While we would prefer to see an experiment in which the
enforcement was mandatory, this discussion does show an
important difference between disclosure and integrity controls.
As proposed above, integrity controls depend on the system
knowing the sequence of steps over which the partition test must
be applied. It might be possible for the system to derive such a
list dynamically, but such is not obvious. Failing that, the
list will have to be supplied by a person. This means that
successful enforcement depends on the setting of rather complex
lists, much more complex than the setting of a simple security
label on a piece of information. At a minimum we must find a way
of structuring a system so that the default action if a list is
improperly set is to restrict as opposed to permit an action.

Indeed, the role of people with special privileges is more
prevalent in this model compared to the disclosure control
environment. People must register users, validate TPs, set up
separation of duty, and so on. Probably the most important
further contribution to this model is to discover ways of
automating these functions, so that the overall system

9-5

correctness less and less depends on the correct judgement and
reliability of humans.

9-6

10.0 AN INTEGRITY POLICY: THE WORKSHOP AS A BEGINNING

Stuart W. Katzke

National Bureau of Standards

I . INTRODUCTION

This Workshop on Integrity Policy in Computer Information
Systems (WIPCIS) begins the complex process of moving from the
conceptual ideas proposed in the Clark and Wilson (C&W) paper to
the embodiment of an integrity policy in users' applications.
The process is complex because it involves numerous factors which
are beyond the control of any individual or organization. It can
only succeed if the resulting integrity policy meets the
requirements of a broad spectrum of government and commercial
sector users and its technical specifications permit unambiguous
implementation

.

The Working Group Reports suggest areas where additional
work is needed to advance the development of an integrity policy.
NBS has agreed to coordinate and support the continuation of the
integrity policy development. This paper lays out a plan for
continuing this effort by identifying a set of activities that
should be completed to reach the goal of user implementations of
an integrity policy and identifies methods that can be used to
achieve this goal. The plan allows for the possibility that
several policies may be developed in order to meet different
types of requirements. The Appendix to this Report contains one
proposed alternative. Others will be presented in the future.

II. CONTINUATION OF THE DEVELOPMENT ACTIVITY

The following steps will be taken in conjunction with the
workshop summaries and recommendations contained in this report:

Post-Workshop Review by Organizing Committee. The
organizing committee will meet to review the comments on the
workshop report that were submitted by the workshop participants,
the comments made by the participants during the closing session
of the workshop, and any other sources of input to the
committee.

Identification of Additional Issues. During the review
meeting, the organizing committee will identify additional issues
that were of concern to the workshop participants and determine
which of those should receive attention.

Solicition of Papers/Views. Position papers will be
solicited which propose additions, clarifications, modifications.

10-1

and alternatives to the C&W paper. The papers will form the
starting point for discussion at the second WIPCIS workshop (see
below) . Examples of areas which might be addressed are:

o Scope of integrity problem.

It was pointed out that there are aspects of the integrity
problem that the C&W paper does not address such as loss of
integrity due to natural hazards, accidents or electrical
malfunctions. In addition, there are several definitions and
interpretations of integrity. An integrity policy must clearly
identify the scope of the integrity problem it addresses.

o Applicability of the policy.

Once the scope of the policy has been specified, questions
regarding its applicability arise such as: Is it general enough
to represent all applications? What type of applications are
best represented by the policy? Can the policy be extended (and
in what way) to represent other types of applications?

o Compatibility of the policy with existing architectures.

The policy must ultimately be implemented in computer
applications on existing computer architectures. Questions to be
considered include: What types of architectures will best support
the policy? Is the policy compatible with Orange Book systems?
What operating system functionality is required to support the
policy?

o Performance/Cost tradeoffs.

Implementations of an integrity policy that degrade system
performance or significantly increases operational costs will not
be used. Final selection of a policy must take these factors
into consideration.

o Integrity Metrics.

Associated with the policy should be a metric for indicating
the integrity of a system and a metric for determining the degree
of trust placed in the operational integrity of a system.

Prototype Implementations. Development of an integrity
policy must include plans for prototype implementations to
demonstrate the feasibility, utility, and practicallity of a
proposed policy. As is pointed out in the Working Group Report
on Assurance, the field of computer science harbors many examples
of ideas, techniques, and proposals that seemed plausable but
were either not able to be implemented, inadequate, or incorrect.
Prototype implementations of the C&W policy should begin soon
after the Workshop Report is completed.

10-2

Conduct the Second (and possibly other follow-on) WIPCIS
Workshop. The National Bureau of Standards will host the next
workshop in Gaithersburg, MD. The purpose of the workshop will
be to obtain closure on an integrity policy that is applicable to
a significant portion of the Government and commercial sectors.
While the workshop is expected to focus on modifications and
enhancements to the C&W policy, it is possible that alternative
approaches will be proposed. The need for additional workshops
or other methods to obtain closure on one or more integrity
policies will be determined after this workshop.

III. POST-DEVELOPMENT ACTIVITIES

The development effort (outlined above) , must terminate with
a single or several well defined integrity policies. The
following set of activities are necessary to move the integrity
policies from the development arena to implementations in user
applications (the set of activities described below applies to
each of the policies that may result from the development
effort—for the remainder of this section I will refer to only a
single policy for simplicity)

.

Standardization

.

As the policy nears completion and its
technical specifications harden, it may be appropriate to
introduce a draft standard into one or more of the voluntary
standards organizations, such as ANSI or IEEE, in order to obtain
a national consensus. NBS will work within the voluntary
standards process to assist in achieving this goal. In addition,
NBS will consider its publication as a PIPS Standard or
Guideline. For the remainder of this paper, it is assumed that
the policy will be approved as a national or FIPS standard.

Test Implementations of the Standard. During the
standardization process (i.e., prior to acceptance as a
standard) , it is important to develop laboratory-based test
implementations of the proposed standard. Test implementations
often uncover inconsistencies, ambiguities and errors in a
standard's specifications. In addition, issues such as
applicability, compatibility, interoperability and
performance/cost tradeoffs are more easily addressed in this
environment

.

Validation Criteria and Testing. Acceptance of a standard
is facilitated by the availability of validation suites that test
user/vendor implementations of a standard for conformance with
the standard. Consequently, validation criteria and prototype
implementations of validation tests should be completed no later
than user/vendor implementations are available. Decisions that
must be made during this activity include which organization (s)

will develop the validation criteria and prototype
implementations and which organization (s) will do production

10-3

testing of user/vendor implementations. NBS has had much
experience in this area and offers to provide guidance and
assistance to facilitate completion of this activity.

User Requirements/Vendor Products. It is anticipated that
several useful formal/informal policies will be derived during
this activity, including some variation of the C&W policy. Some
of these may be applicable to a wider number of organizations
than others. If a policy is developed that has extremely
widespread applicability to many organizations and follows the
standardization process (as described above) , then it may be
reasonable for vendors to incorporate the policy into their base
operating systems. However, there are many that believe that
base operating systems should not implement policies but should
provide basic security capabilities to support the implementation
of an organization's chosen policy. In any case, the focus of
this activity should be the development of meaningful policies
that "fit" some significant class of real world applications, not
the incorporation of specific policies into vendors' base
operating systems.

IV. METHODS

The following methods should be used to provide the
environment and the resources for supporting the activities
described above.

Workshops/Conferences

.

Workshops provide the vehicle for
review of technical concepts and for generating new ideas.
Conferences are necessary to communicate new concepts and ideas
to those in computer security and related fields who have not
participated in the development effort. Both are necessary to
obtain widespread acceptance of the final integrity policy.

Publications/Presentations

.

Both of these are necessary to
communicate technical concepts and development results to the
computer security and related communities. They serve the same
function as or are used in conjunction with workshops and
conferences.

Laboratory Support. An integrity policy should not be
proposed for widespread use until it has been implemented and
thoroughly tested in a laboratory environment. Laboratory
activities should be used to determine the correctness,
feasibility, utility, applicability, and compatibility of
proposed integrity policies. Other laboratory efforts include
development of validation criteria, and conformance and
interoperability testing.

User/Vendor Cooperative Projects. Cooperative projects
usually involve contributions of resources by several cooperating
parties to achieve common goals. Resources include people (e.g.,

10-4

guest workers) , equipment, and software. The laboratory
environment and its associated activities provides an excellent
opportunity for cooperation among parties interested in
supporting the development an integrity policy.

Research Grants. If rapid progress is to be made in the
development of an integrity policy, it is nesessary to continue
to support the development and post-development activities
described above. To date, work that led to the C&W paper has
been supported by Ernst and Whinney. Although they have been
most generous in their support, the organizing committee should
solicit research grants from government and private sources in
order to significantly speed up the process. The organizing
committee could accept grants and then redirect the funds to high
priority areas or could recommend that grants be given directly
to researchers in those areas.

V. CONCLUSIONS

The level of interest generated by the C&W paper indicates
that an integrity policy is needed in both the Government and
private sectors and the Working Group Reports conclude that the
C&W model represents an excellent first approximation to such a
policy. Each of the Working Groups has recommended additional
areas of investigation necessary to continue the development of
the policy. NBS has agreed to nurture this activity and has
recommended a plan of action.

While this workshop is an excellent beginning, we must not
stop until we have reached consensus on an integrity policy. Let
us continue to work together to achieve this goal.

10-5

Al

KM Information Systems Consulting-

A Comparison of

Commercial and Military

Computer Security Policies

by David D. Clark, Senior Research Scientist

MIT Laboratoryfor Computer Science

David R. Wilson, Director, Information Security Services

Ernst & Whinney

I

I

ElU Ernst &Whinney
A-l-l

Abstract Most discussions of computer security focus on control of dis-

closure. In particular, the U.S. Department of Defense has

developed a set of criteria for computer mechanisms to provide

control of classified information. However, for that core of data

processing concerned with business operation and control of assets,

the primary security concern is data integrity. This paper presents a

policy for data integrity based on commercial data processing prac-

tices, and compares the mechanisms needed for this policy with the

mechanisms needed to enforce the lattice model for information

security. We argue that a lattice model is not sufficient to charac-

terize integrity policies, and that distinct mechanisms are needed to

control disclosure and to provide integrity.

A-1-2

A Comparison of Commercial and Military

Computer Security Policies

Introduction Any discussion of meclianisms to enforce computer security must

involve a particular security policy that specifies the security goals

the system must meet and the threats it must resist. For example, the

high-level security goals most often specified are that the system

should prevent unauthorized disclosure or theft of information,

should prevent unauthorized modification of information, and

should prevent denial of service. Traditional threats that must be

countered are system penetration by unauthorized persons, unau-

thorized actions by authorized persons, and abuse of special priv-

ileges by systems programmers and facility operators. These threats

may be intentional or accidental.

Imprecise or conflicting assumptions about desired policies often

confuse discussions of computer security mechanisms. In particu-

lar, in comparing commercial and military systems, a misunder-

standing about the underlying policies the two are trying to enforce

often leads to difficulty in understanding the motivation for certain

mechanisms that have been developed and espoused by one group

or the other. This paper discusses the military security policy, pre-

sents a security policy valid in many commercial situations, and

then compares the two policies to reveal important differences

between them.

The military security policy we are referring to is a set of policies

that regulates the control of classified information within the gov-

ernment. This well-understood, high-level information security

policy is that all classified information shall be protected from

unauthorized disclosure or declassification. Mechanisms used to

enforce this policy include the mandatory labeling of all documents

with their classification level, and the assigning of user access

categories based on the investigation (or "clearing") of all persons

permitted to use this information. During the last 15 to 20 years,

considerable effort has gone into determining which mechanisms

should be used to enforce this policy within a computer. Mecha-

nisms such as identification and authorization of users, generation

of audit information, and association of access control labels with

all information objects are well understood. This policy is defined

in the Department of Defense (DoD) Trusted Computer System

Evaluation Criteria, often called the "Orange Book" from the color

of its cover. It articulates a standard for maintaining confidentiality

of information and is, for the purposes of our paper, the "military"

information security policy. The term "military" is perhaps not the

most descriptive characterization of this policy; it is relevant to any

situation in which access rules for sensitive material must be

enforced. We use the term "military" as a concise tag that at least

captures the origin of the policy

A-1-3

A Comparison of Commercial and Military Computer Security Policies

In the commercial environment, preventing disclosure is often

important, but preventing unauthorized data modification is usu-

ally paramount. In particular, for that core of commercial data

processing that relates to management and accounting for assets,

preventing fraud and error is the primary goal. This goal is

addressed by enforcing the integrity rather than the privacy of the

information. For this reason, the policy we will concern ourselves

with is one that addresses integrity rather than disclosure. We will

call this a commercial policy, in contrast to the military information

security policy. We are not suggesting that integrity plays no role in

military concerns. However, to the extent that the Orange Book is

the articulation of the military information security policy, there is a

clear difference of emphasis in the military and commercial worlds.

While the accounting principles that are the basis of fraud and

error control are well known, there is yet no Orange Book for the

commercial sector that articulates how these policies are to be

implemented in the context of a computer system. This makes it

difficult to answer the question of whether the mechanisms

designed to enforce military information security policies also

apply to enforcing commercial integrity policies. It would be very

nice if the same mechanisms could meet both goals, thus enabling

the commercial and military worlds to share the development costs

of the necessary mechanisms. However, we will argue that two

distinct classes of mechanism will be required, because some of the

mechanisms needed to enforce disclosure controls and integrity

controls are very different.

Therefore, the goal of this paper is to defend two conclusions.

First, there is a distinct set of security policies, related to integrity

rather than disclosure, which are often of highest priority in the

commercial data processing environment. Second, some separate

mechanisms are required for enforcement of these pohcies, disjoint

from those of the Orange Book.

Military Security The policies associated with the management of classified informa-

Policy tion, and the mechanisms used to enforce these policies, are

carefully defined and well understood within the military. However,

these mechanisms are not necessarily well understood in the com-

mercial world, which normally does not have such a complex

requirement for control of unauthorized disclosure. Because the

military security model provides a good starting point, we begin

with a brief summary of computer security in the context of classi-

fied information control.

A-1-4

A Comparison of Commercial and Military Computer Security Policies

The top-level goal for the control of classified information is very

simple: classified information must not be disclosed to unauthor-

ized individuals. At first glance, it appears the correct mechanism
to enforce this policy is a control over which individuals can read

which data items. This mechanism, while certainly needed,

is much too simplistic to solve the entire problem of unauthorized

information release. In particular, enforcing this policy requires a

mechanism to control writing of data as well as reading it. Because

the control of writing data is superficially associated with ensuring

integrity rather than preventing theft, and the classification policy

concerns the control of theft, confusion has arisen about the fact

that the military mechanism includes strong controls over who can

write which data.

Informally, the line of reasoning that leads to this mechanism is

as follows. To enforce this policy, the system must protect itself

from the authorized user as well as the unauthorized user. There are

a number of ways for the authorized user to declassify information.

He can do so as a result of a mistake, as a deliberate illegal action , or

because he invokes a program on his behalf that, without his

knowledge, declassifies data as a malicious side effect of its

execution.

This class of program, sometimes called a "Trojan Horse" pro-

gram, has received much attention within the military. To under-

stand how to control this class of problem in the computer, consider

how a document can be declassified in a noncomputerized context.

The simple technique involves copying the document, removing the

classification labels from the document with a pair of scissors, and

then making another copy that does not have the classification

labels. This second copy, which physically appears to be

unclassified, can then be carried past security guards who are

responsible for controlling the theft of classified documents.

Declassification occurs by copying.

To prevent this in a computer system, it is necessary to control the

ability of an authorized user to copy a data item. In particular, once

a computation has read a data item of a certain security level, the

system must ensure that any data items written by that computation

have a security label at least as restrictive as the label of the item

previously read. It is this mandatory check of the security level of all

data items whenever they are written that enforces the high level

security policy.

An important component of this mechanism is that checking the

security level on all reads and writes is mandatory and enforced by

the system, as opposed to being at the discretion of the individual

user or application. In a typical time sharing system not intended

for multilevel secure operation, the individual responsible for a

piece of data determines who may read or write that data. Such

A-1-5

A Comparison of Commercial and Military Computer Security Policies

discretionary controls are not sufficient to enforce the military

security rules because, as suggested above, the authorized user (or

programs running on his behalf) cannot be trusted to enforce the

rules properly The mandatory controls of the system constrain the

individual user so that any action he takes is guaranteed to conform

to the security policy Most systems intended for military security

provide traditional discretionary control in addition to the man-
datory classification checking to support what is informally called

"need to know." By this mechanism, it is possible for the user to

further restrict the accessibility of his data, but it is not possible to

increase the scope in a manner inconsistent with the classification

levels.

In 1983, the U.S. Department of Defense produced the Orange

Book, which attempts to organize and document mechanisms that

should be found in a computer system designed to enforce the

military security policies. This document stresses the importance of

mandatory controls if effective enforcement of a policy is to be

achieved within a system. To enforce the particular policy of the

Orange Book, the mandatory controls relate to data labels and user

access categories. Systems in division C have no requirement for

mandatory controls, while systems in divisions A and B specifically

have these mandatory maintenance and checking controls for labels

and user rights. (Systems in Division A are distinguished from those

in B, not by additional function, but by having been designed to

permit formal verification of the security principles of the system.)

Several security systems used in the commercial environment,

specifically RACF, ACF/2, and CA-TopSecret, were recently evalu-

ated using the Orange Book criteria. The C ratings that these

security packages received would indicate that they did not meet the

mandatory requirements of the security model as described in the

Orange Book. Yet, these packages are used commonly in industry

and viewed as being rather effective in their meeting of industry

requirements. This would suggest that industry views security

requirements somewhat differently than the security policy

described in the Orange Book. The next section of the paper begins

a discussion of this industry view.

A Commercial Clearly, control of confidential information is important in both .

Security Policy for the commercial and military environments. However, a major goal

Integrity of commercial data processing, often the most important goal, is to

ensure integrity of data to prevent fraud and errors. No user of the

system, even if authorized, may be permitted to modify data items

in such a way that assets or accounting records of the company are

lost or corrupted. Some mechanisms in the system, such as user

authentication, are an integral part of enforcing both the commer-

cial and military policies. However, other mechanisms are very

different.

A-1-6

A Comparison of Commercial and Military Computer Security Policies

The high-level mechanisms used to enforce commercial security

policies related to data integrity were derived long before computer

systems came into existence. Essentially, there are two mechanisms
at the heart of fraud and error control: the well-formed transaction

and segregation of duty among employees.

The concept of the well-formed transaction is that a user should

not manipulate data arbitrarily, but only in constrained ways that

preserve or ensure the integrity of the data. A very common mecha-
nism in well-formed transactions is to record all data modifications

in a log so that actions can be audited later. (Before the computer,

bookkeepers were instructed to write in ink, and to make correcting

entries rather than erase in case of error. In this way the books

themselves, being write-only, became the log, and any evidence of

erasure was indication of fraud.)

Perhaps the most formally structured example of well-formed

transactions occurs in accounting systems, which model their trans-

actions on the principles of double entry bookkeeping. Double

entry bookkeeping ensures the internal consistency of the system's

data items by requiring that any modification of the books com-

prises two parts, which account for or balance each other. For

example, if a check is to be written (which implies an entry in the

cash account) there must be a matching entry on the accounts

payable account. If an entry is not performed properly, so that the

parts do not match, this can be detected by an independent test

(balancing the books). It is thus possible to detect such frauds as the

simple issuing of unauthorized checks.

The second mechanism to control fraud and error, segregation of

duty, attempts to ensure the external consistency of the data objects:

the correspondence between the data object and the real world

object it represents. Because computers do not normally have direct

sensors to monitor the real world, computers cannot verify external

consistency directly. Rather, the correspondence is ensured indi-

rectly by separating all operations into several subparts and requir-

ing that each subpart be executed by a different person. For

example, the process of purchasing some item and paying for it

might involve subparts: authorizing the purchase order, recording

the arrival of the item, recording the arrival of the invoice, and

authorizing payment. The last subpart, or step, should not be

executed unless the previous three are properly done. If each step is

performed by a different person, the external and internal represen-

tation should correspond unless some of these people conspire. If

A-1-7

A Comparison of Commercial and Military Computer Security Policies

one person can execute all of these steps, then a simple form of

fraud is possible, in which an order is placed and payment made to a

fictitious company without any actual delivery of items. In this

case, the books appear to balance; the error is in the corres-

pondence between real and recorded inventory.

Perhaps the most basic segregation of duty rule is that any person

permitted to create or certify a well-formed transaction may not be

permitted to execute it (at least against production data). This rule

ensures that at least two people are required to cause a change in the

set of well-formed transactions.

The segregation of duty method is effective except in the case of

collusion among employees. For this reason, a standard auditing

disclaimer is that the system is certified correct under the assump-

tion that there has been no collusion. While this might seem a risky

assumption, the method has proved very effective in practical

control of fraud. Segregation of duty can be made very powerful by

thoughtful application of the technique, such as random selection

of the sets of people to perform some operation, so that any

proposed collusion is safe only by chance. Segregation of duty is

thus a fundamental principle of commercial data integrity control.

Therefore, for a computer system to be used for commercial data

processing, specific mechanisms are needed to enforce these two

rules. To ensure that data items are manipulated only by means of

well-formed transactions, it is first necessary to ensure that a data

item can be manipulated only by a specific set of programs. These

programs must be inspected for proper construction, and controls

must be provided on the ability to install and modify these pro-

grams, so that their continued validity is ensured. To ensure segre-

gation of duties, each user must be permitted to use only certain sets

of programs. The assignment of people to programs must again be

inspected to ensure that the desired controls are actually met.

These integrity mechanisms differ in a number of important ways

from the mandatory controls for military security as described in

the Orange Book. First, with these integrity controls, a data item is

not necessarily associated with a particular security level, but rather

with a set of programs permitted to manipulate it. Second, a user is

given authority not to read or write certain data items, but to

execute certain programs on certain data items. The distinction

between these two mechanisms is fundamental. With the Orange

Book controls, a user is constrained by what data items he can read

and write. If he is authorized to write a particular data item, he may
do so in any way he chooses. With commercial integrity controls,

the user is constrained by what programs he can execute, and the

manner in which he can read or write data items is implicit in the

actions of those programs. Because of segregation of duties, it will

almost always be the case that a user, even though he is authorized

A-1-8

A Comparison of Commercial and Military Computer Security Policies

to write a data item, can do so only by using some of the transac-

tions defined for that data item. Other users, with different duties,

will have access to different sets of transactions related to that data.

Mandatory The concept of mandatory control is central to the mechanisms for

Commercial Controls military security, but the term is not usually applied to commercial

systems. That is, commercial systems have not reflected the idea

that certain functions, central to the enforcement of policy, are

designed as a fundamental characteristic of the system. However, it

is important to understand that the mechanisms described in the

previous section, in some respects, are mandatory controls. They

are mandatory in that the user of the system should not, by any

sequence of operations, be able to modify the list of programs

permitted to manipulate a particular data item or to modify the list

of users permitted to execute a given program. If the individual user

could do so, then there would be no control over the ability of an

untrustworthy user to alter the system for fraudulent ends.

In the commercial integrity environment, the owner of an

application and the general controls implemented by the data proc-

essing organization are responsible for ensuring that all programs

are well-formed transactions. As in the m.ilitary environment, there

is usually a designated separate staff responsible for assuring that

users can execute transactions only in such a way that the segrega-

tion of duty rule is enforced. The system ensures that the user

cannot circumvent these controls. This is a mandatory rather than a

discretionary control.

The two mandatory controls, military and commercial, are very

different mechanisms. They do not enforce the same policy. The

military mandatory control enforces the correct setting of classifi-

cation levels. The commercial mandatory control enforces the rules

that implement the well-formed transaction and segregation of duty

model. When constructing a computer system to support these

mechanisms, very different low-level tools are implemented.

An interesting example of these two sets of mechanisms can be

found in the Multics operating system, marketed by Honeywell

Information Systems and evaluated by the Department of Defense

in Class B2 of its evaluation criteria. A certification in Division B

implies that Multics has mandatory mechanisms to enforce security

levels, and indeed those mechanisms were specifically implemented

to make the system usable in a military multilevel secure environ-

ment [WHITMORE] . However, those mechanisms do not provide a

sufficient basis for enforcing a commercial integrity model. In fact,

Multics has an entirely different set of mechanisms, called protec-

tion rings, that were developed specifically for this purpose

A-1-9

A Comparison of Commercial and Military Computer Security Policies

[SCHROEDER]. Protection rings provide a means for ensuring

that data bases can be manipulated only by programs authorized to

use them. Multics thus has two complete sets of security mecha-

nisms, one oriented toward the military and designed specifically

for multilevel operation, and the other designed for the commercial

model of integrity.

The analogy between the two forms of mandatory control is not

perfect. In the integrity control model, there must be more discre-

tion left to the administrator of the system, because the determina-

tion of what constitutes proper segregation of duty can be done only

by a comparison with application-specific criteria. The segregation

of duty determination can be rather complex, because the decisions

for all the transactions interact. This greater discretion means that

there is also greater scope for error by the security officer or system

owner, and that the system is less able to prevent the security officer,

as opposed to the user, from misusing the system. To the system

user, however, the behavior of the two mandatory controls is similar.

The rules are seen as a fundamental part of the system, and may not

be circumvented, only further restricted, by any other discretionary

control that exists.

Commercial As discussed earlier, RACE, ACF/2, and CA-TopSecret were all

Evaluation Criteria reviewed using the Department of Defense evaluation criteria

described in the Orange Book. Under these criteria, these systems

did not provide any mandatory controls. However, these systems,

especially when executed in the context of a telecommunications

monitor system such as GIGS or IMS, constitute the closest approx-

imation the commercial world has to the enforcement of a man-

datory integrity policy. There is thus a strong need for a commercial

equivalent of the military evaluation criteria to provide a means of

categorizing systems that are useful for integrity control.

Extensive study is needed to develop a document with the depth

of detail associated with the Department of Defense evaluation

criteria. But, as a starting point, we propose the following criteria,

which we compare to the fundamental computer security require-

ments from the "Introduction" to the Orange Book. First, the

system must separately authenticate and identify every user, so that

his actions can be controlled and audited. (This is similar to the

Orange Book requirement for identification.) Second, the system

must ensure that specified data items can be manipulated only by a

restricted set of programs, and the data center controls must ensure

that these programs meet the well-formed transaction rule. Third,

the system must associate with each user a valid set of programs to

be run, and the data center controls must ensure that these sets meet

the segregation of duty rule. Fourth, the system must maintain an

A-1-10

A Comparison of Commercial and Military Computer Security Policies

auditing log that records every program executed and the name of

the authorizing user. (This is superficially similar to the Orange

Book requirement for accountability, but the events to be audited

are quite different.)

In addition to these criteria, the military and commercial
environments share two requirements. First, the computer system

must contain mechanisms to ensure that the system enforces its

requirements. And second, the mechanisms in the system must be

protected against tampering or unauthorized change. These two

requirements, which ensure that the system actually does what it

asserts it does, are clearly an integral part of any security policy.

These are generally referred to as the "general" or "administrative"

controls in a commercial data center.

A Formal Model of In this section, we introduce a more formal model for data integrity

InCegrity within computer systems, and compare our work with other efforts

in this area. We use as examples the specific integrity policies

associated with accounting practices, but we believe our model is

applicable to a wide range of integrity policies.

To begin, we must identify and label those data items within the

system to which the integrity model must be applied. We call these

"Constrained Data Items," or CDIs. The particular integrity policy

desired is defined by two classes of procedures: Integrity Verifica-

tion Procedures, or IVPs, and Transformation Procedures, or TPs.

The purpose of an IVP is to confirm that all of the CDIs in the

system conform to the integrity specification at the time the IVP is

executed. In the accounting example, this corresponds to the audit

function, in which the books are balanced and reconciled to the

external environment. The TP corresponds to our concept of the

well-formed transaction. The purpose of the TPs is to change the set

of CDIs from one valid state to-another. In the accounting example,

a TP would correspond to a double entry transaction.

To maintain the integrity of the CDIs, the system must ensure

that only a TP can manipulate the CDIs. It is this constraint that

motivated the term Constrained Data Item. Given this constraint,

we can argue that, at any given time, the CDIs meet the integrity

requirements. (We call this condition a "valid state.") We can

assume that at some time in the past the system was in a valid state,

because an IVP was executed to verify this. Reasoning forward

from this point, we can examine the sequence of TPs that have been

executed. For the first TP executed, we can assert that it left the

system in a valid state as follows. By definition it will take the CDIs

into a valid state if they were in a valid state before execution of the

A-1-11

A Comparison of Commercial and Military Computer Security Policies

TP. But this precondition was ensured by execution of the IVP. For

each TP in turn, we can repeat this necessary step to ensure that, at

any point after a sequence of TPs, the system is still valid. This

proof method resembles the mathematical method of induction,

and is valid provided the system ensures that only TPs can manipu-

late the GDIs.*

While the system can ensure that only TPs manipulate GDIs, it

cannot ensure that the TP performs a well-formed transformation.

The validity of a TP (or an IVP) can be determined only by

certifying it with respect to a specific integrity policy. In the case of

the bookkeeping example, each TP would be certified to implement

transactions that lead to properly segregated double entry account-

ing. The certification function is usually a manual operation,

although some automated aids may be available.

Integrity assurance is thus a two-part process: certification,

which is done by the security officer, system owner, and system

custodian with respect to an integrity policy; and enforcement,

which is done by the system. Our model to this point can be

summarized in the following three rules:

Gl : (Gertification) All I VPs must properly ensure that all GDIs

are in a valid state at the time the IVP is run.

G2: All TPs must be certified to be valid. That is, they must take

a GDI to a valid final state, given that it is in a valid state to

begin with. For each TP, and each set of GDIs that it may
manipulate, the security officer must specify a "relation,"

which defines that execution. A relation is thus of the form:

(TPi, (GDIa, GDIb, GDIc, . . .)), where the Hst of GDIs
defines a particular set of arguments for which the TP has

been certified.

El : (Enforcement) The system must maintain the Hst of relations

specified in rule G2, and must ensure that the only manipula-

tion of any GDI is by a TP, where the TP is operating on the

GDI as specified in some relation.

'There is an additional detail the system must enforce, which is to ensure

that TPs are executed serially, rather than several at once. During the

mid-point of the execution of a TP, there is no requirement that the

system be in a valid state. If another TP begins execution at this point,

there is no assurance that the final state will be valid. To address this

problem, most modern data base systems have mechanisms to ensure that

TPs appear to have executed in a strictly serial fashion, even if they were

actually executed concurrently for efficiency reasons.

A-1-12

A Comparison of Commercial and Military Computer Security Policies

The above rules provide the basic framework to ensure internal

consistency of the CDIs. To provide a mechanism for external

consistency, the segregation of duty mechanism, we need additional

rules to control which persons can execute which programs on
specified CDIs:

E2: The system must maintain a list of relations of the form:

(UserlD, TPi, (CDIa, CDIb, CDIc, . .)), which relates a

user, a TP, and the data objects that TP may reference on

behalf of that user. It must ensure that only executions

described in one of the relations are performed.

C3: The list of relations in E2 must be certified to meet the

segregation of duty requirement.

Formally, the relations specified for rule E2 are more powerful than

those of rule El, so El is unnecessary. However, for both philosoph-

ical and practical reasons, it is helpful to have both sorts of rela-

tions. Philosophically, keeping El and E2 separate helps to indicate

that there are two basic problems to be solved: internal and external

consistency. As a practical matter, the existence of both forms

together permits complex relations to be expressed with shorter

lists, by use of identifiers within the relations that use "wild card"

characters to match classes of TPs or CDIs.

The above relation made use of UserlD, an identifier for a user of

the system. This implies the need for a rule to define these:

E3: The system must authenticate the identity of each user

attempting to execute a TP.

Rule E3 is relevant to both commercial and military systems. How-
ever, those two classes of systems use the identity of the user to

enforce very different policies. The relevant policy in the military

context, as described in the Orange Book, is based on level and

category of clearance, while the commercial policy is likely to be

based on separation of responsibility among two or more users.

There may be other restrictions on the validity of a TP. In each

case, this restriction will be manifested as a certification rule and

enforcement rule. For example, if a TP is valid only during certain

hours of the day, then the system must provide a trustworthy clock

(an enforcement rule) and the TP must be certified to read the clock

properly.

Almost all integrity enforcement systems require that all TP
executions be logged to provide an audit trail. However, no special

enforcement rule is needed to implement this facility; the log can be

modeled as another CDI, with an associated TP that only appends

to the existing CDI value. The only rule required is:

A-1-13

A Comparison of Commercial and Military Computer Security Policies

C4: All TPs must be certified to write to an append-only CDI
(the log) all information necessary to permit the nature of

the operation to be reconstructed.

There is only one more critical component to this integrity model.

Not all data is constrained data. In addition to CDIs, most systems

contain data items not covered by the integrity policy that may be

manipulated arbitrarily, subject only to discretionary controls.

These Unconstrained Data Items, or UDIs, are relevant because

they represent the way new information is fed into the system. For

example, information typed by a user at the keyboard is a UDI; it

may have been entered or modified arbitrarily. To deal with this

class of data, it is necessary to recognize that certain TPs may take

UDIs as input values, and may modify or create CDIs based on this

information. This implies a certification rule:

C5: Any TP that takes a UDI as an input value must be certified

to perform only valid transformations, or else no transfor-

mations, for any possible value of the UDI. The transforma-

tion should take the input from a UDI to a CDI, or the UDI
is rejected. Typically, this is an edit program.

For this model to be effective, the various certification rules must

not be bypassed. For example, if a user can create and run a new TP
without having it certified, the system cannot meet its goals. For

this reason, the system must ensure certain additional constraints.

Most obviously:

E4: Only the agent permitted to certify entities may change the

list of such entities associated with other entities: specifi-

cally, the list of TPs associated with a CDI and the list of

users associated with a TP. An agent that can certify an

entity may not have any execute rights with respect to that

entity.

This last rule makes this integrity enforcement mechanism man-

datory rather than discretionary. For this structure to work overall,

the ability to change permission lists must be coupled to the ability

to certify, and not to some other ability, such as the ability to execute

a TP. This coupling is the critical feature that ensures that the

certification rules govern what actually happens when the system is

run.

Together, these nine rules define a system that enforces a consis-

tent integrity policy. The rules are summarized in Figure 1, which

shows the way the rules control the system operation. The figure

shows a TP that takes certain CDIs as input and produces new

versions of certain CDIs as output. These two sets of CDIs repre-

sent two successive valid states of the system. The figure also shows

A-1-14

A Comparison of Commercial and Military Computer Security Policies

Figure 1: Summary of System Integrity Rules

USERS

an IVP reading the collected CDIs in the system in order to verify

the CDIs' validity. Associated with each part of the system is the

rule (or rules) that governs it to ensure integrity.

Central to this model is the idea that there are two classes of rules:

enforcement rules and certification rules. Enforcement rules

correspond to the application-independent security functions,

while certification rules permit the application-specific integrity

definitions to be incorporated into the model. It is desirable to

minimize certification rules, because the certification process is

complex, prone to error, and must be repeated after each program

change. In e.xtending this model, therefore, an important research

goal must be to shift as much of the security burden as possible

from certification to enforcement.

For example, a common integrity constraint is that TPs are to be

executed in a certain order. In the model (and in most systems

today), this idea can be captured only by storing control informa-

tion in some CDI, and executing explicit program steps in each TP
to test this information. The result of this style is that the desired

policy is hidden within the program, rather than being stated as an

explicit rule that the system can then enforce.

A-1-15

A Comparison of Commercial and Military Computer Security Policies

Other examples exist. Segregation of duty might be enforced by

analysis of sets of accessible CDIs for each user. We believe that

further research on specific aspects of integrity policy would lead to

a new generation of tools for integrity control.

Other Models of Other attempts to model integrity have tried to follow more closely

Integrity the structure for data security defined by Bell and LaPadula

[BELL], the formal basis of the military security mechanisms. Biba

[BIBA] defined an integrity model that is the inverse of the Bell and

LaPadula model. His model states that data items exist at different

levels of integrity, and that the system should prevent lower level

data from contaminating higher level data. In particular, once a

program reads lower level data, the system prevents that program

from writing to (and thus contaminating) higher level data.

Our model has two levels of integrity: the lower level UDIs and

the higher level CDIs. CDIs would be considered higher level

because they can be verified using an IVP. In Biba's model, any

conversion of a UDI to a CDI could be done only by a security

officer Or trusted process. This restriction is clearly unrealistic; data

input is the most common system function, and should not be done

by a mechanism essentially outside the security model. Our model

permits the security officer to certify the method for integrity

upgrade (in our terms, those TPs that take UDIs as input values),

and thus recognizes the fundamental role of the TP (i.e., trusted

process) in our model. More generally, Biba's model lacks any

equivalent of rule El (CDIs changed only by authorized TP), and

thus cannot provide the specific idea of constrained data.

Another attempt to describe integrity using the Bell and

LaPadula model is Lipner [LIPNER]. He recognizes that the cate-

gory facility of this model can be used to distinguish the general user

from the systems programmer or the security officer. Lipner also

recognizes that data should be manipulated only by certified (pro-

duction) programs. In attempting to express this in terms of the

lattice model, he is constrained to attach lists of users to programs

and data separately, rather than attaching a list of programs to a

data item. His model thus has no way to express our rule El. By

combining a lattice security model with the Biba integrity model, he

more closely approximates the desired model, but still cannot effec-

tively express the idea that data may be manipulated only by spec-

ified programs (rule El).

Our integrity model is less related to the Bell and LaPadula model

than it is to the models constructed in support of security certifica-

tion of systems themselves. The iterative process we use to argue

that TPs preserve integrity, which starts with a known valid state

and then validates incremental modifications, is also the meth-

A-1-16

A Comparison of Commercial and Military Computer Security Policies

odology often used to verify that a system, while executing, con-

tinues to meet its requirements for enforcing security. In this com-
parison, our CDIs would correspond to the data structures of the

system, and the TPs to the system code. This comparison suggests

that the certification tools developed for system security certifica-

tion may be relevant for the certifications that must be performed

on this model.

For example, if an Orange Book for industry were created, it also

m have rating levels. Existing systems such as ACF/2, RACF,
an^ JA-TopSecret certainly would be found wanting in comparison

to the model. This model would suggest that, to receive higher

ratings, these security systems must provide: better facilities for

end-user authentication; segregation of duties within the security

officer functions, such as the ability to segregate the person who
adds and deletes users from those who write a user's rules, and

restriction of the security function from user passwords; and the

need to provide much better rule capabilities to govern the execu-

tion of programs and transactions.

The commercial sector would be very interested in a model that

would lead to and measure these kinds of changes. Further, for the

commercial world, these changes would be much more valuable

than to take existing operating systems and security packages to B
or A levels as defined in the Orange Book.

Conclusion With the publication of the Orange Book, a great deal of public and

governmental interest has focused on the evaluation of computer

systems for security. However, it has been difficult for the commer-

cial sector to evaluate the relevance of the Orange Book criteria,

because there is no clear articulation of the goals of commercial

security. This paper has attempted to identify and describe one such

goal, information integrity, a goal that is central to much of com-

mercial data processing.

In using the words commercial and military in describing these

models, we do not mean to imply that the commercial world has no

use for control of disclosure, or that the military is not concerned

with integrity. Indeed, much data processing within the military

exactly matches commercial practices. However, taking the Orange

Book as the most organized articulation of military concerns, there

is a clear difference in priority between the two sectors. For the core

of traditional commercial data processing, preservation of integrity

is the central and critical goal.

This difference in priority has impeded the introduction of

Orange Book mechanisms into the commercial sector. If the Orange

Book mechanisms could enforce commercial integrity policies as

well as those for military information control, the difference in

A-1-17

A Comparison of Commercial and Military Computer Security Policies

priority would not matter, because the same system could be used

for both. Regrettably, this paper argues there is not an effective

overlap between the mechanisms needed for the two. The lattice

model of Bell and LaPadula cannot directly express the idea that

manipulation of data must be restricted to well-formed transforma-

tions, and that segregation of duty must be based on control of

subjects to these transformations.

The evaluation of RACF, ACF/2, and CA-TopSecret against the

Orange Book criteria has made clear to the commercial sector that

many of these criteria are not central to the security concerns in the

commercial world. What is needed is a new set of criteria that would

be more revealing with respect to integrity enforcement. This paper

offers a first cut at such a set of criteria. We hope that we can

stimulate further effort to refine and formalize an integrity model,

with the eventual goal of providing better security systems and tools

in the commercial sector.

There is no reason to believe that this effort would be irrelevant to

military concerns. Indeed, incorporation of some form of integrity

controls into the Orange Book might lead to systems that better

meet the needs of both groups.

A-1-18

A Comparison of Commercial and Military Computer Security Policies

Acknowledgments The authors would Hke to thank Robert G. Andersen, Frank S.

Smith, III, and Ralph S. Poore (Ernst & Whinney, Information

Security Services) for their assistance in preparing this paper. We
also thank Steve Lipner (Digital Equipment Corporation) and the

referees of the paper for their very helpful comments.

References [Bell] Bell, D. E. and L. J. LaPadula, "Secure Computer

Systems," ESD-TR-73-278 (Vol I-III) (also Mitre

TR-2547), Mitre Corporation, Bedford, Mass., April

1974.

[Biba] Biba, K. J., "Integrity Considerations for Secure

Computer Systems," Mitre TR-3153, Mitre Corpora-

tion, Bedford, Mass., April 1977.

[DoD] Department of Defense Trusted Computer System

Evaluation Criteria. CSC-STD-OIl-83, Department

of Defense Computer Security Center, Fort Meade,

Md., August 1983.

[Lipner] Lipner, S. B., "Non-Discretionary Controls for Com-
mercial Applications." Proceedings of the 1982 IEEE

Symposium on Security and Privacy, Oakland, Calif.

,

April 1982.

[Schroeder] Schroeder, M. D. and J. H. Saltzer, "A Hardware

Architecture for Implementing Protection Rings,"

Comm ACM, 3 March 1972.

[Whitmore] Whitmore, J. C. et al., "Design for Multics Security

Enhancements," ESD-TR-74-176, Honeywell Infor-

mation Systems, 1974.

A-1-19

A2 SUMMARY OF CLARK-WILSON RULES

CI: IVP Validates CDI State

All IVPs must properly ensure that all GDIs are in a valid
state at the time the IVP is run,

C2: TPs Preserve Valid State

All TPs must be certified to be valid. This is, they must
take a CDI to a valid final state from a valid begin state. For
each TP and each set of CDIs that it may manipulate, the security
officer must specify a "relation," which defines that execution.
A relation is thus of the form: (TPi, (CDIa, CDIb, CDIc, ...)),
where the list of CDIs defines a particular set of arguments for
which the TP has been certified.

C3 : Suitable Separation of Duties

The list of relations in E2 must be certified to meet the
separation of duty requirement.

C4: TPs Write to Log

All TPs must be certified to write to an append-only CDI
(the log) all information necessary to permit the nature of the
operation to be reconstructed.

C5: TPs Validate UDI

Any TP that takes a UDI as in input value must be certified
to perform only valid transformations, or else no
transformations, for any possible value of the UDI. The
transformation should take the UDI to a CDI, or the UDI is
rejected. Typically this is an edit program.

El: CDIs Changed Only by Authorized TP

The system must maintain the list of relations specified in
rule C2, and must ensure that the only (any) manipulation of any
CDI is by a TP, where the TP is operating on some CDI as
specified in some relation.

E2: Users Authorized to TP

The system must maintain a list of relations of the form:
(User ID, TPi, (CDIa, CDIb, CDIc, ...)), which relates a user, a

TP, and the data objects that TP may reference on behalf of that
user. It must ensure that only executions described in one of
the relations are performed.

A-2-1

E3: Users are Authenticated

The system must authenticate the identity of each user
attempting to execute a TP,

E4 : Authorization Lists Changed Only by Security Officer

Only the agent permitted to certify entities may change the
list of such entities associated with other entities:
specifically, the list of TPs associated with a GDI and the list
of users associated with a TP. An agent that can certify an
entity may not have any execute rights with respect to that
entity.

A-2-2

A-2-3

V

ijil

i:]

A3 POSITION PAPER:
WORKING GROUP ON GRANULARITY

10-19-1987

W. H. Murray
Ernst & Whinney

Copyright, W. H. Murray, 1987

PREFACE

This paper is prepared as a departure point for the working
group on granularity of the Workshop on Data Integrity Policy.
It will be used to coordinate the activities of the various
working groups and to orient the participants of the working
group on granularity.

INTRODUCTION

The purpose of the Workshop is to expand on the proposals
made by Clark and Wilson in their paper "A Comparison of
Commercial and Military Computer Security Policies." In this
paper they assert the need for a model similar to Bell-Lapadula,
but aimed at the objective of data integrity rather than that of
confidentiality. They propose a policy based upon the concepts
of the "well formed transaction" and separation of duties.

In order to implement this policy, they propose a model
consisting of nine rules. Five of these rules would be
implemented external to the system and would be attested to by
competent authority. The remaining four would be enforced by the
computer system.

ASSUMPTIONS

(Those which are made necessary or which are implicit in
Clark and Wilson.)

SOME THOUGHTS ON DATA INTEGRITY

Data can be said to have integrity when it is as good as we
think it is. [Courtney] That is to say, when it agrees with our
expectation.

Data can be said to have integrity when it agrees with that
which it intends to describe. For example, inventory data can be
said to have integrity when it tells us accurately and completely
just what quantity of which items we have. Of course, it never
does that, but as long as it does it well enough to support the
decisions that we want to make, then it is probably good enough.

A-3-1

As long as the variances between the data and the inventory are
not material, then they can be said to have integrity.

Data can be said to have integrity when it is worthy of our
confidence. A number of things may contribute to or be necessary
for such confidence. For example, we may trust data because it
comes from a trusted and intended source. We trust inventory
data from the inventory department and tide tables from the
Oceanographic Survey.

We trust data because it is verifiable and verified. The
inventory is periodically compared to the control system. If the
tide tables do not agree with the observations of users, then you
can expect to read about it in the New York Times.

We may trust data because it is widely published and subject
to wide scrutiny. If there are errors in the tide tables, we
need not expect to have to detect all of them ourselves.

We may trust data because we have evidence that it was
independently verified by responsible individuals. That is why
we include the auditors certification in the annual report.

An essential ingredient to our trust may be that we have
evidence that the data has not been maliciously modified, for
example, when all the pages are there and there are no erasures.

In early times, for most of our history, and to this day in
what are called primitive or oral cultures, we achieved data
integrity by disseminating widely. The more important to the
society the data was thought to be, the more people we told it
to. It was passed from person to person, human memory to human
memory. Much of it was in poetry, ritual and song, because human
memory seemed to work better on these. Tiny children memorize
nursery rhymes without effort or intent.

Later, we began to record information on non-erasable, non-
reusable media such as stone and clay tablets. Since this
recording was expensive, it was reserved only for the most
important data or for that, such as calendars, where precision
and accuracy were important. Both to preserve them from
generation to generation and to preserve confidentiality where
indicated, such tablets have often been entrusted to a
priesthood.

Before the computer, we provided for the integrity of data
by recording it on paper. Paper was not quite as permanent as
stone or clay but by that time we were able to make cheap carbon
copies and poor photo copies. These additional copies were
often created in the normal course of things and distributed to
distant sites. These routine copies not only made the data
available in more than one location but acted as backup copies

A-3-2

for each other. They also added to the integrity of the audit
trail since it would be difficult to alter all of them.

The paper often had a pre-printed form or letter head which
raised the cost of counterfeiting. Signatures were used to
further protect against counterfeiting and to add evidence as to
the identity of the originator.

Multiple signatures provided evidence of separate
origination and approval, and of reconciliation and confirmation.

Documents were routinely time-stamped on receipt. Initials
and rubber stamp imprints were often added as evidence of
specific checks, reconciliations, control steps or verifications.
These events might also be recorded in journals or logs which
added to the integrity of the data and the audit trail while
facilitating the location of work in process.

In the sixties, we saw the advent of shared direct access
storage devices and terminals accompanied by some slight
discomfort. DASD was specifically designed to be re-usable. When
you changed the data on it, you did not even leave a mark.

Now, we pretended that the copy of record was still on paper
and that the terminals were inquiry-only. But then some tacky
person observed that if we were inquiring to the disk and making
decisions based upon the data stored there, then that was the
copy that counted. Some other tacky fellow observed that if you
were going to make decisions based upon the data that was on the
disk, then you had better use the terminal to keep it current.

At that point data security based upon media was still
useful, indeed necessary, but no longer adequate. Both the
problem and the term "data security" were born.

Currently, we provide for the integrity and confidentiality
of data by placing it in a controlled environment. We limit
access to the environment to authorized individuals. Within the
environment, we limit access to the data in accordance with
rules.

Since the media is re-usable, we provide for the integrity
of the data by restricting the ability to update the data to only
one process or user at a time. For business transaction data,
that process is usually an application program or database
manager. The user and author of this process are different; he
who can use it cannot modify it, he who can modify it cannot use
it. Thus we can have confidence that multiple people are
involved and that the changes are consistent with the rules of
the process.

A-3-3

We keep an independent record of the name of the process
with the authority to update and a record of changes to that
authority. We also keep a record of the event and sometimes the
content of such changes. These records may be generated by the
application, the database manager, or by a combination of the
two.

For programs, documents or correspondence, the process is
usually an individual user employing a generalized program such
as an editor. While full freedom over the content is allowed
to this individual user, management still has full
accountability, since "write" access to the data is reserved to
the individual. This restriction is imposed by the environment,
usually with list-based access controls

Today we look to the system, rather than to the media, for
evidence as to where or with whom the data or transaction
originated

.

Where the accuracy of the data is crucial, as when multiple
people must rely upon it, then multiple people must be involved
in its preparation. Today, we look to the system, rather than to
media, to enforce this rule and to present us with the evidence
that it has been effectively enforced.

Because DASD has been expensive, we have often tried to
manage down the number of copies, often to only one. As soon as
we are successful, we realize that we are now vulnerable to the
loss of that one. We then make one or more special copies just
to protect against that contingency. Of course, we usually use
tape because it is cheaper and more portable.

In summary then, data can be said to have integrity if it:

1) agrees with expectation (e.g., conforms to a complete
specification, is internally consistent.), 2) conforms to that
which it purports to describe, 3) is worthy of our confidence, 4)
originates with or is attested to by a competent source or
authority, 5) verifiable and verified, 6) widely published and
scrutinized, and 7) free from outside contamination or
interference.

WORKSHOP

The workshop will divide into working groups.

GRANULARITY

The extent, scope, degree or effect of a control must be
appropriate to the intended application. In a security context,
"The test of granularity requires that the size of the resource
to be controlled be small enough to constitute an acceptable
risk." [Data Security Controls and Procedures, IBM Corporation,

A-3-4

March 1977, G320-5649]. In general, the more granular the
control or the smaller the object controlled, the lower the risk.
However, there is a limit: there is a point at which increased
granularity increases both the level of administrative effort
and the level of complexity. The first can result in inaccurate
or untimely rules, while the second can mask error or malice.

In commercial applications, there are standard tests:

1. Transactions should be separately originated and
approved; an individual should not be authorized to do both. In
other words, not only must there be two separate transaction
type programs (Clark/Wilson TPIs) , but an individual should not
be authorized to both.

2. The ability to create records should be separate from
that to maintain them. This is the rule that requires that he
who can add vendors to the payables file cannot also approve
invoices for payment. Again, separate transaction types (TPIs)
and no individual authorized for both.

3. The authority to change the data should be separate from
the ability to set the rules under which the data should be
processed. Thus, if the rules say that the data recorded by A
must be checked by B, then neither A nor B can unilaterally alter
the system. By implication, the user of a transaction type
should not be authorized to change it, and the programmer should
not be authorized to execute it. (This rule applies only to
business applications and transactions. However, its application
can aid in preventing the contamination of other multi-user
systems .

)

4. Custody of assets should be separate from access to data
about the asset. For example, the cashier should not have
custody of the ledger. Custodians of data should not have access
to the data descriptions.

5 . Other

These tests result in an accepted level of risk while
keeping the administrative activity and complexity tolerable.
The TPs and CDIs described in the Clark-Wilson Model likely
provide the indicated granularity. However, most operating
systems do not define such objects. Therefore, operating system
extensions may be indicated.

A-3-5

A4 POSITION PAPER: ON THE USE OF MANDATORY
by W. H. Murray

TYPES OF CONTROL

The Clark and Wilson paper raises the issue of "mandatory,"
and that of in what sense these controls are or ought to be
mandatory. In the "Orange Book," the term mandatory is used to
identify a particular set of controls, i.e., those which are
based upon the classification of the data and the clearance of
the user rather than upon the need to know of the user. The
context suggests that these controls are intended to be bound at
system configuration time and to be placed thereafter beyond the
control of the human managers of the system. However, the origin
of the term and its intent appear to be assumed. Consequently,
it is difficult to apply the term outside the context of the
Orange Book and the particular set of controls described therein.

It appears to us that even this set of controls is
discretionary in the sense that it is under the control of human
agents. That is, a human agent assigns the data classification,
enrolls the user, and grants the user credentials. Therefore, it
does not appear to us that the distinguishing of controls along
the current axis between "mandatory" and "discretionary" is
particularly useful.

Rather, it seems to us to be more useful to distinguish
controls by the time (e.g., configuration, system generation,
operating system initialization, user enrollment, execution,
object creation, etc.) at which they are bound, or the role of
the individual (data author or owner, user manager, security
staff) exercising the discretion. This set of distinctions
appears to us to be more granular and descriptive than the
distinction between mandatory and discretionary. If having
described a particular control by the parameters that we suggest,
it then appears to be useful to associate one of these labels as
a shorthand notation, then so be it.

It was the experience of the builders of the AAS security
subsystem that any arbitrary attempt to take something out of the
hands of management and bind them within the system was self-
defeating.

For example, many applications attempted to make control
decisions based upon such parameters as user location type (e.g.,
headquarters or field) rather than explicit authority. This
seemed reasonable. Since these two types were mutually
exclusive, it appeared that they could be used to enforce
separation of duties. However, in practice, it simply forced
management into unnatural positions in an attempt to get things
done. No sooner would an application build in such a rule, than.

A-4-1

in what seemed to be a peculiarly perverse way, the first
exception to the rule would appear.

In an attempt to deal with the exceptions, management would
bend or distort the system in such a manner that what was
originally intended to improve control would reduce it. For
example, when an individual was identified whose job required
that he have two or more authorities which the application had
decided should never both be held by the same user, then
management would give this individual more than one user
identifier and profile. While this was done in all innocence,
the controls were now hopelessly confused if not compromised.

A-4-2

A5 POSITION PAPER:
AGREEMENT WITH THE EXTERNAL ENVIRONMENT

by W. H. Murray

It is obvious that the more closely data agrees with that
which it is intended to describe, the better. Still we can work
with almost any data as long as we have some idea about how bad
it is. Courtney says "Data has integrity when it is no worse
than we think it is."

We achieve agreement in an iterative process that begins
even before the original recording of the data. The first step
is to decide and describe the data that you will record. In
paper systems we did this by designing a form. In early computer
sytems we used a "record layout." Today we use formal data
descriptions. The intent is to describe what is to be recorded,
assist in proper encoding, and avoid errors of omission. By
reconciling what is recorded to this description, we will gain
confidence.

At recording time, we compare the new record, both to the
data description and to our intent. In modern systems we do this
by interactive feedback and at several levels. First, each key
stroke is encoded and displayed. If the user sets out to record
a "W" by striking the "W" key, then he expects to see a "W"
displayed. If instead he sees a "Q" or an "E," the he knows that
either he did not strike the key that he intended, or it was not
properly encoded.

The system also has expectations to which it reconciles.
For example, if the system says "enter customer number:"
expecting a seven character numeric field followed by the "enter"
key in response, then 8 characters of alphabetic characters would
signal an error. The system may further expect that it has a
corresponding record for the customer number entered; if it can
find no record, this too may indicate an error.

"Customer number" is a coded value. The recorder has a
specific customer in mind. The system can help to ensure that
the number was recorded correctly by decoding it to "customer
name and address" and returning that value to the user. If the
values returned do not meet the recorders expectation, then
either he did not encode the customer identity correctly, did not
record the code correctly, it was not encoded correctly by the
system, the database is in error, there is an error in
programming, or perhaps even a hardware failure. In any event,
corrective action is indicated in order to achieve agreement with
expectation and intent.

Note that the corrective action may involve another person.
Take the case in which there is no matching customer master

A-5-1

record for an entered number. The indicated corrective action
may be the creation of an appropriate record, but the authority
to do this may rest with someone else.

When an entire transaction has been recorded and each entry
checked, the system may feed back a summary of the transaction
for review by the recorder. Here the idea is to ensure that not
only was each item recorded as intended but also that the effect
is what is intended. At this time the recorder may be asked for
a positive indication that the summary correspond to his intent.
A record of this response can serve as a deterrent to the
recorder entering data that he knows in advance to be erroneous
or fraudulent.

The process does not end here. A summary of the transaction
may be printed out. This step may be automatic. It is not under
the control of the recorder. He does not cause it, and cannot
prevent it. Instead it is prepared, from his point of view,
automatically; that is, under the control of others. Copies of
these may go to his management, but certainly one goes to the
customer who reconciles it to his intent.

The process continues through shipment, receipt, billing,
statements, remittances, deposits to banks and so on. At each
step additional people compare both the data and its effect to
their expectation. For example, the picker/shipper expects to
find stock for an order. If there is no stock, there is either
an error in the data or missing stock.

While every step offers an opportunity to detect errors,
they do not offer equal opportunity to correct. The later in the
process that the error is detected, the more that it will cost to
correct it. For example, the National Bureau of Standards tells
us that while a single key-stroke error may be corrected for a
dime if detected immediately, the cost may go to two dollars if
it is not detected until after the database is updated. Of
course, if goods are manufactured or shipped based upon the
error, the cost of correction soars.

Of course, the process can, and sometimes does, fail.
People fail to reconcile or detect variances, they may dupe or
collude with others, or they may fail to report or correct. The
system can be made more robust by adding steps or people but only
to a point. At some point, adding additional people or steps
serves only to add complexity. The complexity may introduce
errors of its own, or mask errors from other sources.

The design of the information system can contribute to
maintaining agreement between the data and its environment. For
example, application provisions for feedback and reconciliation
help, as do those that provide for the involvement of multiple
people. Access control mechanisms that limit access to the

A-5-2

application and its parts to authorized people also help. System
extensions that insure that the authorizations conform to good
practice are what is at issue here.

Historically, we have used a number of tests to insure that
a sufficient number of people or steps are involved in business
applications. These include:

1. Transactions should be separately originated and
approved; an individual should not be authorized to do both. In
other words, not only must there be two separate transaction type
programs (Clark/Wilson TPIs) , but an individual should not be
authorized to both.

2. The ability to create records should be separate from
that to maintain them. This is the rule that requires that he
who can add vendors to the payables file cannot also approve
invoices for payment. Again, separate transaction types (TPIs)
and no individual authorized for both.

3 . The authority to change the data should be separate from
the ability to set the rules under which the data should be
processed. Thus, if the rules say that the data recorded by A
must be checked by B, then neither A nor B can unilaterally alter
the system. By implication, the user of a transaction type
should not be authorized to change it, and the programmer should
not be authorized to execute it. (This rule applies only to
business applications and transactions. However, its application
can aid in preventing the contamination of other multi-user
systems .

)

4. Custody of assets should be separate from access to data
about the asset. For example, the cashier should not have
custody of the ledger. Custodians of data should not have access
to the data descriptions.

5 . Other

Systems' access control has been used to control what
transactions a user could perform. However, most do not attempt
to ensure that no combination of authorizations violate rules 1

and 2

.

Some capability based systems, such as the IBM System/38,
identify the author of a TP and maintain the identity of the TP
from development to use. Thus, they have the necessary
primitives and information for the application of the third
rule. However, there is no enforcement. The System/ 3 8 also
rigorously maintains the association between data and its

description, but again makes no provision for segregation

A-5-3

between who changes the two. The capability-based systems offer
the indicated granularity of control without a big performance,
complexity or administrative hits.

A-5-4

A6 Data Integrity in a Business Data Processing System

01-21-1988

W. H. Murray
Ernst & Whinney

ABSTRACT

Clark and Wilson argue for a "mandatory policy" for data
integrity. They would base this policy on the "well-formed
transaction," and separation of duties. They suggest that there
are two kinds of rules necessary to implement such a policy. One
set labelled "E" are those that would be enforced by the system.
The second, labelled "C" would be certified or attested to by
appropriate authority. Included in this second set are the
rules regarding separation of duties. They argue that these
rules are too application dependent to be described with
sufficient brevity and rigor to be readily enforced by the
system.

This paper describes a system, IBM's Advanced Administrative
System, which relies upon and implements many of the concepts
suggested by Clark and Wilson. For example, it is composed
exclusively of such "well-formed transactions." Additionally, it
implements a function to enforce separation of duties. This
function, called the "Conflict Matrix," is implemented in
installation specific code. It is described here because the
concepts have broader implications.

The paper gives a brief description of AAS, and its security
system and shows that it implements the rules of the Clark-
Wilson model. It elaborates on the Conflict Matrix function
giving the history and rationale behind it, and describing the
function itself. It then goes on to describe some of the
general implications of this function. One implication of the
history and rationale is that at least part of the rules
regarding separation of duties can, and must, be system enforced.

THE ADVANCED ADMINISTRATIVE SYSTEM

The AAS was begun in 1966 and was described by Wimbrow in
the IBM Systems Journal. It is a business transaction
application system. Today it supports tens of thousands of
users, primarily in the marketing and sales functions of IBM. It
is used to record and process business transactions most of
which originate in branch offices. It processes hundreds of
thousands of transactions per day.

A-6-1

APPLICATION ORIENTATION

AAS is an application-only production-only system. That is,
it does not provide any development or testing functions. These
functions are both done in separate systems. Thus, a user of
AAS can alter data, but cannot alter programs, procedures, or
system parameters. Programmers can alter programs but only in a
separate system. They can test only against test data and only
in a separate system.

(This is a very strong implementation of one of the
segregations of functions referenced by Clark and Wilson, i.e,
that between execution and programming. While it is ad hoc, it
is, nonetheless, by policy and design rather than by accident.
It is supplemented by controls, implemented at user enrollment
time, which prevent programmers from being enrolled as users.)

TERMINAL MONITOR PROGRAM

The terminal is owned by a terminal monitor program and not
by the operating system. Therefore, there is no way in which a
user of a terminal can ever see the operating system or its
service calls (SVCs) . There is no way in which an application,
terminal monitor program or operating system failure can expose
the operating system to a user.

DATABASE MANAGER PROGRAM

All application data in the system is under control of the
database manager program. Application programs have access only
to database services and only the database manager has access to
the operating system I/O services. While the database is
described to the field level and while field level services are
available on an exception basis, almost all access is at the
record or record segment level. These record and segment
types, the entire database, are "Constrained Data Items" in the
sense described by Clark and Wilson.

All access by a transaction type to record or segment type
must be explicitly authorized. For reasons of brevity and
performance, wild cards are allowed. We assert that this
conforms to rule "El" in the Clark and Wilson model. Again for
reasons of brevity and performance, the actual table is inverted
(CDI, (TPa, TPb, TPc,...)) from the form (TPi, (CDIa, CDIb,
CDIc,...)) suggested by Clark and Wilson.

PROGRAM LIBRARY

Programs are stored separately from data within the AAS
environment (though they look similar to the operating system)

.

It is not possible to alter a program within the AAS environment.
There are no functions available, and there is no way to

A-6-2

establish addressability to a program. All programs are re-
entrant, and therefore, a program need not be able to address
itself. Since it need not, it cannot.

Neither is it possible to execute data. Programs and data
are not interchangeably addressable. The loader can access the
program library and establish addressability to programs. It
cannot access the database. The database manager can access data
and establish addressability to it. It has no knowledge of the
program library or of programs in storage.

ROLE OF TERMINAL MONITOR AND DATABASE MANAGER PROGRAMS

The AAS Terminal Monitor Program and the Database Manager
Program are installation written. However, for our purposes they
are part of the "system." They run as privileged extensions of
the operating system where they are protected from any
interference from application programs. They are written,
maintained and operated separate from all applications and from
each other. Therefore, we assert that all rules which they
enforce can be said to be "system" enforced.

The operating system currently in use is MVS, though others
have been used in the past. It should be noted that neither
users nor terminals are known to MVS, but only to sub-systems
such as TSO, IMS, CICS, or in this case, the AAS terminal monitor
system.

AAS runs in its own MVS memory space, often as the only
application in the system. Thus, even if MVS would permit it,
there would be no other application in the system to interfere
with it. However, when and if there are other applications
running in the same system with AAS, it is protected from them
by the fact that they do not have addressability to any of its
resources. While it might be possible for a highly and properly
privileged TSO user to HALT AAS, he could not interfere with its
program or data contents.

This implementation is so foreign to many of the authors on
security, that they are barely able to conceive of its
implications. Many of them have only worked with systems in
which the terminal is owned by the operating system and where
the normal corrective action for an application failure is to
return control of the terminal to the operating system, thus
exposing the operating system to an application only user. They
are simply unable to conceive of a system in which users are
never direct or even potential users of the operating system.

TRANSACTION PROCESSING PROGRAMS

The capabilities of the system are presented to the user in

the form of applications, functions, activities and transaction

A-6-3

types. Transactions are the most granular capabilities.
Functions and activities are simply conveniently named sets of
transactions within an application.

Transaction types are named, granular, limited and
predictable functions. While reuseable procedures or programs
may be employed across transaction types, the set of programs
that will be employed by a transaction type, is fully defined by
its name. The capability of a transaction type is related to a
specific business function or transaction and predictable from
the fully qualified name of the transaction.

Transaction types have three unique and equivalent names.
The business function is described by short name which is
qualified by the activity, function and application of which it
is a part. For example, the CASH MAINLINE transaction might be
part of the CASH activity in the PROCESS PAYMENTS function in the
ACCOUNTS RECEIVABLE application.

The transaction type also has an eight character mnemonic
name which may be employed by the user to refer to it. It also
has a four character name that is employed by the developers and
the operating environment.

After more than two decades of operation, the system has few
users who can remember the business functions as they were done
before the system. Therefore, most of the current users think of
the business function by the name of its AAS transaction type
rather than thinking of the transaction type by the name of the
business function that it performs.

All manual or user input to the system are by means of these
transactions. The transaction is a closed unit of work. Inputs
are highly structured and limited. All inputs are edited at the
field level to insure that they meet all of the requirements of
the application. Inputs which do not meet the expectations of
the transaction are returned to the user for correction with an
"unable to process, (reason)." Only when all of the inputs to
the transaction meet expectations, are any of them processed.
Either the whole transaction is processed or none of it is.
(Clark-Wilson rule C5: TPs validate UDI) . We assert that these
transaction programs are "Transformation Procedures" of the type
described by Clark and Wilson.

OTHER PROGRAMS

A basic design assumption of the system and its applications
is that "the real world runs in real time." Therefore, if a
function can be performed via a real-time transaction, then it
ought to be. Nonetheless, summarization, consolidation, report
generation, document generation (e.g. checks and invoices)

,

database reorganization, and backup and recovery functions are

A-6-4

performed in batch (database manager active) or offline (database
manager not active) mode. All of these procedures are designed,
tested and certified to leave the system in a valid state. They
are "Integrity Verification Procedures" or "Transformation
Procedures" of the kind described by Clark and Wilson.

THE SECURITY SUB-SYSTEM

OVERVIEW

The AAS Security System provides the mechanism for
management to administer access to the system. It includes:
1) the code which requires users to identify and authenticate
themselves (Clark and Wilson rule E3) ; 2) that which controls
their access to transaction-types (Clark and Wilson rule E2)

;

3) by which management enrolls users and grants access to the
transaction types (Clark and VJilson rule E4 ; 4) and that which
implements a number of security related logs and alarms.

POLICY

The basic policy to be enforced by the system is that users
must be limited to those capabilities that they must have to
perform their assigned task. Since that task assignment comes
from their manager, then it is that manager that administers the
rules. The manager's authority comes from his own manager or
from a designated surrogate.

However, each application has an "owner." It is this owner
that specifies the controls for the application. Some of those
controls are implemented by the developers in the structure and
content of the transaction types. Some are implemented by the
administrative rules that the owner specifies for the use of the
transactions

.

USER PROFILE

There is a profile in the system for each user. It is
created at enrollment time. It contains the user's employee
serial number, organization, owner's (the manager who enrolled
the user or who is currently responsilbe for him) employee serial
number, date of last change, and authority.

The authority is expressed in terms of transaction types and
rules. The rules for a transaction type describe what authority
the user has for it. The basic rule is "execute." However,
others include "trained," and "delegate." The rules are
exclusive and non-hierarchichal ,

i.e., no rule implies or
includes another. Thus, a manager may have the authority to
delegate a transaction (approve) but not the authority to execute
(originate) it.

A-6-5

TRANSACTION SCOPE

The system provides the application developer with macros
that can be used to limit the scope of a transaction to a
particular organization. The organizational data used is that in
the user's profile. For example, the transaction for entering
orders can be limited to the user's branch office. To provide
flexibility, a list of organizations for the user can be
associated with the application or any part thereof.

USER IDENTIFICATION AND AUTHENTICATION

The system presents an otherwise blank screen labelled
"Sign-On." The user is expected to know how to respond to this
screen. No "help" is available. The expected response is the
user's 6-digit employee serial number (user-chosen mnemonic
names are used on most of IBM's systems) and, optionally, the
six character password and the transaction-type mnemonic name.
The password is generated by the system using a random number
generator. It must be changed at least monthly by the user
employing a "password change" transaction-type. If the password
was not entered in response to the "Sign-on", the user is
prompted for it on the next screen. If the transaction type
was not entered, the user is presented with a menu tailored to
his authority.

Until recently, users were required to enter their IDs each
time they walked up to a terminal and their passwords once for
each new transaction. This provided for positive
identification in an environment in which terminals were shared
across users but dedicated to a system. No logoff was indicated
or required since a transaction was limited in scope and
terminated at its normal end.

However, today it is usual for a terminal to be dedicated to
a user even though they may be shared across systems. Therefore,
the system is being modified to require a logoff, but not require
the repeated entry of the password.

ACCESS CONTROL

When the user indicates the transaction type, the system
checks to see that he is authorized to execute it. Optionally,
by transaction type, it checks to insure that he is trained,
i.e., has completed the system administered training required for
the transaction.

ENROLLMENT AND DELEGATION

Enrollment is de-centralized. A user is enrolled by his
manager. Certain controls are implemented in the enrollment
process. For example, the user's default organization is set

A-6-6

equal to that of the manager enrolling him. The user's "owner"
field is set equal to the user identifer of the enrolling
manager.

The user's employee serial number is checked against the
Security Profile File to insure that there is not already a
profile for that user. The user's employee serial number is also
checked against the Payroll Master File. The purpose of this
control is to insure that only valid, current employees are
enrolled. This control is included in the content of the
enrollment transaction. The data required for this control is
owned by the payroll application. It is provided to the
Security application by the payroll application in the form of a
service macro. At this time, as noted above, the system also
compares the position code in the payroll record of the user
against a short list of position codes associated with
programmers

.

Usually the enrolling manager also enters the initial
profile. He can do this by selecting from a menu of those
transactions that he is authorized to delegate (created from his
own profile.) He can specify by transaction type mnemonic name
(checked against his profile) or he can specify the name of a
model profile (adjusted by his profile)

.

For those transaction types that check the content of the
transaction against the organization of the user, the manager
may expand the authority of the user beyond the user's default,
but only up to the limits of his own.

The user's position code in the Payroll Master File is
checked against a short list of position codes known to include
development programmers. These users cannot be added with this
transaction. Enrollment of programmers can only be done by the
central security administrator upon written authorization of
the director of information systems.

Additonal checks are made against the "conflict matrix"
which is described in more detail below.

LOGS

Two logs are kept by the security sub-system. The first
contains a record of any variances from security rules detected
at logon or new transaction time. These include logon failures
or attempts to perform unauthorized transactions. The second
contains a record of all changes to user profiles. Since this
record contains a reference to the previous change, it is
possible to determine what the profile ever looked like and who
is accountable for any authority in it.

A-6-7

ALARMS

Any event that results in an entry in the security variance
log, also generates an alarm count. When the count exceeds a
threshold, corrective action is initiated. In the early days of
the system, when it owned all of the lines, the corrective action
was to disable the terminal and send a message to it about the
variance. Since management action was required to enable the
terminal again, this was a powerful mechanism for informing
management of the alarm condition. Today, the system employs a
network shared with other systems and applications. Though it
can still disable the port, it cannot really disable the
terminal. Therefore the threshold is now set to ten rather than
the old two. While no longer as effective in notifying
management of the variance, the control is still effective in
limiting exhaustive attacks. Today, corrective action relies
more heavily upon the information in the variance journal.

THE CONFLICT MATRIX

HISTORY AND RATIONALE

After one early audit, the auditors complained of the number
of instances in which users appeared to have authority that was
not consistent with good practice. However, these concerns were
not expressed to the owners of applications or the managers of
the users, but rather to the developers.

As might be expected, the developers responded that this was
a user management, rather than a technical, problem. They said
that it was really not within their discretion to fix; that the
concern should be taken up with the managers of the users; that
the developers could not usurp the authority of these managers to
determine what the users should be able to do.

At the time of this early audit, user management could still
deal with the problem in a reasonable manner. However, as the
number of transaction types and potential conflicts grew, it
became apparent that no one could reasonably expect that a large
percentage of the managers could be aware of all of these
conflicts. It seemed that they would have to be given guidance.
The appropriate time to give this guidance seemed to be at the
time that the manager was about to create a conflict; that is,
at delegation or profile maintenance time.

IMPLEMENTATION

A table of conflicts was created in a form that looked
something like a user profile. The table argument was a
transaction identifier and the function was a list containing the
identifiers of conflicting transactions. As suggested above,
the original intent was to make this information advisory only.

A-6-8

However, subsequent audits suggested that the number of
exceptions was too high; consequently the system was changed to
prohibit conflicts.

The owners of the applications suggested that the right to
violate the rule should be reserved to them. Thus, the ability
to create a conflict is reserved to the system or application
security administrators. It may not be created by lower level
administrators

.

The appropriate content of the list is determined by asking
the transaction-type owners to specify those transactions that
are not compatible with theirs. This corresponds to Clark and
Wilson rule C3 (if, and only if, no transaction type violates
the rule) . Since conflicts are reciprocal, each conflict
generates two table entries. If the two transactions are owned
by different people, then there are two separate managers, each
with an opportunity to identify the conflict.

The rule is of the form IF tpl THEN NOT tp2 , tp3,...
However, it is a general, system-wide, rule and need not be
repeated in each user profile. (Indeed, exceptions to it are
permitted in individual profiles.)

The rule is imposed and the results are bound at profile
maintenance time. Thus, the cost of checking is kept low. This
means that, at least in theory, additions to the conflict matrix
after the creation of the profile, would not be reflected in the
profile. However, such additions occur so rarely for a pre-
existing pair of transactions that it is possible to check the
new conflict against all of the pre-existing profiles.

We believe that this mechanism represents "enforcement" of
the decision "certified" in rule C3 . Further, we believe that
this enforcement is essential. In any complex system, and in
most significant (not to say "non-trivial") systems, it is not
possible for a sufficient number of managers to know C3 for it to
be adequately enforced.

Clark and Wilson might argue that this rule should be
administered by the security staff, because it is mandatory, and
that it is possible for one or two people to have sufficient
knowledge. We would grant this but counter that only in a
trivial system would it be possible for one or two people to
have all of the other knowledge (e.g., job assignments) or be
able to process all of the activity.

CONCLUSION

The AAS system is a system of the type described by Clark
and Wilson. It fully implements all of their rules. Since it

A-6-9

existed prior to their model but is an example of it, it tends to
validate the model.

However, we think that the experience with this system
demonstrates that Clark and Wilson's rule C3 not only can, but
must, be enforced by the system.

CI: IVP VALIDATES CDI STATE

All IVPs must properly ensure that all CDIs are in a valid
state at the time the IVP is run.

Compliance with this rule is required by the AAS programming
standards, and described in the "batch program" specification.
It is enforced at "promotion" time when the developer, owner and
maintainer certify that the transaction type conforms to the
specification.

C2: TPS PRESERVE VALID STATE

All TPs must be certified to be valid. That is, they must
take a CDI to a valid final state. For each TP and each set of
CDIs that it may manipulate, the security officer must specify a
"relation," which defines that execution. A relation is thus of
the form: (TPi, (CDIa, CDIb, CDIc, ...)), where the list of CDIs
defines a particular set of arguments for which the TP has been
certified.

Compliance with this rule is required by the AAS programming
standards, and described in the transaction type specification.
It is enforced at "promotion" time when the developer, owner and
maintainer certify that the transaction type conforms to the
specification. While the list is inverted from the form shown
here, it is included in the system and is used by the Database
Manager Process to insure that all accesses are in compliance
with this rule.

However, the individual who maintains the table is not
called a "security officer," and is different from the person who
performs some of the other duties designated for the "security
officer." It is the responsibility of this individual to insure
that access by the TP is authorized by the owner or manager of
the data and is concurred in by other responsible managers. This
further enhances the segregation of duties. It also reduces to a
manageable level the amount of activity that any individual must
process and the amount of knowledge that the indivudal must have.
Therefore, for all further rules, we interpret the term "security
officer" to mean the properly designated management surrogate.

A-6-10

C3: Suitable Separation of Duties

The list of relations in E2 must be certified to meet the
separation of duty requirement.

This rule is described in the AAS system when the
application owners identify transactions that must be separated
from theirs to enforce appropriate segregation of function. It
is bound at conflict matrix definition time and enforced at
transaction delegation time.

C4: TPs Write to Log

All TPs must be certified to write to an append-only CDI
(the log) all information necessary to permit the nature of the
operation to be reconstruced.

The AAS programming standards require that a TP log
sufficient data to make both the event and content of its use
obvious, to enable the transaction to be reversed, and to fix
accountability. A protected logging service is provided to
facilitate this. Compliance with this rule is described in the
transaction type specification. It is enforced at "promotion"
time when the developer, owner and maintainer certify that the
transaction type conforms to the specification.

However, in part to protect against TP failure and in part
for other reasons, there are two other separate journals kept.
The AAS Security Subsystem logs the events of transaction starts
and completions with reference to the user. The Database Manager
Subsystem logs both the event and content of all changes to the
database cross referenced to the one kept by the Security
Subsystem by the transaction sequence number. Thus, the system
is not wholly dependent upon the proper behavior of the TP. Both
the user and the developer can be held accountable for thier
actions and corrective action can be taken, independent of the
log kept by the TP.

C5: TPs Validate UDI

Any TP that takes a UDI as an input value must be certified
to perform only valid transformations, or else no transformation,
for any possible value of the UDI. The transformation should
take the UDI to a CDI, or the UDI is rejected. Typically this is
an edit program.

AAS programming standards require that TPs validate all
inputs. This is accomplished in three ways. First the input
data is compared to expectations that are designed into the TP.
These will include such things as formats (e.g., field length and
character set), content (e.g., valid account numbers cannot

A-6-11

replicate existing ones, and old account numbers must already be
reflected)

.

The second major way that the UDIs are validated is by
"•conversational feedback." In this technique coded input is
decoded and fed back to the user for comparison to the user's
expectation. For example, in response to customer number, the
system might feedback customer name and address and ask the user
for a positive acknowledgment that it matched that of the
customer whose number he intended to enter.

Finally, the system employs "transaction confirmation." At
the end of the TP, the TP summarizes the effect of the
transaction, feeds it back to the user in the form of a summary
screen, and requests one last positive acknowledgment that the
effect agrees with the user's intent. Only then does the TP
commit the changes to the database. The Security Subsystem then
regains control, reminds the user of his accountability, and
provides the transaction sequence number for recording on any
supporting documentation.

Compliance with this rule is described in the transaction
type specification. It is enforced at "promotion" time when the
developer, owner and maintainer certify that the tranaction type
conforms to the specification.

El: GDIs Changed Only By Authorized TP

The system must maintain the list of relations specified in
rule C2 , and must ensure that the only (any) manipulation of any
CDI is by a TP, where the TP is operating on some CDI as
specified in some relation.

It is not completely clear what is intended by "the system
must maintain." However, the Database Manager Process has for
each CDI a list of those TPs which are authorized to update, or
even access that CDI (see rule C2 above)

.

E2 : Users Authorized to TP

The system must maintain a list of relations of the form:
(User ID, TPi, (CDIa, CDIb, CDIc,...)), which relates a user, a
TP, and the data objects that TP may reference on behalf of that
user. It must ensure that only executions described in one of
the relations are performed.

The AAS Security Subsystem maintains a list by user of the
TPs that the user is authorized to execute. This list is
separate from that which describes the CDIs that the transaction
type can access. However, taken together, these lists meet the
rule, if and only if, the CDIs that the TP can access are the
same for all users. This is generally true by design and intent.

A-6-12

but with an exception. As noted above, some transactions are
designed to provide more granular control by limiting a user to
some subset of the named GDIs based upon his organizational unit.
The organization data that the transaction will rely upon to
enforce these rules is maintained and stored in the user's
profile. However, since such TPs are not themselves authorized
to that GDI called the "user profile" they must access this data
using a service (macro) provided for that purpose by the Security
Subsystem.

E3 : Users Are Authenticated

The system must authenticate the identity of each user
attempting to execute a TP.

User authentication, based upon a reuseable password, is
performed by the AAS Security Subsystem at "logon" time.

E4 : Authorization Lists Ghanged Only by Security Officer

Only the agent permitted to certify entities may change the
list of such entities associated with other entities:
specifically, the list of TPs associated with a GDI and the list
of users associated with a TP. An agent that can certify an
entity may not have any execute rights with respect to that
entity.

AAS restricts the ability to update any and all control
tables to those specifically designed by management to do so. By
design and intent, a given individual will be severely restricted
as to how much such data he can effect. Most such data can be
updated in real-time using appropriate TPs.

The second part of this rule appears to require a
restriction over both authorizers and developers. In AAS, these
restrictions are enforced, in part, by restrictions designed into
the authorization TPs, and in part by ensuring that 1)

developers cannot be users of the system; 2) that the authority
for exceptions to rule 1 is reserved to a high level of
management; 3) that even if a developer is granted an exception
to rule 1 under rule 2, he still may not be authorized to execute
a program for which he was responsible; and 4) there are no
exceptions to rule 3

.

A-6-13

'I
!

A7 USING MANDATORY INTEGRITY TO
ENFORCE "COMMERCIAL" SECURITY

Theodore M.P. Lee
Trusted Information Systems, Inc.

24 November 1987

Submitted for the
1988 IEEE Symposium on Security and Privacy

Abstract

Government research, development, and standardization
efforts in computer security have been repeatedly criticized as
not being applicable to the commercial world. In particular,
they have been criticized as not being able to support the kinds
of security policies, such as separation of duties and well-
formed transactions, used by the financial and other communities
to control unauthorized changes to or falsification of
information. This paper demonstrates how two natural extensions— integrity categories and partially trusted subjects — of
the principles of current DoD computer security standards could
be used to implement such commercial security policies in a way
that exploits the fundamental strengths of existing or future
trusted systems.

1 . Background

It has been alleged [Courtney]
,

[Murray]
,

[Clark] that the
Principles of the DoD TCSEC [DoD85a] (the "Orange Book") do not
apply well to the kind of security needed outside the national
security establishment (NSE) . In particular, it has been
repeatedly stated that the TCSEC deals almost entirely with
controlling unauthorized dissemination or release of information
whereas in most parts of the commercial world, including the
financial sector, the concern is more over controlling
unauthorized modification of information. It is true that the
emphasis of the TCSEC is with controlling unauthorized
disclosure, since that is the primary issue that gave rise to the
need for trusted computer systems in the NSE^. This paper will
try to demonstrate, however, that the principles behind the TCSEC
(mandatory access control based on labels, individual
accountability, level of assurance, etc.) when properly applied

-•Note, however, that one of the fundamental principles of a

trusted computer system is that its kernel be self-protecting,
attention to unauthorized modification is in fact inherent in the
TCSEC.

A-7-1

do appear to give precisely the kind of controls needed in the
commercial world, and in a manner that permits a systematic
examination of their adequacy.

2. Fundamental Principles

Two concepts, not explicitly stated in the TCSEC but logical
extensions of it, are all that is required of a system for it to
enforce the kind of "commercial security policy" described by
[Clark]:

1) The use of mandatory integrity categories [Biba] to
control unauthorized modification of information, and

2) The use of (partially) trusted subjects, based on a
variation of the revised Bell & La Padula model [Bell 86], to
represent (and control) authorized transactions.

The reader is assumed to be generally familiar with the
principle of associating sets of integrity categories with
subjects and objects in the Biba model and in particular that
integrity categories and levels have no intrinsic relation to any
security categories and levels that might also be present. The
concept of the (partially) trusted subject is however a
relatively recent refinement of both the original Bell & La
Padula model [Bell 75] and the Biba model.

A trusted subject, S, has two integrity labels, view-minimum
and alter-maximum, which will be denoted here as v-min(S) and
a-max(S)2. (An integrity label is simply a set of categories;
the notion of a hierarchical integrity level is not useful in
this context.) This formulation of the mandatory integrity
policy model reduces to the Biba formulation merely by noting
that any subject S with v-min(S) = a-max(S) is an untrusted
subject. For the purpose of this paper it is assumed that
mandatory control over unauthorized disclosure is of no interest
so no mandatory security (confidentiality) labels or rules are
included in the discussion; they could be easily added.

Given an object O, whose (single) integrity label is
denoted as label (O), also a set of integrity categories, the
access rules are:

(Simple Integrity Condition): S may write O if label (O) is
subset of a-max(S)

.

(Integrity *-property) : S may read O if v-min(S) is subset
of label (O) or a-max(S) is subset of label (0)3.

^Note that these are the integrity duals of the v-max and
a-min of [Bell86]

.

A-7-2

The first rule could also be written, using more
conventional TCSEC vocabulary, as "S may write O if a-max(S)
dominates label (O)", and the second rule could be written as "S
may read O if label (O) dominates either v-min(S) or a-max(S)".

The security policy defined above can be described as a
"Biba integrity model with partially trusted subjects". A system
which implements it could, if built with the proper assurances
and documentation, be evaluated against the TCSEC, especially if
the Trusted Network Interpretation (TNI) [DoD87] is used as the
basis, since that has several explicit discussions of integrity
policies and trusted subjects.

3 . Informal Interpretation

The meaning of integrity categories and the above access
rules can be described in the following informal manner.

An integrity category can be interpreted as the name of a
particular type of protected data where a given user (or program
acting on his behalf) cannot create or modify any given type of
data without explicit authorization for that type. If a given
data container has data of more than one type it is labelled
with a label for each type and any user or program that wishes
to create or modify data in that container must be authorized
for each type in it.

A set of integrity categories, as applied to an untrusted
subject, such as a user, indicates that subject is authorized to
create or modify data of any type in that set, but no others.

An untrusted subject can be thought of as one that cannot
"create" data of a type that it hasn't already seen: any data
it reads must have data of all the types it is going to write.

A (partially) trusted subject, on the other hand, can be
informally said to be allowed to transform data from a limited
set of input types to a limited set of output types: it can read
data (or have data supplied to it) that is marked with only the
set of categories specified in the view-minimum label of the
subject (i.e., the data comes from at least a certain set of
types) and still be allowed to write into data containers with
any or all the types in its alter-maximum label. (It can also,
of course, read any container that includes all the types in

^The second clause, "a-max(S) is subset of label (O)", is
necessary to allow a trusted subject to view data objects it is
permitted to modify, which in general would be appropriate and
necessary but could not happen otherwise unless v-min
dominated a-max. See paragraph (c) of section (8) below for an
alternative forumulation that might be more satisfying.

A-7-3

the alter-maximum label too, but, as noted, this needed to be
included explicitly in the model.)

4. Application to the Clark & Wilson "Commercial" Security
Policy

Although it is expressed in terms of nine separate rules,
which will be examined briefly in the next section, the essence
of them stated roughly is:

All data (of interest) must be modified by, and only by,
authorized well-formed transactions, where the principle of
separation of duties is used to limit who can perform what
transactions and make what changes to the system.

A Bl or higher class trusted computer system which supports
the "Biba integrity model with partially trusted subjects," as
its security policy can be configured and operated to enforce the
Clark & Wilson policy, in an entirely natural way, by following
eight administrative steps or procedures:

PI. Identify each type (role) of non-administrative
(operational) user to be supported by the system. Define a
different integrity category for each such role.

Examples: shipping clerk, cash teller, inventory manager.

P2 . Identify the different types of "Controlled Data Items"
(in the Clark & Wilson scenario) and define a different
integrity category for each type; none of these categories can be
the same as any of those defined in PI. Note that one or more
integrity categories should also be defined for system and
administrative software.

Examples: accounts receivable, cash account, inventory,
general ledger, audit trail, production software, TCB,
authorization tables.

P3. Identify each type of administrative user who is
expected to exercise some kind of authority. Define a different
integrity category for each type; none of these categories can be
the same as any of those defined in PI or P2

.

Examples: security officer, system administrator, system
operator, DP manager, programmer, tester.

P4 . Identify which roles are conflicting. When a user is
registered with the system, or given a new job assignment, he
would be authorized for ("cleared for") only a set of non-
conflicting roles, usually only one. The ability to modify
any "Controlled Data", especially authorization tables or system
software, would in general inherently be a conflict of roles: no

A-7-4

user will ever be given (direct) authority to modify any
"Controlled Data" since rules PI - P3 insist on three disjoint
sets of integrity categories.

P5. After a transaction, or collection of related
transactions, has been programmed and tested (on non-production
data) the operational copy of the transaction's software and any
internal data that the transaction relies upon is given the
"production software" integrity category marking to prevent
unauthorized changes to it. (No person can ever log on with the
"production software" category)

.

P6. After the transaction has been certified to be
functionally correct (well-formed, generates the required audit
trails, performs double entry if appropriate, etc.) the
transaction is established as a partially trusted subject whose
v-min integrity label is the role a user must be in to exercise
the transaction and whose a-max label is the set of Controlled
Data Item types it is allowed to create or modify.

P7 . It is assumed there are one or more "security
authorizing" transactions (trusted subjects) that must be
exercised by, and only by, appropriate security officers, system
administrators, or DP managers to register users and to perform
steps P5 and P6: P4 prohibits them from directly performing
those actions (i.e., through untrusted system utility software.)
This is a version of the "who watches the watcher" problem and is
discussed in more detail below.

P8. The responsibility for creating, installing, running,
and acting on the results of IVP (consistency checking) software
cannot be assigned to the system itself in any general way — it
must be done by management. The system can, however, ensure that
results that purport to come from an IVP (such as a

reconciliation of accounts) cannot be generated by masquerading
software if each IVP (or collections of them) , and only an IVP,
is installed (by procedures like P5 and P6) as a trusted subject
whose a-max label is something like "account reconciliation."

5. Comparison with Clark & Wilson Model

Following, very briefly, is an analysis of how each of the 9

requirements of the Clark & Wilson model is met by the above
configuration rules or by the inherent properties of a Bl or
higher class trusted system.

CI: IVP Certification — P8

C2 : TP Certification — P6

El: TP to CDI enforcement — P2 , P4 , P6, and TCSEC security
(integrity) policy enforcement

A-7-5

E2: User to TP enforcement — PI, P4 , P6, and TCSEC
security (integrity) policy enforcement

C3 : Separation of duties — primarily P4 and PI

E3: User identity authentication — TCSEC identification
and authentication

C4; Audit trail — P6 and TCSEC audit requirements (for
security actions)

C5: Valid data — P5, P6

E4 : Can't change own authorization or affect own
transaction — P4 , P7 , and TCSEC security (integrity) policy
enforcement

6 . Who Watches the Watchers?

One topic that was somewhat glossed over above is that of
what kind of controls should be exercised over those who are
entrusted with authority to change the system itself, including
authorization information such as the integrity categories given
to users or trusted subjects. The following rules, all derived
from the separation of duties principle, seem to make sense:

Rl. No user (including, for instance, a security officer)
may change his own security authorization (e.g., set of roles).

R2 . No user may authorize the installation of or
modification of a transaction he can exercise nor can he
modify its security authorization (a-min and v-max)

.

R3 . No user may authorize the installation of any
transaction he is not competent to understand or does not have
jurisdiction over (in some sense) , nor may he set its security
authorization.

R4 . No one may alter or destroy any audit records.

Rules Rl, R2 , and R4 could be easily built into the security
authorization transactions of P7

,
mostly to prevent a security

officer from giving himself inappropriate integrity categories.

R3 is both more subjective and dependent on an
organization's management style. In some ways it is related to
the question of "who is authorized to certify that a given
trusted system is allowed to operate over such and such a range?"
One possibility would be to define a "transaction certification
table" that defines for each expected combination of (user-role,
set of CDI-types) what kind of authority (e.g., administrative
role, which indicates degree or nature of responsibility) a

A-7-6

person must have to set up labels on a transaction (trusted
subject) to that set of values. The details probably don't
matter greatly provided some form of rules R1-R4 is built into P7
and certified to be there by some kind of two-person rule built
into the initialization portions of the system.

7. Relevance of TCSEC Classes and Features

Apart from supplying many of the features needed to support
the policy discussed here, a system built to and evaluated
against the TCSEC has the following additional virtues:

Bl: (minimum class required in order to support labels) —
the basic enforcement mechanisms of the system have been tested
by an independent organization and the documentation meets a
certain level of quality

B2 : The integrity policy is enforced over all information
and devices in the system. This means that the chances of error
or deliberate subversion permitting a user to perform an
unauthorized action are extremely low; it also means that
critical data (e.g., an order to buy a million shares of IBM)
delivered to a user comes with great assurance only from a
properly authorized source; this would be especially so if the
principles of the B2 or higher sections of the TNI were used to
evaluate the network portions of a system.

B3

:

Al: Still greater confidence in the ability of the system
to enforce all the rules. Whether a system of these high
evaluation classes is required in any given installation would
be a judgement of the system's owner. However, the principles
of the Yellow Books (environment guide) [DoD85b] might be
adaptable if some means could be found to associate different
integrity categories of data with different sensitivity levels
and a notion of "risk ranj^e" developed.

8. Miscellaneous Topics

Here are some afterthoughts that should be explored further.

a. It should be made clear that a subject can be trusted
(even partially) only^if it is started in a known state, e.g., at
a specified entry point, with specified initial values for some
data. Except that a trusted subject is itself very analogous to
an entire trusted system (or vice versa) and thus might be
usefully modelled in terms of secure initial states and
security-preserving state transformations this principle doesn't
seem to fit too well into, say, the original Bell & La Padula
model [Bell75] ; it may call for some additional rules in the
model in a B2 or higher class system. In any case, one might

A-7-7

have to explicitly define a trusted subject as an entity that has
more internal structure (e.g, the code it is to execute) than
the uninterpreted subjects of the original Bell & La Padula
model

.

b. A system that enforces the Biba model has what on first
glance appears to be an inherent complication: any data,
including the executing code that a subject reads must have
an integrity label that is a superset (dominates) either of
the subject's labels. Thus, for instance, any code or data
(other than any in the output GDI's) that a transaction to be run
in, say, "cashier role" needs to access must contain "cashier
role" in its label. On second glance this actually makes sense:
such a transaction is certified to operate properly only if it
takes data from a cashier and no-one else; any data that does
not contain the "cashier role" marking could have been modified
(supplied by) some other kind of person. (Note that "operates
properly" here includes the notion that it is inherently improper
for a transaction to accept data from anyone other than one of
its authorized users.) In any system there are large portions of
software and read-only data that a transaction program needs to
use and can in general rely on since they are supplied by the
manufacturer and "certified" through use.

Rather than having the security officer mark such data so
that it can be read (contents trusted by) all transactions it
would be useful to have a limited notion of hierarchical
integrity categories: TCB dominates vendor library dominates
production software dominates (any user role). (It is the
"dominates {any user role}" that is not strictly hierarchical:
the roles themselves have no dominance relation with each other.)
Note that the appendix in [Ware] suggests such a concept for
security categories so the idea is not contrary to the principles
of the TCSEC, although it is not clear that anyone has
implemented it.

c. The (partially) trusted subject as fomulated in the
model above cannot do one thing that might make sense: it
cannot, say, be allowed to read data of type cashier or type
teller or type funds transfer but be constrained from
(not allowed to be executed by) reading any other kind; it must
be one or all (which however could not have been written by any
person limited to only one of the three roles.) One logically
consistent extension to allow this would be to redefine what the
v-min label on a subject is: it would be a set of sets of
categories; any data which dominates (whose label is a superset
of) any of the sets in v-min could be read. The informal meaning
of this would be that no matter which of a limited set of sources
the subject got its information from it could be relied upon to
properly create or modify the data it is constrained to operate

A-7-8

upon. But that begins to be complicated and would certainly
increase overhead'*

.

Another alternative is relatively straightforward: if a
trusted subject needs to deal with several different types of
data it must do so through separate intermediary "agent" trusted
subjects for each type. For example, if subject X, which updates
data of type C, needs access to data typed A (i.e., whose
integrity label is A) and type B, but no others, a new "disjoint"
integrity class, say, "A or B" would be defined and two subjects
S and T created — S would access A on X's behalf, T would access
B. The labels on the subjects would be

a-max(S) = a-max(T) = v-min(X) = A or B;
v-min(S) = A; v-min(T) = B; a-max(X) = C

Both alternatives have their strengths and weaknesses and
need more thought.

d. As noted in [Bell86] the concepts of v-min and a-max
replace the [Bell7 5] concept of "current security level." (In
our case, integrity.) The example discussed in this paper has no
need for a subject to change its current level, so that aspect of
a possibly desirable system behavior is not modelled. To do so
would probably entail adding two more labels — a "true" alter-
maximum and view-minimum — renaming what we have here as
current-alter-maximum (c-a-max) and current-view-minimum (c-v-
min) , and adding appropriate rules constraining how a subject may
change c-a-max and c-v-min given the values of a-imax, v-min, and
what the levels of the currently accessible objects are.

e. It is recognized that the model presented here does not
address the issue of subject-to-subject interactions other than
through shared objects. Without further refinement to permit
controlled domain crossings (e.g., whereby a process changes its
subjecthood by moving one domain to another) the only way one
subject (such as a user) could cause another (such as a
transaction) to be invoked would be through the change in the
value of some data object that could be written by the first
subject and read by the second^. Note that for a transaction to
synchronize with an invoking user there would have to be a

^It would however allow the integrity *-property to be
simplified by deleting the explicit ability to read anything a-
max dominates: if the subject is be able to view objects of type
a-max as well as modify them, that category set would have to be
expressly included as one of the sets in its v-min.

^Such an object could readily be constructed since the
purpose of a transaction is to read infcjtrmation supplied by a

user, i.e., a-max(user) = v-min (transaction)

.

A-7-9

corresponding reverse flow of information; as the model is given
here there is, quite properly, no means for that flow since user-
subjects are not supposed to be able to read any data written by
transaction-subjects^ . The ideas in paragraph b or c above could
be used to define an integrity category for, say, semaphores that
would be accessible to all subjects and thereby permit
synchronization. Note in any case that the problem of
synchronization between mutually distrustful subjects (which is
in effect what a separation of duties principle mandates) is made
quite explicit by this model and whatever solution is adopted
will have to be thought through carefully: although there seems
to be no intuitive integrity dual to the covert timing or storage
channels addressed in enforcing a mandatory non-disclosure
policy, that seems to be what we are dealing with here.

f. There is a possibly superficial difference between the
commercial world and the NSE world that could be fundamental:
the latter assumes, more or less, that its users are trustworthy
to the extent of their clearances ("need-to-know" and
compartmentation being the primary vehicles for dealing with
human imperfections) . The commercial world, however, in
insisting on the separation of duties principle inherently
assumes it users are untrustworthy. The implications of this
difference, if indeed there really is one, need to be explored.

g. Again, it is assumed that the reader is generally
familiar with all the topics discussed. This is not intended as
a tutorial on mandatory integrity policies, of any variation, or
of the TCSEC as it relates to them, nor is it intended to
recapitulate [Clark]

.

h. [Boebert] claims that a Biba policy cannot support an
integrity-enforcement example ("assured pipeline") that seems
very similar to the Clark & Wilson requirements. This is true if
all one has is integrity levels. But if one uses integrity
categories and (partially) trusted subjects it is possible to
establish a protection regime that is very similar to that of
the SAT type and domain mechanisms. His secure labeller example
could be set up in the following way. There would be three
subjects: User, Labeller, and Output; and three integrity
categories: U for Unlabelled, L for Labelled, and P for Printer
(that which Output, and only Output, is to write to; Boebert 's
example doesn't include the printer as an object.) The
categories would be assigned to the subjects as follows:

v-min(User) = a-max(User) = U
v-min (Labeller) = U

^Because the data they deal with are of disjoint integrity
categories

.

A-7-10

a-max (Labeller) = v-min (Output) = L
a-max (Output) = P

Note that all three subjects would be untrusted with respect
to the disclosure policy, i.e., all would run at the security
level of the data being output; the User is also untrusted with
respect to integrity. It is an exercise for the reader to
demonstrate that the above assignment of integrity categories
gives precisely the same access matrix as the DDT (Domain
Definition Table) on the lower right quarter of p. 25 of
[Boebert] ^

.

9. Acknowledgements

Credit must be given to my colleagues David Bell, Marv
Schaefer and Steve Crocker for some intense, but totally
fortuitous (insofar as the topic of this paper is concerned)

,

conversations that occurred late in October about the notion of
partially trusted subjects in the context of mandatory security
policies. Until they read the first drafts of this they may not
have realized how germane the concept is to the "commercial
security policy" problem or what they had unintentionally
inspired. The first draft of this paper was written as an
unsolicited position paper for the "Workshop in Integrity Policy
in Computer Information Systems" held Oct. 27-29 at Bentley
College in Waltham, Mass. , to "respond to the challenge
presented" by [Clark] , so the organizers of that workshop must
also be given credit for having provided the impetus.

Credit must also be given to Steve Lipner's seminal paper
[Lipner] on this topic: however I must confess that although I

did attend its presentation in 1982 it appears that I never
actually studied the paper until after writing my first draft
last summer and in fact I very erroneously and unfairly
remembered his formulation as not using integrity categories,
which it most definitely does.

10. References

[Bell75] D.E. Bell and L.J. La Padula, Secure Computer
Systems: Unified Exposition and Multics Interpretation,
MTR-2997, The Mitre Corporation, Bedford, Mass., July 1975.
(ESD-TR-75-306)

"^At this point Boebert would be justified in raising the
objection that his DTT (Domain Transition Table) is not reflected
in any aspects of the model here. That would come out of
resolving the subject-to-subject transition issues raised above
in paragraph e.

A-7-11

[Bell86] D.E. Bell, "Secure Computer Systems: A Network
Interpretation," Proceedings of the Second Aerospace Computer
Security Conference ; Protecting Intellectual Property, Dec. 2-4,
1986, McLean, VA, pp. 32-39.

[Biba] K.J. Biba, Integrity Considerations for Secure
Computer Systems, USAF Electronic Systems Division, Bedford, MA,
ESD-TR-76-372 , April 1977.

[Boebert] W.E. Boebert and R.Y. Kain, "A Practical
Alternative to Hierarchical Integrity Policies," Proceedings of
the 8th National Computer Security Conference , Sept. 30 - Oct. 3,
1985, Gaithersburg, MD, pp. 18-27.

[Clark] D.D. Clark and D.R. Wilson, "A Comparison of
Commercial and Military Computer Security Policies," Proceedings
of the 1987 IEEE Symposium on Security and Privacy . April 27-29,
1987, Oakland, CA, pp. 184-194.

[Courtney] R.H. Courtney, Jr., "An Industry View of the DoD
Computer Security Center Program," Proceedings of the Sixth
Seminar on the DoD Computer Security Initiative . Nov. 15-17,
1983, Gaithersburg, MD, pp. 11-13.

[DoD85a] Department of Defense National Computer Security
Center, Department of Defense Trusted Computer System Evaluation
Criteria . Dec. 1985, DoD 5200.28-STD.

[DoD85b] Department of Defense National Computer Security
Center, Security Requirements: Guidance for Applying the
Department of Defense Trusted Computer System Evaluation Criteria
in Specific Environments . CSC-STD-003-85 , June 25, 1985.

[DoD87] Department of Defense National Computer Security
Center, Trusted Network Interpretation of the Trusted Computer
System Evaluation Criteria . NCSC-TG-005, July 31, 1987.

[Lipner] S.B. Lipner, "Non-Discretionary Controls for
Commercial Applications," Proceedings 1982 IEEE Symposium on
Security and Privacy . April 26-28, 1982, Oakland, CA, pp. 2-10.

[Murray] W.H. Murray, in "Panel Session — Base Spectrum of
Computer Security Requirements," Proceedings of the Sixth Seminar
on Computer Security Initiative . Nov. 15-17, 1983, Gaithersburg,
MD, pp. 14-16.

[Ware] W.H. Ware, ed. , Security Controls for Computer
Systems: Report of Defense Science Board Task Force on Computer
Security . Rand Corporation, Santa Monica, CA, R-609-1, October
1979 Reissue.

A-7-12

A8 THOUGHTS ON THE CONCEPT OF
INTEGRITY AND INTEGRITY POLICIES

by

ROBERT H. COURTNEY, JR.

The following ideas were conveyed to me (Stuart W. Katzke)
by Bob Courtney through private communications. Since I felt
strongly that Bob's thoughts should be shared with others, I

requested (and Bob granted) permission to assemble and (slightly)
edit his comments for inclusion in this Workshop Report. Bob's
comments follow.

With regard to the concept of an integrity policy, I still
have a horse/cart relationship problem. Let me suggest several
things the resolution of which appear to me essential to real
progress in this area. They are these:

1. What do we mean by "integrity" in the context in which
it is used? How can you decide what to do about it until it is
satisfactorily defined?

2. What is a general integrity policy? You need to be able
to state what it is and why we need it before we pursue it. What
is done about integrity varies dramatically from application to
application within a single organization. Why is the pursuit of
policy the correct approach? Why isn't the whole business
simplifiable to identification of the requisite means for the
attainment of the desired degree of integrity in each specific
application, assuming we have managed to define it and can
determine how much and what kind we need? I am very much afraid
that pursuit of policy will ultimately derail the whole
potentially valuable activity now underway. What is magic about
the word "policy" in this context? I am very much afraid that
policy at this level implies intellectual rigidity and this is no
time for that.

3. I caution against the notion that an integrity policy
should be implemented in vendor products. I cannot imagine that
you will ever be able to identify and implement an integrity
policy which is sufficiently constrained to permit its
implementation in any reasonable and economically feasible manner
and yet so broad as to make it useful in the vast diversity of
applications made of general-purpose data processing products.
Let me offer some further thoughts on this integrity issue. I

don't think that real progress will be made until most of the
people considering the matter have a common understanding of what
it is we are talking about. The following comments reflect what
I think we mean, or should mean, when we talk about data
integrity.

A-8-1

Integrity is a fundamental virtue and, like other
fundamental virtues such as honesty, cleanliness, and charity,
its definition is very context-sensitive. Just as we cannot
effectively pursue those other virtues without defining them
within a particular context, neither can we simply pursue
integrity except as we adequately define that context.

When we try to write policy about personal integrity, we are
forced to say what we mean by it within the context covered by
the policy. We must specify the specific ramifications of it
which we want to address and then state what must be achieved in
each of these. I believe that you can no more have a data
integrity policy than you can have a personal integrity policy
except as that policy addresses the particular components of
integrity about which we are concerned in a particular
environment

.

The specific requirement for data integrity will often, even
generally, vary with the use to be made of those data, that is,
from application to application. If I am using a local telephone
number to tell me in what general area a person lives, then I

need accuracy in only the first three digits. Errors in the
remaining 4/7 of the njamber will not bother me. On the other
hand, if I am trying t^ call, errors anywhere in the number
render the whole number useless. The accuracy requirements for
these two applications is quite different. The best you will be
able to do with an integrity policy, then, is to say that the
data should be as good as they need to be for the purpose at
hand. That offers little guidance in what to do about it.

Let's take the problem apart and look at it. (Data)
integrity has two equally important components. They are (1)
data quality and (2) assurance of that quality. Data quality
cannot be relied upon in the absence of means to verify it.

Data quality consists of five elements. They are:

1. Accuracy,
2. Completeness,
3. Precision,
4. Timeliness, and
5. Confidentiality.

If there are deficiencies in any of these five elements, the
resulting integrity of those data may not be as great as might be
desired in a perfect world, but those deficiencies may not, and
usually do not, constitute fatal flaws unless we are unaware of
them. The sine qua non of integrity is freedom from unpleasant
surprise.

It is quite apparent that all five elements will not be of
equal importance in any specific application of the data. In

A-8-2

some cases, one or more of them may be of relatively little or no
importance at all. In others, they may be essential to the
integrity and therefore the usability of those data.

We are quite accustomed to seeking integrity in our systems
design. We virtually never call it that because the term used
there, as with data integrity, lacks specificity. But we do
indeed pursue freedom from key deficiencies and we also seek the
other component - quality assurance, in this case, awareness of
system deficiencies which have significant bearing on our ability
to use the system for a specific purpose.

Summarizing the above: when we speak of data integrity we
should be addressing both data quality and assurance of that
quality. The former is seriously impaired without the latter.
There are five elements which describe quality, as listed above,
and each can be addressed in at least a semiquantitative way.
But, again, the other component of integrity, quality assurance -

an understanding of the degree to which the data may be deficient
in any of the five quality elements - is no less important to
integrity than is quality.

I strongly suggest that folks not waste time pursuing the
notion of integrity policy but instead concentrate on (1)
assessing the measures which should be applied to the
identification of the need for data quality, (2) recommendations
of a systematic means for the application of measures necessary
to the attainment of that quality, and, (3) to the identification
and recommendation of practicable means for assessing data
quality.

Finally, there is one thing which should be realized by all
participants. No new approach to integrity will be acceptable
if it forces obsolescence of existing application code. This
does not mean that a new higher plateau of integrity must be
achievable with old code; it must be able to cohabit with old
code. Then new levels of integrity can be achieved in each
application for which new code is written or, and far better,
for which old code is upgraded.

Any approach which forces obsolescence of existing
application code would create more integrity problems than could
ever be solved with that new approach.

No major vendor can be really supportive of an approach
which obsoletes his customers' application code because the
customers will think that he is out of his mind. Those customers
have multibillion dollar investments in that code.

There is always danger, as you know as well as I do, that
companies may be represented on any committee by starry-eyed
techies who have never been in touch with the realities of the

A-8-3

business and who can enthusiastically endorse anything which is
intellectually titillating and leave the impression that the
whole enterprise from which he comes is behind him. Which is
where they often are - so far behind him that he is not even in
the same parade.

A-8-4

A9 IMPLEMENTING THE CLARK/WILSON INTEGRITY POLICY
USING CURRENT TECHNOLOGY

William R. Shockley

Gemini Computers, Incorporated
P. O. Box 222417

Carmel, California 93922
(408) 373-8500

Abstract

The security policy presented in [1] is viewed as expressing
a set of valid requirements that must be enforced with a high
(Class Al) level of assurance. A policy expressed in terms of a
lattice of access classes is formulated that (together with
discretionary and supporting controls) implements the
requirements, leading to the conclusion that current Trusted
Computing Systems based on the Bell and LaPadula model [2], in
combination with well-understood extensions of this model, such
as the Biba strict integrity policy [3] and Schell and Shirley's
program integrity policy [4], are capable of supporting the
Clark/Wilson policy.

Introduction

The material presented in [1] by D. D. Clark and D. R.
Wilson has received a relatively high degree of attention as an
accurate representation of what the business community means by
the term integrity, when used in the context of computer
security. It is proposed by Clark and Wilson, that this policy
should be enforced with the level of assurance normally
associated with the enforcement of the Mandatory Access Control
Policy in the Trusted Computer System Evaluation Criteria [5] for
trusted systems useful to the general data processing community.
Clark and Wilson also state, as their two primary conclusions,
that "a lattice model is not sufficient to characterize
integrity policies", and that "distinct mechanisms are needed to
control disclosure and to provide integrity".

In this paper, issue is taken with both of these
conclusions: at least, with the implication that might be drawn
from them that "therefore, lattice policies are not useful in
this context" . The premise upon which this paper is based is
that an appropriate combination of lattice policy based
controls and supporting policies tailored to fit are quite
capable of enforcing the policy implicit in the Clark/Wilson
requirements and that, indeed, TCB products available now, or in
the near future, are capable of meeting these requirements
fully.

A-9-1

What will be presented in this paper is an abstract
description of a system compliant with the requirements, using a
lattice of access classes expressed in terms of integrity and
disclosure categories, together with various constraints upon
user clearances and the subjects which can be activated upon
the user's behalf. The system of access classes represents the
non-discretionary component of the requirements, while the
enforced constraints upon the clearances a security officer may
enter, together with constraints upon what subjects may be
activated, represent supporting and discretionary aspects of
the requirements. By "non-discretionary" we mean a policy
concerned with global and persistant constraints upon information
flow: as Denning has shown [7] that every such consistent
policy can be represented in terms of a lattice of access
classes, our insistance on sharply separating "non-discretionary"
policies from everything else is well-grounded in theory.

The analysis presented below was pursued in conjunction with
the SeaView project to design a Class Al DBMS for implementation
in the near term. The project is sponsored by Rome Air
Development Center (RADC) , and is being pursued by a team
consisting of scientists from SRI International and Gemini
Computers, Inc. The relevancy of the Clark/Wilson requirements
to this project has been recognized since the paper was
presented, although we take issue with some of the conclusions
presented in [1]: military, as well as commercial data
processing centers, are interested in controls that allow
enforcement of separation of duty and well-defined transactions
with high levels of assurance. It is our current intent to
implement a working demonstration of concept on a Class Al
certifiable security kernel (GEMSOS) within the next six
months. The demonstrated system will also be compliant with
the most important of the Clark/Wilson requirements, using
techniques similar to those discussed below.

The abstract design discussed below makes use of several
refinements to the basic Bell and LaPadula model, namely, the
strict integrity policy formulated by Biba [3] and its extension
to trusted subjects by Schell and Shirley [4], called the program
integrity policy. As these refinements may not be familiar to
some readers, a brief description of them is provided in the next
section. The abstract design presented in this paper may be
regarded, on the one hand, as a re-interpretation of the
Clark/Wilson requirements in more familiar terms, and on the
other, as providing a worked example shedding light on the
usefulness of both strict and program integrity, in conjunction
with the more familiar disclosure policy specified by the TCSEC
[3] .

Because the association of the term mandatory with that
access control policy using a lattice of partially-ordered
sensitivity labels to represent both user clearances and

A-9-2

information sensitivity has been criticized in [1] (although
this usage is taken as an axiom in [5]), the original term used
by Saltzer and Schroeder in [6], non-discretionary will be used
throughout this paper to signify access control policies based
upon labels partially-ordered by a dominance relation.

Technical Background

The Clark/Wilson Requirements

For completeness, the rules given by Clark and Wilson for a
commercial integrity policy are restated below. Detailed
arguments for their content are provided in [1].

Definitions

Constrained Data Item (CDI) — those data items within the system
to which the integrity policy must be applied.

Integrity Verification Procedure (IVP) — a procedure, the
purpose of which is to confirm that all of the GDI's in the
system conform to the integrity specification at the time the
IVP is executed.

Transformation Procedure (TP) — a well-formed transaction that
changes the set of CDIs from one valid state to another.

Unconstrained Data Item (UDI) — a data item not covered by the
integrity policy, (in the sense that it represents new
non-validated information that has just been input into the
system)

.

Enforcement rules.

Those rules that represent requirements imposed upon human
certifiers are labeled CI through C5, while those to be enforced
primarily by the automated system are labeled El through E4

.

Comments have been added to some of the rules indicating those
for which a design will be only sketched in this paper.

CI: All IVPs must properly ensure that all CDIs are in a

valid state at the time the IVP is run.

Comment: For simplicity, in this paper IVPs will be treated
as ordinary TPs that read, but do not modify, a set of
CDIs. The treatment of IVPs as distinct from TPs would add
unecessary complexity to the discussion without changing
the abstract design substantially.

C2: All TPs must be certified to be valid, that is, they
must take a CDI to a valid state, given a valid initial
state. For each TP the certifier must specify a list of

A-9-3

GDIs (called a relation) which the TP has been certified to
manipulate correctly.

Comment: For simplicity, it will be assumed that a TP both
reads and writes every GDI it "manipulates". The addition
of controls to enforce a distinction between those GDIs
that are "read-only", those that must be both read and
written, and those that are "write-only" (append) , is
interesting and possible, but leads to substantial
additional complexity.

El: The system must maintain the relation referred to in
rule G2 , and must ensure that the only manipulation of any
GDI is by a TP, for which the GDI occurs in the relation for
the TP.

Gomment: The relation will be encoded within the access
class of the object containing the TP.

E2 : The system must maintain a list of relations
associating triples of the form <UserID, TP,GDI> that
identifies which users may cause which TPs to be executed to
manipulate which GDIs. (Note that each GDI must be in the
relation for the given TP, but not all such GDIs may occur
for a given UserlD and TP)

.

Gomment: This requirement will be supported by maintaining
a database within the TGB that is consulted whenever a
subject executing a TP is activated on behalf of an
authenticated user. Limitation of the GDIs available to
that subject will be enforced by encoding a list of GDIs in
the access class of the subject, so that it cannot be
subverted by malicious code (even in the TPs) , once the
subject is activated.

G3 : The list of relations in E2 must be certified to meet
the separation of duty requirement.

Comment: The abstract design will provide the potential for
automated support for this requirement, although it is
listed by Clark and Wilson as a requirement to be enforced
by the human certifiers alone.

E3: The system must authenticate the identity of each user
attempting to execute a TP.

Gomment: Implementation of a system upon an evaluated TGB
meets the intent of this requirement, as a Glass G2 or
above TGB includes an evaluated identification and
authentication capability that cannot be bypassed.

A-9-4

The basic functionality assumed for the abstract design is
that the authenticated user may select either to execute an
untrusted subject (for creating programs, entering UDIs, and the
like) or a subject that executes a single TP before returning to
the trusted logon menu. The controls implied by Rule E2 are
enforced by the trusted logon routine, which is part of the TCB
and therefore evaluated for correctness. This routine consults
the triple database to evaluate the TP and GDIs selected by the
user for compliance with rule E2 before activating a subject to
execute the TP on the user's behalf.

C4: All TPs must be certified to write to an append-only
GDI (the log) all information necessary to permit the
nature of the operation to be reconstructed.

Gomment: A conventional TGB provides substantial built-in
and unbypassable support for this audit function, relieving
the certifier from having to check that a TP is self-
policing with regard to security-relevant actions. This
rule, for the sake of simplicity, will not be discussed
further.

C5: Any TP that takes a UDI as an input value must be
certified to perform only valid transformations, or else no
transformations, for any possible value of the UDI.

Gomment: Although primarily a rule for certifiers, the
discussion below will show how the execution of such TPs
are supported.

E4 : Only the agent permitted to certify entities may change
the list of such entities associated with other entities:
specifically, those associated with a TP. An agent that
can certify an entity may not have any execute rights with
respect to that entity.

Gomment: This rule will be enforced primarily by the module
of the TGB that allows the security officer to enter
clearances — if a given user (represented by a unique
UserlD) has one type of clearance (as a "certifier") that
user will not be allowed to have a "TP user" clearance,
and vice versa.

Non-Discretionary Policies

The following information characterizes those elelments of
non-discretionary policies that will be used in the remainder of
the paper. Because these mechanisms are well-known, extensive
commentary is not provided: this section is intended only to
precisely identify the access control rules enforced by the
underlying security kernel. At least one such system,

A-9-5

certifiable at Class Al (GEMSOS) , that enforces rules exactly as
stated below, is commercially available.

Disclosure Classes

There is a set D of disclosure classes, partially ordered
by a dominance relation <= , such that if dl <= d2 in D, d2 is
of equal or greater sensitivity (relative to disclosure) than
dl.

Strict Integrity Classes

There is a set I of integrity classes, partially ordered by
a dominance relation <= , such that if il <= i2 in I, i2 is of
equal or greater sensitivity (relative to modification) than il.

Access Classes

Consider the Cartesian product A = D X I of access classes.
Dominance is defined for access classes such that for any al =

<dl, il> and a2 = <d2 , i2>, al <= a2 if, and only if, dl <= d2
and i2 <= il.

It is noteworthy that dominance for access classes is based
upon dominance for the integrity class components in the
inverted sense: that is, given identical disclosure classes,
two access classes of differing integrity components are ordered
from more to less sensitivity relative to modification. The
utility of this convention is that it simplifies the expression
of the non-discretionary policy rules themselves.
(Fundamentally, al <= a2 means that information flow from class
al to class a2 is permitted by both the disclosure and strict
integrity policies simultaneously.)

Basic Combined Policy

The basic combined policy is stated in terms of active
subjects, entities that cause information to flow between
objects, objects, passive data repositories that are manipulated
by subjects, and two access modes, read and write. It is
assumed that a subject that has read access to one object and
write access to another, can transfer information derived from
the first to the second.

Each subject is labeled with two access classes, a readclass
and a writeclass, such that writeclass (s) <= readclass (s) for
all subjects. If writeclass (s) = readclass (s) , the subject is
said to be untrusted, if writeclass (s) < readclass (s) the
subject is said to be trusted.

Each object is labeled with a single access class, taken to
represent the combined disclosure and modification sensitivities

A-9-6

of data that may be written into that object. The basic policy
regarding those objects a subject can access for read and write
is:

A subject s may obtain read access to an object o only if
class (o) <= readclass (s)

.

A subject s may obtain write access to an object o only if
class (o) >= writeclass (s)

.

Note that these rules are identical, for untrusted subjects,
to those in the Bell and LaPadula (because writeclass (s) =
readclass (s) , so that the subject has, in effect, a single
label) . The rules represent a convenient refinement of the rules
for Bell and LaPadula trusted subjects — in the Bell and
LaPadula rules, a trusted subject may "write down" to any object,
whereas for the rules given above, the privilege to "write down"
is here limited by the subject's writeclass.

The stated rules also merge traditional non-discretionary
disclosure policies with the Biba strict integrity policy, by
combining the two arbitrary partially ordered sets of labels into
one and redefining the dominance relation appropriately.

Program Integrity

Because we are providing for trusted subjects as an
explicitly recognized model component, it is convenient to
recognize execute access explicity, in order to preserve the
desired semantics for integrity labels. (This will be explained
more fully below.) The policy for achieving this is called by
Shirley and Schell program integrity. Its purpose is to ensure
that a trusted subject may only execute objects that are of the
same integrity as the maximum integrity the subject can modify.
The rule given here extends this idea by including a constraint
that the subject may only execute objects that are of the same
secrecy as the minimum secrecy the subject can modify. A brief
rationale for the rule is given in the next subsection.

A subject s may execute an object o only if
integrity (class (o)) >=
integrity (writeclass (s)

)

(The dual is also enforced but will not be discussed
further)

.

A subject s may execute an object o only if
disclosure (class (o)) <=
disclosure (writeclass (s)

)

When the subject is untrusted, (i.e., readclass (s) =

writeclass (s)) program integrity degenerates to strict integrity.

A-9-7

where execute access is considered a variant of read access.
The program integrity policy is a genuine refinement to Biba
strict integrity for subjects trusted with regard to integrity,
because in this case there might exist objects that the subject
can read, but not execute.

Semantics of Strict and Program Integrity

The rules given above treat "integrity" as a formal
abstraction that is the mathematical dual of the more familiar
non-discretionary policy for disclosure. In order to make use of
the policy in a meaningful way, one must give an intended
semantics for the integrity dominance relation: under what
circumstances does it make sense to say that some information
has "more" integrity than some other information? What does it
mean to give a program (which is data of a special sort) an
integrity label? The semantics defined here is an interpretation
tailored for use in a Trusted Computing System, in which
information is created or modified by a subject (trusted or
untrusted) executing a program.

The fundamental notion is that for a program to be given
an integrity class (other than, perhaps, the lowest) it must be
correct: that is, it is believed, for some reason, to correctly
transform its input to its output. Typically, its correctness is
based upon some software validation technique, or combination of
techniques. Moreover, for a given application, the data managed
by the system may be more or less critical: for instance, some
data, if corrupted, might result in the loss of life while others
might be administrative in nature. The sponsor of a system, we
can imagine, will group the data into collections of data that
are partially ordered by critical ity, and for each group,
establish those software validation techniques that must be
applied in order to trust a particular program to minipulate data
of a given criticality. The resulting system defines the
particular integrity policy to be enforced.

The rules enforced for the basic security policy (as applied
to untrusted subjects) work in a way that is intuitively correct,
for the semantics of strict integrity given above. A subject
with integrity class I may modify only objects of integrity I or
below, and may read (and thus, execute) only objects (programs)
of integrity I or above. Thus, every program used to modify an
object of integrity I, is correct, in the sense that it has met
at least the software validation requirements for integrity I.
Moreover, the input data upon which the modified data I depends
is also of integrity I or above: thus, the desired constraint
(that data not be modified by programs that have not been
subjected to the required validation) is met both directly and

.

indirectly.

A-9-8

We may now discuss what it means for a subject to be
"trusted" with regard to integrity. The basic non-discretionary
policy allows a subject trusted with regard to integrity to
modify data of high integrity, while reading data of lower
integrity. The program executed by such a subject must be more
than just "correct" (in the sense that it transforms input to
output correctly) — it must be able to distinguish low from
high integrity input and make its modifications to high-integrity
data accordingly. What this means varies from circumstance to
circumstance. In the simplest case, the program might be
required to be "flow-free" — that is, it recognizes the
integrity class of the input data and modifies only data of the
same integrity. A more complex case involves an "integrity
upgrade", in which ostensibly low-integrity data is validated and
copied to a high-integrity repository.

The need for the program integrity policy should now be
apparent: because a subject trusted with regard to integrity
may, from time to time, modify data at the (high) integrity of
its writeclass, it must only use programs of appropriately high
integrity so that it never produces high integrity data using
programs that have not been appropriately validated.

Integrity/Disclosure Policy for Clark/Wilson Requirements

We turn now to a non-discretionary policy for the
Clark/Wilson requirements expressed in terms of a combined,
partially-ordered set of access classes of the form <integrity
class, disclosure class>. For the sake of simplicity, we will
use only integrity and disclosure categories. (No claim is made
that the solution below is unique, or even that it is the best
one: it has been selected for ease of exposition) . Recall that
we are treating IVPs as special kinds of TPs, and that we are
assuming that all GDIs referenced by a TP must be accessible for
both read and write access. However, we will label data to
the granularity of individual GDIs and TPs in order not to unduly
trivialize the problem.

An integrity class consists of an arbitrary subset of the
set of all integrity categories, and will be denoted [a, b, c,

. . .] using square brackets, where a, b, c and so on are
integrity categories. Similarly, a disclosure class consists
of an arbitrary subset of the set of all disclosure categories,
and will be denoted {x, y, z, . . .} using curly brackets.
An arbitrary access class will typically be denoted:

[a, b, c, . . .]{x, y, z, . . .).

The dominance relation for access classes is defined in the
usual way: an access class Al = [a, . . .](x, . . . } is

dominated by an access class A2 = [b, . . .] (Y/ • • •)

and only if, [a, . . .] is a superset of [b, . . .] and (x, . .

A-9-9

. } is a subset of {y, . . .}. It is easy to show that the
integrity classes form a lattice, that the disclosure classes
form a lattice, and that the combined acccess classes form a
lattice composed by taking the Cartesian product of the two and
inverting the integrity dominance relation as previously
suggested. Thus, for Al <= A2 , Al carries at least all of the
integrity categories of A2 and at most all of the disclosure
categories of A2.

Assignment of Access Classes to Clark/Wilson data objects

Each CDI will be assigned a "generic" integrity category,
[c] , as well as an individual integrity category of its own:
thus, the access class for (say) CDIi will include integrity
category [c, CDIi] . This assignment reflects the idea that the
CDI can only be manipulated by TPs (program objects) that have
been certified to be "correct", but allows what "certification"
means (relative to correctness) to vary from CDI to CDI. The
integrity category [c] may be interpreted as meaning that every
CDI has some common level of "correctness", over and above none
at all.

Each CDI will also be assigned its own disclosure category
as well as common disclosure category (c). (We might note at the
outset that the Clark/Wilson requirements imply a minimal policy
for disclosure as well as integrity as Rule El implies that a TP
must not be allowed to manipulate a CDI it has not been certified
for — which means that it must be allowed to read only the CDIs
assumed readable during the certification.)

Thus, the combined access class for (say) CDIi will be:

CDI object: CDIi
access class [c] [CDIi] {CDIi}

.

Each TP is itself a data object, and has been "certified" to
correctly manipulate some list of CDIs. The TP will thus be
given an integrity class that includes the integrity category for
each of those CDIs. Its certification must include all of the
validation tasks required for any of the CDIs it can manipulate.
In addition, we suppose there is a common set of validation
requirements to be met, that are represented by the common CDI
category [c] . Finally, the certified TP is correct in a sense
that an ordinary CDI is not: it is executable. This attribute
will be represented as a common TP integrity category [t] . As
for CDIs, we also give each TP an individual disclosure category
as well as disclosure categories {t,c). These will be used to
prevent TPs from being read (and therefore executed) by users not
authorized to execute TPs at all.

TP object: TPj
manipulates: CDIa, CDIb, . . .

A-9-10

access class: [t, c, CDIa, CDIb, . . .][TPj]
{t, c, TPj}

A UDI is a data item that is assumed to have no integrity at
all. Obviously, it can then be neither a TP nor a GDI. Note
that programs under construction (not yet certified) fall in this
category. We wish to prevent most subjects and some users (TP
users) from executing or examining programs under construction,
and we wish to prevent some users (certifiers) from creating or
modifying programs under construction. These desires suggest
giving UDI objects a generic integrity and a generic disclosure
category of their own:

UDI object: UDIk
access class: [u] (u)

The meaning of integrity category [u] is "not created by
non-programers"

.

An observation that may not be apparant on first reading is
the relation between the combined access class of a TP and the
GDIs it manipulates: these access classes are always
non-comparable, because the TP has a disclosure category the GDI
does not (its unique disclosure category) and vice versa.
However, the TP has strictly greater integrity than any of the
GDIs it manipulates, because it carries all of their unique
integrity categories as well as the integrity category [t]

.

Similarly, any GDI has greater integrity than any UDI: however,
no GDI or TP has a combined access class that is comparable to
any UDI when both components are considered. What has been
described so far is a system in which the individual objects of
interest (GDIs and TPs) are in isolated domains, but are "tagged"
with access classes that encode their attributes relative to the
Clark/Wilson rules. In particular, the integrity component of
the access class of a TP serves as the "relation" required by
Rule El.

Non-Discretionary Policy

The non-discretionary component of the policy implicit in
the Glark/Wilson requirements can be found by examining the
semantics of the classes assigned to the various data objects in
the context of the basic non-discretionary and program integrity
rul6s. The properties listed below are global, persistent, and
unconditionally maintained by the underlying security kernel,
provided the security officer and certifying officials are
diligent in assigning clearances and assigning labels to
certified transactions correctly.

An individual GDI has the "general" GDI integrity and
disclosure category, an individual GDI category, and an
individual GDI disclosure category. It, therefore, can be

A-9-11

manipulated using only programs that have been certified to
correctly manipulate that specific GDI, by personnel authorized
to both read and write GDIs in general and this GDI in
particular.

An individual TP has the "general" TP and GDI integrity and
disclosure categories, the integrity category of each GDI it has
been certified to manipulate correctly, and an individual TP
disclosure category. It, therefore, (as an executable object)
can be used to manipulate any of the GDIs it has been certified
for, and none of the others (it does not carry their integrity
category, so program integrity will prevent it from being
executed.) It may be created, modified, or deleted only by
someone cleared "[t]" (i.e., a certifier). It can be read (and
therefore, executed) only by someone cleared {t, TPi}: i.e., a TP
user who has been specifically cleared to use it.

UDIs, for convenience, have been "bundled" into a single
class [u]{u}. This class is intended to include uncertified
programs. They cannot be used to manipulate GDIs or TPs (they
do not have [c] or [d] integrity) and if someone is cleared
only [u]{u}, (i.e., a programmer) that person cannot read or
write either GDIs or TPs. Similarly, if certifiers are not
cleared [u] , certifiers cannot create or modify programs.

Finally, we note that if certifiers are not cleared (GDIK),
they cannot execute TPs against GDIs, in the sense that the TP
will work: because their subjects will not be able to observe
the state of the GDI. A certifier can always, by definition,
certify a TP that will blindly modify a GDI (no matter who
executes it) : it would, therefore, be inconsistent to require
that the system prevent this possibility.

Thus, the basic non-discretionary policy encompasses a good
deal of what Glark/Wilson require, with a high degree of
assurance, simply by issuing clearances and labeling certified
transactions appropriately. The residual requirements are
supporting in nature, and involve two major components: first,
enforcement of separation of duties relative to certifiers and
"TP users", and secondly, enforcement of Rule E2 (Userld
differentiated restrictions on which transactions a user may use
to manipulate a particular GDI, over and above those inherent in
the set of GDIs the TP has been certified for) . These components
are intrinsically discretionary in nature (that is, they cannot
be expressed in terms of information flow properties that are
global and persistent) .

Assignment of Access Glasses to Subjects

This section provides a bridge between the non-discretionary
and discretionary components of the design: it is a

A-9-12

specification of the intended use of the classes for labeling
the subjects that will comprise the active component of the
abstract system. The discretionary enforcement mechanism may be
viewed as restricting those subjects that can be activated by a
user, to those the user is authorized to activate by Rule E2 and
others

.

An ordinary TP subject is a subject, executing a TP (say,
TPi) on behalf of some user authorized to execute a TP against
some particular set of GDIs. The authorized set, of course, must
be a subset of the GDIs that the TP is certified to manipulate
properly. In order to read the required GDIs and to read (and
execute) the TP, its readclass must include:

{t, c, TPi, GDIa, GDIb, . . .).

In order to modify the required list of GDIs, its writeclass
must include:

[t, c, GDIa, GDIb, . . .].

Putting this together:

Ordinary TP subject:
reads: GDIa, GDIb, . . .

GDIb . . .

writes: GDIa, GDIb, ...
executes: TPi
subject writeclass:

[t, c, GDIa, GDIb, . . .]{}
subject readclass:

[]{t, c, TPi, GDIa, GDIb, . . .}.

We can now verify that the execution of this subject is
correctly and completely constrained to what we want:

1. It can execute only TPi. It can read (and therefore)
execute TPi under the basic non-discretionary policy
because its readclass dominates the class of TPI. It can
execute TPi under program integrity because its writeclass
has less integrity than TPi. Because its writeclass
includes [t] , it can execute, by program integrity, only
TPs. Because only {TPi} is included in its readclass, it
can read (and execute) only one TP, namely TPi. It follows
that the subject can execute TPi, and only TPi.

2. It can read any GDI included in its readclass, and no
others. (It cannot read any others, GDIx for instance,
because their disclosure categories are not in its
readclass)

.

A-9-13

3. It can write any CDI included in its writeclass, and no
others. (In confirming that it can write CDIa, for
instance, the reader must remember that integrity dominance
is inverted: the writeclass of the subject has a superset
of the required integrity categories, and therefore, is
dominated by the class of CDIa, because it has greater
integrity)

.

4. It cannot read, write, or execute any UDI . (To read a
UDI, it would need disclosure category {u} in its readclass,
which it does not have. To execute a UDI, it must be able
to read it. To write a UDI it would have to have [u]
integrity.)

5. It can read, but not modify, any information in TPi,
and can neither read nor write any other TP. It cannot
modify any TP because no integrity category of the form
[TPn] occurs in its writeclass. It can read TPi, but no
other TP, because only (TPi) occurs in its readclass.

We must hasten to note that all TP subjects are trusted.
This is probably the most disconcerting notion advanced in this
paper, so it is important to understand why an appropriate basis
for trust exists. The TP subject is trusted with regard to both
integrity and disclosure, within the limits established by its
readclass and writeclass. It is not trusted to write any but
its assigned GDIs, or to read any but its assigned GDIs and TP.
In particular, even though the TP program might be capable (as
indicated by its access class) of reading or writing other GDIs
not authorized to this subject, there is high assurance that for
this subject, it cannot do so. To establish an adequate basis
for the required trust, all that remains to be shown is that the
TP program manipulates the GDIs in a way consistent with whatever
it means for the GDIs to be collectively "correct": this,
however, is defined by the certifier of the TP and, by
assumption, the TP has been certified to be correct. We
conclude that an adequate basis exists for trusting this subject.

Arguing in the same sort of way, we arrive at appropriate
readclasses and writeclasses for special TP subjects (those
executing TPs certified under rule G5 to manipulate UDIs as well
as GDIs:

Special TP subject
reads

:

executes

:

writes

:

writeclass

:

readclass

:

UDIs, GDIa,
TPj
UDIs, GDIa,
[t, c, u, GDIa, . .

{TPk, t, c, u, GDIa, . }

The analysis of what this subject can do is similar to that of an
ordinary TP subject.

A-9-14

Creation and Certification of TPs

We may also appropriately discuss at this point the
installation of new TPs. Creation of a new TP is viewed as
having three phases, with certain requirements involving
separation of duties:

1. A programmer creates a UDI . We assume that it is
undesirable for programmers to be able to even view GDIs,
so that the creation of a malicious program tailored to
manipulate selected CDIs would generally require collusion
with a TP user.

2. A certifier selects the UDI and copies it to a
certification workspace. It is required that the ability
to copy UDIs, or modify candidate TPs in this workspace be
confined to certifiers, and involve evaluated TCB code.
(Generally, certifiers are allowed only to cause the
copying of a UDI and the use of tools that assist in the
certification process. They must not be able to either
create new UDIs, or modify candidate TPs, or view or modify
CDIs)

.

3. Once a candidate UDI in the certification workspace has
been certified, certifiers must be able to install the
candidate TP by copying it into a repository with the
appropriate access class, as specified earlier. Note that
because the Clark/Wilson "relations" are encoded in the
access class of an installed TP, Rule E4 specifically
precludes certifiers from being able to execute TPs, once
installed.

It is convenient to take, as the access class for objects
in the read-only certification workspace [cert, certl] {cert}

.

We also provide for a certifiers read-write workspace of access
class [cert] { cert)

.

A programmers' subject is untrusted, and has readclass and
writeclass of [u]{u}. It is assumed that a suite of programming
tool, sample databases, productivity tools, and so on exists,
all with access class [u]{u}. These are the only objects that
can be read from or written to by a programmers' subject, as all
other objects have additional disclosure and integrity
categories

.

programmers ' subj ect

:

reads: UDIs
executes: UDIs
writes: UDIs
readclass: [u]{u}
writeclass: [u]{u}

A-9-15

A special subject can be activated by a certifier to
transfer a candidate TP from the programmers' workspace to the
certifiers' read-only workspace (integrity [cert, certl]). It is
assumed that there is a TCB trusted subject providing this
service to appropriately cleared personnel (certifiers) with the
following access classes:

subject to stage candidate TP:
reads: UDIs
writes: candidate TP with class [cert, certl] {cert}
executes: TCB program with class [cert, certl] {cert}
readclass: []{u, cert, certl}
writeclass: [cert, certl] {}

The subject is trusted to correctly copy the UDI designated
by its user (a certifier) into the certifiers read-only
workspace. This is logically an integrity upgrade operation.

A certifiers' subject is allowed to read candidate TPs in
the workspace, but not modify them. It uses read-only tools
with integrity [cert, certl], and a scratch workspace of
integrity [cert] so that intermediate results cannot be mixed
with the read-only candidate TPs. It is untrusted.

certifiers' subject:
reads: candidate TP with class [cert, certl] {cert}

scratch data with class [cert] {cert}
writes : [cert] { cert

}

executes: Certifiers tools with class
[cert, certl] {cert}

readclass: [cert] {cert}
writeclass: [cert] {cert}

A TP installation subject is used by a certifier to move
(copy and delete) a candidate TP from the certification read-only
workspace to the designated TP repository. By designating the
particular access class for the finished TP, the certifier in
effect is specifying the Clark/Wilson relation for the TP
mentioned in Rule C2

.

subject to install TP:
reads: [cert, certl, t, c, all TPs, all CDIs]

{cert, t, c, all TPs}
writes: [cert, certl, t, c, all TPs, all CDIs]

{cert, t, c, all TPs}
executes: TCB program with class

[cert , certl] { cert

}

readclass: []{cert, t, c, all TPs}
writeclass: [cert, certl, t, c, all CDIs, all TPs]

This subject is highly trusted, as it must be able to move
the TP into a repository labeled with any combination of CDI

A-9-16

integrity categories (as designated by the certifier) , remove
the TP from the read-only workspace. However, the program
executed has integrity [certl] and cannot be modified by either
programmers, TP users, or certifiers.

Assignment of Clearances to Personnel

Having discussed the assignment of access classes to both
subjects and objects, it is time to discuss the assignment of
clearances to users. A clearance relates each Userld known to
the system to the maximal sets of integrity and disclosure
categories the user needs, and is trusted, to modify and/or view.

We will consider three general classes of users:

Ordinary TP users are allowed to observe and modify GDIs
using TPs. Typically, the collection of GDIs the user is
cleared to manipulate is smaller than that for the TPs for
which the user is authorized. TP users will not be allowed
to modify UDIs, although they may view UDIs (e.g., using
special TPs) . They also may not modify TPs or access the
certifiers' workspace in any way.

An ordinary TP user has the following clearances:

integrity: [c, list of GDIs]
disclosure: {t, c, u (optional) , list of GDIs)

It is easy to check that these clearances allow the user
to activate a TP subject, given that the subject's GDis are
consistent with those for which the user is cleared and that the
user is cleared to read (and thus execute) the TP. It is also
apparent that a TP user cannot activate a programmers subject or
any of the certifiers subjects, as the requisite clearances are
missing.

A programmer is allowed to create, view, and modify UDIs
but nothing else. This corresponds to the following clearance:

integrity: [u]
disclosure: {u}

A check shows that a programmer will not be able to activate
a TP subject or any certifiers subject based on clearance alone.

A certifier is allowed to activate any of the certifiers
subjects, but may never view or modify a GDI. The appropriate
clearances are:

integrity: [cert, certl, t, c, all TPs, all GDIs]
disclosure: {cert, t, c}

A-9-17

Of some interest is the fact that a certifier could (in
theory) modify a GDI, but can never read one, as the certifier
does not possess a disclosure clearance for any GDI. This is
semantically consistent: a certifier could (equivalently)
certify a GDI that erases or inserts junk data into a GDI, but
is unable to execute a TP that can read a GDI, and so modify it
in an orderly way.

It is easy to imagine a tool in the TGB module providing
the interface for the security officer, that would restrict the
set of "grantable" clearances to those defined above and ensure
that the list of GDIs in a TP user's clearance were consistent
with the GDIs contained in the TPs access class. Such a module
would also easily enforce separation of duties between
certifiers, TP users, and programmers.

Rule E2

Use of the clearances above are insufficient to achieve
the functionality implied by Glark and Wilson's Rule E2 . This
Rule mandates that the TGB maintain a list of triples of the form

(Userld, TPi, (GDIa, GDIb, . . .))

The intended meaning of each triple is that the particular
user is authorized to execute TPi against the listed GDIs. If
TP subjects were activated freely on behalf of users constrained
only by the clearances, the user might be allowed to execute a
given TP against GDIs included in the user's clearance because
the user was authorized to perform a different transaction
against them. When presenting the paper, Glark made a strong
representation that the finer granularity of control is required:
one ought to be able to authorize a user to execute TPI against
GDIl, and TP2 against GDI2, without authorizing TPI against
GDI2 as a result. However, the clearances specified above are
not capable of providing this granularity of control.

The enforcement can be achieved by maintaining, within the
TGB, the list of triples defined in Rule E2 as a protected
database. During the logon procedure, the user, after being
identified and authenticated, causes activation of a subject (or
subjects) that execute on the user's behalf. At this time, the
list of triples would be checked: only if the user had requested
a subject consistent with a triple appearing in the database
would the requested subject be activated. It is assumed that a
trusted interface is provided (available only to those
individuals authorized to maintain the triples database) for its
maintenance. Glark and Wilson imply that it is a certification
function to update it, although there is no reason this must be
so, as long as the TGB clearance function ensures that the
individuals authorized to maintain the triples do not have a TP
user clearance.

A-9-18

Discretionary and Supporting Policy

We may now characterize the discretionary and supporting
policy components of the Clark/Wilson requirements. The audit
and identification/authentication requirements would seem to be
straightforward, easily met by a conventional TCB. The previous
section regarding maintenance and application of the Rule E2
"triples" have been characterized as intrinsically discretionary
in nature. By this is meant "not non-discretionary": that is,
the policy enforced is local and dynamic in nature, not
reflecting global and persistant constraints on information flow.
The term "discretionary" should not be equated with "enforced
weakly" or "at the (complete) discretion of the user": it seems
clear that the abstract design above enforces rule E2 with all of
the force and assurance desired by Clark and Wilson. What has
been changed from many discretionary systems (e.g., MULTICS) is
the policy for control of the discretionary database. MULTICs
has been described as incorporating a "laissez-faire" control
policy: the system desired by Clark/Wilson is more centralized.
The system of triples shares many intrinsic characteristics with
other discretionary systems: in particular, one can (by
examining the list of triples) determine exactly who can execute
which TPs against which GDIs. This knowledge does not allow any
inferences to be made about what a user can really do, as the
effect of executing arbitrary sequences of permitted transactions
is not apparent (nor can it be made apparent in any computable
way — the problem is intrinsic) . This situation can be
fruitfully compared with the non-discretionary policy:
examination of a user's clearance shows exactly which information
can be viewed or modified by that user: moreover, the controls
implied can be bypassed only by use of trusted subjects, which
(by definition, and in the system described) are shown (either by
the evaluator, for TCB subjects, or by the certifier, for TPs) to
preserve the integrity of CDIs. Thus, the global property of the
system is that "CDI integrity is preserved": the discretionary
property that "only authorized TP/CDI sets are executed by a

particular user" is true with just as high a degree of assurance,
but does not contribute to the intrinsic integrity of the CDIs.

Conclusions

The abstract design for a system implementing the
Clark/Wilson requirements has now been presented. Sufficient
detail has been provided so that it can be checked for
consistency and correctness. It seems appropriate to conclude
with some observations:

1. Although, in this case, the design serves as an
"existence proof" that the requirements can be viewed as a

combination of non-discretionary and discretionary policy
components, it should be understood that it was virtually
certain (supposing the requirements to be internally consistent)

A-9-19

that a decomposition into "non-discretionary" and "everything
else" components could be found from the beginning. Denning in
[7] shows how to reduce arbitrary information flow policies to
lattices: "everything else" can always be provided as a
combination of trusted subjects moving information "the wrong
way" in accordance with some specialized disclosure downgrade
and/or integrity upgrade local policy, plus further access
control restrictions (e.g., based on additional object/subject
attributes)

.

2. The primary intent in detailing this design was to
understand how to build a system compliant with the requirements
on an available TCB (GEMSOS) : it is believed that this goal has
been met.

3. A secondary result of the design is that it shows how
to express "strong type enforcement" (for that is, in part, what
the requirements demand) in terms of the well-understood
semantics for conventional non-discretionary policies. The
combination of isolated protection domains with programs
certified to move data correctly from one domain to another,
executable only by trusted subjects, coprresponds , it would
appear, precisely with the notion of "typed domains" and
"assured pipelines" advanced by Boebert and others [8]. This
work may be of help in matching these ideas to currently
established evaluation practique.

4. Another secondary result that might be useful is that
it serves as a non-trivial example of the utilization and
applicability of strict and program integrity, in a context that
helps clarify the semantics implied by these policies.

References

[1] D.D. Clark and D.R. Wilson, A Comparison of Commercial and
Military/Computer Security Policies. In Proc. 1987 Symp. on
Security and Privacy. IEEE, April 1987.

[2] D.E. Bell and L.J. La Padula, Secure Computer Systems:
Unified Exposition and Multics Interpretation.
EDS-TR-75-306, The MITRE Corp., Bedford, MA, March
1976.

[3] K.J. Biba, Integrity Considerations For Secure Computer
Systems. USAF Electronic Systems Division, Bedford, MA,
ESD-TR-76-372 ,

April 1977.

[4] L.J. Shirley and R.R. Schell, Mechanism Sufficiency
Validation by Assignment. In Proc. 1981 Symp. on Security
and Privacy, pages 26-32, IEEE, April 1981.

A-9-20

[5] Department of Defense Trusted Computer Systems Evaluation
Criteria, Dept. of Defense, National Computer Security
Center, Dec. 1985. DOD 5200.28-STD.

[6] J.H. Saltzer and M.R. Schroeder, The Protection of
Information in Computer Systems. In Proc. IEEE 63, 9

(September 1975), pp. 1278-1308.

[7] D.E. Denning, On the Derivation of Lattice Structured
Information Flow Policies. CSD TR 180, Purdue University,
March 1976.

[8] W.E. Boebert and R.Y. Kain, A Practical Alternative to
Hierarchial Integrity Policies. In Proc. 8th National
Computer Security Conference. October 1985.

A-9-21

AlO A PRACTICAL ALTERNATIVE TO HIERARCHICAL INTEGRITY POLICIES

W.E. Boeben*
R.Y. Kain**

*Honeywell Secure Computing Technology Center

Minneapolis, MN

**University of Minnesota (Honeywell Consultant)

Minneapolis, MN

BACKGROUND

The Secure Ada Target

The Secure Ada Target (SAT) project is an effort to develop a machine that meets and exceeds the Al level of the

Department of Defense Trusted Computer System Evaluation Criteria (TCSEC). An overview of the machine is

given in Reference I.

Enhanced Security Policies

The SAT system design meets the Al requirements with respect to the mandatory and discretionary policy

requirements, and it exceeds the Al level by enforcing an enhanced mandatory policy whose aim is to prevent

corruption of sensitive information. Early versions of the machine incorporated a variant of the "u-aditional"

hierarchical integrity policy; detailed analysis showed the inadequacy of this approach, and an alternative based on

types and domains was developed.

PROBLEM STATEMENT

TCSEC Requirements

The TCSEC requires that systems at the B2 level of assurance and above demonstrate conformance to a security

policy. The TCSEC further gives a set of minimum requirements that an acceptable policy must meet. Briefly

stated, these requirements are that information be labelled internally with a security level and that accesses made by
active subjects to information-holding objects be restricted in a manner that prevents information from flowing

down in security level. We shall refer to this policy as the "compromise policy" and the security level used in its

policy decisions as the "compromise level" of objects and subjects.

The TCSEC is silent on the equally important topic of preventing the corruption of sensitive information. A
modular implementation of the TCSEC requirements dictates that it is necessary to impose proven constraints on

information flow other than those imposed by the mandatory policy. This implication arises because the TCSEC
requires that exported information be properly labelled with its compromise level. A modular implementation of

this exportation process would have separate modules for label insertion and device control.

Practical secure systems also require constraints on information flow in order to defend against so-called "virus"

attacks, to demonstrate assured data flow through cryptographic devices, and to enforce sophisticated security

policies whose aim is to prevent aggregation and inference.

1 - This paper appears in the Proceedings of the Eighth National Computer Security
Conference, Sept. 30 - Oct. 3, 1985.

A-10-1

First Efforts

An early response to the problems of information corruption was the development of "Integrity Policies," several

variations of which are described in Reference 2. In effect, these policies add a second attribute to information

(integrity level) and impose access restrictions in order to protect sensitive information from unauthorized

modification.

INTEGRITY POLICIES

Varying Integrity Levels

The policies described in Reference 2 fall into two broad classes. In the fu-st class, the integrity levels associated

with subjects and objects may change. This class includes the Low-Water Mark Policy for Subjects and the Low-
Water Mark Policy for Objects.

In the Low-Water Mark Policy for Subjects, a subject may neither modify objects nor send messages to a subject

whose integrity level is greater than the one the sender currently has. The current integrity level of a subject is

equal to the lowest integrity level of any object to which it has been granted observe access; hence the name "Low-

Water Mark." "Execute" access is treated as a form of observe.

The Low-Water Mark Policy for Objects does not impose any restrictions on the ability of subjects to modify

objects. Instead, the current integrity level of an object is set to the lowest integrity level of any subject that has

been granted "modify" access to that object.

Integrity policies in the above class have seen little, if any, practical use, owing to the difficulties of administrating

them and the pathological states which they allow (such as a subject being denied access to objects it has created).

Fixed Integrity Levels

The second broad class of integrity policies includes the Ring Policy and the Strict Integrity Policy. In these

policies, the integrity levels of both subjects and objects are fixed. Under the Ring Policy, a subject may obtain

"observe" access to any object, but may not modify objects nor communicate with subjects of higher integrity. The
Strict Integrity Policy is the full formal dual of the compromise policy defined in the TCSEC. It consists of a

Simple Integrity Condition, which states that a subject cannot observe objects of lesser integrity; an Integrity

*-Property, which states that a subject cannot modify objects of higher integrity; and an Invocation Property, which

states that a subject may only send messages to subjects of higher integrity.

This second class of integrity policies has fewer intrinsic difficulties than the first, and variants have been

implemented in reference monitors.

General Principles

Both classes of integrity policies represent varying interpretations of the same general principle: information should

only flow "down" in integrity. In order to avoid excessive detail, we will offer our critique of, and alternative to,

the general class of policies that adhere to this principle. We will call such policies "hierarchical integrity policies."

This class includes all policies which assign an attribute called "integrity level" to information and which then

impose rules to prevent (to one degree of assurance or another) information at high integrity levels from being

corrupted by information of low integrity.

Integrity and Compromise

It is templing to view hierarchical integrity policies as duals or complements of the compromise policy mandated by
the TCSEC. While such a relationship can be shown to exist formally (especially in the case of the Strict Integrity

Policy), the relationship does not exist in the broader sense of intent and application.

A-10-2

In particular, the nature of a compromise policy is that controls are imposed on programs based upon the context in

which they execute, and not upon the degree of trust placed in the programs themselves. In particular, a

compromise policy such as that mandated by the TCSEC can be shown to prevent the compromise of information

even if the programs being executed are hostile in their intent.

Such immunity from hostile programs cannot be obtained by using integrity policies. If there were a hostile

program in the system, it could simply wait until it was executing in the context of a high-integrity subject and then

work its damage on high-integrity information. Under the Low-Water Mark Policies and the Strict Integrity Policy,

this danger is prevented by assigning integrity levels to programs and equating "observe" and "exexute" access. In

these policies, a high-integrity subject is therefore bound to executing high-integrity programs. In the Ring Policy,

no such restriction exists, and the policy is trivially subvertible by Trojan Horse techniques.

From the above it can be seen that there is an essential difference between compromise and integrity: compromise
level is more naturally bound to subjects and integrity level is more naturally bound to programs. Attempts to bind

integrity level to subjects, as is done in the above policies, should lead to difficulties in application. We will show
that such difficulties do in fact exist; they manifest themselves as an excessive need for the concept called "trust."

Trust

A "trusted subject" is one which is privileged to selectively violate the letter of a particular policy. The programs

executed by the subject must be verified to ensure that the exception does not violate the intent of the policy. This

in turn requires that the intent of the policy be explicitly stated; this is often no easy matter.

In the case .of compromise policies, trusted subjects are those which are permitted to "write down," that is, to cause

information to flow downward in compromise level. In the case of such subjects, the adherence to the "higher"

policy is demonstrated by showing that the subject moves a trivial amount of information, that the movement of

information is audited so that abuses can be detected, and/or that the movement takes place at the instigation of an

authorized user (a so-called "downgrader").

If we follow the pattern of viewing integrity policies as the formal duals of compromise, then "integrity trust" is the

privilege of "writing up" in integrity. As with compromise, we associate trust with "modify" access in order to

simplify the discussion.

The attribute of trust, in the policies under discussion, is bound to subjects and not to programs. It is therefore

necessary to prove that trust can never be abused; that is, that no hostile program can ever be executed within the

context of a trusted subject. This in turn requires verification of usually complex low-level mechanisms that bind

programs to subjects.

It is also necessary to state the intent of the policy being enforced and to formulate a subject-local property which

captures that intent It is then necessary to verify that the property is exhibited by all programs that could be

executed in the context of the trusted subject. The use of trust therefore greatly complicates the proof process and

reduces the degree of assurance in the system. It is accordingly a goal of the SAT effort to reduce the use of trust as

much as possible, and it was this goal that led us to question and finally discard the notion of a hierarchical integrity

policy.

CRITIQUE

Assured Pipelines

In this section we will present a critique of hierarchical integrity policies. We will consider the shortcomings of

such policies in the context of what we call an "assured pipeline;" a subsystem that is security-relevant and that

must be encountered by data flowing from a particular source to a particular destination. Examples of assured

pipelines are labellers and cryptographic subsystems. In Reference 3 we give an example of a similar subsystem

that does not transform data, but instead selectively audits requests made to the reference monitor.

A-10-3

Generic Rssured Pipeline

A labcller is a verified subsystem that converts the security level of an object from internal form to external form

prior to the export of that object The most common instance of a labcller is one that prints the classification level

of a single-level object at the top and bottom of the pages when that object is output to a hard-copy device. A
cryptographic subsystem encodes data in such a way that it may be safely downgraded and transmitted over an

insecure communications path without effectively declassifying the information contained within that data.

A- 10-4

From the above discussion, it can be seen that assured pipelines represent the most basic kind of structure that one

would wish to construct and prove secure in a Trusted Computing Base.

Security of Assured Pipelines

To prove that an assured pipeline is secure requires the demonstration of three properties:

1. The transforming subsystem cannot be bypassed. That is, no hard copy can be printed without labels, and

no information can go out on the insecure path in unencrypted form.

2. The transforms cannot be undone or modified once done. Data cannot be intercepted between labelling

and printing and have the labels removed; data cannot be intercepted between encryption and transmission

and have unencrypted information inserted.

3. The transforms must be correct. The labeller must insert external labels that are the proper representation

of the internal label of the object; the cryptographic subsystem must properly implement the desired

cryptographic algorithm.

The last property is the only property amenable to program proof techniques; the first two properties must be

demonstrated by recourse to some global attribute of the underlying system. We will now show that enforcement of

a hierarchical integrity policy is a poor candidate for such an attribute.

Integrity and Assured Pipelines

For simplicity, we shall use the labeller for hard-copy output in our discussion. Other labcllcrs and cryptographic

subsystems pose the same problems for hierarchical integrity policies; only the terminology used in the example

wiU change.

There are two object types and two modules in this example of an assured pipeline. The object types are unlabellcd

and labelled data; the modules are the labeller and the output subsystem. Unlabelled data docs not include the

A-10-5

:

il

printable classification levels at the top and bottom of pages; labelled data does. The labeller determines the

security level of the object from its internal label, locates page boundaries, and inserts the proper label text. The
output module is a device driver that causes the labelled data to appear on some appropriate hard-copy device.

The local security properties that must be proven of each of the modules are that the labeller selects the proper

printable label and puts it in the proper place, and that the output module moves data to hard copy without

modification to the label text.

The global security properties that must be proven of the pipeline are

1 . Only the labeller module produces labelled data.

2. Labelled data cannot be modified.

3. The output module will accept only labelled data.

We will now show that attempts to enforce these properties using a hierarchical integrity policy will inevitably

involve the use of "trust" somewhere in the pipeline. Note that all information is at the same compromise level, so

that the mandatory security policy imposed by the TCSEC is trivially satisfied.

There are three alternatives to assigning integrity levels in such a pipeline: the integrity levels of all data may be

equal, the integrity levels may increase as data moves toward the output device, and the integrity levels may
decrease as the data moves down the pipeline.

If labelled and unlabelled data are at the same integrity level, then no integrity policy will be able to distinguish

between them. A hostile program will be able to remove or modify labels at will between the labelling and the

output steps, and the output module will not be constrained by integrity level to outputting only labelled data.

If labelled data is at a higher integrity level than unlabelled data (the intuitive case), then trust must be invoked at

each module in the pipeline, as it is clear that in such an arrangement information is flowing "up" in integrity.

"Integritg" Increases Hlong Pipeline

Destination
Sub system

A-10-6

The case where labelled data is at a lower integrity level than unlabelled has the same shortcomings as the equal

integrity level case.

Thus, the application of hierarchical integrity policies to the most basic structure of a secure system either fails to

enforce the desired restrictions or requires an exception from the policy at each step. We argue that this situation

represents an excellent definition of the word "impractical," and offer an alternative that avoids these shortcomings

and confers other benefits as well.

Hssured Pipeline + "Integritg" = "Trust" Required

POLICY ENFORCEMENT IN THE SECURE ADA TARGET

The SAT machine directly implements the reference monitor mandated by the TCSEC. The SAT reference monitor

system checks every individual access attempt for consistency with the security policy being enforced by the

system.

The SAT reference monitor is implemented in hardware and resides between the processor, which generates

memory access requests, and the memory system, which satisfies these requests. The reference monitor intercepts

illegal access attempts; an interrupt is caused when an illegal access is detected. For "normal" checking, the system

aborts the offending subject, thereby guaranteeing that no illegal accesses can be completed and further that the

program cannot obtain much information regarding the security state of the system by repeated attempts to make
illegal accesses. (Otherwise, the system's security state might be used to construct a covert channel between two

subjects.)

The SAT reference monitor is implemented by a combination of a memory management unit (MMU), which has

conventional rights checking facilities, and a lagged object processor (TOP), a new module responsible for the

system's protection state and the enforcement of that state. In particular, the TOP sets up the tables that define the

access rights checked by the MMU. For system integrity, it is also necessary that the TOP be responsible for

resource management and for the integrity of the internal state of the reference monitor. One important part of this

state is the global object table (GOT), which contains a description of the security attributes of all objects within the

system. In general, all elements of the system, including users, security properties, code, and data, are objects

described within the GOT and managed by the TOP.

A- 10-7

Of major concern are the security attributes of objects and their use in determining the access rights to be placed

within the MMU during program execution. The basic SAT design starts with a minimum set of security attributes

sufficient to satisfy both the mandatory and discretionary security poHcy requirements, which require comparisons

between attributes of the subject in whose context a program is executing and attributes of the object to be accessed

by that program. Thus security attributes are associated with both subjects and objects, and the TOP must make
appropriate comparisons to estabhsh proper access rights in the MMU.

Three security attributes are associated with subjects and three different attributes are associated with objects. Both

subjects and objects have security (compromise) levels. Each subject is performing its function for some "user,"

whose identity is the second subject seciu"ity attribute. The corresponding object attribute is its access control list

(acl), which lists those users who are allowed access to the object's contents, along with the maximum access rights

that each designated user is permitted. The third subject security attribute is the "domain" of its execution, which is

an encoding of the subsystem of which the program is currently a part. The corresponding object security attribute

is the "type" of the object, which is an encoding of the format of the information contained within the object.

Pipeline as Tgpes Recessed bg Domains

Unueriried

Subsystem

UJrite Recess

Read Recess

Read Recess

ID rite Access
^" IfiTGiiiQliBjrai)

Read Recess

Desti nation

Si|^ s y s t e m

The process of determining the access rights to be accorded a particular subject for access to a particular object uses

all of these three security attributes, as follows.

1. To enforce the mandatory access policy, the TOP compares security levels of the subject and of the object,

and computes an initial set of access rights according to the algorithm defined in Section 4.1.1.4 of the

TCSEC.

2. To enforce the discretionary access policy, the TOP checks the acl for the object; the acl entry that matches
the user portion of the subject's context is compared against the initial set of access rights from the

mandatory policy computation. Any access right in the initial set that does not appear in the acl is deleted

from the set. The result is an intermediate set of access rights.

3. The third SAT access rights determination check compares the subject's domain against the object's type.

Each domain is itself an object, and one of its attributes is a list of ihe object types accessible from the

domain and the maximum access rights permitted from the domain to each type.

A-10-8

Labellsr in Terms of Tgpes and Domains

User

Programs

lUrlte Recess

Read Recess

Read Recess

lUrlte Recess

Iflead Access

Output
Drill er Urn

i n

Conceptually the aggregation of these domain definition lists constitutes a table, which we call the Domain
Definition Table (DDT). To make the domain-type check, the TOP consults the DDT row for the executing

domain, finds the column for the object's type, and compares the resultant entry against the intermediate set of

access rights. Any right in the intermediate set that does not appear in the DDT entry is dropped, and the result is

the final set of access rights that is transmitted to the MMU.

Tgpe/Domain Relations Form a matrix

Domain

i

Type-

Domain Definition Table (DOT)

A-10-

9

Becuritg Policg Includes Tgpe Enforcement

(Certain domains have additional, privileged roles and may therefore obtain access rights in excess of those

determined from the mandatory and discretionary checks. A discussion of this mechanism is beyond the scope of

this paper.)

The above complex process cannot be performed on every access attempt. On the other hand, the checks cannot be

made far in advance and saved (in a "capability," for instance), as such early binding cannot provide the access right

revocation implicit in certain acl changes.

In SAT, the TOP operation load name space table (LNST) evokes the access rights check; it inserts access to a

designated object at a designated segment number in a subject's address space, and establishes the correct maximum
access rights for that subject to that object The mandatory, discretionary, and domain rights checks are performed

during the execution of LNST, and then the subject's MMU table is modified to reflect the new entry. If the LNST
operation is proved to conform to the security policy and if the MMU is proved to enforce the access rights set in

the NST, the system is thereby proved to conform to the security policy for each and every instruction execution.

Domain changing may occur as a side effect of procedure call. If the called procedure is not executable within the

caller's domain, either the call is illegal or a domain change is necessary to complete the call. Information

concerning domain changes is stored in a Domain Transition Table (DTT), which is stored as a set of lists

associated with the calling domain. The SAT system creates new subjects to handle domain changes, as required.

When a call requires a domain change, SAT suspends the calling subject and activates the called subject. The
called subject has a different execution context, name space, and access rights, which will prevail for the duration of

the procedure's execution.

In the SAT prototype, the DDT and DTT are set at the time that a particular version of the reference monitor is

installed. The number of types and domains, and the relationship between them, accordingly remains static until a

newer version of the reference monitor is installed. Later versions of SAT will include facilities for the dynamic
creation of types and domains.

Note that the access right computation involves the successive denial, or "crossing off of those access rights

initially allowed by the mandatory policy. This approach guarantees that omission of an access right in a DDT'

A- 10-10

entry for a type, domain pair will effectively block access to that type by any program encapsulated in that domain.

This guarantee is verifiable by inspection of the DDT and provides assurance that certain types remain "private" to

certain domains. Note also that it is possible to assign types to procedure objects and place restrictions on "execute"

access in the DDT. This last feature permits assurance that critical code is indeed encapsulated in protected

domains. In effect, the DDT reflects, and gives assurance in, the structure of the reference monitor. This in turn

permits a strong correspondence to exist between the organization of the design and the organization of the proof.

USES OF TYPE ENFORCEMENT

Implementing Integrity Policies

We would like to begin by observing that our type enforcement policy subsumes the second class of hierarchical

integrity policies, that is, those in which an unchanged integrity level is bound to subjects and objects.

In order to implement a hierarchical integrity policy in SAT, it is necessary to first assign types to procedures based

on their integrity level. The set of procedures possessing a given type is isolated into a distinct domain, which is the

only domain from which these procedures may be executed.

Data objects are then assigned a distinct set of types, also based on integrity level. It is then trivial to devise a DDT
configuration that implements the restrictions of the Ring Policy or the Strict Integrity Policy.

For example, let us assume that we have three integrity levels: 1,2, and 3. We would then have three types of

procedures: PI, P2, and P3 (with the corresponding domains), and three types of objects: 01,02, and 03. It is

also necessary to have a "gatekeeper" domain, P4, for use when integrity level changes are required.

In order to implement the Strict Integrity Policy, we need only construct a DDT configuration as follows.

Object Type: 01 02 03

Domain PI: o/m o 0

Domain P2: m o/m 0

Domain P3: m m o/m

Domain P4: nuU null nuU

(o = observe; m = modify)

And the following DTT configuration:

Called Domain: PI

Domain PI

Domain P2

Domain P3

Domain P4

e

null

null

cPl

P2

e

e

null

cP2

P3

e

e

e

cP2

P4

cP4

cP4

cP4

e

(e = execute and stay in current domain; cDestination = change to domain Destination.)

A-10-11

Tables for the Ring Policy may be similarly constructed. Note that a binding which is stated in the policy as

existing between integrity levels and subjects is here mapped onto a binding between, in effect, integrity levels and

procedures. This mapping is possible because the policy treats execute and observe access the same, thereby

establishing a relationship between the integrity level of the subject and the integrity level of the procedure

executing in the context of that subject.

The above argument shows that any set of restrictions enforceable by the second class of integrity policies is

enforceable by the type enforcement p)oIicy. The first class of integrity policies, in which integrity levels of subjects

or objects change, may be dismissed as impractical from the point of view of performance and proof.

Having argued that type enforcement can deal with any case that a hierarchical integrity policy can deal with, we
proceed to the more interesting cases in which hierarchical integrity poUcies must appeal to "trust" in order to

accommodate practical processing requirements.

Assured Pipelines

We will now show that the assured pipeline structure can be readily accommodated by the type enforcement policy.

We will show DDT and DTT configurations based on the following types and domains:

• Types: unlabelled and labelled data

Domains: user, labeller, and output

Unlabelled data is data that has only internal labels associated with it. Labelled data is data that is properly marked

on the top and bottom of each page for output.

Unverified and possibly hostile programs are encapsulated in the User domain. The labeller module described in

the previous section on assured pipelines is encapsulated in the Labeller domain and is verified to properly translate

internal labels to readable form and place them in the correct positions in the data The output module of the

previous assured pipeline description is encapsulated in the Output domain and is verified to not tamper with labels.

None of the domains in the example invoke any form of privilege.

The DDT that enforces the pipeline is as follows:

Object Type: Unlabelled Labelled

User Domain: o/m

Labeller Domain: o

Output Domain: null

(o = observe; m = modify)

And the corresponding DTT is:

null

o/m

o

Called Domain: User

User Domain: e

Labeller Domain: null

Output Domain: null

Labeller

cLabcller

e

null

Output

null

cOutput

e

(e = execute and stay in same domain; cDcstination = change to domain Destination.)

A-10-12

Note that not only does the DDT restrict the data flow, but the DTT restricts the control flow in such a manner that

the pipeline must be initiated by (possibly hostile) user code in a proper manner; the Output domain is not callable

from the User domain.

TYPE ENFORCEMENT AND PROOF

Factored Proofs

Assurance, in the final analysis, is based on human confidence; and confidence comes from insight and

understanding. It has accordingly been a goal of the SAT project that its proofs of security be accessible to human
analysis, understanding, and criticism.

This goal has led us to avoid the machine-generated proofs of previous efforts in favor of proofs that have an

informally understandable underlying structure; formalism is used to permit machine-checking of our results and

not as an end in itself.

We use the traditional structure of a "factored" proof; that is, an argument based on an orderly presentation of

lemmas. The proof has two purposes. The secondary purpose is to convince a skeptical observer that our system is

secure; the primary purpose is to give that observer insight into the precise meaning we give to the word "secure."

In order to achieve this goal we must present a proof whose organization corresponds in a fairly obvious way with

the organization of the system, so that for every conclusion we draw along the way there is a clearly identified

system feature which supports that conclusion. In the next section we shall outline such a proof of our example

labeller pipeline.

A-10-13

A Factored Proof of a Labeller

The fact that a labeller is "secure" can be captured in three theorems:

Theorem 1: Only labelled information is output to hard copy.

Theorem 2: Labels are properly inserted prior to output of labelled information.

Theorem 3: Labels are not modified prior to output of labelled information.

Labeller Proof Has Three Theorems

Theorem I: U n b y p a s s a b I e

We now present the lemmas used in our proof, and the manner in which each lemma would itself be proven.

Lemma 1: The SAT hardware properly enforces a given DDT and DTT configuration. This lemma is proven

as part of the overall proof of the security of the SAT reference monitor, and is accordingly "built in" to the

SAT hardware.

Lemma 2: Only the Labeller module can write to Labelled data. This lemma is proven by inspection of the

DDT configuration given in the example in the previous section.

Lemma 3: The Output module will read nothing but Labelled data. Again, this is proven by inspection of the

same DDT configuration.

Lemma 4: The Labeller module properly translates internal labels to external form, and inserts them at the top

and bottom of each page. This lemma is proven by applying standard program proof techniques to the labeller

program. The proof involves demonstrating the truth of two relatively weak assertions: that the Labeller

performs a table look-up properly and that it can find the top and bottom of a page of hard copy.

Lemma 5: The Output module does not tamper with labels. As a practical matter, this lemma will be proyen
using informal methods. This is because Output modules are typically complex and machine-dependent. It is

A- 10-14

accordingly difficult to capture their operation in the semantics of formal program-proof systems. Modules of

this type are amenable to inspection and comprehensive testing, especially when it is known (as in this case)

that their inputs come only from formally verified code and therefore form a tractable set of test cases.

We now note the correspondence between this set of lemmas and the organization of the SAT reference monitor.

Lemma 1 is a "hardware level" lemma, a global property that applies to all programs which execute on the SAT
hardware, irrespective of their context or construction. Lemmas 2 and 3 are "structural" or "programming in-ihe-

large" lemmas, properties which reflect the modular decomposition of the SAT reference monitor but which are not

concerned with the internals of the modules themselves. Lemmas 4 and 5 are "programming in-the-small" lemmas,

conclusions drawn about the of)eration of the modules that are independent of their context in the system. Thus we
argue that there is a clear intuitive correspondence between elements of the system and elements of the proof.

Previous efforts to prove the security of labellers have generally been restricted to Lemma 4 and occasionally

Lemma 5. That is, the proof has demonstrated that if the Labeller is invoked, then it properly labels; the proof does

not demonstrate that the Labeller must always be invoked. In logical terms, the proof fails because a necessary but

not a sufficient condition has been demonstrated; in design terms, the proof fails because the correcmess of a

module's internals has been shown, but the correctness of the structure of the system has not. This situation is

analogous to proclaiming a system correct when its modules have all passed unit test, but integration testing has not

yet been performed.

Given the above lemmas, the proof of each theorem is as follows:

Theorem 1 (Only labelled data goes out): Lemma 1 (DDT enforced) and Lemma 2 (only Labeller writes

Labelled) and Lemma 3 (Output only outputs Labelled).

Theorem 1: The Labeller Cannot be Bgpassed

Unbypassable: Output Driuer

Cannot Read Ram Data

Theorem 2 (Labelled data is correct): Lemma 1 (DDT enforced) and Lemma 2 (only Labeller writes Labelled)

and Lemma 4 (Labeller labels properly).

Theorem 3 (Labelled data is tamperprooQ: Lemma 1 (DDT enforced) and Lemma 2 (only Labeller writes

Labelled) and Lemma 5 (Output module is benign).

A-10-15

A- 10-16

Theorem 3: Labeller is Correct

Labeller Program
Implements Its

SpeciricQtlon

A-lO-17

Theorem 3 is Based on Three Lemmas

Lemma 3.3: Labeller

Formats Properly

Lemma 3.1: DDT

Enforced User Read/lUrlte Null

D r j u e r Null Read

SUMMARY

Hierarchical integrity policies have been shown to be inadequate to enforce the restrictions on information flow

required by practical systems. An alternative policy based on types and domains has been presented that has been

shown to subsume both the practical variations of hierarchical integrity policies and cases which such policies

cannot handle without recourse to exceptions. The alternative is also shown to support proofs whose structure

corresponds in obvious ways to the structiu-e of the system being reasoned about.

ACKNOWLEDGMENTS

This effort has been supportexl by US Government Contracts MDA904-82-C-0444 and MDA904-84-C-601 1.

REFERENCES

1. W.E. Boebert, R.Y. Kain, W.D. Young, and S.A. Hansohn, "Secure Ada Target: Issues, System Design, and

Verification," Symposium on Security and Privacy, IEEE, 1985, 176-183.

2. K.J. Biba, "Integrity Considerations for Secure Computer Systems," The MITRE Corporation, Bedford MA,
MTR-3153,30 June 1975.

3. W.E. Boebert and C.T. Ferguson, "A Partial Solution to the Discretionary Trojan Horse Problem," Proceedings

of the 8th National Computer Security Conference.

FURTHER REFERENCES (appeared after initial publication)

O.S. Saydjari, J.M. Beckman, and J.R. Leaman, "Locking Computers Securely," Proceedings of the 10th National
Computer Security Conference, NBS, 1987.

W.D. Young, P.A. Telega, W.E. Boebert, and R.Y. Kain, "A Verified Labeller for the Secure Ada Target,"
Proceedings of the 9th National Computer Security Conference. NBS, 1986.

A-10-18

All Documents Available
from the

Workshop on Integrity Policy in Computer Information Systems
(WIPCIS)

Please circle the number of those items you wish to receive
in the following list, and return a copy of it to Stephanie Sara-
Pfeiffer, SRI International, Menlo Park, CA 94025.

1. A Comparison of Commercial and Military Computer Security
Policies. David R. Clark and David R. Wilson. IEEE
Computer Security Conference, 1987.

2 . Non-Discretionarv Controls for Commercial Applications .

Steven B. Lipner, Digital Equipment Corp.

3. Letter criticizing the Clark-Wilson Model from Robert H.
Courtney, Jr., to Dr. Stuart W. Katzke. May 21, 1987.
[Attachment 2]

4 . Using Mandatory Intecfritv to Enforce "Commercial" Security .

(Draft) T.M.P. Lee, Trusted Information Systems, Inc.
October 26, 1987.

5. Lockincf Computers Securely . O. Tami Saydjari, Joseph M.
Beckman, Jeffrey R. Lesman. NCSC.

6. A Practical Alternative to Hierarchical Integrity Policies .

W.E. Boebert. Proceedings of the Eighth National Computer
Security Conference, 9/30/85.

7. LOCK Implementation of the Clark-Wilson Rules . W.E.
Boebert. WIPCIS. 10/27/87.

8. Data Integrity in a Business Data Processing System . W.H.
Murray. 10/24/87.

9. Position Paper for Working Group on Granularity . W.H.
Murray. WIPCIS. 10/27/87.

10. Outline for the Verification Working Group . W.E. Boebert.
WIPCIS. 10/27/87.

11. Agreement with the External Environment . David R. Wilson.
WIPCIS. 10/27/87.

12. Availability Issues. Final Report . Peter Wild. WIPCIS.
10/29/87

.

13 . Working Group on Granularity and Functions. Final Report .

WIPCIS. 10/29/87.

14 . Proposal to Extend the Scope of the Clark-Wilson Model to
Include Availability . Donn B. Parker. WIPCIS. 10/29/87.

15. Clark and Wilson Commercial Integrity Model Slides. Donn B.
Parker. SRI International.

16. List of Invitees to IEEE/ACM Invitational Workshop on
Trusted Commercial Systems Criteria.

17. Participant Listing. WIPCIS. 10/29/87.

18. Framework for Secure Open Systems . Second Draft. European
Computer Manufacturers Association. 8/87.

A-11-2

NBS-114A (REV. 2.BC)

U.S. DEPT. OF COMM.

DIDLIUunHi mo Unin
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NIST/SP-500/160

2. Performing Organ. Report No. 3. Publication Date

January 1989

4. TITLE AND SUBTITLE

Report of the Invitational Workshop on Integrity Policy
in Computer Information Systems (WIPCIS)

5. AUTHOR(S)

Dr. Stuart Katzke and Zella Ruthberg, Editors

6. PERFORMING ORGANIZATION (If joint or other than NBS. see instructions)

NATIONAL INSTITin^ OF STANDARDS AND TECHNOLOGY
(formerly NATIONAL BUREAU OF STANDARDS)
U.S. DEPARTMENT OF COMMERCE
QArTHERSBURQ. MD 20899

7. Contract/Grant No.

8. Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)

ACM/Special Interest Group on Security, Audit and Control
IEEE/Computer Society, Technical Committee on Security and Privacy
National Computer Security Center

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 88-600606

I I

Document describes a computer program; SF-185, FlPS Software Summary, Is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant

bibliography or literature survey, mention it here)

This is the Report of the Invitational Workshop on
Integrity Policy in Computer Information Systems which was
sponsored by the IEEE Computer Society's Technical Committee on
Security and Privacy, the Special Interest Group on Security,
Audit, and Control (SIGSAC) of the Association for Computing
Machinery, the National Computer Security Center, and the
Institute for Computer Sciences and Technology at the National
Bureau of Standards. The workshop established a foundation for
further progress in defining a model for information integrity.
The workshop was held in response to the paper by David Clark of
M.I.T. and David Wilson of Ernst and Whinney entitled "A
Comparison of Military and Commercial Data Security Policy." The
report's 10 sections contain an introduction, the composition of
the organizing committee with a list of participants and a
workshop agenda, a summary report by Donn Parker and Peter
Neumann of SRI International, the reports of the five working
groups, a response by Clark and Wilson, and a proposal by the
National Bureau of Standards for continuing the effort to define
an integrity policy. The appendices include a copy of the
original Clark-Wilson paper, a summary of the Clark-Wilson rules,
a number of position papers submitted in advance of the workshop,
several papers submitted during and following the workshop, and a
list of reference materials related to the integrity policy
effort.

12. KEY WORDS fS/x to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

commercial computer system; computer information system; data security;
discretionary controls; granularity; identity verification; integrity
model; integrity policy; mandatory controls
13. AVAILABILITY

[X~l Unlimited

I I
For Official Distribution. Do Not Release to NTIS

r I

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.

20402.

I I

Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

195

15. Price

OU. S. COWERNMENT PRINTING Orr 1 CE :1 98 9 - 24 2- 31 1 : 92625

USCOMM-DC 6043-P80

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, DC 20402

Dear Sir:

Please add my name to tine announcement list of new publications to be issued in the

series: National Institute of Standards and Technology Special Publication 500-.

Name

Company
.

Address

City State Zip Code

(Notification key N-503)

NIST.Technical Publications

Periodical

Journal of Research of the National Institute of Standards and Technology—Reports NIST research
and development in those discipHnes of the physical and engineering sciences in which the Institute

is active. These include physics, chemistry, engineering, mathematics, and computer sciences.

Papers cover a broad range of subjects, with major emphasis on measurement methodology and
the basic technology underlying standardization. Also included from time to time are survey articles

on topics closely related to the Institute's technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the

Institute's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) de-

veloped in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NIST, NIST annual reports,

and other special publications appropriate to this grouping such as wall charts, pocket cards, and
bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physi-

cists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in

scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical
properties of materials, compiled from the world's literature and critically evaluated. Developed un-

der a worldwide program coordinated by NIST under the authority of the National Standard Data
Act (Public Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data (JPCRD)
is published quarterly for NIST by the American Chemical Society (ACS) and the American Insti-

tute of Physics (AIP). Subscriptions, reprints, and supplements are available from ACS, 1155 Six-

teenth St., NW., Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Institute on building

materials, components, systems, and whole structures. The series presents research results, test

methods, and performance criteria related to the structural and environmental functions and the

durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treat-

ment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final reports of work performed at NIST
under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Com-
merce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally

recognized requirements for products, and provide all concerned interests with a basis for common
understanding of the characteristics of the products. NIST administers this program as a supplement

to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NIST research and experience, cov-

ering areas of interest to the consumer. Easily understandable language and illustrations provide use-

ful background knowledge for shopping in today's technological marketplace.

Order the above NISTpublications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NIST publications—FIPS and NISTIRs—from the National Technical Information

Service, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series col-

lectively constitute the Federal Information Processing Standards Register. The Register serves as

the official source of information in the Federal Government regarding standards issued by NIST
pursuant to the Federal Property and Administrative Services Act of 1949 as amended. Public Law
89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11,

1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NIST Interagency Reports (NISTIR)—A special series of interim or final reports on work performed

by NIST for outside sponsors (both government and non-government). In general, initial distribu-

tion is handled by the sponsor; public distribution is by the National Technical Information Service,

Springfield, VA 22161, in paper copy or microfiche form.

U.S. Department of Commerce
National Institute of Standards and Technology

(formerly National Bureau of Standards)

Gaithiersburg, MD 20899

Official Business

Penalty for Private Use $300

