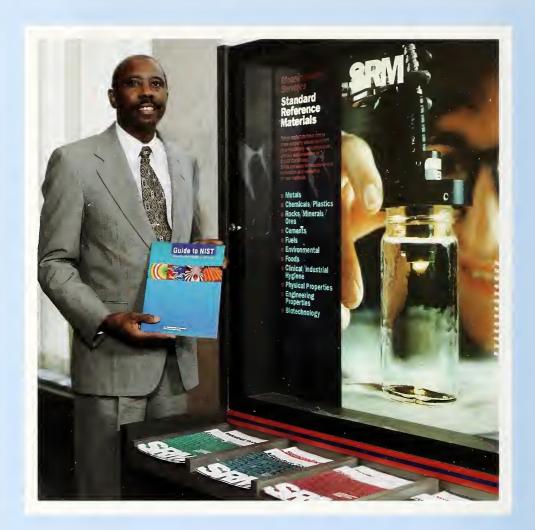
NIST Special Publication 260 U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology

To Order Phone: 301-975-6776 Fax: 301-948-3730


NIST RESEARCH INFORMATION CENTER

JUN 2 0 1995

STANDARD REFERENCE MATERIALS CATALOG 1995-1996

®

Thomas E. Gills, Chief, Standard Reference Materials Program

Standard Reference Materials[®] Catalog 1995–96

NIST Special Publication 260

Nancy M. Trahey, Editor

Standard Reference Materials Program National Institute of Standards and Technology Gaithersburg, MD 20899-0001

U.S. DEPARTMENT OF COMMERCE Ronald H. Brown, Secretary

Technology Administration Mary L. Good, Under Secretary for Technology

National Institute of Standards and Technology Arati Prabhakar, Director For Information or To Order

Phone: (301) 975-OSRM (6776) Fax: (301) 948-3730 E-Mail: SRMINFO@enh.nist.gov

See page 8 for Instructions

National Institute of Standards and Technology Special Publication 260 Supersedes NIST Spec. Publ. 260, 1992–93 165 pages (March 1995) CODEN: XNBSAV

U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1995

For sale by the Superintendent of Documents U.S. Government Printing Office, Washington, DC 20402

SRM and the SRM Logo

The term "Standard Reference Materials" (SRM) and the SRM logo "SRM"" are Federally registered trademarks of the National Institute of Standards and Technology and the Federal Government, who retain exclusive rights in the term. Permission to use the term and/or the logo is controlled by NIST as is the quality of the use of the term SRM and of the logo itself.

Foreword

The National Institute of Standards and Technology (NIST), formerly the National Bureau of Standards, was created by a Congressional act in 1901 to be the source and custodian of standards for physical measurement in the United States and charged with the responsibility for establishing a measurement foundation to facilitate both national and international commerce. This mission was purposely stated in broad terms in order to allow the agency the flexibility to reorient its programs in response to changing national needs and priorities. As a result of its congressionally mandated mission, first the National Bureau of Standards and now NIST has aimed its research and service activities toward:

helping U.S. industry improve its competitiveness through new technologies, modernized production processes, improved quality control and rapid commercialization.

At the same time, the Institute has two very important goals in serving the needs of its other major customers – government at all levels, academia, and the general public. They are:

improving public health, safety, and the environment through selected research programs, and conducting fundamental research that advances science and engineering.

The evolving linkage between the United States and world economy has resulted in an increased awareness of the need for comparability among data used to assess product quality and/or evaluate processes. Standard Reference Materials (SRMs) represent one mechanism by which measurement quality and traceability to national and international standards can be achieved when they are properly used. As a part of its congressional mandate the goals of NIST are to: develop reference and definitive methods of analysis, certify and issue standards, and assure their effective use in the measurement community, thereby helping to achieve accurate measurements in the United States and throughout the world.

The Standard Reference Materials Program distributes over 1300 different SRMs developed and certified in the NIST laboratories. NIST has a customer base for its standards of over 60,000 users with approximately 25% located outside the United States. All currently available SRMs are described in this Standard Reference Materials Catalog, Special Publication 260. In addition to the current stock of SRMs, the Program will partner with customers to evaluate proposed SRMs for their potential to meet industrywide requirements, to develop SRMs based on identified needs, and issue new SRMs that will help standardization efforts.

As the world commerce and trade markets have become more global, customers are using SRMs more to achieve conformance to process requirements and measurement quality that address international as well as national needs for commerce and trade. All measurements using SRMs have the capability of being traceable to a common and recognized set of standards and consequently the compatibility of laboratories can be realized.

Continued support for the SRM Program is appreciated.

Thomas E. Gills, Chief Standard Reference Materials Program National Institute of Standards and Technology

Acknowledgments

The editor acknowledges the assistance of the Standard Reference Materials Program staff in the review of this catalog. The constructive criticism provided by other members of the NIST technical staff is also appreciated. Very special thanks is due I. E. Putman of NIST who electronically typeset this catalog in its entirety.

Contents

	Page
Abstract and Key Words	1
NIST Policies Regarding Use of Metric (SI) Units and On Measurement Uncertainty Statements	2
How to Use This Catalog	4
Program Information	
Definitions	6
SRM Catalog	7
Preparation and Availability of Standard Reference Materials	7
Guide for Requesting Development of Standard Reference Materials	7
Ordering Standard Reference Materials	
General	9
Out-of-Stock Materials	9
Terms and Conditions	9
Late Charges.	10
Proforma Invoice (Price Quotation)	10
Domestic Shipments	10
Foreign Shipments (and shipments to Alaska and Hawaii)	10
Restricted Shipments – Dangerous Goods (Hazardous Materials)	10
Restricted Shipments – Temperature Sensitive Materials	11
Documentation.	11
Rush Shipments	11
Returned Goods	12
SRM/RM Certificates and Material Safety Data Sheets	12
Other Services of the National Institute of Standards and Technology	
Calibration and Related Measurement Services	13
Standard Reference Data Program	13
Accreditation of Testing Laboratories	13
National Center for Standards and Certification Information	14
Weights and Measures Programs	14
Proficiency Sample Program	14
	10
Guide to SRM/RM Technical Categories	19
SRMs/RMs by Category	25
Certified Reference Materials From Other Sources	
Special Nuclear Materials	108
NIST Special Publications in the 260 Series	133
SRM/RM Indexes	
Subject	139
Numerical and Certificate	156
Numerical Material Safety Data Sheet (MSDS)	165

Abstract and Key Words

This catalog provides technical and general ordering information for the Standard Reference Materials (SRMs) and Reference Materials (RMs) currently available from the National Institute of Standards and Technology (NIST) Standard Reference Materials Program (SRMP). The materials are arranged according to technical category and classified as follows: Standard Reference Materials for Chemical Composition; Standard Reference Materials for Physical Properties; and Standard Reference Materials for Engineering Materials. Technical descriptions are given for all materials and may include certified values. However, these values are incomplete as they appear in the catalog and therefore cannot be referenced for actual measurement purposes. The certificates issued by the SRMP are the only legitimate sources of certified information for NIST reference materials.

Key Words: analysis, calibration, Certified Reference Materials, characterization, composition, concentration, material, measurement, property, quality assurance, quality control, Reference Materials, Standard Reference Materials, standardization.

NIST Policy Regarding Use of Metric (SI) Units

The following policy was established in February 1991:

"In accordance with the Metric Conversion Act of 1975 as amended by Section 5164 of the Omnibus Trade and Competitiveness Act of 1988 and as required by related provisions of the Code of Federal Regulations, the National Institute of Standards and Technology (NIST) will use the modern metric system of measurement units (International System of Units – SI) in all publications. When the field of application or the special needs of users of NIST publications require the use of non-SI units, the values of quantities will be first stated in SI units and the corresponding values expressed in non-SI units will follow in parentheses."

The technical information contained in this catalog is consistent with the above policy. Only SI units and symbols have been used to describe the reference materials contained herein. Therefore, abrogated or obsolete quantifiers (i.e., the term, ppm), no longer appear, but rather have been replaced with the correct SI term, (mg/kg), and reference material values previously expressed in only in-lb units, have been converted to the appropriate SI units [1,2]. Due to space limitations, the non-SI units converted are not shown in the catalog.

There is one notable exception to this policy – use of the quantifier, "Wt. %". While this quantifier is not a SI unit, it is very widely used in industry and thus appears in many SRM certificates and throughout this catalog. However, in accordance with the above policy, future SRM certifications which heretofore would have been expressed in "Wt. %", will instead be expressed as a fraction or a percent of the appropriate SI unit which pertains to the quantity(ies) certified.

Note to SRM Users: Individual SRM certificates should be consulted to ascertain if certification data have been expressed in both SI and non-SI units.

^[1] The International System of Units (SI), NIST Special Publication 811, 1994 Edition.

^[2] ASTM E380-93 Standard Practice for Use of the International System of Units (SI) (the Modernized Metric System), ASTM, 1916 Race Street, Philadelphia, PA 19103.

NIST Policy On Measurement Uncertainty Statements

The following policy was established in January 1993:

"[].....All NIST measurement results are to be accompanied by quantitative statements of uncertainty [1]. To ensure that such statements are consistent with each other and with present international practice, this NIST policy adopts in substance the approach to expressing measurement uncertainty recommended by the International Committee for Weights and Measures (CIPM)."

[The CIPM approach is based on Recommendation INC-1 (1980) of the Working Group on the Statements of Uncertainties. More recently, at the request of the CIPM, a joint BIPM/IEC/ISO/OIML working group developed a comprehensive reference document on the general application of the CIPM approach [2]. The development of this document is providing further impetus to the worldwide adoption of the CIPM approach.]

The uncertainty statements contained in certificates for SRMs produced after January 1993, are in compliance with the above policy. To the fullest extent possible, these certificates describe the uncertainty components associated with each certified value reported, in terms recommended by the CIPM approach. The NIST technical division(s) that approved the certification protocol, produced the SRM, and evaluated the certified value(s) and associated uncertainty(ies) resulting therein, are responsible for employing the statistical methods that are in accordance with this policy.

Note to SRM Users: It is essential that all statistical information contained in a NIST SRM certificate be carefully reviewed before the certified value(s) and associated uncertainty(ies) are applied to a measurement process or program.

^[1] Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results NIST Technical Note 1297, 1994 Edition.

^[2] ISO Guide to the Expression of Uncertainty of Measurement: 1993 (E); ISO Technical Advisory Group on Metrology, Working Group 3, First Edition 1993.

How to Use This Catalog

The NIST Standard Reference Materials Catalog 1995–96 lists Standard Reference Materials (SRMs) and Reference Materials (RMs) issued by the NIST Standard Reference Materials Program. It consists of a guide and three (3) indexes, each of which groups the SRMs and RMs according to a distinctive characteristic or descriptor. Selection of the guide or one index over another to locate the information desired will depend on the user's prior knowledge of a specific SRM or RM and intended SRM or RM application.

Guide to SRM/RM Technical Categories – This is a general listing based on the three major categories into which all the SRMs and RMs have been assigned. The *categories* are divided into sequentially numbered sections, each of which describes a material class or technical property class. The *sections* are further divided into subsections, each of which describes a specific type of material or technical property and the physical form(s) of the SRMs and RMs contained therein. The titles of the *subsections* are the descriptors for the tables comprising the catalog.

EXAMPLE

Category	-	Standard Reference Materials
		for
		CHEMICAL COMPOSITION,
		25 through 91 (page nos.)
Section	-	102. Nonferrous Metals, 36 through 47 (page no.)
Subsection	-	Zinc Base Alloys (chip and disk forms), 46 (page no.)
Descriptor)		

SRM/RM Subject Index – This index is based on short word descriptors (one to four words) of the SRMs and RMs in the catalog. These descriptors may identify a section, subsection, a material class, a specific SRM property, a specific SRM application, or a measurement technique. Some descriptors may coincidently also identify an individual SRM or RM; however, only a few SRMs or RMs will be so described. The index is arranged in *alphabetical order of the first word of the descriptor*. Because of the variety of descriptors used, some SRM and RM materials may be cross-referenced.

EXAMPLE

Index Entry	_	ALLOYS (NONFERROUS)
Descriptor (s)		See NONFERROUS METALS,
		39 through 47 (page nos.)
Index Entry	-	ZINC
Descriptor	-	Spelter (ZINC BASE ALLOYS), 46 (page no.)

SRM/RM Numerical and Certificate Index – This index is based on the unique numerical identifier assigned to each and every SRM and RM issued by NIST. This identifier is the SRM or RM Number, an integral part of the reference material name which appears on each SRM certificate or RM report of investigation. The index lists all the SRMs and RMs sequentially by this number, beginning with SRM 1c and ending with RM 9529. A short word descriptor of the SRM or RM, the category subsection in which it is assigned, and the certificate or report-of-investigation date of issue are also provided for reference.

EXAMPLE

SRM – 94c Descriptor – Zn Base Die Casting Alloy Certificate Date – Dec 94 Section Code – 102 Page – 46 (page no.)

SRM/RM Material Safety Data Sheet (MSDS) Index – The index is similar to the Numerical and Certificate Index but it lists only those SRMs/RMs for which Material Safety Data Sheets (MSDSs) are required. The identifier is the SRM or RM Number and the short word descriptor used in the Numerical Index. These are followed by the MSDS Number, which usually carries the same SRM/RM number identifier, and its date of issue. In accordance with applicable national and international regulations, a copy of the MSDS accompanies every shipment of its relevant SRM/RM.

EXAMPLE

SRM – 1450b Descriptor – Thermal Resistance Board MSDS Number – 1450b MSDS Date – Apr 92 Page – 166

HOW TO LOCATE SPECIFIC INFORMATION

About an unknown SRM or RM material needed for a particular technical application –

Refer to the Guide to SRM/RM Technical Categories, select the most appropriate of the three categories, review all the sections and subsections therein and note the page numbers.

About a material from a specific class of materials and of known technical application –

Refer to the SRM/RM Subject Index, check for alternative descriptors and cross-references, and note page numbers.

About a material whose SRM or RM number is known -

Refer to the SRM/RM Numerical and Certificate Index and note the page number.

Whether or not a SRM or RM has (or requires) a Material Safety Data Sheet -

Refer to the SRM/RM Material Safety Data Sheet Index.

Program Information

The National Institute of Standards and Technology (NIST) offers for sale over 1,300 different materials through its Standard Reference Materials Program. These materials are primarily Standard Reference Materials (SRMs) certified for their chemical compositions, chemical properties, or physical properties, but also include other reference materials. All materials bear distinguishing names and numbers by which they are permanently identified. Thus, each material bearing a given description is identical (within the specified limits) to every other sample bearing the same designation—with the exception of individually certified items, which are further identified by serial number.

Definitions

From "Terms and definitions used in connection with reference materials," ISO Guide 30-1992 (E):

- 1. "Reference Material (RM): A material or substance, one or more properties of which are sufficiently well established to be used for the calibration of an apparatus, the assessment of a measurement method, or for assigning values to materials."
- 2. "Certified Reference Material (CRM): A reference material, one or more of whose property values are certified by a technically valid procedure, accompanied by or traceable to a certificate or other documentation which is issued by a certifying body."

NIST Standard Reference Materials (SRMs): Certified reference materials issued by NIST. These are well-characterized materials produced in quantity to improve measurement science. SRMs are certified for specific chemical or physical properties, and are issued by NIST with certificates that report the results of the characterization and indicate the intended use of the material. They are prepared and used for three main purposes:

- (1) To help develop accurate methods of analysis (reference methods);
- (2) To calibrate measurement systems used to:
 - (a) facilitate exchange of goods,
 - (b) institute quality control,
 - (c) determine performance characteristics, or
 - (d) measure a property at the state-of-the-art limit; and
- (3) To assure the long-term adequacy and integrity of measurement quality assurance programs.

NIST certified values are obtained by one or more of the following measurement routes:

- (1) A previously validated reference method,
- (2) Two or more independent, reliable measurement methods, or
- (3) A network of cooperating laboratories, technically competent and thoroughly knowledgeable with the material being tested.

An in-depth discussion of the use of SRMs can be found in NIST Special Publication 260-100 "Standard Reference Materials HANDBOOK FOR SRM USERS" written by John K. Taylor (February 1993, edited by N. M. Trahey).

A number of Reference Materials (RMs) listed in this catalog are sold, but not certified, by NIST. However, they meet the ISO definition for RMs, and many meet the definition for CRMs. The documentation issued with these materials is either a:

- (1) "Report of Investigation," the sole authority being the author of the report. RMs are intended to further scientific or technical research on particular materials. The principal consideration in issuing RMs is to provide a homogeneous material so that investigators in different laboratories are assured that they are investigating the same material.
- (2) "Certificate," issued by the certifying agency (other than NIST), e.g., other national laboratories, other government agencies, other standardizing bodies, or other non-profit organizations. When deemed to be in the public interest and when alternate means of national distribution do not exist, NIST acts as the distributor for such materials. This service is available to organizations that qualify and have the reference materials that would help meet national measurement needs.

SRM Catalog

New catalogs of NIST SRMs (and RMs) are published approximately every 2 years, listing materials available and renewal materials in preparation, and deleting discontinued materials. The Catalog is supplemented by Price Lists issued simultaneously with each new catalog and annually to keep the catalog current between editions. These supplements list current prices, and reflect any changes in material availability—listing new and renewal materials and deleting discontinued ones.

A guide and three indexes are provided for user convenience. They are described in the section, How to Use This Catalog.

Preparation and Availability of SRMs

New and renewal SRMs are being prepared continually. While these SRMs are included in the next edition of the catalog and its supplements, prospective users whose names are on the SRM mailing list are also notified as soon as the new items become available. Requests for placement on the SRM mailing list can be submitted at any time to the Standard Reference Materials Program.

Renewal SRMs are intended to be completed before the supply of an existing SRM is exhausted. However, this is not always possible and an SRM may be out of stock for a time. When this occurs, those ordering the material are so notified and possible substitute SRMs are suggested. When a renewal is issued, customers who have ordered the previous lot are promptly notified of the price and availability of the renewal. If little demand exists or if an alternate source of supply becomes available, production of an SRM may be discontinued permanently.

Renewal SRMs may not be identical to the preceding lot; however, they meet the same specifications and can be used for the same purpose. For example, the first 0.1% carbon Bessemer steel was prepared in 1909 (Standard Sample No. 8). Since then a number of renewals, 8a, 8b, 8c, etc., have been prepared. The current SRM 8j 0.1C, represents the eleventh lot of the material. Each lot differs somewhat in detailed analysis; thus the use of the specific certificate for that lot is essential.

Guide for Requesting Development of SRMs

NIST has the responsibility to develop, produce, and distribute SRMs that provide a basis for comparison of measurements on materials, and that aid in the control of production processes. To carry out this function, the Standard Reference Materials Program evaluates the requirements of science, industry, and government for well-characterized reference materials, and directs the production and distribution of such materials.

To become a SRM, a candidate material must meet one or more of these criteria:

- 1. It would permit users to attain more accurate measurements.
- 2. Its production elsewhere would not be economically or technically feasible.
- 3. It would be an industry-wide standard for commerce from a neutral source not otherwise available to the public.
- 4. Its production by NIST would assure continued availability of a well-characterized material important to science, industry, or government.

NIST has recognized and responded to requests to enlarge the scope of the Standard Reference Materials Program to include all types of well-characterized materials for use in calibrating measurement systems, or for producing scientific data that can be referred to a common base. However, the requests for new SRMs greatly exceed NIST's capacity to produce and certify such materials. Consequently, requests for new SRMs of limited need or use are deferred in favor of requests that clearly show a critical need. To determine which requests receive priority, NIST seeks and uses information supplied by industry and such organizations as the American Petroleum Institute (API), American Society for Testing and Materials (ASTM), etc., to objectively assess the urgency and importance of proposed new reference materials. Requests to the Standard Reference Materials Program for the development of a new SRM should provide the following information:

- 1. Short title of the proposed SRM.
- 2. Purpose for which the SRM would be used.
- 3. Reasons why the SRM is needed.
- 4. Technical characteristics and requirements for the material. Include additional requirements and reasons if more than one SRM is necessary for standardization in this area.
- 5. Estimates of the probable present and future (5-10 years) demand for such an SRM, nationally and internationally.
- 6. Justification for SRM preparation by NIST, particularly if a similar one could be produced or obtained from another source.
- 7. Pertinent information to aid justification for the SRM, such as: (a) an estimate of the potential range of application, monetary significance of the measurement affected, scientific and technological significance including, when feasible, estimates of the impact upon industrial productivity, growth, quality assurance or control, and (b) supporting letters from industry leaders, trade organizations, interested standards committees, and others.

All such requests should be addressed to: National Institute of Standards and Technology Standard Reference Materials Program Room 112, Building 202 Gaithersburg, MD 20899-0001

ATTN: SRM Development

Ordering NIST Reference Materials

General

Purchase orders (in English) for all NIST SRMs/RMs should be directed to:

National Institute of Standards and Technology Standard Reference Materials Program Room 204, Building 202 Gaithersburg, MD 20899-0001 USA

Telephone: (301) 975-6776 Fax: (301) 948-3730 E-Mail: SRMINFO@enh.nist.gov

Each purchase order should give the number of units, catalog number, and name of each reference material requested.

Example: 1 each, SRM 79a, Fluorspar (Customs Grade).

The following information must be included with each order: a billing address, a shipping address, name of customer, telephone number, fax number, purchase order number, a customer identification number, i.e., a social security number (SSN) for consumer customers, tax identification number (TIN) for commercial customers, or agency code (ALC) for U.S. government customers.

Note: NIST SRMs/RMs are only distributed in the units of issue listed in this catalog and its supplement (price list). Also, purchase orders or inquiries submitted in a language other than English, will take several weeks to process.

Acceptance of an order does not imply acceptance of any provisions set forth in the order that are contrary to the policy, practice, or regulations of the National Institute of Standards and Technology or the United States Government.

Out-of-Stock Materials

Orders for "out-of-stock" SRMs/RMs, are generally filled with the renewal reference materials – if available; otherwise the orders will be canceled. Customers are notified when an order is canceled and their names are placed on a notification list. This list is used to contact customers when the reference material (or its renewal) is again available. Upon notification, customers are told the price of the material and are asked to submit a new order if they still wish to purchase it.

For some SRMs/RMs, production lots are small and stock outages occur frequently. In these cases, the notification list is used to fill orders on a "*first come, first served*" basis. Customers are contacted when the reference materials are again available and are asked to confirm their original purchase orders.

Terms and Conditions

Prices quoted for SRMs/RMs are in U.S. dollars (\$), and are published in the catalog supplement (price list). The prices shown therein are subject to change without notice and orders will be invoiced for the prices in effect at the time of shipment. Shipping and handling charges for regular and special (for SRMs in restricted categories) shipments, are also applied to all orders. These charges will be added to the invoices.

Note: A 10% discount is given on individual purchase orders for 50 or more SRM units (single SRM, or combination of SRMs).

Payment of all invoices is expected within 30 days of receipt for domestic orders - 45 days of receipt for foreign orders, and may be made by any of the following:

- Banker's draft against U.S.A. bank,
- Bank to bank transfer to U.S.A. bank,
- Cash against documents,
- VISA or Mastercard only,
- International money order.

Late Charges

In accordance with U.S. Treasury regulations, late charges will be levied for each 30/45-day period, or portion thereof, that an invoice payment is overdue.

Proforma Invoice (Price Quotation)

Proforma invoice service requires 3 to 4 weeks to process and is furnished *only* to those customers requiring such service.

Domestic Shipments

SRM/RM shipments within the continental U.S. are shipped F.O.B. Gaithersburg, MD. There are several shipping modes which can be used, including UPS Ground, Federal Express, Roadway Package Service, Air Freight, and Motor Freight (Collect). Unless otherwise instructed by the customer, the mode of shipment will be selected by NIST. Fewer shipping modes are available to SRMs/RMs in restricted categories and NIST reserves the exclusive right to select the proper shipping mode for these types of shipments. For restricted SRM/RM shipments, an additional charge is incurred for each shipping container used. This charge is added to the invoice.

Foreign Shipments (and shipments to Alaska and Hawaii)

SRM/RM shipments outside the contiguous U.S. are also shipped F.O.B. Gaithersburg, MD by one of the following modes, including UPS International, Federal Express International (subject to size, weight, and category of material limitations), Air Parcel Post, and Air Freight. Unless otherwise instructed by the customer, the mode of shipment will be selected by NIST. Any other mode of shipment requested by the customer must be paid by the customer. Fewer shipping modes are available to SRMs/RMs in restricted categories and NIST reserves the exclusive right to select the proper shipping mode for these types of shipments.

Restricted Shipments – Dangerous Goods (Hazardous Materials)

Some SRMs/RMs are classified as "Dangerous Goods" by the U.S. Department of Transportation (DOT), the International Civil Aviation Organization (ICAO), or the International Air Transport Association (IATA). These organizations have published regulations and procedures for packaging and shipping dangerous (hazardous) goods which must be followed to safely transport these materials. Such regulations and procedures are very specific and do not allow exceptions. NIST reserves the exclusive right to select the proper packaging and shipping mode to assure the shipments comply with these regulations and procedures.

Restricted Shipments – Temperature Sensitive Materials

Some SRMs are extremely temperature-sensitive and will perish unless shipped by the most expedient mode available. To ensure the stability of these materials, they must be packaged with Cool Packs or dry ice which will maintain the necessary low temperatures for a short period of time. However, several SRMs are so temperature-sensitive that they are restricted to domestic sales only, and must be shipped according to a set schedule.

Documentation (All documents are printed in English)

The documentation NIST furnishes are:

- a. Commercial invoice(s),
- b. Packing slip(s),
- c. Air waybill for air shipments (provided UPON REQUEST ONLY),
- d. NAFTA Certificate(s) (when applicable),
- e. SRM/RM Certificate(s) one (1) for each unit ordered,
- f. Material Safety Data Sheet(s) one (1) for each type or ordered material requiring it.

CUSTOMERS ARE REQUIRED TO INSPECT ALL PACKAGES AND DOCUMENTATION IMMEDI-ATELY UPON RECEIPT OF SHIPMENT. ANY DAMAGE, SHORTAGES OR DEFECTS MUST BE REPORTED TO SRM PROGRAM CUSTOMER RELATIONS AT (301) 975-6776, WITHIN FIVE (5) DAYS OF RECEIPT OF SHIPMENT.

Rush Shipments

Requests for rush shipments will be accommodated when possible. However, they will be made in compliance with existing regulations pertaining to the SRMs/RMs being shipped and when hazardous materials are involved, all regulations governing their transportation will take precedence. The following types of rush shipments are available:

- Same day shipping Orders must be placed by 10:00 AM Eastern Standard Time (EST). In addition to the normal shipping fees, a processing fee of \$50.00 will be added to the customer's invoice.
- Next day shipping In addition to the normal shipping fees, a processing fee of \$25.00 will be added to the customer's invoice.

(Exception: Hazardous materials will not be shipped the same day.)

Returned Goods

NIST SRMs/RMs are generally not returnable – with the exception of defective goods or shipments made in error by NIST. However, normal transaction of business inevitably requires the occasional return of merchandise for exchange or credit. NIST has therefore instituted the following returned goods policy:

- Return shipments are accepted by NIST only after specific arrangements to do so have been made. To return a SRM/RM, SRM Program Customer Relations must be contacted to obtain a *Return Authorization Number and shipping instructions*. REQUESTS FOR RETURN AUTHO-RIZATION MUST BE MADE WITHIN THIRTY (30) DAYS OF RECEIPT OF SHIPMENT.
- Return shipments of hazardous SRMs/RMs authorized by SRM Program Customer Relations, must be packed, marked, labeled, and shipped in accordance with national and international regulations governing their transportation. Opened, leaking or damaged hazardous SRM/RM units and/or their containers CANNOT BE RETURNED TO NIST but should be disposed of in accordance with applicable laws and regulations.

Returns which will not be authorized or accepted UNDER ANY CIRCUMSTANCES include:

- Perishable SRM/RMs,
- Unsealed, partially used, modified or mutilated SRMs/RMs,

SRM/RM Certificates and Material Safety Data Sheets

Each SRM/RM shipment contains sufficient copies of Certificates and MSDSs (if applicable) for the number of units ordered. However, if these documents are misplaced, NIST will provide additional copies free of charge upon request and when proof of purchase has been provided. Customers may call, fax, or use the following e-mail addresses to send in their requests:

for Certificates – SRMCERT@enh.nist.gov for MSDSs – SRMMSDS@enh.nist.gov

Requests will usually be processed within twenty-four (24) hours. Documents under or equalling ten (10) pages will be faxed; documents exceeding ten (10) pages will be mailed. If the documentation is urgently needed, the customer must provide a Federal Express account number.

NIST also provides copies of misplaced 'Archive certificates' free of charge to customers who possess NIST SRMs/RMs that are no longer for sale. This service is available on a one-time-only basis.

Other Services of the National Institute of Standards and Technology

Calibration and Related Measurement Services

The measurement services of NIST include calibrations, special tests, and Measurement Assurance Programs (MAPs). The calibrations and MAPs of NIST satisfy the most demanding and explicit measurement requirements, in that these services are carried out regularly under pre-established and well-defined conditions; the measurement processes involved are well-characterized, stable and in a state of statistical control; and quality control procedures are well-defined and strictly followed. These services are described in NIST Special Publication 250, *Calibration Services Users Guide*. For more information on available calibration services, or how to obtain a copy of Special Publication 250, inquiries should be directed to:

Calibrations Program National Institute of Standards and Technology Room A104, Building 411 Gaithersburg, MD 20899-0001
 Telephone:
 (301) 975–2002

 Fax:
 (301) 926–2884

 E-Mail:
 CALIBRATIONS@enh.nist.gov

Standard Reference Data Program

The Standard Reference Data (SRD) Program provides well-documented numeric data to scientists and engineers for use in technical problem-solving, research, and development. These recommended values are based on data which have been extracted from the world's literature, assessed for reliability, and then evaluated to select the preferred values. The primary vehicles for dissemination of this data are the NIST Standard Reference Database Series and the Journal of Physical and Chemical Reference Data (JPCRD). Databases and publications are described in SP 782 – NIST Standard Reference Data Products Catalog. To obtain a copy, please contact the following:

Standard Reference Data Program National Institute of Standards and Technology Room A320, Building 221 Gaithersburg, MD 20899-0001 Telephone: (301) 975–2208 Fax: (301) 926–0416 E-Mail: SRDATA@enh.nist.gov

Accreditation of Testing Laboratories

The National Voluntary Laboratory Accreditation Program (NVLAP) accredits public and private calibration and/or testing laboratories, based on evaluation of their technical qualifications and competence for conducting specific tests or types of tests in specified fields of testing or calibration. Accreditation is based on criteria published in the Code of Federal Regulations as part of the NVLAP procedures. Accreditation is granted following successful completion of a process which includes submission of an application and payment of fees by the laboratory, an on-site assessment, resolution of any deficiencies identified during the on-site assessment, participation in proficiency testing, technical evaluation, and administrative review. The accreditation is formalized through issuance of a Certificate of Accreditation and Scope of Accreditation as publicized by announcement in various government and private media. Application packages may be obtained from:

National Voluntary Laboratory Accreditation Program	Telephone: (301) 975-4016
National Institute of Standards and Technology	Fax: (301) 975-3839
Room A146, Building 411	E-Mail: NVL	AP@enh.nist.gov
Gaithersburg, MD 20899-0001		

National Center for Standards and Certification Information

The National Center for Standards and Certification Information (NCSCI) provides information on U.S., foreign and international voluntary standards, government regulations, and conformity assessment procedures for non-agricultural products. NCSCI staff respond to inquiries by identifying relevant standards and/or regulations, maintain a reference collection of standards and standards-related documents (they do not provide copies), and serve as the U.S. inquiry point for information to and from foreign countries. Inquiries should be directed to:

National Center for Standards and Certification Information National Institute of Standards and Technology Room A163, Building 411 Gaithersburg, MD 20899-0001

Telephone:	(301) 975-4040
Fax:	(301) 926-1559
E-Mail:	OVERMAN@micf.nist.gov

Weights and Measures Program

The NIST Weights and Measures Program operates a Type Evaluation Program which provides for an evaluation of (1) prototype weighing and measuring devices to determine compliance with the requirements of NBS Handbook 44, "Specifications, Tolerances, and Other Technical Requirements for Commercial Weighing and Measuring Devices," (2) standards to determine compliance with the requirements of NBS Handbook 105–1, 105–2, 105–3, "Specifications and Tolerances for Reference Standard and Field Standard Weights and Measures." This program may be used by manufacturers and weights and measures officials in determining the acceptability of devices for commercial use or the suitability of reference and field standards. For information on programs of NIST and the States, write or telephone:

Weights and Measures ProgramTelephone:(301) 975-4004National Institute of Standards and TechnologyFax:(301) 926-0647Room A357, Building 221Gaithersburg, MD 20899-000120899-0001

Proficiency Sample Programs

General information on the Proficiency Sample Programs may be obtained from:

Construction Materials Reference Laboratories	Telephone:	(301) 975-6704
National Institute of Standards and Technology	Fax:	(301) 330-1956
Room A362, Building 226		
Gaithersburg, MD 20899-0001		

Information is available on the following programs:

Proficiency Sample Programs for Hydraulic Cements, Pozzolans, and Portland Cement Concrete; Proficiency Sample Programs for Soils, Aggregates, and Bituminous Materials; Inspection of Cement and Concrete Testing Laboratories; Inspection of Soils and Bituminous Testing Laboratories.

Standard Reference Materials Program

Nancy Trahey, Catalog Editor, Deputy Chief

Delores Covey, Secretary; Julie Frum, Administrative Officer

Marketing

Channing Monti, Business Specialist; Lee Best, Manager, Sales and Marketing

Sales

Gina Montgomery, Sales, Computer Specialist; Karen Applestein, Sales, Hazardous Materials Specialist

Cene Constantine, Student Trainee; Rosemarie Blasingame, Sales, Customer Relations Specialist

Beth Stotz, Sales, Hazardous Materials Specialist; Ivan Cutter, SRM Sales Trainee

Anna Carroll, Sales, Hazardous Materials Specialist; Teressa Rush-Cover, International Sales Specialist

Production and Certification

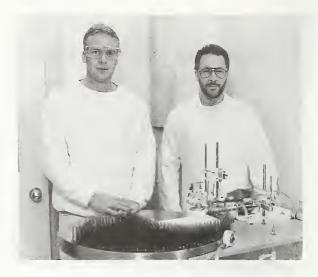
Dale Friend, Supervisor, Physical Science Technician; Donna Clarke, Computer Programmer Analyst

Pam Ritger, Student Trainee; Carmen Davis, SRM Assistant, Hazardous Documentation Preparation; Michelle Brown, SRM Assistant, Records Management

Robbin Howard-Frazier, SRM Assistant, Records Management; Susan Martin, SRM Assistant, Records Management; Sharon Maxwell, Group Leader, SRM Computer Assistant, Records Management

Robert Gettings, Project Manager, Physical Properties; Jennifer Colbert, Project Manager, Organic Materials

Jean Kane, Project Manager, Inorganic Materials; Paul Lundberg, Project Manager, Ferrous and Nonferrous Metals



Bruce MacDonald, Project Manager, Inorganic Materials; Venkatesh Iyengar, University of Maryland Liaison

Processing, Preparation, and Shipping

Gary Proulx, Physical Science Technician

Mark Cronise, Curt Fales, Physical Science Technicians

Tom Hotchkiss, Physical Science Technician

John Savoy, Physical Science Technician

Jim Fort, Patty Fitzwater, Tom Shuggars, *Physical Science Technicians*, Shipping

Guide to SRM/RM Technical Categories

Standard Reference Materials for CHEMICAL COMPOSITION

101. Ferrous Metals, 25–38

Plain Carbon Steels (chip form), 25 Low Alloy Steels (chip form), 26 Special Low Alloy Steels (chip form), 27 High Alloy Steels (chip form), 28 Gases in Metals (rod form), 28 Stainless Steels (chip form), 29 Tool Steels (chip form), 29 Low Alloy Steels (disk and rod forms), 30 Low Alloy Steels (disk and rod forms) - Continued, 31 Low Alloy Steels (disk and rod forms) - Continued, 32 Low Alloy Steels (disk and rod forms) - Continued, 33 Stainless Steels (disk form), 34 Specialty Steels (disk form), 34 High Temperature Alloys (disk form), 35 Steelmaking Alloys (powder form), 36 Cast Irons (chip form), 37 Cast Steels, White Cast Irons and Ductile Irons (disk form), 38

102. Nonferrous Metals, 39-47

Aluminum Base Alloys (chip and disk forms), 39 Cobalt Base Alloys (chip and disk forms), 39 Copper Base Alloys (chip and rod forms), 40 Copper Base Alloys (block and disk forms), 41 Copper "Benchmark" (chip and rod forms), 42 Lead Base Alloys (chip and disk forms), 43 Lead Base Material (disk form), 43 Naval Brass (disk form), 43 Tin Base Alloys (chip form), 44 Nickel Base Alloys (chip and disk forms), 44 Trace Elements in Nickel Base Superalloys (chip form), 44 Nickel Oxides (powder form), 45 Titanium Base Alloys (chip and disk forms), 45 Zinc Base Alloys (chip and disk forms), 46 Zirconium Base Alloys (chip and disk forms), 46 Gases in Metals (platelet form), 46

103. Microanalysis, 47

Metals (rod and wire forms), 47 Synthetic Glasses (rod form), 47 Thin Film for Transmission Electron Microscope, 47

104. High-Purity Materials, 48–55

High-Purity Metals (solid forms), 48 Stoichiometry (powder form), 49 Microchemistry (powder form), 49 Spectrometry, Single Element (solution form), 50 Spectrometry, Single Element (solution form) - Continued, 51 Spectrometry, Multi-Element (solution form), 51 Spectrometry, Multi-Element (solution form) - Continued, 52 Chromium Speciation, 53 Anion Chromatography (solution form), 53 Stable Isotopic Materials (solid forms), 53 Royal Canadian Mint Reference Materials (solid forms), 54-55 Light Stable Isotopic Materials (gas, liquid and solid forms), 55

105. Health and Industrial Hygiene, 56-60

Clinical Laboratory Materials (gas and solid forms), 56 Serum Materials, 57 Ethanol Solutions, 57 Toxic Substances in Urine (powder form), 57 Drugs of Abuse, Single Analyte (powder form), 58 Drugs of Abuse, Multi-Analyte (powder form), 58 Drugs of Abuse in Hair (solid forms), 58 DNA Profiling (solid forms), 59 Materials on Filter Media, 59 Trace Constituent Element in Blank Filters, 59 Respirable Silica (powder form), 60 Lead in Paint (powder and sheet forms), 60 Asbestos, 60

106. Inorganics, 61–62

Metal Constituents (liquid and solid forms), 61 Simulated Rainwaters (liquid form), 61 Thin Films for X-ray Fluorescence, 61 Carbon Modified Silicon (powder form), 62 Trace Elements (liquid and solid forms), 62 Used Auto Catalysts (powder form), 62

107. Analyzed Gases, 63–65

Mixtures and Pollutants, 63 Mixtures and Pollutants – Continued, 64 Mixtures and Pollutants – Continued, 65 Permeation Devices, 65

108. Fossil Fuels, 66–68

Alcohols and Ethers [Oxygenates] in Reference Fuels (liquid form), 66 Metal Constituents in Fossil Fuels (liquid and solid forms), 66 Sulfur in Fossil Fuels (liquid and solid forms), 67 Moisture in Oils (liquid form), 67 Reference Liquids for Evaluating Fuels, 67 Trace Elements (solid form), 68

109. Organics, 69-74

GC/MS and LC System Performance (liquid form), 69 Organic Constituents (liquid and solid forms), 69 Organic Constituents (liquid and solid forms) – Continued, 70 Organic Constituents (liquid and solid forms) – Continued, 71 Organic Constituents (liquid and solid forms) – Continued, 72 Organic Constituents (liquid and solid forms) – Continued, 73 Organic Constituents (liquid and solid forms) – Continued, 73

110. Food and Agriculture, 75-78

Foods and Beverages (liquid and powder forms), 75
Health Care and Nutrients (liquid and solid forms), 76
USA/Canada Collaborative Materials (powder form), 76
Agricultural Materials (powder form), 77
Fertilizers (powder form), 78
Biomass Materials (powder form), 78

111. Geological Materials and Ores, 79-84

Chinese Ores (powder form), 79 Ores (powder form), 79 Ores (powder form) – Continued, 80 Ores (powder form) – Continued, 81 Ore Bioleaching Substrate (powder form), 81 Clays (powder form), 82 Rocks and Minerals (powder form), 83 Refractories (powder form), 83 Soils and Sediments (powder form), 84

112. Ceramics and Glasses, 85-87

Carbides (powder form), 85 Cemented Carbides (powder form), 85 Glasses (powder and solid forms), 86 Trace Elements (powder and wafer forms), 87

113. Cement, 88-89

Portland Cements (powder form), 88 Portland Cement Clinkers (solid form), 89

114. Engine Wear Materials, 90-91

Metallo-organic Compounds (liquid form), 90 Lubricating Base Oils (liquid form), 90 Catalyst Characterization Materials (liquid and powder forms), 90 Catalyst Package for Lubricant Oxidation (liquid form), 91 Wear-metals in Oil (liquid form), 91

Standard Reference Materials for PHYSICAL PROPERTIES

201. Ion Activity, 95-96

pH Calibration (powder form), 95 Biological Buffer Systems (powder form), 95 pD Calibration (powder form), 95 Ion-Selective Electrode Calibration (powder form), 96 Electrolytic Conductivity (liquid form), 96

202. Polymeric Properties, 97–98

Molecular Weight and Melt Flow (pellet and powder forms), 97 Polyethylene Pipe Products, 98 Rubbers and Rubber Compounding Materials (powder and solid forms), 98

203. Thermodynamic Properties, 99–103

Combustion Calorimetry (powder form), 99 Solution Calorimetry, 99 Enthalpy and Heat Capacity (solid forms), 99 Differential Scanning Calorimetry (solid forms), 100 Differential Thermal Analysis (liquid and solid forms), 100 Superconductive Thermometric Fixed Point Device, 100 Defining Fixed Point, International Temperature Scale, ITS-90 (solid forms), 101 Secondary Reference Points (solid forms), 101 Melting Point and Triple Point (liquid and powder forms), 101 Laboratory Thermometer (mercury in glass), 102 Thermocouple Material, Platinum (wire form), 102 Vapor Pressure of Metals (rod and wire forms), 102 Thermal Conductivity of Graphite and Metals (rod form), 103 Thermal Expansion of Glass and Silica (rod form), 103 Thermal Resistance of Glass and Silica (solid forms), 103

204. Optical Properties, 104–107

Molecular Absorption and Molecular Luminescence Spectrometry (film, filter, solid, and solution forms), 104–106
Specular Spectral Reflectance (plate form), 107
Infrared Reflectance (solid form), 107
Directional Hemispherical Reflectance (wafer form), 107
Refractive Index – See 209. Miscellaneous Properties
Optical Rotation (powder form), 107
Photography (chart form), 107

205. Radioactivity, 108–113

Radiation Dosimetry (wire form), 108 Fission Track Glass (wafer form), 108 Special Nuclear Materials, 108 Radioactive Solutions, 109 Radiopharmaceuticals (solution and gaseous forms), 110 Alpha Particle Point Sources, 111 Carbon-14 Dating (solid form), 111 Accelerator Mass Spectrometry (solution form), 111 Low Energy Photon Point Source, 111 Gamma Ray Point Sources, 112 Radon Emanation (encapsulated solution form), 112 Natural Matrix Materials (powder form), 113

206. Electrical Properties, 114-115

Electrical Resistivity and Conductivity of Metals (rod form), 114 Electrical Resistivity and Conductivity of Silicon (block and wafer forms), 114 Residual Resistivity Ratio (rod form), 115 Superconducting Critical Current (wire form), 115

207. Metrology, 116-118

Scanning Electron Microscope (SEM), 116 Optical Microscope Linewidth Measurement (wafer form), 116 Depth Profiling (wafer form), 116 Optical Fiber Geometry (solid form), 116 Copper and Chromium Coating on Steel (plate form), 117 Solder Thickness (plate form), 117 Gold Coating on Fe-Ni-Co Alloy (plate form), 117 Ellipsometry (wafer form), 118 Oxygen Concentration in Silicon (wafer form), 118 NIST Time Software, 118

208. Ceramics and Glasses, 119-120

Chemical Resistance (Durability) of Glass (solid form), 119 Electrical Properties of Glass (bar form), 119 Viscosity of Glass (bar form), 119 Viscosity Fixpoints (solid forms), 120 Relative Stress Optical Coefficient (bar form), 120 Glass Liquidus Temperature (solid form), 120

209. Miscellaneous Properties, 121–122

X-ray Diffraction (powder and solid forms), 121
X-ray Diffraction of Ferrous Materials (disk and wafer forms), 121
X-ray Stage Calibration (solid forms), 121

Density and Refractive Index (liquid and solid forms), 122 Bleached Kraft Pulps (sheet form), 122

Standard Reference Materials

for

ENGINEERING MATERIALS

301. Sizing, 125–126

Particle Size (powder and solid forms), 125 Cement Turbidimetry and Fineness (powder form), 125 Electrophoretic Mobility, μ_E (suspension form), 126 Surface Area of Powders, 126

302. Surface Finish, 127

Microhardness (block form), 127 Abrasive Wear (block form), 127 Corrosion (plate form), 127 Surface Roughness (block form), 127

303. Nondestructive Evaluation, 128

Dye Penetrant Test Blocks, 128 Artificial Flaw for Eddy Current NDE, 128 Magnet Particle Inspection, 128

304. Automatic Data Processing, 129

Magnetic Computer Storage Media, 129

305. Fire Research, 130

Surface Flammability (sheet form), 130 Smoke Density Chamber (sheet form), 130 Smoke Toxicity (granulated and sheet forms), 130 Flooring Radiant Panel (sheet form), 130

309. Miscellaneous Performance Engineering Materials, 131

Charpy V-Notch Test Blocks, 131 Socketed Ball Bar, 131 Coordinate Measuring Machine (CMM) Probe Performance, 131 Tape Adhesion Testing (sheet form), 131

Chemical Composition

SRMs/RMs (by Technical Category)

Standard Reference Materials for Chemical Composition

101. Ferrous Metals

Plain Carbon Steels (chip form)

These SRMs are for checking chemical methods of analysis. They consist of steel alloys selected to provide a wide range of analytical values for elements. They are furnished in 150-g units (unless otherwise noted) as chips usually sized between 0.4 mm to 1.2 mm, prepared from selected portions of commercial ingots.

SRM	Туре					Elemental	Compositio	on (in Wt. 9	76)	
	-51				С	Mn	Р	S	S	Si
8j	0.1C				0.081	0.505	0.095	0.07	7 0.(058
11ĥ	0.2C				0.200	0.510	0.010	0.02	6 0.2	211
12h	0.4C				0.407	0.842	0.018	0.02	7 0.2	235
13g	0.6C				0.613	0.853	0.006	0.03	1 0.3	355
14g	AISI 1078				0.735	0.456	0.006	0.01	9 0.2	232
15h	0.1C				0.076	0.373	0.005	0.01	9 0.(008
16f	1.1C				0.97	0.404	0.014	0.02		214
19h	0.2C				0.215	0.393	0.016	0.02		211
20g	AISI 1045				0.462	0.665	0.012	0.02		305
152a	0.5C (Tin b	earing)			0.486	0.717	0.012	0.03	0 0.2	202
178	0.4C				0.395	0.824	0.012	0.01	4 0.1	163
337a	1.1C (Carbo	n & Sulfu	r) (300 g	;)	0.969			0.02	4	
368	AISI 1211			<i>.</i>	0.089	0.82	0.084	0.13	2 0.0	007
SRM	Cu	Ni	Cr	v	Мо	Co	Ti		Al N otal)	T
8j	0.020	0.113	0.047	0.015	0.038					
11h	0.061	0.028	0.025	0.001			0.004			
12h	0.073	0.032	0.074	0.003	0.006			(0.	.038) 0.0	006
13g	0.066	0.061	0.050	0.001				0.	.048	
14g	0.047	0.030	0.081	0.0008	0.011			0.	.025	
15h	0.013	0.017	0.018	< 0.001	0.009			0.	.061	
16f	0.006	0.008	0.020	0.002	0.003	0.003				
19h	0.466	0.248	0.173	0.003	0.038			0.	.002	
20g	0.034	0.034	0.036	0.002	0.008			0.	.040	
152a	0.023	0.056	0.046	0.001	0.036		(0.032		
	0.032	0.010	0.016	0.001	0.003					
178 368	0.010	0.008	0.030	0.001	0.003					010

Values in parentheses are not certified and are given for information only. NOTE: SRM 21e, 0.5 C, in In Prep.

SRM	Туре				Elen	nental Co	mpositio	n (in Wt. 9	%)	
SRIVI	турс			С	Mn	Р	:	S	Si	Cu
							Grav	Comb		
30f	Cr-V (SAE 61	.50)		0.490	0.79	0.011		0.009	0.283	0.074
32e	Ni-Cr (SAE 3			0.409	0.798	0.008	0.022	0.021	0.278	0.127
33e	Ni-Mo (SAE 4			0.186	0.525	0.005		0.009	0.262	0.070
36b	Cr–Mo	,		0.114	0.404	0.007		0.019	0.258	0.179
72g	AISI 4130			0.278	0.492	0.009		0.014	0.223	0.011
100b	Manganese (S.	AE 340)		0.397	1.89	0.023	0.029	0.028	0.210	0.064
106b	Cr-Mo-Al (Ni			0.326	0.506	0.008	0.016	0.017	0.274	0.117
125b	High Silicon			0.028	0.278	0.029		0.008	2.89	0.071
129c	High Sulfur (S	AE 112)		0.125	0.769	0.076		0.245	0.020	0.013
131e	High Silicon	,		0.0035				0.0004		
139b	Cr-Ni-Mo (Al	SI 8640)		0.403	0.778	0.013		0.019	0.242	0.097
155	Cr–W	,		0.905	1.24	0.015	0.010	0.011	0.322	0.083
163	Cr (100 g)			0.933	0.897	0.007		0.027	0.488	0.087
179	High Silicon			0.027	0.094	0.006		0.026	3.19	0.056
291	Cr-Mo (ASTM	(A213)		0.177	0.550	0.008		0.020	0.230	0.047
293	Cr-Ni-Mo (Al			0.222	0.960	0.018		0.022	0.300	0.032
2171	Ni-Cr-Cu-Mo			0.066	0.73	0.006		0.0012	0.338	1.47
SRM	Ni	Cr	v		Мо	Sn		Al (total)		N
30f	0.070	0.945	0.182							0.010
32e	1.19	0.678	0.002		0.023	(0.01	1)			0.009
33e	3.36	0.068	(0.001)		0.224	(0.0		0.030		
36b	0.203	2.18	0.004		0.996	``	·			
72g	0.016	0.905	0.003		0.170			(0.041)		(0.008)
100b	0.030	0.063	0.003		0.237					0.004
106b	0.217	1.18	0.003		0.199			1.07		
125b	0.038	0.019			0.008	0.00)3	0.329	Ca	a 0.0051
129c	0.251	0.014	0.012		0.002					
139b	0.510	0.488	0.004		0.182					0.007
155	0.100	0.485	0.014		0.039				W	0.517
163	0.081	0.982			0.029					0.007
179	0.050	0.022	< 0.01		0.014	0.00)4	0.0028		
291	0.065	1.33			0.538			0.002		
	0.400	0.510	0.004		0.204			0.039		
293 2171	0.480 3.35	0.510	0.004		0.546			0.019		

101. Low Alloy Steels (chip form)

Values in parentheses are not certified and are given for information only.

101.

Special Low Alloy Steels (chip and pin forms)

SRM	Т	pe			Elemental Composition (in Wt. %)									
					С	Mn	Р	S		Si	Cu	Ni	Cr	
361	AISI			0	.383	0.66	0.014	0.01	43 0	.222	0.042	2.00	0.694	
362	AISI	94B17 (mod.)	0	.160	1.04	0.041	0.03	60 0	.39	0.50	0.59	0.30	
363		(mod.)		0	.62	1.50	0.029	0.00	68 0	.74	0.10	0.30	1.31	
364	High	Carbon	(mod.)	0	.87	0.255	0.01	0.02	50 0	.065	0.249	0.144	0.063	
2159	Carbo	on & Sul	fur only	(pin) 0	.016			0.00	23					
2160	Carbo	on & Sul	fur only	(pin) 0	.584			0.01	2					
2165	E			0	.0059	0.144	0.0052	0.00	38 (0	.004)	0.0013	0.155	0.050	
2166	F			0	.015	0.066	0.0012	0.00	23 0	.010	0.015	0.022	0.024	
2167	G			0	.051	0.022	0.0031	0.00	91 0	.026	0.0014	0.002	0.0015	
2168	High	Purity Ir	on	0	.0007	0.0006	0.0015	0.00	10 (<5	.0)*	0.0005	0.0012	0.0003	
SRM	v	Mo	W	Co	Ti	As	Sn	Al (total)	Nb	Та	Zr	N	Ca	
361	0.011	0.19	0.017	0.032	0.020	0.017	0.010	0.021	0.022	0.020	0.009	(0.0037)	0.000	
362	0.040	0.068	0.20	0.30	0.097	0.092	0.016	0.083	0.29	0.20	0.19	(0.00404)	0.0002	
363	0.31	0.028	0.046	0.048	0.050	0.010	0.104	0.24	0.049	(0.053)	0.049	(0.0041)	0.0002	
364	0.105	0.49	0.10	0.15	0.24	0.052	0.008	(0.008)	0.157	0.11	0.068	(0.0032)	0.000	
2165	0.0040	0.0055		0.0012	0.0051	0.0010	0.002	(0.006)	0.0004	(0.004)				
2166	0.009	0.0035		0.0022	0.0007	0.0035	0.0010	0.012	0.005	(0.011)	(0.0004)			
2167	0.033	0.020		0.0050	0.010	0.0005	0.006	0.0045	0.0095	(0.002)	(0.004)			
2168	(<1.0)*	(<7.0)*	(<7.0)*	• 0.0006	(<3.0)*	(<1.0)*	(<1.0)*	(<5.0)*	(<5.0)*	(<1.0)*	(<5.0)*	0.0007	(<2.0)*	
SRM	В	Pb	5	Sb	Bi	Ag	2	Se	Te	Ce	La	Nd	Fe	
361	0.00037	0.000	025 0.0	0042	(0.0004)	0.0004	4 (0.0	04)	(0.0006)	0.0040	(0.001)	0.00075	(95.6)	
362	0.0025	0.000	48 0.0	013	(0.002)	0.001	l (0.0	012)	(0.0005)	0.0019	(0.001)	0.00075	(95.3)	
363	0.00078	0.001	86 0.0	002	(0.0008)	0.003	7 (0.0	0016)	(0.0009)	0.0030	(0.002)	0.0012	(94.4)	
364	0.0106	0.023	0 0.0)34	(0.009)	(0.000	02) (0.0	00021)	(0.0002)	0.00057	(0.0002)	0.00018	(96.7)	
2165	(0.0009)	0.000	3 0.0	0010	(<0.0001)	0.0002	2 (0.0	0035)	(0.003)					
2166	(0.0004)	0.003	0.0	0005 (< 0.0001)	0.000	5 (0.0	035)	(0.003)					
2167	(0.001)	(<0.000	1) 0.0	0020	(<0.0001)	0.0001	7		(0.0003)					
2168 (<1.0)*	(<1.0)*	(<3.0	0)* ((<3.0)*		(<2.0)* (<	(1.0)*				_	
SRM	Mg		Zn	Pr	G	e	0]	H	Au]	Hf	Sr	
361	0.0002	5 (0	.0001)	(0.000	3) [0.0	06] (0.0009)	(<0.0	0005)	(<0.000	05) (0.	0002) (<	0.0005)	
362	0.0006		.00012)	(0.000			0.00107)	(<0.		(<0.000	05) (0.	0003) (<	0.0005)	
363	0.00062		.0004)	(0.000	4) [0.0		0.00066)	(<0.	0005)	0.000			0.0005)	
364	0.0001	5 [0	.001]	(0.000			0.0010)	(<0.	0005)	0.000	1 (0.	0013)	(0.001)	
	(<0.0001)													
	(<0.0001)													
	(<0.0001)													
01/0	(<5.0)*	1-5	.0)*				0.010	Cd (<1.	0)*					

Values in parentheses are not certified and are given for information only. Values in brackets are approximate values from heat analysis and are given for information only. *Value is in mg/kg (SI unit).

SRM		Туре					Elemental Composition (in Wt. %)								
						C	: M	n	Р	S	Si	Cu			
										Com	b				
126c	High	Nickel (36% N	i)		0.0	25 0.4	68	0.004	0.00	5 0.194	4 0.040			
344		li (Mo P			rdening)	0.0	69 0.5	7	0.018						
345a		li (Cu Pr				0.0	40 0.7	9	0.024			3.39			
346a		e Steel	•		0,	0.5	02 9.1	6	0.031	0.00	2 0.219	0.375			
348a	High	Temper	ature A	lloy (A	286) Ni-(Cr 0.0	44 0.6	4	0.023	0.00		0.14			
862		Temper				0.1	20 1.5	9	0.002	0.00	08 0.01	7 0.0010			
868	High	Temper	ature A	lloy Fe-	-Ni-Co	0.0	22 0.0	52	< 0.003	0.00	25 0.097	7 0.022			
SRM	Ni	Cr	v	Мо	Co	Ti	Al (total	<u> </u>	Nb	Та	В	Fe			
				· · · · · · · · · · · · · · ·			(total)							
126c	36.05	0.062	0.001	0.011	0.008										
344	7.28	14.95	0.040	2.40		0.076	1.16								
345a	4.27	15.52	0.080	0.43	0.099	(<0.01)	(<0.01)	0.27	(<0.01)	(<0.001)	N 0.031			
346a	3.43	21.08	0.096	0.237	(0.05)	(< 0.001)	(0.00	1)	(0.01)	Sn (0.008)	(<0.001)	N 0.442			
348a	24.2	14.8	0.23	1.18	0.15	2.12	0.24	,	(0.07)	W (0.07)	0.0055	(55.2)			
862	9.74	20.0	0.005 1	N 0.026	51.5	W 15.1	(<0.01)) (·	< 0.005)	(<0.01)	(<0.0001)	1.80			
868	37.78	0.077	0.077	0.014	16.1	1.48	0.99	`	2.99	0.003	0.0078	40.5			

High Allov Steels (chip form) 101.

101. Gases in Metals (rod form)

These SRMs are for determining hydrogen, oxygen, and nitrogen by vacuum fusion, inert gas fusion, and neutron activation methods.

SRM	Туре	Oxygen (in mg/kg*)	Hydrogen (in mg/kg*)	Nitrogen (in mg/kg*)
1090	Ingot Iron	491		(60)
1091a	Stainless Steel (AISI 431)	132.2		(876)
1093	Valve Steel	60		
1094	Maraging Steel	4.5		(71)
**1095	Steel (AISI 4340)	9	(<5)	(37)
**1096	Steel (AISI 94B17)	10.7	(<5)	40.4
**1097	Cr-V Steel (mod.)	6.6	(<5)	(<11)
**1098	Steel (High Carbon)	10	(<5)	32
**1099	Electrolytic Iron	61	(<5)	(13)
1754	Low Alloy Steel (AISI 4320)	24		81

Values in parentheses are not certified and are given for information only.

*SI unit. Replaces terms "ppm" and "µg/g". **These SRMs are sold only as a set designated SRM 1089.

SRM		Туре					_	E	lemen	tal Compos	ition (ir	n Wt. %)
								С	Mn	Р	S	Si	Cu
73c	Cr (S	AE 420)				().310	0.330	0.018	0.036	0.181	0.080
101g		304 L ().0136	0.085		0.0078	1.08	0.029
121d	Cr-Ni	i -Ti (A Ì	ISI 321)				().067	1.80		0.013	0.54	0.12
123c	Cr-Ni	i–Nb (A	ISI 348)			(0.056	1.75	0.024	0.014	0.59	0.103
133b	CrM	0					().128	1.07		0.328	0.327	0.080
160b			AISI 316)			().044	1.64	0.020	0.016	0.509	0.172
166c	Carbo	n Only	(100 g)	·			(0.0078					
339	Cr-Ni	-Se (SA	AE 303S	e)			().052	0.738	0.129	0.013	0.654	0.199
343a	Cr-Ni	i (AISI	431)				().149	0.42	0.026	0.001	0.545	0.162
367	Cr-Ni	(AISI	446)				().093	0.315		0.016	0.58	
893	Cr (S	AE 405)				().027	0.378	0.022	0.0003	0.326	0.261
895	Cr-M	n (SAE	201)				().066	7.09	0.038	0.0033	0.399	0.439
SRM	Ni	Cr	v	Мо	Со	Ti	Nb		Та	Pb	Se		N
73c	0.246	12.82	0.030	0.091									0.037
101g	10.00	18.46	0.041	0.004	0.09								
121d	11.17	17.43		0.165	0.10	0.342							
123c	11.34	17.40		0.22	0.12		0.65	<0.	001				
133b	0.230	12.63	0.071	0.052									
160b	12.26	18.45	0.047	2.38	0.101					0.001	-		0.039
339	8.89	17.42	0.058	0.248	0.096						0.24	47	
343a	2.16	15.64	0.056	0.164	(0.04)	(<0.001)	(0.01)	Al (0).001)	(<0.0001)	B (<0	.001)	0.078
367	0.29	24.19	0.08		. ,		. ,						0.168
893	0.192	13.55	0.080	0.023	0.020	(0.01) ((<0.000	5) (<	0.001)	(0.0001)	(<0.0	001) Al	(0.20)
895	5.34	16.72	0.079	0.337	0.126	(< 0.0004)	1 - 0 000	11-	0.001	(0.0001)	1-00	001) 11	(0.02)

101. Stainless Steels (chip form)

Values in parentheses are not certified and are given for information only.

101. Tool Steels (chip form)

SRM	Туре					Elem	ental C	ompositi	on (in W	't. %)	
Diana	-384				С	Mn	Р	:	5	Si	Cu
50c	W-Cr-V				0.719	0.342	0.022	Grav 0.010	Comb 0.009	0.311	0.079
132b 134a	Tool Steel (AISI M2) Mo-W-Cr-V				0.864 0.808	0.341 0.218	0.012 0.018	0.007	0.004 0.007	0.185 0.323	0.088 0.101
SRM	Ι	Ni	Cr	v	Мо	w		Co	Sn	As	N
)69	4.13	1.16	0.082	18.4	4		0.018	0.022	0.012

Steel SRMs described in this and the following three (3) pages are furnished in various forms. The 600 series is for microchemical methods of analysis, such as electron probe microanalysis and laser probe analysis. The 1100, 1200, and 1700 series are for optical emission and X-ray spectrometric methods of analysis. These materials have been prepared to ensure high homogeneity.

Nominal Sizes for Solid Steel SRMs:

600 Series: 3.2 mm diameter, 51 mm long.
1100 and 1200 Series: 31 mm diameter, 19 mm thick.
1700 Series: 34 mm diameter, 19 mm thick.
A "C" preceding the SRM number indicates a chill cast sample; 31 mm diameter, 19 mm thick.

101. Low Alloy Steels (disk and rod forms)

SRM	Туре		Elemental C	ompositior	n (in Wt.	%)
Dian	-52-	С	Mn	Р	S	Si
661	AISI 4340	0.392		0.015	0.015	0.223
663	Cr-V (mod.)	0.57	1.50	0.029	0.0055	0.74
664	High Carbon (mod.)	0.871		0.010	0.025	0.066
665	Electrolytic Iron	0.008	0.0057	0.0025	0.0059	0.0080
1134	High Silicon	0.026	0.277	0.028	0.009	2.89
1135	High Silicon	0.027	0.094	0.006	0.026	3.19
1218	High Silicon, Low Carbon & Sulfur	0.002	9 0.014	(0.002)	0.0011	(3.2)
C1221	Resulfurized/Rephosphorized AISI 1211 (mod.)	0.020	0.102	0.090	0.112	0.876
1222	Cr-Ni-Mo (AISI 8640)	0.43	0.78	0.013	0.022	0.24
1224	Carbon (AISI 1078)	0.75	0.41	0.009	0.039	0.173
1225	Low Alloy (AISI 4130)	0.274	0.48	0.007	0.014	0.221
1226	Low Alloy	0.085	0.274	0.0022	0.0044	0.231
1227	Basic Open Hearth, 1% C	0.97	0.402	0.014	0.026	0.215
1228	0.1% C	0.072	0.365	0.004	0.018	0.007
1254	Low Alloy (Calcium only)	Ca 0.005	3			
1261a	AISI 4340	0.391	0.67	0.016	0.015	0.228
1262b	AISI 94B17	0.160		0.044	0.037	0.40
1263a	Cr–V (mod.)	0.57	1.50	0.029	0.0055	0.74
1264a	High Carbon (mod.)	0.871		0.010	0.025	0.066
1265a	Electrolytic Iron	0.008	0.0057	0.0025	0.0059	0.0080
1269	Line Pipe (AISI 1526 mod.)	0.298	1.35	0.012	0.0061	0.189
1270	Cr-Mo Low Alloy, A336 (F-22)	0.077	0.626	0.0065	0.0065	0.247
1271	Ni-Cr-Cu-Mo (HSLA 100)	0.064		0.005	0.0013	0.334
C1285	Low Alloy (A242 mod.)	0.058		0.072	0.020	0.36
1286	Low Alloy (HY 80)	0.196		0.008	0.017	0.130
1761	Low Alloy Steel	1.03	0.678	0.040	0.035	0.18
1762	Low Alloy Steel	0.337		0.034	0.030	0.35
1763	Low Alloy Steel	0.203		0.012	0.023	0.63
1764	Low Alloy Steel	0.592		0.020	0.012	0.057
1765	Low Alloy Steel	0.006		0.0052	0.0038	(0.004)
1766	Low Alloy Steel	0.015		0.002	0.0024	0.010
1767	Low Alloy Steel	0.052		0.0031	0.0090	0.026
1768	High-Purity Iron	0.001	0 0.0014	0.0013	0.0003	(<10.0)*

Values in parentheses are not certified and are given for information only. *Value is in mg/kg (SI unit).

NOTE: SRM 1217a, Nickel Steel, is In Prep.

.01.	Low Alloy	Steels (disk and	l rod for	rms) – C	ontinued		
SRM	Cu	Ni	Cr	v	Мо	w	Со	TI
661	0.042	1.99	0.69	0.011	0.19	0.017	0.032	0.020
663	0.098	0.32	1.31	0.31	0.30	0.046	0.048	0.050
664	0.250	0.142	0.066	0.106	0.49	0.102	0.15	0.23
. 665	0.0058	0.041	0.007	0.0006	0.005	(<0.0001)	0.007	0.0006
1134	0.070	0.038	0.019		0.008			
1135	0.056	0.050	0.022	< 0.01	0.014			
1218	0.003	(0.002)	0.006	(<0.001)	(0.003)		(0.002)	(0.004)
C1221	0.041	0.067	0.049	(0.0007)	0.038		(0.010)	(0.0014)
1222	0.097	0.51	0.48	`0.005´	0.18		(0.016)	(0.002)
1224	0.072	0.054	0.071	0.002	0.013			
1225		0.018	0.91	0.004	0.166			
1226	0.125	5.42	0.467	0.0018	0.446	(0.005)	0.029	0.0021
1227	0.006	0.007	0.019	0.002	0.003	0.003	(0.0008)	
1228	0.012	0.018	0.016	< 0.001	0.009	01000	(0.0000)	
1261a	0.042	2.00	0.693	0.011	0.19	0.017	0.032	0.020
1262b	0.51	0.59	0.30	0.041	0.070	0.20	0.57	0.100
1263a	0.098	0.32	1.31	0.31	0.030	0.046	0.048	0.050
1264a	0.250	0.142	0.066	0.106	0.49	0.102	0.15	0.24
1265a	0.0058	0.041	0.0072	0.0006	0.0050	<1	0.0070	(0.0001)
1269	0.095	0.108	0.201	0.004	0.036	(0.001)	(0.014)	(0.009)
1270	0.114	0.174	2.34	0.013	0.956	(0.003)	0.038	(0.003)
1271	1.48	3.34	0.552	0.003	0.543	` '		` '
C1285	0.37	1.17	0.80	0.150	0.164	(0.03)	0.036	Ce (0.0021)
1286	0.043	2.81	1.53	0.0057	0.334	(0.13)	0.116	0.040
1761	0.30	1.99	0.220	0.053	0.103	(0.02)	(0.028)	0.18
1762	0.120	1.15	0.92	0.200	0.35	(0.01)	0.062	0.095
1763	0.43	0.51	0.50	0.30	0.50	(0.03)	0.095	0.31
1764	0.51	0.202	1.48	0.106	0.200	(<0.01)	(0.01)	0.028
1765	0.0013	0.154	0.051	0.0040	0.005	. ,	0.0012	0.0055
1766	0.015	0.021	0.024	0.009	0.0035	(0.001)	0.0020	0.0005
1767	0.0014	0.002	0.0015	0.033	0.020	. ,	0.0050	0.011
1768	0.0006	0.0014	(<2.0)*	(<1.0)*	(<3.0)*	(<2.0)*	0.0025	(<10.0)*

Values in parentheses are not certified and are given for information only. *Value is in mg/kg (SI unit).

)1.	Low A	loy Stee	ls (disk a	and rod for	rms) – Cont	inued	
SRM	As	Sn	Al (total)	В	Pb	Ag	Ge
661 663 664 665	0.017 0.010 0.052 (0.0002)	0.011 (0.095) [0.005] (<0.0005)	0.021 0.024 (0.008) (0.0007)	0.0005 0.0009 0.011 0.00013	0.000025 0.0022 0.024 0.000015	0.0004 (0.0038) (0.00002) (<0.00002)	[0.006] [0.010] [0.003] (<0.0050)
1134 1135 1218 C1221 1222		0.003 0.004	0.329 0.0028 0.005 0.111 (0.038)				
1224 1226 1227 1228		(0.003)	0.060 0.054 (0.028) 0.061		(0.0001)		
1261a 1262b 1263a 1264a 1265a 1269	0.017 0.096 0.010 0.052 (0.0002) (0.006)	0.010 0.016 0.104 (0.008) <2 (0.039)	0.021 0.081 0.24 (0.0080) (0.0007) 0.016	0.0005 0.0025 0.00091 (0.011) 0.00013 (<0.0001)	0.000025 0.0004 0.0022 0.024 0.000015 0.005	0.0004 0.0011 0.0037 (0.000002) < 0.2 (0.0002)	[0.006] [0.002] [0.010] [0.003] < 50
1270 1271 C1285 1286 1761 1762	(0.02) (0.022) 0.019 0.011 0.018	(0.02) 0.35 0.012 (0.05) 0.046	(0.005) 0.020 (0.12) 0.109 0.06 0.069	(0.0033) (0.006) 0.0020 0.0049	(0.0016) (0.0002)	(0.0001)	
1763 1764 1765 1766 1767 1768 (0.055 0.010 0.0010 0.0035 0.0005 (<1.0)*	0.011 (0.02) 0.002 0.0010 0.006 (<1.0)*	0.043 0.009 (0.006) 0.012 0.004 0.0024	0.0054 0.0010 0.0009 0.00012 0.0010 (<2.0)*	0.0003 0.003 (0.0001) (<1.0)*	0.0002 0.0005 0.0008	
SRM	0	N	н	Nb	Se	Та	Zr
661 663 664 665 ((0.0009) (0.0007) [0.0017] (<0.0070)	(0.0037) (0.0041) [0.003] (<0.0020)	[<0.0005] [<0.0005] [<0.0005] (<0.0005)	0.022 0.049 0.157	0.004 [0.0001] [0.0003]	0.020 (0.053) 0.11	0.009 0.050 0.069
1218 C1221 1222 1226 1227	-	(0.007)		(0.002) (0.005)			(0.002) (0.0017) (0.001) (0.010) (0.0006)
1261a 1262b	(0.0009) (0.0011)	(0.0037) (0.0040)	(<0.0005) (<0.0005)	0.022 0.30	0.004 (0.0012)	0.021 0.20	0.009 0.22
1263a 1264a 1265a 1271	(0.00066) (0.0010) <70	(0.0041) (0.0032) <20	(<0.0005) (<0.0005) <5	0.049 0.157 0.025	(0.00016) (0.00021)	(0.053) 0.11	0.050 0.69
C1285 1286				(0.012)			(0.02) (0.021)
1761 1762 1763 1764 1765 1766 1767 1768	0.036	0.0044 0.0022 0.0044 0.0023 0.0010 0.0033 0.0008 0.002	Cd (<1.0)*	0.02 0.07 0.10 0.042 0.0004 0.005 0.010 (<5.0)*	(0.0035) (0.0035) (<1.0)*	$\begin{array}{c} 0.05\\ 0.02\\ 0.01\\ 0.029\\ (0.004)\\ (0.006)\\ (0.002)\\ (<1.0)^* \end{array}$	0.01 0.03 0.04 0.0015 (0.0002) (0.0004) (0.004) (<1.0)*

Values in parentheses are not certified and are given for information only. Values in brackets are approximate values from heat analysis and are given for information only. *Value is in mg/kg (SI unit).

01.	Low Alloy St	teels (disk	and rod f	orms) –	Continu	ied	
SRM	Sb	Bi	Ca	N	Ig	Te	Zn
661	0.0042	0.0004	(<0.0001)	(0.0	001)	0.0006	(0.0001)
663	0.002	(0.0008)	(<0.0001)		005)	(0.0022)	(0.0004)
664	(0.035)	(0.0009)	(<0.0001)		001)	[0.0002]	[0.001]
665	(<0.00005)	(<0.00001)	(<0.00001)			< 0.00001)	(<0.0003)
1261a	0.0042	0.0004	0.00002	0.0	0018	0.0006	(0.0001)
1262b	0.012	(0.002)	(0.0001)	0.0	006	(0.001)	(0.0005)
1263a	0.002	(0.0008)	0.00013	0.0	0049	0.0009	(0.0004)
1264a	0.034	(0.0009)	0.00004	0.0	0015	0.00018	(0.001)
1265a							<3
1254			0.0053				
C1285	(0.04)						
1765	0.0010	(<0.0001)		(<0.0	001)	(0.003)	
1766	0.0005	(<0.0001)		(<0.0	005)	(0.003)	
1767		(<0.0001)	(0.0003)	(<0.0	001)	(0.0003)	
1768	(<1.0)*	(<4.0)*	(<1.0)*	(<6.0)*´ ((<1.0)*	(<1.0)*
SRM	Au	Ce	Hf	La	Nd	Pr	Fe
661	(<0.0005)	0.013	[0.00002]	0.0004	0.0003	(0.00014)	(95.6)
663	0.0005	(0.0016)	[0.0015]	0.0006	(0.0007)	(0.00018)	(94.4)
664	0.0001	(0.00025)	0.0051	0.00007	(0.00012)	(0.00003)	(96.7)
665		()	[(,	(,	99.9
1261a	(<0.00005)	0.0014	(0.0002)	0.0004	0.00029	(0.00014)	(95.6)
1262b	(0.00005)	0.0019	(0.0003)	(0.0004)	0.0006	(0.00012)	(95.3)
1263a	0.0005	0.0014	(0.0005)	0.0006	0.00060	(0.00018)	(94.4)
1264a	0.0001	0.00022	(0.0013)	0.00007	0.00007	(0.00003)	(96.7)
1265a						. ,	`99.9 ´
1764							(95.2)
1766		(0.002)					. ,

Values in parentheses are not certified and are given for information only. Values in brackets are approximate values from heat analysis and are given for information only. *Value is in mg/kg (SI unit).

SRM		Туре					Ele	ementa	l Compo	sition (in	Wt. %)	
<u>Dian</u>		-76-				С	Mn	Р	S	Si	Cu	Ni	Cr
C1151a	23Cr	-7Ni				0.034	2.39	0.017	0.038	0.29	0.385	7.25	22.59
C1152a		-11Ni				0.142	0.95	0.023	0.0064		0.097	10.86	
C1153a	17Cr	-9Ni				0.225	0.544	0.030	0.019	1.00	0.226	8.76	16.70
C1154a	19 C r	-13Ni				0.100	1.44	0.06	0.051	0.53	0.44	13.08	19.31
1155	Cr-N	li–Mo (AISI 3	16)		0.046	1.63	0.020	0.018	0.502	0.169	12.18	18.45
1171	Cr-N	li–Ti (A	AISI 32	1)		0.067	1.80	0.018	0.013	0.54	0.121	11.2	17.4
1172	Cr-N	li–Nb (AISI 3	48)		0.056	1.76	0.025	0.014	0.59	0.105	11.35	17.40
1219	Cr-N	li (AIS	I 431)	ŕ		0.149	0.42	0.026	0.001	0.545	0.162	2.16	15.64
1223	Chro	mium	Steel			0.127	1.08	0.018	0.329	0.327	0.081	0.23	2 12.64
C1287	High	Alloy	(AISI	310 mod.)	0.36	1.66	0.029	0.024	1.66	0.58	21.16	23.98
C1288		Alloy			/	0.056	0.83	0.023	0.010	0.41	3.72	29.3	19.55
C1289	High	Alloy	(AISI -	414 mod.)	0.014	0.35	0.017	0.021	0.156	0.205	4.13	
1295	Cr (SAE 40)5)		/	0.027	0.387	0.022	0.0003		0.260		4 13.52
C1296		–3Mo (50)		0.038	0.256	0.024	0.013	0.66	0.056		3 27.90
1297		li–Mn				0.066	7.11	0.038	0.0033	0.397	0.442	5.34	
SRM	v	Мо	Co	Ti	N	Al	Nb	1	Га	w	Р	b	Zr
C1151a	0.040	0.79	0.033		(0.21)	(0.003)	(0.01	5) (0	.004)		0.0	0039	
C1152a		0.44	0.22		(0.055)	(0.004)			.001)			0047	
C1153a		0.24	0.127	(0.013)	(0.11)	(0.004)			.03)			006	(0.0001
C1154a	0.135	0.068	0.38	(0.004)	(0.077)		(0.22)) (0	.045)		0.0	017	(0.001)
1155	0.047	2.38	0.101	()	()		(,	· (-	,			001	()
1171		0.165	0.10	0.34									
1172		0.22	0.12				0.65	<0	.001				
1219	0.056	0.164	(0.04)(< 0.001)	0.078	(0.001)	(0.01)	Sn (0	.008)	(0.02)	(<0.0	0001)	B (<0.00
1223	0.068	0.053	Mg	< 0.0005)	(0.05)	(<0.005)		Sn (0	.004) Ca	(<0.0005)			(0.0001
C1287	0.09	0.46	0.31	0.050	(0.034)	`(0.06) [´]	(0.07)				0.0	008	(0.006)
C1288	0.086	2.83	0.10	0.012	(0.028)	(0.0025			.029)	(0.2)	0.0	0041	(0.002)
C1289	0.007	0.82	0.035	0.005	(0.017)) (0.10)		.027)	. ,		0005	(0.001)
1295	0.082	0.023		(0.01)	Sn (0.02)		(<0.000			(0.002)			As (0.006)
C1296	0.134	3.43	0.026	0.23	Sn (<0.01)		0.20	´(<0		< 0.01)			s (<0.01)
C1290													

101. Stainless Steels (disk form)

Values in parentheses are not certified and are given for information only.

101.	Specialty	Steels	(disk	form)
------	-----------	--------	-------	-------

SRM	Туре	Elemental Composition (in Wt. %)											
	~	C	Mn	Р	S	Si	Cu	Ni	Cr	V	Мо	w	Co
1157	Tool (AISI M2)	0.836	0.34	0.011	0.004	0.18	0.088	0.228	4.36	1.82	4.86	6.28	0.028
1158	High Nickel (Ni 36)	0.025	0.468	0.004	0.005	0.194	0.039	36.03	0.062	0.001	0.010		0.008
1233	Valve Steel							3.43				(0.01)	

101. High Temperature Alloys (disk form)

SRM	Ту	pe					_	F	Element	al Compo	sition (ir	n Wt. 9	76)
								С	Mn	Р	S	Si	Cu
1230	A 286	5					0.	.044	0.64	0.023	0.0007	0.43	0.14
1244	Incon	el 600					0.	.062	0.29	0.010	0.003	0.12	0.26
1245a	Incon	el 625					0.	.037	0.18	0.012	0.001	0.41	0.37
1246	Incol	oy 800						.082	0.91	0.018	0.001	0.18	0.49
1247	Incolo	oy 825					0.	.021	0.38	0.018	0.002	0.32	1.75
1250	Fe-N						0.	.022	0.052	< 0.003	0.0025	0.097	
C2400	High	Alloy St	teel, A	CI (17/4)	PH)		0.	.036	0.71	0.013	0.003	0.61	2.63
C2401	High	Alloy St	teel (A	CI-CD-4	M Cu)		0.	.062	1.03	0.025	0.027	0.74	3.17
C2402	Haste	lloy C					0.	.010	0.64	0.007	0.018	0.85	0.19
SRM	Ni	Cr	Мо	Co	Ti	Al	Nb	Т	a	Fe	w		В
1230	24.2	14.8	1.18	0.15	2.12	0.24	(0.07)	V 0	.23	(55)	(0.0	7)	0.0055
1244	73.2	15.7	0.20	0.058	0.25	0.26	(0.14)			9.6	`	,	< 0.05
1245a	59.7	22.0	8.5	0.071	0.28	0.19	`3.5 ´	< 0.	.01	4.5	< 0.0	01	
1246	30.8	20.1	0.36	0.076	0.32	0.30	(0.09)			46.2			< 0.001
1247	43.5	23.4	2.73	0.089	0.75	0.060	(0.46)			26.5			0.002
1250	37.78	0.077	0.014	16.1	1.48	0.99	2.99	0	.003	40.5	V 0.0	77	0.0078
C2400	4.07	17.06	0.23	0.10			0.15	V 0.	.092		(0.1)	(0.0004)
C2401	5.46	25.1	2.13	0.19			(0.002)	V 0	.20		(0.1		(0.0004)
	51.5	16.15	17.1	1.50 Sr			(<0.01)	V 0		7.3	4.2		(0.0004)

Values in parentheses are not certified and are given for information only.

NOTE: SRM 1249, Inconel 718, SRM 1775, Refractory Alloy MP35N, and SRM 2175, Refractory Alloy MP35N, are In Prep.

101. Steelmaking Alloys (powder form)

These SRMs are for checking chemical methods of analysis for major constituents and for selected minor elements. They are furnished as fine powders (usually < 0.1 mm).

SRM	Туре	Unit Siz	ze	1	Elemen	tal Com	position (i	in Wt. %)	
	-58-	(in g)	С	Mn	Р	S	Si	Cu	Ni	0
57a	Silicon Metal	60	0.024	0.015	0.003	0.003	98.55	0.004	0.008	(~0.3)
58a	Ferrosilicon (73% Si- Regular Grade)	- 75	0.014	0.16	0.009	< 0.002	73.20	0.024	0.012	(0.20
59a	Ferrosilicon	50	0.046	0.75	0.016	0.002	48.10	0.052	0.033	
64c	Ferrochromium, High Carbon	100	4.68	0.16	0.020	0.067	1.22	0.005	0.43	
68c	Ferromanganese, High Carbon	100	6.72	80.04	0.19	0.008	0.225			
90	Ferrophosphorus	75		2	26.2					
195	Ferrosilicon (75% Si- High-Purity Grade	- 75	0.034	0.17	0.017	0.001	75.3	0.047	0.032	(0.42
196	Ferrochromium, Low Carbon	100	0.035	(0.282)	0.020	0.003	0.373			
347	Magnesium Ferrosili	con 100	0.017	0.53	0.023	0.005	47.6	0.065	0.082	
689	Ferrochromium Silico		0.043	0.32	0.026	0.002	39.5	0.013	0.20	(0.06
SRM	Cr V Mo	Ti	Al	Nb		Zr	Ca	Fe	B	As
57a	0.024 0.013 Pb < 0.00	1 0.040	0.47			0.002	0.17	0.50	0.001	< 0.001
58a	0.020(0.002) (0.01) 0.051	0.95	Co < 0.01		0.002	0.30	25.23	0.0010	(0.0020
59a	0.080	/	0.35				0.042	50.05	0.058	`
64c	68.00 0.15	0.02		Co 0.051	l		N 0.045	24.98		
68c	0.074							12.3		0.021
90										
195	< 0.01 (0.001) (0.01) 0.037	0.046	Co < 0.01		0.011	0.053	23.6	0.0010	(0.0024
196	70.83 (0.12)									
347	0.14	0.036	0.78		Co	0.004	0.81	Mg 4.49	Ce 0.45	La 0.26

Values in parentheses are not certified and are given for information only.

101. Cast Irons (chip form)

These SRMs are furnished in 150-g units (unless otherwise noted) for use in checking chemical methods of analysis.

SRM	Туре				Eleme	ntal Co	mposition	(in Wt.	%)	
			(C	Mn	Р	S		Si	Cu
			Total (Graphiti	ic		Grav	Comb		
4L	Cast		3.21	2.66	0.825	0.149		0.043	1.33	0.240
6g	Cast		2.85	2.01	1.05	0.557		0.124	1.05	0.502
7g	Cast (High Phosp	horus)	2.69	2.59	0.612	0.794	0.061	0.060	2.41	0.128
82b	Cast (Ni-Cr)		2.85	2.37	0.745	0.025		0.007	2.10	0.038
107c	Cast (Ni-Cr-Mo)		2.99	1.98	0.480	0.079		0.059	1.21	0.205
115a	Cast (Cu-Ni-Cr)		2.62	1.96	1.00	0.086	0.064	0.065	2.13	5.52
122i	Cast		3.47		0.530	0.28		0.087	0.89	0.033
334	Gray Cast (Carbo	n & Sulfur)	2.83					0.043		
338	White Cast (Carb	on & Sulfur)	3.33					0.015		
341	Ductile		1.81	1.23	0.92	0.024	0.007	0.007	2.44	0.152
342a	Nodular		1.86	1.38	0.274	0.019		0.006	2.73	0.135
890	HC 250 + V		2.91		0.62	0.025		0.015	0.67	0.055
891	Ni-Hard, Type I		2.71		0.55	0.038		0.029	0.56	0.150
892	Ni-Hard, Type IV		3.33		0.76	0.054		0.015	1.83	0.270
SRM	Ni	Сг	v		M	D	Co			Ti
4L	0.042	0.118	0.024	4	0.0	40	Zn(<0.0	01)	(0.03)
6g	0.135	0.370	0.05		0.0					0.059
7g	0.120	0.048	0.01	0	0.0	12				0.044
82b	1.22	0.333	0.02	7	0.0					0.027
107c	2.20	0.693	0.01		0.8					0.019
115a	14.49	1.98	0.014		0.0					0.020
122i	0.047	0.151	0.012		0.0					0.024
341	20.32	1.98	0.012	2	0.0	10				0.018
342a	0.058	0.034			0.0					0.020
890	0.397	32.4	0.45		0.0		(0.0			
891	4.48	2.23	0.03		0.2		0.1			0.01)
892	5.53	10.18	0.04	1	0.2	0	0.3	1	(0.02)
SRM	As	Sn	Al (tot	al)	Mg		N			Fe
4L	(0.03)	(0.004)	(0.004	4) 5	6b (<0.0	01)	(0.0	016)	Pb (0.001)
	0.042	. ,					0.0	05		
6g 7g	0.014						0.0	04		
341					0.0	68				
342a					0.0	70				
890	(0.008)		(<0.01)				(0.0			1.8)
891	(0.004)	(<0.01)	(0.00				(0.0			8.5)
892	(0.006)	(0.02)	(0.00	0)			(0.0	19)	(7	7.4)

Values in parentheses are not certified and are given for information only.

NOTE: SRM 3e, White Iron and SRM 5m, Cast Iron, are In Prep.

101. Cast Steels, White Cast Irons and Ductile Irons (disk form)

SRM	Тур	e			E	lementa	l Compos	sition (i	n Wt. %)	
U IIII	- 7 P			С	Mn	Р	S	Si	Cu	Ni	Cr
C1137a 1138a 1139a C1145a C1146a	White Cast Cast Steel Cast Steel White Cast White Cast	(No. 1) (No. 2) Iron		2.86 0.118 0.790 2.92 1.97	0.52 0.35 0.92 0.187 1.60	0.087 0.035 0.012 0.215 0.55	0.017 0.056 0.013 0.191 0.016	1.15 0.25 0.80 0.271 3.93	0.192 0.09 0.47 0.46 1.48	2.17 0.10 0.98 0.62 3.07	0.643 0.13 2.18 0.63 2.56
C1173 1173 C1290 C1291	Cast Steel Ni-Cr-Mo- High Alloy High Alloy		√) Гуре I)	0.453 0.423 3.04 2.67	0.174 0.19 0.66 1.14	0.031 0.033 0.030 0.028	0.092 0.092 0.013 0.032	1.38 1.28 0.971 1.34	0.204 0.204 0.065 0.26	4.04 4.06 0.917 4.34	2.63 2.70 30.5 2.78
C1292 C2423 C2423a C2424a C2424 C2424a	High Alloy Ductile Iro Ductile Iro Ductile Iro Ductile Iro	n B n C	Гуре IV)	3.47 3.76 3.66 2.68 2.76	0.55 0.98 0.91 0.268 0.207		0.016 (0.0006) (<0.001) 0.024 0.016	0.59 1.67 1.59 3.37 3.30	0.36 1.55 1.61 0.125 0.099	5.04 0.146 0.147 0.061 0.045	11.4 0.322 0.322 0.13 0.15
SRM	v	Мо	Ti	As		Al					Co
C1137a 1138a 1139a C1145a C1146a	0.019 0.020 0.26 0.112 0.20	0.86 0.05 0.51 0.48 1.52	(0.04) (0.0012) (0.004) 0.012 0.20	(<0.00 (<0.00 (0.02 (0.16	15) !)	(0.00 (0.06 (0.13 (0.04 (0.02	7) F) F)	Mg 0.03 e (98.7) e (93.0) Pb 0.00		(Ce0.016 0.058 0.13
C1173 1173 C1290 C1291	0.42 0.42 0.442 0.031	1.46 1.50 (0.041) 0.32	0.037 (0.015)	(0.02	2)	(0.00		Pb (0.00 Nb (0.04			(0.064) (0.064)
C1292 C2423 C2423a C2424 C2424 C2424a	0.041 0.048 0.043 0.083 0.081	0.25 0.155 0.159 0.019 0.019	0.10 0.10 0.050 0.045			(0.09 (0.08 (<0.01 (<0.01)				(0.02) (0.02) (0.05) (0.05)
SRM		M	g	Ce			La	1			B
C2423 C2423a C2424 C2424 C2424a		0.0 0.0 0.0 0.0	76 06				0.0	11 042 011 010			(0.01) (0.01) (0.002) (0.001)

These SRMs are for analysis of cast steels and cast irons by rapid instrumental methods.

Values in parentheses are not certified and are given for information only. NOTE: SRM C1150b, White Cast Iron and C2425b, Ductile Iron, are In Prep.

102. Nonferrous Metals

Aluminum Base Alloys (chip and disk forms)

These SRMs are for analyses of casting and other aluminum alloys by chemical and instrumental methods. SRMs 1710 through 1719 are specially prepared to include low levels of cadmium and lead encountered in the analysis of recycled aluminum.

SRM	Туре		Un	it Siz	e	E	emen	tal C	Compos	sition (in V	Vt. %)		
				in g)	Mn	Si	Cu		Ni	Cr	v		Cd
87a	Al-Si			75	0.26	6.24	0.30		0.57	0.11	< 0.0	1	
855a	Casting Alloy			30	0.057	7.07	0.13	(0.016	0.013	(0.0	12)	Mn 0.060
856a	Casting Alloy	380 (fine	millings)	30	0.35	9.21	3.51		0.37	0.055	(- /	
858	Alloy 6011			35	0.48	0.79	0.84	1	0.0006	0.0011	0.0	030	
859	Alloy 7075			35	0.078	0.17	1.59		0.063	0.176		082	
1258	Alloy 6011			disk	0.48	0.78	0.84		0.0006	0.0011			
1259	Alloy 7075			disk	0.079	0.18	1.60		0.063	0.173			
1710	Alloy 3004			disk									0.00084
1711	Alloy 3004			disk									0.0020
1712	Alloy 3004			disk									0.0051
1713	Alloy 5182			disk									0.0008
1714	Alloy 5182			disk									0.0020
1715	Alloy 5182			disk									0.0050
SRM	Ti	Sn	Ga	F	e	Pb		Mg		Zn	Zr		Be
87a	0.18	0.05	0.02	0.0	51	0.10		0.37		0.16			
855a	0.15	0.010	Sr 0.018			0.019		0.37		0.085	(0.003)	Cal	(0.001)
856a	0.068	0.10	51 0.010	0.9		0.10		0.061		0.96	(0.005)	Ca	(0.001)
858	0.042)78			1.01		1.04		<	0.0001
859	0.041			0.2	202			2.45		5.46			0.0026
1258	(0.04)		(0.010) 0.0)79			0.98		1.03		<	0.0001
1259	(0.04)		(0.022	<u>)</u> 0.2	205			2.48		5.44			0.0025
1710	` '		`	,		0.00177							
1711						0.00639							
1712						0.01559							
1713						0.00171							
1714						0.00653							
1715						0.01509							

Values in parentheses are not certified and are given for information only.

NOTE: SRM 853a, Alloy 3004 and SRM 854a, Alloy 5182; SRM 1240c, Alloy 3004 and SRM 1241c, Alloy 5182, are In Prep.

SRM 1255b, Alloy 356 and SRM 1256b, Alloy 380;

102. Cobalt Base Alloys (chip and disk forms)

SRM	Ту	De						I	Elemental Composition (in Wt. %)					
	- 51	r -						С	Mn	Р	S	Si	Cu	
862 1242	High High	Тетре Тетре	rature A rature A	lloy L6 lloy L6	05 — (chip) 05 — (disk))		0.120 0.126	1.59 1.58	0.002 0.002	0.0008 0.0007	0.017 0.016	0.0010 0.0010	
SRM	Ni	Cr	v	Fe	W	Co	N	A	I	Ta	Nb		В	
862 1242	9.74 9.78	20.0 20.0	0.005 0.005	1.80 1.80	15.1 15.1	51.5 51.5	0.02	· ·		(<0.01) (<0.01)	(<0.00 (<0.00		< 0.0001) < 0.0001)	

Values in parentheses are not certified and are given for information only.

SRM	Ту	pe				Unit Si	ze	Elemer	ntal Comp	oosition	(in Wt.	%)
						(in g)	Cu	Ni	Fe		Zn	Pb
158a	Bronze, Silic	on				150	90.93	0.0	01 1.3	23	2.08	0.097
458	Beryllium-Co					50					0.002	0.002
459	Beryllium-Co					50	(97.7)				0.002	0.001
460	Beryllium-Co					50	(97.5)				0.004	0.258
871	Bronze, Pho					100	91.68		< 0.0		0.025	0.010
872	Bronze, Pho					100					4.13	
874	Cupro-Nicke											< 0.0005
875	Cupro-Nicke	l, 10%	(CDA	706) "Doj	ped"	100	87.83	3 10.4	2 1.4	45	0.11	0.0092
879	Nickel Silver					100		5 12.1			0.04	0.002
880	Nickel Silver		x 770)			100	54.51			004 2	7.3	0.002
1034	Unalloyed C					rod	(99.96		i) *(2.0			*(0.5)
1035	Leaded-Tin	Bronze	Alloy			50	(78.5)	(0.7	(0.0	001) (0.25)	(13.5)
SRM	Mn		Sb	Sn	Cr	Р	Ag	Si	Al	Te	Cd	S
158a	1.11			0.96		0.026		3.03	0.46			
458	(<0.002)	(<	0.005)	0.004	0.004	(< 0.01)	0.035	0.030			
459	(<0.003)	(<	0.005)	0.005	0.005	(< 0.003)		0.044			
460	(<0.003)	(<	0.005)		0.005		< 0.002)	0.77	0.048			
871				8.14		0.082						
872				4.16		0.26						
874	0.0020		0.001	0.007		0.002		(0.0006)			< 0.0002	
875	< 0.0007	<	0.001	0.009		0.0020		(0.0008)	(<	:0.0001)	0.0022	0.0004
879	< 0.001											
880	< 0.001											
1034	*(<0.1)	*(0.2)	*(<0.2) *			*(8.1)	*(<2)	*(<2)	*(0.5)	*(<1) *(3.3
1035				(6.8)	((0.004)						
SRM	Bi	0	Co	С	Au	Н		s	As	Mg	ţ	Ti
458			0.076	Be 0.360			(<0.	002) Z	r (<0.002	2) 0.00)3 (< 0.002
459				Be 1.82					r (<0.002			< 0.003
460				Be 1.86			(<0.		r (<0.002			< 0.003
874	< 0.0002	(0.06)		(0.0023)		(0.0016		0011)	(< 0.000			(0.000
875	0.003	(0.14)		(0.0035)		(0.004)		0011)	(0.001			< 0.000
015												
1034	*(0.2)	*(363)	*(0.2)	*(< 0.05)	*2.	8	*(0.2)	*(<	1)	

102. Conner Base Alloys (chin and rod forms)

Values in parentheses are not certified and are given for information only. * Value is in mg/kg (SI unit). ** Sulfur value is in mg/kg (SI unit).

102. Copper Base Alloys (block and disk forms)

The SRMs with a "C" prefix are chill-cast blocks, 31 mm square, 19 mm thick; the others are wrought disks, 31 mm in diameter and 19 mm thick. Both forms have nearly identical elemental compositions.

SRM		Туре				Element	al Comp	osition (in Wt. %)		
		-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Cu	Zn	Pb	Fe	Sn	Ni	Al	Sb
1104		Free-Cutting Brass		61.33	35.31	2.77	0.088	0.43	0.070		
1107		Naval Brass B		61.21	37.34	0.18	0.037	1.04	0.098		
1108		Naval Brass C		64.95	34.42	0.063	0.050	0.39	0.033		
1110		Red Brass B		84.59	15.20	0.033	0.033	0.051	0.053		
1111		Red Brass C		87.14	12.81	0.013	0.010	0.019	0.022		
1112	C1112	Gilding Metal A		93.38	6.30	0.057	0.070	0.12	0.100		
1113	C1113	Gilding Metal B		95.03	4.80	0.026	0.043	0.064	0.057		
1114	C1114	Gilding Metal C		96.45	3.47	0.012	0.017	0.027	0.021		
1115	C1115	Commercial Bronze	eΑ	87.96	11.73	0.013	0.13	0.10	0.074		
1116	C1116	Commercial Bronze	вB	90.37	9.44	0.042	0.046	0.044	0.048		
1117	C1117	Commercial Bronze	еC	93.01	6.87	0.069	0.014	0.021	0.020		
	C1122	Beryllium-Copper		97.45	(0.01)	(0.003)	0.16	(0.01)	(0.01)	0.17	
	C1123	Beryllium-Copper		97.10	0.01	(0.001)	0.04	(0.01)	(0.01)	0.02	
1276a		Cupro-Nickel (CD/	A 715)	67.8	0.038	0.004	0.56	0.023	30.5		0.0004
SRM		Be	Cd		Mn	1	Р		Si		Ag
1104							0.005	5			
	C1106				0.00						
	C1108				0.02	25					
1112	C1112						0.009)			
1113	C1113						0.008				
1114	C1114						0.009				
1115	C1115						0.005	5			
	C1116								0.008		
1117	C1117						0.002				
	C1122	1.75			(0.00		(0.004		0.17		(0.005)
	C1123	0.46			(0.00)2)	(0.002	2)	0.03		(0.009)
			0.000	2	1.01		0.000	б			
1276a											
1276a SRM		Со			Cr			Se			Mg
	C1122							Se			Mg
	C1122 C1123	Co 0.220 2.35			Cr (0.002) (0.001)			Se 0.0005			<u>М</u> д

Values in parentheses are not certified and are given for information only. NOTE: SRM 1275a, Cupro-Nickel (CDA 706), in In Prep.

Chip 393 394 395 396 398 399 400	Roo 494 499 499 457 498 499 500	Ui 4 Ui 5 Ui 6 Ui 7 Ui 8 9 Ui	Type nalloyed Copper nalloyed Copper nalloyed Copper nalloyed Copper nalloyed Copper	"O" I II III IV	(in Wt. 9 99.998 99.908 99.944 99.955 99.96 99.98	0.25 4.5 8.0 < 1 0.2	As 5 0.41 2.6 1.6 <0.2 0.2	Bi < 0.1 0.35 0.50 0.07	Cr <0.5 2.0 6.0 4.3	Co 0.02 0.5 0.4	Fe <1 147 96 143	Pb 0.039 26.5 3.25 0.41	Mn < 0.01 3.7 5.3 7.5
 394 395 396 398 399 	493 490 457 498 499	4 Ui 5 Ui 6 Ui 7 Ui 8 	Copper nalloyed Copper nalloyed Copper nalloyed Copper nalloyed Copper nalloyed	"O" I II III IV	99.908 99.944 99.955 99.96	4.5 8.0 < 1 0.2	2.6 1.6 <0.2	0.35 0.50 0.07	2.0 6.0	0.5	147 96	26.5 3.25	3.7 5.3
395 396 398 399	493 490 457 498 499	4 Ui 5 Ui 6 Ui 7 Ui 8 9 Ui	nalloyed Copper nalloyed Copper nalloyed Copper nalloyed Copper nalloyed	I II III IV	99.944 99.955 99.96	8.0 < 1 0.2	1.6 <0.2	0.50 0.07	6.0		96	3.25	5.3
396 398 399	49(45 ⁻ 498 499	5 Ui 5 Ui 7 Ui 8 9 Ui	nalloyed Copper nalloyed Copper nalloyed Copper nalloyed	II III IV	99.955 99.96	<1 0.2	< 0.2	0.07		0.4			
398 399	457 498 499	5 Ui 7 Ui 8 9 Ui	nalloyed Copper nalloyed Copper nalloyed	III IV	99.96	0.2			4.3	0.4	143	0.41	75
399	498	7 Ui Ui 8 9 Ui	nalloyed Copper nalloyed	IV			0.2						1.5
399	499	8 9 Ui	nalloyed		99.98			0.2	(0.3)	(0.2)	2.0	0.5	< 0.1
	499	9 U 1			99.98	7.5 7.4	25 25	2.0 2.0	(0.3) (0.3)	2.8 2.7	11.4 11	9.9 10	(0.3) (0.3)
400	500		nalloyed		99.79	30	47	10.5	(0.5)	0.5	20.0	114	(0.3)
) U	Copper nalloyed		99.70	102	140	24.5	(0.5)	0.6	41	128	(0.2)
	C125	2 Pł	Copper nosphori:	zed	99.89	42	115	21	7.4	90	(35)	60	(17)
	C125	3 Pł	Copper osphoriz	zed	99.42	(140)	432	70	216	495	(330)	244	(380)
454		U	Copper nalloyed Copper		99.84	24	46	19		(4)	(50)	66	
SR	M	Ni	Se	Ag	S	Te	Sn	Zn	Al		Cd	Au	Mg
393 394	494	0.05 11.7	< 0.05 2.00	0.10 50.5	<1 <	< 0.5 0.58	<0.1 70	<0.1 405	<0. (<2		0.1 0.5)	< 0.05 (0.07)	<0.1 (<1)
395	495	5.4	0.63	12.2	13	0.32	1.5	12.2	(<2		0.4)	(0.07)	(<1)
396	496	4.2	0.62	3.30		(0.02)	0.8	5.0	(<2			< 0.05)	(<1)
	457	0.6	4.2	8.1	(4)	0.29	< 0.2	<11	(<2			< 0.05)	(<1)
398	498	7.0 7.0	17.5 17.5	20.1 20.1		10.1 10.1	4.8 5	24 25	(<2		2) 2)	(0.1) (0.1)	(<1) (<1)
399		506	95	117		50	(~90)	45	(<2			(4)	(<1)
400	500		214	181		53	(~200)	114	(<2			(10)	(<1)
	C1252 C1253 (53.6 164	166.6 495		51 99	(110) (470)	60 350	7) (180			34.9 74.4	(20)
454		(150)	479	286		27	2.2	7	(160) /·	+	7.5	(80)
SR	М	Si	i	Be	В		Ca	Li	P	1	Р	Ti	Zr
393 394	494 494	<0> (<2		< 0.01	< 0.01	<	0.05	< 0.01	< 0.0	5 <	< 0.05	< 0.5	< 0.5
394 395	494	(</td <td></td>											
396	496	(<2											
398	498	(<' (<'	2)										
399	499	(<2	2)										
400	500	(<)		- 5)				(0.02)					
	C1252	(13		< 5)		(6)	(0.03)		E	10		
454	C1253	(350	J) ((12)		()	1)	(9)	(0.1		18		

Copper "Benchmark" (chip and rod forms) 102.

Values in parentheses are not certified and are given for information only. *SI unit. Replaces terms "ppm" and " $\mu g/g$ ".

Naval Brass (disk form) 102.

This series of SRMs was produced through a cooperative program between NIST and the Institute for Non-Ferrous Metals (IMN), Gliwice, Poland and funded under the auspices of the Second Maria Sklodowska-Curie Fund. Development, characterization and certification of the monolithic brasses were carried out by the IMN; homogeneity testing was performed by NIST. A detailed technical discussion of these SRMs will be given in a Special Publication due to be published in mid-1995. Each SRM unit is in the form of disk, ~39.5 mm in diameter and 20 mm thick.

SRM	Туре		Elemen	tal Composition	(in Wt. %)	
		Cu	Pb	Fe	Sn	Ni
1776	Naval Brass WK1	59.97	0.17	0.28	0.11	0.28
1777	Naval Brass WK2	60.56	0.33	0.16	1.34	0.21
1778	Naval Brass WK3	62.10	0.11	0.06	0.49	0.13
1779	Naval Brass WK4	63.28	0.05	0.08	1.04	0.07
1780	Naval Brass WK5	64.92	0.006	0.01	0.47	0.005
SRM	Al	Sb	Mn	Р	Si	Bi
1776	0.11	0.024	0.12	0.030	0.30	0.014
1777	0.08	0.019	0.09	0.018	0.23	0.012
1778	0.04	0.013	0.04	0.018	0.15	0.009
1779	0.01	0.006	0.02	0.011	0.08	0.005
1780	0.004	0.002	0.006	0.006	0.006	0.001

102. Lead Base Alloys (chip and disk forms)

SR	м	Туре			Eleme	ntal Co	mpositio	on (in W	(t. %)	
Chip	Disk	-98-	Cu	Ni	As	Sn	Sb	Bi	Ag	Fe
1129		Solder 63Sn-37Pb	0.16	0.010	0.055	62.7	0.13	0.13	0.075	
127b	1131	Solder 40Sn-60Pb	0.011	0.012	0.01	39.3	0.43	0.06	0.01	
53e	1132	Bearing Metal(Pb-Sb-Sn)	0.054	0.003	0.057	5.84	10.26	0.052		< 0.001

102. Lead Base Material (disk form)

These SRMs are issued in the form of disks, 50 mm in diameter and 16 mm thick. They are intended for use with optical emission spectrometric methods of analysis.

SRM Type	C2415 Battery Lead	C2416 Bullet Lead	C2417 Lead-Base Alloy	C2418 High-Purity Lead
	Elen	nental Composition (i	n Wt. %)	
Sb	2.95	0.79	0.010	(<0.0001)
As	0.20	0.056	0.011	(<0.0001)
Bi	0.054	0.10	0.010	(<0.0005)
Cu	0.095	0.065	0.010	(<0.0001)
S	0.0026	0.0015	(<0.0005)	
Ag	0.002	0.0044	0.010	0.0001
Sn	0.33	0.09	(<0.010)	(<0.0005)
Al	(<0.0003)	(<0.0001)	(<0.0001)	(<0.0001)
Cd	0.002	(0.0002)	(<0.0002)	0.0003
Ca	(<0.001)	(<0.001)	(<0.001)	(<0.0005)
Co	x	(<0.0002)	(<0.0002)	(<0.0005)
Fe	< 0.001	(<0.0005)	(<0.0003)	(<0.0005)
Mn	< 0.001	(<0.0005)	(<0.0003)	(<0.0005)
Ni	< 0.001	(<0.0005)	(<0.0005)	(<0.0005)
Te	0.0045	(<0.0005)	(<0.0005)	(<0.0005)
Zn	< 0.001	(<0.0005)	(<0.0005)	(<0.0005)

Values in parentheses are not certified and are given for information only

102.	Tin	Base Alloy	s (chip f	orm)								
ся <u>.</u>	SRM	Туре	Unit Size	<u></u>		Eleme	ntal Co	mpositi	on (in V	₩t. %)		
			(in g)	Pb	Sn	Sb	Bi	Cn	Fe	As	Ag	Ni
	54d	Bearing Metal	170	0.62	88.57	7.04	0.044	3.62	0.027	0.088	0.0032	0.0027

Nickel Base Alloys (chip and disk forms) 102.

SRM	Т	ype	Unit Size			Elemen	tal Comp	osition	(in Wt. 9	%)	
			(in g)	С	Mn	Р	S	Si	Cu	Ni	Cr
349a	Waspaloy	/ Ni-Co-Cr	150	0.035	0.019	0.003	0.0024	0.018	0.007	58.1	19.3
864	Inconel,		100	0.064	0.29	0.010	0.003	0.12	0.26	73.1	15.7
865	Inconel,		100	0.037	0.18	0.012	0.001	0.41	0.36	59.5	21.9
866	Incoloy, 8	300	100	0.082	0.92	0.017	0.001	0.17	0.49	30.8	20.1
867	Incoloy, 8		100	0.021	0.39	0.018	0.002	0.32	1.74	43.5	23.4
882	Ni-Cu-A	1	100	0.006	0.0007		0.0014	0.006	31.02	65.25	
1159		c and Magnetic		0.007	0.305	0.003	0.003	0.32	0.038		0.06
1160		c and Magnetic	disk	0.019	0.550	0.003	0.001	0.37	0.021	80.3	0.05
1243	Waspaloy		disk	0.024	0.019	0.003	0.0018	0.018	0.007	58.78	19.20
C1248	Ni–Ću		disk	0.266	0.31	0.002	0.0008	1.61	29.80	65.75	0.095
SRM	Mo	Co		Ti		Al	В		Fe		Nb .
349a	4.25	12.46		3.06		1.23	0.0	05	1.15		V 0.12
864	0.20	0.059		0.26		0.26	< 0.0	05	9.6		(0.14)
865	8.6	0.072		0.28		0.21	< 0.0	01	4.5		3.5
866	0.36	0.075		0.31		0.29	< 0.0	01	46.1		(0.09)
867	2.73	0.089		0.75		0.062	0.0		26.6		(0.45)
882				0.57		2.85			0.009		
1159	0.010	0.022							51.0		
1160	4.35	0.054							14.3		
1243	4.25	12.46		3.06		1.23	0.0	05	0.79		V 0.12
C1248	0.006	Pb 3.8 mg/kg	* Sn	1.1 mg	g/kg*	0.009			2.10	Zn 3	mg/kg*

Values in parentheses are not certified and are given for information only. *SI unit. Replaces terms "ppm" and " $\mu g/g$ ".

NOTE: SRM 863, Inconel 718, is In Prep.

Trace Elements in Nickel Base Superalloys (chip form) 102.

SRM	Туре			1	Unit Size		1	Trace Co	omposition	(in mg/	kg*)	
GAUM	1340				(in g)	Р	b	Bi	Se	1	ſe	TI
897 898 899	"Tracealloy "Tracealloy "Tracealloy	" B			35 35 35		.7 .5 .9	(0.5) (1.0) (0.3)	9.1 2.0 9.5	0 0	05 0.54 5.9	0.51 2.75 0.252
SRM					Base C	omposit	ion (in	Wt. %)				
SKW	C	Cr	Co	Ni	W	Nb	Al	Ti	В	Zr	Та	Hf
897, 898, 899	(0.12)	(12.0)	(8.5)	(Bal)	(1.75)	(0.9)	(2.0)	(2.0)	(0.010)	(0.10)	(1.75)	(1.2)

Values in parentheses are not certified and are given for information only. *SI unit. Replaces terms "ppm" and "µg/g".

102. Nickel Oxides (powder form)

SRM	Ту	De	Unit	Size]	Elemen	tal Com	posit	ion (in V	Vt. %)		
	-0	F -	(ir	g)	Mn	Si	Cı	ı	Cr	Co	Ti	Al	Fe	Mg
671 672 673	Oxio Oxio Oxio	le 2	2	25 25 25	0.13 0.095 0.0037	0.047 0.11 0.006		018 ().025).003).0003	0.3 0.5 0.0	5 0.00	0.004	0.079	0.030 0.020 0.003
SRM					Trac	e Comp	oositi	on (in	mg/kg*)				
	Pb	Se	Bi	As	Sn	Sł	•	Cd	G	a	Ag	Te	TI	Zn
671 672 673	16 38 3.5	2.0 0.40 0.2	0.07 0.3 0.06	(59) (74) (0.4)	(2.7) (4) (<0.5)	· · ·).4)).5)).5)	(0.7) (1.7) (0.05)		.8) .4) .1)	(0.5) (0.3) (<0.1)	(<0.2) (<0.2) (0.4)	(<0.1) (<0.1) (<0.1)	(160) (140) (1.7)

Values in parentheses are not certified and are given for information only. *SI unit. Replaces terms "ppm" and " $\mu g/g$ ".

102. Titanium Base Alloys (chip and disk forms)

SRM	Туре		TI	nit Size	F	Elemental Co	ompositio	n (in Wt.	%)
SILVI	Type			(in g)	С	Mn	Cr	Cu	Мо
173b	Al-V			50	0.025			0.008	0.013
176	Al–Sn			100	0.015	0.0008		0.003	0.0003
641	8 Mn (A)			disk		6.68			
642	8 Mn (B)			disk		9.08			
643	8 Mn (C)			disk		11.68			-
644	Cr-Fe-Mo			disk			1.03		3.61
647	Al-Mo-Sn-Zr			50	0.006				1.96
648	Al-Sn-Zr-Cr-	Мо		50	0.011		3.84		3.75
649	V-Al-Cr-Sn			50	0.011	(<0.01)		(<0.001)	
650	Unalloyed A			30		0.016	0.002	0.033	0.002
651	Unalloyed B			30		0.005	0.037	0.032	0.031
652	Unalloyed C			30		0.046	0.082	0.081	0.039
654b	Al-V			disk			(0.025)	0.004	(0.013)
1128	V-Al-Cr-Sn			disk	0.011	(<0.01)		(<0.003)	(0.006)
2431	6Al-2Sn-4Zr-	10Mo		50	0.006			(<0.01)	6.01
2432	10V-2Fe-3Al			50	0.008	(<0.01) (< 0.01)	(<0.005)	
SRM	Fe	Al	v	Sn	Si	N	W	V	Zr
173b	0.23	6.36	4.31	(0.03)	0.046	0.015			
176	0.070	5.16		2.47		0.010			
644	1.36								
647	0.075	5.88	(<0.02)	2.02		(<0.01)			3.90
648	0.15	5.13		1.98	0.027	(0.01)			1.84
649	0.133	3.08	15.1	3.04		(0.01)			
650	0.024	< 0.01	0.009	0.03	0.004	. ,	1.	55	
651	0.058	< 0.006	0.021	0.026	0.011			39	
652	0.67	0.039	0.024	0.053	0.16		0.		
654b	0.023	6.34	4.31	0.023	0.045		Ni 0.	028	0.008
1128	0.134	3.06	15.13	3.04		(0.01)			
2431	0.056	5.73	(<0.01)	1.98		Ni (<0.01)	(<0.		4.06
2432	1.77	3.15	10.00	B (<0.001)	0.029	Ni (<0.01)	(<0.	001) (•	< 0.01)

Values in parentheses are not certified and are given for information only. NOTE: SRM 2433, 8AI-1Mo-1V, is In Prep.

SRM	Туре		Unit Size			Elemer	tal Co	mposition	(in Wt.	%)	
	~ *		(in g)	Cu	Al	Mg	Fe	Pb	Cd	Sn	Cr
94c	Die Casting Alloy		150	1.01	4.13	0.042	0.018	0.006	0.002	0.006	
625	Zinc-base A-ASTM	AG 40A	disk	0.034	3.06	0.070	0.036	0.0014	0.0007	0.0006	0.0128
626	Zinc-base B-ASTM	AG 40A	disk	0.056	3.56	0.020	0.103	0.0022	0.0016	0.0012	0.0395
627	Zinc-base C-ASTM	AG 40A	disk	0.132	3.88	0.030	0.023	0.0082	0.0051	0.0042	0.0038
628	Zinc-base D-ASTM	AC 41A	disk	0.611	4.59	0.0094	0.066	0.0045	0.0040	0.0017	0.0087
629	Zinc-base E-ASTM	AC 41A	disk	1.50	5.15	0.094	0.017	0.0135	0.0155	0.012	0.0008
630	Zinc-base F-ASTM	AC 41A	disk	0.976	4.30	0.030	0.023	0.0083	0.0048	0.0040	0.0031
631	Zinc spelter (mod.)		disk	0.0013	0.50 (< 0.001)	0.005	(0.001)	0.0002	0.0001	0.0001
SRM	Mn	Ni	Si		In	Ga		Ca	Ag	5	Ge
94c	0.014	0.006									
625	0.031	0.0184	0.017								
626	0.048	0.047	0.042								
627	0.014	0.0029	0.021								
628	0.0091	0.030	0.008								
629	0.0017	0.0075	0.078								
630	0.0106	0.0027	0.022								
631	0.00015	(< 0.0005)	(0.002) (0.0023	(0.0	02)	< 0.001	(<0.0	005)	(0.0002

102. Zinc Base Alloys (chip and disk forms)

Values in parentheses are not certified and are given for information only.

102. Zirconium Base Alloys (chip and disk forms)

SRM	Туре	Unit Siz	7.0			Element	al Comp	osition	(in Wt	. %)			
Ditter	-380	(in g)		Mn	Hf	Cu	Ni	Cr	Ti	Sn	Fe	N	Al
360b	Zircaloy-4	100	0.011	0.0010	0.008	0.002	0.0025	0.10	0.002	1.55	0.21	0.0045	0.004
SRM	Туре	Unit _				Element	al Comp	osition	(in mg	/kg*)			
	-380	Cine.	Hſ	C (Cr Cı	ı Fe	Mn	Mo	Ni	N	Si	Ti	W
1235	Zirconium B	disk	95 (170) (6	50) (80) (850) (25)	(40)	(65)	(32)	(95) (90)	(50)

Values in parentheses are not certified and are given for information only. *SI unit. Replaces terms "ppm" and " $\mu g/g$ ".

102. Gases in Metals (platelet form)

SRM	Туре	Hydrogen (in mg/kg*)
352c	Unalloyed Titanium for Hydrogen	49
*SI unit. F	Replaces terms "ppm" and "µg/g".	

103. Microanalysis

Metals (rod and wire forms)

SRM	Туре		Elemental	Composition	(in Wt. %)	
	~	Au	Cu	Ag	w	Мо
480	Tungsten-20% Mo Alloy				78.5	21.5
481	Au 100 A Au-20% Ag B Au-40% Ag C Au-60% Ag Au-80% Ag E Ag 100 F	$ \begin{array}{r} 100.00 \\ 80.05 \\ 60.05 \\ 40.03 \\ 22.43 \end{array} $		19.96 39.92 59.93 77.58 100.00		
482	Au 100 A Au-20% Cu B Au-40% Cu C Au-60% Cu Au-80% Cu E Cu 100 F	$100.00 \\ 80.15 \\ 60.36 \\ 40.10 \\ 20.12$	19.83 39.64 59.92 79.85 100.00			

103. Synthetic Glasses (rod form)

	_	SRM 1872			SRM 1873				
		Glass			Glass				
	K-453	K-491	K-968	K-458	K-489	K-963			
			Compositio	on (in Wt. %)					
Pb Pb	(99.37) 54.21	(99.38) 54.69	(100.07) 54.74	(99.71)	(99.71) (1.32)	(100.02)			
Si Ge	28.43	(0.11) 26.10	25.93	23.05	(22.23)	(21.96) (0.47)			
Ba Zn	20110		(0.46)	41.79 3.01	39.53 2.93	39.21 2.95			
P			$\begin{pmatrix} 0.21 \\ 0.22 \end{pmatrix}$			(0.33) (0.34)			
Mg Al B		(0.10)			(0.11)				
Zr Ti Ce Ta Fe Li		(0.26) (0.14) (0.59) (0.52) (0.17)	(0.48) (0.16)		(0.40) (0.27) (0.80) (0.95) (0.35)	(0.61) (0.32)			
Li Ni Eu U Th Cr			(0.20) (0.64) (0.05) (0.12) (0.19)			(0.33) (0.95) (0.16) (0.06) (0.31)			
õ	(16.73)	(16.45)	(16.67)	(31.86)	(31.70)	(32.00)			
Total	(99.37)	(99.13)	(100.07)	(99.71)	(100.59)	(100.00)			

Values in parentheses are not certified and are given for information only.

103. Thin Film for Transmission Electron Microscope

SRM Type	Elemental Composition (in Wt. %)								
ски курс	Mg	Si	Ca	Fe	0	Ar			
2063a Mineral glass	7.97	25.34	11.82	11.06	43.2	(0.4)			

104. High-Purity Materials

High-Purity Metals (solid forms)

These SRMs are for determining impurity elements in high-purity metals.

SRM		Туре			IIni	it Size				ntal Con in mg/kg	nposition *)	
Sitter		турс			UII	it Dize		Cu	Ni	Sn	Pb	Zr
685R 685W 680a	High	-Purity G	old (Rod old (Wire latinum (é)	1.4 mm > 0.51 mm:	× 25 mm lo × 102 mm l : L1 (10 cm) ; L2 (1 m)	ong	0.1 0.1 0.1		(<0.07) (<0.07)		<0.1
682 683 726 728 †885	Zinc Seler Zinc,	,	ermediate diate Puri	~	semicirc semicirc shot, 450 shot, 450 pin, 200	57 mm g g		5.9 < 1 In Pre	<pre><(<0.1) <0.5 cp 0.0001</pre>	(0.02) (0.02) <1 <0.000	11.1 <1	Mn < 0.3
SRM	Ag	Mg	In	Fe	0	Pd	Au	RI	1	Ir	Cd	TI
685R 685W 680a	[0.1] [0.1] < 0.1	(<0.2) (<0.2) <1	0.007 0.007	0.2 0.3 1.3	[<2] [2] 4	0.2	<1	< 0.2	! <	0.01		
682 683 726 †885	(0.02) 1.3 <1 0.0005	(<0.1) <1	S 12	(0.1) 2.2 1 < 0.000	(<0.5) Cr<1 5 0.31	Mo < 0.3	Ге 0.3 S 0.0018	As < 2 Sb < 0.		-	(0.1) 1.1 B<1 Bi<0.0001	(0.2) Ca < 1 Zn < 0.0001

Values in parentheses are not certified and are given for information only.

Values in brackets are subject to greater error since only one method of analysis was employed. * SI unit: Replaces terms "ppm" and " $\mu g/g$ ".

† SRM 885 values are in Wt. %.

104. Stoichiometry (powder form)

These SRMs are defined as primary, working, and secondary standards in accordance with recommendations of the Analytical Chemistry Section of the International Union of Pure and Applied Chemistry [Ref. Analyst 90, 251 (1965)]. These definitions are as follows:

Primary Standard:

a commercially available substance of purity 100 ± 0.02 percent (Purity 99.98 + percent). Working Standard:

a commercially available substance of purity 100 ± 0.05 percent (Purity 99.95 + percent). Secondary Standard:

a substance of lower purity which can be standardized against a primary grade standard.

SRM	Туре	Unit Size (in g)	Certified Use	Stoichiometric Purity (in %)
17d	Sucrose	60	Polarimetric Value	(99.9)
40h	Sodium Oxalate	60	Reductometric Value	99.972
41c	Dextrose (D-Glucose)	70	Reductometric Value	99.9
83d	Arsenic Trioxide	60	Reductometric Value	99.9926
84j	Potassium Hydrogen Phthalate	60	Acidimetric Value	99.996
136e	Potassium Dichromate	60	Oxidimetric Value	99.984
350a	Benzoic Acid	30	Acidimetric Value	99.9958
723b	Tris(hydroxymethyl)aminomethane	50	Basimetric Value	99.9238
951	Boric Acid	100	Acidimetric and Boron Isotopic Value	100.00
987	Strontium Carbonate	1	Assay and Isotopic	99.98
999a	Potassium Chloride	60	Assay Standard for:	
			Potassium	In Prep
			Chloride	In Prep

Values in parentheses are not certified and are given for information only.

104. Microchemistry (powder form)

SRM	Type Unit Size Composition (in Wt. %)									
	-370	(in g)	С	H	N	Br	Cl	F	S	CH3O-
141d	Acetanilide	In Pre	р							
142	Anisic Acid	2	•							20.40
143c	Cystine	2	29.99	5.03	11.66				26.69	
148	Nicotinic Acid	2	58.54	4.09	11.38					
2141	Urea	2			46.63					
2142	o-Bromobenzoic Acid	2				39.80				
2143	p-Fluorobenzoic Acid	2						13.54		
2144	m-Chlorobenzoic Acid	2		-			22.62			

104. Spectrometry, Single Element (solution form)

These SRMs are intended as standard stock solutions for use in atomic absorption spectrometry, optical emission (plasma) spectrometry, or any other analytical technique that requires aqueous solutions for calibrating instruments. Each SRM is a single element solution of 50 mL with a nominal concentration of 10 mg/mL, except where noted in the Element column.

SRM	Element	Acid Concentration
3101a	Aluminum	HNO3 10%
3102a	Antimony	HNO ₃ 10% + HF 2%
3103a	Arsenic	HNO ₃ 10%
3104a	Barium	HNO ₃ 1%
3105a	Beryllium	HNO ₃ 10%
3106	Bismuth	HNO3 10%
3107	Boron (5 mg/mL)	H ₂ O
3108	Cadmium	HNO3 10%
3109a	Calcium	HNO ₃ 10%
3110	Cerium	HNO3 10%
3111a	Cesium	HNO3 1%
3112a	Chromium	HNO ₃ 10%
3113	Cobalt	HNO ₃ 10%
3113	Copper	HNO ₃ 10%
3115a	Dysprosium	HNO ₃ 10%
5115a	Dysprosium	11103 1070
3116a	Erbium	HNO3 10%
3117a	Europium	HNO3 10%
3118a	Gadolinium	HNO3 10%
3119a	Gallium	HNO ₃ 10%
3120	Germanium	Oxalic Acid 10%
3121	Gold	HCl 10%
	Hafnium	
3122		HNO ₃ 10% + HF 2%
3123a	Holmium	HCl 10%
3124a	Indium	HNO ₃ 10%
3126a	Iron	HNO3 10%
3127a	Lanthanum	HNO ₃ 10%
3128	Lead	HNO3 10%
3129a	Lithium	HNO3 1%
3130a	Lutetium	HNO ₃ 10%
	Managing	LINIQ 100%
3131a	Magnesium	HNO ₃ 10%
3132	Manganese	HNO ₃ 10%
3133	Mercury	HNO3 10%
3134	Molybdenum	HCl 10%
3135a	Neodymium	HNO ₃ 10%
3136	Nickel	HNO3 10%
3137	Niobium	5% HNO ₃ + HF 2%
3138	Palladium	HCl 10%
3139a	Phosphorus	HNO ₃ 0.05%
	Platinum	HNO3 0.05% HCl 10%
3140	r iatiituili	
3141a	Potassium	HNO3 1%
3142a	Praseodymium	HNO3 10%
3143	Rhenium	HNO ₃ 10%
3144	Rhodium (1 mg/mL)	HCl 10%
3145a	Rubidium	HNO ₃ 1%

104.	Spectrometry, Sin	gle Element (solution fo	orm) – Continued
	SRM	Element	Acid Concentration
	3147a	Samarium	HNO ₃ 10%
	3148a	Scandium	HNO ₃ 10%
	3149	Selenium	HNO ₃ 10%
	3150	Silicon	H ₂ O
	3151	Silver	HNO3 10%
	3152a	Sodium	HNO ₃ 1%
	3153a	Strontium	HNO ₃ 10%
	3154	Sulfur	H ₂ O
	3155	Tantalum	HNO ₃ 5% + HF 2%
	3156	Tellurium	HCl 20%
	3157a	Terbium	HNO ₃ 10%
	3158	Thallium	HNO ₃ 10%
	3159	Thorium	HNO ₃ 10%
	3160a	Thulium	HNO ₃ 10%
	3161	Tin	HCl 60%
	3162a	Titanium	HNO ₃ 10% + HF 2%
	3163	Tungsten	HNO ₃ 7% + HF 4%
	3164	Uranium	HNO ₃ 10%
	3165	Vanadium (5 mg/mL)	HNO ₃ 10%
	3166a	Ytterbium	HNO3 10%
	3167a	Yttrium	HNO ₃ 10%
	3168a	Zinc	HCI 10%
	3169	Zirconium	HNO ₃ 10% + HF 2%

104. Spectrometry, Multi-Element (solution form)

SRMs 3171a and 3172a consist of single 50-mL solutions, each containing several elements in concentration ratios appropriate for natural water and similar type sample analysis. Multi-element SRM 3179 consists of a set of three 50-mL solutions, (3179-I, 3179-II and 3179-III), designed to be combined, diluted (I, 1:100; II and III, 1:1000) and used immediately, as the full combination of elements is unstable over extended periods of time. The elemental concentration ratios in the final combined and diluted solution of SRM 3179 are appropriate for the analysis of soil, sediment and sludge leachates.

Element	Source, Purity (in Wt. %)	Nominal Concentration (in µg/mL)								
SRM 3171a Multielement Mix A1 Standard Solution (in HNO ₃ 5%)										
Aluminum	Metal, (99.99+)	100 ± 0.5								
Antimony	Metal, (99.99)	100 ± 0.5								
Beryllium	Metal, (99.9)	10 ± 0.1								
Cadmium	Metal, (99.99+)	100 ± 0.5								
Chromium	Metal, (99.99 +)	100 ± 0.5								
Iron	Metal, (99.99+)	100 ± 0.5								
Magnesium	Metal, (99.999)	100 ± 0.5								
Manganese	Metal, (99.99)	100 ± 0.5								
Molybdenum	Metal, (99.99+)	100 ± 0.5								
Nickel	Metal, (99.999)	100 ± 0.5								
Potassium	KCl, (99.98)	500 ± 2.5								
Sodium	NaCl, (99.98)	100 ± 0.5								
Vanadium	Metal, (99.97)	100 ± 0.5								

Element	Source, Purity (in Wt. %)	Nominal Concentration (in µg/mI		
SRM 3172a Multielement Mix I	31 Standard Solution (in HNO ₃ 5%)			
Arsenic	Metal, (99.83)	200 ± 1.0		
Barium	BaCO ₃ , (99.88)	10 ± 0.1		
Calcium	CaCO ₃ , (99.99)	10 ± 0.1		
Cobalt	Metal, (99.92)	100 ± 0.5		
Copper	Metal, (99.9)	100 ± 0.5		
Lead	Metal, (99.99)	100 ± 0.5		
Selenium	Metal, (99.99)	500 ± 2.5		
Silver	Metal, (99.999+)	100 ± 0.5		
Strontium	SrCO ₃ , (99.99)	10 ± 0.1		
Thallium	Metal, (99.99)	100 ± 0.5		
Zinc	Metal, (99.99+)	100 ± 0.5		

SRM 3179 Multielement Mixes I, II, and III Standard Solutions (in HNO₃ 5%)

I Aluminum	Metal, (99.99+)	100 ± 0.5
Arsenic	Metal, (99.99)	200 ± 1.0
Iron	Metal, (99.99+)	199 ± 1.0
Lead	Metal, (99.99)	100 ± 0.5
Magnesium	Metal, (99.999)	100 ± 0.5
Manganese	Metal, (99.99)	100 ± 0.5
Phosphorus	$NH_4H_2PO_4$, (99.9)	100 ± 0.5
Potassium	KCl, (99.98)	100 ± 0.5
Sodium	NaCl, (99.98)	100 ± 0.5
Vanadium	NH4VO ₃ , (99.99)	50 ± 0.2
Zinc	Metal, (99.99+)	100 ± 0.5
II Barium	BaCO ₃ , (99.99)	100 ± 0.5
Cadmium	Metal, (99.99+)	100 ± 0.5
Calcium	CaCO ₃ , (99.99)	100 ± 0.5
Chromium	Metal, (99.99)	100 ± 0.5
Cobalt	Metal, (99.98)	99.5 ± 0.5
Copper	Metal, (99.99)	100 ± 0.5
Lanthanum	La_2O_3 , (99.99)	100 ± 0.5
Lithium	Li ₂ CO ₃ , (99.9)	100 ± 0.5
Molybdenum	Metal, (99.99+)	97.5 ± 0.5
Nickel	Metal, (99.999)	100 ± 0.5
Strontium	SrCO ₃ , (99.99)	100 ± 0.5
III Silver	Metal, (99.999)	100 ± 0.5

104. Chromium Speciation (solution form)

These SRMs are intended for use in conjunction with the measurement of specific species of chromium, and consist of 50 mL solutions.

SRM	Source, Purity, %	Diluent	Element Conc	entration (in mg/ml
DRM	Source, I unity, 10	Diracit	Cr (III)	Cr (VI)
2108	Metal, (99.999+)	HCl, 1%	1.000 ± 0.005	< 0.001
2109	SRM 136e (99.984)	deionized H ₂ O	< 0.005	1.000 ± 0.005

104. Anion Chromatography (solution form)

These SRMs are single-component solutions prepared gravimetrically for use in anion chromatography, or any other technique that requires aqueous standard solutions for calibration on control materials.

SRM	Anion	Unit Size (in mL)	Nominal Concentrat (in mg/kg*)		
3181	Sulfate	50	1000		
3182	Chloride	50	1000		
3183	Fluoride	50	1000		
3184	Bromide	50	1000		
3185	Nitrate	50	1000		
3186	Phosphate	50	1000		

*SI unit. Replaces terms "ppm" and "µg/g".

104. Stable Isotopic Materials (solid forms)

The isotopic composition of these SRMs has been determined by mass spectrometry.

SRM	Туре	Element/Isotopic Composition Certified	Unit Size (in g)
951	Boric Acid, assay and isotopic	Boron	100
952	Boric Acid, 95% enriched ¹⁰ B, assay and isotopic	Boron	0.25
975	Sodium Chloride	Chlorine	0.25
976	Copper Metal	Copper	0.4
977	Sodium Bromide	Bromine	0.25
978a	Silver Nitrate	Silver	0.25
979	Chromium Nitrate	Chromium	0.25
980	Magnesium Metal	Magnesium	0.25
981	Lead Metal, natural	Lead	1.0
*982	Lead Metal, equal atom (²⁰⁸ Pb/ ²⁰⁶ Pb)	Lead	1.0 wire
*983	Lead Metal, radiogenic (92% ²⁰⁶ Pb)	Lead	1.0 wire
984	Rubidium Chloride, assay and isotopic	Rubidium	0.25
985	Potassium Chloride, assay and isotopic	Potassium	1.0
986	Nickel	Nickel	1.0
987	Strontium Carbonate, assay and isotopic	Strontium	1.0
989	Rhenium, assay and isotopic	Rhenium	pkg. (50)
990	Silicon, assay and isotopic	Silicon	$3 \text{ cm} \times 0.2 \text{ cm}$ wafer
991	Lead-206 Spike, assay and isotopic	Lead	15
994	Gallium Metal, isotopic	Gallium	0.25
997	Thallium Metal, isotopic	Thallium	0.25

* These SRMs are radioactive, containing Lead-210 of natural origin. All users and purchasers must comply with all national and international regulations regarding the use and disposal of these SRMs.

104. Royal Canadian Mint Reference Materials (solid forms)

These RMs are a series each of fine silver, fine gold, and gold bullion products developed and certified by the Royal Canadian Mint (RCM), Ottawa, Canada. The fine silver and fine gold RMs are primarily intended for use as calibration standards for the determination of trace elements by solid sample spectrometric methods; the gold bullion RMs are primarily intended for use as quality control check standards for fire assay. There are eight RMs in the fine silver series, five RMs in the gold bullion series, and six RMs in the fine gold series. The RMs in the fine silver series are currently available only in block form $(24 \text{ mm} \times 24 \text{ mm} \times 5 \text{ mm})$. The RCM expects to issue the wire and turnings forms at a future date. The RMs in the gold bullion series are also available in three forms – disc (25 mm dia. $\times 20 \text{ mm}$), foil $(35 \text{ mm} \times 40 + \text{ mm} \times 1 \text{ mm})$, and wire (2 mm dia.). The RMs in the fine gold series are available in three forms – block (25 mm $\times 25 \text{ mm} \times 2.5 \text{ mm}$), wire (2 mm dia.), and turnings (25 g).

RM Type Form		8153/8154/8155 Fine Silver	8156/8157/8158 Fine Silver	8159/8160/8161 Fine Silver
(Block, Wire, Turnings)		B W* T*	B W* T*	B W* T*
Unit Size (in g)		30 25 25	30 25 25	30 25 25
Components (in mg/k	g)			
Bi		39.1	77.0	135
Cu		63.3	491	35.5
Fe		113	94	41.3
Au		20.5	84	42.1
Pb		36.5	65.5	98.3
Ni		65.7	42.2	39.5
Pd		86	48.5	115
Pt		96.7	43	58
Se		32.8	81.6	145
Te		32.9	73.8	156
Sn		25.0	62.3	130
Zn		71.4	134	31.0
2.11		/1.4	1.54	51.0
RM	8162/8163/8164	8165/8166/8167	8168/8169/8170	8171/8172/8173
Туре Form	Fine Silver	Fine Silver	Fine Silver	Fine Silver
(Block, Wire, Turnings)	B W* T*	B W* T*	B W* T*	B W* T*
Unit Size (in g)	30 25 25	30 25 25	30 25 25	30 25 25
Components (in mg/k				
Bi	65.3	83.5	28.9	75.1
Ču	40.1	61.6	101	65.2
Fe	25.0	35.6	15.4	48.9
Au	52	15.0	75.0	26.7
Pb	18.1	59.1	125	38.8
Ni	27.4	35.0	13.5	57.0
Pd	41.8	64.3	13.5	27.3
Pt	17.3	17.9	24.4	12.3
Se	55.8	32.2	3.9	44.4
Te	62.9	(41.8)	6.6	25.8
Sn	21.7	54.1	10.3	46.1
Zn Values in parenthes	(3.8) ses are not certifie	18.6 d and are given for info	8.3	7.2
* The Wire and Turi	nings forms are sla	ted for future issue.		
RM	8068/8069/8070	8071/8072/8073 8	8074/8075/8076 8077/8078/8079	8080/8081/8082
Туре	Gold Bullion	Gold Bullion	Gold Bullion Gold Bullion	Gold Bullion
Form				
(Disc, Wire, Foil)	DWF	DWF	DWF DWF	D W F
Unit Size (in g)	30 25 25	30 25 25	30 25 25 30 25 25	30 25 25
Components (in Wt. %)			
Au	94.847	89.928	84.905 79.962	74.988
		8.03	12.08 15.09	15.04
Ag	4.15	0.03	12.08 15.09	15.04

RM Type Form		/8051 ne Go	/8052 old		/8054 ine G	/8055 old		/8057, ne Ge	/8058 old	8059/ Fi	/8060/ ne G			/8063 ne G	/8064 old		/8066 ne Go	/8067 old
(Block, Wire, Turnings) Unit Size (in g)	B 30	W 25	Т 25	B 30	W 25	Т 25	B 30	W 25	Т 25	B 30	W 25	Т 25	В 30	W 25	Т 25	B 30	W 25	Т 25
Components (in mg/k	g)																	
As Bi Cr Cu Fe Pb Mg Mn Ni Pd Pt Si Ag Sn Ti		2.4 3.4 1.7 1.6 6.2 1.9 1.1 1.1 2.7 1.3 9.5 2.8 0.7			10.0 24.0 32.6 98.1 11.6 21.9 34.0 58.9 32.5 43.1 87.1 2.7 20.3 33.8 12.7			18.0 34.0 13.3 46.9 33.8 30.5 11.8 22.5 50.5 19.8 40.8 27.8 81.7 27.2 25.3			$\begin{array}{c} 6.7\\ 6.8\\ 8.1\\ 5.7\\ 7.5\\ 6.4\\ 6.0\\ 10.8\\ 5.7\\ 5.0\\ 6.1\\ 6.3\\ 7.1\\ 6.4\\ 5.9\end{array}$			29.4 53.9 90.4 90.4 49.3 3.2 64.3 14.6 119 5.1 9.0 49.3 2.6	9 9 3 4 7 2 3 3 5 5 1) 7 7 7		14.3 11.0 16.7 13.8 15.4 11.5 15.6 20.5 13.5 13.1 12.5 19.1 15.1 17.8 16.5	

104. Royal Canadian Mint Reference Materials (solid forms) – Continued

104. Light Stable Isotopic Materials (gas, liquid and solid forms)

These RMs are for calibration of isotope-ratio mass spectrometers and associated sample preparation systems. They are distributed by NIST on behalf of the International Atomic Energy Agency (IAEA). Quantities of these materials are limited to one (1) unit of each RM per laboratory every three (3) years.

The isotopic compositions are given in parts per thousand (1000) difference from isotope-ratio standards – Vienna Standard Mean Ocean Water (VSMOW), Vienna PeeDee Belemnite (VPDB), atmospheric N_2 (Air), NBS28 Silica Sand (optical), and Canyon Diablo Troilite (CDT); with the exception of Lithium (Li), which is expressed as an absolute isotopic ratio.

DM	Tuno	Nominal Isotopic Composition (in parts							s per 1000)		
RM	Type (IAEA Designation)	Size	δD _{vsmow}	⁶ Li/ ⁷ Li	δ ¹³ C _{vpdb}	$\delta^{15}N_{Air}$	δ ¹⁸ O _{vsmow}	δ ³⁰ Si _{NBS28}	δ ³⁴ S _{CDT}		
8535	VSMOW-water	30 mL	0 *				0 *				
8536	GISP-water	30 mL	- 190				-24.8				
8537	SLAP-water	30 mL	- 428 *				-55.5 *				
8538	NBS30-biotite	2 g	- 66				+5.1				
8539	NBS22-oil	1 mL	-120		- 29.7						
8540	PEFI-polyethylene foil	x mg	- 100		-31.8						
8541	USGS24-graphite	0.8 g			- 16						
8542	Sucrose ANU-sucrose	1 g ັ			- 10.5						
8543	NBS18-carbonatite	0.4 g			-5.0		+ 7.2				
8544	NBS19-limestone	0.4 g		د.	. +1.95	*	+ 28.6				
8545	LSVEC-lithium carbonate	0.4 g		0.0832	-47		+3				
8546	NBS28-silica sand (optical)	0.4 g					+9.6	0 *			
8547	IAEA-N1-ammonium sulfate	0.4 g				+ 0.4					
8548	IAEA-N2-ammonium sulfate	0.4 g				+20.3					
8549	IAEA-N3-potassium nitrate	0.4 g				+2					
8550	USGS25-ammonium sulfate	0.5 g				- 30.4					
8551	USGS26-ammonium sulfate	0.5 g				+ 53.5					
8552	NSVEC-gaseous nitrogen	300 µmol				-2.8					
8553	Soufre de Lacq-elemental sulfur	0.5 g							+16		
8554	NZ1-silver sulfide	0.5 g							-0.3		
8555	NZ2-silver sulfide	0.5 g							+21		
8556	NBS123-sphalerite	0.5 g							+17		
8557	NBS127-barium sulfate	0.5 g					+ 9.3		+ 20		
8558	USGS32-potassium nitrate	0.5 g				+179.9					

105. Health and Industrial Hygiene

Clinical Laboratory Materials (gas and solid forms)

These SRMs are for calibrating apparatus and validating analytical methods used in clinical and pathology laboratories. SRM 1400 Bone Ash and SRM 1486 Bone Meal are for use in determining selected major, minor, and trace elements in bone or similar matrices. SRM 2389 is for use in the chromatographic determination of amino acids.

SRM	Туре	Purity/Constituent (in Wt. %)	Unit Si
900	Antiepilepsy Drug Level Assay (phenyto- in, ethosuximide, phenobarbital, and primidone)		Set of 4 ampules
910	Sodium Pyruvate	98.7	25 g
911b	Cholesterol	99.8	2 g
912a	Urea	99.9	25 g
913	Uric Acid	99.7	10 g
914a	Creatinine	99.7	10 g
915a	Calcium Carbonate	99.9	20 g
916a	Bilirubin	98.3	100 mg
917a	D-Glucose (Dextrose)	99.7	25 g
918	Potassium Chloride	99.9	30 g
919a	Sodium Chloride	99.89	30 g
920	D-Mannitol	99.8	50 g
921	Cortisol (Hydrocortisone)	98.9	1 g
*924a	Lithium Carbonate	99.9	30 g
925	VMA (4-hydroxy-3-methoxymandelic acid)	99.4	1 g
928	Lead Nitrate	100.00	30 g
929	Magnesium Gluconate Dihydrate	Mg 5.403	5 g
937	Iron Metal (Clinical)	99.90	50 g
938	4-Nitrophenol	(99.75)	15 g
955a	Lead in Blood		Set of 4 ampules
*956a	Electrolytes in Serum for ISE	In Prep	Set of 9 ampules
968b	Fat Soluble Vitamins and Cholesterol in Human Serum	In Prep	Set of 6 ampules
998	Angiotensin I (Human)	94.1	0.5 mg
1400	Bone Ash	8 elements	50 g
1486	Bone Meal	8 elements	50 g
1595	Tripalmitin	99.5	2 g
1598	Inorganic Constituents in Bovine Serum		Set of 2 ampules
1599	Anticonvulsant Drug Level Assay		Set of 4 ampules
	(valproic acid and carbamazepine)		
1951a	Cholesterol in Human Serum (Frozen)	In Prep	Set of 6 bottles
1952a	Cholesterol in Human Serum (Freeze-dried)		Set of 6 bottles
2389	Amino Acids in HCl	17 amino acids	Set of 5 ampules

Values in parentheses are not certified and are given for information only. *Conforms to National Committee for Clinical Laboratory Standards (NCCLS) specification ACC-1.

105. Serum Materials

SRM 909a is a lyophilized human serum for use in determining specified constitutents. SRM 927b, the bovine serum albumin is in solution form; SRM 965 is a frozen human serum certified for three (3) levels of glucose.

SRM	Туре	Unit Size	A	nalyte Concentration (in mmol/L)	15
				<u>909a-1</u>	<u>909a-2</u>
909a	Human Serum	909a-1; 3 bottles	Calcium	2.322	3.338
		909a-2; 3 bottles	Chloride	92.4	119.1
		·	Cholesterol	4.892	4.463
			Creatinine	0.084	0.463
			Glucose	4.95	15.41
			Lithium	0.465	2.657
			Magnesium	0.868	1.846
			Potassium	3.656	6.21
			Sodium	148.5	126.5
			Urea	5.535	19.47
			Uric Acid	0.234	0.525
909Ъ	Human Serum	In Prep			
927b 965	Bovine Serum Albu Glucose in Frozen I	min Set of 10 ampules Human Serum	Peptide Mass	72.01 g/L In Prep	

105. Ethanol Solutions

SRM	Туре	Certified Constituent	Unit Size
18 28a	Ethanol-Water	Ethanol	In Prep

105. Toxic Substances in Urine (powder form)

SRMs 2670, 2671a and 2672a are for determining toxic substances in human urine. They consist of freeze-dried urine, provided in sets of four 30-mL bottles—two each at low and elevated levels. NOTE: The values listed for these SRMs apply only to reconstituted urine.

SRM	Туре			Low/E	levated Eleme	ental Com	positio	on (in mg/L))
JILIVI	1.jpc	Al		As	Be			Cd	Ca
2670 2671a 2672a	Toxic Meta Fluoride Mercury	ls (0.18))/(0.18)	(0.06)/0.48	(≤0.0005)	/(0.033)	(0.00	040)/0.088	0.105/0.105 g/L
SRM	Cl	Cr	Cu	F	Au	Рь		Mg	Mn
2670 2671a 2672a	(4.4)/(4.4) g/L	(0.013)/0.085	0.13/0.37	0.55/5.7	(0.008)*/(0.24)) (0.01)/0	.109	0.063/0.063 g	z/L (0.03)/(0.33)
SRM	Hg	Ni	Pt		К	Se	Na	v	SO4
2670 2671a		(0.07)/(0.30)	(0.008)*/(0.12) (1.5)/(1.5) g/L 0.0	030/0.46 2	2.62/2.6	52 g/L -/(0.	12) (1.3)/(1.3) g
2672a	(0.002)/0.105			•					

Values in parentheses are not certified and are given for information only. * Value is in $\mu g/L$.

105. Drugs of Abuse in Urine, Single Analyte (powder form)

These SRMs are for verifying the accuracy of methods used to determine marijuana, morphine glucuronide and cotinine, substances classed as drugs of abuse in humans or metabolites of drugs of abuse. SRMs 1507b and 2382 consist of freese-dried urine, provided in sets of four 20-mL bottles – three levels plus a blank. RM 8444 consists of freeze-dried urine in a set of four 10-mL vials – two levels and two blanks. Each SRM/RM consists of a single analyte drug of abuse.

SRM/RM	Туре	Unit Size		Compone	nt (in µg/L)	
	турс	Ont Size	I II		III	II IV
			Blank	Low	Medium	High
1507b	ТНС-9-СООН	Set of 4 bottles	x _D : <1	11.7	24.1	49.6
2382 8444	Morphine Glucuronide Cotinine	Set of 4 bottles Set of 4 vials	x _D : <1 0.8	209 . 54	437	853 488

105. Drugs of Abuse in Urine, Multi-Analyte (powder form)

These SRMs are for verifying the accuracy of methods used to determine cocaine, morphine and codeine and opiate-based substances classed as drugs of abuse in humans. Each SRM consists of multi-analyte drugs of abuse. SRMs 1508 and 2381 consist of freeze-dried urine, provided in sets of four 20-mL bottles—three levels plus a blank. SRM 1511 consists of a mixture of five substances—morphine, codeine, cocaine metabolite, marijuana metabolite and phencyclidine in freeze-dried urine and is provided as a set of three bottles, each containing all analytes (no blank).

SRM	Туре	Unit Size			Compon	ent (in µg	/L)	
	0 L -	Coci		Benzoyl- ecgonine	Morphine	Codeine	THC-9- COOH	Phen- cyclidine
1508	Cocaine and Metabolites	Set of 4 bottles	90-429	103–510				
1511	Multi-drugs of Abuse	Set of 3 bottles		162	309	288	14.1	23.8
2381	Morphine and Codeine	Set of 4 bottles			134–580	130-560		

105. Drugs of Abuse in Hair (solid forms)

These SRMs were developed primarily to further research related to the accurate determination of drugs of abuse in human hair. The values provided on the Reports of Investigation are not certified. Rather they are "Best Estimates" based on proven NIST methods.

RM	Туре	Unit Size		Component (in	n mg/kg)	
ICIVI	туре	(in mg)	Cocaine	Benzoylecgonine	Morphine	Codeine
8448	Human Hair Segments	110-125	7.3	1.6	11.9	6.7
8449	Powdered Human Hair	100-120	7.0	4.0	4.3	2.9

105. DNA Profiling (solid forms)

These SRMs are intended for use in the standardization of forensic and paternity quality assurance procedures and instructional law enforcement or non-clinical research purposes. SRM 2390 DNA Profiling Standard, based on Restriction Fragment Length Polymorphism (RFLP) testing, is certified for the sizes of each allelic band of five commonly used DNA probes of two human DNA samples; one is from a female cell line, and the other is from a male source. SRM 2391 [Polymerase Chain Reaction] PCR-Based DNA Profiling Standard is certified for allele assignment of D1S80 loci for eight human DNA samples plus two human cell lines. Both SRMs consist of 20 components. SRM 2392 DNA Standard for Mitochrondrial Sequencing is currently under development. It will consist of a molecular tag with 108 basepairs and a DNA sequence that translates from the triplet nucleotide code to the single amino acid letter code and spells: NIST*DNA*STANDARD*REFERENCE*MATERIAL.

SRM	Туре	Unit of Issue
2390	DNA Profiling	20 components: boxes A, B, and C
2391	PCR-Based DNA Profiling	20 components: boxes A and B
2392	DNA Mitochondrial Sequencing	In Prep

105. Materials on Filter Media

These SRMs consist of potentially hazardous materials deposited on filters to be used to determine the levels of these materials in industrial atmospheres. SRMs 2672d, 2677a and 2679a provide element values at four different levels; SRM 3087 provides element values at one level only.

SRM	Туре	Unit Size		Element	Compone	ent (in µg	/filter)	
UNIVE	Турс			I	II	III	IV	
2676d	Metals on Filter Media	Set of 6	Cadmium Lead Manganese Zinc	0.97 7.44 2.09 10.17	2.81 14.82 9.83 49.47	10.04 29.77 19.83 99.31	(<0.0005) (<0.0005) (<0.0005) (0.26)	
2677a	Beryllium and Arsenic on Filter Media	2 Sets of 5	Beryllium Arsenic	0.129 0.269	0.643 2.69	2.58 26.92	0.050 ≤ 0.0005 Blank 0.101 ≤ 0.0005 Blank	
2679a	Quartz on Filter Media	Set of 4	Quartz Clay	≤ 2 (370)	30.8 (370)	80.2 (370)	202.7 (370)	
3087	Metals on Filter Media	Set of 6 and 5 blanks		Barium Cadmium Chromium Iron Magnesium Nickel Lead Selenium Zinc	25.88 15.50 10.33 25.84 25.83 25.86 41.33 25.84 103.3			

Values in parentheses are not certified and are given for information only.

105. Trace Constituent Elements in Blank Filters

SRMs 2678 and 2681 are for use in evaluating the performance of air sampling filter methods with two different filter types or sizes commonly used in air sampling of industrial atmospheres. For both SRMs, either certified values (in μ g), or limits of detection (X_D), for each of 30 constituent elements as well as 6 leachable anions and cations are provided.

SRM	Туре	Diameter (in mm)	Pore Size (in µm)	Filter Weight (in g)
2678	Cellulose Acetate Membrane	47	0.45	0.09
2681	Ashless	42.5		0.14

105. Respirable Silica (powder form)

SRMs 1878a, 1879 and 1879a are crystalline silica materials with particles in the respirable range. They are intended for use in determining by X-ray diffraction, the levels of respirable silica in an industrial atmosphere according to NIOSH Analytical Method P&CAM 259 or equivalent methods. Note: These SRMs are not certified for particle size.

SRM	Туре	Unit Size	Component (in Wt. %)
1878a	Respirable Alpha Quartz	5 g	In Prep
1879	Respirable Cristobalite	5 g	Crystalline Cristobalite, 98.0
1879a	Respirable Cristobalite	5 g	In Prep

105. Lead in Paint (powder and sheet forms)

These SRMs are for use in determining lead in paint matrices. SRM 1579a consists of paint, obtained from old housing, that has been ground and homogenized into a powder, 99 + % of which passes a 45 μ m sieve. SRM 2579 consists of a set of five mylar sheets; four are coated with a single, uniform paint layer, the fifth sheet is a blank. SRM 2582 is a latex paint that has been ground and homogenized to pass a 100 μ m sieve. SRMs 2580 and 2581 are intended to provide lead levels of approximately 5% and 0.5% respectively.

SRM	Туре	Unit Size	Lead Concentration
1579a	Powdered Lead Base Paint	35 g	11.995 Wt.%
2579	Lead Paint Film	5 ea:	3.53 to $< 0.0001 \text{ mg/cm}^3$
		$7.6 \text{ cm} \times 10.2 \text{ cm}$	
2580	Powdered Paint		In Prep
2581	Powdered Paint		In Prep
2582	Powdered Paint (Low Lead)	20 g	209 mg/kg

105. Asbestos

These SRMs are for use in identifying and quantifying asbestos types. SRM 1866a consists of a set of three common bulk mine-grade asbestos materials; chrysotile, grunerite (Amosite), riebeckite (Crocidolite), and one glass fiber sample. SRM 1867 consists of a set of three uncommon mine-grade asbestos materials; anto-phyllite, tremolite, and actinolite. The optical properties of SRMs 1866a and 1867 as observed by polarized light microscopy (PLM), have been characterized so that they may serve as primary calibration standards for the identification of asbestos types in building materials.

SRM 1868 consists of a set of two common bulk mine-grade asbestos materials; chrysotile and grunerite (Amosite), contained in matrices simulating building materials (calcium carbonate and glass fiber), in quantities at just below the U.S. EPA regulatory limit of 1%. This SRM is certified by weight for the quantity of each asbestos material present.

SRM 1876b is intended for use in evaluating the techniques used to identify and count chrysotile asbestos fibers by transmission electron microscopy (TEM). A unit consists of sections of mixed-cellulose-ester filters containing chrysotile asbestos fibers deposited by an aerosol generator.

RM 8411 consists of a section of collapsed mixed-cellulose-ester filters with a high concentration (138 fibers/0.01 mm²) of chrysotile asbestos and a medium concentration (43 fibers/0.01 mm²) of grunerite (Amosite) asbestos. It is intended for use in evaluating the techniques used to identify and count asbestos fibers by transmission electron microscopy (TEM).

SRM	Туре	Unit Size
1866a	Common Commercial Asbestos	Set of 3: 4 g each
1867	Uncommon Commercial Asbestos	Set of 3: 5 to 10 g each
1868	Quantitative Asbestos in Building Materials	Set of 2: 5 to 10 g each
1876b	Chrysotile Asbestos for TEM	Set of 10: $3 \text{ mm} \times 3 \text{ mm}$
8411	Mixed Asbestos Research Filter	1 cm^2

106. Inorganics

106. Metal Constituents in Water and Sediments (liquid and solid forms)

These SRMs are for analysis of materials of health or environmental interest.

RM/RM	Туре	Unit Size	Elemental Composition
1640	Natural Water	250 mL	In Prep
1641c	Mercury in Water	$6 \times 20 \text{ mL}$	Hg: 1.47 mg/L
1643d	Trace Elements in Water	250 mL	In Prep
1646a	Estuarine Sediment	75 g	20 elements certified (see Category 111)
2704	Buffalo River Sediment	50 g	25 elements certified (see Category 111)

106. Simulated Rainwaters (liquid form)

This SRM was developed to aid in the analysis of acidic rainwater by providing a stable, homogeneous material at two levels of acidity.

SRM	Туре	Unit Size			
2694a	Simulated Rainwater	Set of 4: 2 of 50 mL at each of 2 leve			
	Constituent Element/Parameter	2694a-I	2694a-II		
	pH, 25 °C	4.30	3.60		
	Electrolytic Conductivity (µS/cm, 25 °C)	25.4	129.3		
	Acidity, meq/L	0.0544	0.283		
	Fluoride, mg/L	0.057	0.108		
	Chloride, mg/L	(0.23)	(0.94)		
	Nitrate, mg/L	(0.53)	7.19		
	Sulfate, mg/L	2.69	10.6		
	Sodium, mg/L	0.208	0.423		
	Potassium, mg/L	0.056	0.108		
	Ammonium, mg/L	(0.12)	(1.06)		
	Calcium, mg/L	0.0126	0.0364		
	Magnesium, mg/L	0.0242	0.0484		

Values in parentheses are not certified and are given for information only.

106. Thin Films for X-ray Fluorescence

These SRMs are for standardizing X-ray spectrometers. They may be useful in elemental analysis of particulate matter collected on filter media, and where X-ray spectrometer calibration functions are determined using thin film standards. Each SRM is individually certified and consists of a silica base glass film (0.5 µm thick) deposited on a 47-mm diameter polycarbonate filter mounted on an aluminum ring.

SRM	Туре			Elen	nental (Compos	ition pe	er area	(in µg/	cm²)			
	Type	Al	Ca	Co	Cu	Fe	Pb	К	Mn	Si	Ti	V	Zn
1832 1833	Thin-Glass Film Thin-Glass Film	15	20	1	2	15	17	18	5	36 35	14	5	4

106. Carbon Modified Silicon (powder form)

This SRM is intended for the calibration of instruments used to measure total elemental carbon. The SRM consists of three (3), 1-g bottles of chemically modified microparticulate silica.

SRM	Туре	Bottle	% Carbon
1216	Carbon Modified Silicon	I	0.7
		II	9.06
		III	17.04

106. Trace Elements (liquid and solid forms)

This SRM is for analysis of trace elements in materials of environmental interest.

SRM	Туре		Unit Size	Trace 1	Elements (in	mg/kg* unless	s noted as	Wt.%)
	-08-		Al	Sb) As		Ba	
1648	Urban Particulat	e Matter	2 g	3.42 Wt	.% (45) 11:	5	(737)
SRM	Br	Cd	Ce	Cs	Cl	Cr	Co	Cu
1648	(500)	75	(55)	(3)	(0.45 Wt.9	%) 403	(18)	609
SRM	Hf	In	I	Fe	La	Pb	Mn	Ni
1648	(4.4)	(1.0)	(20)	3.91 Wt.%	(42)	0.655 Wt.%	(860)	82
SRM	К	Se	Na		Th	U	v	Zn
1648	1.05 Wt.%	27	0.425	Wt.%	(7.4)	5.5	140	0.476 Wt.9

Values in parentheses are not certified and are given for information only.

* SI unit. Replaces "ppm" and "µg/g".

106. Used Auto Catalysts (powder form)

These SRMs are intended for use in the evaluation of methods for the analysis of the platinum group metals and lead in auto catalysts. They were produced in cooperation with the International Precious Metals Institute and are issued as fine ($<74 \mu m$) powders.

SRM	Туре	Unit Size	Elemental Composition (in mg/kg)				
	Type	Unit Size	Pt	Pd	Rh	Pb	
2556 2557	Recycled Pellet Recycled Monolith	70 g 70 g	697.4 1131	326.0 233.2	51.2 135.1	6228 13931	

107. Analyzed Gases

Mixtures and Pollutants

These SRMs are for calibrating apparatus used to measure various components of gas mixtures and atmospheric pollutants. All cylinders conform to the appropriate DOT specifications.

SRM	Туре	Certified Component	Nominal Concentration (in µmol/mol)
1811	Aromatic Organic Gases in Nitrogen		
	Benzene	C_6H_6	0.25
	Toluene	C ₆ H ₅ CH ₃	0.25
	Chlorobenzene	C ₆ H ₅ Cl	0.25
	Bromobenzene	C ₆ H ₅ Br	0.25
1812	Aromatic Organic Gases in Nitrogen		
	Benzene	C_6H_6	10
	Toluene	C ₆ H ₅ CH ₃	10
	Chlorobenzene	C ₆ H ₅ Cl	10
	Bromobenzene	C ₆ H ₅ Br	10
1700a	Blood Gas: CO ₂ -10%, Bal N ₂	CO_2 in N_2	10 mol % CO ₂
1701a	Blood Gas: CO ₂ -5%, O ₂ -12%, Bal N ₂	$CO_2 \& O_2 in N_2$	5 mol % CO ₂
1702a	Blood Gas: CO ₂ -5%, O ₂ -20%, Bal N ₂	CO ₂ & O ₂ in N ₂	12 mol % O ₂ 5 mol % CO ₂
			20 mol % O ₂
1703a	Blood Gas: CO ₂ -10%, O ₂ -7%, Bal N ₂	$CO_2 \& O_2 in N_2$	10 mol % CO ₂
	· · · · · · · · · · · · · · · · · · ·		7 mol % O ₂
2607	Carbon Dioxide and Nitrous Oxide in Air		
	Carbon Dioxide	CO ₂	340
	Nitrous Oxide	N ₂ O	0.3
2609	Carbon Dioxide and Nitrous Oxide in Air		
	Carbon Dioxide	CO ₂	380
	Nitrous Oxide	N ₂ O	0.33
2610	Carbon Dioxide and Nitrous Oxide in Air		
	Carbon Dioxide	CO ₂	380
	Nitrous Oxide	N ₂ O	0.33
 1674b	Carbon Dioxide in Nitrogen	CO ₂	7 mol %
1675b	Carbon Dioxide in Nitrogen	CO_2 CO_2	14 mol %
2619a	Carbon Dioxide in Nitrogen	CO_2 CO_2	0.5 mol %
2620a	Carbon Dioxide in Nitrogen	CO_2	1.0 mol %
2621a	Carbon Dioxide in Nitrogen	CO ₂	1.5 mol %
2622a	Carbon Dioxide in Nitrogen	CO ₂	2.0 mol %
2623a	Carbon Dioxide in Nitrogen	CO_2	2.5 mol %
2624a	Carbon Dioxide in Nitrogen		3.0 mol %
2625a	Carbon Dioxide in Nitrogen	CO_2	3.5 mol %
2626a	Carbon Dioxide in Nitrogen	CO_2	4.0 mol %
2632a	Carbon Dioxide in Nitrogen		300
2612a	Carbon Monoxide in Air	СО	10
2613a	Carbon Monoxide in Air	CO	20
	Carbon Monoxide in Air	CO	45

107. Mixtures and Pollutants – Continued

SRM	Туре	Certified Component	Nominal Concentration (in µmol/mol)
1677c	Carbon Monoxide in Nitrogen	СО	10
1678c	Carbon Monoxide in Nitrogen	CO	50
1679c	Carbon Monoxide in Nitrogen	CO	100
1680b	Carbon Monoxide in Nitrogen	CO	500
1681b	Carbon Monoxide in Nitrogen	СО	1000
2635a	Carbon Monoxide in Nitrogen	СО	25
2636a	Carbon Monoxide in Nitrogen	CO	250
2637a	Carbon Monoxide in Nitrogen	CO	2500
2638a	Carbon Monoxide in Nitrogen	CO	5000
2639a	Carbon Monoxide in Nitrogen	СО	1 mol %
2640a	Carbon Monoxide in Nitrogen	CO	2 mol %
2641a	Carbon Monoxide in Nitrogen	CO	4 mol %
2642a	Carbon Monoxide in Nitrogen	CO	8 mol %
2740	Carbon Monoxide in Nitrogen	CO	10 mol %
2741	Carbon Monoxide in Nitrogen	CO	13 mol %
2745	Carbon Monoxide in Nitrogen	CO	16 mol %
2727	Carbon Monoxide, Propane and	CO	1.6 mol %
	Carbon Dioxide in Nitrogen	C ₃ H ₈	600
2720	Carbon Managida Datasan and	CO ₂	11 mol %
2728	Carbon Monoxide, Propane and	СО	8 mol % 3000
	Carbon Dioxide in Nitrogen	C ₃ H ₈ CO ₂	14 mol %
 1658a	Methane in Air	CH₄	1
1659a	Methane in Air	CH4 CH4	10
1660a	Methane-Propane in Air	CH ₄	4
1000a	Methane-1 topane in Air	C ₃ H ₈	1
2750	Methane in Nitrogen	CH ₄	50
2751	Methane in Nitrogen	CH ₄	100
168 3 b	Nitric Oxide in Nitrogen	NO	50
1684b	Nitric Oxide in Nitrogen	NO	100
1685b	Nitric Oxide in Nitrogen	NO	250
1686b	Nitric Oxide in Nitrogen	NO	500
1687b	Nitric Oxide in Nitrogen	NO	1000
2627a	Nitric Oxide in Nitrogen	NO	5
2628a	Nitric Oxide in Nitrogen	NO	10
2629a	Nitric Oxide in Nitrogen	NO	20
2630	Nitric Oxide in Nitrogen	NO	1500
2631	Nitric Oxide in Nitrogen	NO	3000
2735	Nitric Oxide in Nitrogen	NO	800
2736	Nitric Oxide in Nitrogen	NO	2000
2656 2660	Oxides of Nitrogen in Air Oxides of Nitrogen in Air	NO _x NOx	2500 100
2657a	Oxygen in Nitrogen	0.	2 mol %
2658a		$O_2 O_2$	10 mol %
2659a	Oxygen in Nitrogen Oxygen in Nitrogen	O_2 O_2	21 mol %
1665b	Propane in Air	C ₂ C ₃ H ₈	3
1666b	Propane in Air	C_3H_8	10
1667b	Propane in Air	C_3H_8	50
1668b	Propane in Air	C_3H_8	100
1669b	Propane in Air	C_3H_8	500
2764	Propane in Air	C ₃ H ₈	0.25
1670a	Carbon Dioxide in Air	CO ₂	330
1671a	Carbon Dioxide in Air	CO ₂	340
1672a	Carbon Dioxide in Air	Co ₂	350

SRM	Туре	Certified Component	Nominal Concentration (in µmol/mol
2643a	Propane in Nitrogen	C ₃ H ₈	100
2644a	Propane in Nitrogen	C_3H_8	250
2645a	Propane in Nitrogen	C_3H_8	500
2646a	Propane in Nitrogen	C_3H_8	1000
2647a	Propane in Nitrogen	C ₃ H ₈	2500
2648a	Propane in Nitrogen	C_3H_8	5000
2649a	Propane in Nitrogen	C_3H_8	1 mol %
2650	Propane in Nitrogen	C ₃ H ₈	2 mol %
2651	Propane in Nitrogen and	C ₃ H ₈	0.01 mol %
0450	Oxygen	O ₂	5.0 mol %
2652	Propane in Nitrogen and	C ₃ H ₈	100
1//1	Oxygen	O ₂	10.0 mol %
1661a	Sulfur Dioxide in Nitrogen	SO ₂	500
1662a	Sulfur Dioxide in Nitrogen	SO ₂	1000
1663a	Sulfur Dioxide in Nitrogen	SO ₂	1500
1664a	Sulfur Dioxide in Nitrogen	SO ₂	2500
1693a	Sulfur Dioxide in Nitrogen	SO ₂	50
1694a	Sulfur Dioxide in Nitrogen	SO ₂	100
1696a	Sulfur Dioxide in Nitrogen	SO ₂	3500
1800	Ambient Non-methane Organics in Nitrogen	(Fifteen components)	5.0 nmol/mo
1804a	Ambient Toxic Organics in Nitrogen	(Nineteen components)	
2730	Hydrogen Sulfide in Nitrogen	H ₂ S	5
2731	Hydrogen Sulfide in Nitrogen	H ₂ S	20

107. Mixtures and Pollutants – Continued

107. Permeation Devices

These SRMs are primarily intended for use in calibrating air pollution monitoring apparatus and for calibrating air pollution analytical methods and procedures. Each tube is individually calibrated and certified according to NIST procedures and protocols.

SRM	RM Туре						centration* (in Flow Rate (L)	
		(in cm)	(in µg/min)	1	5	10		
1625	Sulfur Dioxide Permeation Tube	10	3.7		In Prep			
1626	Sulfur Dioxide Permeation Tube	5	2.1		In Prep			
1627	Sulfur Dioxide Permeation Tube	2	0.8	0.3	0.06	0.03		
1629a	Nitrogen Dioxide Permeation Tube	1	2.1		In Prep			

* Nominal values

108. Fossil Fuels

Alcohols and Ethers [Oxygenates] in Reference Fuels (liquid form)

SRMs 1829, 1837, 1838, and 1839 are for calibrating instruments and validating methods used to determine various alcohols in gasoline. SRM 1829 is issued as a set of six (6) sealed 20-mL ampules; SRMs 1837, 1838 and 1839 are each issued as a set of five (5) sealed 20-mL ampules.

SRMs 2286 through 2293 are for determining the oxygen content of gasoline and were produced in response to the U.S. EPA Final Rule on Reformulated Gasoline aimed at reducing the volatile organic compounds emitted from gasoline. They consist of varying quantities of alcohol and ether (oxygenate) solutions in gasoline and are certified for constituent oxygenate concentration and resultant oxygen concentration in gasoline. Each SRM is issued as a set of three (3) sealed 20-mL ampules – two ampules contain oxygenate and one ampule contains base reference gasoline.

SRM	Туре	Concentration (in Wt. %)							
		Methanol	Ethanol	Methanol and t-Butanol	Oxygenate	Oxygen			
1829	Alcohols in Reference Fuels	0.335	11.39	10.33 + 6.63					
1837	Methanol and t-Butanol			10.33 + 6.63					
1838	Ethanol		11.39						
1839	Methanol	0.335							
2286	Ethanol in Gasoline				5.73	2.02			
2287	Ethanol in Gasoline				10.07	3.53			
2288	t-Amyl Methyl Ether in Gasoline				12.78	2.02			
2289	t-Amyl Methyl Ether in Gasoline				17.30	2.73			
2290	Ethyl t-Butyl Ether in Gasoline				12.78	2.01			
2291	Ethyl t-Butyl Ether in Gasoline				17.18	2.70			
2292	Methyl t-Butyl Ether in Gasoline				10.96	2.00			
2293	Methyl t-Butyl Ether in Gasoline				14.86	2.71			

108. Metal Constituents in Fossil Fuels (liquid and solid forms)

These SRMs are for analysis of metal trace elements in fuel oil, coal and reference fuels.

SRM/RM	Туре	Unit Size	Elemental Comp		omposition	
			Pb	Ni	S	v
Nominal C	composition [In Wt.% unless i	dentified by an a	sterisk which	indicates mg/kg	.]	
1618	Vanadium and Nickel in Residual Fuel Oil	100 mL		75 *	(4.3)	423 *
2712	Lead in Reference Fuel	$6 \times 20 \text{ mL}$	11.4 *			
2713	Lead in Reference Fuel	$6 \times 20 \text{ mL}$	19.4 *			
2714	Lead in Reference Fuel	$6 \times 20 \text{ mL}$	28.1 *			
2715	Lead in Reference Fuel	$6 \times 20 \text{ mL}$	784 *			
8505	Vanadium in Crude Oil	250 mL				(390 *)

108.	Sulfur	in	Fossil	Fuels	(liquid	and	solid	forms)	
------	--------	----	--------	-------	---------	-----	-------	--------	--

SRM/RM	Туре	Unit Size	Sulfur (in Wt.%)	Furnace Ash (in Wt. %)	HHV2 (in MJ/kg
1/1/		100 - 1			
1616a	Sulfur in Kerosine	100 mL	In Prep		
1617a	Sulfur in Kerosine	100 mL	In Prep		
1619a	Sulfur in Residual Fuel Oil	100 mL	0.725		
1620b	Sulfur in Residual Fuel Oil	100 mL	4.22		
1621d	Sulfur in Residual Fuel Oil	100 mL	1.011		
1622d	Sulfur in Residual Fuel Oil	100 mL	2.031		
1623b	Sulfur in Residual Fuel Oil	100 mL	0.348		
1624b	Sulfur in Distillate Fuel Oil	100 mL	0.332		
2717 •	Sulfur in Residual Fuel Oil	100 mL	3.022		
2724	Sulfur in Diesel Fuel Oil	100 mL	0.0425		
8532	Diesel Fuel Oil	100 mL (S =	276/294 g/kg)	Gravity * (36.9)
2682a	Coal (Sub-bituminous)	50 g	0.486	6.3	25.48
2683a	Coal (Bituminous)	50 g	1.89	6.8	31.90
2684a	Coal (Bituminous)	50 g	3.06	11.0	28.50
2685a	Coal (Bituminous)	50 g	4.730	16.21	26.67
2692a	Sulfur in Coal, 1%	50 g	1.184	7.94	32.64
2775	Foundry Coke	In Prep			
2776	Furnace Coke	In Prep			

NOTE: The calorific values (MJ/kg) may decrease upon the aging or normal oxidation of the coals. NIST will continue to monitor these values and report any substantive change to purchasers.

* API Gravity at 15.6 °C. Total nitrogen aromatics and PAHs also available.

108. Moisture in Oils (liquid form)

These reference materials (RMs) are intended for use in developing and validating methods for the determination of moisture in oil and similar matrices. The water concentration values are shown in parentheses because they are not certified, but represent the "best estimate" of the moisture content based on interlaboratory round robin studies and confirmed by NIST.

RM	Туре	Unit Size	Water Concentration (in mg/kg)
8506	Transformer Oil	Set of 5 ampules: (10 mL each)	(21)
8507	Mineral Oil	Set of 5 ampules: (10 mL each)	(47)

Values in parentheses are not certified and are given for information only.

108. Reference Liquids for Evaluating Fuels

SRMs 1815a and 1816a are high, purity liquids intended for use in maintaining the integrity of the octane rating of motor and aviation fuels as specified in the ASTM Manual for Rating Motor, Diesel, and Aviation Fuels.

SRM	Туре	Purity (in Wt. %)	Unit Size
1815a	n-Heptane	99.987	100 mL
1816a	Iso octane (2,2,4-Trimethylpentane)	99.987	100 mL

SRM	1632b	1633b	1634c	, 1635	2689	2690	2691
	Coal	Coal	Fuel	Coal	Coal	Coal	Coal
	(Bltuminous)	Fly	Oll	(Subbltum-	Fly	Fly	Fly
Туре		Ash		inous)	Ash	Ash	Ash
Unit Size	50 g	75 g	100 mL	75 g	3×10 g	3×10 g	3×10
ELEMENT Con	centrations are in mg/	kg, unless noted by a	single asterisk, •	, for Wt. %, or a d	ouble asterisk, **,	for µg/kg.	
Aluminum	0.855 *	15.05 *	In Prep	(0.32 *)	12.94 *	12.35 *	9.81
Antimony	(0.24)	(6)		(0.14)	(9)	(6)	(3)
Arsenic	3.72	136.2		0.42	(200)	(26)	(30)
Barium	67.5	709			(800)	(5800)	(5900)
Beryllium					(21)	(8)	(8)
Bromine	(17)	(2.9)					•
Cadmium	0.0573	0.784		0.03	(3)	(0.7)	(0.9)
Calcium	0.204 *	1.51 *			2.18 *	5.71 *	18.45
Carbon	78.11 *						
Cerium	(9)	(190)		(3.6)			
Cesium	(0.44)	(11)			(11)	(8)	(1)
Chlorine	(1260)						
Chromium	(11)	198.2		2.5	(170)	(67)	(68)
Cobalt	2.29	(50)		(0.65)	(48)	(19)	(26)
Copper	6.28	112.8		3.6			
Dysprosium Europium	(0.17)	(17) (4.1)		(0.06)	(3)	(2)	(2)
Gadolinium	(0.17)	(13)		(0.00)	(3)	(2)	(2)
Gallium		(13)		(1.05)			
Hafnium	(0.43)	(6.8)		(0.29)	(7)	(8)	(10)
Holmium		(3.5)					
Hydrogen	5.07 *						
Iron (Total)	0.759 *	7.78 *		0.239 *	9.32 *	3.57 *	4.42
Lanthanum	(5.1)	(94)					
Lead	3.67	68.2		1.9	(52)	(39)	(29)
Lithium	(10)						
Lutetium		(1.2)					
Magnesium	0.0383 *	0.482 *			0.61 *	1.53 *	3.12
Manganese	12.4	131.8		21.4	(300)	(300)	(200)
Mercury		0.141			(<0.003)	(<0.003)	(<0.00
Molybdenum	(0.9)	(85)					
Neodymium		120.6					
Nickel	6.10	10.26		1.74	(122)	(46)	(53)
Nitrogen	1.56 *	(2200)			0.40.1	0.00	
Phosphorus Potassium	0.0748 *	(2300) 1.95 *			0.10 * 2.20 *	0.52 * 1.04 *	0.51 0.34
Rubidium	5.50	(140)					
Samarium Scandium	(0.87)	(20)		(0.63)	(22)	(17)	(24)
Selenium	(1.9) 1.29	(41) 10.26		0.9	(32) (7)	(17) (0.8)	(24) (17)
Silicon	(1.4 *)	23.02 *		0.7	24.06 *	25.85 *	16.83
Sodium	0.0515 *	0.201 *		(0.24 *)	0.25 *	0.24.*	1.09
Strontium	(102)	1041		()	(700)	(2000)	(2700)
Sulfur	1.89 *	0.2075 *		0.33 *		0.15 *	0.83
Tantalum		(1.8)					
Terbium		(2.6)					
Thallium		(5.9)					
Thorium	1.342	25.7		0.62	(25)	(25)	(26)
Thulium	0.0454.5	(2.1)		(0.02.4)	0 == -		0.65
Titanium	0.0454 *	0.791 *		(0.02 *)	0.75 *	0.52 *	0.90
Tungsten	(0.48)	(5.6)		0.24			
Uranium	0.436	8.79		0.24			
Vanadium	(14)	295.7		5.2			
Ytterbium	11.00	(7.6)		4.7	(240)	(120)	(100)
Zinc	11.89	(210)		4.7	(240)	(120)	(120)

109. Organics

109. GC/MS and LC System Performance (liquid form)

These SRMs and RMs are for evaluating the sensitivity of gas chromatography/mass spectrometry (GC/MS) instrumentation and for characterizing liquid chromatography (LC) column selectivity.

SRM/RM	869 1442 LC Selectivity 1543 GC/MS System	Unit Size	Selectivity (C18 phases)	Concentration (in mg/L) Low/High		
869 8442	LC Selectivity	Set of 5, 1.1 mL Set of 50, 1.1 mL	BaP≤ PhPh < TBN			
1543 8443		Set of 4, 1 mL Set of 20, 1 mL		Methyl Stearate Benzophenone		

109. Organic Constituents (liquid and solid forms)

These SRMs and RMs are further described in the following five pages.

SRM/RM	Туре	Unit of Issue
1491	Aromatic Hydrocarbons in Hexane/Toluene	Set: 5, 1.2 mL/ampule
1492	Chlorinated Pesticides in Hexane	Set: 5, 1.2 mL/ampule
1493	Polychlorinated Biphenyl Congeners in <i>Iso</i> octane	Set: 5, 1.2 mL/ampule
1580	Shale Oil	Set: 5, 1.2 mL/ampule
1581	Polychlorinated Biphenyls in Oil	Set: 8, 2.5 mL/ampule
1582	Petroleum Crude Oil	Set: 5, 1.2 mL/ampule
1583	Chlorinated Pesticides in <i>Iso</i> octane	Set: 6, 1.2 mL/ampule
1584	Phenols in Methanol	Set: 5, 1.2 mL/ampule
1585	Chlorinated Biphenyls	Set: 5, 1.2 mL/ampule
1586	Isotopically Labelled Priority Pollutants	Set: 6, 1.2 mL/ampule
1587	Nitro PAH in Methanol	Set: 4, 1 mL/ampule
1588	Organics in Cod Liver Oil	Set: 5, 1.2 mL/ampule
1589	Polychlorinated Biphenyls (as Aroclor 1260) in Human Serum	Set: 3, 2 g/ampule
1596	Dinitropyrene Isomers and 1-Nitropyrene in Methylene Chloride	Set: 5, 1.3 mL/ampule
1597	Complex Mixture of Polycyclic Aromatic Hydrocarbons	Set: 4, 1.2 mL/ampule
1614	Dioxin (2,3,7,8 TCDD) in <i>Iso</i> octane	Set: 6, 1.2 mL/ampule
1639	Halocarbons (in Methanol)	Set: 5, 1.5 mL/ampule
1647c	Priority Pollutant Polycyclic Aromatic Hydrocarbons (in Acetonitrile)	Set: 5, 1.2 mL/ampule
1649	Urban Dust/Organics	5 g, bottle
1650	Diesel Particulate Matter	0.5 g, bottle
1939	Polychlorinated Biphenyls in River Sediment A	50 g, bottle
1941a	Organics in Marine Sediment	50 g, bottle
1945	Organics in Whale Blubber	Set: 2, 15 g/bottle
1974a	Organics in Mussel Tissue	In Prep
2260	Aromatic Hydrocarbons in Toluene	Set: 5, 1.2 mL/ampule
2261	Chlorinated Pesticides in Hexane	Set: 5, 1.2 mL/ampule
2262	Chlorinated Biphenyl Congeners in <i>Iso</i> octane	Set: 5, 1.2 mL/ampule
8464	Aldrin (neat)	In Prep
8465	Dieldrin (neat)	In Prep
8466	γ-HCH (Lindane) (neat)	Vial, 100 mg
8467	4,4'-DDE (neat)	Vial, 100 mg
8468	Heptachlor (neat)	In Prep
8469	4,4'-DDT (neat)	Vial, 100 mg

SRM	1491	1580	1582	1597	1647c	1649	1650	2260
Component (in mg/kg* except for	SRM 1597 w	hich is ii	n mg/L)					
Anthracene	11.69			87.4	1.02			57.54
Benz[a]anthracene	5.37		3.0	85.3	5.24	2.6	6.5	66.0
Benzo[a]pyrene	10.14	21	1.1	82.9	6.32	2.9	1.2	68.61
Benzo[e]pyrene	8.40	18					(9.6)	75.98
Fluoranthene	8.84	54	2.5	278	9.82	7.1	51	76.31
o-Cresol		385						
Phenol		407						
Perylene	10.65	3.4	31	22.6			(0.13)	57.48
Pyrene	8.81	104		204	10.94		48	76.20
2,6–Dimethylphenol		175						
Benzo[f]quinoline		16						
(5,6-Benzoquinoline)								
Naphthalene	10.30			1000	25.62			76.3
Acenaphthylene	10.40				19.81			73.0
Acenaphthene	10.89				26.38		-	78.9
1-Nitropyrene							19	
Fluorene	10.87				6.10			75.62
Phenanthrene	10.48		101	400	4.46		(71)	76.03
Chrysene	10.50			62.0	4.75		(22)	76.6
Benzo[b]fluoranthene	7.85				5.37		× /	75.9
Benzo[k]fluoranthene	8.33			3	6.01		(2.1)	75.6
Benzo[ghi]perylene	7.90			46.5	4.73	4.5	2.4	67.9
Dibenz[a, h]anthracene	7.74				4.62			67.1
Indeno[1,2,3–cd]pyrene	9.40			52.1	5.53	3.3	(2.3)	67.4
Dibenzothiophene			33					
Triphenylene				10.5				
1-Methylnaphthalene	12.4							75.7
2-Methylnaphthalene	(11.8)							(73.2)
Biphenyl	10.46							76.14
2,6-Dimethylnaphthalene	10.8							75.9
2,3,5-Trimethylnaphthalene	9.9							67.5
1-Methylphenanthrene	10.4							75.2

SRM 1492 Chlorinated Pesticides in Hexane

Pesticide	Concentration (in µg/kg)
Hexachlorobenzene	308
γ-HCH (Lindane)	310
Heptachlor	299
Aldrin	304
Heptachlor Epoxide	307
cis-Chlordane	305
trans-Nonachlor	297
Dieldrin	307
Mirex	306
2,4'-DDE	303
4,4'-DDE	306
2,4'-DDD	299
4,4'-DDD	296
2,4'-DDT	307
4,4'-DDT	302

Values in parentheses are not certified and are given for information only. * SI unit. Replaces "ppm" and "µg/g".

SRM 1493 Polychlorinated Biphenyl Congeners in 2,2,4-Trimethylpentane (Iso octane)	
Selected Polychlorinated Biphenyls (PCBs) (18 certified)	Concentration (in µg/kg)
PCB 18 PCB 28 PCB 52 PCB 77 PCB 101 PCB 153 PCB 209	290.8 288.0 285.9 284.3 287.8 287.5 289.6

SRM 1581 Polychlorinated Biphenyls in Oils

Matrix	Aroclor Type	Concentration (in mg/kg)
Motor Oil	1242	100
Motor Oil	1260	100
Transformer Oil	1242	100
Transformer Oil	1260	100

SRM 1583 Chlorinated Pesticides in 2,2,4-Trimethylpentane (Isooctane)

Pesticide	Concentration (in mg/kg)
γ-BHC (Lindane)	1.11
δ-BHC	0.76
Aldrin	0.86
Heptachlor Epoxide	(0.997)
4,4'-DDE (p,p'-DDE)	1.23
4,4'-DDT (p,p'-DDT)	1.90

SRM 1584 Priority Pollutant Phenols in Methanol

Component	Concentration (in mg/L @ 25 °C)
2-Chlorophenol	64.4
Phenol	29.7
2-Nitrophenol	25.2
2,4–Dimethylphenol	51.6
2,4-Dichlorophenol	35.6
4–Chloro-m-cresol	27.4
2,4,6–Trichlorophenol	20.4
4-Nitrophenol	20.7
4,6–Dinitro-o-cresol	20.1
Pentachlorophenol	15.4
2,4-Dinitrophenol	(22.4)

SRM 1585 Chlorinated Biphenyls in 2,2,4-Trimethylpentane (Iso octane)

Polychlorinated Biphenyl (PCB)	Concentration (in mg/kg)
PCB 3	43.3
PCB 15	9.53
PCB 28	3.70
PCB 52	7.72
PCB 77	6.62
PCB 101	5.24
PCB 138	2.37
PCB 153	3.06

SRM 1586 Isotopically Labeled and Unlabeled Priority Pollutants in Methanol

Component	Concentratio	Concentration (in mg/kg)	
Component	1586–1 (unlabeled)	1586-2 (labeled)	
Carbon Tetrachloride	128.5	124.4	
Benzene	101.1	99.0	
Chlorobenzene	133.0	144.0	
Phenol	117.0	116.0	
Nitrobenzene	126.0	134.5	
2–Nitrophenol	103.6	101.9	
2,4–Dichlorophenol	102.5	82.2	
Naphthalene	126.5	126.6	
Bis(2–ethylhexyl)phthalate	63.9	60.4	
Benzo[a]pyrene	49.2	44.1	

SRM 1587 Nitrated Polycyclic Aromatic Hydrocarbons in Methanol

Component	Concentration (in mg/kg)
2-Nitrofluorene	9.67
9–Nitroanthracene	5.01
3–Nitrofluoranthene	9.24
1–Nitropyrene	8.95
7-Nitrobenz[a]anthracene	9.27
6–Nitrochrysene	8.13
6–Nitrobenzo[a]pyrene	(6.1)

SRM 1588 Organics in Cod Liver Oil

Component	Concentration (in µg/kg)
Hexachlorobenzene	148
α-HCH	86
trans-Chlordane	50
cis-Chlordane	158
trans-Nonachlor	209
Dieldrin	150
4,4'-DDD	277
4,4'-DDE	641
2,4'-DDT	156
4,4'-DDT	529
PCB 101	261
PCB 138	276
PCB 170	45
PCB 180	107

SRM 1589 Polychlorinated Biphenyls (as Aroclor 1260) in Human Serum

Component	Concentration * (in µg/kg)
Aroclor 1260	106.0
1, 2, 3, 4-TCDD	(0.153)
2, 3, 7, 8-TCDD	(0.081)
* when reconstituted	

SRM 1596 Dinitropyrene Isomers and 1-Nitropyrene in Methylene Choride

Component	Concentration (in mg/kg)
1-Nitropyrene	4.38
1,3-Dinitropyrene	2.10
1,6-Dinitropyrene	4.82
1,8-Dinitropyrene	8.90

SRM 1614 Dioxin (2,3,7,8-TCDD in Isoocta	ne)
--	-----

Component	Concentration (in µg/kg)
2,3,7,8-TCDD	98.3
2,3,7,8-TCDD- ¹³ C	95.6

SRM 1639 Halocarbons (in methanol) for Water Analyses

Component	Concentration (in mg/L)
Chloroform	6235
Chlorodibromomethane	124.6
Bromodichloromethane	389.9
Bromoform	86.5
Carbon Tetrachloride	157.0
Trichloroethylene	85.8
Tetrachloroethylene	40.6

SRM 1939 Polychlorinated Biphenyls (Congeners) in River Sediment A

Component	Concentration (in mg/kg)
PCB 26	4.20
PCB 28	2.21
PCB 44	1.07

SRM 1941a Organics in Marine Sediment

Selected Components (53 certified)	Concentration (in µg/kg)	
Phenanthrene	489	
Anthracene	184	
Fluoranthene	981	
Pyrene	811	
Benzo[a]anthracene	427	
Benzo[b]fluoranthene	740	
Benzo[k]fluoranthene	361	
Benzo[a]pyrene	628	
Perylene	452	
Benzo[ghi]perylene	525	
Indeno[1,2,3-cd]pyrene	501	
2, 4'-DDE	0.73	
4, 4'-DDE	6.59	
4, 4'-DDD	5.06	

SRM 1945 Organics in Whale Blubber

Selected Components (46 certified)	Concentration (in µg/kg)
Hexachlorobenzene	32.9
α–HCH	16.2
γ-HCH (Lindane)	3.30
Heptaclor Epoxide	10.8
Oxychlordane	19.8
Mirex	28.9
2, 4'-DDE	12.28
4, 4'-DDE	445
2, 4'-DDD	18.1
4, 4'-DDD	133
2, 4'-DDT	106
4, 4'-DDT	245
PCB 18	4.48
PCB 44	12.2
PCB 101	65.2
PCB 209 .	10.6

SRM 1974a Organics in Mussel Tissue (Mytilus Edulis)

Component	Concentration (in µg/kg)
Phenanthrene	In Prep
Anthracene	In Prep
Fluoranthene	In Prep
Pyrene	In Prep
Perylene	In Prep
Benzo[b]fluoranthene	In Prep
Benzo[a]pyrene	In Prep
Benzo[ghi]perylene	In Prep
Indenol[1,2,3-cd]pyrene	In Prep

SRM 2261 Chlorinated Pesticides in Hexane

Pesticide	Concentration (in mg/kg)
Hexachlorobenzene	3.005
γ -HCH (Lindane)	3.012
Heptachlor	3.020
Aldrin	3.029
Heptachlor Epoxide	3.020
cis-Chlordane	3.012
trans-Nonachlor	3.034
Dieldrin	3.012
Mirex	3.041
2,4'-DDE	3.019
4,4'-DDE	3.019
2,4'-DDD	3.013
4,4'-DDD	3.043
2,4'-DDT	2,993
4.4'-DDT	3.004

SRM 2262 Chlorinated Biphenyl Congeners in 2,2,4-Trimethylpentane (Iso octane)

Selected Chlorinated Biphenyls (CBs) (25 certified)	Concentration (in mg/kg)	
CB 1	2.997	
CB 18	2.983	
CB 44	2.977	
CB 66	2.973	
CB 101	2.950	
CB 118	2.992	
CB 153	2.957	
CB 170	2.964	
CB 206	2.900	

RM	Туре	Purity (in Wt.%)
8466	y-Hexachlorocyclohexane	(99.9)
8467	4,4'-DDE	(99.8)
8469	4,4'-DDT	(99.8)

110. Food and Agriculture

These SRMs are for use in the calibration of apparatus and methods used in the analysis of trace elements in foods and related products.

SRM	1549	1566a	1567a	1568a	1577b
Туре	Non-fat Milk Powder	Oyster Tissue	Wheat Flour	Rice Flour	Bovine Liver
Unit Size	100 g	25 g	80 g	80 g	50 g
ELEMENTS	Nominal Compositi	on in mg/kg*, unless o	therwise noted.		
Aluminum	(2)	202.5	5.7	4.4	(3)
Antimony	(0.00027)	(0.01)		(0.0005)	(0.003)
Arsenic	(0.0019)	14.0	(0.006)	0.29	(0.05)
Bromine	(12)		(6)	(8)	(9.7)
Cadmium	0.0005	4.15	0.026	0.022	0.50
Calcium	1.30 Wt. %	0.196 Wt. %	0.0191 Wt. %	0.011 Wt. %	116
Chlorine	1.09 Wt. %	0.829 Wt. %	(565)	(300)	0.278 Wt. %
Chromium	0.0026	1.43			
Cobalt	(0.0041)	0.57	(0.006)	(0.018)	(0.25)
Copper	0.7	66.3	2.1	2.4	160
Fluorine	(0.20)	(240)			
Iodine	3.38	4.46	(0.0009)	(0.009)	
Iron	1.78	539	14.1	7.4	184
Lead	0.019	0.371	(<0.020)	(<0.010)	0.129
Magnesium	0.120 Wt. %	0.118 Wt. %	0.040 Wt. %	0.056 Wt. %	601
Manganese	0.26	12.3	9.4	20.0	10.5
Mercury	0.0003	0.0642	(0.0005)	0.0058	(0.003)
Molybdenum	(0.34)		0.48	1.46	3.5
Nickel		2.25		(0.16)	
Nitrogen		(6.81 Wt. %)			
Phosphorus	1.06 Wt. %	0.623 Wt. %	0.134 Wt. %	0.153 Wt. %	1.10 Wt. %
Potassium	1.69 Wt. %	0.790 Wt. %	0.133 Wt. %	0.1280 Wt. %	0.994 Wt. %
Rubidium	(11)	(3)	0.68	6.14	13.7
Selenium	0.11	2.21	1.1	0.38	0.73
Silver	(<0.0003)	1.68			0.039
Sodium	0.497 Wt. %	0.417 Wt. %	6.1	6.6	0.242 Wt. %
Strontium		11.1			0.136
Sulfur	0.351 Wt. %	0.862 Wt. %	0.165 Wt. %	0.120 Wt. %	0.785 Wt. %
Tellurium				(<0.002)	
Thorium		(0.04)			
Tin	(<0.02)	(3)	(0.0033)	(0.0047)	
Uranium		0.132	(0.0003)	(0.0003)	
Vanadium		4.68	(0.011)	(0.007)	(0.123)
Zinc	46.1	830	11.6	19.4	127

Values in parentheses are not certified and are given for information only.

* SI unit. Replaces "ppm" and "µg/g".

110. Health Care and Nutrients (liquid and solid forms)

These SRMs are for use in determining the nutritional contents of foods. They are certified for such dietary constituents as proximates (solids, ash, protein, carbohydrate, fat and linoleate), vitamins, niacin, folic acid, pantothenic acid, biotin, choline, and selected minerals and trace elements.

SRM	Туре	Certified Const Analytes	tituents Values	Unit Size
Nomina	al Composition [In Wt.% unless i	dentified by an asterisk which	indicates mg/kg.]	
1544	Diet Composite	Fatty Acids		In Prep
1548	Total Diet	14 elements		2 bottles:
		Fat	20.6	6.5 g each
		Ash	3.5	Ŭ
		Kjeldahl Nitrogen	3.4	
		Dietary Fiber	3.7	
1548a	Typical Diet	\$		In Prep
1563	Coconut Oil	Cholesterol	642 *	10 ampules
		Retinyl Acetate	12.2 *	(5 certified)
		Ergocalciferol	10.9 *	(5 uncertified)
		dl-a-Tocopherol Acetate	158.2 *	(· ········
1845	Whole Egg Powder	Cholesterol	19.0 *	35 g
1846	Infant Formula (milk-based)	Proximates, Vitamins, Minerals		In Prep
2383	Foods/Baby Foods	Carotenoids, Vitamins		In Prep
8435	Whole Milk	Proximates, Minerals, Vitan	nins	In Prep
8439	Dietary Fiber	F		In Prep

110. USA/Canada Collaborative Materials (powder form)

These materials, developed by Agriculture Canada in collaboration with NIST, are for calibrating apparatus and validating analytical methods applied to food/agricultural commodities.

RM	Туре	Elements Certified
8414	Bovine Muscle Powder (Beef)	Al, As, B, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Mo, N, Na, Ni, P, Rb, S, Se, Sr, Zn
8415	Whole Egg Powder	Al, B, Ca, Cl, Co, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Mo, N, Na, P, Pb, S, Se, Sr, V, Zn
8416	Microcrystalline Cellulose	Al, Cl, Co, Cu, Mo, N, Ni, Se
8418	Wheat Gluten	Al, Ba, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Mo, N, Na, Ni, P, Pb, S, Se, Sr, Zn
8432	Corn Starch	Al, Ca, Cl, Cu, K, Mg, Mo, N, Na, Ni P, Se
8433	Corn Bran	Al, As, B, Ba, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Mo, N, Na Ni, P, Pb, S, Se, Sr, V, Zn
8435	Whole Milk Powder	Ba, Br, Ca, Cl, Cu, Fe, I, K, Mg, Mn, Mo, N, Na, P, Pb, Rb, S, Se, Sr, Zn
8436	Durum Wheat Flour	Al, Ba, Br, Ca, Cd, Cl, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Mo, N, Na, Ni, P, Pb, S, Se, Sr, V, Zn
8437	Hard Red Spring Wheat Flour	Ca, Cl, Cr, Cu, Fe, K, Mg, Mn, Mo, N, Na, P, S, Se, Zn
8438	Soft Winter Wheat Flour	Ca, Cl, Cu, Fe, K, Mg, Mn, Mo, N, Na, P, S, Se, Zn

SRM Type	1515 Apple Leaves	1547 Peach Leaves	1573a Tomato Leaves	1575 Pine Needles	2695 Fluoride, in Vegetation	RM 8412 Corn Stalk (Zea Mays)	RM 8413 Corn Kernel (Zea Mays)	1570a Spinach Leaves
Unit Size	50 g	50 g	50 g	70 g	2 × 25 g	34 g	47 g	60 g
ELEMENTS	Concentra	tions are in	mg/kg unless	s noted by a	single asterisk *,	for Wt.%.		
Aluminum	286	249	598	545			(4)	310
Antimony Arsenic	(0.013) 0.038	(0.02) 0.060	0.063	(0.2) 0.21				0.068
Barium	49	124	(63)	0.21				0.008
Boron	27	29	33.3					37.6
Bromine	(1.8)	(11)	(1300)	(9)				
Cadmium	(0.013)	(0.026)	1.52	(<0.5)				2.89
Calcium	1.526 *	1.56 *	5.05 *	0.41 *		(2160)	(42)	1.527 *
Cerium	(3)	(10)	(2)	(0.4)		(- · · · /		
Cesium			(53)					
Chlorine	579	360	(6600)			(2440)	(450)	
Chromium	(0.3)	(1)	1.99	2.6				
Cobalt	(0.09)	(0.07)	0.57	(0.1)			(2.0)	0.39
Copper	5.64	3.7	4.70	3.0		(8)	(3.0)	12.2 (0.0054)
Europium	(0.2)	(0.17)		(0.006)		10.10	10 - 11	(0.0054)
Fluorine Gadolinium	(3)	(1)	(0.17)		64/277	(0.65)	(0.24)	
Gold	(3) (0.001)	(1)	(0.17)					
Hydrogen	(0.001)	5.2 *						
Iodine	(0.3)	(0.3)	(0.85)					
Iron	(83)	(218)	368	200		(139)	(23)	
Lanthanum	(20)	(9)	(2.3)	(0.2)				
Lead	0.470	0.87	10.8					(0.20)
Magnesium	0.271 *	0.432 *	(1.2 *)			(1600)	(990)	(0.89*)
Manganese	54	98	246	675		(15)	(4.0)	75.9
Mercury	0.044	0.031	0.034	0.15				0.030
Molybdenum Neodymium	0.094 (17)	0.060 (7)	(0.46)					
Nickel	0.91	0.69	1.59	(3.5)				2.14
						(6970)	(13750)	5.90 *
Nitrogen Phosphorus	2.25 * 0.159 *	2.94 * 0.137 *	3.03 * 0.216 *	(1.2 *) 0.12 *		(0970)	(13750)	0.518 *
Potassium	1.61 *	2.43 *	2.70 *	0.12		(17350)	(3570)	2.903 *
Rubidium	10.2	19.7	14.89	11.7		(/	(13)
Samarium	(3)	(1)	(0.19)					
Scandium	(0.03)	(0.04)	(0.1)	(0.03)				(0.055)
Selenium	0.050	0.120	0.054			(0.016)	(0.004)	0.117
Sodium	24.4	24	136			(28)		1.818 *
Strontium	25	53	(85)	4.8		(12)		55.6
Sulfur	(0.18 *)	(0.2 *)	(0.96 *)					(0.46 *)
Tellurium								
Terbium	(0.4)	(0.1)		(0.05)				
Thallium	(0.03)	(0.05)	(0.12)	(0.05)				0.48
Thorium Tin	(0.03)	(0.05)	(0.12)	0.037				0.40
Tungsten	(<0.2) (0.007)	(<0.2)						
Uranium	(0.007)	(0.015)	(35)	0.020				(0.15)
Vanadium	0.26	0.37	0.835					0.57
Ytterbium	(0.3)	(0.02)						
Zinc	12.5	17.9	30.9			(32)	(15.7)	82

110. Fertilizers (powder form)

These SRMs are intended for use in the fertilizer industry as working standards for the determination of the certified constituents.

SRM			Туре			Unit S	Composition (in Wt. %)						
DIGIVI			Type			(in a		Р	K	P2O5	K ₂ O	CaO	
120c	Phosp	hate R	ock (Flo	rida)		90)			33.34	0.147	48.02	
193	Potass	ium Ni	itrate			90) 13.85		38.66				
194	Ammo	onium l	Dihydrog	gen Pho	sphate	90) 12.15	26.92					
200			ihydroge		hate	90)	22.74	28.76				
694	Phosp	hate R	ock (We	stern)		90				30.2	0.51	43.6	
SRM	SiO ₂	F	Fe ₂ O ₃	Al ₂ O ₃	MgO	Na ₂ O	MnO	TiO ₂	Cr ₂ O ₃	CdO	U	V2O5	
694	11.2	3.2	0.79	1.8	0.33	0.86	0.0116	(0.11)	(0.10)	0.015	0.01414	0.31	

110. Biomass Materials (powder form)

These Reference Materials, RMs 8491 Sugar Cane Bagasse (*Saccharum spp. hybrid*), 8492 Eastern Cottonwood (*P. deltoides*), 8493 Pinus Radiata, and 8494 Wheat Straw (*Triticum aestivum*) are intended primarily for use in fundamental studies on the chemical and physical properties of cellulose, hemi-cellulose and lignin and of their effects on various conversion processes. As part of the International Energy Agency (IEA) Voluntary Standards Activity Group's work, these materials were selected initially for use as research materials for a world-wide round robin analytical laboratory comparison using the Uppsala Method. They were supplied by various institutions and were prepared, packaged and are being distributed by NIST.

At this time, no extensive property measurements have been made on these materials beyond ensuring that the materials are homogeneous. A round robin is in progress with participation by international laboratories and as results become available, the Report of Investigation that accompanies each of these materials will be revised to reflect those changes.

All of the ground and homogenized materials were irradiated with Cobalt-60. The irradiation was required to meet customs regulations for shipment of biomass materials to international destinations.

RM	Туре	Unit Size
8491	Sugar Cane Bagasse	In Prep
8492	Eastern Cottonwood	In Prep
8493	Pinus Radiata	In Prep
8494	Wheat Straw	In Prep

111. Geological Materials and Ores

111. Chinese Ores (powder form)

These RMs are a series of skarn deposit ores developed and certified by the Hubei Geological Research Laboratory, Hubei Province, China. Skarn ores are common in the Pacific area and other parts of the world. These RMs can be used as control samples in geochemical exploration and in environmental monitoring programs.

NOTE: In addition to the listed constituent elements, elemental concentrations are given for all major rock-forming oxides and many trace elements, including the rare earth elements and toxic trace elements important to environmental assessment programs.

RM	8600	8601	8602	8603	8604	8605	8606	8607	8608
Туре	Type Copper	Copper	Lead	Lead	Zinc	Molybdenum	Molybdenum	Tungsten	Tungsten
Unit Size (in g)	100	100	100	100	100	100	100	100	100
Components [in	Wt. %]		-						
Cu	1.15	0.19	0.20	0.035	0.71			0.079	0.096
Мо						1.51	0.11		
Pb			4.17	0.61	0.25				
S	0.72	0.14	0.86	0.38	2.87	1.64	0.48	3.12	1.90
w						0.36	0.10	0.015	0.22
Zn	0.059	0.013	0.062	0.092	2.75			0.29	0.010

111. Ores (powder form)

SRM/RM	79a	180	181	182	183	277	330	331	2430
Туре	Fluorspar, Customs Grade	Fluorspar, High Grade			Lithium Ore (Lepidolite)	Tungsten Concentrate	Copper Ore Mill Heads	Copper Ore Miii Talls	Scheellte Ore
Unit Size (in g)	120	120	45	45	45	100	100	100	100
Components [in	n Wt. % uniess id	entified by an	asterisk which	indicates mg/l	·g]				
Ca						(0.37)			As 0.002
CaF ₂	97.39	98.80							
Cu							0.84	0.091	(0.01)
Fe						(7.4)			(1.0)
Au							(0.093*)	(0.034*)	
Li ₂ O			6.39	4.34	4.12				
Mn						(10.0)			(0.12)
Mo						(0.06)	0.018	0.0022	0.22
Nb						(1.00)			
O ₂						(21.4)			Al (0.4)
Р						(0.03)			0.01
Pb						(0.07)			Bi 0.078
Re							0.30*	0.04*	
Si						(0.85)			Mg (0.5)
Ag							(1.51*)	(0.243*)	
S						(0.25)			0.26
Ta						(0.20)			(<0.01)
Sn						(0.54)			K (0.16)
Ti						(2.2)			Na (0.02)
WO ₃						67.4			70.26

SRM	25d	27f	69b	120c	600	670	690	691	692	693
Туре	Manganese Ore	Iron Ore, Sibiey	Bauxite, Arkansas	Phosphate Rock, Florida	Bauxite, Australian	Rutile Ore	Iron Ore, Canada	Iron Oxide, Reduced	Iron Ore, Labrador	Iron Ore Nimba
init Size (in g)	100	80	60	90	90	90	100	100	100	100
omponents [in Wt.	% uniess iden	tified by ar	asterisk w	hich indicates i	mg/kg}					
Al ₂ O ₃	5.32	0.82	48.8	1.30	40.0		0.18	1.22	1.41	1.02
BaO	(0.21)		(0.008)							
CdO	. ,		. ,	0.0010						
CaO	(0.052)	0.039	0.13	48.02	0.22		0.20	0.63	0.023	0.016
Co			(0.0001)					0.030		
Cu								0.032		
Cr ₂ O ₃			0.011		0.024	0.23				
Total Fe		65.97					66.85	90.8	59.58	65.11
Fe ₂ O ₃	3.92		7.14	1.08	17.0	0.86				
MgO		0.019	0.085	0.32	0.05		0.18	0.52	0.035	0.013
MnO	Mn 51.78	0.011	0.110	0.027	0.013		0.23	0.043	0.46	0.091
Р		0.041					0.011	0.006	0.039	0.056
P_2O_5	0.25		0.118	33.34	0.039					
K ₂ O	0.93	0.008	0.068	0.147	0.23		0.0030		0.039	0.0028
SiO ₂	2.52	4.17	13.43	5.5	20.3	0.51	3.71	3.7	10.14	3.87
Na ₂ O		0.012	(0.025)	0.52	0.022		0.003	0.186	0.008	0.0028
S		0.005					0.003	0.008	0.005	0.005
SO3			0.551		0.155					
TiO ₂	0.13	0.019	1.90	0.103	1.31	96.16	0.022	0.27	0.045	0.035
V ₂ O ₅			0.028	0.016	0.060	0.66				
ZnO			0.0035	CO ₂ 3.27	0.003			C 0.12		
ZrO ₂			0.29	F 3.82	0.060	0.84				
Oxygen, Available										
Moisture	(0.96)									
Loss on										
Ignition			27.2		20.5					

111. Ores (powder form) – Continued

SRM	694	696	697	698	699	886	1835
Туре	Phosphate Rock, Western	Bauxite, Surinam	Bauxite, Dominican	Bauxite, Jamaican	Alumina (reduction grade)	Gold Ore, Refractory	Borate Ore
nit Size (in g)	90	60	60	60	60	200	60
Components [in Wt. % unless	identified by a	ın asterisk whi	ch indicates	mg/kg]		
Al ₂ O ₃ BaO	1.8	54.5	45.8	48.2		8.25 *	3.474
		(0.004)	(0.015)	(0.008)		(5.7)	0.0497
CdO	0.015					(3.7)	
CaO	43.6	0.018	0.71	0.62	0.036		21.622
Co	F 3.2	(0.00009)	(0.0013)	(0.0045)	0.000		F 0.348
Cr ₂ O ₃	(0.10)	0.047	0.100	0.080	0.0002		
Fe ₂ O ₃	0.79	8.70	20.0	19.6	0.013		1.141
MgO	0.33	0.012	0.18	0.058	0.0006		3.411
MnO	0.0116	0.004	0.41	0.38	0.0005		0.0333
P ₂ O ₅	30.2	0.050	0.97	0.37	0.0002		
K ₂ O	0.51	0.009	0.062	0.010			1.261
SiO ₂	11.2	3.79	6.81	0.69	0.014		18.408
Na ₂ O	0.86	(0.007)	(0.036)	(0.015)	0.59		3.484
STotal						1.466	
SO ₃	(0.44)	0.15	0.077	0.143		(0.7)	1.477
TiO ₂	(0.11)	2.64	2.52	2.38	· · ·		0.1332
U	0.01414						
V_2O_5	0.31	0.072	0.063	0.064	0.0005		
ZnO	(0.19)	0.0014	0.037	0.029	0.013		
ZrO ₂		0.14	0.065	0.061			SrO 0.9418
Ga ₂ O ₃					0.010		B ₂ O ₃ 18.739
Li ₂ O					0.002		
Loss on		29.9	22.1	27.3	0.69		25.72
Ignition - Se	e certificate for	conditions					

111. Ores (powder form) – Continued

Values in parentheses are not certified and are given for information only.

111. Ore Bioleaching Substrate (powder form)

This Reference Material (RM) is for use as a bioleaching substrate and for testing bioleaching rates. The material consists of pyrite from New Mexico. Thiobacillus ferrooxidans was used in the determinations.

RM	Туре	Unit Size (in g)	Bioleaching Rate (in mg Fe/L/hr)
8455	Pyrite Ore	100	12.4

SRM	97b	98b	679
Туре	Flint Clay	Plastic Clay	Brick Clay
Unit Size (in g)	60	60	75
	Elemer	ntal Composition (in V	Wt. %) *
Al	20.76	14.30	11.01
Ba	(0.018)	(0.07)	0.0432
Ca	0.0249	0.0759	0.1628
Ce			(105)*
Cs	(3.4)*	(16.5)*	` (9.6)*
Cr	227*	119*	109.7*
Со	(3.8)*	(16.3)*	(26)*
Eu	(0.84)*	` (1.3)́*	(1.9)*
Hf	(13)*	(7.2)*	(4.6)*
Fe	0.831	1.18	9.05
Li	550*	215*	71.7*
Mg	0.113	0.358	0.7552
Mn	47*	116*	(1730)*
Р	(0.02)	(0.03)	(0.075)
K	0.513	2.81	2.433
Rb	(33)*	(180)*	(190)*
Sc	(22)*	(22)*	(22.5)*
Si	19.81	26.65	24.34
Na	0.0492	0.1496	0.1304
Sr	84*	189*	73.4*
Th	(36)*	(21)*	(14)*
Ti	1.43	0.809	0.577
Zn	(87)*	(110)*	(150)*
Zr	(0.05)	(0.022)	
Sb	(2.2)*	(1.6)*	
Loss on			
Ignition**	(13.3)	(7.5)	

Clavs (powder form) 111.

Values in parentheses are not certified and are given for information only. * Value is in mg/kg (SI unit). **At 1100 °C, 2 hours; sample previously dried.

SRM	<u>1c</u>	70a	81a	88b	99a	165a	278	688	1413
Туре	Lime- stone, Argilla- ceous	Feld- spar, Potash	Glass Sand	Limestone, Dolomite	Feld- spar, Soda	Glass Sand (low iron)	Obsidian Rock	Basalt Rock	Glass Sand (high alumina)
Unit Size (in g)	50	40	75	75	40	75	35	60	75
Components [in	Wt. % un	less iden	tified by an a	asterisk which in	dicates m	ng/kg.]			
Al ₂ O ₃	1.30	17.9	0.66	0.336	20.5	0.059	14.15	17.36	9.90
BaO		0.02		CO ₂ 46.37	0.26		Ba (1140 *)		0.12
CaO	50.3	0.11		29.95	2.14		0.983	(12.17)	0.74
Cr ₂ O ₃			46 *			(1*)	Cr (6.1 *)	Cr 332 *	
Fe_2O_3 †	0.55	0.075	0.082	0.277	0.065	0.012	2.04	10.35	0.24
FeO †							1.36	7.64	
MgO	0.42			21.03	0.02		(0.23)	(8.4)	0.06
MnO	0.025			0.0160			0.052	0.167	
P_2O_5	0.04			0.0044	0.02		0.036	0.134	
K ₂ O	0.28	11.8		0.1030	5.2		4.16	0.187	3.94
Rb ₂ O		0.06					Rb 127.5 *	Rb 1.91 '	•
SiO ₂	6.84	67.12		1.13	65.2		73.05	48.4	82.77
Na ₂ O	0.02	2.55		0.0290	6.2		4.84	2.15	1.75
SrO	0.030			0.0076			Sr 63.5 *	Sr 169.2	
TiO ₂	0.07	0.01	0.12	(0.016)	0.007	0.011	0.245	1.17	0.11
ZrO ₂			0.034			0.006			
Loss on	39.9	0.40		(46.98)	0.26				

111 Rocks and Minerals (nowdon form)

Values in parentheses are not certified and are given for information only. † Refer to certificate to ascertain if the value reported represents total iron or species-specific iron.

111. **Refractories (powder form)**

SRM	76a	77a	78a	154b	198	199	
Туре	Burnt Refractory (Al ₂ O ₃ 40%)	Burnt Refractory (Al ₂ O ₃ –60%)	Burnt Refractory (Al ₂ O ₃ –70%)	Titanium Dioxide	Silica Brick	Silica Brick	
Unit Size (in g)	75	75	75	90	45	45	
Components (in	Wt. %)						
Al ₂ O ₃ CaO FeO *	38.7 0.22	60.2 0.05	71.7 0.11	(~0.01)	0.16 2.71	0.48 2.41	
$Fe_2O_3 *$	1.60	1.00	1.2	(0.006)	0.66	0.74	
Li ₂ O MgO MnO	0.042 0.52	0.025 0.38	0.12 0.70	(~0.01)	0.001 0.07 0.008	0.002 0.13 0.007	
P_2O_5 K_2O	0.120 1.33	0.092 0.090	1.3 1.22	(0.04)	0.022 0.017	0.015 0.094	
SiO ₂ Na ₂ O SrO	54.9 0.07 0.037	35.0 0.037 0.009	19.4 0.078 0.25	(0.01)	0.012	0.015	
TiO_2 ZrO_2	2.03	2.66	3.22	99.74	0.02	0.06	
Loss on Ignition	(0.34)	(0.22)	(0.42)		0.21	0.17	

,

Values in parentheses are not certified and are given for information only. * Refer to certificate to ascertain if the value reported represents total iron or species-specific iron.

SRM/RM Type	1646a Estua- rine Sediment	2704 Buffalo River Sediment	2709 San Joaquin Soil	2710 Montana Soii Highly Elevated Traces	2711 Montana Soil Moderately Elevated Traces	8406 Tennessee River Sediment	8407 Tenness River Sedime
Unit Size	75 g	50 g	50 g	50 g	50 g	25 g	25 g
ELEMENT Con	centrations are in mg/	kg, unless noted by	a single asterisk,	*, for Wt. %.			
Aluminum	2.297 *	6.11 *	7.50 *	6.44 *	6.53 *		
Antimony	(0.3)	3.79	7.9	38.4	19.4		
Arsenic	6.23	23.4	17.7	626	105		
Barium	(210)	414	968	707	726		
Beryllium	(<1)						
Bromine		(7)		(6)	(5)		
Cadmium	0.148	3.45	0.38	21.8	41.7		
Calcium	0.519 *	2.60 *	1.89 *	1.25 *	2.88 *		
Carbon		3.348 *	(1.2 *)	(3*)	(2*)		
Cerium	(34)	(72)	(42)	(57)	(69)		
Cesium		(6)	(5.3)	(107)	(6.1)		
Chlorine		(<0.01 *)	. ,				
Chromium	40.9	135	130	(39)	(47)		
Cobalt	(5)	14.0	13.4	(10)	(10)		
Copper	10.01	98.6	34.6	2950	114		
Dysprosium	10.01	(6)	(3.5)	(5.4)	(5.6)		
Europium		(1.3)	(0.9)	(1)	(1.1)		
Gallium	(5)	(15)	(14)	(34)	(15)		
Germanium					. ,		
Gold			(0.3)	(0.6)	(0.03)		
Hafnium	-	(8)	(3.7)	(3.2)	(7.3)		
Holmium			(0.54)	(0.6)	(1)		
Indium			(-)	(5.1)	(1.1)		
Iodine		(2)	(5)		(3)		
Iron (Total)	2.008 *	4.11 *	3.50 *	3.38 *	2.89 *		
Lanthanum	(17)	(29)	(23)	(34)	(40)		
Lead	11.7	161	18.9	5532	1162		
Lithium	(18)	47.5					
Magnesium	0.388 *	1.20 *	1.51 *	0.853 *	1.05 *		
Manganese	234.5	555	538	1.01 *	638	(0.06)	(50)
Mercury	(0.04)	1.47	1.40	32.6	6.25	(0.06)	(50)
Molybdenum	(1.8)		(2.0)	(19)	(1.6)		
Neodymium	(15)		(19)	(23)	(31)		
Nickel	22.5 0.027 *	44.1	88 0.062 *	14.3 0.106 *	20.6 0.086 *		
Phosphorus Potassium	0.027	0.0998 * 2.00 *	2.03 *	2.11 *	2.45 *		
Dubidium		(100)	(06)	(120)	(110)		
Rubidium Samarium	(38)	(100) (6.7)	(96) (3.8)	(120) (7.8)	(110) (5.9)		
Scandium	(5)	(12)	(12)	(8.7)	(9)		
Selenium	0.193	1.12	1.57	(0.7)	1.52		
Silicon	40.00 *	29.08 *	29.66 *	28.97 *	30.44 *		
Silver			0.41	35.3	4.63		
Sodium	0.741 *	0.547 *	1.16 *	1.14 *	1.14 *		
Strontium	(68)	(130)	231	(240)	245.3		
Sulfur	0.352 *	0.397 *	0.089 *	0.240 *	0.042 *		
Thallium	(<0.5)	1.06	0.74	(1.3)	2.47		
Thorium	(5.8)	(9.2)	(11)	(13)	(14)		
Titanium	0.456 *	0.457 *	0.342 *	0.283 *	0.306 *		
Tungsten	(2.0)	2.12	(2)	(93)	(3)		
Uranium	(2.0)	3.13	(3)	(25)	(2.6)		
Vanadium Vitesbium	44.84 *	95 (2.8)	112 (1.6)	76.6 (1.3)	81.6 (2.7)		
Ytterbium Yttrium		(2.8)	(18)	(23)	(25)		
Zinc	48.9	438	106	6952	350.4		
Zirconium	10.7	(300)	(160)		(230)		

Carbides (powder form)

SRM	Туре	Unit Size			(Compos	ition (in V	/t. %)		
		(in g)	SiC	Total C	Free C	Fe	0	N	Al	Ca
112b 276b	Silicon Carbide Tungsten Carbide	80 75	97.37	29.43 6.10	0.26 (0.04)	0.13	(0.08)	(0.01)	0.44	0.04

Values in parentheses are not certified and are given for information only.

112. Cemented Carbides (powder form)

SRMs 887-9 are prepared from sintered tungsten carbide base materials.

SRM	887	· 888	889
Туре	Cemented Carbide (W83-Co10)	Cemented Carbide (W64-Co25-Ta5)	Cemented Carbido (W75-Co9-Ta5-Ti4)
Unit Size (in g)	100	100	100
Elemental Composition (in Wt. %)			
Со	10.35	24.7	9.50
Та		4.77	4.60
Ti			4.03
С	(5.5)	(4.6)	(6.0)

SRM	81a Giass Sand	89 Lead- Barium	91 Opal Powder	92 Low- Boron Soda- Lime	93a High- Boron Boro- sllicate	165a Glass Sand (iow Iron)	620 Soda- Lime, Flat	621 Soda- Lime, Con- talner	1411 Soft Boro- sillcate	1412 Muiti Compo- nent	1413 Glass Sand high) alumina)	1830 Soda- Lime, Float	1831 Soda- Lime, Sheet	1834 Fused Ore Giass
Unit Size	 75 g	 45 g	 45 g	Powder 45 g	wafer 32 mm D×6 mm	75 g	3 platelets 35×35×3 mm	3 disks 38 mm D×5 mm	10 platelets 32×32×3 mm	8 platelets 32×32×3 mm		3 plateiets 38×38×6 mm	3 platelets	disk 30 mm
omponents	[in Wt. %	unless Ide	ntlfied by	an asteris	k which lr	ndicates	mg/kg.]							
SiO₂ PbO		65.35 17.50	67.5 0.10	(75.0)	80.8		72.08	71.13	58.04	42.38 4.40	82.77	73.07	73.08	Si 20.19
Al ₂ O ₃ FeO	0.66	0.18	6.01		2.28 0.016	0.059	1.80	2.76	5.68	7.52	9.90	0.12 0.032	1.21 0.025	AI 20.7
Fe ₂ O ₃	0.082	0.049	0.079		0.028	0.012	0.043	0.040	0.050	(0.031)	0.24	0.121	0.087	Fe 0.3
ZnO CdO			0.08	(0.2)					3.85	4.48 4.38				
MnO	0.12	0.088 0.01	0.019		0.014	0.011	0.019	0.014	0.02			0.011	0.010	TT 1 1
TiO ₂ ZrO ₂	0.12	0.005	0.019		0.014	0.001	0.018	0.014	0.02			0.011	0.019	Ti 1.1: Zr (0.04
CaO		0.21	10.49	(8.3)	0.01		7.11	10.71	2.18	4.53	0.74	8.56	8.20	Ca 0.0
BaO		1.40						0.12	5.00	4.67	0.12			Ba 0.06
Li ₂ O		0.02		(0.1)	0.005		2 (0	0.07	0.22	(4.50)	0.07	2.00		Li (4.6)
MgO K2O		0.03 8.40	3.24	(0.1) (0.6)	0.005 0.014		3.69 0.41	0.27 2.01	0.33 2.97	(4.69) 4.14	0.06 3.94	3.90 0.04	3.51 0.33	Mg 0.04
Na2O B2O3		5.70	8.47	(13.1) 0. 7 0	3.98 12.56		14.39	12. 7 4	10.14 10.94	4.69 4.53	1.75	13.75	13.32	Na (0.14 B (1.1)
P_2O_5		0.23	0.023											P 0.1
As ₂ O ₅ As ₂ O ₃		0.36 0.03	0.10 0.09				0.056	0.030						
SO3 Cl		0.03 0.05	0.015		0.060		0.28	0.13				0.26	0.25	
Cr									0.00					(0.0)
SrO F			5.73						0.09	4.55				Sr 0.15
Cr ₂ O ₃ Loss on	46 *					(1*)								
Ignition		0.32		(0.42)										

112. Glasses (powder and solid forms)

112. Trace Elements (powder and wafer forms)

These SRMs are for calibrating instruments and evaluating analytical techniques used to determine trace elements in inorganic matrices.

SRM	607	610 and 611	612 and 613	614 and 615	616 and 617
Туре	Trace Elements in Potassium Feldspar	Trace Elements in Glass	Trace Elements in Glass	Trace Elements in Glass	Trace Elements in Glass
Wafer Thickness (in mm)		1	3 and 1	3 and 1	3 and 1
Unit Size	5 g	6 wafers	6 wafers	6 wafers	6 wafers
Element		Comp	oosition (in mg/kg)		
Antimony				(1.06)	(0.078)
Barium			(41)		
Boron		(351)	(32)	(1.30)	(0.20)
Cadmium			(20)	(0.55)	
Cerium			(39)		
Cobalt		(390)	(35.5)	(0.73)	
Copper		(444)	(37.7)	1.37	(0.80)
Dysprosium		(,,,,)	(35)	1.57	(0.00)
Erbium			(39)		
Europium			(36)	(0.99)	
Gadolinium	······································		(39)	·····	
Gallium			(57)	(1.3)	(0.23)
Gold		(25)	(5)	(0.5)	(0.18)
Iron		458	51	(13.3)	(11)
Lanthanum			(36)	(0.83)	(0.034)
Lead		426	38.57	2.32	1.85
Manganese		485	(39.6)		_,
Neodymium			(36)		
Nickel		458.7	38.8	(0.95)	
Potassium		(461)	(64)	30	29
Rubidium	523.90	425.7	31.4	0.855	(0.100)
Samarium			(39)		. ,
Scandium			. ,	(0.59)	(0.026)
Silver		(254)	22.0	0.42	
Strontium	65.485 *	515.5	78.4	45.8	41.72
Thallium		(61.8)	(15.7)	(0.269)	(0.0082)
Thorium		457.2	37.79	0.748	0.0252
Titanium		(437)	(50.1)	(3.1)	(2.5)
Uranium		461.5	37.38	0.823	0.0721
Ytterbium			(42)		
Zinc		(433)	(/		

In addition to the elements listed above, the glass SRMs contain the following 25 elements: As, Be, Bi, Cs, Cl, F, Ge, Hf, Hg, Li, Lu, Mg, Nb, P, Pr, Se, S, Te, Tb, Tm, Sn, W, V, Y, and Zr.

NOTE: Glass-Nominal Composition; 72% SiO₂, 12% CaO, 14% Na₂O, and 2% Al₂O₃.

Values in parentheses are not certified and are given for information only.

* Also certified for isotopic ratio $-\frac{87}{5}$ Sr = 1.20039.

113. Cement

Portland Cements (powder form)

These SRMs are for X-ray spectroscopic and chemical analysis of portland cements and related materials. Each unit consists of three (3) sealed vials, each containing ~ 5 g of material.

SRM	1880	1881	1882	1883	1884
COLOR	BLACK	WHITE	ORANGE	SILVER	IVORY
Components (in Wt. %)			····		
CaO	63.14	58.67	37.6	27.8	64.01
SiO ₂	19.82	22.25	3.40	0.35	23.19
Al ₂ O ₃	5.03	4.16	38.6	71.2	3.31
Fe_2O_3	2.91	4.68	15.8	0.08	3.30
SO ₃	3.37	3.65	1010	0.00	1.67
MgO	2.69	2.63	1.25	0.29	2.32
K ₂ O	0.91	1.17	0.12	(0.01)	0.51
TiO ₂	0.23	0.25	1.83	(0.01)	0.16
Na ₂ Õ	0.28	0.04	(0.06)	0.32	0.13
SrÕ	0.06	0.11			0.048
P ₂ O ₅	0.29	0.09			0.12
Mn_2O_3	0.08	0.26			0.11
F	0.10	0.09			(0.03)
ZnO	0.01	0.01			(0.02)
Cr_2O_3					(<0.01)
CI	0.02	0.01			(0)
Loss on Ignition at 1000 °C	1.38	2.01	1.58	0.42	1.17
Total	100.28	100.04			(100.05)
					-
SRM	1885	1886	1887	1888	1889
	1885 TURQUOISE	1886 CRANBERRY	1887 BROWN	1888 PURPLE	
COLOR 1			<u></u>	<u> </u>	
	CURQUOISE		<u></u>	<u> </u>	
COLOR 1 Components (in Wt. %) CaO	URQUOISE	CRANBERRY	62.88	PURPLE	GRAY
COLOR 1 Components (in Wt. %) CaO SiO ₂	CURQUOISE	CRANBERRY 67.43	BROWN	PURPLE 63.78 20.86	GRAY 65.08
COLOR 1 Components (in Wt. %) CaO SiO ₂ Al ₂ O ₃	62.14 21.24 3.68	CRANBERRY 67.43 22.53 3.99	62.88 19.98 5.59	63.78 20.86 5.35	GRAY 65.08 20.44 5.61
COLOR 1 Components (in Wt. %) CaO SiO ₂ Al ₂ O ₃ Fe ₂ O ₃	62.14 21.24	CRANBERRY 67.43 22.53	62.88 19.98	PURPLE 63.78 20.86	GRAY 65.08 20.44
COLORTComponents (in Wt. %)CaOSiO2Al2O3Fe2O3SO3MgO	62.14 21.24 3.68 4.40 2.22 4.02	CRANBERRY 67.43 22.53 3.99 0.31 2.04 1.60	62.88 19.98 5.59 2.16 4.61 1.26	PURPLE 63.78 20.86 5.35 3.18 3.16 0.71	GRAY 65.08 20.44 5.61 2.67 2.68 1.38
COLORIComponents (in Wt. %)CaOSiO2Al2O3Fe2O3SO3MgOK2O	62.14 21.24 3.68 4.40 2.22 4.02 0.83	CRANBERRY 67.43 22.53 3.99 0.31 2.04 1.60 0.16	62.88 19.98 5.59 2.16 4.61 1.26 1.27	PURPLE 63.78 20.86 5.35 3.18 3.16 0.71 0.56	GRAY 65.08 20.44 5.61 2.67 2.68 1.38 0.32
COLOR T Components (in Wt. %) CaO CaO SiO2 Al2O3 Fe2O3 SO3 MgO K2O FiO2	62.14 21.24 3.68 4.40 2.22 4.02 0.83 0.20	CRANBERRY 67.43 22.53 3.99 0.31 2.04 1.60 0.16 0.19	62.88 19.98 5.59 2.16 4.61 1.26 1.27 0.27	PURPLE 63.78 20.86 5.35 3.18 3.16 0.71 0.56 0.29	GRAY 65.08 20.44 5.61 2.67 2.68 1.38 0.32 0.21
COLOR T Components (in Wt. %) CaO CaO SiO2 Al2O3 Fe2O3 SO3 MgO K2O FiO2	62.14 21.24 3.68 4.40 2.22 4.02 0.83 0.20 0.38	CRANBERRY 67.43 22.53 3.99 0.31 2.04 1.60 0.16 0.19 0.02	BROWN 62.88 19.98 5.59 2.16 4.61 1.26 1.27 0.27 0.10	PURPLE 63.78 20.86 5.35 3.18 3.16 0.71 0.56 0.29 0.14	GRAY 65.08 20.44 5.61 2.67 2.68 1.38 0.32 0.21 0.11
COLOR I Components (in Wt. %) I CaO I SiO2 I Al2O3 I Fe2O3 I SO3 I MgO K2O FiO2 Na2O	62.14 21.24 3.68 4.40 2.22 4.02 0.83 0.20	CRANBERRY 67.43 22.53 3.99 0.31 2.04 1.60 0.16 0.19	62.88 19.98 5.59 2.16 4.61 1.26 1.27 0.27	PURPLE 63.78 20.86 5.35 3.18 3.16 0.71 0.56 0.29	GRAY 65.08 20.44 5.61 2.67 2.68 1.38 0.32 0.21
COLOR I Components (in Wt. %) I CaO SiO2 Al2O3 Fe2O3 Fe2O3 SO3 MgO K2O TiO2 Na2O SrO P2O5	CURQUOISE 62.14 21.24 3.68 4.40 2.22 4.02 0.83 0.20 0.38 0.037 0.10	CRANBERRY 67.43 22.53 3.99 0.31 2.04 1.60 0.16 0.19 0.02 0.11 0.025	BROWN 62.88 19.98 5.59 2.16 4.61 1.26 1.27 0.27 0.10 0.07 0.07 0.075	PURPLE 63.78 20.86 5.35 3.18 3.16 0.71 0.56 0.29 0.14 0.07 0.085	GRAY 65.08 20.44 5.61 2.67 2.68 1.38 0.32 0.21 0.11 0.20 0.15
COLOR I Components (in Wt. %) I CaO SiO2 Al2O3 Fe2O3 Fe2O3 SO3 MgO K2O TiO2 Na2O SrO P2O5 Mn2O3 S	CURQUOISE 62.14 21.24 3.68 4.40 2.22 4.02 0.83 0.20 0.38 0.037 0.10 0.12	CRANBERRY 67.43 22.53 3.99 0.31 2.04 1.60 0.16 0.19 0.02 0.11 0.025 0.013	BROWN 62.88 19.98 5.59 2.16 4.61 1.26 1.27 0.27 0.10 0.07 0.07 0.075 0.072	PURPLE 63.78 20.86 5.35 3.18 3.16 0.71 0.56 0.29 0.14 0.07 0.085 0.025	GRAY 65.08 20.44 5.61 2.67 2.68 1.38 0.32 0.21 0.11 0.20 0.15 0.24
COLOR 1 Components (in Wt. %) 1 CaO 1 SiO2 1 Al2O3 1 Fe2O3 1 SO3 1 MgO 1 K2O 1 TiO2 1 Na2O 1 SrO 1 P2O5 Mn2O3 F 1	CURQUOISE 62.14 21.24 3.68 4.40 2.22 4.02 0.83 0.20 0.38 0.037 0.10 0.12 (0.05)	CRANBERRY 67.43 22.53 3.99 0.31 2.04 1.60 0.16 0.19 0.02 0.11 0.025 0.013 (0.01)	BROWN 62.88 19.98 5.59 2.16 4.61 1.26 1.27 0.27 0.10 0.07 0.07 0.075 0.072 (0.11)	PURPLE 63.78 20.86 5.35 3.18 3.16 0.71 0.56 0.29 0.14 0.07 0.085 0.025 (0.02)	GRAY 65.08 20.44 5.61 2.67 2.68 1.38 0.32 0.21 0.11 0.20 0.15 0.24 (0.04)
COLOR 1 Components (in Wt. %) 1 CaO 1 SiO2 1 Al2O3 1 Fe2O3 1 SO3 1 MgO 1 K2O 1 TiO2 1 Na2O 1 SrO 1 P2O5 Mn2O3 F ZnO	CURQUOISE 62.14 21.24 3.68 4.40 2.22 4.02 0.83 0.20 0.38 0.037 0.10 0.12 (0.05) (0.03)	CRANBERRY 67.43 22.53 3.99 0.31 2.04 1.60 0.16 0.19 0.02 0.11 0.025 0.013 (0.01)	BROWN 62.88 19.98 5.59 2.16 4.61 1.26 1.27 0.27 0.10 0.07 0.075 0.072 (0.11) (0.01)	PURPLE 63.78 20.86 5.35 3.18 3.16 0.71 0.56 0.29 0.14 0.07 0.085 0.025 (0.02) (0.01)	GRAY 65.08 20.44 5.61 2.67 2.68 1.38 0.32 0.21 0.11 0.20 0.15 0.24 (0.04) (<0.01)
COLOR I Components (in Wt. %) I CaO SiO2 Al2O3 Fe2O3 Fe2O3 SO3 MgO K2O TiO2 Na2O SrO P2O5 Mn2O3 S	CURQUOISE 62.14 21.24 3.68 4.40 2.22 4.02 0.83 0.20 0.38 0.037 0.10 0.12 (0.05) (0.03) (<0.01)	CRANBERRY 67.43 22.53 3.99 0.31 2.04 1.60 0.16 0.19 0.02 0.11 0.025 0.013 (0.01) (<0.01)	BROWN 62.88 19.98 5.59 2.16 4.61 1.26 1.27 0.27 0.10 0.07 0.075 0.072 (0.11) (0.01) (<0.01)	PURPLE 63.78 20.86 5.35 3.18 3.16 0.71 0.56 0.29 0.14 0.07 0.085 0.025 (0.02) (0.01)	GRAY 65.08 20.44 5.61 2.67 2.68 1.38 0.32 0.21 0.11 0.20 0.15 0.24 (0.04) (<0.01) (0.01)
COLOR 1 Components (in Wt. %) 1 CaO 1 SiO2 1 Al2O3 1 Fe2O3 1 SO3 1 MgO 1 K2O 1 TiO2 1 Na2O 1 SrO 1 P2O5 Mn2O3 F 2 ZnO 1 Cr2O3 1	CURQUOISE 62.14 21.24 3.68 4.40 2.22 4.02 0.83 0.20 0.38 0.037 0.10 0.12 (0.05) (0.03)	CRANBERRY 67.43 22.53 3.99 0.31 2.04 1.60 0.16 0.19 0.02 0.11 0.025 0.013 (0.01)	BROWN 62.88 19.98 5.59 2.16 4.61 1.26 1.27 0.27 0.10 0.07 0.075 0.072 (0.11) (0.01)	PURPLE 63.78 20.86 5.35 3.18 3.16 0.71 0.56 0.29 0.14 0.07 0.085 0.025 (0.02) (0.01)	GRAY 65.08 20.44 5.61 2.67 2.68 1.38 0.32 0.21 0.11 0.20 0.15 0.24 (0.04) (<0.01) (0.01)
COLOR 1 Components (in Wt. %) 1 CaO 1 SiO2 1 Al2O3 1 Fe2O3 1 SO3 1 MgO 1 K2O 1 TiO2 Na2O SrO 1 P2O5 Mn2O3 F ZnO	CURQUOISE 62.14 21.24 3.68 4.40 2.22 4.02 0.83 0.20 0.38 0.037 0.10 0.12 (0.05) (0.03) (<0.01)	CRANBERRY 67.43 22.53 3.99 0.31 2.04 1.60 0.16 0.19 0.02 0.11 0.025 0.013 (0.01) (<0.01)	BROWN 62.88 19.98 5.59 2.16 4.61 1.26 1.27 0.27 0.10 0.07 0.075 0.072 (0.11) (0.01) (<0.01)	PURPLE 63.78 20.86 5.35 3.18 3.16 0.71 0.56 0.29 0.14 0.07 0.085 0.025 (0.02) (0.01)	GRAY 65.08 20.44 5.61 2.67 2.68 1.38 0.32 0.21 0.11 0.20 0.15 0.24 (0.04) (<0.01)

113. Portland Cement Clinkers

These RMs are intended primarily for use in the determination of the abundance of major phases in cement clinkers, i.e., the percentages of alite (C₃S), belite (C₂S), aluminate (C₃A), and ferrite ((C₂(A,F)). Note: In cement chemist notation, C = CaO, $S = SiO_2$, $A = Al_2O_3$ and $F = Fe_2O_3$.

RM	8486	8487	8488	
Туре	Portland Cement Clinker	Portland Cement Clinker	Portland Cement Clinker	
Unit Size (in g)	3×10	3×10	3×10	
Components (in Wt. %)				
CaO	(63.36)	(67.20)	(66.50)	
SiO ₂	(22.48)	(21.43)	(22.68)	
Al_2O_3	(4.70)	(5.53)	(4.90)	
Fe_2O_3	(3.60)	(1.98)	(4.07)	
SO ₃	(0.27)	(0.83)	(0.31)	
MgO	(4.73)	(1.48)	(0.98)	
K ₂ O	(0.42)	(0.72)	(0.35)	
TiO ₂	(0.25)	(0.27)	(0.24)	
Na ₂ O	(0.10)	(0.14)	(0.11)	
SrO	(0.05)	(0.11)	(0.13)	
P_2O_5	(0.06)	(0.29)	(0.08)	
Mn_2O_3	(0.10)	(0.04)	(0.03)	
Loss on Ignition	(0.16)	(0.17)	(0.21)	
Total	(100.28)	(100.20)	(100.60)	
Alite (C_3S)	(58.47)	(73.39)	(64.97)	
Belite (C_2S)	(23.18)	(7.75)	(18.51)	
Aluminate (C ₃ A)	(1.15)	(12.09)	(4.34)	
Ferrite $(C_2(A,F))$	(13.68)	(3.27)	(12.12)	
Free CaO	(0.18)	(2.45)	(0.00)	
Periclase	(3.21)	(0.09)	(0.05)	
Alkali Sulfate	(0.14)	(0.98)	(0.03)	
Total	(100.01)	(100.02)	(100.02)	

114. Engine Wear Materials

114. Metallo-Organic Compounds (liquid form)

These SRMs are for preparing solutions in oils of known and reproducible concentrations of metals. Each SRM unit consists of 5 g of material.

SRM	Туре	Elemental Compositi	on (in Wt. %)
1051b	Barium cyclohexanebutyrate	Barium	28.7
1052b	Bis(1-phenyl-1,3-butanediono)oxovanadium (IV)	Vanadium	13.01
1053a	Cadmium cyclohexanebutyrate	Cadmium	24.8
1057b	Dibutyltin bis (2-ethylhexanoate)	Tin	22.95
1059c	Lead cyclohexanebutyrate	Lead	37.5
1060a	Lithium cyclohexanebutyrate	Lithium	4.1
1065b	Nickel cyclohexanebutyrate	Nickel	13.89
1066a	Octaphenylcyclotetrasiloxane	Silicon	14.14
1069b	Sodium cyclohexanebutyrate	Sodium	12.0
1070a	Strontium cyclohexanebutyrate	Strontium	20.7
1071b	Triphenyl phosphate	Phosphorus	9.48
1073b	Zinc cyclohexanebutyrate	Zinc	16.66
1075a	Aluminum 2-ethylhexanoate	Aluminum	8.07
1077a	Silver 2-ethylhexanoate	Silver	42.60
1078b	Tris (1-phenyl-1,3-butanediono)chromium (III)	Chromium	9.6
1079b	Tris (1-phenyl-1,3-butanediono)iron (III)	Iron	10.45
1080a	Bis(1-phenyl-1,3-butanediono)copper (II)	Copper	16.37

114. Lubricating Base Oils (liquid form)

These SRMs are for determining the concentrations of a single element in lubricating base oil. SRMs 1818a and 1819a consist of five (5) bottles, 20 g each; SRM 1836 consists of four (4) vials, ~ 4 g each.

SRM	Туре _		Elementa	al Composition	(in mg/kg)	
		I	II	III	IV	v
1818a 1819a 1836	Total Chlorine Total Sulfur Total Nitrogen	31.6 423.5 9.0	60.0 741.1 50.9	78.2 4022 113.3	154.4 4689 166.2	234.0 6135

114. Catalyst Characterization Material (liquid form)

This Reference Material (RM) is for determining the activity of FCC Catalysts by Microactivity Test. It is distributed by NIST in cooperation with the American Society for Testing and Materials (ASTM).

RM	Туре	Unit Size
8590	High Sulfur Gas Oil Feed	946 mL

114. Catalyst Package for Lubricant Oxidation (liquid form)

These reference materials are for evaluating the oxidation stability of lubricating oils, i.e., automotive crankcase lubricants. SRM 1817c consists of a set of five (5) ampules of each of three (3) materials. The fuel fraction and the metal mixture are sealed under inert atmosphere. RM 8501 consists of a set of five (5) ampules of each of four (4) materials. The fuel fraction, model compound, and metal mixture are sealed under inert atmosphere.

SRM/RM	Туре	Consisting of	Unit Size
1817c	Catalyst Package IIID	 an Oxidized/Nitrated Fuel Fraction, a Metal Naphthenate Mixture, and Distilled Water 	5×0.15 g 5×0.3 g 5×1.0 g
2567	Catalyst Package IIIE	 an Oxidized/Nitrated Fuel Fraction, a Nitro-Paraffin Model Compound, a Nitro-Aromatic Model Compound, a Metal Naphthenate Mixture, and Distilled Water 	In Prep
8501	Catalyst Package IIIE	 an Oxidized/Nitrated Fuel Fraction, a Nitro-Paraffin Model Compound, a Metal Naphthenate Mixture, and Distilled Water 	5 × 0.15 g 5 × 0.15 g 5 × 0.3 g 5 × 1.0 g

114. Wear-Metals in Oil (liquid form)

SRM	Туре			Elem	ental Con	nposition	(in mg/)	kg)
SILVI	Type	U.		Al	Cr Cu Fe		Fe	Pb
1083 1084a 1085a	Wear-Metals (base oil) Wear-Metals Wear-Metals	Set of 5 an	150 mL 1pules: 1.6 g each 1pules: 1.6 g each	(<0.5) (104) (289)	(<0.02) 98.3 296.3	(<0.5) 100.0 295.1	(<1) 98.9 296.8	(<0.04) 101.1 297.4
SRM	Mg	Mn	Мо	Ni		Si		Ag
1083 1084a 1085a	(<0.1) 99.5 296.0	(<0.005)	(<0.01) 100.3 302.9	(<0.4) 99.7 302.9		(<1) (103) (322)		(<0.05 101.4 305.7
SRM	Na	Sn	S	Ti		v		Zn
1083 1084a 1085a	(<0.06)	(<0.4) 97.2 296.0	(<1) (1700) (4500)	(<5) 100.4 305.1	•	(<0.3 95.9 292.4	/	(<0.08

Physical Properties

for

Physical Properties

201. Ion Activity

pH Calibration (powder form)

These SRMs are used to prepare solutions of known hydrogen ion activity to calibrate commercial pH instruments. SRMs 186Ie and 186IIe, 191a and 192a are each certified for use as an admixture only. SRMs 186Ie and 186IIe may be used to prepare solutions with a pH of 6.863 at 25 °C, or physiological buffer solutions with a pH of 7.41 at 25 °C.

SRM	Туре		pH(S) Values (at 25 °C)	Unit Size (in g)
185g	Potassium Hydrogen Phthalate		4.006	60
186Ie	Potassium Dihydrogen Phosphate)	(see above)	30
186IIe	Disodium Hydrogen Phosphate	}		30
187c	Sodium Tetraborate Decahydrate (Borax)		9.180	30
188	Potassium Hydrogen Tartrate		3.557	60
189a	Potassium Tetroxalate		1.681	65
191a	Sodium Bicarbonate		10.011	25
1 92 a	Sodium Carbonate	J		30
2193	Calcium Carbonate		12.46	30

201. Biological Buffer Systems (powder form)

These SRMs are used to calibrate clinical instruments (e.g., blood pH measurements), in the physiologically important range of pH 7 to 8. They are based on a biological buffer system for clinical pH measurements and are each certified for use as an admixture only. The pH(S) values for the buffer solutions are certified at 0.05 molal and 0.08 molal with respect to the free acid and the sodium salt admixture as a function of temperature. The certified temperature range is from 0 °C to 50 °C.

SRM	Туре	pH(S) (at 3	Unit Size (in g)		
Diditi		0.05 molal	0.08 molal	60	σ
2181 2182	HEPES Free Acid NaHEPESate	7.364	7.373	60 60	
2183 2184	MOPSO Free Acid NaMOPSOate	6.699	6.676	60 60	

201. pD Calibration (powder form)

These SRMs are for the preparation of solutions of known deuterium ion activity to calibrate pH instruments to indicate pD data. SRMs 2186I and 2186II, and 2191a and 2192a are certified for use as admixtures only.

SRM	Туре		pD(S) Values (at 25 °C)	Unit Size (in g)
2185	Potassium Hydrogen Phthalate	,	4.518	60
2186I 2186II	Potassium Dihydrogen Phosphate Disodium Hydrogen Phosphate	}	7.428	30 30
2191a 2192a	Sodium Bicarbonate Sodium Carbonate	}	10.732	30 30

201. Ion-Selective Electrode Calibration (powder form)

These SRMs are certified for the calibration of ion-selective electrodes and have conventional ionic activities based on the Stokes-Robinson hydration theory for ionic strengths greater than 0.1 mol/L.

SRM	Туре	Certified Component	Unit Size (in g)
2201	Sodium Chloride	pNa, pCl	125
2202	Potassium Chloride	pK, pCl	160
2203	Potassium Fluoride	pF	125

201. Electrolytic Conductivity (liquid form)

These SRMs are for calibrating and standardizing conductivity cells and meters used in water purity determinations and in clinical applications. SRM 3190 is an aqueous solution of hydrochloric acid; SRMs 3191 through 3195 are solutions of high-purity potassium chloride in de-ionized water in equilibrium with atmospheric carbon dioxide. SRM 3196 is a solution of high purity sodium chloride in de-ionized water in equilibrium with atmospheric carbon dioxide. (NOTE: This SRM closely matches biological fluids for conductivity measurements in clinical materials. SRMs 3190–3195 are less suitable for such purposes.) SRMs 3198 and 3199 are solutions of potassium chloride in a mixture of n-propanol and de-ionized water.

SRM	Туре	Nominal Conductivity (µS/cm)	Unit Size (in mL)
3190	HCl in de-ionized H ₂ O	25	500
3191	KCl in de-ionized H_2O	100	500
3192	KCl in de-ionized H ₂ O	500	500
3193	KCl in de-ionized H ₂ O	1000	500
3194	KCl in de-ionized H ₂ O	10000	500
3195	KCl in de-ionized H ₂ O	100000	500
3196	NaCl in de-ionized H ₂ O	20000	500
3198	KCl in n-propanol/de-ionized H ₂ O	5	500
3199	KCl in n-propanol/de-ionized H ₂ O	15	500

202. Polymeric Properties

Molecular Weight and Melt Flow (liquid, pellet and powder forms)

These SRMs are for the calibration of instrumentation used in polymer technology science for the determination of molecular weight and molecular weight distribution and as characterized samples for other physical properties of polymers.

SRM	RM Туре	
705a	Polystyrene, narrow molecular weight distribution, $M_w \approx 179,300$, $M_w/M_n \approx 1.07$	5
706	Polystyrene, broad molecular weight distribution, $M_w \approx 257,800$, $M_w/M_n \approx 2.1$	18
1473	Polyethylene Resin, low density, melt flow	60
1474	Polyethylene Resin, melt flow	60
1475a	Polyethylene, linear, $M_w \approx 52,000 $ ($M_z: M_w: M_n \approx 7.54: 2.90: 1$)	50
1478	Polystyrene, narrow molecular weight distribution, $M_w \approx 37,400$ ($M_w/M_n \approx 1.04$)	2
1479	Polystyrene, narrow molecular weight distribution, $M_w \approx 1,050,000$	2
1480	Polyurethane ($M_w \approx 47,300$)	1
1482	Polyethylene, linear, $M_w \approx 13,600 \ (M_w/M_n \approx 1.19)$	1
1483	Polyethylene, linear, $M_w \approx 32,100 (M_w/M_n \approx 1.11)$	1
1484a	Polyethylene, linear, $M_w \approx 119,600$ ($M_w/M_n \approx 1.19$)	0.3
1487	Poly(methylmethacrylate), $M_n \approx 6,000$	2
1488	Poly(methylmethacrylate), $M_n \approx 29,000$	2
1489	Poly(methylmethacrylate), $M_n \approx 115,000$	2
1496	Polyethylene Gas Pipe Resin, melt flow (Unpigmented)	908
1497	Polyethylene Gas Pipe Resin, melt flow (Pigmented)	9080
1923	Poly(ethylene oxide), $M_w \approx 26,900 \ (M_w/M_n \approx 1.04)$	0.2
1924	Poly(ethylene oxide), $M_w \approx 120,900 \ (M_w/M_n \approx 1.06)$	0.2

Property	Method	705a	706 1	473	1474	1475a	1478	1479	1480	1482	1483	1484a	1487	1488	1489	1496	1497 1	923	1924
Molecular Weight: Weight Average	(Light Scattering) (Sed. Equili.) (Gel Permeation/Filtration Chromatography-GPC)	X X	X X			x	x	x	х	x	x	х	x	x				x x	x x
Number Average	(Osmometry) (Size Excl. Chromatography	X ')				x	Х		Х	Х	Х	Х			Х				
MolecularWeight Distribution	(GPC)					x	-												
Limiting Viscosity No. Benzene, 25 °C Benzene, 35 °C Cyclohexane, 35 °C 1-Chloronaphthalene, 1,2,4-Trichlorobenzene Decahydronaphthalene Tetrahydrofuran, 25 °C Toluene, 25 °C	e, 130 °C e, 130 °C	X X X	x x			X X X	X		X	X X	X X	X X	X	X	X				
Melt Flow Density Heat Capacity	(ASTM) (ASTM) (Adiabatic)	x		X	Х	X X X										Х	Х		

202. Polyethylene Pipe Products

These Reference Materials (RMs) are for the testing and characterization of polyethylene pipe products.

RM	Туре	Tensile Properties* (in MPa)	Melt Flow (in g/10 min)	Density (in g/cm ³)
8450	Polyethylene Piping, 1.3 cm	16.40/0.125	0.851	0.938
8451	Polyethylene Piping, 4.8 cm	17.35/0.127		0.937
8452	Polyethylene Piping, 10.2 cm			0.938
8453	Polyethylene Socket T Joint		0.508	
8454	Polyethylene Butt T Joint		0.996	

202. Rubbers and Rubber Compounding Materials (powder and solid forms)

These SRMs have been prepared to provide the rubber industry with standard materials for rubber compounding. They are useful for the testing of rubber and rubber compounding materials in connection with quality control of raw materials and for the standardization of rubber testing.

Each material has been statistically evaluated for uniformity by mixing rubber and rubber compounds, vulcanizing them in accordance with ASTM Designation D-3182 and determining the stress-strain properties of the resulting vulcanizates. A certificate is issued for the rubber SRM 386k, because the properties of different lots are not the same. Replacement lots of rubber compounding SRMs 371h, 372i, and 383a, impart essentially the same characteristics to rubber vulcanizates so that certificates are not issued for these SRMs.

SRM/R	М Туре	Unit Size (in kg)
371h	Sulfur	6
372i	Stearic Acid	3.2
383a	Mercaptobenzothiazole	3.2
386k	Styrene-Butadiene 1500	36
8384	N-tertiary-butyl-2-benzothiazole sulfenamide (TBBS), powder	3.2

203. Thermodynamic Properties

Combustion Calorimetry (powder form)

These SRMs are for use as standards for calibration of combustion bomb calorimeters used in checking the performance of apparatus and analytical procedures and for the characterization of high-purity compounds, fuels, and related fuel materials.

SRM Type		Heat of Combustion (in MJ/kg)*	Unit Size (in g)
39i	Benzoic Acid	26.434	30
1656	Thianthrene	33.480	30
1657	Synthetic Refuse-Derived Fuel	13.87 **	100
2151	Nicotinic Acid	22.184	25
2152	Urea	10.536	25
2682a	Coal, Sub-bituminous: $\%$ S = 0.486; $\%$ Ash = 6.3	25.48 **	50
2683a	Coal, Bituminous: $\%$ S = 1.89; $\%$ Ash = 6.8	31.90 **	50
2684a	Coal, Bituminous: $\%$ S = 3.06; $\%$ Ash = 11.0	28.50 **	50
2685a	Coal, Bituminous: %S = 4.730; %Ash = 16.21	26.67 **	50
2692a	Coal, Bituminous: $\%$ S = 1.184; $\%$ Ash = 7.94	32.64 **	50

* The calorific values (MJ/kg) may decrease upon the aging or normal oxidation of the coals. NIST will continue to monitor these calorific values and report any substantive change to the purchaser. ** Gross calorific value or HHV (Higher Heating Value).

203. Solution Calorimetry

SRM	Туре	Heat of Solution (in MJ/kg)	Unit Size (in g)
724a	Tris(hydroxymethyl)aminomethane	HCl Evolved - 0.24576	50
		NaOH Absorbed - 0.1418	
1655	Potassium Chloride (Water Solution Calorimetry)	Absorbed (0.235)	30

203. Enthalpy and Heat Capacity (solid forms)

SRM	Туре	Unit Size	Temperature Range (in K)	Molecular Weight (in g/mol)
RM 5	Copper	0.19 D × 12 cm	25 to 300	170,900
705a	Polystyrene	5 g	10 to 350	
720	Synthetic Sapphire	15 g	10 to 2250	
781-D2	Molybdenum	0.64 D × 10 cm	273.15 to 2800	

203. Differential Scanning Calorimetry (solid forms)

These SRMs are for calibrating differential scanning calorimeters, differential thermal analyzers, and similar instruments. SRM 1514 is for evaluating methods of determining purity by differential scanning calorimetry. It consists of pure phenacetin and phenacetin doped with p-aminobenzoic acid.

SRM	Туре	Unit Size	Melting Temperature (in K)	Enthalpy of Fusion (in J/g)
1514	Thermal Analysis Purity Set	Set of 4 vials: 0.5 g each	ch	*
2220	Tin (99.9995%)	$2.5 \text{ cm} \times 2.5 \text{ cm} \times 0.0127$		60.22
2221b	Zinc (99.999%)		In Prep	
2222	Biphenyl (99.984%)	1 g	342.41	120.41
2225	Mercury	2.5 g	234.30	11.469

* Certified for four levels of p-ABA (in mol %).

203. Differential Thermal Analysis (liquid and solid forms)

In cooperation with the International Confederation of Thermal Analysis and Calorimetry (ICTAC), NIST distributes transition point, melting point and magnetic transition measurement Reference Materials (RMs) 8754, 8757, 8758, 8759, 8760, and 8761 for use with differential thermal analyzers, differential scanning calorimeters, and thermogravimetry apparatus. These RMs (except for RM 8754) are configured in sets consisting of four or more materials in varying quantities per unit.

The ICTAC has recently undertaken a complete reevaluation of all the materials comprising these RMs and it is anticipated that the RMs will be redistributed in the future, as single material units rather than in sets. Therefore, only limited quantities of the current RMs are still available. Information about RM status can be obtained by contacting the SRMP Sales Office.

203. Superconductive Thermometric Fixed Point Device

This SRM is composed of six (6) small cylinders of high-purity materials mounted in a threaded copper stud and enclosed in a measuring coil pair. It is intended to provide superconductive fixed points, i.e., temperature of transitions from the normal to the superconductive state.

SRM	Туре	Material	Temperature (in K)
767a	Superconductive Thermometric Fixed Point Device	Niobium	9.2
	1	Lead	7.2
		Indium	3.4
		Aluminum	1.2
		Zinc	0.9
		Cadmium	0.5

203. Defining Fixed Point, International Temperature Scale, ITS-90 (solid forms)

These SRMs are for use in preparing defining fixed points of the International Temperature Scale of 1990 (ITS-90).

SRM	Туре	Temperature (in °C)	Unit Size (in g)
740a	Zinc (Freezing Point)	419.527	200, shot
741a	Tin (Freezing Point)		In Prep
743	Mercury (Triple Point)	- 38.8344	680, ampulc
1744	Aluminum (Freezing Point)	660,323	200, shot
1746	Silver (Freezing Point)	961.78	300, shot

203. Secondary Reference Points (solid forms)

These SRMs are for use in preparing secondary reference-point devices and for calibrating thermometers, thermocouples and other temperature-measuring devices.

SRM	Туре	Temperature (in °C)	Unit Size (in g ingot)
45d	Copper (Freezing Point)	1084.8	450
49e	Lead (Freezing Point)	327.45	600
742	Alumina, 99.9 + %	2052	10 (powder)

203. Melting Point and Triple Point (liquid and powder forms)

These SRM fixed point devices are for use in the realization of internationally accepted secondary reference points and/or triple points.

SRM	Туре	Temperature (in °C)	Unit Size (in g)
1968	Gallium, 99.9999 + %	29.7646	25, sealed cell
1969	Rubidium, 99.9 + %	39.3	154, sealed cel
1970	Succinonitrile, $99.999 + \%$	58.0642	60, sealed cel
1971	Indium, 99.9999 + %	156.598	100, sealed cel
1972	1,3-Dioxolan-2-one (Ethylene Carbonate), 99.999+%	36.3143	60, sealed cel
1973	n-Docosane, $99.999 + \%$	43.879	60, sealed cel

203. Laboratory Thermometer (mercury in glass)

This thermometer is for use in clinical laboratories. Its main scale extends from 24.00 °C to 38.00 °C, in 0.05 °C divisions. It has an auxiliary scale from -0.20 °C to +0.20 °C.

SRM	Туре	Calibrated Points (in °C)	Unit Size
934	Clinical Laboratory Thermometer	0, 25, 30, 37	1 each

203.	03. Thermocouple Material, Platinum (wire form)				
SRM	Туре	Temperature Range (in °C)	Unit Size		
1967	Pt, High Purity (99.999+%)	197 to 1767	$0.051 \text{D} \times 100 \text{ cm}$		

203.	Vapor	Pressure	of	Metals	(rod	and	wire	forms))
------	-------	----------	----	--------	------	-----	------	--------	---

SRM	Туре	Pressure Range (in Pa)	Temperature Range (in K, ITS-90)	Unit Size (in cm)
745	Gold	10^{-4} to 10^{+2}	1300 to 2100	wire, 0.14 × 15.2
746	Cadmium	10^{-6} to 10^{+1}	350 to 594	rod, 0.64 × 6.4

203. Thermal Conductivity of Graphite and Metals (rod form)

SRM/RM	Туре	Unit Size (in cm)	Temperature Range (in K)	Conductivity at 293 K (in W/m/K)
1461	Stainless Steel	1.27D×5.0	2 to 1200	14.1
1462	Stainless Steel	3.4D×5.0	2 to 1200	14.1
8420	Electrolytic Iron	0.64D×5.0	2 to 1000	77.9
8421	Electrolytic Iron	3.17D × 5.0	2 to 1000	77.9
8423	Sintered Tungsten	0.64D×5.0	2 to 3000	173
8424	Graphite	$0.64D \times 5.0$	5 to 2500	90.9
8425	Graphite	$1.27D \times 5.0$	5 to 2500	90.9
8426	Graphite	2.54D × 5.0	5 to 2500	90.9

203. Thermal Expansion of Glass and Silica (rod form)

SRM	Туре	Temperature Range (in K)	Unit Size (in cm)
731	Borosilicate Glass	L1: 80 to 680	0.64×5.1
		L2: 80 to 680	0.64×10.2
		L3: 80 to 680	0.64×15.2
736	Copper	L1: 20 to 800	0.64×5.1
738	Stainless Steel (AISI 446)	293 to 780	0.64×5.1
739	Fused Silica	L1: 80 to 1000	0.64×5.1
		L2: 80 to 1000	0.64×10.2
		L3: 80 to 1000	0.64×15.2

203. Thermal Resistance of Glass and Silica (solid forms)

SRM	Туре	Unit Size (in cm)	Temperature Range (in K)	Thermal Resistance (in m ² K/W)
1449	Fumed Silica Board	60×60×2.54	297.1	1.2
1450b	Fibrous Glass Board	$60 \times 60 \times 2.54$	100 to 330	0.75
1452	Fibrous Glass Blanket	$60 \times 60 \times 2.54$	297.1	0.60
1459	Fumed Silica Board	$30 \times 30 \times 2.54$	297.1	1.2

204. Optical Properties

Molecular Absorption and Molecular Luminescence (film, filter, solid, and solution forms)

The optical SRMs for spectrophotometry are certified transfer standards that fall into three (3) general categories – transmittance, wavelength, and stray radiant energy – each of which addresses a specific instrumental parameter of an ultraviolet/visible absorption spectrometer that must be in control for accurate optical transmittance measurements. To obtain optimum verification results, each SRM must be used within the specified range of conditions for which it is intended.

SRM 930e: This SRM is for the verification and calibration of the transmittance and absorbance scales of visible absorption spectrometers. It differs from the prior series, SRM 930d, only with respect to tightened optical polishing tolerances. SRM 930e has been polished to a parallelism of two arc seconds or better, in such a way so as to reduce the optical deviation (relative to SRM 930d) and improve performance in instruments for which wavelength dispersion occurs *after* the light has passed through the filter. SRM 930e consists of three (3) individual Schott NG-type glass filters in separate metal cuvette-style holders and an empty filter holder. The nominal percent transmittances of the three filters are 10 % T, 20 % T, and 30 % T. The three filters are individually certified for transmittance at five (5) wavelengths in the visible spectrum: 440.0 nm, 465.0 nm, 546.1 nm, 590.0 nm, and 635.0 nm. The optical transmittance neutrality of SRM 930e is sufficient for the filters to be used to accurately verify absorption spectrometers with maximum spectral bandpasses ranging from 2.2 nm to 6.5 nm for the five wavelengths at which the transmittances are certified. When SRM 930e is used in combination with SRM 1930, a 6-point stepwise verification of the transmittance scale is possible over the transmittance range from 1 % T to 50 % T. A detailed discussion of this SRM and SRM 1930 are given in Special Publication 260–116 which accompanies each unit.

SRM 931e: This SRM is for the verification and calibration of the absorbance scales of ultraviolet and visible absorption spectrometers having narrow spectral bandpasses. SRM 931e consists of three (3) sets of four (4) solutions in sealed 10-mL ampules. The four solutions include a blank solution and three concentrations of an empirical inorganic solution prepared from high-purity cobalt and nickel metals dissolved in a mixture of nitric and perchloric acids. The user must transfer the blank and standard solutions to cuvettes of known pathlength. The spectrum has absorption maxima at 302 nm, 395 nm, and 512 nm, and a plateau in the region of 678 nm at which the absorbances are certified. The nominal absorbances of the three empirical inorganic solution standards are 0.3, 0.6 and 0.9, respectively, at wavelengths 302 nm, 395 nm, and 512 nm. At wavelength 678 nm, the nominal absorbances of the three solutions are 0.1, 0.2, and 0.3, respectively. The liquid filters may be used to verify absorption spectrometers with maximum spectral bandpasses ranging from 1.5 nm to 8.5 nm for the four wavelengths at which the absorbances are certified.

SRM 935a: This SRM is for the verification and calibration of the absorbance scales of ultraviolet absorption spectrometers having spectral bandpasses not exceeding 2 nm. Issued in 15-g units, SRM 935a consists of crystalline potassium dichromate of established purity. Solutions of ten (10) known concentrations of this SRM in 0.001 N perchloric acid (between 20 mg/kg and 200 mg/kg) are certified for their specific absorbances under well-defined conditions. The user must prepare the liquid solutions from SRM 935a and then transfer them to cuvettes of known pathlength. The certified specific absorbances for the solutions prepared may be converted to their corresponding reference absorbance values using Beer's Law. Acidic SRM 935a solutions may be prepared anywhere within the concentration range of 20 mg/kg to 200 mg/kg to provide a standard with the desired absorbance at a specified wavelength. The spectrum has absorption maxima at 257 nm and 350 nm, and absorption minima at 235 nm and 313 nm at which the specific absorbance values are certified, and also at 345 nm, near one of the predicted isobestic points of the spectrum. A detailed discussion of this SRM is given in Special Publication 260–54 which accompanies each unit.

SRM 936a: This SRM is for use in the evaluation of methods and the calibration of fluorescence spectrometers. Issued in 1-g units, SRM 936 consists of solid quinine sulfate dihydrate. It is certified for the relative molecular emission spectrum, $E(\lambda)$, in radiometric units for a solution of 1.28×10^{-6} mol/L quinine sulfate dihydrate in 0.105 mol/L perchloric acid using an excitation wavelength of 347.5 nm. The values of the molecular emission spectrum are certified at 5-nm wavelength intervals from 375 nm to 675 nm. The user must prepare the solution and transfer it to a cuvette of known pathlength. A detailed discussion of this SRM is given in Special Publication 260-64.

SRM 1921: This SRM is for use in the calibration of the wavelength scale of spectrometers in the infrared (IR) spectral region from 3 μ m to 18 μ m (540 cm to 3200 cm⁻¹). SRM 1921 consists of five (5) cards made of a matte finish polystyrene film, approximately 38 μ m thick with a 25-mm diameter clear aperture and centered 38 mm from the bottom of a cardboard holder 5 cm×11 cm×2 mm in size. The certified wavelength values, corresponding peak wavenumber values for thirteen (13) absorption peak positions in the 3 μ m to 18 μ m range and a spectrum marked with arrows identifying the certified peaks, are provided with each unit. A detailed discussion of this SRM is given in Special Publication 260-122.

SRM 1930: This SRM complements SRM 930e for the verification and calibration of the transmittance and absorbance scales of visible absorption spectrometers. SRM 1930 consists of three (3) individual Schott NG-type glass filters in separate metal cuvette-style holders and an empty filter holder. The nominal percent transmittances of the three filters are 1 % T, 3 % T, and 50 % T. The three filters are individually certified for transmittance at five (5) wavelengths in the visible spectrum: 440.0 nm, 465.0 nm, 546.1 nm, 590.0 nm, and 635.0 nm. The optical transmittance neutrality of SRM 1930 is sufficient for the filters to be used to accurately verify absorption spectrometers with maximum spectral bandpasses ranging from 2.2 nm to 6.5 nm for the five wavelengths at which the transmittances are certified. When SRM 1930 is used in combination with SRM 930d, a 6-point stepwise verification of the transmittance scale is possible over the transmittance range from 1 % T to 50 % T. A detailed discussion of this SRM and SRM 930 is given in Special Publication 260–116 which accompanies each unit.

SRM 1931: This SRM is for use in the evaluation and calibration of the relative spectral response of fluorescence spectrometers. It consists of four fluorescence standards and a "blank" specimen mounted in anodized aluminum cuvette-sized holders. The standards are composed of inorganic phosphors in a sintered polytetrafluoroethylene matrix. The fluorescence standards are certified for the relative corrected emission spectrum, $E(\lambda)$, in energy/wavelength units. The values of the blue (400 nm to 550 nm), green (490 nm to 600 nm), yellow (490 nm to 740 nm) and orange (530 nm to 740 nm) emission spectra are certified at 2-nm wavelength intervals. SRM 1931 L and R are oriented for left- and right-handed fluorescence spectrometers, respectively, as defined by viewing the fluorescent sample along the excitation beam. If the first emission optical component is located to the right of the sample then this orientation is designated R, and if it is to the left then it is designated L.

SRM 2030a: This SRM is for use in the one-point verification of the transmittance and absorbance scales of spectrophotometers at the given wavelength and measured transmittance. SRM 2030a consists of one (1) glass filter in its holder and one (1) empty holder. The exposed surface of the glass is approximately 29 mm $\times 8$ mm, measured from a point 1.5 mm above the base of the filter holder. The filter bears an identification number. The certified transmittance value at a wavelength of 465.0 nm and for a maximum spectral bandpass of 2.7 nm is provided for each unit. The value and uncertainty are unique to each unit and cover a period of two (2) years from date of certification. The uncertainty estimation is described in Special Publication 260-116.

SRM 2031: This SRM is for the verification and calibration of the transmittance and absorbance scales of ultraviolet and visible absorption spectrometers. SRM 2031 consists of three (3) individual non-fluorescent, fused-silica filters in separate metal cuvette-style holders and an empty filter holder. The nominal percent transmittances of the three filters are 10 % T, 30 % T, and 90 % T. The quartz base plates of the 10 % T and 30 % T filters carry different thicknesses of semi-transparent chromium metal that are optically contacted to quartz cover plates. The nominal 90%T filter is a single clear quartz plate. The three filters are individually certified for transmittances at ten (10) wavelengths in the ultraviolet and visible spectral regions: 250.0 nm, 280.0 nm, 340 nm, 360.0 nm, 400.0 nm, 465.0 nm, 500.0 nm, 546.1 nm, 590.0 nm, and 635.0 nm. The optical transmittance neutrality of SRM 2031 is such that wider spectral bandpasses can be used. Consequently, SRM 2031 is the only transmittance SRM that is suitable for use with those absorption spectrometers with large spectral bandpasses, e.g., 8 nm to 20 nm. A detailed discussion of this SRM is given in Special Publication 260-68.

NOTE: Because the 10 % T and 30 % T chromium-coated filters attenuate incident radiation by reflection to a large extent, SRM 2031 may possibly generate interreflections between optical surfaces in the sample compartment of some absorption spectrometers. Such interreflections may result in isochromatic stray radiant energy that affects the accuracy of the transmittance measurement. Consequently, when contemplating the purchase of SRM 2031, the user should contact the instrument manufacturer to verify that metal-on-quartz filters are compatible with the spectrometer.

SRM 2032: This SRM is for use in the assessment of heterochromatic stray radiation energy (stray light) in ultraviolet absorption spectrometers in the spectral region below 260 nm. Issued in 25-g units, SRM 2032 consists of reagent-grade crystalline potassium iodide (KI). Solutions of this SRM in distilled water are certified for their specific absorbances under well-defined conditions at 240 nm, 245 nm, 250 nm, 255 nm, 260 nm, 265 nm, 270 nm, and 275 nm. The KI solutions exhibit sharp cutoffs in transmittances below about 260 nm. The user must prepare a liquid KI solution from SRM 2032 and then transfer it to a cuvette of known pathlength. The certified specific absorbance for the solution prepared is then converted to its corresponding reference transmittance or absorbance value using Beer's Law. The amount of heterochromatic stray light in the absorption spectrometer at a wavelength below 260 nm may be determined from the equations given in the certificate.

SRM 2034: This SRM is for use in the verification and calibration of the wavelength scale of ultraviolet and visible absorption spectrometers having nominal spectral bandwidths not exceeding 3 nm. SRM 2034, a liquid consisting of 4% (w/v) holmium oxide in an aqueous solution of 10% (v/v) perchloric acid, is sealed in a non-fluorescent, fused-silica cuvette of optical quality. SRM 2034 is batch-certified for wavelength location of minimum transmittance of 14 bands in the spectral range from 240 nm to 650 nm for six spectral bandwidths from 0.1 nm to 3 nm. A detailed discussion of this SRM is given in Special Publication 260–102 which accompanies each unit.

SRM	Туре	Wavelength Range (in nm)	Unit Size
930e	Glass Filters, Transmittance	440 to 635	3 filters/4 holders
931e	Liquid Filters, Absorbance	302 to 678	Set of 12 ampules
935a	Potassium Dichromate, UV Absorbance	235 to 350	15 g
936a	Quinine Sulfate Dihydrate, Fluorescence	375 to 675	1 g
1921	Infrared Transmission Wavelength	3 µm to 18 µm	5 polystyrene cards
1930	Glass Filters, Transmittance	440 to 635	3 filters/4 holders
1931	Fluorescence Corrected Emission Spectra	400 to 760	Set of 4 holders
2030a	Glass Filter, Transmittance	465.0	1 filter/1 holder
2031	Metal-on-Quartz Filters, Transmittance	250 to 635	In Prep
2032	Potassium Iodide, Stray Light	240 to 280	25 g
2034	Holmium-oxide Solution, Wavelength	240 to 650	1 sealed cuvette

204. Specular Spectral Reflectance (plate form)

These SRMs are for calibrating the reflectance scale of integrating sphere reflectometers used to evaluate materials for solar energy collectors and to calibrate reflectometers used in evaluating the appearance of polished metals and metal-plated objects.

SRM	Туре	Wavelength Range (in nm)	Unit Size (in cm)
2003	First Surface, Aluminum on Glass	250 to 2500	In Prep
2011	First Surface, Gold on Glass	600 to 2500	5.1D×1.2
2023	Second Surface, Aluminum on Fused Quartz	250 to 2500	5.1D×0.6
2026	First Surface, Black Glass	250 to 2500	$5.1D \times 0.6$

204. Infrared Reflectance (solid form)

This SRM is for establishing the accuracy of the near infrared (IR) wavelength scale of reflectance spectrophotometers.

SRM	Туре	Wavelength Range (in nm)	Unit Size (in cm)
1920	Rare Earth Oxide Mixture	740 to 2000	holder: 5.1D×1.2

204. Directional Hemispherical Reflectance (wafer form)

SRM	Туре	Wavelength Range (in nm)	Unit Size (in cm)
2015	Opal Glass	400 to 750	$2.5 \times 5.0 \times 0.64$

204. Optical Rotation (powder form)

These SRMs are for calibrating or checking polarimetric apparatus. In aqueous solution, the optical rotation of SRM 17d is certified at three (3) wavelengths, while that of SRM 41c is certified at two (2) wavelengths. SRM 41c is also certified at one (1) wavelength in a dimethyl sulfoxide solution.

SRM	Туре	Optical Rotat	tion (in mrad) – Aqueou Wavelength (in nm)	s Solution	Unit Size (in g)
		546	589	633	
17d 41c	Sucrose Dextrose	711.64 1101.1	604.26 931.8	519.17 798.6	60 70

204. Photography (chart form)

SRM 1010a is used to test the resolving power of cameras or of whole microcopying systems. It consists of five (5) charts printed photographically on paper, which have 26 high-contrast, 5-line patterns ranging in spatial frequency from one cycle per mm to 18 cycles per mm. Instructions for the use of the charts are supplied with each unit.

SRM	Туре	Unit Size
1010a	Microcopy Resolution Test Chart	Set of 5 charts

205. Radioactivity

Radiation Dosimetry (wire form)

This SRM is a cobalt-in-aluminum alloy wire 0.5 mm in diameter and 1 m in length for use as a neutron density monitor standard.

SRM	Туре	Cobalt Composition (in Wt. %)
953	Neutron density monitor wire (Co in Al)	0.116

Fission Track Glass (wafer form)

This SRM, which contains uranium, will aid laboratories performing fission track analyses in interlaboratory comparisons of data and in monitoring neutron fluences. The material was irradiated in the NIST 10 Megawatt Research Reactor, at two different neutron energies. Each unit consists of four (4) unirradiated glass wafers and two (2) irradiated wafers.

SRM	Uranium Composition	Uranium-235	Reactor	Neutron	Fluence
	(in mg/kg)	(in Atom %)	Position	Copper Foil	Gold Foil
963a	0.823	0.2792	RT-4: RT-3: (10 ¹⁴ n/cm ²)	39.5 41.2	43.0 45.8

205. Special Nuclear Materials

The U.S. Department of Energy New Brunswick Laboratory issues special nuclear reference materials as NBL Certified Reference Materials (CRMs). These CRMs include the plutonium and uranium assay and isotopic materials previously issued by the National Institute of Standards and Technology. All orders or inquiries should be addressed to: U.S. Department of Energy, New Brunswick Laboratory, 9800 S. Cass Avenue, Bldg. 350, Argonne, IL 60439-4899. Attn: Reference Materials Sales; Phone – (708) 252-2767; Fax – (708) 252-6256; TWX/Telex – 681701DOEANL

The SRMs in the following five pages are certified and distributed for the SRM Program by the NIST Radioactivity Group. The radionuclide types represented by these SRMs are suitable for a variety of measurement and instrument calibration needs. Detailed information about the Radioactivity SRMs and a form for license certification can be found in a separate catalog issued periodically by the Radioactivity Group. Inquiries about NIST Radioactivity SRMs or requests for copies of the Radioactivity catalog should be directed to the Radioactivity Group, Ionizing Radiation Division, Room C114, Radiation Physics Building, National Institute of Standards and Technology, Gaithersburg, MD 20899, Phone: (301) 975-5531; Fax: (301) 926-7416.

Requests for new or renewal SRMs can be submitted to the Radioactivity Group. Upon receipt, these requests are evaluated and interested customers are notified whether or not the SRMs can be made available.

NOTE: Certain radionuclides are not economical to maintain as SRMs because of short half lives or low customer demand.

NIST Special Publication 250, *Calibration Services Users Guide*, describes the procedure for requesting calibration of radionuclides not provided as SRMs. Requests for such tests should also be submitted, with full source information for approval of suitability, to the Radioactivity Group at the above address.

205. Radioactive Solutions

These SRMs are intended for the calibration of radioactivity-measuring instruments and for the monitoring of chemical and geochemical processes. They are calibrated in terms of activity per gram of solution. Each SRM is contained in a flame-sealed glass ampule or bottle and, except as noted, consists of the radio-nuclide dissolved in an aqueous solution (usually acidic).

SRM	Radionuclide	Decay Modes	Activity per gram (in Bq · g ⁻¹)	Time of Calibration (month/year)	Volume of Solution (mL)
4322B*	Americium-241	α	40	09/91	5
4332D*	Americium-243	α	40	12/94	5
4251C*	Barium-133	EC, γ	500 000	09/93	5
4222C	Carbon-14 (as hexadene)	β-	50 000	09/90	5
4233C*	Cesium-137 Burn-up Standard	β ⁻ , γ	700 000	11/89	5
4943	Chlorine-36	β-	10 000	12/84	3
4915E*	Cobalt-60	β ⁻ , γ	80 000	12/94	5
4329*	Curium-243	α	60	04/89	5
4320*	Curium-244	α	60	04/89	5
4370C*	Europium-152	β ⁻ , EC, γ	90 000	02/87	5
4361B	Hydrogen-3 (as water)	β-	1	08/87	490
4926D	Hydrogen-3 (as water)	β-	3 000	07/89	18
4927E	Hydrogen-3 (as water)	β-	500 000	07/91	3
4947C	Hydrogen-3 (as toluene)	β-	300 000	03/87	4
4949C*	Iodine-129	β-,γ	3 000	03/93	5
4929D	Iron-55	EC	40 000	08/85	5
4341*	Neptunium-237	α	100	03/94	5
4226C*	Nickel-63	β-	1 000 000	In Prep	5
4326	Polonium-209	α, EC	90	03/94	5
4323A*	Plutonium-238	α	30	02/94	5
4338*	Plutonium-240	α	20	04/80	5
4340*	Plutonium-241	β-	150	07/86	5
4334E*	Plutonium-242	ά	25	12/89	5
4952C	Radium-226 Blank	-	0.000 2	08/91	5
4950E	Radium-226	α, γ	3	04/84	5
4965	Radium-226	α, γ	30	09/91	5
4966	Radium-226	α, γ	300	09/91	5
4967	Radium-226	α, γ	3 000	09/91	5 5
4339A	Radium-228	β-	200	04/94	5
4919 G *	Strontium-90	β-	4 000	08/90	5
4234A*	Strontium-90	β-	2 000 000	10/94	5
4288A	Technetium-99	β-	40 000	12/94	5
4328A	Thorium-229	ά	30	01/94	5
4324A	Uranium-232	α	40	11/93	5
4321B	Uranium-238 "natural uranium"	α	250	01/92	5
4276C*	Long-Lived Mixed Radionuclide:			09/88	5
	Antimony-125	β ⁻ , γ	10 000		
	Europium-154	β-,γ	10 000		
	Europium-155	β-,γ	7 000		

205. Radiopharmaceuticals (solution and gaseous forms)

These SRMs are intended for the calibration of radioactivity-measuring instruments. They are calibrated in terms of activity per gram of solution (except SRM 4415, which is calibrated in terms of activity). Each SRM is contained in a 5 mL flame-sealed glass ampule and, except for SRM 4415, consists of the radio-nuclide dissolved in an aqueous solution (usually acidic).

These SRMs are produced in collaboration with the Nuclear Energy Institute and, because of the short half lives, are available only at specific times. For the current production schedule contact the Radioactivity Group at the address given on page 107.

SRM	Radionuclide	Half Life (days)	Activity per gram (MBq · g ⁻¹)
4400N*	Chromium-51	27.7	4
4408D*	Cobalt-57	271.7	2
4416O*	Gallium-67	3.3	4
4421L*	Gold-195	183	1
4405B*	Gold-198	2.7	4
4417N*	Indium-111	2.8	5
4414C*	Iodine-123	0.6	60
4407S*	Iodine-125	59.6	1
4401T*	Iodine-131	8.0	5
4411B*	Iron-59	44.5	1
4420B*	Lead-203	2.2	3
4418L*	Mercury-203	46.6	1
4412S*	Molybdenum-99/Technetium-99m	2.7	10
4406M*	Phosphorus-32	14.3	2
4425A*	Samarium-153	1.9	4
4409D* 4403B* 4426A* 4424* 4410HT*	Selenium-75 Strontium-85 Strontium-89 Sulfur-35 Technetium-99m	119.8 64.9 50.0 87.4 0.3	1 1 1 1 000
4404Q*	Thallium-201	3.0	4
4402C*	Tin-113/Indium-113	115.1	1
4415R*	Xenon-133	5.2	Total 500
4419C*	Ytterbium-169	32.0	2
4427A*	Yttrium-90	2.7	1

* License certification is required of purchaser by NIST before shipment.

205. Alpha Particle Point Sources

These SRMs are intended for the calibration of alpha-particle detectors. Each SRM consists of a practically weightless deposit of the radionuclide electroplated on a thin platinum foil cemented to a monel disk.

SRM	Radionuclide	Principal Alpha Energies (MeV)	Activity (Bq)	Time of Calibration (month/year)
4904NG*	Americium-241	5.443, 5.486	2 000 to 7 000	05/86
4904SG*	Americium-241	5.443, 5.486	2 000 to 3 000	05/86
4906C*	Plutonium-238	5.456, 5.499	10 to 300	09/87
4906HC*	Plutonium-238	5.456, 5.499	1 000 to 50 000	10/87

* License certification is required of purchaser by NIST before shipment.

205. Carbon-14 Dating (solid form)

This SRM is an international standard for contemporary carbon-14 against which world-wide measurements can be compared. Each SRM consists of approximately 225 grams of a 450-kg lot of oxalic acid prepared by fermentation of French beet molasses from the 1977 spring, summer, and autumn harvests.

SRM	Material	Description
4990C	Oxalic Acid	Set of 8: 28 g each

205. Accelerator Mass Spectrometry (solution form)

This SRM is intended for the calibration of accelerator mass spectrometers used to measure beryllium isotopic ratios. It is calibrated in terms of the isotopic ratio. The SRM is contained in a flame-sealed glass ampule and consists of the nuclides dissolved in an aqueous solution (acidic).

SRM	Nuclides	Isotopic Ratio	Total Nuclide Concentration (mg · g ⁻¹)	Time of Calibration (month/year)	Volume of Solution (mL)
4235	Beryllium-10/Beryllium-9	3×10 ⁻¹¹	5	08/86	50

205. Gamma Ray Point Sources

These SRMs are intended for the calibration of gamma-ray detectors. Each SRM consists of a small deposit of radioactive material sealed between two layers of polyester tape that are mounted on an aluminum annulus.

SRM	Radionuclide	Principal Photon Energies (keV)	Activity (Bq)	Time of Calibration (month/year)
4241B*	Barium-133	81 to 384	200 000	06/81
4200B	Cesium-137/Barium-137m	662	40 000	09/79
4207B	Cesium-137/Barium-137m	662	300 000	03/87
4203D*	Cobalt-60	1173, 1332	20 000	02/84
		,	to 800 000	
4201B	Niobium-94	702, 871	4 000	04/70
4275C	Long-Lived Mixed Radionuclide:	27 to 1596		09/88
	Antimony-125		50 000	
	Europium-154		60 000	
	Europium-155		30 000	

* License certification is required of purchaser by NIST before shipment.

205. Radon Emanation (encapsulated solution form)

This SRM is intended for the calibration of radon-222 measuring instruments. It consists of a small heatsealed polyethylene cylinder containing approximately 0.35 grams of radium-226 solution. The SRM is calibrated in terms of the radium-226 activity and in terms of the emanation fraction of the radon-222 under specified conditions.

SRM	Radionuclide	Activity (Bq)	Time of Calibration (month/year)
4968	Radium-226	3 to 500	09/91

205. Natural Matrix Materials (powder form)

SRM 4350B - Columbia River Sediment

This material was collected from a river downstream from a nuclear reactor facility. Concentrations of fission and activation products are elevated over typical world-wide levels. ^{239/240}Pu and ²⁴¹Am are very homogeneously distributed through the sample and are in acid-leachable forms. Inhomogeneity is 3% or better for other radionuclides.

SRM 4351-Human Lung

This material contains radioactivity concentrations on the order of 10^{-4} Bq g⁻¹. It has been freeze-dried, cryogenically ground, homogenized, and packed in a glass bottle under vacuum. There is significant inhomogeneity in ^{239/240}Pu which is unavoidable because plutonium was taken into the lungs in particulate form. Assessments of accuracy of measurement techniques can be improved by averaging over several samples.

SRM 4352-Human Liver

This material contains radioactivity concentrations on the order of 10^{-4} Bq g⁻¹. It has been freeze-dried, cryogenically ground, homogenized, and packed in a glass bottle under vacuum.

SRM 4353-Rocky Flats Soil Number 1

This material was collected within 13 cm of the soil surface at Rocky Flats, CO. ^{239/240}Pu and ²⁴⁰Am concentrations are about an order of magnitude higher than typical world-wide levels. Approximately 10% of the plutonium is in a acid-resistant form. The material also contains "hot" particles and a statistical method is provided for dealing with these. Inhomogeneities, excluding hot particles, are on the order of 3% or better.

SRM 4354-Freshwater Lake Sediment

This material (gyttja) contains approximately 25 g of freeze-dried, pulverized freshwater lake sediment (approximately 50% organic by weight) in a polyethylene bottle. The SRM is intended for use in tests of measurements of environmental radioactivity contained in matrices similar to the sample, for evaluating analytical methods, or as a generally available calibrated "real" sample matrix in interlaboratory comparisons.

SRM 4355-Peruvian Soil

This material, provided in 75 g units, has non-measurable radioactivity concentrations for many fallout radionuclides and can be used as a blank or for sensitive tests of radioanalytical procedures at low-radio-activity concentrations for other radionuclides. The results of a trace-element study are given for 57 elements.

SRM 4357-Ocean Sediment In Prep

This SRM, provided in 80-g units, consists of sediments collected in the Chesapeake Bay and in the sea off of the British Nuclear Fuels Sellafield facility in the United Kingdom. The material, which has been freeze-dried, pulverized, homogenized, and radiation-sterilized, is intended for use in tests of low-level radiochemical methods for measurement of such fission products as ⁹⁰Sr and ¹³⁷Cs and actinides such as ²³²Th, ²³⁸U, and ^{239/240}Pu.

206. Electrical Properties

Electrical Resistivity and Conductivity of Metals (rod form)

These materials are for evaluating methods of measuring electrical resistivity over wide temperature ranges.

RM/RM	Туре	Temperature Range (in K)	Resistivity at 293 K (in μΩ·cm)		Unit Size (in cm)
1461	Stainless Steel	5 to 1200	80.5	rod:	1.27D × 5.0
1462	Stainless Steel	5 to 1200	80.5	rod:	$3.40D \times 5.0$
8420	Electrolytic Iron	6 to 1000	10.1	rod:	$0.64D \times 5.0$
8421	Electrolytic Iron	6 to 1000	10.1	rod:	3.17D × 5.0
8423	Sintered Tungsten	4 to 3000	5.4	rod:	0.64D×5.0

206. Electrical Resistivity and Conductivity of Silicon (block and wafer forms)

SRMs 1521 and 1523 are sets of two wafers each, intended primarily for use as reference standards for measuring semiconductor resistivity and eddy current. SRMs 2526, 2527, 2528, and 2529 are sets of 16 silicon chips, each mounted on beveling blocks, intended to provide a number of resistivity-scale reference points for calibrating spreading resistance measurements of (111) p-type and n-type (SRMs 2526 and 2527) and (100) p-type and n-type (SRMs 2528 and 2529) silicon. SRMs 2541 through 2547 consist of single wafers, intended for use as reference standards for sheet resistance and resistivity measurements utilizing the four-point probe method. Each wafer is made of Czochralski-grown, boron-doped silicon with a (100) crystallographic orientation.

SRM	Туре	Resistivity (in $\Omega \cdot cm$)	Unit Size (in mm)
1521	Silicon Resistivity	0.1 and 10	Set of 2: 51D×0.63
1523	Silicon Resistivity	0.01 and 1.0	Set of 2: $51D \times 0.63$
2526	Spreading Resistance	0.001 to 200	Set of 16: $5 \times 10 \times 0.625$
2527	Spreading Resistance	0.001 to 200	Set of 16: $5 \times 10 \times 0.625$
2528	Spreading Resistance	0.001 to 200	Set of 16: $5 \times 10 \times 0.625$
2529	Spreading Resistance	0.001 to 200	Set of 16: $5 \times 10 \times 0.625$
2541	Silicon Resistivity	0.01	$100D \times 0.625$
2542	Silicon Resistivity	0.1	$100D \times 0.625$
2543	Silicon Resistivity	1	$100D \times 0.625$
2544	Silicon Resistivity	10	$100D \times 0.625$
2545	Silicon Resistivity	25	$100D \times 0.625$
2546	Silicon Resistivity	100	$100D \times 0.625$
2547	Silicon Resistivity	200	$100D \times 0.625$

206. Residual Resistivity Ratio (rod form)

This SRM is a set of five (5) aluminum rods for use in checking four-terminal dc and eddy current decay techniques. The residual resistivity ratio (RRR), $\rho(273 \text{ K})/\rho(4 \text{ K})$, is a sensitive indicator of purity and of the mechanical state of a material.

SRM	Туре	RRR Values	Unit Size (in cm)	
769	Aluminum	130, 683, 1205, 2650, and 11,000	0.64D × 5.2	

206. Superconducting Critical Current (wire form)

This SRM is for checking the performance of measurement systems used in superconductor technology. It consists of 2.2 m of a multifilamentary niobium titanium, copper-stabilized superconducting wire wound in a single layer onto a spool with a core diameter of 8.7 cm.

SRM	Туре	Magnetic Field (in T)	Critical Current (in A)
1457	Nb-Ti Wire	2.000	293.30
		4.000	187.38
		6.000	124.72
		8.000	69.72

207. Metrology

Scanning Electron Microscope (SEM)

These SRMs are for calibrating the magnification scale and evaluating the performance of scanning electron microscopes. SRM 484g, on a 6.5-mm specimen mount, can be used to calibrate the magnification scale of an SEM from 1000 to 20,000 X. SRM 2069b consists of graphitized rayon fibers with smooth and uniform edges on a 3-mm SEM specimen mount. SRM 2090 will consist of a silicon chip on a silicon-wafer simulating mount and is being developed to meet the SEM needs of the semiconductor industry.

SRM	Туре	Spacings	Size
484g	SEM Magnification Standard	0.5 to 5 µm	In Prep
2069Б	SEM Performance Standard	2 to 4 mm	12 mm D
2090	SEM Magnification Standard	>0.5, >10 µm	In Prep

207. Optical Microscope Linewidth Measurement (wafer form)

These SRMs are for use in calibrating optical microscopes used to measure the widths of opaque lines and clear spaces on integrated-circuit photomasks. They can also be used to calibrate line spacings and line-to-space ratios. They are not for use with partially transmitting materials, in reflected light with opaque materials, or in a scanning electron microscope. SRMs 473 and 475 are patterned on antireflecting chromium; SRM 476 is patterned on bright chromium.

SRM	Туре	Spacings (in μm)	Unit Size (in cm)
473	Linewidth Measurement Standard	2 to 70	$12.7 \times 12.7 \times 0.23$
475	Linewidth Measurement Standard	2 to 36	$6.35 \times 6.35 \times 0.15$
476	Linewidth Measurement Standard	0.5 to 12	6.35 × 6.35 × 0.15

207. Depth Profiling (wafer form)

SRMs 2135c and 2136 are for calibrating equipment used to measure sputtered depth and erosion rates in surface analysis. SRM 2135c will be certified for total chromium and total nickel thickness, for individual layer uniformity, for Ni/Cr bi-layer uniformity, and for individual layer thickness. SRM 2136 is certified for total Cr thickness of seven individual layer thicknesses. SRM 2137 is for calibrating the secondary ion response to minor and trace levels of boron in a silicon matrix.

SRM	Туре	Value	Unit/Size (in cm)
2135c	Ni-Cr Thin-Film Depth Profile Standard	In Prep	$1 \times 2.54 \times 0.04$
2136	Cr/CrO Thin-Film Depth Profile Standard	$175.3 \mu m/cm^2$	$1 \times 2.54 \times 0.04$
2137	B Implant in Si Depth Profile Standard	$^{10}B - 1.018 \times 10^{15} \text{ atoms/cm}^2$	1×1

207. Optical Fiber Geometry (solid form)

SRM 2520 is intended for calibrating video microscopes or gray-scale systems used for fiber geometry measurements during fiber manufacture. It consists of a short length of bare fiber in an aluminum housing. The end of the fiber specimen has been carefully cleaved and is within approximately one-half wavelength of perpendicularity to the axis of the fiber. The diameter of each specimen is individually certified at 0, 45, 90, and 135 degree angles.

SRM	Туре	Certified Diameter
2520	Optical Fiber Diameter	125 µm

207. Copper and Chromium Coating on Steel (plate form)

These SRMs are used to measure the thickness of nonmagnetic coatings on steel. The steel substrates have the properties of AISI 1010 steel and may be used to measure the thickness of paint and other organic coatings on steel, as well as zinc (galvanized) and other nonmagnetic metallic coatings.

SRM	Unit Size	Coating Thickness, nominal	
SKM	30×30 mm	(in mils)	(in µm)
1357	Set of 3	0.2, 0.8, 2.0	base, 6, 20, 48
1358	Set of 3	3.1, 9.8, 39	base, 80, 225, 1000
1359	Set of 4	2.0, 5.5, 20, 32	48, 140, 505, 800
1360	Set of 4	0.1, 0.2, 0.5, 0.8	2.5, 6, 12, 20
1361a	Set of 4	0.2, 0.5, 1.0, 2.0	6, 12, 25, 48
1362a	Set of 4	1.6, 3.1, 5.5, 7.9	40, 80, 140, 205
1363a	Set of 4	9.8, 16, 20, 26	255, 385, 505, 635
1364a	Set of 4	32, 39, 59, 79	800, 1000, 1525, 1935

207. Solder Thickness (plate form)

1 each

1 each

1 each

1371

1373

1374

This SRM is for calibrating X-ray fluorescence equipment. Each unit, which consists of a $1.5 \text{ cm} \times 1.5 \text{ cm}$ plate of an electroplated tin-lead alloy coating on a copper substrate, is individually certified for composition and mass per unit area.

SRM	Туре	Composition	Coating Thick	ness, nominal
SRM	гуре	Composition	(in µin)	(in µm)
2321	Sn-Pb Alloy	Sn: 40 Pb: 40	295	7.5

207.	Gold Coating on Fe-Ni-Co Alloy (plate form)					
SRM	Unit Size	Coating Mass	Coating Thick	kness, nominal		
	15×15 mm	(in mg/cm ²)	(in µin)	(in µm)		

1.5

6.0

14.0

0.8

3 7

30

120

280

207. Ellipsometry (wafer form)

These SRMs are issued primarily to evaluate the accuracy of ellipsometers and can also be used as an aid in the calibration of various other optical thickness-monitoring instruments. Each unit is certified for the ellipsometric parameters delta (Δ) and psi (Ψ) at the vacuum wavelength $\lambda = 633.0$ nm, and for the derived values of the thicknesses and indices of refraction of the SiO₂ and Si layers.

SRM	Туре	Unit Size 76 mm D	Thickness (in nm)
2531	Thin Film Thickness	1 each	50
2532	Thin Film Thickness	1 each	100
2533	Thin Film Thickness	1 each	200
2534	Thin Film Thickness	1 each	25
2535	Thin Film Thickness	1 each	14
2536	Thin Film Thickness	1 each	10

207. Oxygen Concentration in Silicon (wafer form)

SRM 2551 is for the calibration of infrared spectrophotometers used to measure the 1107 cm^{-1} interstitial oxygen peak in silicon. Each unit is individually certified and consists of a set of three silicon wafers; one each of a low, medium and high oxygen level Czochralski specimen. A float zone specimen of minimum oxygen concentration is also included in each set. Certified values are provided in ppma, mg/kg and atoms/cm.

SRM	Туре	Unit Size (in cm)	Concentration (in mg/kg, nominal)
2551	Oxygen in Silicon	Set: 4×2.5	L = 10 M = 13 H = 15 FZ = (<0.1)

207. NIST Time Software

The NIST Automated Time Service (ACTS) is a telephone time service designed to provide computers with telephone access to NIST time at occurrences approaching 1 millisecond (0.001 s). Features of the service include automated compensation for telephone-line delay, advanced alert for changes to and from daylight savings time and advanced notice of insertion of leap seconds. The ASCII-character time code should operate with standard modems and most computer systems. While the system can be used to set up computer time-of-day, simple hardware can be developed to set non-computer clock systems. The telephone number for ACTS is (303) 494-4774.

SRM	Туре	Unit Size
8101a	Automated Computer Time Service (ACTS)	13.34 cm diskette

208. Ceramics and Glasses

Chemical Resistance [Durability] of Glass (solid form)

These SRMs are for checking test methods and calibrating equipment used to determine the resistance of glass containers to chemical attack. The values given represent the volume of 0.02 N sulfuric acid used to titrate to the methyl-red end point the alkaline extract from a crushed sample of glass after exposure to high-purity water at 121 °C.

SRM	Туре	Unit Size	mL of N/50 H ₂ SO ₄
622	Soda-Lime Silica	2.2 kg	7.67
623	Borosilicate	2.2 kg	0.34

208. **Electrical Properties of Glass (bar and powder forms)**

SRM 624 is for checking test methods and for calibrating equipment used to determine the dc volume resistivity of glass per ASTM C 657. SRM 774 is for checking methods used to determine dielectric constant and ac loss characteristics of insulating materials per ASTM D 150.

SRM	Туре	Unit Size (in cm)	Value
624	Lead-Silica, for dc resistivity	5×5×0.5	$\log_{100} \sim 9.9 \ \Omega$ -cm at 300 °C
774	Lead-Silica, for dielectric constant	$5 \times 5 \times 2.5$	K~7.47 at 100 Hz
1414	Lead-Silica, for resistivity (molten range)	$4 \times 4 \times 12$	13.5 Ω-cm at 1300 °C

208. Viscosity of Glass (bar form)

SRMs 710a, 711, and 717a are for checking the performance of high-temperature viscosity equipment (rotating cylinders) and low-temperature viscosity equipment (fiber elongation, beam bending, parallel plates, etc.).

SRM	Туре			Temp	erature	(°C) at	Log 10	Viscosi	ty (in P	a · s*)		
DILIVI	Type	1	2	3	4	5	6	7	8	9	10	11
710a	Soda-Lime-Silica	1464	1205	1037	918							
711	Lead-Silica	1327.1	1072.8	909.0	794.7	710.4	645.6	594.3	552.7	518.2	489.2	464.5
717a	Borosilicate	1555.4	1256.5	1065.1	932.1							

unit. Replaces term, "poise". (Pa \cdot s = poise x 10

208. Viscosity Fixpoints (solid forms)

These SRMs are for the calibration of equipment for the determination of the softening, annealing, and strain points of glass.

SRM	Туре	Unit Size	Softening Point, °C	Annealing Point, °C	Strain Point, °C
709	Extra Dense Lead	$4 \text{ cm} \times 4 \text{ cm} \times 5 \text{ cm}$	384	328	311
710a	Soda-Lime-Silica	$10 \text{ cm} \times 10 \text{ cm} \times 4 \text{ cm}$	730.6	(545)	(504)
711	Lead-Silica	$4 \text{ cm} \times 4 \text{ cm} \times 12 \text{ cm}$	602	432	392
712	Mixed Alkali Lead Silicate	225 g	528	386	352
713	Dense Barium Crown 620/603	225 g	738	631	599
714	Alkaline Earth Alumina Silicate	225 g	908	710	662
716	Neutral	250 g	794	574	530
717	Borosilicate	$4.2 \text{ cm} \times 4.2 \text{ cm} \times 12.5 \text{ cm}$	719	513	470

208. Relative Stress Optical Coefficient (bar form)

This glass is for calibrating instruments used to measure relative stress optical coefficient of glass.

SRM	Туре	Unit Size	Relative Stress Optical Coefficient (C) at λ =546.1 nm (Value × 10 ⁻¹² m ² /N)
709	Extra Dense Lead	$4 \text{ cm} \times 4 \text{ cm} \times 5 \text{ cm}$	C = -1.359

208. Glass Liquidus Temperature (solid form)

These SRMs are for checking test methods and for calibrating equipment used to determine the liquidus temperature of glass by the gradient furnace methods per ASTM C 829.

SRM	Туре	Unit Size	Method	Temperature, °C
773	Soda-Lime-Silica	$2.5 \text{ cm} \times 2.5 \text{ cm} \times 0.6 \text{ cm}$	A (boat)	988
			B (perforated plate)	991
1416	Aluminosilicate	22 pieces tubing (250 g)	A (boat)	1147

209. Miscellaneous Properties

209. X-ray Diffraction (powder and solid forms)

SRMs 656, 676, 674a, 1878a, and 1879a consist of high phase purity materials for use in the quantitative analysis of samples by the internal standard method. SRM 656, a silicon nitride, is certified for both α and β polymorphs. SRMs 640b, 660, 675, and 1976 consist of materials with select crystallographic and microstructure properties used in the evaluation of diffraction equipment for the following variables; 1) d-spacing or line position, 2) line or instrument intensity, and 3) instrumental or sample contributions to the shape of reflection profiles. SRM 1976, a sintered alumina plate, is also certified with respect to lattice parameters as well as 12 relative intensity values from 25 to 145 degrees 2 Θ (Cu K_a).

SRM	Туре	XRD Application	Lattice Parameters (in nm)	Unit Size (in g)
640b	Silicon Powder 20/d-Spacing	Line Position	0.5430940	7.5
656	Silicon Nitride	Quantitative Analysis	α-(0.7752630/0.5619372)	10
			β-(0.7602293/0.2906827)	10
660	LaB ₆ -20	Line Profile	0.415695	3
674a	Powder Diffraction Intensity	Quantitative Analysis		
	α -Al ₂ O ₃ (corundum)		(0.4759397/1.299237))	10
	CeO ₂ (fluorite)		(0.5411102)	10
	Cr_2O_3 (corundum)		(0.4959610/1.358747)	10
	TiO_2 (rutile)		(0.4593939/0.2958862)	10
	ZnO (wurtzite)		(0.3249074/0.5206535)	10
675	Mica Low 20	Line Position	0.998104	7.5
676	Alumina (corundum)	Quantitative Analysis	0.475919/1.299183	20
1976	Alumina Plate, Sintered	Instrument Sensitivity	0.4758846/1.299306	4.5 cm × 0.16 cm

Values in parentheses are not certified and are given for information only.

209. X-ray Diffraction of Ferrous Materials (disk and wafer forms)

SRMs 487 and 488 are for calibrating X-ray diffraction equipment used in determining the amount of retained austenite in ferrous materials. SRM 493 is for calibrating X-ray diffraction and Mössbauer equipment to determine the relative amounts of iron carbide in steel.

SRM	Туре	Unit Size (in cm)
487	Austenite in Ferrite 30%	disk: $2.1D \times 0.24$
488	Austenite in Ferrite 2.5%	disk: $2.1D \times 0.24$

209. X-ray Stage Calibration (solid forms)

These SRMs are to be used to check the dimensional accuracy of x-ray inspection systems.

SRM	Туре	Unit Size (in mm)
1842	Calibration Board (X and Y dimensions)	Board: $300 \times 300 \times 3$
1843	Calibration Specimen (Z dimension)	Triangular Block: $37 \times 20 \times 12$

209. Density and Refractive Index (liquid and solid forms)

These SRMs are for reference in the determination of the density of liquids and solids. The certified densities of SRM 211d was measured with a special-design picnometer; the certified refractive indexes were measured with a precision spectrometer. The certified densities of SRMs 1826 and 1827 were determined by means of hydrostatic weighing.

SRM	Туре	Unit Size	Density* (in g/cm ³)	Refractive Index **
211d	Toluene	5-mL ampule	In Prep	
1820	Borosilicate Glass	slab – 3.8 cm × 3.8 cm × 0.6 cm	(2.292)	1.48669
1822	Soda-Lime Glass	slab – 3.8 cm × 3.8 cm × 0.6 cm	. /	1.52876
1826	Soda-Lime Glass	button – 3.20 cm $\times 1.3$ cm	2.549382	
1827	Lead Silica Glass	slab – 0.6 cm × 4.0 cm × 2.5 cm	3.04948	

* Values are at 25 °C.

** Values are at 20 °C and 435.83 nm (mercury spectral source). Values in parentheses are not certified and are given for information only.

209. Bleached Kraft Pulps (sheet form)

These Reference Materials, RMs 8495 Northern Softwood Bleached Kraft Pulp and 8496 Eucalyptus Hardwood Bleached Kraft Pulp, are intended primarily for use in fundamental studies on the physical properties of fibers and paper sheets. The materials selected for these two RMs are bleached dried lap pulp, each from a single lot of a standard commercial production run. The materials were selected because of their differing fiber size, differing papermaking properties, and similarity to commercially available materials.

RMs 8495 and 8496 were developed and prepared with input and support from the Pulp Material Research Committee (PMRC), a sub-committee of the Fundamental Research Committee. These materials were donated by industry and are being distributed by the Standard Reference Materials Program. At this time, no extensive property measurements have been made on these materials beyond ensuring they were within the control limits of the normal production run. A measurement error study is in progress with participation by international paper technical laboratories. As results become available, they will be published and added to the Report of Investigation that accompanies each of these materials.

RM	Туре	Unit Size
8495	Northern Softwood	10 standard lap sheets $\times 0.5$ kg
8496	Eucalyptus Hardwood	10 standard lap sheets $\times 0.5$ kg

Engineering Materials

for

Engineering Materials

301. Sizing

Particle Size (powder and solid forms)

These SRMs are for evaluating and calibrating various type of particle size measuring instruments, including light and electrical zone flow-through counters, optical and electron microscopes, sedigraphs, and wire cloth sieving devices. SRM 659 consists of equiaxed silicon nitride primary particles with a minimal amount of large agglomerates; SRM 1978 consists of granular, irregular-shaped zirconium oxide primary particles with a minimal amount of large agglomerates. SRMs 1003b, 1004a, 1017b, 1018b and 1019a each consist of soda-lime glass beads covering a particular size distribution range. SRMs 1690, 1691, 1692 and 1963 are commercially-manufactured latex particles in a water suspension. SRMs 1960 and 1961 (also called 'space beads') are latex particles produced by the National Aeronautics and Space Administration (NASA) during the Challenger STS-6 and STS-11 missions, respectively. SRM 1965 consists of two different groupings of the SRM 1960 particles.

SRM	Туре	Particle Size (in µm)	Unit Size
659	Silicon Nitride	0.2 to 10	5 vials: 2.5 g each
1003b	Glass	10 to 60	25 g
1004a	Glass	40 to 170	70 g
1017b	Glass	100 to 310 nominal	In Prep
1018b	Glass	225 to 780 nominal	In Prep
1019a	Glass	760 to 2160	200 g
1690	Polystyrene (0.5 Wt. % in H ₂ O)	0.895	5-mL vial
1691	Polystyrene (0.5 Wt. % in H ₂ O)	0.269	5-mL vial
1692	Polystyrene (0.25 Wt. % in H_2O)	2.982	5-mL vial
1960	Polystyrene (0.4 Wt. % in H ₂ O)	9.89	5-mL vial
1961	Polystyrene (0.5 Wt. % in H ₂ O)	29.64	5-mL vial
1963	Polystyrene (0.5 Wt. % in H ₂ O)	0.1007	5-mL vial
1965	Polystyrene	9.94	1 slide
1978	Zirconium Oxide	0.33 to 2.19	5 g

301. Cement Turbidimetry and Fineness

This SRM is for calibrating the Blaine fineness meter according to the latest issue of Federal Test Method Standard 158, Method 2101 or ASTM Designation C 204; to calibrate the Wagner turbidimeter according to ASTM Designation C 115; and to determine sieve residue according to ASTM Designation C 430. Each set consists of twenty (20) sealed vials, each containing approximately 10 g of cement.

SRM	Туре	Properties Certified	Value
114p	Portland Cement	Residue on 45 µm (No. 325) sieve Specific Surface area (Wagner turbidimeter) Specific Surface area (Air permeability)	$\begin{array}{c} 8.24 \% \\ 2086 \text{ cm}^2 \cdot \text{g}^{-1} \\ 3774 \text{ cm}^2 \cdot \text{g}^{-1} \end{array}$

301. Electrophoretic Mobility, μ_E (suspension form)

SRMs 1980 and 1981 are intended for use in the calibration and evaluation of equipment used to measure electrophoretic mobility. Each consists of a goethite suspension saturated with phosphate in a sodium perchlorate electrolyte solution.

SRM	Туре	Properties Certified	Unit Size
1980	Goethite (α -FeOOH)	+ μ_E , -2.53 μ m · cm/V · s	40 mL
1981	Goethite (α -FeOOH)	In Prep	

301. Surface Area of Powders

These materials are for calibrating and checking instruments used to determine the specific surface area of powders by the Brunauer, Emmett and Teller (BET) method. RMs 8570, 8571, and 8572 are issued by NIST in cooperation with ASTM. Their surface areas were determined by both the static (volumetric) and single-point methods.

RM	Туре	Surface Area (in m ² /g)		Unit Size
		Static	Single Point	(in g)
8570	Calcined Kaolin	10.9	10.3	25
8571	Alumina	158.7	153.2	25
8572	Silica-Alumina	291.2	277.6	25

302. Surface Finish

Microhardness (block form)

These SRMs are for use in calibrating and checking the performance of microhardness testers. SRMs 1893 through 1907 are $1.25 \text{ cm} \times 1.25 \text{ cm}$ (SRM 2798 is $1.35 \text{ cm} \times 1.35 \text{ cm}$) and was made by electroforming the test metal on AISI 1010 steel substrate. SRMs 2830 and 2831 are intended to meet the needs of the structural, electronic and biomedical ceramics communities.

SRM	Туре	Load (in Newtons)	Hardness (in kg/mm²)
1893	Bright Copper (Knoop)	0.245, 0.490, 0.981	125
1894	Bright Copper (Vickers)	0.245, 0.490, 0.981	125
1895	Bright Nickel (Knoop)	0.245, 0.490, 0.981	600
1896	Bright Nickel (Vickers)	0.245, 0.490, 0.981	600
1905	Bright Nickel (Knoop)	2.943	600
1906	Bright Nickel (Knoop)	4.905	600
1907	Bright Nickel (Knoop)	9.81	600
2798	Bright Nickel (Vickers)	4.905	600
2830	Ceramic, Silicon Nitride (Knoop)	In Prep	
2831	Ceramic, Tungsten Carbide (Vickers)	In Prep	

302. Abrasive Wear (block form)

This SRM is for use in the dry sand/rubber wheel abrasion test per ASTM G65, Procedure A.

SRM	Туре	Unit Size (in cm)
1857	D-2 Tool Steel	2 blocks: $0.78 \times 2.5 \times 7.6$

302. Corrosion (plate form)

This SRM is for determining the reliability of step test measurements of electrochemical potential and thickness of multilayered nickel deposits. It consists of a 5.0×5.0 cm plate of copper-plated steel over which a duplex nickel coating has been deposited.

SRM	Туре	Step Test Potential (in mV)	Bright	ing Thickness Semibright μm)
2350	Nickel Step Test	110 to 150	7	20

302. Surface Roughness (block form)

These SRMs are for calibrating stylus instruments that measure surface roughness. These electroless-nickel coated steel blocks have a sinusoidal roughness profile machined on the top surface.

SRM	Туре	Roughness, R _a (in μm)	Wavelength, D (in µm)	Unit Size (in cm)
2071a	Sinusoidal Roughness	0.3	100	block: 2.4×3.3
2072	Sinusoidal Roughness	1.0	100	block: 2.4×3.3
2073a	-Sinusoidal Roughness	3.0	100	block: 2.4×3.3
2074	Sinusoidal Roughness	1.0	40	block: 2.4×3.3
2075	Sinusoidal Roughness	1.0	800	block: 2.4×3.3

303. Nondestructive Evaluation

303. Dye Penetrant Test Blocks

These SRMs are for checking the performance of liquid dye penetrants and dye penetrant crack detection systems and devices for surface defect detection. These test blocks, composed of a laminate cross section of electrodeposited nickel and copper, have four (4) synthetic cracks, approximately $0.2 \mu m$, $0.5 \mu m$, $1 \mu m$, and $2 \mu m$ wide.

SRM	Туре	Surface	Unit Size (in cm)
1850	Penetrant Test Block	Bright Finish	5D×1
1851	NDE Penetrant Test Block	Matte Finish	5D×1

303. Artificial Flaw for Eddy Current NDE

This Reference Material (RM) 8458 provides a flaw of known size and geometry that closely resembles an actual fatigue crack. It is intended to produce a response suitable for calibrating eddy current nondestructive evaluation (NDE) systems. The flaw size is $3.0 \text{ mm} \times 0.1 \text{ mm}$ long by 1.0 mm deep in a $7 \text{ cm} \times 7 \text{ cm} \times 2 \text{ cm}$ block of 7075–T651 aluminum alloy, heat treated to the T6 temper.

303. Magnetic Particle Inspection

SRM 1853 provides a means for obtaining a leakage field of known value. Such a field is useful for verifying the magnetic properties of particles used in Magnetic Particle Inspection (MPI). Each individually calibrated ring was machined from vacuum arc remelted 52100 steel and has a series of holes machined at various depths below the surface.

SRM	Туре	Leakage Field Gradient (in Oe/cm)	Unit Size (in cm)
1853	Magnetic Particle Test Ring	min. A 50 to 2000 max. A 100 to 2500	12.7D×2.2

304. Automatic Data Processing

304. Magnetic Computer Storage Media

These SRMs are for evaluating the performance of magnetic computer storage media and systems in accordance with relevant standards and for maintaining control over their production. Each SRM is individually calibrated and certified relative to NIST Master Standard Reference Tapes.

SRM	Туре	Used by Standard(s)	Unit Size
3201	Secondary Standard Magnetic Tape – 12.65 mm wide tape, certified for signal amplitude, typical field resolution, overwrite as peak shift at 262 and 394 flux transitions per mm.	ANSI X3.181 X3.197	cartridge
3202	Secondary Standard Magnetic Tape – 12.65 mm wide tape certified for signal amplitude, typical field, resolution and overwrite at a data density of 1491 cycles per mm.	ANSI X3.180	cartridge
3203	Secondary Standard Magnetic Tape -6.30 mm wide, certified for signal amplitude, typical field and resolution at 394 flux transitions per mm.	ANSI X3.235	cartridge
3204	Secondary Standard Magnetic Tape -6.30 mm wide, certified for signal amplitude, typical field and resolution at 492 flux transitions per mm.	ANSI X3.325	cartridge
3217	Secondary Standard High Density Magnetic Tape Cartridge – 6.30 mm wide tape, certified for signal amplitude outputs at 252 and 394 flux transitions per mm.	ANSI X3.116, X3.127, X3.136	cartridge

305. Fire Research

Surface Flammability (sheet form)

This SRM is for checking the operation of radiant panel test equipment in accordance with the procedures outlined in ASTM E162-78.

SRM	Туре	Certification	Unit Size (in cm)
1002d	Hardboard Sheet	Flame Spread Index, $I = 153$ Heat Evolution Factor, $Q = 36.5$	Set of 4: 15.2×45.7×0.63

305. Smoke Density Chamber (sheet form)

These SRMs are certified for maximum specific optical density and are for performing operational checks of smoke density chambers.

SRM	Туре	Maximum Specific Optical Density	Unit Size (in cm)
1006с	Non-flaming Exposure Condition (α-cellulose)		6 sheets: 0.05 (thickness)
1007b	Flaming Exposure Condition (plastic)		3 sheets: 25.4 × 25.4 × 0.076

305. Smoke Toxicity (granular and sheet forms)

SRM 1048 is for checking the operation of the Cup Furnace Smoke Toxicity Method under two (2) observation periods. It consists of eight (8) sheets, $16 \text{ cm} \times 16 \text{ cm} \times 0.76 \text{ cm}$ each, of acrylonitrile-butadiene-styrene copolymer. SRM 1049 is for checking the operation of the University of Pittsburgh I Smoke Toxicity Method. It consists of 150 g of Nylon 6/6 granules which is enough to determine the LC₅₀ value four (4) times.

SRM Type		Combustion	Observation	Values		
	Туре	Mode Time		LC ₅₀	N-Gas	
1048	Smoke Toxicity	Flaming	WE *	27	1.4	
	(ABS sheets)	-	WE & PE **	25	1.5	
		Nonflaming	WE *	58	1.2	
		6	WE & PE **	53	1.4	
1049	Smoke Toxicity		30-Min. Exposure plus	4.4		
	(Nylon 6/6)		10-Min. Post-Exposure			

305. Flooring Radiant Panel (sheet form)

This SRM consists of three (3) sheets of kraft paperboard. It is for checking the operation of flooring radiant panel test apparatus used to measure critical radiant flux as per ASTM E648.

SRM	Туре	Critical Radiant Flux	Unit Size (in cm)
1012	Flooring Radiant Panel	0.36 W/cm ²	104.1 × 25.4 × 0.305

309. Miscellaneous Performance Engineering Materials

309. Charpy V-Notch Test Blocks

These SRMs are test specimens intended for the certification of Charpy V-Notch testing machines in accordance with ASTM Standard E 23. Each SRM unit consists of five $10 \text{ mm} \times 10 \text{ mm} \times 54 \text{ mm}$ steel bars. SRMs 2092 and 2096 are made from 4340 alloy steel; SRM 2098 is made from a high strength maraging steel. The bars are fabricated from vacuum melted, vacuum arc remelted steel, cut to finished lengths, stamped, heattreated, and machined in SRM lots of ~ 1200 specimens each. Sample specimens taken at random from each lot, are then tested at the NIST Boulder Laboratory on Charpy V-Notch test reference machines and the data obtained, are statistically evaluated to assure the quality of the lot and to establish its certified energy value.

CDIA	(T)	Energy Range		
SRM	Туре	(in J)	(in kgf⋅m)	(in ft · lbf)
2092	Low Energy	12.2 to 20.3	1.2 to 2.1	9.0 to 15.0
2096	High Energy	88.1 to 115.2	9.0 to 11.7	65.0 to 85.0
2098	Super High Energy	210.0 to 230.0	21.4 to 23.5	155.0 to 170.0

309. Socketed Ball Bar

This SRM is for measuring the performance of coordinate measuring machines (CMMs) as per ASME Standard B89.1.12. It consists of a set of three (3) precision balls pinned and cemented onto threaded shafts, one (1) table-mount magnetic socket, one (1) ram-mount magnetic socket, and five (5) partially insulated extension tubes -50 mm, 100 mm, 200 mm, 400 mm, and 800 mm long.

SRM	Туре	Measuring Lengths (in 50 mm steps)	Unit Size
2083	Socketed Ball Bar	100 to 1650	Set

309. Coordinate Measuring Machine (CMM) Probe Performance

These SRMs are designed to aid in assessing the point-to-point probing performance of a CMM in accordance with the American National Standard "Methods for Performance Evaluation of Coordinate Measuring Machines" ASME B89.1.12 m-1990. SRM 2084 consists of a calibrated 10-mm tungsten carbide sphere mounted on a tungsten carbide stem, and a stainless stand with provisions for mounting the sphere in either a horizontal, vertical or 45 degree inclination. SRMs 2084R and 2085 are separate 10-mm and 25-mm tungsten carbide spheres and stems designed to be used with SRM 2084.

SRM	Туре	Unit Size
2084	CMM Probe Performance	Set: 1,10-mm sphere/stem 1, stand
2084R	CMM Probe Performance	10-mm sphere/stem only
2085	CMM Probe Performance	25-mm sphere/stem only

309. Tape Adhesion Testing (sheet form)

This SRM is intended as a uniform source of linerboard for use under ASTM Designation D2860, Procedure A: Adhesion of Pressure Sensitive Tape to Fiberboard at 90 Degree Angle and Constant Stress.

SRM	Туре	Unit Size
1810a	Linerboard for Tape Adhesion Testing	50 sheets: 21.6 cm × 28 cm

NIST Special Publications in the 260 Series

Trahey, N. M., editor, NIST Standard Reference Materials Catalog (1995–96 edition), NIST Spec. Publ. 260 (January 1995).

Michaelis, R. E., and Wyman, L. L., Standard Reference Materials: Preparation of White Cast Iron Spectrochemical Standards, NBS Misc. Publ. 260–1 (June 1964). COM74–11061**

Michaelis, R. E., Wyman, L. L., and Flitsch, R., Standard Reference Materials: Preparation of NBS Copper-Base Spectrochemical Standards, NBS Misc. Publ. 260–2 (October 1964). COM74–11063**

Michaelis, R. E., Yakowitz, H., and Moore, G. A., Standard Reference Materials: Metallographic Characterization of an NBS Spectrometric Low-Alloy Steel Standard, NBS Misc. Publ. 260-3 (October 1964). COM74-11060**

Hague, J. L., Mears, T. W., and Michaelis, R. E., Standard Reference Materials: Sources of Information, Publ. 260–4 (February 1965). COM74–11059**

Alvarez, R., and Flitsch, R., Standard Reference Materials: Accuracy of Solution X-Ray Spectrometric Analysis of Copper-Base Alloys, NBS Misc. Publ. 260-5 (March 1965). PB168068**

Shultz, J. I., Standard Reference Materials: Methods for the Chemical Analysis of White Cast Iron Standards, NBS Misc. Publ. 260-6 (July 1965). COM74-11068**

Bell, R. K., Standard Reference Materials: Methods for the Chemical Analysis of NBS Copper-Base Spectrochemical Standards, NBS Misc. Publ. 260–7 (October 1965). COM74–11067**

* Send order with remittance to: Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20102. Remittance from foreign countries should include an additional one fourth of the purchase price for postage.

** May be ordered from: National Technical Information Services (NTIS), Springfield, VA 22161.

For information phone (703) 487-4650.

To place an Order with PB# phone (800) 553-6487.

Richmond, M. S., Standard Reference Materials: Analysis of Uranium Concentrates at the National Bureau of Standards, NBS Misc. Publ. 260–8 (December 1965). COM74–11066**

Anspach, S. C., Cavallo, L. M., Garfinkel, S. B., Hutchinson, J. M. R., and Smith, C. N., Standard Reference Materials: Half Lives of Materials Used in the Preparation of Standard Reference Materials of Nineteen Radioactive Nuclides Issued by the National Bureau of Standards, NBS Misc. Publ. 260–9 (November 1965). COM74–11065**

Yakowitz, H., Vieth, D. L., Heinrich, K. F. J., and Michaelis, R. E., Standard Reference Materials: Homogeneity Characterization of NBS Spectrometric Standards II: Cartridge Brass and Low-Alloy Steel, NBS Misc. Publ. 260–10 (December 1965). COM74–11064**

Napolitano, A., and Hawkins, E. G., Standard Reference Materials: Viscosity of Standard Lead-Silica Glass, NBS Misc. Publ. 260–11** (November 1966).

Yakowitz, H., Vieth, D. L., and Michaelis, R. E., Standard Reference Materials: Homogeneity Characterization of NBS Spectrometric Standards III: White Cast Iron and Stainless Steel Powder Compact, NBS Misc. Publ. 260-12 (September 1966).

Spijkerman, J. J., Snediker, D. K., Ruegg, F. C., et al., Standard Refereance Materials: Mossbauer Spectroscopy Standard for the Chemical Shift of Iron Compounds, NBS Misc. Publ. 260–13** (July 1967).

Menis, O., and Sterling, J. T., Standard Reference Materials: Determination of Oxygen in Ferrous Materials (SRMs 1090, 1091, 1092), NBS Misc. Publ. 260–14** (September 1966).

Passagia, E. and Shouse, P. J., Standard Reference Materials: Recommended Method of Use of Standard Light-Sensitive Paper for Calibrating Carbon Arcs Used in Testing Textiles for Colorfastness to Light, NBS Spec. Publ. 260–15 (July 1967). Superseded by SP 260–41. Yakowitz, H., Michaelis, R. E., and Vieth, D. L., Standard Reference Materials: Homogeneity Characterization of NBS Spectrometric Standards IV: Preparation and Microprobe Characterization of W-20% Mo Alloy Fabricated by Powder Metallurgical Methods, NBS Spec. Publ. 260-16 (January 1969). COM74-11062**

Catanzaro, E. J., Champion, C. E., Garner, E. L., et al., Standard Reference Materials: Boric Acid; Isotopic, and Assay Standard Reference Materials, NBS Spec. Publ. 260–17 (February 1970). PB189457**

Geller, S. B., Mantek, P. A., and Cleveland, N. G., Calibration of NBS Secondary Standards Magnetic Tape Co;mputer Amplitude Reference Amplitude Measurement "Process A", NBS Spec. Publ. 260–18 (November 1969). Superseded by SP 260–29.

Paule, R. C., and Mandel, J., Standard Reference Materials: Analysis of Interlaboratory Measurements on the Vapor Pressure of Gold (Certification of Standard Reference Material 745), NBS Spec. Publ. 260–19 (January 1970). PB190071**

260-20: Unassigned

Paule, R. C., and Mandel, J., Standard Reference Materials: Analysis of Interlaboratory Measurements on the Vapor Pressures of Cadmium and Silver, NBS Spec. Publ. 260–21 (January 1971). COM74–11359**

Yakowitz, H., Fiori, C. E., and Michaelis, R. E., Standard Reference Materials: Homogeneity Characterization of Fe-3 Si Alloy, NBS Spec. Publ. 260–22 (February 1971). COM74–11357**

Napolitano, A., and Hawkins, E. G., Standard Reference Materials: Viscosity of a Standard Borosilicate Glass, NBS Spec. Publ. 260–23 (December 1970). COM71–00157**

Sappenfield, K. M., Marinenko, G., and Hague, J. L., Standard Reference Materials: Comparison of Redox Standards, NBS Spec. Publ. 260-24 (January 1972). COM72-50058** Hicho, G. E., Yakowitz, H., Rasberry, S. D., and Michaelis, R. E., Standard Reference Materials: A Standard Reference Material Containing Nominally Four Percent Austenite, NBS Spec. Publ. 260-25 (February 1971). COM74-11356**

Martin, J. F., Standard Reference Materials: National Bureau of Standards-U.S. Steel Corporation Joint Program for Determining Oxygen and Nitrogen in Steel, NBS Spec. Publ. 260–26 (February 1971). PB81-176620**

Garner, E. L., Machlan, L. A., and Shields, W. R., Standard Reference Materials: Uranium Isotopic Standard Reference Materials, NBS Spec. Publ. 260–27 (April 1971). COM74–11358**

Heinrich, K. F. J., Myklebust, R. L., Rasberry, S. D., and Michaelis, R. E., Standard Reference Materials: Preparation and Evaluation of SRM's 481 and 482 Gold-Silver and Gold-Copper Alloys for Microanalysis, NBS Spec. Publ. 260-28 (August 1971). COM71-50365**

Geller, S. B., Standard Reference Materials: Calibration of NBS Secondary Standard Magnetic Tape (Computer Amplitude Reference) Using the Reference Tape Amplitude Measurement "Process A-Model 2," NBS Spec. Publ. 260–29 (June 1971). COM71–50282** Supersedes Measurement System in SP 260–18.

Gorozhanina, R. S., Freedman, A. Y., and Shaievitch, A. B. (translated by M. C. Selby), Standard Reference Materials: Standard Samples Issued in the USSR (A Translation from the Russian), NBS Spec. Publ. 260–30 (June 1971). COM71–50283**

Hust, J. G., and Sparks, L. L., Standard Reference Materials: Thermal Conductivity of Electrolytic Iron SRM 734 from 4 to 300 K, NBS Spec. Publ. 260–31 (November 1971). COM71–50563**

Mavrodineanu, R., and Lazar, J. W., Standard Reference Materials: Standard Quartz Cuvettes for High Accuracy Spectrophotometry, NBS Spec. Publ. 260-32 (December 1973). COM74-50018**

Wagner, H. L., Standard Reference Materials: Comparison of Original and Supplemental SRM 705, Narrow Molecular Weight Distribution Polystyrene, NBS Spec. Publ. 260–33 (May 1972). COM72–50526** Sparks, L. L., and Hust, J. G., Standard Reference Material: Thermoelectric Voltage of Silver-28 Atomic Percent Gold Thermocouple Wire, SRM 733, Verses Common Thermocouple Materials (Between Liquid Helium and Ice Fixed Points), NBS Spec. Publ. 260–34 (April 1972). COM72–50371**

Sparks, L. L., and Hust, J. G., Standard Reference Materials: Thermal Conductivity of Austenitic Stainless Steel, SRM 735 from 5 to 280 K, NBS Spec. Publ. 260–35 (April 1972). COM72–50368**

Cali, J. P., Mandel, J., Moore, L. J., and Young, D. S., Standard Reference Materials: A Referee Method for the Determination of Calcium in Serum, NBS SRM 915, NBS Spec. Publ. 260–36 (May 1972). COM72–50527**

Shultz, J. I., Bell., R. K., Rains, T. C., and Menis, O., Standard Reference Materials: Methods of Analysis of NBS Clay Standards, NBS Spec. Publ. 260–37 (June 1972). COM72–50692**

Richmond, J. C., and Hsia, J. J., Standard Reference Materials: Preparation and Calibration of Standards of Spectral Specular Reflectance, NBS Spec. Publ. 260–38 (May 1972). COM72–50528**

Clark, A. F., Denson, V. A., Hust, J. G., and Powell, R. L., Standard Reference Materials: The Eddy Current Decay Method for Resistivity Characterization of High-Purity Metals, NBS Spec. Publ. 260-39 (May 1972). COM72-50529**

McAdie, H. G., Garn, P. D., and Menis, O., Standard Reference Materials: Selection of Thermal Analysis Temperature Standards Through a Cooperative Study (SRM 758, 759, 760), NBS Spec. Publ. 260–40 (August 1972). COM72–50776**

Wood, L. A., and Shouse, P. J., Standard Reference Materials: Use of Standard Light-Sensitive Paper for Calibrating Carbon Arcs Used in Testing Textiles for Colorfastness to Light, NBS Spec. Publ. 260-41 (August 1972). COM72-50775**

Wagner, H. L., and Verdier, P. H., eds., Standard Reference Materials: The Characterization of Linear Polyethylene, SRM 1475, NBS Spec. Publ. 260–42 (September 1972). COM72-50944** Yakowitz, H., Ruff, A. W., and Michaelis, R. E., Standard Reference Materials: Preparation and Homogeneity Characterization of an Austenitic Iron-Chromium-Nickel Alloy, NBS Spec. Publ. 260–43 (November 1972). COM73-50760**

Schooley, J. F., Soulen, R. J., Jr., and Evans, G. A., Jr., Standard Reference Materials: Preparation and Use of Superconductive Fixed Point Devices, SRM 767, NBS Spec. Publ. 260–44 (December 1972). COM73–50037**

Greifer, B., Maienthal, E. J., Rains, T. C., and Rasberry, S. D., Standard Reference Materials: Powdered Lead-Based Paint, SRM 1579, NBS Spec. Publ. 260–45 (March 1973). COM73-50226**

Hust, J. G., and Giarratano, P. J., Standard Reference Materials: Thermal Conductivity and Electrical Resistivity Standard Reference Materials: Austenitic Stainless Steel, SRM's 735 and 798, from 4 to 1200 K, NBS Spec. Publ. 260–46 (March 1975). COM75–10339**

Hust, J. G., Standard Reference Materials: Electrical Resistivity of Electrolytic Iron, SRM 797, and Austenitic Stainless Steel, SRM 798, from 5 to 280 K, NBS Spec. Publ. 260–47 (February 1974). COM74–50176**

Mangum, B. W., and Wise, J. A., Standard Reference Materials: Description and Use of Precision Thermometers for the Clinical Laboratory, SRM 933 and SRM 934, NBS Spec. Publ. 260–48 (May 1974). Superseded by NIST Spec. Publ. 260–113. COM74–50533**

Carpenter, B. S., and Reimer, G. M., Standard Reference Materials: Calibrated Glass Standards for Fission Track Use, NBS Spec. Publ. 260–49 (November 1974). COM74–51185**

Hust, J. G., and Giarratano, P. J., Standard Reference Materials: Thermal Conductivity and Electrical Resistivity Standard Reference Materials: Electrolytic Iron, SRM's 734 and 797 from 4 to 1000 K, NBS Spec. Publ. 260–50 (June 1975). COM75–10698**

Mavrodineanu, R., and Baldwin, J. R., Standard Reference Materials: Glass Filters as a Standard Reference Material for Spectrophotometry-Selection, Preparation, Certification, Use-SRM 930, NBS Spec. Publ. 260-51 (November 1975). COM75-10339** Hust, J. G., and Giarratano, P. J., Standard Reference Materials: Thermal Conductivity and Electrical Resistivity Standard Reference

Materials 730 and 799, from 4 to 3000 K, NBS Spec. Publ. 260–52 (September 1975). COM75–11193**

Durst, R. A., Standard Reference Materials: Standardization of pH Measurements, NBS Spec. Publ. 260–53 (December 1978). Superseded by SP 260–53 Rev. 1988 Edition. PB88-217427**

Burke, R. W., and Mavrodineanu, R., Standard Reference Materials: Certification and Use of Acidic Potassium Dichromate Solutions as an Ultraviolet Absorbance Standard-SRM 935, NBS Spec. Publ. 260-54 (August 1977). PB272168**

Ditmars, D. A., Cezairliyan, A., Ishihara, S., and Douglas, T. B., Standard Reference Materials: Enthalpy and Heat Capacity; Molybdenum SRM 781, from 273 to 2800 K, NBS Spec. Publ. 260-55 (September 1977). PB272127**

Powell, R. L., Sparks, L. L., and Hust, J. G., Standard Reference Materials: Standard Thermocouple Materials, Pt-67: SRM 1967, NBS Spec. Publ. 260–56 (February 1978). PB277172**

Cali, J. P., and Plebanski, T., Standard Reference Materials: Guide to United States Reference Materials, NBS Spec. Publ. 260-57 (February 1978). PB277173

Barnes, J. D., and Martin, G. M., Standard Reference Materials: Polyester Film for Oxygen Gas Transmission Measurements SRM 1470, NBS Spec. Publ. 260–58 (June 1979). PB297098**

Chang, T., and Kahn, A. H., Standard Reference Materials: Electron Paramagnetic Resonance Intensity Standard: SRM 2601; Description and Use, NBS Spec. Publ. 260–59 (August 1978). PB292097**

Velapoldi, R. A., Paule, R. C., Schaffer, R., Mandel, J., and Moody, J. R., Standard Reference Materials: A Reference Method for the Determination of Sodium in Serum, NBS Spec. Publ. 260–60 (August 1978). PB286944**

Verdier, P. H., and Wagner, H. L., Standard Reference Materials: The Characterization of Linear Polyethylene (SRM 1482, 1483, 1484), NBS Spec. Publ. 260-61 (December 1978). PB289899**. Soulen, R. J., and Dovc, R. B., Standard Reference Materials: Temperature Reference Standard for Use Below 0.5 K (SRM 768), NBS Spec. Publ. 260–62 (April 1979). PB294245**

Velapoldi, R. A., Paulc, R. C., Schaffer, R., Mandel, J., Machlan, L. A., and Gramlich, J. W., Standard Reference Materials: A Reference Method for the Determination of Potassium in Serum, NBS Spec. Publ. 260–63 (May 1979). PB297207**

Velapoldi, R. A., and Mielenz, K. D., Standard Reference Materials: A Fluorescence Standard Reference Material Quinine Sulfate Dihydrate (SRM 936), NBS Spec. Publ. 260–64 (January 1980). PB80-132046**

Marinenko, R. B., Heinrich, K. F. J., and Ruegg, F. C., Standard Reference Materials: Micro-Homogeneity Studies of NBS Standard Reference Materials, NBS Research Materials, and Other Related Samples, NBS Spec. Publ. 260–65 (September 1979). PB300461**

Venable, W. H., Jr., and Eckerle, K. L., Standard Reference Materials: Didymium Glass Filters for Calibrating the Wavelength Scale of Spectrophotometers - SRM 2009, 2010, 2013 and 2014, NBS Spec. Publ. 260-66 (October 1979). PB80-104961**

Velapoldi, R. A., Paule, R. C., Schaffer, R., Mandel, J., Murphy, T. J., and Gramlich, J. W., Standard Reference Materials: A Reference Method for the Determination of Chloride in Serum, NBS Spec. Publ. 260–67 (November 1979). PB80-110117**

Mavrodineanu, R., and Baldwin, J. R., Standard Reference Materials: Metal-On-Quartz Filters as a Standard Reference Material for Spectrophotometry – SRM 2031, NBS Spec. Publ. 260–68 (April 1980). PB80-197486**

Velapoldi, R. A., Paule, R. C., Schaffer, R., Mandel, J., Machlan, L. A., Garner, E. L., and Rains, T. C., Standard Reference Materials: A Reference Method for the Determination of Lithium in Serum, NBS Spec. Publ. 260–69 (July 1980). PB80-20917**

Marinenko, R. B., Biancaniello, F., Boyer, P. A., et al., Standard Reference Materials: Preparation and Characterization of an Iron-Chromium-Nickel Alloy for Microanalysis: SRM 479a, NBS Spec. Publ. 260-70 (May 1981). SN003-003-02328-1** Scward, R. W., and Mavrodincanu, R., Standard Reference Materials: Summary of the Clinical Laboratory Standards Issued by the National Bureau of Standards, NBS Spcc. Publ. 260–71 (November 1981). PB82-135161**

Recder, D. J., Coxon, B., Enagonio, D., Christensen, R. G., Schaffer, R., Howell, B. F., Paule, R. C., and Mandel, J., Standard Reference Materials: SRM 900, Antiepilepsy Drug Level Assay Standard, NBS Spec. Publ. 260–72 (June 1981). PB81-220758**

Interrante, C. G., and Hicho, G. E., Standard Reference Materials: A Standard Reference Material Containing Nominally Fifteen Percent Austenite (SRM 486), NBS Spec. Publ. 260–73 (January 1982). PB82-215559**

Marinenko, R. B., Standard Reference Materials: Preparation and Characterization of K-411 and K-414 Mineral Glasses for Microanalysis: SRM 470, NBS Spec. Publ. 260-74 (April 1982). PB82-221300**

Weidner, V. R., and Hsia, J. J., Standard Reference Materials: Preparation and Calibration of First Surface Aluminum Mirror Specular Reflectance Standards (SRM 2003a), NBS Spec. Publ. 260–75 (May 1982). PB82-221367**

Hicho, G. E., and Eaton, E. E., Standard Reference Materials: A Standard Reference Material Containing Nominally Five Percent Austenite (SRM 485a), NBS Spec. Publ. 260–76 (August 1982). PB83-115568**

Furukawa, G. T., Riddle, J. L., Bigge, W. G., and Pfieffer, E. R., Standard Reference Materials: Application of Some Metal SRM's as Thermometric Fixed Points, NBS Spec. Publ. 260-77 (August 1982). PB83-117325**

Hicho, G. E., and Eaton, E. E., Standard Reference Materials: Standard Reference Material Containing Nominally Thirty Percent Austenite (SRM 487), NBS Spec. Publ. 260–78 (September 1982). PB83-115576**

Richmond, J. C., Hsia, J. J., Weidner, V. R., and Wilmering, D. B., Standard Reference Materials: Second Surface Mirror Standards of Specular Spectral Reflectance (SRM's 2023, 2024, 2025), NBS Spec. Publ. 260-79 (October 1982). PB84-203447** Schaffer, R., Mandel, J., Sun, T., Cohen, A., and Hertz, H. S., Standard Reference Materials: Evaluation by an ID/MS Method of the AACC Reference Method for Serum Glucose, NBS Spec. Publ. 260-80 (October 1982). PB84-216894**

Burke, R. W., and Mavrodincanu, R., Standard Reference Materials: Accuracy in Analytical Spectrophotometry, NBS Spec. Publ. 260–81 (April 1983). PB83-214536**

Weidner, V. R., Standard Reference Materials: White Opal Glass Diffuse Spectral Reflectance Standards for the Visible Spectrum (SRM's 2015 and 2016), NBS Spec. Publ. 260–82 (April 1983). PB83-220723**

Bowers, G. N., Jr., Alvarez, R., Cali, J. P., Eberhardt, K. R., Reeder, D. J., Schaffer, R., and Uriano, G. A., Standard Reference Materials: The Measurement of the Catalytic (Activity) Concentration of Seven Enzymes in NBS Human Serum SRM 909, NBS Spec. Publ. 260–83 (June 1983). PB83239509**

Gills, T. E., Seward, R. W., Collins, R. J., and Webster, W. C., Standard Reference Materials: Sampling, Materials Handling, Processing, and Packaging of NBS Sulfur in Coal Standard Reference Materials 2682, 2683, 2684, and 2685, NBS Spec. Publ. 260–84 (August 1983). PB84-109552**

Swyt, D. A., Standard Reference Materials: A Look at Techniques for the Dimensional Calibration of Standard Microscopic Particles, NBS Spec. Publ. 260–85 (September 1983). PB84-112648**

Hicho, G. E., and Eaton, E. E., Standard Reference Materials: A Standard Reference Material Containing Two and One-Half Percent Austenite, SRM 488, NBS Spec. Publ. 260–86 (December 1983). PB84-143296**

Mangum, B. W., Standard Reference Materials: SRM 1969: Rubidium Triple-Point – A Temperature Reference Standard Near 39. 30 °C, NBS Spec. Publ. 260–87 (December 1983). PB84-149996**

Gladney, E. S., Burns, C. E., Perrin, D. R., et al., Standard Reference Materials: 1982 Compilation of Elemental Concentration Data for NBS Biological, Geological, and Environmental Standard Reference Materials, NBS Spec. Publ. 260–88 (March 1984). PB84-218338** Hust, J. G., Standard Reference Materials: A Fine-Grained, Isotropic Graphite for Use as NBS Thermophysical Property RM's from 5 to 2500 K, NBS Spec. Publ. 260–89 (September 1984). PB85-112886**

Hust, J. G., and Lankford, A. B., Standard Reference Materials: Update of Thermal Conductivity ' and Electrical Resistivity of Electrolytic Iron, Tungsten, and Stainless Steel, NBS Spec. Publ. 260–90 (September 1984). PB85-115814**

Goodrich, L. F., Vecchia D. F., Pittman, E. S., Ekin, J. W. and Clark, A. F., Standard Reference Materials: Critical Current Measurements on an NbTi Superconducting Wire Standard Reference Material, NBS Spec. Publ. 260–91 (September 1984). PB85-118594**

Carpenter, B. S., Standard Reference Materials: Calibrated Glass Standards for Fission Track Use (Supplement to NBS Spec. Publ. 260–49). NBS Spec. Publ. 260–92 (September 1984). PB85-113025**

Ehrstein, J., Standard Reference Materials: Preparation and Certification of Standard Reference Materials for Calibration of Spreading Resistance Probes, NBS Spec. Publ. 260–93 (January 1985). PB85-177921**

Gills, T. E., Koch, W. F., Stolz, J. W., Kelly, W. R., Paulsen, P. J., Colbert, J. C., Kirklin, D. R., Pei, P. T. S., Weeks, S., Lindstrom, R. M., Fleming, R. F., Greenberg, R. R., and Paule, R. C., Standard Reference Materials: Methods and Procedures Used at the National Bureau of Standards to Certify Sulfur in Coal SRM's for Sulfur Content, Calorific Value, Ash Content, NBS Spec. Publ. 260–94 (December 1984). PB85-165900**

Mulholland, G. W., Hartman, A. W., Hembree, G. G., Marx, E., and Lettieri, T. R., Standard Reference Materials: Development of a 1 μ m Diameter Particle Size Standard, SRM 1690, NBS Spec. Publ. 260–95 (May 1985). PB86-113693**

Carpenter, B. S., Gramlich, J. W., Greenberg, R. R., Machlan, L. A., DeBievre, P., Eschbach, H. L., Meyer, H., Van Andenhove, J., Connelly, V. E., Trahey, N. M., and Zook, A. C., Standard Reference Materials: Uranium-235 Isotopic Abundance Standard Reference Materials for Gamma Spectrometry Measurements, NBS Spec. Publ. 260–96 (September 1986). PB87-108544**

Mavrodineanu, R., and Gills, T. E., Standard Reference Materials: Summary of the Coal, Ore, Mineral, Rock, and Refractory Standards Issued by the National Bureau of Standards, NBS Spec. Publ. 260–97 (September 1985). PB86-110830**

Hust, J. G., Standard Reference Materials: Glass Fiberboard SRM for Thermal Resistance, NBS Spec. Publ. 260–98 (August 1985). SN003–003–02674–3*

Callanan, J. E., Sullivan, S. A., and Vecchia, D. F., Standard Reference Materials: Feasibility Study for the Development of Standards Using Differential Scanning Calorimetry, NBS Spec. Publ. 260–99 (August 1985). PB86-106747**

Taylor, J. K., Standard Reference Materials: Handbook for SRM Users, NBS Spec. Publ. 260–100 (February 1993). PB93-183796**

Mangum, B. W., Standard Reference Materials: SRM 1970, Succinonitrile Triple-Point Standard: A Temperature Reference Standard Near 58.08 °C, NBS Spec. Publ. 260–101 (March 1986). PB86-197100**

Weidner, V. R., Mavrodineau, R., Mielenz, K. D., Velapoldi, R. A., Eckerle, K. L., and Adams, B., Standard Reference Materials: Holmium Oxide Solution Wavelength Standard from 240-650 nm, SRM 2034, NBS Spec. Publ. 260-102 (July 1986). PB86245727**

Hust, J. G., Standard Reference Materials: Glass Fiberblanket SRM for Thermal Resistance, NBS Spec. Publ. 260–103 (September 1985). PB86-109949**

Mavrodineanu, R., and Alvarez, R., Standard Reference Materials: Summary of the Biological and Botanical Standards Issued by the National Bureau of Standards, NBS Spec. Publ. 260–104 (November 1985). PB86-155561**

Mavrodineanu, R., and Rasberry, S. D., Standard Reference Materials: Summary of the Environmental Research Analysis, and Control Standards Issued by the National Bureau of Standards, NBS Spec. Publ. 260–105 (March 1986). PB86-204005**

Koch, W. F., ed., Standard Reference Materials: Methods and Procedures Used at the National Bureau of Standards to Prepare, Analyze, and Certify SRM 2694, Simulated Rainwater, and Recommendations for Use, NBS Spec. Publ. 260–106 (July 1986). PB86247483**

Hartman, A. W., McKenzie, R. L., Standard Reference Materials: SRM 1965, Microsphere Slide (10 μm Polystyrene Spheres), NIST Spec. Publ. 260–107 (November 1988). PB89153704**

Mavrodineanu, R., and Gills, T. E., Standard Reference Materials: Summary of Gas Cylinder and Permeation Tube Standard Reference Materials Issued by the National Bureau of Standards, NBS Spec. Publ. 260–108 (May 1987). PB87209953**

Candela, G. A., Chandler-Horowitz, D., Novotny, D. B., Marchiando, J. F., and Belzer, B. J., Standard Reference Materials: Preparation and Certification of an Ellipsometrically Derived Thickness and Refractive Index Standard of a Silicon Dioxide Film (SRM 2530), NIST Spec. Publ. 260-109 (October 1988). PB89133573**

Kirby, R. K., and Kanare, H. M., Standard Reference Materials: Portland Cement Chemical Composition Standards (Blending, Packaging, and Testing), NBS Spec. Publ. 260–110 (February 1988). PB88193347**

Gladney, E. S., O'Malley, B. T., Roelandts, I., Gills, T. E., Standard Reference Materials: Compilation of Elemental Concentration Data for NBS Clinical, Biological, Geological, and Environmental Standard Reference Materials, NBS Spec. Publ. 260-111 (November 1987). PB88156708**

Marinenko, R. B., Blackburn, D. H., Bodkin, J. B., Standard Reference Materials: Glasses for Microanalysis: SRMs 1871–1875, NIST Spec. Publ. 260–112 (February 1990). PB90215807**

Mangum, B. W., Wise, J. A., Standard Reference Materials: Description and Use of a Precision Thermometer for the Clinical Laboratory, SRM 934, NIST Spec. Publ. 260–113 (June 1990). PB90257643*

Vezzetti, C. F., Varner, R. N., Potzick, J. E., Standard Reference Materials: Bright-Chromium Standard Reference Material, SRM 476, for Calibration of Optical Microscope Linewidth Measuring Systems, NIST Spec. Publ. 260–114 (January 1991). PB91167163**

Williamson, M. P., Willman, N. E., Grubb, D. S., Standard Reference Materials: Calibration of NIST Standard Reference Material 3201 for 0.5 inch [12.65 mm] Serial Serpentine Magnetic Tape Cartridge, NIST Spec. Publ. 260–115 (February 1991). PB91187542**

Mavrodineanu, R., Burke, R. W., Baldwin, J. R., et al., Standard Reference Materials: Glass Filters as a Standard Reference Material for Spectrophotometry -Selection, Preparation, Certification and Use of SRM 930 and SRM 1930, NIST Spec. Publ. 260–116 (March 1994). PB94-188844/AS**

Vezzetti, C. F., Varner, R. N., and Potzick, J. E., Standard Reference Materials: Antireflecting-Chromium Linewidth Standard, SRM 475, for Calibration of Optical Microscope Linewdith Measuring Systems, NIST Spec. Publ. 260-117 (January 1992). PB92-149798**

Williamson, M. P., Standard Reference Material 3202 for 18-Track, Parallel, and 36-Track, Parallel Serpentine, 12.65 mm (0.5 in), 1491 cpmm (37871 cpi), Magnetic Tape Cartrdige, NIST Spec. Publ. 260–118 (July 1992). PB92-226281**

Vezzetti, C. F., Varner, R. N., and Potzick, Standard Reference Materialls: Antireflecting-Chromium Linewidth Standard, SRM 473, for Calibration of Optical Microscope Linewidth Measuring System, NIST Spec. Publ. 260119 (September 1992).

Caskey, G. W., Philips, S. D., Borchardt, et al., Standard Reference Materials: A Users' Guide to NIST SRM 2084: CMM Probe Performance Standard, NIST Spec. Publ. 260-120 (1994).

Rennex, B. G., Standard Reference Materials: Certification of a Standard Reference Material for the Determination of Interstitial Oxygen Concentration in Semiconductor Silicon by Infrared Spectrophotometry, NIST Spec. Publ. 260–121 (1994).

SRM/RM Indexes

Subject Index

A

ABSORBANCE See MOLECULAR ... SPECTROMETRY, 104-106 ACETANILIDE use in MICROCHEMISTRY, 49 **ACIDIMETRIC VALUE (STOICHIOMETRY)**, 49 of Benzoic Acid of Boric Acid of Potassium Hydrogen Phthalate ACID RAIN See SIMULATED RAINWATERS, 61 ADHESION (TAPE ADHESION TESTING) Linerboard for, 131 **AGRICULTURAL MATERIALS**, 76–77 Apple Leaves **Bovine Muscle** Corn Bran Corn Kernel Corn Stalk Corn Starch Durum Wheat Flour Fluoride in Vegetation Hard Red Spring Wheat Flour Microcrystalline Cellulose Peach Leaves **Pine Needles** Soft Winter Wheat Flour Spinach Leaves **Tomato Leaves** Wheat Gluten Whole Egg Powder Whole Milk Powder **AIR PARTICULATES (INORGANIC)** See TRACE ELEMENTS, 62 AIR POLLUTION (ANALYZED GASES) See MIXTURES AND POLLUTANTS, 63-65 ALCOHOL Ethanol Solutions, 57 ALCOHOLS (FOSSIL FUELS), 66 Alcohol Mixture Ethanol Methanol Methanol and t-Butanol **ALLOYS (FERROUS)** See FERROUS METALS, 25-38 ALLOYS (NONFERROUS) See NONFERROUS METALS, 39-47

ALUMINA as Bauxite (ORES), 79-81 as Burnt REFRACTORIES, 83 Reduction Grade (ORES), 79-81 **SECONDARY REFERENCE POINT, 101** for SURFACE AREA OF POWDERS, 124 X-RAY DIFFRACTION, 121 ALUMINUM Freezing Point of (DEFINING FIXED POINT, ITS-90), 101 as a METALLO-ORGANIC COMPOUND, 90 Residual Resistivity Ratio, 115 SPECTROMETRY Solution, 50-52 Specular Reflectance (Mirrors), 107 ALUMINUM BASE ALLOYS See NONFERROUS METALS, 39-47 AMERICIUM (RADIOACTIVITY), 108-113 as Americium-241 as Americium-243 Columbia River Sediment Human Liver Human Lung Peruvian Soil Rocky Flats Soil Number 1 AMMONIUM DIHYDROGEN PHOSPHATE constituent in FERTILIZERS, 78 ANALYZED GASES See MIXTURES AND POLLUTANTS, 63-65 See PERMEATION DEVICES, 65 ANGIOTENSIN I See CLINICAL LABORATORY MATERIALS, 56 ANISIC ACID use in MICROCHEMISTRY, 49 **ANION CHROMATOGRAPHY, 53 Bromide Solution** Chloride Solution Fluoride Solution Nitrate Solution **Phosphate Solution** Sulfate Solution ANTICONVULSANT DRUG LEVEL ASSAY See CLINICAL LABORATORY MATERIALS, 56 ANTIEPILEPSY DRUG LEVEL ASSAY See CLINICAL LABORATORY MATERIALS, 56 ANTIMONY as Antimony-125 Mixed Nuclide (RADIOACTIVITY), 108-113 SPECTROMETRY Solution, 50-51

ARGILLACEOUS LIMESTONE See ROCKS AND MINERALS, 83 ARSENIC in FREEZE-DRIED URINE, 57 in MATERIALS ON FILTER MEDIA, 59 SPECTROMETRY Solution, 50–52 ARSENIC TRIOXIDE (STOICHIOMETRY) Reductometric value of, 49 ASBESTOS, 60 **Common Commercial** Uncommon Commercial Mixture on Filter ASPARTATE AMINOTRANSFERASE CLINICAL LABORATORY MATERIALS, 56 ATOMIC ABSORPTION SPECTROMETRY See SPECTROMETRY, MULTI-ELEMENT, 51-52 See SPECTROMETRY, SINGLE ELEMENT, 50-51 AUSTENITE IN FERRITE See X-RAY DIFFRACTION OF FERROUS MATERIALS, 121 **AUTO CATALYSTS** in Platinum Group Metals, 62

B

BARIUM as Barium-133 (RADIOACTIVITY), 108-113 as Cesium-137 Burn-up Standard (RADIOACTIVITY), 108-113 as a METALLO-ORGANIC COMPOUND, 90 SPECTROMETRY Solution, 50-52 **BASALT ROCK** See ROCKS AND MINERALS, 83 **BASIMETRIC VALUE (STOICHIOMETRY)** of Tris(hydroxymethyl)aminomethane, 49 BAUXITE (ORES), 79-81 from Arkansas from Australia from the Dominican Republic from Jamaica from Surinam **BEARING METAL (Pb-Sb-Sn)** See LEAD BASE ALLOYS, 43 BENZOIC ACID Acidimetric Value of (STOICHIOMETRY), 49 Calorimetric Value of (THERMODYNAMIC PROPERTIES), 99-103 BERYLLIUM in ALUMINUM BASE ALLOYS, 39 in COPPER BASE ALLOYS, 40-41 in MATERIALS ON FILTER MEDIA, 59 SPECTROMETRY Solution, 50-51 BET abbr. for Brunauer, Emmett, and Teller (method) **BET SURFACE AREA** See SURFACE AREA OF POWDERS, 126 BEVERAGE See FOODS AND BEVERAGES, 75 BILIRUBIN See CLINICAL LABORATORY MATERIALS, 56 BIOLOGICAL See FOOD AND AGRICULTURE, 75-78 See HEALTH AND INDUSTRIAL HYGIENE, 56-60

BIOLOGICAL BUFFER SYSTEMS (ION ACTIVITY), 95 **HEPES** Free Acid MOPSO Free Acid **NaHEPESate NaMOPSOate BIOMASS MATERIALS**, 78 Eastern Cottonwood Pinus Radiata Sugar Cane Bagasse Wheat Straw BIPHENYL for DIFFERENTIAL SCANNING CALORIMETRY, 100 BISMUTH **SPECTROMETRY Solution**, 50 **BLOOD GAS** See CLINICAL LABORATORY MATERIALS, 56 See MIXTURES AND POLLUTANTS, 63-65 BONE ASH See CLINICAL REFERENCE MATERIALS, 56 **BONE MEAL SEE CLINICAL REFERENCE MATERIALS, 56 BORATE ORE** See ORES, 79-81 BORON SPECTROMETRY Solution, 50 **BORIC ACID** Acidimetric/Assay Values of (STOICHIOMETRY), 49 Enriched in Boron-10 (STABLE ISOTOPIC MATERIALS), 53 BOTANICAL See AGRICULTURAL MATERIALS, 77 BOVINE Liver (FOOD AND AGRICULTURE), 75-78 Muscle Powder (USA/CANADA COLLABORATIVE MATERIALS), 76 Serum Albumin (CLINICAL REFERENCE MATERIALS), 56 BRASS See NONFERROUS METALS, 39-47 **BREWERS YEAST** See FOODS AND BEVERAGES, 75 BROMIDE **ANION CHROMATOGRAPHY Solution**, 53 Sodium Bromide (STABLE ISOTOPIC MATERIALS), 53 BROMINE in FOOD AND AGRICULTURE, 75-78 **BROMO COMPOUNDS** o-Bromobenzoic Acid (MICROCHEMISTRY), 49 BRONZE See COPPER BASE ALLOYS, 40-41 BUFFERS See ION ACTIVITY, 95-96 **BURNT REFRACTORIES (ALUMINUM OXIDE)** See REFRACTORIES, 83 **BUTYL RUBBER** See RUBBERS AND RUBBER COMPOUNDING MATERIALS, 98

CADMIUM Cadmium Cyclohexanebutyrate (METALLO-ORGANIC COMPOUND), 90 in MATERIALS ON FILTER MEDIA, 59 SPECTROMETRY Solution, 50-52 VAPOR PRESSURE OF METALS, 102 CALCIUM Calcium Carbonate (CLINICAL LABORATORY MATERIALS), 56 Calcium Molybdate (STEELMAKING ALLOYS), 36 SPECTROMETRY Solution, 50-52 CALORIMETRY (THERMODYNAMIC PROPERTIES) **COMBUSTION CALORIMETRY, 99 DIFFERENTIAL SCANNING CALORIMETRY, 100 DIFFERENTIAL THERMAL ANALYSIS, 100** ENTHALPY AND HEAT CAPACITY, 99 **SOLUTION CALORIMETRY, 99** CARBIDES (CERAMICS AND GLASSES) Silicon CARBIDE, 85 Tungsten CARBIDE, 85 See CEMENTED CARBIDES, 85 CARBON Carbon Modified Silicon (INORGANICS), 62 Carbon-14 Dating (RADIOACTIVITY), 108-113 in PLAIN CARBON STEELS (FERROUS METALS), 25-38 in RUBBERS AND RUBBER COMPOUNDING MATERIALS, 98 **CARBON DIOXIDE (MIXTURES AND** POLLUTANTS), 63-65 Blood Gas Carbon Dioxide and Nitrous Oxide in Air Carbon Dioxide in Nitrogen Carbon Monoxide, Propane, and Carbon Dioxide in Nitrogen **CARBON MONOXIDE (MIXTURES AND** POLLUTANTS), 63-65 Carbon Monoxide in Air Carbon Monoxide in Nitrogen Carbon Monoxide and Propane in Nitrogen Carbon Monoxide, Propane, and Carbon Dioxide in Nitrogen **B-CAROTENE (FAT SOLUBLE VITAMINS)** in Human Serum (CLINICAL LABORATORY MATERIALS), 56 CAST IRON See FERROUS METALS, 25-38 CAST STEEL See FERROUS METALS, 25-38 CATALYST MATERIALS (ENGINE WEAR MATERIALS) Catalyst Package (FOR LUBRICANT OXIDATION), 91 High Sulfur Gas Oil Feed (CATALYST CHARACTERIZATION MATERIALS), 91 CELLULOSE Microcrystalline (USA/CANADA COLLABORATIVE MATERIALS), 76

CEMENTS **CEMENT TURBIDIMETRY AND FINENESS** (SIZING), 125 **PORTLAND CEMENT CLINKERS**, 89 PORTLAND CEMENTS, 88 CERAMIC MATERIALS (CERAMICS AND GLASSES) CARBIDES, 85 **CEMENTED CARBIDES**, 85 GLASSES, 86 See REFRACTORIES, 83 See ROCKS AND MINERALS, 83 See SPECULAR SPECTRAL REFLECTANCE, 107 CERIUM SPECTROMETRY Solution, 50 CESIUM (RADIOACTIVITY), 108-113 as Cesium-137 Burn-up Standard as Cesium-137-Barium-137 SPECTROMETRY Solution, 50 CHARPY V-NOTCH TEST BLOCKS, 131 CHEMICAL See HIGH PURITY MATERIALS, 48-55 **CHLORIDE** by ANION ION CHROMATOGRAPHY, 53 **CLINICAL LABORATORY MATERIALS, 56** in SERUM MATERIALS, 57 in SIMULATED RAINWATERS, 61 **CHLORINE** as Chlorine-36 (RADIOACTIVITY), 108-113 in LUBRICATING BASE OILS, 90 **STABLE ISOTOPES of, 53** as a Trace Element in FOSSIL FUELS, 68 CHLORO COMPOUNDS (ORGANIC CONSTITUENTS), 69-74 in **Biphenyls** in Cod Liver Oil in Halocarbons m-Chlorobenzoic Acid (MICROCHEMISTRY), 49 in Pesticides in Phenols in Pollutants CHOLESTEROL in Coconut Oil (FOODS AND BEVERAGES), 75 in Human Serum (CLINICAL LABORATORY MATERIALS), 56 in Whole Egg Powder (FOODS AND **BEVERAGES**), 75 **CHROMIUM** as Chromium-51 (RADIOPHARMACEUTICALS), 110 as Chromium Nitrate (STABLE ISOTOPIC MATERIALS), 53 in CLAYS, 82 Cr/CrO Thin Film Depth Profile, 116 Tris (1-phenyl-1,3-butanediono)chromium (III) (METALLO-ORGANIC COMPOUNDS), 90 SPECTROMETRY Solution, 50–52 in Steels (FERROUS METALS), 25-38 CHROMIUM COMPOUNDS in ROCKS AND MINERALS, 83

CHROMIUM SPECIATION See HIGH-PURITY MATERIALS, 48 CHRYSOTILE in ASBESTOS (HEALTH AND INDUSTRIAL HYGIENE), 60 **CLAYS**, 82 Brick Flint Plastic **CLINICAL LABORATORY MATERIALS**, 56 Angiotensin I (Human) Anticonvulsant Drug Level Assay Antiepilepsy Drug Level Assay Bilirubin Blood Gases Bovine Serum-Inorganic Constituents Calcium Carbonate Cholesterol Cortisol (Hydrocortisone) Creatinine Electrolytes in Serum for ISE D-Glucose (Dextrose) Iron Metal Lead Nitrate Lithium Carbonate Magnesium Gluconate Dihydrate **D-Mannitol** 4-Nitrophenol Potassium Chloride Sodium Chloride Sodium Pyruvate Tripalmitin Urea Uric Acid Vitamins (Fat Soluble) in Human Serum VMA (4-hydroxy-3-methoxymandelic acid) COAL for COMBUSTION CALORIMETRY, 99 Sulfur in (SULFUR IN FOSSIL FUELS), 67 **TRACE ELEMENTS in, 68** Trace Mercury in (METAL CONSTITUENTS), 566 **COAL FLY ASH TRACE ELEMENTS in, 68 COATING THICKNESS** Nonmagnetic-COPPER AND CHROMIUM ON STEEL, 117 Tin-Lead Alloy (SOLDER THICKNESS), 117 **COATING WEIGHT** GOLD ON IRON-NICKEL-COBALT ALLOY, 117 COBALT as Cobalt-60 (RADIOACTIVITY), 108-113 **SPECTROMETRY Solution**, 50–52 **COCAINE METABOLITE** See FREEZE-DRIED URINE, 58 COCONUT OIL Cholesterol in (FOODS AND BEVERAGES), 75

COD LIVER OIL Organics in (ORGANIC CONSTITUENTS), 69-74 **COLUMBIA RIVER SEDIMENT** See NATURAL MATRIX MATERIALS (RADIOACTIVITY), 113 COMPUTER (AUTOMATIC DATA PROCESSING) MAGNETIC COMPUTER STORAGE MEDIA, 129 **CONDUCTIVITY (EDDY CURRENT)** of Aluminum, 115 CONDUCTIVITY, ELECTRICAL (ELECTRICAL **PROPERTIES)**, 114–115 of Electrolytic Iron of Lead-Silica (ELECTRICAL PROPERTIES OF GLASS), 119 of Stainless Steel of Sintered Tungsten CONDUCTIVITY, ELECTROLYTIC (ION ACTIVITY), 96 Hydrochloric Acid in Water Potassium Chloride in Water Potassium Chloride in Water-Propanol Mixture Sodium Chloride in Water CONDUCTIVITY, THERMAL (THERMODYNAMIC **PROPERTIES**), 103 of Electrolytic Iron of Graphite of Sintered Tungsten of Stainless Steel **COORDINATE MEASURING MACHINE PROBE PERFORMANCE**, 131 COPPER Bis(1-phenyl-1,3-butanediono)copper (II) (METALLO-ORGANIC COMPOUNDS), 90 Brass (COPPER BASE ALLOYS), 40-41 Bronze (COPPER BASE ALLOYS), 40-41 Cupro-Nickel (COPPER BASE ALLOYS), 40-41 **ENTHALPY AND HEAT CAPACITY of, 99** in FERROUS METALS, 25-38 Freezing Point of (SECONDARY **REFERENCE POINTS), 101** Gilding Metal (COPPER BASE ALLOYS), 40-41 High-Purity METAL (MICROANALYSIS), 47 Nickel Silver (COPPER BASE ALLOYS), 40-41 in NONFERROUS METALS, 39-47 in ORES, 79-81 as Phosphorized Copper (COPPER "BENCHMARK"), 42 SPECTROMETRY Solution, 50–52 **STABLE ISOTOPES of, 53** as Unalloyed Copper (COPPER "BENCHMARK"), 42 **COPPER BASE ALLOYS** See NONFERROUS METALS, 39-47 CORN Bran (USA/CANADA COLLABORATIVE MATERIALS), 76 Kernel (AGRICULTURAL MATERIALS), 77 Stalk (AGRICULTURAL MATERIALS), 77 Starch (USA/CANADA COLLABORATIVE MATERIALS), 76

CORROSION Nickel Step Test, 127 Tool Steel (ABRASIVE WEAR), 127 CORTISOL (HYDROCORTISONE) See CLINICAL LABORATORY MATERIALS, 56 COTININE in FREEZE-DRIED URINE, 58 CREATININE See CLINICAL LABORATORY MATERIALS, 56 **CRUDE OIL** Vanadium in (METAL CONSTITUENTS), 66 **CUP FURNACE (FIRE RESEARCH)** See SMOKE TOXICITY 130 CURIUM (RADIOACTIVITY), 108-113 as Curium-243 as Curium-244 CYSTINE See MICROCHEMISTRY, 49

D

DENSITY of Lead Silica Glass, 122 Neutron-Monitor Wire (RADIATION DOSIMETRY), 108 of Smoke (SMOKE DENSITY CHAMBER), 130 of Soda-Lime Glass, 122 of Toluene, 122 **DEPTH PROFILING**, 116 Chromium/Chromium Oxide Thin Film Nickel/Chromium Thin Film **Dextrose** (D-Glucose) See CLINICAL LABORATORY MATERIALS, 56 **DURUM WHEAT FLOUR** See USA/CANADA COLLABORATIVE **MATERIALS**, 76 **DIFFERENTIAL SCANNING CALORIMETRY**, 100 **Biphenyl** Mercury Thermal Analysis Purity Set Tin Zinc **DIFFERENTIAL THERMAL ANALYSIS**, 100 **DIFFRACTION (X-RAY)**, 121 of FERROUS MATERIALS, 121 **DIOXIN (IN ISO OCTANE)** See ORGANIC CONSTITUENTS, 69-74 **DISODIUM HYDROGEN PHOSPHATE** for pD CALIBRATION, 95 for pH CALIBRATION, 95 DNA abbr. for Diribonucleic Acid **DNA PROFILING** (HEALTH AND INDUSTRIAL HYGIENE), 59 **DNA** Profiling PCR-Based DNA Profiling **DNA Mitochondrial Sequencing**

DOLOMITIC LIMESTONE See ROCKS AND MINERALS, 83 **DOSIMETRY (RADIOACTIVITY)** Neutron density (RADIATION DOSIMETRY), 108 **DRUG LEVEL ASSAY** See CLINICAL LABORATORY MATERIALS, 56 **DRUGS OF ABUSE** in FREEZE-DRIED URINE, 58 in HAIR, 58 DSC abbr. for Differential Scanning Calorimetry DTA abbr. for Differential Thermal Analysis DUST Urban (TRACE ELEMENTS), 62 Urban (ORGANIC CONSTITUENTS), 69-74 DYE PENETRANT TEST (CRACK) BLOCK (NONDESTRUCTIVE EVALUATION), 128 **Bright Finish** NDE-Matte Finish **DYSPROSIUM SPECTROMETRY** Solution, 50

E

EDDY CURRENT Aluminum, 115 **ARTIFICIAL FLAW FOR NDE, 128 DYE PENETRANT TEST BLOCKS**, 128 Silicon, 114 ELECTRICAL RESISTIVITY AND CONDUCTIVITY (ELECTRICAL PROPERTIES), 114-115 of Electrolytic Iron of Silicon of Stainless Steel of Sintered Tungsten ELECTRICAL RESISTIVITY See RESIDUAL RESISTIVITY RATIO, 115 **ELECTROLYTIC CONDUCTIVITY (ION ACTIVITY)** Potassium Chloride Solutions for, 96 **ELECTRONIC AND MAGNETIC ALLOY, 44** Nickel-Iron Nickel-Molybdenum **ELECTROPHORETIC MOBILITY (SIZING), 126 ELLIPSOMETRY THIN FILM** Silicon Dioxide on Silicon, 118 **ENGINEERING MATERIALS** See GUIDE TO SRM/RM TECHNICAL CATEGORIES, 19-21 **ENTHALPY (THERMODYNAMIC PROPERTIES)**, 99 of Copper of Molybdenum of Synthetic Sapphire of Polystyrene

ENVIRONMENTAL MATRICES See METAL CONSTITUENTS (INORGANICS), 61 See NATURAL MATRIX MATERIALS (RADIOACTIVITY), 113 See ORGANIC CONSTITUENTS (ORGANICS), 69-74 See SIMULATED RAINWATERS, 61 See TRACE ELEMENTS (FOSSIL FUELS), 68 ENZYME See CLINICAL LABORATORY MATERIALS, 56 **ERBIUM SPECTROMETRY** Solution, 50 **ESTUARINE SEDIMENT** See TRACE ELEMENTS (FOSSIL FUELS), 68 **ETHANOL** Ethanol (ALCOHOLS AND ETHERS IN **REFERENCE FUELS), 66** Ethanol-Water (ETHANOL SOLUTIONS), 57 ETHERS (ALCOHOLS AND ETHERS IN **REFERENCE FUELS)**, 66 t-Amyl Methyl Ether, Ethyl t-Butyl Ether, Methyl t-Butyl Ether, **EUCALYPTUS HARDWOOD BLEACHED KRAFT PULPS, 122 EUROPIUM** as Europium-152 (RADIOACTIVITY), 108-113 as Europium-154/Europium-155 Mixed Nuclide (RADIOACTIVITY), 108-113 SPECTROMETRY solution, 50

F

FELDSPAR (ROCKS AND MINERALS), 83 in Potash in Soda FERRITE Austenite in (X-RAY DIFFRACTION OF FERROUS MATERIALS), 121 FERROUS ALLOYS See FERROUS METALS, 25-38 FERTILIZERS (FOOD AND AGRICULTURE), 78 Ammonium Dihydrogen Phosphate Phosphate Rock (Florida & Western) Potassium Dihydrogen Phosphate Potassium Nitrate FIBROUS GLASS BLANKET See THERMAL RESISTANCE OF GLASS AND SILICA, 103 FIBROUS GLASS BOARD See THERMAL RESISTANCE OF GLASS AND SILICA, 103 FILTER MEDIA (MATERIALS ON FILTER MEDIA), 59 Beryllium and Arsenic on Metals on Quartz on FILTERS See MOLECULAR ... SPECTROMETRY, 104-106 FINENESS (SIZING) of Portland Cement (CEMENT TURBIDIMETRY AND FINENESS), 125 FIRE RESEARCH, 130 FLOORING RADIANT PANEL SMOKE DENSITY SMOKE TOXICITY SURFACE FLAMMABILITY

FISSION TRACK GLASS (RADIOACTIVITY), 108 Irradiated Unirradiated FLAMMABILITY SURFACE FLAMMABILITY (FIRE RESEARCH), 130 FLEXIBLE DISK CARTRIDGE MAGNETIC COMPUTER STORAGE MEDIA, 129 FLOORING RADIANT PANEL See FIRE RESEARCH, 130 FLOUR Durum Wheat (USA/CANADA COLLABORATIVE MATERIALS), 76 Hard Red Spring Wheat (USA/CANADA COLLABORATIVE MATERIALS), 76 Rice (FOODS AND BEVERAGES), 75 Soft Winter Wheat (USA/CANADA **COLLABORATIVE MATERIALS), 76** Wheat (FOODS AND BEVERAGES), 75 FLUORESCENCE Quinine Sulfate Dihydrate (MOLECULAR SPECTROMETRY), 104-106 **FLUORIDE** ANION CHROMATOGRAPHY solution, 53 in FREEZE-DRIED URINE, 55 in Vegetation (AGRICULTURAL MATERIALS), 77 FLUORO COMPOUNDS p-Fluorobenzoic Acid (MICROCHEMISTRY), 49 FLUORSPAR (GEOLOGICAL MATERIALS AND ORES), 79-84 Customs Grade High Grade FLY ASH COAL Coal Fly Ash (TRACE ELEMENTS)/ (FOSSIL FUELS), 68 FOODS AND BEVERAGES (FOOD AND AGRICULTURE), 75-78 Bovine Liver Brewers Yeast Coconut Oil Non-fat Milk Powder **Oyster** Tissue Rice Flour Stabilized Wine Total Diet Wheat Flour Whole Egg Powder FOSSIL FUELS Alcohols (ALCOHOLS AND ETHERS IN **REFERENCE FUELS**), 66 Coal Heat of Combustion (COMBUSTION CALORIMETRY), 99 Ethanol (ALCOHOLS AND ETHERS IN **REFERENCE FUELS), 66** Iso octane (REFERENCE LIQUIDS FOR EVALUATING FUELS), 67 n-Heptane (REFERENCE LIQUIDS FOR **EVALUATING FUELS), 67** METAL CONSTITUENTS in Reference Fuel, 66 METAL CONSTITUENTS in Residual Fuel Oil, 66 Methanol (ALCOHOLS AND ETHERS IN **REFERENCE FUELS), 66** Methanol and t-Butanol (ALCOHOLS AND ETHERS IN REFERENCE FUELS), 66 Sulfur in Coal (SULFUR IN FOSSIL FUELS), 67

Sulfur in Distillate Fuel oil (SULFUR IN FOSSIL FUELS), 67 Sulfur in Kerosine (SULFUR IN FOSSIL FUELS), 67 Sulfur in Residual Fuel Oil (SULFUR IN FOSSIL FUELS), 67 Synthetic Refuse Derived Oil (COMBUSTION CALORIMETRY), 99 **TRACE ELEMENTS in Coal, 68** TRACE ELEMENTS in Coal Fly Ash, 68 **TRACE ELEMENTS in Fuel Oil, 68** Vanadium in Crude Oil (METAL CONSTITUENTS IN FOSSIL FUELS), 66 FREEZING POINT (THERMODYNAMIC PROPERTIES) of Aluminum (DEFINING FIXED POINT, ITS-90), 101 of Copper (SECONDARY REFERENCE POINTS), 101 of Lead (SECONDARY REFERENCE POINTS), 101 of Silver (DEFINING FIXED POINT, ITS-90), 101 of Tin (DEFINING FIXED POINT, ITS-90), 101 of Zinc (DEFINING FIXED POINT, ITS-90), 101 FSV abbr. for Fat Soluble Vitamins **FUELS** See FOSSIL FUELS, 66-68 **FUMED SILICA BOARD** See THERMAL RESISTANCE OF GLASS AND SILICA, 103

G

GADOLINIUM SPECTROMETRY Solution, 50 GALLIUM in Buffalo River Sediment (SOILS AND SEDIMENTS), 84 GLASS SAND in Coal (TRACE ELEMENTS), 68 in Coal Fly Ash (TRACE ELEMENTS), 68 as Gallium-67 (RADIOPHARMACEUTICALS), 110 in Glass (TRACE ELEMENTS), 87 MELTING POINT AND/OR TRIPLE POINT (THERMODYNAMIC PROPERTIES), 101 Metal (STABLE ISOTOPIC MATERIALS), 53 SPECTROMETRY Solution, 50 **GAS CHROMATOGRAPHY (ORGANIC CONSTITUENTS**), 69 GC/MS System Performance LC Selectivity **GASES (ANALYZED GASES)** See MIXTURES AND POLLUTANTS, 63-65 See PERMEATION DEVICES, 65 **GASES IN METALS (NONFERROUS METALS), 46** in Unalloyed Titanium GASOLINE See FOSSIL FUELS, 66-68 GEOLOGICAL See GEOLOGICAL MATERIALS AND ORES, 79-84 GERMANIUM **SPECTROMETRY** Solution, 50 **GLASS BEADS** See SIZING, 125-126

GLASSES

Borosilicate (CHEMICAL RESISTANCE) and (VISCOSITY OF GLASS), 119 CHEMICAL COMPOSITION, 86-87 **DENSITY AND REFRACTIVE INDEX of, 122 ELECTRICAL PROPERTIES OF Lead-Silica**, 119 Fused Ore Glass, 86 **GLASS LIQUIDUS TEMPERATURE, 120** High-Boron Borosilicate, 86 Lead-Barium, 86 Lead-Silica (ELECTRICAL PROPERTIES OF GLASS) (VISCOSITY OF GLASS), 119 Low-Boron Soda-Lime Powder, 86 LABORATORY THERMOMETER (MERCURY IN GLASS), 102 Multi Component, 86 **Opal Powder**, 86 RELATIVE STRESS OPTICAL COEFFICIENT of, 120 Sand (ROCKS AND MINERALS), 83 Soda-Lime Container, 86 Soda-Lime Flat, 86 Soda-Lime Float, 86 Soda-Lime Sheet, 86 Soda-Lime-Silica (VISCOSITY OF GLASS), 119 Soft Borosilicate, 86 SYNTHETIC GLASS (MICROANALYSIS), 47 SYNTHETIC GLASS (TRACE ELEMENTS), 87 THERMAL EXPANSION OF GLASS AND SILICA, 103 THERMAL RESISTANCE OF GLASS AND SILICA, 103 VISCOSITY FIXPOINTS of, 120 See ROCKS AND MINERALS, 83 **GLASS SPHERES** PARTICLE SIZE (SIZING), 125-126 **D-GLUCOSE** aka. Dextrose (CLINICAL LABORATORY MATERIALS), 56 Reductometric Value of (STOICHIOMETRY), 49 GOETHITE aka, α-FeOOH (ELECTROPHORETIC MOBILITY), 126 GOLD COATING ON Fe-Ni-Co ALLOY (METROLOGY), 117 First Surface, Gold on Glass (SPECULAR SPECTRAL **REFLECTANCE**), 107 METALS (HIGH PURITY METALS), 48-55 METALS (MICROANALYSIS), 47 Ore, Refractories, 83 **SPECTROMETRY** Solution, 50–52 VAPOR PRESSURE OF METALS, 102 Royal Canadian Mint Reference Materials (HIGH PURITY MATERIALS), 54-55 GRAPHITE THERMAL CONDUCTIVITY OF GRAPHITE AND METALS, 103 **GRAVITY SEDIMENTATION** Zirconium Oxide (PARTICLE SIZE), 125

H

HAFNIUM **SPECTROMETRY Solution**, 50 in Zircaloy (ZIRCONIUM BASE ALLOYS), 46 in Zirconium (ZIRCONIUM BASE ALLOYS), 46 HARDNESS (SURFACE FINISH) of Bright Copper (MICROHARDNESS), 127 of Bright Nickel (MICROHARDNESS), 127 HASTELLOY **HIGH TEMPERATURE ALLOYS, 35** HEAT (THERMODYNAMIC PROPERTIES), 99-103 COMBUSTION CALORIMETRY **DEFINING FIXED POINT, ITS-90** DIFFERENTIAL SCANNING CALORIMETRY DIFFERENTIAL THERMAL ANALYSIS ENTHALPY AND HEAT CAPACITY LABORATORY THERMOMETER MELTING POINT AND TRIPLE POINT SECONDARY REFERENCE POINTS SOLUTION CALORIMETRY SUPERCONDUCTIVE THERMOMETRIC FIXED POINT DEVICE THERMAL CONDUCTIVITY OF GRAPHITE AND METALS THERMAL EXPANSION OF GLASS AND SILICA THERMAL RESISTANCE OF GLASS AND SILICA, THERMOCOUPLE MATERIAL VAPOR PRESSURE OF METALS **HEPES (ION ACTIVITY)** abbr. for N-2-Hydroxyethyl-piperazine-N'-2-ethanesulfonic Acid **HEPES Free Acid (BIOLOGICAL BUFFER** SYSTEMS), 95 NaHEPESate (BIOLOGICAL BUFFER SYSTEMS), 95 **n-HEPTANE (FOSSIL FUELS) REFERENCE LIQUIDS FOR RATING FUELS, 67 HIGH ALLOY STEELS (FERROUS METALS), 28** Cr-Ni (Cu Precipitation Hardening) Cr-Ni (Mo Precipitation Hardening) High Nickel High Temperature Alloy (A286) Ni-Cr High Temperature Alloy L605 High Temperature Alloy Fe-Ni-Co Valve Steel **HIGH-PURITY METALS**, 48 **High-Purity Gold High-Purity Platinum High-Purity Zinc Refined Copper** Selenium Intermediate Purity Zinc Intermediate Purity Zinc Metal **HIGH TEMPERATURE ALLOYS (FERROUS METALS), 35** A 286 Fe-Ni-Co Hastelloy C High Alloy Steel ACI (17/4 PH)

High Alloy Steel (ACI-C-4M-Cu) Incoloy 800 Incoloy 825 Inconel 600 Inconel 625 HOLMIUM Holmium Oxide Solution Wavelength (MOLECULAR ... SPECTROMETRY), 104-106 **SPECTROMETRY Solution**, 50 HUMAN See CLINICAL LABORATORY MATERIALS, 56 LIVER (NATURAL MATRIX MATERIALS) (RADIOACTIVITY), 113 LUNG (NATURAL MATRIX MATERIALS) (RADIOACTIVITY), 113 Serum (SERUM MATERIALS), 57 HUMAN SERUM (HEALTH AND INDUSTRIAL HYGIENE) Cholesterol in Human Serum (CLINICAL LABORATORY MATERIALS), 57 Electrolytes in (CLINICAL LABORATORY MATERIALS), 56 Fat Soluble Vitamins in (CLINICAL LABORATORY MATERIALS), 56 **SERUM MATERIALS, 57** HUMAN SERUM (ORGANICS) Polychlorinated Biphenyls in (ORGANIC CONSTITUENTS), 69-74 **HYDROGEN** as Hydrogen-3 (RADIOACTIVITY), 108-113 Unalloyed Titanium for (GASES IN METALS), 46 4-HYDROXY-3-METHOXY-DL-MANDELIC ACID (VMA) See CLINICAL LABORATORY MATERIALS, 56

I

ICTAC abbr. for International Confederation of Thermal Analysis and Calorimetry IMAGE QUALITY INDICATOR (OPTICAL PROPERTIES) PHOTOGRAPHY, 107 **INDIUM** as Indium-111 (RADIOPHARMACEUTICALS), 110 **MELTING POINT AND TRIPLE POINT, 101** SPECTROMETRY Solution, 50 **INDUSTRIAL HYGIENE** See HEALTH AND INDUSTRIAL HYGIENE, 56–60 **INFRARED, NEAR** DIRECTIONAL HEMISPHERICAL **REFLECTANCE**, 107 **INFRARED REFLECTANCE, 107** INSTRUMENT PERFORMANCE See GUIDE TO SRM/RM TECHNICAL CATEGORIES, 19-21 IODINE (RADIOACTIVITY), 108–113 as Iodine-125 (RADIOPHARMACEUTICALS) as Iodine-129 as Iodine-131 (RADIOPHARMACEUTICALS)

ION ACTIVITY, 95-96 **BIOLOGICAL BUFFER SYSTEMS** ELECTROLYTIC CONDUCTIVITY **ION-SELECTIVE ELECTRODE CALIBRATION** pD CALIBRATION pH CALIBRATION IRON Electrolytic Iron (THERMAL CONDUCTIVITY OF **GRAPHITE AND METALS**), 103 Electrolytic Iron (ELECTRICAL RESISTIVITY AND **CONDUCTIVITY OF METALS**), 114 See FERROUS METALS, 25-38 as Iron-55 (RADIOACTIVITY), 108-113 Iron Metal (CLINICAL LABORATORY MATERIALS), 56 SPECTROMETRY Solution, 50-52 Tris(1-phenyl-1,3-butanediono)iron (III) (METALLO-ORGANIC COMPOUNDS), 90 **ISOBUTYLENE-ISOPRENE** See RUBBERS AND RUBBER COMPOUNDING MATERIALS, 98 ISOTOPE(S) See LIGHT STABLE ISOTOPIC MATERIALS (HIGH-PURITY MATERIALS), 55 See RADIOACTIVITY, 108–113 See STABLE ISOTOPIC MATERIALS (HIGH-PURITY MATERIALS), 53

K

KAOLIN SURFACE AREA OF POWDERS (SIZING), 126 KEROSINE Sulfur in (SULFUR IN FOSSIL FUELS), 67 KNOOP (SURFACE FINISH) Bright Copper (MICROHARDNESS), 127 Bright Nickel (MICROHARDNESS), 127

L

LANTHANUM SPECTROMETRY Solution, 50 LAKE SEDIMENT (RADIOACTIVITY) Freshwater Lake Sediment (NATURAL MATRIX MATERIALS), 113 LEAD Lead Cyclohexanebutyrate (METALLO-ORGANIC COMPOUNDS), 90 Lead Nitrate (CLINICAL LABORATRY MATERIALS), 56

Metal, Equal Atom (STABLE ISOTOPIC MATERIALS), 53

- Metal, Natural (STABLE ISOTOPIC MATERIALS), 53
- Metal, Radiogenic (STABLE ISOTOPIC MATERIALS), 53

Metals on filter Media (MATERIALS ON FILTER MEDIA), 59

See NONFERROUS METALS, 39-47

Powdered Lead Base Paint (LEAD IN PAINT), 60 in Paint (HEALTH AND INDUSTRIAL HYGIENE), 60 in Reference Fuel (METAL CONSTITUENTS IN FOSSIL FUELS), 66

SECONDARY REFERENCE POINTS, 101 SPECTROMETRY Solution, 50-52 LEAVES (AGRICULTURAL MATERIALS), 77 Apple Peach **Pine Needles** Spinach Tomato LIMESTONE (ROCKS AND MINERALS), 83 Argillaceous Dolomitic **LINERBOARD** for TAPE ADHESION TESTING, 131 LINEWIDTH (METROLOGY) **OPTICAL MICROSCOPE LINEWIDTH MEASUREMENT**, 116 LIQUIDUS TEMPERATURE (THERMODYNAMIC PROPERTIES), 120 LITHIUM Carbonate (LIGHT STABLE ISOTOPIC MATERIALS), 55 Carbonate (CLINICAL LABORATORY MATERIALS), 56 Lithium Cyclohexanebutyrate (METALLO-ORGANIC COMPOUNDS), 90 Ore, Lepidolite (ORES), 79-81 Ore, Petalite (ORES), 79-81 Ore, Spodumene (ORES), 79-81 **SPECTROMETRY** Solution, 50 LIVER Bovine (FOODS AND BEVERAGES), 75 Human (NATURAL MATRIX MATERIALS) (RADIOACTIVITY), 113 LUBRICANT OXIDATION (ENGINE WEAR MATERIALS) Catalyst Package (CATALYST PACKAGE FOR LUBRICANT OXIDATION), 91 LUBRICATING OIL (ENGINE WEAR MATERIALS) Chlorine in LUBRICATING BASE OILS, 90 Nitrogen in LUBRICATING BASE OILS, 90 WEAR-METALS IN OIL, 91 LUNG (RADIOACTIVITY) Human (NATURAL MATRIX MATERIALS), 113 LUTETIUM SPECTROMETRY Solution, 50

Μ

MAGNESIUM Magnesium Gluconate Dihydrate (CLINICAL LABORATORY MATERIALS), 56 Magnesium Metal (STABLE ISOTOPIC MATERIALS), 53 SPECTROMETRY Solution, 50–52 MAGNETIC PARTICLE TEST RING (NONDESTRUCTIVE EVALUATION), 128 MAGNETIC TAPE (AUTOMATIC DATA PROCESSING) MAGNETIC COMPUTER STORAGE MEDIA, 129 MANGANESE Metals on Filter Media (MATERIALS ON FILTER MEDIA), 59 SPECTROMETRY Solution, 50–52

D-MANNITOL CLINICAL LABORATORY MATERIALS, 56 MARIJUANA METABOLITE THC-9-COOH (DRUGS OF ABUSE IN URINE), 58 MARINE MATERIALS Buffalo River Sediment (METAL ... SEDIMENTS), 61 (SOILS AND SEDIMENTS), 84 Estuarine Sediment (METAL... SEDIMENTS), 61 (SOILS AND SEDIMENTS), 84 Limestone, Argillaceous (ROCKS AND MINERALS), 83 Limestone, Dolomitic (ROCKS AND MINERALS), 83 Mercury in Tennessee River Sediments (SOILS AND SEDIMENTS), 84 Organics in Marine Sediment (ORGANIC CONSTITUENTS), 69-74 Organics in Mussel Tissue (ORGANIC CONSTITUENTS), 69-74 Oyster Tissue (FOODS AND BEVERAGES), 75 Polychlorinated Biphenyls (Congeners) in River Sediment A MICROHARDNESS (SURFACE FINISH), 127 (ORGANIC CONSTITUENTS), 69-74 MASS SPECTROMETRY GC/MS AND LC SYSTEM PERFORMANCE (ORGANICS), 69 See LIGHT STABLE ISOTOPIC MATERIALS, 55 See RADIOACTIVITY, 108-113 See STABLE ISOTOPIC MATERIALS, 53 **MATERIALS ON FILTER MEDIA**, 59 Arsenic Barium Beryllium Cadmium Chromium Clay Iron Lead Magnesium Manganese Nickel Quartz Selenium Zinc MELTING POINT AND TRIPLE POINT (THERMODYNAMIC **PROPERTIES**), 101 **MERCAPTOBENZOTHIAZOLE** RUBBERS AND RUBBER-COMPOUNDING MATERIALS, 98 MERCURY Mercury (TOXIC SUBSTANCES IN URINE), 57 Mercury (Triple Point) (DEFINING FIXED POINT, ITS-90), 101 NATURAL MATRIX MATERIALS (RADIOACTIVITY), 113 **SPECTROMETRY Solution**, 50 in Tennessee River Sediments (SOILS AND SEDIMENTS), 84 in TRACE ELEMENTS (FOSSIL FUELS), 66 Trace Mercury in Coal (METAL CONSTITUENTS), 58 in Water (METAL CONSTITUENTS), 58 METALLO-ORGANICS (ENGINE WEAR MATERIALS) See METALLO-ORGANIC COMPOUNDS, 90 **METALLURGY (MISCELLANEOUS PROPERTIES)**, 122 Austenite in Ferrite (X-RAY DIFFRACTION OF FERROUS MATERIALS), 121

METALS ON FILTER MEDIA See MATERIALS ON FILTER MEDIA, 59 **METHANE (ANALYZED GASES)** Methane in Air (MIXTURES AND POLLUTANTS), 63-65 METROLOGY See GUIDE TO SRM/RM TECHNICAL CATEGORIES, 19-21 MICROANALYSIS, 47 **MICROCHEMISTRY (HIGH PURITY MATERIALS)**, 49 Acetanilide Anisic Acid o-Bromobenzoic Acid m-Chlorobenzoic Acid Cystine p-Fluorobenzoic Acid Nicotinic Acid Urea of Bright Copper of Bright Nickel MICROSCOPY (METROLOGY) **DEPTH PROFILING**, 116 **ELLIPSOMETRY, 118** OPTICAL MICROSCOPE LINEWIDTH **MEASUREMENT**, 116 SCANNING ELECTRON MICROSCOPE (SEM), 116 **MICROSPHERE (SIZING)** Glass Spheres (PARTICLE SIZE), 125 Polystyrene Spheres (PARTICLE SIZE), 125 MILK (FOOD AND AGRICULTURE) Non-fat Milk Powder (FOODS AND **BEVERAGES**), 75 **MINERALS** See ROCKS AND MINERALS, 83 **MIXTURES AND POLLUTANTS (ANALYZED GASES), 63-65** Aromatic Organic Gases in Nitrogen Blood Gas-Carbon Dioxide and Nitrogen Blood Gas-Carbon Dioxide, Oxygen, and Nitrogen Carbon Dioxide in Nitrogen Carbon Dioxide and Nitrous Oxide in Air Carbon Monoxide in Air Carbon Monoxide in Nitrogen Carbon Monoxide and Propane in Nitrogen Carbon Monoxide, Propane, and Carbon Dioxide in Nitrogen Methane in Air Methane-Propane in Air Methane in Nitrogen Nitric Oxide in Nitrogen Non-methane Organics in Nitrogen Oxides of Nitrogen in Air Oxygen in Nitrogen Propane in Air Carbon Dioxide in Air Propane in Nitrogen Propane in Nitrogen and Oxygen Sulfur Dioxide in Nitrogen Ambient Non-methane Organics in Nitrogen Ambient Toxic Organics in Nitrogen Hydrogen Sulfide in Nitrogen

MOLECULAR WEIGHT AND MELT FLOW (POLYMERIC

PROPERTIES), 97-98 Polyethylene, Branched Polyethylene Gas Pipe Resin Polyethylene, Linear Poly(ethylene oxide) **Polyethylene Resin** Poly(methylmethacrylate) Polystyrene See POLYETHYLENE PIPE PRODUCTS, 98 MOLYBDENUM ENTHALPY AND HEAT CAPACITY, 99 as Molybdenum-99-Technetium-99m

(RADIOPHARMACEUTICALS), 110 **SPECTROMETRY** Solution, 50

N

NAVAL BRASS

See NONFERROUS METALS, 39-47 NDE abbr. for Nondestructive Evaluation **NEODYMIUM SPECTROMETRY** Solution, 50 **NEUTRON MONITOR (RADIOACTIVITY)** Neutron Density Monitor Wire (RADIATION DOSIMETRY), 108 NICKEL as Nickel-63 (RADIOACTIVITY), 108-113 Nickel Cyclohexanebutyrate (METALLO-ORGANIC COMPOUNDS), 90 Nickel (STABLE ISOTOPIC MATERIALS), 53 NICKEL BASE ALLOYS (NONFERROUS METALS), 39-47 NICKEL OXIDES (NONFERROUS METALS), 39-47 SPECTROMETRY Solution, 50-52 NICOTINIC ACID MICROCHEMISTRY (STOICHIOMETRY), 49 NIOBIUM as Niobium-94 (RADIOACTIVITY), 108-113 **SPECTROMETRY** Solution, 50 NIST TIME SOFTWARE (METROLOGY) Automated Computer Time Service (ACTS), 118 NITRATE Single-component Solution (ANION CHROMATOGRAPHY), 53 NITRIC OXIDE Nitric Oxide in Nitrogen (MIXTURES AND POLLUTANTS), 63-65 NITROGEN (MIXTURES AND POLLUTANTS), 63-65 Ambient Non-methane Organics in Ambient Toxic Organics in Aromatic Organic Gases in Blood Gas in Carbon Dioxide in Carbon Monoxide in Carbon Monoxide and Propane in Carbon Monoxide, Propane, and Carbon Dioxide in Hydrogen Sulfide in Nitric Oxide in Oxygen in Propane in

Propane in Nitrogen and Oxygen

Sulfur Dioxide in Total Nitrogen (LUBRICATING BASE OILS), 90 NITROUS OXIDE Carbon Dioxide and Nitrous Oxide in Air (MIXTURES AND POLLUTANTS), 63-65 **4-NITROPHENOL CLINICAL LABORATORY MATERIALS, 56 NONDESTRUCTIVE EVALUATION**, 128 ARTIFICIAL FLAW FOR EDDY CURRENT NDE DYE PENETRANT TEST BLOCKS MAGNETIC PARTICLE INSPECTION NONFERROUS ALLOYS Sce NONFERROUS METALS, 39-47 NORTHERN SOFTWOOD **BLEACHED KRAFT PULPS, 122** NUCLEAR MATERIALS (RADIOACTIVITY), 108-113 ACCELERATOR MASS SPECTROMETRY ALPHA PARTICLE POINT SOURCES FISSION TRACK GLASS GAMMA RAY POINT SOURCES NATURAL MATRIX MATERIALS **RADIATION DOSIMETRY RADIOACTIVE SOLUTIONS** RADIOPHARMACEUTICALS **RADON EMANATION** Carbon-14 DATING See HIGH-PURITY MATERIALS, 48-55 NUTRITION See FOODS AND BEVERAGES (FOOD AND

0

AGRICULTURE), 75

OBSIDIAN ROCK

ROCKS AND MINERALS, 83 OIL Chlorine in (LUBRICATING BASE OILS), 90 Fuel Oil (TRACE ELEMENTS) (FOSSIL FUELS), 68 High Sulfur Gas Oil Feed (CATALYST CHARACTERIZATION MATERIALS), 90 Nitrogen (LUBRICATING BASE OILS), 90 Moisture in Oils (FOSSIL FUELS), 67 Organics in Cod Liver Oil (ORGANIC CONSTITUENTS), 69-74 Petroleum Crude Oil (ORGANIC CONSTITUENTS), 69-74 Polychlorinated Biphenyls in (ORGANIC CONSTITUENTS), 69-74 Shale Oil (ORGANIC CONSTITUENTS), 69-74 Sulfur in Distillate Fuel Oil (SULFUR IN FOSSIL FUELS), 67 Sulfur in Residual Fuel Oil (SULFUR IN FOSSIL FUELS), 67 Total Chlorine (LUBRICATING BASE OILS), 90 Total Nitrogen (LUBRICATING BASE OILS), 90 Vanadium in Crude Oil (METAL CONSTITUENTS) (INORGANICS), 61 Vanadium and Nickel in Residual Fuel Oil (METAL CONSTITUENTS) (INORGANICS), 61 WEAR-METALS IN OIL (ENGINE WEAR MATERIALS), 91

OPAL **Opal Glass (DIRECTIONAL HEMISPHERICAL REFLECTANCE**), 107 Opal Powder (GLASSES) (CERAMICS AND GLASSES), 86 OPTICAL See GUIDE TO SRM/RM TECHNICAL CATEGORIES, 19-21 **OPTICAL FIBER GEOMETRY (METROLOGY)**, 116 **ORES (GEOLOGICAL MATERIALS AND ORES), 79-84** Alumina (Reduction Grade) Bauxite, Arkansas Bauxite, Australian Bauxite, Dominican Bauxite, Jamaican Bauxite, Surinam **Borate Ore** Chinese Ores Copper Ore Mill Heads Copper Ore Mill Tails Fluorspar, Customs Grade Fluorspar, High Grade Gold Ore, Refractory Iron Ore, Canada Iron Ore, Labrador Iron Ore, Nimba Iron Ore, Sibley Iron Oxide, Reduced Lithium Ore (Lepidolite) Lithium Ore (Petalite) Lithium Ore (Spodumene) Manganese Ore Phosphate Rock, Florida Phosphate Rock, Western Pyrite Ore (ORE BIOLEACHING SUBSTRATE) Rutile Ore Scheelite Ore Tungsten Concentrate **ORGANICS ORGANIC CONSTITUENTS**, 69–74 GC/MS AND LC SYSTEM PERFORMANCE, 69 **OXALIC ACID (RADIOACTIVITY)** Carbon-14 Dating, 111 **OXYGEN (MIXTURES AND POLLUTANTS)**, 63-65 Blood Gas Oxygen in Nitrogen **OXYGEN CONCENTRATION IN SILICON** (METROLOGY), 118 **OXYGENATES** See FOSSIL FUELS, 66-68 **OYSTER TISSUE** FOODS AND BEVERAGES, 75

P

PACKAGE

Catalyst Package (CATALYST PACKAGE FOR LUBRICANT OXIDATION), 91 PAINT Powdered Lead Base Paint (LEAD IN PAINT) 6

Powdered Lead Base Paint (LEAD IN PAINT), 60 PALLADIUM SPECTROMETRY Solution, 50

PARTICLE SIZE (SIZING), 125 **Glass Spheres Polystyrene Spheres** PARTICULATES **Diesel Particulate Matter (ORGANIC** CONSTITUENTS), 69-74 MATERIALS ON FILTER MEDIA (HEALTH AND **INDUSTRIAL HYGIENE)**, 56–60 Urban Dust/Organics (ORGANIC CONSTITUENTS), 69-74 Urban Particulate (TRACE ELEMENTS) (INORGANICS), 61 pD (ION ACTIVITY), 95 Disodium Hydrogen Phosphate Potassium Dihydrogen Phosphate Potassium Hydrogen Phthalate Sodium Bicarbonate Sodium Carbonate **PERMEATION DEVICES (ANALYZED GASES), 63** Nitrogen Dioxide Permeation Tube Sulfur Dioxide Permeation Tube PERUVIAN SOIL (RADIOACTIVITY) NATURAL MATRIX MATERIALS, 112 PESTICIDES (ORGANIC CONSTITUENTS), 68–73 Chlorinated Pesticides in Hexane Chlorinated Pesticides in Iso octane pH (ION ACTIVITY), 95 Calcium Carbonate **Disodium Hydrogen Phosphate** Potassium Dihydrogen Phosphate Potassium Hydrogen Phthalate Potassium Hydrogen Tartrate Potassium Tetroxalate Sodium Bicarbonate Sodium Carbonate Sodium Tetraborate Decahydrate See BIOLOGICAL BUFFER SYSTEMS, 95 PHOSPHATE See pD CALIBRATION, 95 See pH CALIBRATION, 95 Phosphate (ANION CHROMATOGRAPHY), 53 Phosphate Rock (ORES), 79-81 Triphenyl Phosphate (METALLO-ORGANIC COMPOUNDS), 90 **PHOSPHORUS** as Phosphorus-32 (RADIOPHARMACEUTICALS), 110 SPECTROMETRY Solution, 50 PHOTOGRAPHY (PHOTOGRAPHY), 107 Microcopy Resolution Test Chart **PINE NEEDLES** AGRICULTURAL MATERIALS, 77 PLASTIC See POLYMERIC PROPERTIES, 97–98 PLATINUM (HIGH PURITY METALS), 48 **High-Purity Platinum** Pt, High Purity (THERMOCOUPLE MATERIAL), 102 **SPECTROMETRY Solution**, 50

PLUTONIUM (RADIOACTIVITY) Columbia River Sediment, 113 Human Liver, 113 Human Lung, 113 Peruvian Soil, 113 as Plutonium-238, 109 as Plutonium-240, 109 as Plutonium-241, 109 as Plutonium-242, 109 Rocky Flats Soil Number 1, 113 POLLUTANTS METAL CONSTITUENTS IN WATER AND SEDI-**MENTS (INORGANICS)**, 61 MIXTURES AND POLLUTANTS (ANALYZED GASES), 63-65 ORGANIC CONSTITUENTS (ORGANICS), 69-74 SIMULATED RAINWATERS (INORGANICS), 61 **POLONIUM (RADIOACTIVITY)** as Polonium-208, 109 **POLYCHLORINATED BIPHENYLS – PCBs** (ORGANICS), 69-74 **Chlorinated Biphenyls** Chlorinated Biphenyl Congeners in Iso octane Polychlorinated Biphenyl Congeners in Iso octane Polychlorinated Biphenyls in Human Serum Polychlorinated Biphenyls in Oil Polychlorinated Biphenyls in River Sediment A POLYETHYLENE (MOLECULAR WEIGHT AND MELT FLOW), 97 Polyethylene, Branched Polyethylene Gas Pipe Resin Polyethylene, Linear Polyethylene Resin POLYETHYLENE (POLYETHYLENE PIPE PRODUCTS), 98 Polyethylene Butt T Joint **Polyethylene** Piping Polyethylene Socket T Joint POLYMER See POLYMERIC PROPERTIES, 97-98 POLY(METHYLMETHACRYLATE) (POLYMERIC **PROPERTIES**) **MOLECULAR WEIGHT AND MELT FLOW, 97** POLYSTYRENE ENTHALPY AND HEAT CAPACITY (THERMODYNAMIC PROPERTIES), 99-103 MOLECULAR WEIGHT AND MELT FLOW (POLYMERIC PROPERTIES), 97-98 POTASSIUM SPECTROMETRY Solution, 50-52 **POTASSIUM CHLORIDE CLINICAL LABORATORY MATERIALS, 56 ELECTROLYTIC CONDUCTIVITY, 96 ION-SELECTIVE ELECTRODE CALIBRATION, 96 STABLE ISOTOPIC MATERIALS, 53** SOLUTION CALORIMETRY, 99 **STOICHIOMETRY, 49 POTASSIUM DICHROMATE** MOLECULAR ... SPECTROMETRY, 104-106 **STOICHIOMETRY, 49**

POTASSIUM DIHYDROGEN PHOSPHATE FERTILIZERS, 78 pD CALIBRATION, 95 pH CALIBRATION, 95 POTASSIUM HYDROGEN PHTHALATE pD CALIBRATION, 95 pH CALIBRATION, 95 **STOICHIOMETRY**, 49 POTASSIUM HYDROGEN TARTRATE pH CALIBRATION, 95 POTASSIUM IODIDE MOLECULAR ... SPECTROMETRY, 104-106 POTASSIUM NITRATE FERTILIZERS, 78 **POTASSIUM TETROXALATE** pH CALIBRATION, 95 **POWDERED LEAD BASE PAINT** LEAD IN PAINT, 60 PRASEODYMIUM **SPECTROMETRY** Solution, 50 PRIMARY CHEMICALS **STOICHIOMETRY**, 49 **PRIORITY POLLUTANT PAH ORGANIC CONSTITUENTS**, 69–74

Q

QUARTZ MATERIALS ON FILTER MEDIA, 59 Metal-on-Quartz Filters, Transmittance (MOLECULAR SPECTROMETRY), 104-106 **OUININE SULFATE DIHYDRATE** MOLECULAR ... SPECTROMETRY, 104-106 RADIOACTIVITY ACCELERATOR MASS SPECTROMETRY ALPHA PARTICLE POINT SOURCES FISSION TRACK GLASS GAMMA RAY POINT SOURCES NATURAL MATRIX MATERIALS **RADIATION DOSIMETRY RADIOACTIVE SOLUTIONS** RADIOPHARMACEUTICALS RADON EMANATION Carbon-14 DATING See HIGH-PURITY MATERIALS, 48–55 **RADIUM (RADIOACTIVITY)** as Radium-226 (RADIOACTIVE SOLUTIONS), 109 as Radium-226 (RADON EMANATION), 112 RAINWATER SIMULATED RAINWATERS (INORGANICS), 61 **RECYCLED ALUMINUM** Cadmium and Lead Levels (ALUMINUM BASE ALLOYS), 39 **REFERENCE FUELS** ALCOHOLS AND ETHERS (FOSSIL FUELS), 66-68

REFLECTANCE (OPTICAL PROPERTIES) DIRECTIONAL HEMISPHERICAL **REFLECTANCE**, 107 **INFRARED REFLECTANCE, 107** SPECULAR SPECTRAL REFLECTANCE, 107 **REFRACTIVE INDEX (MISCELLANEOUS PROPERTIES**) See DENSITY AND REFRACTIVE INDEX, 122 **REFRACTORIES (GEOLOGICAL MATERIALS** AND ORES) Burnt Refractory, 83 **REFORMULATED GASOLINES** See FOSSIL FUELS, 66–68 **RESIDUAL RESISTIVITY RATIO (ELECTRICAL PROPERTIES**) Aluminum, 115 **RESISTANCE (THERMODYNAMIC PROPERTIES)** THERMAL RESISTANCE OF GLASS AND SILICA, 103 **RESISTIVITY (ELECTRICAL PROPERTIES)** ELECTRICAL RESISTIVITY AND CONDUCTIVITY OF METALS, 114 ELECTRICAL RESISTIVITY AND CONDUCTIVITY OF SILICON, 114 **RESIDUAL RESISTIVITY RATIO, 115** RHENIUM **SPECTROMETRY** Solution, 50 RHODIUM **SPECTROMETRY Solution**, 50 **RICE FLOUR (FOOD AND AGRICULTURE)** FOODS AND BEVERAGES, 75 **RIVER SEDIMENT (SOILS AND SEDIMENTS), 84 Buffalo River Sediment** Estuarine Sediment **Tennesee River RIVER SEDIMENT (ORGANICS)** Polychlorinated Biphenyls in River Sediment A (ORGANIC CONSTITUENTS), 69-74 **RIVER SEDIMENT (RADIOACTIVITY)** Columbia River Sediment (NATURAL MATRIX MATERIALS), 113 ROCKS Basalt Rock (ROCKS AND MINERALS), 83 Obsidian Rock (ROCKS AND MINERALS), 83 Phosphate Rock (Florida) (FERTILIZERS), 78 Phosphate Rock (Western) (FERTILIZERS), 78 Phosphate Rock (Western) (ORES), 79-81 **ROCKY FLATS SOIL NUMBER 1 (RADIOACTIVITY)** NATURAL MATRIX MATERIALS, 113 **ROYAL CANADIAN MINT REFERENCE MATERIALS** (HIGH PURITY MATERIALS), 54-55 RRR abbr. for Residual Resistivity Ratio **RUBBER (POLYMERIC PROPERTIES)**, 97-98 Isobutylene-Isoprene (Butyl Rubber) (RUBBERS ... MATERIALS) Styrene-Butadiene 1500 (RUBBERS ... MATERIALS) **RUBBER COMPOUNDING MATERIALS (POLYMERIC PROPERTIES**), 98 Mercaptobenzothiazole (RUBBERS ... MATERIALS)

Stearic Acid (RUBBERS ... MATERIALS) Sulfur (RUBBERS ... MATERIALS) **RUBIDIUM** Rubidium (MELTING POINT AND TRIPLE POINT), 101 Rubidium Chloride (STABLE ISOTOPIC MATERIALS), 53 SPECTROMETRY Solution, 50

S

SAMARIUM **SPECTROMETRY Solution**, 51 SAND See ROCKS AND MINERALS, 83 **SCANDIUM** SPECTROMETRY Solution, 51 SCANNING ELECTRON MICROSCOPE (METROLOGY), 116 SEM Magnification Standard SEM Performance Standard SCHEELITE ORE ORES, 79-81 SEDIMENT NATURAL MATRIX MATERIALS (RADIOACTIVITY), 113 ORGANIC CONSTITUENTS (ORGANICS), 69-74 SOILS AND SEDIMENTS, 84 **SELENIUM** as Selenium-75 (RADIOPHARMACEUTICALS), 110 Selenium, Intermediate Purity (HIGH PURITY METALS), 48 SPECTROMETRY Solution, 51-52 SEM abbr. for Scanning Electron Microscope SILICA Fumed Silica Board (THERMAL RESISTANCE OF GLASS AND SILICA), 103 Fused Silica (THERMAL EXPANSION OF GLASS AND SILICA), 103 Lead Silica Glass (DENSITY AND REFRACTIVE **INDEX)**, 122 Respirable Cristobalite (RESPIRABLE SILICA), 60 Silica Brick (REFRACTORIES), 83 SILICON Carbon Modified Silicon (INORGANICS), 62 ELECTRICAL RESISTIVITY AND CONDUCTIVITY OF SILICON, 114 Octaphenylcyclotetrasiloxane (METALLO-ORGANIC COMPOUNDS), 90 Silicon (STABLE ISOTOPIC MATERIALS), 53 Silicon Carbide (CARBIDES), 85 Silicon Metal (STEELMAKING ALLOYS), 36 Silicon Powder (X-RAY DIFFRACTION), 121 SPECTROMETRY Solution, 51 See STEELMAKING ALLOYS, 36 SILICON DIOXIDE Thin Film Thickness (ELLIPSOMETRY), 118

SILVER Alloy (METALS)/(MICROANALYSIS), 47 Royal Canadian Mint Reference Materials, 54-55 Silver 2-ethylhexanoate (METALLO-ORGANIC MATERIALS), 90 Silver Nitrate (STABLE ISOTOPIC MATERIALS), 53 SPECTROMETRY Solution, 51-52 SINUSOIDAL ROUGHNESS SURFACE ROUGHNESS (SURFACE FINISH), 127 SIZING **CEMENT TURBIDIMETRY AND FINENESS, 125** PARTICLE SIZE, 125 SURFACE AREA OF POWDERS, 126 SMOKE (FIRE RESEARCH), 130 SMOKE DENSITY CHAMBER SMOKE TOXICITY SOCKETED BALL BAR (MISCELLANEOUS **PERFORMANCE... MATERIALS**) Socketed Ball Bar, 131 SODA LIME GLASS (CERAMICS AND GLASSES), 86 Soda-Lime, Container (GLASSES) Soda-Lime, Flat (GLASSES) Soda-Lime, Float (GLASSES) Soda-Lime, Sheet (GLASSES) SODIUM **Disodium Hydrogen Phosphate** (ION ACTIVITY), 95-96 Sodium Bicarbonate (ION ACTIVITY), 95-96 Sodium Carbonate (ION ACTIVITY), 95-96 Sodium Chloride (CLINICAL LABORATORY MATERIALS), 56 Sodium Cyclohexanebutyrate (METALLO-ORGANIC MATERIALS), 90 Sodium Oxalate (STOICHIOMETRY), 49 Sodium Pyruvate (CLINICAL LABORATORY MATERIALS), 56 Sodium Tetraborate Decahydrate (ION ACTIVITY), 95-96 **SPECTROMETRY** Solution, 51–52 SOILS Trace Elements in SOILS AND SEDIMENTS, 84 SOLDER (METROLOGY) Sn-Pb Alloy (SOLDER THICKNESS), 117 SPECIATION Chromium Species, 53 SPECTRAL REFLECTANCE See OPTICAL PROPERTIES, 104-107 SPHERES (SIZING) PARTICLE SIZE, 125 SPECTROMETRY SINGLE ELEMENT solutions (HIGH PURITY MATERIALS), 50-51 **MULTI-ELEMENT** Solutions (HIGH PURITY MATERIALS), 51-52 See MOLECULAR ... SPECTROMETRY (OPTICAL PROPERTIES), 104-106 SPECULAR SPECTRAL REFLECTANCE (OPTICAL PROPERTIES), 107 First Surface, Aluminum on Glass

First Surface, Black Glass First Surface, Gold on Glass Second Surface, Aluminum on Fused Quartz STAINLESS STEEL See FERROUS METALS, 25-38 STEARIC ACID **RUBBERS AND RUBBER-COMPOUNDING** MATERIALS, 98 **STEELS (FERROUS METALS)** See GUIDE TO SRM/RM TECHNICAL CATEGORIES, 19-21 **STRONTIUM** as Strontium-90 (RADIOACTIVITY), 108-113 Strontium Carbonate (STOICHIOMETRY), 49 Strontium Carbonate (STABLE ISOTOPIC MATERIALS), 53 Strontium Cyclohexanebutyrate (METALLO-ORGANIC MATERIALS), 90 SPECTROMETRY Solution, 51-52 **STYRENE BUTADIENE** RUBBER AND RUBBER-COMPOUNDING MATERIALS, 98 SUCCINONITRILE MELTING POINT AND TRIPLE POINT (THERMODYNAMIC PROPERTIES), 101 SUCROSE **OPTICAL ROTATION, 107** STOICHIOMETRY, 49 SULFATE **ANION CHROMATOGRAPHY, 53** SULFIDE (ANALYZED GASES) Hydrogen Sulfide in Nitrogen (MIXTURES AND POLLUTANTS), 63-65 **SULFUR** CATALYST CHARACTERIZATION **MATERIALS. 90 RUBBERS AND RUBBER-COMPOUNDING** MATERIALS, 98 **SPECTROMETRY Solution**, 48 SULFUR IN FOSSIL FUELS, 67 WEAR-METALS IN OIL, 91 SULFUR DIOXIDE (ANALYZED GASES) Sulfur Dioxide in Nitrogen (MIXTURES AND POLLUTANTS), 63-65 Sulfur Dioxide Permeation Tube (PERMEATION DEVICES), 65 SUPERCONDUCTIVE (THERMODYNAMIC PROPERTIES) Superconductive Thermometric Fixed Point Device, 100 SURFACE AREA (SIZING) SURFACE AREA OF POWDERS, 126 SURFACE FINISH, 127 ABRASIVE WEAR CHARPY V-NOTCH TEST BLOCKS CORROSION **MICROHARDNESS** SURFACE ROUGHNESS SURFACE FLAMMABILITY (FIRE RESEARCH) Hardboard Sheet, 130

Т

TANTALUM SPECTROMETRY Solution, 51 TAPE ADHESION TESTING Linerboard for Tape Adhesion Testing, 131 **TECHNETIUM** as Technetium-99m (RADIOPHARMACEUTICALS), 110 TELLURIUM **SPECTROMETRY** Solution, 51 TEM abbr. for Transmission Electron Microscope **TERBIUM SPECTROMETRY Solution**, 51 TETRACHLOROETHYLENE (ANALYZED GASES) **MIXTURES AND POLLUTANTS, 63-65 TETRAHYDROCANNABIONOL** (Marijuana Metabolite) THC-9-COOH (DRUGS OF ABUSE IN URINE), 58 THALLIUM **SPECTROMETRY Solution**, 51 as Thallium-201 (RADIOPHARMACEUTICALS), 110 THC abbr. for Tetrahydrocannabionol THERMAL ANALYSIS (THERMODYNAMIC PROPERTIES) **COMBUSTION CALORIMETRY, 99** DIFFERENTIAL SCANNING CALORIMETRY, 100 **DIFFERENTIAL THERMAL ANALYSIS, 100** ENTHALPY AND HEAT CAPACITY, 99 SOLUTION CALORIMETRY, 99 THERMAL CONDUCTIVITY (THERMODYNAMIC **PROPERTIES**), 103 Electrolytic Iron Graphite Sintered Tungsten **Stainless Steel** THERMAL EXPANSION (THERMODYNAMIC **PROPERTIES**), 103 **Borosilicate Glass** Copper **Fused Silica** Stainless Steel (AISI 446) THERMAL RESISTANCE (THERMODYNAMIC **PROPERTIES**), 103 Fibrous Glass Blanket Fibrous Glass Board Fumed Silica Board THERMOGRAVIMETRY (THERMODYNAMIC **PROPERTIES**) See DIFFERENTIAL THERMAL ANALYSIS, 100 THERMOMETER (THERMODYNAMIC PROPERTIES) Clinical Laboratory Thermometer, 102 THERMOMETRIC FIXED POINTS (THERMODYNAMIC **PROPERTIES**) **DEFINING FIXED POINT, ITS-90, 101 MELTING POINT AND TRIPLE POINT, 101** Superconductive Thermometric Fixed Point Device, 100

THIANTHRENE **COMBUSTION CALORIMETRY, 99** THICKNESS (METROLOGY) COPPER AND CHROMIUM COATING ON STEEL, 117 **ELLIPSOMETRY**, 118 GOLD COATING ON FE-NI-CO ALLOY, 117 SOLDER THICKNESS, 117 THORIUM as Thorium-229 (RADIOACTIVITY), 108-113 SPECTROMETRY Solution, 51 THULIUM **SPECTROMETRY Solution**, 51 TIME SERVICE DISKETTE (METROLOGY) NIST TIME SOFTWARE, 118 TIN **DEFINING FIXED POINT, ITS-90, 101** Dibutyltin bis (2-ethylhexanoate) (METALLO-ORGANIC COMPOUNDS), 90 DIFFERENTIAL SCANNING CALORIMETRY, 100 **DIFFERENTIAL THERMAL ANALYSIS, 100 SPECTROMETRY Solution**, 51 TITANIUM GASES IN METALS (NONFERROUS METALS), 46 **SPECTROMETRY Solution**, 51 TITANIUM BASE ALLOYS (NONFERROUS METALS), 45 **TITANIUM DIOXIDE REFRACTORIES**, 83 TOLUENE **DENSITY AND REFRACTIVE INDEX, 122 TOXIC METALS TOXIC SUBSTANCES IN URINE, 57 TRACE ELEMENTS** See CERAMICS AND GLASSES, 87 See FOSSIL FUELS, 68 See TRACE ELEMENTS IN NICKEL BASE SUPERALLOYS, 44 TRANSMISSION ELECTRON MICROSCOPE See THIN FILM FOR TRANSMISSION **ELECTRON MICROSCOPE, 47** See ASBESTOS, 60 TRANSMITTANCE See MOLECULAR ... SPECTROMETRY, 104-106 **TRIPLE POINT AND MELTING POINT** (THERMODYNAMIC PROPERTIES), 99–103 2,2,4-TRIMETHYLPENTANE (ISOOCTANE) **REFERENCE LIQUIDS FOR RATING FUELS, 67** TRIPALMITIN **CLINICAL LABORATORY MATERIALS, 56** TRIS(HYDROXYMETHYL)AMINOMETHANE SOLUTION CALORIMETRY, 99 STOICHIOMETRY, 49 TUNGSTEN Sintered Tungsten (THERMAL CONDUCTIVITY OF **GRAPHITE AND METALS), 103 SPECTROMETRY** Solution, 51 Tungsten Carbide (CARBIDES), 85 Tungsten Concentrate (ORES), 79-81

TURBIDIMETRY (SIZING) Portland Cement (CEMENT TURBIDIMETRY AND FINENESS), 125

U

UNIVERSITY OF PITTSBURGH I (FIRE RESEARCH) See SMOKE TOXICITY, 130 URANIUM **SPECTROMETRY Solution**, 51 **URANIUM (RADIOACTIVITY)** as Uranium-232, 109 as Uranium-238, 109 Fission Track Glass, 108 NATURAL MATRIX MATERIALS, 112 UREA **CLINICAL LABORATORY MATERIALS, 56** COMBUSTION CALORIMETRY (THERMODYNAMIC **PROPERTIES**), 99 in Human Serum (SERUM MATERIALS), 57 **MICROCHEMISTRY**, 49 URIC ACID CLINICAL LABORATORY MATERIALS, 56 URINE, FREEZE-DRIED (HEALTH AND INDUSTRIAL HYGIENE), 56-60 Cocaine and Metabolites in Cotinine in Fluoride in Mercury in Morphine and Codeine in Multi-drugs of Abuse in THC (Marijuana Metabolite) in Toxic Metals in

V

VANADIUM

Bis(1-phenyl-1,3-butanediono)oxovanadium (IV) (METALLO-ORGANIC COMPOUNDS), 90 SPECTROMETRY Solution, 51 Vanadium in Crude Oil (METAL CONSTITUENTS IN FOSSIL FUELS), 66 Vanadium and Nickel in Residual Fuel Oil (METAL CONSTITUENTS IN FOSSIL FUELS), 66 VAPOR PRESSURE OF METALS (THERMODYNAMIC PROPERTIES), 102

Cadmium

Gold

VICKERS (MICROHARDNESS) (SURFACE FINISH), 127 Bright Copper

Bright Nickel

VISCOSITY OF GLASS (CERAMICS AND GLASSES) VISCOSITY FIXPOINTS, 120

VISCOSITY OF GLASS, 119

VITAMINS

Cholesterol and FSV in Coconut Oil (FOODS AND BEVERAGES), 75

Fat Soluble Vitamins in Human Serum (CLINICAL LABORATORY MATERIALS), 56

VMA

aka. 4-hydroxy-3-methoxymandelic acid

W

WASPALOY

NICKEL BASE ALLOYS (NONFERROUS METALS), 44

WATER ANALYSIS ANION CHROMATOGRAPHY in, 53 Mercury in Water (METAL CONSTITUENTS IN WATER AND SEDIMENTS), 61 SIMULATED RAINWATERS (INORGANICS), 61 WAVELENGTH (OPTICAL PROPERTIES) Holmium-oxide Solution (MOLECULAR ... SPECTROMETRY), 104–106 WEAR (SURFACE FINISH) D-2 Tool Steel (ABRASIVE WEAR), 127 WEAR-METALS (ENGINE WEAR MATERIALS) WEAR METALS IN OIL, 91 WHALE BLUBBER (ORGANICS) **ORGANIC CONSTITUENTS**, 69-74 WHEAT Wheat Straw (BIOMASS MATERIALS), 78 WHEAT FLOUR (FOOD AND AGRICULTURE) FOODS AND BEVERAGES, 75 **USA/CANADA COLLABORATIVE MATERIALS**, 76

Х

XENON (RADIOACTIVITY) as Xenon-133 (RADIOPHARMACEUTICALS), 110 X-RAY THIN FILMS FOR X-RAY FLUORESCENCE (INORGANICS), 61 X-RAY DIFFRACTION OF FERROUS MATERIALS, 121 X-RAY DIFFRACTION, 121 X-RAY STAGE CALIBRATION, 121

Y

YEAST, BREWERS (FOOD AND AGRICULTURE) FOODS AND BEVERAGES, 75 YTTERBIUM SPECTROMETRY Solution, 51 YTTRIUM SPECTROMETRY Solution, 51

Z

ZINC

DEFINING FIXED POINT, ITS-90, 101 DIFFERENTIAL SCANNING CALORIMETRY, 100 METALS (HIGH PURITY METALS), 48 Metals on Filter Media (MATERIALS ON FILTER MEDIA), 59 SPECTROMETRY Solution, 51–52 Spelter (ZINC BASE ALLOYS), 46 ZINC BASE ALLOYS (NONFERROUS METALS), 46 Zinc Cyclohexanebutyrate (METALLO-ORGANIC COMPOUNDS), 90 ZIRCONIUM SPECTROMETRY Solution, 51 ZIRCONIUM BASE ALLOYS (NONFERROUS METALS), 46

Numerical and Certificate Index

SRM	Descriptor	Cert. Date	Section Code	Page	SRM	Descriptor	Cert. Date	Section Code	Page
1c	Limestone, Argillaceous	Mar 90	111	83	101g	Stainless Steel (AISI 304L)	Aug 86	101	29
4L	Cast Iron	Jun 90	101	37	101g	LA Steel, Cr-Mo-Al (Nitralloy G)	Mar 61	101	29
RM 5		Mar 92	203	37 99	1000 107c			101	
	Cast Iron	Nov 70	101	37	107c	Cast Iron (Ni-Cr-Mo) Silicon Carbide	May 83		37
6g 7 -		Oct 59	101	37			Nov 87	112	85
7g	Cast Iron Hi-Phos.				114p	Portland Cement	May 94	301	125
8j	Carbon Steel, 0.1 C	Apr 72	101	25	115a	Cast Iron (Cu-Ni-Cr)	Apr 62	101	37
11h	Carbon Steel, 0.2 C	Feb 92	101	25	120c	Phosphate Rock (Florida)	Feb 88	110/111	
12h	Carbon Steel, 0.4 C	Mar 66	101	25	121d	Stainless Steel, Cr-Ni-Ti (AISI 321)	Aug 81	101	29
13g	Carbon Steel, 0.6 C	Apr 74	101	25	122i	Cast Iron	Sep 92	101	37
14g	Carbon Steel, 0.8 C	Mar 90	101	25	123c	Stainless Steel, Cr-Ni-Nb (AISI 348)	Oct 81	101	29
15h	Carbon Steel, 0.1 C	Jun 93	101	25	125b	LA Steel, High Silicon	Feb 82	101	26
16f	Carbon Steel, 1.0 C	Jul 93	101	25	126c	HA Steel, High Nickel	Dec 77	101	28
17d	Sucrose (Polarimetric)	Sep 93	104/204	49/107	127b	Solder, 40Sn-60Pb	Aug 90	102	43
19h	Carbon Steel, 0.2 C	Sep 87	101	25	129c	LA Steel, High Sulfur (SAE 112)	Aug 73	101	26
20g	Carbon Steel	Oct 70	101	25	131e	LA Steel, High Silicon	Nov 91	101	26
25d	Manganese Ore	Feb 84	111	80	132b	Tool Steel (AISI M2)	Aug 73	101	29
27f	Iron Ore, Sibley	Dec 91	111	80	133b	Stainless Steel, Cr-13, Mo-0.3, S-0.3	Aug 81	101	29
30f	LA Steel, Cr-V (SAE 6150)	Mar 92	101	26	134a	Tool Steel, Mo-W-Cr-V	May 57	101	29
32e	LA Steel, Ni-Cr (SAE 3140)	Apr 57	101	26	136e	Potassium Dichromate (Oxidimetric)	Jun 89	104	49
33e	LA Steel, Ni-Mo (SAE 4820)	Mar 95	101	26	139b	LA Steel, Cr-Ni-Mo (AISI 8640)	Jun 93	101	26
36b	LA Steel, Cr-Mo	Jul 69	101	26	141d	Acetanilide	In Prep		49
39i	Benzoic Acid (Combustion Cal.)	Jul 68	203	99	142	Anisic Acid	Jul 69	104	49
40h	Sodium Oxalate (Reductometric)	May 92	104	49	143c	Cystine	Nov 91	104	49
41c	Dextrose (D-Glucose) (Polarimetric)	May 93	104/204	49/107	1450	Nicotine Acid	Dec 70	104	49
45d	Cu (Freezing Point)	Apr 90	203	101	152a	Carbon Steel, 0.5 C	Oct 65	104	25
49e		-	203	101	152a 154b	Titanium Dioxide	Sep 91	111	83
	Lead (Freezing Point)	Apr 90	101	29	1540			101	
50c	Tool Steel, W-Cr-V	Jun 57				LA Steel, Cr-W	Oct 46		26
53e	Bearing Metal (Pb-Sb-Sn)	Jan 70	102	43	158a	Bronze, Silicon	Aug 61	102	40
54d	Bearing Metal (Tin Base)	Sep 57	102	44	160b	Stainless Steel, Cr-Ni-Mo (AISI 316)	Jul 86	101	29
57a	Silicon Metal	May 93	101	36	163	LA Steel, 1.0 C	Jan 68	101	26
58a	Ferrosilicon (73% Si)	Apr 78	101	36	165a	Glass Sand (Low Iron)	Nov 92	111/112	83/8
59a	Ferrosilicon	Nov 69	101	36	166c	Stainless Steel, Carbon Only	Mar 70	101	29
64c	Ferrochromium, High Carbon	Feb 92	101	36	173b	Titanium Alloy Al-V	Dec 84	102	45
68c	Ferromanganese, High Carbon	Aug 79	101	36	176	Titanium Alloy Al-Sn	Oct 81	102	45
69b	Bauxite (Arkansas)	Jan 91	111	80	178	Carbon Steel, 0.4 C	Jul 69	101	25
70a	Feldspar, Potash	Nov 90	111	83	179	LA Steel, High Silicon	May 94	101	26
72g	LA Steel (AISI 4130)	Jun 81	101	26	180	Fluorspar, High Grade	Aug 86	111	79
73c	Stainless Steel, Cr (SAE 420)	Feb 92	101	29	181	Lithium Ore (Spodumene)	Oct 81	111	79
76a	Burnt Refractory (Al203-40%)	Mar 92	111	83	182	Lithium Ore (Petalite)	Oct 81	111	79
77a	Burnt Refractory (Al203-60%)	Mar 92	111	83	183	Lithium Ore (Lepidolite)	Oct 81	111	79
78a	Burnt Refractory (Al203-70%)	Mar 92	111	83	185g	Potassium Hydrogen Phthalate, pH	Feb 91	201	95
79a	Fluorspar, Customs Grade	Jan 80	111	79	186Ie	Potassium Dihydrogen Phosphate, pH	Feb 91	201	95
81a	Glass Sand	Jan 78	111/112	83/86	186IIe	Disodium Hydrogen Phosphate, pH	Feb 91	201	95
82b	Cast Iron (Ni-Cr)	Apr 66	101	37	187c	Sodium Tetraborate (Borax), pH	May 93	201	95
83d	Arsenic Trioxide (Reductometric)	Mar 82	101	49	188	Potassium Hydrogen Tartrate, pH	May 87	201	95
84j	Potassium Hydrogen Phthalate	Jan 93	104	49	189a	Potassium Tetroxalate, pH	Feb 91	201	95
	Aluminum-Silicon Alloy	Jan 93 Jan 91	104	39	191a	Sodium Bicarbonate, pH	Jul 93	201	95 95
87a	Limestone, Dolomite				191a 192a	•	Jul 93 Jul 93	201	95 95
88b		Apr 86	111	83		Sodium Carbonate, pH			
89	Glass, Lead Barium	Dec 90	112	86	193	Potassium Nitrate	Nov 91	110	78 79
90	Ferrophosphorus	Oct 28	101	36	194	Ammonium Dihydrogen Phosphate	Sep 92	110	78 26
91	Glass, Opal Powder	Oct 82	112	86	195	Ferrosilicon (75% Si-HP Grade)	Apr 78	101	36
92	Low-Boron, Soda-Lime Powder	Mar 82	112	86	196	Ferrochromium, Low Carbon	Nov 70	101	36
93a	High-Boron Borosilicate	Sep 91	112	86	198	Silica Brick	Jan 60	111	83
94c	Zinc-Base Die Casting Alloy	Dec 94	102	46	199	Silica Brick	Jan 91	111	83
97b	Flint Clay	Apr 88	111	82	200	Potassium Dihydrogen Phosphate	Aug 74	110	78
98b	Plastic Clay	Apr 88	111	82	211d	Toluene	In Prep	209	122
99a	Feldspar, Soda	Nov 90	111	83	276b	Tungsten Carbide	Jun 94	112	85
100b	LA Steel, Manganese (SAE (T340))	Aug 59	101	26	277	Tungsten Concentrate	Oct 78	111	79

SRM	Descriptor	Cert. Date	Section Code	Page	SRM	Descriptor	Cert. Date	Section Code	Page
278	Obsidian Rock	Mar 92	111	83	621	Soda-Lime Container	Jan 82	112	86
291	LA Steel, Cr-Mo (ASTM A 213)	Oct 75	101	26	622	Soda-Lime Silica (Durability)	Mar 76	208	119
293	LA Steel, Cr-Ni-Mo (AISI 8620)	Mar 75	101	26	623	Borosilicate (Durability)	Mar 76	208	119
330	Copper Ore Mill Heads	Aug 91	111	79	624	Lead-Silica, for dc resistivity	Oct 77	207	119
331	Copper Ore Mill Tails	Sep 91	111	79	625	Zinc-Base A	Apr 64	102	46
334 337a	Gray Cast Iron (Carbon & Sulfur)	Mar 82	101	37	626	Zinc-Base B	Apr 64	102	46
338	Carbon Steel, 1.1 C (Carbon & Sulfur) White Cast Iron (Carbon & Sulfur)	Apr 85 May 93	101 101	25 37	627 628	Zinc-Base C Zinc-Base D	Apr 64 Apr 64	102 102	46 46
339	Stainless Steel, Cr-Ni-Se (SAE 303Se)	Jul 65	101	29	629	Zinc-Base E	Apr 64	102	46
341	Ductile Cast Iron	Mar 62	101	37	630	Zinc-Base F	Apr 64	102	46
342a	Nodular Cast Iron	Mar 92	101	37	631	Zinc Spelter (mod.)	Feb 95	102	46
343a	Stainless Steel (AISI 431)	Jun 94	101	29	640b	Line Position, Silicon (XRD)	Jan 87	209	121
344	HA Steel, (Mo Precipitation Hardening)	Oct 63	101	28	641	Ti-Alloy, 8 Mn (A)	Oct 81	102	45
345a	HA Steel, (Cu Precipitation Hardening)	Jun 92	101	28	642	Ti-Alloy, 8 Mn (B)	Oct 81	102	45
346a	Valve Steel	Feb 92	101	28	643	Ti-Alloy, 8 Mn (C)	Oct 81	102	45
347	Magnesium Ferrosilicon	Aug 90	101	36	644	Ti-Alloy, Cr-Fe-Mo	Jan 60	102	45
348a 349a	Hi Temp. Alloy, (A286) Ni-Cr Waspalloy	Mar 87 Jun 87	101 102	28 44	647 648	Ti Alloy, Al-Mo-Sn-Zr Ti Alloy, Al-Sn-Zr-Cr-Mo	Aug 86 Jun 87	102 102	45 45
350a	Benzoic Acid	Mar 95	102	49	649	Ti Alloy, V-Al-Cr-Sn	Jul 90	102	45
352c	Unalloyed Ti, Hydrogen	Jun 90	104	46	650	Unalloyed Titanium A	Nov 85	102	45
360b	Zircaloy 4, Zr-Base Alloy	Apr 86	102	46	651	Unalloyed Titanium B	Nov 85	102	45
361	LA Steel (AISI 4340)	Feb 81	101	27	652	Unalloyed Titanium C	Nov 85	102	45
362	LA Steel (AISI 94B17) (mod.)	Jun 89	101	27	654b	Ti Alloy, Al-V	Sep 91	102	45
363	LA Steel, Cr-V (mod.)	Feb 81	101	27	656	Quartz Analysis, SiN (XRD)	Mar 95	209	121
364	LA Steel, High C (mod.)	May 93	101	27	659	Silicon Nitride, Particle Size	Mar 92	301	125
367	Stainless Steel (AISI 446)	Mar 95	101	29	660	Line Profile, LaB6 (XRD)	Jun 89	209	121
368	Carbon Steel (AISI 1211)	Jan 78	101	25	661	LA Steel (AISI 4340)	Dec 91	101 101	30 30
371h 372i	Sulfur (Rubber Compound) Stearic Acid (Rubber Compound)	N/A N/A	202 202	98 98	663 664	LA Steel, Cr-V (mod.) LA Steel, High Carbon, (mod.)	Dec 91 Dec 91	101	30 30
383a	Mercaptobenzothiazole	N/A	202	98 98	665	Electrolytic Iron	Dec 91	101	30
386k	Styrene-Butadiene/500	Oct 92	202	98	670	Rutile Ore	Jan 93	111	80
393	Unalloyed Copper-"O" (chips)	Sep 80	102	42	671	Nickel Oxide 1	Sep 60	102	45
394	Unalloyed Copper I (chips)	Apr 86	102	42	672	Nickel Oxide 2	Sep 60	102	45
395	Unalloyed Copper II (chips)	Jul 93	102	42	673	Nickel Oxide 3	Sep 60	102	45
396	Unalloyed Copper III (chips)	Apr 86	102	42	674a	Quant. Analysis, Set (XRD)	Jan 89	209	121
398	Unalloyed Copper V (chips)	Jul 93	102	42	675	Line Position, Mica (XRD)	Jun 82	209	121
399	Unalloyed Copper VI (chips)	Jul 93	102	42	676	Quantitative Analysis, Alumina (XRD)	May 92	209	121
400	Unalloyed Copper VII (chips)	Apr 86	102	42	679	Brick Clay	Jan 87	111	82
454	Unalloyed Copper XI (chips)	Apr 86	102	42	680aL1 680aL2	High-Purity Platinum High-Purity Platinum	Mar 77 Mar 77	104 104	48 48
457 458	Unalloyed Copper IV (solid) Beryllium-Copper (17510)	Apr 86 Sep 92	102 102	42 40	682	High-Purity Zinc	Jan 88	104	48
459	Beryllium-Copper (17200)	Sep 92	102	40	683	Zinc, Metal	Jan 85	104	48
460	Beryllium-Copper (17300)	Sep 92	102	40	685R	High-Purity Gold	Oct 81	104	48
473	Optical Linewidth	May 92	207	116	685W	High-Purity Gold	Oct 81	104	48
475	Optical Linewidth	Jan 92	207	I16	688	Basalt Rock	Aug 81	111	83
476	Optical Linewidth	Sep 90	207	116	689	Ferrochromium Silicon	Feb 82	101	36
480	Tungsten-Molybdenum EPMA	Nov 68	103	47	690	Iron Ore Canada	Jun 92	111	80
481	Gold-Silver EPMA	Feb 69	103	47	691	Iron Oxide, Reduced	Oct 91	111	80
482	Gold-Copper EPMA	Aug 88	103	47	692	Iron Ore, Labrador	Jan 92	111	80
484g	SEM Magnification	In Prep		I16	693	Iron Ore, Nimba Phoenbute Rock Western	Jul 90 Sep 03	111	80 78/81
487	Austenite in Ferrite, 30%	May 82	209	121	694	Phosphate Rock, Western Bauxite, Surinam	Sep 93 Jan 9I	110/111 111	81
488 494	Austenite in Ferrite, 2.5% Unalloyed Copper I (solid)	Apr 93 Apr 86	209 102	121 42	696 697	Bauxite, Dominican	Jan 91 Jan 91	111	81
494	Unalloyed Copper II (solid)	Oct 87	102	42	698	Bauxite, Jamaican	Jan 91	111	81
495	Unalloyed Copper III (solid)	Apr 86	102	42	699	Alumina (Reduction Grade)	Dec 93	111	81
498	Unalloyed Copper V (solid)	May 93	102	42	705a	Polystyrene	Jul 90	202/203	97/99
499	Unalloyed Copper VI (solid)	Mar 86	102	42	706	Polystyrene	Feb 79	202	97
500	Unalloyed Copper VII (solid)	Mar 86	102	42	709	Extra Dense Lead	Jun 74	208	120
600	Bauxite, Australian	Jan 91	111	80	710a	Soda-Lime Silica Glass	Mar 91	208	119/12
607	Potassium Feldspar	May 73	112	87	711	Lead-Silica Glass	Jul 64	208	119/12
610	Trace Elements in Glass	Jan 92	112	87	712	Mixed Alkali Lead Silicate Glass	Oct 65	208	120
611	Trace Elements in Glass	Jan 92	112	87	713	Dense Barium Crown Glass 620/603	Oct 65 Oct 65	208 208	120 120
612	Trace Elements in Glass	Jan 92 Jan 92	112	87 87	714 716	Alkaline Earth Glass Neutral Glass	Sep 66	208	120
613	Trace Elements in Glass	Jan 92 Jan 92	112 112	87 87	716	Borosilicate	Nov 69	208	120
614 615	Trace Elements in Glass Trace Elements in Glass	Jan 92 Jan 92	112	87 87	717a	Borosilicate	In Prep	208	119
616	Trace Elements in Glass	Jan 92 Jan 92	112	87	720	Synthetic Sapphire (Heat Capacity)	Apr 82	203	99
617	Trace Elements in Glass	Jan 92	112	87	723b	Tris (Basimetric)	Apr 93	104	49
620	Soda Lime, Flat	Jan 82	112	86	724a	Tris (Heat of Soln.)	Sep 73	203	99

		Cert.	Section				Cert.	Section	
SRM	Descriptor	Date	Code	Page	SRM	Descriptor	Date	Code	Page
726	Selenium, Intermediate Purity	Jan 67	104	48	929	Magnesium Gluconate	Mar 93	105	56
728	Zinc, Intermediate Purity	In Prep	104	48	930e	Glass Filters, Transmittance	Jan 95	204	104
731L1	Borosilicate Glass (Therm. Expansion)	Jul 93	203	103	931e	Liquid Filters, Absorbance	May 93	204	104
731L2	Borosilicate Glass (Therm. Expansion)	Jul 93	203	103	934	Clinical Thermometer	Oct 92	203	102
731L3	Borosilicate Glass (Therm. Expansion)	Jul 93	203	103	935a	Potassium Dichromate, UV Absorbance	Apr 88	204	104
736L1	Copper Therm. Exp.	Oct 90	203	103	936a	Quinine Sulfate, Fluorescence	Dec 94	204	104
738 739L1	Stainless Steel (Ther. Expansion)	May 93 Dec 91	203 203	103 103	937 938	Iron Metal (Clinical)	Jun 78	105	56
739L1 739L2	Fused Silica (Ther. Resist.) Fused Silica (Ther. Resist.)	Dec 91 Dec 91	203	103	938	4-Nitrophenol Boric Acid, Assay and Isotopic	May 81 Feb 69	104 104	56 49/53
739L3	Fused Silica (Ther. Resis.)	Dec 91	203	103	952	Boric Acid 95% enr. 10B	Feb 69	104	53
740a	Zinc (Freezing Point)	Nov 90	203	101	953	Neutron Density Monitor Wire	Mar 69	205	108
741a	Tin (Freezing Point)	In Prep	203	101	955a	Lead in Blood	Dec 94	105	56
742	Alumina (Reference Point)	Jul 90	203	101	956a	Electrolytes in Serum for ISE	In Prep	105	56
743	Mercury (Triple Point)	Jul 90	203	101	963a	Fission Track Glass U-1 mg/g	Feb 84	205	108
745	Gold-Vapor Pressure	Aug 90	203	102	965	Glucose in Frozen Human Serum	In Prep		57
746	Cadmium-Vapor Pressure	Jan 91	203	102	968b	Fat-Sol. Vit. & Chol. in Serum	In Prep	105	56
767a 769	Thermometric Fixed Point	Feb 92 Nov 82	203 206	100 115	975 976	Chlorine (Isotopic)	Mar 65	104	53
709	Aluminum (Residual Resist. Ratio) Soda-Lime-Silica (Glass Liquidus)	Nov 82 Nov 80	208	115	976	Copper (Isotopic) Bromine (Isotopic)	Nov 93 Mar 65	104 104	53 53
774	Lead-Silica (Dielectric Constant)	Jul 82	208	120	978a	Silver (Isotopic)	Sep 84	104	53
781-D2	Molybdenum (Heat Capacity)	Apr 77	203	99	979	Chromium (Isotopic)	May 66	104	53
855a	Aluminum Casting Alloy 356	Jan 90	102	39	980	Magnesium (Isotopic)	Jan 67	104	53
856a	Aluminum Casting Alloy 380	Jan 90	102	39	981	Natural Lead (Isotopic)	Mar 91	104	53
858	Aluminum Alloy 6011	Mar 95	102	39	982	Equal Atom Lead (Isotopic)	Mar 91	104	53
859	Aluminum Alloy 7075	Jun 80	102	39	983	Radiogenic Lead (Isotopic)	Mar 91	104	53
862	High Temp. Alloy L605	Oct 91	101/102	28/39	984	Rubidium Assay (Isotopic)	Jul 70	104	53
864	Inconel, 600	May 84	102	44	985	Potassium Assay (Isotopic)	Aug 79	104	53
865	Inconel, 625	May 84	102	44	986	Nickel (Isotopic)	May 90	104	53
866	Incoloy, 800	May 84	102	44	987	Strontium Assay and Isotopic	Oct 82	104	49/53
867	Incoloy, 825	May 84	102	44	989	Rhenium Assay (Isotopic)	Feb 74	104	53
868 869	High Temp. Alloy Fe-Ni-Co LC Column Selectivity	Apr 93 Mar 90	101 109	28 69	990 991	Silicon Assay (Isotopic) Lead-206 Spike Assay and Isotopic	Aug 74 Mar 76	104 104	53 53
871	Bronze, Phosphor (CDA 521)	Aug 79	109	40	991 994	Gallium (Isotopic)	Feb 86	104	53
872	Bronze, Phosphor (CDA 544)	Aug 79	102	40	997	Thallium (Isotopic)	Jul 86	104	53
874	Cupro-Nickel, 10% (CDA 706) "H-P"	Jan 78	102	40	998	Angiotensin I (Human)	Jan 83	105	56
875	Cupro-Nickel, 10% (CDA 706) "Doped"	Jan 78	102	40	999a	Potassium Chloride (Assay)	In Prep	104	49
879	Nickel Silver, (CDA 762)	Jun 79	102	40	1002d	Hard Board (Surface Flammability)	Aug 89	305	130
880	Nickel Silver, (CDA 770)	Jun 79	102	40	1003b	Glass (Particle Size)	Sep 93	301	125
882	Alloy Ni-Cu-Al	Aug 79	102	44	1004a	Glass (Particle Size)	Dec 93	301	125
885	Refined Copper	Mar 91	104	48	1006c	Alpha-Cellulose (Smoke Density)	Oct 88	305	130
886	Gold, Ore Refractory	Apr 93	111	81	1007b	Plastic, (Smoke Density)	Apr 91	305	130
887 888	Cemented Carbide (W83-Co10) Cemented Carbide (W64-Co25-Ta5)	Sep 88 Sep 88	112 112	85 85	1010a 1012	Microcopy Test Chart Flooring Radiant Panel	Jun 90 Sep 84	204 305	107 130
889	Cemented Carbide (W04-C025-Ta5) Cemented Carbide (W75-C09-Ta5-Ti4)	Sep 88	112	85	1012 1017b	Glass (Particle Size)	In Prep	303	130
890	Cast Iron, HC250 + V	Apr 82	101	37	10176 1018b	Glass (Particle Size)	In Prep	301	125
891	Cast Iron, Ni-Hard, Type I	Apr 82	101	37	1019a	Glass (Particle Size)	Oct 84	301	125
892	Cast Iron, Ni-Hard, Type IV	Apr 82	101	37	1034	Unalloyed Copper	Feb 82	102	40
893	Stainless Steel (SAE 405)	Mar 92	101	29	1035	Leaded-Tin Bronze Alloy	Feb 82	102	40
895	Stainless Steel (SAE 201)	Dec 91	101	29	1048	Smoke Toxicity (Cup Furnace)	Nov 91	305	130
897	"Tracealloy" A	Aug 83	102	44	1049	Smoke Toxicity (Univ. Pitts.)	Nov 92	305	130
898	"Tracealloy" B	Aug 83	102	44	1051b		Jun 91	114	90
899 900	"Tracealloy" C Antiepilepsy Drug (4) Level	Aug 83	102	44 56	1052b	Vanadium (Metallo-Organic)	Apr 93 Jan 70	114 114	90 90
900 909a	Human Serum	Apr 79 Oct 93	105 105	57	1053a 1057b	Cadmium (Metallo-Organic) Tin (Metallo-Organic)	Aug 68	114	90 90
909b	Human Serum	In Prep	105	57	1057c	Lead (Metallo-Organic)	Sep 87	114	90
910	Sodium Pyruvate	May 81	105	56	1060a	Lithium (Metallo-Organic)	Apr 64	114	90
911b	Cholesterol	Apr 94	105	56	1065b		Nov 93	114	90
912a	Urea	Dec 90	105	56	1066a	Silicon (Metallo-Organic)	Jun 91	114	90
913	Uric Acid	Sep 68	105	56	1069ь	Sodium (Metallo-Organic)	Jun 91	114	90
914a	Creatinine	Feb 94	105	56	1070a	Strontium (Metallo-Organic)	Apr 64	114	90
915a	Calcium Carbonate (Clinical)	Jan 95	105	56	1071b	Phosphorus (Metallo-Organic)	Sep 91	114	90
916a	Bilirubin	Jun 89	105	56	1073b	Zinc (Metallo-Organic)	Sep 86	114	90
917a	D-Glucose (Dextrose-Clinical)	Aug 89	105	56	1075a	Aluminum (Metallo-Organic)	Oct 67	114	90
918 010a	Potassium Chloride (Clinical)	Jan 71 Eab 01	105	56	1077a	Silver (Metallo-Organic)	Feb 68	114	90 90
919a 920	Sodium Chloride (Clinical) D-Mannitol	Feb 91 Jan 72	105 105	56 56	1078Б 1079Б	Chromium (Metallo-Organic) Iron (Metallo-Organic)	Jul 72 Feb 69	114 114	90 90
920 921	Cortisol (Hydrocortisone)	Dec 73	105	56	10790 1080a	Copper (Metallo-Organics)	Feb 69	114	90 90
924a	Lithium Carbonate (Clinical)	In Prep	105	56	1083	Wear Metals (Base Oil)	Jul 91	114	91
	VMA (Clinical)	May 73	105	56	1084a	Wear Metals	Apr 91	114	91
925	V MA (Chincal)								
925 927b	Bovine Serum Albumin	Aug 94	105	57	1085a	Wear Metals	Apr 91	114	91 28

		Cert. Section					Cert Section		
SRM	Descriptor	Cert. Date	Section Code	Page	SRM	Descriptor	Cert. Date	Section Code	Page
1090	Ingot 1ron, Oxygen	Nov 85	101	28	1243	Waspaloy	Jan 89	102	44
1091a	Stainless Steel (AIS1 431)	Nov 85	101	28	1245	Inconel 600	May 84	102	35
1093	Valve Steel, Oxygen	Nov 84	101	28	1245a	Inconel 625	May 84	101	35
094	Maraging Steel	Nov 84	101	28	1246	Incoloy 800	May 84	101	35
095	Steel (A1SI 4340)	Apr 86	101	28	1247	Incoloy 825	May 84	101	35
096	Steel (AISI 94B17)	Apr 86	101	28	C1248	Nickel-Copper Alloy	Dec 86	102	44
097	Cr-V Steel (mod.)	Apr 86	101	28	1250	High Temp. Alloy Fe-Ni-Co	Jul 93	101	35
.098	Steel (High Carbon)	Apr 86	101	28	C1252	Phos. Copper 1X	Apr 86	102	42
099	Electrolytic 1ton	Apr 86	101	28	C1253	Phos Copper X	Apr 86	102	42
104	Free-Cutting Brass	Aug 65	102	41	1254	LA Steel (Ca only)	Apr 82	101	30
107	Naval Brass B	Nov 81	102	41	1258	Aluminum Alloy 6011	May 78	102	39
108	Naval Brass C	Nov 81	102	41	1259	Aluminum Alloy 7075	May 78	102	39
110	Red Brass B	Oct 81	102	41	1261a	LA Steel (A1S1 4340)	May 93	101	30
111	Red Brass C	Oct 81	102	41	1262b	LA Steel (AIS1 94B17)	Oct 92	101	30
112	Gilding Metal A (disk)	Oct 81	102	41	1263a	LA Steel Cr-V (mod.)	Feb 81	101	30
C1112	Gilding Metal A (block)	Oct 81	102	41	1264a	LA Steel, 11igh Carbon (mod.)	Jan 88	101	30
113	Gilding Metal B (disk)	Oct 81	102	41	1265a	Electrolytic Iron	Jun 89	101	30
21113	Gilding Metal B (block)	Oct 81	102	41	1269	Line Pipe (A1S1 1521 mod.)	Jun 81	101	30
114 C1114	Gilding Metal C (disk) Gilding Metal C (block)	Oct 81 Oct 81	102 102	41 41	1270 1271	LA Steel, Cr-Mo (A336) (F-22)	Jun 81	101 101	30 30
115	Commercial Bronze A (disk)	Nov 81	102	41	1271 1276a	LA Steel (HSLA-100) Cupro-Nickel (CDA 715)	Oct 91 Jun 89	101	41
C1115	Commercial Bronze A (block)	Nov 81	102	41	C1285	LA Steel (A242) (mod.)	Jun 82	102	30
116	Commercial Bronze B (disk)	Nov 81	102	41	1286	LA Steel HY 80	Mar 92	101	30
C1116	Commercial Bronze B (block)	Nov 81	102	41	C1287	Stainless Steel (AISI 310 mod.)	Jun 81	101	34
117	Commercial Bronze C (disk)	Nov 81	102	41	C1288	Stainless Steel (A-743)	Aug 81	101	34
21117	Commercial Bronze C (block)	Nov 81	102	41	C1289	Stainless Steel (A1S1 414 mod.)	Jun 81	101	34
21122	Beryllium-Copper (block)	Dec 81	102	41	C1290	High Alloy (HC-250 + V)	Jan 85	101	38
21123	Beryllium-Copper (block)	Dec 81	102	41	C1291	High Alloy (Ni-Hard, Type 1)	Jan 85	101	38
128	Ti Alloy, V-Al-Cr-Sn	Jul 91	102	45	C1292	High Alloy (Ni-Hard, Type 1V)	Jan 85	101	38
129	Solder 63Sn-37Pb	May 89	102	43	1295	Stainless Steel (SAE 405)	Маг 92	101	34
131	Solder 60Pb-40Sn	Oct 81	102	43	C1296	Stainless Steel 28Cr-3Mo (SAE 460)	Dec 91	101	34
132	Bearing Metal (Pb-Sn)	Nov 94	102	43	1297	Stainless Steel Cr-Ni-Mn (SAE 201)	Dec 91	101	34
134	LA Steel, High Silicon	Арг 70	101	30	1357	Cu & Cr Coating on Steel	Jul 91	207	117
135	LA Steel, High Silicon	Jul 72	101	30	1358	Cu & Cr Coating on Steel	Jul 91	207	117
C1137a	White Cast Iron	Jan 84	101	38	1359	Cu & Cr Coating on Steel	Jul 91	207	117
138a	Cast Steel (No. 1)	Jan 77	101	38	1360	Cu & Cr Coating on Steel	Jul 91	207	117
139a	Cast Steel (No. 2)	Jan 77	101	38	1361a	Cu & Cr Coating on Steel	Jul 91	207	117
	White Cast Iron	Jan 88	101	38	1362a	Cu & Cr Coating on Steel	Jul 91	207	117
	White Cast Iron	Jan 88	101	38	1363a	Cu & Cr Coating on Steel	Jul 91	207	117
	Stainless Steel 23Cr-7Ni	Dec 92	101	34	1364a	Cu & Cr Coating on Steel	Jul 91	207	117
	Stainless Steel 18Cr-11Ni	Feb 90	101	34	1371	Gold Coating on Fe-Ni-Co Alloy	Oct 90	207	117
	Stainless Steel 17Cr-9Ni	Sep 90	101	34	1373	Gold Coating on Fe-Ni-Co Alloy	Oct 90	207	117
	Stainless Steel 19Cr-13Ni	Jun 92	101	34	1374	Gold Coating on Fe-Ni-Co Alloy	Oct 90 Dec 92	207 105	117 56
155	Stainless Steel Cr-Ni-Mo (AISI 316)	Aug 69	101	34	1400	Bone Ash Soft Borosilicate Glass		112	- 30 - 86
157	Specialty Steel, Tool (AISI M2)	Aug 73	101 101	34 34	1411 1412	Multicomponent Glass	Aug 85 Aug 85		86
158	Specialty Steel, High Nickel (Ni36)	Dec 77	101	34 44	1412	Glass Sand (High Alumina)	Aug 85	111/112	
.159 .160	Elec/Mag Ni-Fe	Aug 81 Aug 81	102	44	1415	Lead-Silica (Resistivity)	Jul 91	208	119
171	Elec/Mag Ni-Mo-Fe Stainless Steel Cr-Ni-Ti (AISI 321)	May 93	102	34	1414	Glass Al-Silicate (Glass Liquidus)	May 94	208	120
172		Jul 71	101	34	1449	Fumed Silica Board	Jan 89	203	103
172	Stainless Steel Cr-Ni-Nb (A1S1 348) Ni-Cr-Mo-V Steel	Jun 89	101	38	1450b	Fibrous Glass Board	May 85	203	103
C1173	Cast Steel 3	Jan 89	101	38	1452	Fibrous Glass Blanket	Apr 86	203	103
216	Carbon Modified Silicon	Nov 87	106	62	1457	Superconducting Nb-Ti Wire	Jun 84	206	115
218	LA Steel, High Silicon	Nov 84	101	30	1459	Fumed Silica Board	Jan 89	203	103
219	Stainless Steel Cr-Ni (AISI 431)	Sep 85	101	34	1461	Stainless Steel (Therm./Elec. Resist.)	May 84	203/206	103
21221	LA Carbon (A1S1 1211)	Apr 93	101	30	1462	Stainless Steel (Therm./Elect. Resist.)	May 84	203/206	103
222	LA Steel, Cr-Ni-Mo (A1SI 8640)	Sep 90	101	30	1473	Polyethylene Resin	Oct 91	202	97
223	Chromium Steel	May 93	101	34	1474	Polyethylene Resin	Apr 90	202	97
224	LA Steel, Carbon (A1SI 1078)	Feb 81	101	30	1475a	Polyethylene, Linear	Dec 93	202	97
225	LA Steel (A1S1 4130)	Mar 83	101	30	1478	Polystyrene, Narrow Mol. Wt.	Jul 92	202	97
226	LA Steel	Dec 82	101	30	1479	Polystyrene, Narrow Mol. Wt.	Mar 92	202	97
227	LA Steel, Basic Open Hearth, 1% C	Mar 83	101	30	1480	Polyurethane	Aug 92	202	97
228	LA Steel, 0.1% C	Jun 93	101	30	1482	Polyethylene, Linear	Oct 76	202	97
230	High Temp. Alloy, A286	Jun 87	101	35	1483	Polyethylene, Linear	Mar 76	202	97
233	Specialty Steel, Valve Steel	Mar 92	101	34	1484a	Polyethylene, Linear	Oct 92	202	97
1235	Zirconium B for Hf	Nov 80	102	46	1486	Bone Meal	Dec 92	105	56
1242	High Temp. Alloy L-605	Nov 91	102	39	1487	Poly (methylmethacrylate)	Jun 89	202	97

SRM	Descriptor	Cert. Date	Section Code	Page	SRM	Descriptor	Cert. Date	Section Code	Page
1488	Poly (methylmethacrylate)	Feb 88	202	97	1655	KCl Solution Calorimetry	Mar 81	203	99
1489	Poly (methylmethacrylate)	Mar 86	202	97	1656	Thianthrene Combustion Calorimetry	Jan 85	203	99
1491	Arom. Hydro/Hexane Toluene	Aug 89	109	69	1657	Synthetic Refuse-Derived Fuel	May 93	203	99
1492	Chlor. Pesticides/Hexane	Apr 92	109	69	1658a	CH4/Air, 1 µmol/mol	Jun 93	107	64
1493	PCB Congeners	Feb 95	109	69	1659a	CH4/Air, 10 µmol/mol	In Prep	107	64
1496	Polyethylene Gas Pipe Resin	Sep 88	202	97 07	1660a	CH4-C3H8/Air, 1 µmol/mol	In Prep	107	64
1497 1507b	Polyethylene Gas Pipe Resin THC-COOH in Urine	Jul 87 Nov 94	202 105	97 58	1661a 1662a	SO2/N2, 500 μmol/mol	In Prep	107	65
15070	Cocaine & Metab. in Urine	Oct 90	105	58	1663a	SO2/N2, 1000 μmol/mol SO2/N2, 1500 μmol/mol	Aug 93 Jul 93	107 107	65 65
1500	Multi Drugs of Abuse in Urine	Sep 94	105	58	1664a	SO2/N2, 2500 µmol/mol	In Prep	107	65
1514	Thermal Analysis Purity Set (DSC)	Jul 84	203	100	1665b	C3H8/Air, 3 µmol/mol	In Prep	107	64
1515	Apple Leaves	Jan 93	110	77	1666b	C3H8/Air, 10 µmol/mol	In Prep	107	64
1521	Silicon Resistivity 0.1-10	Oct 91	206	114	1667b	C3H8/Air, 50 µmol/mol	In Prep	107	64
1523	Silicon Resistivity 0.01-1	Oct 91	206	114	1668b	C3H8/Air, 100 µmol/mol	Jun 93	107	64
1543	GC/MS and LS System Performance	Aug 84	109	69	1669b	C3H8/Air, 500 µmol/mol	In Prep	107	64
1544	Diet Composite	In Prep	110	76	1670a	CO2/Air, 300 µmol/mol	In Prep	107	64
1547	Peach Leaves	Jan 92	110	77	1671a	CO2/Air, 340 µmol/mol	In Prep	107	64
1548	Total Diet	Nov 91	110	76	1672a 1674b	CO2/Air, 350 µmol/mol	In Prep	107	64
1548a 1549	Typical Diet Non-Fat Milk Powder	In Prep Jul 85	110 110	76 75	16740 1675b	CO2/N2, mol 7% CO2/N2, mol 14%	Aug 93 Aug 93	107 107	63 63
1563	Coconut Oil	Jul 87	110	76	1675c	$CO/N2$, 10 μ mol/mol	Mar 94	107	64
1565a	Oyster Tissue	Oct 89	110	75	1677c	$CO/N2$, 50 μ mol/mol	In Prep	107	64
1567a	Wheat Flour	Sep 88	110	75	1679c	CO/N2, 100 µmol/mol	In Prep	107	64
1568a	Rice Flour	Jan 88	110	75	1680b	CO/N2, 500 µmol/mol	In Prep	107	64
15 7 0a	Trace Elements in Spinach Leaves	Oct 94	110	77	1681b	CO/N2, 1000 µmol/mol	In Prep	107	64
1573a	Tomato Leaves	Oct 93	110	77	1683b	NO/N2, 50 µmol/mol	Mar 94	107	64
1575	Pine Needles	Feb 93	110	77	1684b	NO/N2, 100 µmol/mol	Oct 94	107	64
1577ъ	Bovine Liver	Aug 91	110	75	1685b	NO/N2, 250 µmol/mol	In Prep	107	64
1579a	Powdered Lead Base Paint	Feb 92	105	60	1686b	NO/N2, 500 µmol/mol	In Prep	107	64
1580	Shale Oil	Nov 80	109	69	1687b	NO/N2, 1000 µmol/mol	In Prep	107	64
1581 1582	PCBs in Oil Petroleum Crude Oil	Jun 90 Jan 84	109 109	69 69	1690 1691	Polystyrene (Particle Size) Polystyrene (Particle Size)	Dec 82	301 301	125 125
1582	Chlor, Pesticide in Isooctane	Feb 85	109	69	1691	Polystyrene (Particle Size)	May 84 May 91	301	125
1585	Phenols in Methanol	Apr 84	109	69	1692a	SO2/N2, 50 µmol/mol	In Prep	107	65
1585	Chlorinated Biphenyls	Jan 86	109	69	1694a	SO2/N2, 100 µmol/mol	In Prep	107	65
1586	Isotope Label Pollutants	Oct 84	109	69	1696a	SO2/N2, 3500 µmol/mol	Jul 93	107	65
1587	Nitro PAH in Methanol	Jun 85	109	69	1700a	CO2/N2, 10 mol (Blood Gas) %	Aug 88	107	63
1588	Organics in Cod Liver Oil	Jan 89	109	69	1701a	CO2-5%, O2-12 mol (Blood Gas) %/N2	Aug 88	107	63
1589	PCBs (Aroclor 1260) in Human Serum	Nov 85	109	69	1702a	CO2-5%, O2-20 mol (Blood Gas) %/N2	Aug 88	107	63
1595	Tripalmitin	Jul 83	105	56	1703a	CO2-10%, O2-7 mol (Blood Gas) %/N2	Aug 88	107	63
1596 1597	Nitropyrenes in Methylene Chloride	Jul 87 May 92	109 109	69 69	1710 1711	Aluminum Alloy 3004 Aluminum Alloy 3004	Jun 93	102 102	39 39
1597	Complex PAH Mix Inorg. Const. in Bovine Serum	May 92 Jan 90	109	56	1711	Aluminum Alloy 3004	Jun 93 Jun 93	102	39
1598	2 Anticonvulsant Drugs	Aug 82	105	56	1712	Aluminum Alloy 5004	Jun 93	102	39
1614	Dioxin in Isooctane	Jul 85	109	69	1714	Aluminum Alloy 5182	Jun 93	102	39
1616a	Sulfur in Kerosene	In Prep	108	67	1715	Aluminum Alloy 5182	Jun 93	102	39
1617a	Sulfur in Kerosene	In Prep	108	67	1744	Aluminum Freezing Point	Nov 94	203	101
1618	Vanadium & Nickel in Fuel Oil	May 85	108	66	1746	Silver (Freezing Point)	Jul 93	203	101
1619a	Sulfur in Residual Fuel Oil	Apr 91	108	67	1754	Steel (AISI 4320)	Feb 89	101	28
1620b	Sulfur in Residual Fuel Oil	Jul 90	108	67	1761	LA Steel	Apr 92	101	30
1621d	Sulfur in Residual Fuel Oil	Mar 91	108	67	1762	LA Steel	Apr 92	101	30
1622d	Sulfur in Residual Fuel Oil	Mar 94	108	67	1763	LA Steel	Apr 92	101	30
1623b	Sulfur in Residual Fuel Oil	Jul 90	108 108	67 67	1764 1765	LA Steel	Feb 93 Feb 93	101 101	30 30
1624b 1625	Sulfur in Distillate Fuel Oil SO2 Permeation Tube-10 cm	Mar 94 In Prep	108	65	1765	LA Steel LA Steel	Feb 93	101	30
1625	SO2 Permeation Tube-5 cm	In Prep	107	65	1767	LA Steel	Jun 93	101	30
1627	SO2 Permeation Tube-2 cm	Aug 92	107	65	1768	High-Purity Iron	Dec 91	101	30
1629a	NO2 Permeation Device 1cm	In Prep	107	65	1776	Naval Brass WK1	In Prep	102	43
1632b	Trace Elements in Coal (Bituminous)	Oct 93	108	68	1777	Naval Brass WK2	In Prep	102	43
1633b	Trace Elements in Coal Fly Ash	Jun 93	108	68	1778	Naval Brass WK3	In Prep	102	43
1634c	Trace Elements in Fuel Oil	In Prep	108	68	1779	Naval Brass WK4	In Prep	102	43
1635	Trace Elements in Coal (Subbituminous)	Aug 79	108	68	1780	Naval Brass WK5	In Prep	102	43
1639	Halocarbons (in methanol)	Apr 83	109	69	1800	Organic Compounds/N2	Dec 93	107	65
1640	Natural Water	In Prep	106	61	1804a	Tox. Organic Compounds/N2	Nov 92	107	65 121
1641c 1643d	Mercury in Water Trace Elements in Water	Jun 93 In Prep	106 106	61 61	1810a 1811	Linerboard Aromatic Organics/N2	Jun 90 Apr 93	309 107	131 63
16450 1646a	Estuarine Sediment	Jan 95	106/111		1811	Aromatic Organics/N2 Aromatic Organics/N2	Feb 93	107	63
1640a	Priority Pollutant PAHs	Apr 94	100/111	69	1815a	n-Heptane (Fuel Rating)	Mar 85	108	67
	Urban Particulate Matter	Aug 91	106	62	1816a	Isooctane (Fuel Rating)	Mar 85	108	67
1648	Ulball Fatticulate Matter								
1648 1649	Urban Dust/Organics	Jan 92	109	69	1817c	Catalyst Package IIID	Jun 92	114	91

SRM	Descriptor	Cert. Date	Section Code	Page	SRM	Descriptor	Cert. Date	Section Code	Page
1819a	Sulfur in Lub. Base Oil	Apr 94	114	90	1969	Rubidium (Fixed Point)	Mar 91	203	101
1820	Borosilicate Glass (Refractive Index)	Sep 74	209	122	1970	Succinonitrile (Fixed Point)	Apr 91	203	101
1822	Soda-Lime Glass (Refractive Index)	Nov 84	209	122	1971	Indium	Aug 90	203	101
1826	Soda-Lime Glass (Density)	Aug 90	209	122	1972	1,3-Dioxolan-2-one (Fixed Point)	May 94	203	101
1827	Lead Silica Glass (Density)	Aug 90	209	122	1973	n-Docosane (Fixed Point)	May 93	203	101
1828a	Ethanol-Water Soln.	In Prep	105	57	1974a	Organics in Mussel Tissue	In Prep	109	69
1829	Alcohols in Ref. Fuels	Mar 86	108	66	1976	Instrument Intensity, Alumina (XRD)	Nov 91	209	121
1830	Soda Lime Float (Glass)	Sep 91	112	86	1978	Zirconium Oxide (Particle Size)	Oct 93	301	125
1831	Soda Lime Sheet (Glass)	Sep 91	112	86	1980	Electrophoretic Mobility (Positive)	Mar 94	301	126
1832	Thin Glass Film (XRF)	May 84	106	61	1981	Electrophoretic Mobility (Negative)	In Prep	301	126
1833	Thin Glass Film (XRF)	May 84	106	61	2003	First Surface Aluminum on Glass	In Prep		107
1834	Fused Ore (Glass)	Jul 90	112	86	2011	First Surface, Gold on Glass	May 92	204	107
1835	Borate Ore	Sep 87	111	81	2015	Opal Glass (Reflectance)	May 82	204	107
1836	Nitrogen in Lub. Base Oil	Dec 89	114	90	2023	Second Surface, Aluminum on Quartz	Sep 92	204	107
1837	Methanol, Butanol (Fossil Fuel)	Mar 86	108	66	2026	First Surface, Black Glass	Oct 92	204	107
1838	Ethanol (Fossil Fuel)	Mar 86	108	66	2030a	Glass Filters, Transmittance	Oct 93	204	105
1839	Methanol (Fossil Fuel)	Mar 86	108	66	2031	Metal-on-Quartz Filters, Transmittance	In Prep		105
1842	X-Ray Stage Calib., X and Y Dimen.	Nov 93	209	121	2032	Potassium lodide, Stray Light	Oct 79	204	106
1843	X-Ray Stage Calib., Z Dimen.	Nov 93	209	121	2034	Holmium Oxide Wavelength	In Prep		106
1845	Cholesterol in Egg Powder	Apr 94	110	76	2063a	Mineral Glass (Thin Film) SEM Performance	Feb 93	103	47
1846 1850	Infant Formula (milk-based)	1n Prep Dec 80	110 303	76 128	2069b 2071a	SEM Performance Sinusoidal Roughness	May 91	207 302	116 127
	Penetrant Test Block NDE Penetrant Test Block	Apr 84	303	128	2071a	0	In Prep Dec 89	302	
1851 1853	Magnetic Particle Test Ring	Apr 92	303	128	2072 2073a	Sinusoidal Roughness Sinusoidal Roughness	In Prep		127 127
1855	Tool Steel (Abrasive Wear)	Mar 83	303	128	2073a	Sinusoidal Roughness	Jun 92	302	127
1857 1866a	Common Commercial Asbestos	Jun 91	105	60	2074	Sinusoidal Roughness	Jan 94	302	127
1867	Uncommon Commercial Asbestos	Aug 93	105	60	2083	Socketed Ball Bar	Aug 85	309	131
1868	Asbestos in Building Materialsk	In Prep	105	60	2084	CMM Probe Performance	Apr 94	309	131
1872	Synthetic Glass	May 84	103	47	2085	CMM Probe (25-mm sphere)	In Prep		131
1873	Synthetic Glass	May 84	103	47	2090	SEM Magnification	In Prep		116
1876b	Chrysotile Asbestos	Jan 92	105	60	2092	Low-Energy Charpy	Nov 94	309	131
1878a	Respirable α -Quartz	In Prep	105	60	2096	High-Energy Charpy	Nov 94	309	131
1879	Respirable Cristobalite	Jan 88	105	60	2098	Super High-Energy Charpy	Nov 94	309	131
1879a	Respirable Cristobalite	In Prep	105	60	2108	Chromium (111) Speciation	Dec 92	104	53
1880	Portland Cement, Black	Jan 93	113	88	2109	Chromium (V1) Speciation	Jul 92	104	53
1881	Portland Cement, White	Jan 89	113	88	2135c	Ni-Cr Depth profile	In Prep	207	116
1882	Portland Cement, Orange	Jul 90	113	88	2136	Cr/CrO2 Depth Profile	Mar 91	207	116
1883	Portland Cement, Silver	Jul 90	113	88	2137	B Implant in Si Depth Profile	Apr 93	207	116
1884	Portland Cement, Ivory	Sep 89	113	88	2141	Urea	Aug 70	104	49
1885	Portland Cement, Turquoise	Sep 89	113	88	2142	0-Bromobenzoic Acid	Sep 70	104	49
1886	Portland Cement, Cranberry	Sep 89	113	88	2143	p-Fluorobenzoic Acid	Jan 82	104	49
1887	Portland Cement, Brown	Sep 89	113	88	2144	m-Chlorobenzoic Acid	Apr 73	104	49
1888	Portland Cement, Purple	Sep 89	113	88	2151	Nicotinic Acid (Comb. Calorimetry)	Jan 85	203	99
1889	Portland Cement, Gray	Sep 89	113	88	2152	Urea (Comb. Calorimetry)	Jan 85	203	99
1893	Microhardness, Cu-Knoop	Mar 95	302	127	2159	LA Steel, Carbon & Sulfur only	Mar 90	101	27
1894	Microhardness, Cu-Vickers	Nov 94	302	127	2160	LA Steel, Carbon & Sulfur only	Mar 90		27
1895	Microhardness, Ni-Knoop	Mar 95	302	127	2165	LA Steel, E	Jun 89	101	27
1896	Microhardness, Ni-Vickers	Mar 95	302	127	2166	LA Steel	Jun 89	101	27
1905	Microhardness, Ni-Knoop	Mar 92	302	127	2167	LA Steel, G	Jun 89	101	27
1906	Microhardness, Ni-Knoop	Nov 94	302	127	2168	High-Purity Iron	Dec 91	101	27
1907	Microhardness, Ni-Knoop	Mar 95	302	127	2171	LA Steel, (HSLA 100)	Oct 91	101	26
1920	1R Reflectance	Jul 86	204	107	2181	HEPES Free Acid	Mar 92	201	95
1921	1R Transmission Wavelength	Jan 94	204	104	2182	HEPES ate	Mar 92	201	95
1923	Poly(ethylene oxide)	Jun 94	202	97	2183	MOPSO Free Acid	Mar 92	201	95
1924	Poly(ethylene oxide)	Jun 94	202	97	2184	MOPSO Bte	Mar 92	201	95 05
1930	Glass Filters, Transmittance	Aug 94	204	105	2185	Pot. Hydrogen Phthalate	Nov 84 May 68	201	95 95
1931	Fluorescence Spectra	Aug 89	204	105	21861	Pot. Dihydro. Phosphate	May 68 May 68	201	95 95
1939	PCBs in River Sediment A	Oct 90	109	69	218611	Disod. Hydro. Phosphate	May 68 Feb 94	201 201	95 95
1941a	Organics in Marine Sediment	Mar 94	109	69	2191a	Sodium Bicarbonate	Feb 94	201	95 95
1945	Organics in Whale Blubber	Jun 94	109	69 56	2192a	Sodium Carbonate Calcium Carbonate	Oct 91	201	95 95
1951a	Cholesterol in Human Serum	In Prep		56 56	2193 2201	Sodium Chloride (Ion-Selective)	May 93	201	95 96
1952a	Cholesterol in Human Serum	Jan 90	105	56 125	2201	Potassium Chloride (Ion-Selective)	May 93 Mar 84	201	96
1960	Polystyrene (Particle Size)	Apr 85	301 301	125 125	2202	Potassium Fluoride (Ion-Selective)	May 73	201	96
1961	Polystyrene (Particle Size)	Jan 87 Nov 93	301	125	2203	Tin (Dif. Scan. Calor.)	May 89	203	100
1963	Polystyrene (Particle Size)	Nov 93	301	125	2220 2221b	Zinc (Dif. Scan. Calor.)	In Prep		100
1965 1967	Polystyrene (on Slide)(Particle Size) Pt Thermocouple Wire	Jan 87 Jul 90	203	102	22210	Biphenyl (Dif. Scan. Calor.)	Jun 89	203	100
		Jul 70	202	102		r	Mar 89	203	100

									-
SRM	Descriptor	Cert. Date	Section Code	Page	SRM	Descriptor	Cert. Date	Section Code	Page
2260	Aromatic Hydrocarbons in Toluene	Jun 91	109	69	2624a	CO2/N2, 3.0 mol %	In Prep	107	63
2261	Chlorinated Pesticides in Hexane	Jan 92	109	69	2625a	CO2/N2, 3.5 mol %	Aug 94	107	63
2262	Chlorinated Biphenyls in Isooctane	In Prep	109	69	2626a	CO2/N2, 4.0 mol %	In Prep	107	63
2286	Ethanol in Gasoline	Feb 95	108	66	2627a	NO/N2, 5 µmol/mol	In Prep	107	64
2287	Ethanol in Gasoline	Jan 95	108	66	2628a	NO/N2, 10 µmol/mol	In Prep	107	64
2288	t-Amyl Methyl Ether in Gas.	Jan 95	108	66	2629a	NO/N2, 20 µmol/mol	In Prep	107	64
2289	t-Amyl Methyl Ether in Gas.	Jan 95	108	66	2630	NO/N2, 1500 µmol/mol	In Prep	107	64
2290	Ethyl t-Butyl Ether in Gas.	Jan 95	108	66	2631a	NO/N2, 3,000 µmol/mol	In Prep	107	64
2291	Ethyl t-Butyl Ether in Gas.	Jan 95	108	66	2632a	CO2/N2, 300 µmol/mol	Sep 90	107	63
2292	Methyl t-Butyl Ether in Gas.	Jan 95	108	66	2635a	CO/N2, 25 µmol/mol	-	107	64
2292	Methyl t-Butyl Ether in Gas.	Feb 95	108	66	2636a		In Prep		
2293		Jun 91	207	117	2630a	CO/N2, 250 µmol/mol	In Prep	107	64
2321	Sn-Pb Alloy Coating		302	117	2638a	CO/N2, 2500 µmol/mol	In Prep	107	64
	Nickel Step Test	Aug 85			2639a	CO/N2, 5000 µmol/mol	In Prep	107	64
2381	Morphine and Codeine in Urine	Jul 93	105	58		CO/N2, 1 mol %	May 92	107	64
2382	Morphine Glucorinide in Urine	Jul 93	105	58	2640a	CO/N2, 2 mol %	Nov 88	107	64
2383	Foods/Baby Foods	In Prep	110	76	2641a	CO/N2, 4 mol %	Nov 88	107	64
2389	Amino Acids in Hydrochloric Acid	Dec 93	105	56	2642a	CO/N2, 8 mol %	Sep 93	107	64
2390	DNA Profiling	Aug 92	105	59	2643a	C3H8/N2, 100 µmol/mol	Sep 90	107	65
2391	PCR-Based DNA Profiling	In Prep	105	59	2644a	C3H8/N2, 250 µmol/mol	Sep 90	107	65
2392	DNA Mituchondrial Sequencing	In Prep	105	59	2645a	C3H8/N2, 500 µmol/mol	In Prep	107	65
C2400	HA Steel ACI (17/4 PH)	Feb 86	101	35	2646a	C3H8/N2, 1000 µmol/mol	In Prep	107	65
C2401	HA Steel (ACI-C-4M-Cu)	Feb 86	101	35	2647a	C3H8/N2, 2500 µmol/mol	In Prep	107	65
C2402	Hastelloy C	Feb 86	101	35	2648a	C3H8/N2 5000 µmol/mol	Oct 93	107	65
C2415	Battery Lead	Mar 91	102	43	2649a	C3H8/N2, 1 mol %	In Prep	107	65
C2416	Bullet Lead	Feb 88	102	43	2650	C3H8/N2, 2 mol %	Jan 93	107	65
C2417	Lead-Base Alloy	Feb 87	102	43	2651	C3H8/N2 & O2, 0.01/5 mol %	Apr 93	107	65
C2418	High-Purity Lead	Feb 87	102	43	2652	C3H8/N2 & O2, 0.01/10 mol %	Apr 93	107	65
C2423	Ductile Iron A	Nov 85	101	38	2656	NOx/Air, 2500 µmol/mol	Apr 93	107	64
	Ductile Iron B	Nov 85	101	38	2657a	O2/N2, 2 mol %	Jun 93	107	64
C2423a C2424a	Ductile Iron D	Jul 85	101	38	2658a		Jun 93	107	
						O2/N2, 10 mol %			64
C2424	Ductile Iron C	Jul 85	101	38	2659a	O2/N2, 21 mol %	Jun 93	107	64
2430	Scheelite Ore	Jan 87	111	79	2660	NOx/Air, 100 µmol/mol	Jul 93	107	64
2431	Titanium Base Alloy	Aug 93	102	45	2670	Toxic Metals in Urine	Aug 94	105	57
2432	Titanium Base Alloy	Aug 93	102	45	2671a	Fluorine in Urine	Dec 82	105	57
2520	Optical Fiber Diameter	Jan 93	207	116	2672a	Mercury in Urine	May 83	105	57
2526	111P-Type Si. Sprd. Resist.	Aug 83	206	114	2676d	Metals on Filter Media	Aug 92	105	59
2527	111N-Type Si. Sprd. Resist.	Aug 83	206	114	2677a	Be and As on Filter Media	Feb 94	105	59
2528	100P-Type Si. Sprd. Resist.	Jan 84	206	114	2678	Membrane Blank Filter	May 88	105	59
2529	100N-Type Si. Sprd. Resist.	May 84	206	114	2679a	Quartz on Filter Media	May 84	105	59
2531	Si/SiO2 Thickness-50 nm	Jul 92	207	118	2681	Ashless Blank Filter	May 88	105	59
2532	Si/SiO2 Thickness-100 nm	Jul 92	207	118	2682a	Sulfur in Coal, 0.5%, (also Heat of Comb.)May 94	108	67
2533	Si/SiO2 Thickness-200 nm	Jul 92	207	118	2683a	Sulfur in Coal, 2%, (also Heat of Comb.)	Nov 92	108	67
2534	Si/SiO2 Thickness-25 nm	Jul 92	207	118	2684a	Sulfur in Coal, 3%, (also Heat of Comb.)		108	67
2535	Si/SiO2 Thickness-14 nm	Sep 94	207	118	2685a	Sulfur in Coal, 5%, (also Heat of Comb.)		108	67
2536	Si/SiO2 Thickness-76 mm	Sep 94	207	118	2689	Coal Fly Ash	Dec 93	108	68
2541	Silicon Resistivity	In Prep	206	114	2690	Coal Fly Ash	Dec 93	108	68
2542	Silicon Resistivity	In Prep	206	114	2691	Coal Fly Ash	Dec 93	108	68
2542	Silicon Resistivity	In Prep	206	114	2692a	Sulfur in Coal, 1%	Sep 94	108	67
	Silicon Resistivity				2694a		•		
2544	Silicon Resistivity	In Prep	206 206	114	2694a 2695	Simulated Rainwater	Feb 95	106	61 77
2545	2	In Prep		114		Fluoride in Vegetation	Aug 91	110 106/111	
2546	Silicon Resistivity Silicon Resistivity	In Prep	206 206	114 114	2704 2709	Buffalo River Sediment	Jul 90	106/111	61/84 84
2547		In Prep				San Joaquin Soil	Aug 93		
2551	Oxygen in Silicon	Mar 94	207	118	2710	Montana I Soil	Aug 93	111	84
2556	Recycled Pellet (Autocatalyst)	Aug 93	106	62	2711	Montana II Soil	Aug 93	111	84
2557	Recycled Monolith (Autocatalyst)	Aug 93	106	62	2712	Lead in Ref. Fuel	Sep 88	108	66
2567	Catalyst Package IIIE	In Prep		91	2713	Lead in Ref. Fuel	Sep 88	108	66
2579	Lead Paint Film	Mar 93	105	60	2714	Lead in Ref. Fuel	Sep 88	108	66
2580	Powdered Paint	In Prep	105	60	2715	Lead in Ref. Fuel	Sep 88	108	66
2581	Powdered Paint	In Prep	105	60	2717	Sulfur in Residual Fuel Oil	Oct 90	108	67
2582	Powdered Paint, (Low Lead)	Jun 94	105	60	2724	Sulfur in Diesel Fuel Oil, 0.04%	Jul 93	108	67
2607	CO2/N2O/Air, 340/0.3 µmol/mol	Nov 88	107	63	2727	IM Gases, 3 Components	Apr 92	107	64
2609	CO2/N2O/Air, 380/0.33 µmol/mol	Nov 88	107	63	2728	IM Gases, 3 Components	Apr 92	107	64
2610	CO2/N2O/Air, 380/0.33 µmol/mol	Nov 88	107	63	2730	H2S/N2, 5 µmol/mol	In Prep	107	65
2612a	CO/Air, 10 µmol/mol	Apr 91	107	63	2731	H2S/N2, 20 μ mol/mol	In Prep	107	65
2612a 2613a	CO/Air, 20 µmol/mol	Oct 94	107	63	2735	NO/N2, 800 µmol/mol	In Prep	107	64
			107	63	2735	NO/N2, 2000 µmol/mol	Sep 90	107	64
2614a	CO/Air, 45 µmol/mol	In Prep				-	-	107	64
2619a	CO2/N2, 0.5 mol %	Jun 92	107	63	2740	CO/N2, 10 mol %	Sep 90		
2620a	CO2/N2, 1.0 mol %	Jun 92	107	63	2741	CO/N2, 13 mol %	Sep 90	107	64
2621a	CO2/N2, 1.5 mol %	In Prep	107	63	2745	CO2/N2, 16 mole Percent	In Prep	107	64
2622a	CO2/N2, 2.0 mol %	In Prep	107	63	2750		Sep 90	107	64
2623a	CO2/N2, 2.5 mol %	Jun 92	107	63	2751	CH4/N2, 100 µmol/mol	In Prep	107	64

2775Foundry2776Foundry2776Foundry2798Microhar2830Microhar2831Microhar2831Microhar3087Metals on3101aAluminur3102aAntimony3103aArsenic S3104aBarium S3105aBeryllium3106Bismuth S3107Boron Sp3108Calcium S3110Cerium S3111aCesium S3112aChromiur3113aCobalt Sp3114aCoper S3115aDysprosin3116aErbium S3117aEuropiun3118aGadlium S3120Germania3121Gold Spe3122Hafnium3124aIndium S3125aHomium S3126aIron Spe3127aLanthanu3128aLead Spe3129aLithium S3130aLutetium S3131aMaganesi3133Mercury3134Molybder3135aNeodymin3136Nickel Sp	r, 0.25 µmol/mol Coke Coke Coke rdness, Ni Vickers rdness, Ceramic-Knoop rdness, Ceramic-Vickers n Filter Media m Spectro Soln. Spectro Soln.	Cert. Date In Prep In Prep Jun 90 Feb 94 Nov 94 Jul 94 Nov 94 Mar 95 Mar 95 May 93 Jul 94 Feb 95 May 93 Apr 94 Mar 95 Mar 95	Section Code 107 108 108 302 302 302 105 104 104 104 104 104 104 104 104 104 104	Page 64 67 67 127 127 127 59 50 50 50 50 50 50 50 50 50 50 50 50 50	SRM/RM 3166a 3167a 3168a 3169 3171a 3172a 3179 3181 3182 3183 3184 3185 3186 3190 3191 3192	Ytterbium Spectro Soln. Yttrium Spectro Soln. Zinc Spectro Soln. Zirconium Spectro Soln. Multielement Mix A1 Soln. Multielement Mix B1 Soln. Multielement Mixes I, II, III Sulfate Anion Soln. Chloride Anion Soln. Fluoride Anion Soln. Bromide Anion Soln. Nitrate Anion Soln. Phosphate Anion Soln. Electro. Conductivity (25 µS/cm)	Cert. Date Jan 94 Jul 93 Dec 94 Jan 95 Nov 94 Jan 95 Jul 93 Jan 95 Aug 94 Dec 94 Sep 94 Aug 94 Nov 93 Feb 95 Jul 94	Section Code 104 104 104 104 104 104 104 104 104 104	Page 51 51 51 52 52 53 53 53 53 53 53 96
2775Foundry2776Foundry2778Microhar2830Microhar2831Microhar2831Microhar3087Metals on3101aAluminur3102aAntimony3103aArsenic S3104aBarium S3105aBeryllium3106Bismuth S3107Boron Sp3108Cadmium S3110Cerium S3111aCesium S3112aChromiur3113Cobalt Sp3114Copper S3115aDysprosin3116aErbium S3117aEuropiun3118aGadlium S3120Germania3121Gold Spe3122Hafnium3124aIndium S3125aHomium S3126aIron Spe3127aLanthanu3128aLead Spe3129aLithium S3130aLutetium S3131aMaganesiu3134Molybder3135aNeodymin3136Nickel Sp	Coke Coke Coke Coke Idness, Ni Vickers rdness, Ceramic-Knoop rdness, Ceramic-Vickers n Filter Media m Spectro Soln. Spectro Soln.	In Prep In Prep Aug 93 In Prep Jun 90 Feb 94 Nov 94 Jul 94 Nov 94 Mar 95 Mar 95 Aug 94 Sep 93 Jul 94 Feb 95 May 93 Apr 94 Mar 95 Mar 94	108 108 302 302 105 104 104 104 104 104 104 104 104 104 104	67 67 127 127 59 50 50 50 50 50 50 50 50 50 50 50 50 50	3167a 3168a 3169 3171a 3172a 3179 3181 3182 3183 3184 3185 3186 3190 3191	Yttrium Spectro Soln. Zinc Spectro Soln. Zirconium Spectro Soln. Multielement Mix A1 Soln. Multielement Mix B1 Soln. Multielement Mixes I, II, III Sulfate Anion Soln. Chloride Anion Soln. Fluoride Anion Soln. Bromide Anion Soln. Nitrate Anion Soln. Phosphate Anion Soln. Electro. Conductivity (25 µS/cm)	Jul 93 Dec 94 Jan 95 Nov 94 Jan 95 Jul 93 Jan 95 Aug 94 Dec 94 Sep 94 Aug 94 Nov 93 Feb 95	104 104 104 104 104 104 104 104 104 104	51 51 52 52 53 53 53 53 53 53 53 53 96
2775Foundry2776Foundry2778Microhar2830Microhar2831Microhar2831Microhar3087Metals on3101aAluminur3102aAntimony3103aArsenic S3104aBarium S3105aBeryllium3106Bismuth S3107Boron Sp3108Cadmium S3110Cerium S3111aCesium S3112aChromiur3113Cobalt Sp3114Copper S3115aDysprosin3116aErbium S3117aEuropiun3118aGadlium S3120Germanin3121Gold Spe3122Hafnium3124aIndium S3125aLithium S3126aIron Spe3127aLanthanu3128Lead Spe3129aLithium S3130aLutetium3131aMaganesi3133Mercury3134Molybder3135aNeodymin3136Nickel Sp	Coke Coke Coke Coke Idness, Ni Vickers rdness, Ceramic-Knoop rdness, Ceramic-Vickers n Filter Media m Spectro Soln. Spectro Soln.	In Prep In Prep Aug 93 In Prep Jun 90 Feb 94 Nov 94 Jul 94 Nov 94 Mar 95 Mar 95 Aug 94 Sep 93 Jul 94 Feb 95 May 93 Apr 94 Mar 95 Mar 94	108 108 302 302 105 104 104 104 104 104 104 104 104 104 104	67 67 127 127 59 50 50 50 50 50 50 50 50 50 50 50 50 50	3167a 3168a 3169 3171a 3172a 3179 3181 3182 3183 3184 3185 3186 3190 3191	Yttrium Spectro Soln. Zinc Spectro Soln. Zirconium Spectro Soln. Multielement Mix A1 Soln. Multielement Mix B1 Soln. Multielement Mixes I, II, III Sulfate Anion Soln. Chloride Anion Soln. Fluoride Anion Soln. Bromide Anion Soln. Nitrate Anion Soln. Phosphate Anion Soln. Electro. Conductivity (25 µS/cm)	Jul 93 Dec 94 Jan 95 Nov 94 Jan 95 Jul 93 Jan 95 Aug 94 Dec 94 Sep 94 Aug 94 Nov 93 Feb 95	104 104 104 104 104 104 104 104 104 104	51 51 52 52 53 53 53 53 53 53 53 53 96
2776Foundry2798Microhar2830Microhar2831Microhar2831Microhar3087Metals or3101aAluminur3102aAntimony3103aArsenic S3104aBarium S3105aBeryllium3106Bismuth S3107Boron Sp3108Cadmium S3110Cerium S3111aCesium S3112aChromiun3113aCobalt Sp3114aCopper S3115aDysprosin3116aErbium S3117aEuropiun3120Germanin3121Gold Spe3122Hafnium3124aIndium S3125aHoom Spe3126aIron Spe3127aLanthanu3128aLead Spe3129aLithium S3130aLutetium3131aMagnesi3134Molybder3135aNeodymin3136Nickel Sp	Coke rdness, Ni Vickers rdness, Ceramic-Knoop rdness, Ceramic-Vickers n Filter Media m Spectro Soln. Spectro Soln.	In Prep Aug 93 In Prep Jun 90 Feb 94 Nov 94 Jul 94 Nov 94 Mar 95 Mar 95 Aug 94 Sep 93 Jul 94 Feb 95 May 93 Apr 94 Mar 95 Mar 94	108 302 302 105 104 104 104 104 104 104 104 104 104 104	67 127 127 127 59 50 50 50 50 50 50 50 50 50 50 50 50 50	3168a 3169 3171a 3172a 3179 3181 3182 3183 3184 3185 3186 3190 3191	Zinc Spectro Soln. Zirconium Spectro Soln. Multielement Mix A1 Soln. Multielement Mix B1 Soln. Multielement Mixes I, II, III Sulfate Anion Soln. Chloride Anion Soln. Fluoride Anion Soln. Bromide Anion Soln. Nitrate Anion Soln. Phosphate Anion Soln. Electro. Conductivity (25 µS/cm)	Dec 94 Jan 95 Nov 94 Jan 95 Jul 93 Jan 95 Aug 94 Dec 94 Sep 94 Aug 94 Nov 93 Feb 95	104 104 104 104 104 104 104 104 104 104	51 51 52 52 53 53 53 53 53 53 53 53 96
2830Microhar2831Microhar3087Metals or3101aAluminur3102aAntimony3103aArsenic S3104aBarium S3105aBeryllium3106Bismuth S3107Boron Sp3108Cadmium3109aCalcium S3110Cerium S3111Cesium S3112Chromiun3113Cobalt Sp3114Copper S3115aDysprosin3116aErbium S3120Germanin3121Gold Spe3122Hafnium3124aIndium S3125aLead Spe3127aLanthanu3128Lead Spe3130aLutetium S3131aMaganesiu3134Molybder3135aNeodymin3136Nickel Sp	rdness, Ceramic-Knoop rdness, Ceramic-Vickers n Filter Media m Spectro Soln. Spectro Soln. Spectro Soln. n Spectro Soln. spectro Soln.	Aug 93 In Prep Jun 90 Feb 94 Jul 94 Nov 94 Mar 95 Mar 95 Aug 94 Sep 93 Jul 94 Feb 95 May 93 Apr 94 Mar 95 Mar 94	302 302 105 104 104 104 104 104 104 104 104 104 104	127 127 59 50 50 50 50 50 50 50 50 50 50 50	3169 3171a 3172a 3179 3181 3182 3183 3184 3185 3186 3190 3191	Zirconium Spectro Soln. Multielement Mix A1 Soln. Multielement Mix B1 Soln. Multielement Mixes I, II, III Sulfate Anion Soln. Chloride Anion Soln. Bromide Anion Soln. Biromide Anion Soln. Nitrate Anion Soln. Phosphate Anion Soln. Electro. Conductivity (25 µS/cm)	Jan 95 Nov 94 Jan 95 Jul 93 Jan 95 Aug 94 Dec 94 Sep 94 Aug 94 Nov 93 Feb 95	104 104 104 104 104 104 104 104 104 104	51 52 52 53 53 53 53 53 53 53 96
2831Microhar3087Metals or3101aAluminur3102aAntimony3103aArsenic S3104aBarium S3105aBeryllium3106Bismuth3107Boron Sp3108Calcium S3109aCalcium S3110Cerium S3111aCostar Sp3112Chromiun3113Cobalt Sp3114Copper S3115aDysprosin3116aErbium S3117aEuropium S3120Germania3121Gold Spe3122Hafnium S3124aIndium S3126aIron Spec3127aLanthanu3128Lead Spe3129aLithium S3130aLutetium S3131aMaganesiu3134Molybder3135aNeodymin3136Nickel Sp	rdness, Ceramic-Vickers n Filter Media m Spectro Soln. y Spectro Soln. Spectro Soln. n Spectro Soln. n Spectro Soln. spectro Soln.	In Prep Jun 90 Feb 94 Nov 94 Jul 94 Mar 95 Mar 95 Aug 94 Sep 93 Jul 94 Feb 95 May 93 Apr 94 Mar 95 Mar 94	302 105 104 104 104 104 104 104 104 104 104 104	127 59 50 50 50 50 50 50 50 50 50 50	3172a 3179 3181 3182 3183 3184 3185 3186 3190 3191	Multielement Mix A1 Soln. Multielement Mix B1 Soln. Multielement Mixes I, II, III Sulfate Anion Soln. Fluoride Anion Soln. Bromide Anion Soln. Nitrate Anion Soln. Phosphate Anion Soln. Electro. Conductivity (25 µS/cm)	Jan 95 Jul 93 Jan 95 Aug 94 Dec 94 Sep 94 Aug 94 Nov 93 Feb 95	104 104 104 104 104 104 104 104 201	52 53 53 53 53 53 53 53 53 96
3087Metals or3101aAluminur3102aAntimony3103aArsenic S3104aBarium S3105aBeryllium3106Bismuth S3107Boron Sp3108Cadmium3109aCalcium S3110Cerium S3111aCesium S3112aChromiun3113Cobalt Sp3114Copper S3115aDysprosin3116aErbium S3117aEuropium3118aGadolinin3120Germanin3121Gold Spe3122Hafnium S3126aIron Spec3127aLanthanu3128Lead Spe3129aLithium S3130aLuttetium3131aMagnesiu3134Molybder3135aNeodymin3136Nickel Sp	n Filter Media m Spectro Soln. y Spectro Soln. Spectro Soln. n Spectro Soln. spectro Soln. pectro Soln. spectro Soln.	Jun 90 Feb 94 Nov 94 Jul 94 Nov 94 Mar 95 Aug 94 Sep 93 Jul 94 Feb 95 May 93 Apr 94 Mar 95 Mar 95 Mar 94	105 104 104 104 104 104 104 104 104 104 104	59 50 50 50 50 50 50 50 50 50 50	3179 3181 3182 3183 3184 3185 3186 3190 3191	Multielement Mixes I, II, III Sulfate Anion Soln. Chloride Anion Soln. Fluoride Anion Soln. Bromide Anion Soln. Nitrate Anion Soln. Phosphate Anion Soln. Electro. Conductivity (25 µS/cm)	Jul 93 Jan 95 Aug 94 Dec 94 Sep 94 Aug 94 Nov 93 Feb 95	104 104 104 104 104 104 104 201	52 53 53 53 53 53 53 53 96
3101aAluminun3102aAntimony3102aAntimony3103aArsenic S3104aBarium S3105aBeryllium3106Bismuth S3107Boron Sp3108Cadmium3109aCalcium S3110Cerium S3111aCesium S3112aChromiuu3113Cobalt Sp3114Copper S3115aDysprosin3116aErbium S3117aEuropium3118aGadlium S3120Germania3121Gold Spe3122Hafnium3124aIndium S3126aIron Spec3127aLanthanu3128Lead Spe3129aLithium S3130aLutetium3131aMaganesiu3133Mercury3134Molybder3135aNeodymin3136Nickel Sp	m Spectro Soln. y Spectro Soln. Spectro Soln.	Feb 94 Nov 94 Jul 94 Mar 95 Aug 94 Sep 93 Jul 94 Feb 95 May 93 Apr 94 Mar 95 Mar 94	104 104 104 104 104 104 104 104 104 104	50 50 50 50 50 50 50 50 50 50	3181 3182 3183 3184 3185 3186 3190 3191	Sulfate Anion Soln. Chloride Anion Soln. Fluoride Anion Soln. Bromide Anion Soln. Nitrate Anion Soln. Phosphate Anion Soln. Electro. Conductivity (25 µS/cm)	Jan 95 Aug 94 Dec 94 Sep 94 Aug 94 Nov 93 Feb 95	104 104 104 104 104 104 201	53 53 53 53 53 53 53 96
3102aAntimony3103aArsenic S3104aBarium S3105aBeryllium3106Bismuth S3107Boron Sp3108Cadmium3109aCalcium S3110Cerium S3111Cesium S3112Chromiun3113Cobalt Sp3114Copper S3115aDysprosin3116aErbium S3117aEuropiun3118aGadlium S3120Germanin3121Gold Spe3122Hafnium3124aIndium S3125aIron Spec3127aLanthanu3128aLead Spe3129aLithium S3130aLutetium3131aMagnesiu3134Molybder3135aNeodymin3136Nickel Sp	y Spectro Soln. Spectro Soln.	Nov 94 Jul 94 Nov 94 Mar 95 Aug 94 Sep 93 Jul 94 Feb 95 May 93 Apr 94 Mar 95 Mar 94	104 104 104 104 104 104 104 104 104 104	50 50 50 50 50 50 50 50 50	3182 3183 3184 3185 3186 3190 3191	Chloride Anion Soln. Fluoride Anion Soln. Bromide Anion Soln. Nitrate Anion Soln. Phosphate Anion Soln. Electro. Conductivity (25 µS/cm)	Aug 94 Dec 94 Sep 94 Aug 94 Nov 93 Feb 95	104 104 104 104 104 201	53 53 53 53 53 96
3103aArsenic S3104aBarium S3105aBeryllium3106Bismuth S3107Boron Sp3108Cadmium3109aCalcium S3110Cerium S3111aCesium S3112aChromiun3113Cobalt Sp3114Copper S3115aDysprosin3116aErbium S3117aGallium S3117aGallium S3117aGallium S3120Germanin3121Gold Spe3122Hafnium3124aIndium S3126aIron Spe3127aLanthanu3128Lead Spe3129aLithium S3130aLutetium3131aMagnesiu3133Mercury3134Molybder3135aNeodymin3136Nickel Sp	Spectro Soln. Spectro Soln. n Spectro Soln. Spectro Soln. Spectro Soln. Spectro Soln. Spectro Soln. Spectro Soln. m Spectro Soln. Spectro Soln. um Spectro Soln.	Jul 94 Nov 94 Mar 95 Aug 94 Sep 93 Jul 94 Feb 95 May 93 Apr 94 Mar 95 Mar 94	104 104 104 104 104 104 104 104 104	50 50 50 50 50 50 50 50	3183 3184 3185 3186 3190 3191	Fluoride Anion Soln. Bromide Anion Soln. Nitrate Anion Soln. Phosphate Anion Soln. Electro. Conductivity (25 µS/cm)	Dec 94 Sep 94 Aug 94 Nov 93 Feb 95	104 104 104 104 201	53 53 53 53 96
3104aBarium S3105aBeryllium3106Bismuth3107Boron Sp3108Cadmium3109aCalcium S3110Cerium S3111aCesium S3112aChromium3113Cobalt Sp3114Copper S3115aDysprosin3116aErbium S3117aEuropiun3118aGaldinin3120Germanin3121Gold Spe3122Hafnium3124aIndium S3126aIron Spec3127aLanthanu3128aLead Spe3130aLutetium3131aMagnesiu3134Molybder3135aNeodymin3136Nickel Sp	Spectro Soln. n Spectro Soln. Spectro Soln. spectro Soln. n Spectro Soln. Spectro Soln. Spectro Soln. By Spectro Soln. spectro Soln. Spectro Soln. Spectro Soln. Spectro Soln. Spectro Soln. Spectro Soln. Spectro Soln. Spectro Soln. um Spectro Soln. um Spectro Soln.	Nov 94 Mar 95 Aug 94 Sep 93 Jul 94 Feb 95 May 93 Apr 94 Mar 95 Mar 94	104 104 104 104 104 104 104 104	50 50 50 50 50 50 50 50	3184 3185 3186 3190 3191	Bromide Anion Soln. Nitrate Anion Soln. Phosphate Anion Soln. Electro. Conductivity (25 µS/cm)	Sep 94 Aug 94 Nov 93 Feb 95	104 104 104 201	53 53 53 96
3105aBeryllium3106Bismuth3107Boron Sp3108Cadmium3109aCalcium3110Cerium S3111Cesium S3112aChromiun3113Cobalt Sp3114Copper S3115aDysprosin3116aErbium S3117aEuropium3118aGadolinin3119aGallium3120Germanin3121Gold Spe3122Hafnium3124aIndium S3126aIron Spec3127aLanthanu3128Lead Spe3130aLutetium3131aMaganesin3134Molybder3135aNeodymin3136Nickel Sp	n Spectro Soln. Spectro Soln. Dectro Soln. n Spectro Soln. Spectro Soln. Spectro Soln. Market Soln. Spectro Soln. Spectro Soln. Spectro Soln. Spectro Soln. Spectro Soln. Spectro Soln. Spectro Soln. Market Soln. Market Soln. Market Soln. Market Soln. Market Soln. Market Soln.	Mar 95 Mar 95 Aug 94 Sep 93 Jul 94 Feb 95 May 93 Apr 94 Mar 95 Mar 94	104 104 104 104 104 104 104	50 50 50 50 50 50	3185 3186 3190 3191	Nitrate Anion Soln. Phosphate Anion Soln. Electro. Conductivity (25 µS/cm)	Aug 94 Nov 93 Feb 95	104 104 201	53 53 96
3106Bismuth3107Boron Sp3108Cadmium3109aCalcium S3110Cerium S3111Cesium S3112aChromiuu3113Cobalt Sp3114Copper S3115aDysprosia3116aErbium S3117aEuropium3118aGadolinia3119aGallium S3120Germania3121Gold Spe3122Hafnium3123aHolmium3124aIndium S3126aIron Spec3127aLanthanu3128aLead Spe3129aLithium S3130aLutetium3131aMaganesiu3134Molybder3135aNeodymia3136Nickel Sp	Spectro Soln. pectro Soln. n Spectro Soln. Spectro Soln. Spectro Soln. m Spectro Soln. pectro Soln. Spectro Soln. Spectro Soln. Spectro Soln. Spectro Soln. m Spectro Soln. um Spectro Soln.	Mar 95 Aug 94 Sep 93 Jul 94 Feb 95 May 93 Apr 94 Mar 95 Mar 94	104 104 104 104 104 104	50 50 50 50 50	3186 3190 3191	Phosphate Anion Soln. Electro. Conductivity (25 µS/cm)	Nov 93 Feb 95	104 201	53 96
3107Boron Sp3108Cadmium3109aCalcium S3110Cerium S3111Cesium S3112aChromium3113Cobalt Sp3114Copper S3115aDysprosin3116aErbium S3117aEuropium3118aGadolinin3119aGallium S3120Germanin3121Gold Spe3122Hafnium3124aIndium S3126aIron Spec3129aLithium S3130aLutetium3131aMagnesiu3133Mercury3134Molybder3135aNeodymin3136Nickel Sp	pectro Soln. n Spectro Soln. Spectro Soln. Spectro Soln. m Spectro Soln. pectro Soln. Spectro Soln. um Spectro Soln. Spectro Soln. n Spectro Soln. um Spectro Soln.	Aug 94 Sep 93 Jul 94 Feb 95 May 93 Apr 94 Mar 95 Mar 94	104 104 104 104 104	50 50 50 50	3190 3191	Electro. Conductivity (25 µS/cm)	Feb 95	201	96
3108Cadmium3109aCalcium S3110Cerium S3111Cesium S3112aChromiuu3113Cobalt Sr3114Copper S3115aDysprosii3116aErbium S3117aEuropium3118aGadolinin3119aGallium S3120Germanii3121Gold Spe3122Hafnium S3126aIron Spec3127aLanthanu3128Lead Spe3129aLithium S3130aLutetium3131aMagnesiu3133Mercury3134Molybder3135aNeodymin3136Nickel Sp	n Spectro Soln. Spectro Soln. Spectro Soln. Spectro Soln. m Spectro Soln. pectro Soln. Spectro Soln. um Spectro Soln. Spectro Soln. n Spectro Soln. um Spectro Soln.	Sep 93 Jul 94 Feb 95 May 93 Apr 94 Mar 95 Mar 94	104 104 104 104	50 50 50	3191	· · · · ·			
3109aCalcium S3110Cerium S3111Cesium S3112Chromiuu3113Cobalt Sp3114Copper S3115aDysprosin3116aErbium S3117aEuropium3118aGadoliniu3119aGallium S3120Germaniu3121Gold Spe3122Hafnium3124aIndium S3125aIron Spec3127aLanthanu3128Lead Spe3129aLithium S3130aLuttetium3131aMagnesiu3133Mercury3134Molybder3135aNeodymin3136Nickel Sp	Spectro Soln. Spectro Soln. Spectro Soln. m Spectro Soln. Spectro Soln. Spectro Soln. um Spectro Soln. Spectro Soln. n Spectro Soln. um Spectro Soln.	Jul 94 Feb 95 May 93 Apr 94 Mar 95 Mar 94	104 104 104	50 50		Electro Conductivity (100 S/cm)	Jul 94	201	
3110Cerium S3111aCesium S3111aCesium S3112aChromiuu3113Cobalt Sp3114Copper S3115aDysprosin3116aErbium S3117aEuropiun3118aGadolinin3117aGallium S3120Germanin3121Gold Spe3122Hafnium3123aHolmium3124aIndium S3125aLanthanu3128aLead Spe3129aLithium S3130aLutetium3131aMagnesiu3133Mercury3134Molybder3135aNeodymin3136Nickel Sp	Spectro Soln. Spectro Soln. m Spectro Soln. pectro Soln. Spectro Soln. um Spectro Soln. Spectro Soln. n Spectro Soln. um Spectro Soln.	Feb 95 May 93 Apr 94 Mar 95 Mar 94	104 104	50	3192	Electro. Conductivity (100 µS/cm)			96
3111aCesium S3112aChromiun3112Chromiun3113Cobalt Sr3114Copper S3115aDysprosin3116aErbium S3117aEuropiun3118aGadolinin3119aGallium S3120Germanin3121Gold Spe3122Hafnium3123aHolmium3124aIndium S3126aIron Spe3127aLanthanu3128aLead Spe3130aLutetium3131aMagnesiu3132Mangane3134Molybder3135aNecdymin3136Nickel Sp	Spectro Soln. m Spectro Soln. pectro Soln. Spectro Soln. um Spectro Soln. Spectro Soln. n Spectro Soln. um Spectro Soln.	May 93 Apr 94 Mar 95 Mar 94	104			Electro. Conductivity (500 µS/cm)	Jul 94	201	96
3112aChromius3113Cobalt Sp3114Copper S3115aDysprosis3116aErbium S3117aEuropiun3117aEuropiun3118aGadolini3119aGallium S3120Germania3121Gold Spe3122Hafnium3123aHolmium3124aIndium S3126aIron Spec3127aLanthanu3128aLead Spe3130aLutetium3131aMaganesiu3134Molybder3135aNeodymia3136Nickel Sp	m Spectro Soln. pectro Soln. Spectro Soln. um Spectro Soln. Spectro Soln. n Spectro Soln. um Spectro Soln.	Apr 94 Mar 95 Mar 94			3193	Electro. Conductivity (1000 µS/cm)	Feb 95	201	96
3113Cobalt Sp3114Copper S3115aDysprosis3115aDysprosis3116aErbium S3117aEuropium S3117aGallium S3117aGallium S3120Germania3121Gold Spe3122Hafnium3123aHolmium3124aIndium S3126aIron Spec3127aLanthanu3128Lead Spe3130aLutetium S3131aMaganesiu3134Molybder3135aNeodymia3136Nickel Sp	pectro Soln. Spectro Soln. um Spectro Soln. Spectro Soln. n Spectro Soln. um Spectro Soln.	Mar 95 Mar 94	104	50	3194	Electro. Conductivity (10,000 µS/cm)	Mar 94	201	96
3114Copper S3115aDysprosit3115aDysprosit3116aErbium S3117aEuropiun3118aGadolinit3119aGallium S3120Germanit3121Gold Spe3122Hafnium3123aHolmium3124aIndium S3126aIron Spec3127aLanthanu3128Lead Spe3129aLithium S3130aLutetium3131aMagnesiu3133Mercury3134Molybder3135aNeodymin3136Nickel Sp	Spectro Soln. um Spectro Soln. Spectro Soln. n Spectro Soln. um Spectro Soln.	Mar 94		50	3195	Electro. Conductivity (100,000 μ S/cm)	Jun 93	201	96
3115aDysposite3116aErbium S3117aEuropium S3117aEuropium S3117aGallium S3120Germanite3121Gold Spe3122Hafnium S3123aHolmium S3124aIndium S3126aIron Spec3127aLanthanu3128Lead Spe3129aLithium S3130aLutetium S3131aMagnesiu3133Mercury3134Molybder3135aNeodymin3136Nickel Sp	um Spectro Soln. Spectro Soln. n Spectro Soln. um Spectro Soln.		104	50	3196	Electro. Conductivity (20,000 μ S/cm)	Jan 93	201	96
3116aErbium S3117aEuropium S3117aEuropium S3118aGadolinin3119aGallium S3120Germanin3121Gold Spe3122Hafnium S3123aHolmium S3124aIndium S3126aIron Spec3127aLanthanu3128Lead Spe3129aLithium S3130aLutetium3131aMagnesiu3133Mercury3134Molybder3135aNeodymin3136Nickel Sp	Spectro Soln. n Spectro Soln. um Spectro Soln.		104	50 50	3198 3199	Electro. Conductivity (5 µS/cm)	In Prep		96
3117aEuropiun3118aGadolinin3119aGallium 93120Germanin3121Gold Spe3122Hafnium3123aHolmium3124aIndium S3126aIron Spec3127aLanthanu3128Lead Spe3129aLithium S3130aLuttetium3131aMagnesiu3132Mangane3134Molybder3135aNeodymin3136Nickel Sp	n Spectro Soln. um Spectro Soln.	Apr 92 Dec 93	104 104	50	3199	Electro. Conductivity (15 µS/cm)	In Prep	201 304	96
3118aGadoliniu3119aGallium S3120Germaniu3121Gold Spe3122Hafnium3123aHolmium3124aIndium S3126aIron Spec3127aLanthanu3128Lead Spe3129aLithium S3130aLutetium3131aMagnesiu3133Mercury3134Molybder3135aNeodymin3136Nickel Sp	um Spectro Soln.	Jan 94	104	50	3201	Sec. Std. Mag. Tape	Mar 94	304	129 129
3119aGallium 33120Germania3121Gold Spe3122Hafnium3123aHolmium3124aIndium S3126aIron Spec3127aLanthanu3128Lead Spe3129aLithium S3130aLutetium3131aMagnesiu3132Mangane3134Molybder3135aNeodymin3136Nickel Sp		Jan 94 Jan 95	104	50	3202	Sec. Std. Mag. Tape Sec. Std. Mag. Tape	Mar 94 Mar 94	304	129
3120Germania3121Gold Spe3122Hafnium3123aHolmium3124aIndium S3126aIron Spea3127aLanthanu3128Lead Spe3129aLithium S3130aLutetium3131aMaganesiu3132Mangane3134Molybder3135aNeodymia3136Nickel Sp		Oct 93	104	50	3203	Sec. Std. Mag. Tape	Mar 94 Mar 94	304	129
3121Gold Spe3122Hafnium3123aHolmium3124aIndium S3126aIron Spec3127aLanthanu3128Lead Spe3129aLithium S3130aLutetium3131aMagnesiu3132Mangane3133Mercury3134Molybder3136Nickel Sp	um Spectro Soln.	Nov 94	104	50	3217	Sec. Std. Mag. Tape High Density	Jul 87	304	129
3122Hafnium3123aHolmium3123aHolmium3124aIndium S3126aIron Spec3127aLanthanu3128Lead Spe3129aLithium S3130aLutetium3131aMagnesiu3132Mangane3133Mercury3134Molybder3136Nickel Sp		Sep 93	104	50	4200B	Cesium/Barium-137m	Dec 79	205	112
3123aHolmium3124aIndium S3126aIron Spec3127aLanthanu3128Lead Spe3129aLithium S3130aLutetium3131aMagnesiu3133Mercury3134Molybder3135aNeodymin3136Nickel Sp	Spectro Soln.	Feb 91	104	50	4200B	Niobium-94	Jun 70	205	112
3124aIndium S3126aIron Spect3127aLanthanu3128Lead Spet3129aLithium S3130aLutetium3131aMagnesiu3132Mangane3133Mercury3134Molybder3135aNeodymin3136Nickel Sp	n Spectro Soln.	Jan 94	104	50	4203D	Cobalt-60	Feb 84	205	112
3126aIron Spect3127aLanthanu3128Lead Spect3129aLithium State3130aLuttetium3131aMagnesiu3132Mangane3133Mercury3134Molybder3135aNeodymin3136Nickel Sp	Spectro Soln.	Jan 94	104	50	4207B	Cesium-137/Barium-137m	Mar 87	205	112
3127aLanthanu3128Lead Spe3129aLithium S3130aLutetium3131aMagnesiu3132Mangane3133Mercury3134Molybder3135aNeodymin3136Nickel Sp	-	Nov 94	104	50	4222C	Carbon-14 (as hexadene)	Jan 91	205	109
3128Lead Spe3129aLithium S3130aLutetium3131aMagnesiu3132Mangane3133Mercury3134Molybder3135aNeodymin3136Nickel Sp	um Spectro Soln.	Jan 95	104	50	4226C	Nickel-63	In Prep		109
3129aLithium S3130aLutetium3131aMagnesiu3132Mangane3133Mercury3134Molybder3135aNeodymin3136Nickel Sp	ectro Soln.	Mar 94	104	50	4233C	Cesium-137 Burn-up Std. (Soln.)	Dec 89	205	109
3130aLutetium3131aMagnesiu3132Mangane3133Mercury3134Molybder3135aNeodymin3136Nickel Sp	Spectro Soln.	Mar 94	104	50	4234A	Strontium-90	Apr 95	205	109
3132Mangane3133Mercury3134Molybder3135aNeodymin3136Nickel Sp	Spectro Soln.	Jan 94	104	50	4235	Beryllium-10/Beryllium-9	Nov 86	205	111
3132 Mangane 3133 Mercury 3134 Molybder 3135a Neodymin 3136 Nickel Sp	um Spectro Soln.	Apr 94	104	50	4241B	Barium-133	Apr 82	205	112
3134Molybder3135aNeodymin3136Nickel Sp	ese Specto Soln.	Jun 94	104	50	4251C	Barium-133 Soln.	Dec 81	205	109
3135a Neodymin 3136 Nickel Sp	Spectro Soln.	Mar 94	104	50	4275C	Mixed Radionuclide	Sep 88	205	112
3136 Nickel Sp	num Spectro Soln.	Dec 94	104	50	4276C	Mixed Radionuclide Soln.	Sep 88	205	109
	ium Spectro Soln.	Sep 94	104	50	4288A	Technetium-99 Soln.	Nov 82	205	109
2127 Mt-Lt.	pectro Soln.	Sep 94	104	50	4320	Curium-244 Soln.	Mar 89	205	109
3137 Niobium	Spectro Soln.	Aug 94	104	50	4321B	Natural Uranium Soln.	Nov 86	205	109
3138 Palladiun	n Spectro Soln.	Nov 94	104	50	4322B	Americium-241 Soln.	Oct 91	205	109
3139a Phosphor	rus Spectro Soln.	May 94	104	50	4323A	Plutonium-238 Soln.	Nov 86	205	109
	Spectro Soln.	May 94	104	50	4324A	Uranium-232	In Prep		109
	m Spectro Soln.	Nov 94	104	50	4326	Polonium-209	Jan 95	205	109
	mium Spectro Soln.	Sep 94	104	50	4328A	Thorium-229 Soln.	May 85	205	109
	Spectro Soln.	Oct 93	104	50	4329	Curium-243 Soln.	Mar 85	205	109
	n Spectro Soln.	Jan 95	104	50	4332D	Americium-243 Soln.	Aug 90	205	109
	n Spectro Soln.	Dec 93	104	50	4334E	Plutonium-242 Soln.	Jan 93	205	109
	m Spectro Soln.	Dec 93	104	51	4338	Plutonium-240 Soln.	Sep 80	205	109
	n Spectro Soln.	Aug 94	104	51	4339A	Radium-228 Soln	Jul 88	205	109
	n Spectro Soln.	Aug 94	104	51	4340	Plutonium-241 Soln.	May 86	205	109
	pectro Soln.	Jul 94	104	51	4341	Neptunium-237	Jan 93	205	109
•	ectro Soln.	Aug 94	104	51	4350B	River Sediment (Radioactivity)	Sep 81	205	113
	Spectro Soln.	Dec 94	104	51	4351	Human Lung	Oct 82	205	113
	m Spectro Soln.	Feb 94	104	51	4352	Human Liver	Jun 82	205	113
	pectro Soln.	Mar 95	104	51	4353	Rocky Flats Soil #1	Dec 80 Feb 86	205 205	113 113
	n Spectro Soln.	Oct 93	104	51	4354	Lake Sediment (Radioactivity) Peruvian Soil	Jun 82	205	113
	n Spectro Soln.	Feb 94	104	51 51	4355 4357	Ocean Sediment (Radioactivity)	In Prep		113
	Spectro Soln.	Dec 93	104	51	4357 4361B	Hydrogen-3 Soln.	Jan 81	205	109
	Spectro Soln.	Sep 93 Feb 94	104 104	51	4301B 4370C	Europium-152 Soln.	Mar 87	205	109
	Spectro Soln.	Jan 94	104	51	4370C 4400N	Chromium-51 Soln.	FC	205	110
	Spectro Soln.	May 94	104	51	4401T	Iodine-131 Soln.	FC	205	110
	tro Soln	Jul 94	104	51	44011 4402C	Tin-113/Indium-113m Soln.	FC	205	110
	tro Soln. Spectro Soln	Dec 93	104	51	4403B	Strontium-85 Soln.	FC	205	110
•	n Spectro Soln.	Oct 93	104	51	4404Q	Thallium-201 Soln.	FC	205	110
3165 Vanadiur		Jan 95	104	51	4405B	Gold-198 Soln.	FC	205	110

CDL # /Phan #	Deseries	Cert.	Section	D		Dente	Cert.	Section	
SRM/RM	Descriptor	Date	Code	Page	RM	Descriptor	Date	Code	Page
4406M	Phosphorus-32 Soln.	FC	205	110	8452	Polyethylene Piping, 10.2 cm	Jan 88	202	98
4407S	Iodine-125 Soln.	FC	205	110	8453	Poly Socket T Joint	Jan 88	202	98
4408D	Cobalt-57 Soln.	FC	205	110	8454	Poly Butt T Joint	Jan 88	202	98
4409D 4410HT	Cobalt-57 Soln. Technetium-99M Soln.	FC FC	205 205	110 110	8455	Pyrite Ore	Apr 91	111	81
4410H1 4411B	Iron-59 Soln.	FC	203	110	8458 8464	Artificial Flaw for Eddy Current NDF Aldrin (neat)	Aug 91 In Prep	303 109	128 69
4412S	Molybdenum-99/Technetium-99 Soln.	FC	205	110	8465	Dieldrin (neat)	In Prep	109	69
4414C	Iodine-123 Soln.	FC	205	110	8466	Y-HCH (Lindane) (neat)	Apr 92	109	69
4415 R	Xenon-133 Gas	FC	205	110	8467	4,4'-DDE (neat)	Apr 92	109	69
4416O	Gallium-67 Soln.	FC	205	110	8468	Heptachlor (neat)	In Prep	109	69
4417N	Indium-111 Soln.	FC	205	110	8469	Pesticide, 4,4'-DDT (neat)	Apr 92	109	69
4418L	Mercury-203 Soln.	FC	205	110	8486	Portland Cement Clinker	May 89	113	89
4419C 4420B	Ytterbium-169 Soln. Lead-203 Soln.	FC FC	205 205	110 110	8487 8488	Portland Cement Clinker Portland Cement Clinker	May 89	113	89 89
4421L	Gold-195 Soln.	FC	205	110	8491	Sugar Cane Bagasse	May 89 In Prep	113 110	89 78
4424	Sulfur-35 Soln.	FC	205	110	8492	Eastern Cottonwood	In Prep	110	78
4425A	Samarium-153 Soln.	FC	205	110	8493	Pinus Radiata	In Prep	110	78
4426A	Strontium-89 Soln.	FC	205	110	8494	Wheat Straw	In Prep	110	78
4427A	Yttrium-90 Soln.	FC	205	110	8495	Northern Softwood	N/A	209	122
4904NG	Americium-241	Apr 87	205	111	8496	Eucalyptus Hardwood	N/A	209	122
4904SG	Americium-241	Apr 87	205	111	8501	Catalyst Package IIIE	Jul 91	114	91
4906C	Plutonium-238	Nov 87	205	111	8505	Vanadium in Crude Oil	Oct 83	108	66
	Plutonium-238	Nov 87	205	111	8506	Transformer Oil	Mar 92	108	67
4915E	Cobalt-60 Soln.	Feb 84	205	109	8507	Mineral Oil	Mar 92	108	67
	Strontium-90 Soln.	May 88	205	109	8532	Diesel Fuel Oil	N/A	108	67
4926D 4927E	Hydrogen-3 Water Soln. Hydrogen-3 Soln.	Aug 89 Jan 89	205 205	109 109	8535 8536	VSMOW-Water GISP-Water	Oct 92 Oct 92	104 104	55 55
4929D	Iron-55 Soln.	Feb 86	205	109	8530	SLAP-Water	Oct 92 Oct 92	104	55
4943	Chlorine-36 (Beta) Soln.	Dec 84	205	109	8538	NBS30-Biotite	Jun 92	104	55
4947C	Hydrogen-3 Toluene Soln.	May 87	205	109	8539	NBS22-Oil	Jun 92	104	55
4949C	Iodine-129 Soln.	Feb 82	205	109	8540	PEFI-Polyethylene Foil	Jun 92	104	55
4950E	Radium-226 Soln.	May 84	205	109	8541	USGS24-Graphite	Jun 92	104	55
4952C	Radium-226 Blank Soln.	Jan 92	205	109	8542	Sucrose ANU-Sucrose	Jun 92	104	55
4965	Radium-226 Soln.	Jan 92	205	109	8543	NBS18-Carbonatite	Jun 92	104	55
4966	Radium-226 Soln.	Jan 92	205	109	8544	NBS19-Limestone	Jun 92	104	55
4967	Radium-226 Soln.	Jan 92	205	109	8545	LSVEC-Li Carbonate	Jun 92	104	55
4968 4990C	Radium-226 Oxalic Acid (C-14 Dating)	Aug 94 Jul 83	205 205	112 111	8546 8547	NBS28-Silica Sand IAEAN1-Ammonium Sulfate	Jun 92 Feb 93	104 104	55 55
	RCM Fine Gold	In Prep	104	55	8548	IAEAN2-Ammonium Sulfate	Feb 93	104	55
	RCM Gold Bullion	In Prep	104	54	8549	IAEAN3-Potassium Nitrate	Feb 93	104	55
8101a	Auto. Computer Time Svc.	Aug 93	207	118	8550	USGS 25-Ammonium Sulfate	Feb 93	104	55
8153-8173	RCM Fine Silver	In Prep	104	54	8551	USGS 26-Ammonium Sulfate	Feb 93	104	55
8384	TBBS (powder)	Oct 92	202	98	8552	NSVEC-Gaseous Nitrogen	Feb 93	104	55
8406	Tennessee River Sediment	Jun 90	111	84	8553	Soufre De Lacq-ElemenSulf.	Jun 92	104	55
8407	Tennessee River Sediment	Jun 90	106	84	8554	NZ1-Silver Sulfide	Jun 92	104	55
8411	Mixed Asbestos Research Filter	Nov 88	105	60	8555	NZ2-Silver Sulfide	Jun 92	104	55
8412	Corn Stalk (Zea Mays)	Sep 93	110	77	8556	NBS123-Sphalerite	Jun 92	104	55
8413	Corn Kernel (Zea Mays) Bovine Muscle Powder (Beef)	Sep 93	110	77	8557	NBS127-Barium Sulfate	Jun 92 Feb 02	104	55
8414 8415	Whole Egg Powder	Sep 93 Sep 93	110 110	76 76	8558 8570	USGS32-Potassium Nitrate LGCGM Calcined Kaolin (Sur. Area)	Feb 93 Sep 94	104 301	55 126
	Micro. Cellulose	Sep 93	110	76	8571	LGCGM Alumina (Sur. Area)	Sep 94	301	126
	Wheat Gluten	Sep 93	110	76	8572	LGCGM Silica (Sur. Area)	Sep 94	301	126
	Iron Electrolytic	May 84	203/206	103/114	8590	High Sulfur Gas Oil Feed	N/A	114	90
8421	Iron Electrolytic	May 84	203/206	103/114	8600	Chinese Copper Ore	Jun 92	111	79
8423	Sintered Tungsten	May 84	203/206	103/114	8601	Chinese Copper Ore	Jun 92	111	7 9
	Graphite	May 84	203	103	8602	Chinese Lead Ore	Jun 92	111	79
	Graphite	May 84	203	103	8603	Chinese Lead Ore	Jun 92	111	79
	Graphite	May 84	203	103	8604	Chinese Zinc Ore	Jun 92	111	79
	Corn Starch	Sep 93	110	76	8605	Chinese Molyb. Ore	Jun 92	111	79 70
	Corn Bran Whole Milk Powder	Sep 93 Sep 93	110 110	76 76	8606 8607	Chinese Molyb. Ore Chinese Tungsten Ore	Jun 92 Jun 92	111 111	79 79
	Durum Wheat Flour	Sep 93 Sep 93	110	76 76	8607	Chinese Tungsten Ore	Jun 92 Jun 92	111	79 79
	Hard Red Spring Wheat Flour	Sep 93	110	76	8754	ICTAC Polystyrene DTA	N/A	203	100
	Soft Winter Wheat Flour	Sep 93	110	76	8757	ICTAC Set DTA	In Prep	203	100
	Dietary Fiber	In Prep	110	76	8758	ICTAC Set DTA	In Prep	203	100
	LC Selectivity	Mar 90	109	69	8759	ICTAC Set DTA	N/A	203	100
8443	GC/MS System Performance	Aug 84	109	69	8760	ICTAC Set DTA	N/A	203	100
2444	Cotinine	Feb 89	105	58	8761	ICTAC Thermogravimetry	In Prep	203	100
		34 02	105	58					
8448	Drugs of Abuse in Hair	Mar 92			N/A-Ce	ertificate does not exist.			
8448 8449	Drugs of Abuse in Hair Drugs of Abuse in Hair Polyethylene Piping, 1.3 cm	Feb 92 Jan 88	105 202	58 98		ertificate does not exist. w certificate is issued with each new batch	prepared.		

Numerical MSDS Index

The following is a listing of Material Safety Data Sheets (MSDSs) for compounds that have been determined to be hazardous by the National Institute of Standards and Technology. Under current OSHA regulations, there is no expiration date associated with a MSDS. Materials not considered to require an MSDS, fall into one of the following categories:

- 1. The SRM is an article, as the word is defined in paragraph (c) of section 19.10.1200 of the title 29 of the Code of Federal Regulations, which does not release or otherwise result in exposure to a hazardous chemical, under normal conditions and use.
- 2. The SRM has been determined to be non-hazardous by the National Institute of Standards and Technology under paragraph (d) of section 1910.1200 title 29 of the Code of Federal Regulations. The SRM will not release or otherwise result in exposure to a hazardous chemical under normal conditions of use.
- 3. The SRM is a pesticide or hazardous waste labeled according to regulations issued by the Environmental Protection Agency.
- 4. The SRM is a food, food additive, drug or clinical material labeled according to regulations issued by the Food and Drug Administration.
- 5. The SRM is a wine labeled according to regulations issued by the Bureau of Alcohol, Tobacco and Firearms.
- 6. The SRM is a tobacco product, wood or wood product which is exempted by paragraph (b)(5)(ii) and (iii) of section 1910.1200 of title 29 of the Code of Federal Regulations from the provisions of that section.
- 7. The SRM was obsoleted before MSDS regulations came into effect.

Additional information about MSDSs can be obtained by contacting the SRM MSDS Coordinator at:

Telephone: (301) 975-6439 Fax: (301) 926-4751 E-Mail: SRMMSDS@enh.nist.gov

		MSDS		1		MSDS	
SRM	Descriptor	Date	Page	SRM	Descriptor	Date	Page
27f	Iron Ore, Sibley	Sep 94	80	659	Silicon Nitride, Particle Size	Apr 92	125
39i	Benzoic Acid (Combustion Cal.)	Mar 92	99	660	Line Profile, Lab6 (XRD)	Nov 92	121
40h	Sodium Oxalale (Reductometric)	May 90	49	671	Nickel Oxide 1	Dec 91	45
58a	Ferrosilicon (73% Si)	Nov 93	36	672	Nickel Oxide 2	Dec 91	45
59a	Ferrosilicon	Nov 93	36	673	Nickel Oxide 3	Dec 91	45
76a	Burnt Refractory (Al203-40%)	Sep 94	83	674a	Quant. Analysis, Set (XRD)	Oct 93	121
77a	Burnt Refractory (Al203-60%)	Sep 94	83	675	Line Position, Mica (XRD)	Jan 93	121
78a	Burnt Refractory (Al203-70%)	Sep 94	83	676	Quantitative Analysis, Alumina (XRD)	Nov 92	121
81a	Glass Sand	Feb 88	83/86	699	Alumina (Reduction Grade)	Nov 93	81
83d	Arsenic Trioxide (Reductometric)	Dec 91	49	742	Alumina (Reference Point)	Jul 92	101
84j	Potassium Hydrogen Phthalale	Mar 92	49	869	LC Column Selectivity	May 90	69
114p	Portland Cement	Apr 94	125	915a	Calcium Carbonate (Clinical)	Dec 91	56
127b	Solder, 40Sn-60Pb	Feb 94	43	928	Lead Nitrate (Clinical)	Mar 89	56
136e	Potassium Dichromate (oxidimetric)	May 93	49	934	Clinical Thermometer	Mar 93	102
141c	Acetanilide	Sep 91	49	935a	Potassium Dichromate, UV Absorbance	Sep 94	104
142	Anisic Acid	May 80	49	951	Boric Acid, Assay and Isotopic	Apr 92	49/53
148	Nicoline Acid	Jan 87	49	952	Boric Acid 95% enr. 10B	Apr 92	53
165a	Glass Sand (Low Iron)	Sep 94	83/86	977	Bromine (Isotopic)	Oc1 94	53
181	Lithium Ore (Spodumene)	Feb 93	79	979	Chromium (Isolopic)	Dec 85	53
182	Lithium Ore (Petalite)	Feb 93	79	980	Magnesium (Isolopic)	Dec 85	53
183	Lithium Ore (Lepidolite)	Feb 93	79	981	Natural Lead (Isotopic)	Jan 92	53
185g	Potassium Hydrogen Phihalate, pH	Mar 92	95	982	Equal Atom Lead (Isolopic)	Jan 92	53
187c	Sodium Tetraborate (Borax), pH	Oc1 88	95	983	Radiogenic Lead (Isolopic)	Jan 92	53
193	Polassium Nitrale	Sep 85	78	984	Rubidium Assay (Isolopic)	Dec 85	53
194	Ammonium Dihydrogen Phosphate	Sep 86	78	986	Nickel (Isotopic)	Oc1 94	53
198	Silica Brick	May 94	83	987	Strontium Assay and Isotopic	Aug 94	49/53
199	Silica Brick	May 94	83	989	Rhenium Assay (Isolopic)	Арг 94	53
276b	Tungsten Carbide	Oci 83	85	991	Lead-206 Spike Assay and Isotopic	Oc1 94	53
350a	Benzoic Acid	Mar 92	49	994	Gallium (Isotopic)	Sep 79	53
371h	Sulfur (Rubber Compound)	Feb 93	98	997	Thallium (Isotopic)	Oc1 94	53
372i	Stearic Acid (Rubber Compound)	Nov 93	98	1007b	Plaslic, (Smoke Density)	Sep 94	130
383a	Mercaptobenzothiazole	Dec 78	98	1051b	Barium (Metallo-Organic)	Feb 81	90
640b	Line Position, Silicon (XRD)	May 92	121	1052b	Vanadium (Metallo-Organic)	Jul 80	90

						and a	
SRM	Descriptor	MSDS Date	Base	CDM	Deceminter	MSDS	
SKIM	Descriptor	Date	Page	SRM	Descriptor	Date	Page
1053a	Cadmium (Metallo-Organic)	May 81	90	1683b	NO/N2, 50 µmol/mol	Dec 90	64
1055a 1057b	Tin (Metallo-Organic)	May 81	90	1684b	NO/N2, 100 µmol/mol	Sep 94	64 64
1059c	Lead (Metallo-Organic)	Jun 84	90	1685b	NO/N2, 250 µmol/mol	Dec 90	64
1060a	Lithium (Metallo-Organic)	Sep 86	90	1686b	NO/N2, 500 µmol/mol	Dec 90	64
1065b	Nickel (Metallo-Organic)	Feb 83	90	1687b	NO/N2, 1000 µmol/mol	Dec 90	64
1066a	Silicon (Metallo-Organic)	May 81	90	1693a	SO2/N2, 50 µmol/mol	Sep 94	65
1069b	Sodium (Metallo-Organic)	Aug 85	90	1694a	SO2/N2, 100 µmol/mol	Sep 94	65
1073b	Zinc (Metallo-Organic)	Jun 84	90	1696a	SO2/N2, 3500 μmol/mol	Sep 94	65
1075a 1077a	Aluminum (Metallo-Organic) Silver (Metallo-Organic)	Feb 81 Feb 83	90 90	1700a 1701a	CO2/N2, 10 mol (Blood Gas) %	Sep 94	63
1077a 1079b	Iron (Metallo-Organic)	Apr 85	90 90	1701a 1702a	CO2-5%, O2-12 mol (Blood Gas) %/N2 CO2-5%, O2-20 mol (Blood Gas) %/N2	Sep 94 Sep 94	63 63
1080a	Copper (Metallo-Organics)	Feb 83	90	1702a	CO2-10%, O2-7 mol (Blood Gas) %/N2	Sep 94	63
1083	Wear Metals (Base Oil)	Mar 92	91	1800	Organic Compounds/N2	Feb 94	65
1084a	Wear Metals	Mar 92	91	1804a	Tox. Organic Compounds/N2	Oct 92	65
1085a	Wear Metals	Mar 92	91	1811	Aromatic Organics/N2	Apr 93	63
1129	Solder 63Sn-37Pb	Dec 93	43	1812	Aromatic Organics/N2	Apr 93	63
1131	Solder 60Pb-40Sn	Feb 94	43	1815a	n-Heptane (Fuel Rating)	May 93	67
1450b	Fibrous Glass Board	Apr 92	103	1816a	Isooctane (Fuel Rating)	Jan 93	67
1491	Arom. Hydro/Hexane Toluene	Aug 89	69	1817c	Catalyst Package IIID	Mar 90	91
1492	Chlor. Pesticides/Hexane	Sep 89	69	1818a	Chlorine in Lub. Base Oil	Apr 94	90
1493	PCB Congeners	Dec 94	69	1819a	Sulfur in Lub. Base Oil	Apr 94	90
1514	Thermal Analysis Purity Set (DSC)	May 92	100	1828a	Ethanol-Water Soln.	Aug 93	57
1543	GC/MS and LS System Performance	Mar 92	69	1829	Alcohols in Ref. Fuels	Aug 93	66
1579 1581	Powdered Lead Base Paint PCBs in Oil	Jan 92 Dec 91	60 69	1837 1838	Methanol, Butanol (Fossil Fuel) Ethanol (Fossil Fuel)	Jun 93	66
1581	Chlor. Pesticide in Isooctane	Feb 93	69	1839	Methanol (Fossil Fuel)	May 93 Jun 93	66 66
1584	Phenols in Methanol	Mar 91	69	1866a	Common Commercial Asbestos	Jan 94	60
1585	Chlorinated Biphenyls	Feb 93	69	1867	Uncommon Commercial Asbestos	Aug 93	60
1586	Isotope Label Pollutants	Jun 93	69	1879	Respirable Cristobalite	Mar 91	60
1587	Nitro PAH in Methanol	Sep 93	69	1880	Portland Cement, Black	Jan 92	88
1597	Complex PAH Mix	Feb 94	69	1881	Portland Cement, White	Apr 91	88
1614	Dioxin in Isooctane	Aug 93	69	1882	Portland Cement, Orange	Jan 91	88
1616a	Sulfur in Kerosene	Mar 88	67	1883	Portland Cement, Silver	Apr 91	88
1617a	Sulfur in Kerosene	Mar 88	67	1884	Portland Cement, Ivory	Apr 91	88
1618	Vanadium & Nickel in Fuel Oil	Apr 91	66	1885	Portland Cement, Turquoise	Apr 91	88
1619a	Sulfur in Residual Fuel Oil	Apr 91	67	1886	Portland Cement, Cranberry	Apr 91	88
1620b 1621d	Sulfur in Residual Fuel Oil Sulfur in Residual Fuel Oil	Sep 90	67	1887 1888	Portland Cement, Brown	Apr 91	88
1621d	Sulfur in Residual Fuel Oil	Aug 93 Nov 93	67 67	1889	Portland Cement, Purple Portland Cement, Gray	Apr 91 Apr 91	88 88
1622u	Sulfur in Residual Fuel Oil	Sep 94	67	1920	IR Reflectance	Jun 92	107
1624b	Sulfur in Distillate Fuel Oil	May 90	67	1941a	Organics in Marine Sediment	Aug 92	69
1625	SO2 Permeation Tube-10 cm	Dec 91	65	1970	Succinonitrile (Fixed Point)	Nov 92	101
1626	SO2 Permeation Tube-5 cm	Dec 91	65	1978	Zirconium Oxide (Particle Size)	Oct 93	125
1629a	NO2 Permeation Device 1cm	May 94	65	2034	Holmium Oxide Wavelength	Feb 92	106
1632b	Trace Elements in Coal (Bituminous)	Feb 93	68	2108	Chromium (III) Speciation	Jun 93	53
1633b	Trace Elements in Coal Fly Ash	Nov 85	68	2109	Chromium (VI) Speciation	Aug 92	53
1634c	Trace Elements in Fuel Oil	Jun 92	68	2141	Urea	Oct 94	49
1635	Trace Elements in Coal (Subbituminous)	Sep 94	68	2142	0-Bromobenzoic Acid	Aug 85	49
1639	Halocarbons (in methanol)	May 93	69	2143	p-Fluorobenzoic Acid	Mar 88	49
1641c 1643d	Mercury in Water	Dec 89	61	2144 2185	m-Chlorobenzoic Acid Pot. Hydrogen Phthalate	May 91	49 95
1643u 1647c	Trace Elements in Water Priority Pollutant PAHs	In Prep Apr 93	61 69	2185	Calcium Carbonate	Mar 92 Dec 91	95
1658a	CH4/Air, 1 µmol/mol	Jan 91	64	2203	Potassium Fluoride (Ion-Selective)	May 82	96
1659a	CH4/Air, 10 µmol/mol	Jan 91	64	2220	Tin (Dif. Scan. Calor.)	Sep 94	100
1660a	CH4-C3H8/Air, 1 µmol/mol	Oct 93	64	2222	Biphenyl (Dif. Scan. Calor.)	Mar 93	100
1661a	SO2/N2, 500 µmol/mol	Aug 89	65	2225	Mercury (Dif. Scan Calor.)	Mar 93	100
1662a	SO2/N2, 1000 µmol/mol	Aug 89	65	2260	Aromatic Hydrocarbons in Toluene	Dec 91	69
166 3 a	SO2/N2, 1500 µmol/mol	Aug 89	65	2261	Chlorinated Pesticides in Hexane	Feb 92	69
1664a	SO2/N2, 2500 µmol/mol	Aug 89	65	2286	Ethanol in Gasoline	Jan 95	66
1665b	C3H8/Air, 3 µmol/mol	Sep 89	64	2287	Ethanol in Gasoline	Jan 95	66
1666b	C3H8/Air, 10 µmol/mol	Sep 89	64	2288	t-Amyl Methyl Ether in Gas.	Jan 95	66
1667b	C3H8/Air, 50 µmol/mol	Sep 89	64 64	2289	t-Amyl Methyl Ether in Gas.	Jan 95 Jan 95	66 66
1668b 1669b	C3H8/Air, 100 µmol/mol	Sep 89 Sep 89	64 64	2290 2291	Ethyl t-Butyl Ether in Gas.	Jan 95 Jan 95	66 66
1669b 1674b	C3H8/Air, 500 µmol/mol CO2/N2, mol 7%	Sep 89 Sep 94	64 63	2291	Ethyl t-Butyl Ether in Gas. Methyl t-Butyl Ether in Gas.	Jan 95 Jan 95	66
16740 1675b	CO2/N2, mol 14%	Sep 94 Sep 94	63	2292	Methyl t-Butyl Ether in Gas.	Jan 95	66
16750 1677c	$CO/N2$, 10 μ mol/mol	Jan 91	64	2389	Amino Acids in Hydrochloric Acid	Jan 94	56
1678c	CO/N2, 50 µmol/mol	Jan 91	64	2579	Lead Paint Film	Oct 92	60
1679c	CO/N2, 100 µmol/mol	Jan 91	64	2582	Powdered Paint, (Low Lead)	Jul 94	60
1680b	CO/N2, 500 µmol/mol	Jan 91	64	2607	CO2/N2O/Air, 340/0.3 µmol/mol	Nov 88	63
1681b	CO/N2, 1000 µmol/mol	Jan 91	64	2609	CO2/N2O/Air, 380/0.33 µmol/mol	Nov 88	63

		MSDS				Mene	
SRM	Descriptor	Date	Page	SRM	Descriptor	MSDS Date	Page
2610	CO2/N2O/Air, 380/0.33 µmol/mol	Nov 88	63	3112a	Chromium Spectro Soln.	May 93	50
2612a 2613a	CO/Air, 10 µmol/mol	Jun 91 Jun 91	63	3113	Cobalt Spectro Soln.	Mar 89	50
2613a 2614a	CO/Air, 20 µmol/mol CO/Air, 45 µmol/mol	Jun 91 Jun 91	63 63	3114 3115a	Copper Spectro Soln.	May 90	50
2619a	CO2/N2, 0.5 mol %	Jun 92	63	3115a 3116a	Dysprosium Spectro Soln. Erbium Spectro Soln.	Mar 94 Jan 94	50 50
2620a	CO2/N2, 1.0 mol %	Jun 92	63	3117a	Europium Spectro Soln.	Jan 93	50
2621a	CO2/N2, 1.5 mol %	Jun 92	63	3118a	Gadolinium Spectro Soln.	Jan 93	50
2622a	CO2/N2, 2.0 mol %	Jun 92	63	3119a	Gallium Spectro Soln.	Oct 93	50
2623a	CO2/N2, 2.5 mol %	Jun 92	63	3120	Germanium Spectro Soln.	Apr 89	50
2624a	CO2/N2, 3.0 mol %	Jan 93	63	3121	Gold Spectro Soln.	Sep 88	50
2625a	CO2/N2, 3.5 mol %	Jan 93	63	3122	Hafnium Spectro Soln.	Jan 94	50
2626a 2627a	CO2/N2, 4.0 mol % NO/N2, 5 µmol/mol	Jan 93 Jan 91	63 64	3123a 3124a	Holmium Spectro Soln.	Feb 94	50
2628a	NO/N2, 10 µmol/mol	Jun 91	64	3124a 3126a	Indium Spectro Soln. Iron Spectro Soln.	May 93 Feb 94	50 50
2629a	NO/N2, 20 µmol/mol	Jun 91	64	3127a	Lanthanum Spectro Soln.	May 93	50
2630	NO/N2, 1500 µmol/mol	Jun 91	64	3128	Lead Spectro Soln.	Sep 88	50
2631a	NO/N2, 3,000 µmol/mol	Jun 91	64	3129a	Lithium Spectro Soln.	May 93	50
2632a	CO2/N2, 300 µmol/mol	Jun 91	63	3130a	Lutetium Spectro Soln.	Feb 94	50
2635a	CO/N2, 25 µmol/mol	Jan 89	64	3131a	Magnesium Spectro Soln.	May 93	50
2636a	CO/N2, 250 µmol/mol	Jun 92	64	3132	Manganese Specto Soln.	Apr 89	50
2637a	CO/N2, 2500 µmol/mol	Jun 92	64	3133	Mercury Spectro Soln.	Apr 89	50
2638a 2639a	CO/N2, 5000 µmol/mol	Jun 92 Jun 92	64 64	3134	Molybdenum Spectro Soln.	May 90	50
2039a 2640a	CO/N2, 1 mol % CO/N2, 2 mol %	Dec 88	64	3135a 3136	Neodymium Spectro Soln. Nickel Spectro Soln.	May 93	50 50
2641a	CO/N2, 4 mol %	Dec 88	64	3138	Palladium Spectro Soln.	Sep 88 Apr 89	50
2642a	CO/N2, 8 mol %	Sep 92	64	3139a	Phosphorus Spectro Soln.	Jul 94	50
2643a	C3H8/N2, 100 µmol/mol	Dec 90	65	3140	Platinum Spectro Soln.	Apr 89	50
2644a	C3H8/N2, 250 µmol/mol	Dec 90	65	3141a	Potassium Spectro Soln.	May 93	50
2645a	C3H8/N2, 500 µmol/mol	Dec 90	65	3142a	Praseodymium Spectro Soln.	May 93	50
2647a	C3H8/N2, 2500 µmol/mol	Dec 90	65	3143	Rhenium Spectro Soln.	Jul 88	50
2648a	C3H8/N2 5000 µmol/mol	Nov 93	65	3144	Rhodium Spectro Soln.	Jan 93	50
2649a 2650	C3H8/N2, 1 mol % C3H8/N2, 2 mol %	Dec 90 Feb 93	65 65	3145a 3147a	Rubidium Spectro Soln. Samarium Spectro Soln.	Jan 94 Jan 94	50 51
2651	C3H8/N2 & O2, 0.01/5 mol %	Aug 93	65	3147a 3148a	Scandium Spectro Soln.	May 93	51
2652	C3H8/N2 & O2, 0.01/10 mol %	Aug 93	65	3149	Selenium Spectro Soln.	Apr 89	51
2656	NOx/Air, 2500 µmol/mol	Aug 93	64	3151	Silver Spectro Soln.	Apr 89	51
2657a	O2/N2, 2 mol %	Jul 93	64	3152a	Sodium Spectro Soln.	Sep 94	51
2658a	O2/N2, 10 mol %	Jul 93	64	3153a	Strontium Spectro Soln.	May 93	51
2659a	O2/N2, 21 mol %	Jul 93	64	3154	Sulfur Spectro Soln.	Feb 93	51
2660	NOx/Air, 100 µmol/mol	Jul 93	64	3155	Tantalum Spectro Soln.	Mar 89	51
2682a	Sulfur in Coal, 0.5%, (also Heat of Comb.)	Apr 91	67	3156	Tellurium Spectro Soln.	Mar 90 Fab. 04	51 51
2683a 2684a	Sulfur in Coal, 2%, (also Heat of Comb.) Sulfur in Coal, 3%, (also Heat of Comb.)	Apr 91 Apr 91	67 67	3157a 3158	Terbium Spectro Soln. Thallium Spectro Soln.	Feb 94 Feb 89	51
2685a	Sulfur in Coal, 5%, (also Heat of Comb.)	Apr 91	67	3159	Thorium Spectro Soln.	Jan 89	51
2689	Coal Fly Ash	Nov 85	68	3160a	Thulium Spectro Soln.	Mar 94	51
2690	Coal Fly Ash	Nov 85	68	3161	Tin Spectro Soln.	May 88	51
2691	Coal Fly Ash	Nov 85	68	3162a	Titanium Spectro Soln.	Jan 93	51
2692a	Sulfur in Coal, 1%	Jul 94	67	3163	Tungsten Spectro Soln.	Nov 88	51
2712	Lead in Ref. Fuel	Nov 88	66	3164	Uranium Spectro Soln.	Feb 90	51
2713	Lead in Ref. Fuel	Nov 88	66	3165	Vanadium Spectro Soln.	Feb 90	51
2714	Lead in Ref. Fuel	Nov 88	66	3166a	Ytterbium Spectro Soln.	Feb 94	51 51
2715	Lead in Ref. Fuel	Nov 88 Feb 93	66 67	3167a 3168a	Yttrium Spectro Soln. Zinc Spectro Soln.	Jul 93 Oct 93	51
2717 2724	Sulfur in Residual Fuel Oil Sulfur in Diesel Fuel Oil, 0.04%	Jun 93	67	3169	Zirconium Spectro Soln.	Oct 88	51
2727	IM Gases, 3 Components	Feb 89	64	3171a	Multielement Mix A1 Soln.	May 93	51
2728	IM Gases, 3 Components	Feb 89	64	3172a	Multielement Mix B1 Soln.	Jan 93	52
2735	NO/N2, 800 µmol/mol	Dec 90	64	3179	Multielement Mixes I, II, III	Nov 93	52
2736	NO/N2, 2000 µmol/mol	Dec 90	64	3183	Fluoride Anion Soln.	Feb 93	53
2740	CO/N2, 10 mol %	Jan 91	64	8443	GC/MS System Performance	Mar 92	69
2741	CO/N2, 13 mol %	Jan 91	64	8466	Y-HCH (Lindane) (neat)	May 92	69
2764	C3H8/Air, 0.25 µmol/mol	Jan 94 May 97	64 50	8467 8469	4,4'-DDE (neat) Pesticide 4.4'-DDT (neat)	May 92 May 92	69 69
3101a	Aluminum Spectro Soln.	May 93	50 50	8469 8505	Pesticide, 4,4'-DDT (neat) Vanadium in Crude Oil	May 92 Jan 93	66
3102a 3103a	Antimony Spectro Soln. Arsenic Spectro Soln.	Jun 93 Jul 93	50	8505	Transformer Oil	Mar 92	67
3103a 3104a	Barium Spectro Soln.	Sep 93	50	8507	Mineral Oil	Mar 92	67
3104a	Beryllium Spectro Soln.	Jan 94	50	8570	LGCGM Calcined Kaolin (Sur. Area)	Apr 85	126
3106	Bismuth Spectro Soln.	May 88	50	8571	LGCGM Alumina (Sur. Area)	May 92	126
3108	Cadmium Spectro Soln.	May 90	50	8572	LGCGM Silica (Sur. Area)	May 85	126
3109a	Calcium Spectro Soln.	May 93	50	8590	High Sulfur Gas Oil Feed	Dec 91	90
3110	Cerium Spectro Soln.	Apr 89	50	8759	ICTAC Set DTA	Aug 93	100
3111a	Cesium Spectro Soln.	Jul 93	50	8760	ICTAC Set DTA	Aug 93	100

Fig. 1014 ARTMENT OF COMMERCE Feelmining administration comment instance of Scatterials and Echnology Standard Reference Materials Program Fig. 11, Fig. 10, and 15, and 20, ad

Reson and Forwarding Presage for santeed Administry Concession Responsed Observations on Parallel on Presa (ISC 2000) BULK RATE BOUND PRINTED MATTER POSTAGE AND FEES PAID NIST PERMIT NO. G195

CeO₂

