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Foreword

Since its inauguration in 1901, the National Institute of Standards and Technology (NIST), formerly the

National Bureau of Standards (NBS), has issued nearly 2000 different Standard Samples or Standard

Reference Materials © (SRMs). Many of these have been renewed several times; others have been replaced

or discontinued as technology changed. Today, over 1000 SRMs are available, together with a large number

of scientific publications related to the fundamental and applied characteristics of these materials. Each

material is certified for chemical composition, chemical properties, or its physical or mechanical

characteristics. Each SRM is provided with a Certificate or a Certificate of Analysis that contains the

essential data concerning its properties or characteristics. The SRMs currently available cover a wide range

of chemical, physical, and mechanical properties, and a corresponding wide range of measurement interests

in practically all aspects of fundamental and applied science. These SRMs constitute a unique and invaluable

means of transferring to the user accurate data obtained at NIST, and provide essential tools that can be used

to improve accuracy in practically all areas where measurements are performed.

In addition to SRMs, NIST issues a variety of Reference Materials (RMs) which are sold, but not certified,

by NIST. They meet the International Standards Organization (ISO) Guide 30-1981 (E) definition for RMs,

and many meet the ISO definition for Certified Reference Materials (CRMs). The documentation issued with

these materials is either (1) a "Report of Investigation," or (2) a "Certificate," issued by the certifying agency

(other than NIST), e.g., other national laboratories, other government agencies, other standardizing bodies,

or other non-profit organizations. Reference Materials are intended to further scientific or technical research

on particular materials. The principal consideration in issuing RMs is to provide a homogeneous material

so that investigators in different laboratories are assured that they are investigating the same material. When
deemed to be in the public interest and when alternate means of national distribution do not exist, NIST acts

as the distributor for such materials.

Further information on the reference materials available from NIST may be obtained from the Standard

Reference Materials Program, National Institute of Standards and Technology, Gaithersburg, MD 20899.

Information on other NIST services may be obtained from Technology Services, National Institute of

Standards and Technology, Gaithersburg, MD 20899. NIST provides a number of additional services, that

include: Calibration and Related Measurement Services, National Standard Reference Data, Accreditation

of Testing Laboratories, National Center for Standards and Certification Information, Weights and Measures

Program and Proficiency Sample Programs.
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Preface

Standard Reference Materials (SRMs) as defined by the National Institute of Standards and Technology

(NIST) are well-characterized materials, produced in quantity and certified for one or more physical or

chemical properties. They are used to assure the accuracy and compatibility of measurements throughout

the nation. SRMs are widely used as primary standards in many diverse fields in science, industry, and

technology, both within the United States and throughout the world. They are also used extensively in the

fields of environmental and clinical analysis. In many applications, traceability of quality control and

measurement processes to the national measurement system is carried out through the mechanism and use

of SRMs. For many of the Nation's scientists and technologists, it is therefore of more than passing interest

to know the details of the measurements made at NIST in arriving at the certified values of the SRMs
produced. The NIST Special Publication 260 Series is a series of papers reserved for this purpose.

The 260 Series is dedicated to the dissemination of information on different phases of the preparation,

measurement, certification, and use of NIST SRMs. In general, much more detail will be found in these

papers than is generally allowed, or desirable, in scientific journal articles. This enables the user to assess

the validity and accuracy of the measurement processes employed, to judge the statistical analysis, and to

learn details of techniques and methods utilized for work entailing greatest care and accuracy. These papers

also should provide sufficient additional information so SRMs can be utilized in new applications in diverse

fields not foreseen at the time the SRM was originally issued.

Inquiries concerning the technical content of this paper should be directed to the author(s). Other questions

concerned with the availability, delivery, price, and so forth, will receive prompt attention from:

Standard Reference Materials Program

Building 202, Room 204

National Institute of Standards and Technology

Gaithersburg, MD 20899

Telephone: (301)975-6776

FAX: (301) 948-3730

Thomas E. Gills, Chief

Standard Reference Materials Program
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Abstract

Thermal conductivity measurements at room temperature are presented as the basis for certified values of

thermal resistance for SRM 1450c, Fibrous Glass Board. The measurements have been conducted in

accordance with a randomized full factorial experimental design with two variables, bulk density and

temperature, using NIST's one-meter line-heat-source guarded-hot-plate apparatus. Uncertainties of the

measurements, consistent in format with current international guidelines, have been prepared. The thermal

conductivity was measured over ranges of bulk density from 150 kg/m^ to 165 kg/m^ and mean

temperature from 280 K to 340 K. Statistical analyses of the physical properties from the SRM are presented

and include variations between boards, as well as within board. Material characterization, including the

material's microstructure, is presented. Results are compared to data from previous material lots of the SRM
1450 Series as well as to data from an international round robin of guarded-hot-plate apparatus.

Keywords

building technology; calibration; density; fibrous glass board; guarded hot plate; heat flow meter;

interlaboratory; round robin; standard reference material (SRM) 1450; thermal conductivity; thermal

insulation; uncertainty
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1. Introduction

A Standard Reference Material (SRM) is a homogeneous and stable material which is measured

accurately and certified as a reference material for purposes of evaluating a measurement process [1].

Thermal insulation SRMs provide certified values of thermal conductivity and resistance over a

range of parameters, such as density and temperature. SRMs are intended primarily as a method for

providing measurement assurance to user communities; for example, assistance in the calibration

of heat-flow-meter apparatus and operation of guarded-hot-plate apparatus (ASTM Test Methods

C 518 and C 177, respectively). The systematic use of common SRMs, including proper tracking

with control charts, provides a means for accurate interlaboratory comparison of thermal

conductivity data.

The development of SRMs in the United States has traditionally been one of the primary functions

of the National histitute of Standards and Technology (NIST). In June 1995, the NIST Standard

Reference Materials Program (SRMP) requested that the Building and Fire Research Laboratory

initiate a research program to renew SRM 1450b, Fibrous Glass Board. The request for a renewal,

now designated as SRM 1450c, was based on the relatively high demand for the SRM 1450 Series.

Typically, sales of SRM 1450b averaged about 30 units annually. Like the previous lots of the SRM
1450 Series, the principal purpose for SRM 1450c was to assist industry in improving the acceptable

accuracy of their processes for the measurement of thermal transmission properties of heat insulators

under steady-state conditions.

Since the previous lot, SRM 1450b, had been characterized in the early and mid-1980's, SRMP
requested an assessment of the current needs of industry by written questionnaire. Based on the

responses, NIST procured a new lot of fibrous glass insulation boards from the same manufacturer

of previous lots. Thermal conductivity measurements were conducted using the NIST one-meter

line-heat-source guarded-hot-plate apparatus. Characterization of material properties was performed

by the Building Materials Division and Polymers Division at NIST. This report describes the

historical background of the SRM 1450 Series, assessment of industry's needs, material

characterization, thermal conductivity measurements, regression analyses, certified values of thermal

resistance, and uncertainty analyses of SRM 1450c.

2. Background

Historically, NIST has provided high-density fibrous glass insulation board as a reference material

since 1958, purchasing separate lots of material designated by the year of acquisition. Thermal

resistance measurements of the first four lots (1958, 1959, 1961, and 1970) were described by Siu

[2]. In 1977, ASTM Committee C-16 on Thermal Insulation published a position paper [3]

advocating the development of a Standard Reference Material (SRM) approach for proficiency in

a proposed thermal accreditation program. In response, NIST established SRMs 1450 and 1450a

using the remaining materials from the above internal lots. These first two SRMs were rapidly

depleted due to limited stockpiles and two additional lots (1980 and 1981) were acquired for SRM
1450b. The thermal characterization of SRM 1450b was accomplished at NIST laboratory facilities

in Gaithersburg, Maryland and Boulder, Colorado as described by Hust [4]. Table 1 summarizes the

chronology of the SRM 1450 Series.
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Table 1

Chronology of the SRM 1450 Series, Fibrous Glass Board

SRM Issued

Thickness

(mm)
Bulk Density

(kg/m^)

Temperature

(K)

SRM 1450 26 May 1978 25.4 100 to 180 255 to 330

SRM 1450a 12 Feb 1979 25.4 60 to 140 255 to 330

SRM 1450b(I) 21 May 1982 25.4 note 150 260 to 330

SRM 1450b(II) 20 May 1985 25.4 note 150 100 to 330

SRM 1450c new (1997) 25.4 150 to 165 280 to 340

3. Questionnaire Results

In August 1995, a questionnaire requesting industry's input for SRM 1450c was mailed to 433

individuals assembled from the mailing rosters of ASTM Committee C-16 and the Standard

Reference Material Program (SRMP). The recipients were asked to provide information on their

measurement process including their measurement application, uncertainties, temperature range,

specimen size, etc., and the requirements desired for SRM 1450c. Copies of the questionnaire and

responding individuals and companies are provided in Appendix A. Forty-six (11 percent) of the

questionnaires were returned before the deadline, which is fairly typical for similar mailings

conducted by SRMP. The results were compiled and presented at the autumn meeting of the

ASTM Committee C-16 Reference Materials Task Group in Providence, Rhode Island on October

3, 1995. A brief summary is provided below.

Sixteen of the 46 responses indicated that the recipient did not use SRM 1450, 1450a, or 1450b as

part of their normal business activities. Those responses were subsequently discounted and only the

statistical information from the remaining 30 questionnaires (hereafter identified as users) was

included in the analysis. The majority of the 30 users were from either thermal insulation

manufacturers or thermal testing companies, Figure la. The most common test methods were

ASTM Test Methods C 518 and C 177, Figure lb, and the most common test sizes were 305 mm
and 610 mm square. Figure Ic. Interestingly, most of the users indicated that their measurement

process was uncertain by less than 2 percent. Figure Id. Several users indicated a wide range of

thickness and temperature for their measurement process, Figures 2a and 2b, respectively.

Concerning the requirements for SRM 1450c, most users desired specimens having dimensions

consistent with previous SRMs; that is, 610-mm square and 25.4-mm thick. Figures 3a and 3b,

respectively. The desired temperature range was, for the most part, within the operating range of the

NIST one-meter guarded-hot-plate apparatus, as illustrated in Figure 3c. The requests for extremely

high temperatures were not possible, given an upper binder limit of approximately 200 °C for the

material. Requests for extremely low temperatures (-150 °C) were, unfortunately, not possible with

the current apparatus. Given the favorable approval of SRM 1450b, it was not unexpected that most

users requested SRM 1450c be stockpiled within one to two years or sooner. Figure 4a. The majority

of users also requested the same (nominal) bulk density, thermal conductivity, and manufacturer as

for previous lots. Figures 4b and 4c.
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4. Material Properties

This section describes the material properties of the fibrous glass thermal insulation, including the

production of the material, statistical summary of the lot, inhomogeneities between and within board,

thermogravimetry of the binder content, microstructure, compressive strength, and sorption isotherm.

The sorption isotherm had been developed previously at NIST for similar commercial glass-fiber

insulation.

Production ofMaterial (Lot 1996)

In May of 1996, NIST procured 130 boards of high-density fibrous glass thermal insulation from

Owens Coming', designated internally as Lot 1996. The nominal dimensions of the boards, as

purchased, were 1220 mm x 1220 mm x 25 mm thick, and the nominal density was 160 kg/m^

(10 Ib/ft^). The material was manufactured by molding glass-fiber "pelts"and binder to produce a

semi-rigid board. The fibers were oriented such that the lengths were essentially parallel to the board

faces. The glass fibers were an alkali-alkaline alumino-borosilicate glass bound with a phenyl-

formaldehyde binder, commonly referred to as "phenolic binder." After delivery, the boards were

placed in a storage laboratory maintained at 21 °C to 26 °C and relative humidity that ranged from

45 percent to 60 percent.

Statistical Summary ofPhysical Properties

In order to select the test specimens for this study, it was necessary to determine the mass, physical

dimensions, and bulk density of each board. Measurements of all 130 boards were completed in 2

days. Table 2 gives summary statistics for the mass, length, width, thickness, and bulk density of

the 130 boards. During this investigation, five boards were noted as either damaged (2) or

anomalous (3) and were subsequently removed from the lot.

Table 2

Summary Statistics for Fibrous Glass Boards, Lot 1996 (n = 130)

Mass

(g)

Length

(mm)
Width

(mm)
Thickness

(mm)

Bulk

Density

(kg/m^)

Average 5895.4 1219.7 1219.7 25.36 156.34

Std. Dev. 91.5 0.5 0.5 0.05 3.64

Maximum 6058 1221 1221 29.0 162.7

Minimum 5085 1218 1218 24.5 136.3

' Certain commercial equipment, instruments, or materials are identified in this report to specify

adequately the experimental procedure. Such identification does not imply recommendation or

endorsement by NIST, nor does it imply that the materials or equipment are necessarily the best for

the purpose.
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Variations Among Boards

Variations in the data for thickness and bulk density from board to board were analyzed graphically

using a four-step method. The method consisted of (1) a run-sequence plot that checked for

systematic and random changes; (2) a lag plot that checked for randomness; (3) a histogram that

checked the frequency distribution; and, (4) a normal probability plot that checked for the normality

assumption. These plots are useful in checking the underlying statistical assumptions in Table 2.

Examples of the method are illustrated in Figures 5 and 6 for the board thickness and bulk density,

respectively.

The thickness data in Figure 5 were taken at only a single point for this comparison. Two boards,

075 and 128, were found to contain a distended area resulting in a localized high thickness reading

(Figure 5a). These boards were subsequently removed from the lot. The data in Figure 5 reveal that,

with the exception of six boards of thickness greater than 26 mm, the thicknesses of the 130 boards

are, in general, very consistent from board to board. The distribution of thicknesses is random, as

shown by the tight cluster ("bull's-eye") of data points in the lag plot. Further, the distribution is

normally distributed, as shown in the histogram and normality plot, about a mean value of 25.36 mm
(see Table 2 for summary statistics). The relative standard deviation for the lot was 2.0 percent of

the mean.

The bulk density data in Figure 6 were computed from single-point dimensional measurements and

the mass of the board. The plots in Figure 6 revealed that board 013 had a very low bulk density due

to an anomalously low mass. Consequently, board 013 was also removed from the lot. (Incidently,

two other damaged boards, 045 and 130, were also removed.) The remainder of the data in Figure 6,

however, appears quite consistent from board to board. The lag plot, excluding the low densities,

reveals a random distribution of data points. The distribution of the data is normally distributed, as

shown in the histogram and corresponding normality plot, about a mean of 156 kg/m^ (9.8 Ib/ft^).

The relative standard deviation for the lot was 2.3 percent.

Variations Within a Board

The variation in density with respect to position within a board was examined by dividing board 130,

(damaged during shipping) into 36 equal-size sections, each nominally 203 mm square. The bulk

density of each 203 mm section was determined and the data were examined using the plots shown

in Figure 7. The data, for the most part, are randomly distributed about a mean of 153.9 kg/m^

(9.6 Ib/ft^) and the relative standard deviation for the board was 3.8 percent. This value is,

unfortunately, somewhat higher than the relative standard deviation for the lot, indicating a greater

variability within board than between boards. The variation of bulk density within board 130 is

illustrated with the contour plot shown in Figure 8. The contour plot reveals variations across the

board, ranging from 146 kg/m' to 164 kg/ml For these 203 mm square sub-samples, variations of

this magnitude are not unexpected. Grimes [5] found similar variations in sub-samples of SRM
1450b. This within-board variation in density should not affect the (average) thermal conductivity

of a board by more than 1 percent, as noted in Section 8. The source of the within-board variation

in density was investigated below.
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Binder Content Analysis

The upper temperature limit of the phenolic binder was investigated by the NIST Polymers Division

using thermogravimetry (TG). Six specimens, nominally 2 mm in diameter and 2 mm thick, were

prepared from a sample of fibrous glass board, approximately 25 mm square. The masses of the

specimens ranged from 3.169 mg to 7.052 mg. Each specimen was heated individually in an

environment of air from room temperature to 800 °C at a rate of 10.0 °C per minute. The mass loss,

in percent, of each specimen is plotted in Figure 9. The specimens gradually lost about 2 percent

mass at 100 °C, presumably due to desorption of water vapor or other volatile compound(s). Above

200 °C, the mass loss was appreciable (Figure 9) and was most likely due to the chemical breakdown

of the phenolic binder (and other organic compounds). For this reason, the upper temperature limit

for the SRM was taken to be 200 °C (473 K). At 600 °C, all organic matter (i.e., binder) had been

burned away, and only the glass fibers remained. The fractional mass loss (i.e., binder content) for

the specimens ranged from 19.5 percent to 30.7 percent. This large variation was probably due, in

part, to the small specimen size. In general, a larger specimen (e.g., 100 mm x 100 nmi x 25 mm)
is typically used to measure the binder content and the average binder content for this material would

be expected to average between 15 percent and 20 percent by mass [6].

Microstructure

The microcellular structure of the fibrous glass board was examined using a scanning electron

microscope (SEM). Two small samples, showing the surface and cross-section views of the

material, were cut from one board with a razor blade and sputter-coated with gold film, 20 nm thick,

to prevent surface charging. Secondary electron images of the surface topography were obtained

under operating conditions of 12 keV and a current of about 500 pA. Two images of the surface and

cross-section views at a magnification of 75x are shown in Figures 10a and 10b, respectively. Note

that in Figure 10a (surface view) the fibers are randomly oriented, and there is evidence of small

globs of binder between some of the fibers. Figure 10b (cross-section) shows the stacked layers of

glass fiber perpendicular to the direction of heat flow. The diameter of the fibers was estimated to

be approximately 10 |Lim. The average fiber diameter expected for this material would be 6 |im to

8 |im on average as determined by air-flow resistance and micro-projection measurements [6].

Compressive Strength

The compressive resistance was determined in accordance with ASTM Test Method C 165 [7],

Procedure B, using a universal testing machine. Seven cylindrical specimens, nominally 100 mm
in diameter by 25 mm thick, were cut from board 130 and conditioned at ambient laboratory

conditions of 22 °C. The average bulk density of the seven specimens was 153.7 kg/m^ The testing

machine was operated at a cross head speed of 1 mm/min and data were collected at a rate of 50

points per second. Using the data from the load-deformation curve for each specimen, the

compressive resistance was determined by:

s '- y (1)
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Figure 10. Microstructure of SRM 1450c, Fibrous Glass Board (a) surface

(b) cross-section view.
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where

W = compressive load at a given deformation and,

A = original (undeformed) area, m^.

The average compressive resistances for the specimens at deformations of 10 percent and 25 percent

were 61 kPa and 157 kPa, respectively. The load-deformation curve departed from linearity at

deformations above 28 percent. For thermal transmission testing, a small deformation of the

specimen is required, typically on the order of 1 percent, in order to ensure proper thermal contact.

Based on the compressive strength data, deformation of the SRM should not exceed 10 percent in

order to prevent mechanical damage.

Sorption Isotherm

Sorption isotherms for a similar commercial glass-fiber insulation board had been determined by

NIST in a previous set of experiments [8]. The moisture content of the glass-fiber insulation was

determined using fixed-point humidities provided by aqueous salt solutions and desiccant drying,

as opposed to oven drying. The masses of the specimens were determined at weekly time intervals

until stable. Further details are available in Reference [8]. The sorption isotherm for the glass-fiber

insulation is illustrated in Figure 1 1 . The results are consistent with the analysis of the binder

content. At typical laboratory conditions of 21°C and 50 percent relative humidity, the moisture

content was less than 1 percent.

5. Specimens

The selection of test specimens was based on a full factorial experimental design (described later)

that required three nominal levels of density. The intent was to reduce the possibility of the user

having to extrapolate outside the range of values of bulk density provided in the Certificate for SRM
1450c. Based on the measurements of between-board density above, 30 boards were selected from

Lot 1996 as follows: five pairs having the lowest density; five pairs about the median density; and,

five pairs having the highest density. Using a sharp knife and metal template, one specimen,

1016 mm in diameter, was cut from the center of each board. ASTM Test Method C 177 [9]

recommends that, whenever possible, the bulk density of the specimen be determined for the volume

corresponding to the meter area of the test apparatus. In view of the within-board variability noted

above, this recommendation was particularly appropriate. A 406-mm diameter cylinder,

corresponding to the meter area of the apparatus, was cut from the center of each specimen and

conditioned at nominal laboratory conditions of 24 °C and 50 percent relative humidity. The bulk

densities for all 30 cylinders were determined, and the specimens were rank ordered by meter-area

bulk densities. Table 3. The grand average and standard deviation were 159.6 kg/m^ and 4.71 kg/m^,

respectively. The bulk densities ranged from 149.4 kg/m^ to 167.3 kg/m^ which was approximately

the same range for Lot 1996 (Figure 6).
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Table 3

Specimens Rank Ordered by Bulk Density of Meter Area (Laboratory Conditions)

Nominal

Density ID ID
Meter Area

Bulk Density 1

Meter Area

Bulk Density 2 Difference

Pair Level 2 (kg/m^) (kg/m^) (%)

1 Low 77 97 151.2 149.4 1.2

2 Low 70 82 153.3 151.6 1.2

3 Low 67 93 155.8 156.2 -0.2

4 Low 71 92 156.8 156.7 0.1

5 Low 104 109 157.5 156.8 0.4

6 Mid 35 101 157.9 157.6 0.2

7 Mid 66 108 158.3 158.1 0.1

8 Mid 51 118 159.3 159.5 -0.1

9 Mid 7 53 160.5 159.9 0.4

10 Mid 38 63 161.3 161.0 0.2

11 High 91 117 163.4 162.1 0.8

12 High 23 59 163.5 163.8 -0.2

13 High 18 25 164.6 163.9 0.4

14 High 16 57 165.9 166.5 -0.4

15 High 15 124 167.3 166.8 0.3

6. Experimental

Measurements of thermal conductivity of the fibrous-glass specimens were determined in accordance

with ASTM Test Method C 177 [9] using NIST's one-meter guarded-hot-plate apparatus. Each pair

of specimens was measured once in a fully randomized sequence in order to minimize the

introduction of bias in the test results. The measurements were generally completed in one to two

days. This section describes the measurement procedure, uncertainties, and experimental design.

Measurements of Thermal Conductivity

A schematic of the NIST one-meter line-heat-source guarded-hot-plate apparatus is shown in

Figure 12. The apparatus has been described previously [10,1 1] and its operation is summarized

briefly here. Two specimens having nearly the same density, size, and thickness are placed on the

two sides of the guarded hot plate and clamped securely by the circular cold plates. Ideally, the

guarded hot plate and cold plates provide constant-temperature boundary conditions to the surfaces

of the specimens. With proper guarding in the lateral direction, the apparatus is designed to provide
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one-dimensional heat flow (Q) through the meter area of the pair of specimens. Additional guarding

was provided by a temperature-controlled environmental chamber that enclosed the test plates. In

this case, the ambient temperature was maintained at the same value as the mean temperature (T) of

the hot and cold plates.

During testing, data for Q and the plate temperatures were collected every two minutes. Thermal

equilibrium for the apparatus was attained when the plate temperatures were in a state of statistical

control within 0.05 K of their target temperatures and Q was also "in control." This means that

values for the plate temperatures and Q fluctuated randomly about a fixed level and the variation in

fluctuations was also fixed. Steady-state data were collected for 4 h and averaged for the interval.

Measurements of (apparent)^ thermal conductivity (A) for the pair of specimens were determined in

accordance with ASTM Test Method C 177 [9] using the following equation:

e = ^Af, (2)

where

Q = heat flow through the meter area of the specimens, W;
A = meter area normal to direction of heat flow, m^;

Ar = Tf, - T^, temperature difference across specimens, K;

= hot plate temperature, K;

= cold plate temperature, K; and,

L = thickness of specimens measured in situ, m.

Values of X. were reported at the mean temperature (T) of the hot and cold plates, T= V2(Tf^ + TJ. In

order to minimize the effect of moisture, the specimens were conditioned in an oven at 90 °C for a

minimum of 16 h prior to testing. During testing, dry air was continuously injected into the

environmental chamber decreasing the relative humidity to 15 percent or less, depending on the

ambient dry bulb temperature (TJ. At the conclusion of each test, the specimen masses were

measured. The maximum regain in mass was determined to be no more than 0.5 percent.

The effect of the meter-area incision was examined with a separate series of thermal conductivity

tests. A pair of specimens was initially tested in the guarded-hot-plate apparatus before the meter

area was cut. After cutting the meter area, the pair of specimens was retested in the guarded-hot-

plate apparatus at the same conditions. The difference in the initial and final thermal conductivities

was quite small, less than 0.05 percent, and was subsequently neglected.

^ The thermal transmission properties of heat insulators determined from standard test methods

typically include several mechanisms of heat transfer, including conduction, radiation, and possibly

convection. For that reason, some experimentalists will include the adjective "apparent" when
describing thermal conductivity of thermal insulation. However, for brevity, the term thermal

conductivity will be used in this report.
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Measurements ofBulk Density

The bulk densities (p) of the 406-mm-diameter meter area were determined in accordance with

ASTM Test Method C 177 [9] by dividing the mass (m) of the cylinder by its corresponding volume

(V), or:

m

The mass was obtained by using a precision balance having a sensitivity of 0. 1 g. The diameters of

the cylinders were measured at two locations using a steel rule having a resolution of 0.5 mm. The

thickness for the 406-mm diameter was averaged from five measurements taken on a granite flat i

table with a precision caliper, 0.1 mm resolution.

Uncertainty in Measurements

The measurement uncertainties for thermal conductivity, mean temperature, and bulk density were

derived in accordance with current ISO guidelines [12,13] and are described in Appendices B and C,

respectively. The standard uncertainties for the thermal conductivity, mean temperature, and bulk

density were 0.00020 W/(m-K), 0.034 K, and 0.72 kg/m^ respectively. These standard uncertainties

were included in the combined standard uncertainty for predicted values of thermal conductivity,

uJ^X), as described in Section 9.

Design

Based on previous experience [2,4], a model for thermal conductivity (A) as a function of bulk density

(p) and mean temperature {T) was assumed to be

A(p,r) = + ajp + aj' + a^T^- + aj'\ (4)

In order to check the adequacy of eq (4), a full factorial design with 3 levels for p and 5 levels for T
was selected. Table 4. This design also allowed checking for the necessity of: a quadratic term for

p, a fourth-order term for T, and/or a cross-product term for p and T in order to model the data.

Table 4

Full Factorial (3 by 5) Experimental Design-Replicates, (Sequence)

Density

Level

Temperature Level (K)

280 295 310 325 340

High 1,(15) 1,(04) 1,(05) 1,(14) 1,(10)

Mid 1,(07) 1,(13) 1,(09) 1,(01) 1,(12)

Low 1,(06) 1,(11) 1,(02) 1,(08) 1,(03)
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7. Results

Meter-Area Bulk Density

The 15 pairs of specimens were tested in the guarded-hot-plate apparatus following the test sequence

given in Table 5, which randomized both independent variables, T and p. The top and bottom

specimens were identified with subscripts 1 and 2, respectively. The meter-area bulk density was

determined at the conclusion of each test and the average meter-area bulk density was computed for

each pair of specimens. The average moisture regain for the 30 specimens was 0.4 percent (12 g).

The average meter-area bulk densities ranged from 149.4 kg/m^ to 166.0 kg/m^.

Table 5

Final Meter Area Bulk Densities for SRM 1450c Specimens

lest

Sequence

lest

Number
T
(K)

Nominal

P ID.
Pi

(kg/m^) ID,
P2

(kg/m^)

Average

P

1 96-008A 325 M 7 159.5 53 158.9 159.2

2 96-009A 310 L 70 152.3 82 150.7 151.5

3 96-01OA 340 L 67 154.7 93 155.0 154.8

4 96-011

A

295 H 18 163.5 25 163.0 163.2

5 96-012A 310 H 23 162.3 59 162.8 162.6

6 96-0 13A 280 L 71 155.9 92 155.7 155.8

7 96-014A 280 M 51 158.4 118 158.5 158.5

8 96-015A 325 L 77 150.4 97 148.4 149.4

9 96-016A 310 M 38 160.2 63 160.0 160.1

10 96-017A 340 H 16 164.6 57 165.2 164.9

11 96-0 18A 295 L 104 156.4 109 155.7 156.1

12 96-019A 340 M 35 156.7 101 156.3 156.5

13 96-020A 295 M 66 157.2 108 157.1 157.1

14 96-021

A

325 H 91 162.2 117 160.7 161.5

15 96-022A 280 H 15 166.3 124 165.7 166.0

Thermal Conductivity

Table 6 summarizes the experimental test conditions and measured thermal conductivity (X) for each

pair of specimens. Note that an extra digit is provided for X to reduce rounding errors. Each test was

conducted with heat flow in the vertical direction and a temperature difference of 20 K across the

specimens. During a test, the ambient temperature (TJ of the air surrounding the specimens was

maintained at the same value of the mean temperature (7) by means of a temperature-controlled

environmental chamber. The ambient air pressure (P^) was not controlled, but varied with barometric

conditions. The relative humidity (RH) varied with the chamber's dry-bulb temperature.
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Several parameters in Table 6 indicate the "average" value for the top and bottom specimen, i.e., bulk

density (p), thickness (L), clamping load, etc. The average thickness (L) was determined from in-situ

measurements of the top and bottom plate separation. The grand average of the test thicknesses was

25.33 ± 0.22 mm (one standard deviation. Is). The grand average of the clamping loads was 475 ±

217 N (Is) which varied from test to test (Table 6) due to the thermal expansion and contraction of

the specimens and the apparatus. The maximum clamping pressure of 1 kPa (Table 6) was well

below the compression limit established in Section 4.

Table 6

Thermal Conductivity Measurements ofSRM 1450c

Test

T
(K)

Pavg

(kg/m') (mm)
Load*

(N)

T,

(K)

P.

(kPa)

RH
(%)

Th

(K)

Tc,avg

(K)

X

(W/(m-K))

1 325 159.2 25.07 648 325.2 100.48 <5 335.15 315.15 0.03679

2 310 151.5 25.88 458 310.2 100.90 <5 320.15 300.15 0.03439

3 340 154.8 25.39 850 340.2 100.63 <5 350.15 330.15 0.03777

4 295 163.2 25.15 359 295.2 101.34 <10 305.15 285.15 0.03340

5 310 162.6 25.27 321 310.2 101.14 <10 320.15 300.15 0.03499

6 280 155.8 25.51 72 280.2 100.40 15 290.15 270.15 0.03143

7 280 158.5 25.16 430 280.1 100.46 14 290.15 270.15 0.03166

8 325 149.4 25.09 626 325.2 100.10 <5 335.15 315.16 0.03597

9 310 160.1 25.29 479 310.2 101.60 <5 320.15 300.15 0.03534

10 340 164.9 25.35 770 340.2 101.24 <5 350.15 330.15 0.03828

11 295 156.1 25.42 200 295.2 100.87 <10 305.15 285.15 0.03297

12 340 156.5 25.01 701 340.2 100.69 <5 350.15 330.15 0.03798

13 295 157.1 25.39 308 295.2 100.67 <10 305.15 285.14 0.03272

14 325 161.5 25.42 543 325.2 101.03 <5 335.15 315.16 0.03648

15 280 166.0 25.55 352 280.2 100.39 14 290.15 270.15 0.03199

*Plate Surface Area = 0.81 1 ml

8. Analysis

Multiple Variable Regression Analysis

The thermal conductivity (A) as a function of specimen bulk density (p) and mean temperature (T)

is shown in Figures 13a and 13b, respectively. Both plots show a positive correlation for A and the

independent variables. That is, X increased (linearly) with increasing levels of p or T, although the

change with respect to p was small (Figure 13a) in comparison to the effect of T (Figure 13b). There

were, however, small inconsistencies in the data. As noted in Figure 1 3a, the change in A, was not

monotonic for some temperature levels. For example, at 325 K the value of A for the highest density

specimen was lower than the value of X for the mid-density specimen. These inconsistencies were
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also present in Figure 13b where, for a given temperature, the data points were not necessarily

arranged from the lowest to highest density. The cause of the variabilities was unknown but most

likely was due to between-specimen variability such as localized density variations, noted above.

The data for the bulk density, mean temperature, and corresponding value of thermal conductivity

were fit to the A(p,7) model, eq (4), by a multiple variable regression analysis. Higher order

temperature terms were determined to be statistically insignificant, and so a final form, linear in p and

T, was acceptable. The final model is

X = -7.7663x10-3 + 5.6153xlO-5p + 1.0859x10-^7. (5)

The last digit of each coefficient is provided to reduce rounding errors. It is interesting to note that

the prediction models for all previous lots of the SRM 1450 Series included a nonlinear term for

temperature [2,4]. These previous lots (Table 1) were characterized using different guarded-hot-plate

apparatus, a larger temperature range, particularly for SRM 1450b, and different experimental designs

from that of the current study. In this study, higher-order temperature terms in the model did not

improve the results of the curve fit. The author acknowledges that, for a larger temperature range,

the above model is probably unacceptable. For this reason, the author strongly advises against

extrapolation of the model beyond the temperature range of this study, 280 K to 340 K.

The residual standard deviation for the above fit was 0.000205 W/(m-K) which is quite small. The

adequacy of the fit was further examined by plotting the individual deviations (6) from the model as

defined by

6 - k - X. (6)

Individual deviations versus p and T are shown in Figures 14a and 14b, respectively. The data in

Figures 14a and 14b do not indicate any trends in the deviations, signifying a satisfactory fit. The

majority of the deviations were within ± 0.00025 W/(m K) of the measured values. The relative

standard deviation multiplied by 2 for the fitted model was 1 . 1 percent. For comparison, the relative

standard deviation multiplied by 2 for the fitted model of SRM 1450b was 1.5 percent [4].

The standard uncertainties (u(X)) for predicted values of thermal conductivity were derived in

accordance with international guidelines [12,13]. In general, values of u(X) increased near the

extreme values (upper and lower) of p and T. That is, the further away from the median values of p
and T, the lower the precision of the model. A maximum value of 0.00014 W/(m-K) at 150 kg/m^

and 280 K was selected as a conservative estimate for the standard uncertainty of X

.

Comparison to Interlaboratory Results and the SRM 1450 Series

Recently, NIST has submitted for publication [14] the results of an international round robin

conducted under the auspices of the International Organization for Standardization (ISO) Technical

Conmiittee TC 163 (Thermal Insulation). Test specimens were cut from a similar lot of fibrous glass

board having a nominal bulk density of 164 kg/m^ and subsequently circulated to laboratories in
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Europe, North America, Asia, and Australia. The participating laboratories were requested to

measure the thermal conductivity at three mean temperatures of approximately 283 K, 297 K, and

313 K, using either guarded-hot-plate apparatus or heat-flow-meter apparatus.

The thermal conductivity data for the ISO Round Robin for North America and SRM 1450c are

plotted in Figure 15 as a function of bulk density and mean temperature. The round robin data from

NIST, which were determined in 1984 with the same apparatus used in this study (but with a different

operator), are shown as triangles. The agreement among the sets of data is quite good, although the

data for SRM 1450c appear to be somewhat lower than previous NIST data at temperatures of 280 K
and 295 K (Figure 15b).

Using the regression models obtained for the ISO Round Robin [14] and the SRM 1450 Series, the

predicted thermal conductivities of these lots were compared over the temperature range of 255 K to

340 K. The bulk density was fixed at 160 kg/m^ which was the approximate average of SRM 1450c

(Table 2). Unfortunately, the selection of this value for density required extrapolating for the models

for SRMs 1450a and 1450b (Table 1). The most general model for these lots of materials was taken

fromHust [4]:

X(p,T) = bQ+ b^p + + b^T^ + b^exp (7)

The regression coefficients for the models for the ISO Round Robin and the SRM 1450 Series are

summarized in Table 7.

Table?

Regression Coefficients for the ISO Round Robin [14] and SRM 1450 Series

ISO R.R. & SRM bo bj b2 bs b.

ISO Round Robin 9.578x10"^ 2.650x10-' 4.570x10-5 2.552x10"^° 0

SRM 1450 1.7062x10-2 3.648x10-5 0 4.037x10-'° 0

SRM 1450a 1.930x10-2 1.534x10-5 0 4.256x10-1° 0

SRM 1450b(I) 1.645x10-^ 2.2122x10-5 9.2087x10-5 1.0753x10-'° 0

SRM 1450b(II) -2.228x10-^ 2.743x10-5 1.063x10-^ 6.473x10-'' 1.157x10-^

SRM 1450c -7.7663x10-^ 5.6153x10-5 1.0859x10"* 0 0
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Figure 16 plots predicted values of thermal conductivity for p = 160 kg/m^ as a function of mean
temperature for the ISO Round Robin and the SRM 1450 Series. The differences between predicted

values for SRM 1450c and predicted values for the other lots of materials are illustrated in Figure 17.

In general, the differences between predicted values for SRM 1450c and 1450, 1450a, and the ISO

Round Robin were less than 2 percent; for 1450b, less than 7 percent. The major source for the

differences can most likely be attributed to variations among the different lots of materials. For

example, Hust [4] previously attributed the difference noted in predicted values for SRM 1450b to

a variation in binder content and possible variations in fiber diameter and orientation. Further work

is required to determine variations due to different test equipment or operator effects.

9. Certified Values of Tliermal Resistance

Certified values of thermal resistance (R) for SRM 1450c were calculated for a (hypothetical)

25.4-mm-thick specimen using the following equation:

Predicted values of thermal conductivity (X) were computed from Equation (5). The value of

25.4 mm for L was selected to be consistent with the SRM 1450 Series. Certified values of R and

expanded uncertainties, as defined below, are given in Table 8 for bulk density and mean temperature

ranging from 1 50 kg/m^ to 1 65 kg/m^, and 280 K to 340 K, respectively.

li ll

Table 8

Certified Values of Thermal Resistance (in m^'K/W) of 25.4 mm Thick Specimen

Temperature

(K)

Bulk Density (kg/m^)

150 155 160 165

280 0.818 ±0.013 0.810 ±0.013 0.803 ±0.013 0.796 ±0.012

285 0.804 ±0.013 0.797 ±0.012 0.790 ±0.012 0.783 ±0.012

290 0.790 ±0.012 0.783 ±0.012 0.777 ±0.012 0.770 ±0.012

295 0.777 ±0.012 0.770 ±0.012 0.764 ±0.011 0.757 ±0.011

300 0.764 ±0.011 0.758 ±0.011 0.752 ±0.011 0.745 ±0.011

305 0.752 ±0.011 0.746 ±0.011 0.740 ±0.011 0.734 ±0.011

310 0.740 ±0.011 0.734 ±0.011 0.728 ±0.010 0.722 ±0.010

315 0.729 ±0.010 0.723 ±0.010 0.717 ±0.010 0.711 ±0.010

320 0.717 ±0.010 0.712 ±0.010 0.706 ±0.010 0.701 ±0.010

325 0.707 ±0.010 0.701 ±0.010 0.696 ±0.009 0.690 ±0.009

330 0.696 ± 0.009 0.691 ±0.009 0.686 ±0.009 0.680 ±0.009

335 0.686 ± 0.009 0.681 ±0.009 0.676 ± 0.009 0.671 ±0.009

340 0.676 ± 0.009 0.671 ±0.009 0.666 ± 0.009 0.661 ±0.009
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Restrictions and Precautions

The certified values of R in Table 8 are restricted to the measured ranges of bulk density, mean

temperature, thickness, and thermal conductivity presented herein. This means that certified values

of R are valid only over the density range of 150 kg/m' to 165 kg/m^, the temperature range of 280 K
to 340 K, and the thickness range of 24.9 mm to 25.6 mm, which was based on two times the standard

deviation of the thickness data in Table 6. Certified values of R are not valid when specimens of

SRM 1450c have been stacked to increase thickness; that is L»25.4 mm or, for that matter,

L«25.4 mm. As a final note, the boundary conditions of the user application must be comparable to

the (normal) emissivity, e, of the plate surfaces of the NIST guarded hot plate apparatus, e = 0.89.

With reasonable care, specimens of SRM 1450c should have an indefinite shelf life. The material

is only slightly sensitive to humidity and may be stored at laboratory conditions of approximately

2 1 °C and a relative humidity, up to 50 percent. For thermal testing, specimens must be in firm

contact with the apparatus plates but should not be compressed more than 2.5 mm (10 percent) of

their original thickness. The upper temperature of use for SRM 1450c is limited to the decomposition

point of the phenolic binder, approximately 200 °C (473 K). A lower temperature limit for SRM
1450c has not been established, but there is no known lower limit, in principle. The effect due to

changes in ambient atmospheric pressure is negligible as noted by Smith and Hust [15] for a similar

fibrous-glass material.

Uncertainty

The expanded uncertainty, U, for predicted values of k was obtained by multiplying the combined

standard uncertainty for predicted values of X.,u^{X)by a. coverage factor of A; = 2:

U(X) = ku^ih. (9)

The combined standard uncertainty, m^(^) was determined from the individual contributions of: (1)

the standard uncertainty for the regression analysis for X; (2) the standard uncertainty for the

measurement of X; and, (3) the standard uncertainties for the measurements of p and T. The

conservative estimate for the standard uncertainty for the regression analysis was 0.00014 W/(m-K)

(Section 8) and the standard uncertainty for the measurement of X was 0.00020 W/(m*K) as described

in Appendix B. The standard uncertainties for the measurements of p and T were 0.72 kg/m^

(Appendix C) and 0.034 K (Appendix B), respectively, which were propagated in eq (5) to yield a

standard uncertainty of 0.00004 W/(m'K). These individual contributions were combined to yield

a combined standard uncertainty u^{X)of 0.00025 W/(m-K) (k = 1). Therefore, the expanded

uncertainty for predicted values of X was 0.00050 W/(m-K) {k = 2). This estimate does not include

any estimates for uncertainties introduced by the user or long-term drifts in the material.

The expanded uncertainties, U, for certified values of R in Table 8 were based on the following

equation:

U(R) - kuiJR) = kflu^), (10)

31



where the sensitivity coefficient = -(0.0254/^^) and was obtained from eq (9). Note that

the sensitivity coefficient varies with X and therefore the standard uncertainties for R also vary,

as noted in Table 8. Consequently, the values of expanded uncertainty quoted in Table 8 are valid

only for the given hypothetical thickness of 25.4 mm (1 in.). The maximum expanded uncertainty

for R in Table 8 is ± 0.013 m^ KAV (k = 2) at 150 kg/m^ and 280 K, which, in relative terms, is

±1.6 percent. This value of relative expanded uncertainty compares quite well to the previous

published uncertainty values of ± 2 percent for SRM 1450b [4].

10. Summary and Conclusions

Thermal conductivity measurements at room temperature are presented as the basis for certified

values of thermal resistance for SRM 1450c, Fibrous Glass Board. The thermal conductivity

measurements were conducted over ranges of bulk density from 150 kg/m^ to 165 kg/m^ and mean

temperatures from 280 K to 340 K using NIST's one-meter guarded-hot-plate apparatus. A model

dependent on these two parameters has been developed that describes the thermal conductivity over

the range of the parameters. An expanded uncertainty, consistent in format with current intemational

guidelines, has been prepared for predicted values of thermal conductivity and certified values of

thermal resistance. Material characterization of the material revealed local (within-board) variations

of bulk density ranging about 1 1 percent. This variation should not affect the "average" thermal

conductivity of a specimen by more than 1 percent. The source of local (within-board) variations of

bulk density was believed due, in part, to variations in application of the fiber's phenolic binder as

well as variations in the distribution of the glass fibers. Further research is recommended to

determine the source of local variations of bulk density. Comparison of predicted values of thermal

conductivity for SRM 1450c agreed to within 2 percent of the North American results of an

intemational round robin and within less than 1 percent to 7 percent of predicted values for previous

material lots of the SRM 1450 Series. The differences were believed primarily due to material

variations among the lots of materials.

11. Acknowledgments

The authors acknowledge the contributions of several people: Robert Gettings, who provided support

through the Standard Reference Materials Program; and NIST Statistician, Dr. Eric Lagergren, who
provided guidance in the experimental design and data analysis. Thermal conductivity measurements

were obtained with the assistance of Erik H. Anderson, and imbalance tests were conducted with the

assistance of Mark W. Davis. Compressive resistance measurements were provided by Dr. Walter

J. Rossiter and Kevin M. Kraft, and SEM micrographs were filmed by Paul E. Stutzman.

Thermogravimetry measurements were provided by Dr. Barry J. Bauer.

32



12. References

[I] Taylor, J.K. "Standard Reference Materials, Handbook for SRM Users," NIST Special

Publication 260-100, February 1993, p.26.

[2] Siu, M.C.I. "Fibrous Glass Board as a Standard Reference Material for Thermal Resistance

Measurement Systems," Thermal Insulation Performance, ASTM STP 718, D.L. McElroy and

R.P. Tye, Eds., American Society for Testing and Materials, Philadelphia, 1980, pp. 343-360.

[3] ASTM Subcommittee C- 16.30. "Reference Materials for Insulation Measurement

Comparisons," Thermal Transmission Measurements ofInsulation, ASTM STP, R.P. Tye, Ed.,

American Society for Testing and Materials, Philadelphia, 1978, pp. 7-29.

[4] Hust, J.G. "Standard Reference Materials: Glass Fiberboard SRM for Thermal Resistance," NBS
Special Publication 260-98, August 1985.

[5] Grimes J.T. "Evaluation of National Institute of Standards and Technology (NIST) Thermal

Conductivity Standard Reference Materials Using a 20-cm Heat Flow Meter Apparatus,"

Journal of Thermal Insulation, Vol. 13, 1989, pp. 62-70.

[6] Mumaw, J.R. Owens Coming, 1996, private communication.

[7] ASTM C 165. "Standard Test Method for Measuring Compressive Properties of Thermal

insulation," Annual Book ofASTM Standards, Vol. 04.06.

[8] Burch, D.M. and A.O. Desjarlais. "Water-Vapor Measurements of Low-Slope Roofing

Materials," NISTIR 5681, July 1995.

[9] ASTM C 1 77. "Standard Test Method for Steady-State Heat Flux Measurements and Thermal

Transmission Properties by Means of the Guarded Hot Plate Apparatus," Annual Book ofASTM
Standards, Vol. 04.06.

[10] Powell, F.J. and B.G. Rennex. "The NBS Line-Heat-Source Guarded Hot Plate for Thick

Materials," Thermal Performance of the Exterior Envelopes ofBuildings - II, ASHRAE SP 38,

1983, pp. 657-672.

[II] Zarr, R.R. and M.H. Hahn. "Line Heat Source Guarded Hot Plate Apparatus: Adjunct ASTM
Practice C 1043," Annual Book ofASTM Standards, Vol. 04.06.

[12] ISO. Guide to the Expression of Uncertainty in Measurement, International Organization for

Standardization, Geneva, Switzerland, 1993.

[13] Taylor, B.N. and C.E. Kuyatt. "Guidelines for Evaluating and Expressing the Uncertainty of

NIST Measurement Results," NIST Technical Note 1297, 1994.

33



[14] Smith, D.R. "Apparent Thermal Conductivity of Fibrous Glass Board by Guarded Hot Plates

and Heat Flow Meters: An International Round Robin," Journal ofThermophysical Properties

(in publication).

[15] Smith, D.R. and J.G. Hust. "Effective Thermal Conductivity of Glass-Fiber Board and Blanket

Standard Reference Materials," Thermal Conductivity 17, J.G. Hust, Ed., 1983, p.491.

[16] Roark, R.J. Formulasfor Stress and Strain, 4th Ed., 1965, p. 219.

34



Appendix A UNITED STATES DEPARTMENT OF COMMERCE
National Institute of Standards and Technology
Galthersburg, Maryland 20899-0001

QUESTIONNAIRE ON SRM 1450c, FIBROUS-GLASS BOARD

Date of Purchase: / /

To better serve you, we ask that you take a few moments to fill out the short questionnaire below.

When finished, pleasefax this questionnaire to Robert R. Zarr at (301) 990-4192, orfold and mail no later than

September 15. 1995.

Please tell us...

... about your Company:
Company's name:

Address:

Primary business activity:

User's telephone numbers; voice: ( ) - fax: ( )

... about your measurement process (check appropriate box):

Your measurement application(s):

ASTM Test Method: UCMl QCSIS Other:

Instrument(s) used (model):

Maximum uncertainty acceptable in your measurement process(es)

<10% <5% <2% <!% Other:
Specimen size required:

thicknesses required

Temperature range required for measurement process:

Specimen

... about the requirements you would like for SRM 1450c:

Size: 0 610x610 mm Other: Thickness: 25.4mm Other:
What temperature range do you require:

(Note: the greater the range, the higher the cost)

How quickly do you need SRM 1450c:

5 Years 2 Years lYear Other:

Would you like the same nominal density and thermal conductivity:

Yes No, I prefer

Should the material be from the same manufacturer as previous lots: Yes No
Comments:

... any additional comments:

Thank you for your prompt reply. Your answers will help us to better serve your SRM needs. If you have technical

questions, please contact Robert R. Zarr at e-mail chat@enh.nist.gov.
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Table Al
List of Individuals, Company, or Organization Responding to SRMP Questionnaire (433 mailed)

1 AEL ISD MO, 1

2 Anacon Corporation 1

3 Arizona State University 1

4 Bayer Corporation 1

5 Carborundum-Fibers Division 1

6 Cell-U-Foam Corporation 1

7 Celotex Corporation I

8 Celotex Ltd. 1

9 Center for Applied Engineering, Inc. 1

10 Childers Product Company I

11 ConsultMort, Inc. 1

12 Consumers Power Company 1

13 CTL 1

14 David L. McElroy I

15 Dow Chemical R&D I

16 Exeltherm, Inc. I

17 Forest Products Labs I

18 GAF Materials Corporation I

19 Holometrix 1

20 Huntsman Corporation I

21 ICI Polyurethanes 1

22 IFC Kaiser Engineers/ INEL Tank Farm Project 1

23 IMI-Tech Corporation I

24 Instafoam Products I

25 Knauf I

26 Korea Research Institute of Standards and Science 1

27 Lamolite, Inc. I

28 LaserComp 1

29 Owens Coming 7*

30 Pabco I

31 Phillips Petroleum Company I

32 Pittsburgh Coming 1

33 Rockwool, International I

34 Rollin Incorporated 1

35 R&D Services, Inc.

36 TNO Building and Construction Research

37 UC Industries

38 Underwriters Lab, Inc.

39 Volberg Insulation, Inc.

40 Wiss, Janney, Elstner and Associates, Inc.

Only two returns counted
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Appendix B

Uncertainty Analysis for Thermal Conductivity (X)

Background

In 1992, NIST officially adopted a new policy [12] for the expression of measurement uncertainty

consistent with international practices set forth in the ISO Guide to the Expression of Uncertainty

in Measurement [13]. This policy provides a uniform approach at NIST to uncertainty analysis and

is summarized briefly below. Further details are available in references [12,13].

In many cases, a measurand Y is not determined directly from a single measurement, but rather

mathematically from a function of other independent quantities X,:

The output estimate of Y, denoted as y, is obtained using input estimates jc, for the values of the N
independent quantities X,:

The combined standard uncertainty of y, ujy), is the positive square root of the combined variance,

where

Equation (B-3) is commonly referred to as the "law of propagation of uncertainty." The partial

derivatives are known as sensitivity coefficients (c,) and are equal to df/dX^ evaluated at X, = jc, . The

corresponding term, u(xj, is the standard uncertainty associated with the input estimate jc,.

Each u(xj is evaluated as either a Type A or a Type B standard uncertainty. Type A standard

uncertainties are evaluated by statistical means. Type B standard uncertainties cannot be determined

directly from the experiment at hand and must be evaluated by other means, such as (previous)

measurement data from another experiment, experience, a calibration certificate, manufacturer's

specification, etc. [12,13]. Categorizing the evaluation of uncertainties as Type A or Type B is

simply a matter of convenience, since both are based on probability distributions^ and combined

equivalently in eq (B-3). An example of a Type A evaluation is provided below. Examples of Type

B evaluations are provided in references [12,13]. It should be noted that the designations "A" and

"B" apply to the two methods of evaluation, not the type of error. In other words, the designations

"A" and "B" have nothing to do with the traditional terms "random" or "systematic."

^ This is not entirely true. The probability distribution for a Type B evaluation, as opposed to a

Type A evaluation, is assumed based on the experimenter's judgement.

Y =f(X^,X,,...,X^). (B-1)

y = f(x^^^,..jc^). (B-2)

(B-3)
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As an example of a Type A evaluation, consider an input quantity X, determined from n independent

observations obtained under the same conditions (i.e., repeated observations). In this case, the input

estimate jc, is the sample mean determined from

X. =

n ifc=i

(B-4)

The standard uncertainty, u(xj associated with jc, is the estimated standard deviation of the sample

mean:

When an additional level of uncertainty is required that provides an interval (similar to a confidence

interval, for example), an expanded uncertainty, U, is obtained by multiplying the combined standard

uncertainty, ujy), by a coverage factor, k:

The value of k is chosen based on the desired level of confidence to be associated with the interval

defined by U and typically ranges from 2 to 3. Interpretation of the coverage factor requires a word

of caution. The term "confidence interval" has a specific definition in statistics and is applicable

only to intervals based on when certain conditions are satisfied, including that all components of

be obtained from Type A evaluations. Under these circumstances, a coverage factor of ^ = 2

defines an interval having a level of confidence of about 95 percent and ^ = 3 defines an interval

having a level of confidence greater than 99 percent. At NIST, the value of the coverage factor is

k = 2,by convention [13].

Components of Uncertaintyfor X

Referring to eq (2) in the text, the standard uncertainty for measured values of X was evaluated based

on the individual standard uncertainties for the specimen heat flow (Q), meter area (A), in-situ

thickness (L), and specimen temperature difference, (AT). These individual standard uncertainties

were evaluated by either statistical methods (Type A), other means (Type B), or both, and are

discussed below.

Specimen Heat Flow (Q)

Under normal operation (see Figure 12 in the text), the guard plate and ambient air temperature were

maintained such that lateral heat losses (Q^^p and Q^^gJ were reduced to negligible proportions in

comparison to the specimen heat flow (Q). Under these circumstances, Q was determined by simply

measuring the DC electrical power provided to the meter area (Q^) of the guarded hot plate. The

electrical circuit for the measurement consisted of a standard resistor, nominally 0. 1 Q, in series with

the electrical heater of the meter area, as illustrated in Figure B 1 . The corresponding equation for

the power input to the meter area is:

uix) = s(X) = ^. (B-5)

(B-6)
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Figure B 1. Electrical circuit for measurement of power to the meter area
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Q = iV (B-7)

where / is the current (V/R^) measured at the standard resistor, and is the voltage drop measured

across the electrical leads to the meter area. For these tests, Q was approximately 3.6 W.

The Type A and Type B standard uncertainties for the determination of the specimen heat flow (Q)

are summarized in Table B-1. The Type A standard uncertainty for the repeated power

measurements was determined by pooling the standard deviations for each guarded hot plate test.

The Type A standard uncertainties for the voltage measurements were determined by regression

analysis of calibration data. The Type B standard uncertainties for the voltage measurements were

assumed to have a uniform distribution in the interval 2a, where a was determined from the

manufacturer's specification for the integrating digital voltmeter (DVM). The intervals 2a for the

digital voltmeter for the 30-V and 300-mV ranges were 4.1 1 mV and 12.7 ^iV, respectively.

Table B-l

Uncertainty Budget: Specimen Heat Flow (Q)

Source of Uncertainty

Standard Uncertainty

u(Xi) and Type

Degrees of Freedom (A)

or Source (B)

1) Repeated test measurements 0.00054W (A) DF= 1785

2) Voltage measurement

- calibration DVM, 30V
- uncertainty DVM, 30V

0.000003 V (A)

0.002370 V (B)

DP = 20

Manufacturer, u(V^) = a/y/3

3) Current determination (I):

- std. resistor (R^) calibration

- calibration DVM, 300 mV
- uncertainty DVM, 300 mV

0.000001 Q (B)

0.000009 V (A)

0.000007 V (B)

NIST Calibration (k = 1)

DF = 20

Manufacturer, u(Vj,3) = a//3

4) Imbalance effects (Q.) 0.0098 W (B) Experiment, Appendix B

Guard Imbalance (Qg)

The term Qg in Table B- 1 represents both the lateral heat loss at the guard gap between the meter and

guard plates (Qgap) and the heat loss at the edges of the specimens (Qedge)- Typically, Qg was quite

small (approximately zero) for the 15 guarded hot plate tests because guarding at the gap and edges

of the specimen reduced the lateral heat flows Qg^p and Q^^g^ to negligible proportions, Figure 12,

An imbalance results when a temperature difference develops either across the gap (Vg^p) or at the

edge of the specimens (T^ -T). In our case, Vg^p and -T refer to the voltage outputs from a 8-

junction Type-E thermopile across the gap, and the temperature difference between the ambient air

and mean temperature, respectively. An estimate for the Type B standard uncertainty of Qg was

determined from an extensive experimental effort described below.
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Fifteen tests were conducted with a single pair of specimens of fibrous glass boards (051 and 1 18)

at mean temperatures (7) of 280 K, 3 10 K, and 340 K. The specimens were installed in the guarded-

hot-plate apparatus following the same procedures as previous tests. At each mean temperature, five

tests were conducted in random sequence with V^^p and -7 varied at two levels, Figure B2. The

experimental design also included a center point where V^^^ and -T were both set to zero; that is,

normal operating conditions for negligible heat flows at the guard gap and specimen edges. This

experimental design allowed us to check our previous results and any interaction between the

independent quantities.

During each test, the steady-state power input to the meter plate ( QJ was recorded and averaged

for the test. The guard imbalance, Q^, was defined as

e,-e„-Q„„. (B.8)

where was the power input to the meter plate for the gap and edge temperatures thermally

balanced. I.e., at the center point where = zero and = =3.6 W. The data for Q^-

versus V^^p and T^-T are plotted in Figures B3a and B3b, respectively. The change in the power

input to the meter plate was quite sensitive to change in V^^p and less sensitive to an imbalance for

T^-T. A change of ± 50 |iV in V^^p caused an error of ± 0. 1 W in the power input to the meter plate;

a change of ± 4 K in r„ - T caused a change of about ± 0.01 W. The effect of mean temperature was

small, as observed in Figures B3a and B3b, and the effect of the independent variables on each other

was, for the most part, uncorrelated. That is, there was no interaction between V^^p and - T.

The data in Figures B3a and B3b were fit to a linear model in V^^p and T^- Tat mean temperatures

of 280 K, 310 K, and 340 K:

Qm-Qn,,-bo'b,V^^b,iT^-T). (B-9)

The coefficients, bg, bj, and Z?2 were determined by multiple variable linear regression, Table B-2.

Based on experimental judgement, a conservative estimate for the Type B standard uncertainty for

Qg (Table B-1) was determined at 310 K for a gap imbalance of 2.5 |iV (0.01 K) and an imbalance

in ambient temperature of 0.5 K.

Table B-2

Regression CoefHcients for Guard Gap and Ambient Temperature Imbalance

T
(K)

bo

(W)

b,

(W[L\)
bz

(W/K)

RSD*
(W)

280 2.988x10-3 2.323x10-3 2.416x10-3 0.0028

310 2.422x10-3 2.547x10-3 1.921x10-3 0.0044

340 -2.724x1
0-"

2.607x10-3 -6.939x10-3 0.0057

Residual standard deviation
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Experimental Plan
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Figure B2. Experimental design for guard gap imbalance and ambient temperatue imbalance.
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Figure B3. (a) Effect of guard gap imbalance on meter plate power,

(b) Effect of ambient imbalance on meter plate power.
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The combined standard uncertainty for Q was determined from the apphcation of eq (B-3), resulting

in the following expression:

uliQ) = clu \V) 4- du \R) + c^u \VJ ^ cl^u \Q^) , (B-10)

dQIdV - V /R ,

dQ/dR = -IVJR^W^,
VJR^ = /,and

dQ/dQ^ = 1.

The standard uncertainties for Equation (B-10) were taken from Table B-1. Evaluation of eq (B-10)

yielded a combined standard uncertainty for (2 of 0.0101 W or in relative terms, 0.28 percent.

Meter Area (A

)

The meter area is the mathematical area through which the heat input to the meter plate flows

normally under ideal guarding conditions (i.e., Qg = 0) into the specimen. The meter area was

calculated from the equation:

A = 7ir2 = n[V2(r^^ r){U aAT^^)]\ (B-11)

where

= outer radius of meter plate, m
r. = inner radius of guard plate, m
a = coefficient of thermal expansion of meter plate, K"' and

Ar^^^ = temperature difference, K.

The values for and r, were 0.2028 m and 0.2036 m (7.985 in. and 8.015 in.), respectively, and a

value of 2.36x10"^ K"' for a was taken from handbook data for aluminum alloy 6061-T6. The

maximum value for Ar^^ was 57 K, which was computed for a mean temperature of 340 K. The

combined standard uncertainty was determined to be 4. 184x10'^ m^ (relative standard uncertainty

of 0.032 percent), which includes the individual (standard) uncertainty contributions for r^, r„ a, and

AT .mp

In-situ Thickness (L)

The thickness of each pair of specimens was measured during testing using the average of eight (four

top and four bottom) linear positioning transducers equally spaced at the periphery of the plates. The

corresponding equation for the in-situ thickness measurement is

where

Vm
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(B-12)

where L, is the measurement value for an individual transducer and n = 8. Each transducer consisted

of a 450-mm Invar scale and slider, and digital indicator. In operation, the slider tracked the distance

between the translating cold plate and the fixed guarded hot plate, and the corresponding output

signal was displayed by the digital indicator with a resolution of 2.54 x 10'^ m. The digital indicators

were reset by placing four fused-quartz (96 percent) spacers of known thickness between the hot

plate and cold plate at the same peripheral locations corresponding to the linear positioning

transducers. Fused quartz was selected for the spacers because of its extremely low coefficient of

thermal expansion, 5.5x10"^ cm/(cm-K).

The Type A and Type B standard uncertainties for the determination of L are summarized in

Table B-3. The Type A standard uncertainty for the multiple locations was determined by pooling

the standard deviations for each guarded hot plate test. The Type A standard uncertainty for the

fused-quartz spacers was determined by taking the square root of the sum of the individual variances

(/) for four thickness measurements of each quartz spacer. The Type A standard uncertainty for the

calibration of the transducers was determined by repeated measurements in a separate experiment

described below. The Type A standard uncertainty for the flatness of the meter plate was determined

using an xyz coordinate measuring machine (CMM) having an uncertainty of 5.1 x 10"^ m. The

thickness of the meter plate was measured at 32 different locations and the standard deviation of the

32 measurements was used in the Type A evaluation. The Type B standard uncertainties for the

length measurements were assumed to have a uniform distribution in the interval 2a, where a was

the smallest length interval of the micrometer. The interval 2a for the micrometer was 0.00254 mm.
A Type B standard uncertainty for plate deflection was estimated for the large plates based on a

classical deflection formula for a uniform load applied to a circular plate [16].

Table B-3

Uncertainty Budget: Specimen Thickness (L)

Source of Uncertainty

Standard Uncertainty

u(Xi) and Type

Degrees of Freedom (A)

or Source (B)

1) Multiple locations 8.79x10-5 m (A) DF= 105

2) System specification 5.1xlO-'m(B) Manufacturer (k = 1, assumed)

3) Fused-quartz spacers(4) cal.

- repeated measurements

- uncertainty of micrometer

1.14x10-^ m (A)

1.47x10-' m(B)
DF= 12

u(L3b) = alyl^

4) Calibration of transducers 6.37x10-' m (A) DF = 6.7

5) Plate flatness 6.57x10-' m (A) DF = 31

6) Plate deflection 2.1x10-5 m(B) Calculation, Reference [16]
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The repeatability of the linear positioning transducers was determined from a series of replicate

thickness measurements taken over several days using the fused-quartz spacers as reference values.

The thickness transducers for the cold plates were initially reset using the four fused-quartz spacers

and the cold plates were subsequently opened and closed until the plates were in complete contact

again with all spacers. The readings from the digital indicators were recorded and the procedure was

repeated five times. To check the variation from day-to-day, readings were taken over 4 days

providing a total of 20 thickness averages. Table B-4 gives summary statistics for each day.

Table B-4

Summary Statistics for Thickness Calibration

Day Replicates

Day Averages

(m)

Within-Day Std. Dev.

(m)

1 5 2.541 X 10-2 3.96 X 10-'

2 5 2.541 X 10-2 4.28 X 10"'

3 5 2.542 X 10-2 3.29 X 10"'

4 5 2.542 X 10-2 2.54 X 10"'

The standard deviation of the daily averages (sj was 5.12x10-' m and the (pooled) within-day

standard deviation (sj) was 4.24x10-' m. The standard uncertainty was determined to be 6.37x10^' m
using Equation (B-13):

. ^ (sf, (B.13)

where r = number of replicates per day. The DF (degrees of freedom) were determined from the

Welch-Satterthwaite formula in Reference [13]. The combined standard uncertainty for thickness

(uJL)) was determined to be 9.10x10-^ m (relative standard uncertainty of 0.36 percent).

Temperature Difference (AT)

The temperature difference of the specimens was determined from the following equation:

=T,-T^ = T,-V2iT^^^T^), (B.14)

where the subscripts h and c refer to hot and cold, respectively, and the subscripts 1 and 2 refer to

the two cold plates. The temperatures of the hot plate and cold plates were determined using

precision platinum resistance thermometers (PRTs). The electrical resistance of the PRTs was

measured with an integrating DVM.
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The Type A and Type B standard uncertainties for the determination of AT are summarized in

Table B-5. The Type A standard uncertainty for the repeated temperature measurements was

determined by pooling the standard deviations for each guarded hot plate test. The Type A standard

uncertainty for the temperature determination was determined by regression analysis of calibration

data provided by the NIST Thermometry Group. The Type B standard uncertainty for the resistance

measurement was assumed to have a uniform distribution in the interval 2a; where a was determined

from the manufacturer's specification for the integrating digital voltmeter (DVM). The interval 2a

for the digital voltmeter for the 300-Q range was 0.039 Q. This standard uncertainty was probably

overly conservative and contributed heavily to the combined standard uncertainty for X. The

combined standard uncertainty for temperature difference (m^(AT)) was determined to be 0.067 K
(relative standard uncertainty of 0.34 percent).

Table B-5

Uncertainty Budget: Temperature Difference (AT)

Source of Uncertainty

Standard Uncertainty

u(Xi) and Type

Degrees of Freedom (A)

or Source (B)

1) Repeated measurements 0.0005 K (A) DF= 1785

2) Temperature determination

- PRT calibration

- Regression analysis

- Resistance measurement

0.005 K (B)

0.0052 K (A)

0.055 K (B)

NIST Calibration

DF= 15

u(AT2c)= fl/\/3

Combined Standard Uncertaintyfor X Measurement

Rearranging eq (2) in the text and applying the error propagation formula, the standard uncertainty

for measured values of X was evaluated with the following equation:

u^(X) = cluliQ) + cluliA) + cluliD + cl^liM) , (B-15)

where

Cq = dX/dQ = L/(AAT),

= dX/dA = -(QL)/(A^AT),

= dX/dL = Q/(AAT), and

c^^ = dX/dAT = -(QL)/(AM^).

The individual standard uncertainties for the specimen heat flow (Q), meter area (A), in-situ

thickness (L), and specimen temperature difference, (AT) were determined as described above.

Table B-6 summarizes the input quantities, X., estimates, x., standard uncertainties, m„ and
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sensitivity coefficients, c,, for Q, A, L, and AT. The combined standard uncertainty, u^, for X was

0.00020 W/(m-K) (relative standard uncertainty of 0.57 percent).

Table B-6

Combined Standard Uncertainty (k=l) for Thermal Conductivity Measurement

Quantity, Estimate, jc, u(x,)

Sensitivity

Coefficients, c,

Uncertainty

(W/(m-K))

Q 3.5665 W 0.0101 W 9.76x10-3 m-'K-' 0.00010

A 0.1297 4.18x10-' -0.269 Wm-^K-' 0.00001

L 0.02533 m 9.10x10-'

m

1.375 Wm-^K-' 0.00013

AT 20.00 K 0.067 K -1.74x10-' Wm-'K-2 0.00012

X 0.0348 W/(m K) Total 0.00020

Mean Temperature (T)

The mean temperature was determined from eq (B-16)

The combined standard uncertainty of T was 0.034 K.
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Appendix C

Uncertainty Analysis for Bulk Density (p)

The Type A and Type B standard uncertainties for the determination of bulk density for the meter

area are suimnarized in Table C-1. The Type A standard uncertainties for the length measurements

were computed by pooling the standard deviations from a relatively small number of measurements

for each specimen. The Type B standard uncertainties for the length measurements were assumed

to have a uniform distribution in the interval la, where a was the smallest length interval of the steel

rule or calipers. The interval la for the steel rule and calipers was 0.5 mm and 0. 1 mm, respectively.

Table C-1

Uncertainty Budget: Meter Area Bulk Density (p)

Source of Uncertainty

Standard Uncertainty

u(Xi) and Type

Degrees of Freedom (A)

or Source (B)

1) Calibration of scale (m) 0.1 g(B) Manufacturer Specification (k=l)

2) Diameter measurement (d):

- repeated measurements

- uncertainty of steel rule

0.31 mm (A)

0.29 mm (B)

DF = 30

u(d2) = fl/^/3

3) Thickness measurement (L):

- repeated measurements

- uncertainty of calipers

- uncertainty of flat table

0.082 mm (A)

0.058 mm (B)

0.015 mm (B)

DF= 120

u(L2) = al^
Manufacturer Specification (k=l)

The combined standard uncertainty u/(p) was determined using the standard uncertainties given in

Table C-1 and the following equation:

«c (P) = ^ Q [« '(^i) ^ " '(^2)] ^ [« '(^1) + « '(^2) ^ « '(^3)]

'

where c^, q, and were 308.6, -783.1, and -6409, respectively, and were determined from eq (B-3)

and eq (3) in the text. The combined standard uncertainty u^. (p) for the meter area bulk density

determination was 0.72 kg/m^. The relative standard uncertainty for the grand average of

159.6 kg/m^ was 0.45 percent.
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