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Preface

Standard Reference Materials (SRMs) as defined by the National Institute of
Standards and Technology (NIST) are well-characterized materials, produced in
quantity and certified for one or more physical or chemical properties. They are
used to assure the accuracy and compatibility of measurements throughout the
Nation. SRMs are widely used as primary standards in many diverse fields in
science, industry, and technology, both within the United States and throughout
the world. They are also used extensively in the fields of environmental and
clinical analysis. In many applications, traceability of quality control and
measurement processes to the national measurement system is carried out through
the mechanism and use of SRMs. For many of the Nation's scientists and
technologists, it is therefore of more than passing interest to know the details
of the measurements made at NIST in arriving at the certified values of the SRMs
produced. The NIST Special Publication 260 Series is a series of papers reserved
for this purpose.

The 260 Series is dedicated to the dissemination of information on different
phases of the preparation, measurement, certification, and use of NIST SRMs. In
general, much more detail will be found in these papers than is generally
allowed, or desirable, in scientific journal articles. This enables the user to
assess the validity and accuracy of the measurement processes employed, to judge
the statistical analysis, and to learn details of techniques and methods utilized
for work entailing greatest care and accuracy. These papers also should provide
sufficient additional information so SRMs can be utilized in new applications in
diverse fields not foreseen at the time the SRM was originally issued.

Inquiries concerning the technical content of this paper should be directed to
the author(s). Other questions concerned with the availability, delivery, price,
and so forth, will receive prompt attention from:

Standard Reference Materials Program
Bldg. 202, Rm. 204
National Institute of Standards and Technology
Gaithersburg, MD 20899
Telephone: (301) 975-6776
FAX: (301) 948-3730

Thomas E. Gills, Chief
Standard Reference Materials Program
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Antireflecting-Chromium Linewidth Standard, SRM 473,

for Calibration of Optical Microscope Linewidth Measuring Systems

J. E. Potzick

National Institute ofStandards and Technology

Gaithersburg, Maryland 20899

ABSTRACT
This document describes the physical characteristics of Standard Reference Material

SRM 473, provides instructions for its use in calibrating optical photomask linewidth

measuring systems, and gives information and precautions concerning its care and

handling.

Standard Reference Material SRM 473 was developed for use in calibrating optical

microscopes for measuring linewidths in the range of 0.5 |im to 30 jLim on antireflecting-

chromium photomasks. In addition, it contains pitch (center-to-center) patterns ranging

from 2 |im to 70 jim. The accurate measurement of feature dimensions on photomasks,

such as those used in the production of integrated circuits, becomes increasingly diffi-

cult as the dimensions approach the wavelength of the light used to make the

measurement. The effects of optical diffraction obscure the location of the feature

edges. Raggedness and nonvertical walls along the edges add to the uncertainty of the

measurement. This SRM makes possible traceable linewidth measurements by facili-

tating the evaluation of these and other components of linewidth measurement

uncertainty.

The NIST linewidth measuring system and the procedures used to calibrate this SRM
are discussed. These include the algorithm used for determining the line edge location

from the optical intensity data, which incorporates a threshold criterion derived from

analysis of microscope image profiles. The profiles are predicted by a numerical model

based on the theory of partial coherence. The statistical performance of this system is

monitored by measuring line features on a control photomask before and after calibrat-

ing each SRM. The factors that affect the calibration uncertainty are explained and

evaluated.

NIST photomask linewidth SRMs 473, 475, and 476 are available from the Office of

Standard Reference Materials, NIST, EM 205, Gaithersburg, Md. 20899. Voice 301-

975-6776, FAX 301-948-3730.

KEY WORDS: accuracy; antireflecting-chromium; calibration; control charts; critical

dimensions; integrated circuits; linewidth measurement; optical microscope; photo-

mask; pitch, semiconductor industry; standard reference material; statistical process

control; threshold; measurement uncertainty.
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1. Introduction

The ability to measure and control critical dimensions dur-

ing the production of integrated circuits is essential to the

semiconductor industry. Many measuring systems claim-

ing high precision are now commercially available for use

in determining some of these critical dimensions. The only

way the accuracy of a measurement can be assessed is

through its traceability to a recognized standard. As part of

a continuing effort to provide means for calibrating these

systems, the National Institute of Standards and Technol-

ogy (NIST) has developed Optical Microscope Linewidth

Measurement Standard Reference Materials

Standard Reference Material (SRM) 473 is designed for

calibrating optical microscope systems to measure line-

widths on antireflecting-chromium photomasks. It was

produced with conventional technology by a commercial

photomask manufacturing facility. In addition to isolated

opaque and clear lines for linewidth calibration, this SRM
contains line patterns for checking length scale, adjusting

video-type micrometers, and detecting mechanical or opti-

cal nonlinearities. The design of the calibrated pattern is

described in section 2.

Section 3 gives information and precautions on the care

and use of this SRM to calibrate an optical linewidth mea-

suring system. Because of the variety of linewidth mea-

suring systems in use today, no attempt has been made to

give specific instructions for each type of microscope.

To calibrate the SRM line features, a photometric micro-

scope with lenses selected for least aberration was modi-

fied at NIST. Except for the initial positioning, aligning,

and focusing of the photomask, the entire calibration pro-

cess is automated. The line features are illuminated in

transmission with partially coherent green light (wave-

length 0.53 |im) from a filtered incandescent source. The

linewidths are determined from the image profile (image

intensity versus position across a feature). A considerable

amount of theoretical work was conducted to establish the

location on the observed image profile that corresponds to

the physical edge of a feature [2]. The quality of the fea-

ture edge geometry of samples near the beginning and end

of each production batch of SRM photomasks is examined

with a scanning electron microscope (SEM). The calibra-

tion uncertainty given in the certificate is based on this

sampled edge geometry and the agreement between theo-

retically modeled and experimentally generated image

profiles. Section 4 contains brief descriptions of the NIST

linewidth calibration system and the automated calibration

process as well as discussions of the line edge location

algorithm. Calibration uncertainty is discussed in section

5. The process control procedures used in the calibration

of this SRM are discussed in some detail in the Appendix.

'Binary and phase shift photomasks can also be measured

accurately by emulating the stepper aerial image. See Ref-

erence [1].

FIGURE 1. A view of the overall pattern on SRM 473. The
basic measurement pattern is repeated eight times about the

center. The horizontal and vertical lines help locate the

patterns. The overall form is that of a standard 5-inch

photomask.

2. Physical Characteristics of SRM 473

SRM 473 is made from an antireflecting-chromium pho-

toplate by conventional photolithographic techniques. The

substrate is a quartz plate of a type commonly used for

fabricating integrated circuit photomasks, nominally 127

mm x 127 mm x 2.3 mm (5.0 in. x 5.0 in. x 0.09 in.). The

nominal thickness of the chromium layer is 100 nm. These

photomasks are not equipped with pellicles.

Figure 2. An enlarged view of the center of the SRM. The

pattern number given with the serial number on the certificate

identifies which basic pattern has been calibrated by NIST.

Pattern No. 1 is in the upper left; pattern No. 8 is in the lower

right. Pattern identification numbers are included within each

basic pattern as shown in figure 3. This array of eight pat-

terns occupies an area of approximately 9 mm x 9 mm.
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Figure 3. A view of one basic measurement pattern on the SRM. The individual features are located by reference to an alphanu-

meric code with numbers identifying the row and letters designating the position within the row. The broken horizontal lines mark
the central calibrated area of the features. The box surrounding the overall pattern is used to align the pattern on the measurement

system. The size of this box is 873 um x 724 |i.m. The pattern identification number can be seen in the box above the carpet design

in the lower right.

Calibration values are given for: widths of opaque lines in row 1 and clear lines in row 2; center-to-center spacing of the two inner

(short) lines of each feature in row 3; center-to-center spacing from line A to lines B through F in row 4; widths of the left inner

(long) line and the space to its right of each feature in row 5; and center-to-center spacings from line 0 to lines one through 30 in

row 6. The nominal width and pitch values in |im are written on this figure in italics; they are not printed on the photomask.

Figure 1 shows the overall pattern on the chromium-coated eight identical patterns on the SRM. The pattern identifi-

side of the standard. The three horizontal and three vertical

intersecting lines help locate the basic measurement pat-

tern which is repeated at eight locations around the center

of the standard as shown in figure 2 (a magnified view of

the central area of figure 1). A pattern identification num-

ber (1 through 8) is located within each basic pattern. Only

one of these eight patterns is chosen after visual inspection

to be certified. The certificate accompanying the SRM
gives the number of the certified pattern. The carpet de-

sign at the center of the photomask as well as those within

each basic pattern are focusing aids and contain no cali-

brated features.

Figure 3 shows the details of the features in each of the

cation number can be seen in the lower right quadrant, just

above the carpet design. The vertical sides of the box sur-

rounding the basic pattern are parallel to the calibrated line

features and may be used to aid in aligning the SRM fea-

tures to be perpendicular to the measurement axis.

The calibrated features are arranged in six rows. Row
numbers are located at the ends of each row. Each feature

within rows 1 through 5 is further identified by a letter, A
through L, located immediately above the feature. Thus,

1 E refers to the opaque line in row 1 at position E. Row 6

contains a single multiple-line feature with every 5th line

elongated and every 10th line numbered. All rows on the

SRM contain a broken horizontal fiducial line which de-
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fines the measurement position on each feature.

Row 1 consists of 12 opaque lines (1A through 1L) on a

clear background, and row 2 consists of 12 clear lines (2A

through 2L) on an opaque background. These opaque and

clear lines are used for calibrating optical microscopes

used to measure linewidths of isolated lines of either or

both polarities. Nominal linewidths of these features range

from 0.5 |im to 30 ixm.

Rows 3 and 4 are intended to be used for calibrating opti-

cal microscopes for making line spacing (pitch) measure-

ments as well as for making initial length scale adjustments

when calibrating linewidth measurement systems. Row 3

consists of five features (3A through 3E), each with four

opaque lines. Certified values are given for the pitch of the

two interior (short) lines** of each feature. Nominal pitches

for these features range from 2.0 |im to 6.2 |j.m. Row 4

contains a series of nine opaque lines, with certified pitch

values given for the six short lines (4A through 4F) only.

The values given on the certificate are for the pitches from

line 4A to lines 4B through 4F. Pitches for the other com-

binations of lines (e.g., 4B to 4E) can be calculated from

the certificate values, giving an array of nominal pitch val-

ues from 5.0 |im to 70 ]±m.

Row 5 consists of four multiple-line features (5A through

5D) with approximately equal line and space widths. The

widths of the left interior line and central space are

certified. Nominal widths range from 1.0 |im to 5.0 |im.

These features are useful for adjusting brightness and con-

trast of video image-scanning instruments and setting

variable-threshold systems to achieve the proper line-to-

space ratio.

The calibrated feature in row 6 is a series of 33 opaque

lines, nominally 1.0 |lm wide with 2.0 pirn center-to-center

spacing; distances from line 0 to lines 1 through 31 are

certified. This feature is intended to be used as a linear

scale in checking for mechanical nonlinearities and optical

distortions in the linewidth measurement system (e.g., the

magnification as a function of position over the field of

view) and for checking the resolving power of the micro-

scope objective.

3. Using SRM 473

The following section provides information on the care and

handling of the SRM photomask and gives basic instruc-

tions and precautions on its use for calibrating optical

microscope systems for measuring linewidths of features

"The two outer lines of each pattern in row 3 and the three

unlettered (long) lines in row 4 serve as "guard lines" dur-

ing the photolithographic etching process to equalize

proximity effects along the line edges and are not

calibrated.

The two outer lines of each pattern in rows 5 and 6 serve

as "guard lines" during the photolithographic etching pro-

cess to equalize proximity effects along the line edges and

are not calibrated.

on antireflecting photomasks or similar artifacts.

3.1 Special precautions The certification for NIST pho-

tomask linewidth standards SRM 473 will remain valid as

long as the calibrated patterns remain undamaged. The
materials used are stable and there is no reason for the di-

mensions to change significantly relative to the stated

calibration uncertainty. It is important that these standards

be handled with care, be free of scratches and dirt, and be

cleaned properly when necessary. Abrasion and chemical

corrosion must be avoided.

Contamination or damage can change the measured line-

widths, invalidating the NIST calibration. Particular care

should be taken during use to avoid bringing the micro-

scope objective, or any other object, into contact with the

top (chromium-coated) surface of the SRM. It is recom-

mended that users calibrate secondary standards of their

own design and use these in routine calibrations while

keeping the NIST standard in safe storage. If this is done,

the secondary standards should be checked periodically

against the NIST standard. Also, it may be advisable for

the user to calibrate one or more of the uncalibrated pat-

terns on this SRM for use in the event that the NIST
calibrated pattern is destroyed.

Recertification A recertification service is not available

for these standards because the artifact stability renders

this unnecessary and the cost would be comparable to that

for a new standard. If there is any reason to question the

provenance of one of these standards, it must be replaced

with a new one.

Cleaning Precautions should be taken to prevent the ac-

cumulation of airborne and other contaminants on the

SRM. If cleaning becomes necessary, use only noncorro-

sive wetting solutions (surfactants) at room temperature.

For cleaning we recommend the following procedure:

- Soak the SRM for 15 minutes to several hours in a mild

solution of commercial mask cleaner and deionized

water.

- While the mask is still immersed, brush the coated side

gently with a soft lens brush; stroke parallel to the cali-

brated line length and in one direction.

- Rinse the mask thoroughly with deionized water.

- Blow away water droplets with a stream of clean dry air

or nitrogen at room temperature.

If the contamination persists, apply a few drops of undi-

luted mask cleaner directly on the SRM before repeating

the above cleaning process.

Removing fingerprints or other greasy contamination may

require rinsing the SRM with alcohol or acetone and re-

peating the above cleaning process.

3.2 Metrology issues Inappropriate use of the NIST line-

width standards can result in inaccurate calibrations and

may invalidate traceability to NIST. The practices most

apt to give inaccurate calibrations when using the NIST

linewidth standard include:
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a. Using the linewidth standard to calibrate a measure-

ment system that will then be used to measure line-

widths on specimens with opticalproperties that differ

significantlyfrom those ofthe standard (for example,

features on silicon wafers). One important require-

ment for accuracy is that the image profile (or diffrac-

tion pattern) of the edge have the same shape for both

the standard and the user's specimens. These image

profiles will not have the same shape if the optical prop-

erties of the standard and the user's specimens differ.

When calibrating optical measuring systems that use

transmitted light, it is especially important that the

transmittance of the chromium film on the standard and

the user's specimen match at the measuring wavelength.

The transmittance of SRM 473 is less than 0.2% at a

wavelength of 0.53 |lm. Line edge location conditions

for photomasks with transmittance greater than about

0.5% may be significantly different from those of this

SRM.

When calibrating optical measuring systems that use

reflected light, the standard and the user's specimen

must match even more closely, and this measurement

configuration is strongly discouraged. The more im-

portant properties to match are the complex reflection

coefficient of the patterned metal layer and the sub-

strate, the thickness of the patterned layer, and the

transmittance of the patterned layer. Measurement of

linewidths in reflected light is not recommended be-

cause of the difficulty in measuring and matching these

parameters.

b. Using the linewidth standard to calibrate a scanning

electron microscope. This SRM is designed specifi-

cally for use with optical microscopes and, without

extensive modeling of the electron-specimen-

instrument interactions, this SRM cannot be used to

calibrate an SEM for linewidth measurements. Its use

in an SEM is further discouraged because the profile of

the feature could change as a result of coating the SRM
with an evaporated film to reduce electrical charging,

of deposition of contamination during operation of the

SEM, and of detachment of the chromium during clean-

ing to remove evaporated films or contaminants. (The

substrate of this SRM is quartz and, even when low-

voltage SEM techniques are used it is next to impossi-

ble to view the SRM features in the SEM without first

coating the sample.)

c. Failing to correct for scattered (or flare) light. Al-

though the chromium pattern on SRM 473 is not highly

reflective, it includes isolated features surrounded by

various large clear areas and the image profiles may

exhibit a moderate component of scattered light which

may vary from feature to feature and from the user's

specimen. The intensity of the scattered light should be

subtracted from all measured intensity levels before de-

termining the edge location (section 4.4). This correc-

tion has been made in the calibration of SRM 473.

At the present time, NIST has two other linewidth stan-

dards (SRMs 475 and 476), both in the form of a

standard 2.5 inch photomask. These two SRMs have a

more limited range of linewidths than SRM 473. SRM
476 is patterned with bright chromium and SRM 475 is

patterned, as is SRM 473, with antireflecting chromium.

We recommend that the user: (1) use the SRM that most

closely matches the specimens to be measured and (2)

make the scattered light correction outlined above.

d. Using the NIST linewidth standards to generate a cal-

ibration curve that is then used for features that are

larger than the largest or smaller than the smallest

feature on the standard. The nominal linewidth range

of SRM 473 is from 0.5 |J.m to 30 (im and this SRM will

not adequately calibrate a microscope outside of this

range. This is especially true for extensions much be-

low the nominal range where the calibration curve may

become nonlinear due to proximity or other effects (see

below).

A photomask with substrate thickness different from that

of the standard can be measured without incurring added

uncertainty. It may be necessary to refocus the condenser

lens for differing substrate thicknesses.

The user should be aware that all standards have an uncer-

tainty of calibration associated with them and, to this

extent, are not perfect. The calibration of a microscope

using a standard has an imprecision associated with that

calibration and also has an imprecision associated with the

subsequent use of that calibrated microscope to measure an

unknown specimen. Therefore, the accuracy of the user's

measurements cannot exceed the accuracy of the standard.

The uncertainty of the final measurement on the unknown

specimen is a combination of the accuracy of the standard

used for calibration, the precision of the calibration mea-

surements using the standard, and the precision of the

measurements of the unknown specimen.

These and other topics are discussed more fully in the ref-

erences and bibliography. The need to use good measure-

ment techniques to achieve the best results with these

linewidth standards cannot be overemphasized. The user

who knows more about the potential problems is more

likely to make better use of the linewidth standard.

3.3 Proximity effects A measuring instrument which scans

the object to form an image has a finite size resolution el-

ement, defined in this context as the total specimen volume

which contributes significantly to the image at any point in

the scan. Note this is different from the imaging resolution

or measurement resolution. The apparent position of an

object (a line edge, for example) can be influenced by the

proximity of another object within this resolution element,

causing an error when measuring its position.

In an SEM the diameter of the incident electron beam may

be less than one nanometer, but it can penetrate and inter-

act with the specimen in a volume perhaps several tenths of

a micrometer wide or more depending on the instrument's
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operating conditions. If the collected electrons or their

progenitors originate within this volume, then the resolu-

tion element is this interaction volume and is much larger

than the beam diameter. Multiple electron scattering from

surface topography of nearby objects can also contribute to

the size of the resolution element. The optical equivalent

is the Airy disk of the microscope, which is on the order of

the wavelength of the illumination (1.22X//VA), again sev-

eral tenths of a micrometer. The scanning probe equivalent

is the effective radius of the probe tip (including probe-to-

specimen interaction distance) combined with possible

subsurface interactions, cantilever bending, and possible

migration of the effective probe contact point on the tip due

to object topography. Most of these SPM issues, however,

will not lead to proximity effects.

The consequence of this proximity effect is a possible error

when measuring the width of a narrow line or the pitch of

lines near the end of a dense line/space array. The effect

can lead to nonlinearity in linewidth measurement when

both line edges are within the resolution element. If the

pitch of a line array is smaller than the resolution element

the microscope sees different objects at the end of the array

and at the interior because of the loss of translational sym-

metry near the end. The pitch measurement can then incur

an error near the ends of a dense array that is absent for the

interior lines, while no such error occurs anywhere along

an array with larger pitch.

There can be similar proximity effects during fabrication,

for example in exposure and etching, and these must be

distinguished from measurement proximity effects. The

common way to avoid proximity effects in pitch measure-

ment is to add guard lines at the ends of the array; these

lines are patterned and printed the same as the other lines

but they are not measured. The features in rows 3 to 6 all

contain guard lines.

3.4 Microscope calibration procedures The following

procedures are recommended for using this SRM to cali-

brate optical microscope systems for measuring linewidths

on antireflecting photomasks. It is assumed the user is fa-

miliar with the operation of the microscope system being

calibrated; no attempt is made to give detailed instruction

on the use of microscope systems. The steps marked with

an asterisk(*) need only be performed the first time the

system is used or after any changes have been made in the

measurement system.

Microscope calibration procedure

Procedure Explanatory Notes

1 . Set up the measurement

system for dimensional

measurements; use the

same procedures that

will be used or measuring

photomasks.

Follow manufacturers

instructions or consult refer-

ence [3] for recommended

procedures including adjust-

ments for Kohler

illumination.

2. Locate the specific basic

pattern on the SRM that

has been calibrated by

NIST within the

microscope field-of-view.

3. * Check the resolving pow-

er of the microscope

objective by focusing on

row 6.

4. Align the SRM so that

lines are measured in a

direction perpendicular

to their length.

5. Adjust the measurement

system length scale to

give the same reading as

the NIST value for the

spacing of appropriate

line pair(s) in row(s) 3 or

4.

6. * Check for mechanical

nonlinearity and/or

optical distortion by mea-

suring the spacings of the

lines in row 6, and

compare the results with

the NIST values.

7. Adjust system contrast,

brightness (on video-type

image-scanning systems)

and/or threshold level un-

til the measured widths

of both the line and space

of an appropriate feature

in row 5 agree as closely

as possible with the NIST

values. Use these same

settings throughout this

measurement session.

The pattern identification

number is located in the

box above the carpet design

in the lower right (see fig.

3). The identification

number of the calibrated

pattern is given on the SRM
certificate.

If the objective cannot

resolve clearly the lines in

this feature, use another

objective.

The box surrounding the

basic pattern group (see fig.

3) may be used as an

alignment aid to minimize

cosine errors.

The line pair(s) chosen

should have spacing in the

same range as the

dimensions of the features

to be measured by the user.

For all further measurements,

use only the portion of the

field of view corresponding

to the location where the

differences from NIST

values are relatively

constant or that portion of

the video display which ex-

hibits minimum distortion.

The feature chosen should

have widths within the

range of the anticipated

measurements.

Compensate for flare light

during this process and

for all subsequent

measurements (see

paragraph c, sec. 3.2).

NOTE: If any changes other than refocusing, reposition-

ing, and adjusting for flare are inadvertently made during

the following steps, discard the data and start again with

step 5.
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8. Measure and record the

widths of the calibrated

features in rows 1 and 2

and/or the pitches in rows

3 and 4.

9. Derive the calibration

curves as described in

reference [4].

Use the same focusing

criteria throughout and

make all measurements in

the same direction of travel.

Compensate for flare light

on all photomasks (not only

this standard).

These calibration curves

apply only to this

system/operator

After performing these procedures, the system is now
ready for measurement of other antireflecting-chromium

photomasks or artifacts with optical properties similar to

SRM 473 (low reflectance and very low transmittance) us-

ing the same threshold value and flare-light correction

procedure. If the user attempts to measure artifacts with

chromium layers having transmission much greater than

0.2%, it may be necessary to measure the phase angle, <|),

and use eq (3) (section 4.5) to determine a different edge

location threshold. These procedures are beyond the scope

of this report.

Repeat the complete calibration procedure on a routine pe-

riodic basis and whenever a substantial change is made in

the measurement system. The time between periodic cali-

brations may have to be determined empirically.

4. Calibration of SRM 473

All measurements at NIST of the SRM feature dimensions

were performed on the automated optical linewidth system

[5] in a laboratory with temperature controlled at 21 ± 2 °C.

Linewidths and pitches are determined from the optical

profile data. The uncertainty of the calibrations is a com-

bination of the uncertainties of the measurement process,

of the feature edge location algorithm, and of the geometry

of the physical edge of the measured features. Data acqui-

sition and processing are entirely automated, and the data

are untouched by human hands (no manual data transfers,

no editing allowed; except for scale factor entry, see be-

low) from acquisition through certificate printing and

archival storage.

4.1 The measurement system The measurement system,

diagrammed in figure 4, is built around a carefully aligned

optical transmission microscope mounted on a vibration

isolation table. The photomask is placed on a scanning

piezoelectric
flexure-pivot stage

with finely con-

trolled motion in

the x (scanning)

and z (focus) di-

rections; this stage

is mounted on an-

other stage with

coarse motion
leadscrews in the x

and y directions to

allow positioning

of the desired fea-

ture in the field of

view.

Fixed

sampling

aperture

llljll

Phitc-

multlplier

tube

^ ! .

Low-pass

filler (1 KHz)

Computer

Calibrate Discard SRM
SRM mask measurements

Summarize data

and store

in archive

Statistical

data quality

Jests.

'rimcaiEbrafio!

Figure 4. Schematic of the NIST automated optical linewidth calibration system. The photo-

mask is placed on the scanning piezoelectric stage and is illuminated from below with partially

coherent light from a filtered incandescent source. The sampling aperture remains fixed while

the magnified image of the feature being measured is scanned past the slit by moving the

photomask. The motion is measured with a laser interferometer and the image intensity at the

slit is monitored with a photomultiplier tube. The amplified and digitized output of the photo-

multiplier and the interferometer output are connected via the IEEE-488 bus to the computer.

Figure 5. Flow chart outline of the over-

all calibration procedure for SRM pho-

tomasks with the NIST optical linewidth

measurement system. First, measure-

ments are made on a control photomask

and tested statistically to determine if the

system is operating properly. Then, the

SRM photomask is calibrated and the

system operation is checked again by

measuring the control photomask. A cal-

ibration certificate can be printed for the

SRM photomask only if all tests indicate

the system is within statistical control.
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Figure 6. Flow chart

of the main steps of

the measurement se-

quence performed by

the NIST optical line-

width measurement
system. Each feature

on the SRM photo-
mask is centered in

the microscope field

of view, focused, and

measured in sequence.

The sequence is re-

peated until each fea-

ture has been mea-
sured nine times. The
optical profile posi-

tion (X) and intensity

(P) are measured and

treated as two one-

dimensional arrays.

Then the edge thresh-

old level and corre-

sponding edge posi-

tions are derived from

these data.

The specimen is measured in visible transmitted light by

scanning the stage at constant velocity, and simultaneously

measuring the intensity of the magnified image through a

sampling aperture fixed on axis in the image plane, and the

position of the scanning stage with a laser interferometer.

Scanning the specimen stage is preferable to scanning the

slit (or using a CCD scan) as it provides a more direct link

to the SI unit of length. Measurement accuracy is more

important here than measurement speed. The photomask is

illuminated from below with Kohler illumination (i.e.,

each point on the lamp filament evenly illuminates the en-

tire specimen) from an incandescent source filtered at

530 nm wavelength (-60 nm bandwidth) with a coherence

parameter of 2/3 (0.6 numerical aperture condenser lens

and 0.9 numerical aperture objective lens). A 20 |im x

400 (im slit is fixed on axis in the image plane in front of a

photomultiplier tube. Image magnification at the slit is 157

times, giving an effective measurement area on the photo-

mask of 0.127 (im x 2.55 (im, which is centered top-to-

bottom on the feature (at the fiducial line). The photomul-

tiplier output is amplified and digitized by a 16-bit analog-

to-digital converter (ADC). Stage motion in the scanning

direction is measured by a differential laser interferometer

with resolution of 125 points per micrometer. All these de-

vices are connected via appropriate control hardware and

IEEE-488 bus to a dedicated desktop digital computer.

4.2 SRM Calibration Procedure An outline of the overall

calibration procedure is charted in figure 5. Before each

complete SRM calibration, selected features on a Control

photomask are measured and compared with Control his-

tory to ensure that the system has not changed or drifted.

These selected features include spacing patterns 3E, 4F,

and row 6 which have been independently calibrated on

the NIST Linescale Interferometer [6] to provide traceabil-

ity to the standard meter. Each feature on the SRM being

calibrated is then measured in sequence and the sequence

repeated nine times. Every feature is calibrated, and this

process takes about seven hours. After each SRM calibra-

tion is completed, the Control photomask is measured

again.

All measurements, including the Control measurements,

are entered into the linewidth database. After the calibra-

tion measurements are completed the database is searched

to ensure that the Control was measured before and after

the calibration and that these two Control measurements

were statistically invariate. The database entries for the

calibration are combined and examined statistically: the

standard deviation for each feature is calculated, possible

outliers identified, number of measurements checked, time

interval between Control measurements and calibration

measurements checked, etc. Criteria must be met for each

of these statistical factors. If necessary, more measure-

ments can be made and added to the database.

Once all the above conditions are met, the certificate is

printed and the SRM linewidth standard is released to the

Standard Reference Materials Program Office for sale. All

of the calibration database files for this serial number are

then stored on one flexible disk along with summary data.

The disk is kept for archival storage along with the printed

calibration results for each measurement, a printed sum-

mary of the statistical data, and dark-field illumination

micrographs of the calibrated pattern.
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A. Profile typical of a clear line (space) in row 2.

J ,U M U M. U b

#. Profile of the pitch pattern in row 4. The profile includes

guard lines as well as the line-spacing pairs.

U,u,U,U,U,U.U
40 45 50 55 60 65 70 75

FIGURE 7. Samples of optical profiles (measured light inten-

sity vs position) displayed on the computer screen during the

calibration process. The vertical axes are relative light inten-

sity and the horizontal axes are position in micrometers.

Each dot is a data point. The horizontal lines mark the edge

threshold.

4.3 Feature measurement sequence A flow chart of the

main steps of the feature measurement sequence is given in

figure 6. The calibration computer first centers the feature

to be measured in the field of view, focuses, and then scans

while acquiring the optical profile position and intensity

data and then storing them as two one-dimensional arrays.

At the beginning and end of each scan the shutter is closed

in order to measure the photometer dark offset. The scan

data are then corrected for offset and offset drift. The data

are then low-pass filtered to reduce extraneous noise and

processed to find the edge locations. Linewidth or pitch is

then calculated.

Position and intensity data points are correlated during the

scan by alternately triggering the interferometer and the

a-d converter to take one reading each in a software loop

while the scanning stage is moving. There may be a few

CPU clock cycles delay 5r between the two readings of a

data pair, but this delay is very small and is the same at

leading and trailing edges of a line; thus, it cancels in both

linewidth and pitch calculation. The effect is to slide the x

axis by an amount 8/ x scan velocity, but both leading and

Optical

Position, \im

Threshold* 27% intmslti

If

Zero intensity

Geometric
profile

.Width
3.96 urn

Substrate

Position, nm

Figure 8. Schematic of the cross section of a vertical-edged

chromium line and the corresponding optical profile of its

microscope image. Im is the intensity of the light passing

through the clear area; I0 is the intensity of the light passing

through the chromium; Tc is the intensity at the physical edge

(threshold); // is the intensity of the flare light. The prime

designates an observed intensity. The vertical axis is optical

intensity and the horizontal axis is position.

trailing edges slide by the same amount if the velocity is

constant, and no measurement error ensues.

If vibration or trigger jitter are present this delay contrib-

utes to the variance of the data because the scan velocity at

the leading edge may not be the same as at the trailing

edge. For the typical scan velocity of 2 |J.m/sec, if the scan

velocity changes by 100% at one edge, the effect is 2 nm
per ms of delay.

Image profiles such as those in figure 7 are presented on

the computer screen during data acquisition and processing

to allow monitoring system operation. After passing sev-

eral data quality checks, the results are entered into a

database for the SRM being calibrated.

A more detailed description of the measurement sequence

and system can be found in reference [5].

4.4 Edge location determination Analysis of optical mi-

croscope imaging gives the following equation for image

intensity at the edge of a line [7]:

Tc = Rt(I0 + Im + 2(Vvm) cos<|)) ( 1

)

where Tc is the intensity of the light at the threshold point

(edge) on the image profile (see figure 8); l0 is the intensity

of the light passing through the not-perfectly-opaque chro-

mium layer; Im is the intensity of the light passing through

the clear areas (beyond the diffraction peaks); and <]) is the

optical phase difference of the light transmitted through

these two areas. Rt is a theoretically derived ratio, of ap-
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FIGURE 9. Optical intensity [% of (/m-/0)] at edge location

versus linewidth, from a computer model of the NIST cali-

bration system. Transmittance of the chrome equals 0.2%

and <|) equals nJ2 radians.

proximately 0.25, which varies slightly depending on the

coherence factor, viewing slit width, focus, proximity of

the next edge, and other imaging conditions. For the con-

ditions of measurement of this SRM in the NIST calibra-

tion system, R, varies from 0.25 to 0.28 (see last paragraph

of this section).

Real microscope images often include some flare light

(light scattered off the microscope components illuminat-

ing the otherwise opaque features on the photomask from

above or reaching the image plane by indirect paths). In

nonlaser illumination systems, this light is temporally in-

coherent with respect to the light comprising the diffrac-

tion pattern (image profile) and simply adds incoherently

(intensity-wise) to each intensity of the image profile.

To a first approximation the intensity of the flare light is

not a function of position across a feature. Therefore, the

effect of the flare light can be incorporated into eq (1) by

simply subtracting its value from each intensity component

on the image profile:

I0 = I0 --If,Im = I/n-If,Tc = Tc

t

-If , (2)

where the prime designates an observed intensity (includ-

ing the effects of diffraction, transmission, and flare) and

where // is the magnitude of the flare light component in

the image profile for each feature. Substituting into eq (1)

gives:

Tc ' = R,[(I0
' -

If) + (Im '-
If) + 2V(/0 ' - //)

(Im'-If) cos^+7/ (3)

Both (j) and // must be known to evaluate the threshold

condition, //is feature and background dependent and

must be determined for each feature. For this SRM, where

the antireflecting-chromium layer can be considered to be

homogeneous, the transmittance Tr and <j) can be taken as

constants and /„ can be expressed as (Tr x Im). Then, con-

sidering that (/m - /„) equals (Im ' - I0 ') and substituting in

eq (2), it can be shown that

//=[/0 '-(7Vx/m ')]/(l-7V) (4)

The transmittance of the SRM was determined by using the

linewidth measuring system to measure the intensity of

light passing through the chromium near the center of the

large chromium-covered upper-left quadrant of the mask,

and found to be about 0.17% of the incident intensity.

For the SRM user, determination of // for each feature by

using eq (4) would be time consuming and impractical;

however, when, as for this SRM, the transmittance is low

(less than 0.2%), I0
' and //are nearly identical and the user

may consider all measured I0
' intensity to be flare light.

Then the correction for flare light can be implemented sim-

ply by one of the following actions: shift the intensity zero

level so that V=0; subtract I0
' from the measured intensi-

ties; determine the threshold level as a percent of (Im '-

1

0 ').

If the user cannot make this correction, the reflectance and

transmittance of the standard used for calibration should

match the reflectance and transmittance of the user's spec-

imen at the measuring wavelength.

There is no known simple method for determining <{>. Since

all phases are then equally likely, the value of cos<|) in eq

(1) can be anywhere between -1 and +1, and its expectation

value is 0. Using this expectation value is equivalent to

using the value <]) = 7T./2 in determining the threshold inten-

sity, and the attendant uncertainty is included in the uncer-

tainty budget.

A study was made of image profiles generated by a nu-

merical optical model [7] of the NIST microscope system

and photomasks. The model is based on the theory of par-

tial coherence and allows variation of image formation

conditions such as: linewidth; wavelength of incident ra-

diation; transmittance and phase of the object and back-

ground illumination; and slit width. Profiles generated by

this model agree very closely with profiles generated from

the measurement data. Theoretical profiles were generated

for lines and spaces 0.50 |J.m to 15 |im wide where the

transmittance of the "opaque" areas is 0.2% and <{> ranges

from 0 to 7i The results of the study also indicate that the

relative threshold intensity varied from 25% to 28% of (Im

-

1

0) over the range of widths simulated (figure 9). There-

fore, an algorithm for determining linewidth was imple-

mented that assumes a phase difference of k/2 and itera-

tively selects the threshold intensity ratio from this model-

generated data according to the linewidth of the feature

being measured.

5. Calibration Uncertainty of this SRM
In calibrating this standard, the positions of the geometric

edges xedge of the etched chrome film must be determined.

The photomask is placed in a transmission-mode optical

microscope with a scanning specimen stage and laser in-

terferometer, and the image of the feature to be calibrated

(relative intensity vs position) is measured [5]. The image

data are obtained as an average over the central 2.55 |im

along the length of the line, which effectively averages all

edge irregularities along this direction, since their spatial
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frequencies have been observed in SEM images to be high-

er than the cutoff of this sampling window. The positions

of the edges are found using the mathematical model of the

photomask/microscope optical system described above

-starting with Maxwell's equations, artifact properties,

and microscope imaging for partially coherent illumina-

tion-which predicts the intensity threshold that corre-

sponds to the geometrical line edge. The linewidth or line

center position is calculated from the positions of its edges.

5.1 Measurement uncertainty The total error of a mea-

surement [8] is the difference between the measurement

result and the true value (relative to the definition of the

meter for dimensional measurements); it is the sum of sys-

tematic and random errors. The systematic error is the

mean of an infinite number of measurements minus the

true value; i.e., the error after measurement-to-measurement

variability, or measurement noise, has been removed. It is

unknown and must be evaluated using all available sources

of information. The random error is the result of a single

measurement minus the mean of an infinite number of re-

peated measurements; i.e., the part of the error due only to

measurement-to-measurement variability

.

The final measurement error is unknown because the true

value is unknown (else why measure?), otherwise it could

be removed from the measurement data to eliminate it.

The measurement uncertainty derives from the probability

distributions of the errors. The standard uncertainty is the

square root of the sum of the variances of the evaluated

probability distributions of the errors. It is a combination

of uncertainties due to random and systematic effects, re-

ferred to as Type A and Type B uncertainty components,

respectively. Measurement uncertainty is calculated as de-

scribed in the ISO publication Guide to the Expression of

Uncertainty in Measurement [9]. Type A uncertainty from

the variance of the data, Type B from the variances of the

probability distributions of the systematic error

components. The expanded calibration uncertainty report-

ed on the SRM certificate is 2 times the square root of the

sum of the variances of all of the identified components

which contribute to the measurement uncertainty. This

would correspond to the 95% confidence interval if all of

the uncertainty component probability distributions were

Gaussian. Vendors and buyers of materials and services

should use the same method for calculating measurement

uncertainties.

The Type A components can be estimated directly from the

measurement data. Type B uncertainty components arise

from artifact imperfections and from the measurement

process. In many cases only the bounds, ±e, of a Type B
uncertainty component are known; in the absence of addi-

tional information its probability distribution is uniform

within the bounds,

p(x) = l/(2e) for -e < x < e, p(x) = 0 otherwise.

Then the variance u and expanded uncertainty 2u are [9]

w
2
(jt) = e

2
/3, 2u(x) = 1.15e.

The expanded uncertainty is greater than the bound.

The certified linewidths and pitches have separate uncer-

tainty values because of differences in the way errors affect

the measurement of widths and pitches. The values given

below for uncertainty components are illustrative and typ-

ical for this calibration. Specific values are given on the

accompanying calibration certificate.

5.2 Systematic effects: correlations and randomization

Linewidth uncertainty arises from edge position

uncertainty. If right and left edge position errors are sym-

metrically correlated (e.g., phase of transmitted light or

photometer nonlinearity), then u(linewidth) = 2u(edge) and

u(pitch) = 0. If right and left edge errors are uncorrelated

(e.g., chrome edge runout) then u(linewidth) = u(edge) V2.

For center-to-center pitch measurements the errors from

the phase of the transmitted light and photometer nonlin-

earity are antisymmetrically correlated and cancel out.

That is, an unknown variation of the phase, for example,

will push the image of the left edge of a line to the left and

the right edge to the right by the same amount, but will not

displace the image of the center. This is true also for most

of the edge runout error, because the average line cross

section along the 2.55 |i.m averaging length is a trapezoid

(see fig. 11) in which both edge images are affected

antisymmetrically

.

Substrate, structure, and air temperature vary with a domi-

nant period of about 20 minutes. Successive measurements

of each feature are at least 45 minutes apart, but usually

extend overnight. The effects of temperature variation

which could contribute to systematic error are effectively

randomized and average to zero because the temperature is

randomly distributed among the successive measurements

of any feature. That is, the repeated measurements are un-

correlated with the temperature fluctuations. The resulting

expanded Type A uncertainty includes all such effects and

is determined directly from the data, and need not be indi-

vidually evaluated. If necessary the time interval between

successive measurements of a feature can be adjusted or

randomized to insure decorrelation. The temperature is re-

corded at each measurement and no correlation has been

found between temperature and measured linewidth.

It is usually advantageous to convert potential Type B un-

certainties into Type A ones in this way, because the Type

B can be difficult to estimate but the combined effect of all

of the Type A components is measured directly.

5.3 Statistical process control Each feature on every

SRM photomask is measured at least nine times over a pe-

riod of at least seven hours. Type A uncertainty (common-

ly termed process precision) is determined directly from

these repeat measurement data. One photomask linewidth

SRM has been selected to be a Control photomask to serve

two purposes: representative features on the Control are

measured before and after every SRM calibration for sta-

tistical process control (a multivariate variance-covariance

Mest is applied before and after each SRM calibration, see
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Figure 10. SEM micrograph showing the nonideal nature of

line edges on an antireflecting-chromium photomask.

Appendix), and the pitches of several line arrays on the

Control have been measured on the NIST Linescale Inter-

ferometer to provide a traceable calibration of the line-

width microscope's scale. This Control photomask is used

as long as possible to accumulate a large history of

measurements.

A numerical value for Type A uncertainty cannot be de-

termined until the measuring system is operating in a state

of statistical control and the source of variability is shown

to be random in nature and stochastically stationary. When
these criteria have been met the process standard deviation

quantifies this Type A uncertainty. The value for the pro-

cess precision on the certificate of calibration includes the

variability of the control measurements and the variability

of the nine repeated SRM measurements. The details for

computing this value are given in the Appendix.

No difference is observed between long term and short

term repeatability of the calibration system, and the cali-

brations are operator independent.

5.4 Artifact imperfections The largest components of Type

B uncertainty are caused by such artifact imperfections as

the irregular and sloping edges on the etched chrome (edge

runout) and the unknown phase of the small amount of

light transmitted through the chrome. The consequences

are described briefly here and in greater detail in ref. [10].

These factors and the consequent calibration uncertainty

can change from one SRM batch to the next, and are not

related to the calibration system.

In the field of photomask linewidth metrology, the ideal

reference standard with features which have vertical walls

and smooth edges does not exist. Instead, real features

have erratically varying, nonvertical edge geometries and

raggedness along their length [11] (see figure 10) and re-

sultant uncertainties of the location of the physical edge.

To quantify these Type B uncertainties the feature edge

geometry is examined with a scanning electron

microscope. As this examination precludes use of the pho-

tomask as an SRM, only two samples from each photo-

mask production batch are examined.

Figure 1 1 . Schematic representation (not to scale) of a line

edge as seen in an oblique view SEM micrograph. The un-

certainty of linewidth measurements includes the uncertainty

of the edge location resulting from nonvertical physical edge
profiles. Determination of this uncertainty is accomplished

by estimating the width of the box which contains 95% of all

edge asperities. The edge can lie anywhere inside the box
whose width is the average of such estimates made by several

individuals using several different micrographs.

The SRM measurements reported represent averages over

the effective length (2.55 urn) of the NIST instrument's

viewing slit, positioned at the center of the line. Therefore,

both the uncertainties of the edge location resulting from

nonvertical edge geometry and from raggedness along the

length of the line are estimated as averages along the edge

of the line.

Edge waviness Several edges are examined in detail, and

typically the SEM micrographs of the photomask features

show that the raggedness along the length of a line is less

than 30 nm and has a spatial period of 100 nm or less.

If the user's measurements of this SRM are also averaged

over a length comparable to that of the NIST viewing slit,

uncertainties due to edge raggedness become insignificant

(but uncertainty due to nonvertical edges remains).

Vertical edge runout The vertical edge runout (the lateral

distance from the top of the chrome to the substrate at the

chrome edge) is the most difficult linewidth uncertainty

component to estimate, and the largest. Such subresolution

features can affect the images in different microscopes and

steppers in different ways [1], so the entire volume occu-

pied by this runout must be viewed as a possible habitat of

"the edge."

""Occasional isolated flaws have been observed during

SEM inspection that are considerably larger than this typi-

cal edge raggedness but which are not discernable in the

optical microscope at 1600 X magnification and could be

present on the photomasks accepted for calibration. If the

presence of such flaws in the measurement region should

cause degradation of focus sharpness or of measurement

precision during the calibration of a photomask, that pho-

tomask would be rejected from certification as an SRM.
However, it is not known if such flaws would have any

noticeable effect on the measurements.

12



A determination of the uncertainty caused by the nonverti-

cal edge geometry is accomplished by estimating the width

of the box containing 95% of the edge irregularities and

asperities which comprise the difference between the edge

location at the top surface and the corresponding edge lo-

cation at the substrate level, as illustrated in figure 1 1 . The

edge is bounded by this box, and the position of the edge is

considered to be anywhere inside the box with equal

probability. The variance and expanded uncertainty of the

edge runout are then [10]

u\xedge) = (width ofbox/2)
2
/3, (5)

2 u(xedge) = 1 . 1 5 (
width of box/2) (6)

The user is advised to examine the edge properties of the

production photomasks to be measured. If the quality of

the edges of the features on the user's photomasks is sig-

nificantly inferior to that of this SRM, an additional level

of uncertainty should be added to the uncertainty of mea-

surements made on the user's photomasks.

Chrome transmittance The small amount of light (ap-

proximately 0.2%) which passes through the chrome

interferes with the light passing around the edge and shifts

the image. It has so far proved impossible to measure the

phase of the light transmitted through the chrome relative

to the phase of the light passing around it because of the

great intensity difference, so any phase must be considered

equally likely. Using eq (1) with the phase equally likely

to be anywhere in the interval 0 to 71, this leads to a vari-

ance in the edge position of [10]

u
2
(xedge)

- 13861 x Transmittance, (7)

2u(xedge) = 235 ^Transmittance, nm (8)

Because pitch measurements involve measuring the dis-

tance from one location (left edge, right edge, or center) on

one feature to the same location on another feature, these

edge detection errors tend to cancel and are not included in

the uncertainty reported for pitch measurements.

5.5 The measurement process There are three major ele-

ments in the measurement process [12]: obtaining the

microscope image data (correlating image intensity and

position), analyzing the image to determine the edge in-

tensity threshold, finding the position in the image which

corresponds to that threshold. In metrology, image is ev-

erything [12]. The only factors contributing to Type B
uncertainty in obtaining and measuring the microscope im-

age are position scale inaccuracy and intensity measure-

ment inaccuracy (photometer nonlinearity). These factors

are not related to photomask quality, but can change as

improvements are made to the calibration system.

Determining the edge threshold Simulating the measure-

ment with the model reveals that the edge intensity thresh-

old can depend on the proximity of neighboring edges,

e.g., on the linewidth (figure 9), since the nearest edge is

often the opposite edge of the line being measured. In pro-

cessing the image data, the linewidth is first estimated

using the default threshold of 27%, then the correct thresh-

old for the resulting linewidth is determined from a lookup

table, and the linewidth estimated again. The process is re-

peated until successive thresholds converge.

Finding the edge position The digitized microscope im-

age data are passed through a digital finite impulse re-

sponse low-pass filter to remove the high frequency noise

which lies beyond the spatial cutoff frequency of the mi-

croscope (mostly shot noise and vibration effects). This

type of filter affects leading and trailing edges in the same

way, and a cutoff frequency was chosen which has no ef-

fect on the average measured linewidth. A subset of the

data near the threshold at each edge is then fit to a qua-

dratic polynomial to interpolate between data points and

further remove vibration effects. The edge is the position at

which this polynomial crosses the threshold intensity.

5.6 Calibration parameters The apparatus is constructed

mostly of aluminum. Some measurement parameters

which affect the calibration uncertainty are:

Measurement range for linewidth 0.5 to 30 nm
Measurement range for pitch 2.0 to 70 nm
Maximum measurement time for a single feature 30 sec

Room air temperature variation (cyclic, 20.min period) .. 3 °C p-p

Air temperature slew rate (20 min period) -15 mdeg/sec

Structure temperature variation (after warm-up) -0.1 °C p-p

Structure temperature slew rate (20 min period). .-0.5 mdeg/sec

Position/intensity slope at 27% intensity, a(xedge)/ai ....3 nm/%FS

Coefficient of thermal expansion, quartz 0.5 x 10"6/ °C

Coefficient of thermal expansion, aluminum 24 x 10"6/ °C

"p-p" means peak-to-peak; "FS" means full scale.

5.7 Calibration of the length scale Even though the scale

of the linewidth microscope is a laser interferometer, it is

calibrated to agree with the NIST Linescale Interferometer

to remove some potential errors and to provide traceability

to the meter. Several pitch patterns on the Control mask

have been measured on the Linescale Interferometer.

These same patterns are measured repeatedly on the line-

width microscope over a period of at least several days,

extending into years. The Linescale Interferometer pro-

duces traceable pitch measurements, but is incapable of

linewidth measurement.

Length scale factor When the measurement differences

for each pitch (Linescale Interferometer - linewidth mi-

croscope) are plotted against nominal pitch for all of the

patterns, the result is a straight line with noise, except for

the two end points if guard lines are not used. These end

points deviate from the line in opposite directions and rep-

resent proximity effects in one or both pitch measurement

methods. The interior points are fitted by linear regression,

resulting in a straight line with nearly zero slope. The scale

factor correction for the linewidth microscope is the

slope+l, and the scale factor uncertainty is obtained from

the variance of the slope. Typically the scale factor is based

on 75 or more repeated measurements on each pattern in

the linewidth microscope, with a resulting slope of -0.04

nm/iim (corresponding to an implied possible cosine error

of 40 |irad). This scale factor is applied to all subsequent
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measurements, rendering them traceable to the NIST
Linescale Interferometer.

Static temperature difference The pitches on the Control

photomask were measured in the Linescale Interferometer

at 20 ± 0. 1 °C, while the temperature of the linewidth mi-

croscope may be different. This difference has no effect if

the SRM measurement and the Control measurements

which bracket it are performed at the same temperature. If

they are not, the resulting error is feature size x tempera-

ture difference x coefficient ofthermal expansion (CTE) of

quartz. The maximum static temperature error is

e = 70x1

0

3 nm x 3 °C x 0.5x1
0"6

/ °C = 0.1 nm (9)

The corresponding linewidth or pitch uncertainty is

2u(LW or pitch) < 1.15 e = 0.12 nm (10)

If the temperature in the user's environment differs from

the temperature during calibration, the worst case error is

0.035 nm/°C.

Interferometer deadpath The interferometer deadpath is

the minimum optical path length between the fixed and

moving mirrors, and the metrology loop is the fixed struc-

ture which supports the mirrors and fixes their spacing.

Changes in the deadpath are interpreted by the interferom-

eter as additional measured displacement. The deadpath

can change as a result of changes in the structure tempera-

ture which change the metrology loop, and changes in the

index of refraction of the air. The deadpath here is about 1

cm.

The error resulting from structure temperature change is

deadpath length x structure temperature change x CTE of

aluminum. The measurement of linewidth or pitch, how-

ever, is a differential measurement in that the difference of

the positions of the leading and trailing edges is deter-

mined by measuring the positions of both edges within a

very short time (30 seconds for the longest pattern on this

SRM); the line's width is being measured, not its position.

The maximum temperature change is restricted to an in-

terval of 30 seconds, so this maximum error becomes

e = 10x10
6 nm x 0.5x1

0"3
°C/sec

x30secx24x10"6
/°C = 3.6nm, (11)

Since the temperature differs randomly among the repeated

measurements of the same feature, this error contributes to

the Type A uncertainty but its systematic effect averages to

zero (sec. 5.9).

2u(LW or pitch) < 4.1 nm -» 0 (12)

Index of refraction of air The index of refraction of air,

and hence the interferometer wavelength, depends on its

temperature (approximately 1 ppm/°C), pressure, and com-

position (relative humidity, CO2, etc.). In this measure-

ment system this can lead to error in two ways: the index

error times the interferometer deadpath changes the appar-

ent position in the measurement of each edge, and the

index error times the measured length changes the length

scale.

A deadpath error can occur if the index of refraction chang-

es (caused, for instance, by convective turbulence) during

the measurement time of 30 seconds or less. The resulting

error is deadpath length x air temperature change x

change ofair index of refraction^'C,

e = 1 0x1

0

6 nm x 1 5x1
0'3

°C/sec

x30secx 1x10"
6
/°C = 4.5nm. (13)

Since such changes are equally likely to be positive as neg-

ative, this type of error is random within the repeated

measurements of a feature and is included in the measure-

ment precision. Rapid air temperature fluctuations are

averaged out during a single measurement.

2u(LW or pitch) < 5.2 nm -> 0. (14)

If the temperature is constant but not at the nominal value

of 20 °C there will be a static index of refraction error of

feature size x average temperature difference x change of

air index of refraction/
0
C. The worst case error for a 3 °C

temperature offset is then

e = 70x103 nmx3°Cx 1x10"
6
/ °C = 0.2 nm (15)

2u(LW or pitch) < 0.23 nm. (16)

An atmospheric pressure deviation of 30 mm Hg from the

nominal 760 mm Hg changes the index of refraction by 9

ppm, leading to a 0.63 nm error on the longest feature

e = 0.63 nm, 2u(LW or pitch) < 0.72 nm. (17)

Deviations of the other factors affecting the index of re-

fraction from their nominal values result in similar but

much smaller random errors.

Laser polarization mixing The laser interferometer used

to make these dimensional measurements is subject to a

sinusoidal nonlinearity along the beam path due to polar-

ization mixing. This leads to a maximum periodic system-

atic error of -3.5 nm every one-quarter wavelength

(0.16 pm) for the four beam differential interferometer

used here [13]. Since repeat measurements of each photo-

mask feature are made at substantial time intervals, ther-

mal drift in the apparatus insures that these measurements

are randomly distributed over this quarter-wavelength

period. Thus this error is random, with deviations from the

mean wavelength equally likely to be positive or negative,

and its contribution to measurement uncertainty is includ-

ed in the calculation of process precision.

Specimen and measurement axis alignment The mea-

surement axis is the axis of the interferometer laser beam

(actually the geometric center of the four beams used in

this differential interferometer) and is defined as the x-axis.

The scanning axis is the axis of motion of the piezoelectric

scanning stage (or the path of the functional point, the focal

point or probe, relative to the specimen), and the specimen

axis is an imaginary line on the surface of the photomask

perpendicular to the length of the linewidth feature being

measured. Ideally these axes would coincide, but in prac-

tice it is not possible to locate these axes with great

accuracy.
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In this application the perpendicular distance between par-

allel lines (the right edge and left edge of a feature) is

measured. It is important to align the specimen axis with

the measurement axis, but slight misalignment of the scan-

ning axis causes no error because only the component of

motion parallel to the measurement axis is measured and

this is also the component parallel to the specimen axis. In

other words, a scanning axis misalignment will cause the

width measurement to "slide" slightly along the length of

the line, but it will always be perpendicular to the line's

width. Misalignment or deviations from flatness in the in-

terferometer mirrors can lead to errors here. These mirrors

are aligned by retroreflection. If the line edges are not par-

allel, the average linewidth will be measured. Even though

scanning axis alignment is not critical this axis is aligned as

carefully as possible, first by aligning the leadscrew stage

by moving it back and forth in the y direction and adjusting

its rotation in the x-y plane until the interferometer indi-

cates no periodic change in x, and then by geometrically

aligning the piezoelectric stage by eye.

Misalignment of the specimen axis with the measurement

axis will lead to a geometric error proportional to

[l/cos(misalignment angle)]-!. This alignment is checked

by scanning and measuring the x position of the center of

the long vertical fiducial line at the right side of the pattern

(see figure 3) near its top and bottom ends. The angle of

rotation of the specimen can be calculated from the x posi-

tions of these centers and the nominal y distance between

them. After the specimen has been mounted and aligned

by eye, the alignment is checked in this way and readjusted

until the computer program indicates the specimen align-

ment is within tolerance. The calibration program will not

commence taking data unless the misalignment angle is

less than ±0. 1 deg. This allows a maximum cosine error of

1.5 ppm, or 0.105 nm on the longest feature on this

photomask. If the specimen is tilted (i.e., the specimen

stage is rotated about the y-axis), the leading and trailing

edges of the longer patterns will not both be in focus, and

this condition will be detected in the measurements.

Abbe error A significant potential error source is the Abbe

error caused by possible offset between the measurement

axis and the specimen axis in combination with angular

motion of the scanning stage. The measurement axis is

designed to pass through the focal point of the microscope,

but this is a difficult adjustment and Abbe offset in the lin-

ewidth measurement system could be as much as 1 mm.
Comparison of pitch measurements made on this apparatus

and on the NIST Linescale Interferometer compensate for

errors of this type. Small random rotations of the scanning

stage, as from bearing irregularities, may produce random

errors which contribute to the measured Type A
uncertainty.

5.8 Calibration ofthe intensity scale The microscope im-

age intensity is measured with a photometer consisting of a

photomultiplier tube (PMT), a dc amplifier, and an analog

to digital converter (ADC). The PMT is placed behind a

sampling aperture in the image focal plane, and connected

to a 16 bit high speed ADC through a differential dc am-

plifier with an anti-alias RC low pass filter to remove the

high frequency noise components prior to digitizing. Each

line scan is bracketed by measurements of the dark voltage

and appropriately corrected. The accuracy of the photom-

eter used to measure image intensity is not an issue because

only relative intensity is measured, but photometer linear-

ity is important. Even though the photomultiplier tube is

operated well below its nominal cathode voltage, some

nonlinearity of response from saturation or other effects

may still be present. Linewidth uncertainty components

can arise from uncompensated photometer nonlinearity,

and from uncertainty in the nonlinearity measurement.

An error in intensity measurement 81 causes a displace-

ment of the apparent edge of §{xedge ) = 67 d(xedge)ldl.

Linewidth and spacewidth can be corrected for photometer

nonlinearity if it is known, or photometer readings can be

linearized in real time by software if necessary. This non-

linearity can be measured with neutral density (ND) filters

in a direct way, but then the uncertainty of the filter cali-

brations contributes to overall linewidth uncertainty. This

uncertainty can be reduced by recognizing that the mea-

sured transmittance of a neutral density filter should be the

same at all incident optical power levels [14]. An uncali-

brated but stable ND filter can be used to determine pho-

tometer linearity.

The nonlinearity of the PMT, dc amplifier, and ADC com-

bined can be quantified by assuming a simple nonlinear

photometer model

v = aT + b1
i

, (18)

where v=V/VFS is the normalized photometer voltage when

an ND filter of transmittance 7 is placed in front of it.

There is no constant term because the dark voltage is sub-

tracted for every measurement. Then, using no filter (7=1,

v=l), and two filters with transmittances 7; and 72 sepa-

rately, and together 7;72 (with corresponding normalized

photometer readings v;, v2,
v/2), this model gives:

\=a + b (19)

v/ = aTi + bT,
2

(20)

v2 = aT2 + bT2
2

(21)

V]2 = aTjT2 + bTj
2T2

2
(22)

The photometer voltage is measured with no filter in place,

with filteM, filter2, filter1+filter2, and an opaque filter or

shutter. The photometer is accurate at 7=0 and at 7=1, but

presents a possible error in between. These are four equa-

tions with four unknowns: a, b, Tj and T2 . The nonlinearity

can be found by solving

7 = [-a ± V(a
2 + 4bv)]/2b except for b near 0,

or 7- via - bvVa
3
+ 2bV/a5 + 0(fc

3
) for b=0, (23)

and a + b = 1 , and 7,72/772 = 1 (24)

simultaneously for b(vi, v2 ,
v}2 ). The solution to first order

in b is
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b = (V/2-V;2
2
-2v/V2+V/

2
V2+V/V2

2

+V[4V/V2(V/V2-V/2)(1-V/-V2+V/V2)

" (V/2-V/2
2
-2v/V2+V/

2
V2+V;V2

2
)

2
])

/2v/v2(l-v/-V2+v/v2 ). (25)

The photometer nonlinearity is characterized by b, a per-

fectly linear photometer having b = 0, and saturation

effects indicated by b < 0. A higher order model could be

used if necessary (with additional filters), but a closed form

solution may not be possible. The calculated b is very sen-

sitive to errors in the measured v's. As a by-product, the

actual filter transmittances can now be found. The volt-

meter does not need to be calibrated independently because

it is part of the photometer being calibrated, and only volt-

age ratios are measured.

Since the edge location is based on the threshold voltage,

the correction to the corresponding intensity is

8r = (assumed linear T) - (nonlinear T) = v - T (26)

= bv(y- 1)(1 +b-2bv) (27)

(based on the first order terms in b in the solution for T
above) and the corresponding edge correction is bxedge =

d(xedge)/dl 5/, where the image intensity / is identical to the

filter transmittance T, since both are normalized at zero and

full scale.

The photometer was calibrated in situ, without disassem-

bling the microscope, in order to duplicate normal operat-

ing conditions. An ND filter with nominal transmittance of

0.55 was used for filterl and a variable iris in the illumi-

nation path was used for filter2. This has the advantage of

avoiding any possible interaction between two stacked fil-

ters due to multiple passes, and of exercising the photom-

eter over a wider range of light levels in successive mea-

surements of b. Several sets of values of vlt v2 , and v12

were obtained with the aid of a small computer program for

removing some measurement noise from the voltage read-

ings, compensating for dark voltage with the aid of a

shutter, and normalizing the voltage readings. Corre-

sponding values of b were calculated both to 1st order and

to 2nd order, with little difference in the results between

the two orders.

The data indicate a mean b of about +0.02 with a larger

standard deviation, implying a needed edge correction of

fcedge ~ -1 nm. This mean value, however, is statistically

insignificant and so no photometer nonlinearity correction

is required.

The dispersion of the measured values of b leads to an un-

certainty in the edge caused by the variance in b:

u(xedge) = (d(xedge)ldT)
2
(dlldbf u\b). (28)

The slope of the intensity/position profile at the edge

threshold intensity of -27% is

d(xedge)/dl = 3 nm/% = 300 nm, (29)

and the expanded edge uncertainty due to photometer non-

linearity uncertainty is

2u(LW) = 4u(xedge ) = 4 x 300 (dl/db) u(b), (30)

2u(LW) = 120x2tv(b) = 6nm (31)

Since the effects on the right and left edges of a line are

correlated, the corresponding expanded linewidth uncer-

tainty is twice the edge uncertainty.

5.9 Measurement resolution The resolution of linewidth

and pitch measurements can be limited by the resolution of

the interferometer used, in this case 8 nm, called the least

count or least significant bit (LSB). (The intensity resolu-

tion is also limited, to 16 bits.) This could lead to a

systematic error of 1/2 LSB, even in the average of any

number of repeated measurements.

In this application however, the interferometer is oversam-

pled (i.e., read more frequently than the LSB would change

in a noise-free environment) and digitally filtered, and

-most importantly-the measurand is dithered by ambient

vibration. Now the measurement resolution is limited only

by the noise (the dither) and not by the interferometer.

Measurement resolution can be increased through repeated

measurements. Only 1 LSB peak to peak of dither is need-

ed, in a frequency band lower than the Nyquist frequency.

If the dither is higher in frequency than the microscope

resolution (spatial cutofffrequency x scan speed), it can be

removed from the data by filtering. The remaining (lower

frequency) dither appears in the variance of the data.

Measurement in a noise-free environment would incur an

added uncertainty component of 1/2 LSB arising from the

resolution limit. The addition of dither and oversampling

to the measurement process removes this uncertainty and

replaces it with increased statistical variance, which dimin-

ishes as the number of repeated measurements increases.

Even in an analog measurement, the presence of some

noise can increase resolution and give confidence the sys-

tem is not saturated. It is like tapping a barometer before

reading the pressure.

In metrology, a little noise is a good thing.

5.10 Traceability The definition of the meter is the length

of the path traveled by light in vacuum during the time in-

terval of 1/299 792 458 of a second. This defines the speed

of light in vacuum. The interval of the second is defined as

the duration of 9 192 631 770 periods of the ground state

hyperfine transition of Cs-133 [15]. The frequency of an

iodine-stabilized HeNe reference laser has been measured

in a manner traceable to the second. Its vacuum wave-

length is then the defined speed of light divided by its

frequency. The scale calibration of the of the linewidth

measurement system is traceable to the NIST Linescale

Interferometer [6], whose laser wavelength has been com-

pared to the reference laser above. The wavelength in the

laboratory must be corrected for the index of refraction of

air, which in turn depends on the pressure, temperature,

and composition of the air.

Even though the scale of the photomask linewidth mea-

surement system is a laser interferometer, it is calibrated to

agree with the NIST Linescale Interferometer to remove

some potential errors and to provide traceability to the
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meter. The intensity scale must be self consistent, but

traceability to a unit or standard is not required.

Comparisons of the calibrated features on this SRM with

other national standards laboratories show good agreement

[16].

5.11 Summary All known uncertainty components and

their typical values are listed in Table 1, except most of

those less than 1 nm because they have no effect on the

expanded uncertainty. All uncertainties are expressed as

the expanded uncertainty 2U, where U = ^variances of

linewidth or pitch (not of edge position), in nm [17].

The values given here are illustrative and typical for this

calibration. Specific values are given in each calibration

certificate. The expanded uncertainty reported on the cal-

ibration certificate has been rounded because the calculat-

ed uncertainty is only an estimate and the final few nanom-

eters more or less should not be taken too seriously. Typ-

ically, linewidth uncertainty is less than 40 nm and pitch

uncertainty is less than 10 nm.
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Calibration Uncertaintyfor NIST Photomask Linewidth SRMs
serial numbers 473-BOXX

Uncertainty Component Calculation
ISO

Type
Value

Edge
correlation

factor

Expanded

Uncertainty (nm)

Linewidth Pitch

Artifact

Edge runout The edges of the etched chrome lines when examined in a scanning electron microscope are

not vertical or smooth. As the illumination wavelength in the optical measuring microscope is about five

times the structure size of the line edge irregularities, these features are not fully resolved but do impart

uncertainty to the measurement. If the edge position is to be characterized by a single number, then that

number must have an uncertainty proportional to the nonvertical edge runout.

2s = width of box

containing 95% of

the edge.

2u(ec7ge; = 1.15 a

B a- 17 nm V2 27.6
m

0

Optical transmission Since the chrome is not 100% opaque, a small amount of light leaks through it and

interferes with the light transmitted and diffracted around the edges. It has so far proved impossible to

measure the index of refraction of the chrome (or of a chrome/antireflecting coating), so the phase of this

transmitted light relative to the light passing through the substrate is unknown, leading to uncertainty in

interpreting the microscope image.

Tr = chrome

transmission

2u(edge) = 235 V7r

B Tr= 0.0017 2 19.4 0

Intensity

Scale

Photometer nonlinearity. Even though the photomultiplier tube is operated well below its normal

cathode voltage, some saturation or other nonlinear effects may be possible. Slope of intensity/position

profile b\edge)ldl at threshold intensity (-27%) is 3 nm/%FS lie (27±1)% intensity => (edge ±3) nm].

Photometer nonlinearity is measured using two ND filters and a bootstrap method, using the model

photometer voltage = a Intensity + b lntensitf-7.

Edge placement error from uncompensated intensity nonlinearity 8/ is b\edge) = 51 b\edge)ldl.

Edge placement uncertainty from uncertainty in measuring nonlinearity derives from noise on the

photometer voltage while using the ND filters. Right and left edges are correlated.

8(edge) =

d(edge)ldlxt)l
B

6=0.017

5/=0
2 0 0

2u(edge) =

d(edge)ldlxdl/db

x 2u(b)

A
2u(b) =

0.049
2 5.9 0

Intensity resolution The photomultiplier voltage is amplified and sampled by a 16-bit analog-to-digital

converter. Two different kinds of digital filtering, with the help of oversampling and random noise

(dither) on the data, interpolate the intensity data so the resolution is high and limited only by noise.

see text B 2 0 0

Length

Scale

Length scale traceability A pitch standard is measured on both the NIST Linescale Interferometer and

the linewidth calibration microscope.

Uncertainty of pitch

standard
B 3.0 nm 1 3.0 3.0

Transfer to linewidth

microscope
A 3.6 nm*" 1 3.6 3.6

Ante error The interferometer measurement axis is positioned to pass through the microscope focal point

and to be parallel to the scan motion axis. In addition, the Abbe" error is reduced through comparison with

the Control photomask because low frequency rotational motion cancels out and high frequency is

unlikely.

x-Abbe offset x yaw

y-Abbe offset x pitch
B

Abbe offset

within ±1

mm*
0 0

Specimen cosine error The specimen alignment is checked automatically at the beginning of each

calibration sequence by measuring the xy positions at two points along a long fiducial line on the

photomask. Measurements will not proceed if the angle is greater than 0. 1 deg

2u= 1.15 max(LlVor

P/fc/i)x(1/cose-1)
B 0.1 degree 1 0.05 0.11

Interferometer cosine error The measurement axis, the scan axis, and the specimen axis should be

parallel. However, the only axis alignment which may affect the measurement is the specimen alignment

described above. As long as the measurement axis is perpendicular to the line edges (specimen

alignment), the scan axis alignment needs to be only approximate.

see text B 1 0 0

Laser wavelength uncertainty removed by comparison with Control photomask. B 0 0

Polarization mixing appears as random uncertainty because random thermal drift and apparatus thermal

expansion between repeat measurements randomizes the distance of the interferometer mirrors along the

beam over a range greater than 1/4 wavelength.

B 4nm" 1 0 0

Interferometer resolution The interferometer is oversampled (-500 data points/trm) during the scan.

Two different kinds of digital filtering, with the help of random noise (dither) on the data, interpolate the

position data so the resolution is better than the native interferometer's and limited only by noise.

see text B 1 o o

T
h

a

1

Static Pitch standard calibrated at

different temperature from SRMs.
substrate (CTE quartz) x (temp diff) x (max LW or Pitch) B 0.2 nm*

0 0
Dynamic Control and SRM measured

at different temperatures.

structure deadpath (CTE aluminum) x (max temp change) x (deadpath) B 4.1 nm"

air deadpath (dX/dT) x (max temp change) x (deadpath) B 5.2 nm"

Atmospheric pressure (dynamic) air deadpath pressure (dX/dP) x (max pressure change) x (deadpath) B 0.7 nm"

Fudge Factor unforeseen uncertainty components B 5 2

Random observed 2V variance ol the mean of 9 or more repeated measurements (typical)'" A 12 9

Combined expanded uncertainty (nm) root sum square 36.93 10.34

* Removed by comparison with the Control photomask.
** These dynamic effects average to zero among the repeated measurements of the same feature because temperature is randomized among repeat

measurements with long time intervals. They are included in the random uncertainty.

*** For illustration. Actually these random effects are combined in a different way. See Appendix.

Table 1. A listing of uncertainty components and their contributions to overall measurement uncertainty, in nm. Scale

uncertainties are determined in a worst-case sense, i.e., scale factor uncertainties (in ppm) are multiplied by the largest

dimension measured. Combined random uncertainty is derived from the measurements. Combined expanded uncertainty

is the root-sum-square of the uncertainty components.
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APPENDIX
Process control for SRM 473 calibrations

A. Introduction

The procedures used to assure statistical control of the lin-

ewidth SRM measurement system are defined. A Control

photomask with the same characteristics as the SRM pho-

tomask is used for measurement process control. Six of the

features on the Control photomask are measured each time

an SRM photomask is calibrated. The six features are: the

nominal 0.6 |im and 5.0 (im lines from row 1 ; the nominal

1.0 (im and 20.0 Jim lines from row 2; the nominal 6.2

pitch fim pattern from row 3; and the nominal 2.0 |im line

from row 5. These correspond to features 1 B, 11, 2F, 2K,

3E, and 5B as shown on the diagram of a pattern in figure

3. The purpose of the control photomask measurements is

to provide a database that can be used to determine whether

or not the measurement system is in a state of statistical

control. There are several factors which may cause the

optical measurement system to be out-of-control. There

may be a change in the measurement system or a change in

environmental conditions. This document describes the

initialization of the database of control measurements, use

of the database to determine if the measurement system is

in control, and the maintenance of the database over a long

period of time.

B. Initialization of Process Parameters

When the measurement system is ready for performing

SRM calibrations, a database is initialized. This database

consists of at least 15 sets of repeated measurements of the

six selected features on the control photomask taken over a

period of several weeks [18]. This period is representative

of the normal operating mode of the optical measurement

system. The six features measured are identified as 1 B, 11,

2F, 2K, 3E, and 5B. These features cover the extremes of

the feature sizes and the range of the feature locations on

the photomask. The database includes not only the mea-

sured linewidth or spacewidth but also other pertinent

information such as the date and time of the measurement,

feature identification and any other potentially useful in-

formation (temperature, scan rate, etc.).

A plot of the repeated measurements for each feature, mea-

sured width or pitch versus time, is made to detect any

possible anomalies in the measurement system and to ver-

ify that the system produces stable measurements whose

variability is random in nature. The control database is

accepted as being representative of the normal operating

environment of the measurement system if no more than

5% of the measurements are suspected outliers (unex-

plained anomalies). If this is not the case, an effort is made

to determine the cause and appropriate adjustments are

made to the measurement system. The control database is

then reinitialized.

The initial control database is used to estimate the mean

vector (accepted mean values for each control feature) and

the matrix of covariances between them. These are re-

quired elements for the multivariate Hotelling's T2
test

statistic [19]. The details for computing the estimate of the

mean vector and the matrix of covariances are given

below. The use of this test statistic and updating procedure

for this statistic are given in following sections of this

document.

From the database of control measurements for features

1 B, 1 1, 2F 2K, 3E, and 5B, a matrix X is constructed, as

shown below, of the N initial repeated measurements on

the control photomask. Each of the features has the same

number of repeated measurements,

X1B,2

XU,2

X2F,2
Xij

X1B,1

XU,1

X2F,1

X2K,1

X3E,l

X5B,1

X2K,2

X3E,2

X5B,2

X1B,N

X11,N

X2F,N

X2K,N

X3E,N

X5B,N

where i

andj =

1,2,. ..,6

1,2, ...,N

(B.l)

The average is computed for each of the features based on

the N repeated measurements,

xib = y^^r xu

X2F

X3E

5 n

2^ jsj

N y

N

X2K

X5B

N

£
3=1

N

E

t
x

f?5
N

X2Kj

N

5Bj

N

(B.2)

M (B.3)

These values are the elements of the vector of means as

denoted below:

*ii

X2F

X2K

X3E

X5B-

A matrix is computed of the differences of the measured

values minus the mean values,

Zij = - Mh (B.4)

where /=1,2,...,6 and j=\,2,...,N, and the variance-

covariance matrix, S, of size 6x6, of the control database is

computed with elements:

iV i
fc=i

where i'=l,2,...,6 and ;'=1,2,...,6. The inverse of the

variance-covariance matrix is computed and is used in con-

junction with future control measurements to determine if

the measurement system remains in a state of statistical

control.
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C. Procedures for Process Control

At the beginning of an SRM measurement session the fea-

tures 1 B, 11, 2F, 2K, 3E, and 5B on the control mask are

measured and the multivariate Hotelling's test statistic T
2

is computed as follows:

T2 =^T
[Y-M]V 1[Y-M] (C.l)

where Y is a vector of newly determined widths and pitch-

es for the above mentioned features.

The system is in control at a 95% confidence level if

(N-6)
t2 < {6 N _ 6)

where the F.05 (6,N-6) values are found in Table 2. The

value (N-6) corresponds to v in Table 2.

At the end of the SRM measurement session, the control is

remeasured and the test is repeated. If the system is still in

control the SRM data are summarized and a certificate of

calibration produced. The value of [(JV-6)/6(AM)]7* is

saved in the control database and the system is ready for

the next SRM measurements.

If the test indicates the system is not in control, the data are

tagged when they are saved in the control database. The

system is then checked to determine the cause of the test

failure. A control chart may be used to determine which

feature is causing the problem or to see trends in the con-

trol data. A control chart for each feature is constructed

from the control database as follows. The mean, X, and the

standard deviation, a , for each feature are computed us-

ing the N repeated measurements from the control

database:

and a
' 1=1

Control limits are computed by using the following equa-

tions:

X±at.975(N - 1) for the 2a limit

112 successive measurements (4 years)

Figure 12. Control chart of the linewidth of feature 1B.

Vertical axis is variation (urn) from the mean; horizontal axis

is successive measurements. The dotted lines mark the limits

of the 95% confidence level. Future measurements are added

to the chart. Regression slope (solid line) implies drift of 0.7

nm/year

and (C.4)

X ± a £.995 (TV - 1 ) for the 3a limit

The values for t are found in Table 3. The value (AM) de-

notes degrees of freedom, df, in Table 3.

Figure 12 is an example of a control chart of the initial 112

measurements of feature 1 B. Future measurements are

added to the chart. The control limits remain the same un-

til the process parameters are updated.

If it is determined that the cause of the failure did not affect

the SRM measurements (for example, the control photo-

mask was misaligned), the appropriate adjustments are

made and the control photomask is remeasured. If the test

then shows the process is in control, the SRM data are

summarized, a certificate of calibration produced, and the

system is ready for the next SRM measurements.

If it is determined that the cause of the failure may also

have affected the SRM measurements (for example, the

air-conditioning unit malfunctioned during calibration),

the SRM must be remeasured after the problem has been

corrected and the test indicates the system is once again in

control. Major changes to the measurement system dictate

reinitialization of the database.

D. Updating Process Parameters

If the measurement system remains unchanged after col-

lecting a minimum of 30 new (good) sets of control pho-

tomask measurements, the process parameters, M, S, and

a are updated. Equation (B.3) is used to compute M2, a

vector of estimated means for the recently collected control

measurements; eqs (B.4) and (B.5) are used to compute S2,

the corresponding variance-covariance matrix; and eq

(C.3) is used to compute a2 ,a vector of standard devia-

tions for the repeated measurements for each feature. In

the updating process, values that have been flagged as out

of control are omitted.

Before updating the control database, a comparison is

made between the two databases, the old versus the new, to

determine whether or not there is a significant difference in

terms of the mean vectors and the variance-covariance

matrices. The equivalency of variance-covariance matri-

ces is tested as follows:

let l = Nx +N2 ,
(D.l)

where N\ = number of repeated observations in the

control database

and N2 = number of repeated observations in the

new set of control observations.

The new control database will contain both new and old

measurements.

Let S = (NlS l
+N2S2yi (D.2)

where Si is the variance-covariance matrix of the

current control database

and S2 is the variance-covariance matrix of addi-

tional new control measurements.
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« _ Nl N2 (l-p-l)m _ M2]
T
s
_
1[Mi_ Ma]

Compute the statistic [20];

D = 0.5Ni tracetCSi-S)"
1

]

2
+ 0.5N2 traceKSa-S)"

1

]

2
(D.3)

and test whether

D < xV° °5)

D is distributed as a chi-square random variable with df

(degrees of freedom) = 0.5p(p+l) where p = 6, the number

of features measured. The value of %
2
2 i (0.05) is 32.67. If

D < 32.67, then the differences between the old and new

covariance matrices can be attributed to random measure-

ment error at the 95% confidence level. However, if the

test fails, (D > 32.67), this suggests that the process has

changed in some manner and the cause needs to be identi-

fied and evaluated. If the change is significant, appropriate

action must be taken and the control process re-initialized.

If the covariance matrices are statistically the same, the

means are compared. To do this, first a pooled covariance

matrix is computed:

Sp = [(AM)S, + (W2-DS2W - 2) (D.4)

where Sj and S2 are defined in (D.2).

Then the statistic is computed:

T2

lp(l - 2)

(D.5) and tested whether:

T2 < F.Q5(p,l-p-l)

where N\ , N2 and / are defined in (D. 1 ),

Mi is the mean vector for the current database,

M2 is the mean vector for the newly collected

control data,

and p = 6, the number of measured features.

T
2

is a random variable with an F-distribution with p de-

grees of freedom in the numerator and with l-p-l degrees

of freedom in the denominator. The F.o5(/>, l-p-l) value is

given in Table 2. If F2
>F,o5 (p, l-p-l), this suggests that

there has been a change in the measurement process. The

change needs to be identified and appropriate action needs

to be taken to re-establish the measurement system and be-

gin the process control anew. However, if F2
<F.05(p,

l-p-l) then the differences between the old and new mean

vectors can be attributed to measurement error at the 95%
confidence level. Since the test for equality of means was

only performed if the hypothesis of equal covariance ma-

trices was not rejected, it can be said that there has been no

statistically discernible change in the measurement process

at the 90% confidence level and the control may be updat-

ed to include the new measurements. The covariance

matrix is updated as shown in eq (D.4) and the current co-

variance matrix is

S = SP (D.6)

The mean vector is updated as shown below:

N1M1 + N2M2

The standard deviation for each feature is updated as

follows:

N
t + N2

- 2
(D.8)

E. Uncertainty Statement for SRM 473

The uncertainties for the certified linewidth and pitch val-

ues given in the certificate include small contributions

from the Type A uncertainty (measurement precision) and

a contribution from the Type B uncertainty. The Type B
uncertainty for both pitch and linewidth values includes a

length dependent contribution introduced by correcting the

measurements to agree with the NIST Line Scale Inter-

ferometer measurements (see sec.5.7). The Type B uncer-

tainty for the linewidth values has a significant contribu-

tion (on the order of 0.03 |lm to 0.04 u.m) resulting from

the edge geometry of the features. See Table 1 for a de-

tailed summary of uncertainty components.

Before determining the total uncertainty for the reported

certificate values, it is assumed that all the measurements

on the SRM and in the control database have been correct-

ed to compensate for the difference of measurements

between the NIST Line Scale Interferometer System and

the optical linewidth measurement system. The correction

factor is derived by using the model given below and or-

dinary least squares to estimate a and its variance:

X = aY+e (E.l)

where X represents a measurement from the linewidth

measurement system,

Y represents a measurement from the linescale

measurement system,

and e is the random error of measurement.

Then the uncertainties, ULW and UP, for linewidth and pitch

measurements are determined by the equations below:

The variance of each SRM measurement is

var(S)

1 ^2 (Xi x
j)

(E.2)

M (D.7)

a* n
^

where Jtj is the average of the y'th feature,

v a r ( S ) is the estimated error of the slope,

a is the least squares determination of the slope,

and n is the number of repeated measurements.

The variance of the control measurements is

2 2 var(q)

where

Ck is the average of the kth control feature

and CVk is the kth diagonal element of the variance- co-

variance matrix for the control data.

Then the pooled variance from the Af repeated measure-

ments in the control database and the n repeated measure-
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ments of the SRM is

(N 0E^ + («
fc=i

(E.4)p (iV- l)p+(n- l)g

The uncertainty for pitch measurements is

Up=2 ^[Spln + JL(Type B uncertainty variances)]

and the uncertainty for linewidth measurements is

Ulw=1 ^[sp
2
/n + £(Type B uncertainty variances)]

where sp is determined by using eqs (E.2), (E.3), and (E.4)

for pitch and linewidth measurements on the SRM and in

the control database. Typically sp
= 015 |im and n = 9 re-

peat measurements. The factor 2 is the NTST expansion

factor [17].
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16 2.120 2.921 72 1.993 2.646

18 2.101 2.878 74 1.993 2.644

20 2.086 2.845 76 1.992 2.642

22 2.074 2.819 78 1.991 2.640

24 2.064 2.797 80 1.990 2.639

26 2.056 2.779 82 1 .989 2.637

28 2.048 2.763 84 1.989 2.636

30 2.042 2.750 86 1.988 2.634

32 2.037 2.738 88 1.987 2.633

34 2.032 2.728 90 1 .987 2.632

36 2.028 2.719 92 1.986 2.630

38 2.024 2.712 94 1 .986 2.629

40 2.021 2.704 96 1 .985 2.628

42 2.018 2.698 98 1 .984 2.627

44 2.015 2.692 100 1 .984 2.626

46 2.013 2.687 102 1.983 2.625

48 2.011 2.682 104 1.983 2.624

50 2.009 2.678 106 1.983 2.623

52 2.007 2.674 108 1.982 2.622

54 2.005 2.670 1 10 1.982 2.621

56 2.003 2.667 1 12 1.981 2.620

58 2.002 2.663 114 1.981 2.620

60 2.000 2.660 116 1.981 2.619

62 1.999 2.657 118 1.980 2.618

64 1.998 2.655 120 1.980 2.617

1.960 2.576

Table 2

Critical Values of F 0s(6,v) of the F-Distribution

V F.05(6,v) V F.05(6,v) V F.05(6,v)

10 3.217 48 2.295 86 2.206

12 2.996 50 2.286 88 2.203

14 2.848 52 2.279 90 2.201

16 2.741 54 2.272 92 2.199

18 2.661 56 2.266 94 2.197

20 2.599 58 2.260 96 2.195

22 2.549 60 2.254 98 2.193

24 2.508 62 2.249 100 2.191

26 2.474 64 2.244 102 2.189

28 2.445 66 2.239 104 2.187

30 2.421 68 2.235 106 2.185

32 2.399 70 2.231 108 2.184

34 2.380 72 2.227 110 2.182

36 2.364 74 2.224 112 2.181

38 2.349 76 2.220 114 2.179

40 2.336 78 2.217 116 2.178

42 2.324 80 2.214 118 2.176

44 2.313 82 2.211 120 2.175

46 2.304 84 2.209 2.099

Table 3

Critical Values of t^5(df) and '.995(4/) of the Student's

/-Distribution

df '.975 '.995 df '.975 '.995

10 2.228 3.169 66 1.997 2.652

12 2.179 3.055 68 1.995 2.650

14 2.145 2.977 70 1.994 2.648
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