
 

NIST Special Publication 1087 
 

 
 

COOLING MODE FAULT DETECTION AND DIAGNOSIS 

METHOD FOR A RESIDENTIAL HEAT PUMP 
 
 

 
 

Minsung Kim 
Seok Ho Yoon 

W. Vance Payne 
Piotr A. Domanski 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

NIST Special Publication 1087 
 

 
COOLING MODE FAULT DETECTION AND DIAGNOSIS METHOD FOR A 

RESIDENTIAL HEAT PUMP  

 

 
Minsung Kim 

Korea Institute of Energy Research 
Geothermal Energy Research Center 

71-2 Jang-dong, Yuseong-gu, Daejeon 305-343, Korea 
 

Seok Ho Yoon 
Korea Institute of Machinery and Materials 

Energy Systems Research Division 
171 Jang-dong, Yuseong-gu, Daejeon 305-343, Korea 

 
W. Vance Payne 

Piotr A. Domanski 
U.S. DEPARTMENT OF COMMERCE 

National Institute of Standards and Technology 
Building Environment Division 

Building and Fire Research Laboratory 
Gaithersburg, Maryland 20899-8631, USA 

 
 
 

October 2008 
 
 
 

 
 

U.S. DEPARTMENT OF COMMERCE 
Carlos M. Gutierrez, Secretary 

 
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY 

James M. Turner, Deputy Director 



 

 

 
Certain commercial entities, equipment, or materials may be identified in this 

 document in order to describe an experimental procedure or concept adequately.  Such 
identification is not intended to imply recommendation or endorsement by the 

National Institute of Standards and Technology, nor is it intended to imply that the 
entities, materials, or equipment are necessarily the best available for the purpose.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

National Institute of Standards and Technology Special Publication 1087  
Natl. Inst. Stand. Technol. Spec. Publ. 1087, 98 pages (October 2008)  

CODEN: NSPUE2 
 

 



 

 i

BRIEF SUMMARY OF THE RESEARCH 
 
This research addresses the need for fault detection and diagnosis (FDD) in residential-style, air 
conditioner, and heat pump systems in an attempt to make these systems more trouble free and energy 
efficient over their entire lifetime.  This work is one of the first to apply FDD techniques to a residential 
system with the added control element of a thermostatic expansion valve (TXV).  Any control element 
actively seeks to perform its duties and thus obscures any faults occurring by making adjustments.  This 
research work takes this into account and shows how FDD techniques may be applied to this type of 
system operating in the cooling mode.   
 
Performance characteristics of an R410A residential unitary split heat pump equipped with a TXV were 
investigated in the cooling mode under no-fault and faulty conditions.  Six artificial faults were imposed: 
compressor/reversing valve leakage, improper outdoor air flow, improper indoor air flow, liquid-line 
restriction, refrigerant undercharge/overcharge, and presence of non-condensable gas. 
 
An automated method of steady-state detection was developed to produce consistent collection of data for 
all tests.  The no-fault test measurements were used to develop a multivariate polynomial reference model 
for those system features (temperatures) that varied the most when a single fault was imposed.  Outdoor 
air dry-bulb temperature, indoor air dry-bulb temperature, and indoor air dew-point temperature were 
used as the independent variables.  From the no-fault reference model, feature residuals (differences 
between model predictions and measured values) were determined.  Since the system was controlled by a 
TXV, the system could adapt itself to external variation much easier than a system with a fixed area 
expansion device.  This added measure of refrigerant flow control provided by the TXV meant that the 
system compensated for faulty behavior more easily than a fixed area expansion device system.  The 
distinctiveness of a fault depended on the TXV control status (fully open or fully closed), and thus the 
TXV affected the fault response of the selected features.   
 
The rule-based chart method of fault detection and diagnosis presented in this work requires knowledge 
of the variation of system features at steady-state and during transient operation.  Knowledge of the 
transient variation of the various features is necessary to establish the size of the moving window used by 
the steady-state detector, which is a key part of our FDD method.  The goodness of fit of the no-fault 
reference model along with the lack of measurement repeatability from one day to the next was included 
in developing the FDD algorithm.  The steady-state detector is the foundation upon which the FDD 
algorithm rests; only when all system features are within their strictly defined steady-state limits does the 
FDD algorithm begin applying the rule sets as defined in its rule-based chart.  These steady-state limits 
are based upon the standard deviation of the feature values, within a fixed-time-interval moving window, 
being less than three times their no-fault steady-state standard deviation values.   
 
Once the steady-state detector indicates that the important FDD features are steady, the difference in the 
moving window mean and the no-fault reference model values, feature residuals, are calculated using the 
no-fault reference model.  A feature residual may have one of three values; positive or up-arrow , 
negative or down-arrow , or neutral [no change, NC (−)].  The NC case is defined by a positive and 
negative threshold about the moving window mean value.  Each case has an associated probability of 
occurrence, P(C | X), as shown in Figure i.   
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Figure i.  Threshold for a moving window mean value 

 
The calculation of the neutral threshold value, ε, involves selecting a confidence level (for example 99 %) 
to avoid a false alarm.  For a given confidence level, the calculation of the appropriate confidence interval 
involves determining the appropriate variances (uncertainty) associated with steady-state measurement 
variations, modeling, and lack of measurement repeatability.  These three sources of variance have 
individual confidence intervals associated with them, and their square rooted sum value gives the final 
value of ε at the given confidence level.  With ε defined, the probability for each of the three cases may be 
calculated as shown in Figure i.   
 
Looking at an example of a rule-based chart as shown in Table i, each positive, negative, or neutral case 
index (rows of the table) for the important features (columns of the table) has an associated probability 
(0< P(C | X)<1) including the probability of no-fault.  The probability of a given fault is the product of all 
probabilities in a given row.  When the probability of a given fault is higher than the no-fault probability 
(all calculated at the previously stated confidence level), the system most likely has this fault occurring.   
 

Table i.  Example rule-based chart 
Fault Type TE Tsh TD TC Tsc ∆TCA ∆TEA 

Refrigerant undercharge        
Refrigerant overcharge – –    – – 

No-fault – – – – – – – 
 

The techniques discussed above are applied to a residential heat pump in the cooling mode with our 
results discussed herein.  The addition of a complete definition of the no-fault case and the method of 
handling the TXV are unique to this work.  The methods discussed in this work may be applied to any 
vapor compression system that can experience similar faults.   
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CHAPTER 1.  BACKGROUND 
This work examines cooling mode fault detection and diagnosis of a residential heat pump system with 
the intent of making these systems more trouble free and energy efficient over their entire lifetime.  An 
increasing emphasis on energy saving and environmental conservation requires that air conditioners and 
heat pumps be highly efficient.  To this end, a few government initiatives have been undertaken.  For 
example, the EPA’s Global Programs Division is responsible for the assessment of alternative 
refrigerant’s performance and enforcement of the Clean Air Act.  Another prime example is the ENERGY 
STAR initiative, a program formulated by the EPA/Climate Protection Partnerships Division and the 
Department of Energy (DOE), which promotes products that offer energy efficiency gains and pollution 
reduction.  Directly affecting residential equipment, a recent DOE regulation imposed a 30 % increase in 
the minimum seasonal energy efficiency ratio (SEER) for central air conditioners, from 10.0 to 13.0, 
beginning January 23, 2006. 
 
To ensure that heating, ventilating, and air-conditioning (HVAC) equipment operates in the field at its 
design efficiency, the efforts exerted by equipment manufacturers to improve equipment’s SEER must be 
paralleled in the field by good equipment installation and maintenance practices.  However, a survey of 
over 55 000 residential and commercial units found the refrigerant charge to be incorrect in more than 
60 % of the systems (Proctor, 2004).  Another independent survey of 1500 rooftop units showed that the 
average efficiency was only 80 % of the expected value, primarily due to improper refrigerant charge 
(Rossi, 2004).  A low refrigerant charge in the system may be due to a refrigerant leak or improper 
charging during system installation.  While the most common concern about a refrigerant leak is that a 
greenhouse gas has been released to the atmosphere, the greater impact is caused by the additional CO2 
emissions from a fossil fuel power plant due to a lowered air-conditioner (AC) efficiency. 
 
Proctor’s survey shows a correlation between the quality of installation and a technician’s training and 
supervision.  As is no surprise, proper training of the technician is the condition sine qua non for proper 
installation.  But the survey also showed clearly that the number of return calls to correct improper 
installation was lowest when routine oversight of the installation work was provided, and that the number 
of faulty installations markedly increased when post-installation inspection visits were eliminated.  At 
present, the homeowner has no quality assurance method for equipment installation as long as his/her 
comfort is not compromised.   
 
The goal of this project is to study and develop fault detection and diagnostic (FDD) methods which 
could provide a technician with a fault diagnosis and could alert a homeowner when performance of his 
AC unit falls below the expected range, either during commissioning or post-commissioning operation.  
For the homeowner, this FDD capability could be incorporated into a future smart thermostat in the form 
of a readout to provide basic oversight of the service done on the unit and of its performance.   
 
The benefits of fault detection and diagnosis (FDD) methods for ACs and HPs are numerous, and they 
include; 

- reduction of energy use  
- reduction in peak demand of electricity 
- reduction in CO2 emissions from fossil fuel power plants 
- reduction in refrigerant emissions from AC and HP systems 
- improvement of thermal comfort 
- reduction in down time and maintenance cost 

 
Fault detection and diagnosis is accomplished by comparing a system’s current performance or features 
with those expected based on the measurements taken from the system when it was known to operate 
fault-free.  FDD method development includes a laboratory phase during which fault-free and faulty 
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operations are mapped, and an analytical phase during which FDD algorithms are formulated.  Kim et al. 
(2006) documented performance of the cooling mode fault-free and faulty heat pump operation, while this 
report describes the development of FDD concepts and their analytical implementation.   
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CHAPTER 2.  OVERVIEW OF FAULT DETECTION AND DIAGNOSIS  
 
2.1  Concept of Fault Detection and Diagnosis 
 
Generally, a fault is a defect or condition that prevents the system from performing as intended.  For a 
heat pump, a fault will result in degraded system capacity or efficiency, or both. The use of computers 
and microprocessors permits the application of FDD methods, which results in an earlier detection of 
faults than is possible by limit and trend checks that can be implemented by a conventional controller. 
 
Isermann (1984) outlined a supervision loop for model-based FDD adopted in this study, shown in Figure 
2.1.  Once a fault is observed, the fault detection module produces a fault message and activates a fault 
diagnosis module, which identifies the cause of the fault and its location.  Then, the identified fault is 
evaluated in a fault evaluation module by the class of its hazardous effect.  Eventually, the decision 
module will decide the proper maintenance needed based upon economic considerations.  After all the 
processes have been executed, the supervision process is reinitialized.  The two modules of fault detection 
and diagnosis are typically combined and referred to as an FDD module. 
 

FAULT
DETECTION

FAULT
DIAGNOSIS

FAULT
EVALUATION DECISION MAIN

SYSTEM

FAULT

MESSAGES

CAUSE O
F FAULT

AND LOCATIO
N

HAZARD C
LASS

MAIN
TENANCE

MEASUREMENTS  
 

Figure 2.1.  Supervision loop for fault detection and diagnosis (Isermann, 1984) 
 
 
Figure 2.2 shows a detailed FDD procedure for a vapor compression system.  System parameter 
measurements are first filtered through a steady-state detector to remove transient variation and external 
noise.  The filtered data are converted into a variety of useful parameters such as EER, cooling capacity, 
flow rate, etc., using semi-physical derivations.  Here, energy balance evaluations or manufacturer’s 
formulations are utilized.  Also from the filtered data, external parameters such as indoor and outdoor 
temperatures - called independent variables - are measured to determine the status of the system. These 
are used by the preprocessor to estimate the expected performance parameters - called features - using a 
no-fault, steady-state system model. The fault classifier analyzes and identifies the fault.  The diagnostic 
result is evaluated by a decision module, which recommends a corrective reaction and communicates it to 
another authority.   
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Figure 2.2.  Equipment supervision for fault detection and diagnosis of a vapor compression system 
 
Isermann’s supervision loop differentiates fault detection from fault diagnosis, although both concepts 
originated from pattern recognition theories.  Fault detection classifies the system status into two 
categories; no-fault and fault.  When the FDD module diagnoses the system as being fault-free, the 
supervision process starts over.  When the system is diagnosed as being faulty, the fault diagnostic 
classifier analyzes the system status in more detail to identify any on-going faults.   
 
Sometimes the procedures of fault detection and fault diagnosis are unified in one step.  Stylianou (1997) 
classified the status of a 5-ton commercial reciprocating chiller into one of five classes; a normal class and 
four fault classes.  Stylianou applied a Bayesian decision rule and statistical training data to derive a 
family of classification functions.   
 
2.2  Previous Research 
 
A variety of FDD studies have been performed for HVAC systems.  Since the automation of HVAC 
systems is strongly connected with building management systems, initial FDD studies were performed for 
whole HVAC systems and not discrete components (Anderson et al., 1989; Pape et al. 1991; Norford and 
Little, 1993; Lee et al., 1996a; Lee et al., 1996b; Peitsman and Bakker, 1996).  Many of the studies were 
related to variable-air-volume (VAV) air-handling units.  During the development of the first FDD 
techniques for large HVAC systems, energy savings was a secondary consideration to preventing 
equipment malfunction.   
 
Even though there is a large body of literature on FDD applications for HVAC systems, relatively few 
publications exist for monitoring performance of residential vapor compression heat pumps.  Grimmelius 
(1995) developed an on-line failure diagnosis method for a vapor compression refrigeration system.  He 
established a symptom matrix based on the combination of casual analysis, expert knowledge, and 
simulated failure modes.  He suggested using fuzzy logic for a real-time recognition of the failure mode.  
The author built a reference model based on a simple regression analysis and commented on the need to 
develop more general techniques for reference state estimation.   
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Stylianou and Nikanpour (1996) presented an FDD methodology for a reciprocating chiller using 
thermodynamic modeling, pattern recognition, and expert knowledge.  The authors suggested three fault 
detection modules for off-cycle, start-up, and steady-state operations.  In the off-cycle module, the 
authors estimated a temperature decay period, which activated FDD for sensor failure or drift.  In the 
steady-state module, they estimated COP and capacity using a semi-empirical chiller model, which was 
then applied to fault detection.  In order to isolate a fault, a rule-based fault pattern table was applied.  In a 
successive investigation, Stylianou (1997) presented a fault diagnostic methodology using a statistical 
pattern recognition algorithm (SPRA) based on a Bayesian decision rule.  The SPRA assigned different 
faults and a no-fault status to a set of five classes.  The five classes were allocated equal probability, 
which biased the fault results more often than no-fault results.  By shifting the scores of the classification 
functions, the bias impact was reduced. 
 
Rossi and Braun (1997) developed a statistical FDD method for a roof-top air conditioner.  The FDD 
system operated with seven representative temperature measurements.  The residual values were used as 
performance indices for both fault detection and diagnosis.  The residuals of seven FDD features were 
assumed to obey a Gaussian distribution.  Statistical properties of the residuals for current and normal 
operation were used to classify the current operation as faulty or normal.  The authors created a fault 
detection classifier module based on a Bayesian decision rule, which was optimized by minimizing the 
classification error.  Once the system was suspected to have a fault, a fault diagnostic classifier was 
activated.  A rule-based pattern chart which consists of the direction of residual change was used as an 
indication of fault symptoms.  The fault diagnostic classifier module was devised assuming individual 
features as a series of independent probabilistic accidents.  Since fault detection and fault diagnosis were 
running as independent modules, the fault diagnostic classifier functioned isolated from the detection 
module.  Five types of faults could be distinguished from the diagnosis. 
 
Breuker and Braun (1998a) surveyed frequently occurring faults for a packaged air conditioner.  Based on 
field data, they sorted field faults into three different categories according to the cause of the fault, service 
frequency, and service cost.  With respect to the cause of the fault, system shutdown failures were caused 
by electrical or control problems approximately 40 % of the time and mechanical problems approximately 
60 % of the time.  When sorted by service frequency, refrigerant leakage occurred most frequently, 
followed by condenser, air handler, evaporator, and compressor faults.  When sorted by service cost, 
compressor failure contributed 24 % of total service costs.  Control related faults contributed 10 % of 
total service costs.   
 
Breuker and Braun (1998b) performed steady-state and transient tests on a packaged air conditioner and 
described an overall procedure to develop an FDD system.  The authors developed no-fault steady-state 
models using polynomial representations.  They introduced five types of faults with different levels.  The 
impacts of steady-state detector threshold, detection error safety factor, and fault decision threshold were 
evaluated.   
 
Chen and Braun (2001) developed a simplified FDD method for a 5-ton rooftop air conditioner with a 
thermostatic expansion valve (TXV).  They modified an FDD technique by simplifying Rossi and 
Braun’s method (1997).  They used measurements and model predictions of temperatures for fault-free 
system operation to compute ratios sensitive to individual faults.  The authors selected the two most 
sensitive measurements and developed a simple rule-based FDD algorithm.  The FDD algorithm was 
based on sequential rules comparing the sensitivity of residuals organized within a fault characteristic 
chart. 
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Castro (2002) applied a k-nearest neighbor and k-nearest prototype method for fault detection of a chiller.  
The author calculated Euclidean distances for the current state based on the selected two largest residuals, 
and estimated the possibility of a fault from the distance information.  In this research, the software 
MATCH was developed as a tool for the controls package to combine monitoring, fault detection, and 
diagnostic features.  After detecting faults, data were input to the rule-based fault diagnosis algorithm.  
Castro preferred the nearest prototype classifier since the nearest neighbor classifier is more 
computationally intensive. 
 
Comstock and Braun (2001) tested eight common faults in a 316 kW (90 ton) centrifugal chiller to 
identify the sensitivity of different measurements to the faults.  The eight faults considered in the study 
were selected through a fault survey among major American chiller manufacturers.  The fault testing led 
to a set of generic rules for the impacts of faults on measurements used for FDD.  The impact of faults on 
cooling capacity and coefficient of performance was also evaluated.   
 
Smith and Braun (2003) performed field-site tests of more than 20 units to identify local installation and 
operation problems.  Using an 11 kW rooftop unit with a fixed orifice expansion device and a 18 kW unit 
with a TXV, they proposed a decoupling-based unified FDD technique to handle multiple simultaneous 
faults.  Li (2004) re-examined the statistical rule-based method initially formulated by Rossi and Braun 
(1997) and presented two additional FDD schemes, which improved the sensitivity of the FDD module.  
He also developed virtual sensors to estimate characteristic parameters from indirect component modeling.  
For a reference model, Li combined a multivariate polynomial model and generalized regressive neural 
network (GRNN). 
 
Kim and Kim (2005) tested a water-to-water heat pump system with a variable-speed compressor and an 
electrical expansion valve (EEV).  They found the system parameters to be less sensitive to faults 
compared to a constant-speed compressor system.  They reported that the control of compressor speed 
reduced the fault sensitivity of the system.  They also developed an FDD algorithm along with two 
different rule-based charts that depended on the compressor status.  The authors suggested that COP 
degradation due to a fault is much more severe with a variable-speed compressor than with a constant-
speed compressor.  
 
Navarro-Esbri et al. (2007) developed an adaptive Kalman filter/forgetting-factor based algorithm applied 
as a refrigerant charge leak detector for a breadboarded water-to-water chiller.  Compressor rotation speed, 
suction refrigerant vapor superheat and suction pressure were the most sensitive variables to refrigerant 
charge.  Proper experimental tuning of the forgetting-factor allowed this algorithm to immediately detect 
refrigerant charge leakage.  This is very promising considering other investigators have noted difficulty in 
reliably detecting an undercharged condition until a fault level of at least 40 % lost refrigerant charge 
(Breuker and Braun 1998b, Stylianou and Nikanpour 1996).   
 
The works cited above are summarized in Table 2.1.  The investigators have extended previously known 
techniques and added unique FDD components to these varying system installations.  The rule-based 
chart method based upon application of statistical methods was shown by several investigations to be very 
effective and adaptable.  This is one reason this method has been adapted for use in the present work.   
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Table 2.1.  Summary of system types and FDD methodology for selected previous investigations 

System types FDD methodology 
VAV air-handling units and whole building system Component FDD and black box model FDD 

Vapor compression refrigeration system Symptom matrix with expert system decision 
making algorithm (IF..THEN..ELSE). 

Reciprocating chiller Off, Start, and Steady FDD 

Rooftop AC w/ orifice Feature residual, rule-chart FDD based upon 
statistical method 

Packaged AC Five faults, FDD with steady-state detector 

Rooftop with TXV Ratios sensitive to certain faults were identified and 
a rule-based chart FDD scheme was used 

Centrifugal chiller Residuals calculated and k-nearest neighbor 
method used for FDD 

Centrifugal chiller Eight faults and impacts of faults on efficiency 
were studied 

Rooftop unit w/ TXV FDD with virtual sensors, polynomial and neural 
network reference model 

Variable speed, mini split AC Rule-based chart FDD 
Small breadboard chiller Fast detection of charge loss 
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CHAPTER 3.  STEADY-STATE DETECTOR 
 
In this study, we envision the fault detection and diagnosis (FDD) process to be performed every time the 
system is in steady state.  For this reason, identification of the steady state is an important task in our 
FDD analysis.  Some of the first investigations of system steady-state identification came from process 
control field studies including model development, optimization, fault detection, and control (Mahuli et 
al., 1992, Cao and Rhinehart, 1995, Jiang et al. 2003).  Steady state can be detected by observing global 
system characteristics, e.g., capacity, or – more simply – by monitoring selected parameters.  If the only 
goal was to check system performance, providing enough time to reach steady-state capacity and power 
input could be a sufficient approach.  However, reaching steady capacity would not guarantee the actual 
steady-state of all parameters used in a particular FDD scheme.   
 
In previous investigations within the HVAC field, several investigators suggested steady-state 
identification techniques for FDD purposes (Glass et al., 1995, Rossi, 1995, Breuker and Braun, 1998a, Li, 
2004).  Since the goal of these investigations was mainly fault detection, the evaluation of the steady-state 
detectors was not performed in detail.  In this investigation, a moving window steady-state detector was 
evaluated and optimized.  A systematic methodology to design a steady-state detector is provided below.   
 
3.1  A Moving Window for Steady-State Detection 
 
The concept of the steady-state detector originates from noise filter theory.  When a system is not steady, 
thermodynamic system parameters are highly unstable.  The variance, or standard deviation, of important 
parameters is typically utilized to indicate the statistical spread within the data distribution and can be 
used to characterize random variation of the measured signals.   
 
The most common and simple steady-state detectors analyze data over a predefined moving window, as 
illustrated in Figure 3.1.  A predefined time interval is established over which important parameters are 
sampled at regular intervals.  This produces an array of system parameters that are continuously updated 
and held in memory.  Since a moving window replaces each data point within the timespan, the moving 
window average is equivalent to a low-pass filter.   
 

t, time

n

n

n

k− n− 1 k− n k− n+1 k− 2      k− 1      k

 
 

Figure 3.1.  Moving windows of n data points at kth time 
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Several methods of steady state detection were investigated by other researchers.  Glass et al. (1995) 
formulated a steady-state detector using a geometrically weighted running method.  In this method, the 
old data are exponentially and automatically attenuated through multiplication with a “forgetting factor”, 
which is based upon a system transition time constant.  Some FDD investigations of vapor compression 
systems applied this method (Rossi 1995, Breuker and Braun 1998b).  Equations 3.1 and 3.2 denote 
geometrically weighted average and geometrically weighted variance, respectively.  Geometrically 
weighted average and variance may have different weights.   
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The geometric weighting factor, α is calculated as in Equation 3.3 and has a value between 0 and 1.  In 
this equation, τss is a time constant and Δt is a time increment between measurements.   
 

tss

ss

Δ+
=

τ
τ

α                                                                         (3.3) 

 
Li (2004) utilized moving window slopes and variances of evaporator exit superheat and liquid line 
subcooling as the key parameters of the steady-state detector in his FDD research on roof-top air 
conditioners.   
 
In our study the moving window standard deviation calculated for an optimized moving window size with 
defined feature thresholds indicates the steady state of the heat pump.  The steady-state detector calculates 
standard deviation of parameters in a recursive fashion.  Suppose that at any instant k, the average of the 
latest n samples of a data sequence, xi, is given by, 
 

 
1

1
= − +

= ∑
k

k i
i k n

x x
n

 (3.4) 

 
A difference between two averages of the latest n samples at the current time, k, and at the previous time 
instant, 1−k , is, 
 

 [ ]
1

1
1

1 1−

− −
= − + = −

⎡ ⎤− = − = −⎢ ⎥⎣ ⎦
∑ ∑

k k

k k i i k k n
i k n i k n

x x x x x x
n n

 (3.5) 

 
Rearranged, the current average is calculated by,  
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This approach is known as a moving window average because the average at each kth instant is based on 
the most recent set of n values.  In other words, at any instant, a moving window of n values is used to 
calculate the average of the next data sequence.  A moving window variance can be defined similarly.    
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The moving window standard deviation is then given as 
 
 σ =k kv  (3.9) 
 
The steady-state detector identifies steady operation if the standard deviations for the selected features 
representing the status of the system fall below a predefined threshold.   
 
3.2  Development of the Steady-State Detector 
 
3.2.1  Experimental setup and conditions  
 
The studied system was an R410A, 8.8 kW (2.5 ton) split residential heat pump with Seasonal Energy 
Efficiency Ratio (SEER) of 13 (ARI, 2006).  The unit consisted of an indoor fan-coil section, outdoor 
section with a scroll compressor, cooling mode and heating mode thermostatic expansion valves (TXV), 
and connecting tubing.  Both the indoor and outdoor air-to-refrigerant heat exchangers were of the finned-
tube type.  The unit was installed in environmental chambers and charged with refrigerant according to 
the manufacturer’s specifications.  Figure 3.2 shows a schematic of the experimental setup indicating the 
measurement locations of temperature, pressure, and mass flow rate.  On the refrigerant side, pressure 
transducers and T-type thermocouple probes were attached at the inlet and exit of every component of the 
system.  The refrigerant mass flow rate was measured using a Coriolis flow meter.  The air enthalpy 
method served as the primary measurement of the system capacity, and the refrigerant enthalpy method 
served as the secondary measurement.  These two measurements always agreed within 5 %.  Table 3.1 
lists uncertainties of the major quantities measured during this work.  Detailed specification of the test rig 
including indoor ductwork, dimensions, data acquisition, measurement uncertainty, and instrumentation is 
described in Kim et al. (2006). 
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Figure 3.2.  Schematic diagram of the experimental setup 

 
Table 3.1.  Measurement uncertainties 

Measurement Range Uncertainty at the 95 % 
Confidence Level 

Individual Temperature -18 °C to 93 °C  ±0.3 °C  
Temperature Difference 0 °C to 28 °C  ±0.3 °C  

Air Nozzle Pressure 0 Pa to 1245 Pa  ±1.0 Pa  
Refrigerant Mass Flow Rate 0 kg/h to 544 kg/h  ±1.0 % 

Dew point Temperature -18 °C to 38 °C  ±0.4 °C 
Dry-Bulb Temperature -18 °C to 40 °C  ±0.4 °C 
Total Cooling Capacity 3 kW to 11 kW ±4.0 % 

COP 2.5 to 6.0 ±5.5 % 
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3.2.2  Selection of measurement features 
 
Table 3.2 shows system features used in fault detection.  In this laboratory study, we measured pressure at 
the exits of the evaporator and the condenser to obtain TE and TC, respectively.  The obtained pressures 
were converted into saturation temperatures using REFPROP 7 (Lemmon et al., 1998).  For the other five 
features, T-type thermocouples were used.   
 

Table 3.2.  System features used in fault detection 
Independent Features Dependent Features 

Outdoor dry-bulb temperature TOD Evaporator exit refrigerant saturation 
temperature 

TE 

Indoor dry-bulb temperature TID Evaporator exit refrigerant superheat Tsh 

Indoor dew point temperature TIDP Condenser inlet refrigerant saturation 
temperature 

TC 

  Compressor discharge refrigerant 
temperature 

TD 

  Condenser exit liquid line refrigerant 
subcooled temperature 

Tsc 

  Evaporator air temperature change ΔTEA 
  Condenser air temperature change ΔTCA 

 
 
3.2.3  Setting feature thresholds based upon steady-state data 
 
The threshold of each feature that bounds the steady-state signal is an important parameter in determining 
the performance of a steady-state detector.  The smaller a threshold is, the more sensitive an FDD module 
is because steady state is more conservatively identified.  However, if a threshold is too small, it takes 
more time for the given feature to settle within its threshold range.  Also, an excessively small threshold 
value may inhibit the functioning of the steady-state detector when operating in the field.  Large 
thresholds allow faster data collection but carry a risk of including some transient data, which decreases 
the performance of an FDD system.  Therefore, the thresholds must be selected to both minimize the 
inclusion of non-steady-state data and maximize the recognition of steady state.   
 
To determine the thresholds, we collected steady-state data over 60 minutes commencing 3 hours after 
startup at fixed chamber conditions and calculated the standard deviations, σ, for all seven features.  As an 
example, Figure 3.3 shows the variation and standard deviation of the steady-state data for all features, 
and Table 3.3 summarizes the ranges and standard deviations of all seven features.  Since the system 
operated under stable conditions, the standard deviations and ranges in Table 3.3 are small.  As expected, 
superheat shows the largest fluctuation.   
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Figure 3.3(a).  Variation of superheat (TID = 26.7±0.5 °C; TOD = 27.8±0.5 °C) 
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Figure 3.3(b).  Variation of subcooling (TID = 26.7±0.5 °C; TOD = 27.8±0.5 °C) 
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Figure 3.3(c).  Variation of evaporator saturation temperature (TID = 26.7±0.5 °C; TOD = 27.8±0.5 °C) 
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Figure 3.3(d).  Variation of compressor discharge temperature (TID = 26.7±0.5 °C; TOD = 27.8±0.5 °C) 
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Figure 3.3(e).  Variation of condenser saturation temperature (TID = 26.7±0.5 °C; TOD = 27.8±0.5 °C) 
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Figure 3.3(f).  Variation of air temperature increase through condenser (TID = 26.7±0.5 °C; TOD = 

27.8±0.5 °C)   
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Figure 3.3(g).  Variation of air temperature drop through evaporator (TID = 26.7±0.5 °C; 

TOD = 27.8±0.5 °C) 
 

Table 3.3.  Variations of selected features during steady state  
Features Tsh Tsc TE TD TC ΔTCA ΔTEA 

Range* (°C) 0.49 0.22 0.14 0.25 0.17 0.27 0.25 

Standard deviation, σ (°C) 0.124 0.052 0.024 0.058 0.035 0.063 0.058 

Calculated thresholds,  3σ (°C) 0.37 0.16 0.07 0.17 0.11 0.19 0.17 

      * Difference between the maximum and minimum value  
 
 
3.2.4  Selection of moving window size using startup transient tests 
 
Figures 3.4, 3.5, and 3.6, presented in this section, were derived from the same startup transient test.  
Figure 3.4 displays variation of the seven features in the post-startup period.  The figure demonstrates that 
Tsh and Tsc fluctuate the most and are the dominant indicators of system instability during startup.  Figure 
3.5(a) further examines fluctuations of Tsh and Tsc showing them with ±3σ thresholds superimposed (these 
thresholds were presented in Figure 3.3).  The vertical dashed line extending to Figures 3.5(b) and 3.5(c) 
indicates the onset of steady state at approximately 6 minutes and 30 seconds.  From this point in time 
and on, the values of both features are retained within their respective ±3σ thresholds.  
 
While Figure 3.5(a) convincingly shows us, based on individual measurements, that steady state was 
attained at 6 minutes and 30 seconds after the startup, we must realize that we could make this 
determination only after extending the data collection much further in time beyond 6 minutes and 30 
seconds to be able to calculate Tsh and Tsc mean values for steady-state operation.  For this reason, using 
individual feature measurements for steady state indication proves not to be a robust approach, and it is 
rather attractive to base a steady-state detector on some statistical quantity based upon measurements 
taken within a predefined moving time window.  In this study we applied the ±3σ steady-state thresholds 
and standard deviations of moving-window-measured Tsh and Tsc values,  σMW(Tsh) and σMW(Tsc), for 
steady-state detection during the startup transient. 
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Figure 3.4.  Variation of seven features during a startup transient, TID = (26.7±0.5)°C, TOD = (27.8±0.5)°C 
 
Figures 3.5(b) and 3.5(c) explain the procedure we used to determine the size of the moving window by 
showing Tsh and Tsc standard deviations, σMW(Tsh) and σMW(Tsc), respectively, for three windows sizes with 
a sample period of 14 seconds/sample: 70 seconds (MW70s), 140 seconds (MW140s), and 210 seconds 
(MW210s).  It is our interest to establish the minimum window size for which the calculated σMW(Tsh) and 
σMW(Tsc) are below their respective threshold values past the onset of steady state, which is shown in 
Figure 3.5 to occur at 6 minutes and 30 seconds after startup. 
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Figure 3.5.  Onset of steady state during a no-fault startup transient test, TID = (26.7 ± 0.5)°C, 

TOD = (27.8 ± 0.5)°C; (a) Decision on steady state; (b) σMW(Tsh); (c) σMW(Tsc)  
 
 

The general procedure for determining the minimum moving window size, illustrated in Figure 3.5, is as 
follows:   

1. Collect selected feature data during the start-up period for at least 30 samples into the 
steady-state region at a sampling rate equal to the sampling rate used for steady-state 
sampling.  The steady-state region is defined here to occur when the instantaneous values 
of the selected features fluctuate within ±3σ of their steady-state mean values, as 
determined in Figure 3.3.  The dashed vertical line in Figure 3.5(a) illustrates this onset of 
steady-state using the two most fluctuating FDD features during the startup, Tsh and Tsc.   

2. For all features, calculate the moving window standard deviation versus time for a range 
of moving window sample sizes, as presented in Figures 3.5(b) and 3.5(c) for Tsh and Tsc.   

3. The moving window size that results in all features’ standard deviations crossing and 
remaining within the ±3σ threshold after steady-state is attained (as defined in Step 1), is 
the minimum acceptable moving window size.  
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The minimum acceptable moving window size (and thus sample size for our sampling rate) is determined 
by plotting the moving window standard deviations as a function of time for all features used in the FDD 
algorithm.  In our case the last two features to vary within their ±3σ thresholds, of all the features listed in 
Table 3.3, were Tsc and Tsh.  The moving window standard deviations of Tsh and Tsc (σMW(Tsh) and 
σMW(Tsc)) are plotted as a function of time in Figures 3.5(b) and 3.5(c) with the vertical steady-state line 
determined in Figure 3.5(a) extending down to indicate the onset time of steady-state.   
 
Selecting the 70 second long moving window, MW70s, would not be appropriate because both σMW(Tsh) 
and σMW(Tsc) values calculated for this window size drop below the respective thresholds well before the 
onset of steady state at 6 minutes and 30 seconds.  The MW140s appears to be a good selection because it 
produces standard deviations that remain below the steady-state threshold after the vertical steady-state 
line; with a few seconds past this instance for σMW(Tsh) and 90 seconds later for σMW(Tsc) at 8 minutes.  
Hence, MW140s would indicate the onset of steady state 90 seconds after it actually has occurred, but it 
would not provide a false indication of steady state at any time earlier because of the relatively smooth 
and oscillation-free character of σMW(Tsh) and σMW(Tsc) lines.  For MW210s, steady-state detection was 
indicated at approximately 9 minutes with σMW(Tsh) being the defining factor; this moving window could 
be acceptable, but it is not the minimum moving window size to satisfy our steady-state criteria that all 
features remain within their ±3σ thresholds.   
 
In this startup test, we took measurements every 14 seconds.  We should note that the data sampling rate 
(samples/s or Hz) should be based upon a Nyquist frequency (greater than twice the frequency of the most 
varying feature) (Franklin et al. 1991), as determined by the frequency of variation in the features 
important to the FDD algorithm.  For this investigation, the heat pump features during steady-state varied 
at a maximum frequency well below 0.03 Hz.  Sampling at greater than twice this frequency, or 1 sample 
every 16 seconds, would capture all the feature variations.  The sample rate, fixed at 1 sample per 14 
seconds, was sufficient to eliminate or greatly reduce the likelihood of signal measurement bias.  A 
greater sampling rate could be desirable, but sampling at much greater than the Nyquist frequency gains 
no new information.   
 
As defined by the ±3σ steady-state threshold, the system was stable approximately 6 minutes and 30 
seconds after startup; however, the discharge line wall temperature, TD, continued to increase.  Figure 3.6 
shows that TD increased by 2.1 °C for the remainder of the time shown in the figure while the evaporator 
capacity, QEA, increased by 1.3 % with no change in the condenser capacity, QCA.  The unchanging value 
of QCA tends to indicate a thermal inertia effect for TD.  The slow increase, or drift, in this temperature 
does not preclude its use as a fault detection feature, however, it will result in a higher uncertainty for TD 
within the system’s steady-state no-fault reference model.   
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Figure 3.6.  The startup transients of compressor discharge temperature and evaporator/condenser 

capacities, TID = (26.7±0.5)°C, TOD = (27.8±0.5)°C  
 
 
3.3  Verification of the Steady-State Detector Using an Indoor Load Change 

Test 
 
3.3.1  Tests with no faults imposed 
 
Figure 3.7 presents verification of the developed steady-state detection procedure during transients driven 
by changes in the indoor air temperature with no faults imposed.  Stepped increases in TID in Figure 3.7(a) 
reflect the energizing of additional indoor chamber electric duct heaters.  In addition to TID, the figure 
shows Tsh, Tsc, and standard deviations of Tsh, TE and ΔTEA for an 18 second sample interval and moving 
window sizes of 72 seconds (4 samples), 144 seconds (8 samples), and 216 seconds (12 samples).  Tsh, Tsc 
and σMW(Tsh) are included because they were important during the startup transient.  While Tsh shows 
some variation during an indoor load change test, Tsc is much more stable than during the startup transient.   
 
The figures show two transient regions, which were identified using a 144 second moving window.  The 
gray areas in the plots indicate transient regions for individual features as determined by the ±3σ 
threshold steady-state detector algorithm within a 144 seconds moving window.  Figure 3.7(e) shows that 
ΔTEA consistently indicates the beginning of the transient while Figure 3.7(d) shows that TE indicates the 
end of the transient.  The variation of Tsh in Figure 3.7(c) cannot filter out the whole transient region for 
all of these parameters.  Instead, the variation of TE and ΔTEA in Figures 3.7(d) and 3.7(e) control the 
detection of steady state.  Since the transients in Figure 3.7(a) are due to changes in TID, the features that 
characterize the evaporator (indoor coil), TE and ΔTEA, proved to be necessary for steady state detection.  
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Figure 3.7.  Identification of steady state during a no-fault indoor load change test, TOD = (35 ± 0.5)°C, (a) 

TID; (b) Tsh and Tsc; (c) σMW(Tsh); (d) σMW(TE); (e) σMW(ΔTEA) 
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3.3.2  Test with a 20 % refrigerant undercharge fault 

 
Since the goal of an FDD scheme is to detect a system fault, the steady-state detector must be able to 
identify steady state during a system’s faulty operation.  For this reason, we applied the developed steady-
state detector during a test with changing indoor temperature with a 20 % refrigerant undercharge fault.   
 
Figure 3.8 shows the selected system parameters and features during the 35 °C outdoor temperature test.  
The moving window sizes are 66 seconds (3 samples), 132 seconds (6 samples), and 198 seconds (8 
samples) with a data sampling rate of 22 seconds.  Figure 3.8(a) shows two rapid drops of TID due to 
turning off chamber electric duct heaters and a continuous decrease of TID  due to chamber cooling by the 
tested system.   
 
As during the fault-free indoor temperature change transient test, the change of σMW(Tsh) in Figure 3.8(c) 
is not large enough to filter out the transient state, but changes in σMW(TE) and σMW(ΔTEA), taken together, 
correctly identify steady state, as shown in Figures 3.8(d) and 3.8(e).  Hence, the same features identified 
steady state during the undercharge fault and no-fault operations.  Further, our review of transient data of 
the system operating under different faults indicated that the developed steady-state detector would work 
reliably with other faults as well.   
 
3.4  Verification of the Steady-State Detector During a Startup Transient Test 

with a Fault Imposed 
 
To verify the steady-state detector developed in this study, several startup transient tests were performed 
with evaporator and condenser faults imposed on the system.  Operating conditions for all tests were 
(27.8±0.5) °C outdoor dry-bulb, (26.7±0.5) °C indoor dry-bulb, and indoor relative humidity of 
(50.0±1.0) %.  
  
3.4.1  Test with condenser fault imposed 
 
A condenser fault was imposed by blocking the condenser heat exchanger face area with paper from the 
bottom up.  The fault level for this transient test was set at 30 % face area having no air flow.  Figure 3.9 
shows the variation of four features during the startup of the heat pump.  Superheat and subcooling are 
shown in Figure 3.9(a).  The standard deviation of Tsh, Tsc, TE, and TD in a 144 seconds (9 sample) moving 
window are shown in Figure 3.9 in sequence.  Tsh and Tsc reach steady state 4 and 5 minutes after the 
system starts, but the compressor discharge temperature, TD, continues to change thus delaying the 
beginning of steady state to 10 minutes.  With the condenser air flow fault, the discharge pressure of this 
system is higher than that of the no-fault system; hence this causes the discharge temperature to be higher.  
The thermal inertia time constant for the discharge wall temperature results in TD attaining steady state 
later than other features.  This test shows that the steady-state detector still safely determines steady state 
even if the system has a condenser fouling fault.   
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Figure 3.8.  Identification of steady state during an indoor load change test with a 20 % refrigerant 

undercharge fault, TOD = (35 ± 0.5)°C, (a) TID; (b) Tsh and ΔTEA; (c) σMW(Tsh); (d) σMW(TE); 
(e) σMW(ΔTEA)  
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Figure 3.9.  Variation of Tsc, Tsh, TE and TD during startup transient with a 30 % condenser air flow fault 

level with standard deviations calculated for a 144 s (9 sample) moving window 
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3.4.2  Test with an evaporator air flow fault imposed 
 
An evaporator fault was imposed by reducing the air flow rate through the evaporator heat exchanger.  
The fault level was a 30 % reduction in normal air flow.   

 
Figure 3.10.  Variation of Tsc, Tsh, TE and TD during startup transient with a 30 % evaporator air flow fault 

level with standard deviations calculated for a 144 s (9 sample) moving window 
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Figure 3.10 shows evaporator exit refrigerant superheat and inlet refrigerant liquid subcooling in addition 
to the standard deviation of Tsh, Tsc, TE, and TD within a 144 second (9 sample) moving window.  The 
standard deviation of superheat remains below its threshold indicating steady state at about 15 minutes 
after the system starts.  Because this system has an evaporator air flow fault, the evaporator saturation 
temperature and superheat became unstable.  On the contrary, the subcooling and the discharge 
temperature reach steady state well before Tsh.  The steady-state detector can still indicate the initiation of 
steady state for all of the features, but this indication occurred much later than the no-fault steady-state 
startup time interval of 6 min 30 s.   
 
3.5  Verification of the Steady-State Detector During Continuous and Cyclic 

Operations 
 
Figure 3.11 shows an example of the operation of the steady-state detector based on the thresholds listed 
in Table 3.3.  The data in Figure 3.11 were sampled while the system was continuously operating.  Figure 
3.11(a) shows rises and falls in indoor temperature as electric air heaters were turned on and off.   
 
Based on the Boolean chart in Figure 3.11(c), the features TD and Tsh have the largest number of 
transitions from 0 (unsteady) to 1 (steady); however, the majority of the time was identified as steady 
state.  Even though indoor temperature varied as the indoor electric heaters were energized, the system 
was still regarded as steady when the feature variations were small enough to satisfy the steady–state 
detector.  From Figures 3.11(a) and 3.11(c), several minutes of uniform temperature do not necessarily 
produce a steady state.  Since TOD was fixed during these tests, the condenser saw little change as 
indicated by the steady Boolean values of TC and Tsc. 
 
Figure 3.12 presents performance of the steady-state detector for on-off transient operation at fixed 
operating conditions.  At approximately 3 minutes the system turned off and remained off for 27 minutes.  
It turned off again at 33 minutes, on at 40 minutes, off at 47 minutes, on at 57 minutes, off at 63 minutes 
and finally on again at 88 minutes.  The figure includes five of seven features.  Based on the value (0 or 
1) of the ‘SS detector’ in Figure 3.12(b), it takes 5 minutes or more of system runtime to reach a steady 
state.   
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Figure 3.11. Sample operation of a steady-state detector during continuous system operation 
(TID = varied, TOD = (27.8±0.5) °C, moving window size = 150 s); (a) Variation of indoor 
temperature; (b) Temperature differences; ΔTEA, Tsh, and Tsc; (c) Decision from the steady-
state detector:  0-unsteady, 1-steady 
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Figure 3.12. Operation of a steady-state detector during system on-off transient operation 

(TID = (26.7±0.5) °C; TOD = (27.8±0.5) °C); (a) Variation of TC, TE, and Tsh; (b) Decision 
from the steady-state detector:  0-unsteady, 1-steady 

3.6  Steady-State Detector Summary 
 
The presented methodology for developing a steady-state detector for a vapor compression system is 
based on a moving window and using standard deviations of seven parameters selected as features.  When 
the threshold band of the features was set at ±3σ, reflecting their fluctuations during steady-state 
operation, the optimal moving window size was approximately 140 seconds for a 14 second sampling rate.  
Of the seven monitored features, Tsh and Tsc measurements were sufficient for determining the onset of 
steady state during the startup transient.  However, they were not the dominant steady-state indicators 
during indoor temperature change tests, where TE and ΔTEA were needed for proper steady-state 
identification.  Consequently, we recommend including all FDD features in the steady-state detector to 
ensure the robustness of the detector because different features may play key roles with different 
transients.  While the proposed steady-state detector was developed from no-fault data, we verified that it 
can perform correctly with a faulty system.   
 
A practical steady-state detector must be defined based upon the heat pump and system controller that 
will perform the fault detection and diagnosis.  For any given system, the designer may choose FDD 
features other than those identified here.  The system controller and instrumentation used in a commercial 
product most likely will have a different resolution or noise immunity than a dedicated lab quality data 
acquisition system.  This would translate into larger standard deviations and threshold values with 
different sampling rates and moving window sizes.   
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CHAPTER 4.  NO-FAULT REFERENCE MODEL 
 
FDD systems recognize a set of key system performance parameters and function by comparing predicted 
fault-free parameter values to the current values, and analyzing their residuals.  Thus, a reference model is 
required to estimate the fault-free system parameters at any operating condition.  Since an FDD system 
model requires precise estimation of system parameters, generalized conventional analytical modeling 
techniques were replaced with empirical correlations in several studies (Gordon and Ng, 1995; Rossi, 
1995).  Lee et al. (1996b) used an artificial neural network to relate the dominant symptoms and faults of 
an air-handling unit.  To improve the modeling capability of an FDD system, Li and Braun (2003) 
implemented a polynomial/generalized neural network regression in their reference model, and they 
produced improved interpolation and extrapolation results for a roof top unit.  Navarro-Esbri et al. (2007) 
developed a low-data-requirement model based on neural networks for a water-to-water vapor 
compression system focused on refrigerant leak detection.  In this study we collected extensive data for 
cooling mode, and evaluated multivariable polynomial and artificial neural network reference models for 
their ability to predict system features selected for the FDD scheme. 
 
4.1  Data Collection for the Reference Model 
 
We systematically varied three independent variables, TOD, TID, and TIDP and monitored the seven features 
as listed in Table 3.2.  To implement the most efficient test procedure, outdoor temperature was fixed at 
one of four constant values, the addition of steam to the indoor chamber was set at one of several discrete 
levels by modulating a steam valve, and the indoor dry-bulb temperature was changed over the desired 
operating range by energizing 10 fixed heaters sequentially.  For example, as the number of indoor 
electric heaters increased, the test conditions moved from A to B in Figure 4.1(a) with indoor temperature 
increasing and relative humidity decreasing.  The data were recorded continuously and filtered through 
the steady-state detector, which qualified steady-state data for use in development of the reference model.  
In this process, instability of the system due to on-off transients and rapid load changes was filtered out 
by the steady-state detector.   
 
Table 4.1 shows operating conditions for the fault-free tests.  The four outdoor temperatures were 
maintained within ±0.3 °C.  For the indoor conditions, the amount of steam introduced to the indoor 
chamber was fixed such that the humidity ratio varied from 0.0037 to 0.0168.  Data were recorded, every 
18 s, as indoor dry-bulb temperature varied from 15.3 °C to 33.9 °C.  The range of operating conditions 
for which data were collected defines the applicable limits for the FDD scheme.   
 

Table 4.1.  Operating conditions for fault-free tests  
Outdoor dry-bulb temp. (°C)        27.8, 32.2, 35.0, 37.8 

Indoor dry-bulb temp. (°C) 15.3 to 33.9  
Indoor humidity ratio 0.0037 to 0.0168 

 
From the total number of 10409 recorded data sets, 5830 data sets passed through the steady-state 
detector.  Among these steady-state sets, 2176 sets were collected at 27.8 °C outdoor temperature, 1732 
sets at 32.2 °C, 633 sets at 35.0 °C, and 1289 sets at 37.8 °C.  Figure 4.1(b) shows a sample of data (every 
fifth data point) taken at four fixed outdoor temperatures.  In addition, we performed ARI standard rating 
tests at 27.8 °C indoor and 35.0 °C outdoor dry-bulb temperatures (ARI, 2006) and included these data to 
develop the fault-free steady-state reference models.   
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Figure 4.1.  Indoor test conditions on a psychrometric chart for fault-free model experiments at a fixed 

outdoor temperature; (a) Indoor condition change as electric heaters activate; (b) Sampled 
indoor air conditions at four TOD (27.8, 32.2, 35.0, and 37.8) °C 

 
4.2  Multivariate Polynomial Regression (MPR) Reference Model 
 
The MPR model belongs to the “black-box” category of models, which do not consider the physics of the 
system and require a large data set to accurately predict a system’s performance.  In our study, we 
evaluated 1st, 2nd, 3rd, and 4th order MPR models representing the seven key features of the heat pump.  
The higher order MPR models offer better accuracy of prediction; however, excessive polynomial order 
for a relatively small database may worsen data interpolation.  The MPR models presented in this work 
have an advantage in that they have a simple structure and can be programmed easily.  In addition, they 
can be implemented for any other experimental database with little modification, because they have no 
physical basis.   
 
We used outdoor dry-bulb temperature (TOD), indoor dry-bulb temperature (TID), and indoor dew-point 
temperature (TIDP) as independent variables.  These variables were regressed upon the database generated 
from the fault-free tests.  Equations (4.1a), (4.1b), (4.1c), and (4.1d) show the general form of the 
regressed equations for the ith feature (or ith dependent variable) as 1st, 2nd, 3rd, and 4th order MPR models, 
respectively. 

 
(1)

0 1 OD 2 ID 3 IDPi a a T a T a Tφ = + + +   (1st order)                                                                                       (4.1a) 

2 2 2(2) (1)
4 OD 5 ID 6 IDP 7 OD ID 8 ID IDP 9 IDP ODi i a T a T a T a T T a T T a T Tφ φ= + + + + + +   (2nd order)                      (4.1b) 
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3 3 3(3) (2)
10 OD 11 ID 12 IDP 13 OD ID IDP

2 2 2 2 2 2
14 OD ID 15 OD IDP 16 ID OD 17 ID IDP 18 IDP OD 19 IDP ID

i i a T a T a T a T T T

a T T a T T a T T a T T a T T a T T

φ φ= + + + +

+ + + + + +
  (3rd order)      (4.1c) 

4 4 4 2 2 2 2 2 2(4) (3)
20 OD 21 ID 22 IDP 23 ID OD 24 ID IDP 25 IDP OD

3 3 3 3 3 3
26 ID OD 27 ID IDP 28 IDP OD 29 ID OD 30 ID IDP 31 IDP OD

2 2 2
32 ID OD IDP 33 ID OD IDP 34 ID OD IDP

i i a T a T a T a T T a T T a T T

a T T a T T a T T a T T a T T a T T

a T T T a T T T a T T T

φ φ= + + + + + +

+ + + + + +

+ + +

   (4th order)    (4.1d) 

 
4.3  Artificial Neural Network (ANN) Reference Model 
 
An Artificial Neural Network (ANN) model was developed for the seven features.  The relationship of 
independent variables and features is learned by an artificial neural network using a back propagation 
algorithm (Wasserman, 1989; Hassoun, 1995).  Figure 4.2 shows the structure of the ANN used in this 
study.  It has three input variables (TOD, TID, and TIDP) and one output.  This neural network has three 
layers consisting of an input, hidden, and output layer with the input and hidden layers having three 
nodes.  The sigmoid function is used as the activation function of the hidden layer.  The weight 
coefficients and offsets are “learned” using a momentum back propagation algorithm through more than 
10,000 iterations.   
 
The input layer acts only as input nodes; no processing of TOD, TID, or TIDP occurs within the input layer.  
The various arrows between the input layer and the hidden layer indicate weights, or multipliers, applied 
to each input variable before passing to the sigmoid function within each hidden layer node.  Equation 2 
illustrates the output of a neuron, f(s), and how the sigmoid function is applied within the layers.   
 

( ) ( ) cwxsssf
k

kk +⎟
⎠

⎞
⎜
⎝

⎛
=+= ∑

=

3

1

)2tanh(1
2
1

                                            (2) 

 
The three-node hidden layer uses 9 adjustable weighting coefficients and 3 offset coefficients.  The single 
output node has its own 3 adjustable weighting coefficients and a single offset to produce the final 
predicted value of the feature, Fmodel.  Each heat pump feature to be represented by the ANN is calculated 
in this manner using TOD, TID, or TIDP as inputs.  The predicted value is compared to the measured value to 
produce an error value (residual) for each feature.  The back propagation algorithm is then used to adjust 
the weights and offsets to minimize the error, or “train” the ANN.   
 

 
 

Figure 4.2.  Artificial neural network structure 
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In validating the model, we used a dataset of 111 points, a subset of the full 5830 point dataset, to 
improve the performance of the ANN learning process.  The 111 point dataset was created by selecting 
the data points that were spaced by a minimum predetermined distance in the independent variables space.  
First, TID , TOD , and TIDP were mapped onto xyz-coordinates.  Each (x, y, z) point was then compared to 
all of the other points to determine if any of the other points fell within the predetermined distance of the 
point.  This is equivalent to drawing a sphere of radius r at a particular (x, y, z) location and examining 
this sphere volume to determine if any other points fall within.  If another (x, y, z) point fell within this 
sphere, it was removed from the data set; thus all of the independent variable (x, y, z) points were 
examined and winnowed in this manner.  In this study, r was selected to be 0.96 °C.   
 
Table 4.2 shows the mean squared residual (MSR), as calculated by Eq. 4.3, for the multivariate 
polynomial regression models and ANN model when fit to the reduced dataset consisting of 111 points.  
The mean squared residual is the sum of the squared residuals divided by the degrees of freedom for the 
regression and is an estimate of the model variance (Graybill and Iyer, 1994a).   

( ){ }
( )

2

MSR
N m 1

n
i i

i

x φ−
=

− +

∑
                                                                 (4.3) 

 
Table 4.2.  MSR of the models fit to a reduced dataset for the seven selected features 
Feature 1st order 2nd order 3rd order 4th order ANN 
TE (°C) 1.298 0.095 0.052 0.016 0.122 
Tsh (°C) 0.980 0.442 0.222 0.140 0.263 
TC (°C) 0.136 0.014 0.007 0.005 0.072 
TD (°C) 2.215 0.373 0.246 0.110 1.341 
Tsc (°C) 0.198 0.139 0.081 0.036 0.395 
ΔTEA (°C) 1.431 0.087 0.030 0.012 0.159 
ΔTCA (°C) 0.106 0.019 0.012 0.009 0.024 

N 111 
m+1 4 10 20 35 16 

 
Table 4.3 shows the MSRs for the models fit to the full dataset of 5830 points while Table 4.4 shows the 
MSRs for the reduced dataset models applied to the full dataset.  The reduced models’ MSRs of Table 4.4 
and the full dataset MSRs of Table 4.3 differ by an average of 26 %.  Thus the reduced dataset is a good 
representation of the system features, but the full dataset model produces smaller MSRs.   
 

Table 4.3.  MSR of the models fit to the full dataset for the seven selected features 
Feature 1st order 2nd order 3rd order 4th order ANN 
TE (°C) 0.979 0.072 0.051 0.015 0.129 
Tsh (°C) 1.055 0.397 0.176 0.121 0.273 
TC (°C) 0.108 0.011 0.007 0.005 0.068 
TD (°C) 2.078 0.342 0.213 0.088 1.403 
Tsc (°C) 0.202 0.135 0.066 0.028 0.480 

�TEA (°C) 1.103 0.066 0.027 0.011 0.159 
�TCA (°C) 0.085 0.018 0.014 0.012 0.030 

N 5830 
m+1 4 10 20 35 16 
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Table 4.4.  MSR of the reduced dataset model applied to the full dataset of seven selected features 
Feature 1st order 2nd order 3rd order 4th order ANN 
TE (°C) 0.992 0.077 0.061 0.023 0.129 
Tsh (°C) 1.160 0.465 0.258 0.213 0.273 
TC (°C) 0.110 0.012 0.0080 0.0078 0.068 
TD (°C) 2.403 0.409 0.285 0.161 1.407 
Tsc (°C) 0.213 0.144 0.083 0.055 0.482 

�TEA (°C) 1.116 0.072 0.033 0.017 0.160 
�TCA (°C) 0.087 0.019 0.017 0.019 0.030 

N 5830 
m+1 4 10 20 35 16 

 
As expected, a higher order MPR model produces a smaller mean squared residual.  However, the 

number of model coefficients increases exponentially due to the addition of the crossterm coefficients.  
The number of coefficients used to model each feature may be reduced by applying an F-Test to each 
coefficient of the respective models (Graybill and Iyer, 1994b).  The F-statistic is calculated using the 
following equations: 

 
( )

g-m
SSRSSR

MS fullreduced
drop

−
=                                                            (4.4) 

 

( )1m-N
SSR

MSR full
full +

=                                                                 (4.5) 

 

full

drop

MSR
MS

 F =                                                                          (4.6) 

 
where g+1 is the number of coefficients in the reduced model.  The F-statistic follows an F distribution 
with m-g and N-(m+1) degrees of freedom.  Large values of F indicate that the terms removed from the 
reduced model were significant.  One may use the F-statistic as a means of ranking the contribution of a 
particular coefficient to the fit of the regressed model.  By dropping one term at a time and sorting the 
reduced models in terms of their F-statistics, the effect of removal of a particular term may be assessed by 
comparing the MSR of the reduced model to that of the full model.  Table 4.5 shows the results of this 
technique when applied to a backward elimination on the full 3rd order polynomial model.   
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Table 4.5.  F-statistic and percent change in MSR with respect to the full models for seven features 

3rd Order MPR Model Backward Elimination, x = TOD, y = TID, z = TIDP 

Feature Less than 1 % 
higher MSR 

Less than 5 % 
higher MSR 

Less than 10 % 
higher MSR 

Term(s) removed 
TE z, xy, z2 z, xy, z2, x2, y, y3 N/A 

Tsh y2, z, z2, y2z, x y2, z, z2, y2z, x, y, z3 y2, z, z2, y2z, x, y, 
z3, y2x, y3 

TC y y, y2z, y3 y, y2z, y3, yz, z3 

TD x, y3 x, y3, yz, x2y, z2y, 
xyz 

x, y3, yz, x2y, z2y, 
xyz, z2 

Tsc y, z2, z2y, y3 y, z2, z2y, y3, y2x, 
yz, z2x N/A 

ΔTEA y N/A y, z 

ΔTCA x2z, y, z3 x2z, y, z3, y3, z, x2y, 
zx N/A 

N/A:  The % change in MSR does not fall within the 
bounds with the removal of a single coefficient. 

 
Table 4.5 shows that one to five terms may be removed from the full 3rd order polynomial while the 
models’ MSRs remain less than 1 % from the full models’ MSRs.  If the criteria is raised to within 5 % of 
the full models’ MSRs, up to seven terms may be removed from several of the 3rd order polynomials.  
Raising the percentage change in MSR to within 10 % allows the removal of up to nine coefficients for 
Tsh.  The decision as to how many terms to remove is at the discretion of the model developer, but as with 
any regression equation, the confidence interval on the mean value of any of the features determined at a 
particular value of the independent parameters will be larger for larger MSRs.  The confidence interval is 
a function of the MPR model standard residual ( MSR ), the Student’s t-value for the particular 
confidence level, and degrees of freedom (Ott 1984).   
 
Figure 4.3 shows the performance of the full MPR models and ANN model during operation at a TOD of 
27.8±0.3 °C.  If an air conditioning system is installed in the field, TID may change continuously 
according to indoor cooling load or thermostat settings.  The three features, Tsh, Tsc, and TD, are shown in 
Figure 4.3 because they varied the most as indoor temperature changed.  In Figure 4.3(a), where there is 
an abrupt change in TID, the steady state of the system is broken, as indicated by the steady-state detector 
in Figure 4.3(e).   
 
Figures 4.3(b), 4.3(c), and 4.3(d) show Tsh, Tsc and TD as predicted by the 1st, 2nd, and 3rd order MPR 
models and the ANN model.  The 3rd order MPR model shows the best fit to the measured data during 
steady-state operation.  As the order of the polynomial model decreases, the fit to the experimental data 
set degrades.  Predictions by the ANN model are worse than those by the 3rd order MPR model.  The Tsh 
predicted by the ANN model is comparable to that of the 3rd order MPR model (Figure 4.3(b)), but Tsc 
was not predicted well by the ANN model, as shown in Figure 4.3(c).  The predicted values of TD for the 
ANN model are between the 1st and 2nd order MPR models, as shown in Figure 4.3(d).   

 



 

 34

 
Figure 4.3.  Performance of MPR models and ANN model to predict features during a sample operation 

period; (a) TID; (b) Tsh; (c) Tsc; (d) TD; (e) steady state 
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4.4  Sensitivity of the Reference Model to the Steady-State Detector 
 
4.4.1  Effect of the steady-state detector threshold values on the reference model 
 
Data used to generate the reference model was taken by changing indoor or outdoor temperatures in a 
stepwise manner and holding the new conditions for a fixed time interval.  If we had selected a very strict 
definition of steady state (small threshold values such as a fraction of one standard deviation of the 
important features), the time required to reach steady state would have increased.  During the stepwise 
changes in conditions, a given temperature state was only maintained for 30 to 45 minutes before moving 
on to the next condition.  A stricter more sensitive steady-state detector would have indicated steady state 
for a shorter period of time, thus limiting the number of data points collected for the given time period.  
The number of data points collected along with their variance from their respective means would be 
greatly affected by this change in threshold values and thus influence the reference model’s dataset.  A 
strict, small threshold steady-state detector produces fewer data points with lower variance, while a less 
strict steady-state detector would produce more data points with higher variance.   
 
The threshold values of standard deviation for the monitored system features define the performance of 
the steady-state detector.  The smaller a threshold is the more stable the system must be before steady 
state is declared.  On the other hand, if a threshold is too small more time is required to collect reference 
data, and this small threshold value may inhibit data collection.  Large thresholds increase the variability 
of the reference model and the effectiveness of the FDD system.  Therefore, it is necessary to find 
thresholds that minimize the uncertainty and variability of the reference model while maximizing the use 
of experimental data.   
 
To investigate the relation between reference model and threshold values, we compared the various 
reference models as a function of various threshold values.  To do this, the system reference model was 
re-calculated after all data were filtered through the steady-state detector using different thresholds.  
Specifically, we developed the 2nd order polynomial reference model from the steady-state data 
determined by the steady-state detector with (0.06, 0.17, 0.28, 0.56, and 1.11) °C ((0.1, 0.3, 0.5, 1.0, and 
2.0) oF) thresholds for all features.  Then, we calculated the standard deviation between the steady-state 
data and predicted data for all features.   
 

( )
N

 valueMeasured  -   valuePredicted
Deviation  Standard

2∑=                                   (4.3) 

 
Figure 4.4 shows the polynomial reference model standard deviation and data extraction percentage for 
each system feature.  The x-axis represents the threshold for the seven features.  As the threshold of the 
steady-state detector increases, the standard deviations of TD, Tsh, TE, and Tsc pass through an optimal 
point.  Discharge temperature and superheat show this tendency clearly.  In this figure, we can see that the 
optimal threshold exists around 0.17 °C (0.3 °F) for TD, Tsh, TE, and Tsc.  Below 0.17 °C (0.3 °F), the 
uncertainty worsens due to the increase of model residuals caused by excessive filtration by the steady-
state detector.  Considering both data extraction rate and uncertainties of the thermocouple sensors, the 
thresholds should be set between 0.11°C to 0.28 °C (0.2 °F to 0.5 °F).  This figure compares well to the 
±3σ thresholds listed in Table 3.3 which indicates that the selection of thresholds that at three times larger 
than the steady-state standard deviation produces a near minimum model standard deviation (as calculated 
by Equation 4.3) while at the same time yielding acceptable use of the available data.   
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Figure 4.4.  Standard deviation for the seven features of the no-fault system reference model and data 

extraction rate as a function of the steady-state detector thresholds (sampling interval: 18 
seconds, moving window size: 144 seconds) 

 
 
4.4.2  Example of the steady-state detector applied to the experimental heat pump 
 
Figures 4.5(a) and 4.5(b) show sample feature residuals as a function of indoor temperature and relative 
humidity.  In Figure 4.5, all of the non steady-state data having large deviation from the reference were 
filtered out.  For both figures, zone A represents the non steady-state data filtered out during the startup 
transient.  In the low humidity area of Figure 4.5(b), marked as zone B or ‘TXV hunting,’ highly 
fluctuating data were filtered out by the steady-state detector.  Since the evaporator capacity is reduced 
for dry inlet air conditions, refrigerant exiting the evaporator oscillates between saturated and superheated.  
These abrupt condition changes at the evaporator exit cause TXV hunting.  When the TXV hunting 
occurs, other temperatures, especially on the evaporator side, also oscillate within a large range.  The no-
fault model would thus estimate the parameters inaccurately due to a lack of steady-state data in that 
range.  Once the model estimations are acceptable for other conditions, there is no reason to set the 
steady-state thresholds so low as to filter all the oscillating data out.  By including some data in this 
oscillating zone within a no-fault model, we can obtain a model that covers a wider range of operating 
conditions.   
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(a) Residual of evaporator exit superheat versus indoor temperature  

 

 
(b) Residual of evaporator exit saturation temperature versus indoor relative humidity 

 
Figure 4.5.  Results filtered by the steady-state detector on the plots with feature residuals and 

independent variables (zone A: startup transient, zone B: TXV hunting) 
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4.5   Conclusions on System Reference Model 

 
Seven features of a residential heat pump system were modeled using the 1st, 2nd, 3rd, and 4th order MPR 
models and an ANN model.  The laboratory data were filtered by a steady-state detector, which 
automatically examined and processed data to improve data collection consistency and the resulting 
reference model for steady state.  When we consider the accuracy of a reference model and usefulness of 
field data, the 3rd order polynomial model provides a reasonable fit uncertainty.  The F-Test is one method 
of reducing the number of coefficients in a general linear model, and this technique may aid a developer 
in creating a more compact representation of the system features.  The ANN model predicted all features 
with less accuracy than the 3rd order MPR model.  Because of insignificant non-linearity between the 
independent variables and the features in the cooling mode, the ANN model did not produce lower MSRs 
than the best MPR models.   

 
The reference model should not be over-specified by increasing the order of the MPR model.  The model 
variance (MSR) should be lower than that associated with the measurement uncertainty of the 
independent variables.  The smaller the models’ variances, the smaller their contributions to the overall 
uncertainty of the predicted features.  The model developer must decide on an acceptable level of model 
variance (associated with model order) based upon his FDD requirements and his ability to measure the 
variables.   

 
In general, any order MPR model is a “black box model” and may be applied to any unknown system.  
When the system is changed slightly due to aging, a rigid non-physical model cannot accurately predict 
performance, which will cripple the FDD system.  Although the model may be updated by ongoing 
commissioning, a model with semi-physical concepts can be easily adjusted to compensate for gradual 
system changes.  Models that can adapt to changing system conditions must be developed.  It would be 
advantageous to revise an existing model using up-to-date information, which would eventually evolve 
into a model capable of learning and self-tuning during normal operation, yet still ensure that the system 
remained within the manufacturer’s performance limits.   
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CHAPTER 5.  STATISTICAL METHODOLOGY FOR FAULT DIAGNOSIS 
USING A RULE-BASED APPROACH  
 
The concept of a rule-based FDD system originated from expert system theory.  Typically, knowledge-
based expert systems are designed to solve problems that would normally be tackled by a human expert.  
Though the application domain of expert systems might be narrow and restricted, it provides experienced 
aid to developers (Tzafestas, 1989). 
 
Since expert systems originated from human experts’ knowledge, most of the related schemes can be 
interpreted by rules such as IF, THEN, ELSE algorithms.  Based on this interpretation, there are a number 
of different methods for rule-based algorithms.  Fault tree methods (Lee et al., 1985), fuzzy theory-based 
techniques (Krandel, 1992), and signed directed graph (SDG) methods (Kramer and Palowitch, 1987) 
were examined by several investigators. 
 
A rule-based approach has various advantages, including the transparency, flexibility, and adaptability 
obtained by expressing the knowledge base as a set of rules.  Commissioning engineers prefer using the 
rule-based algorithm because it helps with intuitive judgment of the system status.  The rule-based 
algorithm is simple, so it is convenient to develop new rules for an unknown object system.  Furthermore, 
the rule-based module is suitable to run on an embedded device like a microprocessor since it requires a 
relatively small computational capacity and memory requirement (Schein and Bushby, 2005).  If FDD for 
HVAC systems are to be affordable, rule-based approaches are of great benefit because they require low 
computing overhead and are relatively inexpensive to implement.   
 
5.1  Fault Influences on System Parameters 
 
A handful of researchers have attempted rule-based algorithms for identifying vapor compression system 
faults.  Since the pattern of system response changes with the system configuration, the researchers 
provided their unique rule-based charts for every corresponding system. 
 
Rossi and Braun (1997) provided a rule-based chart of seven feature residuals with regard to five different 
faults of a rooftop air conditioner.  The rooftop system was equipped with a constant speed compressor 
and a short tube expansion device.  The authors merged the rule-based knowledge into a statistical pattern 
recognition technique in order to develop a fault detection classifier.  Assuming the individual 
temperature measurements being independent, the type of each fault was classified.  Breuker and Braun 
(1998b) modified the rule-based chart of the same system based on their experimental verification. 
 
Castro (2001) tested a 41 kW (12 ton) air-cooled liquid chiller with a constant speed, two-stage 
reciprocating compressor.  Twelve performance parameters were originally monitored to track system 
performance.  Eight representative parameters were selected to build a rule-based chart.  The author 
calculated Euclidean distances of the current state based on the selected two largest residuals, and 
estimated the possibility of a fault from the distance information.  After detecting a fault, the data were 
input to the rule-based fault diagnosis algorithm. 
 
Kim and Kim (2005) tested a water-to-water heat pump system with an electronic expansion valve (EEV) 
driven by an open-type variable-speed compressor.  Depending on the cooling load, the compressor was 
operated in two modes, variable speed or constant speed.  The authors provided two separate rule-based 
charts depending on the operating mode. 
 
Table 5.1 lists rule-based charts from previous investigations on:  (a) a rooftop air conditioner with a short 
tube orifice and a constant-speed compressor; (b) a water-to-water heat pump with an Electronic 
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Expansion Valve (EEV) and a constant-speed compressor; and (c) a heat pump with an EEV and a 
variable-speed compressor.  The indices of features represent three rules; up-arrows (increased residual), 
down-arrows (decreased residual), and no-change (neutral residual). 
 
Table 5.1.  Comparison of rule-based patterns with regard to three different configurations of vapor 

compression systems 
 
(a) Rooftop air conditioner with a short tube orifice and constant-speed compressor1 (no controller) 

Fault Type TE Tsh TD TC Tsc ΔTCA ΔTEA 
Compressor valve leakage        
Refrigerant leakage        
Liquid-line restriction        
Condenser fault        
Evaporator fault        

1 Breuker and Braun (1998b) 
 
(b) Water-to-water heat pump with an EEV and constant-speed compressor2 (one controller) 

Fault Type TE Tsh TD TC Tsc ΔTCW ΔTEB N 
Compressor valve leakage  –      – 

< 15% – – – –    – Refrigerant leakage 
 > 15%       – – 
Condenser fault  –   –   – 
Evaporator fault  – –     – 

2 Kim and Kim (2005) 
 
(c) Water-to-water heat pump with an EEV and variable-speed compressor3 (two controllers) 

Fault Type TE Tsh TD TC Tsc ΔTCW ΔTEB N 
Compressor valve leakage – –  – – – –  

< 15% – – – –  – –  Refrigerant leakage 
 > 15%        – 
Condenser fault – –    – –  
Evaporator fault  –  –  – –  

3 Kim and Kim (2005) 
 
Table 5.1(a) does not contain a neutral (NC (-)) index, which implies that a system response is directly 
associated with a fault regardless of the fault type.  However, for the fixed orifice system (Table 5.1(a)) 
compared to an EEV-equipped system (Table 5.1(b)), many of the positive or negative indices become 
neutral indices.  When compressor speed control is added, additional rules become neutral indices (see 
Table 5.1(b) and (c)).   
 
If we pair the EEV and the variable-speed compressor as a single-controller unit, Table 5.1(a) can be 
regarded as a rule-based chart of a system with no controller, Table 5.1(b) for a single-controller system, 
and Table 5.1(c) for a double-controller system.  As the number of controllers increases, the variability of 
the system features decreases.  When a system changes due to an external influence, faults, or controller 
noise, controllers attempt to adjust the system to maintain the original status.  Thus, controllers reduce 
system variability creating a much more fault-tolerant system (more neutral indices) (Kim and Kim, 2005).   
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The work done during this investigation shows that the addition of the extra control provided by a TXV 
does in fact create a more fault-tolerant system, and thus produces more neutral indices in the feature set.  
Table 5.2 shows the feature set and their changes with faulty operation for the faults imposed for the 
current cooling mode investigation.  This added variety within the feature set can be directly compared to 
that of the fixed orifice expansion device system of Table 5.1(a).   
 

Table 5.2  Rule-based fault pattern chart of seven features 
Fault Type zone1 TE Tsh TD TC Tsc ∆TCA ∆TEA

Compressor valve leakage2 A  –      
A  –    –  

Improper outdoor air flow 
B        

Improper indoor air flow2 A  – –  –   
A – – – – – – – 

Liquid-line restriction3 
B        
A – – –     

Refrigerant undercharge 
B        

Refrigerant overcharge2 A – –    – – 
No-fault – – – – – – – – 

1 Zone A: Tsh < 9 ºC, Zone B: Tsh > 9 ºC 
2 The case of Tsh > 9 ºC was not observed within the fault levels of this study. 
3 The rules when Tsh < 9 ºC were identical with no-fault cases. 

 
Compared to the rule-based chart in Table 5.1(a), the rule-patterns for a liquid-line restriction and 
refrigerant undercharge fault were the same as Breuker and Braun (1998b) at a high fault level in zone B.  
Considering that they tested a rooftop air conditioner with a short tube orifice, this tends to indicate that 
the TXV is working like a fixed area expansion device; the TXV is saturated or at its control limits.  
However, the improper outdoor air flow fault rule-pattern in zone B is different from that of a condenser 
fault in Table 5.1(a), both of which were simulated by blocking the flow passage through the condenser.  
This is because the air inflow area of the outdoor unit was blocked from the bottom in this research, but 
Breuker and Braun (1998b) blocked the condenser randomly.  
 
5.2  Classification of Feature Rules 
 
5.2.1  Statistical rule-based classification for two cases; positive or negative 

residuals 
 
Figure 5.1 shows two probability distributions corresponding to the current measurement and the no-fault 
model’s estimate.  The current mean, μi, and standard deviation, σi, are calculated in the moving window 
of on-going measurements.  The estimated mean, μi,NF, and standard deviation, σi,NF, of the ith feature are 
determined from the no-fault model and associated uncertainty, respectively.  The difference in the two 
means, μi – μi,NF, is defined as the residual of the feature, ri, in Equation 5.1.   
 
 ,NFi i i

r μ μ= −  (5.1) 
 
Assuming that the features are random variables, the estimated features from the no-fault model can be 
assumed to obey a Gaussian probability distribution, N (μi.NF, σi.NF

2).  Based on the probability 
distributions and the sign of the residual (positive  or negative ), the probability of the feature being 
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higher or lower than the reference model prediction can be estimated in a statistical fashion.  Looking at 
Table 5.1(a), a set of seven features establishes a 7-dimensional multivariate Gaussian probability 
distribution.  With the assumption that each dimension is independent, the probability corresponding to a 
given fault type can be calculated from a single variable Gaussian distribution (Rossi and Braun, 1997).  
Though the independent assumption was reported to be less accurate compared to other schemes that do 
not force independence (Li and Braun, 2003), the assumption of independence is still applicable in this 
type of FDD analysis, or in other words we may ignore any cross-correlation, which simplifies this 
analysis.   
 

( )2
,NF ,NF,i iN μ σ

Measured feature No-fault model

Residual, ri

( )PDF ,i iμ σ

,NFiμμi xi  
 
Figure 5.1.  Probability density functions (PDF) of ith feature, xi, for the current measurement and the no-

fault model prediction 
 
Equation 5.2 defines the probability of seeing the jth fault, P(Fj | X), corresponding to the set of m 
independent variables, X, for the current measurements.   
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P(Cij | Xi) denotes the individual probability of seeing case variable C (positive  or negative ) for the 
ith feature (Tsh, Tsc, ΔTEA, etc.) with the jth fault type.  Since the features are assumed to be independent, 
the total conditional probability, P(Fj | X), can be obtained by the multiplication of individual P(Cij | Xi)’s.  
Rossi and Braun (1997) assumed that the current distribution follows a Gaussian pattern and suggested 
P(Cij | Xi) be represented by the form of Equation 5.3. 
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Standard deviation σi,NF is the square root of the ith diagonal component in the covariance matrix of the 
no-fault model.  The set of rules in Table 5.1(a) consists of positive  or negative  discrete values.  
Noting that an up-arrow rule implies positive ri and a down-arrow rule implies negative ri, the constant ai 
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is assigned a value of 1 for positive ri or –1 otherwise.  Since Equation 5.3 can be applied only to rules 
with two classes (positive  or negative ), it is necessary to evaluate the neutral (– or NC) class in a 
different way.   
 
5.2.2  Statistical rule-based classification with three case indices; positive, negative, 

or neutral 
 
A set of measurement features can be regarded as a multi-dimensional Gaussian probability distribution.  
In contrast to the rules of Rossi and Braun in Section 5.2.1, the neutral index (– or NC) is required for the 
system features shown in Table 5.1(b) and (c) and Table 5.2.  When we use the assumption that each 
dimension is independent, we can extend the statistical rule-based classification to a three-class problem 
(positive , negative , or neutral –) with each class being represented by a simple Gaussian distribution 
rather than a more complicated distribution with multiple degrees of freedom and dependencies.   
 
When the operation is controlled by feedback controllers, a system will adjust itself based upon the 
control variable.  Since the active control reduces system variation, many features will not change clearly 
enough to apply a two-rule diagnosis.  Therefore, researchers using rule-based charts, in several 
investigations for more complicated systems, added a neutral rule resulting in a three-class variation 
(positive, negative, neutral).  Applying different rules for different systems as seen in the previous 
researches, allowed us to more easily find the appropriate FDD rules for the system.   
 
A conventional way of classifying residuals as positive, negative, or neutral is by enumerating the 
probable faults based on belief functions.  For example, Figure 5.2 illustrates a Boolean and a smoothed 
belief function, b(Cij | Xi), of the ith feature with regard to residual ri.  P(Ri) is the Gaussian distribution of 
residual ri.  Boolean classification results in a case of 0 or 1 depending on the value of residual ri and the 
given threshold εi.  When measurement noise produces random fluctuation in the signal around the 
thresholds, +εi or −εi, a Boolean classification returns highly unstable belief values rapidly fluctuation 
between 0 and 1.  To solve this problem, later investigators implemented smoothed belief functions to 
alleviate the diagnostic instability of Boolean classification.  The smoothed belief function in Figure 5.2 
represents a sigmoidal type suggested by Kramer (1987).  The factor 1 − ui (one minus the uncertainty in 
ri) permits the introduction of uncertainty into the belief function.  Although the Boolean belief function, 
b(Cij | Xi), is similar conceptually to the probability function P(Cij | Xi) in Equation 5.2, they should be 
kept separate since belief functions were derived empirically and have only a weak background in 
probability theory.   
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Figure 5.2. Example of a three case classification using a Boolean and a smoothed belief function with 

regard to the residual ri and its Gaussian probability distribution P(Ri) for a given threshold 
on ri of ±εi (Kramer 1987) 

 
When we assume that the measured signal is a normally distributed random variable with zero mean and a 
given variance, σi

2, the three cases ( , , and −) can be estimated using standard statistics.  The chi-
squared (χ2) probability distribution gives the probability of the squared sum of the standardized multi-
dimensional variables that have normal independent distributions with zero-mean and unity variance.  The 
number of variables is the degree of freedom.  When the degree of freedom is one, the probability 
determined by a chi-square distribution is identical to a normal distribution.  For the current research, the 
seven features, with the assumption of independence, provide seven individual chi-square distributions 
with 1 degree of freedom.  Thus, statistical inferences can be based on a Gaussian distribution.   
 
Figure 5.3 represents the probability for three cases of (a) negative ( ), (b) positive ( ), and (c) neutral 
(−).  The conditional probability, P(Cij | Xi), is shown as the cross-hatched area depending on the 
corresponding rule.  The probability for each rule was described in Equation 5.3.   
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                                                                   (5.4) 

 
If P(x) is a Gaussian distribution, P(xi < ai) can be expressed in an explicit form by Equation 5.5.   
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                                                (5.5) 

 
where the error function, erf, is defined as follows: 
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(a) Probability of negative ( ) case  
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(b) Probability of positive ( ) case  
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(c) Probability of neutral (–) case  
 
 

Figure 5.3.  Estimation of conditional probability of the ith feature with regard to the current measurement 
complying with individual rules.  The subscript of the case variable C corresponds to the 
rules in Table 5.2 and represents a (a) negative change, (b) positive change, or (c) no change 
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From Equation 5.5 and Figure 5.3, the three probability terms in Equation 5.4 can be evaluated.  Note that 
the cross-hatched area on the right side of the current distribution represents the negative change 
conditional probability since the current distribution produces a negative residual.  The probabilities are 
expressed as functions of the threshold εi. 
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The summation of Equations 5.7a, 5.7b, and 5.7c equals unity.   
 

( ) ( ) ( )| | | 1−↓ ↑+ + =i i iP C X P C X P C X                                             (5.8) 
 
5.2.3  Decision rule index and building a rule-based chart 
 
In our analysis a non-faulty, current measurement is assumed to show the same variation as the no-fault 
steady-state reference experiments.   
 

2 2
,σ σ≈i i NF                                                                       (5.9) 

 
Let the measurement threshold, εi, be the multiplication of the measurement standard deviation, σi, by a 
positive constant s. 
 

( ) , 0i is s sε σ= >                                                                (5.10) 
 
Let the standardized measurement residual be represented by zi.   
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i

i

xz μ
σ
−

=                                                                    (5.11) 

 
Substituting Equations 5.9 to 5.11 into Equations 5.7 yields more compact definitions of the Probability 
Distribution Functions (PDF) for the standardized measurement residual of the ith feature.   
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Figure 5.4 shows probability distributions of the above three cases when the measurement threshold 
standard deviation multiplier, s, has values of 1 and 2.  With a zero residual (zi = 0), the no-change 
probability has a maximum value but the probabilities for up-change and down-change are non-zero.  
Compared with Figure 5.2 where there was no representation of a no-change case, the no-change case can 
be evaluated based on the value of zi and its accompanying threshold εi ( = sσi,NF).  Depending on the 
value of the residual zi and threshold εi, the probability of a feature’s three possible states can be classified 
into one of the three categories as seen in Figure 5.4.   
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(a) P(Cij | Zi) at s = 1 
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Figure 5.4.  Classification probability functions for positive change, negative change, and neutral change 

with regard to the measurement threshold standard deviation multiplier, s=1 and s=2. 
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When we build a rule-based chart, each feature is associated with a case (or status) group (C↓, C−, C↑) to 
which its residual, z, belongs.  To clarify, Equation 5.13 shows the regimes for determining the rule index 
for the ith feature with the jth fault.  
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 (5.13) 

 
Equation 5.13 presents general cases of a case group for the threshold ±εi(s) (εi > 0) regardless of the 
assumption in Equation 5.10.  For logical consistency, the probabilities of no-change and either of up-or-
down change must be identical when the residual, zij, equals the threshold, εi, as in Equation 5.14. 
 
 In case ( ) ( )| |−↓ =i iP C Z P C Z , then ( )ε= −ij iz s  (5.14a) 

 In case ( ) ( )| |−↑ =i iP C Z P C Z , then ( )ε= +ij iz s  (5.14b) 
 
From Equations 5.14, the relation between the constant s and threshold εi(s) can be derived by setting 
Equations 5.12a and 5.12c or 5.12b and 5.12c to be equal.  In either case, the equality can be formulated 
in the same form as in Equation 5.15. 
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Figure 5.5 represents the relation between the constant s and the threshold εi(s)/σi.  As s increases, the 
function asymptotically approaches a linear function, εi/σi = s.  When s > 1, the threshold is within 0.4 % 
of εi/σi  = s.  Therefore, we can simply assume εi(s) ≈ sσi as in Equation 5.10, in most cases, when s > 1. 
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Figure 5.5.  Relation between  εi(s) and s 
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5.2.3.1  Fault classification error in a three case classification 
 
In order to estimate the probability of making a mistake and misinterpreting no-fault as being faulty, the 
no-fault probability was evaluated.  If all the measurements are identical to the model expectations (z = 0), 
the system is performing exactly as predicted by the reference model, and the NC or neutral case for each 
feature will have a maximum probability as seen in Figure 5.4.  Equation 5.16 is the classification error, α, 
based upon the overall probability, P(C− | Z)|z=0, calculated when all the features have zero residuals.  For 
example, an α =1 % probability would occur when the probability of NC (P(C− | Z)|z=0) equals 99 %.   
 

( )
0

1 |P Cα − =
= −

z
Z                                                                  (5.16) 

 
From the previous definitions and assumption of the measurement of m features being independent, the 
classification error for a particular fault may be simplified.   
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From Equations 5.12c and 5.17, the relation between the threshold standard deviation multiplier s and 
classification error α can be obtained.  Figure 5.6 shows the plot of s versus α with regard to the number 
of features.  In most cases, the classification error is below 5 % when s > 2.  
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Figure 5.6.  Classification error, α, versus measurement threshold standard deviation multiplier, s, with 

regard to the number of features 
 
For a 5 % value of α, the independent assumption forces s to be larger as the number of features increases.  
When k cases are to be classified using m features, the combination will manipulate km classes.  For 
example, a three case classification using two features combines 32 = 9 classes, but 10 features combines 



 

 50

310 = 59049 classes.  Since no-fault is one class among all of the classes, the increase of independent 
features will reduce the no-fault probability exponentially.  Thus, when the classification error, α, is fixed 
at a constant value, the threshold standard deviation multiplier s must increase as seen with 50 features in 
Figure 5.6.  If the FDD system operates with a large number of features, the independent assumption may 
prevent the FDD system from detecting concurrent faults due to less sensitivity caused by a high s value.  
Therefore, the threshold standard deviation multiplier s needs to be set below a reasonable value that may 
require some engineering judgment to determine.  The sensitivity of the no-fault reference model, the 
maintenance cost, and the uncertainty of the sensors should be accounted for when optimizing the 
threshold standard deviation multiplier s. 
 
Since this evaluation is biased toward minimizing the risk of false alarm, the opposite case which 
interprets a fault state as being no-fault, is underestimated.  Excessive credibility (large s value) degrades 
the sensitivity of an FDD system; however, false alarms decrease its usefulness and dependability.  Since 
FDD systems for HVAC applications are mainly intended to reduce operating costs, false alarms are more 
detrimental than low sensitivity in terms of cost effectiveness.  Therefore, it is reasonable to set a large 
threshold standard deviation multiplier (large s value) to minimize false alarms. 
 
5.2.3.2 Probability of a fault classification error  
 
Figure 5.7 presents the classification error using the polynomial reference models discussed in Chapter 4.  
The 1st, 2nd, and 3rd order MPR models were compared with regard to the constant s.  Classification error, 
α, for the case with seven independent features is shown by a dashed line.  In contrast to the curves seen 
in Figure 5.6, classification error decreases rapidly for smaller values of s than it did for the independent 
assumption cases of Figure 5.6.  Unless the seven features are perfectly independent, the classification 
error would be less for this more realistic situation of some dependence between features.  The three MPR 
models show similar trends; when s < 0.5, most of the no-fault cases are incorrectly categorized as being 
faulty; when s = 2.0, the classification error for the 3rd order MPR model drops to 0.58 % from 3.2 % as 
compared to the independent assumption.   
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Figure 5.7.  Classification error with regard to the constant s for three different MPR models with seven 
features 

 
5.3  Setting the Neutral Threshold by Calculating Total Residual Uncertainty 
 
5.3.1  Uncertainties due to steady-state variation and lack of measurement 

repeatability 
 
To determine a realistic value of the neutral threshold, εi, as discussed in Section 5.2, validation of the 
measurements is mandatory.  Naturally, the system measurements have uncertainties due to sensors – 
mostly thermocouples – and due to lack of measurement repeatability.  The uncertainty of a thermocouple 
may come from measurement noise and drift.  Considering the measurement noise behaves like zero-
mean white noise, its natural variation can be characterized closely by the steady-state standard deviation, 
σi,SS, defined in Chapter 3.  Thermocouple drift is the measurement bias that varies over longer time 
periods than noise.  However, the thermocouple drift can be regarded as negligible in this research since 
the same built-in sensors are used for model development and application to the tested system for FDD, 
thus their bias has been considered in the reference model measurements.   
 
To examine the repeatability of the system measurements, we analyzed repetitive tests.  Referencing 
Table 3.3 in Kim et al., 2006, the tests were performed at 6 month intervals with 9 tests at condition 4 
(TOD = 27.8 °C (82.0 °F), TID = 21.1 °C (70.0 °F), and RHID = 50 %), 11 tests at condition 5 
(TOD = 27.8 °C (82.0 °F), TID = 26.7 °C (80.0 °F), and RHID = 50 %), 8 tests at condition 8 (TOD = 37.7 °C 
(100.0 °F), TID = 21.1 °C (70.0 °F), and RHID = 50 %), and 10 tests at condition 9 (TOD = 37.7 °C 
(100.0 °F), TID = 26.7 °C (80.0 °F), and RHID = 50 %).  The feature standard deviations from repeatability 
tests, σi,Repeat, are listed in Table 5.3.   
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Table 5.3.  Standard deviation of the selected features 

(°C) Tsh Tsc TE TD TC ΔTCA ΔTEA 

Steady-state standard deviation σi,SS 0.124 0.052 0.024 0.058 0.035 0.063 0.058 
Standard deviation from 
repeatability tests σi,Repeat 0.101 0.156 0.084 0.280 0.166 0.088 0.111 

 
Table 5.3 gives us the measurement uncertainty due to steady-state variation, σi,SS, and due to variation 
from test-to-test (measurement repeatability), σi,Repeat, for similar test conditions.  These two values will be 
used to calculate total residual threshold uncertainty for each feature.   
 
5.3.2  Uncertainties due to the reference models 
 
In section 5.2 we studied the variation of probabilities for the three feature cases (C↓, C−, C↑) with the 
definition of Equation 5.8 and assumption specified by Equation 5.9.  Since measurements are used with 
the reference model predictions to determine residuals, the square-root of the sum of residuals presents a 
RMS error, which is not Gaussian.  In this section, we analyze the no-fault measurements distribution in 
detail to provide the methodology for determining a proper value of the threshold εi, as defined in Section 
5.2.3.   
 
In most cases, it is hard to obtain a reference model covering all operating conditions.  To train a 
reference model after installation, a real-time decision of fault-free or faulty status is mandatory.  In 
contrast to the steady-state and repetition uncertainty, the model uncertainty comes from the 
imperfections associated with any mathematical model.  Here, we define average bias of the model 
estimation as the averaged residual between the model and the current measurement with no zero-mean 
noise.  The model standard deviation, σi,Model, characterizes the model uncertainty.  Since the zero-mean 
noise uncertainty (σi,SS) and model uncertainties (σi,Model) amplify the variability of residuals 
independently, it is reasonable to assume that no joint effect exists between the two uncertainties.  
Therefore, the covariance between the two uncertainties (σi,SS·σi,Model) is zero, and σi,NF will be a squared 
sum of σi,SS and σi,Model as shown in Equation 5.18.  By combining Equation 5.18 and Table 5.3, σi,Model 
can be estimated as shown in Table 5.4.  Comparing Table 5.3 to Table 5.4, we can see that the reference 
model is the same order of magnitude as the steady-state and repeatability uncertainties. 
 

2 2
,NF ,SS ,Modeli i iσ σ σ= +                                                             (5.18) 

 
Table 5.4.  Net model uncertainties of the features using the 1st, 2nd, and 3rd order MPR models 

Model uncertainties, σi,Model (°C) Tsh Tsc TE TD TC ΔTCA ΔTEA 

1st order MPR model 0.557 0.244 0.549 0.799 0.179 0.150 0.581 

2nd order MPR model 0.328 0.197 0.147 0.319 0.047 0.040 0.131 

3rd order MPR model 0.197 0.133 0.123 0.250 0.029 0.019 0.071 

 
Equation 5.18 defines the overall uncertainties of the no-fault residual for one measurement.  When a 
moving window average of n samples is used, the steady-state standard deviation is reduced by the square 
root of n as shown in Equation 5.19. 
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Equation 5.19 will be applied throughout our calculations since σi,SS in Table 5.4 is constant as 
determined in Section 3.2.3. 
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Since the model uncertainty, σi,Model, remains the same without regard to the moving window size, the no-
fault total uncertainty for the moving window average will be, 
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 (5.21) 

 
where n is the number of measurements in the moving window.  Figure 5.8 compares the standard 
deviations of the three characteristics contributing to the total standard deviation: steady-state, 3rd order 
MPR model, and repeatability.  As expected, steady-state uncertainty, σi,SS, shows the highest value for 
Tsh.  The σi,Model of TD shows the highest value among the features, but the σi,SS shows moderate variation.  
This means that the polynomial model has a higher uncertainty when estimating TD, compared to the 
steady-state standard deviation.  Some of this higher modeling standard deviation is due to the heat inertia 
of the compressor causing a higher time constant for TD.  This higher variation of TD also appears in the 
σi,Repeat having the largest value in Figure 5.8. 
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Figure 5.8.  Standard deviations for seven feature residuals due to measurement noise at steady state, the 

3rd order MPR model, and the lack of measurement repeatability 
 
5.3.3  Combining uncertainties to determine the neutral case, NC, threshold 
 
From sections 5.3.1 and 5.3.2, we observed uncertainties from the no-fault measurements.  Considering 
that total uncertainty is due to steady-state uncertainty, modeling uncertainty, and lack of measurement 
repeatability uncertainty, the threshold is proportional to the total uncertainty as shown by Equation 5.22, 
where the constants k1, k2, and k3 define the confidence intervals for each uncertainty.   
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 (5.22) 

 
Depending on the confidence level, the constants k1, k2, and k3 can be determined based on the 
distribution for each uncertainty term. 
 
5.3.3.1  Confidence interval, k1, for the steady-state uncertainty 
 
Since we use measurements and standard deviations in a preset moving window, their distribution 
depends on the characteristics of the moving window.  When n no-fault data are sampled from a Gaussian 
distribution with standard deviation, σi, the quantity t can be defined by Equation 5.23. 
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where μi is the current mean of the moving window of n samples.  In such a case, t in Equation 5.23 
follows a Student’s t-distribution with n – 1 degrees of freedom.  When we set a 1 – α probability that the 
two values are equal (xi = μi), the confidence interval, k1= tα/2, n – 1, is described by Equation 5.24.  
 

 / 2, 1 1i
i i nP x t

nα
σμ α−

⎛ ⎞− < = −⎜ ⎟
⎝ ⎠

 (5.24) 

 
where tα/2, n – 1 is a two-sided confidence interval with n – 1 degrees of freedom.  In Chapter 3, we 
determined the appropriate moving window size to be 140 seconds, or 10 samples in the moving window 
with a 14 second sampling interval.  With a 1 – α = 99 % confidence, the t-value, t0.005,9, is 3.25, which is 
larger than a Gaussian distribution of 2.58.  Table 5.5 shows the values of k1= tα/2, 9.  Thus, constant k1 in 
Equation 5.22 can be defined by Equation 5.25.  For 99 % confidence (or credibility) level, k1 is 3.25.   
 
 1 / 2, 1nk tα −=  (5.25) 
 

Table 5.5.  Two-sided confidence intervals with degrees of freedom of four and nine 
1 – α (%) 80.0 90.0 95.0 99.0 

α/2 (%) 10.0 5.0 2.5 0.5 

tα/2,4
1 1.533 2.132 2.776 4.604

k1=tα/2,9
2 1.383 1.833 2.262 3.250

1 5 sample moving window 
2 10 sample moving window 

 
 
5.3.3.2  Confidence interval, k2 , for model uncertainty 
 
Figure 5.9 shows the distribution of the Tsh residual using the 3rd order MPR model applied to the no-fault 
steady-state data discussed in Chapter 4.  As seen in the plot, a Gaussian assumption tracks the residual 
distribution of the feature to a certain extent.  However, residuals near zero are distributed narrower than a 
Gaussian.  At high residual values where | r(Tsh) | > 1.7 °C (3 °F), a Gaussian assumption underestimates 
the probability.  From the Gaussian approach, 99 % of data fall within the range of ±0.6 °C (1.08 °F), but 
no-fault test data have a wider range of ±0.78 °C (1.41 °F) to cover 99 % of all data.   
 
Equation 5.26 shows the normalized 99 % confidence intervals for a Gaussian assumption.  In Equation 
5.27, normalized 99 % confidence intervals of each feature residual are shown based upon the 
experimental data.  Any bounds greater than an absolute value of 2.58 in the experimental results imply 
that the measurements have a wider 99 % distribution than the infinitely sampled Gaussian assumption.   
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Figure 5.9.  Comparison of the distributions of the Tsh residuals from no-fault steady-state data and 3rd 

order MPR model based on the model RMS error; Gaussian distribution, student t-
distribution, and the calculated distribution from the test data. 
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As shown by comparing the confidence intervals of Equation 5.26 and Equations 5.27, applying the 
infinite degree of freedom Gaussian confidence interval would underestimate the threshold εi.  Table 5.6 
lists the confidence intervals for three confidence levels.   
 

Table 5.6.  Two-sided confidence interval of the seven features for the 3rd order MPR model 
1 – α (%) 75.0 97.5 99.5 

Tsh 1.00 2.26 2.96 
Tsc 0.93 2.22 3.37 
TE 1.10 2.06 2.65 
TD 1.15 1.96 2.63 
TC 1.03 2.03 3.03 
ΔTCA 1.14 1.95 2.64 

k2= 
tα/2, n-1 

Δ TEA 0.95 2.16 3.22 
 
5.3.3.3  Confidence interval, k3 , for lack of measurement repeatability 
 
Repetitive measurements of a random variable will follow a Gaussian distribution, thus, under similar 
measurement conditions, repetitively measured feature residuals will also follow a Gaussian distribution.  
Table 5.7 shows the confidence interval with regard to the confidence level for a Gaussian distribution at 
various confidence levels.  Thus, constant k3 in Equation 5.22 is defined by the Gaussian confidence 
interval in Equation 5.28.  For example, with 99 % credibility, k3 equals 2.576 as shown below. 
 

3 / 2k gα=                                                                          (5.28) 
 

Table 5.7.  Two-sided confidence intervals of Gaussian distribution 
1 – α (%) 75.0 80.0 85.0 90.0 95.0 97.5 99.0 99.5 99.75 99.9 99.95

k3 = gα/2 1.156 1.282 1.445 1.645 1.960 2.241 2.576 2.807 3.024 3.291 3.481
 
 
5.3.4  Neutral case, NC, threshold value for the required credibility 
 
In the previous sections we defined the confidence intervals k1, k2, and k3 for each uncertainty term as 
defined by Equations 5.24, 5.27, and 5.28.  With this, the thresholds, εi, at any given level of confidence 
may be calculated using Equation 5.21.  Table 5.8(a) and 5.8(b) list the feature thresholds with 50 %, 
95 % and 99 % credibility for the moving window size of 5 and 10 samples.   
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Table 5.8.  Feature thresholds at different confidence levels for two sample sizes 
 

(a) Moving window of 5 samples 
Threshold of the features Tsh Tsc TE TD TC ∆TCA ∆TEA 
50 % credibility, εi,0.50 (°C) 0.131 0.134 0.092 0.243 0.082 0.064 0.086 
95 % credibility, εi,0.95 (°C) 0.504 0.413 0.324 0.756 0.239 0.192 0.274 
99 % credibility, εi,0.99 (°C) 0.758 0.579 0.426 0.987 0.317 0.265 0.383 

 
(b) Moving window of 10 samples 

Threshold of the features Tsh Tsc TE TD TC ∆TCA ∆TEA 
50 % credibility, εi,0.50 (°C) 0.130 0.134 0.092 0.243 0.082 0.064 0.086 
95 % credibility, εi,0.95 (°C) 0.496 0.411 0.323 0.755 0.237 0.187 0.271 
99 % credibility, εi,0.99 (°C) 0.735 0.574 0.424 0.983 0.313 0.248 0.373 

 
 
5.4  Application of the FDD Algorithm to a Residential Heat Pump Operating 

in the Cooling Mode 
 
5.4.1  Implementing single faults 
 
Table 5.9 lists the six types of faults investigated.  The online classification of the presence of non-
condensable gases is not included in this study, since it can be diagnosed by checking its partial pressure 
while the system is off (Stylianou and Nikanpour, 1996; Li, 2004).  Implementation of the seven artificial 
faults was detailed in Chapter 3. 
 

Table 5.9.  Description of studied faults 
Fault Abbr. Determination of level of fault during tests 
Compressor leakage (4-way valve leakage) CMF % of refrigerant flow rate 
Improper outdoor air flow rate CF % of coil area blocked 
Improper indoor air flow rate EF % of correct air flow rate 
Liquid line restriction LL % of normal pressure drop through TXV 
Refrigerant overcharge OC % overcharge from the correct charge 
Refrigerant undercharge UC % undercharge from the correct charge 

 
 
5.4.2  Quantifying the control limits of the TXV 
 
When the TXV is fully open, it behaves like a fixed area expansion device; thus, any faults that occur 
during this time will affect system features differently than they would if the TXV were within its normal 
control range.  For this reason, the cooling mode TXV’s control limits must be assessed so that 
appropriate feature rule-sets may be developed for the various realms of TXV operation.  The delineation 
of these TXV control realms is aided by correlation of the refrigerant mass flow rate to measured system 
features.   
 



 

 59

The cooling mode TXV experiences a large range of inlet refrigerant conditions and must control 
evaporator exit superheat over a broad range of refrigerant mass flow rates; thus selection of the 
appropriate TXV is somewhat of an art aided by extensive experimental knowledge.  The TXV may reach 
its control limits when two-phase refrigerant is present or more/less refrigerant flow is required by its 
superheat setting.  Since the TXV is working as a superheat controller, its characteristic behavior should 
be quantified as a means of assessing its control limits.  Equation 5.29 is a simple formulation of mass 
flow rate via isenthalpic expansion 
 
 R TXV.up TXVdm C A Pρ= Δ  (5.29) 

 
where Cd is a characteristic flow coefficient; A is the area, which is a function of valve stem displacement; 
ρTXV.up is TXV upstream refrigerant density; and ΔPTXV is pressure drop across the TXV.  For the case of 
two-phase refrigerant at the inlet of the TXV, an accurate mass flow measurement is required in order to 
determine the appropriate value of CdA.   
 
Since two-phase refrigerant flow degrades or completely prevents accurate measurement of refrigerant 
mass flow through the Coriolis type meter used in this study, mass flow is estimated indirectly using a 
compressor map when TXV upstream subcooling (Tsc_TXV.up) is below 0.5 °C.  Equation 5.30 presents the 
form of the mass flow equation provided by manufacturers according to ANSI/ARI Standard 540 (ARI 
2004). 
 

 
2

R 1 2 S.sat 3 D.sat 4 S.sat 5 S.sat D.sat
2 3 2 2 3

6 D.sat 7 S.sat 8 S.sat D.sat 9 S.sat D.sat 10 D.sat

m c c T c T c T c T T

c T c T c T T c T T c T

= + + + + +

+ + + +
 (5.30) 

 
To increase the usefulness of Equation 5.30, Dabiri and Rice (1981) suggested Equation 5.31 to adjust 
mass flow rate when the compressor suction superheat is different from the standard conditions.   
 

 SR

R.map S.map

1 0.75 1m
m

ρ
ρ

⎛ ⎞
= + −⎜ ⎟⎜ ⎟

⎝ ⎠
 (5.31) 

 
The compressor map was created at a standard suction superheat (TS.sh) of 11.1 °C ( 20.0 °F).  Figure 5.10 
shows calculated and measured refrigerant mass flow rate with Tsc_TXV.up > 0.5 °C for suction superheats 
of 10.2 °C to 13.7 °C (18.4 °F to 24.6 °F).  All the measurements are well estimated within a ±5 % 
deviation.  This figure indicates that these two equations are accurate estimators of mass flow rate and 
that they should be applicable even when two-phase conditions exist at the TXV inlet.   
 
In order to characterize the control limits of the TXV, refrigerant flow rate is calculated with Equations 
5.30 and 5.31 when the upstream is two-phase as defined by a Tsc_TXV.up < 0.5 °C.  In this case, 
thermodynamic properties including refrigerant enthalpy and mass quality upstream of the TXV are 
estimated by an energy balance calculation on the condenser air-side.  Two-phase density is calculated 
using mass quality and a harmonic weight of saturated liquid and vapor densities.   
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Figure 5.10.  Estimation of refrigerant mass flow rate at ΔTsc_TXV.up > 0.5 °C using the compressor map 

with superheat correction by Dabiri and Rice (1981) 
 
Figure 5.11 shows CdA with respect to Tsh at the evaporator exit.  Note that the level of Tsh in Figure 5.11 
measured at the evaporator exit is smaller than the compressor suction superheat due to heat transfer 
within the TXV.  When Tsh is below 9 ºC (zone A), CdA and Tsh show a linear trend where the TXV 
successfully controls Tsh.  But in some cases of single-phase and two-phase conditions, the TXV cannot 
change the superheat because it is fully open (zone B).  This condition is known as actuator saturation.   
 
In most cases, TXV saturation occurs when there is two-phase refrigerant upstream; however, actuator 
saturation also occurs at subcooled upstream conditions due to a non-condensable gas fault.  Non-
condensable gas collects on the high pressure side of the system and raises the condensing pressure.  If 
non-condensable gas passes through the TXV or so much non-condensable is present that the discharge 
pressure is forced abnormally high, the TXV can reach its control limits even though the refrigerant is in a 
subcooled state.  In zone B, CdA does not increase with Tsh.  Applying Bernoulli’s orifice equation, 
Equation 5.29, to two-phase flow, underestimates mass flow rate through an expansion valve (Aaron and 
Domanski, 1989).  Considering that CdA is estimated by Equation 5.29 with the homogeneous two-phase 
assumption, CdA values in zone B are located below the horizontal line which represents the maximum 
CdA of zone A. 
 
From Figure 5.11, when the TXV is saturated, CdA is near constant, and the TXV is working like a fixed 
expansion device.  Therefore, the fault characteristics of a system with a TXV should be observed in zone 
A and B, separately.   
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Figure 5.11.  CdA from Equation 5.29 versus Tsh for the selected tests  

 
5.4.3  Building a rule-based chart 
 
Figure 5.12 shows a comparative presentation of the effects of single faults on the seven parameters at test 
condition #5 (TOD = 27.8 °C (82.0 °F), TID = 26.7 °C (80.0 °F), and RHID = 50 %) (as in Table 3.3 of Kim 
et al. 2006).  The standard deviations, σ’s, of the various features are listed in Table 3.3.  Some features 
show clearly increasing or decreasing trends, but some show little change within a standard deviation.   
 
ΔTLL can be a good indicator that shows whether the condenser exit is in two-phase or single-phase.  
However, ΔTLL is not a rapidly changing feature when subcooled refrigerant at the condenser exit flashes 
into two-phase during liquid line migration.  In addition, the degree of ΔTLL highly depends upon ΔTsc 
and ΔPLL.  Thus, a two-phase condition upstream does not always guarantee the TXV being saturated or 
fully open.  This is observed also in Figure 5.11, where Tsh’s in a number of conditions are well controlled 
at Tsc_TXV.up < 0.5 °C.  Thus, ΔTLL is not selected as a feature of the FDD system in this study, though it is 
useful for some typical faults like liquid line restriction.  
 
Based on the bounds defined by the model standard deviations (dashed lines on the figure), rules for each 
feature can be determined as in Table 5.2.  The rule-based chart in Table 5.2 uses three residual indices of 
no-change (–), positive-change ( ), negative-change ( ).  By using the no-change index, the no-fault 
case can also be included in the rule-based chart thus creating a complete FDD algorithm that deals with 
all possible residual states.  Even if a fault case is within the no-fault threshold and is assigned a no-
change value for a particular fault level, as the fault level increases, the residual may move out of the no-
fault threshold bounds.  In such a case, the changed case should be properly adjusted to positive/negative-
change.   
 
This re-assignment of case indices within the rule set for a particular fault occurs during TXV saturation 
as mentioned in Figure 5.8; the rule set was separated into zone A and B.  Note that the residual of Tsh has 
no change in zone A but increases in zone B.  TXV saturation is not observed within the test range for 
compressor valve leakage, improper indoor air flow, or refrigerant overcharge faults.  The rule set for the 
liquid-line restriction fault were all NC indices for zone A.    
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Figure 5.12.  Residuals of seven parameters for different faults. (Test #5: TOD = 27.8 °C (82.0 °F), 
TID = 26.7 °C (80.0 °F), and RHID = 50 %): Residual of (a) TE, (b) Tsh, (c) TD, (d) TC, (e) Tsc, 
(f) ∆TCA, and (g) ∆TEA (Kim et al. 2006) 
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5.4.4  Example FDD module 
 
Appendix A presents screenshots of the FDD modules comprising the entire FDD system.  Figure 5.13 
shows the main interface window of the FDD module developed under this study.  Moving Window 
Module (A.2), Steady-state Detector Module (A.3), Preprocessor Module (A.4), No-fault MPR Reference 
Module (A.5 and A.6), and Statistical Rule-based FDD Module (A.7) are running in the background 
while the main module is running.   
 
In Figure 5.13, sample operation at a 20 % reduced indoor air flow fault is demonstrated.  The moving 
window average is manipulated through the moving window module at the left hand side.  Based on the 
MPR model, feature residuals is calculated and fed into Rule-based FDD Module, which indicates on-
going fault.  In the meanwhile, Preprocessor Module calculates real-time EER, from which EER 
degradation is evaluated.  From the FDD Module, we can see the EER degradation warning is ON and 
improper indoor air flow fault (EF) is properly diagnosed.   
 
 
 EER degradation warning

Reference model 
estimation

Indication of 
evaporator fouling

 
Figure 5.13.  Main interface window of the FDD system indicating an improper indoor air flow fault. 

 
The flow diagram in Fig. 5.14 shows a working algorithm for the FDD system in Figure 5.13.  After a 
steady state is identified, NFSS parameters are calculated using the operating condition as input 
parameters.  When the performance degradation parameter, in this case EER, is over the high limit in the 
fault detection module, the system is regarded to be faulty and the detailed fault status is analyzed in the 
fault diagnostic modules.  In this research, the fault detection alarm is activated when EER is degraded 
more than 3.0 % below the NFSS reference EER value.  Then the appropriate rule-based chart is 
determined based upon whether or not the TXV is in control or out of control.  The TXV status is 
evaluated, as in Figure 5.11, from the degree of subcooling at the TXV upstream (greater than or less than 
0.5 °C).  Based on the rule-based chart and the fault calculation algorithm in sections 5.2 and 5.3, the 
current fault is identified in the fault diagnostic module. 
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Figure 5.14.  Sequential algorithm of the sample FDD system 
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5.5  Performance of the FDD System  
 
5.5.1  Comparative evaluation of fault effects on cooling capacity and EER 
 
For the validation of the FDD algorithm, the experimental data in Kim et al. (2006) were utilized.  The six 
single-fault cases–compressor leakage, improper OD air flow rate, improper ID air flow rate, liquid-line 
restriction, refrigerant undercharge, and refrigerant overcharge–were tested.  Seventeen combinations of 
indoor and outdoor conditions in Table 5.10 were selected as experimental conditions. 
 

Table 5.10.  Operating conditions for FDD tests from Kim et al. (2006) 
Indoor Outdoor Test 

number Dry-bulb temp. 
°C (°F) 

Relative humidity
% 

Dry-bulb temp. 
°C (°F) 

Relative humidity
% 

1* 26.7 (80.0) 51 35.0 (95.0) 40 to 60 
2 21.1 (70.0) 50 21.1 (70.0) 40 to 60 
3 26.7 (80.0) 50 21.1 (70.0) 40 to 60 
4** 21.1 (70.0) 50 27.8 (82.0) 40 to 60 
5** 26.7 (80.0) 50 27.8 (82.0) 40 to 60 
6 21.1 (70.0) 50 32.2 (90.0) 40 to 60 
7 26.7 (80.0) 50 32.2 (90.0) 40 to 60 
8** 21.1 (70.0) 50 37.8 (100.0) 40 to 60 
9** 26.7 (80.0) 50 37.8 (100.0) 40 to 60 
10 21.1 (70.0) dry coil 21.1 (70.0) 40 to 60 
11 26.7 (80.0) dry coil 21.1 (70.0) 40 to 60 
12 21.1 (70.0) dry coil 27.8 (82.0) 40 to 60 
13 26.7 (80.0) dry coil 27.8 (82.0) 40 to 60 
14 21.1 (70.0) dry coil 32.2 (90.0) 40 to 60 
15 26.7 (80.0) dry coil 32.2 (90.0) 40 to 60 
16 21.1 (70.0) dry coil 37.8 (100.0) 40 to 60 
17 26.7 (80.0) dry coil 37.8 (100.0) 40 to 60 
*    ARI Standard 210/240 (2006) rating point 
**  Combination of test conditions selected for fault tests except improper ID air flow rate fault 

 
The test data show to what extent faults effect cooling capacity and EER and at what ambient temperature 
conditions particular faults have the greatest effect.  Cooling loads are proportional to the indoor and 
outdoor temperature difference or temperature lift.  The highest to lowest temperature lift occurs with test 
conditions 8 > 9 > 4 > 5.  Cooling capacity, QER in Figure 5.15(a), is highest to lowest with test condition 
5 > 9 > 4 > 8.  This illustrates that the system produces the highest capacity at the minimum temperature 
lift.  The EER in Figure 5.15(b) is inversely proportional to the temperature lift.  We have seen from our 
testing that the feature residuals will show the most distinctive impact at the high capacity, test #5, 
conditions where the temperature lift is the lowest, and EER is the highest.   
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Figure 5.15.  Variation of system performance under fault-free conditions 

 
Figure 5.16 presents a histogram of estimated fault levels that would cause a 5 % reduction in EER 
relative to the fault-free EER.  The bars marked by an asterisk represent linear extrapolation of fault levels 
to those which would cause a 5 % degradation in EER.  EER is relatively robust with evaporator fouling 
or refrigerant overcharge faults.  For a refrigerant overcharge fault, the fault level is more sensitive at the 
highest temperature lift seen with test #8.  This is because higher operating temperature raises optimum 
refrigerant charge.  Since a high temperature lift adversely effects capacity, EER degradation is more 
sensitive to fault level at a higher capacity (low lift test #5) but less sensitive at a lower capacity (higher 
temperature lift test #8) for all faults except evaporator fouling or refrigerant overcharge.  All faults, 
except the compressor leakage fault, must have a fault level greater than 10 % to produce a 5 % decrease 
in EER.   
 
Figure 5.17 presents estimated EER degradation relative to the fault-free EER at a 10 % level compressor 
fault and a 20 % fault level for the remaining five faults.  With a 20 % improper refrigerant charge, 
undercharge causes more EER degradation than overcharge, especially at the lowest temperature lift 
occurring for test #5.  EER degradation is greater when TID is at 26.7 °C than at 21.1 °C.   
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Figure 5.16.  Estimated single-fault levels for a 5 % degradation in EER at four different operating 

conditions. (‘*’ below the x-axis bars represents linear extrapolation beyond the test 
condition bounds) 
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Figure 5.17.  Estimated EER degradation for a 10 % compressor fault level and a 20 % fault level for the 

remaining faults  
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5.5.2  Example implementation of the FDD system 
 
Performance of the FDD system was verified using the steady-state data in Kim et al. (2006).  The NFSS 
reference model trained through the random operations in Chapter 4 were applied as a base to the FDD 
system.  The considerations of the FDD system in this section are listed as follows. 
 

- EER warning alarm :  3 % EER degradation from the NFSS reference value. 
- NFSS reference model:  The 3rd order multivariate polynomial model. 
- Isolation of diagnosed system status:  The case of the maximum probability more than 3 times of the 

second high probability.  Otherwise, the case regarded as undetermined. 
- Constant s in Equation 5.10:  s = 2.0 

 
Table 5.11 presents diagnostic results of no fault cases using the FDD system built in section 5.4.4.  From 
Table 5.11, no fault cases were well diagnosed by the FDD system.  EER degradations in Table 5.11 is 
not zero even though the cases were set to zero fault level.  This is because the reference EER is 
generated by the NFSS model which had non-zero mean square error for the regression.  
 
 
 

Table 5.11.  FDD results for no fault (NF) cases 
Probability for each case 
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2 NF A 0 -0.26 2.88E-21 8.45E-19 9.73E-14 7.68E-36 1.86E-14 8.34E-14 0.27146 
3 NF A 0 0.05 4.68E-23 3.32E-14 1.15E-10 1.23E-10 8.29E-16 1.07E-04 0.00320 
4 NF A 0 0.19 3.37E-16 4.24E-13 3.81E-12 5.42E-16 8.22E-11 1.32E-07 0.91963 
5 NF A 0 -0.06 1.80E-16 1.55E-14 1.09E-11 2.02E-22 3.61E-10 4.60E-11 0.91433 
6 NF A 0 -1.35 1.28E-16 3.99E-17 2.31E-07 8.93E-16 1.21E-11 8.36E-08 0.69309 
7 NF A 0 0.10 1.90E-29 2.11E-16 2.83E-23 1.63E-40 9.74E-27 4.04E-07 0.08289 
8 NF A 0 -0.06 6.24E-17 4.02E-14 2.22E-11 1.46E-20 1.24E-11 5.36E-09 0.96387 
9 NF A 0 0.04 4.17E-16 6.68E-14 8.62E-11 4.63E-17 7.81E-11 4.09E-08 0.95847 

10 NF A 0 -0.17 8.00E-18 4.16E-14 3.52E-14 1.15E-25 1.40E-10 8.59E-13 0.77679 
11 NF A 0 0.38 3.99E-16 1.94E-13 1.23E-13 5.72E-23 1.51E-10 4.41E-10 0.88323 
12 NF A 0 -0.20 8.08E-18 1.01E-15 3.23E-09 2.00E-17 3.00E-13 1.03E-06 0.89601 
13 NF A 0 -0.28 6.08E-17 1.76E-15 5.61E-11 1.97E-24 1.08E-09 4.98E-13 0.81954 
14 NF A 0 0.10 3.26E-17 6.46E-15 1.96E-10 1.94E-20 3.47E-13 3.81E-08 0.88826 
15 NF A 0 1.06 9.05E-16 7.05E-14 1.96E-15 3.56E-28 1.09E-09 6.52E-13 0.56744 
16 NF A 0 0.42 8.41E-16 1.05E-12 1.63E-13 1.14E-18 6.47E-10 3.15E-09 0.90353 
17 NF A 0 -0.61 2.48E-18 1.77E-15 9.79E-11 3.65E-22 9.61E-13 3.98E-09 0.93935 
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Table 5.12 thru Table 5.17 present detection and diagnostic results for six single faults.  The no-fault 
threshold, ε, confidence level was set at 99 % for all results shown below.  The probability of each fault 
was calculated according to the method outlined in Section 5.2 with Equations 5.12 and 5.17 
implemented according to the rule-chart of Table 5.2 (repeated here for ease of reference).  The 
probability of a given fault was the product of the probabilities of each case as represented in a row of the 
rule-chart, which includes the no-fault or neutral (NC) case.   
 

Table 5.2 (repeated here).  Rule-based fault pattern chart of seven features 
Fault Type zone1 TE Tsh TD TC Tsc ∆TCA ∆TEA

Compressor valve leakage2 
(CMF) A  –      

A  –    –  Improper outdoor air flow 
(CF) B        

Improper indoor air flow2 
(EF) A  – –  –   

A – – – – – – – 
Liquid-line restriction3 (LL)

B        
A – – –     

Refrigerant undercharge (UC)
B        

Refrigerant overcharge2 (OC) A – –    – – 
No-fault – – – – – – – – 

1 Zone A: Tsh < 9 ºC, Zone B: Tsh > 9 ºC 
2 The case of Tsh > 9 ºC was not observed within the fault levels of this study. 
3 The rules when Tsh < 9 ºC were identical with no-fault cases. 
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Table 5.12 shows the performance of the FDD system with a compressor valve leakage fault (CMF) at 
four different fault levels and four different test conditions (#4, #5, #8, and #9) with the TXV in superheat 
zone A as shown in Figure 5.10.  At fault levels greater than 5 %, the FDD system made a correct 
detection and diagnosis.  At fault levels less than 5 %, no-fault (NF) and undercharged fault (UC) were 
incorrectly indicated.  For test condition #4 at a fault level of 2.5 %, EER was degraded by 3.4 % while 
the FDD system indicated NF.  As fault level increased to 5 %, the compressor fault was correctly 
detected and diagnosed while EER degraded by 5.5 %.  For test condition #8, the 2.5 % CMF was not 
detected with an EER degradation of 2.5 %.  For test condition #9, the 2.4 % CMF was incorrectly 
detected and diagnosed as an UC fault while EER was degraded by 1.3 %.   
 

Table 5.12.  FDD results for compressor leakage fault (CMF)  
Probability for each case 
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4 2.5 NF A 1 -3.40 2.52E-08 3.33E-19 1.26E-15 4.15E-19 1.99E-06 1.01E-16 0.0133 
4 5.0 CMF A 1 -5.51 2.05E-05 0 0 0 1.54E-08 0 3.53E-20
4 9.3 CMF A 1 -8.88 0.015091 0 0 0 0 0 0 
4 11.4 CMF A 1 -10.84 0.209672 0 0 0 0 0 0 
             

5 4.0 CMF A 1 -3.20 9.35E-13 0 0 0 3.11E-13 0 1.73E-26
5 6.7 CMF A 1 -5.53 6.12E-12 0 0 0 0 0 0 
5 9.5 CMF A 1 -7.39 3.45E-11 0 0 0 0 0 0 
5 27.2 CMF A 1 -23.03 0.385201 0 0 0 0 0 0 
5 38.2 CMF A 1 -33.50 0.378976 0 0 0 0 0 0 
             

8 2.5 NF A 0 -2.53 1.24E-07 4.38E-21 1.93E-21 2.89E-26 7.21E-05 2.80E-23 0.000226
8 5.5 CMF A 1 -4.95 0.000691 0 0 0 2.35E-11 0 3.76E-33
8 9.0 CMF A 1 -7.92 0.096084 0 0 0 0 0 0 
             

9 2.4 UC A 0 -1.28 3.53E-07 0 1.31E-18 1.08E-23 5.07E-05 0 1.41E-07
9 5.6 CMF A 1 -3.89 1.61E-05 0 0 0 8.79E-07 0 0 
9 8.9 CMF A 1 -7.06 0.071916 0 0 0 0 0 0 
9 11.5 CMF A 1 -9.25 0.113017 0 0 0 0 0 0 
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Table 5.13 shows the performance of the FDD system with an improper outdoor air flow fault (CF) with 
the TXV in superheat zones A and B.  At fault levels near 20 %, the correct detection and diagnosis was 
made.  At fault levels less than 20 %, no-fault (NF) and compressor leakage fault (CMF) were incorrectly 
indicated, but the EER degradation was less than 3 % for these cases.  For test condition #4 at a fault level 
of 10 %, EER was degraded by 1.9 % while the FDD system indicated NF.  As fault level increased to 
20 %, the compressor fault was correctly detected and diagnosed while EER degraded by 5.7 %.  For test 
condition #5, the CF was not diagnosed at fault levels of 5 % and 10 % with an EER degradation of 0.4 % 
and 1.6 %, respectively.  For test condition #8, the CF was incorrectly diagnosed as a CMF fault while 
EER was degraded by 0.9 %.  
  

Table 5.13  FDD results for lowered outdoor air flow fault (CF) 
Probability for each case 
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4 10 NF A 0 -1.86 4.35E-24 6.75E-10 9.80E-20 3.08E-24 1.23E-19 0.000165 0.07567 
4 20 CF A 1 -5.68 0 0.288118 0 0 0 0 0 
4 35 CF A 1 -9.82 0 3.35E-07 0 0 0 0 0 
             

5 5 NF A 0 -0.43 2.14E-23 9.73E-13 6.64E-18 1.26E-27 5.00E-19 6.99E-06 0.659723
5 10 CMF A 0 -1.61 0 3.70E-09 0 0 0 9.90E-05 0.000196
5 20 CF B 1 -5.95 0 2.72E-05 0 0 0 0 0 
5 35 CF B 1 -16.54 0 0.999999 0 0 0 0 0 
5 50 CF B 1 -36.88 0 1 0 0 0 0 0 
             

8 10 CMF B 0 -0.93 1.26E-28 1.85E-07 1.24E-28 6.85E-37 2.30E-26 1.75E-06 0.013527
8 20 CF B 1 -5.23 0 2.82E-01 0 0 0 0 0 
8 35 CF B 1 -12.19 0 0.000877 0 0 0 0 0 
             

9 5 CMF B 0 -0.71 1.41E-33 3.32E-19 2.85E-19 3.54E-24 9.69E-28 0.062688 0.063006
9 10 NF B 0 -1.51 0 1.24E-10 0 0 0 0.006799 4.12E-06
9 20 CF B 1 -5.66 0 0.264652 0 0 0 0 0 
9 35 CF B 1 -11.91 0 0.005673 0 0 0 0 0 
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Table 5.14 shows the fault detection and diagnosis performance of the FDD algorithm for a lowered 
indoor air flow rate.  Note that even with a more than 30 % reduction in indoor air flow, the EER 
decreased by less than 10 %.  The dry-coil test #13 showed the largest decrease in EER.  For test 
conditions #5 and #9, a NF was indicated with an approximately 6 % decrease in indoor air flow rate, 
while EER was negligibly effected.  Otherwise, the FDD algorithm performed very.   
 

Table 5.14.  FDD results for lowered indoor air flow fault (EF) 
Probability for each case 
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4 13.0 EF A 0 -1.79 0 0 0.779818 0 0 2.59E-48 5.42E-35
4 22.5 EF A 0 -2.45 0 0 0.751554 0 0 0 0 
4 31.4 EF A 1 -3.77 0 0 0.305285 0 0 0 0 
             

5 5.9 NF A 0 -0.18 0 0 1.27E-07 0 0 3.67E-11 0.000678
5 11.0 EF A 0 -0.67 0 0 0.000713 0 0 9.98E-24 6.04E-16
5 20.7 EF A 0 -1.39 0 0 0.710153 0 0 0 0 
5 30.8 EF A 0 -2.73 0 0 0.210412 0 0 0 0 
             

8 11.8 EF A 0 -0.99 0 0 1.99E-05 0 0 7.79E-23 2.32E-19
8 21.1 EF A 0 -1.59 0 0 0.010518 0 0 0 0 
8 33.1 EF A 1 -3.50 0 0 2.88E-06 0 0 0 0 
             

9 5.7 NF A 0 -0.42 4.76E-35 1.08E-34 0.000371 1.22E-19 7.64E-22 7.61E-08 0.003588
9 10.6 EF A 0 -0.65 0 0 0.026696 0 0 4.75E-20 8.03E-14
9 20.9 EF A 0 -0.62 0 0 0.957496 0 0 0 0 
9 30.5 EF A 0 -1.73 0 0 0.079909 0 0 0 0 
             

12 14.3 EF A 0 -2.49 0 0 0.674034 0 0 0 0 
12 24.1 EF A 1 -4.43 0 0 0.039897 0 0 0 0 
12 34.6 EF A 1 -6.70 0 0 1.56E-07 0 0 0 0 

             
13 6.1 EF A 0 -0.80 0 0 0.034282 0 0 2.80E-38 6.88E-20
13 11.0 EF A 0 -1.57 0 0 0.208393 0 0 0 0 
13 21.1 EF A 1 -4.08 0 0 0.147573 0 0 0 0 
13 30.9 EF A 1 -7.63 0 0 8.77E-05 0 0 0 0 
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Table 5.15 shows the performance of the FDD algorithm with a liquid line restriction fault imposed.  A 
large LL fault level was needed before EER degradation exceeded 3 %.  At fault levels where the EER 
degradation exceeded 3 %, the fault was correctly diagnosed.  At EER degradations lower than 3 %, the 
LL fault tended to be diagnosed as NF.   
 

Table 5.15.  FDD results for liquid-line restriction fault (LL) 
Probability for each case 
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4 3.7 NF A 0 -1.48 9.18E-21 2.44E-16 1.24E-10 2.36E-14 2.01E-14 4.62E-05 0.665639
4 7.0 NF A 0 -1.08 5.15E-16 2.28E-13 2.17E-11 3.17E-14 9.68E-11 2.23E-07 0.777571
4 12.5 NF A 0 -0.94 4.24E-16 9.84E-15 1.78E-15 2.29E-12 4.38E-10 3.68E-10 0.123811
4 19.0 LL B 0 -1.24 0 3.47E-16 5.20E-49 2.96E-08 4.08E-18 1.23E-21 1.26E-36
             

5 5.3 NF A 0 -0.22 1.69E-19 6.68E-14 4.72E-14 1.06E-25 4.79E-16 1.28E-07 0.793808
5 10.4 NF B 0 -0.21 5.81E-16 9.50E-12 2.13E-09 7.25E-09 2.29E-07 8.36E-11 0.055037
5 20.2 LL B 1 -5.89 0 0 0 0.996187 0 0 0 
5 31.9 LL B 1 -24.43 0 0 0 1 0 0 0 
             

8 4.4 NF A 0 -0.22 1.33E-24 3.14E-15 1.35E-14 1.25E-20 1.32E-18 0.000209 0.607407
8 8.8 NF A 0 0.34 1.98E-22 2.77E-13 4.07E-15 5.14E-24 3.18E-18 3.83E-06 0.717091
8 13.3 NF A 0 0.22 1.05E-28 2.16E-15 5.06E-18 5.77E-24 1.86E-25 0.017534 0.175031
             

9 7.1 NF A 0 0.35 2.65E-11 2.32E-15 1.49E-08 9.25E-15 1.24E-05 3.57E-14 0.557706
9 13.3 NF A 0 0.21 5.64E-20 2.36E-15 1.57E-15 5.67E-13 6.70E-16 4.61E-08 4.63E-05
9 20.0 LL B 0 -0.44 0 0 0 0.002216 0 0 0 
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Table 5.16 shows that the FDD algorithm correctly diagnosed the undercharged refrigerant fault at all 
fault levels presented for both TXV zones A and B as seen in Figure 5.10.  This is very promising due to 
the common occurrence of this fault.   
 

Table 5.16.  FDD results for refrigerant undercharge fault (UC) 
Probability for each case 
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4 10 UC A 0 -2.87 7.03E-08 0 0 0 0.099239 0 0 
4 20 UC B 1 -3.56 0 0 0 0 0.999967 0 0 
4 30 UC B 1 -68.81 0 0 0 0 1 0 0 
             

5 10 UC B 0 -2.95 0 0 0 0 0.999208 0 0 
5 20 UC B 1 -7.25 0 0 0 0 1 0 0 
5 30 UC B 1 -20.14 0 0 0 0 1 0 0 
             

8 10 UC A 0 -2.36 6.75E-15 0 0 0 0.011534 0 0 
8 20 UC A 1 -4.09 8.54E-17 0 0 0 0.001896 0 0 
8 30 UC B 1 -9.45 0 0 0 0 1 0 0 
             

9 10 UC B 0 -0.87 3.61E-17 0 0 0 0.005703 0 0 
9 20 UC B 1 -6.06 0 0 0 0 1 0 0 
9 30 UC B 1 -15.79 0 0 0 0 1 0 0 
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Table 5.17 shows the performance of the FDD algorithm for an overcharged refrigerant fault.  In all cases 
the fault was correctly diagnosed, even when the EER degradation was below 3 %.   
 

Table 5.17.  FDD results for refrigerant overcharge fault (OC) 
Probability for each case 
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4 10 OC A 0 -0.95 0 0 0 0 0 0.176407 0 
4 20 OC A 0 -1.89 0 0 0 0 0 0.854211 0 
4 30 OC A 1 -3.41 0 0 0 0 0 0.696819 0 
             

5 10 OC A 0 1.14 0 0 0 0 0 0.002974 1.30E-19
5 20 OC A 0 -0.10 0 0 0 0 0 0.646483 0 
5 30 OC A 0 -2.84 0 0 0 0 0 0.015035 0 
             

8 10 OC A 0 -0.92 0 0 0 0 0 0.214176 0 
8 20 OC A 0 -2.21 0 0 0 0 0 0.051813 0 
8 30 OC A 1 -3.71 0 0 0 0 0 0.002555 0 
             

9 10 OC A 0 0.90 0 0 0 0 0 0.00027 1.11E-20
9 20 OC A 0 -0.21 0 0 0 0 0 0.142298 0 
9 30 OC A 0 -2.32 0 0 0 0 0 0.029946 0 

 
The FDD algorithm correctly diagnosed all faults causing an EER degradation of more than 3.5 %.  
Misdiagnosed faults occurred under the conditions noted in Table 5.17 at a maximum EER degradation of 
3.4 %.   
 
The liquid line restriction fault produced the highest number of misdiagnosed faults, but these faults 
occurred with a 1.5 % or less degradation in EER.  Liquid line restriction was consistently misdiagnosed 
as a NF (no-fault) even at fault levels as high as 13 %.  Even at this fault level, the liquid line fault was 
not degrading system EER.  EER was relatively insensitive to this fault at the fault levels and test 
conditions of this study.   
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Table 5.18.  Misdiagnosed faults 
Single-Fault 

Imposed 
Indoor to Outdoor 

Temperature Lift (ºC) Fault Level (%) Fault Indicated EER degradation (%) 

CMF 6.7 2.5 NF 3.4 
CMF 16.7 2.5 NF 2.5 
CMF 11.1 2.4 UC 1.3 
CF 6.7 10 NF 1.9 
CF 1.1 5 NF 0.4 
CF 1.1 10 CMF 1.6 
CF 16.7 10 CMF 0.9 
CF 11.1 5 CMF 0.7 
CF 11.1 10 NF 1.5 
EF 1.1 5.9 NF 0.2 
EF 11.1 5.7 NF 0.4 
LL 6.7 3.7 NF 1.5 
LL 6.7 7.0 NF 1.1 
LL 6.7 12.5 NF 0.9 
LL 1.1 5.3 NF 0.2 
LL 1.1 10.4 NF 0.2 
LL 16.7 4.4 NF 0.2 
LL 16.7 8.8 NF 0.0 
LL 11.1 7.1 NF 0.0 
LL 11.1 13.3 NF 0.0 
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CHAPTER 6.  CONCLUDING REMARKS 
 
Single-fault test data for an R410A residential unitary split heat pump tested by Kim et al. (2006) in the 
cooling mode was used to develop an FDD algorithm.  This heat pump was equipped with a TXV for the 
cooling mode expansion device; the TXV tried to maintain evaporator exit superheat even though a fault 
was occurring.  This added level of control meant that faults occurring when the TXV was within its 
operational range (Zone A in Figure 5.10) or outside of its operational range (Zone B) had to be treated 
differently.  The response of system temperatures to these single-faults was monitored, and their changes 
during faulty operation formed the basis for the FDD algorithm.   
 
The steady-state detector, SSD, acted as a filter of the dependent variables (features).  The SSD was based 
upon a moving window in the which standard deviation of every feature used by the FDD algorithm must 
fall below a threshold value before the system is defined as steady-state.  The feature standard deviation 
thresholds were based upon no-fault steady state standard deviations multiplied by a factor of three.  The 
sampling rate and size of the moving window were determined by transient (start-up) tests of the no-fault 
system.   
 
Once a SSD was developed, a steady-state reference model was formulated.  Two different types of 
feature-correlating models were considered; a multi-variate polynomial regression (MPR) and an artificial 
neural network (ANN).  The 3rd order MPR model produced a better fit than the ANN and was further 
employed in the FDD system.  The 3rd order MPR model was exposed to an F-test to illustrate how the 
number of coefficients could be reduced to produce a more compact correlation.   
 
Once the no-fault reference model was developed, the cooling mode heat pump’s features (temperatures) 
could be compared to their reference model counterparts and residual values calculated.  These residuals 
were positive, negative or neutral with respect to their no-fault values.  A feature’s neutrality was defined 
by how far its residual was from zero.  A feature’s neutrality threshold was defined by three sources of 
uncertainty; measurement uncertainty, lack of measurement repeatability, and modeling uncertainty.  
Each of these uncertainty terms was multiplied by a coverage factor to ensure the desired confidence level, 
and then a square rooted sum of squares was taken to represent the total uncertainty or neutral threshold 
value for each feature.  A rule-based chart was then generated by noting that certain faults produced a 
certain arrangement of positive, negative, or neutral residuals within the FDD feature set.  Also, the 
probability of a residual being positive, negative, or neutral was calculated allowing for the determination 
of a fault probability relative to a no-fault probability.  When the fault probability was greater than the no-
fault probability, a fault was diagnosed in the system.   
 
The person implementing this FDD method should be aware of the following points: 
 

1. When this FDD algorithm is applied to a real system, some method of determining when 
to notify the homeowner or responsible authority must be implemented.  A fixed 
percentage degradation in EER can be selected as the notification impetus.  Calculating 
EER using compressor maps and measured temperatures proved to be very effective due 
to the accurate compressor maps for the tested system.   

2. Using only temperatures is not the preferred method for determining the suction and 
discharge refrigerant saturation temperatures needed by the power and mass flow 
compressor map equations.  A more accurate FDD system would include suction and 
discharge pressure transducers to provide input to the compressor map equations and 
allow more accurate superheat and subcooling calculations.   
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3. Other implementations could choose some parameter other than EER as a notification 
impetus, or the fault level itself could be correlated and used.   

 
Future work should focus on developing a complete FDD module for a residential heat pump/AC system 
that is “self training.”  Adaptable FDD algorithms are necessary for split, field-installed heat pump 
systems because each installation is unique.  A rigid FDD algorithm will not perform correctly under all 
installation conditions; therefore, a method for evolving the reference model for newly installed systems 
must be developed.   
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APPENDIX A.  FDD MODULES 
This appendix presents individual windows of the FDD system developed and implemented on the split 
residential system used in this study.  

A.1  Main Module 
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A.2  Moving Window Module 
 

 
 
A.3  Steady-State Detector Module 
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A.4  Preprocessor Module 
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A.5  Reference Model Correlation Interface 
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A.6  No-Fault MPR Reference Module 
 

 
 
A.7  Statistical Rule-Based FDD Module 
 

 


