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Dedication

This handbook is dedicated to the memory of Dr. James A. Barnes (1933-2002), a pioneer in the statistics of

frequency standards.

James A. Barnes was born in 1933 in Denver, Colorado. He received a Bachelor's degree in engineering physics from

the University of Colorado, a Masters degree from Stanford University, and in 1966 a Ph.D. in physics from the

University of Colorado. Jim also received an MBA from the University of Denver.

After graduating from Stanford, Jim joined the National Institute of Standards, now the National Institute of Standards

and Technology (NIST). Jim was the first Chief of the Time and Frequency Division when it was created in 1967 and

set the direction for this division in his 15 years of leadership. During his tenure at NIST Jim made many significant

contributions to the development of statistical tools for clocks and frequency standards. Also, three primary frequency

standards (NBS 4, 5, and 6) were developed under his leadership. While he was division chief, closed-captioning was

developed (which received an Emmy award) and the speed of light was measured. Jim received the NBS Silver Medal

in 1965 and the Gold Medal in 1975. In 1992, Jim received the I.I. Rabi Award from the IEEE Frequency Control

Symposium "for contributions and leadership in the development of the statistical theory, simulation and practical

understanding of clock noise, and the application of this understanding to the characterization of precision oscillators

and atomic clocks." In 1995, he received the Distinguished PTTI Service Award. Jim was a Fellow of the IEEE. After

retiring from NIST in 1982, Jim worked for Austron.

Jim Barnes died Sunday, January 13, 2002, in Boulder, Colorado after a long struggle with Parkinson's disease. He
was survived by a brother, three children, and two grandchildren.

Note: This biography is published with permission and taken from his memoriam on the UFFC web site at:

http://www.ieee-uffc.org/fcmain.asp?page=barnes.
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Preface

I have had the great privilege of working in the time and frequency field over the span of my career. I have seen

atomic frequency standards shrink from racks of equipment to chip scale, and be manufactured by the tens of

thousands, while primary standards and the time dissemination networks that support them have improved by several

orders of magnitude. During the same period, significant advances have been made in our ability to measure and

analyze the performance of those devices. This Handbook summarizes the techniques of frequency stability analysis,

bringing together material that I hope will be useful to the scientists and engineers working in this field.

I acknowledge the contributions of many colleagues in the Time and Frequency community who have contributed the

analytical tools that are so vital to this field. In particular, I wish to recognize the seminal work of J. A. Barnes and

D.W. Allan in establishing the fundamentals at NBS, and D.A. Howe in carrying on that tradition today at NIST.

Together with such people as M.A. Weiss and C.A. Greenhall, the techniques of frequency stability analysis have

advanced greatly during the last 45 years, supporting the orders-of-magnitude progress made on frequency standards

and time dissemination.

I especially thank David Howe and the other members of the NIST Time and Frequency Division for their support,

encouragement, and review of this Handbook.
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1 Introduction

This handbook describes practical techniques for frequency stability analysis. It covers the definitions of frequency

stability , measuring systems and data formats, pre-processing steps, analysis tools and methods, post-processing steps,

and reporting suggestions. Examples are included for many of these techniques. Some of the examples use the

Stable32 program [1], which is a tool for studying and performing frequency stability analyses. Two general

references [2,3] for this subject are also given.

This handbook can be used both as a tutorial and as a reference. If this is your first exposure to this field, you may
find it helpful to scan the sections to gain some perspective regarding frequency stability analysis. I strongly

recommend consulting the references as part of your study of this subject matter. The emphasis is on time domain

stability analysis, where specialized statistical variances have been developed to characterize clock noise as a function

of averaging time. I present methods to perform those calculations, identify noise types, and determine confidence

limits. It is often important to separate deterministic factors such as aging and environmental sensitivity from the

stochastic noise processes. One must always be aware of the possibility of outliers and other measurement problems

that can contaminate the data.

Suggested analysis procedures are recommended to gather data, preprocess it, analyze stability, and report results.

Throughout these analyses, it is worthwhile to remember R.W. Hamming's axiom that "'the purpose of computing is

insight, not numbers." Analysts should feel free to use their intuition and experiment with different methods that can

provide a deeper understanding.

References for Introduction

1. The Stable32 Program for Frequency Stability Analysis, Hamilton Technical Services, Beaufort, SC
29907, http://www.wriley.com.

2. D.B Sullivan, D.W Allan, D.A Howe, and F.L Walls, eds., "Characterization of clocks and oscillators,"

Natl. Inst. Stand. Technol. Technical Note 1337,

http://tf.nist.gov/timefreq/general/pdf/868.pdf (March 1990).

3. D.A. Howe, D.W. Allan, and J. A. Barnes, "Properties of signal sources and measurement methods," Proc.

35th Freq. Cont. Symp., pp. 1-47,

http://tfnist.gov/timefreq/general/pdf/554.pdf (May 1981).
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2 Frequency Stability Analysis

The time domain stability analysis of a frequency source is concerned with characterizing the variables x(t) and y(t)

the phase (expressed in units of time error) and the fractional frequency, respectively. It

is accomplished with an array of phase arrays x, and frequency data arrays y„ where the

index i refers to data points equally spaced in time. The x, values have units of time in

seconds, and the y, values are (dimensionless) fractional frequency, Af/f The x(t) time

fluctuations are related to the phase fluctuations by <^ (t) = x(t)-27i:vo, where vq is the

nominal carrier frequency in hertz. Both are commonly called "phase" to distinguish

them from the independent time variable, t. The data sampling or measurement

interval, Tq, has units of seconds. The analysis interval or period, loosely called

''averaging time", t, may be a multiple of Xg (t = mx^, where m is the averaging factor).

The objective of a

frequency stability analysis

is to characterize the phase

and frequency fluctuations

of a frequency source in

the time and frequency

domains.

The goal of a time domain stability analysis is a concise, yet complete, quantitative and standardized description of

the phase and frequency of the source, including their nominal values, the fluctuations of those values, and their

dependence on time and environmental conditions.

A frequency stability analysis is normally performed on a single device, not on a population of devices. The output of

the device is generally assumed to exist indefinitely before and after the particular data set was measured, which is the

(finite) population under analysis. A stability analysis may be concerned with both the stochastic (noise) and

deterministic (systematic) properties of the device under test. It is also generally assumed that the stochastic

characteristics of the device are constant (both stationary over time and ergodic over their population). The analysis

may show that this is not true, in which case the data record may have to be partitioned to obtain meaningful results. It

is often best to characterize and remove deterministic factors (e.g., frequency drift and temperature sensitivity) before

analyzing the noise. Environmental effects are often best handled by eliminating them from the test conditions. It is

also assumed that the frequency reference instability and instrumental effects are either negligible or removed from

the data. A common problem for time domain frequency stability analysis is to produce results at the longest possible

analysis interval in order to minimize test time and cost. Computation time is generally not as much a factor.

2.1 Background

The field of modem frequency stability analysis began in the mid 1960's with the emergence of improved analytical

and measurement techniques. In particular, new statistics became available that were better suited for common clock

noises than the classic N-sample variance, and better methods were developed for high resolution measurements (e.g.,

heterodyne period measurements with electronic counters, and low noise phase noise measurements with double-

balanced diode mixers). A seminal conference on short-term stability in 1964 [1], and the introduction of the two-

sample (Allan) variance in 1966 [2] marked the beginning of this new era, which was summarized in a special issue of

the Proceedings of the IEEE in 1966 [3]. This period also marked the introduction of commercial atomic frequency

standards, increased emphasis on low phase noise, and the use of the LORAN radio navigation system for global

precise time and frequency transfer. The subsequent advances in the performance of frequency sources depended

largely on the improved ability to measure and analyze their stability. These advances also mean that the field of

frequency stability analysis has become more complex. It is the goal of this handbook to help the analyst deal with

this complexity.

An example of the progress that has been made in frequency stability analysis from the original Allan variance in

1966 through Theol in 2003 is shown in the plots below. The error bars show the improvement in statistical

confidence for the same data set, while the extension to longer averaging time provides better long-term clock

characterization without the time and expense of a longer data record.
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Figure 1. Progress in frequency stability analysis, (a) Original Allan, (b) Overlapping Allan, (c) Total, (d) Theol. (e)

Overlapping and Theol.
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This handbook includes detailed information about these (and other) stability measures.

References for Frequency Stability Analysis

1. Proc. of the IEEE-NASA Symposium on the Definition and Measurement of Short-Term Frequency

Stability, NASA SP-80, (Nov. 1964).

2. D.W. Allan, "The Statistics of Atomic Frequency Standards," Proc. IEEE, 54(2): 221-230(Feb. 1966).

3. Special Issue on Frequency Stability, Proc. IEEE, 54(2)(Feb. 1966).
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3 Definitions and Terminology

Specialized definitions and

terminology are used for

frequency stability

analysis.

The field of frequency stability analysis, like most others, has its own specialized

definitions and terminology. The basis of a time domain stability analysis is an array

of equally spaced phase (really time error) or fractional frequency deviation data

arrays, x, and v„ respectively, where the index / refers to data points in time. These

data are equivalent, and conversions between them are possible. The x values have

units of time in seconds, and the v values are (dimensionless) fractional frequency, Af/f. The x(t) time fluctuations are

related to the phase fluctuations by 4>(t) = x(t) Itivo, where i',;is the carrier frequency in hertz. Both are commonly

called "phase" to distinguish them from the independent time variable, /. The data sampling or measurement interval.

To, has units of seconds. The analysis or averaging time, r, may be a multiple of r,;(r = wr^, where m is the averaging

factor). Phase noise is fiindamental to a frequency stability analysis, and the type and magnitude of the noise, along

with other factors such as aging and environmental sensitivity, determine the stability of the frequency source.

3.1. Noise Model

A frequency source has a sine wave output signal given by [1]

V{t) = [V, + £(t)] sm[27rv,t +m] , (

D

where Vq = nominal peak output voltage

£ftj = amplitude deviation

Vq = nominal frequency

(pOj = phase deviation.

For the analysis of frequency stability, we are concerned primarily with the ^(t) term. The instantaneous frequency is

the derivative of the total phase:

KO = Vo+— (2)
ZTT at

For precision oscillators, we define the fractional frequency as

, , Af v{t)-Vr, 1 d(/> dx

/ Vq IttVq dt dt

where

x{t)^m^27rv,. (4)

3.2. Power Law Noise

It has been found that the instability of most frequency sources can be modeled by a combination of power-law noises

having a spectral density of their fractional frequency fluctuations of the form Sy(/) ocf, where /is the Fourier or

sideband frequency in hertz, and a is the power law exponent.

Noise Type a
White PM (W PM) 2

Flicker PM (F PM) 1

White FM (W FM) 0

Flicker FM (F FM) -1

Random Walk FM (RW FM) -2

5



Flicker Walk FM (FW FM)
Random Run FM (RR FM)

-3

-4

Examples of the four most common of these noises are shown in Table 1.

Table 1. Examples of the four most common noise types.

POWER LAW NOISE SPECTRA
WHITE N0I9£ fs FLICKER NOISE t"

HAWKJM WALK HCBSE 1-2 FUCKER WALK NOISE H

1 I

!

1-

3.3. Stability Measures

The standard measures for frequency stability in the time and frequency domains are the overlapped Allan deviation,

ay(i), and the SSB phase noise, £(f), as described in more detail later in this handbook.

3.4. Differenced and Integrated Noise

Taking the differences between adjacent data points plays an important role in frequency stability analysis for

performing phase to frequency data conversion, calculating Allan (and related) variances, and doing noise

identification using the lag 1 autocorrelation method [2]. Phase data .Yf/) may be converted to fractional frequency

data. y(t) by taking the first differences x,. /- x, of the phase data and dividing by the sampling interval r. The Allan

variance is based on the first differences y,./ - y, of the fractional frequency data or, equivalently, the second

differences y,^]- 2y,^ i
+ y, of the phase data. Similarly, the Hadamard variance is based on third differences Xr^s -

3x,+2 + 3x,. i-x, of the phase data.

Taking the first differences of a data set has the effect of making it less divergent. In terms of its spectral density, the

a value is increased by 2. For example, flicker FM data (a = -1) is changed into flicker PM data (a = +1). That is

the reason that the Hadamard variance is able to handle more divergent noise types (a > -4) than the Allan variance

(a > -2) can. It is also the basis of the lag 1 autocorrelation noise identification method whereby first differences are

taken until a becomes >0.5. The plots below show random run noise differenced first to random walk noise and again

to white noise.
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Random Rui Random VUak Noise

(a) Original random run (RR)

noise

1 1 1

L 1

400 600

(b) Differenced RR noise =

random walk (RW) noise

BOO 1000

(c) Differenced RW noise =

white (W) noise

Figure 2. (a) Random run noise, difference to (b) random walk noise

and (c) white noise.

The more divergent noise types are sometimes referred to by their color. White noise has a flat spectral density (by

analogy to white light). Flicker noise has an f ' spectral density, and is called pink or red (more energy toward lower

frequencies). Continuing the analogy, f" (random walk) noise is called brown, and f' (flicker walk) noise is called

black, although that terminology is seldom used in the field of frequency stability analysis.

Integration is the inverse operation of differencing. Numerically integrating frequency data converts it into phase data

(with an arbitrary initial value). Such integration subtracts 2 from the original a value. For example, the random run

data in Figure 2(a) was generated by simulating random walk FM data and converting it to phase data by numerical

integration.

3.5. Glossary

See the Glossary chapter at the end of this handbook for brief defmitions of many of the important terms used in the

field of frequency stability analysis.

References for Definitions and Terminology

1. "IEEE Standard Defmitions of Physical Quantities for Fundamental Frequency and Time

Metrology-Random instabilities,'' IEEE Std. 11 39 (July 1999).

2. W.J. Riley and C.A. Greenhall, "Power law noise identification using the lag 1 autocorrelation," Proc. 18th

European Frequency and Time Forum, University of Surrey, Guildford, U.K. (April 5-7, 2004).
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4 Standards

Standards have been adopted for the measurement and characterization of frequency stability,

as shown in the references below [1-5]. These standards define terminology, measurement

methods, means for characterization and specification, etc. In particular, IEEE-Std-1 1 39

contains definitions, recommendations, and examples for the characterization of frequency

stability.

References for Standards

1. "Characterization of frequency and phase noise, Intl. Consult. Comm. (C.C.I.R.), Report 580," pp. 142-150

(1986).

2. MIL-PRF-553 1 0, "Oscillator, crystal controlled, general specification for (2006)."

3. R.L. Sydnor, ed., "The selection and use of precise frequency systems," ITU-R Handbook (1995).

4. "Guide to the expression of uncertainty in measurement," Intl. Stand. Org. (ISO), ISBN 92-67-10188-9

(1995).

5. "IEEE standard definitions of physical quantities for fundamental frequency and time metrology-Random

instabilities," IEEE Std. 1 139 (July 1999).

Several standards

apply to the field of

frequency stability

analysis.
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5 Time Domain Stability

The stability of a frequency source in the time domain is based on the statistics of its

phase or frequency fluctuations as a function of time, a form of time series analysis [1].

This analysis generally uses some type of variance, a second moment measure of the

fluctuations. For many divergent noise types commonly associated with frequency

sources, the standard variance, which is based on the variations around the average

value, is not convergent, and other variances have been developed that provide a better

characterization of such devices. A key aspect of such a characterization is the dependence of the variance on the

averaging time used to make the measurement, which dependence shows the properties of the noise.

Time domain stability

measures are based on

the statistics of the phase

or frequency fluctuations

as a function of time.

5.1 Sigma-Tau Plots

The most common way to express the time domain stability of a frequency source is by means of a sigma-tau plot that

shows some measure of frequency stability versus the time over which the frequency is averaged. Log sigma versus

log tau plots show the dependence of stability on averaging time, and show both the stability value and the type of

noise. The power law noises have particular slopes, p, as shown on the following log a versus log x plots, and a and

p are related as shown in the table below:

Noise

W PM 2 -2

F PM 1 ~-2

W FM 0 -1

F FM -1 0

RW FM _2 1

The log a versus log i slopes are the same for the two PM noise types, but are different on a Mod sigma plot, which is

often used to distinguish between them.
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Sigma Tau Diagram
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Figure 3. (a) Sigma tau diagram, (b) Mod sigma tau diagram.

5.2 Variances

Variances are used to characterize the fluctuations of a frequency source [2-3]. These are second-moment measures

of scatter, much as the standard variance is used to quantify the variations in, say, the length of rods around a nominal

value. The variations from the mean are squared, summed, and divided by one less than the number of measurements;

this number is called the "degrees of freedom."

Several statistical variances are available to the frequency stability analyst, and this section provides an overview of

them, with more details to follow. The Allan variance is the most common time domain measure of frequency

stability, and there are several versions of it that provide better statistical confidence, can distinguish between white

and flicker phase noise, and can describe time stability. The Hadamard variance can better handle frequency drift and

more divergence noise types, and several versions of it are also available. The newer Total and Theol variances can

provide better confidence at longer averaging factors.

There are two categories of stability variances: unmodified variances, which use d'*' differences of phase samples, and

modified variances, which use d*^ differences of averaged phase samples. The Allan variances correspond to d = 2,

and the Hadamard variances to d = 3. The corresponding variances are defined as a scaling factor times the expected

value of the differences squared. One obtains unbiased estimates of this variance from available phase data by

computing time averages of the differences squared. The usual choices for the increment between estimates (the time
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step) are the sample period tq and the analysis period t, a multiple of Tq. These give respectively the overlapped

estimator and non-overlapped estimators of the stability.

Variance Type

Standard

Allan

Overlapping Allan

Modified Allan

Time

Hadamard

Overlapping Hadamard

Total

Modified Total

Time Total

Hadamard Total

Theol

TheoH

Characteristics

Non-convergent for some clock noises - don't use

Classic - use only if required - relatively poor confidence

General purpose - most widely used - first choice

Used to distinguish W and F PM
Based on modified Allan variance

Rejects frequency drift, and handles divergent noise

Better confidence than normal Hadamard

Better confidence at long averages for Allan

Better confidence at long averages for modified Allan

Better confidence at long averages for time

Better confidence at long averages for Hadamard

Provides information over nearly full record length

Hybrid of Allan and TheoBR (bias-removed Theol) variances

• All are second moment measures of dispersion - scatter or instability of frequency from central value.

• All are usually expressed as deviations.

• All are normalized to standard variance for white FM noise.

• All except standard variance converge for common clock noises.

• Modified types have additional phase averaging that can distinguish W and F PM noises.

• Time variances based on modified types.

• Hadamard ty pes also converge for FW and RR FM noise.

• Overlapping ty pes provide better confidence than classic Allan variance.

• Total types provide better confidence than corresponding overlapping types.

• TheoH (hybrid-TheoBR) and Theol (Theoretical Variance #1) provide stability data out to 75 % of record

length.

• Some are quite computationally intensive, especially if results are wanted at all (or many) analysis intervals

(averaging times), t. Use octave or decade z intervals.

The modified Allan deviation (MDEV) can be used to distinguish between white and flicker PM noise. For example,

the W and F PM noise slopes are both « 1.0 on the Allan Deviation (ADEV) plots in Figure 4, but they can be

distinguished as -1 .5 and -1 .0, respectively, on the MDEV plots.
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ADEV

FREQUENCY STABILITY
Simulated W PM Notea oa)=le-ll

S.gmo

1 9 51e- 2

2 5.08e- 12

2,43e- 12

8 1.26e- 2

16 6.17e- 3
32 3.00e- 13

54 1 54e- 3
128 7.75e-

Averaging Timej^ t,^ Seconds

(a)

MDEV

FREQUENCY STABILITY
Simulated W PM Molse a(l)=le-ll

10" J \0' ;

Avera^n^ Time, j. Seconds

(C)

FREQUENCY STABILITY
Simuiatsd F PM Noise aa)=l&-ll

Averaging^
T^,SLti.

"t.^Seconds

(b)

FREQUENCY STABILITY
Simulated F PM Noisa <i(l)=lo-ll

10^ I 10^ :

Avera^ng Timej, x.^Seconds

(d)

Figure 4. (a) Slope ofW PM using Adev, (b) slope of F PM using ADEV, (c) slope ofW PM using MDEV, and (d) slope of

F PM using MDEV.

The Hadamard deviation may be used to reject linear frequency drift when a stability analysis is performed. For

example, the simulated frequency data for a rubidium frequency standard in Figure 5(a) shows significant drift. Allan

deviation plots for these data are shown in Figure 5(c) and (d) for the original and drift-removed data. Notice that,

without drift removal, the Allan deviation plot has a +i dependence at long i, a sign of linear frequency drift.

However, as seen in Figure 5(b), the Hadamard deviation for the original data is nearly the same as the Allan

deviation after drift removal, but it has lower confidence for a given x.
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FREQUENCY DATA
simulated RFS Oala

10.0 12J 15.0 17J 20.0 22.5 25.0 27.5 30.0

Time, Days

(a)

FREQUENCY STABILITY
Simulated RFS Data

iO' 10* 10^

Averaging^ Time, t, Seconds

(b)

FREQUENCY STABILITY
Slumulaled RFS Stability

Tou Sigmo

9 OOe-02 5.50e-13
1 80e + 03 4.14e-13
3 60e-03 3.»7e-13
7 20e-03 3.14e-13
It4et04 2.78e-l3

04 2 896-13
5 76e^04 3.04e-13
1.15e*05 3.58e-13
2 30e+05 5 70e-13
4 619+05 9 65e-13

10" 10' 10=

Avera^ng^ J}jne^ T, Seconds

(C)

FREQUENCY STABILITY
simulated RFS Data

Tou Sigmc

9 00e+02 5,50e-13
1.80e+03 4,146-13
3 50e + 03 3.47e-I3
7 20e-03 3 13e-13
1.4461-04 2.756-13
2 386-04 2,326-13
D 766-04 2 736-13
1156+05 2 42e-l3
2 30e + 05 2 52e-13
4 616+05 2 216-13

10^ 10" lO* lO'

Averaging Time, tj^econds

Figure 5. (a) Simulated frequency data for a rubidium frequency standard, (b) overlapping Hadamard with drift, (c)

overlapping sigma with drift, and (d) overlapping sigma without drift.

References for Time Domain Stability

1. G.E.P. Box and G.M. Jenkins, Time Series Analysis: Forecasting and Control , Holden-Day, San Francisco

(1970).

2. J. Rutman, ''Characterization of phase and frequency instabilities in precision frequency sources: Fifteen

years of progress," Proc. IEEE, 66(9): 1048-1075 (1978)

3. S.R. Stein. "Frequency and time: Their measurement and characterization," Precision Frequency Control,

2, E.A. Gerber and A. Ballato, eds., Academic Press, New York, ISBN 0-12-280602-6 (1985).

The standard variance should

not be used for the analysis of

frequency stability.

5.2.1. Standard Variance

The classic N-sample or standard variance is defined as

-—tU-^-r. (5)

- 1 ^
where thej', are the TV fractional frequency values, andj^ =— / j^, is the average frequency. The standard variance is

usually expressed as its square root, the standard deviation, s. It is not recommended as a measure of frequency

stability because it is non- convergent for some types of noise commonly found in frequency sources, as shown in the

figure below.
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Figure 1. Convergence of standard and Allan deviation for FM noise.

The standard deviation (upper curve) increases with the number of samples of flicker FM noise used to determine it,

while the Allan deviation (lower curve and discussed below) is essentially constant.

The problem with the standard variance stems from its use of the deviations from the average, which is not stationary

for the more divergence noise types. That problem can be solved by instead using the first differences of the

fractional frequency values (the second differences of the phase), as described for the Allan variance in Section 5.2.2.

In the context of frequency stability analysis, the standard variance is used primarily in the calculation of the Bl ratio

for noise recognition.

Reference for Standard Variance

1. D.W. Allan, "Should the Classical Variance be used as a Basic Measure in Standards Metrology?" IEEE Trans.

Imtrum. Meas., IM-36: 646-654 (1987)

5.2.2. Allan Variance

The Allan variance is the most common time domain measure of frequency stability. Similar to the standard variance,

it is a measure of the fractional frequency fluctuations, but has the advantage of being convergent for most types of

clock noise. There are several versions of the Allan variance that provide better statistical confidence, can distinguish

between white and flicker phase noise, and can describe time stability.

The original non-overlapped Allan, or two-sample variance, AVAR, is the standard

time domain measure of frequency stability [1, 2]. It is defined as

1
M-

2(M-l)t

The original Allan variance

has been largely superseded

by its overlapping version.

(6)

where 7, is the /th ofM fractional frequency values averaged over the measurement (sampling) interval, r. Note that

these symbols are sometimes shown with a bar over them to denote the averaging.
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In terms of phase data, the Allan variance may be calculated as

I
/V-2

2(N-2)t'
,j

where x, is the /th of the N = M+1 phase values spaced by the measurement interval r.

The result is usually expressed as the square root, ay(T), the Allan deviation, ADEV. The Allan variance is the same

as the ordinar>' variance for white FM noise, but has the advantage, for more divergent noise types such as flicker

noise, of converging to a value that is independent on the number of samples. The confidence interval of an Allan

deviation estimate is also dependent on the noise type, but is often estimated as ±Oy{x)l^.

5.2.2. Overlapping Samples

Some stabilit\ calculations can utilize (fully) overlapping samples, whereby the

calculation is performed by utilizing all possible combinations of the data set, as

shown in the diagram and formulae below. The use of overlapping samples

improves the confidence of the resulting stability estimate, but at the expense of

greater computational time. The overlapping samples are not completely independent, but do increase the effective

number of degrees of freedom. The choice of overlapping samples applies to the Allan and Hadamard variances.

Other variances (e.g., total) always use them.

Overlapping samples don't apply at the basic measurement interval, which should be as short as practical to support a

large number of overlaps at longer averaging times.

Overlapping samples are used

to improve the confidence of

a stability estimate.

Averaging Factor, m =3

1 2

Non-Overlapping Samples

3 4

• • • •
• • •

Overlapping Samples

Non-Overlapped Allan '^^^ ~ 2[M -\)^^'^'*^ '^'^

Variance: Stride = i =

averaging period =
M-lm+\ j + m-\

2m'[M - 2m +
7=1 /=7

(8)

(9)
Overlapped Allan

Variance: Stride = Tq =

sample period

Figure 7. Comparison of non-overlapping and overlapping sampling.

The following plots show the significant reduction in variability, hence increased statistical confidence, obtained by

using overlapping samples in the calculation of the Hadamard deviation.
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Non-Overlapping Samples Overlapping Samples

3
E
i

10"

FREQUENCY STABILITY
PHASEDAT

ISpqmo Fof Ml Tou| :

in" 1 10^

Averaging Time, x. Seconds

1

FREQUENCY STABILITY
PHA3EJ)AT

M -1

in" 3 lO' :

Averaging Time, t. Seconds

1

6m'(M - 3w + 1)6(M-2)

Figure 8. The reduction in variability by using overlapping samples in calculating the Hadamard deviation.

5.2.4. Overlapping Allan Variance

The fully overlapping Allan variance, or AVAR, is a form of the normal Allan

variance, cry(T), that makes maximum use of a data set by forming all possible

overlapping samples at each averaging time t. It can be estimated from a set of M
frequency measurements for averaging time x = mt,,, where m is the averaging factor

and To is the basic measurement interval, by the expression

I
M -2m+\ f /+m-l 1

^

^li^) =
^ ^

—^ Z lL^y..r„-y^\ (10)
2m"(M-2m + l) 7"/

[ ^ J

The overlapped Allan

deviation is the most common
measure oftime-domain

frequency stability. The term

AVAR has come to be used

mainly for this form of the

Allan variance, and ADEV
for its square root.

This formula is seldom used for large data sets because of the computationally intensive inner summation. In terms of

phase data, the overlapping Allan variance can be estimated from a set ofN = M + 1 time measurements as

1

2{N-2m)T

N-2m

(11)

(=1

Fractional frequency data, v„ can be first integrated to use this faster formula. The result is usually expressed as the

square root, ay(T), the Allan deviation, ADEV. The confidence interval of an overlapping Allan deviation estimate is

better than that of a normal Allan variance estimation because, even though the additional overlapping differences are

not all statistically independent, they nevertheless increase the number of degrees of freedom and thus improve the

confidence in the estimation. Analytical methods are available for calculating the number of degrees of freedom for

an estimation of overlapping Allan variance, and using that to establish single- or double-sided confidence intervals

for the estimate with a certain confidence factor, based on Chi-squared statistics.

Sample variances are distributed according to the expression
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r df-
(12)

where X' is the Chi-square, is the sample variance, cr' is the true variance, and df is the number of degrees of

freedom (not necessarily an integer). For a particular statistic, df'xs determined by the number of data points and the

noise ty pe.

References for Allan Variance

D.W. Allan, "The statistics of atomic frequency standards," Proc. IEEE, 54(2): 221-230 (Feb. 1966).

D.W. Allan, "Allan variance, " http://www.allanstinie.coiii [2008].

"Characterization of frequency stability," Nat. Bur. Stand. (U.S.) Tech Note 394 (Oct. 1970).

J. A. Barnes, A.R. Chi, L.S. Cutler, D.J. Healey, D.B. Leeson, T.E. McGunigal, J.A. Mullen, Jr., W.L. Smith,

R.L. Sydnor, R.F.C. Vessot, and G.M.R. Winkler, "Characterization of frequency stability," IEEE Trans.

Instrum. Meas., 20(2): 105-120 (May 1971

)

J.A. Barnes, "Variances based on data with dead time between the measurements," Natl. Inst. Stand.

Technol. Technical Note 1318 (1 990).

C.A. Greenhall, "Does Allan variance determine the spectrum?" Proc. 1997 Intl. Freq. Cont. Symp., pp.

358-365 (June 1997)/

C.A. Greenhall, "Spectral ambiguity of Allan variance," IEEE Trans. Instrum. Meas., 47(3): 623-627 (June

1998).

5.2.5 Modified Allan Variance

The modified Allan variance. Mod a-y(i). MVAR, is another common time

domain measure of frequency stability [1]. It is estimated from a set of M
frequency measurements for averaging time t = mto, where m is the averaging

factor and tq is the basic measurement interval, by the expression

Use the modified Allan deviation

to distinguish between white and

flicker PM noise.

Modd'iz)
1

2m {M -3m + 2)

M-2m+2
I

/+"'-! i+m~]

,=j V k=i
I

J

(13)

In terms of phase data, the modified Allan variance is estimated from a set of N = M + 1 time measurements as

1
.V-3m+l 7+m-l

2w-r"(iV-3m + l) 7-f [ ^
(14)

The result is usually expressed as the square root. Mod ay(x), the modified Allan deviation. The modified Allan

variance is the same as the normal Allan variance for m = 1. It includes an additional phase averaging operation, and

has the advantage of being able to distinguish between white and flicker PM noise. The confidence interval of a

modified Allan deviation determination is also dependent on the noise type, but is often estimated as ±ay(T)/VN.
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References for Modified Allan Variance

1. D.W. Allan and J. A. Barnes, "A modified Allan variance with increased oscillator characterization ability,"

Proc. 35th Freq. Cont. Symp. pp. 470-474 (May 1981 ).

2. P. Lesage and T. Ayi, "Characterization of frequency stability: Analysis of the modified Allan variance and

properties of its estimate," IEEE Trans. lustrum. Meas., 33(4): 332-336 (Dec. 1984).

3. C.A. Greenhall, "Estimating the modified Allan variance," Proc. IEEE 1995 Freq. Cont. Symp., pp. 346-353

(May 1995).

4. C.A. Greenhall, "The third-difference approach to modified Allan variance," IEEE Trans. Instrum. Meas.,

46(3): 696-703 (June 1997).

5.2.6. Time Variance

The time Allan variance, TVAR, with square root TDEV, is a measure of time

stability based on the modified Allan variance [1]. It is defined as

cr;{T)

\ J

Mod<j]{T) (15)

Use the time deviation to

characterize the time error of

a time source (clock) or

distribution system.

In simple terms, TDEV is MDEV whose slope on a log-log plot is transposed by +1 and normalized by V3. The time

Allan variance is equal to the standard variance of the time deviations for white PM noise. It is particularly useful for

measuring the stability of a time distribution network.

It can be convenient to include TDEV information on a MDEV plot by adding lines of constant TDEV, as shown in

Figure 9:

:iote. 01/27/05 r.me. ;0:12:12

FREQUENCY STABILITY
PHASE.DAT

Feu Sigmo

1 2.92e-13
2 1.5Se-13
4 l.OSe-U
8 7.42e-U

16 4.14e-14
32 3.43e-I4
54 2.79e-I4
128 '1.87e-14

10' 2 10^

Averaging Time, Seconds

Figure 9. Plot of MDEV with lines of constant TDEV.
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References for Time Variance

1. D.W. Allan. D.D. Davis. J. Levine. M.A. Weiss, N. Hironaka, and D. Okayama. "New inexpensive frequency

calibration service from Natl. Inst. Stand. Technol.," Proc. 44th Freq. Cont. Symp., pp. 107-1 16 (June 1990).

2. D.W. Allan, M.A. Weiss, and J.L. Jespersen. "A frequency-domain view of time-domain characterization of

clocks and time and frequency distribution systems,"' Proc. 45th Freq. Cont. Symp., pp. 667-678 (May

1991).

5.2.7. Time Error Prediction
The time error of a clock driven b\ a frequency source is a relatively simple function

of the initial time offset, the frequency offset, and the subsequent frequency drift,

plus the effect of noise, as shown in the following expression:

AT = To + (Af/f) t + '/2 D • t- + cTx(t), (16)

The time error of a clock can

be predicted from its time and

frequency offsets, frequency

drift, and noise.

where AT is the total time error. To is the initial synchronization error, Af/f is the sum of the initial and average

environmentally induced frequencv offsets. D is the frequency drift (aging rate), and ax(t) is the root-mean-square

(rms) noise-induced time deviation. For consistency, units of dimensionless fractional frequency and seconds should

be used throughout.

Because of the many factors, conditions, and assumptions involved, and their variability, clock error prediction is

seldom easy or exact, and it is usually necessary to generate a timing error budget.

• Initial Synchronization

The effect of an initial time (synchronization) error. To. is a constant time offset due to the time reference, the finite

measurement resolution, and measurement noise. The measurement resolution and noise depends on the averaging

time.

• Initial Syntonization

The effect of an initial frequency (syntonization) error, Af/f , is a linear time error. Without occasional

resyntonization (frequency recalibration). frequency aging can cause this to be the biggest contributor toward clock

error for many frequency sources (e.g., quartz crvstal oscillators and rubidium gas cell standards). Therefore, it can be

important to have a means for periodic clock syntonization (e.g., GPS or cesium beam standard). In that case, the

syntonization error is subject to uncertaint\ due to the frequency reference, the measurement and tuning resolution,

and noise considerations. The measurement noise can be estimated by the square root of the sum of the Allan

variances of the clock and reference over the measurement interval. The initial syntonization should be performed, to

the greatest extent possible, under the same environmental conditions (e.g.. temperature) as expected during

subsequent operation.

• Environmental Sensitivity

After initial syntonization, environmental sensitivity is likely to be the largest contributor to time error.

Environmental frequency sensitivity obviously depends on the properties of the device and its operating conditions.

When performing a frequency stability analysis, it is important to separate the deterministic environmental

sensitivities from the stochastic noise. This requires a good understanding of both the device and its environment.
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Reference for Time Error Prediction

D.W. Allan and H. Hellwig, "Time Deviation and Time Prediction Error for Clock Specification, Characterization,

and Application", Proceedings ofthe Position Location and Navigation Symposium (PLANS), 29-36, 1978.

5.2.8. Hadamard Variance

Use the Hadamard variance to

characterize frequency

sources with divergent noise

and/or frequency drift.

The Hadamard [1] variance is based on the Hadamard transform [2], which was

adapted by Baugh as the basis of a time-domain measure of frequency stability [3].

As a spectral estimator, the Hadamard transform has higher resolution than the Allan

variance, since the equivalent noise bandwidth of the Hadamard and Allan spectral

windows are 1.2337N''t"' and 0.476i"', respectively [4]. For the purposes of time-

domain frequency stability characterization, the most important advantage of the Hadamard variance is its

insensitivity to linear frequency drift, making it particularly useful for the analysis of rubidium atomic clocks [5,6]. It

has also been used as one of the components of a time-domain multivariance analysis [7], and is related to the third

structure function of phase noise [8].

Because the Hadamard variance examines the second difference of the fractional frequencies (the third difference of

the phase variations), it converges for the Flicker Walk FM (a = -3) and Random Run FM (ot = -4) power-law noise

types. It is also unaffected by linear frequency drift.

For frequency data, the Hadamard variance is defmed as:

1 M-2

where y, is the ith of M fractional frequency values at averaging time t.

For phase data, the Hadamard variance is defined as:

^'^U^'>= r ^ S [^-3 - ^^,.2 + 3x,,, - Xj-
, (18)

6r"(/v -3m) TTr

where x, is the ith ofN = M + 1 phase values at averaging time x.

Like the Allan variance, the Hadamard variance is usually expressed as its square-root, the Hadamard deviation,

HDEV or Hay(T).

5.2.9. Overlapping Hadamard Variance

In the same way that the overlapping Allan variance makes maximum use of a data The overlapping Hadamard
set by forming all possible fully overlapping 2-sample pairs at each averaging time t variance provides better

the overlapping Hadamard variance uses all 3-sample combinations [9]. It can be confidence than the non-

estimated from a set of M frequency measurements for averaging time t = mto where overlapping version.

m is the averaging factor and lois the basic measurement interval, by the expression:
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I
A/-3m + l 7+m-I

^^'^^)=7-^77r"; 77^ Z Z [>'-2.-2>',..+>^J ,
(19)

6m-{M -3m + \)T- 7~f [ J

where yi is the ith ofM fractional frequency values at each measurement time.

In terms of phase data, the overlapping Hadamard variance can be estimated from a set of N = M + 1 time

measurements as:

Hcj]{T)^ ^ . Z K3,„-3x,.2™+3x_-xj\ (20)
6(A/-j»w)r" TTT

where x, is the ith ofN = M + 1 phase values at each measurement time.

Computation of the overlapping Hadamard variance is more efficient for phase data, where the averaging is

accomplished by simply choosing the appropriate interval. For frequency data, an inner averaging loop over m
frequency values is necessary. The resuh is usually expressed as the square root. Hay(T), the Hadamard deviation,

HDEV. The expected value of the overlapping statistic is the same as the normal one described above, but the

confidence interval of the estimation is better. Even though not all the additional overlapping differences are

statistically independent, they nevertheless increase the number of degrees of freedom and thus improve the

confidence in the estimation. Analytical methods are available for calculating the number of degrees of freedom for

an overlapping Allan variance estimation, and that same theory can be used to establish reasonable single- or double-

sided confidence intervals for an overlapping Hadamard variance estimate with a certain confidence factor, based on

Chi-squared statistics.

Sample variances are distributed according to the expression:

X\p,df) =^, (21)

where X' is the Chi-square value for probability p and degrees of freedom df, s- is the sample variance, a- is the true

variance, and df is the number of degrees of freedom (not necessarily an integer). The df is determined by the number

of data points and the noise tv pe. Given the df. the confidence limits around the measured sample variance are given

by:

, {s'-df) , (s'-df)
^.,n =

2,
and a,,, =— —

. (22)

5.2.10. Modified Hadamard Variance

By similarity to the modified Allan variance, a modified version of the Hadamard variance can be defined [15] that

employs averaging of the phase data over the m adjacent samples that define the analysis r = m-ZQ. In terms of phase

data, the three-sample modified Hadamard variance is defined as:

^-4™+! /+m-l
2

6m'T'[N -Am + \\

Modc7i,{T)=
"

^ , .

^ (23)
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where A'^ is the number of phase data points .y, at the sampUng interval ro, and m is the averaging factor, which can

extend from 1 to LiVMj. This is an unbiased estimator of the modified Hadamard variance, MHVAR. Expressions for

the equivalent number of x' degrees of freedom (edf) required to set MHVAR confidence limits are available in [2].

Clock noise (and other noise processes) can be described in terms of power spectral density, which can be modeled as

a power law function S cc where /is Fourier frequency and a is the power law exponent. When a variance such as

MHVAR is plotted on log-log axes versus averaging time, the various power law noises correspond to particular

slopes //. MHVAR was developed in Reference [15] for determining the power law noise type of Internet traffic

statistics, where it was found to be slightly better for that purpose than the modified Allan variance, MVAR, when

there were a sufficient number of data points. MHVAR could also be useful for frequency stability analysis, perhaps

in cases where it was necessary to distinguish between short-term white and flicker PM noise in the presence of more

divergent (a= -3 and -4) flicker walk and random run FM noises. The Mod o'ni'^) log-log slope /iis related to the

power law noise exponent by /j = -3 - a.

The modified Hadamard variance concept can be generalized to subsume AVAR, HVAR, MVAR, MHVAR, and

MHVARs using higher-order differences:

where d = phase differencing order; d = 2 corresponds to MAVAR, <:/= 3 to MHVAR; higher-order differencing is not

commonly used in the field of frequency stability analysis. The unmodified, nonoverlapped AVAR and HVAR
variances are given by setting m = 1 . The allowable power law exponent for convergence of the variance is equal to a
> 1 - 2d, so the second difference Allan variances can be used for a > -3 and the third difference Hadamard

variances for a > -5.

Confidence intervals for the modified Hadamard variance can be determined by use of the edf values of reference

(24)
dlm-T-[N -(d + \)m + \]

[16].
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5.2.11 Total Variance

The total variance offers

improved confidence at large

averaging factor by extending

the data set by reflection at

both ends.

The total variance, TOTVAR, is similar to the two-sample or Allan variance and has

the same expected value, but offers improved confidence at long averaging times [1-

5]. The work on total variance began with the realization that the Allan variance can

"collapse" at long averaging factors because of symmetry in the data. An early idea

was to shift the data by 1/4 of the record length and average the two resulting Allan

variances. The next step was to wrap the data in a circular fashion and calculate the

average of all the Allan variances at every basic measurement interval, t„. This technique is very effective in

improving the confidence at long averaging factors but requires end matching of the data. A further improvement of

the total variance concept was to extend the data by reflection, first at one end of the record and then at both ends.

This latest technique, called TOTVAR, gives a very significant confidence advantage at long averaging times, exactly

decomposes the classical standard variance [6], and is an important new general statistical tool. TOTVAR is defined

for phase data as:

1 2

rorvar(r)^ +^'-^^] '
^^^^
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where r = mTo, and the phase values x measured at t = To are extended by reflection about both endpoints to form a

virtual sequence x* from / = 3-N to / = 2N-2 of length iA^—^. The original data are in the center of x* with i =1 to N
and x*=x. The reflected portions added at each end extend from j = 1 to N-2 where x*i_j = 2xi-Xi+j and x*n+j = 2xn-

Xn-j-

Totvar can also be defined for frequency data as:

""'^^'^'^^^SC-^''-'-^-]'
''''

where the M = N-1 fractional frequency values, y, measured at t = Tq (N phase values) are extended by reflection at

both ends to form a virtual array y*. The original data are in the center, where y*i = y, for i = 1 to M, and the extended

data for j = 1 to M-1 are equal to y*i.j = yj and y*M+i = Ym+i-j-

The result is usually expressed as the square root, atotai(x), the total deviation, TOTDEV. When calculated by use of

the doubly reflected method described above, the expected value of TOTVAR is the same as AVAR for white and

flicker PM or white FM noise. Bias corrections of the form l/[l-a(x/T)], where T is the record length, need to be

applied for flicker and random walk FM noise, where a = 0.481 and 0.750, respectively.

The number of equivalent degrees of freedom for TOTVAR can be estimated for white FM, flicker FM and

random walk FM noise by the expression b(T/T)—c, where b = 1.500, 1.168 and 0.927, and c = 0, 0.222 and 0.358,

respectively. For white and flicker PM noise, the edf for a total deviation estimate is the same as that for the

overlapping ADEV with the number of degrees of freedom increased by 2.
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5.2.12. Modified Total Variance

The modified total variance, MTOT, is another new statistic for the analysis of

frequency stability. It is similar to the modified Allan variance, MVAR, and has the

same expected value, but offers improved confidence at long averaging times. It

uses the same phase averaging technique as MVAR to distinguish between white

and flicker PM noise processes.

The modified total variance

combines the features of the

modified Allan and total

variances.

A calculation of MTOT begins with an array of N phase data points (time deviates, x,) with sampling period Tq that

are to be analyzed at averaging time i = mto- MTOT is computed from a set of N - 3m + 1 subsequences of 3m
points. First, a linear trend (frequency offset) is removed from the subsequence by averaging the first and last halves

of the subsequence and dividing by half the interval. Then the offset-removed subsequence is extended at both ends

by uninverted, even reflection. Next the modified Allan variance is computed for these 9m points. Finally, these

steps are repeated for each of the N - 3m + 1 subsequences, calculating MTOT as their overall average. These steps,

similar to those for MTOT. but acting on fractional frequency data, are shown in Figure 10.

Phase Data x, , i
= 1 to N

N-3m+1 Subsequences;

3m

• • • i=n to n+3m-1

Linear Trend Removed:

Extended Subsequence-

Unlnverted. Even Reflection

9m

X, = X, - c, I, c, = freq offset

0 » 0 0 » 0 » _

• • •
'

1 f
^

' • • •

Xn*3m-I 1 < I < 3m

9 m-Point Averages:

6m 2nd Differences: • • •

Calculate Mod a, (i) for Subsequence.
mod a, ^(r) = 1/2t ( z„ ^(m) ), where

z,(m) = x„(m) - 2x„,^(m) + x„,2^(m)

Figure 10. Steps similar to calculation of MTOT on fractional frequency data.

Computationally, the MTOT process requires three nested loops:

• An outer summation over the N - 3m + 1 subsequences. The 3m-point subsequence is formed, its linear trend is

removed, and it is extended at both ends by uninverted, even reflection to 9m points.

• An inner summation over the 6m unique groups of m-point averages from which all possible fully overlapping

second differences are used to calculate MVAR.
• A loop within the inner summation to sum the phase averages for three sets of m points.

The final step is to scale the result according to the sampling period, iq, averaging factor, m, and number of points, N.

Overall, this can be expressed as:

1 N-im -l f 1 n +lm-l

ModTotvar(T) = Y — Y {'z'(m)']'\, (27)
2(mrJ-(7V-3w + l) tt l6w,=t1„L j

j
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where the z, (m) terms are the phase averages from the triply extended subsequence, and the prefix denotes that the

linear trend has been removed. At the largest possible averaging factor, m = N/3, the outer summation consists of

only one term, but the inner summation has 6m terms, thus providing a sizable number of estimates for the variance.

Reference for Modified Total Variance

D.A. Howe and F. Vemotte, "Generalization of the Total Variance Approach to the Modified Allan Variance," Proc.

3 r' PTTI Meeting, pp. 267-276, Dec. 1999.

5.2.13. Time Total Variance

The time total variance, TTOT, is a similar measure of time stability, based on the

modified total variance. It is defined as

(28)

The time total variance is a

measure of time stability

based on the modified total

variance.

5.2.14. Hadamard Total Variance

The Hadamard total variance, HTOT, is a total version of the Hadamard variance.

As such, it rejects linear frequency drift while offering improved confidence at large

averaging factors.

An HTOT calculation begins with an array ofN fractional frequency data points, y,

with sampling period tq that are to be analyzed at averaging time x =m Tq. HTOT is

computed from a set of N - 3m + 1 subsequences of 3m points. First, a linear trend

(frequency drift) is removed from the subsequence by averaging the first and last

halves of the subsequence and dividing by half the interval. Then the drift-removed

subsequence is extended at both ends by uninverted, even reflection. Next the Hadamard variance is computed for

these 9m points. Finally, these steps are repeated for each of the N - 3m + 1 subsequences, calculating HTOT as their

overall average. These steps are shown in Figure! 1

.

The Hadamard total variance

combines the features of the

Hadamard and total variances

by rejecting linear frequency

drift, handling more divergent

noise types, and providing

better confidence at large

averaging factors.
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Fractional Frequency Data y. i
= 1 to N

N-3m+1 Subsequences • • •

3m

• i=n to n+3m-1

Linear Freq Drift Removed:

Extended Subsequence

Uninverted, Even Reflection

9m

y, = y, - q i. q = freq drift

0 » 0 0 t

y,

0 *

yn.3mH-,
=

• • •
'

1 f '

' • • •

yno 1 < I < 3m

9 m-Point Averages:

6m 2nd Differences:

Calculate Hado (t) for Subsequence
Had a, ^t) = 1/6 ( z„ ^(m) ), where

z„(m) = y„(m) - 2y„,Jm) + y„.2m(m)

Then Find HTOT as Average of Subestimates

Figure 11. Steps to calculate Hadamard Total Variance.

Computationally, the HTOT process requires three nested loops:

• An outer summation over the N - 3m + 1 subsequences. The 3m-point subsequence is formed, its linear trend is

removed, and it is extended at both ends by uninverted, even reflection to 9m points.

• An inner summation over the 6m unique groups of m-point averages from which all possible fully overlapping

second differences are used to calculate HVAR.
• A loop within the inner summation to sum the frequency averages for three sets of m points.

The final step is to scale the result according to the sampling period, tq, averaging factor, m, and number of points, N.

Overall, this can be expressed as:

1

6{N-3m + \) t

/V-3m+\ ( 1 n+3w-l

(29)

where the H|(m) terms are the Zn(m) Hadamard second differences from the triply extended, drift-removed

subsequences. At the largest possible averaging factor, m = N/3, the outer summation consists of only one term, but

the inner summation has 6m terms, thus providing a sizable number of estimates for the variance. The Hadamard

total variance is a biased estimator of the Hadamard variance, so a bias correction is required that is dependent on the

power law noise type and number of samples.

The following plots shown the improvement in the consistency of the overlapping Hadamard deviation results

compared with the normal Hadamard deviation, and the extended averaging factor range provided by the Hadamard

total deviation [10].
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Figure 13. (a) Hadamard Total Deviation, (b) Overlapping & Total Hadamard Deviations

A comparison of the overlapping and total Hadamard deviations shows the tighter error bars of the latter, allowing an

additional point to be shown at the longest averaging factor.

The Hadamard variance may also be used to perform a frequency domain (spectral) analysis because it has a transfer

function that is a close approximation to a narrow rectangle of spectral width 1/(2 N to), where N is the number of

samples, and tq is the measurement time [3]. This leads to a simple expression for the spectral density of the

fractional frequency fluctuations Sy(f) « 0.73 xo Ho^yiT) I N, where f = 1/ (2-io), which can be particularly useful at

low Fourier frequencies.

The Picinbono variance is a similar three-sample statistic. It is identical to the Hadamard variance except for a factor

of 2/3 [4]. Sigma-z is another statistic that is similar to the Hadamard variance that has been applied to the study of

pulsars [5].
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It is necessary to identify the dominant power law noise type as the first step in determining the estimated number of

chi-squared degrees of freedom for the Hadamard statistics so their confidence limits can be properly set [6]. Because

the Hadamard variances can handle the divergent flicker walk FM and random run FM power law noises, techniques

for those noise types must be included. Noise identification is particularly important for applying the bias correction

to the Hadamard total variance.
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5.2.15. Theo1

Theol is a new class of statistics which mimic the properties of the Allan variance Theol is a two-sample variance

(AVAR) while covering a larger range of averaging times, 10 to N-2 for Theol vs. with improved confidence and

1 to (N-l)/2 for AVAR [1]. It provides improved confidence and the ability to extended averaging factor

obtain a result for a maximum averaging time equal to 75 % of the record length. range.

Theol [1] is defined as follows:

I
N-m m/ 2-1

I ^

where m = averaging factor, tq- measurement interval, and jV= number of phase data points, for m even, and 10 < w
< N -

\ . It consists of N - m outer sums over the number of phase data points -1, and m/2 inner sums. Theol is the

rms of frequency differences averaged over an averaging time i = 0.75 (m - 1)to.

A schematic for a Theol calculation is shown in Figure 14. This example is for eleven phase samples {N = 1 1) at the

largest possible averaging factor (m = 10).
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Theo1 Schematic for n=11 , m= 10

i =1 to n-m = 1
, 5 = 0 to m/2 -1=4

x[] index = 1 23456789 10 11

0

1

5< 2

3

9"

-9

-0

\

Figure 14. A schematic for Theol calculation.

The single outer summation (/ = 1 to 1) at the largest possible averaging factor consists of ml2 = 5 ternis, each with

two phase differences. These terms are scaled by their spans mil ~ S = 5 thru 1 so that they all have equal weighting.

A total of 10 terms contribute to the Theol statistic at this largest-possible averaging factor. The averaging time, x,

associated with a Theol value is t= O.TS m io, where tq is the measurement interval. Theol has the same expected

value as the Allan variance for white FM noise, but provides many more samples that provide improved confidence

and the ability to obtain a result for a maximum t equal to three-fourths of the record length, T. Theol is a biased

estimator of the Allan variance, AVAR, for all noise types except white FM noise, and it therefore requires the

application of a bias correction. Reference [2] contains the preferred expression for determining the Theol bias as a

function of noise type and averaging factor:

^1 , 1 T^- Avar b
Theol Bias- = a+— , . (31)

Theol m'^

where m is the averaging factor and the constants a, b and c are given in Table 2. Note that the effective tau for a

Theol estimation is t = O.TS m to, where to is the measurement interval.

Table 2. Theol bias parameters.

Noise Alpha a b c

RW FM —2 2.70 -1.53 0.85

F FM -1 1.87 -1.05 0.79

W FM 0 1.00 0.00 0.00

F PM 1 0.14 0.82 0.30

W PM 2 0.09 0.74 0.40

Empirical formulae have been developed [1] for the number of equivalent x' degrees of freedom for the Theol

statistic, as shown in Table 3:
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Table 3. Theol EDF Formulae

Noise EDF
RW FM

( 4.4N-2 ]( (4.4 - 1)' - 8.6r(4.4^ - 1) + 1 \Ar)

I 2.9r )[ (4.4iV-3)-
J

F FM
r 2N' - l3Nr - 3.5r Y r' \

[ Nr j[r'+2.3l

W FM "4.1A'+0.8 3.W + 6.51 r

/r N J ,r^''^+5.2^

F PM
'4.798A^' -6.374A^r + 12.387r Y r \

(r + 36.6f-(N-r) jU + 0.3j

W PM |^0.86(A^ + l)(A^-4r/3)^
If

'
\

I N-r
where r = 0.75m, and with the condition to< T/10.

5.2.16. TheoH

Theol has the same expected value as the Allan variance if bias is removed [2]. It is

useful to combine a bias-removed version of Theol, called TheoBR, with AVAR to

produce a composite stabilit)' plot. The composite is called "TheoH" which is short

for "hybrid-TheoBR" [3]. TheoH is the best statistic available for estimating the

stability level and ty pe of noise of a frequency source, particularly at large averaging

times and with a mi.xture of noise types [4].

NewTheo 1 , TheoBR , and

TheoH are versions of Theol

that provide bias removal and

combination with the Allan

variance.

The New Theol algorithm of Reference [2] provides a method of automatic bias correction for a Theol estimation

based on the average ratio of the Allan and Theol variances over a range of averaging factors:

NewTheo 1 (m,
,
jV)=

1

I-
Avar(w=9+3i,ro,N)

n+l'^Theol(m = 12 + 4/.ro,^)
Theol (w,rQ,7V) (32)

where n —
N_

30
, and

|_ J
denotes the floor function.

NewTheo 1 was used in Reference [2] to form a composite AVAR/ NewTheo 1 resuU called LONG, which has been

superseded by TheoH (see below).

TheoBR [3] is an improved bias-removed version of Theol given by

TheoBR(w,ro,iV)

where n = 3

1 ^ Avar(m=9+3i,ro,N)

n+ 1 Theo l(m = 1 2 + 4/, To . A^)

, and
|_ J

denotes the floor function.

Theol(m,ro, A^), (33)
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TheoBR can determine an unbiased estimate of the Allan variance over the widest possible range of averaging times

without explicit knowledge of the noise type. TheoBR in the equation above is computationally intensive for large

data sets, but computation time is significantly reduced by phase averaging with negligible effect on bias removal [5].

TheoH is a hybrid statistic that combines TheoBR and AVAR on one plot:

Avar (m.r,, ^) for 1 < m <

TheoH(m,r„,iV) . ,,

' TheoBR (m,r„>') for

0 75rn
-<m< N -\,m even

(34)

where k is the largest available r < 20% T.

An example of a TheoH plot is shown in Figure 15:
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Figure 15. An example plot of TheoH.

TheoH is a composite of AVAR and bias-corrected TheoBR analysis points at a number of averaging times

sufficiently large to form a quasi-continuous curve. The data are a set of 1001 simulated phase values measured at

15-minute intervals taken over a period of about 10 days. The AVAR results are able to characterize the stability to

an averaging time of about two days, while Theol is able to extend the analysis out to nearly a week, thus providing

significantly more information from the same data set. An example of analysis using TheoH with data from a Cs

standard is shown in Section 1 1

.
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5.2.17 MTIE

The maximum time interval error, MTIE, is a measure of the maximum time error of

a clock over a particular time interval. This statistic is commonly used in the

telecommunications industry. It is calculated by moving an n-point (n =^ xIxq) window

through the phase (time error) data and finding the difference between the maximum
and minimum values (range) at each window position. MTIE is the overall

maximum of this time interval error over the entire data set:

MTIE{t) = A/ax„,,^_„ {^ax,,^<ic.n )
- (x.)}, (35)

where n = 1,2,..., N-1 and N = number of phase data points.

MTIE is a measure of the peak time deviation of a clock and is therefore very sensitive to a single extreme value,

transient or outlier. The time required for an MTIE calculation increases geometrically with the averaging factor, n,

and can become very long for large data sets (although faster algorithms are available - see [1] below).

The relationship between MTIE and Allan variance statistics is not completely defined, but has been the subject of

recent theoretical work [2,3]. Because of the peak nature of the MTIE statistic, it is necessary to express it in terms of

a probability level, p, that a certain value is not exceeded.

For the case of white FM noise (important for passive atomic clocks such as the most common rubidium and cesium

frequency standards), MTIE can be approximated by the relationship

MTIE( r, /?)=k^ • = k^ • V2 ( r) • r , (36)

where kp is a constant determined by the probability level, p, as given in Table 4, and ho is the white FM power-law

noise coefficient.

Table 4. Constants P and kp

p, %
95 1.77

90 1.59

80 1.39

The maximum time interval error (MTIE) and rms time interval error (TIE rms) are clock stability measures

commonly used in the telecom industry [4, 5]. MTIE is determined by the extreme time deviations within a sliding

MTIE IS a measure of clock

error commonly used in the

tele-communications

industry.
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window of span x, and is not as easily related to such clock noise processes as TDEV [2]. MTIE is computationally

intensive for large data sets [6].
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5.2.18. TIErms

The rms time interval error, TIE rms. is another clock statistic commonly used by the telecommunications industry.

TIE rms is defined by the expression

where n = 1 ,2,..., N-1 and N = # phase data points.

For no frequency offset, TIE rms is approximately equal to the standard deviation of the fractional frequency

fluctuations multiplied by the averaging time. It is therefore similar in behavior to TDEV, although the latter properly

identifies divergent noise types.

Reference for TIE rms

S. Bregni, "Clock Stability Characterization and Measurement in Telecommunications," IEEE Trans. Instrum.

Meas., Vol. 46, No. 6, pp. 1284-1294, Dec. 1997.

5.2.19. Integrated Phase Jitter and Residual FM
Integrated phase jitter and residual FM are other ways of expressing the net phase or frequency jitter by integrating it

over a certain bandwidth. These can be calculated from the amplitudes of the various power law terms.

The power law model for phase noise spectral density (see section 6.
1
) can be written as

SAf)=K-f\ (38)
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where S^'is the spectral density of the phase fluctuations in rad"/Hz,/is the modulation frequency, K is amplitude in

rad", and x is the power law exponent. It can be represented as a straight line segment on a plot of S(,{f) in dB relative

to 1 rad"^/Hz versus log/in hertz. Given two points on the plot (J], dBi) and /2, dB:), the values of x and K may be

determined by

dB, - dB,
X = =

, (39)
io-(iogy; -log/2)

and

^ = 10^'° ^ (40)

The integrated phase jitter can then be found over this frequency interval by

Af- = f:S,{f)-df=t'K-f-df

A^'=^{fr'-fr')foTx^-\ (41)
x + l

Af- =K-(\ogf,-\ogf,) forx = \.

It is usually expressed as A(j) in rms radians.

Similarly, the spectral density of the frequency fluctuations in Hz"/Hz is given by

SXf) = K SAf) = f- Sjf) = K
, (42)

where Vo is the carrier frequency in hertz, and Sjf) is the spectral density of the fractional frequency fluctuations (see

Section 6.
1

).

The integrated frequency jitter or residual FM is therefore

Af--t:sAf)-df=f^K-r'--df

Af-=-^{fr'-fr)^orx^3 (43)

A/-=^-(log/,-log/)forx = -3.

It is usually expressed as Af in rms hertz.

The value of SJ^J) in dB can be found from the more commonly used £(/) measure of SSB phase noise to carrier power

ratio in dBc/Hz by adding 3 dB. The total integrated phase noise is obtained by summing the Acj)' contributions from

the straight-line approximations for each power law noise type. The ratio of total phase noise to signal power in the

given integration bandwidth is equal to 10 log A(j)~.

1

!
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3. D.A. Howe and T.N. Tasset, "Clock Jitter Estimation based on PM Noise Measurements," Proc. 2003 Joint Mtg.

IEEE Intl. Freq. Cont. Symp. and EFTF Conf., pp. 541-546, May 2003.

5.2.20. Dynamic Stability

A dynamic stability analysis uses a sequence of sliding time windows to perform a dynamic Allan (DAVAR) or

Hadamard (DHVAR) analysis, thereby showing changes (nonstationarity) in clock behavior versus time. It is able to

detect variations in clock stability (noise bursts, changes in noise level or type, etc.) that would be difficult to see in an

ordinary overall stability analysis. The results of a dynamic stability analysis are presented as a three-dimensional

surface plot of log sigma versus log tau or averaging factor as a function of time or window number.

An example of a DAVAR plot is shown below. This example is similar to the one of Figure 2 in Reference [1],

showing a source with white PM noise that changes by a factor of 2 at the middle of the record.

Date 11/26/05 Tirr Oata Points 1 thru 9000 of 9000 Tau = 1.0000000e + 00 File: DAVAR OAT

DYNAMIC AVAR STABILITY

Sigmo Ronge:
2,219e-02

to

2-495e + 00

Exomple similar to Fig. 2
of Golleani and Taveila

"Tracking Nonstationarities
in Clock Noises Using the
Dynamic Allan Variance"

Analysis Windows
987 Windows
of Size 120

& Step Size 9
Time Span:
9.870e + 02 sec

DAVAR.DAT

Figure 16. Example of a DAVAR plot.
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2003 Joint FCS/EFTF Meeting, pp. 239-244.

5.3. Confidence Intervals

It is wise to include error bars (confidence intervals) on a stability plot to indicate the degree of statistical confidence

in the numerical results. The confidence limits of a variance estimate depend on the variance type, the number of data

points and averaging factor, the statistical confidence factor desired, and the type of noise. This section describes the

use of-// statistics for setting the confidence intervals and error bars of a stability analysis.

It is generally insufficient to simply calculate a stability statistic such as the Allan deviation, thereby finding an

estimate of its expected value. That determination should be accompanied by an indication of the confidence in its

value as expressed by the upper and (possibly) lower limits of the statistic with a certain confidence factor. For

example, if the estimated value of the Allan deviation is 1.0 x 10"", depending on the noise type and size of the data

set, we could state with 95 % confidence that the actual value does not exceed (say) 1.2 x 10"". It is always a good

idea to include such a confidence limit in reporting a statistical result, which can be shown as an upper numeric limit,

upper and lower numeric bounds, or (equivalently) error bars on a plot. Even though those confidence limits or error

bars are themselves inexact, they should be included to indicate the validity of the reported result.

If you are unfamiliar with the basics of confidence limits, it is recommended that an introductory statistics book be

consulted for an introduction to this subject. For frequency stability analysis, the emphasis is on various variances,

whose confidence limits (variances of variances) are treated with chi-squared (x') statistics. Strictly speaking,

statistics apply to the classical standard variance, but they have been found applicable to all of the other variances

(Allan, Hadamard, total, Theol, etc.) used for frequency stability analysis. A good introduction to confidence limits

and error bars for the Allan variance may be found in Reference [1]. The basic idea is to (1) choose an single or

double-sided confidence limits (upper or upper and lower bounds), (2) choose an appropriate confidence factor (e.g.,

95 %), (3) determine the number of equivalent degrees of freedom (edf), (4) use the inverse yj' distribution to find

the normalized confidence limit(s), and (5) multiply those by the nominal deviation value to find the error bar(s).

5.3.1. Simple Confidence Intervals

The simplest confidence interval approximation, with no consideration of the noise type, sets the ±la (68 %) error

bars at ±c7y(t)/VN, where N is the number of frequency data points used to calculate the Allan deviation.

A more accurate determination of this confidence interval can be made by considering the noise type, which can be

estimated by the Bl bias function (the ratio of the standard variance to the Allan variance). That noise type is then be

used to determine a multiplicative factor, Kn, to apply to the confidence interval:

Noise Type Kn

Random Walk FM 0.75

Flicker FM 0.77

White FM 0.87

Flicker PM 0.99

White PM 0.99
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5.3.2 Chi-Squared Confidence Intervals

Chi-squared statistics can be applied to calculate single and double-sided confidence intervals at any desired

confidence factor. These calculations are based on a determination of the number of degrees of freedom for the

estimated noise type. Most stability plots show ±la error bars for its overlapping Allan deviation plot.

The error bars for the modified Allan and time variances are also determined by Chi-squared statistics, using the

number of MVAR degrees of freedom for the particular noise type, averaging factor, and number of data points.

During the Run function, noise type estimates are made at each averaging factor (except the last, where the noise type

of the previous averaging factor is used).

Sample variances are distributed according to the expression

r=— (44)

where f- is the Chi-square, s^ is the sample variance, is the true variance, and edf is the equivalent number of

degrees of freedom (not necessarily an integer). The edf is determined by the number of analysis points and the noise

type. Procedures exist for establishing single- or double-sided confidence intervals with a selectable confidence

factor, based on statistics, for many of its variance functions. The general procedure is to choose a single- or

double-limited confidence factor, p, calculate the corresponding value, determine the edf from the variance type,

noise type and number of analysis points, and thereby set the statistical limit(s) on the variance. For double-sided

limits,

edf , 7 , edf
and cj-^^^ = s- -. (45)

rip, edf) ^-(1

5.4. Degrees of Freedom

The equivalent number of x' degrees of freedom (edf) associated with a statistical variance (or deviation) estimate

depends on the variance type, the number of data points, and the type of noise involved. In general, the progression

from the original two-sample (Allan) variance to the overlapping, total, and Theol variances has provided larger edfs

and better confidence. The noise type matters because it determines the extent that the points are correlated. Highly

correlated data have a smaller edf than does the same number of points of uncorrelated (white) noise. An edf

determination therefore involves (1) choosing the appropriate algorithm for the particular variance type, (2)

determining the dominant power law noise type of the data, and (3) using the number of data points to calculate the

corresponding edf

5.4.1 . AVAR, MVAR, TVAR, and HVAR EDF

The equivalent number of x' degrees of freedom (edf) for the Allan variance (AVAR), the modified Allan variance

(MVAR) and the related time variance (TVAR), and the Hadamard variance (HVAR) is found by a combined

algorithm developed by C.A. Greenhall, based on its generalized autocovariance function [2].
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Figure 17. Overlapping ADEV EDF for W FM Noise.
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This method for estimating the edf for the Allan, modified Allan, and Hadamard variances supersedes the following

somewhat simpler empirical approximations (which may still be used).

The equivalent number of x~ degrees of freedom (edf) for the fully overlapping Allan variance (AVAR) can be

estimated by the following approximation formulae for each power law noise type:

Table 5. AVAR approximation formulae for each power law noise type.

Power law

noise type

AVAR edf, where

N = # phase data points, m = averaging factor

= t/to

W PM
(N + l){N-2m)

2{N -m)

F PM exp

_
\ 2m ) \

'(2m + l)(7V-l)^T'

4
JJ

W FM
"3(iV-l) 2(A^-2)1 4nf

2m N 4w"+5

F FM

2(^-2)'

22>N - 4.9
For m = 1

Am(N + 'im)
For m >1

RW FM
Un-2) 1 -3m(A^-l) + 4m'

m
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The edf for the modified Allan variance (MVAR) can be estimated by the same expression as the overlapping

Hadamard variance (see below) with the arguments changed as follows (valid for -2 < a < 2): MVAR and TVAR edf

for N. m and a = MVAR edf for N + 1 , m and a - 2.

The edf for the fulh overlapping Hadamard variance (HVAR) can be found by an earlier algorithm also developed by

C.A. Greenhall based on its generalized autocovariance function. The HVAR edf is found either as a summation (for

small m cases with a small number of terms) or from a limiting form for large m, where 1/edf = (l/p)(aO-al/p). w ith

the coefficients as follows:

Table 6. HVAR edf coefficients.

Power law

noise ty pe

HVAR edf

coefficients

aO al

W FM 7/9 1/2

F FM 1.00 0.62

RW FM 31/30 17/28

FW FM 1.06 0.53

RR FM 1.30 0.54

5.4.2. TOTVAR EDF

The edf for the total variance (TOTVAR) is given by the formula b(T/T) - c, where T is the length of the data record, t

is the averaging time, and b and c are coefficients that depend on the noise type, as shown in Table 7;

Table 7. TOTVAR edf coefficients

Power law

noise tv pe

TOTVAR edf

Coefficients

b c

White FM 1.50 0

Flicker FM 1.17 0.22

Random walk

FM
0.93 0.36

5.4.3. MTOT EDF

The edf for the modified total variance (MTOT) is given by the same formula h{T/x) - c, where T is the length of the

data record, t is the averaging time, and b and c are coefficients that depend on the noise type as shown in Table 8:

Table 8. MTOT edf coefficients.

Power law

noise type

MTOT edf

Coefficients

b c

White PM 1.90 2.10

Flicker PM 1.20 1.40

White FM 1.10 1.20

Flicker FM 0.85 0.50

Random walk

FM
0.75 0.31
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5.4.4„ Theo1 / TheoH EDF

The equivalent number of degrees of freedom (edf) for the Theol, hence, TheoBR and TheoH variances, is

determined by the following approximation formulae for each power low noise type.

Table 9. TheoBR and TheoH approximation formulae for each power law noise type.

Power law

noi^ip tvnp

Theo 1 edf, where

N = # phase data points, t = 0.75m, m = averaging factor = t/tq

White PM edf =
'0.86(A^,, +l)(A^,-f r)^

( ^
1

-r
V JU + 1-14 J

Flicker PM
^4.798^; -6.374iV r + 12.387rV r ^

^df =
TTT^

^ (r + 36.6)"'(A^^-r) )[t + 0.3J

White FM edf =
'4.1A^^+0.8 3.l7V^+6.5'

f

'''' \

/
T tr-+5.2

Flicker FM edf
(2N]-\.?>N^j-3.5A( ^

~[ Nj JUY2.3J

Random walk

FM
( 4.4^ -2 Y (4.4^-1)' -8.6r(4.47V -l) + 11.4rY

edf —

I 2.9r )[ (4.4^,-3)-
J
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1261, Aug 2005..

5.5. Noise Identification

Identification of the dominant power law noise type is often necessary for setting confidence intervals and making

bias corrections during a frequency stability analysis. The most effective means for power noise identification are

based on the Bi and R(n) functions and the lag 1 autocorrelation.

5.5.1. Power Law Noise Identification

It is often necessary to identify the dominant power law noise process (WPM, FPM, WFM, FFM, RWFM, FWFM or

RRFM) of the spectral density of the fractional frequency fluctuations, Sy{f) = hj °- (a = 2 to -4), to perform a

frequency stability analysis. For example, knowledge of the noise type is necessary to determine the equivalent

number of chi-squared degrees of freedom (edf) for setting confidence intervals and error bars, and it is essential to

know the dominant noise type to correct for bias in the newer Total and Theol variances. While the noise type may
be known a priori or estimated manually, it is desirable to have an analytic method for power law noise identification

that can be used automatically as part of a stability analysis algorithm.
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There is little literature on the subject of power-law noise identification. The most common method for power law

noise identification is simply to observe the slope of a log-log plot of the Allan or modified Allan deviation versus

averaging time, either manually or by fitting a line to it. This obviously requires at least two stability points. During

a stability calculation, it is desirable (or necessary) to automatically identify the power law noise type at each point,

particularly if bias corrections and/or error bars must be applied.

5.5.2. Noise Identification Using Bi and R(n)

A noise identification algorithm that has been found effective in actual practice, and that works for a single t point

over the full range of -4 < a < 2 is based on the Barnes Bi function, which is the ratio of the N-sample (standard)

variance to the two-sample (Allan) variance, and the R(n) function [1], which is the ratio of the modified Allan to the

normal Allan variances. The B| function has as arguments the number of frequency data points, N, the dead time

ratio, r (which is set to 1), and the power law t-domain exponent, |i. The Bi dependence on (i is used to determine the

power law noise type for -2 < n < 2 (W and F PM to FW FM). For a Bi corresponding to ^ = -2, the a =
1 or 2 (F PM

or W PM noise) ambiguity can be resolved with the R(n) ratio using the modified Allan variance. For the Hadamard

variance, for which RR FM noise can apply, (m =3, a = -4), the Bi ratio can be applied to frequency (rather than

phase) data, and adding 2 to the resulting ^.

The overall noise B|/R(n) noise identification process is therefore:

1 . Calculate the standard and Allan variances for the applicable i averaging factor.

/V(l-/V")
2. Calculate B|(N, r=l, n)= .

2(/V - l)(l -2")

3. Determine the expected B| ratios for a = -3 through 1 or 2.

4. Set boundaries between them and find the best power law noise match.

5. Resolve an a = 1 or 2 ambiguity with the modified Allan variance and R(n).

6. Resolve an a = -3 or^ ambiguity by applying B] to frequency data.

The boundaries between the noise types are generally set as the geometric means of their expected values. This

method cannot distinguish between W and F PM at unity averaging factor.

5.5.3. The Autocorrelation Function
The autocorrelation function (ACF) is a fundamental way to describe a time series by multiplying it by a delayed

version of itself, thereby showing the degree by which its value at one time is similar to its value at a certain later

time. More specifically, the autocorrelation at lag k is defined as

_ E[{z,-^)iz,^,-^i)]
Pk 1

' (46)

where z, is the time series, \jl is its mean value, is its variance, and E denotes the expected value. The

autocorrelation is usually estimated by the expression

2
N-k

k , N '

where z is the mean value of the time series and is the number of data points [2].

(47)
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5.5.4. The Lag 1 Autocorrelation

The lag 1 autocorrelation is simply the value of r\ as given by the expression above. For frequency data, the lag 1

autocorrelation is able to easily identify white and flicker PM noise, and white (uncorrelated) FM noise, for which the

expected values are -1/2, -1/3 and zero, respectively. The more divergent noises have positive r\ values that depend

on the number of samples, and tend to be larger (approaching 1). For those more divergent noises, the data are

differenced until they become stationary, and the same criteria as for WPM, FPM and WFM are then used, corrected

for the differencing. The results can be rounded to determine the dominant noise type or used directly to estimate the

noise mixture.

5.5.5. Noise Identification Using

An effective method for identifying power law noises using the lag 1 autocorrelation [3] is based on the properties of

discrete-time fractionally integrated noises having spectral densities of the form (2 sin k For 5 < Vi, the process

is stationary and has a lag 1 autocorrelation equal to pi = 5 / (1-5) [4], and the noise type can therefore be estimated

from 5 = ri / (1+ri). For frequency data, white PM noise has pi = -1/2, flicker PM noise has pi = -1/3, and white FM
noise has pi = 0. For the more divergent noises, first differences of the data are taken until a stationary process is

obtained as determined by the criterion 5 < 0.25. The noise identification method therefore uses p = -round (25) -2d,

w here round (25) is 25 rounded to the nearest integer and d is the number of times that the data is differenced to bring

5 down to < 0.25. If z is a x-average of frequency data y(t), then a = p; if z is a i-sample of phase data x(t), then a = p
+ 2, where a is the usual power law exponent /°, thereby determining the noise type at that averaging time. The

properties of this power law noise identification method are summarized in Table 10. It has excellent discrimination

for all common power law noises for both phase and frequency data, including difficult cases with mixed noises.

Noise

Type
a Phase Data*

x(t)

d=0 ACF of

Phase Data

W PM 2

F PM 1
m V

W FM 0 /

F FM -1 A

RW FM -2

* The differencing operation changes the appearance

of the phase data to that shown 2 rows higher.

Figure 20. Lag 1 Autocorrelation for Various Power Law Noises
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Table 10. Lag 1 Autocorrelation for Various Power Law Noises and Differences

Noise

Type

a

Lag 1 Autocorrelation, r/

d=0 d=l d=2

x(t) y(t) x(t) y(t) x(t) y(t)

~}

0 -1/2 -1/2 -2/3 -2/3 -3/4

1 =0.7 -1/3 -1/3 -3/5 -3/5 -5/7

0 = 1 0 0 -1/2 -1/2 -2/3

-1 = 1 =0.7 =0.7 -1/3 -1/3 -3/5

.2 *1 = 1 = 1 0 0 -1/2

Shaded values are those used for noise ID for the particular

noise and data type.

5.5.6. Noise ID Algorithm

The basic lag 1 autocorrelation power law noise identification algorithm is quite simple. The inputs are a vector zj,...,

-N of phase or fi-equency data, the minimum order of differencing dmin (default = 0), and the maximum order of

differencing dmax. The output is p, an estimate of the a of the dominant power law noise type, and (optionally) the

value of d.

Done = False, d = 0

While Not Done

1
^

z =— Vz,

1 + r,

If d >= dmin And (5 < 0.25 Or d >= dmax)

p = -2iS + d)

Done = True

Else

^1 — ^2 ~ ^i'---'-^A'-i ~ ~ ^yv-i

TV = -

1

d = d + \

End If

End While

Note: May round p to nearest integer

Figure 21. The basic lag 1 autocorrelation power law noise identification algorithm.
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The input data should be for the particular averaging time, t, of interest, and it may therefore be necessary to decimate

the phase data or average the frequency by the appropriate averaging factor before applying the noise identification

algorithm. The dmax parameter should be set to two or three for an Allan or Hadamard (two or three-sample)

variance analysis, respectively. The alpha result is equal to p+2 or p for phase or frequency data, respectively, and

may be rounded to an integer (although the fractional part is useful for estimated mixed noises). The algorithm is fast,

requiring only the calculation of one autocorrelation value and first differences for several times. It is independent of

an\ particular variance. The lag 1 autocorrelation method yields good results, consistently identifying pure power

noise for a = 2 to ^ for sample sizes of about 30 or more, and generally identifying the dominant type of mixed

noises when it is at least 10 % larger than the others. For a mixture of adjacent noises, the fractional result provides

an indication of their ratio. It can handle all averaging factors.

Before analysis, the data should be preprocessed to remove outliers, discontinuities, and deterministic components.

Acceptable results can be obtained from the lag 1 autocorrelation noise identification method for N > 32, where N is

the number of data points. The algorithm tends to produce jumps in the estimated alpha for mixed noises when the

differencing factor, d, changes (although the alpha value when rounded to an integer is still consistent). This can be

avoided by using the same d for the entire range of averaging times, at the expense of higher variability when a lower

d would have been sufficient. The lag 1 autocorrelation method for power law noise identification is a fast and

effective way to support the setting of confidence intervals and to apply bias corrections during a frequency stability

analysis, as shown Figure 22:

SAO VLG1 1 B H-Maser S/N SA026 vs SA01

8

Noise Type

Averaging Time.t, Seconds

Figure 22. Frequency Stability and Noise Analysis of Two Hydrogen Masers
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5.6. Bias Functions

Several bias functions are defined and used in the analysis of frequency stability, as defined below. In particular, B],

the ratio of the standard variance to the Allan variance, and R(n), the ratio of the modified Allan variance to the

normal Allan variance, are used for the identification of power law noise types (see section 5.2.2), and the B2 and B3

bias functions are used to correct for dead time in a frequency stability measurement.

The Bl bias function is the ratio of the N-sample (standard) variance to the two-sample (Allan) variance with dead

time ratio r = T/t, where T = time between measurements, i = averaging time, and \i = exponent of t in Allan variance

for a certain power law noise process:

The Bl bias fiinction is useful for performing power law noise identification by comparing its actual value to those

expected for the various noise types (see section 5.2.2).

5.8. B2 Bias Function

The Bt bias function is the ratio of the two-sample (Allan) variance with dead time ratio r = T/t to the two-sample

(Allan) variance without dead time (r = 1 ):

5.7. Bi Bias Function

B,(7V,r,//)
cj'{N,T,T)

(j\2,T,T)
(48)

(t\2,T,t)

cr\2,T,T)
(49)

48



5.9. Bs Bias Function
The B3 bias function is the ratio of the N-sample (standard) variance with dead time ratio r = T/t at multiples M = i/t,

of the basic averaging time tq to the N-sample variance with the same dead time ratio at averaging time x:

B,{N,M.r.^)^ \/ 1 \
'

. (50)
a-(N,T,T)

The product of the Bi and B3 bias functions is used for dead time correction, as discussed in section 5.7.

5.10. R(n) Bias Function

The R(n) function is the ratio of the modified Allan variance to the normal Allan variance for n = number of phase

data points. Note: R(n) is also a function of a, the exponent of the power law noise type:

Mod cr"(r)
R{n) =

. (51)

The R(n) bias fiinction is useful for performing power law noise identification by comparing its actual value to those

expected for the various noise ty pes (see Section 5.2.2).

5.11. TOTVAR Bias Function

The TOTVAR statistic is an unbiased estimator of the Allan variance for white and flicker PM noise, and for white

FM noise. For flicker and random walk FM noise, TOTVAR is biased low as i becomes significant compared with

the record length. The ratio of the expected value ofTOTVAR to AVAR is given by the expression

B(TOTAL)=l-a
T

0<r< — , (52)
2

where a = l/31n2 = 0.481 for flicker FM noise, a = 3/4 = 0.750 for random walk FM noise, and T is the record length.

At the maximum allowable value of x = T/2, TOTVAR is biased low by about 24 % for RW FM noise. This bias

function should be used to correct all reported TOTVAR results.

5.12. MTOT Bias Function

The MTOT statistic is a biased estimator of the modified Allan variance. The MTOT bias factor (the ratio of the

expected value of Mod Totvar to MVAR), as shown in Table 11, depends on the noise type but is essentially

independent of the averaging factor and number of data points.

Table 11. MTOT bias factors for each noise type.

Noise Bias Factor

W PM 1.06

F PM 1.17

W FM 1.27

F FM 1.30

RW FM 1.31
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This bias factor should be used to correct all reported MTOT results.

5.13. Theo1 Bias

The Theol statistic is a biased estimator of the Allan variance. The Theol bias factor (the ratio of the expected value

of Theol to AVAR) depends on both noise type and averaging factor:

^, .
, r.-

AVAR b
Theol Bias = = a +—-, (53)

Theol

where m is the averaging factor and the constants a, b and c are given in Table 12. Note that the effective tau for a

Theol estimation is t = 0.75-m-to, where to is the measurement interval.

Table 12. Constants a, b, and c for Theol bias.

Noise Alpha a b c

RW FM _2 2.70 -1.53 0.85

F FM -1 1.87 -1.05 0.79

W FM 0 1.00 0.00 0.00

F PM 1 0.14 0.82 0.30

W PM 2 0.09 0.74 0.40

5.14. TheoH Bias

TheoH statistic is a bias-removed estimator of the Allan variance. TheoH is the best statistic for estimating the

frequency stability and type of noise over the widest possible range of averaging times without explicit knowledge of

the noise type.
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5.15. Dead Time

Dead time can occur in frequency measurements because of

instrumentation delay between successive measurements, or because of a

deliberate wait between measurements. It can have a significant effect on

the results of a stability analysis, especially for the case of large dead time

(e.g., frequency data taken for 100 seconds, once per hour).

Dead time can occur in frequency

measurements and can significantly

affect a subsequent stability analysis.

Methods are available to correct for dead

time and thus obtain unbiased results.

Measurement
Time

Dead
Time

Measurement
Time

Dead
Time

Figure 23. Illustration of dead time between successive measurements.

Dead time corrections can be applied by dividing the calculated Allan deviation by the square root of the product of

the Barnes B^ and B3 bias ratios. These corrections are particularly important for non-white FM noise with a large

dead time ratio. Restricting the dead time corrections to Allan deviations is a conservative approach based on the B2

and B3 definitions. Those bias functions depend critically on the power law noise type. Requiring manual noise

selection avoids the problem of noise identification for biased data having the wrong sigma-tau slope. Dead time
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correction is problematic for data having multiple noise types. In addition to introducing bias, measurement dead

time reduces the confidence in the results, lowers the maximum allowable averaging factor, and prevents proper

conversion of frequency to phase. Moreover, no information is available about the behavior of the device under test

during the dead time. It is recommended that these issues be avoided by making measurements with zero dead time.

Dead time that occurs at the end of a measurement can be adjusted for in an Allan deviation determination by using

the Barnes Bi bias function [1], the ratio of the two-sample variance with dead time ratio r = T/x to the two-sample

variance without dead time. Otherwise, without this correction, one can determine only the average frequency and its

drift. When such data are used to form frequency averages at longer tau, it is necessary to also use the B3 bias

function [2], the ratio of the variance with distributed dead time to the variance with all the dead time at the end.

Those bias corrections are made by use of the product of Bt and B3. The power law noise type must be known in

order to calculate these bias functions. Simulated periodically sampled frequency data with distributed dead time for

various power law noise processes shows good agreement with the B2 and B3 bias function corrections, as shown in

Figure 24.

52



I
FREQUENCY STABILFTY FREQUENCY STABILITY

QmBmi^ ^c%Miti Mil OuuMiti r

W U 1 14^ u a.

Annjliis Tliiei, 1; SeooAdi

(b)

FREQUENCY STAHLFTY
Oofimxn UnM tut OmMiiKatwMDm FREQUENCY BTAHLITY

U> u z

Aym^iag Hue. % Swcods

(c)

10" la 1

(d)

FREQUENCY STABILrTY

!^,i}ap|i>iMui:ii9li: ::!!!! C!-'

^'»in<iw a^>Au^.:.
,io.i>p[iji~» ciT'«r!r(<..;.

UP 19' u 1

/LveiasijMt Hub, t. Swxudi

Figure 24. Frequency stability plots for common power law noises with large measurement dead time (r = T/t = 36).

Simulated data sampled for x = 100 seconds once per hour for 10 days. Nominal 1x10 " stability at x = 100 seconds shown

by lines. Plots show stability of simulated data sets for continuous, sampled and dead time-corrected data, (a) White PM
(^i = -2) Vb. = 0.82 at AF = 1, (b) Flicker PM = -2), VBj = 0.82 at AF = 1, (c) White FM - -1), Vb, = 1.00 at AF = 1, (d)

Flicker FM (|i = 0) Vb. = 1.92 at AF = 1, (e) RW FM (|i = 1) VBj = 7.31 at AF = 1.
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These simulations show that the B2 and B3 bias corrections are able to support reasonably accurate results for sampled

frequency stability data having a large dead time, when the power law noise type is known. The slope of the raw

sampled stability plot does not readily identify the noise type, however, and mixed noise types would make correction

difficult. The relatively small number of data points reduces the confidence of the results, and limits the allowable

averaging factor. Moreover, the infrequent measurements provide no information about the behavior of the clock

during the dead time, and prevent a proper conversion of frequency to phase. Sparsely sampled data are therefore not

recommended for the purpose of stability analysis.

References for Dead Time
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5.16. Unevenly Spaced Data

Unevenly spaced phase data can be handled if they have associated timetags by using the individual timetag spacing

when converting them to frequency data. Then, if the tau differences are reasonably small, the data may be analyzed

by use of the average timetag spacing as the analysis tau, in effect placing the frequency data on an average uniform

grid. While completely random data spacing is not amenable to this process, tau variations of ±10 % will yield

reasonable results as long as the exact interval is used for phase to frequency conversion.

An example of unevenly spaced data is two-way satellite time and frequency transfer (TWSTFT) measurements made

on Monday, Wednesday, and Friday of each week, where the data spacing is either one or two days.

t>a(«: 09/29/03 Titr^: 09:i9-.i5

FREQUENCY STABILITY
Composite TDEV Plot

10' 1.5 2

Averaging Time, T, Days

Figure 25. TDEV results for simulated TWSTFT data.

The TWSTFT data are simulated as 256 points of white PM noise with an Allan deviation (ADEV) level of ay(T) = I

xlO " at 1-day. A composite plot of the TWSTFT TDEV results is shown above. The corresponding TDEV is 5.77

xlO"'- sec at T = 1 day (TDEV MDEV divided by V3), as shown in curve A. Note that these time-stability plots
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include points at all possible tau values. The green line shows that the -0.5 slope of the TDEV plot for W PM noise.

The TWSTFT data are sampled once on Monday. Wednesday, and Friday of each week. These sampled data

therefore have an average tau of 7/3 = 2.33 days, and their TDEV is shown in curve B. If the missing points are

replaced by linearh interpolated phase values, the TDEV becomes highly distorted, as shown in curve C. If the

sampled phase data are converted to frequency data using their timetag differences to determine the individual

measurement intervals, the average tau. i^.g. is close to 2.33 days (depending on the final fractional week that is

included), and the resulting TDEV is shown in curve D. It is essentially identical to that for the sampled phase data

shown in curve B. It is interesting that, although the converted frequency results are different depending on whether

the average or individual (more correct) taus are used, the (integrated) TDEV results are not (at least for a white PM
noise process).

None of the results is in good agreement with the nominal simulation. The result with the linearly interpolated phase

points is particular!) bad for Kia^g. and is similar to that of Tavella and Leonardi. as shown in Figure 1 of Reference

[1]. As they point out in that paper, because the true sampling interval is lave. it is not possible to estimate the noise at

shorter times, especialh for an uncorrelated white noise process. They further suggest that the higher level of the

estimated noise is related to the ratio of the true and interpolated sampling times (~2.33) and the Vx dependence of

TDEV. By applying a correction factor of V2.33 1.5, the longer-tau TDEV estimates are lowered to the correct

level. These factors are smaller for other non-white PM and FM noise processes. The adjusted method of using

frequency data converted from phase data by using individual tau values adjusted for the timetag spacing is

recommended because it does not use interpolation, does not present results at unrealisticall> low tau. and uses the

best frequency estimates.

Another situation is data that are taken in bursts. In that case, the best approach is probably to analyze the segments

separately, perhaps averaging those results to obtain better statistical confidence. One could obtain reasonable results

for the shorter av eraging times, but cannot apply standard techniques to analyze the complete data set.
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5.17. Histograms

A histogram shows the amplitude distribution of the phase or frequency fluctuations, and can provide insight

regarding them. We can expect a normal (Gaussian) distribution for a reasonably sized data set, and a different (e.g.,

bimodal) distribution can be a sign of a problem.

For a normal distribution, the standard deviation is approximately equal to the half-width at half-height (HWHA =

1.177s)

.
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Figure 27. An example of a histogram for a set of white FM noise.

5.18. Frequency Offset

It is often necessary to estimate the frequency offset from either phase or frequency data.

Frequency offset is usually calculated from phase data by either of three methods:

1. A least squares linear fit to the phase data (optimum for white PM noise):
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x(t) = a + bt, where slope = y(t) = b.

2. The average of the first differences of the phase data (optimum for white FM noise):

y(t) = slope = [x(t+T) - x(t)]/T.

3. The difference between the first and last points of the phase data:

y(t) = slope =
[
x(end) - x(start) ] / (M-1), where M = # phase data points.

This method is used mainly to match the two endpoints.

5.19. Frequency Drift

Most frequency sources have frequency drift, and it is often necessary (and usually advisable) to characterize and

remove this systematic drift before analyzing the stochastic noise of the source. The term drift refers to the systematic

change in frequency due to all effects, while aging includes only those effects internal to the device. Frequency drift

is generally analyzed by fitting the trend of the frequency record to an appropriate mathematical model (e.g., linear,

log, etc.), often by the method of least squares. The model may be based on some physical basis or simply a

convenient equation, using either phase or frequency data, and its suitability may be judged by the degree to which it

produces white (i.e., uncorrelated) residuals.

Frequency drift is the systematic change in frequency due to all effects, while frequency aging is the change in

frequency due to effects within the device. Thus, for a quartz crystal oscillator, aging refers to a change in the

resonant frequency of its quartz crystal resonator, while drift would also include the effects of its external

environment. Therefore, drift is the quantity that is usually measured, but it is generally done under constant

environmental conditions to the greatest extent possible so as to approximate the aging of the device.

5.20. Drift Analysis IVIethods

Several drift methods are useful for phase or frequency data as described below. The best method depends on the

quality of the fit, which can be judged by the randomness of the residuals.

Table 13. Drift analysis methods for phase or frequency data.

Data Method Noise Model

Phase Quadratic Fit W PM
Phase Avg of 2nd Diffs RW FM
Phase 3-Point Fit W & RW FM
Phase Linear Fit Frequency Offset

Phase Avg of 1st Diffs Frequency Offset

Phase Endpoints Frequency Offset

Freq Linear Fit W FM
Freq Bisection Fit W & RW FM
Freq Log Fit Stabilization

Freq Diffusion Fit Diffusion

5.21. Phase Drift Analysis

Three methods are commonly used to analyze frequency drift in phase data:
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1. A least squares quadratic fit to the phase data:

x(t) = a + bt + cV, where y(t) = x'(t) = b + 2ct, slope = y'(t) = 2c.

This continuous model can be expressed as x„ ^ a + robn + vo^cn^ for n =1, 2, 3..., N, and to is the sampling

interval for discrete data, where the a, b and c coefficients have units of sec, sec/sec and sec/sec', respectively,

and the frequency drift slope and intercept are 2c and b, respectively . The fit coefficients can be estimated by

the following expressions [1]:

( N

b =

n= \

N N

IG

IGt^
n=\ n=\ n=\

N N N
'

^Z + ^O^Z + ^0^Z /

(54)

V, n=\ n=\

where the A-F terms are as follows:

.4 = 3[3^(A^ + l) + 2]

5 = -18(2^ + 1)

C = 30

Z) = 1 2(2^ + 1)(8A^ + 1 1) / [(^ + l)(yV + 2)]

£ = -180/(A^ + 2)

F = 180/[(yV + l)(A^ + 2)]

G^N[N -\)[N -2)

A quadratic fit to the phase data is the optimum model for white PM noise.

2. The average of the second differences of the phase data:

y(t) = [x(t+T)-x(t)]/T, slope = [y(t+T)-y(t) ]/t = [x(t+2T)-2x(t+T)+x(t)]/T^

This method is optimum for random walk FM noise.

3. A three-point fit at the start, middle, and end of the phase data:

slope - 4[x(end)-2x(mid)+x(start)]/(MT)', where M = the number of data points.

It is the equivalent of the bisection method for frequency data.

5.22. Frequency Drift Analysis

Four methods are commonly used to analyze frequency drift in frequency data:

1. A least squares linear regression to the frequency data:

y(t) = a + bt, where a = intercept, b = slope = y'(t).
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Linear frequency drift can be estimated by a linear least squares fit to the frequency data, y(t) = a + bt. That

continuous model can be expressed as v„ = a + mbn for n =/, 2, 3..., M where M is the number of frequency

data points, ro is the sampling interval for the discrete data. The frequency drift intercept and slope are a and

b, and have units of sec and sec/sec, respectively. The fit coefficients can be estimated by equations 55 and

56:

M M M

b =—
M

n = \ V "=1 /

and

a -

M

M M

(55)

(56)

A linear fit to the frequency data is the optimum model for white FM noise.

2. The frequency averages over the first and last halves of the data:

slope = 2
[
y(2nd half) - y(lst half) ] / CNi), where N = number of points.

This bisection method is optimum for white and random walk FM noise.

3. A log model of the form (see MIL-0-553 1 OB) that applies to frequency stabilization:

y(t) = a-ln(bt+l ), where slope = y'(t) = ab/(bt+l ).

4. A diffusion (Vt) model of the form

y(t) = a+b(t+c)"-, where slope = y'(t) = '/2-b(t+c)""-.
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5.23. All Tau

Stability calculations made at all possible tau values can provide an excellent indication of the variations in the

results, and are a simple form of spectral analysis. In particular, cyclic variations are often the result of interference

between the sampling rate and some periodic instability (such as environmental sensitivity). However, an all tau

analysis is computationally intensive and can therefore be slow. For most purposes, however, it is not necessary to

calculate values at every tau, but instead to do so at enough points to provide a nearly continuous curve on the display

device (screen or paper). Such a "many tau" analysis can be orders of magnitude faster and yet provide the same

information.
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Figure 28. Comparison of all tau and many tau stability.

5.25. Environmental Sensitivity

Environmental sensitivity should be treated separately from noise when one performs a stability analysis. However, it

can be very difficult to distinguish between those different mechanisms for phase or frequency variations. It is often

possible to control the environmental conditions sufficiently well during a stability run so that environmental effects

such as temperature and supply voltage are negligible. Determining how well those factors have to be controlled

requires knowledge of the device's environmental sensitivities. Those factors should be measured individually, if

possible, over the largest reasonable excursions to minimize the effect of noise. Environmental sensitivity can best be

determined by considering the physical mechanisms that apply within the unit under test. Useful information about

the environmental sensitivity of frequency sources can be found in the references below. Some environmental factors

affect phase and frequency differently, which can cause confusion. For example, temperature affects the phase delay

through a cable. Dynamically, however, a temperature ramp produces a rate of change of phase that mimics a

frequency change in the source. Because environmental sensitivity is highly dependent on device and application, it

does not receive detailed consideration in this handbook. More information will be found in the following references.
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5.26. Parsimony

In any measurement or analysis, it is desirable to minimize the number of extraneous parameters. This is not just a

matter of elegance; the additional parameters may be implicit or arbitrary and thereby cause confusion or error if they

are ignored or misunderstood. For example, the Allan deviation has the important advantage that, because of its

convergence characteristics for all common clock noises, its expected value is independent of the number of data

points. Many of the techniques used in the analysis of frequency stability, however, do require that certain parameters

be chosen before they can be performed. For example, drift removal requires the choice of a mode! to which the data

will be fit (perhaps using the criterion of white residuals). Outlier removal is an especially difficult case, where

judgment often enters into the decision as to whether or not a datum is anomalous. A listing of some of these

nonparsimonious parameters is given in Table 14:
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Table 14. Non-Parsimonious Parameters in Frequency Stability Analysis

Type Process Parameter Criterion Remarks

Pre- Outlier Number of Apply best Use of MAD-based
processing removal sigmas judgment robust statistics is

recommended.

Drift Remove or Is drift It is generally wise

removal not deterministic?

Is its cause

known?

to remove

deterministic drift

beiore noise

analysis

Model White

residuals are

sign that model

is appropriate.

Model may have

physical basis (e.g.,

ditrusion process)

Convergence For iterative Generally uncritical

limit tit. - can hide deeply in

algorithm

Remove Model Noise type Not necessarily

average simple arithmetic

frequency mean of frequency.

Phase to Tau Accuracy Is measurement

frequency interval known
conversion exactly? Is it the

same for each point?

Frequency Tau See above

to phase Initial phase Set to zero. Generally arbitrary.

conversion Doesn't affect

subsequent stability

analysis.

Normalize Use to See "'Remove

frequency emphasize

noise rather

than frequency

offset

average frequency

above"

Analysis Drift Model Smallest Can be critical.

estimation residuals especially for

predictions. Known
physics can help

choose.

Convergence For iterative fit Generally uncritical

limit - can hide deeply in

algorithm

Frequency Noise model Lowest Generally uncritical

estimation residuals for

known noise

type

Gaps Skip, fill, Number, Process choice

omit, or distribu-tion. affects results

exclude noise type
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Allan Number of Time available As many as possible

deviation data points tor

measurement.

Must remove

outliers.

Dead time Property of

measuring

Avoid

ividAllllUIll /\r v^oniiuence

UCtil dUCb

As large as

COIIIIUcriLC dllOWS

Noise ID Noise type Generally

memou lo significant unambiguous

support error affect on

bars results

fidUcimdru A 11 A Wonr\ll A,lldn See above

UcV lallUIl UC V IdLIUIl

Udl alUClCI 3

l^uolVl 1 Idl 1\4 1 11 1^
r^nmmnnlv iiqpH inL/i 1 1 n ivjiH y tiocu 111

than Allan of clock with GPS control

UCV IdUUIl UI drift or operdiions.

icpdidic uriu uivcrgciu noise

removal
Tr>tQ 1
1 oiai All A lionAll Allan

—;
j-

'

See above

UcV idiion citvidiion

1 neo 1 parameters

1 U U^C 1 d.LllCI OCLLCI i^Cbb LUIllHlUIIiy

llldll /Alldll LOllllUCIlCC dl used
rif^\/ 1 Ql"i/~\nUCV idiiun lOIIU IdU.

Noise ID Critical for Generally

meinoQ lo inese uiaseo unamuiguous

support bias estimators

removal

Dynamic Window and Resolution, Affects calc time

stability step size number of

windows

V dfidiicc type LJala

properties:

IlVJIoC, Vjllll

AVAR nr HVARA V Alv UI n V Alv

Viewpoint, Visibility Personal preference

mesh, color

Spectral Type - Convention Analysis tools

anaiy sis rdrdmciriL or

non-

parametric.

dVdl IdUlC

iVlIUWlCUgt UI

dHdiy SL

W IIIUOVVIII^ — 1 1 CI r 1 tA/Idl 1 L

J

I Inr*ritir*fil

Bias

reduction

Smoothing — •

Clarity 1 rdueoii vs

rp'sohition

reduction

Presentation - Insight Use both

plot or fit
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Presenta- Form Table vs. Plot Clarity Use both

tion Domain Time or

frequency

Clarity,

correspondence

with

requirements

Use best

Error bars Include or not Clarity Error bars

recommended

Reference Remove or If affects Only if similar to

noise not results unknown

subtraction

Nominal Cost/risk May be Usually nominal at

vs. tradeoff specified 1-sigma confidence

maximum
at some

confidence

level

Notation State outlier

& drift

removal,

environmental

conditions,

etc.

Judgment of

analyst

Disclose choices

5.27. Transfer Functions

Variances can be related to the spectral density of the fractional frequency fluctuations by their transfer functions. For

example, for the Hadamard variance, this relationship is

^\{r)=l'S^{f)\H,{f)Uf^ (57)

where <5^w{x) is the three-sample, zero dead-time, binominally weighted Hadamard variance, Sy(/) is the spectral

density of the fractional frequency fluctuations, Hh(/) is its transfer function, and /h is the upper cutoff frequency

(determined by hardware factors). The transfer function is determined by the statistic's time-domain sampling

pattern.

The transfer functions for the most common variances used in frequency stability analysis are shown in Table 15:

Table 15. Transfer functions for the most common variances.

Variance Magnitude Squared Transfer Function |H(f)|^

Allan

2

' ^\
sin KTJ

. )

2

sin" Kzf

Hadamard

.

2'
(
sin KTJ

sin'* TTzf
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For nxf« 1, the transfer function of the Allan variance behaves as {nxfy, indicating that it is convergent for power

law processes Sy" down to as low as a = -2 (Random Walk FM), while the transfer function of the Hadamard variance

behaves as (ttt/)^, indicating that it is convergent for power law processes as low as a = -4 (Random Run FM).

The squared magnitudes of these transfer functions are shown in the plots below:

Transfer Function of Allan Variance

2-Sample (N=2), Zero Dead-Time (T=i)

—< 0.6

(a) Allan Variance
Transfer Function of Hadamard Vanance

3-Sample {N=3). Zero Dead-Time (T=t), Binomially Weighted Coefficients (1,2,1)

|H„(f) '=2''(sin{ TTf)/Rtf)'( 5in''(itTf)

(b) Hadamard Variance

Figure 29. Squared magnitudes of transfer functions for (a) Allan Variance and (b) Hadamard Variance.

These responses have their peaks where the frequency is one-half the sampling rate, and nulls where it is a multiple of

the sampling rate (i.e., at f = n/i, where n is an integer). As a spectral estimator, the Hadamard variance has slightly

higher resolution than the Allan variance, since the equivalent noise bandwidths of the Hadamard and Allan spectral

windows are 0.41 1 i'' and 0.476 t '. respectively [5].

Similar transfer functions exist for the modified, total, and Theol variances.
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6 Frequency Domain Stability

Frequency stability can also be characterized in the frequency domain in terms

of a power spectral density (PSD) that describes the intensity of the phase or

frequency fluctuations as a function of Fourier frequency. Spectral stability

measures are directly related to the underlying noise processes, and are

particularly appropriate when the phase noise of the source is of interest.

6.1. Noise Spectra

Frequency domain stability

measures are based on power

spectral densities that characterize

the intensity of the phase or

frequency fluctuations as a

function of Fourier frequency.

The random phase and frequency fluctuations of a frequency source can be modeled by power law spectral densities

of the form

Sv(f) = h(a)f\

where; Sy(f) = one-sided power spectral density of y, the

fractional frequency fluctuations, 1/Hz

f = Fourier or sideband frequency, hertz,

h(a) = intensity coefficient, and

a = exponent of the power law noise process.

The most commonly encountered noise spectra are

White (f")

Flicker (f-')

Random Walk(f--)

Flicker Walk (f ^)

.

Examples of these noise types are shown in the figure below.

BWillPBPWW!' '.'"I !"'« I

I II III Wj||ip»IBpi|p||WIB«WWBi»W»«'IIW.ill-'M'ii' 'liumW^HIIimi,!.

POWER-LAW NOISE SPECTRA
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WHITE NOISE fo FUCKEH NOISE f''

1 I
1
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DO MO MO m too D HO SH «
Time
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u

OJ
;

i 1

OJ
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i

i
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t no M MO 44 M KD 340 3U 4W «
riiBo

Figure 30. Examples of noise types.

Power law spectral models can be applied to both phase and frequency power spectral densities. Phase is the time

integral of frequency, so the relationship between them varies as 1/f

:
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S.(f)-7T^, (59)

where Sx(f) = PSD of the time fluctuations, sec^/Hz. (60)

Two other quantities are also commonly used to measure phase noise:

S^{f) = PSD of the phase fluctuations, radVHz and its

logarithmic equivalent £(f), dBc/Hz.

The relationship between these is

and

(61)

a/) = 10 -log s,(/)

where vq is the carrier frequency, hertz.

(62)

The power law exponent of the phase noise power spectral densities is p= a-2. These frequency-domain power law

exponents are also related to the slopes of the following time domain stability measures:

Allan variance cr-y(T) n= -(a+1), a<2

Modified Allan variance Mod cry(i) = -(a+l,a<3

Time variance <^~\{'^) n ^ -(a-1), a<3.

The spectral characteristics of the power law noise processes commonly used to describe the performance of

frequency sources are shown in the following table:

Tab le 16. Spectral characteristics of power law noise processes

Noise Type a P ^'

White PM 2 0 -2 -3 -1

Flicker PM 1 -1 -2 -2 0

White FM 0 _2 -1 -1 1

Flicker FM -1 -3 0 0 2

Random walk FM -2 -4 1 1 3

6.2. Power Spectral Densities

Four types of power spectral density are commonly used to describe the stability of a frequency source:

PSD of Frequency Fluctuations Sy(0

The power spectral density of the fractional frequency fluctuations y(t) in units of 1/Hz is given by Sy(f) = h(a) • f °,

where f= sideband frequency, Hz.

PSD of Phase Fluctuations S^O
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The power spectral density of the phase fluctuations in units of radVHz is given by S^(f)

carrier frequency, Hz.

= (27rv,i)' • Sx(f), where v„ =

PSD of Time Fluctuations S,(f)

The power spectral density of the time fluctuations x(t) in units of secVHz is given by Sx(0 = h(p) f " = Sy{0/(27tf)',

where: p= a-2. The time fluctuations are related to the phase fluctuations by x(t) = (|)(t)/2rtVo. Both are commonly
called "phase" to distinguish them from the independent time variable, t.

SSB Phase Noise £(f)

The SSB phase noise in units of dBc/Hz is given by £(f) = 10 • log ['A S^(f)]. This is the most common function used

to specify phase noise.

6.3. Phase Noise Plot

The following diagram shows the slope of the SSB phase noise, £(f), dBc/Hz versus log f Fourier frequency, Hz for

various power law noise processes.

SSB Phase Noise Diagram
-60

-80

-100

£(f),

-120

dBc/Hz

-140

-160

M
= .2

Sy(f)^f a = -1-

S^(f).fP p = a-:

£(f) = 10 log,o[y2- S (f)
]

o\ Fliciker
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a = 0
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log f, Hz

Figure 31. SSB Phase Noise Plot.

6.4. Spectral Analysis

Spectral analysis is the process of characterizing the properties of a signal in the frequency domain, either as a power

spectral density for noise, or as the amplitude and phase at discrete frequencies. Spectral analysis can thus be applied

to both noise and discrete components for frequency stability analysis. For the former, spectral analysis complements

statistical analysis in the time domain. For the latter, spectral analysis can aid in the identification of periodic

components such as interference and environmental sensitivity. Time domain data can be used to perform spectral

analysis via the Fast Fourier Transform (FFT), and there is much technical literature on that subject [2,3]. While, in

principle, time and frequency domain analyses provide equivalent information, in practice, one or the other is usually
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preferred, either because of measurement and/or analysis convenience, or because the results are more applicable to a

particular application. Spectral analysis is most often used to characterize the short-term (< 1 s) fluctuations of a

frequency source as a plot of phase noise power spectral density versus sideband frequency, while a time domain

analysis is most often used to provide information about the statistics of its instability over longer intervals (> 1 s).

Modern instrumentation is tending to merge these approaches by digitizing the signal waveform at high sampling

rates, thereby allowing FFT analysis at relatively high Fourier frequencies. Nevertheless, there are many pitfalls and

subtleties associated with spectral analysis that must be considered if meaningful results are to be obtained.

Data windowing is the process of applying a weighting function that falls off smoothly at the beginning and end to

avoid spectral leakage in an FFT analysis. Without windowing, bias will be introduced that can severely restrict the

dynamic range of the PSD result. The most common windowing types are Manning, Hamming, and Multitaper. The

classic Manning and Hamming windows can be applied more than one time.

Without filtering or averaging, the variances of the PSD results are always equal to their values regardless of the size

of the time domain data set. More data provide finer frequency resolution, not lower noise (while the data sampling

time determines the highest Fourier frequency). Without averaging, for white noise, each spectral result has only two

degrees of freedom. Some sort of filtering or averaging is usually necessary to provide less noise in the PSD results.

This can be accomplished by dividing the data into sections, performing an FFT analysis on each section separately,

and then averaging those values to obtain the final PSD result. The averaging factor improves the PSD standard

deviation by the square root of the averaging factor. The tradeoff in this averaging process is that each section of the

data is shorter, yielding a result with coarser frequency resolution that does not extend to as low a Fourier frequency.

The multitaper PSD analysis method offers a better compromise among bias, variance and spectral resolution.

Averaging is accomplished by applying a set of orthogonal windowing (tapering) functions called discrete prolate

spheroidal sequences (DPSS) or Slepian functions to the entire data array. An example of seven of these functions for

order J=4 is shown in Figure 32.

6.5. PSD Windowing

6.6. PSD Averaging

6.7. IVIultitaper PSD Analysis

2

3

Q.

E
<
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2
0 200 400 600 800 1000

Data Point

Figure 32. Slepian SPSS taper functions, J=4, #=7.
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The first function resembles a classic window function, while the others sample other portions of the data. The higher

windows have larger amplitude at the ends that compensates for the denser sampling at the center. These multiple

tapering functions are defined by two parameters, the order of the function, J, which affects the resolution bandwidth,

and the number of windows, which affects the variance. A higher J permits the use of more windows without

introducing bias, which provides more averaging (lower variance) at the expense of lower spectral resolution, as

shown Table 17;

Table 17. The two parameters of the tapering function.

Order J # Windows
2.0 1-3

2.5 1-4

3.0 1-5

3.5 1-6

4.0 1-7

4.5 1-8

5.0 1-9

The resolution BW is given by 2J/Nt, where N is the number of data points sampled at time interval /. An adaptive

algorithm can be used to weight the contributions of the individual tapers for lowest bias. The multitaper PSD has a

flat-topped response for discrete spectral components that is nevertheless narrower than an averaged periodogram

with the same variance. It is therefore particularly useful for examining discrete components along with noise.

6.8. PSD Notes

A carrier frequency parameter applies to the S^iV) and £(f) PSD types. The number of Fourier frequency points is

always the power of 2 greater than or equal to one-half of the number of time domain data points, n. The spacing

between Fourier frequency points is 1/nt, and the highest Fourier frequency is l/2t. If averaging is done, the value of

n is reduced by the averaging factor. The PSD fit is a least-squares power law line through octave-band PSD averages

[6].

For characterizing frequency stability, a spectral analysis is used primarily for the analysis of noise (not discrete

components), and should include the quantitative display of power law noise in common PSD units, perhaps with fits

to integer power law noise processes. Amplitude corrections need to be made for the noise response of the

windowing functions. The amplitude of discrete components should be increased by the log of the BW (Fourier

frequency spacing in hertz), which is a negative number for typical sub-hertz bandwidths.
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7 Domain Conversions

The stabilit\ of a frequency source can be specified and measured in either the

time or the frequency domain. Examples of these stability measures are the

Allan variance. a\(T), in the time domain, and the spectral densitv of the

fractional frequency fluctuations, Sy(f), in the frequency domain. Conversions

between these domains may be made by numerical integration of their

fundamental relationship, or by an approximation method based on a power law

spectral model for the noise processes involved. The latter method can be

applied onl\ when the dominant noise process decreases toward higher

sideband frequencies. Otherwise, the more fundamental method based on

numerical integration must be used. The general conversion from time to

frequency domain is not unique because white and flicker phase noise have the

same Allan variance dependence on t. When performing any of these

conversions, it is necessar\ to choose a reasonable range for a and i in the

domain being converted to. The main lobe of the ay(i) and Mod UyCx) responses

occur at the Fourier frequenc> f = 1/2t.

Time domain frequency stabilit} is related to the spectral density of the fractional frequencv fluctuations b\ the

relationship

The stability of a frequency source

can be specified and measured in

either the time or the frequency

domain. One domain is often

preferred to specify the stability

because it is most closely related

to the particular application.

Similarly, stability measurements

may be easier to perform in one

domain than the other.

Conversions are possible between

these generally equivalent

measures of frequency stability.

ctHM.T.t)^ ^'S^if)-\Hif)f-df, (63)

where ^H(fj
'

is the transfer function of the time domain sampling function.

The transfer function of the Allan (two-sample) time domain stability is given by

\H{ft=2 (64)

and therefore the Allan variance can be found from the frequency domain by the expression

a]{T) = 2[s^{f)

The equivalent expression for the modified Allan variance is

(65)

Mod(7
2 ^f.SSf)s\n\7rTf)^^

;(^)= ,-4 - ^ I . V
—

TT^J (66)

7.1. Power Law Domain Conversions

Domain conversions may be made for power law noise models by using the following equation and conversion

formulae:

2. ^ u ^01 o ^,
^

.

1 .038 + 3 log^. 2;r./;,r
, , 3/,^6 2z 2k T \2k) r

(67)
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where the h„ terms define the level of the various power law noises.

Noise Type g^vd)

RW FM a' f -
• Sv(f) T

'

F FM B • f ' • S,(0 i'^

W FM C • f° • Sy{f) • T-'

FPM D • f
-'

• Sv(0 T
^

WPM E-f-Sy(tVr-

-t"- aMt)-f-'

C-' -i' • ayT)-f°

D-' • I - aMi) - f
'

E X
' a^t) • f

where

A = 47tV6

B = 21n2

C = 1/2

D= 1.038 + 3-ln(2irfhTo)/47i^

E = 3fh/47:^

and fh is the upper cutoff frequency of the measuring system in hertz, and tq is the basic measurement time. This

factor applies only to white and flicker PM noise. The above conversion formulae apply to the TheoH hybrid statistic

as well as to the Allan variance.

7.2. Example of Domain Conversions

This section shows an e.xample of time and frequency domain conversions. First, a set of simulated power law noise

data is generated, and the time domain properties of this noise are analyzed by use of the overlapping Allan deviation.

Next, the same data are analyzed in the frequency domain with an £(f) PSD. Then, a power law domain conversion is

done, and those results are compared with those of the spectral analysis. Finally, the other power spectral density

types are examined.

For this example, we generate 4097 phase data points of simulated white FM noise with a one-second Allan deviation

value ay(l) = 1 x 10" and a sampling interval t = 1 ms. The number of points is chosen as an even power of 2 for

the frequency data. The generated set of simulated white FM noise is shown as frequency data in Figure 33a, and their

overlapping Allan deviation is shown in Figure 33b. The ay(l)white FM noise fit parameter is 1.08e-l 1, close to the

desired value.
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Figure 33. (a) Simulated W FM Noise Data, (b) Overlapping Allan Deviation, (c) £(f) Power Spectral Density, (d) S^(f)

Power Spectral Density, (e) Sx(f) Power Spectral Density, (f) Sy(f) Power Spectral Density

The power spectrum for the phase data is calculated by use of a 10 MHz carrier frequency and a £(f) power spectral

density type, the SSB phase noise to signal ratio in a 1 Hz BW as a function of sideband frequency, f, as shown in

Figure 33c. The fit parameters show an £(1) value of -79.2 dBc/Hz and a slope of -19.6 dB/decade. in close

agreement w ith the expected values of -80 dBc/Hz and -20 dB/decade.
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The expected PSD values that correspond to the time domain noise parameters used to generate the simulated power-

law noise can be determined by the power law domain conversion formulae of Section 7.1, as shown in Table 18.

Table 18. Domain calculation results

Frequency Domain: PSD Type: L(f), dBc/Hz
SB Freq (Hz): l.OOOOOe+00
Carrier (MHz) : l.OOOOOe+01

Time Domain: Sigma Type: Normal

Tau (Sec) : 1 . OOOOOe-03
Avg Factor: 1000

Power Law Noise:

Type dB/dec PSD Type Mu Sigma
RWFM -40 None RWFM + 1 O.OOOOOe+00
FFM -30 None FFM 0 O.OOOOOe+00
WFM -20 -80.0 WFM -1 l.OOOOOe-11
FPM -10 None FPM -2 O.OOOOOe+00
WPM 0 None WPM -2 O.OOOOOe+00
All -80 . 0 All 1 . OOOOOe-11

The other types of PSD that are commonly used for the analysis of frequency domain stability analysis are S^(f), the

spectral density of the phase fluctuations in radVHz; Sx(f), the spectral density of the time fluctuations in sec'/Hz; and

Sv(f)-. the spectral density of the fractional frequency fluctuations in units of 1/Hz. The expected value of all these

quantities for the simulated white FM noise parameters with ay(l) = l.OOe-11, t = l.OOe-3, and fo = 10 MHz are

shown in the following table.

Table 19. Expected value of PSD types for the simulated white FM noise parameters.

Parameter
PSD Type

£(f), dBc/Hz S4,(0, radVHz S,(f), sec'/Hz Sy({), 1/HZ

Data Type Phase Phase Phase Frequency

Simulated Value -80 2e-8 5.066e-24 2e-22

Log Value same -7.70 -23.3 -21.7

Slope, dB/decade -20 -20 -20 0

Fit Value -79.2 1.19e-8 3.03e-24 1.40e-22

Fit Exponent -1.96 -1.96 -1.96 -0.04
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8 Noise Simulation

It is valuable to have a means of generating simulated power law clock noise having the desired noise type (white

phase, flicker phase, white frequency, flicker frequency, and random walk frequency noise), Allan deviation,

frequency offset, frequency drift, and perhaps a sinusoidal component. This can serve as both a simulation tool and as

a way to validate stability analysis software, particularly for checking numerical precision, noise recognition, and

modeling. A good method for power-law noise generation is described in Reference 8. The noise type and time

series of a set of simulated phase data are shown in Table 20:

Table 20. Noise type and time series for a set of simulated phase data.

Noise Type Phase Data Plot

Random walk FM
a = -2

Random run noise

j

/

Flicker FM
a = -l

Flicker walk noise

White FM
a=0

Random walk noise

Flicker PM
a= 1

Flicker noise

iWiii

1r
1

1'

1

White PM
a = 2

1 1

1

1

1

White noise
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8.1. White Noise Generation

White noise generation is straightforward. One popular technique is to first generate two independent uniformly

distributed random sequences [1], and combine them using the Box-Muller transform [2,3] to produce a white

spectrum with Gaussian deviates. Another method is to generate 12 independent random sequences uniformly

distributed between 0 and 1, add them, and subtract 6 [4]. This will, via the central limit theorem, produce a Gaussian

distribution having zero mean and unit variance. White noise can be numerically integrated and differenced to

transform it by 1/f" and f^, respectively, to produce simulated noise having any even power law exponent.

8.2. Flicker Noise Generation

Flicker noise is more difficult to generate because it cannot be described exactly by a rational transfer function, and

much effort has been devoted to generating it [5-9]. The most common methods involve linear filtering by RC ladder

networks [5], or by FFT transformation [7,9]. The FFT method can produce noise having any integer power law

exponent from a = -2 (RW FM) to a = +2 (W PM) [7, 8].

8.3. Flicker Walk and Random Run Noise Generation

The more divergent flicker walk FM (a = -3) and random run FM (a = -4) power law noise types may be generated

by using the 1/f^ spectral property of a frequency to phase conversion. For example, to generate RR FM noise, first

generate a set of RW FM phase data. Then treat this RW FM phase data as frequency data, and convert it to a new set

of RR FM phase data.

8.4. Frequency Offset, Drift, and Sinusoidal Components

Beside the generation of the desired power law noise, it is desirable to include selectable amounts of frequency offset,

frequency drift, and a sinusoidal component in the simulated clock data.
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9 Measuring Systems

A frequency measuring system

with adequate resolution and a

low noise floor is necessary to

make precision clock

measurements.

Frequency measuring systems are instruments that accept two or more inputs, one

of which may be considered to be the reference, and compare their relative phase or

frequencies. These systems can take many forms, from the direct use of a

frequency counter to elaborate low-noise, high-resolution multichannel clock

measuring systems with associated archival databases. They can be custom built or

bought from several organizations specializing in such systems. The most

important attribute of a frequency measuring system is its resolution, which, for high performance devices, requires 1

ps/s (pplO ") or better resolution, and more elaborate hardware than a counter. The resolution of a digital frequency,

period, or time interval counter is determined mainly by its speed (clock rate) and the performance of its analog

interpolator (if any). That resolution generally improves linearly with the averaging time of the measurement, and it

can be enhanced by preceding it w ith a mixer that improves the resolution by the heterodyne factor, the ratio of the RF
input to the IF beat frequencies. Noise is another important consideration for a high-performance measuring system

whose useful resolution may be limited by its noise floor, the scatter in the data when the two inputs are driven

coherently by the same source. The performance of the measuring system also depends on the stability of its

reference source. A low noise ovenized quartz crystal oscillator may be the best choice for a reference in the short

term (1 to 100 s), while a active hydrogen maser generally provides excellent stability at averaging times out to

several days, and cesium beam tube devices at longer averaging times.

Three methods are commonly used for making precise time and frequency measurements, as described below.

9.1. Time Interval Counter Method

The time interval counter method divides the two sources being compared down to a much lower frequency (typically

1 pulse/second) and measures their time difference with a high resolution time interval counter:

Comp-
arators

1 pps

Time

Inten/al

Counter

T
Ref

Data

Figure 34. Block diagram of a time interval counter measuring system.

This measurement method is made practical by modem high-resolution interpolating time interval counters that offer

10 digit/s resolution. The resolution is not affected by the division ratio, which sets the minimum measurement time,

and determines how long data can be taken before a phase spillover occurs (which can be hard to remove from a data

set). A source having a frequency offset of 1 x 10"^ can, for example, be measured for only about 5.8 days before a 1

pps phase spillover occurs after being initially set at the center. Drift in the trigger point of the counter can be a

limitation to this measurement method.

9.2. Heterodyne Method

The heterodyne method mixes (subtracts) the two sources being compared, and measures the period of the resulting

audio-frequency beat note. The measurement resolution is increased by the heterodyne factor (the ratio of the carrier

to the beat frequency).
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Figure 35. Block diagram of a heterodyne measuring system.

This heterodyne technique is a classic way to obtain high resolution with an ordinary period counter. It is based on the

principle that phase information is preserved in a mixing process. For example, mixing a 10 MHz source against a

9.9999 MHz Hz offset reference will produce a 100 Hz beat signal whose period variations are enhanced by a factor

of 10 MHz/100 Hz = 10^ Thus a period counter with 100 ns resolution (10 MHz clock) can resolve clock phase

changes of 1 ps. A disadvantage of this approach is that a stable offset reference is required at exactly the right

frequency. Even worse, it can measure only frequency, requires a priori knowledge of the sense of the frequency

difference, and often has dead time between measurements.

9.3. Dual Mixer Time Difference Method

The third method, in effect, combines the best features of the tlrst two, using a time interval counter to measure the

relative phase of the beat signals fi-om a pair of mixers driven from a common offset reference:

^ref

Figure 36. Block diagram of a dual mixer time difference measuring system.

This dual mixer time difference (DMTD) setup is arguably the most precise way of measuring an ensemble of clocks

all having the same nominal frequency. When expanded to multiple channels by adding additional buffer amplifiers

and mixers, and time tagging the zero-crossings of the beat notes for each channel, this arrangement allows any two of

the clocks to be intercompared. The offset reference need not be coherent, nor must it have particularly low noise or

high accuracy, because its effect cancels out in the overall measurement process. For best cancellation, the zero-

crossings should be coincident or interpolated to a common epoch. Additional counters can be used to count the

whole beat note cycles to eliminate their ambiguity, or the zero-crossings can simply be time tagged. The measuring

system resolution is determined by the time interval counter or time-tagging hardware, and the mixer heterodyne

81



factor. For example, if two 5 MHz sources are mixed against a common 5 MHz to 10 Hz offset oscillator (providing a

5 X 10''/10 = 5 X 10' heterodyne factor), and the beat note is time tagged with a resolution of 100 ns(10 MHz clock),

the measuring overall system resolution is
10"'' /5 x 10' = 0.2 ps.

Multichannel DMTD clock measuring systems have been utilized by leading national and commercial metrology

laboratories for a number of years [1-5]. An early commercial version is described in Reference [3], and a newer

technique is described in Reference [8]. A direct digital synthesizer (DDS) can be used as the offset reference to

allow measurements to be made at any nominal frequency within its range. Cross-correlation methods can be used to

reduce the DDS noise. Instruments using those techniques are available that automatically make both time and

frequency domain measurements.

9.4. Measurement Problems and Pitfalls

It can be difficult to distinguish between a bad unit under test and a bad measurement. When problems occur in time-

domain frequency stability measurements, they usually cause results that are worse than expected. It is nearly

impossible for a measurement problem to give better than correct results, and there is considerable justification in

saying that the best results are the correct ones. Two possible exceptions to this are (1) misinterpretation of the scale

factor, and (2) inadvertent coherency (e.g., injection locking of one source to another due to inadequate isolation.

Lack of stationarity (changes in the source itself), while not a measurement problem per se, must also be considered.

In general, the more devices available and the more measurements being made, the easier it is to sort things out.

One common problem is hum that contaminates the measurements due to ground loops. Because the measurement

interval is usually much longer than the period of the power line frequency, and not necessarily coherent with it,

aliased "beats" occur in the frequency record. Inspection of the raw data can show this, and the best cure is often

isolation transformers in the signal leads. In fact, this is a wise precaution to take in all cases.

All sorts of other mechanisms (electrical, electromagnetic, magnetic, thermal, barometric, vibrational, acoustic, etc.)

exist that can interfere with time domain frequency measurements. Think about all the environmental sensitivities of

the unit under test, and control as many of them as possible. Be alert to day-night and weekly cycles that indicate

human interference. Stories abound about correlations between elevators moving and cars coming and going ("auto-

correlations") that have affected clock measurements. Think about what can have changed in the overall test setup.

Slow periodic fluctuations will show up more distinctly in an all tau (rather than an octave tau) stability plot.

In high-precision measurements, where picoseconds matter (e.g. 1 x 10"" = 1 ps/1000 seconds), it is important to

consider the mechanical rigidity of the test setup (e.g. 1 ps = 0.3 mm). This includes the electrical length (phase

stability) of the connecting cables. Teflon dielectric is an especially bad choice for temperature stability, while

foamed polyethylene is much better. Even a few degrees of temperature variation will cause the phase of a high-

stability source to "breathe" as it passes through 100 ft of coaxial cable.

Phase jumps are a problem that should never be ignored. Examination of the raw phase record is critical because a

phase jump (frequency impulse) appears strangely in a frequency record as a white FM noise characteristic [10].

Some large phase jumps are related to the carrier period (e.g., a malfunctioning digital frequency divider).

It is difficult to maintain the integrity of a measuring system over a long period, but, as long as the operating

conditions of the unit under test and the reference are undisturbed, gaps in the data record may be acceptable. An
uninterruptible power system is indispensable to maintain the continuity of a long run.

9.5. Measuring System Summary

A comparison of the relative advantages and disadvantages of these methods is shown in the following table:
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Table 21. Comparison of time and frequency measurement methods.

Method Advantages Disadvantages

Divider & time interval

counter

Provides phase data
IVlULiC^L ICbUlUlUJIl

Covers wide range of carrier

frequencies

Easily expandable at low cost
Not suitable for short

tau

Mixer and period

counter

Resolution enhanced by

heterodyne factor
No nhase data

Provides direct frequency data No frequency sense

Usable for short tau
Requires offset

reference

Expandable at reasonable cost
Single carrier

frequency

Dual mixer time

difference

High resolution, low noise Single carrier

frequencyProvides phase data

Offset reference noise &
inaccuracy cancels Relatively complex

No fixed reference channel

It is preferable to make continuous zero-dead-time phase measurements at regular intervals, and a system using a

dual-mixer time interval measurement is recommended. An automated high-resolution multi-channel clock (phase)

measuring system with a high-performance (e.g., hydrogen maser) reference is a major investment, but one that can

pay off in better productivity. It is desirable that the measurement control, data storage, and analysis functions be

separated to provide robustness and networked access to the data. A low-noise reference not only supports better

measurement precision but also allows measurements to be made faster (with less averaging).

9.6. Data Format

A one-column vector is all that is required for a phase or frequency data array. Because the data points are equally

spaced, no time tags are necessary. Nevertheless, the use of time tags is recommended (see section 9.4 below),

particularly to identify anomalies or to compare several sources. Time tagging is generally required for archival

storage of clock measurements, but a single vector of extracted gap-filled data is sufficient for analysis. The

recommended unit for phase data is seconds, while frequency data should be in the form of dimensionless fractional

frequency. Double-precision exponential ASCII numeric format is recommended for ease of reading into most

analysis software, with comma or space-delimited fields and one data point per line. The inclusion of comments and

headers can pose problems, but most software will reject lines that start with a or some other non-numeric

character.

9.7. Data Quantization

The phase or frequency data must be gathered with sufficient resolution to show the variations of interest, and it must

be represented with sufficient precision to convey those variations after removal of fixed offsets (see section 10.1

below). Nevertheless, highly quantized data can still contain useful information, especially after they are combined

into longer averaging times. An example of highly quantized frequency data is the random telegraph signal shown

below. Although these data have a non-Gaussian amplitude distribution (their histogram consists of two spikes), the

random occurrences of the two levels produce a white FM noise characteristic.
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FREQUENCY STABILITY
W FM Noise of Random Telegraph Signal

Siqno

tOOe+00
7.O0e-01
4,98e-01
3.52e- 01

2.53e-0i
'i.85e-0i

l.32e-01
9.8Qe-02

256 6.16e-02
512 4.6Ce-02

3.66e-02
2.5Ge-02

Freq Dqla = +/— 1 ot rqndc

10^ 10' 10'

Aveiaging Time, t. Seconds
10^

Figure 37. Random telegraph signal as an example of highly quantized frequency data.

9.8. Time tags

Time tags are often associated witii phase or frequency data, and can be usefully applied to the analysis of these data.

Time tags are highly desirable for frequency stability measurements, particularly for identifying the exact time of

some anomaly. The preferred time tag is the Modified Julian Date (MJD) expressed as a decimal fraction and

referenced to UTC. Based on the astronomical Julian Date, the number of days since noon on January 1, 4713 BC,

the MJD is the Julian Date - 2 4000 000.5. It is widely used, purely numeric, can have any required resolution, is

easily converted to other formats, is non-ambiguous over a two-century (1900 to 2099) range, and is free from

seasonal (daylight saving time) discontinuities

Analysis software can easily convert the MJD into other formats such as year, month, day, hour, minute, and second.

The MJD (including the fractional day) can be obtained from the C language timeo function by dividing its return

value by 86 400 and adding 40 587.

9.9. Archiving and Access

There is no standard way to archive and access clock data. For some purposes, it is sufficient to simply save the raw

phase or frequency data to a file, identifying it only by the file name. At the other extreme, multichannel clock

measuring systems may require an elaborate database to store a large collection of data, keep track of the clock

identities and transactions, provide security and robust data integrity, and serve the archived data via a network. It

may also be necessary to integrate the clock data with other information (e.g., temperature) from a data acquisition

system.
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10 Analysis Procedure

A frequency stability analysis can proceed along several paths, as the circumstances dictate. Nevertheless, the

following example shows a typical analysis flow. Using simulated data for a high-stability rubidium frequency

standard, the purpose of the analysis is to characterize the noise in the presence of an outlier, large frequency offset

and significant drift.

Table 22. An example of a typical analysis flow.

Step Description Plot

Open and examine a

phase data file. The

phase data is just a

ramp with slope

corresponding to

frequency offset.

0000
9998
7998
6998
5998
4998
3998
2998
1998
0997
9997
8997

000000
730257
905261
692150
738512
876276
361914
336122
367234
856792
748960
326982

etc

.

OOOOOe+00
41449e-07
85009e-06
98003e-06
09537e-06
63997e-06
40859e-06
16789e-06
54638e-06
57264e-06
24524e-06
42008e-06

PHASE DATA
Simulated RAF3 Phase Data

10.0 12J 15.0 17.5 20.0 22.5 25.0 27.5 30.0

Time, Days

Convert the phase data

to frequency data and

examine it. An
obvious outlier exists

that must be removed

to continue the

analysis.

Visual inspection of

data is an important

preprocessing step!

Analyst judgment may
be needed for less

obvious outliers.

FREQUENCY DATA
Simulated RAFS Frequency Data

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27J 30.0

Time, Days
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In an actual analysis,

one should try to

determine the cause of

the outlier. The

frequency spike of

IxlO ''

corresponds to a

phase step of 900 ns

over a single 900-s

measurement interval,

nine 10 MHz carrier

cycles. Data taken at a

higher rate would help

to determine whether

the anomaly happened

instantaneously or over

some finite period.

Timetags can help to

relate the outlier to

other external events.

PHASE DATA
Phase Slep at Frequency Outlier

-«0

-500

-600

.700

800

-900

lOOO

435.0 1436.0 1437.0 1438.0 1439.0 1440.0 1441.0 1442.0 1443.0 1444.0 1445.0

Data Point

Remove the outlier.

The noise and drift are

now visible. A line

shows a linear fit to the

frequency data, which

appears to be quite

appropriate.

FREQUENCY DATA
Frequency Outlier Removed

2J 5.0 7.5 10.0 12.5 15.0 17J 20.0 22.5 25.0 27.5 30 0

Time, Days

Remove the frequency

offset from the phase

data. The resulting

quadratic shape is due

to the frequency drift.

One can just begin to

see phase fluctuations

around the quadratic fit

to the phase data.

PHASE DATA
Frequency Oltset Removed

2.5 5.0 7J 10.0 12J 15.0 17.5 20.0 22.5 25.0 27.5 30.0

Time, Days
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Remove the frequency

drift, leaving the phase

residuals for noise

analysis, which is now
clearly visible.

Some experience is

needed to interpret

phase data like these.

Remember that

frequency corresponds

to the slope of the

phase, so the frequency

is lowest near the end

of the record, where the

phase slope is the most

negative.

PHASE DATA
Frequency Drift Removed

7.5 10.0 12.3 15.0 17J 20.0 22.5 25.0

Time, Days

Convert the phase

residuals to frequency

residuals.

Alternatively, remove

the frequency drift

from the frequency

data of Step #3. There

are subtle differences

in removing the linear

frequency drift as a

quadratic fit to the

phase data compared

with removing it as a

linear fit to the

frequency data

(different noise models

apply). Other drift

models may be more

appropriate. Analyst

judgment is needed to

make the best choices.

FREQUENCY DATA
Frequency Onset and Drift Removed

10.0 12.5 15.0 17J 20.0 22.5 25.0

Time, Days

Perform a stability

analysis using the

overlapping Allan

deviation. The results

show white FM noise

at short averaging

times (i"''^ slope) , and

flicker FM noise at

longer tau (t° slope),

both at the simulated

levels shown in the

annotations of the first

plot.

FREQUENCY STABILITY
Frequency Drift Removed

2.<7e-
1.95e-
1 55e-

2-30e + 05 1-18

lO' 10* lO'

Averaging Time, T,^ Seconds
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10.1. Data Precision

There are relatively few numerical precision issues relating to the analysis of frequency stabilit>' data. One exception,

however, is phase data for a highly stable frequency source having a relatively large frequency offset. The raw phase

data will be essentialh a straight line (representing the frequency offset), and the instability information is contained

in the small deviations from the line. A large number of digits must be used unless the frequency offset is removed by

subtracting a linear term from the raw phase data. Similar considerations apply to the quadratic phase term (linear

frequency drift). Man\ frequency stability, measures involve averages of tlrst or second differences. Thus, while their

numerical precision obviously depends upon the variable digits of the data set, there is little error propagation in

forming the summan. statistics.

10.2. Preprocessing

Preprocessing of the measurement data is often necessary before the actual analysis is performed, which may require

data averaging, or removal of outliers, frequency offset, and drift.

Phase data may be converted to frequencv data, and vice versa. Phase and frequency data can be combined for a

longer averaging time. Frequenc\ offset ma> be removed from phase data by subtracting a line determined b\ the

average of the first differences, or by a least squares linear fit. An offset may be removed from frequency data by

normalizing it to have an average value of zero. Frequency drift may be removed from phase data by a least squares

or three-point quadratic fit, or by subtracting the average of the second differences. Frequency drift may be removed

from frequency data by subtracting a least-squares linear fit. by subtracting a line determined by the first differences

or by calculating the drift from the difference between the two halves of the data. The latter, called the bisection drift,

is equivalent to the three-point fit for phase data. Other more specialized log and diffusion models may also be used.

The latter are particularh useful to describe the stabilization of a frequency source. In general, the objective is to

remove as much of the deterministic behavior as possible, obtaining random residuals for subsequent noise analysis.

10.3. Gaps, Jumps, and Outliers

It is common to have gaps and outliers in a set of raw frequency stability data.

Missing or erroneous data ma\ occur due to power outages, equipment

malfunctions, and interference. For long-term tests, it may not be possible or

practical to repeat the run. or otherwise avoid such bad data points. Usually the

reason for the gap or outlier is known, and it is particular!) important to e.xplain all

phase discontinuities. Plotting the data will often show the bad points, which may

have to be removed before doing an analysis to obtain meaningful results.

Gaps, jumps and outliers can

occur in frequency

measurements and they must

be handled before performing

a stability analysis. Methods

are available to fill gaps and

to correct for outliers in a

consistent manner.

Frequency outliers are found by comparing each data point with the median value of

the data set plus or minus some multiple of the absolute median deviation. These median statistics are more robust

because they are insensitive to the size of the outliers. Outliers can be replaced by gaps or filled w ith interpolated

values.

Frequency jumps can also be a problem for stabilitv analysis. Their occurrence indicates that the statistics are not

stationar> , and it may be necessar> to divide the data into portions and analyze them separately.

Gaps and outliers can occur in clock data due to problems with the measuring system or the frequency source itself

Like death and taxes, gaps and outliers can be avoided but not eliminated.
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10.4. Gap Handling

Gaps should be included to maintain the proper implied time interval between measurements, and a value of zero (0)

is often used to denote a gap. For phase data, zero should be treated as valid data if it is the first or last point. For

fractional frequency data, valid data having a value of zero can be replaced by some very small value (e.g., le-99).

Many analysis functions can produce meaningful results for data having gaps by simply skipping those points that

involve a gap. For example, in the calculation of the Allan variance for frequency data, if either of the two points

involved in the first difference is a gap, that Allan variance pair is skipped in the summation.

Gaps may be filled in phase or frequency data by replacing them with interpolated values, by first removing any

leading and trailing gaps, and then using the two values immediately before and after any interior gaps to determine

linearly interpolated values within the gap.

A zero value in fractional frequency data can also occur as the result of the conversion of two equal adjacent phase

data points (perhaps because of limited measurement resolution), and the value should be adjusted to, say, le-99 to

distinguish it from a gap.

10.5. Uneven Spacing

Unevenly spaced phase data can be handled if they have associated time tags by using the individual time tag spacing

when converting it to frequency data. Then, if the tau differences are reasonably small, the data may be analyzed by

using the average time tag spacing as the analysis tau, in effect placing the frequency data on an average uniform grid.

While completely random data spacing is not amenable to this process, tau variations of ±10 % will yield reasonable

results as long as the exact intervals are used for the phase to frequency conversion.

10.6. Analysis of Data with Gaps

Care must be taken when analyzing the stability of data with missing points and/or gaps. Missing points can be found

by examining the time tags associated with the data, and gaps can then be inserted as placeholders to maintain equally

spaced data. Similarly, outliers can be replaced with gaps for the same reason. These gaps can span multiple points.

Some analysis processes can be performed with data having gaps by skipping over them, perhaps at some speed

penalty, but other calculations cannot be. It is therefore often necessary to replace the gaps with interpolated values.

Those points are not real data, however, and, if there are many of them, the results will be suspect. In these cases,

judgment is needed to assure a credible result. It may be more prudent to simply analyze a gap-free portion of the

data.

10.7. Phase-Frequency Conversions

Phase to frequency conversion is straightforward for data having gaps. Because two phase points are needed to

determine each frequency point (as the difference between the phase values divided by their tau), a single phase gap

will cause two frequency gaps, and a gap ofN phase points causes N + 1 frequency gaps.

Conversion from frequency to phase is more problematic because of the need to integrate the frequency data. The

average frequency value is used to calculate the phase during the gap, which can cause a discontinuity in the phase

record. Analysis of phase data resulting from the conversion of frequency data having a large gap is not

recommended.
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10.8. Drift Analysis

Drift analysis fianctions generally perform well for data having gaps, provided that missing data are represented by

gaps to maintain a regular time sequence.

10.9. Variance Analysis

Variance analysis functions can include provisions for handling gaps. Some of these functions yield satisfactory

results in all cases, while others have speed limitations, or provide unsatisfactory results for data having large gaps.

The latter is most apparent at longer averaging times where the averaging factor is comparable to the size of the gap.

The speed limitations are caused by more complex gap checking and frequency averaging algorithms, while the poor

results are associated with the total variances for which conversion to phase data is required. In all cases, the results

will depend on coding details included in addition to the basic variance algorithm. Filling gaps can often help for the

total variances. Two general rules apply for the variance analysis of data having large gaps: (1) use unconverted

phase data, and (2) check the results against the normal Allan deviation (which has the simplest, fastest gap handling

ability).

10.10. Spectral Analysis

Gap filling in spectral analysis ftjnctions can affect the low frequency portion of the spectrum.

10.11. Outlier Recognition

The median absolute deviation (MAD) is recommended as its means of outlier recognition. The MAD is a robust

statistic based on the median of the data. It is the median of the scaled absolute deviations of the data points from

their median value, defined as MAD = Median
{ |

y(i) - m
|

/ 0.6745 }, where m = Median { y(i) }, and the factor

0.6745 makes the MAD equal to the standard deviation for normally distributed data. Each frequency data point, y(i),

is compared with the median value of the data set, m, plus or minus the desired multiple of the MAD.

While the definition of an outlier is somewhat a matter ofjudgment, it is important to find and remove such points in

order to use the rest of the data, based on their deviation from the median of the data, using a deviation limit in terms

of the median absolute deviation (a 5-sigma limit is common). This is a robust way to determine an outlier, which is

then replaced by a gap. An automatic outlier removal algorithm can iteratively apply this method to remove all

outliers, which should be an adjunct to, and not a substitute for, visual inspection of the data.

It is important to explain all outliers, thereby determining whether they are due to the measurement process or the

device under test. An important first step is to correlate the bad point with any external events (e.g.. power outages,

equipment failures, etc.) that could account for the problem. Failures of the measurement system, frequency

reference, or environmental control are often easier to identify if multiple devices are under test. Obviously, a

common gap in all measurement channels points to a failure of the measurement system, while a common change in

all measurement readings points to a reference problem. Auxiliary information such as monitor data can be a big help

in determining the cause of outliers. A log of all measurement system events should be kept to facilitate outlier

identification. Discrete phase jumps are a particular concern, and, if they are related to the RF carrier frequency, may

indicate a missing cycle or a problem with a digital divider. A phase jump will correspond to a frequency spike with a

magnitude equal to the phase change divided by the measurement interval. Such a frequency spike will produce a

stability record that appears to have a (large magnitude) white FM noise characteristic, which can be a source of

confusion.
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10.12. Data Plotting

Data plotting is often the most important step in the analysis of frequency stability. Visual inspection can provide vital

insight into the results, and is an important preprocessor before numerical analysis. A plot also shows much about the

validity of a curve fit.

Phase data are plotted as line segments connecting the data points. This presentation properly conveys the integral

nature of the phase data. Frequency data are plotted as horizontal lines between the frequency data points. This shows

the averaging time associated with the frequency measurement, and mimics the analog record from a frequency

counter. As the density of the data points increases, there is essentially no difference between the two plotting

methods. Missing data points are shown as gaps without lines connecting the adjacent points.

10.13. Variance Selection

It is the user's responsibility to select an appropriate variance for the stability analysis. The overlapping Allan

variance is recommended in most cases, especially where the frequency drift is small or has been removed. The Allan

variance is the most widely used time-domain stability measure, and the overlapping form provides better confidence

than the original "normal" version. The total and TheoH variance can be used for even better confidence at large

averaging factors (but at the expense of longer computation time). The modified Allan variance is recommended to

distinguish between white and flicker PM noise, and, again, a total form of it is available for better confidence at long

tau. The time variance provides a good measure of the time dispersion of a clock due to noise, while MTIE measures

the peak time deviations. TIE rms can also be used to assess clock performance, but TVAR is generally preferred.

Finally, the overlapping Hadamard variance is recommended over its normal form for analyzing stability in the

presence of divergent noise or frequency drift. In all cases, the results are reported in terms of the deviations.

The choice of tau interval depends mainly on whether interference mechanisms are suspected that cause the stability

to vary periodically. Normally, octave or decade spacing is used (the former has even spacing on a log-log plot, while

the latter provides tau multiples of ten). The all tau option can be useful as a form of spectral analysis to detect cyclic

disturbances (such as temperature cycling).

10.14. Three-Cornered Hat

Any frequency stability measurement includes noise contributions from both the

device under test and the reference. Ideally, the reference noise would be low

enough that its contribution to the measurement is negligible. Or, if the noise of the

reference is known, it can be removed by subtracting its variance. A special case is

that of two identical units where half of the measured variance comes from each,

and the measured deviation can be corrected for one unit by dividing it by V2.

Otherwise, it may be useful to employ the so-called "three-cornered haf method for

determining the variance of an individual source. Given a set of three pairs of

measurements for three independent frequency sources a, b, and c whose variances

It is sometimes necessary to

determine the individual

noise contributions of the two

sources that contribute to a

variance measurement.

Methods exist for doing so by

using the results of multiple

measurements to estimate the

variance of each source.
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The individual variances may be determined by the expressions
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Although useful for determining the individual stabilities of units having similar performance, the method may fail by

producing negative variances for units that have widely differing stabilities, if the units are correlated, or for which

there are insufficient data. The three sets of stability data should be measured simultaneously. The three-cornered hat

method should be used with discretion, and it is not a substitute for a low noise reference. It is best used for units

having similar stability (e.g., to determine which unit is best). Negative variances are a sign that the method is failing

(because it was based on insufficient measurement data, or because the units under test have disparate or correlated

stability ). This problem is most likely to arise at long tau.

The three-cornered hat function may be used to correct a stability measurement for the noise contribution of the

reference, as shown in Figure 38.

Figure 38. Three-cornered hat function.

The Unit Under Test (UUT), denoted as source A, is measured against the reference, denoted by B and C, by identical

stability data files A-B and A-C. The reference is measured against itself by stability data file B-C, which contains the

a priori reference stability values multiplied by V2.

An example of the use of the three-cornered hat function to correct stability data for reference noise is shown below.

Simulated overlapping Allan deviation stability data for the unit under test versus the reference were created by

generating and analyzing 512 points of frequency data with tau = 1 s and ay(l s) = le-1 1. The resulting stability data

are shown in the following table.
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Table 23. Stability data for unit under test versus reference.

Tau # Sigma Min Sigma Max Sigma

1 .OOOe+00 51

1

9.448e-12 9.108e-12 9.830e-l 2

2.OOOe+00 509 7.203e-12 6.923e-12 7.520e-l 2

4.OOOe+00 50:? 5.075e-12 4.826e-12 5.367e-12

8.OOOe+00 497 3.27:)e-l 2 j>.058e-12 3.546e-12

1.600e+01 481 2.370e-12 2.157e-12 2.663e-12

3.200e+01 449 1.854e-12 1.720e-12 2.025e-12

6.400e+01 385 l.269e-12 1.147e-12 1.441e-12

1.280e+02 257 5.625e-13 4.820e-13 7.039e-13

A similar stability file is used for the reference. Since it represents a measurement of the reference against itself, the

Allan deviations of the reference source are multiplied by V2. Simulated overlapping Allan deviation stability data for

the reference versus the reference was created by generating 512 points of frequency data with tau = 1 second and

ay(l)= 1.414e-12.

Table 24. Stability data for unit under test versus reference.

Tau # Sigma Min Sigma Max Sigma

1 .OOOe+00 511 1.490e-12 1.436e-12 1.550e-12

2.000e+00 509 1.025e-12 9.854e-13 1.070e-12

4.000e+00 505 7.631e-13 7.257e-13 8.070e-13

8.000e+00 497 5.846e-13 5.458e-13 6.329e-13

1.600e+01 481 3.681e-13 3.349e-13 4.135e-13

3.200e+01 449 2.451e-13 2.152e-13 2.924e-13

6.400e+01 385 1.637e-13 1.368e-13 2.173e-13

1.280e+02 257 1.360e-13 1.058e-13 2.285e-13
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FREQUENCY STABILITY
Corrected Stability Data

10° 2 lO* 2 10^ 2

Averaging Time, x, Seconds
10*

Figure 39. Corrected UUT and reference stabilities.

Here the reference stability is about 1 x 10"'"r' ", and the corrected UUT instability is slightly less than the

uncorrected values. Note that the B and C columns of corrected stability values both represent the reference source.

Appropriate use of the three-cornered hat method to correct stability measurements for reference noise applies where

the reference stability is between three to 10 times better than that of the unit under test. The correction is negligible

for more the latter (see above), and has questionable confidence for less than the former (and a better reference should

be used).

The error bars of the individual variances may be set using statistics by first determining the reduced number of

degrees of freedom associated with the three-cornered hat process [11, 12]. The fraction of remaining degrees of

freedom for unit i as a result of performing a three-cornered hat instead of measuring against a perfect reference is

given by:

r =
2-cr, -(-cr„

1 7 7
(70)

The ratio of the number of degrees of freedom is 0.4 for three units having the same stability, independent of the

averaging time and noise ty pe.

The three-cornered hat technique can be extended to M clocks (subject to the same restriction against negative

variances) by using the expression

7

ct: =
1

M-l 7=1

(71)

where
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2{M-\)
(72)

and the o^,, are the measured Allan variances for clock i versus] at averaging time t. Using o^,, = 0 and a2,j= a^j,, we can

easily write closed-form expressions for the separated variances from measurements ofM clocks.
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10.15. Reporting

The results of a stability analysis are usually presented as a combination of textual, tabular, and graphic forms. The

text describes the device under test, the test setup, and the methodology of the data preprocessing and analysis, and

summarizes the results. The assumptions and analysis choices should be documented so that the results could be

reproduced. The report often includes a table of the stability statistics. Graphical presentation of the data at each

stage of the analysis is generally the most important aspect of presenting the results. For example, these are often a

series of plots showing the phase and frequency data with an aging fit, phase and frequency residuals with the aging

removed, and stability plots with noise fits and error bars. Plot titles, subtitles, annotations and inserts can be used to

clarify and emphasize the data presentation. The results of several stability runs can be combined, possibly along with

specification limits, into a single composite plot. The various elements can be combined into a single electronic

document for easy printing and transmittal.
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11 Case studies

This section contains several case studies to further illustrate methodologies of frequency stability analysis.

11.1. Flicker Floor of a Cesium Frequency Standard

The purpose of this analysis is to examine the flicker floor of a commercial cesium beam tube frequency standard. An
instrument of this kind can be expected to display a white FM noise characteristic out to long averaging times. At

some point, however, the unit will typically "flicker out", with its stability plot flattening out to a flicker FM noise

characteristic, beyond which its stability will no longer improve. Determining this point requires a lengthy and

expensive run, and it is worthwhile to use an analytical method that provides the best information at long averaging

factors. The effort of a more elaborate analysis is far easier than extending the measurement time by weeks or

months.

Table 25. Flicker floor of a cesium frequency standard.

This is the five-month

frequency record for the

unit under test. It has

already been "'cleaned

up" for any missing

points, putting in gaps as

required to provide a

time-continuous data set.

The data look very

"white" (see Section 6.1),

the frequency offset is

very small (+7.2 x 10"'^),

and there is no apparent

drift (+1.4 X 10"'^/day).

Overall, this appears to

be a very good record.

FREQUENCY DATA
Cesium Beam Frequency Standard

An overlapping Allan

deviation plot shows a

white FM noise level of

about 8.2 X 10''
V"- out

to about 5 days, where

the stability levels off at

about 1.2 X 10"'^ While

this is very respectable

behavior, one wonders

what the stability actually

is at the longer averaging

times. But to gain

meaningful confidence

using ADEV there, the

run would have to be

extended by several

months.

FREQUENCY STABILITY
Cesium Beam Frequency Standard

10^ 10^ lO* lO'

Averaging^ Time, x,^ Seconds
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The total deviation can

provide better confidence

at the longer averaging

times. It seems to

indicate that the stability

continues to improve past

10 days, where is drops

below 1 X 10'"^ but the

results are not

conclusive.

FREQUENCY STABILITY
Cesium Beam Frequency Standard

5i2e*04 3 72e-
i.02e + 05 2.5:5e-

+ 05 I59e-K
) lOe + 05 1.24e-1i
i.I9e-05 1.19e-l4

.e-06 i.i8e-ii

3.28e-^06 6 95e-

lO^ 10^ 10" 10^ 10*

Averaging Tinie^
J,^

Seconds

FREQUENCY STABILITY
Cesium Beam Frequency Standard

Theol can provide even

better long-term

information, at the

expense of a longer

calculation time. This

Theol plot seems to

show even more clearly

that the stability

continues to improve at

longer averaging times,

well into the pplO'^

range. It assumes white

FM noise (no Theol bias

removal).

10^ 10'' lO'

Averaging Tim&, x,^ Seconds

A TheoH analysis with

automatic bias removal

combines AVAR in short

and mid-term averaging

times and TheoBR in

long term. TheoH does

not require any explicit

knowledge of the type of

noise. It appears that one

noise prevails in this data

run, in which case Theol

(shown above) bias is

detected as 1 .676,

intermediate between

white and flicker FM
noises for medium to

large averaging times.

Thus, Theol results are

essentially the same as

TheoH.

FREQUENCY STABILITY
Cesium Beam Frequency Standard

ITheol Bios = 1 6761 .

2048
4095
8192

4 69e-14
J.35e-14
2.19e-K
i.53e-K
i.22e-M
l.23e-H

10^ 10^ lO" lO'

Averaging Time, t. Seconds

We can conclude that this cesium beam frequency standard reaches a

stability slightly better than 1 x lO"''* at an averaging time on the order of 1

month.
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11.2. Hadamard Variance of a Source with Drift

Table 26. Hadamard variance of a source with drift.

These frequency data

simulate a typical rubidium

frequency standard (RFS)

with a combination of white

and flicker FM noise, plus

significant frequency drift.

FREQUENCY DATA
Simulated RFS Data

10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0

Time, Days

If an Allan variance analysis

is performed directly on

these data without drift

removal, the stability at the

longer averaging times is

degraded. In particular, the

stability plot has a t"' slope

beyond 10^ seconds that

corresponds to the drift (i.e.,

about 1 X 10"'- at 5 days).

FREQUENCY STABILITY
Slumulaled RFS Stablllly

10> 10' 10*

Averaging Time, T, Seconds

If the linear frequency drift

is removed before

performing the AVAR
stabilit> analysis, the

stability plot shows a white

FM noise (t""")

characteristic changing to

flicker FM noise (t°) at

longer averaging times. It is

usually best to use a stability

plot only to show the noise,

and analyzing and removing

the drift separately.

FREQUENCY STABILITY
Simulated RFS Data

On

-cu Sigma

9.00e^02 5.50e-lJ
ISOe^Oi 4,146-13
3 506^03 3 47e-13
7 20e-03 3.13e-13
44e-04 2 75e-13

2 386^04 2 32e-13
5 76e-04 2 78e-i3
:.I5e + 05 2,42e-:3
2 30e^05 2.52e-13
4 61e-05 2.2Ie-I3

10^ 10" lo'

Averaging Tinie, T, Seconds
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The Hadamard variance is

insensitive to linear

frequency dritt. It can

therefore be used to perform

a stability analysis on the

original data without first

having to remove the drift.

The HDEV results are

essentially identical to those

of the drift-removed ADEV.
This can be more

convenient, especially when

analyzing a combination of

sources having differing

amounts of drift (e.g.,

cesium and rubidium units).

FREQUENCY STABILITY
simulated RFS Data

9 00e^02 5.43e-l3
1,806^03 4.00e-i3
3 60et03 3.216-13
7 20e*03 2.98e-13
1 44e-04 2.49e-l3
2 88e*04 2.5le-13
5 76e*04 2 55e-13
1 15e + 05 2-11e-13
2 30e + 05 2 43e-I3
4,6le + 05 188e-13

lO^ 10'' 10-

Averaging Time, x, Seconds

11.3. Phase Noise Identification

Consider the problem of identifying the dominant type of phase noise in a frequency distribution amplifier. Assume
that time domain stability measurements have been made comparing the amplifier's input and output signals. How
should these data be analyzed to best determine the noise type? Simulated white and flicker PM noise at equal levels

are analyzed below in several ways to demonstrate their ability to perform this noise identification.

Table 27. Phase noise identification

White PM Flicker PM
Examination of the phase data is a good first step. An experienced analyst

will immediately notice the difference between the white and flicker noise

plots, but will find it harder to quantify them.

PHASE DATA
simulated Whtte PM NoIm

4500 5000

PHASE DATA
SInutated Rlckw PM Data

In contrast, the frequency data show little noise type discrimination,

because the differencing process whitens both. Examination of the

frequency data would be appropriate to distinguish between white and

flicker FM noise, however.

FREQUENCY DATA
SImuiatBd Whne PM Ndaa

FREQUENCY DATA
SImulalod Flicker PM Noise
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The Allan deviation is not able to distinguish between white and flicker

PM noise. Both have slopes of about 1, as shown by the superimposed

noise fit lines.

FREQUENCY STABILITY
SlmJated WWto PM Holaa

1 i.OOe-09
2 S.O'c-IO
4 2 53e-i0
8 127e-10
16 6 26e-n
32 3 07e-n

;38 7 a3e-r2
256 3 97e-i2
512 I95e-12

102'S 9S3e-ii

Avera^^ Time. T.^eoonda

FREQUENCY STABILITY
Simulated Fllcnor PM Notw

256 a 20C-12

lO* 10^ 10^

Averaging Time. T.^Seconds

The modified Allan deviation, by virtue of its additional phase averaging,

is able to distinguish between white and flicker PM noise, for which the

slopes are -1 .5 and -1 .0, respectively

FREQUENCY STABILITY
SimUUM Whn« PM NoOa

AveragLng_ Time, T.^econds

FREQUENCY STABILITY^ S^ulaied Flicker PM Nona

Avera^g Time, T, Seconds

Even better discrimination is possible with the autocorrelation function.

The lag 1 ACF is 0.006 and 0.780 for these white and flicker PM noise

data, and is able to quantitatively estimate the power law noise exponents

as +1.99 and +0.93, respectively. That ID method is quite effective even

for mixed noise types.

AUTOCORRELATION
SkrUitM WHU PM Noln

250 SOO 7S0

AUTOCORRELATION
SknuialM Ricke< PM Nolae

2000 2250 2500

11.4. Detection of Periodic Components

Frequency stability data can contain periodic fluctuations due to external interference, environmental effects, or the

source itself, and it can therefore be necessary to detect discrete spectral components when performing a stability

analysis. This example uses a set of 50 000 points of t = 1 second simulated white FM noise at a level of 1 x10'"t"'^"

that contains sinusoidal interference with a period of 500 s at a peak level of 1 x 10"'". The latter simulates

interference that might occur as the result of air conditioner cycling. Several analytical methods are used to detect this

periodic component.
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Table 28. Detection of periodic components.

The interference level is

too low to be visible in the

full frequency data plot.

FREQUENCY DATA
Simulated W FM Noise with Periodic Interference

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

Data Point xlOOO

FREQUENCY DATA
Simulated W FM Noise witti Periodic Interference

By zooming in, one can see

just a hint of the

interference (10 cycles

over 5000 data points).

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Data Point

FREQUENCY STABILITY
Simulated W FM Noise with Periodic Interference

The interference is quite

visible in an "all tau"

stability plot as a null that

occurs first at an averaging

time of 500 s (the period of

the interference). Here the

stability is equal to the

underlying white FM noise

level.

ISiqfno for All "ajf

10' 10^ 10^ 10''

Averaging Tiine^ T,^ Seconds

10^
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The interference is clearly

visible in the power

spectral density (PSD),

which has a bright

component at 2 mHz,

correspond-ing to the 500 s

period of the interference.

POWER SPECTRUM
Simulated W FM Noise with Periodic interference

10-^ 10"^ I0-' 10-'

Fourier Frequency, f, Hz

AUTOCORRELATION
Simulated W FM Noise witli Periodic interference

The interference is less

visible in an

autocorrelation plot, where

cyclic behavior is barely

noticeable with a 500-lag

period. The PSD has

equivalent information, but

its log scale makes low-

level components more

apparent.
250 500 750 1000 1250 1500 1750 2000 2250 2500

Lag

It is a good analysis policy to examine the power spectral density when periodic fluctuations are visible on a stability

plot and periodic interference is suspected.

11.5. Stability Under Vibrational Modulation

This plot shows the stability

of an oscillator with a

combination of white PM
noise and a sinusoidal com-

ponent simulating

vibrational modula-tion.

Nulls in the Allan deviation

occur at averaging times

equal to the multiples of the

20 Hz sinusoidal mod-

ulation period, where the

stability is determined by

the white PM noise. Peaks

in the Allan deviation occur

at the modulation half

cycles, and have a t"'

envelope set by the

vibrational phase

modulation.

FREQUENCY STABILITY
Vibration-Induced Alian Deviation Degradation

10-' 2 10-'

Averaging Time, t. Seconds
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1 1 .6. White FM Noise of a Frequency Spike

The Allan deviation of a

frequency record having a

large spike (a phase step) has

a t""" characteristic [1]. Thus

adding a single large (say

lO'') central outlier to the

1000-point test suite of

section 12.4 will give a data

set with ay{x) =

[(10^)-2/( 1000-1)]"- =

3.16386e4, as shown in this

stability plot.

FREQUENCY STABILITY
W FM Nol£8 of Frequency Spike

10' 2 10=

Averaging Time, x, Seconds

Reference: C.A. Greenhall, "Frequency Stability Review," Telecommunications

and Data Acquisition Progress Report 42-88, Jet Propulsion Laboratory, Pasadena,

CA, Feb. 1987.

11.7. Composite Aging Plots

A composite plot showing the aging of a population of frequency sources can be an effective way to present this

information visually, providing a quick comparison of their behaviors. The following figure shows the stabilization

period of a production lot of rubidium clocks.

Plots for 40 units are shown with their serial numbers, all plotted with the same scales. In particular, these plots all

have a full x-scale time range of nine weeks (1 week/div) and a full y-scale frequency range of 1.5 X 10"" (1 X 10'

'-/div). A diagonal slope downward across the plot corresponds to an aging of about -2.4 x 10''Vday. All the data

have T= 900 seconds (15 min). A figure like this immediately shows that (a) all the units have negative frequency

aging of about the same magnitude that stabilizes in about the same way, (b) there are occasional gaps in some of the

records, (c) all of the units have about the same short-term noise, but some of the records are quieter than others in the

longer term, (d) some of the units take longer than others to reach a certain aging slope.

The plots, although small, still contain enough detail to allow subtle comparisons very quickly, far better than a set of

numbers or bar graphs would do. The eye can easily see the similarities and differences, and can immediately select

units based on some criterion, which would be harder to do using a set of larger plots on separate pages. Closer

inspection of even these small plots can reveal a lot of quantitative information if one knows the scale factors. Color

coding, although not used here, could be used to provide additional information.

These plots are inspired by Edward Tufte's book The Visual Display of Quantitative Information , ISBN 978-

0961392109, Graphic Press, 1983.
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12 Software

Software is necessary to perform a frequency stability analysis, because those Specialized software is

calculations generally involve complex specialized algorithms and large data sets needed to perform a

needed to interactively perform and document a complete stability analysis. It is frequency stability analysis.

convenient to use an integrated software package that combines all of the required

analytical tools, operates on current computer hardware and operating systems, includes the latest analytical

techniques, and has been validated to produce the correct results.

12.1. Software Validation

Considerable effort is needed to ensure that the results obtained from frequency stability analysis software are correct.

Several suggested validation methods are shown. Mature commercially available software should be used whenever

possible instead of developing custom software. User feedback and peer review are important. There is a continuing

need to validate the custom software used to analyze time domain frequency stability, and the methods listed below

can help ensure that correct results are obtained.

Several methods are available to validate frequency stability analysis software:

1. Manual Analysis: The results obtained by manual analysis of small data sets (such as in NBS Monograph 140

Annex 8.E) can be compared with the new program output. This is always good to do to get a "feef for the

process.

2. Published Results: The results of a published analysis can be compared with the new program output. One
important validation method is comparison of the program results against a test suite such as the one in

References [1] and [2]. Copies of those test data are available on-line [3].

3. Other Programs: The results obtained from other specialized stability analysis programs (such as that from a

previous generation computer or operating system) can be compared with the new program output.

4. General Purpose Programs: The results obtained from industry standard, general purpose mathematical and

spreadsheet programs such as MathCAD, Matlab, and Excel can be compared with the new program output.

5. Consistency Checks: The new program should be verified for internal consistency, such as producing the same

stability results from phase and frequency data. The standard and normal Allan variances should be

approximately equal for white FM noise. The nonnal and modified Allan variances should be identical for an

averaging factor of 1. For other averaging factors, the modified Allan variance should be approximately one-half

the normal Allan variance for white FM noise, and the normal and overlapping Allan variances should be

approximately equal. The overlapping method provides better confidence of the stability estimates. The various

methods of drift removal should yield similar results.

6. Simulated Data: Simulated clock data can also serve as a useful cross check. Known values of frequency offset

and drift can be inserted, analyzed, and removed. Known values of power-law noise can be generated, analyzed,

plotted, and modeled.

12.2. Test Suites

Tables 29 and 30 summarize the values for several common frequency stability measures for both the classic NBS
data set and a 1000-point portable test suite.

12.3. NBS Data Set

A "classic" suite of frequency stability test data is the set of nine 3-digit numbers from Annex 8.E ofNBS Monograph

140 shown in Table 29. Those numbers were used as an early example of an Allan variance calculation. These

frequency data is also normalized to zero mean by subtracting the average value, and then integrated to obtain phase

values. A listing of the properties of this data set is shown in Table II. While nine data points are not sufficient to

calculate large frequency averages, they are, nevertheless, a very useful starting point to verify frequency stability
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calculations, since a small data set can easily be entered and analyzed manually. A small data set is also an advantage

for finding "'off-by-one" errors where an array index or some other integer variable is slightly wrong and hard to

detect in a larger data set.

Table 29. NBS Monograph 140, Annex 8.E Test Data

# Frequency Normalized frequency Phase (t=1)

1 892 103.1 1 1

1

0.00000

2 809 20.11111 103.1 1 1 1

1

823 34.11111 123 22222

4 798 9.1 11 11 157.33333

5 671 -1 17.88889 166.44444

6 644 -144.88889 48.55555

7 883 94.11111 -96.33333

8 903 114.11111 -2.22222

9 677 -1 1 1.88889 111.88889

10 0.0000

Table 30. NBS Monograph 140, Annex 8.E Test Data Statistics

Averaging Factor 1 2

# Data Points 9 4

Maximum 903 893.0

Minimum 644 657.5

Average 788.8889 802.875

Median 809 830.5

Linear Slope -10.20000 -2.55

Intercept 839.8889 809.25

Standard Deviation^^' 100.9770 102.6039

Normal Allan Deviation 91.22945 115.8082

Overlapping Allan Dev 91.22945 85.95287

Modified Allan Dev 91.22945 74.78849

Time Deviation 52.67135 86.35831

Hadamard Deviation 70.80607 1 16.7980

Overlap Hadamard Dev 70.80607 85.61487

Hadamard Total Dev 70.80607 91.16396

Total Deviation 91.22945 93.90379

Modified Total Dev 75.50203 75.83606

Time Total Deviation 43.59112 87.56794

Note: [a] Sample (not population) standard deviation.

12.4. 1000-Polnt Test Suite

The larger frequency data test suite used here consists of 1000 pseudo-random frequency data points. It is produced

by the following prime modulus linear congruential random number generator:

A7,^, =16807^, Mod 2147483647. (73)
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This expression produces a series of pseudo-random integers ranging in value from 0 to 2 147 483 646 (the prime

modulus, 2^'-l, avoids a collapse to zero). When started with the seed no = 1 234 567 890, it produces the sequence ni

= 395 529 916, n. = 1 209 410 747, nj = 633 705 974, etc. These numbers may be divided by 2 147 483 647 to obtain

a set of normalized floating-point test data ranging from 0 to 1. Thus the normalized value of no is 0.5748904732. A
spreadsheet program is a convenient and reasonably universal way to generate these data. The frequency data may be

converted to phase data by assuming an averaging time of 1, yielding a set of 1001 phase data points. Similarly,

frequency offset and/or drift terms may be added to the data. These conversions can also be done by a spreadsheet

program.

The values of this data set will be uniformly distributed between 0 and 1. While a data set with a normal (Gaussian)

distribution would be more realistic, and could be produced by summing a number of independent uniformly

distributed data sets, or by the Box-MuUer method [5], this simpler data set is adequate for software validation.

Table 31. 1000-point frequency data set.

Averaging factor 1 10 100

# Data Points 1000 100 10

Maximum 9.957453e-01 7.003371e-01 5.489368e-01

Minimum 1.371760e-03 2.545924e-01 4.533354e-01

Average'^' 4.897745e-01 4.897745e-01 4.897745e-01

Median 4.798849e-01 5.047888e-01 4.807261e-01

Linear Slope''^'^' 6.4909 lOe-06 5.979804e-05 1.056376e-03
Fl

Intercept^'"' 4.865258e-01 4.867547e-01 4.839644e-01

Bisection Slope'^' -6.104214e-06 -6.104214e-05 -6.104214e-04

1st Diff Slope'^' 1.517561e-04 9.648320e-04 1.01 1791e-03

Log Fitt^''', a= 5.577220e-03 7 1 38988P-03

y(t)=a-ln (bt+l)+c, b= 9.737500e-01 4.594973e+00 1.420429e+02

y'(t)=ab/(bt+l), c= 4.570469e-01 4.631 172e-01 4.442759e-01

Slope at end 5.571498e-06 5.237080e-05 7.133666e-04

Standard Dev'" 2.884664e-01 9.296352e-02 3.206656e-02

Normal Allan Dev'*^ 2.9223 19e-01 9.965736e-02 3.897804e-02

Overlap Allan Devf*"' 2.9223 19e-01 9.159953e-02 3.241343e-02

Mod Allan Dev'='^' 2.9223 19e-01 6.172376e-02 2.1 7092 le-02

Time Deviation'*^' 1.687202e-01 3.563623e-01 1.253382e-00

Hadamard Deviation 2.943883e-01 1.052754e-01 3.910861e-02

Overlap Had Dev 2.943883e-01 9.581083e-02 3.237638e-02

Hadamard Total Dev 2.943883e-01 9.614787e-02 3.058103e-02

Total Deviation 2.9223 19e-01 9.134743e-02 3.406530e-02

Modified Total Dev 2.418528e-01 6.4991 61e-02 2.287774e-02

Time Total Deviation 1.396338e-01 3.752293e-01 1.320847e-00

Notes:

[a] Expected value = 0.5.

[b] All slopes are per interval.

[c] Least squares linear fit.

[d] Exact results will depend on iterative alg orithm used. Data not suited to log fit.

[e] Sample (not population) standard deviation. Expected value = 1/V12 =

0.2886751.

[f] Expected value equal to standard deviation for white FM noise.

[g] Equal to normal Allan deviation for averaging factor = 1

.

[h] Calculated with listed averaging factors from the basic i = 1 data set.
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Table 32. Error bars for n=1000 point =1 data set with avg. factor=10.

Allan Dev Type

#Pts

Sigma Value

Noise Type & Ratio

Conf Interyal

Remarks 95% CF
Normal

99

9.965736e-02

W FM^'l Bl=0.870

CI= 8.7138706-03^^'^

ilaClt^.

Overlapping

981

9.159953e-02

W FM
# df- 146.177

Max ay(T)= 1.01 4923 e-Ol'^^l

Max Gy(T)= 1.03520 le-Ol''^'

Min gJx)= 8.2239426-02'^'

19.07

14.45

81.34

Modified^'^l

972

6.1723766-02

W FM'"', R(n)=0.384

#x' df= 94.620

Max ay(T)=7.04441 26-02'*^'

Max a,(T)= 7.2249446-02''^'

Min av(i)- 5.4199616-02''^'

72.64

69.06

122.71

Notes:

[a] Theoretical B 1 = 1.000 for W FM noise and 0.667 for F and W PM noise.

[b] Simple, noise-independent CI estimate =ay(T)/VN=l .001 594e-02.

[c] This CI includes K(a) factor that depends on noise type:

Noise a K(a)

W PM 2 0.99

FPM 1 0.99

W FM 0 0.87

F FM -1 0.77

RW FM .2 0.75

[d] BW factor 2T:fhTo= 10. Applies only to F PM noise.

[e] Theoretical R(n) for W FM noise = 0.500 and 0.262 for F PM noise.

[f] Double-sided 68 % confidence interval: p = 0.158 and 0.842.

[g] Single-sided 95 % confidence interval: p = 0.950.

[h] Double-sided 95 % confidence interval: p = 0.025 and 0.975.

12.5. IEEE Standard 1139-1999

IEEE Standard 1139-1999, IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time

Metrology - Random Instabilities contains several examples of stability calculations. Annex C.2 contains an example

of an Allan deviation calculation. Annex C.3 has an example of a modified Allan deviation calculation. Annex C.4

has an example of a total deviation calculation, and Annex D contains examples of confidence interval calculations.

References for Software

1. W.J. Riley, "'A Test Suite for the Calculation of Time Domain Frequency Stability," Proc. 1995 IEEE Freq.

Contrl. Symp., pp. 360-366, June 1995.

2. W.J. Riley, "Addendum to a Test Suite for the Calculation of Time Domain Frequency Stability," Proc. 1996

IEEE Freq. Contrl. Symp., pp. 880-882, June 1996.

3. Stable32 Software for Frequency Stability Analysis, Hamilton Technical Services, Beaufort, SC 29907 USA,

www.wriley.com.

4. "IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology - Random

Instabilities," IEEE Std 1139-1999, July 1999.

5. W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, Numerical Recipes in C , ISBN 0-521-35465-X,

Cambridge Univ. Press, Cambridge, U.K., 1988.
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13 Glossary

The following terms are used in the field of frequency stability analysis

Aging

Allan variance

Averaging

Averaging time

BW

Confidence limit

Drift

Frequency data

Hadamard variance

£(f)

MJD

Modified sigma

MTIE

Normalize

Phase data

Phase noise

Sampling time

Sigma

Slope

SSB

Sf(f)

The change in frequency with time due to internal effects within the device.

The two-sample variance CT^y(T) commonly used to measure frequency stability.

The process of combining phase or frequency data into samples at a longer averaging time.

See Tau.

Bandwidth, hertz.

The uncertainty associated with a measurement. Often a 68 % confidence level or error

bar.

The change in frequency with time due to all effects (including aging and environmental

sensitivity).

A set of fractional frequency values, y[i], where i denotes equally-spaced time samples.

A three-sample variance, HVAR, that is similar to the two-sample Allan variance. It uses

the second differences of the fractional frequencies, and is unaffected by linear frequency

drift.

£(f) = 101og['/2 • Si,{f)], the ratio of the SSB phase noise power in a 1 Hz BW to the total

carrier power, dBc/Hz. Valid when noise power is much smaller than the carrier power.

The Modified Julian Date is based on the astronomical Julian Date, the number of days

since noon on January 1, 47 13 BC. The MJD is the Julian Date - 2 4000 000.5.

A modified version of the Allan or total variance that uses phase averaging to distinguish

between white and flicker PM noise processes.

The maximum time interval error of a clock.

To remove the average value from phase or frequency data.

A set of time deviates, x[i] with units of seconds, where i denotes equally-spaced time

samples. Called "phase" data to distinguish them from the independent time variable.

The spectral density of the phase deviations.

See Tau.

The square root or deviation of a variance, often the two-sample or Allan deviation, CTy(i).

The change in frequency per tau interval.

Single sideband.

The one-sided spectral density of the phase deviations, radVHz.
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Sx(f)

Sy(f)

Tau

Total

Theo1

TheoBR

TheoH

TIE

Total variance

x(t)

y(t)

The one-sided spectral density of the time deviations, secVHz.

The one-sided spectral density of the fractional frequency deviations, 1/Hz.

The interval between phase measurements or the averaging time used for a frequency

measurement.

A variance using an extended data set that provides better confidence at long averaging

times.

Theoretical variance #1, a variance providing stability data out to 75 % of the record

length.

A biased-removed version of Theol.

A hybrid combination of TheoBR and the Allan variance.

The time interval error of a clock. Can be expressed as the rms time interval error TIE rms

or the maximum time interval error MTIE.

A two-sample variance similar to the Allan variance with improved confidence at large

averaging factors.

The instantaneous time deviation from a nominal time, x(t) = <!f>{t)/2nvo, s, where v,, is the

nominal frequency, hertz. This dependent time variable is often called "phase'' to

distinguish it from the independent time variable t.

The instantaneous fractional frequency deviation from a nominal frequency, y(t) =

[v(t)-vo]/vo] = x'(t), where vq is the nominal frequency.

References for Glossary

1. "IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology -

Random Instabilities," IEEE Std 1 139-1999, July 1999.

2. Glossary of Time and Frequency Terms issued by Comite Consultatif International de Radio

Communication - International Telecommunications (CCITT) Union, Geneva, Switzerland.
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