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m he National Bureau of Standards' was established by an act of Congress on March 3, 1901. The
M Bureau's overall goal is to strengthen and advance the nation's science and technology and facilitate

their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a

basis for the nation's physical measurement system, (2) scientific and technological services for industry and

government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety.

The Bureau's technical work is performed by the National Measurement Laboratory, the National

Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Institute for Materials

Science and Engineering.

The National Measurement Laboratory

Provides the national system of physical and chemical measurement;

coordinates the system with measurement systems of other nations and

furnishes essential services leading to accurate and uniform physical and

chemical measurement throughout the Nation's scientific community, in-

dustry, and commerce; provides advisory and research services to other

Government agencies; conducts physical and chemical research; develops,

produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

• Basic Standards
2

• Radiation Research
• Chemical Physics

• Analytical Chemistry

The National Engineering Laboratory

Provides technology and technical services to the public and private sectors to

address national needs and to solve national problems; conducts research in

engineering and applied science in support of these efforts; builds and main-

tains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement
capabilities; provides engineering measurement traceability services; develops

test methods and proposes engineering standards and code changes; develops

and proposes new engineering practices; and develops and improves

mechanisms to transfer results of its research to the ultimate user. The
Laboratory consists of the following centers:

Applied Mathematics
Electronics and Electrical

Engineering 2

Manufacturing Engineering

Building Technology
Fire Research

Chemical Engineering 2

The Institute for Computer Sciences and Technology

Conducts research and provides scientific and technical services to aid

Federal agencies in the selection, acquisition, application, and use of com-
puter technology to improve effectiveness and economy in Government
operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant

Executive Orders, and other directives; carries out this mission by managing
the Federal Information Processing Standards Program, developing Federal

ADP standards guidelines, and managing Federal participation in ADP
voluntary standardization activities; provides scientific and technological ad-

visory services and assistance to Federal agencies; and provides the technical

foundation for computer-related policies of the Federal Government. The In-

stitute consists of the following centers:

Programming Science and
Technology
Computer Systems

Engineering

The Institute for Materials Science and Engineering

Conducts research and provides measurements, data, standards, reference

materials, quantitative understanding and other technical information funda-

mental to the processing, structure, properties and performance of materials;

addresses the scientific basis for new advanced materials technologies; plans

research around cross-country scientific themes such as nondestructive

evaluation and phase diagram development; oversees Bureau-wide technical

programs in nuclear reactor radiation research and nondestructive evalua-

tion; and broadly disseminates generic technical information resulting from
its programs. The Institute consists of the following Divisions:

Ceramics
Fracture and Deformation 3

Polymers

Metallurgy

Reactor Radiation
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FOREWORD

The National Bureau of Standards (NBS) has established an

experimental testbed, the Automated Manufacturing Research Facility (AMRF)

at the NBS site in Gaithersburg, MD. The purpose of the AMRF is to

support the efforts of American industry to compete in the "Modern

Industrial Revolution." It will provide both a facility which can be used

to develop and test automated manufacturing standards, and mechanisms for

transferring that technology to the American marketplace. The AMRF will

serve as an engineering testbed that researchers from NBS, universities,
industry and other government agencies can use to study questions of

standardization, measurement, and quality control in the automated factory
environment. In fact, there is already a high level of participation by

universities and industry.

By the end of 1986, the AMRF will contain several robot-tended work
centers, including machining, cleaning and deburring, automated
inspection, and material transfer. These individual work centers will be

linked by a modular, hierarchically structured planning and control system
and a sophisticated data management and communication system. The AMRF
will thus demonstrate that it is possible to transform a collection of
manufacturing and computer equipment purchased from several different
vendors into a small, fully integrated, flexible manufacturing system.

As indicated above, the AMRF has been established to support the
efforts of American manufacturers to increase productivity. One measure
of productivity is the actual throughput of the manufacturing plant, which
is directly related to the planning, scheduling, and routing strategies
employed at the plant. Although much has been written on theoretical
solutions to these problems, results of practical value have appeared less
often. Realizing this, researchers at the AMRF have embarked on an effort
to develop better solution techniques and to test these techniques
thoroughly in the real-life environment provided by the AMRF.

An important first step in this effort was to gain a full
understanding of the state-of-the-art. This was the primary motivation
for holding the Symposium on Real-Time Optimization in Automated
Manufacturing Facilities, held at the National Bureau of Standards,
January 21-22, 1986. This symposium brought together those who design and
test solution procedures with those who must implement and use them in a

real manufacturing environment. In addition, it provided an opportunity
for participants to become acquainted with the first national testbed for
analyzing the efficiency of these procedures, the National Bureau of
Standards' Automated Manufacturing Research Facility.

These proceedings contain most of the papers presented at that
symposium, and represent, we believe, an important and valuable
contribution to the literature on planning, scheduling and routing
problems in automated manufacturing.

Richard H. F. Jackson
Albert W. T. Jones

Gaithersburg, MD
September 1986
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ABSTRACT

The Symposium on Real-Time Optimization in Automated Manufacturing
Facilities was held at the National Bureau of Standards, Gai thersburg,
Maryland, January 21-22, 1986. It was jointly sponsored by the Center for
Manufacturing Engineering (with funds obtained from the Navy Manufacturing
Technology Program) and the Center for Applied Mathematics. It was
designed to bring together those who design and test optimization
procedures for solving planning, scheduling, and routing problems with
those who must use these procedures in a real-time manufacturing
environment. Included in the proceedings are discussions of the following
topics: an approach to hierarchical production planning and scheduling; a

hierarchy of intelligent scheduling and control for automated
manufacturing systems; the integration of planning scheduling, and control
for automated manufacturing; intelligent manufacturing planning systems; a

decision making framework for manufacturing systems; PATRIARCH —
hierarchical production scheduling; low-level interactive scheduling; the

general employee scheduling problem: an effective large scale solution
approach; ISIS project in review; dynamic control in automated
manufacturing: a knowledge integrated approach; a management control
approach to the manufacturing, planning, and scheduling problem;
hierarchies of sub-periods in constraint-directed scheduling; a two-level
planning and scheduling approach for computer integrated manufacturing;
match-up real-time scheduling; a maximal covering model for loading
flexible manufacturing systems; interstage transportation planning in the
flow-shop environment; minimal technology routing and scheduling systems
based on space filling curves; a multi-pass expert control system (MPECS)

for flexible manufacturing systems; requirements for automatic control of
aerospace manufacturing processes; real-time scheduling of an automated
manufacturing center; the interaction between design and schedul ing in

repetitive manufacturing environments; an adaptable scheduling algorithm
for flexible flow lines (abstract); determining aggregated FMS production
ratios and minimum inventory requirements; a knowledge based system for

dynamic manufacturing replanning; dispatching — the critical automation
link; scheduling jobs in flexible manufacturing systems; design
requirements for a real-time production scheduling decision aid; an

optimized Kanban system for a custom door manufacturer; a linear
programming approach to numerically controlled face milling; and, system
buffers required when FMS are used in fabrication and assembly operations.

KEYWORDS:

automated manufacturing, flexible manufacturing, hierarchical control,

planning problems, routing problems, real-time optimization, scheduling
problems.
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AN APPROACH TO HIERARCHICAL PRODUCTION PLANNING AND SCHEDULING

by

Stanley B. Gershwin

Laboratory for Information and Decision Systems
35-433

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Introduction

The fundamental issue in scheduling is that the most obvious
formulations (combinatorial, integer programming) are not compu-
tationally feasible. That is, no algorithm will ever be imple-
mented that will provide a truly optimal solution to a non-tri-
vial problem when it is modeled by such techniques. All schedu-
ling methods must deal with this issue in some way.

Our approach is to decompose the problem into a set of
related problems. The decomposition will proceed in two dimen-
sions: by time scale and by floor space.

In the floor space decomposition, the system is divided into
a set of cells or workstations. Statistical models of arrivals
and demands are assumed and then important quant it ies--such as a
feedback law for scheduling—are calculated within the cell. The
resulting departures from that cell become arrivals at other
cells; and the loading of parts into that cell translates into
demands for other cells. When this is all made explicit, it
leads to a complex set of equations relating the behavior of each
cell to that of each other.

The time scale decomposition is a hierarchy in which higher
levels deal with longer range and more aggregated issues, and
lower levels deal with short term and highly specific issues.

Hierarchy

There are many time scales over which planning and schedu-
ling decisions must be made. While these decisions are made
separately, they are related. In particular, each long term
decision presents an assignment to the next shorter term deci-
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sion-maker. The decision must be made in a way that takes the
resources— i.e. , the capacity—explicitly into account.

Figure 1 shows a schematic of an information and material
flow system in a factory. The information flow system is hier-
archically organized, consisting of modules as shown in Figure 2.

Each module has requirements specified at the higher levels. It
solves an optimization problem to calculate requirements to be
issued to the lower levels. The optimization problem is one in
which the objective is to meet specified requirements as closely
as possible, subject to current resources and capacity con-
straints. Uncertainties in supply and demand are reported by
neighboring modules.

In this scheme, higher levels deal with longer time scales,
more floor space, and less detail than lower levels. The most
popular time-scale decomposition approach in control theory is
the singular perturbation approach (Kokotovic and O'Malley, 1976;
Kokotovic, 1984; Coderch et al., 1983; Lou et al. , 1984; Chow,
1978; Haddad, 1976). This technique reduces the model order by
separating the time scales, that is, by considering slow and fast
phenomena separately. There are two purposes in doing this.
First, a large problem can be replaced by several smaller prob-
lems so that the computational burden can be reduced. Second,
this kind of control is closer to the real situation where mana-
gers at different levels are only concerned about their own
specific time scales.

These are useful concepts upon which to base a hierarchical
scheduling scheme. However, it is not likely that existing ma-
thematical techniques can be used for this without substantial
development

.

Scheduling is simplified by dealing with separate issues at
different time scales. In particular, capacity depends on the
time scale over which it is considered. For it to have any
meaning, capacity must remain constant over the time required for
the dispatch of several parts. We have found (Akella, Choong,
and Gershwin, 1984) that we could very effectively schedule a
detailed model of a flexible manufacturing system by

1. choosing a target production rate at a higher level of a
hierarchical scheduling algorithm, and then

2. dispatching parts in a way that maintains the actual pro-
duction rate close to the target.

Figure 2 represents a scheduling hierarchy. It is based on
a specific set of assumptions about time scales. Other hierar-
chies are appropriate when other sets of assumptions are valid.
Note that each level may itself consist of several levels. In
addition, this is only part of the hierarchy. At still higher
levels are issues related to capital expansion and the national
economy. At lower levels are the detailed instructions that
guide a robot arm, and that pass information among machines

-2-



connected in a communication network. (See, for example, Barbe-
ra, Fitzgerald, and Albus, 1982.)

It is assumed that parts can be grouped into families such
that within the families, setup times are negligible. The setup
times required to change from one family to another are assumed
to be large. The mean times between failures and the mean times
to repair machines are assumed to be large compared with the
times to do operations on parts, and the setup times in changing
from one family to another are assumed to be large compared with
the repair and failure times. Finally, the overall planning
horizon is large compared with the inter-family setup times.

In Figure 2, the top level assures that the total volume of
orders is within system capacity and the second level coordinates
cells. In the second level, the system is divided into a set of
cells or workstations. The departures from a cell are arrivals
at other cells; and the loading of parts into that cell tran-
slates into demands for other cells. A feedback law is calcu-
lated to determine long term target production rates as a func-
tion of demand uncertainties. The feedback law for the factory
as a whole may be similar.

The third level calculates production time (hours per day
that the facility will be run), setup frequencies, fraction of
time each machine will spend in each of its configurations, and
production rate of each part type in each configuration. Setups
are an important issue because the time spent setting up is time
taken away from producing and thus setups reduce capacity. How-
ever, infrequent setups lead to large delays and excess WIP
(Work-In-Process). This level is discussed below.

At the fourth level, the actual times at which to change
setups are calculated. These times are chosen in a way that is
consistent with the setup frequencies calculated at the third
level, but that is also responsive to events observed in real
time, such as a run of bad luck in which a machine is down more
than is typical.

The fifth level calculates the best mix of production rates
as a function of past production (i.e., is the system ahead or
behind nominal production?) and current machine states (operatio-
nal, failed, being maintained, etc.) for the current setup.

The sixth level dispatches parts into the system in a way
that is consistent with the production rate calculation of the
fifth level.

Capacity

Demands must be within capacity or excessive queuing will
occur, leading to excessive costs, delays, and poor morale.
However, capacity is difficult to define and evaluate. One rea-
son is that the definition of capacity depends on the time scale.
For example, short-time-scale (fifth level) capacity is a func-
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tion of the set of machines operational at any instant. Long-
time-scale capacity is an average of short-time-scale capacity.

Other reasons for the difficulty in specifying a system's
capacity include the effects of set-up times, the effects of
randomness and buffers, and the uncertainty in system parameters.

Hierarchically Structured Production Planning

Hax and Meal (1975) and Bitran and Hax (1977) proposed a
hierarchical production planning approach which aggregates pro-
duction units into items, families, and types. It starts from
aggregate planning using linear programming. The aggregate plan
is then broken down (disaggregated) into schedules for families
and items. The underlying idea of their approach is to make
decisions sequentially starting from the highest level. The
decision at each level then becomes a constraint for the next
lower level. In this way, not only is the computation burden
reduced but also the decision made in each level is consistent
with its own management responsibilities.

Maxwell et al. (1983) present a three-level system. The
first level determines the long-term plan. The middle level
deals with uncertainties setting safety stock in appropriate
places. The lowest level takes care of detailed resource allo-
cation .

There have been many other hierarchical structures proposed
as well, including several at the NBS Symposium. However, much
of the previous work is not dynamic. It does not respond to
random events such as new demands, demand cancellations, raw
material shortages, machine failures, and so on, in a way that is
based on explicit stochastic, dynamic models.

An exception is the work of Kimemia (1982), Kimemia and
Gershwin (1983), and Gershwin, Akella, and Choong (1985). A
hierarchical scheduling policy was developed and applied to the
scheduling of a simulation of an IBM printed circuit board manu-
facturing system. The main feature of this approach was to use
the available information and system flexibility efficiently to
anticipate and to react to disruptive events such as machine
fai lures

.

The time scale assumptions that underlie this algorithm
are the following: setup times are negligible compared with
operation times; operation times are short compared with
failure and repair times; and failure and repair times are
short compared with the planning horizon. The relaxation of
the first assumption is discussed below. That algorithm is
also based on the assumption that demand is deterministic and
raw material is always present, and that assumption is also
relaxed below.

The hierarchical structure of the Kimemia-Gershwin schedu-
ling policy is shown in Figure 3 This algorithm may be viewed as

-4-



the two lower levels in Figure 2. The middle level of Figure 3

determines the short-term production rates, taking the capacity
constraints of the system into account. Based on these rates the
lower level determines the actual times at which parts are loaded
into the system. The middle level uses immediate machine status
and surplus/backlog information for its computations. It also
needs certain longer term information, supplied by the higher
level, such as failure and repair rates, and part data such as
operation times and demand.

Simulation results (Akella, Choong, and Gershwin, 1984) have
shown that the Figure 3 hierarchical structure is effective in
scheduling an FMS. It can achieve high output with low WIP and
cope with changes and disturbances.

The major insight gained from this work was the simplifica-
tion of the scheduling task by separating the capacity issues
from the dispatch issues. Scheduling is difficult because every
time a decision is made about sending a part into a system, there
are two kinds of questions to consider: how does this decision
affect the production of the part being dispatched?; and how does
this decision affect the rest of the system?

Kimemia and Gershwin solved this problem by treating the
latter question at a higher level in the hierarchy than the
former. The effect on the rest of the system is treated by
considering the system's capacity as a function of the current
set of operational machines. A time-varying production rate
target for each part type is calculated which is within the
current capacity. The lower level's responsibility is then mere-
ly to dispatch parts according to the target production rate.
Because the total production rate is guaranteed to be within the
capacity, the problem is greatly simplified.

First and Second Level Scheduling

—

Supply and Demand Uncertainties

Aggregate planning determines the production quantities and
the material orders over a time horizon of several months. The
objectives of this level are to minimize the inventory cost both
in raw material and in products while keeping the production
close to some specified rate.

Using linear programming for aggregate planning has a long
history (McClain and Thomas, 1985). Demand is treated as deter-
ministic (using forecast instead of real demand). In spite of
the approximation of many features of the problem, the compu-
tational load is heavy. The effect of the planning horizon has
been studied by McClain and Thomas (1977). Other extensions,
e.g. productivity of workers changing with time (Ebert, 1976),
and non-continuous production rate change (Hillier and Lieberman,
1980) have also been considered. In all these papers, the supply
and demand were considered deterministic.

In earlier aggregate planning work by Holt et al. (1955,
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1956) , closed form results were developed based on the concept of
feedback control of a linear system with quadratic cost. Recent-
ly, there has been more effort devoted to using traditional con-
trol theory to production planning (Sethi and Thompson, 1981,
Clifford, 1985).

Both supply and demand are highly random. New orders may be
added and old ones may be canceled. Raw materials may come late
or early. The approach proposed here is to make full use of the
probabilistic structure of the demand and supply. Combined with
the results of control theory we believe a robust scheduling
technique can be constructed.

Preliminary results indicate that random demand can be in-
corporated into the system dynamics. Standard results of sto-
chastic control theory show that, under certain conditions, the
optimal production rate p(t) can be expressed as

p(t) = K(t)x(t)

Here, p(t) satisfies capacity constraints and is chosen to mini-
mize the inventories in the system; and x(t) is a vector related
to raw material inventory, product inventory, and demand. The
feedback gain matrix K(t) is determined by system parameters.

Third Level Scheduling—Set-Ups

Some time is always required to change the configuration of
the system from making one part type (or family of part types) to
making another. This is an issue of practical importance which
arises in metal cutting systems, in which tool magazines can hold
only a limited number of tools; printed circuit card assembly
systems; and VLSI fabrication, in which furnaces must be cleared
of each kind of impurity before the next kind of impurity can be
used.

It is not desirable to change the configuration too often
because that reduces the amount of time available for productive
work and thus the capacity of the manufacturing system. On the
other hand, it is not desirable to change it too infrequently,
because that will tend to increase inventories and delays before
del iver ies

.

Instead of calculating precise times at which to change
setups, we calculate guidelines to be carried out by a lower
level algorithm. That is, we specify frequencies of changeover,
and it is the responsibility of the lower level algorithm to
choose the actual times at which to perform the changeovers. The
times may be determined by the clock, or by events such as the
production of a given quantity of material. As long as the
triggering events lead to frequencies that are consistent with
what is calculated at the higher level, satisfactory behavior
will be observed. This approach is described in detail in Ger-
shwin (1986).

-6-



This approach to scheduling differs from conventional mixed
integer programming representations (Graves, 1981). In such
formulations, there are a large number of binary or integer
variables that represent whether or not a given part is to be
produced at a given machine at a given time (for example, Karmar-
kar and Schrage, 1985). These approaches model the system in
detail, but their large computational requirements make them
difficult to solve and interpret, and adding stochastic phenomena
does not make them any easier. Maxwell and Muckstadt (1985)
simplify the problem by dealing only with reorder intervals (ie
setup frequencies) and ignoring capacity questions. Kusiak,
Vanelli, and Kumar (1985) treat only the grouping problem.

The goal of the analysis is to calculate the long-term
average frequencies of set-ups and the average fraction of time
that the system is in each configuration (i.e., the fraction of
time it is set up for each family of part types). Further work
is required to translate these quantities into times at which to
perform set-ups.

The approach is to view the configurations of the FMS as
similar to states in a Markov process. The system spends a
random amount of time in each configuration, and we seek to
determine the rates at which the system moves from each configu-
ration to each other. (The inverses of these rates are the
average lengths of intervals during which the system is in each
configuration.) When the rates are known, the fraction of time
in each configuration is known.

There are two key equations in Markov chain analysis. The
first is the Kolmogorov equation, which relates the fraction
of time the system spends in each state to the rates of flow
from state to state. The second is the normalization
equation, which requires that the sum of the fractions of time
in each state be 1.

In using this theory to characterize setup times in a manu-
facturing system, the normalization equation must be modified.
The sum of the fractions of time that a manufacturing system
spends in each configuration is less than 1 because it may spend
a substantial amount of time changing configurations: setting up.
The normalization equation must therefore include a term which
accounts for the setup time.

It is this term that accounts for the reduction in system
capacity if setups are too frequent. When setup frequencies go
up, that term increases. The sum of the fractions of time that
the system spends working in each configuration therefore goes
down. When setups are frequent, capacity is small. When setups
are infrequent, batch sizes and therefore inventory are large.

This leads to an optimization problem which balances the
needs to keep capacity high (to maximize the probability that the
required amounts of material are actually produced) and inventory
low.

-7-



Fourth Level Scheduling—Setup Instants

At the third level, the frequencies of changing configura-
tions are determined, as well as the fractions of time the system
appears in each configuration and the production rates for each
member of the family associated with each configuration. This
does not tell the whole story, however; a rule is needed to
determine exactly when to change configurations. This rule must
be such that the actual changes take place in a way that is
consistent with the quantities at the third level.

For example, one approach would be to perform setups accor-
ding to the clock, with setup times at fixed instants chosen to
be consistent with the frequencies calculated at the higher
level. This may lead to the correct average production rates in
the long run. However, because of repairs and failures, the
amount of material produced during a period while the system is
in some configuration may deviate by a great deal from the amount
required at the third level. An alternative would be to perform
setups at times dictated by the cumulative amounts of material
produced, but this must be done with care since each family may
consist of many parts, some of which may be in surplus at any
given time, and some in backlog.

Fifth and Sixth Levels—Response to Machine Failures

At the fifth level of the hierarchy is the response of the
system to failures of machines. This is included in the top two
levels of Figure 3. At the top level of this sub-hierarchy, a
dynamic programming calculation is performed to find the feedback
law that is implemented at the middle level. The feedback law is
the solution to a small linear programming problem. Its output
is the production rate of each part type (in the family currently
configured) as a function of the current set of operational ma-
chines, and the cumulative production of all the part types in
the family.

Although the fifth level calculates production rates, it
still does not specify exactly when a part must be dispatched
into the system. The sixth level (depicted as the bottom level
of Figure 3) has this responsibility. This is analogous to the
need for the fourth level to select setup instants after the
third level calculates setup frequencies. A simple, but evident-
ly very effective policy is described in Gershwin, Akella, and
Choong (1985).

Conclusion

As manufacturing systems become more and more automated, the
rules for determining when important actions (such as loading
parts, beginning operations, and performing setups) must be made
more and more explicit. The only feasible way to calculate an
effective set of rules is to decompose the manufacturing system.
A hierarchical decomposition is described here which is based on
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calculating the system's capacity at various levels, and develop-
ing explicit policies to respond to uncontrollable changes in the
system such as machine failures.
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1 . INTRODUCTION

Automated manufacturing systems consist of a number of NC
machines together with the associated material handling devices
such as Automated Guided Vehicles, conveyors and robots. These
automated manufacturing systems promise lower manufacturing cost
for batch manufacture where a variety of products are manufac-
tured in discrete batches. To achieve this lower manufacturing
cost a viable and effective scheduling and control system is
vital

.

The major aim of scheduling and control for automated
manufacturing systems is to take the broad system goals and
translate them into specific instructions for each item of
equipment, responding to problems as and when they occur to
reduce their effects. The overall problem is tremendously com-
plex with an enormous number of machine/ job/resource combinations
to be considered. The approach that can be used to address such
a problem is to have a number of levels in a hierarchy of
scheduling and control.

This paper gives an overview of the hierarchical approach to
scheduling and control of automated manufacturing systems. First
the factors affecting scheduling and control of automated
manufacturing systems are described and their effect on the
design of the scheduling and control system described. Second,

-15-



the functions necessary to descend the hierarchy from broad sys-
tem goals to detailed machine instructions are described. Third,
various control hierarchy designs are discussed. Finally, two
major functions in the hierarchy, Master Production Scheduling II
and On-Line Scheduling are detailed.

2. FACTORS AFFECTING SCHEDULING AND CONTROL OF AUTOMATED
MANUFACTURING SYSTEMS

An automated manufacturing system differs considerably from
its conventional counterpart. These differences are not only in
the manufacturing hardware but are also in the software and com-
munication aspects as well as in the provision of sensors and
other monitoring devices. This means automated manufacturing
systems have the mechanisms to be closely monitored and con-
trolled so that scheduling and control can be done with more cer-
tainty about the actual state of the manufacturing system than
with conventional manufacturing systems.

Decisions made in such an environment can therefore be bet-
ter for three reasons. First, a greater amount of data is avail-
able since it is generated automatically. Second, the data
produced automatically is likely to be more accurate than that
produced by human labor although, of course, a system should be
protected against totally ridiculous data points being produced
by faulty equipment. The third reason why decisions can be bet-
ter in an automated environment is that the data can reach the
decision making areas faster than in conventional systems.

Although decisions can be made under better circumstances
than in conventional systems, there are some features of
automated manufacturing systems which can result in a more com-
plex problem to be solved and these features are

(i) Manufacturing lead times are shorter

(ii) Engineering details need to be considered

(iii) Greater emphasis is placed on system utilization.

(iv) There is a need to integrate with existing software
systems

.

(v) Detailed instructions need to be generated.

Short Manufacturing Lead Times.

One of the major justifications for automating many conven-
tional manufacturing systems is that the manufacturing lead times
in automated manufacturing systems can be considerably shorter
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than those in conventional manufacturing systems. Achieving this
has a number of consequences for scheduling and control. First,
there may well be a need for a second Master Production Schedul-
ing (MPS II) function (See section 4)

.

Second, the speed at which jobs move from operation to
operation means that a much more comprehensive on-line control
facility is required. This facility must be capable of quickly
and accurately determining the next moves to be made in the
automated manufacturing system. There may therefore be a need
for a faster response time from the scheduling and control system
in automated manufacturing systems over the more conventional
manufacturing systems. However, lead times in conventional
manufacturing systems are gradually declining so that the dis-
parity between automated and conventional manufacturing systems
is becoming less.

Engineering Details

The low work in progress levels and low manufacturing lead
times associated with automated manufacturing systems means that
much room for maneuver has been removed. With conventional
manufacturing, considering the use of specialized tools in fac-
tory scheduling, for example, is not particularly crucial since
jobs can usually wait until such tooling is available. However,
this waiting is not desirable within an automated manufacturing
system and the scheduling and control procedure may have to in-
clude a consideration of such aspects as tooling requirements and
jig/fixture requirements. Since the same tooling and/or
jigs/fixtures may be required by more than one product type then
consideration of the use of tooling and jigs/ fixtures may have to
be made across the whole manufacturing systems. There is, of
course, scope for reducing the problem by incorporating proce-
dures that produce more standard designs relying on standard
tooling but there are still likely to be a number of automated
manufacturing systems that do have this problem [see, for
example, Carrie et al . (1983), 0' Grady and Menon (1986)].

System Utilization

The aims of most scheduling and control systems are to:

achieve low through-put times
have low work in progress levels
achieve the job due dates
achieve high system utilization

In most circumstances these aims are conflicting: achieving
job due dates, for example, may mean that system utilization, for
parts of the system in any case, is low. The large capital cost
of most automated manufacturing systems means that high system
utilization is usually considered to be of some priority in con-

-17-



sidering production runs. It could be argued that the cost of
the automated manufacturing system is a "sunk" cost and that con-
sideration of utilization should not be included in the schedul-
ing and control. However, there are two reasons why utilization
may be considered. The first is pragmatic: for many industrial
concerns, utilization is used as one performance measure and any
scheduling and control system would have to recognize this. The
second reason is that system utilization is a measure of through-
put that can be obtained in more detail than by purely measuring
the output. In this manner, the throughput in machine hours can
be obtained.

The desire to achieve high system utilization but still to
keep low through-put times, low work in progress levels and to
achieve job due dates is not an easy task and can require a more
sophisticated scheduling and control system than that used in
conventional manufacturing.

Need to Integrate

One major consideration in the design and development of a
scheduling and control system for an automated manufacturing sys-
tem must be that it should integrate naturally with the existing
software systems within the organization. These existing software
systems may form an integrated whole especially where they are
from the same vendor. If that is the case, they very probably
have readily useable interfaces between the software systems. On
the other hand, the existing software systems may form a rather
diverse group especially where they have been procurred from dif-
ferent suppliers or written in-house. If this is the case, then
suitable interfacing may be more difficult. Whatever the case,
whether the systems form an integrated whole or where they are
more diverse, then it is unlikely that an industrial concern
would be willing to dispose of all the existing software
packages. The automated manufacturing systems scheduling and
control software should therefore link in readily with existing
software packages within the organization such as Material
Requirements Planning, Computer Aided Design and Process
Planning. This is an important factor in designing the schedul-
ing and control structures for automated manufacturing systems.

Detailed Instructions Need to be Generated

Human workers, especially the more skilled ones, do not need
to be given detailed instructions. Often a broad outline "goal"
for them to achieve is all that need be given. For example, a
skilled lathe turner will often only need to be given the
finished dimensions of a part. He will then often select the
base bar stock to be used, the tooling necessary and the
speeds/feeds to use when machining. Furthermore, he will also
sequence operations at the lathe to finish the part. For
automated manufacturing systems however, all the detailed in-
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struct ions have to be generated within the scheduling and
control/process planning system. Furthermore, the activities
have to be coordinated and scheduled in great detail. The provi-
sion of detailed instructions mainly occurs at the lower levels
of the hierarchies presented in Section 3.

Manufacturing
Resource
Planning: MRPII

Problem and
error
recovery

Business Plan

Production Plan

Master Production Scheduling I

Material Requirements Planning

tCapacity Requirements Planning
A

"work to" list

-Master Production Scheduling II-*-
i

On Line Scheduling-*-

Resources checked

workstation/cell scheduled
U

generate instruction to machines

equipment

Process
Planning
data

NC Programs

Fig Example of Functions in Scheduling and Control of
Automated Manufacturing Systems

-19-



3. FUNCTIONS IN SCHEDULING AND CONTROL

As indicated, the major aim of scheduling and control for
automated manufacturing systems is to take the broad system goals
and translate them into specific instructions for each item of
equipment responding to problems as and when they occur to reduce
their effects.

An example of the functions to be carried out as we descend
from broad goals to specific instructions is shown in Fig. 1 al-
though not all functions may be present in any particular
scheduling and control system.

Business plan - this sets the broad objectives of the
company

Production plan - determines aggregate production and
expected aggregate sales

Master Producfr«Schedule I - determines the end-product
production rates

Material Requirements Planning - breaks the Master
Production Schedule I into requirements for
components and raw materials

Capacity Requirements Planning - evaluates the capacity re-
quirements of the output for Materials Requirements
Planning

Master Production Scheduling II - the output from the
Material Requirements Planning system and from the
Capacity Requirements Planning is a "work to" list
which contains the jobs to be completed over, perhaps,
the next month. The Master Production Scheduling II
function breaks this large amount of work into viable
subsets that can be manufactured within the constraints
and broadly in line with the aims of the automated
manufacturing system over a much shorter time period
(perhaps 8 hours

)

t
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On Line Scheduling - this takes the viable subset of work
from the Master Production Scheduling II function and
breaks this down into loading specific machines or
workstations

Resources Checked - the resources essential to the
completion of a job (for example, raw materials,
tooling components) are checked to confirm
availability. If they are not available then they are
reordered (with higher priority)

Workstation/Cell Scheduled - detailed schedules are
produced. For very large automated manufacturing
systems then this may be done at two stages. Firstly
the cells are scheduled and then each workstation is
scheduled

.

Generate Instructions to Machines - the process planning
data base is used to obtain the NC part programs and
these are downloaded to the machines. Detailed
sequence instructions from the workstation/cell
schedule function are then used to drive the equip-
ment .

Problem and error recovery - in all likelihood the equip-
ment operation will differ in some respects from that
planned. A problem and error recovery function can be
used to alleviate any problem caused.

Two major scheduling and control functions are Master Production
Scheduling II and On-Line Scheduling and these sections are dis-
cussed later in more detail.

4. CONTROL HIERARCHIES

The functions briefly described in the preceeding section
can be mapped onto a varying number of scheduling and control
levels. At one extreme, each function can occupy a separate
level. At the other extreme all the functions could be lumped
together into a single control level.

One major approach has been that of the National Bureau of
Standards in the Automated Manufacturing Research Facility (AMRF)
[see Jones and McLean (1984), Furlani et al . (1983)]. Five
levels have been proposed.

At the top is the Fac i 1 i ty level which includes Process
Planning, Production Management (including long range schedules)
and Information Management (including links to financial and
other administrative functions).
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Below this is the Shop level which manages the coordination
of resources and jobs on the shop floor. The processes involved
at this level include the grouping of jobs into part batches
using a Group Technology (GT) classification scheme. The concept
of a virtual manufacturing cell is introduced at this stage.
These virtual manufacturing cells comprise machines which are
grouped together in a dynamic fashion, that is the configuration
and number of virtual manufacturing cells varies with time. Be-
sides job groups and virtual manufacturing cell configuration,
the tasks at this shop level include allocating tooling,
jigs/fixtures and materials to specific works tat ion/ j ob
combinations. These activities at the shop level are re-
evaluated on the basis of feedback from the cell level and on
changes in requirements etc. from the facility level.

Below the shop level is the cell level, where the cell con-
trol system schedules and controls jobs through the cell. These
jobs have already been divided into groups so that the jobs allo-
cated, to each cell are somewhat similar. Also involved in
scheduling and controlling the jobs is the scheduling of material
handling and tooling within the cell.

The next lowest level is the workstation level which con-
sists of coordinating the activities of the AMRF workstation
which is taken to typically consist of a robot, a machine tool, a
material storage buffer and a control computer. The workstation
controller then arranges the sequencing of operations so as to
complete the jobs allocated to the cell control system.

The lowest level of the planning and control hierarchy is
the equipment level which consists of the controller for in-
dividual resources such as machine tools, robots or material
handlers

.

A second approach to the number of levels is that of Com-
puter Aided Manufacturing International Inc. (CAM-I). This is an
organization dealing with the design and implementation of com-
puter technology to manufacturing. It operates on a consortium
basis in that individual companies join and then pay a further
subscription to join one or more of a number of programs which
carry our activities in a particular area. One particular
program is the Factory Management Program which is concerned with
the design and implementation of a factory management system to
efficiently manage production.

The Factory Management Program has designed a computer
hierarchy of control using four levels:

Factory Control System - this is at the top level and is
concerned with top level factory management considering
such aspects as determining end item requirements, deter-
mining product sutructure definitions (Process planning)
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and determining individual shop capacities and capabilities.

Job Shop Level - this level is the next below the Factory
level and takes commands from the Factory level to deter-
mine commands for the work center levels. Included in this
would be the taking of end item production and exploding
this into processing operations. Having done this the shop
order events are scheduled.

Work Center Level - this level takes the commands from the
job shop level and generates detailed task requirements.
The task events are then scheduled and commands for these
tasks are passed to the next level - unit/resource level.

Unit/resource Level - the tasks from the work center level
are broken into subtasks and these subtasks are carried out.

Associated with each level there is also a feedback mechanism
whereby occurance of events is fed back to the next higher level.
This procedure leads to a relatively decentralized structure
whereby decision making is made at the lowest possible level com-
mensurate with overall efficiency. Control of each level resides
at the next highest level and this next highest level issues com-
mands to the next lowest level. This lower level gives feedback
on its current status to the next highest level to facilitate
decision making at that level. As we progress down the hierarchy
the planning horizon shortens. At the top factory level, we may
be concerned with planning horizons of perhaps months whereas at
the unit/resource level then the planning horizon may only be
measured in seconds or minutes.

The present developmental status of the CAM-I AFMS is that a
comprehensive data flow model has been completed together with a
data dictionary. No implementation of these models has as yet
been carried out and this stage awaits further developments.

A four level hierarchy has also been proposed by O'Grady
(1986). These levels consist of:

Factory - containing the major corporate computer systems
such as process planning, computer aided design,
master production scheduling I, materials requirements
planning and the financial systems

Shop - containing the master production scheduling II and
on-line scheduling systems

Cell - this level schedules and controls cell activity

Equipment - this level controls the equipment.
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It should again be stressed that rather than concentrating on and
discussing the number of levels, what is probably of more impor-
tance are the functions that need to be carried out (for an
example, see Figure 1). These functions can be mapped onto a
wide number of layers in a hierarchy.

6. MASTER PRODUCTION SCHEDULING II (MPS II)

The MPS II function level is concerned with extracting from
the "work-to" list (obtained from the Factory Materials Require-
ments Planning (MRP) system) a viable portion of work to be done
in a specified time period. The "work-to" list may contain work
to be done over perhaps the next month and the MPS II breaks that
down into work to be done in a much shorter time period. The
average operation times are important in deciding how long this
much shorter time period should be. With longer operation times
then the time period considered by the MPS II function could be
longer and where operation times are very short then the MPS II
may only be concerned with time periods of perhaps an hour.

Superficially the MPS II function is similar to the MPS I

function that precedes the MRP calculations of net requirements
as indicated in Fig. 1. However, the two MPS functions, MPS I

and MPS II, do differ in two significant respects:

1. The time periods considered are different - MPS I may
be for weekly time periods whereas MPS II may be for
time periods of a few hours.

2. MPS II may have to consider engineering details such
as tools or jig/fixture supply.

There are analytical methods of determining a<\ effective and vi-
able MPS I [see O'Grady and Menon (1985), O'Grady (1986)] and
these approaches are capable to a greater or lesser degree of
giving effective solutions for the MPS I function for conven-
tional manufacturing. Obviously any analytical solution will
need to be treated with care to ensure that all important factors
have been included in the derivation of the solution. Given this
general warning, the conventional approaches each have one or
more of a number of drawbacks when applied to MPS II in a typical
automated manufacturing system. The first drawback concerns the
need to consider tooling and the provision of jigs/fixtures as a
major constraint. Although the virtual capacity tool magazine
has become technically viable, it is the exception rather than
the general case and a finite capacity tool machine is the norm
at present. Carrie et al . (1984) cite the example of a major
automated manufacturing system whre a product mix of just seven
part types requires all 100 tool magazine slots at certain
machines. In a practical automated manufacturing system there is
also likely to be a limit on the number of particular
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jigs/fixtures available, because of the high cost of producing
sophisticated jigs/fixtures, and therefore there are likely to be
constraints on the use of such jigs/fixtures. This means that
the MPS II function must not only take into account such factors
as machine capacity as a constraint but also such other factors
as the provision of tooling and jigs/fixtures.

The second drawback concerns the nature of the constraints
themselves. Most approaches would consider the constraints as
being "hard", i.e. no overshoot of the constraint is possible.
In many facilities this does not adequately reflect the decision
making process; for example the tooling required can exceed the
machine capacity if the drawback of the time taken to physically
change the tooling can be accomodated presumably with some
reduction in system performance. Any analytical procedure must
therefore be capable of including constraints as both 'hard' and
as 1 soft 1

.

The third drawback concerns the goals of the automated
manufacturing system; often there are a wide range of sometimes
partly conflicting goals, for example, the goals of high machine
utilization and low work in progress levels. There is also
likely to be a wide difference in goals from installation to
installation. There is therefore a requirement that the methods
can handle this wider variation in goals.

The fourth and final drawback to many of the analytical ap-
proaches is that they often produce aggregate solutions which
have to be then disaggregated to obtain the desired production
rate for each product.

Some authors have considered the particular requirements of
automated manufacturing systems: Stecke (1983), for example, has
constructed a non-linear integer programming model for a par-
ticular automated manufacturing system and she was able to obtain
some solutions using a standard mixed integer programming system.
This approach however, does suffer from the usual problem as-
sociated with mixed integer programming namely that of high com-
putation times. Queueing theory approaches have been considered
by several researchers including Solberg (1976), Buzacott and
Shanthikumar (1980), and Yao (1983). These Queueing Theory ap-
proaches can provide some useful results in the design phase of
FMS but their usefulness in providing detailed operational solu-
tions has to be doubted.

0' Grady and Menon (1985) have proposed an adapted goal
programming approach which overcomes many of the disadvantages of
the conventional approaches.

The 0' Grady and Menon ( 1985) approach is orientated to a
general automated manufacturing system to include a wide variety
of constraints including both 'hard' and 'soft' constraints. In
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addition multiple goals are readily incorporated. The approach
considers such aspects as:

tooling requirements
linked groups of orders
machine capacity
alternative routes
due date considerations
volume of work in progress
the expediting of certain orders.

0' Grady and Menon (1985) give a detailed account of how each
of the above aspects can be formulated within their framework,
the essential philosophy being that users can select to the
users' own particular requirements individual modules.

The computing times associated with this approach, however,
mean that it is only suitable for use when sufficient time
allows. At some future point in time, computing power may have
risen to such an extent that the approach can be used in real
time. For the forseeable future though, the approach may have to
be augmented by a 'mailbox' facility which contains some
rules/heuristics which can readily determine a reasonable MPS II
without a significant computing time delay. The production
Logistics and Timings Organizer (PLATO) system provides such an
environment [see 0' Grady and Brightman (1986) and 0' Grady et al
(1986)].

Whatever approach is used, the output of the MPS II function
is a work load for the time period under consideration. This now
passes to the next stage, that of On-Line Scheduling.

i

7. ON-LINE SCHEDULING

The On-Line Scheduling function is concerned with taking the
MPS II output which is a viable work load for the particular
planning period and translating this into instructions to each
cell/workstation taking into account the status of the automated
manufacturing system and the overall requirements. We can stress
over al 1

;

we are concerned with the overall performance of the
automated manufacturing system not just with optimizing one par-
ticular cell since this may give poor overall system performance.

The degree of detail required in the instruction to each
cell/workstation will vary with the ability of the cell/work-
station as well as what degree decentralized control is favored.
Where centralized control is required and/or there is limited
decision making ability at the cell/workstation level, the
cell/workstation requires relatively detailed instructions.
Conversely, where decentralized control is required and there is
a reasonable decision making ability at the eel 1 /works tat ion
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level then the level of detail required is much less and perhaps
instead broad goals for the cell to achieve replace detailed
instructions

.

The major practical approach to On-Line Scheduling was that
of a simple fixed heuristic operating on the queue of jobs [see
Panwalker and Iskander (1977)] whereby a priority is allocated to
each job in the queue. The job with the highest priority is
selected when the machine becomes vacant. The fixed heuristic
approach has the advantage of ease of computation but it has the
disadvantage that the solution obtained may be poor when applied
to a wide variation of system specifications. The requirements
of the On-Line Scheduling function within an automated manufac-
turing system environment are such that good performance is
required across a wide range of operating conditions. Optimal
approaches in general require large computing resources and a
heuristic approach which adapts to a particular automated
manufacturing system to give good results across a wide range of
systems operations seems to be the best compromise in terms of
computing times and quality of the solution. Amongst the first
to propose the use of adaptive heuristics has been Fischer and
Thompson (1963) with some later work done by Hershauer and Ebert
(1975). The approaches used by these authors however suffer from
the disadvantage that neither uses a unified format and con-
sequently the methods have to be considerably altered for each
application, making their use difficult in practice. The ap-
proach of 0 1 Grady and Harrison (1985) is to use a heuristic that
not only adapts to the manufacturing system but also is one that
is expressed in a unified format. This approach, termed Search
Sequencing, uses a priority rule operating on the queue of wait-
ing jobs at each machine or process. The coefficients in the
priority rule adapt (using a search routine) to a particular
manufacturing system. The search technique used by 0' Grady and
Harrison (1985) is a modified version of the Hooke-Jeeves (1961)
pattern search routine. The modifications are to reduce the risk
of the search becoming trapped in local minima. Other search
techniques could be used however, and their efficiency may well
suit particular automated manufacturing system environments. Ad-
vantages of this approach include the adaptation to particular
manufacturing systems and particular performance measures leading
to considerable improvements over fixed heuristics. In addition,
the approach can be simplified or made more detailed depending on
the users requirements. Tests on practical manufacturing systems
indicate a good performance over a wide range of manufacturing
systems

.

8. CONCLUSION

The problem of scheduling and controlling the vast majority
of manufacturing systems is tremendously complex. This com-
plexity increases when automated manufacturing systems are
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considered. This paper has given both the background and some
possible approaches to scheduling and control of automated
manufacturing systems.

The factors affecting scheduling and control of automated
manufacturing systems have been indicated and those factors which
increase the complexity of the problem include:

1. Shorter manufacturing lead times
2. Engineering details need to be considered
3. Greater emphasis is placed on system utilization
4. Need to integrate with existing software system
5. Detailed instructions need to be generated

The use of automated data collection can ease the problem some-
what by the provision of higher volumes of high accuracy, timely
data that such data collection systems can provide.

The aim of a scheduling and control system for automated
manufacturing systems is to take the broad system goals and
translate these into specific instructions for each item of
equipment responding to problems as and when they occur. This
paper has described an example of the major functions of such a
scheduling and control system. Viable and effective
methodologies to the most important functions have been
described

.
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Introduction

This paper discusses a hierarchical approach to the
integration of the planning, scheduling, and control (P/S/C)
functions found in the automated manufacturing environment. We
first define what we mean by P/S/C, indicate the origins of the
ideas used in our approach, and describe our efforts to make
these ideas work in practice.

The literature contains numerous theoretical discussions of
hierarchical approaches to P/S/C. While this paper makes
reference to some of the previously published underlying
concepts, it focuses primarily on the considerations, steps,
and problems involved in actually implementing a hierarchical
framework for P/S/C.

One might best interpret our implementation of the
hierarchy in terms of a data base-oriented application of
generalized math programming principles. The core of the
framework is a data base which is a single source of
information for the three business functions of P/S/C. The
data base is structured such that, for example, data required
by both the planning function and scheduling function exists in
a format that can be used effectively by both functions. A
variety of algorithms is available to the user to invoke within
this framework in pursuit of specialized or local objectives.
The choice of algorithms to use, the sequence in which they are
used, and the rules by which they are used are determined by
the user's overall objectives and environment.

Both formal and informal applications of primal and dual
decomposition are used to generate primal (quantity target) and
dual (cost or economic target) information for the system-wide
data base. This primal and dual information is used in turn by
the algorithms in the hierarchy to insure that the local
actions taken by specialized algorithms are compatible with the
overall goals of the entire system.

We use decomposition techniques to integrate not only the
different levels of the P/S/C hierarchy but also the actions of
various algorithms within a given level. For example, we apply
these principles to enable us to solve sequencing, lot sizing,
and resource allocation problems independently and yet have the
results mesh in an integrated manner.
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The P/S/C Hierarchy

The diagram in Figure 1 represents our hierarchy in terms
of the business functions which are performed at each level.
Systems Operation Planning is concerned primarily with longer
term, multi-plant planning. The Plant Operations Planning
Function is concerned with the medium-term planning of a single
plant. The Scheduling Function has been separated from the
Operations Planning Function to distinguish the considerations
of the sequencing of operations and the timing of events which
take place at the scheduling level. Both the Plant Operations
Planning Function and the Scheduling Function interact heavily
with the Material Requirements Planning Function. Finally,
both the Scheduling Function and the Material Requirements
Function interact with Job Control and Inventory Control.

Hierarchical Approach

The structure of our framework for modeling the functional
hierarchy reflects the following objectives:

o Avoid large models based on a single technique,

o Develop small, specialized models at each level
incorporating those techniques which are appropriate
at each level, and

o Develop a framework for information transfer between
levels

.

At first glance, the approach may seem counter-intuitive;
we propose to integrate the hierarchy by breaking it apart into
smaller components. In a sense this is true. The approach has
two key properties:

o The first two objectives recognize how many firms
maintain data and do analysis within their P/S/C functions
today, given typical organization structures. In
particular, the approach is consistent with the fact that
planning is done in one organization, scheduling in
another, etc. Furthermore, it offers a mode of use that is
compatible with these organizational realities.

o At the same time, it offers an approach to dealing with
the key problem of information transfer between levels.
This problem is well documented. For example, Odrey and
Nagel (1986) point out how many of today's data base
structures for supporting decision making at the
operational level are unable to provide meaningful
information in support of planning level decisions.
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Decomposition Methods

As mentioned in the Introduction, we apply formal and
informal decomposition techniques from mathematical programming
theory to generate and pass information between different
levels in the hierarchy. For example, consider the diagram
shown in Figure 2, depicting the interface between a planning
function (P) and a scheduling function (S). In a real sense,
we might think of the scheduling problem as a subproblem of the
planning problem in that the planning problem may encompass
many similar scheduling problems with its larger scope and
longer-term view.

As shown in Figure 2, suppose that the planning function
determines that the scheduling function should produce A
parts. The scheduling function determines that it should
product A' parts, not A parts. How do we reconcile the
difference so that the overall plan is consistent? One method
would be to fix a target production level A = A' in both P and
S. Solve P and S independently. Determine the cost to produce
(or the incentive to produce) the target level in both P and
S. If the economics do not match, adjust the target
accordingly and repeat the process. This approach is called
Resource-Directed or Primal Decomposition.

An alternate approach would be to pass target economic
values, $A = $A 1

, which are adjusted iteratively if the
production levels, A and A 1

, do not match. Such an approach is
called Price-Directed or Dual Decomposition. Both approaches
have their strengths and weaknesses. Both approaches are used
in the implementation of our hierarchy. It is important to
note that economic information plays an important role in both
approaches. In the Dual method, economic information becomes
the coordinating signals. In the Primal method, economic
information appears in the feedback loop. In industry, the
failure of successful P/S/C integration can usually be traced
to the absence of a consistent base of manufacturing economics
which would allow economic information to be passed from level
to level.

Integration Framework

As we have indicated, the key to successful P/S/C
integration is an economic base which is consistent for all
levels in the hierarchy. Unfortunately, most existing cost
accounting systems seem to obscure true manufacturing
economics. Reasonable choices for an economic base are total
controllable (as opposed to fixed cost allocation)
manufacturing cost and base load manufacturing cost. However,
the choice of economic base is probably less important than
having one that is consistent across all levels in the
hierarchy

.
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Figure 2
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Once we've chosen an economic base, the next task in
establishing our Integration Framework is the development of a
function-wide data base to support all P/S/C functions.
Although we will have little to say about data base development
in this paper, we recognize that this probably represents the
most difficult task in P/S/C integration.

After the function-wide data base has been established, we
can begin thinking about the implementation of algorithms which
perform operations on the data base. This approach is
diametrically opposed to the traditional operations research
approach of developing self-contained models which are
subsequently beaten senseless by formal optimization
techniques. Our integration framework contains no
self-contained models, only a data base. Many of the
traditional optimization techniques are applied, but in a form
which is an integral part of the function-wide data base.

Historical Perspective

The historical relationship between algorithmic
(optimization) expertise and data base (environment) expertise
is shown in Figure 3. There may be some overlap of algorithmic
and data base expertise in industry although the point is
debatable. Such overlap in academia does not appear to exist.
Historically, the academic algorithmic research in planning and
scheduling has drifted off to complexity theory. Meanwhile,
industrial data base experts, feeling that the academic
community has not been solving their problems, have embraced
data base intensive approaches to P/S/C like MRP.

We propose to imbed the best of the academic algorithmic
developments in the industrial data base environment.

Origins

Before proceeding with the presentation of our hierarchical
framework, it is useful to note some of the origins of the
basic ideas upon which we rely. Many of the key concepts of
the hierarchical approach can be traced back to Mesarovic
(1970) and Lefkowitz (1977) whose work on hierarchical systems
theory was responsible for many subsequent developments in
multi-level control in the process industry. Their research
was concerned with the generation and transfer of information
(primal and dual) up and down the hierarchy. It is interesting
that this early reference was related to the process industry.
As manufacturing becomes more flexible and automated,
manufacturing industry problems tend to approach well-known
process industry problems. Hence, this reference is highly
relevant

.

-36-



Figure 3

Venn Diagram Snowing
Overlap of Expertise

Algorithmic Data Base
(optimization) (environment)

Academia

Industry

-37-



In the area of manufacturing production scheduling, one of
the earliest important references is, of course, the work by
Hax and Meal (1975) on the hierarchical integration of
production planning and scheduling. This work was responsible
for the flood of hierarchical planning publications which have
eminated from MIT over the last ten years. However, it is
interesting to note that this original work considered solely
the top-down flow of information comprised only of primal
signals in the form of constraints.

While others were working on theory, Jaikumar (1974) was
implementing a similar planning and scheduling hierarchy in
practice. His hierarchy added costs to the constraint
information flowing from the planning level to the scheduling
level but made no provision for feedback from scheduling back
to planning.

A fairly recent paper by Graves (1982) revisits the Hax and
Meal hierarchy and applies Lagrangean Relaxation to decouple
the planning and scheduling problems. With this approach, the
planning and scheduling functions receive Lagrangean
multipliers (economic or dual information) from a master
coordination function and develop production levels (physical
or primal information) which are fed back to the master
coordination function. As will be seen in the following
sections, much of our implementation follows the spirit of the
Lagrangean approach.

Other researchers, Maxwell, Muckstadt, Thomas, VanderEecken
(1983), have examined the hierarchical approach in terms of the
individual tasks (e.g., lot size and protection stock
determination) which must be performed at the various levels in
the hierarchy. The separation of these tasks and the analysis
of the information required by each task is important to our
hierarchical approach which considers all tasks as separate
operations on a function-wide data base.

Planning, Scheduli ng, and Control Tasks

A useful characterization of the P/S/C tasks as viewed by
these and other researchers is shown below:

Planning/Scheduling Hierarchy (Graves, Maxwell, Yano , et.al.)

Manufacturing Production Planning
* Aggregate Production Smoothing
* Lot Sizing and Timing

Reorder Intervals
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Manufacturing Flow Planning
* Resource Allocation

Planned Lead Times
Protection Stock

Manufacturing Scheduling
* Detailed Sequencing
* Inventory Control

Dynamic Rescheduling

The implementation of our hierarchy follows, to a large
degree, the classification of tasks shown above. Note,
however, that we are concerned not only with information flow
between levels, but also with information flow between
individual tasks and the algorithms which perform them.

The implementation of the five tasks marked above with
asterisks (*) will be discussed below in some detail. But
first, let us demonstrate the algorithm/data base interaction
with a simple example.

Algorithm/Data Base Interaction — A Simple Example

Figure 4 provides a graphic representation of the before
and after solution of a well-publicized example of the
scheduling philosophy required to maximize the throughput of a
plant. The Gantt chart on the left represents the
"traditional" method of scheduling a job through the
plant—each job step operation (process batch) is run to
completion before the parts are passed to the next operation.
The Gantt chart on the right is the result of (i) identifying
the bottleneck resource, (ii) maintaining long process batches
for operations on that bottleneck resource in order to minimize
time lost on that resource, and (iii) running short process
batches on non-bottleneck resources which, in effect, feed the
bottleneck. The result is that the job now finishes in less
time, minimizing work-in-process (WIP) and increasing
operations flexibility.

If our goal is to maximize factory throughput, this
bottleneck analogy/model offers a valid solution approach.
(For the moment, let's put aside considerations of maximizing
profit or of positioning our plant for seasonal inventories or
other external conditions.)

But let us ask the following question: From the point of
view of our hierarchical approach, which algorithms and what
data base structure are required to reach the same conclusion
under the same conditions? The answer is reassuringly simple.
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All we need, to produce the same result, Is a data base which
understands the value of resources over time and the Economic
Order Quantity (EOQ) formula for determining lot sizes (process
batches)

.

Figure 5 provides a graphical representation of the main
argument. The graph on the left indicates that, all other
things being equal, EOQ lot size increases as a function of
setup cost. The graph on the right represents the economic
value of a resource for a specified period of time. Assume for
a moment that the capacity utilization, CAP, of a resource has
to be less than some specified limit (e.g., a particular
machine has only eight hours capacity in one shift.) If the
capacity utilization on that resource is near or above its
limit, then that resource is limiting the throughput of the
plant (again, assuming that throughput maximization is our
goal) and the capacity takes on some economic value, CAP$

.

This might be, for example, the opportunity cost of not
producing additional units of output from the factory per unit
of time, relative to producing output in another more expensive
factory or relative to lost revenue from sales foregone.
However, if the capacity utilization on a resource is below its
limit, its economic value, CAP$, takes on a value of zero.
Those readers familiar with linear programming (LP) concepts
will note that our CAP$ value is analogous to a dual value for
an inequality row in an LP model.

The only remaining linkage to define is the setup cost,
SETUP$, which is simply, (i) the direct dollar cost, DIRECTS,
of performing the setup plus (ii) the resource time lost, TIME
LOST, during the setup multiplied by the time value, CAP$, of
the resource capacity being consumed. The equation is shown in
Figure 5. Thus, bottleneck resources take on a high value for
their capacity, resulting in larger setup costs and therefore
larger process batches (EOQ lot sizes) . Non-bottleneck
resources have a zero value for their capacity, producing
smaller setup costs and hence smaller process batches. Thus, a
data base containing economic (dual) values (like CAP$) for
finite resource capacity can transform a simple (myopic) EOQ
formula into a tool which makes reasonable decisions in a
global sense.

This example serves only to illustrate the spirit of our
approach. As we will see below, the EOQ formula is a little
too simple to be of use in complex scheduling problems.
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Figure 5
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Constraints and Boundary Conditions

Figure 6 represents a view of the constraints and boundary
conditions which make planning/scheduling problems difficult.
The variables in upper case can be thought of as given or
fixed. Values of the lower case variables are determined by
the model. For example, Requirements (parts or tools required
as input to produce end items within the schedule) must be less
than or equal to the expected RECEIPTS within the order lead
time for the required parts or tools. The Production of end
items must be greater or equal to the DEMAND.

As several researchers have observed, planning/scheduling
problems are two-point boundary problems—going from an INITIAL
INVENTORY to a Final Inventory greater than or equal to a
TARGET while satisfying the conditions:

Requirements < RECEIPTS
Utilization < CAPACITY
Production > DEMAND

throughout the time horizon of the model. Like many two-point
boundary value problems, the problem above may be
computationally intractable in practice (unless there is
sufficient slack in the constraints so as to render them
unnecessary) . In recognition of this computational
intractability, most planning/scheduling algorithms ignore some
of the constraints and attempt to generate solutions which meet
the conditions of one or two other constraints. For example,
MRP starts with DEMAND and TARGET inventories and works
backward to produce Requirements and Utilization. In doing so,
MRP ignores the constraints related to RECEIPTS and CAPACITY.
Finite forward scheduling algorithms start with RECEIPTS and
CAPACITY and work forward to determine Production and Final
Inventory.

The important distinction between our approach and the
traditional planning and scheduling system implementations is
that, instead of ignoring complicating constraints, we relax
the complicating constraints and generate Lagrangean prices for
the constraints so that their effect can be incorporated in the
traditional algorithms. In the following sections, we describe
five of our implementations of some of the standard OR-based
techniques

:

Just-In-Time MRP
Capacity Balancing
Lot Size/Frequency Determination
Resource Allocation
Sequencing
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Figure 6
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Mater ial Requirements Planning (MRP)

Our implementation of MRP logic can be used at both the
production planning and the flow planning levels. Just-In-Time
flow planning can be approached through the specification of
adjustable lot sizes and minimal manufacturing lead times. MRP
relaxes the receipt of requirements (Requirements < RECEIPTS)
in order to generate a flow plan. Capacity utilization
(Utilization < CAPACITY) can optionally be treated as a hard
constraint or relaxed in infinite capacity mode. Under the
infinite capacity mode, the MRP routine generates Lagrangean
values for capacity utilization in much the same manner as that
indicated in our debot tlenecking example shown above. These
values are used by other algorithms to reflect the influence of
the finite capacity constraint.

In addition to the economic (dual) information contained in
Lagrangian values, the MRP routine also creates bound (primal)
information in the form of Just-In-Time job release bounds.
These JIT bounds, shown in Figure 7, represent the latest start
time which a job step can have if the corresponding end item is
to meet its due date. JIT bounds are used by other algorithms
as a representation of the demand constraint (Production >

DEMAND) on a job step level.

In a sense, the MRP routine can be thought of as a greedy
algorithm which schedules activities at the last possible
moment on the best possible facility. While it is usually
necessary to do quite a bit of work on this type of greedy
solution to make it feasible, the initial MRP solution (and the
associated auxiliary information) represents a good starting
point for the other algorithms.

Capacity Balancing (BAL)

To the extent that the factory has alternate facilities for
performing the same operations, there may be a facility
preference order for each operation. Algorithms like MRP
generally chose the facility of first preference for each
operation during the materials/operation explosion. Long term
capacity balancing entails reordering the facility preference
list in order to balance loads across facilities and to cluster
similar operations on the same facilities in order to
ultimately reduce setup costs.
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The longer term preference clustering of similar operations
across parallel facilities requires that we make an
approximation of the setup cost among operations assigned to a
facility during a given production period. (Setups are
sequence dependent and we haven't yet determined detailed
sequences for the operations on each machine.) In the BAL
routine, we use a production period approximation of setup cost
similar to the two-phase vehicle routing approach of Tyagi
(1968). In the multiple vehicle routing problem, Tyagi first
approximated travel costs from points to routes in order to
cluster points to be visited to the proposed vehicle routes.
Then, in the second phase of the algorithm, the points within
each route were sequenced. It may appear strange in a paper on
production scheduling to reference a paper on vehicle routing.
However, as the discerning reader will note, the parallel
machine loading problem and the multiple vehicle routing
problem are similar if not identical from the mathematical and
algorithmic points of view.

In the BAL routine, operations are clustered to facilities
based on the capacity available on the facility and the
similarity (from a setup standpoint) of an operation with those
operations already assigned to that facility. Detailed
sequencing of operations on each facility is handled by the SEQ
routine as described below.

The BAL routine would be run infrequently; prompted by
changes in demand mix or capacity availability.

Lot Size/Frequency Determination (LOTS)

During the MRP calculations, lots sizes (process batches)
may be of fixed size or may be adjustable (within a minimum and
a maximum) to the demand for that operation during a given time
period. However, once a production plan has been established,
it may be worthwhile to return to question of lot
size/frequency determination on an optimal basis.

We follow the single product, optimal lot size/frequency
procedure proposed by Wagner and Whitin (1958). This dynamic
programming-based approach uses sequence-dependent setup costs
and the internal demand generated for a single product for the
current schedule to produce the optimal lot size/frequency for
a single product. We have extended the Wagner-Whit in procedure
to include a consideration of the finite capacity dual
(Lagrangean) values discussed above.
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This additional dual information allows the procedure to
optimally determine the timing of the lot size to avoid periods
of over-utilized capacity. For example, the dotted lines in
Figure 8 might indicate the timing of optimal lot sizes as
determined by the original Wagner-Whitin algorithm. However,
the second lot falls in a period of high capacity utilization.
Since our implementation of the algorithm considers setup costs
to include direct costs plus the value of the time lost on the
facility, the setup cost during this period would take on a
higher value which would move the second lot earlier to the
position shown in the diagram.

Capacity Allocation (CAP)

In flexible manufacturing, the concept of a static,
identifiable bottleneck tends to break down. Bottlenecks to
production tend to move throughout the factory at different
stages of the job cycle and with changes in product mix. Quite
often, the capacity allocation decisions made at the production
planning level by BAL (capacity balancing) have to be remade at
the flow planning level on a dynamic, operation-by-operation
basis

.

The CAP routine focuses on the dynamic reallocation of
operations across parallel machines and over time. The
production period approximation of setup costs, the capacity
dual values, and facility cost differentials are used to
optimize the reallocation of scheduled operations. A
network-based approach is used to decide whether bottlenecked
operations should be reallocated to other facilities and/or
earlier in time.

Operations Sequencing (SEQ)

The SEQ routine uses an adaptation of Lin's k-opt method
(1965) for resequencing a given string of scheduled
activities. This technique attempts to minimize the sum of
setup costs for the entire string. In our implementation, the
size of the string is limited by the WIP constraints involved
in multi-stage processing and the displacement of scheduled
activities is limited by the just-in-time bounds created by the
MRP routine described previously. As with the LOTS routine,
setup costs include direct setup costs and the value of the
time lost on the setup facility. Thus the k-opt method is
augmented with both primal and dual information generated by
other algorithms.
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Scheduling/Control Interface

As we work our way down the planning/scheduling/control
hierarchy, we reach the interface between scheduling and
factory control. This interface is extremely critical due to
the fact that the scheduling function in the automated
manufacturing environment must approach the time frame and the
detailed considerations found in real-time control.

As in the higher level interfaces, we have the choice of
whether to pass primal (targets) or dual (economics)
information. The diagram in Figure 9 illustrates two of the
configurations which we might consider. Assume that we are
going to use some sort of dispatching logic to generate a final
detailed sequence of operations. These dispatching rules could
be implemented off-line at the scheduling level where the trial
solutions are tested against a simulator. When an acceptable
sequence of operations is determined, this sequence is passed
to factory control as a set of (primal) targets.

Alternately, we could implement the dispatching rules at
the factory control level in the form of a real-time control
algorithm which chooses the next operation to run on each
machine. In this configuration, the scheduling level would
generate the priority economics for each operation which would
in turn influence the dispatching logic at the control level.

Cos t s and Economics - A Recap

We have alluded to costs and economics several times in
this paper. Our primary discussion has dealt with the choice
of an economic base so that costs are passed from level to
level within the integration framework consistently. Also, we
have discussed how algorithms incorporate penalties reflecting
relaxed constraints in their objective functions.

Let us now stand back and examine our hierarchical
framework more exclusively from the point of view of cost.

First, the broad cost objective of our structure of
algorithms as they are applied in concert at any given level of
the hierarchy is to reduce the sum of all marginal costs
associated with that level. The components of marginal cost
may vary in number and definition from one level to the next.
Let us consider an example. Figure 10 reflects the primary
components of marginal cost associated with the scheduling
level; that is, all real costs that will vary with the schedule
for the duration of the scheduling horizon, say four to five
days. These include
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Figure 9
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- facility operating costs
- work-in-process holding costs
- direct sequence dependent setup costs
- setup-driven bottleneck penalty costs
- facility overload-driven bottleneck penalty costs

Our approach in this environment to finding a good schedule
is first to develop a greedy JIT schedule (see above) and then
use various algorithms as appropriate to the human scheduler's
specific objectives to improve the schedule. The algorithms
work within a framework of total marginal cost but each
individual algorithm may incorporate only a subset of these
costs as its objective to minimize, given its limited
function. The components of marginal cost used by the key
algorithms appear in Figure 10. BAL attempts to adjust
facility preferences so that expensive setups tend to be
reduced. In doing so, it trades off facility operating cost
and WIP holding costs against a time period based approximation
of setup costs. SEQ on the other hand is examining alternative
detailed sequencings of process batches within time periods.
Accordingly, its objective is to resequence so as to reduce the
sum of direct setup costs and any bottleneck penalties
associated with setup over the scheduling horizon. The CAP and
LOTS algorithms have their objective functions defined
accordingly.

If we were operating at the planning level, Figure 10 would
appear somewhat different. Time periods would vary in length
perhaps from weeks to months as opposed to hours or shifts in
the scheduling horizon. Our objectives would not include
detailed sequencing of jobs on facilities. Rather, we would be
more interested in making decisions regarding how to best load
facilities from week to week, how to order long lead time
parts, and how to schedule aggregate production lots from one
month to the next. Hence, sequence dependent setup related
costs, falling largely within our longer time periods would be
neither visible nor of interest. On the other hand, WIP
holding costs may play a relatively more major role during this
time frame. Also, marginal operating costs of facilities may
include costs of fixtures, etc., which were considered fixed
within the three to four day scheduling horizon and hence not
considered in the scheduling decision. The user's choice of
algorithms would also change. SEQ would not be used in this
time frame. However, CAP and LOTS would be used but with
revised definitions of the marginal cost components of their
objectives. The computational structure of each algorithm
would remain fixed regardless of the level of the hierarchy
within which is was applied.
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Figure 10

Costs Considered at the Scheduling Level
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Implementation Difficulties

As evidenced by some of the references given above, many of
the ideas and algorithms set forth in this paper as as old as
the hills. Why haven't they been applied more in practice? In
the past, data bases weren't developed to the extent where
manufacturing data was under control. In addition,
computational power wasn't available in the manufacturing
environment where it was needed. Today, both of these
restrictions have been lifted; manufacturing data is being
captured and organized and computational power is becoming
available in almost any form imaginable. However, there do
remain some stumbling blocks to the successful implementation
of a P/S/C hierarchy—some technical, some organizational and
behavioral

.

One of the main technical stumbling blocks centers around
the aggregat ion/disaggregation issue. Different levels (and
different algorithms) in the hierarchy contain different
amounts of detail. When passing information from one level to
another, we must deal with the aggregation and disaggregation
of data. There has been some academic work done on the
subject. Unfortunately, most of this work is not in a form
which is applicable to the implementation of our hierarchy.

A second technical difficulty is making the transition from
discrete time (production periods) in higher level models to
continuous time (date and time of day) in lower level models.
In making the transition, inventory projections and capacity
utilization calculations must change from discrete to
continuous. This transition problem is especially difficult in
the automated manufacturing environment where there is more
pressure to bring the planning and scheduling functions closer
to (continuous time) real-time factory control.

On the organizational side, one of the main implementation
difficulties is the lack of manufacturing (marginal) economics
information available at the factory level. One of our main
implementation tasks is helping operations personnel to
estimate marginal cost data appropriate to the given P/S/C
level since most traditional cost accounting data is of little
value in computing marginal cost trade-offs.
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The P/S/C Hierarchy and Economies of Scope

Research into the economic benefits of automated
manufacturing has surfaced a term, economies of scope, to
describe these benefits. Economies of scope are most easily
defined and described in comparison to the more familiar notion
of economies of scale. Jelinek and Goldhar (1986) characterize
economies of scale thinking in terms of well known "rules":

o production costs decrease as factory size increases

o inventory is to function as a buffer to protect against
input disruptions

o product variation should be minimized in favor of long
production runs

o a large proportion of production costs are separable and
variable

They describe economies of scope in contrast as typically
longer term and frequently difficult to quantify benefits that
accrue from automated manufacturing due to such attributes as:

o improved production speed and flexibility in responding
to changes in demand mix

o greater product variation

o reduced WIP inventories

o reduced changeover (setup) times and costs

They suggest that these attributes can lead to strategic
benefits over the long term such as increased market share or
even survival in a given market. For example, a firm
implements automated manufacturing to improve product quality
or to improve response time in providing replacement parts, or
to be able to be competitive in smaller market segments that it
was previously prohibited from entering. The economies of
scope logic emphasizes that the benefits are typically neither
direct nor immediate but strategic nonetheless. Furthermore,
currently popular investment decision making frameworks such as
return on investment (ROI), payback, and net present value
(NPV) have difficulty capturing economies of scope due to their
emphasis on the near term.

Our hierarchical framework incorporates a structure that
works to ensure that the economies of scope reflected by the
automated manufacturing environment are, indeed, realized:
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o a function wide data base framework allows data that is
needed at all P/S/C levels to be entered with a minimum of
dupl icat ion

o an algorithmic structure allows primal and dual
information to be passed between levels to ensure that
decisions are internally consistent, e.g., long lead time
parts ordered at the flow planning level are used
economically at the scheduling level

o WIP inventories are kept to a minimum so that they will
not become stranded (resulting in waste) when the mix of
demands on the factory changes suddenly

o costs of setups are balanced carefully with facility
operating costs, WIP holding costs, and bottleneck effects
on overall factory throughput in an effort to reduce the
sum of all marginal costs associated with the automated
manufacturing environment in the context of the given time
horizon

.

Summary

This paper describes an integration framework in which the
Planning/Scheduling/Control (P/S/C) hierarchy can be imbedded
in the context of the automated manufacturing environment.
This framework consists of a data base structure which spans
the P/S/C functions. It includes a collection of algorithms,
each with a focused objective, which operate on the data base
and are selectively applied in concert by the user.

The integration framework combines several well known
concepts and computational approaches in new ways. It is
structured to allow the use of a consistent economic or cost
base across all levels. It uses primal and dual decomposition
techniques to transfer information both between levels of the
P/S/C hierarchy and within a given level. The specialized
algorithms incorporate Lagrangean relaxation techniques to cosl
out the impact of not meeting the various constraints of the
classical planning/scheduling problem.

The paper traces the development of the key algorithmic
concepts over the last twenty years that provide the building
blocks for the framework. Many of these methods were first
addressed and developed to deal with planning, scheduling, and
control problems in the process industry. As discrete
manufacturing becomes more flexible and automated, these
process industry solutions become more and more applicable to
the discrete manufacturing environment.
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Problems encountered in implementing the framework fall
into two classes: technical and organizational. One of the key
technical problems is dealing with how to aggregate and
disaggregate data efficiently. Another is how to design
algorithms that work together smoothly when making the
transition from discrete time to continuous time modeling
formulations. A primary organizational problem is estimating
the various marginal cost data elements that can be utilized by
the framework in factory environments where most cost data is
maintained in traditional accounting systems and is not
marginal in nature.

A primary thrust of this paper has been to show that some
well-chosen traditional operations research techniques take on
new life when implemented on a function-wide data base.
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INTELLIGENT MANUFACTURING PLANNING SYSTEMS

David Liu
Electro-Optical and Data Systems Group

Hughes Aircraft Company
U. S. A.

ABSTRACT

Most automation endeavors in manufacturing require at
least some manual direction. Now, Artificial
Intelligence (AI) systems which embody facts, logic, and
production rules can mimic the reasoning of manufactur-
ing experts. This paper describes an AI system which
creates manufacturing planning automatically from CAD
databases

.
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Introduction

Manufacturing planning determines the overall sequence
of operations, prescribes the step-by-step instructions
of each operation, and schedules the operations. Many
firms have developed computer-aided process planning
(CAPP) systems to reduce the time required to sequence
the operations. These systems can produce skeletal
process plans. However, they still require a great deal
of manual direction and input.

Today, some manufacturers are attempting to completely
automate manufacturing planning. Using expert systems,
an application of Artificial Intelligence, these firms
are developing software that mimics the reasoning of
manufacturing planners. Along with information from the
engineering database, embodied facts, logic, and rules
are applied to generate manufacturing plans
automatically.

PLANNING SYSTEM

REQUIREMENTS

1. GENERATIVE

2. FLEXIBLE, PORTABLE

3. HUMANLIKE INTELLIGENCE

4. EASY TO USE

5. FREE PEOPLE FOR JOBS COMPUTER CANNOT HANDLE

6. INTEGRATE WITH REST OF MANUFACTURING SYSTEM

7. AVAILABLE EXPERTS

8. STABLE TASK DEFINITION

AUTOMATED PROCESS

-60-



One of the first companies to implement such a system is
Hughes Aircraft Company's Electro-Optical and Data
Systems Group. The firm has developed the Hughes
Integrated Classification Software System (HICLASS)™ to
integrate design and manufacturing. The objective is to
electronically deliver computer generated planning
throughout production. This enhances product quality,
reduces support costs, increases flexibility and yields
greater responsiveness.

To generate this on-line manufacturing planning, Hughes
determined that the system must be capable of capturing
manufacturing knowledge. The manufacturing knowledge is
used to deduce required manufacturing operations from
engineering databases. The design defines the problem,
and available data includes graphical representation,
engineering notes, design and manufacturing specifica-
tions, special manufacturing instructions, and inspec-
tion criteria.
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Evolution

Hughes made several attempts at developing such a system
before settling on the current expert system. In 1982,
the work began with a generative manufacturing planning
system in which design features were matched to specific
manufacturing operations. This system used so-called
binary decision trees to produce process plans for
printed circuit board (PCB) fabrication. Process net-
works and flows describing manufacturing operations were
set up in this decision tree format. Although success-
ful, the trees were too difficult to build. Moreover,
process plannninging resembles an unstructured, 3D net-
work, so mapping this network onto binary decision trees
left out essential information and led to a loss of
flexibility.

A second generation version was then built using multi-
branch decision trees. Such trees were easier to build
and modify. This system was benchmarked for three ap-
plications, including PCB fabrication, PCB assembly, and
mechanical part fabrication. PCB applications proved
that multi-branching worked well. Mechanical part ap-
plications, however, revealed the shortcomings of
manually stepping through the decision trees. Planners
would lose perspective of the problem after traversing a
few levels into the decision trees.

/^ICLASSX

HICLASS DEVELOPMENT
HISTORY

1982 — PROTOTYPE PRINTED WIRING BOARD FABRICATION
PLANNING SYSTEM USING DECISION TREES

1983 — PASCAL EXPERT SYSTEM PROGRAM WHICH
CAPTURED LOGIC IN IF/THEN RULES

— DEMONSTRATION EXPERT SYSTEM WHICH
CREATED PROCESS PLANS FOR 2 ASSEMBLIES

1984 - SYSTEM IN PRODUCTION FOR 2 ASSEMBLIES AT 5

WORK STATIONS

— BEGAN DEVELOPMENT OF "C" PROGRAM USING
MORE COMPLEX IF/THEN/ELSE RULES AND
ENCHANCED CONCEPTUAL STRUCTURES
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This system, called the Hughes Integrated Classification
Software System (HICLASS)™ r used group technology soft-
ware to classify parts and generate process plans. As
an enhancement, software was included to infer part fea-
tures based on part geometry. These inferred-par t fea-
tures guided the system in traversing decision trees and
picking out essential manufacturing steps.

Inferring part features, however, proved to be a complex
task. This early system required a significant amount
of software and time to determine a route through deci-
sion trees. Such a structure was still not an optimal
representation of manufacturing planning.

An entirely new system, also called HICLASS™ Software
System, taking the knowledge-based, expert systems ap-
proach was then developed. The system's capability to
automatically extract part features from CAD frees plan-
ners from describing the part. This software deduces
required manufacturing operations, instructions, and
equipment programs from the engineering database through
heuristics that represent manufacturing experience and
intuition

.

HICLASS CURRENT
DEVELOPMENT

1985 — TRANSFER ASSEMBLY PLANNING EXPERT SYSTEM
TO NEW RULE FORMAT

— CREATE PLANNING FOR 32 ASSEMBLIES

— SYSTEM IN PRODUCTION AT 60 WORK STATIONS

— DEVELOP A GENERAL NATURAL LANGUAGE
PARSER TO INTERPRET ENGINEERING DRAWING
NOTES

— BEGIN DEVELOPMENT OF PROTOTYPE
PRODUCIBILITY ANALYSIS SYSTEM FOR PRISMATIC
PARTS

-63-



The software operates in three phases to accomplish
automated manufacturing planning. First, an interpreta-
tion phase defines the problem by translating engineer-
ing databases into "tokens" that can be processed as
symbols rather than numbers. Next, a reasoning phase
solves the planning problem by evaluating constraints
and goals. Here, the symbolic processing continues un-
til a conclusion or conclusions can be drawn. Finally,
a presentation phase translates computer graphics which
are sent to terminals on the shop floor. In the future,
the presentation phase will also translate results into
equipment programs that control the machinery.

WCLASSX

>JJL )
HICLASS SYSTEM FUNCTIONAL

DESCRIPTION HUGHES

TEXT
INFO

GRAPHICS
INFO

SHOP
FLOOR
STATUS

DOMAIN
SPECIFIC
DATA

ACQUISTION
MODULES

RULE
BASE

HICLASS

X
INTERACTIVE

TEXT

GRAPHICS

EQUIP-
MENT

PROGRAM

APPLICATION
MODULES

CURRENT CONFIGURATION

COMPUTER SYSTEM

TERMINALS (5)

OPERATING SYSTEM

LANGUAGE

NETWORK

APOLLO ENGINEERING WORK
STATIONS

TEKTRONIX, COLOR

UNIX

PASCAL, C

APOLLO DOMAIN

INTERFACE HP3000, CV/CALMA, IBM
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Interpretation

Design engineers use interactive graphics to capture
product descriptions into the engineering database, in-
cluding geometric models, hidden-part attributes, and
bills-of material. Also included are engineering notes,
which contain part specifications, special instructions,
and general design comments.

TRANSFER OF CAD DATA TO
MANUFACTURING

A complete product description is essential for correct
manufacturing planning. If, for example, a "heat treat"
note is missing, the resulting process plan may be
incomplete

.
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Another facet of Artificial Intelligence known as
natural language processing helps interpret engineering
notes for use in manufacturing planning. The system
uses a mixture of syntax parsing and semantics inter-
pretation methods to understand these notes. Syntax
provides grammar and semantics provides meaning. Both
are represented by networks. Nodes in these networks
represent word categories such as verb or noun, while
arcs denote relationships between node (word or phrase)
classes. Semantic interpretation provides meaning to
words and phrases extracted from the engineering notes.

NATURAL LANGUAGE PROCESSING

SPEECH RECOGNITION
SPEECH SYNTHESIS



PHRASE STRUCTURE GRAMMER
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HICLASS NATURAL LANGUAGE
SUBSYSTEM

AUGMENTED TRANSITION
NETWORKS

PUSH NP CAT V PUSH NP

INPUT SENTENCE: BAND ON DIODE INDICATES CATHODE END

STATE ARC
CURRENT
WORD STATE ARC

CURRENT
WORD STATE ARC

CURRENT
WORD

15. NP CAT N CATHODE
1. S PUSH NP BAND 7. NP CAT N DIODE 16. NP/N CAT N END
2. NP CAT N BAND 8 NP/N CAT N INDICATES 17. NP/N CAT N
3 NP/N CAT N ON 9 . 10.. 11. 18., 19.. 20,
4 NP/N PUSH PP ON 12 NP/PP POP INDICATES 21. NP/PP POP
5 PP CAT PREP ON 13 S/NP CAT V INDICATES 22. S/VP POP
6 PP/PREP PUSH NP DIODE 14 S/V PUSH NP CATHODE
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Reasoning

Manufacturing knowledge is represented by networks and
production rules. These networks and production rules
provide the domain specific knowledge required to
generate manufacturing plans automatically from the en-
gineering database.

Networks describe the possible flow of parts through
manufacturing and are composed of nodes which represent
actions (operations) or decisions (movements) . Arcs
denote an association between two nodes. Networks can
also depict the importance of precedent and sequel
relationships. For example, a node placed in front of
another implies a sequence of events.

PWA PROCESS NETWORK
PRIMARY LEVEL

DETERMINE
ORDER OF
ASSEMBLY

IDENTIFY*•

r
AUTO-
INSERT

SEMI AUTO-
INSERT AND
LOCATE

-M DECISION

HAND
INSTALL BOND

AND HAND
SOLDER

-H DECISION

SECOND
ASSEMBLY
AND SOLDER

TEST

J
SPARES
TEST

COMPLETE NEXT
ITEM ASSEMBLY

)
—

INSPECTION OR SHIP

PERT diagrams are a common example of a network and have
been used for many years to analyze factory flow.
Unlike PERT diagrams, these decision networks capture
meta-knowledge to guide selection and evaluation of
rules. The flow and control of a planner's reasoning
can be modeled by such networks.
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Networks can also be nested; that is, one network can be
embedded within another. These structures provide mul-
tiple levels of abstration to a problem which relate to
different levels of detail. At higher levels, for ex-
ample, a network can represent the flow of parts through
an entire factory. At lower levels, a network can
represent a flow within a work center.

HOW DO WE MAKE
THIS DECISION?

HUGHES

RULE OF THUMB: IF THERE IS A NOTE ON THE DRAWING "STENCIL BOARD
THEN THE BOARD MUST BE STENCILLED

DEEPER QUESTIONS: WHAT IS A NOTE?
WHAT IS AN ENGINEERING DRAWING?
WHERE ARE THE NOTES LOCATED ON THE DRAWING?
HOW DOES ONE INTERPRET THEM?

IMPLICATION: JUST LIKE A HUMAN, HICLASS MUST BE TAUGHT IN ORDER
TO BECOME AN EXPERT!

CAVEMAN KNOWLEDGE VS. DEEP REASONING

IF I HAVE A HEADACHE
THEN CHEW ON BARK

ASSERT HEADACHE COULD BE CAUSED
BY PRESSURE . .

.

ASSERT PRESSURE COULD BE CAUSED BY
VESSELS DILATION

ASSERT ERGOT ALKALOID CAUSES VESSELS
CONSTRICTION

ASSERT BARK CONTAINS ERGOT ALKALOID

IF . . . THEN CHEW ON BARK
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Manufacturing experience and intuition are fed to the
inference engine in the form of production rules.
IF-THEN logic is an effective and common method of
representing this heuristic knowledge. In an expert
system the IF statement is called the antecedent, while
the THEN statement is the consequent. As with high-
level programming statements, both the antecedent and
the consequent can contain complex logical expressions.
These functions manipulate and evaluate slots, which
resemble variable names in high-level languages,
however, this IF-THEN logic is evaluated in a declara-
tive fashion, so ordering of the IF-THEN logic is
unimportant

.

Other functions further permit the software to mimic ex-
pert reasoning. Solutions to problems are rarely a
straight "yes" or "no". Instead, humans arrive at con-
clusions based on partial or uncertain evidence.
Fuzzy-set logic is designed to deal with problems where
there are many shades of gray, such as in manufacturing
planning. Production rules contain "certainty" and
"threshhold" to facilitate fuzzy-set logic.

• IF ANTECEDENT THEN CONSEQUENT

• COMPLEX LOGIC EXPRESSION

• FUZZY MODEL (CERTAINTY AND THRESHOLD)

• LIMITED LEARNING (EXPERIENCE TABLE)

• STABILITY ANALYSIS

• RESOLVE CONFLICTS (PRIORITIES)

• MULTIPLE LINES OF REASONING

HICLASS INFERENCE
ENGINE CAPABILITIES
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THE KNOWLEDGE BASE

NETWORK

IF .

THEN . .

.

ELSE . .

.

RULES

DATA DICTIONARY

KNOWLEDGE BASE

EXAMPLE OF KNOWLEDGE
STORAGE STRUCTURE

HUGHES

RULE: IF ANY COMPONENT'S BODY STYLE
IS "AXIAL" THEN UST OF ALLOWED
PROCESSES IS UNION (LIST OF ALLOWED
PROCESSES. "AUTO-INSERTION")
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Another problem the software must handle is
non-determinism, which occurs when a single event
results in a number of alternatives. For example, when
the expert system recognizes that a cylindrical cavity
needs to be created in a part, the alternative opera-
tions are drill, bore, broach, or ream. The system uses
a ranking of priorities to resolve these conflicts. If
priority is based on lowest cost alone, the system will
choose drilling.

The expert system uses forward chaining (or forward in-
ferencing) to generate manufacturing plans since the
task involves creating a strategy for manufacturing a

part from start to finish. In PCB assembly, for ex-
ample, a planner starts with a bare board and works with
it until all components have been assembled. Expert
systems can also be built with backward inferencing, in
which a problem is worked through from finish to start.
In such a system, the PCB assembly would regress until
it became a bare board. Since planners are unaccustomed
to working with backward inferencing, it was not used.

HICLASS EXPERT SYSTEM HUGHES

KNOWLEDGE BASE

F ^
RULE
BASE

— ^>

id
LOCAL
DATA
BASE

REMOTE
DATA
BASES

APPLICATION MODULES

INFORMATION
SERVER

INFERENCE
ENGINE

FRAMES
AND SLOTS

LISTS

SEMANTIC NETWORKS



Man-Machine Interface

Automation of manufacturing planning involves computer
interfaces on three levels. Experts (manufacturing and
design engineers) must "teach" the system their
knowledge. End users (workers who assemble the product)
receive the finished plans. System implementers (typi-
cally computer scientists) develop the software which
transforms expert knowledge into the finished plan.
Since the computer literacy for each class of user
varies, the interfaces much match the level of each.

The interface for experts is designed to acquire
knowledge quickly. Typically, manufacturing engineers
can best describe knowledge with PERT diagrams (process
networks) and English-like statements for production
rules. These experts use graphics-oriented engineering
workstations to enter process networks into the system.
One benefit of the system is that the knowledge
representation is explicit and not implicit. In other
words, these networks are used directly and do not have
to be transformed into other knowledge representations.

Thus, no information is lost since there is no mapping
involved. In addition, manufacturing engineers teach
the system discrete logic required for manufacturing.
This logic is represented by production rules.
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Presentation

The end-user interface is designed for teaching and
presenting instructions on how to build a product. The
product can be built by either humans or robots. For
now, we will concentrate on the human aspects. The in-
structions can be relayed verbally, textually, or
graphically. Hughes decided that pictorial representa-
tions are such the most efficient method of presenting
information, so the expert system generates computer
graphics illustrations along with textual instructions
for production workers.

In addition to static frames of instructions, the system
uses a script to embody information on dynamic rotation,
translation, and other commands. Such functions require
the host to have high-computational speed because soft-
ware performs a large number of matrix manipulations to
achieve graphical mapping. The hardware utilizes
floating-point features and the operating system util-
izes large virtual memory to enhance the functionality
of the system.

High throughput is also important. The CRT at the fac-
tory workstation must display an image as fast as the
host receives commands from the production operator. To
accomplish this, these terminals must have graphics
routines in both hardware and firmware. Since high com-
putational speed and throughput are conflicting require-
ments in most computers, the systems uses a computer
with powerful CPU's coupled to direct memory access
(DMA) devices to meet the performance requirements.

Computer Graphics

Graphics are drawn on interactive systems amd are passed
to the expert system in either a vector format or
through the Initial Graphics Exchange Standard (IGES)

.

For presentation, the system translates results from the
decision-making process and combines then with results
of the Rule-Driven Graphics Generator module to create
assembly scenarios. The System now uses a Plot-10
graphics protocol to send these images to factory-floor
terminals. In the future, the system may migrate to
some video protocol such as the North American
Presentation Level Protocol Syntax (NAPLPS) as well as
video disk technology.
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Conclusion

Expert systems are an excellent tool for automation.
They embody human expertise to perform complex tasks
such as manufacturing planning. The expert system holds
great potential in the endeavor to automate manufactur-
ing support services (white collar functions) .

DISADVANTAGES

REQUIRES LOTS OF EFFORT TO TEACH THE SYSTEM THE
BASICS

ADVANTAGES

HICLASS WILL NOT QUIT AFTER 2 YEARS OR RETIRE

UNIFORM APPLICATION OF EXPERTISE

CONSISTENTLY ACCURATE PERFORMANCE

ACCUMULATES KNOWLEDGE FROM MANY EXPERTS

INTEGRATES KNOWLEDGE FROM MANY DISCIPLINES

ENGINEERING
• CHOOSING SPECIFICATIONS. MATERIALS, PROCESSES
• DESIGN ANALYSIS
• PRODUCIBILITY ANALYSIS

PRODUCTION CONTROL
• PRODUCTION PLANNING

MANUFACTURING ENGINEERING
• CREATION OF PLANNING
• FINAL SELECTION OF MATERIALS, PROCESSES
• DESIGN OF TOOLING FIXTURES
• INTERPRETATION OF DESIGN PARAMETERS

ASSEMBLY AND FABRICATION
• SCHEDULING
• ALTERNATE ROUTING
• FAULT DIAGNOSIS
• ADAPTIVE CONTROL
• EQUIPMENT PROGRAMMING

QUALITY
• INSPECTION INSTRUCTIONS

A REAL EXPERT SYSTEM

POTENTIAL Al APPLICATIONS
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A DECISION MAKING FRAMEWORK
FOR

MANUFACTURING SYSTEMS*

by

Prof. George Chryssolouris
Laboratory for Manufacturing and Productivity

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

INTRODUCTION

Modern industrial technology is often faced with
the task of producing a wide variety of parts in small
to medium batch sizes at the highest possible
efficiency. Much effort has gone into designing
hardware such as machine tools and material handling
devices, as well as equipment layout, in order to meet
the objectives of flexible manufacturing. Indeed, with
today's available hardware, systems adaptable to a wide
range of production requirements can be configured. In
the case of Flexible Manufacturing Systems, the control
of the system is provided by computer software adequate
for operation without human intervention; however,
flexible manufacturing can also be carried out by a
combination of numerically controlled machines,
automated handling devices, and human operators, with
the system being controlled by a foreman or a plant
manager. Whether fully automated or not, the level of
efficiency achieved from such capital intensive systems
depends on the decision making procedures for assigning

The work described in this paper has been
supported by CAM-i's Factory Management
Program and the paper has been originally
presented during the 1985 CAM- i Annual Meeting
in San Diego, California.
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the system resources to the various production tasks.
Two factors are important in considering adequate
decision making procedures:

Flexibility, a primary aim of the system, can be
entirely lost if the decision making techniques
for resource assignment, whether implemented by
man or machine, are either so simplistic that
they inadequately account for changes in the
manufacturing environment or so complex that the
wealth of detail and computational resources
they require preclude a sufficiently rapid
response to changes in the environment.
Traditional scheduling techniques in flexible
manufacturing often involve either extensive
simulation procedures or lengthy iterative
processes. Both approaches seek to bring the
implications of ideal models into conformity
with the reality of the production environment.

Decisions reached by most scheduling techniques
in use today are optimized with respect to a
single criterion. Such an approach requires that
all aspects of a system be reduced to that
single criterion in a predetermined manner.
However, this methodology assumes that the
manufacturing environment is static when in fact
priorities, requirements, and conditions are
constantly changing.

Therefore, decision making techniques which are
more implementable yet, at the same time, more
responsive to changes must be developed.

This paper describes a method for MAnufactur ing
DEcision MAking ( MADEMA ) which attempts to assign pro-
duction resources to production tasks by using a
multiple attribute decision making technique suitable
for flexible manufacturing. MADEMA tries to establish
a decision making framework that can integrate
traditional techniques for process planning with
scheduling.

MANUFACTURING SYSTEMS AS A DECISION ENVIRONMENT

In order to effectively apply a decision method to
a particular problem, the decision environment has to
be clearly defined. In this analysis, the assumption is
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made that a manufactur
hierarchical structure
For example, four such

ing system can
with distinct
levels can be

be modelled as an
levels of control,
assumed:

Factory Level
Job Shop Level
Work Center Level
Work Unit Level

The factory level controls a number of job shops,
which in turn manage a number of work centers; work
centers consist of work units (human beings, machine
tools, handling devices, etc.) and can be configured
flexibly or rigidly. Furthermore, a distinction can be
made between work centers:

Containing resources/machines that perform
similar operations (e.g. turning) but are not
necessarily identical; some of the
resources/machines may be interchangeable while
others can only process certain types of jobs.

Containing almost identical resources/machines,
all of which are interchangeable.

The approach described in this paper is
particularily concerned with the work center level.
Here, the goal is to assign resources such as machine
tools, handling devices, operators, and robots to
production tasks in the most efficient manner. The
decision environment at this level is distinguished by
two important characteristics:

- Decisions are made repeatedly and in a
relatively short period of time.

Decisions are made from a "risk neutral"
standpoint which means that concern is more with
the average outcome of a large number of
decisions rather than the specific outcome of
each individual decision.

Indeed, in the manufacturing environment and at the
work center level, numerous decisions about resource
assignment must be made in short order. If occasionally
a decision is "incorrect", its impact will be
relatively insignificant. However, if a series of
decisions are systematically wrong, their impact will
be of great significance. Such is the standpoint of
the methodology presented in this paper.
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Although the approach described in the sequel is
within the context of the aforementioned hierarchical
structure and the associated definitions, its character
is general, and it does not require for its
implementation a specific control hierarchy.

THE MADEMA APPROACH

The primary goal of a work center control system is
to coordinate the effective utilization of the work
center resources. As the complexity of the production
system increases, the decision making process for
production resource assignment becomes more difficult.
Traditional decision making methods such as those based
on a foreman's rule of thumb or computer simulation may
not be adequate to handle such a dynamic environment.

The MADEMA approach is proposed to solve the
decision problems related to the assignment of
production resources with a multiple critera decision
making technique which accommodates the dynamic
structure of the decision environment. MADEMA
considers a set of alternatives for the execution of a
particular production task. The choice of one
alternative resource over another is made by an
evaluation of relevant criteria/attributes. Thus, a
decision matrix can be formed where the rows AL. (i =*

l,...n) represent alternatives, the columns AT. (j »

l,...m) represent the attributes, and the entries a
are the values of the attributes for the corresponding
alternatives (Figure 1).

AT, AT2 ATm

AL, a
l2

A L2 a
2l °22 °2m

a
m

a
n m

Figure 1: Decision Matrix for m Attributes and n
Alternatives
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MADEMA entails five consecutive steps which must be
completed before a decision is reached. These steps
are

:

Determine Alternatives (AL.. )

Decision implies choice, and choice implies
alternatives. The set of alternatives
considered must be complete enough so as to
guarantee inclusion of the best possible
decisions. In this discussion, an alternative
is defined as a possible set of resource
assignments to specific tasks. In order for the
alternatives to qualify for consideration, they
must satisfy both feasibility and availabli ty
requirements. For example , the machine tools
must be capable of producing the part within its
specifications and also be available at the
required time. This calls for a means to
determine which resources have the potential to
complete the required task and when these
resources will be available. Process planning
has traditionally been used to determine the
operations sequence and, sometimes, the machine
tools and operational data required for parts
production. It appears to be a suitable tool
for determining the alternatives on the basis of
technological consideration.

Determine Attributes (AT.. )

Attributes are the criteria according to which
the different alternatives are to be evaluated.
Criteria such as time, quality, and experience
can be considered. The correct determination of
attributes is crucial to the effectiveness of
any decision method. Artificial intelligence
techniques can be used in order to establish a
systematic way to deduce and quantify relevant
attributes

.

Determine Consequences with Respect to the
Attributes for Each Alternative ( a. )

i ]

"Consequences" are the values the attributes
take on at the time the decisions are made.
They are needed for evaluation and, eventually,
selection of alternatives. To determine
consequences, relevant data must be obtained.
Processing time and cost may be derived from the
outcome of process planning; job durations can
be estimated by Industrial Engineering Time
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Standards. Criteria not so easily quantifiable
are those such as reliability and experience and
can be quantified by a rating based on past
history using statistical methods and "fuzzy
set" approaches.

Apply Decision Rule(s) For Choosing the Best
Alternative

A decision rule is thought of as the way to
choose the "best" available alternative. For
example, a linear combination of attributes with
weights that indicate their relative importance
to the decision maker can be used to evaluate
the alternatives. The decision rule can be the
one that chooses the alternative with the
greatest likelihood of producing a higher
utility value.

Select the Best Alternative

Following the setting up of decision rules, the
best alternative can then be chosen based on the
established rules. For decision making at the
work centers, the best alternative can be a set
of resource assignments yielding an optimal
utility value.

MADEMA AND PROCESS PLANNING

While the establishment of adequate decision rules
for resource assignment within a manufacturing system
is a crucial task, the determination of a set of
feasible alternatives in the form of resource-job
assignments is the initial step of the method and thus
of great importance. Indeed, resources within the work
center must be technologically capable of executing the
production tasks before they can be considered as part
of any alternative. Process planning has traditionally
been employed to determine the operation sequence and
the operational data for parts manufacturing. In
general, process planning systems tend to designate
specific operations to specific machines at relatively
early planning stages and thus reduce much of the
planning flexibility.

In order to develop alternative resource machines
for the various production tasks, an advanced computer-
ized process planning system (XPS-1), developed by
CAM- i , has been considered as a typical generative
process planning system; an interfacing module, X-MAG
(Experimental Machine Alternative Generation), has been
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developed for the purpose of interfacing XPS-1 with the
proposed MADEMA concept. Although XPS-1 has been used
as the process planning system to be interfaced
throughout the development of X-MAG, the concept of
X-MAG is of general interest and can be applied to any
computerized process planning system.

As with many other process planning systems, XPS-1
presently delivers a sequence of work elements without
determining the machines on which these work elements
can be performed. To determine machine alternatives,
appropriate data between part/feature and machines
should be compared. The outcome of such a plan will
then be a sequence of work elements with a relevant set
of machine alternatives.

MADEMA SOFTWARE

In the course of the research work resulting in the
MADEMA concept, the above steps were addressed in such
a way that an integrated decision making system for
work center control is now under develoment. This
system should be thought of as an "intelligent work
center controller", having the capability of making
decisions regarding the assignment of work center
resources to production tasks in a very short period of
time (in the order of magnitude of seconds or minutes)
and, thus, being able to provide the required
intelligence in order that decisions can eventually be
made automatically without human intervention.

The first steps in developing this "intelligent
work center controller" have already been undertaken
and have resulted in the development of experimental
software. X-DAL, which stands for experimental
Determination of ALternatives , is the software program
which provides the means for determining the
alternatives. X-MAG is the program interfacing process
planning with MADEMA with the purpose of determining
the feasibility of the available resources. X-DETA, an
experimental software program for the DETermination of
Attributes, is a rule-based system which allows the
selection of attributes according to work center
conditions and characteristics of the jobs to be done.
X-EVA is the experimental software program which
Evaluates the Alternatives, assuming that the
consequences of each alternative with respect to the
determined attributes are known, and entails a new,
unique decision making technique that considers the
characteristics of the decision environment.
Furthermore, in the course of this research work and in
order to evaluate the adequacy and practical relevance
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of the proposed concepts, an experimental software
program for system emulation has been developed under
the name X-ema.

Most of the above-mentioned software run on a VAX
11/750 and are written in NIL (New Implementation of
LISP, a publicly available version of LISP). X-DAL is
written in Fortran because, as a base for its
development, the process planning system XPS-1, already
developed by CAM-i, has been used. However, any other
process planning system in use by any company can be
interfaced with MADEMA.

CONCLUSIONS

A MAnufacturing DEcision MAking (MADEMA) method has
been described for the assignment of factory resources
to production tasks. The method addresses the issue as
a multiple attribute decision making problem and
suggests five decision making steps. The concept is
adequate for CIM.
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PATRIARCH:
HIERARCHICAL PRODUCTION SCHEDULING

Stephen R. Lawrence
Thomas E. Morton

Graduate School of Industrial Administration

Carnegie-Mellon University

Pittsburgh, PA 15213

OBJECTIVES and ATTRIBUTES

Scheduling research has traditionally examined small well-defined problems that often do
not map well to real world scheduling circumstances. PATRIARCH, a joint research project

involving Carnegie-Mellon University and IBM, has defined a general hierarchical approach

for dealing with the complexity of industrial scheduling environments. The objective of

PATRIARCH is to provide an integrated real time production support system to plan,

schedule, and dispatch work in a "real world" production setting. The intent of this paper

is to present an overview of the PATRIARCH system in general, and to describe the

implementation of its component heuristic scheduling algorithm in some detail.

In its full implementation, PATRIARCH will incorporate a combination of heuristic scheduling

algorithms, artificial intelligence knowledge representation techniques, and expert rule-based

production systems. The component parts of PATRIARCH have been in independent

development for a number of years. Morton and collegues have developed a class of

heuristic scheduling algorithms [Morton et al. 83] which have proven successful in

scheduling single machine job-shops [Rachamadugu and Morton] 82], flow-shops
[Vepsalainen et al. 82], and projects [Lawrence 84]. Fox has represented scheduling

knowledge in semantic networks, using constraint directed reasoning to provide feasible

schedules in complex factory environments [Fox 83]. More recently, Smith and Ow have

used advanced knowledge representation techinques to identify bottleneck resources and

produce feasible schedules [Ow and Smith 86]. By bringing these seperate lines of

inquiry together into one system, the strengths of each can be exploited, and the

shortcomings of each mitigated.

In support of its objective, PATRIARCH exhibits a number of important characteristics. In

general, it is intended to conform to the thought processes of human users, and the

informantion flows within human organizations. PATRIARCH will support human decision

making — it will not impose decisions. More specifically, PATRIARCH can be defined by

describing its attributes:
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1. Hierarchical. Levels of aggregation within PATRIARCH map to the

organizational, physical, and temporal divisions of the firm (see next section).

Depending on the decision to be made, different levels of aggregation can be
called into play.

2. Distributed Decisions. Decision making is retained at local levels. Local

decisions are guided by economic and lead time information passed from
higher levels of aggregation. In turn, local decision levels pass information up
the hierarchy, where it can be used to influence other more remote decisions.

3. Product Structure Based. Demand for component parts and subassemblies is

derived from finished product demand (both known and forecast) in the

manner of MRP bill of material explosions. Unlike MRP, the leadtimes and
priorities of component parts and subassemblies are updated dynamically as

time progresses and shop conditions change.

4. Economic Objective. Rather than imposing an artificial objective such as

makespan, or weighted tardiness, on the decision making process, PATRIARCH
works to minimize the aggregate Net Present Value (NPV) of its schedules

over time. It will be argued that an NPV objective subsumes most other

commonly used scheduling objectives.

5. Dynamic. As time progresses, demand forecasts are updated, shop floor

conditions fluctuate, resource availabilities change, and consequently, the

production scheduling task is constantly evolving. PATRIARCH accomodates
this evolution by supporting real-time scheduling in response to a dynamically

changing environment.

6. Decision Support Focus. The expertise of human decision makers is retained,

and supported by easy "what-if" capability.

7. Extensible. The modular structure of PATRIARCH accomodates easy

modification and extension to allow inclusion of lot-sizing, preemption, and
inventory planning.

SYSTEM STRUCTURE

Hierarchical Structure

As noted above, the hierarchical structure of PATRIARCH conforms to the organizational,

temporal, productive, and planning divisions of the firm as shown in Exhibit 1. The four

hierarchical levels included in this exhibit are for illustrative purposes only — any number
of levels can be accomodated. For instance, large firms may require a divisional level to

be interposed between the firm and plant levels; and very small firms may be able to

collapse the firm, plant, and work center levels into a single unit of aggregation.

Data Structures

The ambition of PATRIARCH is to create a generalized scheduling tool which can be applied

to a variety of scheduling environments (flow shops, job shops, projects, et cetera).

Critical to the realization of this ambition is the formulation of a generic scheduling

framework which can admit the widest possible variety of scheduling tasks. Within

PATRIARCH, scheduling is conceived to be the deployment of resources to satisfy

customer demands for the products of the firm. In support of this framework, there exist

four primary data structures within PATRIARCH: resources, standards, orders, and activities.
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Exhibit 1

Hierarchical Structure

DIVISIONS Of the FIRM

PATRIARCH Physical Temporal Productive Planning

Level 1 Firm months/years lines strategic plans

Level 2 Plants weeks/months products master schedules

Level 3 Work Centers days/weeks assemblies load profiles

Level 4 Machines mins/hours/days parts dispatch schedules

The generality of this framework allows the representation of a wide variety of scheduling

environments including flow shops, job shops, and projects.

Resources. Resources include all productive assets of the firm including the firm itself, its

component plants, work centers, and machines. Resources are deployed by the firm to

produce products, assemblies, and parts. In general, many resources are in short supply,

constraining the quantity and timing of production — it is the short supply of resources

that gives rise to scheduling problems. Attributes of resources include a maximum
capacity, and an open capacity based on current resource loadings. Resources are

hierarchical in nature as illustrated in Exhibit 2.

Standards. Standards represent all of the engineering and production data that is required

to create properly a product using deployed resources. Attributes of standards include a

bill of materials representing the component parts of a product, production standards

based on time estimates of production processes, and cost data representing the

accounting costs of undertaking a productive task. In addition to a hierarchical structure,

standards also exhibit a precedence structure as illustrated in Exhibit 2. The precedence
structure of standards captures the knowledge that certain tasks must be undertaken and
completed prior to the start of subsequent tasks. In addition to standards for physical

tasks (such as the "stuffing" of a circuit board), standards can exist for administrative tasks.

For instance, prior to manufacture, parts must be ordered from vendors. The tasks of

creating a purchase order, waiting for delivery of the ordered material, and the inspection

of incoming orders can all have associated standards.

Orders. Orders represent demand for the productive output of the firm. The attributes of

orders include quantity data representing the amount of end product desired by the

customer or client, prices representing the revenues to be received by the firm subsequent
to the delivery of the order, timing information regarding the due date of the order and
the terms of payment, and penalty information regarding any penalties to be applied in

case of non-compliance with delivery terms. Orders are not hierarchical, and represent

demands for end products only. Depending on the level of aggregation, orders can be a

combination of actual and forecast demands.

Activities. Activities are the product of standards and orders, and represent the tasks that

must be undertaken to fullfill orders. An order for a product of the firm causes a

cascade of activities to be instantiated as the requirements of the order are traced down
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Exhibit 2
Data Structures

LEVEL RESOURCES STANDARDS ORDERS ACTIVITIES

Firm

Plant

WC

Machine

through the standards hierarchy. For instance, an order for a large mainframe computer
will result in the eventual creation of an activity to manufacture a power supply, among
many others. The attributes of activities include scheduling information such as

processing times, due dates, and quantities; cost data representing the expected material,

labor, and overhead costs of the activity; and precedence relations representing the

technological ordering of activities. Activities are . hierarchical in nature as illustrated in

Exhibit 2.

PROBLEM DEFINITION

With a general representation of the scheduling domain established, an explicit

characterization of the scheduling problem can be made. In words, the scheduling task is

to sequence activities arising from real and forecast demands using deployed resources in

such a manner that the Net Present Value of the resulting cash flows is maximized. This

scheduling objective must satisfy technological ordering constraints and resource capacity

constraints. Expressed in the format of a mathematical programming problem, the

scheduling problem defined here can be represented as:

MAXIMIZE Net Present Value of cash flows
from time sequenced activities

Subject to

Resource capacity constraints

Technological precedence constraints
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NPV Objective

Cash flows arise when expenses are paid or revenues received Given an opportunity cost

of capital, future cash flows can be reduced to a single Net Present Value in the usual

manner. Note that NPV calculations require the use of cash inflows and outflows, not

changes in incurred obligations such as debt For instance, the value of a product sale is

discounted from the time that the associated invoice is paid, not from the time the product

is shipped or the time an invoice is issued. Examples of cash inflows and outflows

associated with scheduling are included in Exhibit 3. Clearly, the NPV of a schedule is

increased by delaying cash outflows, and accelerating cash inflows as much as possible.

Exhibit 3
Cash Inflows and Outflows Arising From Schedules

CASH OUTFLOWS

material costs
labor costs
other direct costs
inventory holding costs
one-time tardiness penalties
accruing tardiness penalties

CASH INFLOWS

progress payments (if any)
final payment for order

While not yet proven analytically, there is emerging evidence that the NPV objective

subsumes most other commonly used scheduling objectives. For example, the makespan of

a schedule is often minimized by maximizing the NPV of activities which have cash inflows

payable upon order completion. The number of tardy orders is minimized when orders

have very large one-time tardiness penalties. The weighted mean tardiness of orders is

minimized when orders have large accruing tardiness penalties. Maximizing NPV appears to

balance a number of traditional scheduling objectives in the best interests of the firm.

Constraints

Constraints on the NPV objective include limited resources and technological precedence
constraints. Resource constraints can be classified into two types: renewable resources

which effectively can be reused continuously (e.g. machines and labor), and expendible
resources which are depleted with use (e.g. money). PATRIARCH considers only renewable
resources. Technological precedence orderings are currently considered to be deterministic

within PATRIARCH — algorithms for rework cycling and alternative routings are under
investigation but are not yet implemented.

HEURISTIC PROCEDURE

Simple versions of the scheduling problem described above can be solved to guaranteed
optimality using integer or dynamic programming, but for problems of any complexity, it is

well known that the combinatorial explosion of feasible sequences makes the possibility of

guaranteed optimality remote [Karp 72]. As a consequence, heuristic procedures for

generating good feasible schedules are required.

The heuristic scheduling algorithm employed within PATRIARCH has five main components:
(1) an estimate of scheduling costs, (2) a tardiness cost forecast, (3) a benefit/cost
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scheduling heuristic, (4) an iterative estimation of activity lead times, and (5) an estimation of

marginal resource values. Each of these are described below. Required notation is defined

in Exhibit 4.

Scheduling Costs

The cost associated with performing activity i is simply the sum of Present Values (PVs)

for material, direct, and marginal resource costs:

V = B + D + c p z for all Jc in R
i i i 1 i k 1

If the processing of activity i can be delayed for an additional time unit, savings of IV
;

the opportunity cost of scheduling activity i, can be realized

Forecast Tardiness Costs

Since activities are created in response to orders, each activity is linked to a single order.

The due date of an order can therefore be used to calculate a due date for each activity

associated with it (in the same manner that CPM project activity due dates are calculated).

Consequently, a delay in any activity past its due date will cause the order to be late with

consequent tardiness costs. Hence, the subscripts j in Exhibit 4 can be replaced by
subscripts i when considering individual activities.

If activity i is past due by X days, total tardiness costs incurred are the sum of the

Present Values for the tardiness penalties, the opportunity costs of lost revenues, and the

cost of lost customer goodwill:

W. = TF. + XCTA^ + IR^ + G.) when activity i is past due

If the activity is delayed an additional day, the marginal tardiness costs are:

w =TA+IR+G when activity i is past due
i i 1 i

If activity i is waiting for access to resource k, and is not past due, no tardiness penalty

will be incurred by delaying activity i by one time unit However, if a higher priority

activity arrives in the queue for resource k, the start of activity i will be further delayed,

possibly making it past due with consequent tardiness costs. Several researchers have

developed a method of heuristically estimating such tardiness costs [Morton et a/. 83],
and have found that increasing forecast tardiness costs exponentially over time for slack

activities provides excellent results:

W = ( TF + TA + IR + G ) expC-S /(2p )]
i i i i 1 i ave

= Vf exp[-s/(2p )]
1 1 ave

where Pave
= average processing time of all activities

s. = slack of activity i

Note that this expression applies only to activities that are not past due.

Benefit/Cost Heuristic

The core of the PATRIARCH heuristic is to compare the immediate benefits of delaying the

start of an activity with consequent downstream tardiness costs. The delay cost of an
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Exhibit 4
Notation

R = set of resources deployed by the firm

S = set of standards defining the products of the firm

0 = set of actual and forecast orders for products

A = set of activities instantiated from standards by orders

1 = opportunity cost of capital to the firm per period

t - current time

B = PV of bill of material costs incurred by activity i
1

D' = PV of other direct costs (e.g. labor) incurred by activity i

p^ = processing time of activity i

d = activity due date
i

s^ = activity slack = max[0,d.-t]

R. = subset of resources required by activity i

C. = set of % capacity requirements for each element of R^

0^ = order associated with activity i

V. = PV of total cost of scheduling activity i

= PV of cost of delaying activity i by one time unit

RR^ = PV of rate of return expected from scheduling activity i

= PV of payments received upon completion of order j

PT^ = terms of payment

TAj = PV of accruing tardiness penalty if order j is late

TF^ = PV of fixed one-time tardiness penalty if order j is late

= PV of dollar estimate of lost goodwill if order j is late

= PV of total forecast tardiness costs of order j

w^ = PV of marginal forecast tardiness costs of order j

Z = PV of imputed marginal value of resource k
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activity is the difference between the opportunity cost of immediately starting the activity

and the forecast tardiness cost if the start of the activity is delayed by one time unit

U = w - IV
1 i 1

A rate of return for immediately scheduling the activity is similarly calculated:

RR = ( w /IV ) - 1.0
1 1 i

These definitions immediately suggest a sequencing decision rule. Consider a number of

activities waiting for access to an occupied resource (e.g. a work center). Dispatch
activities to the resource as follows:

1. Wait until the resource has capacity to accept an additional activity.

2. Release that activity in the queue with the maximum forecast rate of return.

3. If no activity has a positive rate of return, schedule no activity.

With respect to the third rule, if the benefit of delaying the release of an order is greater

than its cost, then the resource can be better used to run a more critipal order, perhaps
not yet in the resource queue. Whether or not the component activities of released

orders should be released in a similar manner is under investigation — there is evidence
that activities should be released as soon as resources become available.

Lead Time Iteration

One difficulty in estimating the due dates for activities is in estimating the time they will

wait for resources to become free. For heavily used resources, this time-in-queue is

significant and must be considered when calculating the due dates for activities. A means
of iteratively estimating these activity lead times has recently been developed [Vepsalainen

et al. 82]. In the first iteration, activity slacks are calculated considering only the

processing times of downstream activities. Activities are then scheduled using the

benefit/cost heuristic (above) with these initial activity slack estimates. The amount of time

each activity i spends waiting for resources in the initial schedule is recorded as the queue
time of that activity. In subsequent iterations, activity slack is estimated using the sum of
activity processing and queue times:

n . _ _ n-1 n-1 ,
s. = max{ 0, d - p - q }

where q
0

= 0

n = iteration number

Experience indicates that 3 or 4 iterations is sufficient to develop good activity lead time

estimates, resulting in improved schedules.

Marginal Resource Values

The final component of the PATRIARCH scheduling heuristic is estimating the marginal values

(prices) of resources. This is accomplished by noting that if resource k is shut down for

one time period, the cost of the shutdown will be approximately equal to the sum of the

delay costs for all activities using the resource during the current time period. As in the

case of estimating lead times, marginal resource costs are determined iteratively:
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Z
n

= SUMV U
n_1

k Y i

where Y = set of activities using resource k at time t

n = iteration number

Calculations for lead times and marginal resource values are carried out simultaneously in

the iterative process.

Exhibit 5
Scheduling Example

Cost of capital
Time periods / year
Period capital costs

26% / year
52 weeks / year
0.5% / week

Activity Data

NOTE:

ACTIVITY PROCESS! COSTS DUE PRICE TERMS
(i) (P,) (V.)

i

(d.)
i

(P.)
i

(N.)
i

1 1 6 2 10 2

5 5 30 7 50 3

3 3 18 8 30 1

9 9 56 40 90 4
7 7 21

Results

11 70 2

HEURISTIC SEQUENCE MAKESPAN NPV

FCFS 1-2-3-4-5 25 76.45
SPT 1-3-5-2-4 25 78.99
EDD 1-2-3-5-4 25 79.32
MST 1-2-5-3-4 25 79.31

PATRIARCH 1-2-3-5-4 36 82.02

PATRIARCH heuristic delays start of activity 4 until time t=25;
heuristics schedule activity 4 as soon as resource becomes available.

A SMALL EXAMPLE

The functioning of the PATRIARCH heuristic is probably best illustrated with an example.

Consider 5 activities that are queued in front of a resource (say a work center). Each
activity will require the entire capacity of the work center. No tardiness penalties are

incurred if an activity is late, other than a delay in the receipt of revenues. In this

example, assume that lead times and resource marginal costs have been iteratively
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estimated, and a final schedule is to be determined. The firm uses an annual opportunity

cost of capital of 26%, and the appropriate time period for the current level of

aggregation is one week. The objective is to release the activities to the work center so
that the NPV of the resulting schedule is minimized.

Specific information for each activity is given in Exhibit 5, along with the resulting

schedules -using PATRIARCH, and several other popular scheduling heuristics. As illustrated,

the PATRIARCH heuristic provides a schedule with a superior Net Present Value — if the

NPV's are in units of $1000, the PATRIARCH schedule is worth $2,700 more to the firm

than any other schedule.

PATRIARCH succeeds in creating a better schedule by delaying the release of activity 4 until

time t=25. How this happens is illustrated in Exhibit 6. Note that PATRIARCH delays the

release of activity 4 until the forecast tardiness cost of further delay exceeds the marginal

scheduling cost. This delays cash outflows, and consequently increases the NPV of the

resulting schedule.

CONCLUSIONS

PATRIARCH is an evolving implementation of a general hierarchical framework for coping
with complex industrial scheduling environments. This framework conceptualizes the

scheduling environment to be comprised of resources, standards, orders, and activities.

The scheduling problem is to time sequence activities in such a manner that the Net Present

Value of the resulting schedule is maximized, subject to resource and technolgical

precedence constraints. In its full implementation, PATRIARCH will address the complexly
of real-world scheduling problems by incorporating a combination of heuristic scheduling

algorithms, Al knowledge representation techniques, and expert production systems.

Exhibit 6
PATRIARCH Scheduling Detail

Detail of PATRIARCH schedule for activity 4:

Time
(t)

Slack
(S2.)

i

Marginal
Scheduling

Cost
(IV )

4

Forecast
Tardiness

Cost
(w )

4

Rate
of Return

(RR )
4

0 31 0.28 0.02 -0.93
10 21 0.28 0.06 -0.79
20 11 0.28 0.15 -0.46
26 5 0.28 0.27 -0.04
27 4 0.28 0.30 +0.07

Note that PATRIARCH delays scheduling activity 4 until the forecast tardiness
cost exceeds the marginal scheduling cost.

The heuristic scheduling algorithm used within PATRIARCH works by comparing scheduling

costs with tardiness costs. Only when forecast tardiness costs exceed marginal scheduling

costs is an activity considered for scheduling. In this manner, cash ouflows are delayed,

and cash inflows accelerated as much as possible, thereby increasing the NPV of the

resulting schedule. Experience to date shows the PATRIARCH heuristic to provide

schedules with NPV's greater than those of other common scheduling heuristics. In addition
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to more fully testing the PATRIARCH heuristic, a number of other research issues must be
addressed in the future. These include lot-sizing issues, alternative routings of work,

rework cycles, and sequence dependent setup times.
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The scheduling function in manufacturing can be usefully partitioned into
two stages:

a. planning , in which future decisions are made on a tentative basis

b. action , in which an imminent decision is committed and implemented.

The planning stage, itself, is often further partitioned into stages, and
"action" could just be considered the last of these stages. However, the
action stage is distinctly different in several important ways:

1. Scheduling is an increasing information and decreasing uncertainty
process: planning is based on incomplete and uncertain information;
the action decision is based on more and better information.

2. The cost of change of a scheduling decision increases sharply as
you go from planning to action. Presumably, action implies a
commitment of physical resources , and subsequent change — if such
is possible at all — may well involve substantial costs of scrap
or rework.

It is a curious fact that the action stage of production scheduling has
enjoyed relatively little benefit from contemporary computer technology.
The

_
final decision to initiate a particular operation on a particular

machine is still being made in essentially the same way it was made ten or
more years ago. There has presumably been some improvement in the
preparatory planning stages, so the set of operations from which the final
choice is to be made may be more rationally determined today than would have
been the case a decade ago. There has also presumably been significant
improvement in the management of materials. But the sad fact is that the
low-level, finite-capacity, final-commitment scheduling function has not yet
been significantly improved.

In most places today, "scheduling" is understood to mean only the "planning"
stages of the process. It is an MRP world, and the word "planning" is
explicit in the title. It is, of course, possible that the planning is so
effective that the action decision is either automatic or trivially obvious,
but we strongly doubt that that is the case. Although there is some effort
being made to reduce the length of the period of the planning process, and
to feedback some forms of status information into the planning process,
neither of these steps is likely to make any major improvement in the
process.
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There remain two fundamental characteristics of the current planning process
that no amount of evolutionary improvement is likely to change:

1. Planning operates with little or no status information . It does not
explicitly recognize that the quantity of available resources is
limited and highly dynamic: machines break, tools wear, people fail
to show up, and material quantity and quality varies from what was
expected.

2. Lacking detailed information as to how the final action choices will
be made, the planning stage compensates by building-in relatively
enormous time allowances for "queuing"

.

One could imagine extending an MRP system to do detailed, finite-capacity,
imminent-action scheduling, but it takes a very lively imagination.
Charitably speaking, these systems are already cumbersome, and extending
their scope while also converting them to continuous, real-time operation
seems somewhat unrealistic.

Scheduling is inherently an exceedingly complex process. There are simply
too many variables, and too many possible solutions, for there to be any
hope of obtaining optimal solutions to any non-trivial scheduling problems.
Anyone who claims otherwise either does not understand the problem, or is
being carefully deceptive in the use of the term. However, complexity
notwithstanding, scheduling problems are regularly and routinely "solved",
since operations do get performed. The point is that if one accepts the
challenge as that of improving upon existing practice , rather than assuring
a solution that is in some sense optimal, then prospects are much brighter.

A Decision Support Approach to Action-Commitment Scheduling

Our premise is the following:

Action-commitment scheduling is a continuous, local, manual activity,
that takes place within a context that is established by a periodic,
remote, computer-based planning process.

Our conjecture is that it should be possible to use modern computing
technology to assist in this final stage of the scheduling process. This
hardly seems like a debatable proposition, but there are some practical
questions:

1. What magnitude of improvement in performance might be obtained?

2 . What scale of computing equipment would be required?

3. What is the minimum level of expertise that would be required to
operate the system?

4. How would the system "cooperate" with other pieces of the scheduling
process already in place? (Only true academics can envision
monolithic, "clean-sheet" solutions to the production control
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problem.

)

5. How difficult would implementation be?

Implicit in this view of the problem is the assumption that the support
system would be continuously available and provide essentially immediate
response (a few seconds, at most) so that scheduling decisions could reflect
absolutely accurate and current status information, and could be made and
revised as needed.

We set out to study these issues constructively — by designing and
implementing such a system. This paper is essentially a progress report on
that work. The work has been done in collaboration with the Manufacturing
Research Center of Hewlett Packard Laboratories, but the conclusions and
opinions expressed below are our own and HP should not be blamed.

A prototype system, called LLISS, has been constructed and will soon be
subjected to fieldtest. The paragraphs below give a rough description of
how LLISS works, and give our preliminary guesses as to the answers to the
questions above. But, of course, until there has been some real test in
service, the answer to the critical "how much improvement" question remains
speculation.

An Electronic Gantt Chart

LLISS is, in effect, simply a contemporary implementation of Henry Gantt 's
elegantly simple way of organizing and presenting scheduling information.
Using a computer for this task is hardly a new idea, but we are unaware of
any implementation of the idea that really does justice to it. Today — two
years into this project — we understand much better why that is the case.
First, it isn't easy, and second, computing technology is just now reaching
the point where this is a practical, economic possibility.

We envisioned a system that would let the user solve the scheduling problem,
by assisting in

1. organizing the massive amount of information that is involved, and
permitting selective retrieval and display of that information;

2. providing automatic communication with the external entities that
supply this information, and those that use the results of the
process; and

3. predicting the implication of each individual scheduling decision.

Of course, any such system capable of supporting completely manual
scheduling could be readily enriched with tools for semi-automatic
scheduling, but it was never our intention to produce a system that could
operate effectively without human intervention.
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The Supporting Players

The external agencies that must communicate with LLISS in order to provide
the information necessary for action scheduling, and to receive information
regarding the results of scheduling, have been modeled as follows:

Manufacturing Engineering

— Specify the resources ("machines") that are available to perform
the work. "Machine" is, of course, a generic term that can
represent a machine cell, a person, another department, etc.
There are "types" of resource, and each machine is an instance
of a particular type. All machines of a particular type are
considered interchangeable by the Scheduler.

— Specify the types of work that the scheduling unit can perform.
Each type of work is called a "part", and production of a part
is accomplished by performing a sequence of "operations".

Production Planning

— Specify "tasks" that are to be performed. Each task is a request
for a certain quantity of a particular part to be available by a
certain time.

— Learn (from LLISS) when a task is expected to be completed (and when
it actually is completed) to coordinate tasks in different
scheduling units.

This represents the LLISS interface with the higher-level production
planning stages. It isolates LLISS from the questions of explosion,
common part aggregation, netting against inventory, and lot size
determination

.

Conversely, LLISS can supply to the planning stage a "very good"
estimate of the time that will be required to accomplish the task —
obviating the need to use a crude and conservative "queuing allowance".

Material Control

— To learn from LLISS the schedule of "raw material" requirements.
That is, how much of what is required when to meet the
schedule.

— To specify the availability of raw materials.

When tasks assigned to LLISS represent the starting point in the
production of a product, Material Control represents the interface to
purchasing, receiving and inventory. When tasks represent later
stages, following the completion of tasks assigned to other units,
then Material Control represents another interface to Production
Planning. In either event, it separates from LLISS the problems of
ordering, moving, and stocking material that is external to the single
unit LLISS is scheduling.

-102-



Maintenance Control

— Specify the intervals during which the machines are not available
for production, either because of scheduled maintenance or for
repair of an unanticipated breakdown.

Essentially, Maintenance Control represents the scheduling of a second
set of finite resources ("repairmen") on top of the basic production
schedule. Maintenance intervals on the machines take priority over
production operations, and pre-empt conflicting production operations.

Machine Control

— Specify the completion of an individual operation, including the
quantity of (good) pieces completed.

— Specify that a particular machine has "broken down" and is not
available for scheduling (until Maintenance has repaired it)

.

— To learn from LLISS what operations are "startable" on a
particular machine, and specify what selection is to be made.

This represents the interface with a human operator of a machine, or
with a "level 1 controller" of an automatic machine.

In the current LLISS prototype, each of these supporting roles is served by
a special user interface. In each case, all information must be entered
manually from the keyboard, and results must be obtained visually from the
screen or printed output. There is no direct communication facility. This
is, of course, a temporary expedient to permit the development of the
prototype in a way that is highly independent of the details of the other
information systems in the environment in which LLISS will be tested.

The Primary User; The Scheduler

The human who is responsible for scheduling the local unit is the primary
user, and intended beneficiary, of LLISS. It is presumably his task that
LLISS is intended to support. Yet, ironically, the Scheduler is the one
user whose actions are elective — LLISS will work without any
intervention by the human scheduler, but it cannot work without the
specification of tasks (by Production Planning) , the delivery of material
(by Material Control) , the performance of operations (by Machine Control)

,

or the repair of breakdowns (by Maintenance Control)

.

The Scheduler can establish the ground rules under which LLISS operates, and
then let the process operate more or less automatically, intervening only
when he thinks he can improve upon things. Schematically, the system works
as shown below:
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Material Control

Order input
material

Deliver input
material

Manufacturing
Engineering
Specify
machines

Specify
parts

Production
Planning
Assign
tasks

Acknowledge
completed tasks

Automatic
scheduling

Scheduler
Manual

scheduling

Maintenance
Control
Scheduled
maintenance

Repair
breakdowns

Machine Control

Perform
operations

Report
breakdowns

Underlying the whole process is "the schedule" . This stretches from "now"
indefinitely into the future, and covers all the machines in the unit. The
visible Gantt .Chart, as shown below, is simply a window that displays some
selected portion of the schedule. As various users supply information, the
schedule changes automatically. Changes that affect the displayed portion
are immediately modified on the screen.
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The human Scheduler has a variety of tools with which to modify the
underlying schedule. At the lowest level these allow individual operations
in the displayed portion of the schedule to be moved. (On an HP machine
this can be done directly on the screen using the "Touchscreen" feature.
Less well-endowed machines require the use of cursor keys or a mouse.)

There are also higher-level tools that allow the entire schedule to be
compressed, re-scheduled by priority, re-scheduled by due-date, re-scheduled
by lateness, etc. There are also tools to modify the tasks by task
splitting, task combination, quantity reduction, priority change, etc.

The Scheduler has a large number of different ways to view the schedule —
projections by time, machine, task, or status.

We regard LLISS as open-ended with regard both to the tools available to the
Scheduler, and the ways in which the schedule can be viewed. Presumably,
the initial fieldtest will result in numerous additions of both kinds.

Assignment of a New Task

The LLISS dialog by which the Production Planning user assigns a new task to
the scheduling unit is unusual and merits a brief description.

The new-task-assignment dialog is based on a screen like the one shown
below. The Planner proposes a specific form of the prospective task — say
ten pieces of PARTI required by production time 100, as shown in column
1 below:
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In this example, LLISS has responded that, to achieve the stated
requirements, nineteen pieces should be started not later than production
time 3. Since that starting time is still in the future, LLISS is prepared
to commit to on-time completion of that task — if it is submitted in that
form now. The Planner continued to explore alternative versions of the
prospective task, and LLISS indicated how each would fare. In one case, the
task would require a starting time that is already past, so LLISS was
unwilling to make a commitment. However, the Planner can nevertheless
submit that version of the task as a "request", which will require manual
interventation to achieve on-time completion.

"Commitment" is not an absolute guarantee of on-time completion, since LLISS
cannot predict machine breakdowns or many of the other events that happen in
shops to render pre-computed schedules infeasible. Rather, commitment is a
declaration of intent, and a reservation that future task commitments must
observe. The human Scheduler can override the automatic scheduling, and
make decisions that jeopardize this commitment, but both he and the Planner
are notified immediately whenever this occurs.

Essentially, this dialog can take the place of the "queuing allowance" in an
MRP system. Whenever a conventional MRP system would reach for its stored,
conservative constant for this purpose, a MRP-LLISS hybrid would find out
from the LLISS component exactly how long the task will take, given the
tasks previously assigned, the current status of the machines, and the
standard scheduling scheme begin used.

Simulation of Schedule Alternatives

Some scheduling systems, with similar objectives to LLISS, offer a
"simulation mode" that allows the system to "run ahead in time" to predict
the outcome of alternative scheduling decisions. It is interesting that no
such mode is necessary in LLISS because the underlying schedule corresponds
exactly to such a simulation — except that since it always exists, and is
updated in real-time to reflect every change in status, load or decision, it
is never necessary to enter a special prediction mode.

You can, of course, at any point store the current status of the system in
order to explore alternatives. You then choose which version to restore to
continue real operation.

Conclusions

The following are preliminary, tentative, and well-mixed with wishful
thinking. Nevertheless:

1. Local, interactive scheduling, in the terms described above, is practical
today. Problems of reasonable size can be handled with tolerable response
times on microprocessors sufficiently inexpensive that they could be used in
each unit, and dedicated to this particular job.
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For example, one of the Intel 80286 systems (HP Vectra, IBM AT) ,
currently

costing approximately $7000,
(
seems quite capable of providing several-second

response for a unit of 30-60 machines, and a current load of 100-200 tasks.
640K of main memory, 20M of disk storage, and 400 by 400 points of (color)
screen are reasonably adequate to the task.

For larger dimensions, better response, or better display, the Motorola
68020 systems (HP300, Sun, Apollo), at twice the price, offer several times
the computing capacity. It seems likely that by the time scheduling systems
such as LLISS are really ready for service, microprocessor systems such as
these will be available for less than $10,000.

2. The critical limitation of the computing hardware is the graphical
display. Machines with 400 by 400 resolution on a 12 inch screen cannot
successfully display a single Gantt Chart window with more than 200-3 00
blocks. (Several colors are necessary for a display of this density to be
usable.) 1000 by 1000, 19 inch screens are four times as effective, but
unfortunately as also significantly more costly.

This suggests that the effectiveness of an interactive scheduling system
will depend importantly on the care with which the system is designed to
exploit the available display resources. Overlay windows, variable scope
and scale, and every other trick of the craft can be usefully employed in
this application.

Some other scheduling systems, with objectives similar to those of LLISS,
have elected to use character displays rather than color graphics. While
such a compromise was perhaps necessary in the era of 200 vertical point
screens, it is no longer, and we doubt that such systems can survive
comparison to those with true graphical displays.

3. The really difficult and interesting problem is the management of the
user-command interface. With something on the order of a hundred commands
to make available to the scheduler, it is a real challenge to provide a
self-prompting (menu-oriented) interface with minimal reliance on either the
user's memory or an external reference manual. The LLISS prototype suggests
that it is possible, but we haven't got it quite right yet.

4. The real issue is, of course, the performance improvement that systems
such as LLISS might permit in reduction of manufacturing lead-time, and the
resulting reduction in work-in-process inventory. With no experience or
data to support the point, we cannot see how even a crude form of LLISS
would not result in a major improvement over current MRP practice. In fact,
the prospects of complementing MRP systems with LLISS-like, local,
action-commitment front-ends should significantly extend the MRP era.

April 1, 1986
National Bureau of Standards
Symposium on "Real Time Optimization for

Automated Manufacturing Facilities"
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INTRODUCTION

Employee scheduling problems arise in a variety of service delivery settings,

including the scheduling of nurses in hospitals, check encoders in banks, airline and
hotel reservation personnel, telephone operators, patrol officers, and others. In their

simplest form, these problems involve only the assignment of days-off, as in some of

the less complex settings for the scheduling of nurses. A typical problem of this form
requires the scheduler to give appropriate days off to each of a number of employees
who work standard shifts with differing start times while assuring that the required

number of employees are on duty throughout the day and week. Variations of this type

were addressed in [2] and [10].

The shift scheduling problem, as in the scheduling of telephone operators, is more
complex. In shift scheduling, the scheduler works with part-time as well as full-time

employees, and shift types contrast with each other in the following attributes:

1) Duration (length)

2) Start times

3) The number of breaks (reliefs)

4) The placement of the breaks

The scheduler must determine the shift types (and the number of each type to

employ), and in some cases determine which employee should receive which set of shifts.

Union rules and company policy restrictions are handled in a limited fashion. Variations

on this problem have been addressed in [3,8,9,10,12,13,14].

The objective in the shift scheduling problem generally is to approximate as

closely as possible the desired number of employees on duty, either by minimizing the
overage or minimizing the 'shortage/overage' mix.

The more complex days-off and shift scheduling problem [13] comes a step closer

to the General Employee Scheduling Problem, and some variations [3,8,14] consider also
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the assignment of shifts to actual employees, but deal with that assignment of shifts

to employees only after the shift types (and number of each) have been determined.

Table I classifies shift scheduling problems as they are described in the literature,

and indicates the differences in: problem size and complexity, the approach employed,
and the extent to which the approach was actually being used in industry.

THE GENERAL EMPLOYEE SCHEDULING PROBLEM

The more complex scheduling problem which we address has wide applicability,

especially in the supermarket, reservation office, and fast food fields. It differs rather

dramatically from the days-off and the shift scheduling problems by including important

real world features that resist practical solution by methods of formal analysis. We
first describe the problem informally and indicate the features that a practical solution

system must have in order to deal with the problem effectively. For comparative
reference, we indicate overlaps and contrasts with other employee scheduling problems
previously examined. We report the result of applying our approach to problems from
real world settings and discuss the implications of our empirical results.

FULL-TIME/PART-TIME EMPLOYEES

As in the shift scheduling problem, it is assumed in the General Employee
Scheduling Problem that some fraction of the work will be done by full-time employees
and the remainder by part-time employees. Full-time employees are those entitled to

work a standard number of hours each week (commonly 40) and generally work shifts

of standard duration (commonly 8 hours each). The start times and the number and
location of breaks may vary. In addition, a full-time employee may or may not be
entitled to the same start time each day worked.
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TABLE I

A CLASSIFICATION OF THE EMPLOYEE SCHEDULING PROBLEMS
ADDRESSED BY SELECTED PAPERS SINCE 1972

Complexity/Size Approach Employed

(for papers cited in References)

MEDIUM:

[13]

[12]

[14]

[3]

[10]

HIGH:

ours

of 7

168 shifts LP 168 none
360 shifts IP <5c heuristics

300 to 400 Network <5c heuristics

< 500 shifts Heuristics 48

< 500 shifts LP & heuristics

> 1,000,000 Heuristics - 540

shifts blend of MS/AI

Definitions:

LOW means:

MEDIUM means:

HIGH means:

Time

Periods

Extent

of Use

LOW:

[2] U. formula Analytic 14 none

[8] 100 shifts LP & heuristics 32 none

[9] 100 shifts Branch <5c bound 72 none

[11] U. formula Analytic 21 none

[1] U. formula Analytic Cycles none

49 banking
48 phone co.

phone co.

96 phone co.

super mkt

fast food

No linking constraints between blocks of time periods, a small number of

shift types, and homogeneous employees with unlimited availabilities.

No linking constraints between blocks of time, a small number of shift

types, homogeneous employees with unlimited availabilities, and
management rules.

Linking constraints between blocks of time periods, a large number of

shift types, non-homogeneous employees with limited availabilities, and
management rules.

U. formula (uniform formula) means: Each shift is characterized by the same rule, such as:

every employee works 5 days a week (time periods are in days).

The word 'shift' in the foregoing table translates into the word 'variable' in an integer

programming formulation. (Some references use the word 'trick' rather than 'shift.')
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In the general problem, as handled by our method, the user is given the ability

to specify shift features such as duration, start time, and the number and placement
of breaks. The user is also able to specify the number of days off and whether they
should be consecutive, and to change those features as the system is routinely used
from week to week.

In addition to the above, each employee can specify (or the scheduler can specify

for the employee):

1) Minimum and maximum hours to be worked during the week.

2) Days and hours of availability during the week.

Item 2 above means that each employee has an availability preference, specifying

which days of the week and the hours that employee can work. Since an employee's
availability changes (in some settings, about 20% of the work force changes their

availabilities each week), the scheduler — human or machine — must be allowed to edit

a file of employee availabilities before addressing the composition of a new schedule

each week.

Another important feature of the general problem, not treated in the standard

scheduling contexts, is that employees are non-homogeneous in ways beyond their

availability preferences and thus cannot be treated as interchangeable entities.

Employees have differing skill types, skill levels, and status attributes which limit the

scheduler's freedom in assigning shifts. These include, for example, the training required

to work at various work stations. Since these change from time to time, the system
must allow the scheduler to edit each employee's profile data.

In the General Employee Scheduling Problem, it may also be necessary to observe
seniority rules, such as those specifying that employees with more seniority must get

more hours of work and start earlier (an early start may be considered desirable), except
when other requirements would be violated.

Union/management rules, in the general problem, can require that a specified

minimum amount of time must elapse between the time an employee works one day and
begins again the next. In some settings they may also require that certain employees,
such as students, may not work beyond a specified hour more than one night during
the week.

IMPLICATIONS OF THE NON-HOMOGENEOUS EMPLOYEE POOL

In the simpler shift scheduling problems, it is possible to design shifts (and to

determine the desired number of each shift type) without regard to employee
availabilities, employee skills and skill levels, or employee status. Descriptions of the

shift scheduling problem in the literature, on the other hand, sometimes appear to

involve a more general solution capability — for example, indicating that shifts are

generated to conform to union rules, company policy, etc. What this means, in practice,

is that the shifts generated represent categories that are potentially acceptable, but

there is no control over whether those selected as a 'solution' have an appropriate

composition. This is entirely reasonable for settings where restrictions are loose enough
that employees can simply 'sign-up' for whatever schedule is posted, but in broader

settings, such a disregard of individual differences can have dire consequences.
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In the general scheduling problem, therefore, the design of the shifts and their

assignment to specific employees must be coordinated. Designing shifts without

considering whether employees can be found to take those shifts will yield either a

poor fit (a poor match of employees assigned to employees wanted on duty) or, still

worse, an infeasible solution.

LINKING CONSTRAINTS BETWEEN TIME PERIOD BLOCKS

Another significant aspect of the general employee scheduling problem is the

existence of linking constraints between time periods. In typical applications of the

general problem, each day may be construed as a block consisting of 96 fifteen-minute

periods, and the assignment of employees to duty periods during that block is not

independent of assignments to employees in other blocks. In addition to restrictions

governing admissible assignments on any given day, these linking constraints imply that

there are also restrictions governing the total number of periods throughout the entire

week, as well as governing the selection of certain types of assignments successively,

or cumulatively, across days of the week, e.g., limitations on the selection of opening

and closing assignments.

In standard shift scheduling problems, by contrast, blocks such as days are

construed as essentially independent. Linking conditions either do not exist or are

innocuous enough to be ignored while composing a schedule for any given day (where,

for example, the ending conditions for one day may be used to give starting conditions

for the next, which again is treated independently).

The days-off and shift scheduling problems can be readily treated as special cases

of the general problem, allowing many of the more difficult conditions to be relaxed.

By assuming, during the shift design phase, a universe of homogeneous employees without
linking constraints across blocks of time, the shift design problem is made relatively

simple. Thus a system for the general scheduling problem handles these less restrictive

problems as a special case.

THE REAL WORLD SETTING

In real world settings, the manual scheduler (generally a supervisor) works in a
highly dynamic mode. Each week, and sometimes more frequently, a new schedule must
be created to reflect the altered employee availabilities and changes in the forecasted
volume of business. To control costs, management frequently requires that the person-
hours of work assigned must not call for a dollar expenditure out of proportion to the
dollar sales forecasted.

The manual production of a schedule that respects limited and varying employee
availabilities, and yet matches the requirements, is very difficult. The consequence is

that the manually produced schedule generally calls for overages (too many on duty) at

certain times during the day and week, and — to keep labor costs within acceptable
boundaries — produces corresponding shortages (too few on duty) in others. This results

in poor service: a condition which managers must seek actively to avoid in highly
competitive service industries.

Producing a schedule manually also requires a good deal of time. For example,
in the supermarket and fast food industries, our investigations indicate that it takes
from 8 to 14 hours for a manager to schedule from 70 to 100 employees for one week,
depending on the seriousness devoted to the task. The resulting schedule is likely to
be substantially less than optimal. Even when all special conditions may be met (which
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is often not the case for schedules produced manually), shortages and overages often

combine to yield less than desirable service or an inflated payroll.

IMPLEMENTING OUR APPROACH

To apply our solution method to the General Employee Scheduling Problem, we
design shifts with deference to features specified by the user, and with deference to

employee availabilities. When a shift is selected, to augment the growing set of shifts

which is generated with the goal of meeting the requirements, the identity of the

employee to take that shift is specified. This assures that employees are only assigned
shifts they are available for. In case the problem lacks a schedule that is feasible in

all respects, our approach generates a schedule that nevertheless comes as close as

possible to achieving feasibility, then helps the user identify alternative ways to deal

with the limitations that created the infeasible situations.

As we subsequently document, our procedure succeeds in solving problems in the

range of 1000 times larger than those related scheduling problems previously studied in

the literature. Fundamentally, we view our procedure as an integration of management
science (MS) and artificial intelligence (AI). Among the levels of procedural generality

to which such an integration is relevant, from the micro level of computer coding to

the macro level of global strategies, it is the higher levels that have the greatest

impact on solution quality and efficiency, and account for what we believe may be
unique to our approach.

Evidently, orders of magnitude of difference in the size of combinatorial problems

that are successfully treated cannot be explained by clever computer coding.

Intermediate level considerations of specific choice rules are more relevant to achieving

such successes. The "structure" on which the primary choice rules are superimposed
consists of a procedure for building and amending employee shifts which has its roots

in the alternating assignment ideas of [5], and which is characterized more broadly in

the context of tabu search in [6]. For this application, we conceptually view each stage

of generating a partial (or complete) set of duty assignments as creating a trial solution,

which is modified or elaborated by transition rules: a standard framework. (Those

interested in further details of the system at an intermediate level of implementation

are invited to contact the authors.) The key ingredient of our approach lies in the

macro level strategies, which combine the perspectives of management science and
artificial intelligence in ways not commonly done. At this level, our approach consists

of three main components.

First, following an MS based perspective, we develop numerical criteria for

evaluating the moves that define possible transitions from one trial solution to another.

We do not, however, settle on a single criterion for evaluating a particular type of

move. Instead, interlinking criteria and are based on separate evaluation functions are

generated which reflect both feasibility and optimality goals. Our use of multiple

evaluative criteria presents a new difficulty that MS based heuristics traditionally have
not had to face: the fact that a local optimum relative to one criterion may not be a

local optimum relative to another. Rather than a stumbling block, we found this

difficulty to be a source of fertile opportunity, leading to ways out of blind alleys

encountered by other procedures. To exploit this opportunity, we formulated our

approach so that each criterion was allowed to "vote" on alternative moves, initially

assigning equal weight to the different votes. When a "deadlock" (local optimum) was
reached, we increased the weight of those votes that would find a different solution

preferable, thereby allowing the procedure to find new trial solutions. The procedure

was further endowed with a memory to prevent reversing the direction in which weights
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were changed, but allowing the memory to decay so that choices would not be unduly

influenced by decisions that should be regarded ancient history. This method for

managing memory was implemented by the use of tabu lists as described in [6,7]. Decay
factors that "forgot" decisons beyond five to twelve moves earlier all succeeded in

avoiding cycling and producing good choices. The combined effect of these features

is implicitly to create a tolerance for "bad moves," but only to the extent required to

avoid becoming mired down at local optima, resulting in a highly effective strategy.

Our second main component employed an AI based perspective to identify patterns

in the ways trial solutions are configured. However, in a departure from standard AI
perspective, our goal was not merely to recognize patterns but to create them. In

developing this approach, we were guided by the supposition that certain

configurations — as manifested in the magnitude and distribution of residual requirements,

and available means of meeting them — would ultimately lead to better solutions by
our tools of analysis than others. Thus, we adopted the goal of identifying moves that

would lead to configurations we judged intuitively promising. This led to creating

additional criteria, based on means-end analysis to arrive at exploitable patterns,

independent of whether moves to attain these patterns might contribute to the objectives

embodied in other criteria. These new criteria were then incorporated into our first

component strategy.

The third major component of our approach was to identify significant segments
of the problem, and then to subject each segment to its own sequence of solution

phases. In this approach, we implicitly perform what might be called a conceptual
decomposition. While the problem is an indivisible whole, we nevertheless artficially

break it apart. After each round of evaluations and modifications, we put it all back
together — a "Humpty Dumpty" process that characteristically yields gains throughout
several repetitions. For example, after a global evaluation of an employee's availability

versus needs yet to be filled over all periods (relative to the current state of the
solution), bias factors are generated for and against scheduling the employee in particular

period blocks. Thereupon, the blocks of time periods are treated as though independent
for the purpose of generating the next move. The succeeding global evaluation then
fulfills the function of restoring the links between different blocks. A similar procedure
is applied to meeting union and seniority rules as the solution process evolves, temporarily
decoupling these considerations by bias factors and then restoring them by global review.

Viewing our approach in terms of these macro level strategies, it is clear there
is nothing to the AI nor MS oriented approaches that would not, in theory, provide
support for our undertaking. In practice, however, AI and MS approaches are usually

implemented in a narrower fashion. It is our impression that the approaches most often
described in the literature either employ rather shallow "Al/human" intuitive techniques,
though sometimes in large numbers, or employ slightly deeper MS heuristic techniques,
but in very small numbers. In neither instance do we find great interlinking and
overlaying of alternative criteria. Certainly, we have not seen widespread implementation
of multiple evaluation functions, integrated and controlled to overcome local optimality
and cycling, nor have we seen the active use of pattern creation (in addition to
recognition) using notions of exploitability instead of objective gain. Formal mathematical
decomposition, although too rigid and inapplicable to discrete problems of the type we
examine, has some resemblance to the third component of our approach, if one views
the decomposition as susceptible to being carried out in different ways.
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THE QUALITY OF THE SCHEDULE

We describe now the results of 10 computer solution tests, producing one schedule

for one week, for each of 10 restaurant problems, involving 100 employees, from a real

world application in the fast food industry. These tests were conducted on problems
selected for benchmark runs by McDonald's Corporation Headquarters, Oak Brook, Illinois.

These problems correspond to integer programming problems involving roughly from
1,000,000 to 4,000,000 variables, and from 3,400 to 9,000 constraints, as noted in the

integer programming formulation described subsequently. A summary of the test results

is provided in the following table.
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TABLE E

TEST RESULTS IN A TEN CASE STUDY

Case Number of Execution Number of Number of Percent

Number Employees Time* Zero-One+ Constraints"1" Optimality^
Variables

1 103 24 min. 2,640,250 3,400 98

2 100 24 min. 1,356,772 3,400 98

o
o 1 Uo 16 min. 1 i eg 117l,lDo,ll <

q a fin yy

4 104 24 min. 3,251,222 4,732 98

5 101 23 min. 2,440,605 4,732 99

6 107 23 min. 4,999,580 4,732 98

7 108 23 min. 1,366,100 4,732 99

8 101 22 min. 4,005,202 4,732 98

9 106 24 min. 2,613,800 9,004 98

10 103 22 min. 1,215,641 9,004 99

All runs were executed on an IBM PC, 128 K memory.

"•"Determined by program counters, explained in formulation section.

^Solutions verified to be at least the indicated percent of optimality.

The percent of optimality figures indicated in the table were arrived at as

follows. With each run, no shortages were produced. That is, during no quarter hour
period during the week was the number of employees assigned to be on duty less than
the desired number. In one run, during 3 quarter-hour periods throughout the week
there was an excess of one employee, over and above the number desired. This does
not mean that fewer employees could be used, since eliminating an employee would then
create shortages in all other 15-minute periods the employee worked (assuming the same
employee was on duty in these three 15-minute periods during the week). In two other
runs, there was an excess of one employee, during 8 quarter-hour periods during the
week, over and above the number desired. For the other seven the overage was between
3 and 8.

In a perfect schedule, the shortages and the overages would all be zero for all

periods during the week. In the ten problems tested, periods designated for scheduling
equalled 540 (out of 672 15-minute periods for the week). Thus, in the worst case our
method achieved zero shortages and zero overages for 98% (532 out of 540) of the
total periods under consideration. We did not attempt to obtain the very best solutions

possible by our approach (if better solutions did in fact exist), but used an automatic
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cut-off rule to terminate search, which accounts for the similarity of run times on
problems of different sizes.

In the papers cited that report on an application in a practical setting, comparisons

of solution quality are difficult due to different types of objective functions and a
frequent lack of explicit performance data. Partial evidence of the quality of

performance is offered in [14] by reporting execution time on an IBM 360/67, which
ranged from about 40 seconds to something over a minute (the maximum was not

specified) for problems with 300 to 400 variables. The other papers, addressing a

problem that comes closest to our general problem structure [3] and [10], likewise report

reliance on a mainframe computer, but do not offer computation times.

In typical real world settings for fast food stores, (supermarkets, banks, reservation

offices, and the like), large mainframes are not common. In fact, it is the increasing

prevalence of inexpensive computers that makes automated scheduling in these settings

practical.

Our system has accordingly been written in BASIC and implemented on
microcomputer systems such as the KAYPRO II, TRS 80 Model II, and the IBM PC.
Because our system can handle the less general shift specifications and constraining

conditions of the standard shift scheduling problem, we executed experimental runs to

determine our execution time for problems whose sizes corresponded to those reported
in the literature. For problem profiles corresponding to those in [3,10,14] our solution

times on an IBM PC with 128K bytes of central memory did not exceed 50 seconds for

problems of up to 500 variables. These microcomputer times therefore, in fact, compare
favorably to the mainframe CPU time reported elsewhere.

It should be noted that solution times for our procedure, using the cutoff rule

that achieves the indicated percent of optimality figures, do not increase anywhere
near linearly with the number of integer variables. Normally the opposite effect would
be expected for discrete problems such as these — i.e., an increase far worse than

linear. This atypical behavior is a key factor reponsible for the advance in the size of

real world problems that can be handled successfully.

It is also of some interest to compare the performance of our approach to that

achieved for other zero-one problems and not alone for problems closely related to the

class we examined. We are prompted to make such a comparison in view of the 1984
Lanchester Prize award for a study of zero-one problems [4]. The citation for the

prize underscored the significance of effectively handling these problems as: "Zero-
one linear programming is a very important problem in Operations Research. Efforts

to solve large problems of this type have continued for over 20 years. However, success

has been elusive, and problems with hundreds of zero-one variables and no special

structure could usually not be solved in reasonable computation times."

The award-winning study of [4] represents one of the most effective attempts to

solve zero-one problems optimally, and provides a major contribution for its ability to

perform well on zero-one problems notably larger than those customarily handled. These
problems, ten in number, ranged in size from 33 to 2756 zero-one variables. The
problems were solved by reliance on a large mainframe computer (an IBM 370/168), and
nearly an hour of CPU time was required to handle the le gest problem. The contrasting

ability to solve problems with 4,000,000 or more zero-one variables to 98% optimality

suggests that our approach establishes an appealing trade-off between assured optimality

and problem size, and encourages us to believe that gains for solving other zero-one
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problems may be possible, perhaps by similar integration of management science and
artificial intelligence techniques.

CURRENT USAGE

Our system has been used in several settings for over two years, producing

schedules substantially superior to those an experienced scheduler can produce in any
amount of time. Applying our system to problems involving approximately 100 employees,
the user is able in one to two hours to update the forecast for the coming week, to

modify the employee availabilities, and to make "manual" assignments (using the computer)
to selected personnel for whom specific work schedules are wanted (e.g., managers).

The computer then completes the process by designing and assigning shifts to approximate
the optimal match of employees on duty to employees wanted, while respecting the
constraints described above. Figure I shows one of the printed outputs which the user

may select, indicating by means of a bar graph the shifts assigned to employees on Sunday.
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FIGURE I
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Schedule for Sunday . In this example the problem size is substantially
smaller than in typical applications, both in terms of number of employees
and period requirements. At 18:30 it is apparent 10 employees are assign-
ed (//2, 5, 6, 11, 12, 14, 16, 22, 31 and 32) while 9 are required, yielding an

overage of one person for that quarter-hour period. 'B' means 'quarter-
hour break', 'LL' means 'half-hour lunch'.
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No human intervention is required during the scheduling. Disregarding the

improvement in the schedules produced, the process trims 6 to 12 hours off the time

required each week for a supervisor to prepare a schedule manually, and this labor

savings by itself can pay for the computer in a reasonable period of time.

THE INTEGER PROGRAMMING FORMULATION

A more detailed description of the conditions which were respected in the solutions

cited above (the schedules produced using our approach) is as follows:

1) The number of employees on duty (and not taking a lunch or quarter-hour

break) in each 15-minute period must come as close as possible to satisfying

the demand for employees in that period.

2) All shifts assigned must be members of a feasible set specified by management
rules: from 2 to 8 hours duration; with 0 to 2 quarter-hour breaks, and 0 or

1 half-hour break — depending on the duration of the shift; and with the

placement of the breaks specified by reference to "windows" within which
they may be moved, as specified by management.

3) No employees can be assigned to more than one shift on any day.

4) No employee can work less than his or her minimum required number of hours
during the week, nor more than the maximum.

5) No employee will work less than his or her minimum desired (as opposed to

required) number of hours during the week unless there is not enough work
to go around. In this latter case, the desired minimum is a goal where
employees with greater seniorities have their goals respected first.

6) No employee can work over 6 shifts during the week.

7) Closing and opening rules:

a) No employee can "close" more than 2 nights in a week, and never two
nights in succession (closing means working later than a specified hour).

b) No employee can close one night and "open" the next day (opening
means working earlier than a specified hour).

c) No student can close more than once during the days Sunday through
Thursday.

8) Other things being equal, employees with more seniority must be assured
more work and an earlier start.

9) During certain periods of the day those on duty must represent a specified
minimal set of skills and skill levels.
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The Constraints:

We define:

S = the set of acceptable shift types

Sed = tne set °f shifts which employee e is available to take on day d

Ps = the number of quarter-hour periods in shift s

xesd
= * *t employee e is assigned shift s on day d;

0 otherwise (decision variable)

ApS = 1 if period p is a duty period for a schedule s;

0 otherwise

Dp,j = demand, in projected numbers of employees required to be on duty in

period p of day d

upd
= &oal programming deviation variable for falling short of the projected

demand

vpd
= £oa* programming deviation variable for exceeding the projected demand

Ue = maximum quarter-hour periods of work for employee e during the week

Le = minimum quarter-hour periods of work for employee e during the week

Ge = the desired (goal) minimum quarter-hour periods of work for employee

e during the week

ye = a goal programming deviation variable that allows employee e to work
less than Ge periods if there is not enough work to go around

Then the preceding conditions can be modeled by the following constraints, which

are numbered to provide a direct correspondence.

I I Apsxesd + upd - vpd = Dpd for all p and d
(1)

e s Sed
The composition of Sed assures that condition 2) above is satisfied, independently

of the other constraints. Therefore, we do not include a corresponding constraint (2)

in our formulation.
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I x . < 1 for all e and dS (3)
z. 0 esd —

se Sed
Le <

I I Ps^esd < Ue for all e (4)

d se SPfi
Ge < | l

Psxesd + Ye f°r all e (5)

Q se Se(j

d Se Se(j
Note that conditions 7), 8) and 9) are not modeled in the preceding constraints.

Modeling them is straightforward but tedius, requiring the use of additional notation

without adding to the basic understanding of the requirements conveyed by their verbal

description.

Hie Objective Function:

A perfect schedule (as distinguished from an optimal schedule) occurs when the

number of employees assigned, by quarter-hour periods throughout the week, equals the

number wanted, and no employee works less than his or her minimum desired number
of hours during the week, while respecting the various constraints specified. Given
the non-homogeneous character of employees, the fluctuating requirements, and the

attributes of the various shift types, a perfect schedule is frequently impossible.

An optimal schedule is one that minimizes some weighted function of the shortages

and overages, by quarter-hour periods throughout the week, plus a weighted function

of each employee's hours below the desired minimum.

We define:

WU = a weight to penalize falling below forecasted requirements (yielding a

shortage)

WV = a weight to penalize exceeding the forecasted requirements (yielding an

overage)

W e = a weight to penalize falling below the desired (as opposed to required hours

for employee e to work during the week)

We seek, therefore, to:

Minimize WU I upd + WV I vpcj
+ I WeY e

p,d p,d e

The preceding formulation is not the only or most general our procedure can be
made to handle, but represents the model applied to the 10 real world problems whose
solution statistics we have reported. In this application, shortages were penalized more
than overages by a ratio of WU to WV of roughly 4 to 1. Minimum desired employee
hours were satisfied automatically by setting We to an internally computed parameter
based on WU, WV and the user-specified seniority factor for employee e.

The number of variables in the integer programming formulation is of course
independent of such parameter choices, and is potentially immense. If all possible

placements of lunch and quarter-hour breaks were included in the schedules, the total

number would amount to hundreds of millions of variables. (See the Appendix.) However,
the admissibility of all such possibilities, or even uniformly structured subsets of all

possibilities such as those resulting from the standard assumption of homogeneous

-123-



employees, would permit variables to be aggregated and thus effectively shrink their

number to a minute fraction of those otherwise required. The simplifying homogeneity
feature of [3] and [15], for example, makes it possible in these instances to deal with
only about 300 to 500 variables in total.

In the setting of the general employee scheduling problem, where such implicit

aggregation is not possible, we have created a component for our solution method that

counts the total number of variables precisely for the real world examples we reported
in Table II. These same counting rules were applied to data of the other papers to
ensure that all reported and inferred numbers of variables were derived by the same
means.

CONCLUSIONS

Given the best of today's state-of-the-art codes for solving very large scale integer

programming problems, the general employee scheduling problem clearly does not lend

itself to practical solution by standard procedures.

It is encouraging both in view of the practical significance of the general problem,

and its combinatorial complexity, that a method which combines elements of management
science and artificial intelligence techniques can generate solutions of exceedingly high

quality in very modest amounts of time. It is also noteworthy that such results have
been achieved on a microcomputer.

The "leap" in size by comparison to previous comparable scheduling applications

reported in the literature demonstrates that the effective solution of truly large-scale

scheduling applications is possible, contrary to widespread belief. It is inviting to

believe that similar gains may be possible for other combinatorial zero-one applications,

perhaps by similar strategies.
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APPENDIX

Shift Definitions Used in the Runs Cited

Shifts are from 2 to 7.5 hours in length (not counting lunch) as follows:

1) Shifts longer than 5 hours have one lunch;

2) Shifts from 2 to 5 hours have no lunch;

3) All work sessions are at least 1.5 hours in length;

4) Fifteen minute breaks are not scheduled.

In runs cited, schedules were created covering 76 periods each day Sunday through

Thursday and 80 periods each day Friday and Saturday.

This shift description results in 158 different shifts that can be assigned to begin

at any period. Over 76 periods and with 30-minute breaks, 7,914 different shifts could

be considered for an employee with unlimited availability (the number is less than 76 *

158 because no shifts can begin in the last 7 periods, only one shift can begin in the

eighth period from the end, and so forth). For the entire week 56,662 different shifts

are theoretically possible for such an employee, yielding a potential of 5,666,200 shifts

for 100 employees.

The non-homogeneity of employees, which restricted available work days and

available periods within days differently for each, caused the actual number of shift

alternatives to be less than this quantity, though the total number of employees sometimes
exceeded 100. The counters placed in our program indicated the actual number of

shifts ranged from a low of 1,158,117 to a high of 4,999,580 shifts, as noted in Table II.

In other applications where it is desired to schedule 15-minute breaks, the number
of variables involved soars. A typical 7.5 hour shift with a lunch and two 15-minute
breaks has 375 variations compared with 19 variations for the 7.5 hour shift used in

the above restaurant runs. We are currently experimenting with another version of our

procedure which is handling over 26 million IP variables.
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ISIS PROJECT IN REVIEW

Dr. Petros N. Papas
Manager, Computer Integration and Software Systems

Westinghouse Advanced Production Technology Systems Group
Pittsburgh, Pennsylvania

IISTTRODUCTION

This paper covers the History, Achievements, Lessons Learned, Present

Status, and Future Plans of the ISIS Project. It is not a technical

treatise of the code. ISIS stands for Intelligent Scheduling and
Information System. It has been a joint development effort of

Carnegie Mellon University, Westinghouse Electric Corporation and the

U.S. Air Force.

The scheduling problem is most complex. The ISIS project is a
beginning towards solving it.

ISIS aims at scheduling a job shop through constraint-directed

reasoning. It uses a knowledge representation language to model the

production environment and uses Al and heuristic search techniques to

construct the schedule.

HISTORY

Carnegie Mellon University established the Robotics Institute

approximately six years ago and within it the Intelligent Systems Lab

headed by Dr. Mark Fox. Westinghouse became one of the original and

strong supporters of the Robotics Institute with a multi-year funding

commitment and plans for cooperative research. As a result, several

joint research projects were initiated, including ISIS. Projects were

chosen, their funding established, and their progress reviewed by a

Westinghouse high-level committee.

The idea for the ISIS project came from a need at the Westinghouse

Turbine Components Plant at Winston-Salem, North Carolina. The

-127-



need was to increase the throughput of orders while maintaining

efficient utilization of all machines.

Let us digress for a moment and look at the scheduling problem.

The development of schedules to govern the production of orders in a

job shop is very complex. They tell me that just ten orders through

just five operations results in ten factorial to the fifth power
possible combinations or schedules. The situation within an actual

manufacturing facility is much more difficult. The number of orders,

operations and resources is substantially greater. Also, the dynamic
nature of the shop further complicates the problem. I am referring to

machine breakdowns, order changes, engineering changes, tool

breakdowns, tool unavailability, operator absenteeism, reworks, etc.

The major initial conclusion from the CMU study is that scheduling is

a constraint-directed process. Westinghouse schedulers at

Winston-Salem spend 80% of their time determining constraints and

their impact. The objective of scheduling, after all, is not only to

meet the due dates but to construct schedules which satisfy all or

most of the constraints. Five catagories of constraints have been

identified by the CMU research:

o Organizational Goals : Customer requirements,

work-in-process, objectives.

Machine capabilities, tooling

capabilities, and product dimensions.

Operation precedence, resource

requirements for each operation.

Availability of resource to perform

operations.

Qualitative preferences for operations,

machines or resources. The
rules-of-thumb, that each scheduler

uses to schedule a plant.

o Physical Limitations :

o Causal Restrictions :

o Availability :

o Preference:
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Also, ISIS schedules in four levels:

o Lot Selection

o Capacity-Based Scheduling

o Detailed Scheduling

0 Reservation Selection

The core of this software is the beam search technique used in detail

scheduling.

The first phases of the research were spent at defining the nature of

the problem and also as a learning time for the CMU team. This team
went beyond just familiarizing themselves with the problem. In the

absence of a designated Westinghouse domain expert, they became the

domain experts-the scheduling experts. This initial progress was
slow, as expected.

After a couple of years (around 1982) the Westinghouse Review
Committee decided that other projects ranked higher in priority and
funds were shifted away from ISIS. As a result of the reduction of

funds from Westinghouse, Mark Fox solicited and received support

from the U.S. Air Force and CMU to continue the Al research in this

most important manufacturing area.

1 became involved in ISIS in the beginning of 1983 as part of a

renewed interest by the Westinghouse Corporate Productivity &
Quality Center. We might say that Westinghouse again recognized the

fundamental nature and importance of this research.

We established a structured and focused effort aimed at a

demonstration of the concept. A Westinghouse domain expert from

Winston-Salem was set as the project leader. The demo deadline was
December of 1984. The objectives of the demo were clearly spelled

out well ahead of time so that all team members (Westinghouse and

CMU) knew what was expected.
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We also established a Westinghouse ISIS Design Review Committee

made up of key manufacturing people. It is amazing what deadlines

can do. The team went full speed ahead and not only met but exceeded
all objectives including delivery by November 1984. The demo was a

resounding success, from all viewpoints. It was shown to

Westinghouse upper management, various Westinghouse Corporate and

other committees and also the U.S. Air Force and CMU.

The next logical step was to take ISIS into production. Here is where
we ran into a snag. In order to fully understand the next events, I

have to digress for a moment and describe to you the Westinghouse
Winston-Salem plant. It is called the Turbine Components Plant and
it manufactures, among other things, turbine blades.

The plant possesses forging, fabrication, machining and assembly
operations. The main characteristic of the plant is that of high-

precision machined parts for the Electric Utility Industry. The plant

also has a large number of DNC tools and the first robotic cell for

swaging of steel bars, also completed as a joint Westinghouse/CMU
project. Incidentally, the result of that research is a high level, Al

technology-based language called CML (Cell Management Language)

that Westinghouse is now marketing and using.

The plant routinely manufactures 10,000 different types of parts and
fills approximately 7,000 customer orders per year, each order

requiring about 20 machining or manual operations, including

precision measurements. It ships a quarter of a million parts per

year. ISIS was developed with the tapered blade section of the shop

in mind. This section represents approximately 1/3 of the machining

capacity of the plant.

The Winston-Salem plant has always been progressive and open to

trying new ideas and was ideal for these projects.

With this as the background, it can now be seen that the

demonstration took place at Winston-Salem in a live, real

environment.
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This next step, that of putting the system in production at

Winston-Salem, did not take place. What was needed is a more
robust version of ISIS, new computer hardware, and building of the

interfaces to other systems. In other words, we had to translate ISIS

from SRL to "industrial strength" software. At that point, the

decision was made to discontinue work at Winston-Salem and instead

opt for a smaller version of ISIS that can be made into a production

package using commercially available hardware and software. This is

now taking place. Whenever this new version is expanded to include

all the features needed at Winston-Salem, then ISIS will be installed

at the plant.

The latest version is called 1313-11 and has been shown at the last

IJCAI Conference in August at UCLA. Those of you who were there

might have seen it.

Let me hasten to add that this sequence of events is not a surprise

but a natural progression from a breadboard prototype to a production

model, just as it happens in the development of any product.

ACHIEVEMENTS

So much for history. Now let us look at the achievements.

1 . Research has begun in this most important area of manu-
facturing. As I mentioned earlier, I consider scheduling a
most intellectually challenging and important endeavor.

2. We have shown that this type of problem can be tackled by the

application of Al/Expert Systems technology.

3. ISIS has contributed (along with many other efforts) to the

creation of interest among academic circles for manufacturing

problems. In other words, practical manufacturing problems are

now perceived as not only important to solve but also interesting

and intellectually challenging.
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4. A Ph.D. thesis has been published on this subject: Dr. Mark Fox's

thesis on Constraint-Directed Reasoning .

5. Five categories of constraints were recognized.

6. A wealth of research has come forward from the ISIS/CMU in this

area. This reasearch is opening a whole new spectrum of ideas

and products. One of the new products is a manufacturing

scheduling algorithum that was announced by the Carnegie Group,

Inc. of Pittsburgh.

7. The demonstration of the concept. This was a major

accomplishment by the combined efforts of the Westinghouse and
CMU teams. The demonstration included both the interactive and
automatic methods of scheduling as well as a limited "what-if"

simulation capability.

LESSONS LEARNED

Let us now focus on the lessons learned from this research effort.

Most of these lessons center around the key elements of transferring

the technology from the University to industry and then the user.

The most obvious lesson relearned was that the University is best

suited for research and industry is best suited in developing and
packaging products. It is something we knew before, but those of us

who don't learn from history are doomed to repeat it.

We had unmatched expectations. The University says "give me the

money, I'll give you research-no guarantee on results." Industry

says, "I expect a list of milestones and deliverables for this number
of dollars." Obviously not a congruent set of perceptions and

expectations. The relationship has to be thought out so it can benefit

both parties, as it did in this case.
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Next lesson learned was the fact that we must choose a stable

environment and robust, industrial strength software as the vehicle

for development of a production system. We started out with SRL
(Schema Representation Language) from the University which was
adequate for research but totally inadequate for production.

SRL was easy to use. It had all kinds of handlers, subroutines and
productivity aids that improved our capacity to do research and also

to quickly prototype and develop a system. But SRL was never really

tested in a production environment and only handled smaller problems.

The third lesson learned is that it is best to develop your own
in-house Al capability or use a commercial Al firm for the

development of an actual product. University expertise can best be
utilized on an as-needed consulting basis during product development.

University is best for research. Since the Al resources are limited in

this country, it is a shame to waste scarce university research talent

in writing production code.

Another lesson I would liked to have learned before starting out on
ISIS, is how to pick as simple a problem as possible to get started.

We didn't know any better; that is why we picked a difficult problem

to tackle. Right now we have scaled back to tackling a problem of a
more manageable size. I believe we will have results by the end of

the year.

The last lesson learned is that the cost is going to be higher than you
think and the results less than you expected. Be realistic in your

planning. Don't be dissappointed. Give your team time to develop

ideas and a chance to come through.

PRESENT STATUS

What is happening today? For once we are developing a scaled back

version called ISIS-II. What this means is as follows. The
demonstration project covered both the scheduling of the machines
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and also generated a routine, that is a sequence of operations. So,

ISIS was both a scheduler and generative process planner. In ISIS-II

we have chosen to concentrate on the scheduler, assuming that the

routines are given. ISIS-II also concentrates on the interfaces to

traditional MRP systems. In this way, we can focus our attention

entirely to the solution of the scheduling problem. The attached

figure shows the ISIS-II Architecture.

This first third of this year was spent in the selection of hardware

and software. We put the basic beam-search algorithm in various

combinations of hardware and software in order to decide on the best

combination. We chose KEE from IntelliCorp and EXPLORERS from

Texas Instruments. ISIS-II is now being developed and should be
available for pilot testing by year-end. We are now selecting several

pilot sites within Westinghouse in order to test out the code.

FUTURE PLANS

Obvious future plans are of two types: The expansion of the use of

ISIS-II to as many locations of Westinghouse as deem it applicable

and the development of enhancements. Possible enhancements of

ISIS-II are:

o Handle larger manufacturing plants

o Handle several hierarchies of schedules

o Generate process plans

o Interface to tooling systems

After all this is accomplished, I am sure that we will find other

superb manufacturing opportunities to tackle.
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DYNAMIC CONTROL IN AUTOMATED MANUFACTURING:
A KNOWLEDGE INTEGRATED APPROACH

James G. Maley, Sergio Ruiz-Mier, James J. Solberg
Center for Intelligent Manufacturing Systems
Purdue University, West Lafayette, IN 47907

INTRODUCTION

Flexibly automated facilities can process a wide variety of products under different

constraints and objectives. They thus require manufacturing control strategies capable

of facing an environment of continual change. To control and schedule within such an
environment, a system which can be responsive to product and process requirements,

machine breakdowns and delays, engineering changes, and Improvement opportunities,

is needed. Such a control system does not fall Into the realm of any current

manufacturing solution techniques. Dynamic operation of a production system In this

environment requires something more than exact optimization, heuristic algorithms or

stochastic estimates. Recently, an effort has been made towards Increasing the

flexibility of the controlling process Itself to handle unanticipated problems and
situations [see Nof, et al. 1980 and Solberg, et al. 1985]. Still, according to Naylor
[1985] and In the authors' opinions, the amount of flexibility required to adapt to the

varying situations facing manufacturing has not yet been reached. The work contained
herein goes beyond some of the concepts from Nof et al., Solberg et al., and Naylor,
such as a modular scheduling and control framework and a generic Implementation to

face differing factory situations and assumptions, to address the problem of controlling

the flow of parts and Information. As an example of the described strategy, we present
an application to automated guided vehicles operating In a flexible environment.

BACKGROUND
The term Flexible Manufacturing Systems (FMS) has been a popular way of

describing automated manufacturing cells which contain an element of flexibility In

their manufacturing of goods. An excellent overview of this stage of the development
of automated facilities Is found In Dupont-Gatelmand [1982]. Dupont-Gatelmand
discusses the history, definition and Implementation of flexible automation up through
the early eighties. Her work provides an excellent Introduction to the area with
numerous examples of working FMS's. Stecke [1984] provides a more recent description

of FMS's In terms of the problems encountered with system design and Implementation.
Stecke's work was published during the beginning of the trend away from what was
defined as FMS's to the more whollstlc view of factory automation - Computer
Integrated Manufacturing or CIM. According to Stecke's classification, the research in

this project Is In an effort to solve the combined scheduling and control problems In an
automated manufacturing facility.
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For an overview of the production scheduling literature In general, see Graves

[1981]. Two papers by Iwata, Murotsu, Yasuda and Oba [Iwata et al. 1982 and
Murotsu et al. 1983] offer a unique scheduling strategy specific to FMS's. Both papers

by Iwata et. al. base their scheduling and control capabilities on the heuristic strategy

of a "pull-system". Briefly the pull-system scheduling strategy Is based upon the Idea

that the part Is moved according to the status of the manufacturing system at the time
of or close to the time of Its Impending movement. Thus Instead of being planned
ahead of time and then "pushed" through the system, the part Is "pulled" through as

time progresses. Some earlier work completed by Lewis et al. [1980] recommends this

type of automated facility control. Further, Lewis et al. go on to show that a data flow

approach to controlling computerized manufacturing systems provides a method of

meeting the need for Increased flexibility. Some of the Ideas of pull system are

Introduced In the specific example of our procedure.

The solution strategy which we present herein Is developed for an automated
manufacturing process, yet our focus In the example Is on the material handling sub-

system. The automated material transport systems, which are widely used In flexible

systems today, are automatic guided vehicles. Maxwell and Muckstadt [1982] present

the Ideas behind designing a guided vehicle system for a facility and then go on to

Implement their recommendations on a simple factory model. Egbelu and Tanchoco
[1984] provide an overview of guided vehicle systems and characterize the differing

methods of Implementing scheduling and routing rules for those systems. The type of

AGV system used In this project can be characterized as a unl-dlrectlonal vehicle

operating In aisles which have room for vehicles to meet and pass by each other. A
paper by Parodl [1984] provides a route planning system based upon the "pull" system
principle, described above. In the paper an autonomous vehicle (possibly an automated
guided vehicle) Is routed In a dynamic and varying environment. This environment Is

similar to that faced by material transport systems on the factory floor. In our example
we Implement a modified version of Parodl's algorithm for routing the guided vehicles.

The Idea of combining simulation and optimization Into a tool that will assist the

problem solver Is not new. In fact, the use of this combination In computer Integrated
manufacturing has been recently looked Into by Chu [1984]. Chu's research had the

combined goal of developing a system which would provide adaptive control of a real

system while simultaneously modifying a model of the system for a dynamic
manufacturing environment. Chu demonstrated the feasibility of his Ideas on a single

robot for material handling. Fisher and Thompson [1963] describe a learning system
that develops Job-shop scheduling rules. Fisher and Thompson use parameter variation

to guide combinations of scheduling rules to Improve the performance over any of the

rules used Individually. Some of the self-lmprovlng or adapting Ideas utilized In this

paper are taken from the Fisher and Thompson paper. The combination of both Chu's
work and Fisher and Thompson's work has been made possible through a knowledge
based environment developed by Rulz-Mler and Talavage [1985].

THE DYNAMIC SOLUTION STRATEGY
The concept of real-time operation of a controlling element of a manufacturing

facility conveys various connotations to different people. From our viewpoint, real-time

operation Is an Ideal to strive for; however, It may be hard to achieve.
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In discrete parts manufacturing, the exertion of control over processes does not

necessarily cause an Immediate effect on the system. This Is due to the fact that many
processes, once started, are committed and must proceed until completion. For
controlling purposes, we can visualize time (see figure 1) as being divided Into a fixed

period, where decisions cannot affect the system, and a flexible or controllable future.

With this In mind, let us look at the proposed solution strategy.

We Identify five key components In the operation of a scheduling/control process

which must be Intimately coordinated. These are: real-time feedback from the

operation of the facility, guidance from a historical knowledge base, forecasting of what
Is to come, direction of goals and constraints from management and world data, and
Improvement of the process from a planning module. Shown In figure 2 Is a diagram of

the Interrelations required.

Historical

Knowledge
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Supervisory World
Input Data

a ;
Planning
Module

(Simulation
Manufacturinc

System
*

Figure 2

The closed loop system provides not only a visual representation of the
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Interrelationships but also a guide for actual Implementation by means of an object-

oriented programming paradigm.

The Information Alter uses the prevailing constraints, the present objectives, and
the current state of the facility to discern relevant facts about the system. These facts

are necessary to maintain the historical knowledge base, direct the planning and to

evaluate the system's performance. Based upon the goals (objectives), the type of

Information needed from the filter Is Implicitly defined. The information filter

determines which actual data flowing through It Is relevant and which Is not.

Real-time feedback from the manufacturing facility Is necessary to determine
precisely how the current scheduling/control decisions are performing. This
Information provides the basis from which the planning module can modify Its

operation to Improve the decision making process In force. Also the continuous
feedback of Information provides data concerning the status of the facility - In

particular the current system constraints. This data can be used by the planning
module to take advantage of specific situations as they arise.

In general, we can say that the problem of optimizing the system can be
characterized by a systematic search for a solution. The general Idea behind using the
historical knowledge base is to guide the search or at least provide starting points for

the search and to avoid reproducing previous work. An Important factor In the

development of the historical knowledge base Is the determination of the amount of

data stored and the way the data Is stored.

The ability to see the future would provide the opportunity to do processing off-

line. However, with the dynamic nature of the facility emphasized above, this luxury Is

not available. Our method of forecasting the future Includes the added possibility of

testing scheduling/control decisions prior to their Implementation. As can be seen in

figure 2, we propose a simulation of the facility to give us a way of testing the current
plan with what might happen In the future.

The direction of goals from management represents another way of maintaining an
actual representation of the operation of the system. One of the dynamic aspects of

the manufacturing system Is the changing set of goals which management wishes to

achieve. By permitting the Infusion of this supervisory Information, the system Is

always working towards the current goal set. This goal set Is constrained by the status

of both the system Itself and the world data affecting the system.

The planning module Is the heart of this scheduling/control process. It

determines precisely which decisions are to be made and how those decisions are

Implemented. It chooses the search strategy to achieve the goals given to It. The key
to the planning module's unique role In this closed loop Information flow Is It's

interaction with the historical knowledge base. Chu [1984] tries to optimize this type of

planning routine by storing various scenarios In a historical data base. Then using a
pattern matching scheme, his system chooses the best solution to the current problem
based upon the historical problems. We see the historical knowledge base Interaction

as providing a starting point to continue optimizing the planning process as opposed to

being the solution selector. Thus, not only does the planning routine schedule and
control the facility, but the manner In which It operates changes through time based
upon historical Information.

EXAMPLE: A KNOWLEDGE INTEGRATED APPROACH
Briefly, this example entailed Implementing a scheduling/routing procedure within

a simulated manufacturing environment. This example Is not a complete

Implementation of the proposed formalism; however, It Illustrates the formalism's
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underlying concepts and gives promising results. In this automated manufacturing

environment, automated guided vehicles provide the means of material transport. Each

vehicle uses Its own conceptualization of the facility layout to maintain a history of

actions and to Implement a demand-pull manufacturing control scheme. The actual

scheduling/routing of the parts through the factory used the A* search algorithm [Hart

et al. 1908] to determine the weighted shortest path between the points which It had to

travel.

The automated facility used to demonstrate the feasibility of the dynamic

optimization strategy Is a modified version of an FMS as described in Dupont-

Gatelmand [1982], figure 3.
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Figure 3

As one can see from the figure, a network description of the facility has been created.

The network Is represented using a frame-based paradigm. Given this representation,

the problem modeled herein is to have the AGVs traverse the paths by a simple set of

rules (use the AGV with the highest amount of Idle time or the first available AGV)
and move as many parts as possible through their sequence of processes. The goal of

this process Is to have each vehicle's representation of the facility layout develop to

such a point that each vehicle has Its own through-ways. These through-ways will give

the vehicle ample opportunity to travel the quickest way possible without delays (le:

blocking). Since the nature of the manufacturing environment Is quite dynamic, a
steady-state map for each vehicle Is not a proper goal. However, the ability of the
vehicles to adapt continuously over time provides the means for keeping up with the

changes.

Referring to figure 2, we now show how this example fits Into our solution

strategy. The desired objective function, In this case to maximize throughput, is

specified as supervisory Input to the system. The manufacturing system shown In figure

3 Is simulated In the CAYENE environment [Rulz-Mler and Talavage 1985] and

-141-



performs as described above. Data from the simulation Is passed through the

Information filter. In this example, the Alter scans the vehicle's performance In the

simulation and correlates It with the planning module map. This Information

concerning the vehicle's view of the facility Is stored In the historical knowledge base.

Each Iteration of the procedure adds a new set of frames to the historical knowledge
base from the Information filter. Finally, the planning routine compares the

performance measures stored In the historical knowledge base and updates the

Individual AGV maps by modifying the weights on the paths to Improve the system
objectives (le: to maximize throughput subject to the current constraints).

The results of a number of Iterations of this procedure for a given configuration of

the manufacturing system are shown In figure 4. Iteration 0 depicts the system as unit

weights on the lnter-node paths. Iterations 1 through 3 show how the system Improves
Its throughput performance with adjustments to the Individual AGV's view of the

paths. Note that after only four Iterations a 27% Improvement In the throughput and
a 10% Improvement In the time In the system Is achieved.

Figure 4

CONCLUSIONS

From the example demonstration of the dynamic formalism presented In this

paper, we can conclude that the proposed system Is responsive to the environment.
The marked improvement In throughput in this example shows that the formalism is

effective. The ability of the dynamic solution system to Improve over time, as

demonstrated, provides the Impetus for further work Into the completion of the entire

proposed system. The key to a full scale Implementation will be the development of

the system In a language suited for faster computation time.
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Introduction

Typical manufacturing facilities produce from hundreds to thousands of
different products. Manufacturing planning and scheduling is the marshaling
and coordination of these facilities in pursuit of the firm's goals. The
effort requires the establishment and achievement of goals at all levels of
the manufacturing organization. The efficiency of these functions impacts
the economic health of a firm in a competitive environment.

The magnitude of the manufacturing planning and scheduling problem
makes its representation, analysis, and optimization using a single model
impractical in most situations. The data required to specify in detail the
manufacture of thousands of products is overwhelming. In addition, the
effort required to solve the problem usually increases exponentially with
the number of parameters required to represent the problem.

One method for reducing the enormity of the problem, hierarchical
systems, decomposes the overall manufacturing problem into a hierarchy of
smaller, more manageable problems. The decomposition is characterized by
parameter aggregation and problem time horizon. At upper levels of the
hierarchy, problems address general requirements about large aggregates of
products over long time horizons. Descending through the hierarchy, the
problems involve more detail about smaller product aggregates over reduced
time horizons. Problems at upper levels place constraints on the
formulation and solution of problems at lower levels.

A number of hierarchical approaches have been proposed. Hax and Meal
(1975) , Bitran, Haas, and Hax (1981, 1982) , Bitran and Hax (1977) , and Hax
and Golovin (1978) have presented hierarchical approaches for the batch-
process and job-shop environments. A hierarchical MRP model has been
developed by Anderson et al. (1981). Conditions for perfect aggregation and
a general solution procedure for the imperfect aggregation case are
presented by Axsater (1980)

.

Meal (1984) discusses the motivation and implications for management of
the use of hierarchical models. The hierarchical structuring of the problem
mirrors the organizational structure of most traditional manufacturing
operations. Decisions made at the upper levels of the manufacturing
organization involve long time horizons and aggregate parameters. The use
of hierarchical planning and scheduling aids, which push detail to lower
hierarchical levels, coincides with the preference of upper management to
delegate detailed production decisions to lower levels of the organization.

Although the operations literature addresses the parameter
representation and manipulation obstacles, the real-time dynamics of the
manufacturing organization in establishing and pursuing goals in a changing
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environment are seldom addressed (for an exception see Fox et al., 1983).
The hierarchical approaches proposed to date are for the most part static
planning systems. These approaches typically do not deal with
organizational dynamics associated with revising goals or achievement of
plans. Abraham et al. (1985) discuss the limited usefulness of static
models in real life situations. In the real world, manufacturing
organizations operate in a dynamic environment. Planning models must be
developed which produce robust goals that are valid under a range of
production scenarios. Elements of the manufacturing hierarchy tasked with
achieving plans must have a means for reacting to a dynamic problem space.
All the factors which together compose the production scenarios form this
decision problem space. The means provided for the control of production
determine the ability of the organization to react to changes in the problem
space. In response to changes in the decision problem space, two resource
consuming chain reactions may be initiated within the organization; one
which propagates down the hierarchy (associated with planning) and another
which travels up the hierarchy (associated with goal achievement) . The
means for production control , while allowing the organization to react
adequately to change, must limit these two reactions to prevent the
organization from wasting effort. Current hierarchical methods do not
address or provide a method for analyzing this problem.

The management planning and control literature holds promise for
providing a means for analysis of the manufacturing organization dynamics
resulting from the dynamic decision problem space. This literature addresses
the control of organizations to derive and achieve goals in a dynamic
operating environment. One proposed planning and management control
framework relates the planning and goal achievement functions within the
organization. This relationship is an important determinant in the effort
expended by the organization in achieving the goals. Recasting the
manufacturing planning and scheduling problem in a planning and management
control format emphasizes the manufacturing organization dynamics and the
roles of decentralization (decomposition) , autonomy, and robustness on these
dynamics.

The automated plant, although free of human decision-making, must cope
with the same problem-scope and organizational-dynamics considerations that
affect the traditional manufacturing organization. Problem-size-dependent
processing time precludes single model formulations for automating the
planning and scheduling decision process. Hierarchical approaches provide a
method for creating a hierarchy of smaller decision models by decomposing
the production scenario, based on time horizon and parameter aggregation.
This decision model hierarchy must respond to changes in the decision
problem space through efficient organizational dynamics. The management
planning and control approaches, although derived for analysis of
organizational dynamics where human decision makers dominate, can be applied
to the automated decision model hierarchy.

In this paper, a manufacturing organization, composed of levels
identified in the current operations literature, will be cast in the
planning and management control format. In this format the scheduling level
becomes primarily a goal achievement process. That is the scheduler is
charged with the real-time achievement of a higher level planner's goals.
Objectives for real-time scheduling decision aids which include scheduling
autonomy needs will be developed based on the goal achievement process. The
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first section summarizes the levels of the manufacturing hierarchy. Section

two introduces the planning and management control framework used for

analysis. In section three organizational dynamics of the manufacturing
hierarchy, recast in the planning and management control framework, are
discussed. The final section presents an analysis of the scheduling level

in detail to develop objectives for real-time scheduling decisions aids.

Manufacturing Hierarchy

One possible hierarchical decomposition of the manufacturing planning
and scheduling problem is shown in Figure 1. The upper four levels— (1)

manufacturing system planning, (2) production planning, (3) flow planning,
and (4) scheduling correspond to those proposed by Abraham et al. (1985) and
Maxwell, Muckstadt, Thomas, and van der Eecken (1983), and are similar to
those developed by Hax and Meal (1975) . The lower two levels, cell control
and machine control, correspond to those proposed by Gerswhin et al. (1985)

.

The organizational dynamics of production planning, flow planning, and
scheduling will be explored within the planning and management control
framework.

Manufacturincr system planning determines the manufacturing resources
needed to achieve the long term goals of the manufacturing organization.
The parameters of concern are long run volumes and categories of products,
labor, equipment, and information. Types and amounts of equipment,
employment policies, and reporting requirements are typical of the decisions
that are made at this level.

The decisions made at the manufacturing system planning level form
constraints on decision making at the production planning level. Typical
decisions at this level involve production rates for aggregate product
classes which are feasible with respect to the market demands and capacity
of the facilities and, with part and material reorder intervals.

Flow planning determines the production batch sizes for each product.
The process steps and flow times for each product batch are set at this
level. Again all decisions made at higher levels form constraints on these
decisions.

The fourth level of the hierarchy is scheduling . This level is
responsible for implementing the flow plan. The sequencing and coordination
of products through the production facilities in a real-time manner which
adheres to the flow plan is the main objective. Time horizons at this level
are short.

The cell control level considers each machine in a process step and the
resulting scheduling implications within this group. Machine control
addresses the dynamics of the components of each machine within a process.
These two levels are represented within the planning and management control
framework by a single function labeled production processes.

The decisions made at each level are characterized by time horizon and
aggregation of parameters. At the upper levels of the hierarchy, decisions
are made which involve long time horizons and large groups of products.
Stepping down the hierarchy more detailed decisions about smaller product

-147-



MANUFACTURING
SYSTEM
PLANNING

- PRODUCTION MIXES
- MANPOWER
- FACILITIES

- RESOURCES

PRODUCTION
PLANNING

- AGGRE PROD RATES 4 VOL
- COMPLETION DATES
- AGGREGATE MANPOWER

FLO^

PLA1MNING

SCHBl)ULINQ

- BATCH SIZES

- PROCESS FLOW TIMBS
- WIP LBVELS
- TIMB PHASED PRODUCT
RBSOURCE AVAIL

- DUE DATES

- SCHBDULES

CBLL
LBVBL
CONTROL

MACHINE
LBVBL
CONTROL

FIGURE 1 - A Hierarchical Decomposition of the Manufacturing

Planning and Scheduling Problem

-148-



groups over shorter time horizons are made. This decomposition of the
planning and scheduling problem is representative of the type found in the
hierarchical manufacturing systems literature.

Planning and Management Control Framework

The planning and management control framework chosen for analysis of
the organizational dynamics of the manufacturing hierarchy was developed by
Middaugh and McPherson (1986) . It was chosen for its rather generic
hierarchical structure which places emphasis on decision processes for both
goal determination and goal achievement. By modeling the general
organization decision process as an open, purposeful, automatic control
system, the authors capture the insights of previous frameworks such as
Anthony (1965), Young (1966), Flamholtz et al. (1985), and Merchant (1985)
within a single framework. Ackoff (1971) defines a purposeful system as
one which can change it's goals or its structure or both in response to a
stimulus. Use of the framework starts with a description of the
manufacturing hierarchy in terms of the open, purposeful automatic control
system model. This description associates the manufacturing decision
activities with two generic functions: (1) Planning - activities
pertaining to the establishment of goals and (2) Operations - activities to
achieve the goals. Their placement within the model requires the
manufacturing decision processes to possess certain characteristics if
organizational control is to be maintained. Management control functions
are generally defined as those activities which cause the operations
functions to achieve their goals. A description of the organization
decision process model and a sample of some of the issues that can be
addressed follow.

The basic structure, shown in Figure 2, of the open purposeful
automatic control system model consists of two optimization blocks which
derive goals for a control loop tasked with achieving the goals. Goals are
established through a two stage process of problem formulation and problem
solution. Problem formulation includes not only determination of objective
functions and constraints, but also the structuring of the control loop
which contributes to the form of the constraints (i.e., influencing how
goals can be achieved) . Although solution of the problem by optimization
yields better goals, problem complexity usually forces satisficing to
determine goals. Deviations from goals are used by the effector to
determine commands to direct the activity in a manner which reduces the
variances. The effector dynamics vary over time within the limits set by
the optimization blocks. Generally, the effector chooses how to react to
the discriminator signal. In a similar fashion the activity dynamics also
vary over time, although some variations are due to sources outside control
of the organization. Therefore, the activity can react differently to
identical commands (depending on the dynamics in effect at the time)

.

The hierarchical nature of the model results from the complexity of the
goal achievement functions. While planning functions are centered in the
optimization blocks, the control loop is the location of the operation
functions (i.e., the control loop effects the goals of the planning blocks).
In general, complexity of operational decision making requires the effector
to possess planning functions (i.e., the effector can formulate and solve
inferior level problems as a means of generating commands to the activity)

.
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In this case the activity block, tasked with obtaining lower-level goals,

takes the form of a lower-level control loop. This results in the
hierarchical embedding of the basic model structure of Figure 2 in the
nesting of the control loops. Figure 3 illustrates this generalization of

the effector and activity blocks for two levels. A horizontal
hierarchical structure is also possible as shown in Figure 4. In this
example the planning blocks determine goals for two control loops at the
same level. The actual structuring of the hierarchy is fitted to the
scenario under analysis.

Issues in management planning and control include decentralization,
autonomy, the selection of decision rules by the decision makers, and
cxjmmunication between decision makers. Decentralization and autonomy effect
the positioning and scope of decision making authority within the hierarchy.
These considerations, by providing the means for decision makers to react to
changes in their problem spaces, effect the hierarchy's real-time
achievement of goals in a dynamic environment. In a traditional
organization, motivational methods, action constraints, and personnel
controls are used to affect the selection of decision making rules. They
increase the probability that decision makers select rules from the
available sets at each hierarchical level which are not dysfunctional to the
organization. In the automated plant, decision rule selection processes
must also be designed. The management control methods can serve as a guide
for approaching this problem as these address the more complex problem of
control of human decision processes. The communications between parts of
the hierarchy in the automated plant are not affected by motivational and
behavioral considerations as these are in the traditional organization. In
the remaining discussion, the paper assumes that sufficient methods are
provided for proper selection of decision rules and communication of
information. This is not an insignificant task and cannot be ignored in
production management, but is beyond the scope of this paper.

Planning and Management Control Model of Manufacturing Planning
and Scheduling

The manufacturing hierarchy presented earlier is naturally modeled by
the planning and management control framework. Figure 5 illustrates how the
production planning, flow planning, and scheduling levels are adapted within
the model. The entire structure shown is the production planning level.
Note that this is a control loop and as such is charged with achieving
manufacturing system planning goals. The effector for this control loop is
represented by the production planner and the activity by the two nested
control loops containing the flow planning and scheduling levels. In this
adaptation the two stage planning process described in the previous section
has been combined into one block for clarity. Note how each inferior level
control loop becomes the activity commanded by the adjacent superior level.
Stepping out from the inner most control loop (scheduling level) the
production processes are commanded by the scheduler (scheduling control
loop effector) . In turn the scheduling control loop is commanded by the
flow planner (flow planning control loop effector) and finally the flow
planning loop is the activity commanded by the production planner.

The same relationships defined previously for the manufacturing
hierarchy are preserved in this model. The definition of the blocks and
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parameters follow from the manufacturing hierarchy and Abraham and Dietrich

(1985) . The manufacturing system planners establish mixes of products and
the requisite production resources. The production mixes act as goals for
the production planning control loop while the facilities' configuration and
manpower allocation become constraints in the production planning problem
formulation. The production planner formulates the problem using
differences from manufacturing goals, forecast aggregate demands, the state
of its activity (flow planning control loop) , and resource constraints
effected by both the manufacturing system planners and the environment. The
solution of the problem considers cost minimization and produces goals for
aggregate production rates and volumes, completion dates, aggregate
inventory costs, and aggregate manpower requirements. The goals (some act
as constraints) are applied to the flow planning control loop for
achievement. These goals, along with the state of the flow planning
activity (scheduling control loop) , customer demands, and all constraints
imposed by superior levels and the environment, are used by the flow
planners to formulate the flow planning problem. Solution of the flow
planner's problem trades-off between cost and service level and provides
product batch sizes, due dates, process flow times, maximum allowable WIP
levels by product, and time-phased product resource availability (raw
materials and manpower) . These parameters form goals for the scheduling
control loop. The scheduler forms and solves a problem which sequences and
schedules each batch through the production processes. The scheduling
problem is formed from all of the constraints determined by superior level
planners, feedback from the product lines, and the goals. The solutions
direct the production process activity. Feedback in the scheduling loop
provides information on the state of the batches' progress through the
production processes and the state of the dynamics of the production
processes.

The embedding of the manufacturing levels into the control loops
emphasizes goal achievement. Questions concerning how manufacturing levels
obtain goals and the consequences of changing plans (goals) can now be
addressed. The answers to these questions describe the organizational
dynamics resulting from the changes in the decision problem space. Before
describing the organizational dynamics, two topics with a direct impact on
the dynamics must be discussed. They are the nature of the dynamic problem
space and the relationship between planning and operations functions.

The distinction between planning and operation (achievement) functions
becomes blurred when describing the achievement of plans. As we can see
from the description of the manufacturing levels, planning problems were
formulated to yield goals for inferior levels, but the goals were used as
commands to obtain superior level goals. Anthony (1965) observes that
separating planning functions from operation functions is not
straightforward. Indeed, commands resulting from operational decisions at
one level of the manufacturing hierarchy are perceived as goals (making it a
planning decision) at another level. This requires a trade-off in the
decision process characteristics of each effector in the model. A decision
process as a planning function should yield stable goals, while as an
operation function must revise commands to the activity at whatever rate
necessary to compensate for disturbances. The trade-off between these two
opposing needs is determined within the context of the organizational
dynamics required to cope with the dynamic decision problem space.
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Changes in the decision problem space are the forces which trigger the
organizational dynamics. The decision problem space consists of the factors
which describe the production scenario. The variability in the problem
space derives from both influencable and uncontrollable sources. Changes
can occur through the environment (uncontrollable) , the dynamics of
mechanistic elements (some aspects can be influenced) , and the choice of
decision processes (controllable) . The dynamic problem space manifests
itself within the model not only as disturbances in the value of the control
variables from their goals, but as changes in the structure or dynamics of
the manufacturing planning and scheduling decision processes (i.e., planning
and operation functions)

.

We are now in a position to describe the organizational dynamics within
the manufacturing hierarchy. The organizational dynamics attributed to goal
achievement in a dynamic problem space can touch off two chain reactions. A
reaction which propagates up the hierarchy is started whenever a level
cannot obtain its goals. Another reaction propagates down the hierarchy
whenever plans are changed. Autonomy can be used to effect the bottom up
reaction and decentralization to effect the top down reaction. As these
reactions are not unique to the manufacturing hierarchy, but occur in any
decision hierarchy, the reactions will be described with terminology from
the planning and management control framework.

A bottom up reaction is initiated whenever a lower level, unable to
meet its goals, defers the decision to a higher level for resolution. The
inability of a level to meet goals results either from from changes in the
problem space which make the goals infeasible or from insufficient authority
to make necessary decisions (autonomy) to react to the changes. The
autonomy given a decision maker is the source of the variable effector
dynamics mentioned in the previous section. It can be thought of as the
scope of decision making rules made available to the effectors. To show how
autonomy can effect the decision deferral reaction, consider the actions of
an effector to problem space changes that render goal achievement impossible
using a particular decision rule. First, the effector searches, within the
scope of authority, for a new decision rule which can reinstate goal
achievement. Failure to find an appropriate decision rule necessitates
deferral of the problem to the next higher level (in particular the adjacent
superior level effector) for resolution if goals are to be obtained. This
superior level effector, within it's scope of authority, either decides on a
new decision rule for the lower level (i.e., rematches the lower-level
decision process to the state of the decision problem space) or generates
new goals which can be obtained by the lower level with it's current
autonomy. Should the superior level effector find it impossible to maintain
its own feasibility during this process (i.e., be unable to either find a
decision rule or set of goals for the lower level which maintains the
superior level's ability to obtain its goals) the decision must be deferred
again to the next superior level. The deferral procedure will be repeated
up the hierarchy to a level where a resolution which maintains feasibility
is possible. If no resolution is possible, the highest level goals for the
organization are infeasible and must be changed. Adding autonomy at a level
reduces the probability of initiating decision deferrals by maintaining
control at that level over a larger range of changes in the decision problem
space.

The top down reactions are the results of superior level effectors
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adjusting commands to their activities to react to problem space changes.

As these commands also form goals, a change of plans (goals) is incurred at

the next lower level control loop. Should the inferior level effector find

it necessary to change commands to its activity in response to this change

in its problem space, more inferior levels will have their problem spaces
altered. The plan/command revision propagates down the hierarchy to a level

where it becomes unnecessary to change commands in response to the change in

plans. Here we see that the values in developing planning decision
processes which are robust to changes in the problem space are a reduced
number and shorter length of top down chain reactions. It should be noted
that a top down reaction can trigger a decision deferral reaction. A bottom
up reaction commences from any level that finds no command revision which is

capable of achieving the new goals.

Decentralization, since it determines the basic problem structure at
each level, can reduce the vulnerability of the hierarchy to top down chain
reactions. We want to decentralize the decision processes (problems at each
level) in a manner which reduces sensitivity of goal generation (re-solving

the problem) at higher levels to uncontrollable changes in the problem
space. This will ease the top down reaction effort during plan achievement
by eliminating and shortening some of the replanning chain reactions. The
structure at each level is determined in part by the parameter aggregation.
The choice of parameter aggregation can reduce sensitivity to problem space
dynamics. For example, Hax and Golovin (1978) note that aggregate forecasts
tend to be more accurate than detailed forecasts. This supports the notion
that hierarchical decomposition should consider the effort required to
achieve plans as well as the effort required to generate them.

Bounded rationality and dynamic problem space characteristics combine
with speed of response requirements to determine the acceptable limits for
the frequency of decision deferrals. Response time of the hierarchy is
partly a matter of choice, although the upper bound is determined by the
most dynamic uncontrollable source of change in the problem space. In
addition, decisions usually become more information intensive as sources of
change become more dynamic. The response time of the hierarchy increases
with the number of levels that must respond. This is in part because of
longer information transmission times to higher levels and the increase in
the number of decision makers involved in the response. Therefore, in
general, faster response times require lower deferral rates and shorter
deferral chains. Bound rationality determines the information processing
limits of the decision makers. As succeeding lower levels of the hierarchy
become more detailed, a decision deferral forces this detail upward,
negating the bounded rationality advantages gained in the decomposition.
The impact on bounded rationality by of decision deferrals is compounded by
the fact that superior level decision makers must respond to the sum of the
deferrals from adjacent lower levels. Again, faster response times require
lower deferral rates and shorter deferral chains as information processing
limits become binding.

Once the upper frequency of occurrence bounds for the two chain
reactions in the hierarchy have been determined, decentralization and
autonomy are employed to enforce these limits. In general, faster
organizational response and increased dynamics of the problem space require
greater autonomy and decentralization of detail at lower levels of the
hierarchy. The analysis procedure is to determine organizational dynamics
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bounds from information handling capacities, response times, and problem
space dynamics, and then design the autonomy and decentralization of the
organization to meet these bounds. An exception to this procedure must be
made when information is unavailable at higher levels of the hierarchy. In
such circumstances decentralization of decisions and requisite autonomy must
be pushed down at least to the level where the information required is
available.

Scheduling in a Dynamic Problem Space

In the previous section organizational dynamics were discussed in
general terms. In this section those findings will be applied in detail to
the scheduling level. The scheduling level is an operation function which
develops schedules as commands to the production processes in pursuit of the
goals established by the flow planner. From this description the reason
production schedules often change becomes clear. These change with the
problem space to continue the production processes on a path to meeting the
flow planner's goals. Robust schedules are an attempt to reduce the number
of revisions required of the scheduler. Scheduling autonomy is an attempt
to reduce the number of deferrals in decision making to the flow planner.
First, the scheduling level will be described in detail and then objectives
for real-time scheduling developed.

The scheduling level control loop consists of the scheduler, the
production processes, goals and constraints from the flow planner (some
constraints may be from higher levels) , feedback of control variables, and
feedback on the state of the production processes (see Figure 6) . The
structure will be discussed in terms of its effect on the problem space of
the scheduler.

Goals received at the scheduling level result from commands generated
by the flow planner in pursuit of production planning goals. Some goals
simply may be relayed by the flow planner from higher levels. The goals,
retaining the manufacturing hierarchy decomposition described earlier,
reflect individual product batches and processes. Table I lists the
possible goals. These goals will be included in a schedule-generating
decision problem. Some goals represent objectives and others inviolable
constraints. To guide schedule generation, the scheduler also may be given
a performance philosophy to follow in pursuing these goals, such as
minimizing tardiness or total flow times by product, or balancing
utilization. In many cases the performance philosophy takes a back seat to
just finding schedules that realize the flow planners goals (i.e., finding
feasible schedules)

.

Constraints in the scheduling decision problem space have a
multiplicity of sources. Some are formed from the goals as noted, while
others result from the state of the production processes. Facility
configuration constraints are relayed down the hierarchy from the
manufacturing system planning level. The flow planner places additional
constraints on the activity as a result of its own problem formulation. A
list of possible constraints appears in Table I.

From these goals and constraints the scheduler forms an appropriate
problem to develop schedules for the production processes. The scheduler's
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GOALS (From Flew Planner)

- Batches of determined sizes finished within time horizon

- Maximum Allowable WIP levels by product or batch

- Flow times of batches on individual processes

- Batches of determined sizes with due dates

- Manpower available for batch

- Manpower available for process

- Machine time available for batch

- Machine time available for process

CONSTRAINTS (Framework Source)

+ Product Process Characteristics

- Transport capacity by batch (production processes)

- Machine set-up times for products (flow planner)

- Technical constraints (flow planner)

- Transport times of batches (production processes)

+ Facilities and Resources

- Machine flexibility at process steps (prod.processes)

- Machine redundancy at process steps (prod, processes)

- Machine hours available (flow planner)

- Man-hours available (flow planner)

- Machine set-up by process (production processes)

- Material availability at each process (flew planner)

- Transport capacity (production processes)

TABLE I - GOALS AND CONSTRAINTS FOR SCHEDULING PROBLEM SPACE
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problem formulation is subject to change via top down replanning chain
reactions and can be a source of decision-deferral chain reactions. Here we
can see that the amount of autonomy at the scheduling level manifests itself

as the scheduler's authority to reformulate the schedule-generating problem.

The dynamics of the scheduling decision problem space determine the
frequency and degree of reformulation required to produce feasible
schedules. Table II lists the types of dynamics in the problem space of the

scheduler and their sources from the scheduling level structure. The
production processes change as a result of internal stochastic disturbances
or environmental factors {e.g., power failures, strikes, etc.). Goals may
be revised by the flow planner in response to environmental factors or
higher level fiat (e.g., reduction in budgets). As these dynamics change the
schedule generating problem parameters, the scheduler may have to change
other parameters under his control to maintain feasible schedules.

A large part the schedule-generating problem structure was determined
by the choice of the manufacturing decomposition. Note that in Tables I and
II, cost and demand parameters are absent. These parameters are accounted
for at higher levels and their effects are contained in the scheduler's
goals. In addition the scheduler is given predetermined batch sizes, flow
times, and due dates. Time horizon for the problem usually runs from a
day to a couple of weeks. The schedule-generating problem's decision
variables are the times to schedule the batches on the machines. Solution
of the problem yields a set of times for each job on each machine which meet
the constraints of facility configuration, WIP levels, batch sizes, due
dates, and machine and manpower dictates. Should multiple solutions be
found, the scheduler chooses among alternatives using the performance
philosophy.

From Table II and Figure 6 it becomes obvious that changes in the
scheduling problem space manifest themselves as changes in the constraints
of the schedule-generating decision problem. Some constraint changes render
the current schedule infeasible, requiring re-solving the problem with the
new constraints. Other constraint changes can render the whole schedule
generating-problem infeasible (i.e., the current problem formulation
adjusted to reflect changes in the problem space contains no feasible
solutions) . In this case the scheduler, within his autonomy, must
reformulate the problem by adjusting the remaining constraints to readmit
feasible schedules. If the scheduler's autonomy is insufficient to
reformulate a feasible problem, either infeasible schedules are employed or
the problem is deferred to the flow planner. To keep the frequency of
deferrals within acceptable bounds the authority to change constraints needs
to be matched to the scheduling-problem space dynamics.

The amount of autonomy given the scheduler must be evaluated for each
manufacturing and planning hierarchy. Generally, it is preferable to retain
the scheduling decision at the scheduling level. This of course is subject
to the amount of autonomy necessary to allow the scheduler to find feasible
schedules. At some point additional autonomy can become more detrimental to
the organizational pursuit of goals than the deferral of the decisions. The
autonomy afforded the scheduler to change the schedule generating decision
problem also provides the scheduler with requisite authority to make the
actual changes in the production scenario. The end result of these actions
are changes in the goal states obtained by the production processes. A
general rule of thumb might be to grant the scheduler autonomy up to the
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PROBLEM SPACE DYNAMICS (Source)

Machine failure (production processes/environment)

Machine repair times (production processes/environment)

Transport failure times (production processes/environment)

Process times (production processes)

Due dates (flow planner/environment)

Batches added (flow planner/environment)

Manpower availability (higher level via flow planner/envir.

)

Raw material availability (production processes/environment)

Machine availability (higher level via flow planner)

WIP levels (flow planner/higher levels)

Machine set-up times (production processes)

Transport times (production processes)

Transport capacities (production processes)

TABLE II - Types of Problem Space Dynamics for Scheduler



point where the flow planner's decision problem (i.e., the problem that
determines commands which achieve the production planning goals) requires
resolving. This slack in the flow planner's commands would have to be
supplied by the flow planner. This rule gives the scheduler autonomy to
react to disturbances while not interfering with the flow planner in
achieving his goals. The autonomy bound requires the flow planner to make
decisions when his goals are in jeopardy.

The scheduler acts as the controller of the schedule control loop. Up
to this point, schedule generation characteristics have been based on
decentralization and autonomy required to bound the frequency of replanning
and decision-deferral chain reactions. As the source of control commands to
the production processes, the scheduler must also generate schedules which
are matched to the production process dynamics. The dynamics are
represented by the set-up times, process times, machine availability, etc.

These factors, along with information transfer dynamics, place an upper
limit on the rate of rescheduling. Robustness in the schedules is desirable
at least to the point that it impacts the rescheduling limit. Robust
schedules reduce the need of the scheduler to adjust commands, which also
reduces the possibility of initiating the two chain reactions. Another
consideration which effects the speed with which schedules must be generated
is the problem space dynamics. From the standpoint of the production
process dynamics, there is no need to generate schedules faster than the
rescheduling limit. However, the problem space dynamics can cause a need to
reschedule at a rate faster than this limit. For example, equipment
breakdowns can cause schedules to become outdated before these are issued.

SUMMARY

The production planning and scheduling problem can be approached as a
planning and management control problem. The planning and management
control framework not only considers the planning of goals, but their
achievement within a dynamic environment. Use of the framework emphasizes
the organizational dynamics of the manufacturing hierarchy. This allows the
analysis of the production planning and scheduling problem within a dynamic
problem space on a real-time basis.

The dynamic problem space causes two chain reactions within the
manufacturing hierarchy. Decentralization is used to bound the replanning
reaction and autonomy is used to bound the decision-deferral reaction.
Decentralization determines the decision process structure at each level.
The decision structure needs to consider the effort required in achieving
plans as well as the effort in generating plans. This can be accomplished
by decreasing the sensitivity of higher levels to changes in the problem
space, reducing the need to replan. Autonomy allows the decision maker at
each level latitude in changing the decision process as a means to cope with
the dynamic problem space. Autonomy is used to decrease the number of
decision making deferrals.

The dynamic problem space causes changes in the constraints of the
schedule-generating problem, which results in rescheduling. To lessen the
number of rescheduling deferrals to the flow planner, autonomy in the form
of authority to change the scheduling problem constraints should be granted
the scheduler. A possible rule for the scope of this authority is to allow
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the scheduler to make changes within the slack present in the the flow
planner's commands (to the scheduler) determined to achieve flow planning
goals. Rescheduling needs to be matched to the production process dynamics.
This is accomplished through (1) generating robust schedules which allow for
larger problem space changes before rescheduling and (2) matching the time
to generate schedules to the problem space dynamics. Real-time scheduling
decision aids must respond to these needs.
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INTRODUCTION

Today's dynamic markets require greater flexibility on the part of

manufacturers. However, many operations in process industries were
designed for highly efficient production of a few commodity products,
and therefore often lack the flexibility needed to follow increasingly
variable market demands. In these situations, the operation's schedul-
ing system must help identify and exploit any opportunities for adapting
to changing circumstances.

Computerized scheduling systems for process operations typically
make decisions by solving a mathematical model of the operation's costs
and constraints [1], [2]. Such a scheduling system seeks to optimize a

cost function that represents the most efficient way to run the opera-
tion. However, because the mathematical model uses a static represen-
tation of the operation, this approach does not always help the

operation's management identify and use the available flexibility to

react to the opportunities and problems that frequently arise.

The research reported here investigated an alternative approach to

developing scheduling systems for batch process operations consisting of

parallel processors that are subject to preference, buffer inventory,
and sequencing constraints. This approach derives from research in

Artificial Intelligence (AI) and applies hierarchical planning and
constraint-directed heuristic search to develop a prototype scheduling
system for a specific case study problem. Using a constraint satisfac-
tion model of a process operation allows an automated scheduling system
to specifically search for available degrees of freedom to use in devel-
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oping schedules and in providing decision support to an operation's man-
agement .

To reduce problem complexity, this research investigated the decom-
position of the scheduling problem along the time-line into sub-periods.
The reduction of complexity achieved by this approach permitted sched-
ules for each processor to be developed in parallel, while enabling the
prototype system to fulfill constraints whose application was time-de-
pendent. The use of a planning hierarchy helped anticipate and reduce
interaction between sub-periods.

The prototype's performance was evaluated by testing it with actual
production data and comparing the results with schedules created by the
human scheduler. Adherence to constraints formed the basis of compar-
ison. The schedules created by the prototype compared favorably with
the human scheduler's, suggesting that this approach could potentially
provide the means for developing an operational scheduling system.

PROBLEM DESCRIPTION

The following problem description provides the background that gave
rise to the research presented in this paper. While the prototype sche-
duling system was developed for a specific case study, the prototype's
structure can apply to a wider range of scheduling problems, particular-
ly since parallel processor problems occur frequently in process indus-
tries [1],

The case study production operation is a department within a large
bulk material process operation. The facility operates on a continuous,
24-hour per day, seven days per week basis. The department converts a

liquid raw material into powder form for down-line departments, hereaft-
er referred to as "consumers". The addition of special ingredients
gives rise to a variety of final products. To meet consumer demand, 10

to 15 different products, out of about 150 possible products, are in

prodution at a given time.

While the department has three stages of parallel processors,
because of technological and organizational constraints they are treated
from a scheduling viewpoint as a single set of parallel processors.
Output buffers store completed batches. Each buffer supplies one down-
line consumer that draws the product from the buffers at a continuous
rate. The consumers make no attempt to match this rate with the

processor's batch size. Figure 1 gives a schematic of the "logical"
system. The case study is described in more detail in [3].

In general, any processor can produce any of the products required
by any of the consumers, but slight variations between processors result

in the consumers preferring specific processors as their product source.

Producing batches on non-preferred processors causes down- line quality
problems, so consistently satisfying these preferences is the human
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Figure 1. Schematic of System From Scheduling Viewpoint

scheduler's primary objective. The set-up costs resulting from allowing
an output buffer to be exhausted are prohibitive. Therefore, another
important objective of the human scheduler is to maintain a sufficient
safety stock in each buffer. The scheduler also considers several sec-
ondary objectives, such as minimizing material handling and minimizing
the labor required to execute the schedule.

Several constraints limit achievement of these objectives. Incom-
patibilities between products prohibit certain sequences of products on
the same processor. The output buffers have fixed, finite capacities.
Power consumption and organizational needs require that processor batch
cycle times begin and end at prescribed times as given in a standard
schedule form, without preemption. Certain processors are not equipped
to make products requiring extra ingredients. The output material han-
dling system becomes congested when too many batches are scheduled in

processors on the opposite side of the facility from the destination
buffer. Exactly 100 percent of processor capacity must be scheduled.

Maintaining buffer safety stocks and observing buffer capacity and
product sequencing restrictions are all examples of time-dependent con-
straints. They are time-dependent in that the specific parameters asso-
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ciated with a constraint at time t are dependent on the scheduling
decisions made prior to that time. The exact application of such a con-
straint cannot be determined until the scheduling decisions preceding it

have been made.

RELATED RESEARCH

A variety of views on how to apply AI methods to scheduling problems
have been suggested (for examples see references [4] - [14]), and
several major corporations have announced undertaking research efforts
in this area. However, no reports of operational systems have appeared
to date.

The first research on Al-based industrial scheduling systems to

appear in the literature concerned the job-shop scheduling system ISIS
(Intelligent Scheduling and Information System) [15] - [21]. ISIS was
developed by researchers at Carnegie-Mellon University, and tested on
simulated data derived from a Westinghouse turbine blade production
facility. Currently, ISIS is undergoing conversion by Westinghouse for

potential implementation at pilot facilities [22], [23] . A successor
system called PHOENIX has been initiated [24].

The approach used in ISIS is to model the variety of objectives in

the job-shop as constraints on the schedule. In addition, ISIS consid-
ers a large number of technological constraints. Scheduling is per-
formed by searching for decisions that satisfy the variety of

constraints considered by the system. When a problem is overly con-
strained, ISIS finds a feasible solution by heur i st i ca 1

1
y and selective-

ly relaxing constraints. Because of the great complexity of the
problem, ISIS uses hierarchical planning to break the problem into man-
ageable pieces. Each layer in the hierarchy solves a specific
abstraction of the problem and creates constraints to limit search at

lower layers.

Several other Al-based scheduling systems have been developed.
Although they do not specifically address process operations, they can
provide useful insights into AI methods and their potential applica-
tions. Engineers at Lockheed-Georgia developed a rule-based system for

controlling hoist movements in an automated paint and process line [25].

Fox and Kempf [26] used an opportunistic approach to schedule robotic
assembly operations. Fukumori [27] used timing constraints to schedule
pass-through relationships and arrival and departure times for passenger
trains. Glover et al [28] used a rule-based approach to develop employ-
ee schedules for fast-food restaurants. NUDGE [29] uses script-based
planning and debugging to maintain an appointment calendar while moni-
toring the progress of worker's goals and alerting managers of upcoming
deadlines. TABS [30] uses heuristic backtracking to schedule office
meetings. ISA [31] uses a rule-based approach to provide firm delivery
dates for customer orders by reserving inventory and production capacity
on an aggregate plant level. PEPS [32] uses a rule-based approach to
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select dispatching rules for a single machine with a queue of parts.

DEVISER [33] generates parallel plans for spacecraft which must schedule

several instruments during planetary fly-bys.

APPROACH TO THE PROBLEM

Approaches used in AI research in planning include [34]: hierarchi-

cal, non-hierarchical, script-based or skeletal, and opportunistic. A

hierarchical planning and constraint-directed heuristic search approach

was chosen for several reasons:

• A variety of objectives and constraints apply when developing
schedules, and trade-offs must be made when constraints conflict.

• The human scheduler develops schedules in a hierarchical fashion,

working from abstractions of the problem to increasingly detailed
plans. While the prototype does not necessarily have to mimic
the human scheduler, it should take advantage of whatever
insights the scheduler has.

• The results from the ISIS research suggest that this approach
naturally models many scheduling problems.

• Stefik et. al . [35] recommend using this approach for problems
with large search spaces and interacting subproblems.

In using this approach, all objectives are recast as constraints.
The total set of constraints then defines the set of feasible schedules,
which is rated by heuristics. For each level of the hierarchy, a sub-
set of the problem constraints actually apply, and create a search
space. If the problem becomes overly constrained, constraints are heu-
r i stical ly relaxed.

The objective of this research was to build and test a constraint-
directed heuristic search based prototype scheduling system to determine
if the approach is feasible for production operations like the case
study. Before beginning work on an operational scheduling system, a

prototype scheduling system should be built and tested. The prototype
serves two purposes [36]

:

1. It provides a means for the system developers to check their
understanding of the problem.

2. It provides a test bed to determine if the solution approach is

feasible for the problem before excessive resources have been
committed to system development.

The second purpose is particularly important in cases where the approach
taken is experimental in nature.

The prototype scheduling system only addresses a subset of the
objectives, constraints, methods, and other parameters found in the case
study's system. Limiting the scope of the prototype in this manner
allowed attention to be focused on the fundamental design issues associ-
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ated with representing and solving the scheduling problem using AI meth-
ods. This subset must be explicitly defined so that realistic
performance criteria for the prototype system can be set and objectively
evaluated. A complete description of the prototype's scope is given in

[37] .

The prototype scheduling system was written in Virginia Tech Prolog
[38], which runs in an interpreted mode on a VAX 11/780 under VMS.
Several features of Prolog allowed rapid development of the prototype,
i ncludi ng:

• Facility for expressing arbitrary relationships between objects
as predicate clauses.

• Pattern matching capabilities.
• List processing functions.
• Automatic backtracking of program control when a line of exe-

cution fai Is.

The prototype makes extensive use of these features to develop and
search the sets of feasible schedules. Clocksin and Mellish's text [39]

provides a good introduction to Prolog. To supplement the facilities of

Prolog, some relational table manipulation and execution tracing rou-
tines from the GUESS/1 [40] expert system development shell were used.

SOLUTION DESIGN

Before building the prototype, a general framework for scheduling
the process was developed by analyzing the case study problem. The pur-
pose of this framework was to anticipate the ultimate needs of an opera-
tional scheduling system. In other words, through an engineering
analysis of the problem, the prototype design was based on what "should
be" as well as what "currently is".

The development of an automated scheduling system represents an

opportunity for the operation's management to step back and analyze the
current assumptions and procedures, and from this analysis initiate
improvements. Developers of the system should facilitate this process
and incorporate it into their design. Beyond these issues, the existing
operating procedures, scheduling methods and data sources of this case
study could not provide a sufficient basis for an automated scheduling
system for the following reasons:

1. The human scheduler's decisions are frequently based on negative
feedback from management or downline consumers; an automated
system must take a more global view of the problem because of the

impact that scheduling decisions have on down-line operations.

2. Certain operating policies that the human scheduler has no con-

trol over could be changed as a result of a problem analysis.
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3. Some important information concerning the operation is difficult

to obtain or analyze manually, and therefore has little impact on

current decision making, but could easily be incorporated into a

computer-based system.

From this analysis, a decision hierarchy emerged:

1. Production Planning: Balance capacity, inventory and demand.

2. Loading: Assign batches (jobs) to processors.

3. Sequenc i ng: Determine order of batches loaded on each processor.

The first level is analogous to an aggregate production planning
problem [41], but on a much shorter time scale. The second level

focuses on maintaining the consistency and stability of the schedule.

The third level assures that time-dependent constraints are satisfied.
In constrast to mathematical programmi ng-based hierarchical scheduling
models, the higher levels do not dictate bounds to the lower levels, but
rather provide "guidance" constraints that focus lower level searches in

areas most likely to contain good solutions.

For the second and third levels of this hierarchy, the resulting
search space complexity remained great enough to require further decom-
position. The ISIS and PHOENIX research suggest two candidate decompos-
ition methods: order-based and resource-based. Order or lot-based
decomposition, where jobs are scheduled one at a time in priority order,
would not satisfy the time-dependent constraints of the problem
addressed in this research without large amounts of backtracking.
Because the batches for each consumer are produced by multiple process-
ors, the sub-problems created by a resource-based decomposition would
have high levels of interaction. Process scheduling problems like this
case study need an approach that considers all processors and batches
simultaneously, in parallel. However, such an approach must deal with
the complex search space created by these constraints.

The approach taken in this research was to further decompose the
problem along the time-line, into sub-periods. The primary concern with
this approach is the possibility of sub-problem interaction. However,
by using constraints to define sub-period boundaries, they could also be
used to communicate interactions across these boundaries [42], [43] .

Figure 2 shows the relationship between the hierarchy's levels and
the sub-period definitions for a hypothetical scheduling problem.
Defining second level sub-period boundaries by capacity or demand chang-
es creates simpler problems of constant capacity and demand. Defining
third level sub-period boundaries with time-dependent constraints
insures that all decisions which must precede a constraint application
have been made.
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Time

(1-14 give a hypothetical sub-problem solution order)

Levels Sub-period Boundary
1 . Balance Capacity, End of planning horizon

Inventory 6 Demand
2. Loading Capacity or demand change
3. Sequencing Buffer safety stock constraints

Figure 2. Decision Hierarchy and Sub-period Definitions

The use of a "hierarchy of sub-periods" framework requires
designer to make several problem specific decisions:

the sys-

1. Sub-Problem Execution Order: The choice is between a "breadth-
first" order (as shown in Figure 2) or a "depth-first" order.
For the case study, the design used a breadth-first order in

anticipation of less total backtracking between sub-problems.

2. Length of Planning Horizons: In general, the lower the level in

the hierarchy, the shorter the required planning horizon. Howev-
er, the case study problem required all the planning horizons of

each level to be equally long to be certain that the system did
not "paint itself into a corner" by not anticipating the effects
of the time-dependent constraints.

3. Sub-Period Boundary Defin itions: The criteria for defining sub-
period boundaries must be designed so that sub-problem inter-
actions are minimized. In this research, problem constraints
provided effective criteria. If the criteria differs between
levels of the hierarchy, the sub-period boundaries will probably
not coincide between levels. However, as shown in Figure 2, the

problem structure may dictate that the criteria for one level

dominate the criteria for the next lower level. Boundaries may
be determined before or during the solution procedure. For the
case study, all information for determining second level bounda-
ries is available in the input data, while each third level boun-
dary is determined dynamically, after the preceding sub-problem
is solved.
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PROTOTYPE IMPLEMENTATION

Prototype development occured incrementally, until its performance
demonstrated the feasibility of the approach. Complete implementation
of the design framework described in the preceding section would be a

major project and beyond the scope of this research. The experience
gained from developing the prototype could serve in further refining the

design of an operational system. The following section outlines the

structure of the actual implementation. A more detailed description of

the prototype scheduling system is given in [44].

Using the framework outlined in Figure 2, search strategies were
developed for the sub-problems of each level. These strategies were
derived from study of the human scheduler's methods and rul es-of-thumb

.

In the interest of obtaining fast feedback, simple heuristics were used
to implement these strategies. In most cases, to take advantage of Pro-

log's features, depth-first search in priority and preference order was
used

.

As implemented, the prototype scheduling system develops schedules
by working through five hierarchical planning layers. Each layer adds
increasing detail to the schedule and constrains lower layers. The
planning layers in hierarchical order are:

1. Dedicated processor scheduling
2. Special batch scheduling
3. Shared processor loading
4. Shared processor sequencing
5. Batch demand scheduling.

Dedicated processors are those whose total production capacity for the

scheduling period is assigned to one consumer. Because only one batch
type is assigned to a "dedicated" processor, no sequencing is needed.
Shared processors are those whose production capacity is divided between
two or more consumers, giving rise to separate loading and sequencing
problems. This "dedicated-shared" decomposition is a heuristic used by
the human scheduler to further reduce problem complexity.

Special batches must be assigned to a specific processor at a spe-
cific time. Batch demand consists mainly of miscellaneous batches that
have no timing or preference constraints. The position of layers two
and five in the hierarchy reflects a plan repair or "debugging" approach
[45] in that they sometimes must undo decisions made in preceding lay-

ers. This heuristic approach greatly simplified the logic of layers
one, three and four by allowing them to ignore special cases. At first
glance, the special batches would appear to provide a basis for using
opportunistic search [46]. However, these batches are peripheral with
regard to satisfying the major objectives of the problem, so little
would be gained by searching from the fixed points they provide.

Figure 3 depicts the relationship between the solution design and
the prototype implementation. A simple rule-based system with some
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Implementation Hierarchy

(0) Balance Capacity, Inventory And Demand (Given In Input Data)

(1) Dedicated Processor Loading (And Implicit Sequencing)

(2) Special Batch Loading And Sequencing

(3) Shared Processor Loading

(4) Shared Processor Sequencing

(5) Miscellaneous Batch Loading And Sequencing

Figure 3. Prototype Implementation
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arithmetic sub-routines could have provided a workable prototype to sim-

ulate the human scheduler's logic for level zero. However, for the

available test data, manually simulating the logic in the input data was

sufficient for this research.

The constraints (including reformulated objectives) addressed by the

prototype include:

1. Preference for specific processors by consumers
2. Output buffer safety stocks
3. Output buffer capacities
4. Sequencing of incompatible batches
5. 100 percent utilization of production capacity
6. Fixed batch cycle start times.

The prototype relaxes the buffer safety stock and preference con-

straints when search spaces are overly constrained, in that order. The
buffer safety stock constraint is relaxed by incrementally reducing the

minimum buffer safety stock level (until an absolute minimum level is

reached). The preference constraint is relaxed by including non-pre-
ferred processors in the search space. All relaxation is done locally,

on a case by case basis. When developing a search space, each con-
straint is applied at its initial or tightest level. When a constraint
relaxation occurs, the relaxation applies only to the specific batch
that is overly constrained. A benefit of this approach to constraint
relaxation is that when a specific sub-problem requires unusually large
amounts of relaxation, the system user has an inidication that this time
period requires special attention.

Data structures for the knowledge base were developed as needed to

support the hierarchical planner. This is the opposite of the approach
used in developing expert systems [36]. The bulk of the work in build-
ing an expert system is devoted to the knowledge base; a previous appli-
cation could provide the inference engine. Reference [37] provides
details on the knowledge base structure and contents.

RESULTS

Evaluation of the prototype scheduling system was based on a compar-
ison with schedules created by the human scheduler. Schedules created
by the human scheduler represent the baseline of performance expected
from the prototype. The management of the production operation did not
use quantitative measures of schedule quality; this research's scope did
not include the determination of objective criteria for schedule evalu-
ation.

Tests of the prototype scheduling system used eight days of actual
data from the case study for which the human scheduler provided detailed
notes on how he created the schedules. These eight days included many
of the events that the scheduler normally must deal with, such as:
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changes in consumer demand type or quantity, processor status changes
(on or off-line), requests for special batches, and changes in batch
demand type or quantity. Adherence to the six constraints addressed by

the prototype formed the basis for comparison between the prototype and

human scheduler. Each schedule was analyzed to determine if constraints
were adhered to, and if not, the degree to which the constraints were
relaxed. The following paragraphs summarizes the results of this corn-

par i son

.

Adherence to Non-Rel axabl e Constraints: Both the prototype and the

human scheduler observed all non-rel axab 1 e constraints (constraints
3-6), with one exception. The exception was that the human scheduler
exceeded the output buffer capacity constraint in 11.5% of the batches
scheduled, while the prototype did not relax this constraint at all.

While the output buffers do have a fixed capacity, an implicit overflow
capacity exists in the output material handling system. The human sche-
duler takes advantage of this implicit overflow capacity in order to

give himself a larger safety stock. The prototype system has no logic

for relaxing this constraint. However, its performance in maintaining
the safety stock constraint suggests that it may not need to use this

degree of freedom as the human scheduler does in this situation.

Adherence to Re 1 axabl e Constraints: Both the prototype and the

human scheduler relaxed the preference constraint in only 0.1% of the

batches scheduled. Apparently there was little contention for resources
during the period from which the test data were taken. The prototype
relaxed the output buffer safety stock buffer constraint in 2.0% of the

batches scheduled; the human scheduler relaxed the constraint in 1.3% of

the batches. The minimum absolute level of relaxation was the same in

both cases. In other words, the prototype relaxed this constraint
slightly more often than the human scheduler, but the degree of relaxa-

tion was about the same. Considering that the human scheduler used an

extra degree of freedom that the prototype did not use, the prototype's
performance is in this regard better than the human scheduler's.

Execution Times: While the design goal of the prototype was sched-

ule quality and not execution speed, the elapsed time of each test case

was recorded to gain insight into the resources required by the research
approach. The average total CPU time for the eight test cases was 504

seconds per schedule (interpreted Prolog running on a VAX 11/780). The
actual elapsed time between the start and finish of schedule development
was between 10 and 15 minutes, depending on the amount of output for

sub-problem solutions and execution diagnostics, and the number of other

users on the system.

CONCLUSIONS

The success of the prototype scheduling system suggests that an AI-

based system might work effectively for the case study addressed by this

research, and other industrial scheduling problems. However, the wealth
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of prototype expert systems and scarcity of operational expert systems

in industry suggests the use of caution. The primary concern is the

extensibility of the approach to the objectives, constraints, and spe-

cial cases not addressed by the prototype. To the extent that new

requirements can be expressed as constraints on the space of feasible
schedules, the prototype developed in this research can serve as the

basis for an operational scheduling system. For the case study used in

this research, the additional requirements needed to create an opera-
tional scheduling system could be expressed in this manner. The major
limitation is the increase in execution time attendant with the addition
of new constraints for evaluation.

Another concern is the maintainability of the system while in opera-
tion. The same software engineering practices used in a mathematical
programmi ng-based scheduling system would need to be applied in develop-
ing an operational Al-based scheduling system, because both must docu-
ment how real-world constraints are expressed and used within the

system.

The nature of the constraints found in the case study of this
research permitted the decomposition of the problem along the time-line
into sub-period problems. In addition, the initial decomposition of the
problem into a hierarchy allowed the prototype to anticipate and reduce
the possibility of interaction between sub-problems. Therefore, time-
line decomposition should be used when the problem constraints create
natural sub-divisions of time, and in conjunction with techniques that
minimize the possibility of sub-problem interaction.

Within the framework of these considerations, the conclusions of
this research can be summarized as follows:

• For parallel processor problems with a variety of objectives and
constraints, including time-dependent constraints, AI methods can
provide viable tools for developing computer-based scheduling and
sequencing systems. For process operations similar to the case
study used in this research, Al-based scheduling systems can
develop schedules of a quality comparible to a human scheduler's
for routine conditions.

• Hierarchical planning used in conjunction with constraint-direct-
ed search provides a framework for expressing both human schedul-
er's knowledge and analytic models of the physical system.

• Constraint satisfaction, as opposed to optimizing an objective
function, is a useful alternative method for solving scheduling
probl ems

.

• Dividing the schedule period into sub-periods is a viable means
for reducing problem complexity in scheduling problems like the
case study used in this research. The use of sub-periods also
provides a means to deal effectively with time-dependent con-
stra i nts

.
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A TWO-LEVEL PLANNING AND SCHEDULING APPROACH

FOR COMPUTER INTEGRATED MANUFACTURING

Michael Shaw

University of Illinois at Urbana-Champaign

Introduction .

An emerging architecture for computer integrated manufacturing
(C.I.M.) systems is the cellular system, as shown in Figure 1, con-
sisting of flexible cells (Cutkosky 1984); each cell can communicate
with other cells through a local area network (LAN). Such cellular
manufacturing systems have played an increasingly important role in

the design of the fully automated systems for many reasons; among them

are reduced machine set-up time, reduced tooling, the simplification
of planning and control, reduced in-process inventory, the near-
constant load-time and system modularity (McLean 1983, Sikha 1984).

The scheduling method described in this paper takes into account
the characteristics of local area network for communication. The
system is treated as a loosely-coupled network of cooperating cells
and the scheduling is carried out by a network-wide bidding scheme for

determining the assignment of cells to given jobs dynamically. It is

a distributed scheduling method in that no node in the network has

greater importance, as far as scheduling is concerned, than any other
node. Moreover, this scheduling method can incorporate different dis-
patching rules and can be used for both task allocation and resource
allocation. As such, this is the only research in the manufacturing
area to date that takes into account the use of local area networks
for executing job scheduling and we will show that there are ample
advantages for doing so.

II . A_ Two-level Scheduling Approach .

Associated with such a network environment, there are two possible
control structures underlying the scheduling decisions:

1) to use a centralized scheduler in charge of job assignment. The
scheduler keeps track of the whole cellular system by a global
database.

2) to use a distributed scheduling scheme and let the set of cells
perform scheduling based on local information.

By way of comparison, scheduling with distributed control has these
advantages

:
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(1) better reliability—the system degrades gracefully in the face of

scheduler breakdown, (2) upward extensibility—the control structure
remains the same with additions of new cells to the extent that the

network is not saturated, (3) improved performance— the scheduling per-
formance can be improved because the scheduling is achieved by parallel
processing and also because of the elimination of the bottleneck asso-
ciated with the global scheduler, and (4) cost effectiveness— it is more
cost effective because of the smaller processing requirements on the

computers and less communication activities needed for global updating.

The adoption of distributed scheduling method implies the need for

a new type of information control mechanism for coordinating manufac-
turing activities. Since there is no centralized master controller
directing the activities of individual cells, it becomes essential that

the cells have to be able to reach scheduling decisions by collective,
concerted efforts. Two major issues warrant attention:

(1) an effective task allocation scheme among cells to ensure that all
the resources can be efficiently utilized, and (2) the coordinating
mechanism exercised among the cells, carrying out manufacturing tasks

cooperatively. The network-wide bidding scheme described in this paper
can achieve these two functions.

Such an approach essentially treats the scheduling by a multi-agent
problem-solving paradigm: because the whole scheduling problem is too

complicated, the set of problem-solving agents— the cells would carry
out the tasks collectively. Just as in human organizations, bidding is

employed as a mechanism for coordinating the execution of tasks among

the cells. This paradigm was developed by research in artificial in-
telligence (Davis 1983, Shaw 1985) and has been applied to various types

of distributed systems. As such, the distributed scheduling method can

be viewed as consisting of two-level: The first-level scheduler dynami-
cally assigns jobs to the most appropriate cells and the second-level
scheduler executes scheduling within each cell (Figure 2). This two-
level approach will be described in more detail in the next two sections.

Ill . 1 The First Level : A Network-wide Distributed Scheme for
Dynamic Task Assignment .

In the network-wide bidding scheme, when a cell needs to initiate
the task assignment algorithm for one of its jobs, it begins with
broadcasting a task-announcement message through the LAN to other cells
and takes on the role as the manager cell of the job. Those cells that
receive this message will, in turn, transmit a bidding message which
contains its estimation of the earliest finish time, the surrogate for

the "price" of the job if assigned. When all the bids have returned,
the manager cell then selects the cell which can finish the job the
earliest to perform the task. The corresponding workpiece is then
transferred to the cell selected, or the contractor cell.
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Task Announcement.

When a job finishes its operations in a cell, the cell's control

unit will check to see if there are any remaining operations to be

done. If all operations have been completed, the work piece is sent to

the storage area; otherwise, the cell's control unit would have to make

the decision regarding which cell the job should go to next. Keeping
the job in the same cell is also a valid decision, but this has to be

made after the performance data from other cells are collected and com-
pared through bidding.

In the cellular manufacturing system, three types of manufacturing
cells may exist: (1) flexible cells, where general purpose machines
are used and the set-up is flexible for performing a wide ranging family
of operations; (2) product-oriented cells, where a certain type of pro-
duct is manufactured, e.g., a gear cell for producing gears; and (3)

robot assembly cells, where robots are used for putting sub-assemblies
together. Depending on the set up of a flexible cell or a robot assembly
cell, the cell's control unit would give different performance estimates
at different moments. The product-oriented cells on the other hand,
have relatively more static functions in terms of the set of operations
they perform. For a job requesting operations that can be performed in
these product oriented cells, the task-announcement message can be

directly addressed to the destination cell. The scheduling of jobs can

be accelerated by such "focussed addressing."

Bidding

When a cell receives a task-announcement message from the com-
munication network, it first matches the task description with its

capability-list and checks to see if the required operations are within
its capabilities. A bid for the task is returned only if the cell can

perform the task. The cell then proceeds to calculate the bidding
function which has the following three components. (1) The estimated
processing time, which is calculated by a routine based on the machin-
ing parameters specified in the task-announcement packet, such as the

cutting speed, the raw material, the depth of cut, surface finish
requirements, the cutting tools wearing condition, the current setup,
and the lubrication temperature; (2) the estimated waiting time, which
is calculated by adding up the estimated processing time of the jobs in

the queue; (3) the estimated travel time, which is calculated based on

the travel distance between the two cells.

This particular bidding function implies that each flexible cell

submits its estimation on the earliest time it can finish the task if

assigned. By assigning the task to the lowest bidder, the manager cell
essentially is executing the earliest-finishing-time (EFT) heuristic
for dynamic scheduling (Baker 1974). Other dispatching heuristics can

also be incorporated. For example, if the bidding function is deter-
mined by the estimated processing time of each cell, then the scheduling
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is essentially based on the decentralized version of shortest-processing-
time (SPT) dispatching, which has been shown to give good scheduling
performance to dynamic job shop (French 1982) and flexible manufacturing
systems (Chang 1984).

Bid Evaluation and Task Awarding .

When the deadline for bid submission is due, a bid-evaluation pro-
cedure is carried out by the cell that originally announced the task.

All the bids submitted for this task have been put in a list, ranked by
the value of each bid. In our algorithm, the bid of each cell i is

calculated based on the earliest finish time of each task if the task
is assigned to cell i. The scheduler of the manager cell then chooses
the cell with the smallest bid, i.e., which can finish processing the

task earliest.

Once bid-evaluation is completed, an award message is sent to the
best bidder, informing the awardee of the pending job so that the cell
which has been awarded the task will take this new task into considera-
tion in the subsequent calculation of earliest-finishing-time in bidding
for future jobs. This task-awarding information also enables the awardee
cell to start loading part programs for the new task. The local scheduler
of the awardee cell will take the newly assigned job into consideration
in the next scheduling cycle. The bidding scheme is schematically shown
in figure 3.

Under the distributed control scheme, the dynamic system information
such as cell status, location of parts, position of tools, progress of

jobs, etc., is managed by a distributed database system. Each cell

maintains its own local world model, while systematically coordinating
with other cells through task sharing and bidding. By eliminating the

necessity to collect dynamically changing system information in a global
database, the possible bottleneck and the communication activities for

constant updating are avoided.

Ill 2 Evaluating the Distributed Scheduling Scheme : A_ Simulation
Study .

To evaluate the performance of the network-wide bidding scheme as

a dynamic scheduling algorithm, we have conducted a simulation study on

hypothetic cellular flexible manufacturing systems. The primary objec-
tive of the simulation study is (1) to compare the performance of the

bidding algorithm with other approaches used in prior scheduling research.

Specifically, we compared the bidding algorithm with the dynamic dis-

patching method; and (2) to evaluate the performance of bidding algorithm

with different bidding functions. For this purpose, the SPT heuristic
and the EFT heuristic are evaluated.

In effect, the scheduling problem of the cellular system is parti-

tioned Into two decisions:
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(1) the assignment of jobs to the appropriate manufacturing cells; and

(2) the sequencing and scheduling of jobs within each cell.

The response variables gathered from the simulation runs are the follow-
ing:

(1) job flow-time statistics;

(2) proportion of jobs failing to meet the due date;

(3) job lateness and tardiness statistics; and

(4) average in-process waiting time.

As described in the objectives of the simulation study, we are

especially interested in comparing the performance between bidding-SPT
and bidding-EFT to evaluate the two scheduling heuristics incorporated
in the bidding function. Furthermore, by comparing the performance of

the bidding-SPT and myopic-SPT , we can evaluate the characteristics of

distributed scheduling with the bidding mechanism against centralized
scheduling with myopic dispatching rules.

Among the simulation performance data, two particular results stand
out: (1) bidding-EFT clearly has the best performance in terms of mean
flow-time, tardiness, and in-process waiting time measures. (2) In 10

out of the 12 simulation runs, the bidding-SPT method performs better
than the myopic-SPT method, also in terms of mean flow-time, tardiness,
and in-process waiting time. The distributed scheduling method performs
better than the centralized counterpart primarily due to the fact that

by executing the bidding mechanism, the scheduling decision is achieved
by cells collectively based on purely local information stored within
each cell. If the scheduling was to be done with centralized control,
then there must be a global database and thereby large amount of com-

munication activities are needed to keep the dynamic information up-to-
date. In contrast, by letting each individual cell estimate its "price"
for performing the announced tasks, all the estimation and calculation
can be done based on information stored within the cell, and message-
passing is carried out only to announce task or submit bid. Therefore,
the distributed scheduling scheme utilizes more accurate information for

estimating scheduling heuristics.

IV . The Second Level : A Nonlinear Planning System for Local

Scheduling .

The second-level scheduler is a nonlinear planning system which
schedules tasks within each manufacturing cell. The approach is based

on the pattern-directed inference method with state-space searching,

similar to the STRIPS system (Fikes and Nillson 1971). It is called

nonlinear planning because the resulting plan is partially ordered. A
prototype of this nonlinear planning system, referred to as XCELL , has

been implemented on VAX 11/780 under the UNIX environment (Shaw 1986a).

Written in LISP, XCELL consists of three components: declarative know-

ledge, domain specific knowledge and a control system.

-192-



The Declarative Knowledge.

Three kinds of manufacturing knowledge are stored in the database
of XCELL: the world model which describes the working environment,
the task descriptions, and the production plans; first-order predicate
literals are used in the world model for knowledge representation.
Also stored at the data level is the representation of the manufacturing
plan by a partially ordered network of activities. The plan representa-
tion is used to monitor the execution of the planned activities; if

there are deviations between the conditions specified by the plan and

the conditions in the real world, XCELL should modify the rest of the

plan by invoking a plan-revision routine. The plan representation can

also be used to accommodate dynamically changing job-mix, which present
to XCELL in the form of a goal structure.

The Domain-specific Knowledge .

A set of operators, stored in XCELL' s knowledge base, is used to

represent actions which the system may perform. Each operator contains
information about the object that participates in the actions, what the

actions are attempting to achieve, the effects of the actions when they
are performed, and the necessary conditions for the actions to be per-
formed. In addition to the standard Al-based planning formalism—which
specifies an action by the add-list , delete list, and preconditions
(Nilsson 1980)—XCELL included two more descriptions for each action

—

the "resource" used during the action, and the "duration" of the action.
There are two advantages to this addition: the increased representa-
tional power of the action model and the resulting acceleration of con-
flict detection and conflict resolution in the decision process.

The Control System .

At the control level , an embedded inference engine is used to

develop and organize the necessary actions to accomplish the goals.
For a M-part-N-machine scheduling problem the goal can be naturally
decomposed into M subgoals, with each subgoal generating a linear plan
for the corresponding part. Based on the nonlinear planning approach,
the control level of XCELL will construct plans by the four-step
algorithm:

The Nonlinear Planning Algorithm .

Step 1: Generate a linearly-sequenced plan for each subgoal.

Step 2: Identify problematic interactions between the actions of

parallel subplans.

Step 3: Synthesize the subplans; construct precedence constraints
between the pairs of conflicting actions to avoid harmful
interactions.

Step 4: Executing plan-revision for alternative resources.
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XCELL is organized as hierarchical planner consisting of three
levels: strategic level, planning level, and operational level.

Because of the scheduling characteristics of the flexible manufacturing
cell, the strategic level of XCELL can choose four different planning
modes: static planning, dynamic planning, plan-revision, and simula-
tion. The inference engine of XCELL can execute either forward-or
backward-chaining to construct nonlinear plans. Currently we are con-
ducting a computation study to evaluate the effectiveness of various
algorithmic designs and heuristic search methods.

Conclusions .

We have shown a two-level method for dynamic scheduling in cellular
flexible manufacturing systems. The method has the following features:

1) It is a distributed scheduling technique; no node has greater
importance, as far as scheduling is concerned, than any other
node.

2) The algorithm is flexible, and can take into account such
information as loading factor, unexpected break-downs, or

resource constraints in the bidding scheme.

3) Compared with dynamic dispatching rules previously used, the

bidding algorithm is characterized by its more accurate esti-
mation of processing times, without spending the cost of con-

stant updating. The performance improvement by such information

is verified by simulation results.

4) This is the only scheduling algorithm in the manufacturing
area to date that considers the characteristics of the communi-
cation network, i.e., loosely coupled nodes with distributed
control, packet-switching, communication delay, and the broad-
casting capability.
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MATCH-UP REAL-TIME SCHEDULING*

James C. Bean

John R. Birge

Department of Industrial and Operations Engineering

The University of Michigan

Ann Arbor, Michigan 48109

1. Introduction

A vast majority of the literature dealing with production scheduling involves determining a

good schedule over a substantial time frame assuming that all problem characteristics are known.

Such schedules have two uses. As a planning tool, they can be used to order material, set work

schedules and other functions preliminary to the actual production. As an operational device, they

can be used to direct step-by-step production operations.

In this second capacity such deterministic scheduling procedures typically run into difficulty.

Once the production process begins, random disruptions can force the system out of the prescribed

states rendering the preformulated schedule invalid. Such disruptions can include delays in the

arrival of materials or components, quality rejection of material or components, machine breakdown

or operator absences.

We would like to anticipate such disruptions during the pre-scheduling of the system and build

a schedule with recourse for each contingency. Research such as Pinedo and Ross [1980], Glazebrook

[1981], and Pinedo [1983] is currently improving capabilities in these directions. At this time, the

available techniques are not able to solve problems of the size and complexity needed to make

operational contributions to actual production systems.

In the absence of a tractable optimal technique most scheduling practitioners use control type

real-time heuristics. Most common are priority list scheduling rules. In such techniques available

jobs are ordered by some simple rule. When a machine becomes available, the job heading the list

is started. These techniques are myopic and can lead to substantial error.

This paper develops the framework for an alternative approach to the disruption problem that

yields operational heuristic scheduling systems. In this approach we seek to use the information

captured in the deterministic pre-schedule, while altering its details to compensate for disruptions.

Such alterations must be done in real time as the disruptions occur. In order to react in real time

while retaining the "goodness" of the schedule, we do not completely reschedule tasks, but rather,

adapt the old schedule to smooth out the difficulties created by the disruption and match-up with

the pre-schedule. This approach has intuitive appeal since material flows have been set according

to this pre-schedule. We show that the optimal schedule, given the disruption, attempts to match

* This material is based upon work supported by the National Science Foundation under Grants Nos. ECS-8304065 and
ECS-8409682.
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up to the pre-schedule. Hence, by attempting to match-up in our heuristic we are moving in the

appropriate direction.

In this paper we propose a dynamic optimization formulation of a general scheduling problem

based on problems faced at a large auto manufacturer. This allows the use of economic turnpike

theory (see McKenzie [1976]) as a foundation for adaptive approaches to real-time scheduling.

Turnpike results are asymptotic. In other words, adaptive approaches are justified in the limit as

the horizon of the problem is increased. Implementation of match-up procedures requires choosing

a finite time where the schedule is expected to match up with the predetermined schedule. The

imposition of this finite match-up time may cause error. However, bounds may be developed for

these errors.

Section 2 includes a formal model of the problem class being addressed and the procedure

proposed here. Section 3 contains a theoretical justification of the procedure based on turnpike

theory. Sections 4 and 5 include a discussion of the implementation of adaptive scheduling and a

derivation of error bounds. Finally, Section 6 contains a summary and conclusions.

2. Problem Statement

Though most formulations of scheduling problems deal with a finite set of jobs, implying a

finite problem horizon, actual scheduling problems have indefinite horizons. Though a finite set

of jobs is known at any point in time, as those jobs are completed new jobs are defined so that

the process continues indefinitely. The assumption that we may truncate the problem to currently

known jobs may not be valid due to the introduction of end-of-study effects (see Baker [1977]).

In this section we view the scheduling problem as a deterministic infinite horizon optimization

problem. Over the infinite horizon an infinite number of jobs will be defined and completed, but

we assume that at any finite time there are only a finite number of jobs to consider. Let be the

maximum number of jobs at any finite time k.

The scheduling system is modeled as a sequence of decisions detailing task processing during

the next time period. The system can be viewed as being in one of many states, each of which

details the accumulated processing of known jobs. Resource assignments may also be included in

state definition without difficulty but are omitted here to simplify notation. Constraints on the

system such as task precedence, preemptability, and resource capacities can be seen as restrictions

on the transition of the system from one state to another.

2.1 Notation

For completeness a list of all notation used in the paper is included here. The need for some

of the following will become clear later in the paper.

rijf G Z: The number of jobs in the system at time k.

N £ Z: A finite horizon time.

X* € 5R(
n
*); The state of the system at the end of processing in period k. The t

th element of n, 3?
k ,

is the accumulated processing of job i.

x"
k

\ The state passed through at time A: by an undisrupted weakly optimal schedule.

X
k

: The set of states corresponding to any undisrupted weakly optimal schedule.
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x"
k
{x): The state passed through at time A; by a weakly optimal schedule that begins at state x at

time 0.

flfc G [0, l]
n
*: A decision vector indicating the fraction of time each job is processed during period

k.

n € x^jfO, 1]"*: Decision vectors describing a schedule covering the infinite horizon.

jt*: A weakly optimal schedule.

7r*(i): A weakly optimal schedule given that the system is in state x at time 0.

II: The set of all feasible schedules, ir.

<f>k(n) £ The incremental cost from schedule n during period k.

3>(7r; N) G SR: The cumulative cost of schedule tt over the first N periods, = HjtLi ^fcO1")-

$(7r) 6 3?: The cumulative infinite horizon cost = limjv_oo $(tt; N).

$'(o
; 6) G 3?: The minimal cost of moving from state a to state 6, where the periods for the states

are not specified.

$* (N) € 3?: The optimal cost over the first N periods, where any disruption restrictions are in-

cluded.

6 5R : The optimal infinite horizon cost after a single disruption.

6 3? : The optimal infinite horizon cost from k = 0 including disruptions.

6 3?: The optimal expected infinite horizon cost from k = 0 including disruptions.

Dk E 3?(
n*-i) x 3?(

n
*); The set of feasible transitions at time k. That is, given the current state,

zfr-i, and a potential next state, a*, then (xk-i,Xk) G Dk if and only if (xk-i,ik) represents a

feasible transition. The set of feasible n^, given the current state, can be inferred from Dk-

Pi: The processing time required for job t.

wt : The weight assigned job i (to be used for weighted tardiness or weighted flowtime schedules).

k\: The time for matching up after the tth disruption.

A,-: The time of the iih disruption.

/: The time between a disruption and a match-up.

6: The cost of following the match-up heuristic from a single disruption until return to the pre-

schedule.

Si: The cost of following the match-up heuristic from fc, to k\.

d: The minimum cost from a single disruption state to any potentially optimal state at 7.

P*: The set of potentially optimal states at period k.

d\: The minimum cost from any state in to any state in Pj..

i\\ The minimum cost from any state in Pi. to any state in Pjk
|+1

-

2.2 Assumptions

Al) Total costs are the sum of incremental costs in each period.

A2) The incremental costs in each period are convex in the processing decisions.

A3) The objective is to minimize total costs.

-199-



A4) In weighted flowtime and tardiness problems there is a positive lower bound on u/,-.

A5) There is sufficient slack time in the infinite horizon schedule that for any feasible initial state,

x, and schedule, 7r, there exists a feasible schedule, tt(x), and time 7, uniform over z, such that

for k > 7, A"* = 7Tjt(x). Further, the absolute cost to achieve this matching up, S, is bounded

above by U, uniform in x. That is, any feasible schedule is reachable from any feasible initial

state at reasonable cost.

A6) Several technical regularity conditions which are discussed in the appendix.

2.3 Infinite Horizon Objective

In infinite horizon optimization problems there are many ways to define the infinite horizon

objective. If the infinite horizon costs converge, the optimal schedule is that with least cost. How-

ever, such convergence can usually be assumed only under sufficient discounting. Since scheduling

problems are rarely discounted, all schedules will possibly have infinite cost.

Several definitions of optimality have been suggested for this case, including: average optimality

(see Derman [1966]), 1-optimality (see Blackwell [1962]), overtaking optimality (see McKenzie),

catching-up optimality (see McKenzie), forecast horizon optimality, and periodic forecast horizon

optimality (see Hopp, Bean and Smith [1984]). To conform with the concepts of McKenzie, we use

the concept of a weakly optimal schedule in the first part of the paper. As will be proven, weakly

optimal implies average optimal.

We say that a schedule, n, overtakes another schedule, #, if

for some e > 0. A schedule is weakly optimal if no other schedule overtakes it. We assume here

that such a schedule exists. Given such a schedule, redefine <f>k{x) by subtracting the incremental

cost of the weakly optimal schedule. Then, without loss of generality, the optimal cost is zero. We
make the additional assumption:

A7) A weakly optimal schedule exists and its incremental costs have been used to normalize the cost

function such that the infinite horizon optimal undisrupted cost is zero over all time intervals.

A schedule, H, is said to be average optimal if

Lemma 1: // ir* is weakly optimal then it is average optimal.

Proof: In the definition of weakly optimal divide both sides by N. The result follows.!

The term cost used here represents any of several of the common scheduling objectives, as well

as any more general objective that satisfies the stated assumptions. The objective primarily used

for examples in this paper is weighted tardiness. Assumption A2 requires that the incremental costs

be convex. This assumption is satisfied for most common scheduling objectives including weighted

flow time and weighted tardiness.

N

liminf {$(*, N)/N - N)/N} > 0, Vjt € n.
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Lemma 2: If W{ > 0 for all i, then incremental weighted tardiness in period k is convex in processing

time.

Proof: As the processing for a particular job is increased, the tardiness of the job (if any) decreases

linearly with slope — w, until there is no further tardiness. At that time it remains at zero

regardless of further processing. The resulting curve is convex in processing of job i.m

It is equally simple to show that weighted fiowtime is convex in processing for non-negative

weights. Note that since the sum of convex functions is convex, the accumulated cost through time

N is also convex for either of these criteria.

2.4 Feasibility

All feasibility conditions are assumed described by the sets of conditionally feasible decisions,

Dk. Common constraints include non-preemptability, precedence, resource capacities, and maxi-

mum allowable tardiness. Each of these can be represented by restrictions which retain the necessary

characteristics of Dk- For example, if a job is non-preemptable and its current processing is strictly

between zero and its total processing time, the only feasible choice is to process until processing is

completed. For precedence, processing a subsequent job would require that total processing on its

predecessor equals its necessary processing.

3. Turnpike Results

The model developed in Section 2 can be viewed as an investment model similar to that

described in Ramsey [1928]. McKenzie shows that under certain assumptions such models behave

in a manner analogous to the matching-up described here. In the literature of economics and infinite

horizon optimization these results are called turnpike theorems. The analogy is from shortest path

problems on a surface road and turnpike network.

Clearly, the shortest path from one point on a turnpike to another on the same turnpike is that

turnpike. Even if you live off the turnpike, if the destination is distant enough, the shortest path

is to take surface streets to the turnpike and to take the turnpike from there. In our model the

turnpike is analogous to the predetermined schedule (see Figure 1). The distance from the current

state to the turnpike exists because some disruption has transferred the problem to an alternate

state.

If these results can be shown to apply to a general form of the scheduling problem they have

significant implications for appropriate heuristic approaches. After a disruption, the optimal new

schedule would then converge to the optimal schedule derived before processing began. This pre-

schedule is then a surrogate for the complex objectives involved in scheduling. If our heuristic is

designed to return to the original schedule, we know that this is in fact the direction followed by

the optimal schedule to the disrupted problem.

The strongest turnpike results require uniform convexity of the incremental costs. Though

most measures used in scheduling problems do not satisfy this assumption, the stronger results are

valuable for perspective and potential application to other objectives.

3.1 The Uniform Convexity Case
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If the incremental cost functions are uniformly convex, as the system proceeds in time from the

boundary condition (disruption), the sequence of states passed through by the system, and hence

the decisions made, grow increasingly close to the states defined by the pre-schedule. The effect of

the disruption diminishes.

The hypothesis of this theorem requires the concept of a uniformly convex function. Essentially,

to be uniformly convex a function must be strictly convex and must not asymptotically approach

a line. For a rigorous definition of this notion see McKenzie.

Theorem 3: Given the assumptions of this paper, if (j>k{x) w uniformly convex for all k and n

corresponding to D^, then x*
k
{x) —» x*

k
as k —> oo.

Proof: This problem seeks to minimize the sum of uniformly convex functions. This is equivalent

to maximizing the negatives of these functions. The negatives of uniformly convex functions

are uniformly concave. The sum retains this characteristic. Hence, the conditions of Theorem

3 of McKenzie are satisfied. The conclusion of this theorem follows immediately.!

The proof in McKenzie follows this line. The cost of passing through states x\ is zero by

Assumption A7. There exists a feasible path from z which matches up with this schedule. By

Assumption A5 this may be done by time 7 at a cost of no more than U. Hence, the cost of passing

through {z^(z)} given an initial state of z must be better that U. By uniform convexity, if x"
k

is

bounded away from x*
k , then a uniform penalty will be charged each period. This leads to infinite

cost and a contradiction. For further details see McKenzie.

Corollary 4: Under the conditions of Theorem S, n*
k
{x) — -n*

k
as k—* oo.

Proof: In general, nk = z* — xk-\. The result follows immediately from Theorem 3.

3.2 The Case of Multiple Optima

When the incremental cost functions are not uniformly convex, the problem may have multiple

optima. This is the case in most scheduling objectives, including weighted flowtime and tardiness.

If there are multiple optima, different initial states could lead to weakly optimal schedules which

converge to different turnpikes, each being optimal. The claim can still be made that as k —* oo,

the state of the disrupted system will approach the set of weakly optimal schedules.

Definition: p{xk,X*k ) = inf^** Ik ~
If II-

Theorem 5: Under the assumptions of this paper, limjk_oo p{*k, XI) — 0.

Proof: Follows directly from Section 7 of McKenzie.

3.3 Example

Consider the following single machine total tardiness problem. At the beginning of each seven

day cycle four jobs become ready. Their total processing is six days. Their due dates are such that

they can be completed without tardiness—provided there are no disruptions in the system. The

optimal schedule over the infinite horizon is to sequence the jobs 1-2-3-4 each week. This schedule

is weakly optimal as discussed above.
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Assume that the machine is now down for the first four days of the upcoming week. This

disruption will not only affect the schedule for this week, but for upcoming weeks as well. The

consequence of the theorem above is that we know that the effects of this disruption will fade out

and that the weekly schedule will approach the original weakly optimal schedule.

Data for the example appear in Table 1. Figure 2 displays the undisrupted, weakly optimal

schedule and the optimal schedule given the disruptions. Note that after four weeks the two

schedules are identical for all future periods.

4. Implementation

Theorems 3 and 5 cannot be used directly to control a scheduling system in real time. They

do, however, suggest that the following heuristic may be efficient. Assume that a schedule has been

determined and used to set material flows. When a disruption occurs, the pre-schedule becomes

obsolete. Rather than rescheduling in real time using the original objective, substitute as the

objective a desire to return at minimal cost to the pre-schedule at some future date. The pre-

schedule is assumed to incorporate all important goodness characteristics. It should contain more

of these characteristics than could be incorporated explicitly in real time. From Theorems 3 and

5 we know that this heuristic schedule is tracking in the same direction as the optimal schedule,

given the initial state.

The implemented process contains the following steps.

Match-Up Heuristic

Step 0: Construct a pre-schedule.

When a disruption occurs

Step 1: Determine some future time, 7, where the pre-schedule is reachable from the current state.

Step 2: Reschedule from current time 0 to 7 beginning in the current state and ending in state xj

at time 7. Stop.

This heuristic does not guarantee an optimal solution in all situations. However, by Theorems

3 and 5 we know that 7 can be chosen large enough to get arbitrarily close to an optimal schedule.

It is not, however, generally known how large 7 must be or when disruptions will occur. A large 7

may also lead to computational difficulties, making the method impractical. Given these potential

problems, the algorithm must be implemented as a heuristic and 7 must be determined to balance

error and effort. Methods for bounding the error are given in the following section.

5. Error Bounds

The problem formulation presented here represents too general a class of scheduling problems

to derive tight bounds on the error caused by this class of heuristics. For a specific problem, bounds

should be derived to help set 7. In the following sections we present a rough bound for the general

problem and apply it to an example.

5.1 Single Disruption

We obtain bounds on the optimal schedule cost by comparing our heuristic with a myopic solu-

tion strategy. Sharper bounds exploiting problem structure may be obtained using the aggregation
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procedure in Bean, Birge, and Smith [1984].

For a single disruption, we assume that the match-up heuristic for some disruption state returns

to state zj. The cost of returning to is assumed to be 6.

Definition: The set of potentially optimal states at some time k, P^, is defined as the subset of states,

feasible after the disruption, which may be on an optimal path. In the absence of information,

this can be taken to be the set of states feasible after the disruption. Note that this involves

two reductions: elimination of states no longer feasible, and elimination of states that can be

proven not to be on any optimal path.

Let the optimal cost of continuation after disruption be A myopic solution strategy is to

find a path with minimum cost d from the disruption state to any state in F).

Lemma 5: Given the assumptions of this paper, the single disruption optimal schedule cost $* is

bounded by

d<fr <6.

Proof: An optimal path must pass from the disruption state to some potentially optimal state at 7.

The value d is the minimum among these distances, giving the lower bound. The upper bound

follows from Assumption A7.«

5.2 Multiple Disruptions

In general, the system will encounter more than one disruption. For this possibility, we again

use a myopic approach and the match-up heuristic to obtain bounds on the optimal solution cost.

We let 7 be the time between the tth disruption at fc
f
and the tth match-up time k\ (i.e., A, = A, + 7)

for all t. We assume here :

A8) If consecutive disruptions occur at times fc, and ki+1 , then all potentially optimal states at

are reachable from all potentially optimal states at A,.

A9) > k\ for all t. That is, disruptions are sufficiently infrequent that we can match-up before

the next disruption.

These assumptions ensure the feasibility of the match-up heuristic.

Let M be the number of disruptions for some finite horizon problem. The myopic approach is

to find the minimum cost schedule path from P^. to Fx. and from P^, to jPfcf+1 « Following this idea

leads to a local minimization for lower bounds. Let

d\ = min{$'(a, b) : a € P*., b <E P^}, i=\,...,M,

4 = mm{*'(xo,b):beP
hl },

and

^ = min{*'(a, b) : ae P^be Pk_.+1
},i= 1,... ,M - I,

where $'(a, b) is the minimum cost over all paths connecting states a and b. These values are lower

bounds on the values that the myopic approach could obtain. They also bound the cost of any

other path over their defined ranges.
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The match-up heuristic finds the minimum cost from the state following the disruption to x-
*

(within the disruption restricted set of feasible paths). Let this cost be <§,. All other costs are zero

for the match-up heuristic by Assumption A7. These observations are contained in the following

theorem.

Theorem 6: Given the assumptions of this paper, the multiple disruption optimal cost is bounded

by

D< + #-!)<••<£*'
i=l i=l

where there are M disruptions.

5.3 Random Disruptions

All of the results above refer to a deterministic environment where all disruptions are known

in advance. Instead, we would like to allow for a distribution on the disruptions and then find

the optimal expected cost solution. For this stochastic environment, we define a probability space

(n, B, P). Each sample point oj corresponds to a scenario of occurrence times and durations of

disruptions. All deterministic quantities defined above are interpreted as random variables when

they are indexed by u>. This allows us to consider the stochastic case without defining extensive ad-

ditional notation. The quantity $(ft,u) then denotes the infinite horizon cost of following schedule

strategy ft under the conditions corresponding to u>. We wish to find

= min* E(*(jr,a/)), (1)

where E(-) denotes mathematical expectation. We again assume that the disruptions are distributed

so that Assumptions A8 and A9 hold almost surely.

Lemma 7: Given the assumptions of this paper, the optimal expected cost is bounded by

Af(w)

** > E(*») > E(£ (dJ(W ) + <_!(«))
i=i

Proof: Let ft* solve (1), then < $*(ft* ,u>). Integration yields the first inequality. The second

inequality follows from Theorem 6.

Lemma 7 leads to the following result.

Theorem 8: Given the assumptions of this paper, the optimal expected cost $* is bounded by

M(u) M(u)

E(E *,M) > •* > E(£ (d}(«) + dlM). (2)

i=i i=i

Proof: The left-hand side of the expression is the expected value of following the match-up strategy.

Since it is a feasible strategy, its expected value is an upper bound on the optimal expected

cost. The second inequality follows from Lemma 7.1
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The use of these bounds is best demonstrated in an example. In this example, we make

assumptions that actually reduce the interval in (2) to a point. For the infinite horizon objective

we use expected average cost. In this case, if $~(N) is the optimal expected cumulative disruption

cost for an N period horizon, then

** r
'Pac = limjv—oo —

—

Assuming each disruption causes some loss that is finitely positive, an infinite number of disruptions

cause an infinite amount of loss. For this section the weakly optimal definition of optimality is not

sufficient. Hence, we use average optimality. This gives us the average loss per period due to

disruptions. The single disruption results of Theorems 3 and 5 still apply for this objective since

all weakly optimal solutions also minimize average cost (Lemma 1). Matching up with the pre-

schedule at some point must, therefore, lead to a minimum average cost solution. The bound in

(2) can be applied for any finite horizon N as well as in the limit so that (2) can be used to bound

The example includes two jobs which are cyclically available and due. Each job has a weight

of one. Let Job 1 be ready at times 5t, have a processing time of three, and be due at times 5t+ 3,

for t = 0, 1, 2 Let Job 2 be ready at 5i, have a processing time of one, and be due at bt + 5.

Then the optimal pre-schedule processes Job 1 at 5t and Job 2 at 5t+ 3 leaving one unit of slack in

each production interval. We assume that disruptions occur with equal probability at 15, 16, 17,

18 or 19 time units since the last disruption and that disruptions last one or two time units with

independent equal probabilities.

We choose a match-up time I = 10 and assume that jobs are resumed after disruption with no

loss of processing time. Note that the potentially optimal states at k are {x*
k } for A^mod 5) = 0, 1,

2 or 3 and xk = x*
k
or = (3, 0) for £(mod 5) = 4. In all cases, min {$'(a, b) : a 6 P^., b E } =

&'(x"k ,£ ). Note also that all costs are non-negative. These two observations imply that, for this

problem,

and

From this we obtain

and

s,-(w) = rfJM,

= 0.

MN (u>)

i=l

$1 = E{6
t{u,)/Nc{u)),

where Mn is the number of disruptions in the first W periods and Nc is the length of a cycle between

disruptions.

For this example the match-up solution produces an optimal average cost infinite horizon

solution. The minimum expected average cost can then be calculated by weighting the costs over

all cycles. The cycles are found by observing that disruptions occur at 0, 1, 2, 3 or 4 units into a
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production interval with equal probabilities. Tardiness to the match-up point is then found and

weighted by the inverse of the expected time to the next disruption. The resulting values appear

in Table 2.

Cyclic availabilities and requirements for jobs are reasonable in many circumstances, but the

distribution assumption of this example is restrictive and would not be met in general. The as-

sumptions are however made to show the utility of the bounds. In specific applications, problem

structure could be used to generate bounds.

In practice, schedulers can use the bounds in (2) to determine the time to match-up 7. They

can consider the possible disruption patterns and calculate recovery costs under different scenarios

to find the interval in (2). They can then vary 7 so that this interval and the computational burden

for matching up are properly balanced.

6. Summary and Conclusions

Extensive deterministic pre-schedules are often inadequate to operate large systems due to un-

foreseen system disruptions such as machine failure. A common solution is real-time list processing

Control type algorithms. We present an alternative here that exploits the global attributes of the

pre-schedule. It then adapts by matching up with the pre-schedule after disruption.

We have implemented this match-up heuristic in a computer program developed for a large auto

v
manufacturer. The program considers a system of parallel nonidentical machines. Jobs have ready

times and due dates. Each job requires a tool from some finite set of tools and may be completed

(with possibly different processing times) on any of its set of compatible machines. A pre-schedule

obtained by a global scheduling code is followed until a disruption occurs. The match-up heuristic

chooses a subset of the machines to reschedule so that the pre-schedule can again be followed in

7 time units. The objective over this horizon includes weighted tardiness and an incentive to keep

jobs on their pre-scheduled machines.

The match-up heuristic code has been applied to a variety of situations using actual data from

plants. In ten of eleven actual problems, the heuristic was able to obtain significant improvements

over the previously used solution of pushing back the pre-schedule (the eleventh problem tied). The

average reduction in tardiness was 36%. Due to the proprietary nature of the results, no further

details of testing can be reported at this time. Further testing is planned to assess the heuristic's

performance in other situations.

In summary, we have presented a method that adapts for a changing production environment

by seeking to match up with a pre-schedule. The method becomes optimal as the rescheduling

horizon is lengthened and the interval between disruptions increases. This is shown using results

from economic turnpike theory. The error involved in using the method is also bounded by the

difference between the match-up cost and a lower bound found by local minimization. Comparisons

of the error bounds for different match-up problem sizes can be used to determine the value of

additional computational effort in specific situations.
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APPENDIX

The following technical assumptions are necessary for the theory in McKenzie. While important

to some applications, these are technicalities in the scheduling problems discussed in this paper.

They are included for completeness.

Finite Transitions: For any given a < oo, there exists /? < oo such that ||z*_i|| < a implies

that \<f>k\ < 0 and ||z*|| < P for all feasible 7r. For weighted tardiness this is clear since no more

than one unit of processing can be done in any period and tardiness is bounded by the weights.

Well-Defined States: As noted, costs over the infinite horizon may diverge. Assume that a

weakly optimal schedule is at hand. Alter the cost in each period by subtracting the cost of the

weakly optimal schedule in that period. Then, the infinite horizon cost of the weakly optimal

schedule is zero. A state at some time k is well-defined if the infinite horizon cost beginning at
j

that state and time is finite using this altered cost structure. Any state not well-defined cannot be

continued from in finite cost. Given the assumption of sufficient slack to reach the weakly optimal

schedule, the set of well-defined states at time k is $t(
nk>.

Uniform Lower Bound on Convexity of Von Neumann Facets: It is sufficient to assume that

there is a uniform positive lower bound on the weights used in weighted tardiness or fiowtime. (See

McKenzie for further details.)

Uniformly Bounded Von Neumann Facets: This is trivial since no more than one unit of pro-

cessing can be done in any period. (See McKenzie for further details.)

i
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TABLE 1: Example Problem Data

job # 1 2 3 4

proc. time 1113
due time 13 5 7

TABLE 2: Expected Average Cost Values

Disruption Position Down Time Probability Average Cost

0 1 0.10 0.059

0 2 0.10 0.237

1 1 0.10 0.059

1 2 0.10 0.237

2 1 0.10 0.059

2 2 0.10 0.237

3 1 0.10 0.000

3 2 0.10 0.118

4 1 0.10 0.000

4 2 0.10 0.059

TOTAL 0.107
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FIGURE 1: Optimal Paths
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A MAXIMAL COVERING MODEL FOR LOADING
FLEXIBLE MANUFACTURING SYSTEMS

Chen-Hua Chung

Department of Management, University of Kentucky
Lexington, Kentucky, 40506

INTRODUCTION

In recent years, Flexible Manufacturing Systems (FMS) have received much
attention from both industrial practitioners and academic researchers. It has
been recognized that, in addition to cost and quality, flexibility can also be

an important and viable competitive weapon. FMS provides manufacturing firms
the capability of achieving cost savings, productivity gains, and quality
improvements via the economies of both scale and scope. The aim of an FMS is

to achieve the efficiency of (automated) mass production while utilizing the

flexibility of a job shop by simultaneously machining several part types
(Stecke, 1983). An FMS is an automated (batch) manufacturing system
consisting of Numerical Control (NC) machines that perform the operations
required to manufacture parts or components. Although the potential benefits
of an FMS seem to be enormous, many planning and control problems are yet to

be resolved. Among them, the allocation of the operations and required tools
of a set of part types among a set of machine (or machine groups) is an

important class of problems. This is the so-called "loading problem" in FMS.

In an FMS, each operation would require a set of tools. Each operation
can be processed on a certain set of machines, but can be assigned to only one

machine. The tools are to be placed in the capacitated tool magazines of the

machines. Each tool can be used on different machines with different
"coefficients of efficiency".

In loading the FMS, many objectives have been recognized in the
literature. For example, Stecke (1983) lists the following six loading
objectives:

(1) Balance the assigned machine processing times.

(2) Minimize the number of movements from machine to machine,
or equi valently, maximize the number of consecutive
operations on each machine.

(3) Balance the workload per machine for a system of groups
of pooled machines of equal sizes.

(4) Unbalance the workload per machine for a system of groups
of pooled machines of unequal sizes.

(5) Fill the tool magazines as densely as possible.

(6) Maximize the sum of operation priorities.
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Which objective is applicable would be problem-dependent. Each may be

best under certain circumstances. In some situations, some of these
objectives may be conflicting, while in others, several objectives may be

equally desirable.

Stecke (1983) formulates several nonlinear mixed integer programs, one for
each of the above six objectives. Although various algorithms can be applied
to these nonlinear integer programs, the computational burden can be

formidable. Furthermore, the accommodation of multiple objectives has not
been addressed. One possibility would be the use of some multiple criteria
decision making (MCDM) approach. Then, additional issues such as goal

preemption may need to be addressed. Since many loading objectives are
nonlinear, the MCDM approach may also be computationally formidable.

In this study, we attempt to develop some heuristic algorithms which will

efficiently solve an FMS loading problem involving multiple objectives. A
heuristic approach will provide satisfactory solutions with considerably less

computational effort. Several alternative loading objectives can be

accommodated in the same solution process. The difficulties associated with
the one-objective-one-model approach can be avoided.

In the following sections, we will first critically assess various loading
objectives including the aforementioned six types. This exploration will
provide valuable insights into the FMS loading problem. We then present the

formulations for a set of selected loading objectives. Heuristic algorithms
will then be developed to achieve these objectives.

AN EVALUATION OF LOADING OBJECTIVES
The most adopted loading objective (for both conventional systems and FMS)

is to balance the assigned workload on each machine. That is, try to make the

total processing times of the operations assigned to each machine as equal as
possible.

However, Stecke (1981,1983) points out that the practice of balancing may
be too restrictive for most FMSs, since the inherent flexibility can be

utilized for better system performance. Specifically, it is found that the
expected production is maximized by assigning (i) a balancing workload to each
machine, if all group sizes are identical; (ii) a specific, unbalanced
workload to each machine, if group sizes are unequal. (These two "rules" were
listed as the third and the fourth loading objectives in the previous
section)

.

Existing loading studies usually assume that processing times are known
for every operation of all parts. However, since the coefficient of
efficiency for each tool differs from machine to machine, the processing time

of each part would vary accordingly. In other words, the actual processing
time for each operation will be determined by the final loading assignments.
To balance the machine loads, one has to take into consideration the tool

efficiency when assigning the parts to the machines. Quite often, what is

more desirable is to minimize the (total) processing times by maximizing the
tool efficiency. Chakravarty and Shtub (1984) address the loading problem
with an objective of minimizing the maximum processing time of any of the
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machines. Although not a complete substitute, the minimization of the maximum

processing time can be a good surrogate for balancing the machine workloads.
However, minimizing total processing time and balancing machine workloads can

be two conflicting objectives.

The second objective of minimizing the number of movements from machine to

machine is important when the transportation time between machines is

significant (relative to average operation time). This objective may also be

conflicting with the desire of balancing the machine loads. That is, in some

cases, it may be more desirable to have a part remain on a machine for several

operations rather than have it moved from machine to machine for the sake of

balancing loads (Stecke 1983, Stecke and Solberg 1981). Processing time can
be reduced by working several operations on the same machine, as long as it is

technologically possible. Optimizing this objective may result in large queue
times due to overloading some machines.

On the other hand, it may be desirable to pool the operations with common
tool requirements. If a small set of tools can perform many different
operations, the tool utilization can be increased. However, the required
operations of a particular part type may have a diverse tool requirements.
Thus, the aforementioned objective of minimizing the number of movements from
machine to machine may be in conflict with the desire to take advantage of
tool commonality. In a way, the consideration of pooling operations with tool

commonality relates to the part-grouping problem. That is, for any two part
types, the higher degree of tool requirements commonality, the more "similar"
they are and, therefore, the more likely they will be grouped together. In

fact, Chakravarty and Shtub (1984) approach the FMS loading problem by first
forming workpiece-tool groups and then assigning the groups to machines. The
grouping of workpiece-tool is similar to machine-component grouping problem in
Group Technology (GT). (See Burbidge (1963), King (1980), King and Nakornchai
(1982)).

Stecke (1983) provides a rationale for the fifth loading objective of
filling the tool magazines as densely as possible. It is expected that when
tool magazines are filled, perhaps several operation assignments may be

duplicated to produce alternative part routes, which should increase machine
utilization and production, and decrease waiting time (Stecke 1983, p. 281).
However, the filling of the tool magazines should be the end result of
operation assignments, not the other way around, unless the former is used as
a surrogate for the later.

The significance of the sixth objective of maximizing the sum of operation
priorities will again depend on situations. Some operations, such as
bottleneck operations, may receive higher weights in the loading process.
However, it should be noted that the definition (i.e., the occurrence ) of
bottlenecks will be determined by the processing times of the operations. As
previously mentioned, the processing times for each operation will depend on
the tool efficiencies which is a function of the loading assignments.

It is true that load balancing is an important loading objective.
However, an often overlooked fact in the loading literature is that the tool
efficiency plays an important role in loading FMS. First of all, the tool
efficiency is a determinant of processing times of the operations. Secondly,
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the flexibility of a manufacturing system may be enhanced by reducing
processing times via increasing tool efficiency. A strict load balancing
policy, on the other hand, may greatly reduce the flexibility. In this study,
the tool efficiency will be incorporated into the formulation of various
loading objectives.

FMS loading can be done on a periodic basis (e.g., weekly or daily). As
the demand for parts changes over time, the loading decisions (i.e., the
assignment of the parts, related operations and the tools to the machines)

need to be updated so that the system's efficiency can be improved.
Certainly, the loading decisions are closely related to other issues in FMS
planning and control. For example, ideally, in making the loading decisions
one should take into consideration the characteristics of every operation for
each part. However, if the firm has voluminous parts with a great many
varieties to be processed, it may consider grouping the parts into

part- fami 1 ies. Then, the loading will be carried out in terms of families
rather than parts. Although maximum tool efficiency may not be achieved,
loading part- fami 1 ies does have its practical meaning from a computational
point of view. It may even be a must when the loading decisions are to be

made in a real-time fashion. On the other hand, decisions such as sequencing
of parts and operations, the routing of operations, etc., are also closely
related to the loading problem. However, for practical purpose (e.g.,
computational consideration), it may be desirable to make these decisions
after the loading assignments are determined. Thus, the routing of operations
will not be addressed in this study.

In the previous section, we have explored various loading objectives.

Most of these objectives are nonlinear in nature. Some of them are

conflicting. In this section, we present the formulations of several loading
objectives. Although a single model cannot accommodate all types of loading

objectives, it does serve well both as a framework for loading decisions and
as a foundation for developing the loading heuristics. (For the model

formulations of some other loading objectives, see Stecke (1983)).

Quite often, part-family grouping needs to be performed before the loading
assignments can be determined. If the number of parts is reasonably small, no

grouping will be necessary. In the situation where parts are grouped into

families, the loading will be performed on the part-family basis. The model

and the heuristics can be easily modified. In the following paragraphs, we
will first define the notations used in the model formulations. Then, the

part-family grouping problem will be discussed. Several loading objectives
will be formulated together with the loading constraints.

MODEL FORMULATIONS

Let

H: { h
|

h = 1, • • • • j
Lq } , the index set of parts.

Li }, the index set of operations.

12 the index set of tools.

I: { i
I

i = 1, ..

J: {
j

1

j = 1,

• •

»

• •

»
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K: { k I k = 1, ,L3 J, the index set of machines.

G:{g|g=l L4 >, the index set of the "representative
parts" for the part-families; each
part in H can be a candidate for
such representatives.

aij

t>hi

dik

fhk

*ik

PTj

s hg

S

Ck

u
g

m

\

Bh

Bi

Mi

Mi

MS

Mj

if operation i requires tool j,
otherwise.

if part h requires operation i,

otherwi se.

if operation i can be processed on machine k,

otherwise.

<*ik Mn if part h can be processed
on machine k otherwise.

0 £ ejk ± 1, the coefficient of efficiency for
tool j used on machine k.

the processing time of operation i on machine k.

the processing time for operation i while using tool j,
assuming the tool is used at its maximum efficiency.

the "distance" between parts h and g; i.e., the
similarity or dissimilarity between the two parts,
calculated from a set of attributes of the parts.

the maximal (coverage) distance between two parts.

the capacity of the tool magazine on machine k.

the upper bound of the size of the part- family
represented by the median part g.

= { i

= { k

= { i

= { h

= { j

the number of part-families.

dik

uik

b hi

b hi

1 } the set of operations that can be

processed on machine k.

1 } the set of machines that can
process operation i.

1 } the set of operations required by

part h.

1 } the set of parts that require
operation i.

1 } The set of tools required to

process operation i.
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Mj = { i | a-jj = 1 } the set of operations that
require tool j.

Rh = { k
| ffok = 1 } the set of machines that part h can

be routed to.

Pg = { h
|

s ng <. S } the set of parts that can be represented
by part g (if g is the median of a

part-family); i.e., the distance between
parts h and g is within S.

^ik =fl if operation i is assigned to machine k,
*0 otherwise.

Y hk =;1 if P*rt h is assigned (routed) to machine k,

^0 otherwise.

Z ng =(1 if part h is represented by part g,
*0 otherwise.

V n =,1 if part h is covered by (i.e., assigned to) a

V part-family,
^0 otherwise.

Kusiak (1984) formulates a part- family grouping model based on a

clustering model discussed in Arthanari and Dodge (1981). The model
(with revised notations) is as follows:

LO 1-0

Min i z s ng Z ng (1)

s.t.

h=l g=l

LO
£ Zng = 1 V n = 1, L0 (2)

9=1

LO

E

9=1

Zgg= m (3)

Zhg < zgg ^ h = 1, L0 (4)

g = 1 , , Lq

Z hg = 0, 1 (5)

Chung (1986) demonstrates that the clustering problem can be

solved by a class of maximal covering location planning model (MCLP).
The MCLP formulation for the part-family grouping problem is as follows:

L L

Max s z V n (6)

h=l g=l
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s. t.

z Zhg " Vh = 0 (7)

Z Zgg = 111 (8)

L

Z

9=1

Zgg - Z hg > 0 h e Pg (9)

If it is desirable to restrict the size of a part-family, a

"capacity constraint" can be added:

? Zhg X Ug Zgg 9=1, , LQ (10)

h e P

The MCLP approach to clustering is to maximize the number of parts covered

by (i.e., assigned to) the part-families rather than directly minimize the

wi thin-group differences. With the use of the MCLP, the goal of maximizing
the within-group homogeneity and between-group heterogeneity is implicitly
accomplished by the "maximal (coverage) distance S" mechanism. If the

distance between parts h and g is beyond S, then part h will not be assigned
to g (if g is the median of a part-family). The smaller the S ( pre-) specified
for the model, the higher degrees of the within-group homogeneity and the

between-group heterogeneity. It is true that different S's will result in

different levels of coverage. However, to accomplish total coverage (i.e., to

ensure that all parts are assigned to some part-family) we can simply assign

each of those parts not covered in the model solution to its nearest cluster
median. Thus, the choice of the maximal distance S is rather insignificant in

this clustering application.

After the part-family grouping is completed, the loading assignments can

be carried out on the part-family basis. However, for simplicity, the

discussions in the following paragraphs will assume that the number of parts
is reasonably small and no grouping is necessary.

Stecke (1983) formulates several types of objective functions for
balancing machine loads (i.e., machine processing times). However, the

effects of tool efficiency were not considered. The following objective
function recognizes different processing times for an operation being
processed on different machines.

1-3 -1 L3
Min t z

k k'=k+ l

Z tik X ik - Z
tile' xik

-

i E n k i e n k
'

(11

where 1

tik = 1 P ij (
— ) dik (12)

je Mi ejk
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Since p-jj is the processing time for operation i while using tool j with
the assumption that tool j is used at its maximum efficiency, the actual

processing times may be inflated by (l/ej k ) if the tool is assigned to a

machine where the tool efficiency is less than 100%. The load balancing
objective function (1) attempts to minimize the difference in the total

processing times between any two machines.

If the minimization of the total processing time of all parts is the major
concern, then the following objective function will be appropriate:

Min l l tj|< Xik (13)

h ieB n

To minimize the number of movements from machine to machine, one

necessarily encounters the routing issue. Since the routing problem is not to
be addressed in this study, we assume that the times required to move a part
from machine to machine are either insignificant or a constant. If the
movement times are insignificant, then there is no need to minimize the number
of movements from machine to machine. Thus, the load balancing objective
function (1) would be sufficient. If the movement times are significant, we
would like to assign as many consecutive operations on the same machine as

possible. With the assumption of constant movement times, our concern would
be simply to minimize the number of movements from machine to machine
regardless the sequence of these movements. (In the routing problem with
unequal movement times between machine pairs, it is possible that two
movements will be more economical than one).

Stecke (1983) uses a somewhat cumbersome method in defining the number of
movements from machine to machine. A simple surrogate would be the number of
machines a part visits. The smaller the number of machines a part visits, the
smaller the number of movements from machine to machine. Thus, the objective
function becomes:

Mi n E £ Y hj (14)

h k e R h

The constraints in loading models are usually problem-dependent. However,

the following two are essential:

I i a-jj X-jk <_ c k V k (15)

i e N k j e Mj

E Xik < 1 V u B n ,
V h (16)

k e N
i

The first constraint set (5) specifies the capacity limit on the tool

magazine of each machine. The second constraint set (6) insures that each
operation of a part is assigned to not more than one machine.

As previously mentioned, it is difficult to incorporate multiple and

sometimes conflicting objectives in one model. Even with the use of an MCDM
approach, issues such as the determination of weights assigned to different
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objectives are yet to be addressed. Furthermore, some objective functions are

nonlinear. The computational burden may be formidable. In the next section,

we develop some heuristic algorithms for the loading problem. The above

loading formulations can be viewed as a maximal covering problem. The
heuristics presented in the next section are "greedy algorithms" in nature.

(Several greedy algorithms have been developed in the MCLP literature, see

Chung (1986)).

THE HEURISTIC ALGORITHMS

In this section we present two heuristic algorithms for loading FMS's. The
first one focuses on balancing the loads on machines. The second heuristic
intends to minimize the movements from machine to machine. Both heuristics
take into consideration the maximization of the tool efficiencies and
therefore the minimization of processing times.

The Heuristic That Balances the Loads

Step 1: Arbitrarily select a machine k.

Step 2: Compare t-j^ for each i in .

Step 3: Assign the operation with the lowest t-jk to machine k.

If there is a tie, or the difference between the
processing times of two (or more) candidate operations is

minimal (e.g., within e%), then the operation that has more
required tools already on that machine will receive higher
priority.

Step 4: Select another machine and repeat Steps 1 through 3 until

all machines are assigned with one operation.

Step 5: Repeat Steps 1 through 4. The machine that has the lowest
total processing time of the assigned operations will

receive highest priority. The machine with tool magazine
capacity exceeded will be excluded from the assignment
consideration.

Step 6: Stop when all parts are assigned or when the tool magazine
capacity of every machine is exceeded.

The Heuristic That Minimizes the Movements from Machine to Machine

Step 1: Arbitrarily select a part h.

Step 2: Compute t^ for each operation i of part h with respect to

each feasible machine k.

Step 3: Define the string of consecutive operations that can be

processed on the same machine. Form different combinations
of strings such that all required operations for the part
can be completed.
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Step 4: Compare the total processing time for each combination
(i.e., the processing time for the part, s E t-jfc)

ieBn keN-j

Step 5: Choose the part with the minimum processing time and
assign the operations to machines according to the
combination of the strings of operations. If any
machine has its tool magazine capacity exceeded,
choose the combination with the next lowest processing
time.

Step 6: Repeat Steps 1 through 5 until all the parts have been
assigned or the tool magazine capacity of every machine
is exceeded.

CONCLUSIONS

Loading an FMS is an important but complicated task. It usually involves
multiple and sometimes conflicting objectives. These objectives are quite
often nonlinear in nature. It may be computationally involved in solving the
problem optimally. A heuristic approach would be more flexible in

incorporating multiple objectives in one solution procedure. It can solve the
problem with less computation time although the optimal solution is not
guaranteed.

In this study, we explore the nature of the FMS loading problem and

develop heuristic algorithms for solving the multiple objective loading
problem. Only two sample heuristics are presented. Variations and possible
improvements are not discussed here.

Future research should be directed to the further integration of the

heuristic algorithms so that more loading objectives can be accommodated
simultaneously. Comprehensive performance evaluation of the heuristics under
different problem settings would also be needed.
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Consider a processing or manufacturing facility in which each piece of

work (hereafter referred to as a job) must flow through a linear sequence of k

operations. That is, we may think of a job as an ordered list of k tasks,

though some tasks may for convenience be vacuous. Similarly, we view the

facility as one having k stages. At stage i, 1 < i < k, one or more
machines exist, each capable of processing the ith task of any job. In

general, jobs are independent of each other and tasks, once begun, are not
preemptable

.

We have just described the well-known flow-shop model, discussed in
various contexts (see for example [CD], [CMM] or [Go]). Probably the most
frequently cited paper pertaining to flow-shop operation is the solution to

the problem of minimizing the overall finish time for a collection of jobs
when k=2 and each stage consists of a single machine [Jo] . In that report, as

in almost all work published on the flow-shop model, it is assumed that work
flows from one stage to the next instantaneously without delay. The only
deviations from this assumption appear to be those which concentrate on
problems associated with finite buffer length as discussed in papers along the

lines of [Ke] or [RR]

.

Herein we focus on the critical but heretofore ignored issue of
transportation delay between adjacent stages, scrutinizing the costs involved
at such an interface. We therefore narrow our attention to only two stages of
a system, say stages A and B, each having M machines, and assume the existence
of a transport which ferrys work from stage A to stage B. This model fits
extremely well to a variety of processing situations, from the practical
problem of industrial materials handling (see, for example, [NF] for a

description of an IBM materials transfer system) to the as yet theoretical
issue of multiple robot movement (see, for instance, [LK] for basic research
on robot coordination). For this flow-shop model we seek to design and
analyze effective transportation planning methods.

Our work is organized as follows. In the first section we consider a

static environment, in which a problem instance consists of a collection of
jobs whose processing requirements are known in advance, and our objective is
to finish them all as soon as possible. We devise and formally analyze
transportation planning strategies for various situations, depending on the
amount of time needed for transportation relative to the amount required for
task processing. In Section 2 we take a different approach, addressing a

-225-



dynamic environment in which we face a continuous stream of jobs whose
processing requirements are not known in advance but instead are based on a

variety of probability distributions. Our objective is then to minimize the

delay imposed by the transportation system. We employ a vast collection of
computer simulations to achieve empirical estimates of the relative
effectiveness of alternate transportation planning schemes. The final section
of this paper contains remarks pertinent to ongoing and future investigations
of these interstage transportation planning problems.

1. The Static Model

In this section we consider a deterministic version of the flow-shop
system, wherein a problem instance consists of a finite set of jobs whose
tasks possess known processing times. Our objective is to minimize the latest
job completion time. Letting N represent the cardinality of the job set, we
denote task requirements for job i, 1 < i < N, by = ^i^'

T
iB

>- We emPl°Y

a function I to denote the length of each task. For example, if fc(T )=2 and

d(T )=5, then the first task of job 1, that for stage A, requires 2
IB

time units to be processed, while the second task of job 1, that for stage B,

needs 5. Hence if N=l , we presume that begins at stage A at time 0 and

finishes there at time 2. After is transported to stage B, this movement

requiring some time interval t, T is processed, beginning at time 2+t and
IB

ending at time 7+t. Hence the cost of a solution for this very simple example
is 7+t.

A transport (which may be viewed alternately as a type of material
handling device or as a primitive robot) works between the two stages. When
the processing of a task is completed at a given machine of stage A, the

transport is directed to move to that machine, pick up the job, ferry it to

whichever machine is desired at stage B, and leave it there. For model
simplicity, we assume that machines are equally spaced. We ignore size

restrictions on any buffering needed, both at the machine and at the stage

level. Similarly, we ignore the time spent loading and unloading each job, as

well as the issue of transport acceleration and deceleration, assuming that
the time required for the transport to move is directly proportional to the

distance it must travel. The figure which follows depicts a flow-shop system
with two stages, six machines per stage, and the transport sitting idly
between the third pair of machines in each stage. The spacing between each
pair of adjacent machines is, say, 10 distance units. We assume a scaling so

that one distance unit corresponds to one time unit for the transport to

travel

.

-226-



Stage A Stage B

Machine 1

Machine 2

Machine 3

Machine 4

Machine 5

Machine 6

(TRANSPORT)

Machine 1

Machine 2

Machine 3

Machine 4

Machine 5

Machine 6

Figure 1. A two-stage system with six machines per stage.
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Note that our distance measure is "vertical" rather than "horizontal."
That is, using the previous figure as an example, the transport can move a job
finishing at machine 3, stage A, to machine 6, stage B, in 30 time units, or

to machine 2, stage B, in 10 units, or to machine 3, stage B, in 0 units
(essentially a pick-up and put-down operation). Clearly the transport's new
position depends on its previous destination.

We consider transportation planning strategies under differing model
assumptions. We first address the two extreme cases in which transportation
delays are either so small relative to processing times as to be negligible or
are so drastically large as to dominate the problem. We then turn our
attention to approaches for solving the general problem characterized by
transportation times which can neither be ignored nor avoided, but which must
be included in planning an efficient transportation scheme.

1 . 1 Extreme Cases

For the case of negligible transportation costs, the problem takes on a

purely scheduling nature and has application in a variety of areas,
particularly including computer operating systems software. As mentioned in
the introduction, the problem can be solved optimally if each stage contains
but a single machine. In such a situation, the familiar Johnson's Rule states
that we need merely construct a priority list for the jobs, where J^ precedes

J. if min{n(T. ), d(T. )} < min{fc(T. ), fc(T. )}. Since the details of a proof
1 1A J .d Id J A

of the rule's optimality can be found elsewhere (see for example [Jo], [CD] or

[CMM] ) , we simply remark at this point that it is a straightforward exercise
to show that any optimal list which violates the rule's precedence relation
guarantees the existence of an alternate optimal list which obeys the

relation. Note that Johnson's Rule is based on a sorting criterion, and hence
has a time complexity of 0(N log N)

.

If we permit multiple machines at each stage, then it turns out that the

problem of minimizing the overall completion time, even if transportation
costs are negligible, is dramatically more difficult. To see this, suppose
that T

^B
=0 f° r 1 < i < N. For this very restricted class of problem instances,

we need only decide which job is assigned to which machine at stage A. But
what we have done is to reduce our general problem to the special problem
generally referred to as the multiprocessor scheduling problem, known to be

NP-hard [GJ] . Clearly our general problem can be no easier. Hence no
solution procedure is thought to exist which is substantially better than
examining all possible schedules and selecting the best. Of course the time

required for such a procedure is at least exponential in N, even for the
fastest dynamic programming implementations, rendering this approach
impractical for problem instances of only moderate size.

Therefore, based on the complexity of this problem, we turn our attention
from optimization to near-optimization. We wish to discover fast heuristic or

"approximation" algorithms which guarantee solutions whose overall finish
times are always close to the minimum. Such an approximation algorithm ALG
guarantees, for any problem instance I, a specific "relative performance
ratio" R„ T „ defined as the least real number never exceeded by the ratio

ALG 1

F„ T „(I)/F,^m (I) , where we use F„ T „(I) and F«„(I) to denote the finish times
ALG " 0PT v ALG OPT
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over I for ALG and an optimization routine respectively. Note that R^
LG

holds

for any problem instance. We will henceforth omit the reference to I when
no confusion results.

In this context, we assume that such an algorithm operates by forming a

priority list, a specific permutation of the N jobs. This list determines the

order in which the jobs are fed into stage A. That is, as a machine at stage

A becomes available, the list's next unprocessed stage A task is begun. As
work is completed at stage A, jobs are enqueued to stage B on a first-come-
first-served basis. Then, when a machine at stage B becomes available, the

queue's next unprocessed stage B task is begun.

The curious reader may find it interesting to discover that no algorithm
of this type can produce a solution whose overall finish time exceeds three
times the minimum, although no smaller ratio will suffice for this algorithmic
class. That is, if we let ARB denote an algorithm that arbitrarily constructs
a priority list, then R^RB^" Although this ratio has been reported before

[BS] , and is very similar to a related result from the multiprocessor
scheduling literature [Gr] , a simple proof of this guarantee at this point
will help to illustrate the type of approach used in the remainder of this
section.

Theorem 1. R„„ =3

.

ARB

Proof. Our proof that R >T,„ < 3 is based on contradiction. Let us assume^ ARB
the existence of a counterexample using a set of jobs J. Thus there is some
arbitrary permutation of the elements of J such that F > 3 F . Without

ARB OPT
loss of generality, let us normalize task lengths so that F

QpT
=l. Therefore

F >3. Let X= <X ,X > denote a job whose processing is completed last in the
AKd A d

arbitrary solution. Clearly fc(X.) + d(X_) < 1, else F.-. > 1. Also, the
A B OPT

processing of X must begin on a stage A machine no later than time 1, else the

sum of the lengths of all stage A tasks exceeds M, the number of machines at
each stage, and again F

opT
> 1. Hence it must be that X

g
is available for

processing at stage B no later than time 1 + fc(X ) < 1 + (l-fc(X )) = 2-Jt(X ).
A B B

But since the processing of X is completed at stage B after time 3, it must
B

not begin there until some time after 3- 2. (X ) . Therefore all machines at stage
B

are busy from time 2-fc(X ) until some time after 3-£(X_), and we conclude that
B B

the sum of the lengths of all stage B tasks exceeds M and in any event F
QpT

> 1

,

which is impossible and contradicts the presumed existence of the counter-
example .

To see that R^
LG

^ 3, consider the following example. Let N=3M-1 and let

J contain tasks with these lengths:

«T
1S )

= 0, * (T
1B>

= 1

= o, t(T
iB>

= 1/M for 1 < i < M

*(TU ) " 0, *< T
iB>

= 1-1/M for M < i < 2M
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fc(T.J = 1, e(T. n ) = 0 for 2M < i < 3M

Although F
QpT

= 1 using the original order of J, F
ARB

can be as large as 3-1/M by

reversing the order of J (see Figure 2). In particular, ARB may cause jobs to

wait a long time to pass through stage A even if they have little or, in this

extreme case, no need for processing at a stage A machine. Letting M grow
without bound, we find that no value strictly less than 3 can serve as an

upper bound for Raop . This completes the proof that RaDn
=3. o
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Stage A Utilization Stage B Utilization

1 1 • • • 1 1
1-1/M • • • 1-1/M

1/M 1/M

Optimal list, FnpT = 1

• •

1

1-1/M • • • 1-1/M

1/M

•

•

•

1/M

'/< //
IDLE/ • • IDLE >

'//, '//.

Arbitrary list, F
ARB

= 3- 1/M

Figure 2. Worst-case instance for arbitrary priority list.
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As already mentioned, negligible transportation times and zero processing
times at stage B reduce our transportation problem to a parallel scheduling
problem. More to the point, non-zero stage B processing times, our real
concern, has been previously viewed [BS]

,
[SC] as a problem of both parallel

and serial scheduling. In particular, we know from [BS] that the idea of
extending Johnson's Rule to this problem, while of course not optimal since
the problem is NP-hard, yields a tight performance ratio of 2. That is, such
an algorithm, termed MJO which stands for Modified Johnson Ordering, never
generates a solution whose finish time exceeds twice the minimum, although
problem instances exist for which its solution values approach arbitrarily
close to twice the minimum.

We now demonstrate that there is in fact a faster and simpler way to

provide a performance ratio of 2. Although Johnson's Rule and hence MJO use
both stage A and stage B processing times to construct a priority list, we
shall prove that this is unnecessary.

An algorithm which constructs a priority list based only on a non-
decreasing sequence of stage A processing times is intuitively appealing.
Clearly this is, after all, a motivation for Johnson's Rule: initiate work at
stage B as quickly as possible. Let us denote such an algorithm by SORTA.
The following example shows that SORTA cannot, however, yield the proper
guarantee. (Entire families of such examples exist; we have selected this one
for its simplicity. As we have already seen, SORTA can of course yield no
completion time exceeding three times the minimum.) Let M=2 . Let N=ll and
let J contain tasks with these lengths:

&(t
1A

) = 1/6, fc(t
1B

) = 5/6

d(t
iA

) = 1/6, d(t
iB

) = 5/12 for i = 2, 3

d(t
iA

) = 1/6, £(t
iB

) = 0 for 3 < i < 11.

Although FQprp = 1 using the original ordering of J, the reverse ordering also

satisfies the SORTA criteria and therefore F can be as large as 25/12 > 2

(see Figure 3). The interested reader may be tempted to consider the use of
"tie breakers" to improve SORTA, but one needs only to modify this example
slightly to preserve its character (e.g. let i(t ) = 1/6 + e and let l(t )

=
1A lb

5/6 - e for some satisfactorily small e > 0). Furthermore, it is not
difficult to see that the type of example illustrated in Figure 3 can be

generalized for larger M to demonstrate that SORTA can produce finish times

asymptotically as great as 5/2 the optimum.
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Stage A Utilization Stage B Utilization

|

1/6

1/6 1/6

1/6 1/6

1/6 1/6

1/6 1/6

1/6 1/6

Optimal list,

1/6
y—7—r
IDLE .
j—* y

1/6 1/6

1/6 1/6

! 1/6 1/6

1/6 1/6

1/6 1/6

SORTA list, F

Figure 3. Simple troubles
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5/12
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. / < I
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OPT

5/6

5/12 5/12

,IDLE IDLE
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= 25/12 > 2

instance for SORTA.



Surprisingly, however, we will now prove that we can insure a ratio of 2

by instead preparing our priority list based on a non-increasing sequence of
stage B processing times. This algorithm, SORTB, not only provides the

appropriate ratio, but the proof of its performance is also much simpler than
the corresponding analysis of MJO from [BS] . (Note, however, that in [BS] the
number of machines at each stage is independent and is figured into the

analysis. We ignore this complication here since it does not affect the

asymptotic worst-case behavior of SORTB). SORTB, like MJO , has a time
complexity of 0(N log N) ,

although SORTB clearly possesses a lower constant of
proportionality and is simpler to implement.

Theorem 2. R„^ r,mr,
= 2.

SORTB

Proof. To prove that Rcr. D„D < 2, we proceed by contradiction, assuming
SORTB

the existence of a counterexample. We normalize task lengths so that Fq
PT

= 1

and hence F_„__ = 2+5 for some 6>0. Let X= <X„ ,X„> denote a job whose
SORTB A B J

processing is completed last in SORTB 1 s solution. Let t represent the time
A

at which processing is initiated for X . The set of jobs which precede X in
n

the priority list generated by SORTB keep all M machines at stage A busy
without idle from time 0 until time t , since otherwise the processing of X

would begin sooner. Therefore, even in an optimal list, this entire set of
jobs can finish processing at stage A no earlier than t . Moreover, each such

job has a task for processing at stage B whose length is at least as great as

l(X„) . Thus, since =1 , it must be that t, + iiX^) < 1. We thereforev B OPT A B

conclude that in SORTB 1 s solution, X is available for processing at stage B no
B

later than time t + i(X
k

) < (l-fc(X )) + (1-H(X )) = 2 - 2d(X
B
), although the

processing of X does not commence until time 2 + 6 - d(X ). It must then be
B B

that all M machines at stage B are continuously busy from time 2 - 2d(X )
B

until time 2 + 6 - d(X ), a period of d(X_) + 6 time units.
B B

Consider the first M jobs in SORTB 1 s priority list. Their tasks for

processing at stage B make up a collection of the M longest stage B tasks.

Let Y= <Y, ,Y„> denote one of these M jobs. Since Y„ begins at time 0 and
A B J A

since fc(Y.) + i(Y ) < 1, the processing of Y either begins as soon as Y is
A B B d

available at stage B and is thus completed by time 1, or we can associate with
Y a distinct stage B machine which is busy processing stage B task(s),
B

which are not from this collection of the M longest tasks, from the time Y
B

becomes available until it's processing begins. Hence by time 1, the total
processing performed at stage B is at least as great as the sum of the lengths
of the M longest stage B tasks.

Since strictly fewer then M tasks can finish processing after time 1 at

stage A, there is at least one stage B machine that is continuously busy from

time 1 until at least time 2 + 6 - d(X ), processing only stage B tasks
B

available no later than time 1. Let Z= <Z„ ,Z„> denote the last job whose
A B

stage B task begins processing on such a machine before time 2 + 6 - d(X ).
B
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We now claim that fc(X_) < 1/2. Suppose otherwise. Then X_ must be one
B D

of the M longest stage B tasks, else there are at least M+l stage B tasks each

of whose length exceeds 1/2 and F
opT

> 1. Hence X
g

is available at time £(X
A ),

but is not processed until time 2 + 6 - £(X
g

) > 2 + 6 - (1-£(X
A )) = 1 + 6 +

H(X ). But this means that all stage B machines are continuously busy for a

period of at least 1+6, which is impossible.

We next claim that Z cannot be longer that the Mth longest stage B task.
B

Suppose otherwise. Hence Z is available at time £(Z ) but not processed until
B A

at least time 2 + 6 - £<X
&)

-£(Z
fi

) > 2 + 6 - £(X
g

) - (1-£(Z
A >) = 1 + 6 -

£(X ) + £(Z ). We therefore find two periods during which all stage B machines
B A

are continuously busy: one from time £(Z
A

) to time 1 + 6 - £(Xg) + £ (Z
ft

) and a

second from time 2 - 2£(X_) to time 2 + 6 - £(X_). The sum of these periods
B B

is 1 + 2 6. Thus we are done unless these periods overlap by at least 2 6 time

units, implying 2 - 2£(X_) + 26 < 1 + 6 - £ (X ) + £(Z ) , from which we derive
B B A

1 < 1 + 6 < d(X
B

) + d(Z
A

) < 1/2 + £(Z
A

) < £(Z
B

) + £(Z
A
), which is

impossible

.

We conclude the upper bound section of this proof by noting that, since
Z was available at time 1 but not processed until at least time 2+6
B

- £(X )
- £(Z ), all M stage B machines were continuously busy for a period of

B B

1 + 6 - £(X ) - £(Z_) > 0. If this busy period overlaps with the one beginning at
B B

time 2 - 2£(X ), then the total processing performed at stage B is at least
B

M£(the Mth longest stage B task) + M(2 - 2£(X_) - 1) + M(£(X_) + 6) + £(X_) >
B B B

JU(X_) + M(l - 2£(X_)) + M(£(X_) + 6) > M, which is impossible. On the other
B B B

hand, if these two busy periods do not overlap, then the total processing
performed at stage B is at least M£(the Mth longest stage B task) + M(l + 6 -

£(X
B

) - £(Z
B )) + M(£(X

B
) + 6) + £(X

B
) > M£(Z

g
) + M(l + 6 - £(X

& )

- £(Z )) + M(£(X_) + 6) > M, which is once again impossible.
B B

To see that RCrtr) _,D > 2, consider the following example, which we have

merely adapted from the multiprocessor "list scheduling" result of [Gr] . Let
N=2M-1 and let J contain tasks with these lengths:

£(T
1A

) = 1, £(T
1B

) = 0

£(T
iA

) = 1/M, £(T
iB

) = 0 for 1 < i < M

£(T
iA

) = 1-1/M, £(T
iB

) = 0 for M < i < 2M-1

Although the given job list allows that f"

0pT
= 1/ the reverse ordering also

obeys the criteria of SORTB and thus F can be as large as 2-1/M (see

Figure 4). Letting M grow without bound, we find that no value strictly less
than 2 can serve as an upper bound for Rcr.OTn . (Incidentally, this example

also illustrates that R^,^ £ 2.) This completes the proof that R^^„m„=2.MJO r r SORTB
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Stage A Utilization
(Stage B Not Utilized)

1
1-1/M • • • 1-1/M

1/M 1/M

Optimal list, FnpT = 1

1

1/M

1-1/M
• a • 1-1/M

•

•

•

1/M

SORTB list, F<.nDTR = 2-1/M

Figure 4. Worst-case instance for
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For the case of truly dominant transportation costs, an optimization
strategy is conspicuously apparent. Since distances are large enough to rule

out any use of the transport, except of course for its pick-up and place-down
activities in one location, the user's best choice is also the simplest: use

only one machine, say the first, at each stage and employ Johnson's Rule to

produce a priority list.

1 .2 The General Case

Suppose now that we allow transportation times to take on any range of

values. Clearly our multiple machine problem is NP-hard, having as a special
case the set of extreme instances in which transportation delays are

negligible. Our ability to analyze the behavior of a fast approximation
algorithm is, for this environment, complicated by the fact that we do not
even know how many machines are employed at each stage in an optimal solution.
If transportation costs are relatively minor, then it may be that most or all
are used; if costs are very significant, then only a few or even just one may
suffice. As a consequence, the interested reader should have no difficulty in

seeing that if we lock our attention on a fixed set of machines, then one can
contrive problem instances which show that any heuristic using exactly that
set cannot provide any constant performance ratio.

The upshot of these considerations is then that, in an effort to

guarantee a constant relative performance bound, our approach will be to apply
a "compound" algorithmic strategy [La] , in which we produce a series of
solutions, one employing a single machine at each stage, another using two,

then three and so on. If we have a total of M machines available at each
stage, then we choose the best solution from the set of M solutions generated.
This is not only a fast and appealing approach, but it greatly simplifies our
task of analyzing its effectiveness as well, since we must have generated at
least one solution which uses an optimal number of machines and which gives an
upper bound to our final selected solution value, regardless of its machine
utilization. Hence we need only compare our solution which uses, say, h

machines at each stage to an optimal solution using h machines per stage. Now
to avoid egregious worst-case behavior, we must avoid making task assignments
based solely on stage A or solely on stage B processing times. That is, we
seek to ensure that we need traverse the h-1 intermachine distances only once.
In order to do this, we direct that a job is assigned the same machine at each
stage. Note that without this restriction, it is easy to construct families
of examples in which an unbounded number of transport movements are needed,
precluding the establishment of any constant performance ratio.

Based on these observations, therefore, our compound approximation
algorithm COMP can be described as follows. For each value of h, 1 < h
< M, we list schedule T to h machine "pairs." That is, J. is viewed asr l

having a single value namely T^ + T^
B

, and we make job assignments as if

there were but one virtual stage and h virtual machines. As a virtual machine
becomes available, we assign the next unprocessed job to it. Having thus
partitioned J into h subsets, each subset is assigned a machine pair based on
a non-decreasing sequence of stage A processing requirements. That is, a

subset with the smallest stage A sum is assigned to the lowest indexed machine
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pair. The subset with the next smallest stage A sum is then assigned to the

next lowest indexed machine pair. This procedure continues until each of the

h subsets has been assigned. We now direct the transport to begin at the
lowest indexed machine pair. When it has finished moving work to stage B

there, it moves then to the next lowest indexed machine pair and so on. This
strategy, although simple and of a brute force nature, is quite fast, having
time complexity 0(MN log M) . More importantly, it yields the desired result,
a constant performance ratio, as we now show.

Theorem 3. R„«„„ < 4.
COMP

Proof. Consider any problem instance. Normalize task lengths so that
F.__ = 1. Let A denote the intermachine distance. In an optimal
OPT ^

permutation of J, the sum of the lengths of the tasks assigned to any
particular machine pair cannot exceed 2, even with maximum concurrency. Hence
the sum of the lengths of all tasks is at most 2h, where h denotes the maximum
number of machines used at either stage in an optimal schedule. Since the

lengths of the tasks of any job sum to a value less than or equal to 1, our

list scheduling rule insures that, in any COMP solution, the difference
between the maximum and minimum machine pair sums is at most 1. In
particular, for COMP 1 s solution on h machine pairs, the minimum cannot exceed
2, else the overall task sum exceeds 2h. Thus for this solution the maximum
machine pair sum is at most 3, even with no concurrency.

Now let us focus on one of COMP's h subsets whose processing is completed
last. Let P denote such a subset. Let P, and P„ denote the sum of the

A B

lengths of P's stage A and stage B tasks, respectively. The longest possible
delay, D, that P can experience due soley to the movement of the transport

is (h-l)A. Any additional delay incurred because the transport must wait
for the completion of the processing of stage A tasks at lower indexed
machine(s) is absorbed during the processing of P since every subset's

n
stage A tasks commence processing at time 0. Therefore, the

finish time for P is at most D + P + P < (h-l)A + 3. But an optimization rule

must also direct the transport to visit the h machine pairs, and (h-l)A <

1. Therefore R„.,_, < 4.
COMP

In establishing a lower bound on the performance ratio of R
^0Mp'

one

finds that for COMP to generate a remarkably poor solution relative to the

optimum, an optimization routine needs to be able to exploit potential
concurrency both in transport movement and in stage A and stage B processing.
But these goals seem to be diametrically opposed to one another, and we can
only say that R

C0Mp
^2. As a simple example of this, let M=2, N=3,

and task lengths be

:

*(T
1A

) = o, *(T
1B

) = 1

*(T
2A

) = 1, £(T
2B

) = 0

i(T ) = 1-A, H(T )
= 0, for some arbitrarily small

intermachine distance A.

In an optimal partition, and can share a machine pair. The transport can
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move at time 0, move at time 1-A, and still be able to return to its

starting position so as to move J at time 1. Hence f
QpT

= !• But, even

using both machines at each stage, COMP may partition and J
3

together, in

which case F
CQMp

= 2 - A. Therefore R
CQMp

must exceed any value strictly less

than 2. We conjecture at this point that the exact value of R
C0Mp /

lying

the the range [2,4], is in fact closer to the lower end of this range, our

upper bound leaving considerable slack.

We close this section with a few remarks about machine spacings. Recall
that we originally specified that machines be egually spaced for model
simplicity. Note that this assumption is of no consequence for the extreme

cases of negligible and dominant transportation costs. More importantly, we

can handle arbitrary machine spacing in the general case. One need merely
specify that for each value of h, 1 < h < M, the h closest machines be

employed by COMP.

2. The Dynamic Model

Instead of focusing solely on the static problem environment we have just
examined, one might naturally ask questions about a dynamic model, in which a

continuous job stream flows through the flow-shop. Precise processing demands
are not known in advance, though some knowledge of a probability distribution
over the task lengths is likely, based either on a priori information about
the type of jobs in the input stream or on the observations of past behavior.
In the sequel, we will consider task lengths as a set of independent,
identically distributed random variables having three distinct probability
distributions. We use the uniform distribution to represent an environment in
which little is known to help predict the length of a given task. We employ
the normal distribution to model a situation in which most task lengths tend
to occur in some middling range. Finally, we use the exponential distribution
to represent the situation, common at least in computer software systems, in
which the majority of tasks have short lengths, and in which large and even
very large lengths do occur, although with relative infrequency.

For consistency of our flow-shop model, we leave our transport system
unchanged from that described in the previous section. The dynamic nature of
this environment, however, suggests that our attention should not be directed
to minimizing the overall finish time, but rather to minimizing the delay
imposed by the transportation planning system. That is, a job can incur a

delay from the time it finishes processing at stage A until the time it begins
processing at stage B, even though one or more stage B machines may be
available. It is the average transport-induced delay we seek to reduce, thus
increasing system thruput, decreasing the average time a job is in the flow-
shop, and, additionally, reducing the likelihood of troublesome queueing
delays should multiple jobs simultaneously wait on the transport. Roughly
speaking then, in this environment, the transport becomes our single critical
resource over whose movement we must exercise control.

We observe that the investigation of transportation planning strategies
is only meaningful in "draw" systems (i.e., systems in which, on the average,
the length of a stage A task exceeds that of a stage B task). Otherwise, we
face the expectation of an "unstable" system, in which a queue of unbounded
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length forms in front of stage B in the steady state. See, for example, [Tr]

for a detailed discussion of the "traffic intensity" parameter, which in this
environment denotes the ratio of the mean length of a stage B task to the mean
length of a stage A task. Hence, if this ratio is not strictly less than
unity, a long gueue between stages precludes the effectiveness of any
transportation planning strategy. Recall that it is precisely the planning
strategies we seek to study, not gueueing disciplines which are already a

subject of extensive investigation.

In this model we are interested in the long-term, steady state
effectiveness of transportation planning schemes. Therefore our desire is to

investigate average-case behavior rather than to establish worst-case ratios.
Due to the complexity of this model and the many variables affecting average-
case performance, we turn from formal analysis to the use of system simulation
in an effort to generate a vast collection of empirical observations. To

implement our model, we have employed the GPSS/H simulation software [HC]

running on an Amdahl 470-V8 mainframe under the VM/CMS operating system. This
package and run-time environment was satisfactory for all but the planning
strategies themselves, which are to be described later. These we encoded in
the FORTRAN programming language and then we linked to them from GPSS/H.
Additional implementation details are omitted here for the sake of brevity,
but a full version of a report describing our simulation system may be
obtained from the authors.

We now present the major transportation planning algorithms on which we

have gathered considerable computational experience. Each seeks to move jobs
from stage A to stage B efficiently. In order to prevent any single job from
being delayed a disproportionately long period of time, all algorithms service
jobs strictly on a first-come-first-served basis. Once the transport picks up

a job it will move it to the stage B machine on which the job's stage B task
can begin processing the soonest, ties to be broken in favor of the machine
with the lowest index. Notice that the earliest start time on a machine at

stage B depends both on the tasks, if any, already at that machine and on the

distance the transport must move in order to arrive at that machine.

Strategy 1. Our first strategy is both simple and unassuming. Since we
do not know to which machine at stage A the transport will be ordered next,

the transport merely remains stationary when no jobs are waiting to be moved.
That is, the transport, after ferrying a job to stage B, stays where it is

until it is directed to move to another machine. Observe that this strategy
directs no unnecessary transport movement.

Strategy 2. The motivation for our next algorithm relies on an attempt
to avoid the worst-case scenario in which a stage A task terminates and the

transport must move the entire (vertical) length of the flow-shop to load the

job. We specify that the transport move to the middle of the shop when no

movement reguests are pending.

Strategy 3. Our third approach plays a "guessing game." Although we do

not know which machine at stage A will next finish processing a task, we do

know when each started its current task. We direct the transport to move, if

it has no jobs awaiting movement, to the position of the machine at stage A
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which earliest began to process its current task, ties to be broken in favor

of the machine with the lowest index.

In order to gauge the effectiveness of these various and sometimes
opposing strategies, we also implement a look-ahead rule, which in some sense
"cheats" by directing the transport to move to the machine at stage A which
will next complete the processing of a task. Of course we have assumed
throughout that this information is not available in our dynamic and
probabilistic environment; we provide it to our look-ahead rule solely as a

means of identifying an "informed" scheme to which we can compare strategies
one through three.

For our first series of empirical results, we adopt a uniform probability
distribution from which to draw task lengths. We arbitrarily set an
intermachine distance of 10 units (that is, the transport requires 10 time
units to move from one machine to an adjacent one, twenty to the next one and
so on). For this scenario, as well as for those which follow, we have made
literally hundreds of simulation experiments. Table I lists a representative
sample of performance figures we have obtained for each of the three
algorithms under differing traffic intensities, task length means and numbers
of machines per stage. Each simulation consisted of 100,000 jobs, enough to

eliminate initial perturbations, insuring that we observed true steady state
behavior.

For each of these simulations, the total delay charged to a

transportation planning strategy is the cumulative length of time, summed over
every stage B machine, during which both the machine is idle and one or more
jobs, having completed processing at stage A, is scheduled to be moved to that
particular stage B machine. The numbers shown under the "excess delay"
heading have been computed as follows. We have taken the total delay incurred
using one of our strategies, divided it by the total delay of the look-ahead
rule on the same job set, multiplied this quantity by 100, rounded to the
nearest integer and then subtracted 100, regarding the final value as a

percentage. Thus a figure of 25 means that an algorithm causes 125% the delay
of the look-ahead rule, that is, 25% in excess of the informed strategy.
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Table I. Uniform Distribution

Average
: Machines Task Length Traffic Excess Delay by Strategy Strategy

per Stage A B Intensity 1 2 3 Rankings

2 50 5 1/10 568 411 321 3,2,1
1

2 20 5 1/4 131 88 73 i 3,2,1
2 80 40 1/2 380 275 185 3,2,1
2 40 30 3/4 178 132 95 3,2,1
oC 80 70 7/8 204 144 126 3,2,1

4 150 15 1/10 292 207 208 2,3,1
i

4 80 20 1/4 79 57 59 2,3,1
4 200 100 1/2 219 159 150 3,2,1
4 120 90 3/4 72 55 54 3,2,1

! 4 200 175 7/8 103 82 78 3,2,1

10 500 50 1/10 81 59 69 2,3,1
10 600 150 1/4 114 84 95 2,3,1
10 800 400 1/2 150 111 123 2,3,1
10 900 675 3/4 115 86 94 2,3,1

;

10 720 630 7/8 52 39 44 2,3,1

40 9000 900 1/10 120 93 110 2,3,1
40 8000 2000 1/4 69 52 64 2,3,1
40 7000 3500 1/2 42 31 39 2,3,1
40 L0000 7500 3/4 144 114 130 2,3,1
40 8000 7000 7/8 42 31 40 2,3,1

Table II illustrates the behavior representative of what we have observed
for the transportation planning algorithms under the adoption of a normal
probability distribution for task lengths. As before, we set the intermachine
distance at 10, used 100,000 jobs to address the steady-state behavior of each
strategy, and computed excess delay as the percentage exceeding the optimum.
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Table II. Normal Distribution

Average
achines Task Length Traffic Excess Delay by Strategy Strategy
er Stage A B Intensity 1 2 3 Rankings

o
L 5 1/10 834UJT 489 194 3,2,1
oL 20 5 1/4 86 53 42 3,2,1
2 30 40 1/2 1336 769 271 3,2,1
2 40 30 3/4 362 226 73 3,2,1
2 80 70 7/8 242 171 78 3,2,1

A4 150 15
i /in
1/10 402 258 182 3,2,1

/I

4 80 20 1 / A
1/4 137 92 82 3,2,1

i

4 200 100 1/2 530 337 220 3,2,1
4 120 90 3/4 135 100 69 3,2,1
A4 200 175 7 /QI/O 112 86 54 J, 2,1

10 500 50 1/10 107 77 82 2,3,1
10 600 150 1/4 149 107 110 2,3,1
10 800 400 1/2 232 164 158 3,2,1
10 900 675 3/4 171 126 117 3,2,1
10 720 630 7/8 65 50 48 3,2,1

40 9000 900 1/10 126 96 112 2,3,1
40 8000 2000 1/4 79 58 69 2,3,1
40 7000 3500 1/2 54 40 47 2,3,1
40 LOO00 7500 3/4 162 127 144 2,3,1
40 8000 7000 7/8 45 34 39 2,3,1

For our last set of empirical results, summarized in Table III, we

employed the exponential distribution in order to generate task lengths.

Again, an intermachine distance of 10 units was used, 100,000 jobs were

generated per simulation, and excess delay was computed a percentage above the

look-ahead rule.
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Table III. Exponential Distribution

Average
Machines Task Length Traffic Excess Delay by Strategy Strategy
per Stage AA DD Intensity 1 2 J Rankings

?c 50 5 i /i n 400*T \J\J *J -J Z? 2,3,1
2Cm 20 5 1/4 85 68 70 2,3,1
0
fm o(J 40 1 1? 188 173 168 3,2,1
2 a n40 30 3/4 89 82 80 3,2,1
2

ftA
80 70 7/8 114 115 125 1,2,3

A
*t 150 15 i /in 223 172 213 2,3,1
A
*T finou ?n 1 /d 48 37 45 2,3,1
At 200 100 1 /? 136 111 132 2,3,1
4 120 90 3/4 38 31 37 2,3,1
4 200 175 7/8 80 68 82 £ ,1 , J

10 500 50 1/10 60 45 58 2,3,1
10 600 150 1/4 89 67 86 2,3,1
10 800 400 1/2 115 88 111 2,3,1
10 900 675 3/4 79 60 77 2,3,1
10 720 630 7/8 29 20 27 2,3,1

40 9000 900 1/10 112 87 107 2,3,1
40 3000 2000 1/4 61 46 59 2,3,1
40 7000 3500

!

1/2 34 26 32 2,3,1
40 L0000 7500 3/4 125 99 119 2,3,1
40 8000 7000 ! 7/8 20 15 20 2,3,1
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As one might expect, we find from Tables I, II and III that strategy 1

almost is never the best of the three tested algorithms. It is frequently,

however, at least reasonably competitive with the others. This suggests that

if extraneous transport movement incurs a non-zero cost, then this strategy

may well be worth a second look. (Recall that strategy 1 requires no

unnecessary transport movement.) These simulation results bear out our

expectation that as the traffic intensity increases, transportation planning
strategies can become nearly indistinguishable from one another as a queue of

jobs awaiting the transport forms between flow-shop stages. Notice also that,

in general, large stage A task length means tend to inflate the absolute

excess delay values for each tested algorithm, since the informed strategy has

more lead time, on the average, for ideal transport positioning.

We observe from Table III that, for the exponential distribution,

strategy 2 is almost always more effective than strategies 1 and 3. This is

pretty much as one might predict, since the expected completion time for each

task, as generated by the exponential distribution, is independent of the

amount of time it has already spent in processing (see, for example, [CD] for

a discussion of this memoryless or Markov property). Therefore, at any time

in the steady state, all stage A machines have an equal likelihood of

finishing next. Directing the idle transport to proceed toward the center of '

the flow-shop is a sound scheme for this environment.

At issue, then, remains the determination of when, if ever, it is better
to guess, in the sense of strategy 3, than it is to try to play it safe, as

done by strategy 2. For both the uniform and the normal distributions, the

stage A machine most likely to finish next is the one that has been processing
its current task for the longest period of time. (Note that the bell-shaped
graph of the normal distribution suggests that it might be even better suited
for exploiting strategy 3 than is the uniform distribution.) Despite this

observation, however, it is not at all clear that employing strategy 3 is a

relatively good idea. In particular, the costs incurred whenever the

transport makes an error and proceeds in the wrong direction could well
outweigh the savings accrued from correct guesses and from guesses that at

least move the transport closer to the proper machine. Our experimental
results, as seen in Tables I and II, indicate that in fact for both
distributions strategy 3 is likely to be superior to strategy 2 when there are

not too many machines in the flow-shop. But as the number of machines grows,
the cost of an error grows as well, until a "break-even" point is reached at

which strategy 2 gains parity. As one then continues to add machines to the

flow-shop, strategy 2 becomes the better alternative. This break-even point
appears to occur earlier for the uniform distribution, at around four
machines, then it does for the normal distribution, at around ten machines.

3. Conclusions and Directions for Future Research

We have designed algorithms and formally derived their worst-case
performance guarantees for the problem of planning and coordinating movement
within our flow-shop system in the deterministic, static environment. Though
problem complexity often prevents one from devising practical optimization
strategies, we have shown how to guarantee near-optimal movement costs for
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various situations, depending on the time required for transport movement
relative to that for task processing.

We have also investigated transportation planning strategies for the

probabilistic, dynamic environment. Computational experience seems to suggest
that in the absence of other information, the idle transport can be well-
utilized, in the case of the exponential distribution, by blindly try to "cut
its losses," heading for the center of the flow-shop. The same result holds
for the cases of the uniform and normal task length probability distributions,
although one can do even better by trying to "out guess" the system, heading
for the machine at stage A that's been processing its current job the longest,
if the number of machines at each stage is not too large.

In our approach to the exploration of this model's utility, we have
attempted to address several crucial issues. However, many open problems
remain unanswered, a few of which we mention at this time. Note that our
system bottleneck has, in general, been the assumption of a single unit-
capacity transport. Although this has kept the model attractively simple (and
inexpensive), one might ask about the effectiveness of movement strategies
given multiple transports, or even multiple-capacity transports. Similar
problems have, for instance, been considered [CCF] for two-server computer
storage systems, although without the notion of physically transporting items
between devices or stages.

Also, we have typically specified a first-come-first-served order for job
movement. A more complex model might incorporate a priority structure, to be
used when multiple jobs await transportation, which could lower the average
transportation delay, although a small proportion of the jobs may suffer
longer waiting times. Similarly, the model can be modified slightly by
permitting different numbers of machines at each stage, or by dropping the

assumption that machines are equally spaced within a stage. Naturally, the

model could remain unaltered while better static and dynamic strategies are

considered (e.g., the worst-case bound of 4 for algorithm COMP in Section 1

may leave considerable room for improvement; it would also be interesting to

learn something about the expected behavior of SORTB relative to that of MJO).

Finally, we remark that systems with three, four and even more stages, not

just extensions to the two-stage model, have yet to be considered.
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MINIMAL TECHNOLOGY ROUTING AND SCHEDULING SYSTEMS

BASED ON SPACE FILLING CURVES
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Our research over the past few years has been directed toward the

transportation and storage systems that link together the elements of any

large manufacturing facility. We have developed a family of heuristic
control algorithms that consist essentially of maintaining sorted lists

of tasks to be performed. The lists are easily maintained and modified:

New tasks may be added to a list, or tasks previously in the list may be

removed, without requiring the entire list to be recomputed. These algo-

rithms are thus ideally suited to real-time decision-making.

The sophistication of these procedures is embedded in the criterion
with respect to which tasks are sorted. These critera may in some cases

be expressed analytically as a "spacefilling curve." In others, it must

be computed off-line, as a "presequence" - the solution to a large and

difficult integer program. However, the criterion is designed only once,

before the algorithm goes on-line. After that, the only computational

operations are (1) evaluating the criterion for a particular task, and

(2) appending or removing tasks from sorted lists.

The criterion is determined by first specifying a metric on the set

of all possible tasks, which expresses the ease or efficiency of follow-
ing one task by another. The spacefilling curve or presequence then maps
the unit interval continuously onto the set of all tasks. Positions
along the interval determine the criterion for sorting. Since adjacent
tasks in a queue have nearly equal criteria, it is efficient to perform
them consecutively.

A nontechnical introduction to our method may be found in

Bartholdi et al., "A Minimal Technology Routing System for
Meals on Wheels," Interfaces 13:3 June 1983, pp. 1-8

wherein we describe how an implementation of the procedure on a pair of
Rolodex files enabled a charitable organization to efficiently solve a

large routing problem (delivering lunch to more than 200 delivery points
whose locations change daily) without any computer!

A broader survey of applications (including manufacturing) and
underlying theory may be found on a paper to appear in a forthcoming
Management Science special issue devoted to Heuristics. Copies of this
paper (and others in progress) may be obtained by writing directly to the

authors.
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INTRODUCTION

Since the industrial revolution some 80 years ago, mathemati-
cians, engineers, scientists and production managers have been trying

to develop efficient factory scheduling/control procedures. Over the past
80 years, many conflicting results concerning rules, procedures, perfor-
mance measures and analyses have been reported in the literature. In

general, mathematicians and operations researchers have tried to re-
solve the problem optimally and have discovered that optimal analysis is

very difficult. On the other hand, production managers and production
engineers have tried to use heuristic procedures to order and organize
production flow. Unfortunately, the results from these methodologies
are confusing and seem to be dependent on manufacturing system de-
tail so that no general policies have been developed. Statistical valida-
tion of these analyses is also very difficult.

The advent of Numerical Control (NC) and Flexible Manufacturing
Systems (FMS's) have highlighted our inability to effectively schedule
machines automatically. In an FMS, the system controller is responsible
for making scheduling decisions. Simple decision rules can alter the
system output by 30% or more [1]. Selecting the proper scheduling
rules in flexible automated systems is as difficult as it is in conventional
manufacturing systems; however, unlike conventional systems, the rules
must be explicitly defined.

In recent years, the theory of scheduling has been enhanced sig-
nificantly from a Mathematical Classification stand point (see, for exam-
ple, reference [3] or L7J). Factory scheduling problems have been shown
to be in the class of problems called "NP-hard". A characteristic of
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this class of problems in that solution time increase exponentially as
problem size increases. Despite many years of research effort devoted
to these problems by mathematicians and engineers, no solution proce-
dures have been found that do not possess this characteristic of expo-
nential growth. This has led many researchers to the conjecture that no
solution procedure exist. For example, if 8 jobs are to be scheduled and
each job requires 4 operations, then the number of possible seralractive
schedules that must be examined would be (81) or 2.65 x 10 . The
job routing requirements would render some of these schedules infeasi-
ble, but the number of schedules can still be very large (perhaps half

the theoretical number). Unfortunately only very small scheduling prob-
lems (2 or 3 parts on 2 or 3 machines) can consistently be optimally
resolved.

The growing interest in artificial intelligence and expert systems
has led many computer scientists to advocate applying these methods
to scheduling problems. An expert system can be defined as a "Tool
which has the capability to understand problem specific knowledge and
use the domain knowledge intelligently to suggest alternate paths of
actions." The misconception about Expert Systems is due to consider-
ing it as a collection of IF..THEN rules along with some method of
transferring knowledge from experts to non-experts. Expert systems not
only use techniques to transfer knowledge but also use analytical tools
to evaluate the knowledge and techniques to learn. A program having a
few IF..THEN constructs and a set of analytical tools cannot be classi-
fied as an Expert System. An Expert System should be able to under-
stand new knowledge, draw inferences, justify and explain its reasoning
process [26].

Expertise in a domain is directly related to the knowledge that the
expert has. By the same reasoning, the efficiency of an Expert System
depends on the available knowledge. Hence Expert Systems are also
known as Knowledge Based Systems (KBS). General Al methods attempt
to solve generalized problems, the so called weak methods of Al, do
not have sufficient expertise to solve problems effectively. Since each
Expert System is tailored to a specific domain, the degree of reasoning
and related strategies in these systems is much greater than general Al
problem solving methods.

One approach to resolving factory scheduling problems to show
promise recently is a procedure called "Multi-Pass Scheduling." Both
Dar-EI and Wysk [2] and Nof and Gurecki [5] have shown that signifi-

cant throughput improvements can be made by using a simulation mo-
del to determine the future course for a manufacturing system. Essen-
tially, the procedure works as follows. A simulation model of the system
is resident on the system control computer. At each decision point, a
deterministic simulation is run to see what control policy (from a series

of rule based policies) impacts the current system most favorably. This
control is then chosen and the appropriate control response is signaled
for execution on the system.

One unfortunate drawback of this procedure is that FMS's are not
static (the types of parts, demand, tooling, etc., change over time).
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Each time these specifics change, the simulation model must be rewrit-

ten or updated which would have to be done manually. Although the
benefits can be significant, the implementation cost can be quite ex-
pensive. However, the necessary data for both controlling as well as si-

mulating the manufacturing system must be available to the system
controller.

In this paper, an approach to utilizing a "Multi-Pass Expert Control
System" (MPECS) for manufacturing cell control will be presented. Key
elements of the system include:

1. An Expert System to select potential scheduling alternatives

which form an alternative space.

2. A simulation model that is automatically generated by the con-
trol system.

3. A structure to allow the system to simulate system perfor-
mance based on the alternative space, i.e. use the simulation
model as a source of feedback for system decision making.

4. A decision structure that will update performance rules based
on "simulation/system experience".

5. A mechanism to affect the control on a variety of Flexible Ma-
chining Cells (FMS's).

The basic principle behind the MPECS system is using determin-
istic simulation as a short term predictive tool for alternative control
strategies in a manufacturing cell. This concept is illustrated in Figure 1.

As can be seen from the figure, there are many controllable (endoge-
nous) variables that must be affected. There are also many uncontrol-
lable (exogenous) factors that will impact the system. A deterministic
simulation can be run as a Gantt like scheduler to analyze short term
effects. Decisions based on interference, machine utilization, etc. can
be accessed for short term sequencing and operational decisions. This
allows for use of a reasonably simple set of rules that are evaluated to
determine performance.

The simulation does not examine exogenous factors, MPECS will

respond to exogenous factors by creating a new simulation experiment/
model when unforeseeable events occurs. New rules may result when
these conditions occur. However, the scheduler need only respond to
these events rather than try to minimize conflict from them.

In the following sections, a complete description of MPECS will

be presented. Each module of MPECS will be described in detail using
examples.
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GENERAL STRUCTURE OF THE CELL CONTROL
SYSTEM

AN OVERVIEW OF THE SYSTEM

MPECS is a modular stand-alone control system which may be
adapted into various kinds of hierarchical control system components
with minor changes. The main purpose of MPECS is to: 1) utilize all the
data available in a computerized manufacturing cell, 2) create "good*
strategies to guide the system, and 3) generate real time responses to
make control decisions during system run-time. As can be seen from
Figure 2, operational information such as part routing specifications,

machine loading information and material requirements are supplied by
the factory control system. The managerial objectives such as due
date, cycle time and cost constraints are also input to MPECS. This
data provides factory information and constraints as well as objectives
for MPECS. MPECS also supplies feedback to the factory control sys-
tem. This feedback may include the information such as : a certain ord-
er is finished, additional material is required, a certain order can not be
made by a specific due date,...,etc.

The general scheme of MPECS is pictured in Figure 3, MPECS
consists of three major components: 1) an intelligent scheduling module
(ISM), 2) a simulator and, 3) an actual cell control module (CCM). The
implementation of the MPECS is partitioned into a decision and opera-
tional level activities. Decision level activities can be described as fol-
lows: Upon receiving a job order from the factory control system, ISM
is activated to evaluate its knowledge base which contains scheduling
rules and principles as well as shop floor information (e.g. three of 50
parts types are now been processed in the cell, status of the machines,
etc.). After applying a series of inference procedures, ISM will eventu-
ally generate an alternative space which contains several "good" alter-
native scheduling rules. The alternative space will then update a working
rule module (WRM) which contains dispatching rules and scheduling
heuristics suggested by ISM.

For the operation level activities, the WRM is input to the simula-
tor for further performance evaluation. Under regular operating condi-
tions, whenever a request to dispatch a finish part from a idle machine
is issued, the simulator is activated to evaluate the alternatives in the
WRM. Based on the current system criteria and the future master pro-
duction schedule of the shop, the simulator will run a simulation model
to evaluate the alternatives in the WRM. Eventually, the "best" schedul-
ing rule is selected from the WRM. The CCM then receives an execu-
tion command , which is generated based on the scheduling rule, to
actually move (or wait) a part(s) in the system.

The ISM may be activated to make decisions under various con-
ditions. As in the previous case, the "arrival of new job orders" can ac-
tivate ISM's decision making. Some other conditions such as a machine
break-down or a change of managerial objectives (e.g. expediting a
certain job type is desired, etc.) can also activate ISM.
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INTELLIGENT SCHEDULING MODULE

Scheduling is one of the most important MPECS functions. Cell
level scheduling is a principle vehicle for: utilizing the resources effi-

ciently, responding the managerial objectives rapidly, and satisfying the
system constraints effectively.

A real-time, flexible, and intelligent scheduling module (ISM) is

the key to any control system. The scheduling module enables MPECS
to generate various schedules based on input from the factory control
system along with the actual status at the shop floor. ISM utilizes ex-
pert methodologies to assist in shop scheduling. A functional represen-
tation of the ISM is shown in Figure 4. As can be seen from the figure,

the ISM consists of four major components:

1. the acquisition module,

2. the knowledge base,

3. the inference engine, and

4. the alternative space.

Basically, the acquisition module transfers knowledge and expertise of
scheduling into facts and rules for the knowledge base. The inference
engine then employs various inference strategies to manipulate the
rules and facts in the knowledge base. Eventually, an alternative space
which contains several "good" alternative scheduling rules will be gen-
erated. A simulation of the cell then further evaluates the alternative

scheduling rules to determine the performance of the system.

The Acquisition Module And The Knowledge Base

The acquisition module is employed to transfer the knowledge
and expertise of a scheduler into facts and rules for the knowledge
base. This module is constructed so that ISM can be continually ex-
panded. Since scheduling knowledge is primarily domain-specific, (i.e.

no generally applicable scheduling rule is available for the various shop
floor environments), the knowledge base of ISM is continually expanded
to include various scheduling environments of different machine/part
configurations with different levels of complexity. In addition, the ac-
quisition module employs machine learning techniques to "learn" from
feedback from the shop floor. In other words, the acquisition module
attains knowledge from actual experience on the shop floor.

The knowledge base is a database which describes facts and
rules associated with the scheduling problem domain and represents
the facts and rules in clausal form of first order predicate logic. For

example,
(forall (x) (implies

(and (in-machine-queue x)

(shortest-process-time x))
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(set-highest-priority-to x) ))

can represent dynamic SPT rule (i.e. if x is a part waiting in the ma-
chine queue, and x has the shortest imminent process time, x is given
the highest dispatching priority.)

The knowledge base contains two levels of information: primary
knowledge and meta-knowledge. The primary knowledge consists of the
following components:

1. status information on the shop floor,

2. dynamic dispatching rules, and

3. scheduling heuristics

Meta-knowledge can be described as "knowledge about know-
ledge". In ISM, meta-knowledge consists of the knowledge to apply
scheduling rules and heuristics to previously inexperienced circumstanc-
es. The three areas of knowledge in the ISM categorized as meta-
knowledge are:

1. general dominant principles,

2. criteria of selecting scheduling rules, and

3. learned heuristics

Status information on the shop floor

In the knowledge base, status information of the shop floor represents
the current status of each system component (e.g. current process on
each machine and material handler, etc.). The status information is

supplied by the shop floor sensory system and workstation level cont-
rollers through the CCM. After receiving status information from the
CCM, the acquisition module of ISM translates the information into as-
sertions of fact. For example, the status of a certain machine may be
represented as:

(mach-status
(machine mach-11)
(current-op job-2110)
(proc-time 16)
(time-remaining 5)

)

This information would be pre-processed to MPECS by the CCM.

Dynamic dispatching rules

Scheduling decisions in a real-time cell control environment are usually

determined using dynamic dispatching rules. Both local and global rules

can be implemented in a scheduling system. A rule is local if priority

assignment is based only on information concerning the jobs represent-
ed at the individual machine queue (e.g. SPT rule).
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A global rule utilizes information from other machines in addition
to the individual machine queue. A good example of global dispatching
rule is WINQ (i.e. work in next queue; job with the least work in the
next machine queue has the highest priority in the current machine
queue).

Several simulation studies in dynamic dispatching rules are avai-
lable in the open literature. These rules are feasible for different domain
applications. Different assumptions and environments tend to produce
different results in using dynamic dispatching. Dynamic rules can be
employed in the knowledge base as the basic scheduling reference of

ISM.

Scheduling heuristics

Various scheduling heuristics can be employed in the knowledge base.
In general, scheduling heuristics are more suitable for rather complicat-
ed system situations. Basically, the scheduling heuristics search and
generate one or more schedule(s) to guarantee better system perfor-
mance. Because heuristics can satisfy more detailed constraints in a
complicated system, they are more practical than dispatching rules.

Some heuristics however can become very complicated and too ineffi-

cient for application in a real-time environment. Hence the knowledge
in this component is applied only when no dynamic dispatching rule can
be applied or more delicate schedules are essential to satisfy the
system constraints.

General dominant principles

For various objective functions and system configurations, dominant
scheduling rules/procedures may exist. Dominant principles are facts
and phenomena which can be proved to be true under specific condi-
tions. Many times dominant principles can significantly reduce the size

of a scheduling problem.

Examples of the dominant principles are listed as follows:
A. IF several machines are identically tooled and

are capable of performing the same operation
THEN logically pooling these machines into

a machine group will reduce the complexity
of the sequencing problem

B. IF an operation can be performed on any of the several
machines

THEN find a machine that is free

The dominant principles shown above are both intuitive and sup-
ported by various simulation studies. These dominant principles can
drastically improve the performance of the schedule. For instance,
based on principle A, the waiting time in the machine queues will de-
crease significantly. Meanwhile, the system will be better balanced be-
cause of the flexibility gained. Obviously, the more dominant principles
that can be applied, the more efficient the scheduling process.
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In the knowledge base, dominant principles served as meta-
knowledge. From the previous discussion: applying dominant principles
to guide the scheduling process may significantly reduce the complexity
of the problem. Hence this level of meta-knowledge should be applied
first in the inference procedures.

Criteria for selecting scheduling rules

In general, the criteria for scheduling is based on managerial objectives
as well as the nature of the shop (e.g. level of workload, existence of
assembly operations, etc.). Managerial objectives are primarily related to
the information of processing time, due date, arrival time, costs, set up
time and machine attributes. These objectives include: minimize
throughput, minimize tardiness, maximize machine utilization, etc.

For certain managerial objectives, simple dynamic dispatching
rules or scheduling heuristics may be sufficient to obtain a good per-
formance. For other objectives, combinations or weighted combinations
of simple rules are necessary to satisfy more complicated objectives.

Criteria for selecting scheduling rules are utilized in the know-
ledge base as meta-knowledge. Meta-rules (constructed from the
meta-knowledge) are represented as production rules to assist in the
reasoning process of the inference engine. For example, a meta-rule for
maximizing throughput in a machine shop can be expressed as follow:

IF no assembly operations exist

AND no due date constraints are active
THEN SPT rule should be considered

Learned heuristics

As mentioned earlier, the acquisition module is capable of learning from
system feedback. Feedback is treated as actual experience gained from
current scheduling activities. Experience which should be recorded by
the knowledge base includes the following:

1. mistakes made by ISM,

2. successful schedules for typical system decisions, and

3. discovered dominant principles.

Learned heuristics are extremely important in a real-time control
environment. Since this area of knowledge "remembers" mistakes which
were made, the ISM can prevent making the same mistake for similar

circumstances in the future. At the same time, ISM "remembers" some
typical successful schedules for some system states, if a repeated state

shows up, without going through the whole scheduling process ISM will

generate an identical schedule. Furthermore, some generalized dominant
principles can be generated based on the learned heuristics.

-262-



The Inference Engine

An important characteristic of expert systems is the distinction

between the knowledge and the reasoning mechanism. Unlike the
knowledge base, the reasoning mechanism, or inference engine, is not
domain specific. The inference engine employs various reasoning tech-
niques, such as forward chaining and backward chaining to manipulate
the knowledge base.

In order for a mechanism to reason, it must be able to infer new
facts from what it has been told. This involves dynamically creating a
new symbol structure from the old ones. In the inference engine of the
ISM, new rules are produced by applying rules in the knowledge base.

The inference engine of the ISM is basically a production system
which consists of three basic modules: 1) a matching module, 2) an in-
ference dependency module and 3) an execution module. Two types of
production rules are employed in ISM — forward chaining and back-
ward chaining rules. Forward chaining rules are defined as

(... (IMPLIES (antecedent)(consequence)) )

(i.e. if the antecedent(s) is true (matched) then
the consequence(s) is implied to be true)

While the backward chaining rules are defined as
(... (IMPLIES-B (antecedent)(consequence)) )

(i.e. in order to prove the consequence(s) is true
prove that the antecedent(s) is true)

In general, the forward chaining rules are antecedent-driven (i.e

matching is based on antecedent) while the backward rules are conse-
quence-driven (i.e. matching is based on consequence). In applying an
assertion or a query to the inference engine, the matching module will

search for the rules in the knowledge base whose conditions (i.e. an-
tecedent or consequence) are matched. The inference dependency mo-
dule will then decide how to choose which rule to execute, and in what
sequence. The determination of the inference dependency is based on
both forward and backward chaining inference strategies. Finally, the
execution module will execute
the chosen rules. The result of this execution is a modification of the
knowledge base (i.e. generating new rules, insert new facts etc.) or an
answer to the query.

The following is a simple example to explain a backward chaining
inference procedure. Suppose the following rules and facts are exist in

the knowledge base,

Rule 1:

(FORALL (x)

(IMPLIES-B
(AND (x's utilization is maximized)

(x is a machine)) ...(i.e. antecedents)
(x's idle time is minimized)))...(i.e. consequence)

Rule 2:

(FORALL (x)
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(IMPLIES-B
(AND (WINQ rule is applied in the system)

(x is a machine))
(x's utilization is maximized) ))

Rule 3:

(FORALL (x)

(IMPLIES-B
(AND (WINQ rule is applied in the system)

(x is a machine))
(x's idle time is minimized) ))

Fact 1: (mach-11 is a machine)

Fact 2: (mach-12 is a machine)

Fact 3: (WINQ rule is applied in the system)

The goal is to check if mach-11's idle time is currently minim-
ized. First a query in the following form is issued,

(query: mach-11's idle time is minimized)

(i.e. issue a query to find out if

mach-11's idle time is minimized)
Since no fact concerning idle time exists in the system, a backward
chain must be issued to further evaluate the goal. After the backward
chain is issued, the matching module will match the consequence of
both Rule 1 and Rule 3 with the goal. The inference dependency mo-
dule then has to decide which rule to be fired first. If Rule 1 is chosen,
the execution module then fires (i.e. try to prove) the rule. Since its a
backward chaining rule, in order to prove the consequence

—

mach-11's idle time is minimized

two antecedents must be proved:
1. mach-11's utilization is maximized, and
2. mach-11 is a machine

Antecedent 2 is a fact exists in the knowledge base (i.e. Fact 1). To
prove antecedent 1 is sufficient, antecedent 1 is set to be the subgoal
at this point. The matching module is again activated to find that the
consequence of Rule 2 (i.e x's utilization is maximized) can match the
subgoal. Since only one rule is matched, the execution module is called

directly. Similarly, the execution module will try to prove that the an-
tecedent of Rule 2 (i.e. WINQ rule is applied in the system and
mach-11 is a machine) is true. Since Fact 3 indicates that WINQ rule is

currently applied in the system and Fact 2 says mach-11 is a machine,
Rule 2 is proved successfully. Which means the answer to the query
will be "true" and the goal is satisfied. Remember that Rule 3 is still

waiting to be proved. However, since the goal is already satisfied by
Rule 1 (i.e. via Rule 2), no further evaluation of Rule 3 is necessary.

The inference engine is the heart of the ISM. Although applying
sophisticated inference strategies to accomplish the tasks like know-
ledge acquisition, abduction or learning require years of research, a
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simplified mechanism with restricted constraints and assumptions can
be constructed. Like the knowledge base, the inference engine can be
continually modified by relaxing the constraints and assumptions one
after the other.

The alternative space and the interface with the simulator

At each decision point the ISM is activated to make a decision
based on the present status of the cell. After a series of deduction and
searching processes of the inference engine, the ISM will eventually
evolve several alternatives which will form an alternative space for
further decision making. The alternative space contains abstract infor-
mation for feasible dispatching rules and scheduling heuristics selected
by the system. Based on the abstract information, the ISM will generate
a working rule module (WRM) for the simulator to evaluate all of the
alternatives based on the future state of the system. As a result, the si-

mulator will report the performance of different rules based on different
interests of measures (e.g. cost, tardiness, makespan,...,etc).

Since the simulator will further evaluate the alternatives, any mis-
takes made by ISM can be detected before actually apply to the physi-
cal system. Such mistakes may include: accumulating of queues, lock-
ing of the system or inefficiently utilize the machine, etc.

THE CELL CONTROL MODULE

The cell control module (CCM) of MPECS directly interfaces the
workstation level with the control hierarchy. As can be seen from Figure
5, the basic tasks of the CCM are as follows:

T. Top down execution

Upon receiving a command from ISM, CCM will execute the
command in a top-down fashion. Such commands may look
like

Remove the finish part on machine-11 and put it in

machine-queue-1 1, load part-1021 from machine-
queue-2 to machine-11

Such commands will be decomposed into a more detailed level

in a step-by-step fashion. For the above example, the com-
mand may be decomposed to executive command for diffe-
rent workstation level system components as
TO machine-controller-1 1: move the machining table

to load/unload position

TO material-handling-robot-1:
1)execute motion sequence-153 (which will pick

up the part from machine-11 and send it to
machine-queue-1 1)

2)execute motion sequence-213 [part-1021] (which
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will go to machine-queue-2 pick up part-1021
from there, send to machine-11)

2. Book-keeping

Whenever the system status changes, CCM will update the
system status file which may include, a resource data file, part

data file and miscellaneous system status file, etc. Furthermore,
the CCM will report current system status to the knowledge
base as discussed previously. In other words, the CCM takes
responsibility of book-keeping for MPECS. The source of the
system status information includes both the sensory system
and all the lower level controllers within the workstation level.

Actually, most of the shop floor information which is essential
for cell control is obtained and manipulated by the CCM.

3. Bottom-up requisition

The CCM not only handles the top-down execution com-
mands but also processes the requisition from the workstation
level. For the situation in which direct requisition is necessary
for the system, the CCM will receive the information from the
workstation level in an interrupt manner. Such bottom-up in-
formation may includes: machine breaks down, system jams, a
part is just finished,...,etc.

THE SIMULATION MODEL

The major function of the simulation model is to evaluate control
policies in a flexible manufacturing system(FMS) by examining the effect
of the production schedule on an on-line test base. The simulation
model queries the part data and resource data files as input. It then
determines the future system status by making a pass of deterministic
simulation according to a rule(s) defined in the rule module. The
system performance predicted by each pass of simulation is a measure
of closeness to an objective function from the higher level factory con-
trol system. Thus at the end of all passes of simulation, the best sche-
dule, resulting from the simulation, is then applied to the physical sys-
tem.

-267-



INTERFACING THE SIMULATION MODEL

Given a set of parts, the inclusion of the simulation model in

MPECS enables the control system to look ahead at the system perfor-
mance among a certain number of alternatives. The simulation model
is basically a mechanism which examines and records the performance
of the system under different control policies.

The simulation model may be automatically activated by MPECS
whenever a decision is to be made. Decision making may also be
prompted by the arrival of new parts, the failure of resources, etc., in

which case a production schedule needs to be created, or revised. Ba-
sically the simulation model receives a part data file and resource data
file as input and imitates the movement and processing of parts fol-

lowing the algorithm specified by the WRM. The system performance
which is shown in a performance evaluator can then be compared to
give the best production schedule. The interface of the simulation mo-
del is pictured in Figure 6.

Resource Data File

In an FMS, MPECS is installed in a physical manufacturing system
which may include NC machines, material handling devices, machine
queues, etc Therefore, MPECS can query the status of the FMS at any
time and record the system history. The current system status is

stored in a resource data file which is used as input to the simulation
model. Various resource data files will be created during a pass of si-

mulation so that MPECS is able to preview future system status.

Part Data File

When a set of parts are assigned to the FMS, MPECS also receives the
necessary information to produce the part from the higher level factory
control system. The information includes the detailed part program to
process a part at each machine. Only some of the information is uti-

lized by MPECS for creation of the simulation model. The part data file

includes part routings, process times, due dates, etc. which are required
to develop and execute the simulation model.

The Working Rule Module(WRM)

The WRM, which was discussed earlier, may contain dynamic dispatch-
ing rules or scheduling heuristics. Therefore, each pass of simulation
follows a specific direction defined by a rule in the WRM. The WRM is

integrated into the simulation model by MPECS at alternate decision
points.

Performance Evaluator

Each pass of simulation yields a measure of performance associated
with the control employed in the model. After all simulation passes
have been performed, the best schedule can then be selected based on
a system objective function. Therefore at each decision point, a perfor-
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mance evaluator is selected for the simulation model by MPECS based
on the objective of the higher level factory control system. If the ob-
jective requires more than one measure of performance, then a weight-
ing factor associated with the multiple performance evaluation is given
to the simulation model.

THE SIMULATION MODEL SOFTWARE

The simulation software consists of a main program and a EVENT
subroutine. An event calendar storing information is utilized in the ex-
change between the main program and the subroutine. Generally, an
event is defined as that time in which the system status is changed.
Therefore, an event could be the completion of a part on a machine,
the arrival of a part at a machine, etc.. The discussion here will con-
centrate only on events such as the completion of a part on a machine
in order to simplify the demonstration. The major function of the main
program is to locate the nearest event in the event calendar. The
EVENT subroutine is used to make appropriate actions for the event
observed. After the completion of a part, some action is usually taken
by the system. An example of these actions might be to put a com-
pleted part in a machine buffer, and then allocate a new part to the
machine. These activities are depicted in the EVENT subroutine. Once
a new part is chosen, its completion time on the machine can then be
determined by adding its process time to the current time. Therefore,
the completion of the new part on the machine becomes a new event
which will replace the old current event in the event calendar.

Basically, the event calendar serves as a path through which the
main program and the subroutine communicate with each other. The
main program, which is pictured in Figure 7, reads the nearest event
from the event calendar, and calls the EVENT subroutine. The EVENT
subroutine makes proper decisions, and writes a new event on the
event calendar. The basic structure of the EVENT subroutine is shown
in Figure 8. The interaction between the main program and the su-
broutine continues until a certain termination criteria is met(completed
operations or elapsed time), and the simulation model stops.

AN ILLUSTRATIVE EXAMPLE

Suppose a set of parts arrives at an FMS. MPECS is used to
generate a production schedule which maximizes the resources utiliza-

tion. The routings and process times for the parts are shown in Figure
9. Three very simplistic dispatching rules(shortest process time, least

work remaining, and a random rule) are used to develop and illustrate

the simulation model. The Gantt chart associated with each pass of si-

mulation is pictured in Figure 10. As can be noted from the figure the
difference between the best and the worst schedule is 35.8%. This
however is one for a single rule not used in multi-pass application.

Additional improvements might be possible.
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The simulation results depend on the parts mix, the objective and
the time period in which all passes of simulation are performed.
Therefore, off-line analyses are needed for the higher level factory con-
trol system to assign a group of parts, and for MPECS to determine a
suitable time period to develop the analysis. The illustrated example
shows that the random rule is better than the shortest process time for
the objective of maximizing the resource utilization. However, if the si-

mulation for the example was developed in two stages instead of one,
and the first stage simulates 52 time units of activity, then the SPT
rule(shortest process time) yields the best utilization of resources during
that period. The random rule performs better during the next 52 time
units. Furthermore, a different objective function from the higher level

factory control system requires different criteria to control the simula-
tions in order to produce the best possible production schedule.
Therefore, the time window, which determines the length of the simula-
tion in a stage, is a complicated function of the objective and the parts
assigned. However the time window can be determined in an off-line
analysis, and its on-line implementation is still feasible and efficient.

CONCLUSIONS

The organization and structure provides an efficient structure for
FMS control. MPECS utilizes both Al and analysis procedures jointly to
maximize the benefit attainable from both methods. Both the Expert
System and Simulation/Analysis play a major role in the system. The
Expert System provides the control for both the simulation and then the
actual system. Although MPECS has not been fully developed, early re-
sults from the control modules appears to run efficiently enough to be
included in even large production cells. The interface structure also
seems to be easily implementable. Testing of MPECS should begin dur-
ing the Summer 1986.
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REQUIREMENTS FOR AUTOMATIC CONTROL OF
AEROSPACE MANUFACTURING PROCESSES

D.N. Pope Ph.D.
Manager, Simulation and Modeling
LTV Aerospace and Defense Company
Vought Aero Products Division MS 49R-32
P.O. Box 225907
Dallas, Tx. 75265

INTRODUCTION

In recent years, there has been considerable emphasis on the
modernization of defense related industries. Manufacturing
technology programs have advanced materials and process methods.
Cost reduction incentive programs such as the Technology
Modernization and Industrial Modernization Incentives Program
(IMIP) have provided business arrangements that have encouraged
capital investment in manufacturing resources. The US Air Force
Integrated Computer-Aided Manufacturing (ICAM) program developed
the overall operations architecture common to aerospace operations
and funded technology programs directed at specific need areas.

The ICAM 1105 Factory of the Future project described the generic
elements common to aerospace operations as illustrated in Figures
1 and 2. Figure 3 provides further characteristics of the
aerospace environment, some of which are common to industry in
general. In all manufacturing operations, and especially in
aerospace, the bulk of the costs and challenges are in control of
the processes rather than in the actual material transforming
operations themselves. Only about 10% of total product costs
involve direct shop floor labor, and part of that 10% are actually
control activities. Current factory control typically consists of
large manufacturing control organizations supported by data
residing on central mainframes. Some machine processes are driven
by controllers, perhaps linked to a DNC system for communication
of NC part programs and status information. But overall, few
devices are networked to each other or to the central mainframe
and thus fail to acheive the desired level of control.

New technologies in process equipment, computer systems, product
design, process planning, and decision support have potential for
improving control from the management board room all the way down
to the process control level. In this paper, the structure,
requirements, and technology of control will be discussed, as well
as some actual case studies.

A STRUCTURE FOR CONTROL

The sheer magnitude of aerospace operations has led to the
decomposition of the overall environment into units, divided up on
the basis of function, location, and product/program. In the
past, this approach has not generally yielded global optimal
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Figure 1. Generic I CAM Factory of the Future Concept.
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Figure 3. Characteristics of Aerospace Manufacturing.

Aircraft

* Low production rates (1-20) per month with extremely
high part counts (30,000 - 100,000) per end item

* Detail fabrication and low level subassembly performed
using small batches

* Span times of 1.5 years from detail fabrication through
assembly and check out

* Current shop floor mechanization consists of flexible
machining systems, robotic drilling, routing, fastening,
composite tape laying, ultrasonic inspection

* Many facilities and techniques date back to World War II
industrialization

Missiles

* Low to moderate rates (1-10,000) per month with high
purchased component content

* Ordnance (rocket motors, warheads) handling environment in
assembly operations

* Cleanliness requirements for component assembly

* Mechanization in electronic assembly and some structural
assembly operations

Both aircraft and missiles

* Long product development time

* Exotic materials, rapidly evolving processes

* Rigid dimensional, process, and documentation requirements

* High engineering change volume

* Political and technological risks in long range production
forecasting
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results, partly because of lack of global data and partly because
of lack of global management performance objectives. Hierarchical
computer control schemes offer the mechanism to better meet the
data requirements for optimal control and raise the performance
measures of the subsystems to a more global level. Factory of the
Future (FOF) architectures have been represented in various ways,
but most identify levels of control such as:

* Factory
* Center
* Cell
* Station
* Process.

The LTV Vought Aero Products Division (VAPD) FOF planning
architecture, as presented by Harkrider (1), defines the hierarchy
in this manner:

* Management
* Factory
* Center
* System
* Cell
* Equipment

as in Figure 4.

Figure 4. VAPD Hierarchical Computer Control Architecture.
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A hierarchical, distributed control scheme offers the following
benefits

:

* The span of control at each level is manageable.

* Configuration control can be exercised on the global data
required across many functions.

* Operation specific data can be managed at the level it is
needed, in a timely manner, without burdening the entire
system.

Successful implementation of the FOF control scheme is achieved by
top-down design and bottom-up incremental implementation.
Top-down design minimizes expensive retrofitting and islands of
automation. On the other hand, bottom up implementation is a
practical necessity. Industrial implementations of lower levels
of control are now common place, i.e., adaptive control at the
process level and cell control in FMSs. Sufficient bases of
technology and experience now exist to drive the level of control
up to the system and center levels.

The decomposition of control into major factory centers and cells
follows a group technology classification of operations:
assembly, sheet metal, machining, electrical, receiving, etc.
Control modules are developed based on the following rationale:

* A control level is inserted only if there is more than one
resource on the level below it.

* Control of a resource is performed at the lowest level having
all the information required.

* Shared resources are placed under the lowest control module
common to all modules sharing the resources.

* Control levels may be combined to exploit computer hardware
efficiently. Position in the hierarchy does not indicate the
extent or nature of computer hardware resources. Computer
resources vary depending on the scope of activities and data
at that level

.

In order to control the shop floor in an optimal manner, more
attention must be given to the management and scheduling of
resources other than just the process equipment and material in
work. Figure 5 summarizes some of the resources and activities
which require control.

CONTROL TECHNOLOGIES

Numerous technologies are now available for implementing the
hierarchical control strategy. One of the primary objectives of
automation is direct labor reduction, but a benefit of equal
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Figure 5. Resource Control Requirements

Resources

* Information
* Work order , schedule data
* Process routings
* Quality data
* Product definition data
* Supplier data
* Specifications, Instructions
* N/C part programs

* Material

* Equipment

* Tools
* Cutters
* Fixtures , Jigs
* Supplies

* Personnel

Resource Management Activities

Information -

Configuration - end item effectivity, etc.
Storage and Communication

Physical -

Transportation - move physically
Location/status tracking
Storage
Build or procure resource
Preparation - cleaning, etc.
Maintenance
Quality inspection and certification
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importance is control. Thus all automation technologies are, in
fact, means of achieving control over the manufacturing
environment. Figure 6 summarizes the various automation
technologies available to obtain cost reduction and control of the
system. The functional categories in Figure 6 are broken down as
follows

:

Management Planning - the whole spectrum of management and support
(finance, personnel, etc.) not directly related to product design
or manufacturing.

Product Engineering - the activities related to product concept,
design, testing, and configuration management.

Manufacturing Engineering - those activities associated with the
process planning, tool design and planning, N/C programming,
industrial engineering, etc. Also included are manufacturing
technology, industrial modernization, and facilities.

Factory Operations - the tasks directly related to the manufacture
of products, ie, machining, forming, assembly, and all support
functions - quality, production control, receiving, shipping, etc.

As shown in Figure 6, information and decision technologies have
the broadest potential application across all functions, from the
office to the shop floor. While much attention has been given to
the mechanization of shop floor processes, the unique
characteristics of aerospace (Fig. 3) are such that the
integration of data across all functional operations is more
fertile ground for significant productivity gains.

CASE STUDIES

Flexible Machining Cell

In July, 1984, VAPD implemented the Flexible Machining Cell (FMC
I) as shown in Figure 7. The cell consists of 8 4-axis machining
centers, a wash station, 2 coordinate measuring machines, 2
pallet staging carousels, and 4 load/unload stations, all under
computer control. The cell is unique, first in that it handles
550 different parts, and secondly in that the factory host
communicates all information necessary for the cell to operate
without human entry of work orders or any other data. The FMC
software architecture is represented in Figure 8. The master
machining schedule is created by VAPD's business host computer.
The FMC control computer, a DEC 11/44, receives a 20-day window of
work orders on a daily basis from the business host. The
downloaded work orders are assessed, selected, and scheduled into
the FMC by the cell computer control system.
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Figure 6. Automation Technologies.
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Figure 7. Flexible Machining Cell.

Figure 8. FMC Computer Control Architecture
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When the data is downloaded to the FMC computer, the workload is
automatically assessed to maximize machining center resource
utilization. This optimization includes consideration of:

- schedule
- work order priority
- material availability
- NC machining and inspection program availability
- cutting tool requirements
- fixtures and pallets
- machining time.

From the downloaded work orders, the FMC computer system selects
enough work orders for a 24-hour schedule for the cell's
operation. The scheduler optimizes the 24-hour period to meet
production schedule, minimize cutter tool changes, maximize
machine utilization and to reserve a selection of parts with high
machining times for execution on an unmanned third shift.
Simulation of selected work loads assures maximized throughput
prior to actual authorization during the following 24-hour period.

Integrated Machining System (IMS)

Having gained an experience base with the cell level of control
with FMC I, expansion of the machining capability required control
at the next level of control, the system. The IMS is VAPD's first
project at the system level of control. This system, scheduled
for implementation in 1988, is represented in Figure 9. The IMS
will integrate prismatic machining cells through a hierarchical
computer control system as shown in Figure 10. The prismatic
machining capabilities are grouped into cells in the group
technology sense. Each cell comprises machining stations, support
stations (i.e., wash, CMMs), material handling, and a cell
computer control system. FMC I handles 4-axis parts of size
envelope 32"x32"x36". FMC II will perform machining for 5 axis
parts having dimensions up to 8'xl4' using high volume metal
removal technology. Other prismatic machining cells, including an
FMC III for smaller 5-axis parts, will be added to the system in
the near future.

The challenge at the system level is the integration of
different cell computer hardware and software architectures.
There is also the problem of physical material handling interfaces
between cells of different size parts and different equipment
vendors. To the extent possible, these considerations must be
addressed in the cell design phases so that the integration tasks
at the systems level will be minimized.
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Figure 9. Integrated Machining System Concept.

Figure 10. IMS Control Architecture.
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Flexible Composites Center

Projections indicate that within the next 5-10 years,
aerostructures will contain 50% composites materials. In
recognition of this trend, VAPD is implementing a Flexible
Composites Center for completion in 1988. (Figure 11). This will
be VAPS's first project directed at the center level of control.

Composites manufacturing presents additional control challenges
over and above traditional metal parts batch manufacturing
processes. The basic flow of composites fabrication is as
follows

:

1. Receiving, inspection, and storage (cold) of materials.
2. Retrieval, thawing, and movement of materials to layup area.
3. Retrieval and preparation of bond mold tool.
4. Layup of material on mold to form skin.
5. Layup of stiffeners, if any

- core, foam, channels, etc.
6. Assembly of stiffeners with skin.
7. Bag and pull vacuum.
8. Cure part, generally in autoclave.
9. Transfer cured part to handling fixture, layup tools to

storage

.

10. Machine edges of part.
11. Dimensional and ultrasonic inspection of part.

Some of the basic automation and control issues related to
composites fabrication are:

- evolutionary nature of parts design, materials, and processes
- identification and tracking of material pieces in the part
buildups

,

- tracking of time out-of -freezer for each piece of material,
- ad hoc cold storage of wip and unused raw material,
- diversity of part/tool shapes and sizes for handling,
- difficulty of handling uncured part buildups,
- dimensional variations in material thickness,
- scheduling layup of each piece of the layup assembly,
- scheduling of part batches for autoclave cure,
- tool mass/location dependent autoclave cure cycles.

In order to accomplish the varied control tasks within the center
the system level consists of the following modules:

- material control
- fabrication
- post autoclave
- product assurance.
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Each of the four systems in the center has a very different set of
requirements for control . The material control system is
concerned with receipt, inspection, and storage (both cold and
ambient) of raw incoming material. The fabrication system
controls the time critical scheduling of assembly processes for
the layups. The post autoclave system treats the cured composite
layups as single part numbers and controls machining operations.
The product assurance system manages the inspection activies as
well the quality documentation requirements.

SUMMARY

Aerospace manufacturing operations, due to their size and unique
requirements, create special challenges for control. There has
been some progress in automation and control, examples being the
following:

- computer aided design,
- robotics in drilling, welding, routing, deburring, fastening,
- flexible machining systems,
- composite tape laying, rapid ply cutting,
- inspection mechanization and sensors,
- electronic assembly,

There remains, however, considerable costs and inef f icencies in
the control and support functions. Specific areas of need include
the following:

- finite capacity scheduling of the shop floor,
- scheduling of non-machine and material resources - tools etc.

,

- integration of data across functional department boundaries,
- real time data collection,
- solid, feature based geometric models,
- automated generation of NC programs for material nesting,
machining, routing, inspection,

- data communications across multi-vendor shop equipment
environment,

- management of functional activities to global objectives rather
than local performance criteria.
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Figure 11. Flexible Composites Center Concept.
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1.0 Introduction

This paper is part of an ongoing project [see Raman (1985a) and Raman (1985b)] to

develop a real-time scheduling system for the Automated Manufacturing Research Facility

(AMRF) at the National Bureau of Standards. This facility has been established to serve

as a realistic test environment for standards metrolog}7 research. [The reader is referred to

Jones and McLean (1986) and Simpson, Hocken and Albus (1982) for detailed descriptions

of the AMRF.] To reach this goal, computerized planning and control systems are being

developed to operate the facility; one component of which is real-time scheduling.

Real-time scheduling in this paper refers to the decision process that specifies which job

should be processed next by each machine in the facility, given detailed information about

job characteristics (processing time, setup requirements, due-dates, etc.), the current status

of the system (e.g., jobs in process, machine status), and scheduling criteria. The present

configuration of the AMRF facilitates the decomposition of the problem of scheduling the

entire system into single-machine problems for the individual workstations. Consequently,

a two-step research approach has been followed. The first step is to examine each machine
individually, and to apply and extend, as much as possible, known results from single

machine scheduling. The second step is to modify and evaluate the best of these

methodologies in an integr ated model of the system.

This paper reports on the results of Step One for the Automatic Turning Station

(ATS). The ATS manufactures cylindrical parts of several different part types. The
workpieces of a given part type are processed in a batch; the size of the batch is

determined by the geometry of the workpiece and is therefore fixed for a given part

type. While changing over from one part type to another, a setup time associated with the

change of collets (which hold the workpiece on the machine tool) is incurred. This setup

time is, however, independent of the part tj^pes involved in the changeover. Customer
orders arrive randomly at the ATS; the interarrival time between orders follows no pre-

defined distribution. Each order consists of one or more jobs of possibly different part

types. Because of the batching requirements, a job of a given part type is considered

schedulable only if the number of jobs of that part type is large enough to constitute one or

more batches.

The authors thank Drs. Richard Jaclison and Albert Jones of the National Bureau of Standards'for their

valuable assistance in this research effort.
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Though the scheduling problem is essentially dynamic, the lack of a well-defined job

arrival process precludes the possibilitj' of building in an intelligent look-ahead procedure

which incorporates future job arrivals. This is a major restriction since the knowledge of

the distribution of future job arrivals would assist in the formation and sequencing of

batches. However, for a truly random flexible manufacturing system (FMS) [see Groover

(1980)] it is not always possible to characterize the job arrival process through a well-

defined distribution. Any attempt to specify such a distribution (based on, say, historical

data) presupposes the stationarity of the arrival process. Instead of making such a

restrictive assumption, this study treats the dynamic scheduling problem as a series of

static problems which are solved on a rolling-horizon basis.

In this paper, we emphasize due-date based scheduling measures which is consistent

with the findings of Panwalker, Dudek and Smith's (1973) study of the industrial

scheduling problem. Conway, Maxwell and Miller (1967) also note that, for a manager,
"the ability to fulfill delivery promises on time undoubtedly dominates other

considerations". The scheduling problems investigated are: 1) Minimizing the mean job

flow time, 2) Minimizing the average tardiness of all jobs, 3) Minimizing the proportion of

jobs tardy, and 4) Minimizing the standard deviation of job tardiness. Though mean job

flow time is not a due-date related scheduling measure per se, the production system's

ability to quote (and maintain) tighter due-dates is improved by minimizing the average

time spent by a job in the system; hence the inclusion of this performance measure.

The paper is organized as follows. Section 2 presents a review of the previous research

pertinent to this study. Section 3 discusses some characteristics of the mean flow time and
mean tardiness problems for the static case. Section 4 extends the investigation to the

dynamic case with a discussion of the dispatching procedures studied and the results of a

simulation study. Section 5 presents a summary evaluation of the dispatching procedures

and the impact of the utilization level on the performance of the ATS. The notation used

in the paper is given in Table 1.

2.0 Literature Review

Considerable amount of prior research on scheduling of jobs in conventional job shops

already exists. [It is impractical to cite all references here. Good source materials include

Conway, Maxwell and Miller (1967), Baker (1974), Graves (1981) and French (1982).]

Though conventional job-shops and random flexible manufacturing systems meet the same
customer needs (i.e., jobs are made to order), significant differences exist in the system

characteristics. Some of these differences which are likely to impact on the scheduling of

jobs in FMSs are the large number of alternate routings, buffer limitations, effects of

transportation times, low or non-existent setup times and type of scheduling criteria

used. Given these significant differences between traditional job-shops and FMSs, it is not

clear how much of the conventional scheduling results will carry over to random FMSs.
As a consequence, there is an increasing amount of research examining scheduling in

FMSs [see, for example, Stecke and Solberg (1981), Lin and Lee (1984), Dar-El and Sarin

(1984), Chang, Sullivan and Bagchi (1984), Akella, Choong and Gershwin (1984), Shanker

and Tzen (1985) and Afentakis (1985)]. Though some researchers used due-date

information for loading decisions, no prior research exists, as far as we know, which

addresses the issue of due-date related criteria such as tardiness and proportion of jobs

tardy. Though the single-machine problem has a vast literature, few researchers

considered the issues relating to batching of jobs or addressed due-date related

performance criteria with sequence-dependent setup times. [See Sen and Gupta (1984) for

a survey of procedures to schedule jobs against due-date related criteria.] Picard and

Queyranne (1978) showed that the single machine problem with a general cost function
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Table 1

Notation

p Part type index, p= 1,2,..,P

ir Processing time for a job of part type p
P

Np Batch size of part type p

j Job within a batch (for a given part type), j= 1,2,..,N , v p
P

Bp Number of currently schedulable batches of part type p

b Batch b (for a given part type), b= 1,2,..,B , v p
P

For clearer presentation, wherever necessary, b will be used

with subscript p to indicate its part type

T The length of the scheduling horizon

P P
= Z (i N B) + S Z B

_i P P P _i Pp=l p=l
t Time period, t- 1,2,. .,T

S Changeover (setup) time from one part type to another

1, if the collet currently on the machine is of part type p
o

tp |_
0, otherwise

d ^ Due date of job j in batch b of part t5rpe p

Tpbt Tardiness of batch b of part type p if it is completed at time t,

N
P

= Z max (0, t — d ,.)

^ J"

1, if batch b of part type p is completed at time t

bpt V 0, otherwise

ybp f 1, if batch b of part type p precedes batch c of part type q in the sequence

cq 1 0, otherwise

and sequence-dependent setup times can be formulated and solved as a time dependent

traveling salesman problem. However, they did not consider the issue of batching. Santos

and Magazine (1985) developed formulations for the problem of minimizing mean flow time

and mean lateness when jobs are required to be processed in batches. Karmarkar, Kekre
and Kekre (1984) addressed the issues relating to waiting times in job shops as lot sizes

are varied. These two papers do not, however, address the issue of job tardiness.
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3.0 Scheduling Approach

Since the distribution of the job arrival process is not known a priori, we have decided

to decompose the dynamic problem into a series of static problems to facilitate real-time

implementation of any scheduling procedure. A static problem is generated whenever the

ATS becomes available, and it involves making a decision on the job to be processed next

based only on those jobs which are available in the system at that point in time. In the

remainder of Section 3, we present some theoretical results for the static mean flow time

and mean tardiness problems. These results are incorporated into the dispatching

procedures investigated in Section 4.

The static scheduling problem is characterized by: 1) Formation of batches of jobs of

fixed size for a given part type, and 2) A constant changeover time between one part type

and another. Note that the requirement that jobs of the same part type be processed in a

batch implies that the completion times of all jobs in a batch equal the completion time of

the last job in the batch.

At any given point in time, the ATS can be in any one of two states — i) State A, in

which there is no collet on the machine, if for instance, the machine was torn down just

prior to the period in which the scheduling decisions need to be made, and ii) State B, in

which there is a collet for a specific part type on the machine. Because of the changeover

time, the optimal decision would in general depend upon on the current state of the

machine.

To distinguish this problem from single-machine problems without batching

requirements and changeover times, we will henceforth refer to the latter as regular single-

machine problems.

3.1 Minimizing Mean Flow Time

To determine the sequence optimal for minimizing mean flow time, polynomially

bounded procedures can be developed based on the following theorem.

Theorem 1: Given that the ATS is in state A, the mean flow time of all jobs is minimized

by grouping the batches of the same part type together, and sequencing the part types in the

non-decreasing order of their weighted batch processing times (WBPT), SIN + -n .

p p 1

Proof: Refer to Rachamadugu, Raman and Talbot (1986).

Note that the condition stated in Theorem 1 is equivalent to the Weighted Shortest

Processing Time rule for the regular single-machine problem, in which a batch of jobs is

treated as a single job with processing time equal to the sum of the processing times of all

jobs in the batch, and with a weight equal to the number of jobs in the batch.

If the ATS is in state B, the WBPT sequence need not be optimal, since sequencing the

batches of the part type for which the collet is currently on the machine first may lead to a

reduction in the mean flow time. The relative positions of the other batches in the WBPT
sequence would, however, remain the same. To illustrate this case, refer to Figure 1.
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Figure 1 - The Gantt Chart for WBPT Sequence

Let r be the part type for which the collet is currently on the ATS. Let o (o') be the set

of jobs which precede (succeed) jobs of part type r. Then, by sequencing part type r first,

the increase in the flow times of jobs in a,

X = B it N Z B. N.
r r r . 1 i

i e a

The decrease in the flow times of jobs of part type r,

Y = B N Z (B. -n. N. + S)
r r . ill

i e a

The decrease in the flow times of jobs in a',

Z = S Z B. N.

j . a'
3 3

The WBPT sequence is optimal if X > Y + Z, otherwise the sequence in which the

batches of part type r are scheduled first is optimal.

3.2 Minimizing Mean Tardiness

The complexity of the mean tardiness problem even for the regular single-machine case

has long remained an open question. The following theorems, however, establish some
characteristics of the optimal sequence for the problem under study.

Theorem 2: In a sequence optimal for the problem of minimizing mean tardiness, the

batches ofjobs for a given part type are sequenced in the non-decreasing order of the due dates

of the jobs.

Proof: Refer to Rachamadugu et al. (1986).

It follows from Theorem 2 that, while seeking the optimal solution, the waiting jobs of

a given part type p can be ordered in the Earliest Due Date (EDD) sequence, and batches

can be formed from this ordered list by grouping the first N jobs, then the next N jobs,
P P

and so on. The jobs remaining after the last batch has been formed need to be considered

only in the next cycle, i.e., when the ATS next completes a batch of jobs. The implied

precedence relationship among batches yielded by this procedure is depicted in Figure 2.
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Figure 2 — The Precedence Relationship among Batches in an Optimal Sequence

Henceforth, unless stated otherwise, it is assumed that jobs of the same part type are

batched in the manner stated above.

Theorem 3: Given that there is no more than one batch of each part type, any two

adjacent batches, x of part type p, and y of part type q, satisfy the following condition in an
optimal sequence,

a C - a C + Z (K - d .)

y x x y qyj

y

I (K - d .) < 0

i e A
pxi

where,

a (a)
x x

C (C )

x y

K
A (A )

x y

Number of jobs which are tardy in x (y) when it precedes y (x)

S + 7T (S + 7T )

p q

Completion time of the batch scheduled in the later position

Set of jobs which are not tardy when x (y ) precedes y (x ) but
P Q Q P

which are tardy when the positions of these batches are interchanged

Proof: Refer to Rachamadugu et al. (1986).

Theorem 3 states the necessary condition for optimality for the case when there is no

more than one batch of each part type. It can be easily verified that this condition reduces

to the modified due-date rule (refer Baker and Kanet (1983)) which is a necessary

condition for the regular single-machine problem (Rachamadugu (1985)). As shown in

Rachamadugu et al. (1986), the condition stated in Theorem 3 is not necessary for the

general case. It can nevertheless be used to drive a heuristic procedure and as long as the

changeover time S is small relative to the batch processing times n N , the violation of

the basic assumption should have only a minor impact on the solution quality. Note that

the condition stated in Theorem 3 can establish precedence between batches x and y only

when at least one of these two batches contains one or more late jobs when it is scheduled

in the later position. Also, the precedence relationship established by this theorem is not

necessarily transitive.
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A dynamic programming formulation of the mean tardiness problem is given in

Rachamadugu et al. (1986). Although conceptually interesting, the dynamic programming
approach suffers from the 'curse of dimensionality', and from not providing a feasible

solution prior to complete generation of the state space. Both drawbacks can be

ameliorated by incorporating the precedence relationships depicted in Figure 2, along the

lines suggested by Baker and Schrage (1978), or by incorporating heuristic bounds.

However, the experience of Wee and Magazine (1981) and Talbot, Patterson and Gehrlein

(1986) on related scheduling problems indicated that we would be better off pursuing the

integer programming approach discussed below. The depth-first implicit enumeration

procedure developed has the benefits of requiring little memory (and unlike dynamic
programming, the amount of memory required is known before the problem is solved), and
it can be stopped prior to optimality to yield a good feasible solution.

Integer Programming Formulation

An integer programming formulation for the tardiness problem is shown below:

P
B
p T

Minimize Z Z Z T, ' X,

P=lb=l t=l
bpt bpt

Subject to,

T T
ZtX - Z tX, . + M (1 - Ybp ) - N it

- S' > 0 (1)

t=l
cqt

t=l
bp cq q q

1 <t ST: p,q € n: 1 <S b < B : 1 <S c S B
P q

T T
ZtX, — ZtX + M Y P — N it — S' > 0 (2)

t=1
bpt

t=1
cqt cq p p

1 St <T: p,q e n: 1 < b < B : 1 < c < B
P q

X
bpt' V ^ e V P 'q '

b
'C '

t (3)

where,

M = A large positive number, and

g , _
_|

o, if p*q
otherwise

Constraints (1) and (2) represent the disjunctive relationships between batches in the

precedence network depicted in Figure 2.
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This formulation leads to a large number of constraints and variables even for

moderate-sized problems. The proposed implicit enumeration solution approach, however,

obviates the need for generating or testing constraints (1) and (2) explicitly, and efficiently

exploits the characteristics of the structure depicted in Figure 2. The solution procedure

uses depth-first search and builds the schedule forwards in time. A node at level L in the

enumeration tree corresponds to a partial sequence of L batches. Any given node n in the

tree has an associated array A which contains the indexes of batches which are
n

schedulable at the next level. The precedence relationships lead to a significant reduction

in the computer storage requirements since the cardinality of A^ is limited to the total

number of the part types of the unscheduled batches.

Starting from the unique node at level 0, the procedure implements the Modified

Myopic rule (to be discussed in Section 4.1) at each node to determine the relative priorities

of batches potentially schedulable at the next level. These batches are maintained in the

non-increasing order of their priorities in array A . Augmentation at node n at level L

requires selecting the batch with the highest priority (as determined a priori by the

Modified Myopic rule) among those which have not already been branched from.

The lower bound at node n is given by,

LB(n) = T (a) + max (0, L (a'))

where T (a) is the tardiness already incurred by batches scheduled according to sequence

o, and L (a') is the total lateness incurred by scheduling the remaining batches in the

WBPT sequence. Since the WBPT sequence minimizes mean flow time, it minimizes mean
lateness as well, and also since lateness is an underestimate of tardiness for any feasible

sequence, this bound is valid.

Since the breadth of the tree is determined by the cardinality of A^ associated with

each node n at the preceding level, computational requirements increase exponentially with

an increase in the number of schedulable part t3rpes. Fortunately, however, unless all jobs

have substantial slack, the effectiveness of the lower bounding procedure, which is

dependent upon the number of batches with late jobs, generally improves with an increase

in the number of part types. In general, this procedure is more useful at the middle and

the lower parts of the tree. At very low levels in the tree, however, the computational

overhead associated with the repetitive calculation of LB(n) precludes its usage.

The results of the computational studies with this enumeration procedure for the

dynamic problem are discussed in Section 4.

4.0 Dynamic Scheduling

As mentioned in Section 1.0, the dynamic nature of the real-time scheduling problem

requires implementation of dispatching procedures for selecting the batch to be processed

next whenever the ATS becomes available. We describe the dispatching rules investigated

in Section 4.1. Section 4.2 describes the simulation experiment conducted to evaluate the

effectiveness of these dispatching rules. The results of the experiment are discussed in

Section 4.3.
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4. 1 Description of the Dispatching Procedures

This paper investigates nine dispatching procedures. The first procedure is based on

the first-come-first-serve discipline. The next four procedures — the Revised Modified Due
Date rule, the Modified Myopic rule, the Modified Montagne's rule and the Revised Earliest

Due Date rule are modifications of heuristic methods found to be effective for the regular

single-machine and/or job-shop problems by various researchers. The modifications have

been necessitated by the need to incorporate the batching of jobs and changeover

times. The sixth procedure is based on the Weighted Batch Processing condition discussed

in Section 3.1. The seventh procedure is derived from the necessary condition for local

optimality stated in Theorem 3, while the eighth procedure is a combination of the

necessary condition and the Modified Myopic rule. The final procedure tested is based on

the implicit enumeration approach described in Section 3.2. These procedures are now
discussed.

(i) First Come First Serve (FCFS) Method

The First Come First Serve rule sequences the batches in the order in which they are

formed. This rule essentially provides a benchmark for establishing the relative

effectiveness of the other procedures investigated.

(ii) Revised Modified Due Date (RMDD) Method

In their studies of the single-machine and job-shop tardiness problems, Baker and
Bertrand (1982), Baker and Kanet (1983) and Baker (1984) found the Modified Due date

(MDD) rule to be quite effective relative to other heuristics under varying levels of

machine utilization and due-date tightness, and for different due-date setting rules. The
robustness of the MDD rule lies in effectively combining the Shortest Processing Time
(SPT) rule, which has been shown to be quite effective when the due dates are set very

tightly, and the EDD rule which performs well when the due dates are lax. Rachamadugu
(1985) has shown that, for the regular single-machine tardiness problem, the MDD rule is

a necessar}' condition for optimality.

For the present study, the MDD rule has been modified as follows. The revised

modified due date RMDD, of a batch b of part type p is defined as,

N
P

RMDD, = I max (t + 6 S + it N , d ,.)
bp

j =1 P P p' pbj

where t is the time at which the scheduling decision has to be made.

According to the RMDD rule, when the ATS becomes available at time t. the batch

with the earliest modified due date RMDD^ is selected for processing. While it can be

shown that the RMDD rule is not necessary for optimality, it is nevertheless worth
investigating, given the strength of the MDD rule for regular single-machine problems.
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(Hi) Modified Myopic (MYOP) Method

Morton and Rachamadugu's (1982) study of the single-machine weighted tardiness

problem found the Myopic rule to be quite effective compared to the other rules tested. The
Myopic rule is similar to the MDD rule in the sense that it reduces to the SPT rule when
all jobs have non-positive slack, and to the EDD rule when they have substantial slack. In

the intermediate range, however, the priority assigned to a job increases exponentially

with decrease in its slack. The Modified Myopic rule assigns priority MYOP^ to a batch b

of part type p, where,

N
P

MYOP, = I Pr, . and,

r. _ c a. Nn [ - (d , .
- (t + J S + j N ))

+
In ]

bpj
(6
p *p p

} 6 P J P P P ave

where, n is the mean processing time of a batch of jobs, averaged over all part types,
3-VC

and (x)
+

denotes max (x, 0).

(iv) Modified Montague's (MONT) Method

In their experimental investigation of the regular single-machine tardiness problem,

Baker and Martin (1974) found the dispatching procedure suggested by Montagne (1969)

to perform well. In our study, this procedure has been revised to yield the Modified

Montagne's rule which sequences the available batches in the non-decreasing order of

MONT, , where for batch b of part type p,

N p B
P P P

MONT, = E [(ir N )/( I I (t + it N + S) - d ..)]
bP j=i P P

p=ib=l P P Pbj

The implementation of the RMDD, MYOP and MONT rules, automatically

incorporates the precedence relationship shown in Figure 2. Computational requirements

are thereby reduced by restricting the evaluation of priorities, for each part type, to only

the batch with the lowest sum of job due dates.

(v) Revised Earliest Due-Date (REDD) Method

The REDD method sequences the batches in the non-decreasing order of the sum of the

due-dates of jobs in the batch. Operationally, this rule is equivalent to the Earliest Due
Date rule for regular single-machine problem.
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(vi) Weighted Batch Processing Time (WBPT) Method

The WBPT method sequences the batches in the non-decreasing order of their weighted

batch processing times S/N + it . Ties between batches are broken by sequencing the
P P

batch with the lower sum of job due-dates first. As mentioned in Section 3.1, this method is

equivalent to the Weighted Shortest Processing Time rule for regular single-machine

problems.

(vii) Necessary Condition-Based (NC) Method

This method implements the condition stated in Theorem 3 as a heuristic procedure.

Though this theorem is restrictive in its scope, it is obvious from the discussions presented

in Section 3.2 that the application of this theorem to the more general case, in which there

is more than one batch of each part type, leads to minor degradation of the solution

quality, as long as the changeover time S is small relative to the batch processing times

The NC method considers the schedulable batches two at a time and establishes the

precedence relationship between them. As discussed in Section 3.2, Theorem 3 may not

always be able to establish the precedence relationship between two batches. In such

cases, the NC method determines the precedence in the favor of the batch with the lower

sum of job due-dates. In general, since this precedence relationship need not be transitive,

cycles may be formed while applying this procedure. In this study, however, the formation

of such cycles is avoided by enforcing transitivity in the order in which the batches are

considered.

(viii) Revised Necessary Condition-Based (RNC) Method

This procedure is similar to the NC method, the underlying difference being the use of

the Modified Myopic rule, instead of the sum of the job due dates, to break ties between
two batches when Theorem 3 fails to establish precedence.

The precedence relationships imply that, while implementing the NC and the RNC
procedures, the evaluation of the condition stated in Theorem 3 can be restricted to the

batches due the earliest for each part type.

(ix) Implicit Enumeration (BB) Method

This procedure implements the branch and bound method discussed in Section 3.2 to

solve the static tardiness problem optimally for selecting the batch to be processed next.

While this method does not guarantee optimality for the dynamic-scheduling problem, its

effectiveness in a rolling-horizon environment seemed worth investigating. Unlike the

procedures mentioned earlier, this method provides an ordered sequence of all

batches. Clearly, if no batch has been formed since the previous implementation of this

procedure (in the previous cycle), the same sequence can be retained for this cycle as

well. Operationally, this reduces the number of times the static optimal solution must be

found.
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4.2 The Simulation Model

The simulation model considers ten part types. The processing times n and the batch

sizes N are shown in Table 2. Currently, all part types being manufactured at the ATS
P

have a batch size of 6 which has been retained in this study for part types 1 through 8.

To permit generalization, part types 9 and 10 with batch size of 3 have been included.

To capture the lack of a well-defined order arrival process in the best manner possible,

the order interarrival times are assumed to be exponentially distributed, which provides a

large variance in the sampled values. The number of jobs in an order varies uniformly

between 1 and 10, each job being equally likely to belong to any one of the ten part types

being manufactured currently. The mean job interarrival time determines the ATS
utilization. In this study, this arrival rate is varied to yield three levels, 50%, 70% and

90%, of ATS utilization.

Table 2

Part Details •

Part Type Batch Size

Processing Time
(Minutes)

1 6 1.0

2 6 2.0

3 6 3.0

4 6 4.0

5 6 5.0

6 6 6.0

7 6 7.0

8 6 8.0

9 3 8.0

10 3 9.0

Changeover time between part types : 1.0 minute

Upon its arrival, each job is assigned a due date based on the Total Work Content

(TWK) rule. This rule has been found to be quite effective in previous studies (see, for

example, Baker (1984)). According to this rule, the due date assigned to a job is the sum
of its arrival time, and a flow time which is the product of the job processing time and the

flow allowance factor. The flow allowance factor essentially controls the tightness of the

due dates. In the present study, this rule was modified to include the average time a job

has to wait for batching as well. The due date d^ . assigned to job j of part type p is given

by,

d .
= a. + F t N + 0 (4)

P • J J P P P
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where a. is the arrival time of job j, F is the flow allowance factor and 0 is the average
J P

batching time for a job of part type p. For the simulation runs, a range of due-date

tightness is achieved by using flow allowance factors of 2, 4, 5, 7, 9, 10, 11, 13, 15, and

20. 8 is determined by the batch size N and the average interarrival time A between
*P • P P

two successive jobs of part type p from the following relationship,

0 = A„ (N - 1) / 2,
P P P

and,

A = A / (9 O )

p p ave

where A is the average interarrival time between two successive orders, 8^ is the

probability that an arriving job is of part type p, and 0 is the average order size.

Two measures were used to confirm the validity of the sampling process. The realized

utilization levels were found to lie within 1.5% of the theoretical values of 50%, 70% and

90%, and the realized batching times were within 5.6% of the theoretical values for the ten

part types. Since the flow times and the tardiness values of the jobs within the same batch

are highly correlated, these two statistics were recorded as single observations for the

entire batch.

The simulation run covered a steady-state period of 14400 minutes. Observations over

this period were batched; the correlation between batches was found to be insignificant at

the 95% confidence level.

4.3 Simulation Results and Discussion

4.3.1 Experimental Results

The results of the simulation runs are presented belOw for each of the four

performance criteria mentioned above.

Mean Flow Time (MFT)

For all the nine procedures, the mean flow time values exhibit a V-shaped curve when
they are plotted against machine utilization levels. The values at 70% utilization are

consistently lower than the corresponding values at 50% and 90% utilizations. Figure 3

depicts this behavior for the MYOP rule.

Among the dispatching procedures, WBPT is dominant at all utilization levels and at

all flow allowance factors. With the exception of NC and RNC, the other rules yield

comparable results at 50% utilization; as the level of utilization increases, however, the

best results are yielded by BB and MYOP at low values of F while MONT is clearly

superior at very high values of F. While FCFS and WBPT yield constant values of MFT at

all values of F for a given utilization, the other rules exhibit varying degrees of sensitivity

to due-date tightness, especially so at 90% utilization. NC and RNC, in addition to yielding

very high values of MFT, appear to be very sensitive to F.
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Mean Tardiness (MT)

For all the procedures investigated, the plot of MT against utilization level exhibits the

V-shape for low values of F. However, the curve tends to become flat as F increases, in

particular the relative increase in MT from 70% utilization to 90% utilization decreases at

increasing rate. For FCFS, WBPT and MONT, however, the values of MT at 90%
utilization continue to be higher than the corresponding values at 70% even at very high

values of F. For other rules this crossover occurs at different values of F with BB and

MYOP crossing over the earliest. For all the rules, the MT values at 50% utilization are

high across all values of F.

The values of MT as a function of F are depicted in Figures 4 through 6 for the

utilization levels of 50%, 70% and 90% respectively.
2 BB has the best overall

performance across all ranges of due-date tightness and utilization levels. However,

MYOP, and to a lesser extent RNC, are also very efficient; their relative performance

improves with an increase in the utilization level. The relative efficiencies of these rules

are most prominent at low values of F. Though the FCFS rule appears to be effective at

50% utilization, its performance deteriorates rapidly with increase in the level of

utilization. With a reduction in due-date tightness, the values of MT obtained under the

different rules tend to converge; the convergence is, however, less rapid as the utilization

level increases.

Proportion of Jobs Tardy (PT)

The V-shape is less obvious for the measure of PT when it is plotted against the

utilization level. At low values of F, PT increases with increase in utilization level, the

increase is more rapid in the 70% — 90% range. As F increases, the curve tends to become
flatter, the V-shape appearing for the intermediate values of F. As F increases, PT
decreases monotonically with increase in utilization levels.

At 50% utilization, BB, MYOP and WBPT yield the best values; BB and MYOP do so

for high flow allowances at 70% and 90% utilization levels as well. However, for tight due
dates MONT is distinctly the best at 70% utilization while WBPT is dominant is 90%
utilization. Also, as the utilization level increases, the performance of FCFS degrades

rapidly while NC and RNC appear to be increasingly effective. Figure 7 depicts the

behavior of PT as a function of F at 90% utilization level.

Standard Deviation of Tardiness (SDT)

The values of SDT against ATS utilization levels depict the familiar V-shape at low

values of F, the degradation at lower values of utilization is quite sharp.

There is only a marginal difference among the dispatching rules at 50%
utilization. However, as the utilization level increases, BB, MYOP, NC and RNC appear

to be superior to the other procedures and are equally effective at high flow allowances,

while at 90% utilization and for extremely tight due-dates, FCFS is clearly

For greater clarity in presentation, we have omitted from the graphs the results of those dispatching
procedures which have been consistently dominated by others. The results of FCFS, REDD and WBPT have,

however, been retained to serve as benchmarks.
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dominant. WBPT and MONT yield the worst results; their relative performances degrade

further as the utilization level increases. Also, the crossover values of F for all the

dispatching rules are lower than the corresponding values for the PT criterion. Figure 8

compares the behavior of the procedures for the 90% utilization level.

4.3.2 Discussion

Impact of Utilization Level and Flow Allowance Factor

All dispatching procedures yield V-shaped curves for the four measures studied. This

result is quite prominent for the MFT criterion where this shape is retained for all values

of F. For the MT and the SDT criteria this shape is observed for low values of F while, for

the PT criterion, it occurs at intermediate values of F.

Note that the flow time of any job comprises its batching time — the time it waits for

the other members of its batch to arrive, its queueing time — the time it spends (after

batching) in waiting for the ATS to complete processing of other jobs ahead of it, and the

processing time of the batch it is a member of. At 50% utilization, the large values of flow

time are attributable to high interarrival times which results in large batching

times. At 90% utilization, the increased number of batches vying for the use of ATS
results in large values of queueing times. A typical example of the relative values of the

average batching, the average queueing and the average processing times for FCFS at the

three utilization levels is shown in Table 3.

Table 3

Breakdown of Job Mean Flow Time
(for FCFS)

Mean Mean Mean Batch Mean
Utilization Batching Time Queueing Time Processing Time Flow Time

Level (Minutes) (Minutes) (Minutes) (Minutes)

50% 237.5 30.2 26.5 294.2

70% 169.2 54.9 26.5 250.6

90% 129.5 167.6 26.5 323.6

The 70% utilization level provides the best compromise between the batching and the

queueing times, thereby yielding the lowest values of MFT. Since the tendency of the

average batching time to decrease and the average queueing time to increase with increase

in utilization levels is independent of the flow allowances, the "V" shape of the curve is

retained for all values of F. As shown later, the extent of increase in queueing times does

depend upon the individual dispatching procedure.

The arguments stated above partially explain the behavior of the MT, the PT and the

SDT curves at different levels of utilization, especial^ when the due-dates are set

tightly. Recall that the due-date setting procedure incorporates the expected batching time

which explains the fact that the MT curves are flatter than the MFT curves. However, at

50% utilization, since the interarrival times not only have a large mean value but a large
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variance as well (since the interarrival times follow an exponential distribution), the

variance in the arrival times and therefore the due-dates of jobs within a batch is high,

which in turn implies that the variation between the realized batching time and the

expected batching time is high. Consequently, some jobs (which would be the initial jobs in

their batches) tend to become tardy. The number of such jobs is, however, quite small,

which explains the low values of PT at 50% utilization level. The variation between the

realized and the expected values of batching time also explains the large variance in

tardiness values as depicted by the SDT curves. As the level of utilization increases, the

variance in the interarrival times decreases, which results in smaller discrepancy between

the realized and the expected values of the batching time. However, at 90% utilization, the

increase in queueing times lead to larger values of tardiness and larger values of PT and

SDT as well. An increase in F leads to the crossover phenomenon since large flow

allowances not only compensate for the increased queueing time, but at high utilization

levels the smaller variance in the interarrival times ensures closer adherence to the

expected values of the batching times incorporated in the due-dates. This explains the fact

that the values of PT and SDT decrease rapidly with increase in F. The above discussions

also explain the fact that the change in the slope of the MT curve in the 50% — 70% range

with an increase in F is more gradual compared to the change in the slope of the curve in

the 70%-90% range.

Evaluation of the Dispatching Procedures

Under the TWK due-date setting rule, BB and MYOP perform uniformly well for all

four performance measures across all utilization levels and flow allowances. It appears

that, unlike some of the procedures which are optimum for the static problem but which

perform rather poorly under a dynamic environment [For example, see Chand (1982) for a

discussion on the degradation in the performance of the Wagner-Whitin algorithm when it

is applied in a rolling-horizon environment], the effectiveness of BB for the static problem

is extended to the dynamic case as well. The effectiveness of MYOP, which is essentially

a single-pass heuristic, is, however, surprising. Recall that the BB procedure implements
MYOP for determining the initial solution. An analysis of the solutions generated by BB
for the static problem has indicated that the initial solution provided by MYOP is quite

often optimal; whenever it has been improved upon, the difference in the solution values

have been marginal, generally in the order of one percent or less. RNC appears to be quite

effective for due-date based performance measures. However, it yields high values of mean
flow time at low utilization levels and/or high flow allowances; its performance for this

measure is also very sensitive to the actual flow allowance factor used for setting job due-

dates. As expected, WBPT exhibits several 'SPT-like' properties such as low mean flow

time, low proportion of tardy jobs and high tardiness variance.

However, note that the TWK rule presupposes that the due dates are set

deterministically when the jobs arrive and the same flow allowance is used for all jobs. To
ascertain the robustness of these dispatching procedures with respect to variability in the

values of F, another set of simulation runs was conducted, the results of which are shown
in Tables 4 and 5 for the measures of mean flow time and mean tardiness respective^. In

this set the flow allowance factor F was assumed to be uniformly distributed between 2

and 20; the due date was determined from Equation (4) using the sampled value of F. In

this due-date setting procedure (hereafter termed the "random" due-date setting

procedure), the correlation between the arrival time of a job and its due date is greatly

reduced. [The conceptual difference between the TWK and the random due-date setting

procedures lies in the control exercised by the manufacturing function in assigning job due-
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Table 4

Mean Flow Time

Dispatching Rule

Utilization Level

50% 70% 90%

FCFS 294.2 250.6 323.6

RMDD 295.2 246.3 307.1

MYOP 293.7 244.7 302.0

MONT 291.4 241.7 282.8

WBPT 287.9 236.3 262.4

REDD 295.5 247.3 311.8

NC 292.2 243.3 295.0

RNC 291.0 241.1 290.2

BB 291.0 241.2 290.4

Table 5

Mean Tardiness

Utilization Level

Dispatching Rule

50% 70% 90%

FCFS 44.65 29.64 58.03

RMDD 42.65 24.28 32.83

MYOP 41.44 24.42 23.13

MONT 42.40 23.64 45.13

WBPT 43.16 26.84 58.16

REDD 42.60 24.07 36.06

NC 40.96 21.24 18.89

RNC 41.11 21.56 18.42

BB 41.11 21.56 18.36

dates; in the latter case the due-dates are assumed to be set exogenously.] It is evident

from Tables 3 and 4 that the BB rule continues to perform effectively, especially at high

utilization levels. However, MYOP is consistently dominated by RNC and NC for both

performance measures.

Finally, a comment will be made about the relative computational attractiveness of the

various rules. All the rules except BB are essentially list processing algorithms. BB is

exponential and hence is used operationally with a computational or iteration time trap. If

the optimal solution is not found within this trap, the best solution found is used. Given the

large size of the experiment used in this research, the simulation was carried out on an

AMDAHL V8 computer using SIMAN and FORTRAN programs. The time trap for BB
was 5 seconds. The simulation programs incorporating BB, MYOP and RNC were

subsequently downloaded on a standard IBM-XT microcomputer with 640 kilobytes of core
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memory, and the execution times of these three procedures for solving static problems

(which were generated during the simulation run) were monitored. The number of jobs in

these static problems varied between 3 and 75. The average time taken to solve a static

problem was found to be less than 3 seconds for all three procedures. While MYOP and

RNC were able to schedule consistent^ within 4 seconds, the maximum execution time for

BB was 10 seconds.

5.0 Summary and Conclusions

This paper extends the previous research on single-machine scheduling to the case

where jobs need to be processed in batches with a constant sequence-dependent changeover

time. For the static mean tardiness problem, a solution procedure based on implicit

enumeration is proposed. For the dynamic scheduling problem involving implementation of

scheduling decisions in real-time, nine dispatching procedures are presented and evaluated.

This research highlights two issues of critical importance for an automated

manufacturing center or a traditional job shop where job batching and sequence dependent

setup times occur. Firstly, the existence of an optimum utilization level. The results of this

study indicate that for a given set of job and batching characteristics and for a given flow

allowance factor, the mean flow time of all jobs is minimized by operating at a utilization

level which effects the best compromise between the batching and the queueing times of

the individual jobs. Such a utilization level is also optimal for due-date based scheduling

measures when the flow allowances are small. In this study, for the given data set and the

three utilization levels investigated, operating at 70% utilization optimized mean flow time

as well as the three due-date based scheduling measures for all flow allowances less than

or equal to 10 across all dispatching rules.

Secondty, this study suggests that, for such a manufacturing environment, serious

consideration should be given to the dispatching rules BB, MYOP and RNC, for their high

expected system performance, and the ability to use them on today's microcomputers for

real-time scheduling.
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Effective engineering design must simultaneously focus on both the

products and the manner in which they are manufactured, assembled and

distributed. The scientific and popular literature contains literally

thousands of papers that address portions of these engineering design
problems. Over the past decade there have been substantial advances in

software and analysis tools which have resulted in effective commercially
available Computer-Aided-Design (CAD) systems, some Computer-Aided-
Manufacturing (CAM) systems and improved Manufacturing-Resource-Planning
(MRP) systems. New industrial engineering techniques have evolved for

planning and scheduling computer control of machine tools, machining
centers, and, in some cases, whole factories. New material handling
technology has also changed and improved. Concepts such as Flexible-
Manufacturing-Systems (FMS) and Group-Technology (GT) have been proposed
and implemented in some instances.

Impressive applications of joint product and prpcess design now exist
in the United States such as at IBM's Lexington facility, GE's Appliance
Park in Louisville, and Hughes Aircraft in Los Angeles. Additional large
and small scale facilities will soon be in operation ranging from GM's new
large Saginaw Gear plant to Emerson Electric 's relatively small dishwasher
motor facility. All of these systems differ from a physical standpoint
because the nature of the products and processes are not identical.
Nonetheless, there are important similarities as well. All employ
information technology that permits essentially real-time knowledge of the
status of the system. Much of this knowledge is acquired through a variety
of sensors. This knowledge is used to identify and, in some cases, alter
faulty processes or components to insure overall high quality. However,
none of these systems adequately uses information for real-time resource
scheduling. Neither have the product and process characteristics been
designed considering that these characteristics greatly affect the ease of
scheduling a factory's operation. The objective should be to design
effective and competitive manufacturing systems as well as to design
quality products that meet customer needs. To do this properly, the
economic effects of product and process design on the ease of scheduling
and dispatching resources must be taken into account. Otherwise,
unanticipated work-in-process (WIP) inventories, lower than estimated
throughput and capacity utilization, and higher unit costs will certainly
result

.
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The question then is "What attributes should products and processes

have so that schedules can be created that generate high throughput, low

WIP and high capacity utilization?" There are some obvious attributes such

as low variance in processing times and very high process yields. Even if

careful manufacturing systems engineering has been done to achieve these

goals and if attention has been focused on combining, simplifying and, when
possible, eliminating tasks, it is still possible to have an ineffective
system due to the difficulty of dynamically scheduling a facility as

product mix and volumes deviate from initial marketing estimates.

The purpose of this paper is to show how product and process design
could affect scheduling policy. In particular, we will examine how design
affects material flow, WIP and throughput by simplifying the complexity of

scheduling in a certain type of factory. The factory we have in mind is

focused on the production of a relatively small number of high volume
products. The demand for each final product is not known precisely and
could vary substantially over time. The process technology is planned such
that each of the key components in all final products will be produced on
common equipment. Common equipment has been selected because of the

expense of dedicated equipment and the uncertainty of product life and the

demand rate over an extended period of time for each individual product.
Furthermore, the components are assumed to flow through the facility in the

same manner, that is, the components all visit the machines in an identical
sequence. In essence we are assuming that the components are quite similar
in terms of form and function but may differ in their geometric
characteristics such as their diameter or length or perhaps the number and
depth of holes drilled, slots milled, gears cut, etc. Examples of such
systems are found in the manufacture of car axles, computer boards and
components for air tools.

The scheduling concepts presented in Section IV depend heavily on the
nature of the problem environment we have described. We will be making
more specific assumptions as we proceed. The purpose here is to discuss
the relationship between product and process design and scheduling policy
in the type of repetitive manufacturing system we have specified.
Different environments require different scheduling systems from the ones
we discuss. Our goal is only to demonstrate that these relationships must
be taken into account in the design stage no matter what type of product or
manufacturing system is under consideration.

II. PREVIOUS OR-BASED PLANNING AND SCHEDULING RESEARCH

Since the time that OR emerged as an engineering discipline,
researchers have been studying various aspects of planning and scheduling
problems. (See texts by Baker [1], Johnson and Montgomery [4], Peterson
and Silver [8] and Conway, Maxwell and Miller [2] for overviews of the
types of models and policies that have been considered.) Recently
researchers have pointed out that a modeling structure that considers the
interrelationships of system design through shop floor scheduling is

necessary (see Maxwell, Muckstadt. Thomas and VanderEecken [6]). These
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researchers have demonstrated that a comprehensive modeling structure is

needed when designing a system so that inconsistencies are avoided among

the models used to design systems, plan production, and control the flow of

jobs on the shop floor.

Most of the models in the literature do not address the important

question "What is the goal of the model in the planning/scheduling
framework?" Consequently, there are a number of flaws in the existing
models that have been created and studied at length during the past two

decades

.

The first weakness is that the problem environment is often assumed to

have a fixed, finite horizon with all data, such as the number, processing
times, yields and due dates of all jobs, deterministical ly known at the

beginnning of the horizon. Consequently, the dynamics of the environment
are totally ignored. To get around this difficulty, a rolling horizon is

often used. Nonetheless, the effects of the choice of the horizon length
is often unknown. Furthermore the need for complete specification of data
for the timing of and duration of all future events within the horizon
distorts the estimate of the actual system throughput, WIP and cost. This
is particularly a problem at the point in time in which the system is being
designed. Generally the information available at the design stage is not
precise.

The second major weakness of the models is that they are not linked
together in either a feed forward and/or feedback sense, especially models
for the design, planning, and scheduling phases.

The third major weakness is that planning and scheduling models do not
interact in the sense of considering the potential effect of stochastic
events or random variation in event durations.

The model that we will discuss for the repetitive manufacturing
environment contains some of these weaknesses as well; however, it does
address key issues and avoids some of these weaknesses. It is similar in
spirit to the models presented by Graves, et al . [3] and Maxwell and
Mucks tadt [5].

III. THE DESIGN PROBLEM

The team of product and manufacturing engineers for the repetitive
manufacturing environment will specify

a) the nature of products - including the bill of materials, the
routing, setup and run times per piece per operation and the
part-process yield,

b) the manufacturing system - including the quantities of machine
tool types and their location on the shop floor, tooling,
fixturing, and processing and assembly methods.
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c) the information system - including the control systems on the

shop floor that permits real-time understanding of the system's

status and dynamically reallocating resources to respond to that

status, and

d) the material flow rules - including production and batch transfer

sizes

.

Traditionally design has concentrated primarily on feasibility and

cost. Feasibility implied that the proper amounts of resource would be

available to produce the desired average required throughput. The choices

of the exact process steps and manufacturing technology was driven by the

desire to minimize capital investment and the variable cost of labor and
material

.

The cost of capital has risen, product lives have shortened, the

variety of products has increased, and the complexity, technology and cost

of manufacturing systems has increased; consequently, other attributes have
become important. These include manufacturing and design lead times, setup
and run times, WIP levels, machine utilization, and true throughput
capability. These are highly interactive factors. As setup times
increase, lot-sizes increase thereby lengthening manufacturing lead times,

increasing WIP and perhaps reducing throughput rates. An engineering team
must examine the effect of design on these factors. For example, different
types and varieties of tooling and fixturing should be considered so that
these set-up times are made as small as possible thereby increasing
scheduling flexibility. We have also seen systems where design goals have
specifically stipulated that the number of tooling types is to be no
greater than a given value and that commonality of fixtures and carriers is

to be maximized. The result of this type of design philosophy not only
reduces the obvious costs but dramatically eases the pressures of
scheduling the shop and results in improved logistics performance.

IV. SCHEDULING IN A REPETITIVE MANUFACTURING ENVIRONMENT

Let's now state the characteristics of a repetitive manufacturing
environment in a more formal manner. The manufacturing system consists of
workcenters in which products are produced. Jobs are released to
workcenters that specify both the product to be produced and the production
quantity. Each released job has a defined start and completion time for
each operation on the appropriate machine. The time period over which a
specific job occupies these machines is called a job slot . Each of these
concepts is described more completely in the following paragraphs.

The manufacturing system consists of a set of workcenters, which we
denote by W. Each workcenter w € W consists of a non-empty set m(w)

,

whose elements are identical interchangeable machines.
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Let P be the set of products produced in the system. Each product

p € P has an associated graph G = (N ,A ), where N is a set of nodes
P P P P

corresponding to the manufacturing operations required to produce the

product and A is a set of arcs representing a precedence relationship of
P

operations and the movement of WIP inventory. For each n € there is

exactly one workcenter in which the operation is completed, which we denote

by w(n)

.

We assume the products are partitioned into u classes in the

following manner. All the products p in class j, denoted by P , have

identical graphs G^. Let M(j) represent the set of machine centers

required to make the products in class j. We assume M(j) D M(i) =
(J),

i ^ j. The manufacturing facility is assumed to operate so that all prod-

ucts p € P., j = 1 u, are produced following a common routing and are
3

produced on machines that are used to make no products in other classes.

This partitioning occurs in systems using the group technology concept.

Since resources needed to make products in separate classes are
different, we will concentrate on one class. Furthermore, since G = G ,

P P
for all p.p' € P., there is no need to consider subscripts on either

J

classes or product graphs. So let G = (N,A) represent the graph for the

class.

We make one additional assumption concerning the products in a given
class. The length of time to complete an instance of each job on each
machine is the sum of its setup time plus the product of the lot size and
the run time per unit. Let £(p,n) be this job length for product p in
machine center w(n) of operation n. We assume that the lot sizes are
chosen and run times and setup times are engineered so that £(p,n) =

£(p' ,n) for all products p and p' in the same class and for all
n € N. Consequently we are assuming that the duration of each instance of
the jobs is the same from product to product on a given machine. If the
setup times are small compared to the run times for a minimum sized lot
(which may result due to the design of a carrier), then there will be a
wide range of feasible £(•••) satisfying this property. We feel that a
design goal should be to engineer setup times and run times so that these
lengths can be made approximately equal.

The effect of these assumptions is that we no longer need to be
concerned with the particular products that are being produced since job
duration is product independent.

Let us now focus on developing a schedule in a repetitive manufac-
turing environment. A schedule is simply a specification of a Gantt chart
indicating the times when each job is executed in each workcenter.
Individual instances of jobs correspond to a particular product with a
given start and completion time on each machine. This period of time is
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the job slot and the graph of the job slots is the Gantt chart. Each job

slot in the Gantt chart is either commi tted to the production of a
particular type of product or is uncommitted . When customer orders are
received, uncommitted job slots are assigned to complete the desired
production. A customer order consists of a request for different products
in various quantities. This order is then expressed in terms of job slots.

The order is then scheduled into uncommitted job slots consistent with the

order * s due date

.

Since we in essence are assuming that only one job type exists, the

schedule we propose to follow is called a cyclic schedule . A cyclic
schedule is specified by a cycle length, C, and an assignment of every
node n € N to a start time S(n) and a machine M(n) with the

properties

:

1. A proper machine is used for each operation (node)

M(n) € m(w(n)) V n € N.

2. Operations on the same machine do not overlap

if w^) = w(n
2 )

and M^) = M(n
2 )

and n^ ^ n
2

and n^ ,n
2

€ N,

then the intervals 1^ = [(S(n^) + r(n^)) mod C)

and I
2

= [(S(n
2 ) + r(n

2 )) mod C)

have no point in common, where r(») is the processing time on
the appropriate machine for the given operation.

3. The cycle length, C, cannot be less than the largest amount of
processing time assigned to any machine of any workcenter;

C 2: max max ( 2 r(n)).
w € W c € m(w) n 3 M(n) = c

Property (3) must hold if property (2) holds, so the properties of a
cyclic schedule rest on property (2).

V. AN EXAMPLE OF THE DESIGN TRADEOFFS

The purpose of this section is to illustrate the consequences of
alternative designs for repetitive manufacturing systems on performance
measures such as throughput rates, WIP, cycle times and flow times. We
also show that by increasing processing times we can in some instances
actually increase system performance.
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We begin by considering an example manufacturing system consisting of

four workcenters; a turning, a machining, a heat treat and a grinding

workcenter. The industrial engineers have determined that based on the

processing times, as displayed in Table 1, that each work center should

contain one machine. This was established by observing that the machining

workcenter is the bottleneck with a processing time per job of 9 time

units. The desired throughput rate needed to meet projected demand is 1/9,

which corresponds to the capacity of the bottleneck. Table 1 also

indicates that each job instance has 6 operations and a prescribed routing.

For this case the graph G has the following node and arc sets:

N = {1,2,3,4,5,6} and A = {( 1 ,2) ,
(2,3) .

(3,4) ,
(4,5) , (5,6)}

.

Opera ti on
f

1 2 3 4 5 6
Norkcenter 1 2 1 2 3
Proc . 1 1 rne 4 2 5 2 3

Workcenter 1 2 3
Total time 0 9 2 3

Tabid 1

Management has also decided that excess inventory should be avoided
because the value of each job is quite substantial. In fact, management
has asked that schedules be constructed so that each job remains in the

facility for the absolute minimum amount of time. Since the sum of the
processing times for the individual operations for each job is 20 time
units, the minimum achievable flow time is also 20 time units per job.

Thus the goal is to construct a cyclic schedule that has no excess
inventory. That is, there should not be any inventory in the system at any
point in time that is not being worked on by one of the machines.

The schedule for each operation of two job instances for this scenario
is displayed in Figure 1. The notation i-j here and in subsequent
figures indicates that the machine is working on operation j of job
instance i. The minimum flow time schedule for each job is under the
constraints given in this Gantt chart. Unfortunately, this schedule
requires machining center to be idle periodically. This occurs because a
job cannot begin its first operation unless it is possible to complete all
operations without delay. As can be seen from the graph in Figure 1, the
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cycle time in the machining center must be 11 time units, including 2 time

units of idleness, if the minimum flow time is to be achieved. However,

this results in a throughput rate of 1/11, which does not meet the required

throughput rate of 1/9. We also note that with this minimum flow time the

average number of jobs in the system is roughly 1.82 jobs. This was found

using the well known equation L = XW with X = 1/11 and W = 20.

Since it is impossible to achieve simultaneously a flow time of 20 (no

excess inventory) and a throughput rate of 1/9, management now wants a
schedule that achieves the throughput rate constraint. Many such schedules

can be constructed. However, the flow time and corresponding inventory

requirements can differ depending on the chosen schedule.

For example, Figure 2 shows a schedule that will permit the desired
throughput rate of 1/9 to be achieved. However, the flow time is 60 time

units per job thereby increasing the inventory substantially. This
schedule will have an average of 60/9 jobs in system, a considerable
increase over the minimum 20/11 jobs.

It is possible to construct a minimum flow time schedule given the

desired throughput rate of 1/9. Figure 3 displays this schedule whose flow
time is 27 time units. Each job is worked on for 20 time units and waits
for processing 7 time units. The average number of jobs in the system is

now 3 with an average of 20/9 jobs in production and an average of 7/9 jobs
waiting to be processed.

Thus given the operation times and the workcenter capacities in this
example, there is on average some inventory waiting to be processed.
Suppose we want to reduce the flow time so that the waiting time per job
(7 time units) is reduced.

Since the bottleneck workcenter (machining center) requires 9 time
units to process each job, it is reasonable to believe that the flow time
per job could be decreased by increasing this workcenter' s capacity.
Suppose a second machine is placed in this workcenter. The resulting
minimum flow time schedule for this modified system is displayed in
Figure 4. Note that this schedule would not be an easy one to identify
without the aid of an algorithm. The flow time is reduced to 25 time units
and the average number of jobs awaiting processing is reduced by only 2/9
jobs. Placing additional machines in this workcenter will not further
reduce the flow time of each job. Thus it is not possible to eliminate
excess inventory by simply adding capacity to the bottleneck workcenter.
This happens because each job must return to the turning center after
completing operation 2 and because the turning center becomes the
bottleneck workcenter.

An alternative way to possibly reduce flow time is to use a different
process to complete each job. We assume the manufacturing engineers
selected the original process steps because they resulted in a minimum
total processing time. This may appear to be the best possible
alternative; however, it may not be.
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Suppose the required tasks are re-evaluated. It is often possible to

accomplish certain metal removal tasks on either a turning or a machining

center. We assume the tasks are reevaluated so that operations and

operation times are revised to correspond to the data in Table 2. We see

that there are two important changes. First, the sum of the processing

times has increased to 21 time units, an increase of 5%. Second, each job

visits each workcenter only once in the revised routing.

Operat \ on 1 2 3 A

Workcenter 1 2 3 4

Proc . time 7 9 2 3

Workcenter 1 2 3
Total time 7 9 2 3

Table 2

The schedule that results from this revised routing is shown in

Figure 5. We see that the flow time for this schedule is 21 time units,

the minimum possible flow time. Hence no waiting time is needed and each

job flows through the system without delay. Thus there is no excess
inventory. Furthermore, since the processing time in the machining
workcenter is 9, the throughput rate is 1/9, the desired value.

This simple example problem illustrates some of the effects that

process, workcenter and product design can have on key system performance
measures. The example clearly demonstrates that careful throught has to go
into system design. The relationships among production capacity,
processing times, inventory and throughput rate can be quite complicated.
We advocate that these relationships be established and used as the basis
for designing products, processes and workcenters in repetitive
manufacturing systems.

VI. CONCLUDING COMMENTS

In this paper we have discussed the concept of a cyclic schedule. We
have shown that by carefully engineering both the products and processes,
these cyclic schedules can be effectively employed to improve performance
in repetitive manufacturing systems.

We feel that the cyclic scheduling model potentially has many
advantages over the classic finite rolling horizon models. The simplicity
of these cyclic schedules could be of substantial practical importance when
evaluating alternative manufacturing system designs. Some preliminary
results have been obtained by Graves et al. [3], Maxwell and Muckstadt [5]
and Roundy [7]. However, these works are only a beginning. We encourage
researchers and practitioners to examine from both analytic and
experimental viewpoints the properties and potential benefits of cyclic
schedules

.
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An Adaptable Scheduling Algorithm for Flexible Flow Lines (Abstract)

Robert J. Wittrock

Manufacturing Research Department

IBM Thomas J. Watson Research Center

RO. Box 218

Yorktown Heights, NY 10598

Consider a manufacturing line which produces parts of several types. Each part must be processed

by at most one machine in each of several banks of machines. An algorithm will be presented, which

schedules the loading of parts into such a line. The goal of the algorithm is primarily to minimize the

makespan and secondarily to minimize queuing. The problem is decomposed into four subproblems

and each of these is solved by using a fast heuristic. Several extensions are made to the algorithm, in

order to handle limited storage capacity, large volumes, expediting, and reactions to system dynamics.

The algorithm was tested by computing schedules for a real production line, and the results are dis-

cussed.

This paper has been submitted to Operations Research.
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DETERMINING AGGREGATED FMS PRODUCTION RATIOS AND

MINIMUM INVENTORY REQUIREMENTS

Kathryn E. Stecke

Graduate School of Business Administration
The University of Michigan

Ann Arbor, Michigan

1 . INTRODUCTION

The high level of automation of an FMS allows efficient and flexible
simultaneous machining of a variety of part types in unit batch sizes. The
operation of these systems is different from the traditional assembly line

or job shop situations. The FMS planning, scheduling, and control problems
have sometimes similar, but often different counterparts in the conventional
manufacturing systems.

Five production planning problems were defined in Stecke [1983] to help
an FMS manager set up his/her system in an efficient and productive manner
prior to the start of production. Several of these have been addressed pre-
viously at various levels of detail. This paper addresses a different two of

the five planning problems.

The plan of the paper is as follows. §2 begins by briefly reviewing the

planning problems and various solution approaches to date. We discuss how
these problems and appropriate solution procedures are different for FMSs as

well as how their solutions relate to the FMS scheduling problems that would
need to be solved subsequently. §3 suggests solution approaches to determine
aggregate production ratios for several relevant operating objectives and

associated problems. §4 takes the results of §3 as input into two models to
use to help determine operating solutions. A summary and future research
needs are provided in §5.

2. PROBLEM DEFINITION

The following five planning problems have to be addressed and implemented
in an FMS, periodically and in advance of the start of production of a new or
different part mix. Suri and Whitney [1984] call problems like these, second
level decisions, to be addressed over a time horizon of several days or weeks.
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1. The part types that are to be produced next, and simultaneously over
the upcoming period of time, have to be selected.

2. Within each machine type, machines. may be partitioned into identically
tooled machine groups. Then each group can perform the same opera-
tions. Grouping is useful in that it automatically provides redun-
dancy for breakdown situations; it automatically provides for alterna-
tive part routings; it decomposes the tooling problems into smaller
problems and makes them easier to solve. However, grouping is not
essential and sometimes cannot be performed. The necessary planning
functions can be addressed directly in (5) below.

3. The production ratios at which the selected .part types should be pro-
duced over time are determined.

4. The minimum numbers of pallets and fixtures of different fixture types
required to maintain the production ratios need to be determined.

5. The cutting tools of all operations of all of the selected part types
have to be loaded into some machine's (one or more) limited capacity
tool magazine in advance of production. This determines which
machine tools each operation can be performed on during the real-time
production of parts.

There are production requirements that usually change over time for a

variety of part types. These production requirements are derived either from
some forecast of demand or actual customer orders. Depending on many factors,
such as system capacity or due dates, for example, usually some subset of the

required part types will be chosen to be produced next over the upcoming time
period. When the production requirements for some part type(s) are finished,
space is freed up in the tool magazines and either one or more part types can

be input into the system (if space for all cutting tools can be found) or just
the reduced set of part types can be machined (perhaps more pooling can be

done). An alternative heuristic to select the part types to be produced next
is suggested by Whitney and Gaul [1984]. They partition all part types into
batches, and then machine one batch at a time.

The grouping and loading problems (problems (2) and (5)) have been treated

at several levels of detail. Queueing networks have been used to characterize
appropriate solutions to these and other FMS problems and to provide qualita-
tive or operational insights in Buzacott and Shanthikumar [1980], Cavaille
and Dubois [1982], Dubois [1983], Solberg [1977, 1979], Shanthikumar and

Buzacott [1980], Shanthikumar and Stecke [1986], Stecke [1986], Stecke and

Morin [1985], Stecke and Solberg [1985], Suri [1983], Suri and Hildebrandt

[1984], and Yao [1984], for example. At a detailed level, the various problems
were addressed using mathematical programming (Stecke [1983], Berrada and

Stecke [1984]), heuristics (Stecke and Talbot [1983], Whitney and Gaul [1984]),
and at a less detailed level by Kusiak [1983].

This paper addresses the third and fourth planning problems. In particu-
lar, aggregate approaches to help determine appropriate, "optimal" ratios in

which a selected set of part types should be produced are suggested in §3. The

main, overall system objective that is considered in this paper is to maximize

production or system utilization. The equipment is expensive and many FMS
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users admit that a high utilization and maximum production is of major concern

(i.e., Vought AeroProducts , John Deere, Renault Machines Outiles , . . . ) . If due

dates are relevant, these would impact other problems, such as part type selec-

tion as well as the part input sequence and scheduling procedures. Makespan
might also be important, but maximize utilization could help to attain makespan
objectives

.

Three relevant objectives to determine the production ratios to follow
that will help maximize production are considered here. Each would be appli-
cable in a different type of FMS. These various FMS situations and those

relevant for consideration here are now described.

Some FMSs produce parts that are required in certain relative ratios. For

example, perhaps the system machines many parts or components for later assem-
bly purposes. Then the parts are required in certain, perhaps equal, output
ratios of each. These requirements can be translated into operating production
ratios in this case, as we shall see in §3.1. There are also interesting part
type selection, grouping, loading, part input sequence, and scheduling problems
in this case, which are not the subject of this paper.

The systems that are of more interest here are those that machine indepen-
dent part types. There may be requirements for varying numbers of each, but

we are free to determine the relative ratios in which they should be produced.
There are several scenarios possible in this case. Some approaches to operate
the system are better than others (with respect to maximum utilization).

We first examine the situation in which a set of part types has been
selected to be machined, having varying production requirements, with the op-
erating objective of starting and finishing all of these parts at the same
time. There are plausible reasons for such an operating decision. Before pro-
duction begins, all required cutting tools have to find their places in some
tool magazines(s) . When all requirements are finished, all magazines can then
be emptied and the system set up for the next set of part types. This approach
tends to minimize the frequency of tool changes. We show in §3.1 how to deter-
mine aggregate ratios of parts so that they begin and end all requirements sim-
ultaneously. One can see that this approach defines the workload constraints
and the bottleneck machine (type). In general, it will neither maximize pro-
duction nor utilization. However, this may be an appropriate approach for some
FMSs, for example, if demand for some parts is dependent and certain relative
output ratios are required. These output ratios would be translated into dif-
ferent production ratios. We show how to implement this approach in §4.2

The operation of the FMS is different in §3.2. Aggregate ratios of part
types are determined so as to keep the workload per machine on each of the
machine types relatively balanced (or unbalanced, if that is applicable). In
this case, the operation of the FMS is more flexible. Now, the requirements
of some part type are finished first, and all of the planning problems are
addressed again, including the determination of production ratios. The plan-
ning for set up of the system prior to production is more complicated, but
system utilization and production increases. Groups of pooled machines are
also considered.
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Throughout §3.2, it is seen that by determining ratios to balance work-
loads, idle time tends to decrease, the amount of buffer space required is les

than otherwise, less lead time is required, and inventory requirements are
minimized. Some theoretical justification of the latter observation is

provided by Shanthikumar and Stecke [1986].

In some systems, parts require one or more refixturings so that cutting
operations can be performed on a different surface of the part. In these sit-
uations, there are relative ratios predetermined for each fixturing of each
part type, but if the types are independent, ratios can again be found.
Another situation that can be handled similarly is that of different component
being machined in fixed ratios but for different assemblies. The ratios of

assemblies can then be determined. These situations are addressed in §3.2.5.

In §4, we use the aggregate results of §3 as input into more detailed
models to determine optimal, operating production ratios. We also specify how
to solve the related problem of determining the minimum number of pallets and

fixtures of different fixture types that are needed to maintain the desired,
calculated production ratios.

3. DETERMINING AGGREGATE PRODUCTION RATIOS

We begin by defining in Table I the notation that will be used
subsequently.

TABLE I

Notation

part types, i = 1,...,N

machines, j = 1,...,M

machine types, k = 1,...,K

production ratio of part type i

production requirements for part type i

number of pallets required for part type i

processing time of part type i on machine j

total workload of one part of part type i

number of machines of type k
I

total number of pallets required = £ n.

i=l

i

j

k

a
i

r
i

n
i

Pij

C Pi

\

-338-



3.1 FINISHING ALL PARTS AT THE SAME TIME

Given the part types that have been selected to be machined simultaneously
over some upcoming production period, and each part type's total processing
time and production requirements, the problem is to find a set of aggregate
production ratios to be followed that allow all part types to finish at the

same time.

The aggregate production ratios are obtained simply by solving the fol-

lowing equations for a^ , i = 1,...,N.

r
1

(tp
1
)/a

1
= r

2
(tp

2
)/a

2
= ... = r

i
(tp

i
)/a

i
= ... = r

N
(tp

N
)/a

N (1)

The situation can be thought of as a static, deterministic, aggregate,
minimum makespan-like problem. Travel time, waiting time, and the like are
not considered here. The real-time control of production accounts for these.

These aggregate production ratios, a^ , serve as guidelines for production. For
example, they impact and can be used to help determine the part input sequence.

Appropriate scheduling procedures will direct the flow of work through the sys-
tem. These other considerations, i.e., waiting time,..., are accounted for

shortly in determining actual production ratios.

The following simple example illustrates the concepts. Table II contains
processing time information and production requirements for two part types on

two machine types (mills and drills, say).

TABLE II

Processing Times for Two Part Types on
Two Machine Types with Production Requirements

Mill Drill r

.

i

PT
1

10' 40' 50

PT 20' 10' 100

Substituting the appropriate information into equation (1) and solving,
the aggregate production ratios are: a^ = 5 and = 6.

It can be seen that maintaining these relative ratios over time will help
to allow the completion of all requirements of both part types at the same
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time. This might be a goal of Whitney and Gaul's [1984] batching procedure.
Begin a batch, complete its requirements over some time horizon, and then begin
the next batch. The frequency of tool changes are minimized. However, produc-
tion rate is lower using this approach, rather than the different objective
approach of §3.2. Hence the total number of tool changes will also be less.

This approach is also applicable if, for example, two of PT2 are needed
for every PT^ . This required output ratio translates directly to the produc-
tion requirements in Table II of 100 and 50 pieces, respectively.

As another example, if these requirements are for one customer, and the
orders need to be shipped together when completed, and there is no area for
finished goods inventory, this approach is appropriate also.

Operating the system in this manner defines the workload. In this partic-
ular example, the workload unbalance is not too bad. Over time, the drills
will be the bottleneck machine type. In §3.2, another approach, applicable
for different types of systems, determines the ratios to provide a better
workload balance.

Notice that we have not yet accounted for travel time, waiting time, or

congestion. Only the aggregate ratios have been determined. These other con-
siderations are accounted for in §4.2, where the ratios are input into other
models that determine the actual operating production ratios as well as the
minimum number of pallets and fixtures to maintain these ratios. Rarely,
these ratios are slightly revised at this next stage. Finally, we note that
this procedure generalizes immediately to N part types, M machines, and K
machine types.

3.2 BALANCING WORKLOAD PER MACHINE

Given the processing time requirements of each part type on each machine

type, the problem is to determine relative ratios at which the part types

should be maintained in production, so as to keep the workloads on the machine
types balanced.

For different types and sizes of problems, the following suggested solu-
tion procedures differ. Also, for larger problems there are multiple "optimal"
solutions with respect to balancing, so that other, secondary criteria can be

used to determine the ratios to follow. For these reasons, the presentation
consists of cases, presented in order of increasing complexity. Examples are

used to illustrate. The benefits to be obtained from following the suggested
procedures are first demonstrated in §3.2.3, as the situations become suffi-
ciently complex enough to be of interest.

Aggregate production ratios are determined that are to be followed over
time. These ratios are input into the more detailed models in §4.2. They
are revised, if need be. More usually, the minimum number of pallets and

fixtures to maintain these ratios can be found via the procedures of §3.
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3.2.1 Two Part Types, Two Machine Types

The simplest situation consists of two part types and two machine types

with one machine of each type. Using the notation of Table I, the ratios to

balance the workload on both machines over time can be found by solving:

Note that the quantity on the left (right) hand side of equation (2) is an

aggregate measure of workload over time on machine one (two). Equating the

two quantities balances the workload.

If the solution (3) consists of positive a. and a^, these are then the

ratios to maintain over time to balance the workload. However, care should

be taken to ensure a feasible (all a^ greater than zero) solution to equa-
tion (2). In selecting the two part types to be produced, one has to

utilize one machine type more, while the other part type has to utilize the

other machine type more. Otherwise, a workload balance between the two

machines is impossible and a queue has to build and idle time results. This
situation would surface in (3) as the ratios, a^ and a^, would then relate
negatively to each other. Obviously, the processing time requirements on each

machine type j cannot be identical.

To illustrate with the data in Table II, the production ratios that bal-
ance the workload on the mill and drill are:

a^ = 1 and = 3.

Again, we return to this in §4.2, where these aggregate operating ratios are
input into more detailed models.

The procedure generalizes immediately to systems containing pools of ma-
chines. If there are several machines (m^) of each type k, then the workload
per machine is balanced by solving:

P
ll

a
l
+ p21

a
2

= P 12
a

l
+ P22

a 2* (2)

The solution is:

a
l = p 22 - p 21 .

a
2 pn - P 12

(3)

Pll
m
2

a
l
+ P21

m
2

a
2

= P 12
m

l
a

l
+ P22

m
l V (4)

The solution is:

a
l = P 22

m
l - P 21

m
2 .

a
2 pn m

2
- p 12

(5)
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To illustrate with the same data of Table II, if there are 2 mills and 4

drills, the relative ratios that balance the workload per machine on each mill
and drill are:

a^ = 3 and = 2.

The next generalization is to include a third part type.

3.2.2 Three Part Types, Two Machine Types

By including a third part type 3 on the system, the equation to solve to
find the production ratios of three part types on two machines is:

P ll
a

l
+ P21

a
2

+ P31
a
3

= P 12
a

l
+ P22

a
2

+ P32 V (6)

The solution to equation (6) is of the form:

(P 12
- PU )

a
t
+ (p

32
- p31 )

a
3 > (7)

3
2

"
P 21

- P 22

In this case, the solution is not a set of ratios. The solution described
by (7) is an equation, in particular, a plane. If the problem is well-defined
(along the lines described in §3.2.1), then there is an infinite number of

solutions that will balance each machine's workload. The problem of how to

choose one of these solutions is addressed in §4.

To illustrate, consider the inclusion of a third part type in addition to

those of Table II, requiring 10 minutes on the mill and 20 minutes on the

drill. These requirements are in reverse to those of part type 2. In this

case, the solution to equation (6) is:

a
2

=
^a l

+ a3*

Table III contains some possible solutions, all of which balance the workload.

TABLE III

Production Ratios from Equation (8)

a
l

1 1 2 2 1

a
2

4 5 8 7 6

a
3

1 2 2 1 3

n 6 8 12 10 10
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If, for example, the number of pallets In the system is the sum of the ratios,
we see that there can be several ways to distribute some n pallets among the

three part types so as to balance workload. We return to this issue in §4.

Notice that although part types 2 and 3 have asymmetric machine requirements,
their ratios will never be equal unless type 1 is not produced.

Finally, note that in the case of pooling machines, the equation to solve
for the optimal production ratios is:

P ll
m
2

a
l
+ P21

m
2

a
2

+ P31
m
2

a
3

= P12
m

l
a

l
+ P22

m
l

a
2

+ P32
m

l
a 3* (9)

One solution to equation (9) is of the form:

(p
12

m
x
- pu m

2 )
a

L
+ (p32

- p31
m
2 >

a^ (10)
a
2 p21

m
2

' P22
m

l

3.2.3 N Part Types, N Machine Types

The procedure described now to find the production ratios is different
from those provided in the previous sections. In the present case, N equations
are solved for N unknowns. In order to obtain a feasible and meaningful solu-
tion (i.e., all a^ > 0), an initial, simple check should be made to see that
the maximum processing time of each of the N machine types is required by a

different part type.

The ratios to balance the workload on the machine types over time can be
found by solving the N equations:

N
W =

I a p , j = 1 N. (11)
i=l J

To illustrate the procedure, consider the aggregate processing time infor-
mation in Table IV. We want the workload, W of equation (11), to be the same
on each machine type:

W = 10a
1
+ 20a

2
+ 10a

3
= 20a

L
+ 10a

2
+ 30a

3
= 50a

1
+ 5a

2
+ 20a

3
»

Since the three equations are dependent, a value for W has to be chosen. The
relative ratios remain the same, regardless of the value of W. The selected W
merely scales the a.. Setting W = 100 and solving the three equations simulta-
neously, we obtain: a.^ = 1.083, a

2
= 3.783, a

3
= 1.35. Doubling each a^ we

obtain: a^ = 2.106, a
2

= 7.566, a
3

= 2.7. Rounding these values translates
to ratios of about 1:4:1 or 2:8:3.
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TABLE IV

Processing Times for Three Part Types on Three Machine Types

Mill Drill VTL

PT
L

10 20 50

i PT
2

20 10 5

\

PT
3

10 30 20

Simulating this situation quickly showed that maintaining the ratios of

1:4:1, and including a second PT- every other period, both kept the machines
balanced and minimized the in-process inventory . Of course, an appropriate
part input sequence has to be determined and the calculated production ratios
help with this problem also. They provide guidelines to follow. By following
the production ratios of 1:4:1.5, several input sequences provided: a balanced
workload; minimum work-in-process required; minimum buffer space required; and
minimum idle time. In fact, the minimum number of pallets and fixtures of

each fixture type required to maintain the ratios was either:

(1, 4, 1) or (1, 3, 2).

Only 6 pallets in total were required. For all other sets of aggregate produc-
tion ratios that were simulated, queues built up, there was inserted idle time,

additional pallets (inventory) were required to keep machines busy, workload
was unbalanced, and more buffer space at each machine was required.

3.2.4 N + M Part Types, N Machine Types

A more usual situation is when there are more part types being machined
concurrently than machine types. As in §3.2.2, the solution will most often no

longer be unique. There could be an infinite number of solutions, but as we
shall see, most of these can often be eliminated as either infeasible or

undesirable.

The procedure to find the optimal aggregate production ratios is similar

to that described in §3.2.3: The N equations (11) are solved for the a^. How-
ever, there could be many solutions. The following example Illustrates this

situation.

Consider the three-machine system described in Table V. In order for the

workload on each machine to be identical, equation (11) provides the three

equations

:
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W = 10a, + 20a_ + 10a o + 15a. = 40a. + 10a_ + 30a. + 20a.12341234
= 50a

1
+ 5a

2
+ 20a

3
+ 40a^.

TABLE V

Processing Times for Four Part Types on Three Machine Types

Mill Drill VTL

PT
X

10 40 50

PT
2

20 10 5

PT
3

10 30 20

PT
4

15 20 40

Setting W = 100, we can solve for a^ , a^, and a^, as functions of a^:

a, = 1.7808 - 1.1959a,

a0 = 4.3477 - .739a.
2 4

a_ = -.4347 + 1.1738a.

.

3 4

(12)

It appears as though there would be an infinite number of solutions. In
reality, the feasible set of solutions is small. For any integer value of a^
greater than one, a is negative (i.e., infeasible). The equations (12) are
graphed in Figure 1. For any values of a^ outside of the interval (.37, 1.49),
either a, or a 0 is negative. For a. = 1, a, = .585, a_ = 3.6, and a~ = .739.13 4 1 2 3

Rounding these values up to integer values, suggests aggregate production
rations of: (a^ , a^ t a^, a^) = (1, 4, 1, 1). (13)

It can be seen that in this example, any other ratios that would tend to bal-
ance workload would be fractional, i.e., a^ = .5.
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Figure 2 Is a Gantt chart of one possible scenario. It depicts a flow

shop, where each part visits the mill first, the drill second, and the lathe

last. Using the aggregate production ratios (13) as guidelines, a good part

input sequence was determined to be:

1, 2, 2, 2, 3, 4, 2.

The subscript of each part number in Figure 2 is the pallet/ fixture number that

is assigned to that individual part. The sequence is periodic and repeats as

is. The small boxes () indicate the completion of a cycle of the input

sequence. Three cycles are shown here.

The production ratios of equation (13) were very useful in the following
ways

:

1. They were useful as guidelines to help find a good, periodic, input
sequence of parts.

2. They helped to find a schedule with very little idle time. Workload
is nearly perfectly balanced.

3. The numbers of pallets/fixtures required to maintain these production
ratios is exactly the values of the ratios: 1, 4, 1, 1. The total
number of pallets required is 7.

4. The amount of buffer space at each machine to hold the WIP inventory
is minimal. .

The little idle time on the mill in Figure 2 can be decreased even further
by following the ratios: (.5, 4, 1, 1). These ratios are closer to the opti-
mal fractions that balance workloads . A part input sequence that provides an
even better schedule (less idle time,...) while following these new ratios is:

1, 2, 2, 2, 3, 4, 2; 2, 3, 2, 2, 4, 2.

Again, the procedure generalizes immediately to N machines and N + M part
types. The usual situation is that there are more part types than machine
types. This could result in several sets of "optimal" aggregate production
ratios

.

3.2.5 Ref ixturing

For most types of prismatic parts, after a series of operations are per-
formed, they move off the system to be refixtured. The part is clamped to a

different fixture type on a different pallet. The part is then released to the
system again and additional cutting and inspection operations are performed on
a different surface of the part. Each ref ixturing in most respects can be
treated as a new part type. However, for each part, the production ratios of

the refixturings have to remain at one to one. If the end products are inde-
pendent, aggregate ratios can be found for these that balance the workload.
Depending on the numbers of part types and machine types, the appropriate meth-
ods described earlier in §3.2 can be applied to find these ratios.
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We again illustrate with an example. The system descibed in Table VI

consists of two machine types processing two part types, each of which required

a refixturing after passing through the mill and then the drill. In Table VI,

PT^ . is part type i with pallet/fixture combination j.

TABLE VI

Processing Times for Two Part Types,

Requiring Ref ixturings , on Two Machine Types

Mill Drill

PT
11

10 40

PT
12

10 30

PTn 20 10

PT
22

15 20

Aggregating the processing time information of Table VI and substituting
into equation (2), the aggregate production ratios are: (a^, a

2
) = (1, 10).

Maintaining these ratios balances the workload. However, in a flow shop situ-

ation, and ignoring for the moment the refixturing, set-up, and transportation
times while considering the processing and queueing times, only three, rather
than ten, fixtures for part type 2 are required to produce at the indicated
production ratios. This determination includes waiting time and buffer re-
quirements. When the delays due to transportation and fixturing times are
accounted for, a few more pallets will often be required.

4. DETERMINING MINIMUM INVENTORY REQUIREMENTS

The methods of §3 provide aggregate production ratios to follow over time
to balance the workload. It has been demonstrated that, in addition, they are
useful as guidelines to suggest appropriate input sequences and to minimize
inventory requirements. In this section, several of the remaining issues that
were mentioned earlier are addressed. Other problems, that remain as future
research needs, are addressed in §5.

The usual situation is that there are more part types simultaneously being
machined than machine types. Then the ratio problem is similar to that of

§§3.2.2 and 3.2.4, where there can be potentially many optimal sets of aggre-
gate production ratios to choose from. In §4.1, some suggestions are offered
to help select operating (but still aggregate) production ratios.

In §4.2, we address the problems of determining: (1) actual operating
production ratios; and (2) minimum inventory requirements to operate at these
ratios. The suggestions of §4.1 serve as input into any of several models
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that can help determine both the best ratios at which to operate the FMS and

the minimum numbers of pallets and fixture requirements. Both queueing net-
works and Petri nets are used to determine these. Simulation has been used
(see Schriber and Stecke [1986]). Often that much detailed modeling capa-
bility is not required. More aggregate or simpler models might be desirable
because of the frequency of solution that would be required. However, simu-
lation would be the most frequently used evaluator.

4.1 DETERMINING AGGREGATE OPERATING PRODUCTION RATIOS

When there are more part types than machine types, there are potentially
many optimum solutions to the aggregate production ratio problem. After the

appropriate equations are solved, feasible intervals for the ratios should be
found, as shown in §3.2.4. Because the ratios have to be greater than zero,
the intervals can be quite small. Of course if all part types dominate the
same machine type, then no feasible ratios can balance the workload per

machine

.

In some situations, graphical methods are helpful to both determine the
ratio intervals and to choose ratios, as in §3.2.4. In particular, a graph is

useful for situations in which N + 1 part types are to be produced on N machine
types. Otherwise, Tables of feasible combinations can be developed, as shown
in §3.2.2, i.e., like Table III.

In any case, there could be a question concerning how to round fractional
optimal aggregate ratios up or down to integer values. Fortunately, perform-
ance does not appear to be sensitive to small variations in the ratios. In ad-
dition, considerations of transportation, fixturing, and queueing time may
revise the ratios slightly (more inventory required), but in these situations
also, experience has indicated that system performance does not appear to be

very sensitive to variations in the ratios.

More specifically, due dates may have been used in the first planning
problem to select the part types to be simultaneously machined next. From the
feasible sets of ratios, those that best ensure that the due dates are met can

be selected. To determine that the due dates can be met, processing time re-
quirements, transportation, queueing, expected down time of the machine tools,
for example, have to be considered. Also, real-time control has to occur to

monitor continuously the performance to ensure that no part type's due date is

in jeopardy. If possible, appropriate action (or reaction) might be taken, in

breakdown situations for example, to change the way the system is operated (to

change ratios, for example), so as to meet the due dates.

In these types of situations, artificial intelligence might be useful, for

the purpose of real-time, continuous monitoring. A rule-based expert system
could be developed to propose certain actions to take, if the system state
changes drastically (i.e., a machine breakdown). Such a system could be used
to choose, update, or change the production ratios as the system changes.
Different optimal ratios, all of which tend to balance workload, can be chosen

by the expert system, as the system state indicates. The different set of

ratios will specify different pallet distributions.
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4.2 DETERMINING ACTUAL PRODUCTION RATIOS AND MINIMUM INVENTORY REQUIREMENTS

The aggregate ratios found by the methods of §3 serve as guidelines to

help provide input into the models now described to find actual operating
ratios.

One model that is useful for these purposes is a multiclass closed queue-
ing network, such as MVAQ. (See Cavaillle and Dubois [1982], Suri and

Hildebrant [1984].) This stochastic model requires average input values and

provides average output values. In particular, for each part type, the input
required is the average visit frequency to each machine (group) and the average
processing time of an operation at each machine (group). The outputs include
the steady-state mean production rates of each part type, machine utilizations,
and average queue lengths at each machine (group).

MVAQ can also model, at an average, aggregate level, load and unload
times, refixturing times, queueing times, and transportation times. The pro-
duction ratios found by the methods described in §3 can be used to suggest num-
bers of pallets and fixtures of different types to maintain the calculated, op-
timal, aggregate ratios, as described in §3 and §4.1, say. These numbers can

serve as input to the aggregate queueing network model. The output (machine
utilizations) indicates how balanced the system is when the additional delay
factors are included. In addition, the average production rates indicate if

any due dates are in jeopardy.

Suri and Hildebrant [1984] indicate that this model is reasonably accurate
and is about 10-20% pessimistic in its predictions, as compared to simulations
of similar systems allowing more modeling detail. However, MVAQ is even more
accurate in its relative predictions. For example, the ratios of the expected
production rates of parts and machine utilizations matched those provided by
simulation quite well. It is these relative values that would be of use here,
to indicate ratios that provide a good balance.

Another useful model that could accept the production ratios found in §3

as input to help find the minimum inventory requirements is a timed Petri net.

(See Dubois and Stecke [1983].) This model could complement the queueing net-
work model because it uses deterministic operation times. Also, it is not an
aggregate model. The actual processing times and part routes are modeled.
Set-up times, transportation times, and queueing times are modeled in all
detail, unlike the queueing network models.

For a certain subclass of timed Petri nets (in particular, decision-free
nets), the graphical model can be easily translated into linear state equations
in a {max, +}-based algebra. (See Cohen, Dubois, Quadrot, and Viot [1983].)
Decision-free means that no decisions are to be made. Everything needs to be
specified in advance, such as the part routes, the input sequence, and the

like. A particular Petri net representation can be analyzed very quickly via
some algorithms, based in part on Karp's [1978] efficient shortest path algo-
rithm, to provide much information that is useful for performance evaluation.

Some of the output from the model includes the cycle time (hence the pro-
duction rate), the bottleneck machine, its utilization, and the utilizations of
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all other machines. Some particularly useful information specifies that pro-
duction can be increased by either: adding a machine of a particular type; or

inputting another pallet/fixture for a particular part type. We indicate how
this information can be used via an example.

Prior to this, recall the following. In §3, we indicated how to find ag-
gregate production ratios that balance the workload on all machines. In most
of the many examples that were examined, including all of those discussed in

§3 (except the example of §3.2.5 which we return to shortly), the aggregate
ratios found also provided the minimum numbers of pallets and fixtures requir-
ed. When the aggregate processing time information indicates an unbalanced
machine workload (as the example of §3.2.5—see Table VI), then the minimum
number of pallets required per part type can be much less than the specified
ratios. We use this example of Table VI to demonstrate how the Petri net model
and the information provided can be easily used to determine the minimum inven-
tory requirements.

The information that the Petri net program requires is: i)for each part
type, the aggregate production ratios (the a^); ii) also for each part
type, the number of pallets/fixtures dedicated to that part type; iii) a part
input sequence.

For the example described in §3.2.5, this information is: i) (a^, a^) =

(1, 10); ii) (n^ , n^) = (1, 4); (This is just to demonstrate. We know via
simulation that the minimum number of pallets required is: (1, 3)); iii) (1,

2) 2 y 2 5 2 y 2 ^ 2 5 2y 2 9 2 ? 2 ) •

The output from the Petri net program would indicate that we have too many
pallets/fixtures for part type 2. Changing (n^

, ^) to (1, 3) in the next run
provides the information that: production is maximized, the machines are

balanced, there is no idle time, and there are minimum inventory and buffer
requirements to maintain these optimal production ratios of (1, 10).

Notice that the production ratios are also used to help find the optimal,
perhaps periodic in between periods of breakdown, input sequence. It is very
useful to know the relative numbers of each part type prior to the actual
sequencing. Of course, most situations will not be as simple as this example
of §3.2.5.

Finally, note that simulation will be the most frequently used evaluator
of the aggregate ratios.

5. FUTURE RESEARCH NEEDS

The aggregate production ratios provide guidelines to determine an appro-
priate part input sequence. However, further research is required in develop-
ing a more precise algorithm to find a good part input sequence. Some appli-
cable work along these lines has been done by Hitz [1980] and Erschler,
Leveque, and Roubellat [1982]. However, these have been in flow shop situ-
ations, and did not allow several alternative routes.
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Easier and more automatic generation of the production ratios and inven-

tory requirements is needed. Also, implementation of secondary criteria for

choosing ratios is needed for the situations in which multiple sets of ratios

balance the workload. Artificial intelligence techniques may be able to help
here.
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A KNOWLEDGE BASED SYSTEM FOR DYNAMIC MANUFACTURING REPLANNING

Virginio Chiodini

Honeywell Computer Sciences Center
1000 Boone Avenue North

Golden Valley, Minnesota 55^27

Most existing requirements planning systems can be characterized as
"automatic top-down, manual bottom-up", referring to the fact that their
algorithms develop a material plan by starting with a top level master
schedule, and exploding it level by level down through the product
structure, to create the supporting time phased material plan for each
element in the product. As perturbations occur at any level in the product
structure, the plan must be revised.

A replan that still meets the master schedule requirements is preferred.
The development of this alternate plan works from the product level where
the perturbation occurred back up the product structure, until a point is

reached where the new plan conforms to the original plan. If such a point
is not found, a revision of the master schedule is executed.

The "bottom-up" schedule revision is made possible by the slack existing in

the original plan.

Traditional "Manufacturing Resource Planning" systems introduce slack in

the schedule mainly in the form of overestimated lot queue times (waiting
to be processed) and move times (among subsequent operations).
Furthermore, the scheduling logic of the MRP systems is normally based on
the assumption of fixed batch sizes, and does not exploit the possibility
of overlapping contiguous operations on the same batch. Slack is needed
not only for adjusting the schedule in the event of perturbations, but
mainly because MRP schedules do not fully account for the actual capacity,
and therefore the plan may result in over- and underload condition on the
shop floor.

As the factories approach "just in time" (JIT) objectives (continuous
(repetitive) production has JIT characteristics), the slack in queue time
and move time and the possibility of overlapping are reduced or eliminated:

o The work centers are normally loaded at a higher percentage
of their capacity.

o Inventory of work-in-process is reduced to a minimum.

Thus the replanning function supporting such an environment is much more
restricted in its alternatives. Problems occurring at one one level of the

process structure very often cannot be bounded at the level in which they
occurred, and propagate to the superior levels, up to the Master Schedule.

A revision of the Master Schedule that still meets the production
objectives or minimizes the impacts on them, must be developed within the

conflicting constraints imposed by resource and material availability of
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non empty production lines, and must be consistent with quality and
utilization guidelines.

In this environment an effective production control system must be supported
by two main tools:

o A real time information system, to monitor the status of the
shop floor.

o A dynamic rescheduling function, capable to react to any
anomalous condition occurring in the production process.
This function must be able to predict the consequences of
the perturbation occurred, and develop a new schedule that
minimizes the impact on the production objectives, and limit
the schedule revision within the smallest possible area of
the shop floor.

The dynamic revision of a factory schedule in most of the high-volume
repetitive manufacturing environments (or environments approaching a "Just
In Time" context) is currently a manual job, assigned to teams of highly
trained schedulers. The stochastic nature of the disturbances, the large
number of alternatives to be explored, the rapid response time required,
and the complexity of the constraints, make the solution of the problem
unfeasible for mathematical programming techniques. On the other hand, the

manual solutions are often tedious and affected by oversights, especially
when multiple anomalous events force the single scheduler or the joint
scheduling team to revise the schedules frequently.

APPLICATION SCENARIO

In August 85 we started an investigation of the applicability of Artificial
Intelligence technology to the " real-time rescheduling" of a manufacturing
system. As a test case we selected a plant whose production environment
is evolving toward a JIT context.

The plant can be classified as a "high volume" production facility. The
three final assembly lines produce 12,500 final units per day.

The plant does not utilize MRP systems, as they are not considered adequate
to the specific production requirements. The planning activities are
driven by a computer generated "Main Schedule" which is also the dispatch
list of the final assembly lines. The Main Schedule establishes on a daily
basis the sequence in which the models of the final product are to be

assembled at the final lines. For each model, the Main Schedule specifies
the lot size and the manpower required. The Main Schedule is firmed for a

period of three weeks.

On a weekly basis the temporal scope of the Main Schedule is advanced of

one week. The schedule of the added week incorporates the production
requirements that appear on a long range Master Plan, updated according to

the actual orders.

The Main Schedule is updated every night to take into account the actual

daily production, the current and forecasted resource availability of the

plant and, sometimes, new "crash" orders. The supervisor of the Main

Schedule coordinates the work of six schedulers that are assigned to six

different scheduling areas.
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A short-range version of the Main Schedule with a temporal scope of 5 days

is distributed to the team of schedulers. This is dynamically updated

during the day to reflect the changes that, from time to time, might become
necessary.

Each scheduler manually compi Les every day the initial schedule of the

assigned area. These schedules are then dynamically revised according to

the evolving status of the shop- floor.

A "Production Planning and Control System" (PP&C), that collects and
elaborates data received from a set of sensors applied to the key points of
the shop floor, is being installed.

The schedulers are continuously informed by PP&C about the status of the

work centers. The "Production Planning and Control System" reports
information like:

o The status of the processing systems,
o The allocation of the manpower.
o The quantities of parts stored in the buffer areas.
o The production rate at each process unit.

o The percentage of parts rejected at the inspection points.

Based on the incoming data, each scheduler has the responsibility to

determine whether the current schedule is in jeopardy and, if it is, to

revise it in order to meet the demands of the assembly lines. When the

nature and the duration of the disturbance prevents the support line from
meeting the requirements of the assembly lines, a real-time revision of the

Main Schedule is performed.

The real-time revision of the Main Schedule is limited in temporal scope to

two or three shifts, starting from the time in which the perturbation
occurred. Schedule revisions that extend beyond this temporal scope are
performed by the batch rescheduling process.

The real-time coordinated rescheduling usually involves only the support
lines that, with a possible update of their specific schedules, may
contribute to a successful revision of the Main Schedule. The other lines,
even if they originated the perturbation that is causing the rescheduling,
may only constrain the number of possible rescheduling alternatives, with
their current and expected availability of components.

At the test-site plant, we identified a set of support lines that are
usually involved in the coordinated rescheduling. These lines, that will
be referenced in the next sections as "Active Support Lines", are:

o The "Mainframe Line".

o The "Flatware Line".

o The "Roundware Line".

o The "Plastics Line".

These four Active Lines and the three Final Assembly Lines will be the
direct objective of the real-time rescheduling system, the other lines and
the parts they process will just play the role of sources of perturbation
events and constraints applicable in the real-time rescheduling process.
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The process structure of the Active Lines is outlined in Fig. 1, and Hill be
described in the next section.

THE PROCESS STRUCTURE

The Final Assembly Lines .

The final product is produced in approximately 500 models that are grouped
into two major classes:

o "B" - assembled by the final Assembly Lines 1 and 2.

o "L" - assembled by the final Assembly Line 3.

From a scheduling standpoint the final models are classified according to

the importance of their due date requirements. Some of the models must be
shipped during the same day in which they exit from the assembly lines.
This class includes all the models called "special", that require higher
manpower and special processes.

For other models the goal is to satisfy a cumulative demand over a certain
period of time. A third class includes models for which the requirement is

to maintain an average production rate over a long period of time.

Lines 1 and 2 have identical throughput and process time. They both
process models of class "B", although some special models of this class can
be assembled only in one of the two lines. The assembly of these special
models is constrained in time and lot size. Furthermore the periods in

which these special models are processed at the two lines are mutually
constrained by the need for sharing additional manpower.

Line 3 assembles only models of class "L". It has the same throughput as
lines 1 and 2, but a longer process time.

Each line processes approximately 12 different models every day. The
assembly lines run in two shifts.

The "Mainframe Line "

Mainframes undergo three operations:

o Press and weld (4 systems).
o Ground coat (1 system)
o Paint (2 systems: System A, System B)

All the weld systems are dedicated to processing a unique model of the

mainframe. The activity of two of the systems is constrained by the

manpower and by the throughput of the conveyor line that moves the units to

the next storage area. These two systems are not normally run at the same
time. The throughput of another system is slightly lower than the demand
of the assembly lines. For this reason it is run during three shifts.

Paint System A paints preferably mainframe units addressed to assembly
lines 1 and 2.

Some of the colors can be painted only by a specific system, or are
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constrained in the period of time in which they can be painted, as they
require additional manpower.

Paint System B is in charge of painting other special components that are
fabricated outside the Mainframe Line. The painting of these parts has a

lower priority, as they have low "Just In Time" requirements.

Paint System B is also used as a back up when the Powder Paint system of
the Flatware Line is down. In this case Paint System B runs for three
shifts.

Two storage areas exist:

o One for raw units, after the weld operation (Raw Storage).

o Three for painted units, at the head of the assembly
lines. (Paint Storage").

Buffers are utilized just to decouple the different throughputs of two
subsequent process units. They may be used as temporary storage areas, up
to their capacity, only in case of failure of the next process unit. This
enables the work center to recover the lost production by using overtime.

The mainframe units are moved through the various operations and to the
assembly line by conveyor lines:

The Raw Line moves the mainframe units from the press and weld area, to the

Raw Storage, the Ground Coat, and the Paint Systems.

The Paint Lines move the units from the intersection with the Raw Line to

the Paint Systems, and to the Paint Storage. The Paint Lines may feed all
the three sections of the Paint Storage.

The Feeder Lines move the units from the Paint Storage to the assembly
lines.

All the work centers of the Mainframe Line normally operate during two

shifts, synchronously with the assembly lines, except for the weld unit
mentioned above, that operates during three shifts.

The schedule of the Mainframe Line is very sensitive even to minor
perturbations (i.e. abnormal scrap of parts). The number of constraints
that must be satisfied, the complexity of the process dynamics, and the

reduced work-in-process inventory allowed, make the scheduling of the

Mainframe Line a very complex function, and require rapid schedule
revisions in case of malfunctions, to avoid impacts on the Main Schedule.

The Flatware Line

The routing of the Flatware Parts includes two contiguous operations:

o ground coat
o paint

The Flatware Line processes two parts for the Final Assembly Lines and two

other parts that are directly shipped to another plant. The colors painted
match those applied to the mainframes.
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The Flatware Line includes two systems that perform both operations:

o The Powder Paint System
o The Porcelain Paint System

Each paint system may apply the whole set of colors on all the parts. The
components painted at the two systems are not interchangeable in the final
models. The two paint systems have different throughput and process times.

One of the process unit of the Porcelain Paint System is shared with the

Roundware Line.

The Porcelain Paint System is also used to process the parts that are
directly shipped to a different plant. The process of these parts normally
has higher priority over the Flatware Parts directed to the final assembly
lines.

The finished components are moved from the Flatware Line to the final
assembly lines in containers.

Most of the Flatware raw parts are fabricated in a different plant, the

others are fabricated in the press department of the same plant.

Both Paint systems run during three shifts.

The Roundware Line

The Roundware Line processes two parts for the local assembly lines and
another part that is shipped to a different plant. The two parts that
enter into the assembly lines undergo two operations:

o Press and weld (7 systems)

Half of the press and weld systems are dedicated to process
a unique part and type, the others are dedicated to a single
part, but may process multiple types.

o Ground coat (2 systems)

One of the systems (shared with the Flatware Line) is

normally dedicated to process one part, the other processes
both parts addressed to the assembly lines.

The parts shipped to a different plant undergo only to the Press & Weld
operation.

The Roundware Line has two storage areas for the parts entering into the
assembly lines:

o The Raw-Parts Storage area,
o The Finished-Parts Storage area.

The Roundware units flow through all the operations and storage areas via
conveyor lines.

The Roundware Line run during all the three shifts.

The Plastics Line

The Plastics Line processes a large number of parts. Some of them enter
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directly into the assembly lines, others are subcomponents of other parts.
Only the processes of two of these parts, that enter directly into the
final assembly line have been included in the Active Support Lines area.
Both parts are processed with a single operation.

The first of these parts is processed by 9 systems, 2 of which are
dedicated to a unique type. The units of this component are moved in
containers to the assembly line.

The other component is processed by 5 systems, 1 of which is dedicated to a
unique type. The units of this component are moved to the same final
storage area used by the Roundware Line and share the last portion of the
same conveyor line.

The Plastics Line runs during all the three shifts.

THE FUNCTIONS OF SCORE

SCORE (Shop-floor contingency Rescheduling Expert) is a prototype knowledge
based system for real-time rescheduling of the shop floor, currently being
developed at the Honeywell Computer Sciences Center.

The objective of the prototype is to demonstrate the applicability of
A.I./E.S. technology to the real-time rescheduling of the manufacturing
environment described in the previous section.

Although the whole shop floor is considered as a potential source of
perturbations that propagate to the final assembly lines, SCORE will limit
its rescheduling scope to the "Active Support Lines" area.

During the visit at the plant, we realized that, in this environment, a
real-time rescheduling system can effectively reach its objectives if it is

able to provide the following integrated set of capabilities:

o Schedule the Active Support Lines, on the basis on the Main
Schedule of the final assembly lines.

o Predict the propagation of abnormal events occurring at the

Active Support Lines.

o Reschedule each Active Support Line, when abnormal events
occur inside the line itself, or when the Main Schedule of
the final assembly lines is being revised.

o Coordinate th% schedule revision of the final assembly lines

and of the Active Support Lines, in consequence of abnormal
events occurring on the shop- floor.

The function of generation and long-range revision of the Main Schedule
will still be supplied by the current batch scheduling system utilized at

the plant.

THE SUPPORT LINES SCHEDULING FUNCTION
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The scheduling function of the Active Support Lines has been included in

SCORE for its tight connection with the logic used in rescheduling the same
lines.

The schedules of all the Active Support Lines are "pulled" by the Main
Schedule of the final assembly lines. Each support line has different JIT
requirements (level of work-in-process inventory allowed) that depend on
its characteristics. Inside a support line, the level of work-in-process
inventory is different at different points along the routing of operations.
Usually the JIT requirements are more restrictive at the end of a line.

SCORE will not address the problem of reducing the work in process
inventory, and will assume the constraints that are currently accepted at
the plant.

The main problem that the scheduling function has to solve is how to

dispatch and split the lots at the process units of a work center.

Each work center may be represented as a set of parallel process units.
Normally a specific type of component may be processed at more than one
unit. Each process unit has different processing characteristics (set-up
time, throughput, move time to the next storage area or work center).

The scheduling function has to define, for each lot of components required
at the final assembly lines, the following entities:

o Which process unit should be used.

o How many times the lot should be split to enable the process
units to satisfy the pending demands from all the
requestors, without violating the constraints imposed by the
structure and dynamics of the system, and by the operational
procedures.

o The start-processing time and the size of each sublot.

The approach used by the schedulers to solve this problem is mainly a
constraint directed reasoning. First are scheduled the lots with a small
number of scheduling alternatives (for example small lots that "must" be
assigned to a specific processing unit). They define "anchor points" that
partition the scheduling interval into subintervals. Then the other lots
are scheduled according to their urgency. The interaction among the
requirements of the different lots, and the processing characteristics, are
utilized to define dynamically further constraints that normally lead the
problem to a solution with a minimum amount of backtracking.

The method of problem solving adopted in SCORE is similar to the constraint
directed reasoning approach to scheduling developed in ISIS [FOX83].

When the routing of a component includes more than one operation, the
schedules of the work centers that perform these operations must be
coordinated. The approach taken is simply to schedule the most critical
work center first, and then use this schedule as a constraint applicable in

scheduling the other work centers.

The criticality of a work center mainly depends on two characteristics:

o The limited hedge of throughput available against the demand
of the assembly lines.
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o The high set-up time required for model change.

The demands of the assembly lines are propagated backward in time, using a
critical path method, and the earliest start time and latest finish time of
each demand at the critical work center are evaluated. A feasible schedule
is then searched using the constraint directed approach described above.

THE RESCHEDULING FUNCTION

When an unexpected abnormal event occurs on any one of the support or

assembly lines, the goal is to eliminate or minimize the effects on the
overall production plan by executing the following steps:

o Detect and identify the problem.

o Determine the effect of the perturbation on the schedule of
the line where the event occurred, and evaluate the impact
on the capacity of the line to satisfy the demands.

o Revise the schedule of the perturbed line in order to

eliminate any impacts on the other lines.

o Perform a schedule revision at the superior level of the

process structure, if the problem cannot be restricted
within the perturbed line.

The logic flow of the rescheduling function is shown in Fig. 2.

Classification of the perturbation events .

The scheduling function receives a great support from the continuous,
real-time information on the status of the shop-floor, supplied by the

Production Planning and Control system. However the continuous flow of
information requires a deep knowledge of the dynamics of the production
process, to be synthesized. Incoming data need to be timely monitored, and
evaluated in comparison with the current schedule to convey significant
warnings

.

A real-time rescheduling decision-aid system should be able to monitor the
incoming data at crucial points in time, and convert quantitative Into
qualitative information.

Prediction of the events propagation .

The level of perturbation that the abnormal event is going to introduce
into the current schedule must be inferred from the type and the duration
of the event, the dynamics of the production process, the current status
and the schedule of the shop floor. The evaluation of the effects of the

perturbations can immediately focus the attention on the most promising
corrective actions, avoiding the exploration of alternatives with low
probability of success.

For example an abnormal percentage of scrapped parts might be immediately
corrected by rework if:

o There is slack before the process of the subsequent lot.
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o The dynamics of the line allows an immediate rework of the
scrapped units or there is a set of compatible units stored
near to the process unit.

When both of these conditions are satisfied, the problem is normally
handled by the operators according to the standard procedures, and no
schedule revision is requested. Historical information can anyway help in

determining whether the problem is temporary or persistent. In the latter
case a schedule revision might be suggested to compensate for the decreased
throughput of the process unit.

If the problem cannot be handled by the normal operating procedures, the
prediction function should determine the probability for a limited schedule
revision to eliminate the problem, without affecting the superior level of
the process structure.

When the work-in-process storage area located between two work centers has
a limited capacity (this is the normal case for support lines operating
with high JIT requirements), the effects of abnormal events may propagate
backward as well as forward. For example a major slow-down of the assembly
line may cause the congestion of the downstream storage area.
Consequently, the jam may be propagated to the conveyor line feeding the

storage area. If the conveyor line is also feeding the storage areas of
other assembly lines, the congestion may cause a generalized shortage of
parts, unless the downstream work centers are rescheduled to overcome the

contingency.

Local schedule revision .

When the satisfaction of the assembly line demands is jeopardized by an
abnormal event, the general rule applied at the support line is to revise
the schedule, allocating all the available resources to solve the problem.

In this case the scheduling function must face an increased number of
structural constraints, like a possible decreased throughput of a process
unit and the non-empty status of the input conveyor lines.

Most of the optimization constraints applied during the initial generation
of the schedule are considered "relaxable" in this situation. Optimization
constraints are classified according to an importance hierarchy determined
by their cost effectiveness. A possible list of constraint relaxations, in

increasing order of importance, is:

o Use the full throughput of the processing unit. (Instead of
the normal throughput).

o Increase the inventory of work- in-process.

o Use overtime.

o Add a new shift.

A pre-reschedullng analysis must determine what constraints, starting from

the least Important ones, must be immediately relaxed, to enable a

successful schedule revision. The constraints above this threshold will be

relaxed only in case of failure of the first rescheduling attempt, to allow

a second search to be potentially successful.

If the search for a feasible reschedule fails, the rescheduling function
must determine when and how the Main Schedule is going to be affected.
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Coordinated schedule revision.

When the effects of a perturbation event cannot be limited to the single
support line, the Main Schedule must be revised in order to avoid or

minimize losses of production.

The scheduling function tries to change sequences, quantities, and models
of the lots scheduled at the assembly lines, to reach the overall
production objectives within the constraints imposed by the reduced
availability of parts. The production objectives may be classified
according to the following top-down hierarchy:

1) Process the lots of "Special Models" and the lots of models that are
highly constrained in due time.

2) Avoid any loss of production at the assembly lines.

3) Process the lots of models for which a specific cumulative demand
exists over a period of time.

The revision of the Main Schedule is made possible by three main
circumstances:

o The partial commonalities of components existing among the
final models that appear in the Main Schedule.

o The different JIT requirements of the feeding lines. (This
may enable an assembly line to anticipate the process of a
specific model if the prior model is in shortage of a
component )

.

o A timely warning for a possible shortage of parts, issued
either by the prediction or by the support line rescheduling
function.

The revision of the Main Schedule requires the coordination of a complex
set of assumptions, propositions, and constraints like:

o The processing constraints of the assembly lines.

o The urgency of the lots that appear in the Main Schedule.

o The process and product structure.

o The expected and the current availability of parts.

o The capability of the support lines to meet the requests of
changing their schedule. This specific knowledge is

structured at two levels:

A synthetic, high level visibility of the dynamics of the
manufacturing system, that enables the rescheduling function
to focus on the most promising alternatives that are likely
to be supported by feeding lines.

A detailed visibility of the dynamics, constraints and
status of a support line. This ultimately verifies the
feasibility of a rescheduling request, when the result of
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the application of the higher level knowledge is uncertain.
This evaluation may imply the execution of an actual partial
reschedule, and may be computational expensive.

The revision of the Main Schedule is furthermore constrained by the
requirement of a rapid generation of the new schedule. For this reason the
coordinated rescheduling function must search for solutions that avoid or
minimize computationally expensive sequences, like the requests of changing
the schedules of the support lines. The search process must therefore be
focused on rescheduling alternatives that:

o Are closer to the current Main Schedule.

o Do not alter the cumulative demand of a specific component.

o Limit the number of support lines involved in the
rescheduling process.

o Limit the interval of time affected by the revision.

o Limit the number of assembly lines to be rescheduled.

When a schedule revision of the support lines cannot be avoided, the
knowledge of the product and process structure, and of the current and
expected status of the work centers, is used to direct the attention on the
support lines that are the most promising candidates to be rescheduled.

A support line becomes a candidate to be rescheduled when two conditions
exist:

o A shortage in a specific type of component, that the line
produces, is precluding a promising solution during a
particular time interval.

o The request to modify the schedule, to make the requested
component available, is "timely" for the time interval in

which the component is needed.

The possibility for a request to be timely, depends on a complex
combination of elements like:

o The lead time of the component required.

o The possibility of preemption of the current lot being
processed at the work center.

o The status and the resources available at the work center.

A component may be described as a combination of attributes. A specific
combination determines the "type" of a component. Each attribute is bound
to a specific value by an operation. As soon as an operation becomes
"timely" for a schedule change, the attribute defined by the operation may
assume a larger set of values.

The time-phased throughput of a feeding line is therefore bound to the

types and quantities of components currently scheduled, until the last

operation (the nearest to the assembly line) becomes "timely" for a
schedule change. Moving ahead in time, more schedule-change requests
become "timely", and the number of potential alternatives for revising the

Main Schedule increase.
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The revision the Main Schedule is composed of a set of tasks. Each of
these is in charge of accomplishing one of the production objectives
assigned to the revision process, and is dispatched according to the

priority of the goal. Each task explores the various alternatives
available to satisfy its objective, within the space of the time phased
availability (or potential availability) of components, and within the

constraints imposed by the process structure of the assembly lines. The
resources available (components, process time, manpower, etc) are therefore
"reserved" by a task to an objective according to its priority.

When multiple alternatives exist to the attainment of a goal, they are
ranked according to a heuristic evaluation of the probability that the

partial solution will rapidly lead to an acceptable global solution.

The rating of the partial solutions tries to focus the search process on
paths that avoid or minimize the deviations from the current schedule of
the shop floor.

The highest priority task has the objective of satisfying the demand of
"special models".

This is performed by identifying the periods in which the special models
can be processed, within the constraints of the assembly lines, and the
availability of components from the feeding lines.

when the first step ends, either reporting full success, partial success or
complete failure, the second goal (avoid or minimize the process
interruptions of the assembly lines) assumes the highest priority. This
second task proceeds forward from the time in which a "shortage warning"
has been issued by the prediction function. This decision is based on the
assumption that the number of solutions available during the first period,
until more components become available, or more schedule changes become
timely, is very restricted.

Actually, during this interval, the availability of components is limited
to the quantities and types that have been scheduled according to JIT
constraints. Furthermore, a portion of these quantities might have been
already "reserved" by the previous task. The restriction in components
availability must be compensated by extending the exploration to all the
models of the final product that can match the set of components available.
Any models, even those located late in the five-days Main Schedule, are
candidate to be processed during this period.

The alternative combined solutions generated by the first two tasks, are
then evaluated by the third task, according to their capabilities to

satisfy particular time-constrained cumulative demands of final models.

The revision of the Main Schedule proceeds forward in time until one of the
following two conditions is met:

o A point is found where the revised schedule matches the

current schedule, without affecting the cumulative demand of
components of the subsequent lots of final models.

o The schedule revision has been extended to a point in time in

which subsequent revisions may be adjusted by the batch
rescheduling functions.

The coordinated rescheduling of the assembly lines is ultimately verified
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by the local schedule revision of the support lines.

THE DEVELOPMENT OF SCORE

SCORE is being developed on a Symbolics 3600, using Carnegie Group's
Knowledge Craft as a software building tool.

The initial prototype will be logically integrated with the Production
Planning and Control System. The real-time information received from the
"Production Planning & Control System" will be simulated.

SCORE requires the access to data (for example the product structure) that
are stored in the central database. The current approach consists in
replicating the required (low-volatile) data in the knowledge base.
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DISPATCHING - THE CRITICAL AUTOMATION LINK

by Henry A. Watts

PROMIS Systems Corporation
4699 Old Ironsides Drive

Suite 300
Santa Clara, CA 94086

'HE IMPORTANCE OF DISPATCHING IN AUTOMATED MANUFACTURING FACILITIES

ie PROMIS CIM system is now in use at semiconductor manufacturing
icilites as a production tool, so this paper reflects much more the
linking of an applications-oriented manager than that of a theorist,
ivertheless, I hope to shed some light on what we have learned about
nking overall production planning to the dispatching function,
ipecially with respect to the challenges posed by integrated
[uipment automation manufacturing in a complex environment.

ie following factors must be taken into account by any production
:heduling system that expects to stand up to serious use in the
imiconductor wafer fabrication manufacturing environment:

* The process often will use the same type of machinery
several times, making it impossible to use standard,
straight-through models of processing.

* Certain steps in the process must be initiated within
short and specified time intervals after the completion of
the previous process step. Normally the prior step is a
special cleaning of the material and the next step is a
process sensitive to moisture or other types of
contamination

.

* It is imperative to assess the quality of work being done
by certain pieces of processing equipment. A single wafer
may be handled by equipment up to 150 times before wafer
fabrication processing is complete, providing many
opportunities for mis-process ing ," and a single piece of such
equipment may handle up to $2,500,000 worth of
work-in-process in a given week. This is equivalent to the
total value of all of the production of the wafer
fabrication area each week.

* The quality of the work being done by a machine is often
not truly assessable until many steps later in a process
where it is possible to take precise measurements.

* In an automated environment there are practical limits on
the amount of work-in-process that can be staged in front of
a given piece of processing equipment.
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Dispatching, or choosing the specific lots of material to work on of
the lots that are available to be worked on, may seem to be a mundane
topic, compared with linear optimization programs and other
intellectually challenging concepts. Nonetheless, dispatching can
critically affect the challenges listed above. First, in any facility
that uses one piece of eguipment for more than one purpose, or at more
than one point in the process flow, choosing the wrong lots can lead
to drying up the supply of material at one of the workstations which
follow, while overloading others. In general terms, a balanced line
is defined as a manufacturing line that has the work-in-process evenly
distributed so that all critical pieces of equipment can be kept busy
and material must not wait unduly long before being processed. A line
out of balance leads to reduced productivity. The notion of line
balance, and the special problems created by the repetitive use of a
single workcenter will be treated more thoroughly later. If the issue
of line balance is not addressed in some constructive way the facility
will poorly utilize the existing investment in capital equipment and
other resources and thereby reduce its ability to compete in the
marketplace

.

In some cases the response to finding that critical equipment is
sometimes idle due to lack of material is to keep more material active
in the line, thereby reducing the probability of running out of
material at any one workstation. One negative effect of this
overloading of the production line is that the capital cost for the
extra material in the line tends to reduce the economic
competitiveness of the manufacturing facility. Another negative
effect of overloading the line is that when quality inspections
indicate that some machine is producing bad material, there will be
more material between the guilty machine and the inspection point,
resulting in more material being scrapped. This will be true in any
manufacturing plant in which the effects of the work being done by a
machine are not directly measurable at the machine, but must await
further processing. It is especially true in semiconductor wafer
fabrication.

The notion of dispatching correctly to avoid overloading a given
operation capacity exists in much of the work world. Aircraft
dispatching, for example, must carefully attend to the routine
maintenance requirements of the aircraft, lest the entire fleet end up
some morning parked in front of the maintenance hangar, every plane in
need of some sort of maintenance, to the great dismay of the chief
mechanic. The goal in this case would be to keep the entire fleet
evenly distributed throughout the complete and total maintenance cycle
so as to have a steady and predictable flow of work for the
maintenance mechanics, as well as a steady availability of airplanes.
Note that this brings us to a serious requirement of the exact
maintenance status being a key determinant of what planes fly which
routes, all in the interests of keeping the fleet 'maintenance
balanced'. This problem is very similar to the general wafer
fabrication problem in the semiconductor industry, as it involves the
repeated use of a capacity by a process flow, the 'process' in this
case being the lifetime of the airplane.
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Integrated equipment automation brings special challenges in
dispatching, because there will be less human judgment in the system.
In the current rather manual wafer fabrication environment one may, at
Dest, hand to the production operator an ordered list of the lots of
tiaterial to be worked next. The operator may or may not deviate from
this list for reasons that may or may not be reasonable. One of the
great advantages and an equally great disadvantage of true factory
automation is that the machinery will try to do just what it is told,
rhe lack of human judgment in the specific decisions that are being
tiade on a minute by minute basis indicates that the models and
decision structures used must be quite precise. The lack of
dispatching algorithms that keep the production line in balance in a
aon-automated environment is regrettable and inefficient; the same
omission in an automated manufacturing environment is probably not
survivable

.

In the semiconductor industry the emerging transformation from rather
nanual processing to an intensive degree of automation presents an
additional requirement to manufacturing control systems such as
dispatching: since the change from manual to automated processing is
a gradual change, the control systems need to work well in both
environments. Where this is not true the user of such systems is
presented with an 'automation cliff, a point up to which conventional
nethods work, and beyond which totally new methods are required. Such
cliffs exist in real life, but they are to be avoided where possible,
rhe jump off the cliff often presents an unacceptable danger to the
continuous output of the production line.

AN OVERVIEW OF THE SEMICONDUCTOR INDUSTRY

To deal with these complexities a brief overview of the manufacturing
requirements of this one industry may be useful. It is not the intent
of this overview to cover all of the variations that have been used in
semiconductor manufacturing, are in use now, or are anticipated. What
is presented is a simplified view with the intention of acquainting
the reader with the fundamental manufacturing and scheduling issues.

There is a general misconception, shared by many people in the
semiconductor business, that semiconductor manufacturing is
classifiable as light electronics. Semiconductor manufacturing is
actually heavy applied chemistry. The nature of this chemical
processing is not a linear sequence of equipment, but rather is
characterized by repeated use of equipment, in some cases under very
rigid time constraints. In the wafer fabrication area, thin circular
wafers of a single silicon crystal (about .02" thick, 2" to 6" in
diameter) are processed by repeated cycles of applying microscopic
images, then inserting chemicals in the images, or of applying a
coating of material such as aluminum for 'wiring up' the circuit, and,
as the next step, making a pattern in the aluminum. In a typical
process the machine that deposits the aluminum might be used only once
or twice for a given wafer, but the work area that does the precise
imaging, transferring patterns onto the wafers, will be used many
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times. The actual number of uses is process-specific, but 10 cycles
through the imaging or photo-masking area is typical, with numbers
between 4 and 17 being common (see Figure 6). The result of the wafer
fabrication activity is a wafer with anywhere from 40 to 50,000 or so
individual circuits on it.

The steps that precede the wafer fabrication activity are product
design and the creation of a set of photomask images, one image for
each layer of processing to be done. The steps that come after wafer
fabrication are electrically testing each circuit, cutting the wafer
into individual circuits, putting each good circuit into a protective
package and testing the packaged part. Each of these main phases of
semiconductor manufacturing may happen in a different production area.
Production areas in this seguence may be anywhere in the world.

The semiconductor industry can be characterized by fast technological
change, an extreme level of competitiveness, very high capital
equipment costs, with much of the production being
equipment-dependent, long processes (involving as many as 400 specific
processing steps in the wafer fabrication alone) that return several
times to the same workcenter, processes that are very yield sensitive.
In short, it is a production line very much in need of maintaining a
balanced profile of work-in-process. The industry is also
characterized by highly interactive technical factors, with a strong
need for information feedback and feedforward, and a high need for
cleanliness in the manufacturing area. Note that the net effect of
the feedback is often a process change. In clear distinction to many
other industries, many semiconductor manufacturing areas undergo
process changes on a daily basis. Note also that the complex effects
of changes in demand from the outside world must be rapidly reflected
in the operating schedules of the manufacturing facility.

DISPATCHING MUST TIE TO A REAL DEMAND

In order to establish the measurement criteria for the dispatch list a
higher-level view of the requirements of the production facility is
needed. Whatever else the dispatch list does, it must direct the
production facility to build material for which a demand actually
exists

.

The dispatch list required is one that would, if followed exactly,
lead the production line into balance, and produce either exactly the
parts that are needed as quickly as possible, or use the existing
manufacturing capability to its fullest extent. This requires a
definition of the term 'exactly the parts that are needed'.

A definition of the exact parts needed and the exact work therefore
required of the manufacturing facility requires a link to a

corporate-wide planning tool. This corporate-wide planner will use a

list of parts needed, the dates on which they are needed (this need
may be due to firm customer orders or may be internal estimates of
future demand), known processing cycle times and product yields
through the processing steps (cycle times to include shipping time
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/hen the production areas are geographically separated), known
>rocessing capacities (equipment or labor limited) to produce a

relatively feasible list of parts required out of each of the
>roduction areas and the date each batch of parts is needed. To the
jxtent that one type of device early in the process may be used to
lake several different devices later in the process, this also must be
:aken into account by the planning system. Further, to the extent
;hat such a planning system needs to anticipate material being started
.nto a production facility, it must not exceed reasonable planned
.evels of starts absorption for that facility. The actual starts rate
lust be determined by the next lower planning module, the actual
factory floor scheduling and dispatching system, in light of actual or
forecasted on hand inventory, current capacity and recent yield and
:ycle time trends.

in addition to specifying the required output of each production area,
.he planning system must produce material requirements, time-phased
supply and demand of each device, and should flag firm orders that are
.ikely to become delinquent as well as work-in-process for which there
\o longer exists a demand (this could be due to order cancellation or
inexpectedly high yields). This discussion on dispatching presumes
;uch a corporate-wide planning capability.

DISPATCHING MUST HELP BALANCE THE LINE AND MEET THE REQUIRED OUTS

)nce the actual demand-driven requirements for output from a specific
)roduction area are known, new considerations must be accomodated,
fhat is needed is a schedule that, if exactly met, would lead the
jroduction line into balance, producing exactly the parts that are
needed in the shortest time possible. In the case where demand
jxceeds production capacity the existing manufacturing' capability must
)e run to its fullest extent, producing as nearly as possible the
:orrect mix of product. As a practical matter the schedule must span
it least a week of production (in the semiconductor industry), must
show required activity at least down to the resolution of an 8-hour
production shift, must show activity required by each operation in the
process, and must group this required activity by the type of
equipment used for the operation. To perform in this way the system
nust. certainly have imbedded in it a concept of categories of
equipment and must understand the common and differing ways in which
sach process uses each type of equipment.

Constraints on this plan will be available labor, available machine
:apacity (units per hour x working hours available x % uptime), known
production yields, target cycle times and the existing distribution of
:he work-in-process. The distribution of the work-in-process is
important, as machine and labor capacity needed to meet the output
schedule may go unused if, at various points during the week, no work
is available for the machine. Furthermore, a good scheduling
procedure must predict the extent to which this will happen, or the
schedule produced will not be feasible.
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Target cycle times are a key system constraint since these times will
be turned into a required level of work-in-process for each equipment
type at each operation in the process. As long as the dispatching
system works toward this and the machinery is available for the
percentage of working hours that was assumed in the schedule, the
achievement of the correct level of work-in-process and predicted
throughput rate will drive the cycle time to its target level.

The procedures that such a local planning system must follow are
relatively straightforward to describe, if not always quite so clean
to implement in the complexity of the semiconductor manufacturing and
product structure environment.

1. Check whether there is sufficient capacity to run the
required production volumes on a steady-state basis. If
not, then the stated demand on the production area is
excessive and must be revised to an achievable, steady-state
level. Typically this will be done by looking, say, 12
weeks out in the demand statement for a given process and
calculating the average outs per week required for this
process. This is the number to capacity check as a first
order test of the feasibility of the schedule.

2. For each operation in the process calculate the required
activity for the week. This is done by working from the end
of the line backward toward the beginning of the line. If s

is the number of steps in the process, An represents the
activity or number of units to be processed at any step n,
and Yn is the expected yield at any step n, then

A s
= required outs/Y

s ,

and, for any step n,

n, Operation 1 2 3 4 5

Yn , Predicted Yield 90% 95% 90% 98% 90%

A n , Required Activity
(steady state)

295 265 252 227 222

An+1 , Required outs of n 265 252 227 222 200

Figure 1
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zation is too high, then either the outs
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s requirement by (available capacity/required

this point an achievable steady-state
n is known. There may or may not currently
e capacity also to bring the line into

4. Within each process the target cycle time can be
transformed into a target work-in-process by the following
formulas

:

Reversed cum yield at operation n is defined to be the
percentage of material at operation n that is expected (at
predicted yield) to complete processing successfully through
all s operations; if Y is yield, n is any step and there are
s steps, then reverse cum yield is

RCY n
= Y| x Y n + 1

x Y n + 2 x Y<

The quantity of work-in-process required, without correcting
for yield (i.e., expressed in equivalent good units
out(EFG)), where CT is the cycle time of any given
operation, and where the time units are the same, is given
by

TWIP(EFG)
n

= CT n x good units required out/time

This can now be translated to the actual quantity of
work-in-process required at operation n by

TWIP
n

= TWIP(EFG)
n / RCYn
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n, Operation 1 2 3 4 5

Y n , Predicted Yield 90% 95% 90% 98% 90%

A n , Required Activity
(steady state)

295 265 252 227 222

An+V Required outs of n 265 252 227 222 200

CT n/ cycle time (days) 5 2 3 5 1

CT n , cycle time (weeks) 1 .4 .6 1 .2

TWIP(EFG) n 200 80 120 200 40

RCY n .68 .75 .79 .88 .90

TWIP, target work-in- 295 107 152 225 44
process

Figure 2

5. Given that the steady-state runrates have been
reality-checked and that the target inventories required at
each operation are known, the process now works backwards
through each process, creating a schedule that will bring
the line into proper balance. Modifying the formula above
to account for actual work-in-process at step n, WIPn , and
target work-in-process at step n, TWIP n

r

the activity
required, AR is given as,

AR = (AR n+1 + TWIPn _ 1
- WIP

n + 1
) / Y n
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n, Operation 1 2 3 4 5

Yn , Predicted Yield 90% 95% 90% 98% 90%

A n , Required Activity
(steady state)

259 265 252 227 222

A n + -|, Required outs of n 265 252 227 222 200

CT n , cycle time (days) 5 2 3 5 1

CT n , cycle time (weeks) 1 .4 .6 1 .2

TWIP(EFG) n
200 80 120 200 40

RCY n .68 .75
'

.79 .88 .90

TWIP, target work- in-
process

295 107 152 225 44

WIP, actual work-in-process 2020 50 100 300 5

AR n , Required Activity
(line balancing)

372 278 213 266 222

Figure 3

The calculation is not so simple, however, because there may
be insufficient inventory available to operation n to meet
this level of activity. The actual computer processing
needs to determine, for each step n, before working any
further backwards to n-1, how how much inventory will be
available to operation n, that is, how much inventory
actually sits within cycle-time reach of operation n.
Obviously, this material must be yielded from its current
location to the location at which it will be needed, or the
estimates of available material will be too optimistic. The
simplest operating presumption seems to be that material is
evenly distributed within the processing step where it sits.
This obviously is subject to strong improvement in
situations where the tracking system can discriminate
between material in process (knowing the time when
processing started), and material awaiting processing.

The view of the material available would, presuming an even
distribution within its current operation, look as follows:
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Material Available to Operation n in a 1-week planning cycle

Operation n-2 n-1 n
_ _

1 1 1

|

< 1-week mats
for c

1

irial availabilit
operation n

:y >

I

1
1 I

2 3 i

|

I 5 <

Days of cycle time

In this example, the material available to operation n
is all of the work-in-process at operations n and n-1,
and half of the material available at operation n-2.

Figure 4

[With sufficient computing power, this schedule can be run
for very short time periods, the results being fed back into
the program as starting conditions for the next short time
period. The approach described here is less precise but
more practical; material that shows a cum cycle time from
its current operation to operation n (including the cycle
time of n) of less than the time period being planned is
presumed to be available to operation n during the time
period being planned.]

The objective is to generate a schedule that sets two
activity numbers for operation n, one number that is
presumed achievable, published as the plan for the week, and
a second number that is what would have been needed to bring
the line fully into balance, if there had been sufficient
material predicted to be available to that operation.

The formulas for calculating required activity are now
adjusted as follows, where AP is activity planned, and AR is
activity needed to achieve line balance:

AR n = (ARq
jj.

| + TWIPn+1 - WIPn + 1
) / Y n , and

AP n = AR n , but not to exceed available material during
the time period being planned.
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,
Operation

n , Predicted Yield

n , Required Activity
(steady state)

n+ 1, Required outs of n

Tn , cycle time (days)

Tn / cycle time (weeks)

WIP(EFG) n

WIP, target work-in-
process

R n , Required Activity
(line balancing)

aterial available

P n , Planned Activity
(feasible line balancing, 1-week schedule)

1 2 3 4 5

90% 95% 90% 98% 90%

295 265 252 227 222

265 252 227 222 200

5 2 3 5 1

1 . 4 . 6 1 . 2

200 O (\80 120 200 40

.68 .75 .79 .88 .90

295 107 152 225 44

200 50 100 300 5

372 278 213 266 222

170 150 300 145

372 170 150 266 222

Figure 5

By this method the lack of material at any particular
operation or set of operations within a process is not
allowed to depress artifically the level of activity
scheduled at preceding operations.

6. The production plans thus produced for each individual
process can once again be summarized by operation and
equipment type used, and this can be compared to available
equipment and labor capacity. Should the proposed plan
exceed either of these capacities or insufficiently use
either of these capacities, the required production output
demand can be revised, or the proposed plan can be once
again factored by the required capacity/available capacity.
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The results of this exercise can be shown as required
activity by operation. As long as there are not serious
differences between the predicted yield and the actual
observed yield for the activity taking place after the
production plan is created, the plan remains the most useful
pathway to balancing the line, and the goal of the dispatch
list, in addition to other functions that it must serve, is
to optimize performance to this plan. Where there are
serious differences observed between actual and predicted
yield the only practical approach is to change the predicted
yield as needed to reflect a better estimate, and re-run the
scheduling program. Self- correcting planning programs are
very interesting but have no inherent advantages over the
rerunning of the system described above, and they therefore
imply a misuse of development and support resources.

CONSTRUCTING A SINGLE-OPERATION DISPATCH LIST

Now that, for any time period of interest, the exact production that
is needed at each operation for each process being run has been
determined, attention is turned to the functions of the dispatch list.

The dispatching function exists to determine the next material to
which labor and equipment resources should be applied. Since the
workplace is the scene of much coming and going of material, the
dispatch list needs to be updated frequently. The actual choice of
material must be made in consideration of at least the following
factors

:

* the priority of the lot of material,

* technical limitations on the allowable interval between
the completion of one operation and the beginning of the
next

,

* grouping of lots that use the equipment in the same way so
as to optimize the equipment capacity utilization,

* user preference of dispatching within each priority level
(such as FIFO, LIFO and several others, out of which
essentially only one option can be chosen at any time), and,
of course,

* line balance.

Let us first examine the dispatching function without respect to line
balance, as the line balancing function will depend on this as an
underlying structure. By definition an operation may be used more
than once in a given process, and several operations may use the same
type of equipment. Obviously the proposed system must be explicitly
aware of the equipment being used for each operation.
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rhe first problem to be solved is the determination of what lots
comprise the set of lots available for ordering into a dispatch list.
In an environment of finite computing resources, it is not sufficient
to simply include the lots awaiting work at a given operation, because
it will not be practical to rerun all of the programs necessary to
order correctly the dispatch list every time a lot moves from one
operation to another. And, since there is not likely to be any great
interest in elaborate and sophisticated dispatching schemes where a
FIFO approach is rigidly enforced, one cannot argue that lots which
arrive during the working shift simply be put at the bottom of the
dispatch list. One may include on the dispatch list, for operator
convenience, any lots that are currently being processed at this
operation, but this is a matter of personal style or preference.
Obviously, all material currently awaiting processing at this
workstation must be included in the set of lots to be ordered on the
dispatch list. Further, the list should include all lots that are
likely to arrive at this workstation before the next dispatch list is
generated. For the purposes of discussion, presume this dispatching
interval to be one working shift, about 8 hours; it could be any time
period from, say, fifteen minutes to a full working week, depending
upon the computing resources available, the typical cycle time of an
operation, and the amount of unpredictability in the environment.

Lots that are likely to arrive can reasonably be defined as lots that
are now queued or active at operations prior to the operation to be
dispatched, where the cumulative predicted cycle time between the
current location and the operation to be dispatched is less than the
interval on which new dispatch lists are run. Since the negative
effects are greater when lots arrive that do not show on the dispatch
list than when lots on the list do not arrive during the interval
being dispatched it is advisable to err on the side of optimism in
terms of assumptions about cycle times. Reasonable assumptions could
include using the predicted cycle time of the highest priority
recognized by the .system (ignoring the actual priority level
associated with the lot), presuming that the lot will leave the
current operation immediately (or, if predicted cycle times are broken
down into predicted wait times and standard processing times,
presuming that lots now being processed will complete at exactly the
start time + standard processing time and that all remaining lots will
then start processing).

Having established the set of lots to be ordered at a given operation,
and presuming that the priority of the lots is under good control of
the master planning system or competent human intervention, the actual
ordering of the lots to be worked on - AT THIS OPERATION - will have
relatively little effect on the problems posed by the repeated use of
a single workcenter in the manufacturing processes. What WILL affect
line balance is the choosing, at a given piece of equipment, between
the various specific process steps or operations that may be performed
by this equipment. Much work has apparently been done at this level,
and mechanisms that appear, to this reader, to be powerful and to have
been subjected to serious simulation and field testing have been
reported. The following list could be amplified, but would still not
address the issues that are central to this paper. Note that the
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ordered list will include material not yet present (these need not be
displayed to the operator, the automatic equipment, or transport
systems until the lots actually arrive). The following dispatch order
would be reasonable in most semiconductor wafer fabrication
operations

:

1. Lots currently running

2. Lots which would violate the stated maximum time between
the previous operation and this operation if they did not
start on the next cycle. If there is more than one lot on
this list, the list should be ordered by the rules used
below for all other lots.

3. In most facilities the remaining lots should be sorted
by lot priority, but that is really a question of operating
style and the purposes being served by the priority system.
Within each priority, the lots could be ordered by any one
of the following, which the user could preset, or choose at
runtime

:

FIFO (used to enforce relatively uniform cycle times)

LIFO (used when rapid feedback of technical
information is needed to control previous operations -

best choice is the most recent arrival)

Number of days late or predicted late to lot-specific
required out date (the required date out presumably
having been set by some corporate planning system that
has the capability to link specific external or
internal orders for parts with specific lots of
work-in-process

)

Ratio of amount of standard processing time left until
the lot will be complete to the amount of time until
the lot will be delinquent (Critical Ratio)

Any other rules suitable to this operation

In all of the above cases, once a given lot is selected for inclusion
on the dispatch list, any lots which use the same equipment in the
same way (recipe) should be listed with it, not because of their
priority, but so that large batches, sized for the actual machine load
capacity, can be processed together. Clearly the dispatching system
must know the machine load capacity as well as have a concept of
recipe. Recipe, used in this context, refers to the specific ways in
which a piece of equipment is used on a particular part type or within
a particular process. If each process is specified independently of
the other process, then the scheduling system will not be able
correctly to discern when material from two different processes can be
run together. Only if the recipes are used as building blocks for the
processes can this limitation be overcome.
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Lots that are currently on a hold status may be shown (as long as they
are properly flagged as unavailable) or not, at the preference of the
operating facility. They need to be included in the dispatching
activity so their proper spot on the dispatch list can be known as
soon as they are released from hold.

THE PROBLEM NOT YET SOLVED

The solution presented above is a reasonable structure for weighing
the required delivery date of product, the maximum allowable time
between process steps and, in a strictly linear flow process,
inventory costs and equipment utilization. Unfortunately, it does not
address a key feature of some manufacturing environments,
semiconductor wafer fabs notably included. The problem, referred to
earlier and here addressed more fully, involves the repeated use of
the same equipment in the manufacturing process. A simplified view of
this is shown in figure 6.

The key problem with using normal dispatching techniques in a
production area that uses the same equipment or workcenter more than
one time, is that it is unlikely that dispatching schemes that rely on
the rules given for the creation of a single operation dispatch list
will adequately feed all of the subsequent equipment. Note in the
realistic but very simplified diagram below that the output of the
masking line directly feeds four different equipment types.

If the output of this line does not feed each distinct type of
equipment properly there will be a starvation of the equipment
compared to the work that actually must be done at that station.
Unless the quantity of work-in-process is increased to prevent this
otherwise idle equipment time, the entire manufacturing facility will
be underutilized. Assuming that the process is a continuous FIFO flow
within the masking line, the critical dispatching point for this
facility is the staging area at the beginning of the masking line.
Failure to control this dispatching point can result in three out of
the four subsequent workcenters being fed insufficient work; this will
happen when, for example, a large group of 'early* lots arrives from
one piece of equipment and those lots are, per FIFO, dispatched into
the line without proper attention to line balance. Attempts to
shorten overall cycle times by running just-in-time scheduling in such
areas increases the likelihood of machines out of work and increases
the need for a more sophisticated dispatching approach.
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CONSTRUCTING A LINE-BALANCING COMPOSITE DISPATCH LIST

Having defined how each individual operation can be dispatched
correctly, and having seen that the resultant dispatch list is
insufficient for the particular line-balancing problem at hand, the
critical issue is how to combine the dispatch lists of the various
operations served by the same type of equipment. The operating
principle is reasonably straightforward: the dispatch list should
order the lots so that, if the dispatch list is followed exactly, all
of the operations served by this equipment will end the dispatching
period
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(nominally one shift) equally ahead of or behind the planned work
schedule. There is an underlying assumption here that, given a

previously generated schedule of work that will bring the line into
balance, and given that there have not been observed yields
significantly different than predicted, the best pathway to balance
the line is to perform the schedule.

This approach is not often found in commercial systems because the
development efforts of the planning systems are often different than
that of the actual tracking systems, making it very difficult to
determine current performance to schedule from within the planning
systems. Nevertheless, the line cannot reliably be driven into
balance without this capability.

Dispatch lists can be combined where operations have common equipment;
they can also be combined for an entire subdepartment within a
production area for the purposes of assigning labor to the equipment
that has material most urgently in need of being processed.

The combination of the dispatch lists from individual operations
involves assessing for each operation the ratio of the work that has
been actually completed to the work that is needed to be complete by
the end of the current dispatching period. The first lot onto the
composite list is the top lot on the individual dispatch list of the
operation that is currently furthest behind schedule, since it is this
lot that is most needed to balance the line. The ratio of this
operation is then recalculated as if this first lot had already been
processed with predicted yield. The next lot for the composite list
is now chosen from the individual list of the operation that is
furthest behind schedule; this may be the same operation as for the
first lot on the list, or it may be another. This process continues
until the dispatch lists of all of the affected operations are
exhausted and the line approaches balance.

As a practical matter the top portion of the composite list can be
built from only the lots currently being processed, exhausting all of
these before moving on to deal with the lots in need of processing to
avoid violating the maximum time between the completion of the
previous operation and the beginning of the operation being
dispatched. If lot priority plays an important role in the running of
the production area, each level of priority from all of the dispatch
lists of the individual operations can be exhausted before moving into
the next lower priority.

The effect of this dispatching approach will be to leave all of the
operations served by this equipment type or workcenter equally ahead
of or behind schedule, which is the best that can be done for the line
balance in the time allotted.

-389-



Operation from
which the most
output is needed
to balance the
line

Operation from
which the least
output is needed
to balance the
line

100% V-

Percent of the
schedule to

|

be completed
by the —

>

end of the
dispatching
period

Production
to date >

0%

Figure 7

DISPATCHING AROUND EQUIPMENT THAT IS CURRENTLY DOWN

There is a great deal of concern in the semiconductor industry about
the ability of dispatching systems properly to take into account the
status of equipment that is downstream of the operation being
dispatched, so that the lots that are moved through one operation can
continue to move through the line, rather than accumulate in front of
a piece of equipment that is not currently functioning. Comparison of
the typical U.S. and European approaches to manufacturing with the
very successful Japanese semiconductor manufacturing techniques
suggests that the solutions to this problem lie in selecting and
maintaining equipment and running that equipment within process limits
that it will tolerate and support over long periods of time, so that
the incidence of unpredicted unavailability is extremely low. To the
extent that this concern for dispatching material around equipment
currently down arises from a desire to minimize cycle time, it is
worth noting that the most successful stories in the industry usually
involve stopping production until all critical equipment is ready to
function. While this admittedly does not involve a high degree of
operations research finesse, it does lay the problem squarely at the
feet of those responsible for selecting and maintaining the equipment,
and, if the learning curve can be endured, seems to produce more
predictable equipment availability. Failing proof of more appropriate
solutions to this problem, the following is offered:
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Excluded from consideration here are manufacturing environments in
which it is a routine matter to have several pieces of critical
equipment unavailable for production at the same time. In such an
environment the only apparent solution is to run the equipment that is
up, following the guidance of the dispatch list as closely as
possible

.

In relatively more controlled environments, where, at any point in
time, only a very few pieces of equipment may be down, there do seem
to be some techniques that are of some help. If, for instance, the
down equipment is not used in all of the processes being run, then
those processes that are not affected should be run at their maximum
capacity, and the material that is running on the processes that are
affected should be heavily deprior itized or shut down altogether.
Unfortunately, the differences between processes in at least the
semiconductor industry more often involve the number of times that a
piece of equipment is used, or the way in which it is used, rather
than the use or non-use of a specific piece of critical equipment.
Furthermore, this is especially true of the larger volume production
facilities. Cycle time can be very important to the smaller and
research and development facilities, and this technique can be
important in some applications, but it is no panacea.

Where the offending equipment is used in essentially all of the
processes being run, the following should be true. If the equipment,
when it is up, has more capacity than is needed for the current
schedule, the line should continue to run, piling the material in
front of the down equipment. Provision should be made to work
overtime at selected operations once the equipment is once more
functional, or to borrow equivalent capacity from some reasonable
source. Where the equipment does not have capacity beyond that
required for the current production schedule, shut the line down and
return to work once the critical equipment is again functional.

SUMMARY

The precision with which dispatching must be done increases with the
level of automation. The dispatching function must be tied to a
realistic interpretation of real demand on the corporation. In most
environments there is insufficient computer power to dynamically
recalculate the dispatch list each time a lot moves, so some type of
forward looking dispatching is needed. The ability properly to
dispatch equipment or workcenters that are used more than once in the
processes being run depends, as a practical matter, on having an exact
knowledge of current actual production compared to the amount of
production that is needed by this time. Until there is reason to
re-calculate the dispatch list, the order of the composite dispatch
list is a direct function of the extent to which each specific
operation is lagging its to-date level of required activity.
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1. INTRODUCTION

Flexible Manufacturing Systems <FHS) are automated batch
manufacturing systems that require a high level of coordination and
control of manufacturing activities. Flexible Manufacturing Systems
are designed to produce a variety of part types simultaneously. In
small lot sizes. The components of an FHS are NC machine tools,
robots, automated inspection and in—process storage areas, and an
automated material handling system all under control of a hierarchical
computer system.

Flexible Manufacturing Systems are developed to take advantage of
flexible automation. In contrast to fixed automation, FHS* a are
characterized by almost nonexistent changeover times from one part type
to another. Hence, the batch sizes can be reduced without losing the
economical advantages of fixed automation. Smaller batch sizes and
simultaneous production of different part types, in turn, will result
in shorter production lead times, improving the due date performance
and customer/user satisfaction. In addition, other benefits of fixed
automation such as part lnterchangeablllty and quality are still valid
in flexible automation.

Design, planning, scheduling and control Issues, on the other hand,
become more difficult in flexible manufacturing systems than In
conventionally equipped or fixed automated manufacturing systems.
Compatibility of machines, fixtures and pallets, coordination of
robots, machines and material handling equipment are some of the major
concerns for FHS users and FMS manufacturers. Another concern for FHS
users Is lack of proper software to maximize efficiency of FMS* a.

Currently available operating software for FHS Is unable to use
sophisticated operations managements techniques. In fact, lack of
proper coordination between the resource and time allocation decisions
is among the major reasons for FHS down time and Inefficient
utilization of expensive hardware.

In this paper, we shall focus our attention on the FHS scheduling
problem. We first give a brief background and definitions of decision
Issues in the life cycle of an FHS. We then present a heuristic
scheduling algorithm to minimize tardiness In FMS's. Possible
extensions of the scheduling algorithm and directions for future
research will be discussed in the last section of the paper.
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2. BACKGROUND AND LITERATURE REVIEW

The following Issues have to be addressed at different: stages of
the FHS's life eyelet design, aggregate planning, system setup,
scheduling, and control.

Design problems Include Initial specification and system
configuration decisions such as availability and arrangement of
machines, material handling equipment, storage spaces, computer (s), and
control units. If the FHS under consideration Is a part of the larger
manufacturing environment. Integration of the FHS with factory—wide
production should be taken Into consideration at the design stage.

Aggregate planning refers to medium range decision problems such as
determination of production and material requirements, development of a

master production schedule and coordination of activities In the entire
factory. The built-in responsiveness of an FHS to variations In
external demand makes It possible to delegate some classical aggregate
planning declsons to the system setup stage.

System setup refers to a segment of the master schedule for which
certain resource allocation declsons have to be made E7J. These
declsons ares

1. Part Type Selection: Determining a set of parts to produce In
the system setup period.

2. Tooling t Assigning required tools to machines.
3. Fixture Allocations Allocation of the limited number of fixtures

to part types.
4. Operations Assignment t Assigning operations to machines which

have been equipped with the proper tools.
5. Routing: Determining part routings in the system.

The solution of the system setup problems will yield
— the set of parts which will be produced during the setup period,
— a machine routing for each such part
— an allocation of tools to machines which will achieve the

production goals set by the master schedule
— an allocation of fixtures to parts, and
— an assignment of operations to machines.

After solving the setup problems, the next task Is to determine
start and completion times for each activity. He shall refer to this
stage as the scheduling stage. The scheduling problem will be defined
later In this section. The solution of the scheduling problem Is Input
to the FHS controller, which Is responsible for the next stage.

The control stage deals with the actual operation of the system.

The problems at this stage Include determination and Implementation of

policies to handle machine tool and other breakdowns, periodic and

preventive maintenance, and quality and quantity control of In— process
and/or finished goods [141.

A more precise definition of the FHS scheduling problem may be

given as follows: Given an FHS, Its actual state, and a set of parts

-394-



with known processing requirements and due dates, determine the start

and completion time of operations of each part to be produced. The FHS
scheduling problem can be approached from two different views

e

1. Scheduling all operations of available jobs at the beginning of

a predetermined scheduling period. I.e., a priori scheduling.
2. Schedule operations one at a time when they become available.

I.e., on—line dispatching.

The problem definition given above is valid for both a priori and
on—line scheduling problems. On—line scheduling, however, is

considered as a part of the control stage in most of today's FKS's.

This Is due to the difficulties encountered in Implementing on—line
scheduling algorithms with the look ahead feature.

The FHS scheduling problem Is a more general case of the well known
job shop scheduling problem C83 . It has been shown that FHS scheduling
problems are at least as hard as job—shop scheduling problems. This is
caused by additional resource constraints In the FHS scheduling
problem, such as fixture and pallet availability and limits on
automated material handling system and in—process storage space
availabilities. In addition, flexible part routings and alternative
machines further Increase the number of alternative feasible
schedulules and computational requirements of solution algorithms. The
mixed Integer program developed by Chang and Sullivan CI] Is a good
example to demonstrate complexity of the problem. For a S workstation -

10 part type FHS scheduling problem, their model has 30,000 binary
decision variables, S00 contlnluos decision variables, and 2S,000
constraints.

The literature on FHS scheduling problems is sparse. Morton C10]
attempted to classify the scheduling Issues on FKS's and described a

four level hierarchical decision structure in which both a priori and
on—line scheduling have been recognized. The need for aeperatlng
system setup and scheduling Issues is also recognized In C71.

Erschler et al. C4,5] analyzed periodic release of parts into the
system. Chang and Sullivan CI] and Chang et al. C21 developed a mixed-
integer programming model and an approximate solution method for
operations assignment, routing and scheduling problems. Tang CIS]
developed a job scheduling model for a single machine FHS problem to
minimize the number of tool replacements.

Dispatching rules have been developed and tested by Hutchinson and
Wynne C6J, Stecke C131, Lin and Lu C9], and Wang E16J. Generalization
of these experimental results, however. Is even more difficult in FKS's
than In conventional job shops.

A heuristic scheduling method for FHS scheduling problems Is
presented in the next section. The proposed algorithm Is based on
sampling technique, and Is applicable to most of the scheduling
criteria. The algotlthm la, however, Implemented to minimize the total
tardiness. This Is due to the Importance of such criteria in Industrial
scheduling problems. Panwalkar et al. C12] reported that meeting due
dates Is the most Important goal, followed by minimization of setup
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tlaea and minimization of In—process Inventory (In that order) In
Industrial scheduling. Yet relatively little has been done for
tardiness In realistic environment! due to Its Inherent complexity
[111.

3. A HEURISTIC ALGORITHM PGR SCHEDULING JOBS IN FKS

We have developed an Iterative heuristic method which generates
active schedules using the priority function

z£ = a f?£ + <l-<*> fi
_1

<1>

where
z*t priority of job 1 at Iteration k,

f*£t scheduling criterion value of Job 1 at lterarlon k,

a : a constant.

The algorithm starts with an Initial active schedule which may be
obtained using any dispatching rule. It then updates part priorities,
based on effectiveness of the current schedule, using (1) and
reschedules the jobs If updated priorities are different then
priorities at the previous iteration and an Improvement Is possible
over the current schedule. The algorithm stops If the performance of a
schedule cannot be Improved In n Iterations where n Is a user defined
parameter. The development of the heuristic to minimize total tardiness
Is given below.

Let 1° be the set of parts (Jobs) which are to be scheduled at time
t=0 . Let d± be the due date and C± be the completion time of job 1.

Let J° be the set of operations of job l to be scheduled on the FKS.
Tardiness of job 1 Is defined as

T± = max < 0 , C± - dj i 1 e 1° (2)

and total tardiness of any schedule can be defined as

(3)

Job tardiness values are also used for updating job priorities

where is the updated priority of job 1, and z?f
_1

is the current
priority of Job 1.

The algorithm schedules the parts in non—Increasing order
of z^ values. Hence Job 1* will be selected from the set of available

Jobs, Icl°, and will be scheduled next If

a** max « z* >. (S)x lei 1

The pseudocode for the algorithm Is given as follows

pruLism TARDINESS
STOP * Of TOLD « •! COUNT - 0» 1-1°
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do A Millie STOP = 0

do B while I * *
Update prioritities for all Jobs, lei
Select highest priority job 1*

do C wlille J±* * *
Select the first unscheduled operation, j e J±

m

Calculate start and completion times
Update resource avallabllltes
J±* «- J±

m - C j >

eoddo C
UPDATE JOB TARDINESS
I *• I - i. 1* J

enddo B
Calculate total tardiness for the new schedule, TNEW
If TNEW < TOLD then record the new schedule

else COUNT = COUNT «- 1

endlf
If COUNT > n or TNEW = 0 then STOP = 1

else I «- 1°

endlf
enddo A
end TARDINESS

4. IMPLEMENTATION OF THE ALGORITHM

The tardiness algorithm has been implemented In a scheduling
system. The scheduling sytem requires the solution of the setup
problem as Input and provides Information for on—line control of the
flexible manufacturing system.

The overall structure of the scheduling system Is given In Figure 1.

The main program Is a menu driven communication and control program.
The desired functional program will be called by the main program
after a selection has been made. The user has the following options:

1. Run the scheduling algorithm
2. Run the database management program
3. Perform a given schedule without Interruptions

The database management program retrieves data required to
schedule the part flow in the system. This can be done by
transferring the data from a specified data file or entering the data
directly. Reports on the status of the shop can also be generated
using the database management program.

The scheduling program provides the following options to the
user:

1. Schedule all available parts
2. Schedule only newly arrived parts
3. Reschedule parts in the case of machine failures.

In all three cases the scheduling algorithm will be performed In an
appropriate way by adjusting lnltal Job set 1° and resource
avallabllltes. If a machine breakdown occurs at time t, the third
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option of the scheduling aystern reschedules the remaining operations
that require the failed machine during the breakdown period of At time
units.

The third option runs the automatic shop control program. This
program should be designed according to specifications of the
particular FTJS controller, which Is responsible for sending proper
commands to machines, robots and the material handling system, and
for monitoring the system.

5. DISCUSSION AND FUTURE RESEARCH

The Interaction between the system setup and scheduling stages
needs further discussion. The solution of the setup problems specifies
the resource allocation decisions using aggregate system performance
measures. The solution also defines the feasible solution set of the
scheduling problem. The solution of the scheduling problem. I.e.
determination of operation start and completion times, provides a
detailed view of the system performance which may not be acceptable by
managers of the system, hence parameters of the system setup model may
need to be readjusted until satisfactory solutions to both setup and
scheduling problems have been obtained. The length of this sequential
Iterative process can be shortened by relaxation of the proper
constraints In the system setup model. The resulting solution of the
system setup model. In this case, will have greater scheduling
flexibility. The scheduling problem, with the Increasing number of
alternative solutions, however, will also become more difficult. The
determination of the balance between flexibility and responsiveness of
the scheduling system Is subject to further research.

We are currently Investigating better feedback mechanisms for
updating part priorities. This research may be extended to development
of an adaptive feedback coefficient by defining a(t> as a function of
scheduling performance at time t. The look ahead feature of the
algorithm may be enhanced by application of AI techniques. For example,
the scheduling flexibility may be adjusted In the case of heavy loads
or tight due dates.
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1.0 Introduction

Production scheduling is the allocation of available production resources
over time to satisfy some set of production performance criteria (Graves;

1981). Typically, the scheduling problem involves a set of jobs to be
completed, where each job comprises a set of operations to be performed.
Operations require machines and material resources and must be performed
according to some feasible technological sequence. Schedules are influenced
by such diverse factors as job priorities, due-date requirements, release
dates, cost restrictions, production levels, lot-size restrictions, machine
availabilities and capabilities, operation precedences, resource requirements,
and resource availabilities. Performance criteria typically involve tradeoffs
between holding inventory for the task, frequent production changeovers, and
satisfaction of production-level requirements and due dates.

Scheduling involves: (1) selecting a sequence of operations or process
routing, the execution of which results in the completion of an order, and (2)

assigning times (i.e., start and end times) and resources to each operation.
Process routing selection is typically the product of a planning process,
while the assignment of times and resources is typically the purpose of
scheduling (Fox, et al. ; 1983).

The efficient and effective scheduling of production lines represents a
major obstacle to the success of current efforts in automated manufacturing.
Despite extensive investigation, traditional methods of operations research
have failed to yield a practical approach to the problem of production
scheduling in large and complex manufacturing environments. Various modeling
paradigms, i.e., combinatorial optimization, stochastic optimization,
discrete-event simulation, commercial approaches, artificial intelligence, and
control theory, have not yet provided an acceptable approach to the problem of
rapid rescheduling of non-empty production lines in the face of a range of
conflicting constraints and objectives.

In this paper, we propose design requirements for a production-scheduling
decision aid which relies upon a synthesis of deterministic scheduling
heuristics and discrete-event simulation. The purpose of this decision aid is
to recommend schedules which improve production efficiencies and which
accomodate the periodic need to reschedule non-empty production lines in the
face of changes in demand and productive capacities. We begin our discussion
of the scheduling problem by presenting an overview of the operational context
of the scheduling problem and by describing the characteristics of the real-
time scheduling environment. A summary and critique of various scheduling
model paradigms which are used to develop solution strategies for the
scheduling problem is presented in Section 3.0. Section 4.0 describes the
proposed formulation of the scheduling problem, which incorporates the
characteristics of the real-time scheduling environment. The simulation-
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optimization solution strategy for the problem is discussed in Section 5.0.

Development and implementation issues and directions for future research are
identified in Section 6.0.

2.0 Operational Context for the Real-Time Decision Aid

Production scheduling is typically viewed as an intermediate function
within a hierarchical framework of manufacturing decision making. In order to
establish the context in which scheduling is undertaken, one such framework is

discussed here. Using this framework, the essential elements of the real-time
production scheduling environment are defined.

2.1 A Hierarchical Framework for Manufacturing Decision Making

We propose a five-level framework of manufacturing decision making to
provide the context for the scheduling function. The hierarchical
representation is similar to frameworks used in hierarchical control theory
problems (Abraham, et al.; 1985, Akella, et al.; 1984, Gershwin, et al.;
1984, Gershwin, et al.; 1985, Hax and Meal; 1975, and McPherson and White;
1986) . The hierarchical framework provides representation of the system
planning, production planning, flow planning, scheduling, and processing
functions.

System planning , the highest level of the decision hierarchy, specifies
and organizes the manufacturing resources necessary to meet long-term
production goals. The system planning function provides a facilities design
which is used in production planning. The production planning function
establishes aggregate production rates or volumes, consistent with the
capability of the manufacturing system, in order to satisfy aggregate demand
in an economic manner. Production planning supplies information to the next
lowest level of the hierarchy, the flow planning function. Flow planning
determines the sizes of production batches and the sequences in which these
batches will flow through their process steps. Flow plans must be consistent
both with the production plan (i.e., the aggregate production rate) and with
resource constraints and demand requirements. Flow planning also includes the
determination and location of protection stocks (e.g., WTP) necessary to
buffer the flow plan from disruptions.

The scheduling function resides at the fourth level of the five-tiered
manufacturing decision hierarchy. Figure 1 shows the inter-relationships
between the flow planning function and the scheduling function, on the one
hand, and the scheduling function and the processing function , i.e., the fifth
level of the decision making hierarchy, on the other.

The upper portion of Figure 1 depicts information from the flow planning
function, provided in the form of present and future flow plans which contain
information on sizes of production batches and sequencing of process steps,

being processed in the scheduling decision aid data structure. This flow
planning information is combined with information from the processing
function, e.g., shop-floor status information, which provides measures of the

current in-process inventory levels and machine status of the schedule
currently in operation.
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Events such as "hot" jobs, machine failures, or slippage in due-dates
require the generation of a new schedule. This scheduling (re-scheduling)
process is done in the environment of non-empty production lines. The lower
portion of Figure 1 depicts a new schedule, which addresses the most current
flow planning and shop-floor status information, being generated in real-time.
The schedule is checked for feasibility and if the schedule is feasible and
acceptable, then it is implemented and the resulting processing function is

performed according to the new schedule. If the schedule is infeasible, then
the current flow plan must be augmented in order that a feasible schedule may
be generated. The real-time scheduling process continues in a dynamic fashion
as new schedules are "fit" into the current operating environment of the
production facility.

2.2 The Real-Time Production Scheduling Environment

To a great or lesser degree, every scheduling environment is unique. We
present a generalized conceptual view of the real-time scheduling environment
here in order to provide a framework for our real-time production scheduling
problem formulation presented in Section 4.0. The real-time production
scheduling environment consists of a number of characteristics, which are
listed below. Many of these characteristics are either ignored or simplified
by classical "job-shop or machine-scheduling" problem formulations (i.e., the
combinatorial optimization modeling paradigm described in Section 3.0).

The real-time production scheduling problem formulation must consider
situations in which job inventory levels may be at any initial state , i.e.

,

job inventory levels are not all zero, and initial states of the machines may
be either busy or idle. Similarly, the problem formulation must address
circumstances in which in-process inventory levels at the final state are not
all zero and all jobs are not completed at some undefined final time.

In many real-time scheduling situations a job is broken up into a number
of batches. The problem formulation, therefore, should be able to handle
variable batch sizes and should be able to cope with a variable, interrupted
processing time and batches that can be split by the schedule if necessary.

Setup times must be considered explicitly as a seperate entity from the
fixed, uninterrupted processing time of a job. Set-ups in a real-time
scheduling environment are a seperate entity from the processing time of a job
and need to be considered explicitly in the problem formulation.

The job-shop scheduling problem formulation should be capable of

representing job and resource unavailabi 1 ity over any time interval, including
delayed release times, machine failures, operator unavailabilities, and
material stockouts. Many real-time situations reflect these types of

"disturbances"

.

The real-time scheduling environment includes the possibility of high
priority jobs being suddenly introduced into the system. The problem
formulation should, therefore, be capable of representing rush or hot jobs

with higher priorities.

The formulation of the job-shop problem should be capable of representing
flow plans in which a job is not necessarily processed on every machine and in
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which the technological sequence may imply a semi-order on the machines and/or

alternative process paths. In real-time scheduling situations, every job is

not processed on every machine exactly once, in a strict technological

sequence.

Finally, the problem formulation should be capable of representing
multiple, conflicting criteria (minimize tardiness, minimize production and
inventory costs, and maximize schedule stability) which can imply deliberate
underutilizaion of machines to reduce inventories and/or insure reliability.

Real-time scheduling objectives are numerous and are many times conflicting.

3.0 Scheduling Problem Research Areas and Model Paradigms

Six areas of research and practice which have been applied to various
aspects of the scheduling problem are: (1) combinatorial optimization,

(2) stochastic optimization, (3) discrete-event simulation, (4) commercial
approaches, (5) artificial intelligence, and (6) control theory. Each of
these paradigms offers insight into the fundamental scheduling problem,
however, no single paradigm appears entirely adequate in addressing the
operational context and real-time scheduling environment described in the
previous section.

Combinatorial optimization , i.e., the classical job-shop or machine
scheduling problem of operations research, has been studied extensively over
the past several decades. The problem may be formally stated as follows
(Bowman; 1959, Conway, et al. ; 1967 and French; 1982): N jobs are to be
processed on M machines. Each job consists of a set of M operations, one
operation uniquely associated with each of the M machines. The processing
time for an operation can not be split. Technological constraints demand that
the operations within each job must be processed in a unique order. The
scheduling problem involves determining the sequence and timing of each
operation on each machine, such that some given performance criteria is
maximized or minimized. Typical performance criteria include minimizing the
makespan (i.e., minimizing the time required to complete all of the jobs) and
minimizing maximum tardiness (i.e., minimizing the largest difference between
completion times and due dates)

.

The job-shop scheduling problem is a highly simplified formalism for the
production scheduling problem actually encountered in manufacturing.
Nonetheless, the general job-shop scheduling problem is known to be NP-hard
(French; 1984, Rinnooy Kan; 1976), i.e., the time required to compute an
optimal solution to the problem increases exponentially with the size (number
of jobs and number of machines) of the problem instance. Even modest problems
(10 jobs and 10 machines) can not in general be solved to optimality, even
with computing power that far exceeds the capacities of modern supercomputers.

Besides providing conclusive evidence that the production scheduling
problem is difficult, work on the job-shop scheduling problem has generated a
large number of scheduling heuristics. Heuristics are reasonable and
computationally efficient rules for generating candidate schedules, which may
or may not prove to be satisfactory in either the job-shop or production-
scheduling environment. In general, heuristics select the next operation to
be processed based upon some easily computed parameter of the jobs,
operations, or machines. These parameters can include processing times, due
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dates, operation counts, costs, setup times, arrival times, and machine
loadings (French; 1982, Gere; 1966, and Mellor; 1966). Examples are SPT
(shortest processing time first), LPT (longest processing time first), FIFO
(first-in, first-out), LPR (longest processing time remaining), EDD (earliest

due date) , and pure random (Monte Carlo) selection. More complicated
heuristics are generally built-up from simpler rules. Panwalkar and Iskander

(1977), for example, cite some 113 scheduling heuristics that have been
proposed or actually applied.

Work on the job-shop problem has also provided a wealth of information on
solution strategies and approximation algorithms for determining acceptable
schedules within a reasonable amount of time. In particular, partial
enumeration techniques which combine heuristics and neighborhood search
strategies have been shown to work reasonably well under various conditions.
These strategies involve the use of a heuristic to find a good seed or
starting schedule, modifying the seed, and evaluating the resulting schedule.
A cycle of adjustment and evaluation is repeated until no further progress
relative to the performance measure is achieved.

Although these contributions are significant, the job-shop scheduling
problem itself is too restrictive a formulation to provide results that are
anything more than suggestive for actual production scheduling. Developing an
appropriate model for direct use in solving production scheduling problems
will require a significant relaxation of the basic assumptions of the job-shop
model, (i.e., refer to the characteristics of the real-time scheduling
environment presented in Section 2.2).

Stochastic optimization addresses a number of types of manufacturing
systems problems. These problems include queueing (French; 1982 and Stecke
and Solberg; 1985), reliability (Ross; 1970 and Ross; 1983), lot-sizing
(Afentakis; 1985, Karmarkar, et al. ; 1985, Lasserre, et al.; 1985, and
Steinberg and Napier; 1980), and inventory theory (Kivenko; 1981 and Winters;
1962) . In queueing theory, jobs arrive in a random process and queue until a
machine is free, whereupon a job is selected from the queue and assigned to

that machine according to some predetermined priority rule. Selecting a
priority rule which leads to the least expected cost of a job is,

unfortunately, a very difficult task. Reliability theory is concerned with
"maintaining" a stable schedule in lieu of machine failures occuring.
Inventory theory and lot-sizing techniques attempt to determine lot sizes
which will maximize production throughput and assure that due dates are met
and also minimize production and inventory costs.

Discrete event simulation has been used primarily as a vehicle for

testing fixed scheduling heuristics. A consensus among researchers appears to
be that a combination of simple priority rules, or a combination of heuristics
with a simple priority rule, works better than individual priority rules.

This idea supports the concept of having a flexible simulation tool which can
be used to schedule the job-shop. The user of the simulation tool reviews the
status of the "job-shop model" which is dynamically displayed before him. He
can use his knowledge and practical experience in order to stop, interact with
the model and try alternative scheduling approaches (Hurrion; 1978, Shannon;

1984, and Trybula and Ingalls; 1985).

Scheduling simulation is designed to provide the user with the capability
of performing "what-if" analysis on the current scheduling problem. The
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scheduling options that can be explored experimentally are only limited by the

time constraints and resources available to the user. Since the simulation
process provides dynamic output, the user can identify long queues within the

model and thereby attempt to eliminate the bottlenecks which may exist for

priority jobs (Bulkin et al. ; 1966).

An advantage of the simulation approach to scheduling is that it can

model the effects of such factors as policy changes, which cannot be accounted
for in an analytic model (Stecke and Solberg; 1980). Another advantage of
discrete-event simulation is that it can provide the user with the opportunity

of performing exploratory tests upon the schedules being produced (Baker and
Dzielinski; 1960). Disadvantages of using simulation to produce schedules are
that it is costly, both in the computer time used to generate schedules and in

the human modeling effort required to design and run the simulation model.

Current commercial approaches can be characterized in terms of software
products or philosophies. Manufacturing Resource Planning (MRP) (Fox; 1984),
Just in Time production (JIT) ( Schonberger ; 1984), and Optimized Production
Timetables (OPT) (Jacobs; 1984) are representative of the philosophies and
associated computer software products that are currently in wide use.

Commercial software packages for MRP, OPT and JIT simultaneously address
the production planning, flow planning, and scheduling functions. These are
not distinct scheduling models and were not designed to specifically address
the real-time scheduling problem. Developing a schedule for future operations
given conditions on inputs, requirements for outputs, and resource constraints
over time is a next to impossible task. It is analogous to attempting to
solve the classic "two-point boundary value problem of control theory"
(Abraham, et al. ; 1985).

The two-point boundary value problem of control theory consists of an
initial point, a final point, and trajectory constraints. The initial point
is the problem inputs, i.e. the initial inventory levels and schedules of
incoming parts and materials. The final point is the problem outputs, i.e.

due dates for the products. The resource constraints (availability) are the
problem's boundaries. All aspects of this problem are time-varying.

The two-point boundary value problem is computationally intractable, but
it is possible to get a feel for the problem by relaxing one of the three
conditions, i.e., the initial point, the final point or the boundary value.
MRP systems choose to relax the boundary condition, OPT chooses to ignore the
final point, and JIT chooses to ignore the initial conditions.

The artificial intelligence modeling paradigm depicts the scheduling
problem as the determination and satisfaction of a large number and variety of
constraints which are found in the scheduling domain (Fox, et al.; 1983).
Artificial intelligence is used to extend knowledge representation techniques
to include the variety of constraints found in the scheduling domain, to
integrate the constraints into a search process, to relax constraints when a
conflict occurs, and to diagnose poor solutions to the scheduling problem.

Artificial intelligence includes the areas of knowledge-based systems,
expert systems, and learning systems (Herrod and Papas; 1985). Current
research efforts in learning systems and genetic algorithms may hold potential
for improving the solution speed and accuracy of the job-shop scheduling
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problem. Learning systems and genetic algorithms may offer efficient search
procedures for finding good solutions to computationally complex problems
(Davis; 1985).

The control theoretic modeling paradigm seeks scheduling methods which
either explicitly reflect the uncertain nature of the available information or
give some guarantee as to the insensitivity of the schedule to future
information. This modeling paradigm attempts to limit the effect of machine
failures, operator absences, material unavailability, surges in demand, or
other disruptions upon the scheduling process (Gershwin, et al . ; 1984).

Schedules which are robust to disruptions, robust to absence or inaccuracy of
status information, and flexible to change are pursued by the control theorist
(Abraham, et al.; 1985). The control theory paradigm views scheduling as a
dynamic activity, and the scheduling problem is really one of understanding
how to reschedule.

Although control theory has only recently been applied to discrete
production scheduling, the underlying problem and fundamental issues are
perhaps most naturally described as problems in control. Consider the
standard control paradigm which is depicted in Figure 2 as the control system
model for the scheduling problem.

The system under control operates on a sequence of inputs, u(t) , yielding
a sequence of outputs, y(t) . The outputs at any time are a function of the
state of the system, x(t). The system state at time t is defined as the
minimum set of variables, such that knowledge of the state at some initial
time, together with knowledge of the inputs to the system at this and all
future times, is sufficient to determine (given an adequate model) all of the
future states of the system. A general statement of the control problem is to
determine a means to guide the system state (and thus the system output)
through time according to some trajectory which satisfies the constraints
imposed by the system model and which simultaneously satisfies some set of
minimum performance criteria.

For a manufacturing facility, inputs to the system include:

Production orders , which specify the quantities of various jobs to be
processed and the dates at which these quantities are due for delivery.

Raw material and labor , which are used in production and without which
production is impaired.

Disturbance inputs , such as machine failures or labor outages, which
alter the productive capacity of the plant over some period of time, but over
which the scheduler has little influence.

Controlled inputs , such as scheduling, maintenance, and overtime
decisions, which alter the productive capacity of the plant, but which the
scheduler can regulate within certain bounds.

The state of a manufacturing facility at time t is the minimum set of

variables the values of which completely define:

The levels of inventory for all completed and partially completed jobs at
time t.
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The status of all machines at time t (whether idle, active on job, in
setup for job, or in repair)

.

The availability of labor and the levels of inventory for all materials
at time t.

Outputs from the manufacturing facility can be any appropriate
combination of the state, for example, the invetory levels of all jobs ready
for shipment on a specified due date.

The scheduling problem is then to determine the control, i.e., the
sequencing of the operations of each job, the scheduling of overtime and
maintenance, and the timing of materials orders, which yields a desired state
trajectory. The control must also satisfy constraints imposed by limited
manufacturing resources and must simultaneously satisfy performance measures.
These performance measures may include minimum tardiness of finished jobs,

minimum and maximum in-process inventory levels, and minimum production and
holding costs.

Merits of the control theory modeling paradigm are numerous. First, this
modeling paradigm recognizes the need to integrate the scheduling activity
with the planning activity. Second, the paradigm accepts the dynamic
environment of the scheduling problem as a given and attempts to find
schedules which are robust, flexible and adaptable to this dynamic
environment. The control theory modeling paradigm also provides a wealth of
knowledge in defining the real-time scheduling problem and the corresponding
scheduling objectives.

While the control paradigm appears to be especially well suited to
defining the fundamental problem qualitatively, control theory has yet to
develop a set of techniques adequate to scheduling model formulation,
analysis, or design. The mathematics and techniques of control theory apply
to continuous systems (Markov processes) and are not well-adapted to discrete-
event systems (semi-Markov processes) . Those aspects of the manufacturing
problem which can be usefully approximated by continuous systems are the areas
most likely to benefit from traditional quantitative applications of control
theory, at least in the short run. Production scheduling, unfortunately, does
not appear to be one of these areas.

4.0 Formulation of the Job-Shop Scheduling Problem

In order to consider the most general situations and characteristics of
the current-day scheduling environment, which were discussed in Section 2.2,

we present a modeling approach for the real-time scheduling problem which
incorporates a synthesis of the paradigms discussed in the previous section
and which is based on the emergent control theoretic paradigm. We propose a
multi-objective, mixed-integer , linear programming formulation of the job-shop
scheduling problem (White and Rogers; 1985) which incorporates a finite time
horizon, set-ups, overtime, buffer stocks, and shortfalls. The formulation
considers initial and final states of the inventory levels as zero or non-zero
and machine status as busy or idle. It allows for batch size and number of

batches to be variable and it considers set-ups as explicit entities.

Disturbances, job priorities, multiple machines or machine banks, and multiple
optimality criteria are also considered.
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4.1 Description of Variables and Parameters

Given the general requirements for the job-shop scheduling problem
formulation which were listed in Section 2.2, we formulate the scheduling
problem in its most general manner by including all possible constraints and
objectives. Any implementation of this formulation may include only of subset
of these. A description of variables and parameters follows:

Let t=0, 1, 2, T index a sequence of (equal) time intervals within
a finite time horizon T. The problem's decision variables and parameter
descriptions are defined as:

is the job number identifier; j = 1, 2, J
J is the total number of jobs to be processed.

where

i is the operation number; i = 1, 2, I(j) where
I(j) is the total number of operations associated with
job j.

o(j,i) is defined as the ith operation of job j.

p is a unique machine operation; p = 1, 2, . . . , P where
P is the total number of unique machine operations.

m(p) is the total number of machines which can process the
a unique operation, operation p, of any given job j.

M(p) is the set of all machines. Note that although a
machine may be capable of processing more than one type
of operation, it may not process more than one operation
at one time.

x(j,i,t) represents the number of machines processing o(j,i)
during interval t, including machines being set-up to
process o(j,i). x(j,i,t) takes on the following integer
values:

x(j,i,t) =

' 0, if o(j,i) not in process during t

1, if 1 machine is processing o(j,i) during t

2, if 2 machines are processing o(j,i) during t

,
i(p) , if m(p) machines are processing o(j,i) during t

where m(p) , as defined above, is the maximum number of
machines that are available to processs operation p
during time interval t. In this definition, note that
the ith operation of job j fits into the same category
as the general operation p.

s(j,i,t) is the number of machines "set-up" for o(j,i) during t,
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Y(j,i,t) is the definition given to the in-process inventory for
the ith operation of job j at time t.

P( j/i) is
is

the process time for operation i of job j and
given in machines/unit

.

f(j,i) is the fraction of a time interval required for a
set-up of operation o(j,i).

V(p,t) is the overtime for M(p) at time t.

W(p,t) is the maximum overtime available for M(p) at time t.

d(j,i,t) is the amount of Y(j,i,t) desired at time t.

CS( j,i,t) is the cost per set-up s ( j , i , t )

.

CV(p,t) is the cost per unit of overtime V(p,t).

CP(j,i,t) is the cost penalty for production shortfall, i.e.,
cost penalty when d(j,i,t) is greater than Y(j,i,t).

CH(j,i,t) is the holding cost for production surplus, i.e., WIP
inventory cost when Y(j,i,t) is greater than d(j,i,t).

4.2 Hard Constraints

The restrictions for the job-shop scheduling problem are now defined.
These restrictions are provided in terms of the machine number and overtime
constraints, the machine set-up constraints, the in-process inventory
definition, and the technological constraints.

The total number of machines which could process an operation is limited.

This limitation is defined by the machine number (with overtime) constraints,
condition (1). This condition applies to all jobs, a, processing the
operations, b, where o(a,b) is defined here as the general operation, p.

o(a,b) C M(p)

£ x(a,b,t) < m(p) + V(p,t) 1)

where m(p) is the total number of machines which could process operation p out
of the total set of machines M(p) , o(a,b) is the specific operation p defined
for all jobs, x(a,b,t) is the number of machines processing operation o(a,b)
at time t, and V(p,t) is the overtime permitted for that set. The overtime
permitted is limited by the maximum overtime available as denoted by the

constraint given in condition (2). Conditions (1) and (2) apply to all p from
1 to P, all m(p) in the set of machines M(p) , and all time periods, t, from 1

to T.
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V(p,t) < W(p,t) (2)

We define the number of machine set-ups to be the number of machines

which start to process o(j,i) in time interval t and were not processing

o(j,i) in the previous time interval, (the first term in brackets in equation

(3)), minus the number of machines which can process o(j,i) and were idle in

the previous time period, (the second term in brackets in equation (3)). The

set-up constraint is for all jobs, j, all operations, i, and for all time
periods, t, from 1 to T.

M(p) (3)

s(j,i,t) = [ x(j,i,t) - x(j,i,t-l) ] -
[ m(p) - S x(j,i,t-l) ]

The definition of in-process inventory, Y(j,i,t), at any time period t is
the amount of inventory which has completed operation i of job j at time t.

The expression for in-process inventory (equation (4)) is defined for all
jobs, j, all operations, i, and for time periods, t, from 0 to T.

(4)

[ (x(j,i,k) - f(j,i) s(j,i,k)) / p(j,i) -

(x(j,i+l,k) - f(j,i+l) s(j,i+l,k)) / p(j,i+l) ]

where p(j,i) is the process time per machine (machines/unit) and f(j,i) is
the fraction of a time interval required for a set-up. Note that the initial
states are specified by setting Y(j,i,0) and x(j,i,0) equal to their initial
values and that the values for s(j,i,t) and x(j,i,t) at the undefined
operation I(j)+1 are assumed to be zero.

Condition (5) enforces the technological constraints of the job
processing order. These constraints are defined for all jobs, j, all
operations, i, and for time periods, t, from 1 to T, except for the instances
when i = t = 1.

Y(j,i-l,t-l) - x(j,i,t) / p(j,i) > 0 (5)

4.3 Objectives (or Soft Constraints)

We now provide representation for the objectives of the problem
formulation. The first objective is minimize the lateness of an order and
minimize total tardiness. We formulate this objective by considering the
desired finished inventory for job j which is given asd(j,I(j),t). We wish

Y(j,i,t) =

k=0
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to have Y(j,I(j),t) as close to d( j,I( j) ,t) as possible in order to meet the
finished inventory demand level at time t. Since this objective is formulated
in relation to a desired inventory level, (i.e., finished inventory), we may
incorporate it within the "minimize WIP inventory " objective which we will
now define.

To minimize the WIP inventory, we desire to have Y(j,i,t) as close as
possible to the desired inventory level, d(j,i,t), for all j, i, and t. If

Y(j,i,t) is less than d(j,i,t), then we have a shortfall or do not have enough
buffer stock. If Y(j,i,t) is greater than d(j,i,t), then we have a production
surplus, (too much buffer stock) and have increased WIP inventory. Thus, to
minimize inventory, we wish Y(j,i,t) to follow the "desired trajectory"
defined by d(j,i,t). The objective to minimize shortfalls and minimize
surplus is specified in (6) as:

T J I(j)

Minimize: S S ^> |
Y(j,i,k) - d(j,i,k)

| (6)

k=l j=l i=l

To minimize set-up and change-over costs, we minimize the number of set-
ups multiplied by the cost per set-up. The objective to minimize set-up costs
is specified in (7) as:

T J I(j)

Minimize: ^ CS(j,i,k) s(j,i,k) (7)

k=l j=l i=l

To minimize with respect to overtime, we minimize the amount of overtime
multiplied by the cost of overtime. The objective to minimize overtime costs
is specified in (8) as:

Minimize: S ^ CV(p,k) V(p,k) (8)

k=l p=l

To minimize with respect to costs of shortfalls and holding inventory, we
minimize with respect to the amount of shortfall multiplied by the cost

penalty for the shortfall and add to this the amount of holding inventory
multiplied by the holding cost for the surplus inventory. Our objective to
minimize shortfall and surplus costs (minimize inventory costs) is specified
in (9) as:
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(9)

T J I(j)

Minimize: ^> Y ^ [ CP(j,i,k) max { 0, (d(j,i,k) - Y(j,i,k)} +

k=0 j=l i=l CH(j,i,k) max { 0, (Y(j,i,k) - d(j,i,k)} ]

If we wish to minimize total costs, then the corresponding objective is

specified in (10) as:

T P (10)

Minimize: \ ^ CV(p,k) V(p,k)

k=l p=l

T J I(j)

+ 2 2 2 C^i**) s (j'i'k )

k=l j=l j=1

T J 1(5)

+ ^ V ^ [ CP(j,i,k) max { 0, (d(j,i,k) - Y(j,i,k)} +

k=0 j=l i=l CH(j,i,k) max ( 0, (Y(j,i,k) - d(j,i,k)} ]

The multi-objective, mixed-integer, linear programming formulation of the
job-shop scheduling problem with finite time horizon takes into consideration
set-ups (condition (3)), overtime (conditions (1) and (2)), buffer stocks and
shortfall considerations (equation (4), condition (5), and objectives (6) and
(9)). The formulation considers initial and final states of the inventory
levels as zero or non-zero and machine status as busy or idle (equation (4)

and condition (5)). It allows for batch size and number of batches to be
variable (equation (4) and condition (5)) and it considers set-ups as explicit
entities (condition (3)). Job priorities (objective (9)), multiple machines
or machine banks (equation (1)), and multiple optimality criteria (objectives
(6) through (10)) are also considered within this formulation.

4.4 Size of the Problem Formulation

The problem is to process a set of J jobs on a set of machines, M(p)

.

Each job consists of a set of I(j) operations, ( o(j,l) through o(j,I(j)) ),

to be performed in sequence. Each operation o(j,i) requires the exclusive use
of a particular machine for a duration, p(j,i), the processing time of the
operation. To solve the problem, one must determine the number of machines,
x(j,i,t), which should be processing operation i of job j at time interval t
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in order to meet inventory requirements, d(j,i,t), minimize in-process
inventory, Y(j,i,t), minimize set-ups, s(j,i,t) and minimize overtime, V(p,t).

The size of the problem formulation is given in terms of the number of
decision variables and the number of constraints. We are given the job
processing sequence for each job and the processing time per operation,
p(j,i). We are also given the machine data, p, m(p) , and M(p) , the set-up
times, f(j,i), and the maximum overtime allowed, W(p,t). Cost data in the
form of CS(j,i,t), CV(p,t), CP(j,i,t) and CH(j,i,t) are provided as initial
input data for the problem. Finally, the desired inventory levels, d(j,i,t),
and the initial states of x(j,i,0) and Y(j,i,0) for machines and inventory are
also provided.

The decision variables are the number of machines processing operation i

of job j at time t, x(j,i,t), the number of machine set-ups, s(j,i,t), the in-
process inventory, Y(j,i,t), and the overtime, V(p,t). Both x(j,i,t) and
s(j,i,t) take on integer values, while Y(j,i,t) and V(p,t) are real valued.
We have J total jobs, I(j) total operations per job, P total operation types,
and T time periods. In order to simplify the computations for the number of
decision variables and constraints, let us work with the special case where
each job contains I operations and one operation is to be processed on each of
the machines, I(j) = I for all j. From this, we compute the number of
constraints and the number of decision variables.

The machine number constraints (condition (1)) are defined for all unique
machine operations, p, and all time periods, t. Thus, we have P times T
machine number constraints. The overtime availability constraints (condition
(2)) are also defined for all p and all t and are of the number P times T.

The set-up constraints (equation (3)), the in-process inventory definition
(equation (4)), and the technological constraints (condition (5)) are defined
for all jobs, all operations and all time periods. There are J times I times
T constraints for each of these types of constraint. (Note: Since condition
(5) is not defined for when i equals t equals 1, we have J times I times T
minus J for this particular constraint.)

The overtime decision variables are defined for all p and all t. There
are P times T of these decision variables. The set-up, in-process inventory,
and the number of machines decision variables are defined for all jobs, for
all operations and for all time periods. Thus, there are J times I times T
set-up decision variables, J times I times T in-process inventory decision
variables, and J times I times T machine number decision variables. It should
be noted that the set-up decision variables are a function of the machine
number decision variables and the in-process inventory decision variables are
a function of both the set-up and machine number decision variables.

The total number of constraints is T times P times 2 plus T times J times
I times 3 minus J. This sum is: T ( 2 P + 3 J I )

- J. The total number
of decision variables is T times P plus T times J times I times 3. This sum
is : T ( P + 3 J I ) . There are of course non-negativity constraints on
each of the decision variables, but these are not counted explicitly here.
For a problem with 5 jobs, 5 unique operations per job (all jobs have the 5

operations in common) and 10 time periods, we have 10 ( 10 + 3x5x5 )
- 5 or

845 constraints (not counting the non-negativity constraints) and
10 ( 5 + 3x5x5 ) or 800 decision variables. For a 10 job, 10 (common)
operations per job and 10 time period problem, we have 3190 constraints and
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3100 decision variables. Since the size of the most general problem
formulation is rather large, it may be worthwhile to consider an augmented
formulation in order to reduce the problem size, e.g., ignore set-up decision
variables and corresponding constraints to reduce the problem size.

The size of the problem is directly proportional to the number of time
periods, T. If we choose a smaller time period and attempt to capture the
dynamics of the scheduling environment, then T will generally be large. If we
choose the time step to be larger, then the value of T should be smaller and
the size of the problem will be reduced. By choosing a larger time step,

however, we may not properly represent the dynamics of the real-time
rescheduling problem. The choice of T will depend on the values for the set-
up times and the job processing times. We wish to choose the smallest T such
that we can accurately model the set-up times and job processing times.

5.0 The Simulation-Optimization Solution Strategy

The solution strategy for the problem formulation relies upon a synthesis
of deterministic scheduling heuristics and discrete-event simulation. This
simulation-optimization approach uses deterministic scheduling heuristics to
select candidate schedule(s) and uses discrete-event simulation to provide
quantitative measures for the robustness criteria of these candidate
schedule (s), i.e., to provide measures for how well the schedule performs
under a range of random disturbances.

Figure 3 is a schematic diagram of the conceptual framework for the real-
time production scheduling decision aid. The first task to be completed when
using the decision aid is to ready the input data and select the desired
scheduling objective(s) . Within the total set of scheduling objectives
described in Section 4.3, the user is requested to choose the most important
objective and/or rank the objectives in their order of importance. This is
done in case a feasible schedule which is to meet all the objectives can not
be generated, i.e., the schedule will be generated to meet the highest
priority objectives.

The decision aid uses the rank-ordered objectives set and the scheduling
input data base and generates an initial feasible schedule. This initial
schedule is created from the deterministic solution to the mixed integer,
multiple objective, linear programming problem. The solution to this problem
requires the use of a heuristic solution procedure specifically tailored to
mixed integer problem types. The decision aid analyzes the problem structure
and chooses the "best" heuristic to be used to solve the problem and thereby
provide an initial feasible schedule.

If an initial feasible schedule can not be generated by the decision aid,
then the flow plan must be augmented (see Figure 1) . Within this augmentation
process, several alternative courses of action may be considered (Holstein;
1968) . Alternative actions may include attempting another job priority
ranking, cutting the lot size (i.e., breaking the job into two lots), trying
an earlier start time (if tool, material, and so on are available),
negotiating a later delivery date, and/or allowing the program to overload one
or more work centers after agreeing with the manufacturing supervisors on an
overtime plan or other capacity adjustment to handle the overload.
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Continuing with Figure 3, we note that the initial feasible schedule

serves as the "seed" for the schedule refinement step. In the schedule
refinement step, the decision aid attempts to find a better schedule(s) by
applying "optimizing" heuristic solution approaches to the mixed integer,

multiple objective, linear programming problem. This solution refinement
approach is similar to solution approaches which combine partial enumeration,
heuristics, and neighborhood search strategies, i.e. combinatorial-
optimization heuristics.

The refined schedule(s) is then tested with a simulation model which
contains data on the actual manufacturing facility model for which the
schedule is to be applied towards. The schedule is tested under two
conditions within this dynamic simulation environment. First, the schedule is

tested under normal facility operating conditions in order to determine how
the randomness of the facility environment may affect the recommended
schedule. The random elements to the first testing condition include
stochastic job processing times and set-up times, and minor deviations in the
desired inventory levels and demand levels.

In the second testing environment, the schedule is tested under
"disruptive" facility operating conditions. The second test allows the
scheduler to evaluate the schedule under disruption conditions such as machine
failures, material unavailability, surges in demand, or other "what-if" type
scenarios. These disruptive test conditions allow the scheduler to provide
quantitative measures for the robustness and flexibility criteria of the
schedule design process.

After the testing of the schedule in the simulation environment is
completed, the scheduler may choose one of three options. If major
modifications are required of the schedule, then the scheduler may wish to re-
rank the order of the scheduling objectives and begin a new scheduling session
with a revised objectives ordering. Under this option the scheduler is
realizing that the initial rank order of objectives can not produce a
desirable schedule. The second modification option allows the scheduler to
perform minor modifications (or refinements) to the recommended schedule.
Here the simulation evaluation results for the testing of the schedule are
used within the decision aid to further refine the existing schedule, i.e.,
the simulation is used as a schedule design refinement tool. If the resulting
evaluation criteria of the most recent schedule are acceptable, then the third
option, the schedule implementation option, is chosen. If the schedule is
implemented, then the input data base is updated to reflect the most current
information on the (new) schedule in operation.

6.0 Summary and Future Research

We have proposed a multiple objective, mixed integer, linear programming
formulation of the real-time scheduling problem. We now need to explore
algorithmic solution procedures for solving this problem formulation and
determine what heuristics and simplifications are possible. The "best"
solution to the integer programming problem needs to be determined and then
tested via simulation in a "real-time" environment. Our future research will
concentrate on development of an algorithmic solution procedure and
incorporating this procedure into a working prototype for the decision aid.
Human factor issues and data base needs for the decision aid will also be

-419-



researched. It should be noted that, due to the complexity of the problem,
it may be impossible for the working prototype to perform all of its functions
in real-time.
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INTRODUCTION

This paper considers an actual case study of a custom door
manufacturer. The manufacturer experiences a wide variety of production
sequences arising from the differing types and styles of doors among the

received orders. However, in reviewing past orders, it was found that three

primary production sequences accounted for nearly 75% of the doors ordered
while two basic production sequences accounted for nearly 95% of the frames.

This paper will limit its consideration to these five production sequences.
Door types associated with each production sequence will be referred to as

Door Type I, II, and III, while the frame types will be denoted as Frame Type
I and II. The sequence of production steps used in the manufacturing of each
door and frame type is given in Table 1 and diagramed in Figure 1. As
presented, there is a maximum of ten primary production workstations to be
considered, with two additional workstations serving for the staging and
shipping of orders.

The manufacturing environment falls within two extreme production
situations: the pure flow shop and the pure job shop. In the pure flow shop
situation, orders flow in a completely deterministic manner through each
subsequent production process. However, in the pure job shop, an order flows
from one workstation to another in an apparently random fashion. Both
situations are idealizations of reality and seldom exist. Looking at Figure
1, the production situation is nearly a flow shop. That is, if a production
step is employed in the manufacturing of a given order, it must be employed in
a specific chronological order. The major distinction from the flow shop
environment is that for a given door or frame type, certain production steps
may be omitted.
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FROM STAGING (12)

SHEAR (1)
SERVERS: 2

D1.2.3; FU2^

PUNCH (2)
SERVERS: 3

D1.2.3: F1.2

FORM (3)
SERVERS: 2

"\
SAW MITRE (4)
SERVERS: 1

SPOT WELD (9)y
SERVERS: 2(2)

MANDRIL WELD (6)
SERVERS: 1

D1.3^

ASSEMBLE (10),
SERVERS: 3(1,

SUBASSEMBLY (6)
SERVERS: 2

D2.3

EDGE WELD (7)
SERVERS: 1

D2.3

FINISH (8)
SERVERS: 4

D1.2.3; F2

DOORS ONLY

D2; Ft.2

DOORS ONLY

F1.2

D1

TO SHIPPING (11)

Figure 1 — Production Flow Diagram for Door Manufacturer
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PRODUCTION STATION
DOOR TYPE FRAME TYPE

(STATION NUMBER) 1 2 3 i 2

SHEAR ( 1

)

X X X X XTX
PUNCH (2) X X X X X
FORM (3) X X X X X
SAW MITRE (4; X
SPOTWELD (.9; X X X vA vA
XM k linn TT T TTT*T IN / C \MANDRIL WELD (5; X X

X X X vA VA
SUBASSEMBLE (6) X X X
EDGE WELD (7) X X
FINISH (8) X X X X X

ADDITIONAL STATIONS:
STATION 11: SHIPPING
STATION 12: STAGING

Table 1—Production Flow chart

In the past, the company has experienced considerable problems with
production scheduling. To maximize flow through the factory, the company has
adopted the strategy of releasing orders at the first availability of the
shearing workstation. Over time, this policy has resulted in severe
congestion of the shop floor primarily because the production times at the
workstations are not balanced. Specifically, certain workstations such as
spotwelding require significantly more processing time than the other
workstations. The orders collect in queues at the critical workstations
causing congestion which further Increases production times at these
stations. Ultimately, orders were being misplaced, and the time that orders
spent on the production floor was continuing to increase. To meet promised
delivery dates, the company was constantly expediting a given order. Finally,
the work-in-progress inventory was becoming a major production cost. It was
clear that the policy of earliest possible order release was not functioning
as desired.

Early analysis for improved production scheduling sought to define an
explicit production control law that would continuously monitor the system
and determine when and which of the queued orders would be released to the

shop floor next. The definition of this control law would rely primarily upon
backward scheduling techniques. Although the definition of an active control
law is certainly possible, it was believed that the assignment of optimal
parameters within the model would be difficult. Furthermore, the capability
to continuously monitor the total production system was not easily implemented
and perhaps totally infeasible for the small manufacturer.

Recently the Kanban approach has been employed by Japanese manufacturers
and others for production control. Briefly, the objective of the Kanban'

s

approach is to limit the number of orders that are either being processed or
have been processed by a given workstation, but have not completed the next
production step. As displayed by Figure 2, the Kanban approach to be adopted
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FROM STATION k-1

STATION k

PERFORM k th PRODUCTION STEP

RELEASE k-1 th STATION TICKET

ASSIGN k th STATION TICKET

TRANSFER TO STATION k+1

STATION k+ 1

PERFORM k+1 th PRODUCTION STEP

RELEASE k th STATION TICKET

ASSIGN k+1 th STATION TICKET

TO STATION k+Z

Proposed Policy for Assignment of Kanban Cards
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in this study will not allow the server or the order to be released at a given

workstation until that station's card can be assigned to the processed
order. That is, the server will remain idle until a Kanban card can be

assigned. On the other hand, an issued card must remain with the order until

the subsequent production step is completed. By limiting the number of cards
assigned to a given station, the previously stated objective for the Kanban
approach is implemented.

An alternative approach would issue the card before production could

begin at the station. The latter configuration will typically require that

more cards be allocated to each workstation. The former approach was adopted
in this study to increase the probability that an order would be ready for

transfer to the next station whenever a ticket became available. It is not

believed that either configuration when properly optimized will generate
significantly better performance than the other. However, this point could be

tested.

The Kanban approach has been previously employed in production
environments representing a nearly pure flow shop with balanced production
times at each station. This type of production environment is one of the

easiest to control as the flows are predictable, and there is no inherent
tendency for orders to collect at any specific station. When the production
line is functioning properly, the Kanban approach has little or no influence
upon the production. On the other hand, when excursions from the ideal or
equilibrium production situation do occur, the Kanban procedure tends to limit

the system's transgressions. Finally, since the line is presumed to be
balanced, the number of cards Issued to each station is usually a constant.

Application of the Kanban approach to the door manufacturing problem
represents two principal departures from the production environment cited
above. First, a pure flow shop does not exist, and therefore the flows from

station to station are not deterministic. Second, the production times at

each station are not balanced, and there is a tendency for orders to collect

at critical workstations. The immediate consequence of the these observations
is that no ideal steady state production configuration exists. It can be
anticipated that the Kanban procedure will continuously be constraining the
system, hence exerting a more active influence in production control.
Finally, since the production times are not balanced, the number of cards
allocated to each station will differ. This paper will seek to determine the

optimum number of Kanban cards to be assigned to each station.

THE SIMULATION MODEL

Before the optimization could be undertaken, a simulation model for the
door manufacturer was developed using the simulation SIMAN [3]. SIMAN was
chosen for three primary reasons:

1) The simulation language was available for the personal computer,
providing a nearly unlimited computational resource.

2) The language provided a means for modeling the workstation
configuration of the door manufacturing environment.

3) The language also contained mechanisms for modeling the transport of

materials between workstations.
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Using SIMAN, a generic workstation was defined for stations 1 through 8 as
denoted in Figure 1. For these stations, only the service times and the
number of servers at each station varied. For stations 9 and 10, special
coding was required to permit the inclusion of servers who could process doors
only. Finally, stations 11 and 12 were specifically coded for their
respective shipping and staging functions.

SIMAN also allowed the inclusion of material handling carts to permit the
modeling of the transport function between the workstations. Pertaining to
this transport function, a pallet of either doors or frames was defined as the
maximum number of units that can be transported at one time by the
transporter. To provide variability in order size, it was assumed that a door
order would require one, two, or three pallets with a probability of 0.5, 0.3,
and 0.2, respectively. Associated with each door order would be a

corresponding order for frames requiring the same number of pallets. Partial
pallets were not considered explicitly, but rather considered implicitly by
allowing variations in processing times.

Programming the system in SIMAN was relatively straightforward except for
a few particular features included in the model. First, each arriving order
was split into two distinct door and frame orders which were subsequently
treated as separate entities during the production processes. The door and
frame orders were released to the production floor on a first-in-first-out
basis. At a given workstation, it was required that all pallets to an order
of either doors or frames be finished before the Kanban card would be assigned
and the order could be transported to the next production process. However,
once the first pallet for a given order arrived at a station, processing could
commence at the first availability of server. Furthermore, the same server
was required to process all pallets associated with a given order. When the

processing of all pallets was complete, the Kanban card to the preceding
station was then released. At the shipping station, a completed door or frame
order remained until its counterpart was also ready for shipping. To provide
additional control upon the total orders on the production floor, another card
was assigned to each door or frame order upon submission to the shop floor.
The ALL cards remained with the individual door and frame orders until both
the door and frame order comprising a total order were ready for shipment.

OPTIMIZATION ON THE RESPONSE SURFACE

Using the Kanban approach, the goal is to establish an optimal allotment
of cards at each of the twelve workstations as well as the allotment of ALL
cards which determine the maximum number of orders permitted on the floor at

any time. Determining this optimal allocation is difficult. Unlike the

optimization of a function which can be mathematically specified, the
functional form of the criteria to be considered in this optimization is not

explicitly known. Instead, the criteria must be evaluated experimentally
through simulation. This evaluating procedure is further complicated by the

stochastic elements in the observed system. The procedures which will be

employed in the evaluation have been collectively termed response surface

methodology (RSM) (see Law and Kelton [2]).

Unfortunately, the techniques of RSM are not immediately applicable to

this study. RSM presumes that the function or response being studied is

continuous on a defined interval. For this study, the investigated responses
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will be defined at discrete or integer values only as fractional allocations

of cards have no meaning. Nevertheless, an attempt will be made using the RSM
procedures to approximate the derivatives for the criteria functions at a

given point. The quality of any approximation will be affected by the
consideration of discrete variables only. However, these approximations may
provide insight into potential reallocation of cards to improve the selected
responses to be optimized. Also these approximations may provide verification
of a point as a local optimum. It is not believed that global optimality can
be demonstrated, however, due to the integer nature of the problem.

DETERMINING AN INITIAL CONFIGURATION

As noted above, there are thirteen potential factors (the number of cards
at each station and the number of ALL cards) to be considered in the

optimization. The first step in the optimization is to establish an initial
assignment of values to these factors. The following procedure was
employed. First, the mean interarrival time for orders was set to three
hours, and a simulation was performed with a known excess of cards at each
station. The attempt here was to determine the free response of the system
without saturation effects due to excessive order arrivals or constraining
limitations due to the availability of cards. The number of cards at each
station was then successively reduced until further decreases would effect the
system response. The process is significantly simplified by using the output
statistics generated by SIMAN for the utilization of cards at each station.
Since only an initial configuration was being sought for the optimization, the

procedure did not need to be exact. The selected initial configuration is

given in Table 2.

STATION
|

1 2 3 4 5 6 7 8 9 10 11 12
|

ALL
|

CARDS |A442341 10 7773|25
|

Table 2—Initial Allocation of Cards for the Simulation Study

The next step was to establish a mean interarrival time for orders that
would nearly saturate the system at this initial configuration. The
saturation requirement was chosen to enhance the effects derived in varying
system parameters. Initially two simulations were made with mean interarrival
times of 2.0 and 2.5 hours, respectively. The results with respect to the
three potential system responses — the average time that an order is in the
system, the average time that the order is on the production floor and the
total time to produce one thousand orders — are given in Table 3.

|
MEAN INTERARRIVAL TIME (HOURS)

2.0 2.5
i

2.25

TIME IN SYSTEM
TIME ON FLOOR
TIME FOR 1000 ORDERS

159.6
32.9

2280

32.3
29.1

2586

47.6
32.3
2315

Table 3—Measured Responses for Mean Interarrival Times
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The interarrival time of 2.0 hours saturated the system as evidenced by
the significant increase in the average time an order resides in the system.
Using the available information on the total time to process 1000 orders, the
minimum average interdeparture time at saturation can be computed as 2.28
(=2280/1000) hours. Since arrivals are occurring on average every 2.0 hours,
the system is obviously saturated. An average interarrival time of 2.5 hours
does not appear to saturate the system. For this case, the mean
interdeparture time is 2.59 (=2586/1000) hours.

Another simulation was then made with a mean interarrival time of 2.25
hours for which the responses are also given in Table 3. The growth for the
TIME IN SYSTEM response displays some saturation in the system. The mean
interdeparture time for this case is 2.32 (=2315/1000) hours. Since the
differences between the mean interdeparture and interarrival times for the
2.25 and 2.5 hour cases are approximately the same, the saturation does not
appear to be severe. Hence, 2.25 hours will be used as the mean interarrival
time for all subsequent simulation runs.

Finally, to provide a basis for the comparison of the effectiveness of
the Kanban control strategy, another simulation was run with an excess of
cards at every station. The system responses gave TIME IN SYSTEM (TIS) = 66.2
hours, TIME ON FLOOR (TOF) = 66.1 hours, and TIME FOR 1000 ORDERS = 2316
hours. Returning to Table 3, the effectiveness of the Kanban approach becomes
immediately evident. Using the initial allotment of cards (and the 2.25 hour
case), the average time in the system is reduced by 28% [=(66.2-47.6)/66.2]
and the average time on the floor by 51% [=(66. l-32.3)/66. 1 ] . The time
required to process 1000 orders is nearly identical in both cases.

Although the present reductions in both the TIS and TOF responses are
substantial, the question remains whether the system can be further
optimized. A particular concern is whether both indices can continue to be
simultaneously reduced or must one index be compromised to effect a reduction
in the other. The former case is the ideal situation. However, if the second
case occurs, it is essential that the nature of the compromise be quantified.

ITERATION ONE

Using the concepts of RSM, ideally an approximation to the response would
be developed at each iteration which would then be used to define a new point
that would improve the responses on the next iteration. One accepted approach
is to use the resulting approximation to subsequently define an approximation
to the gradient for the response which directs the generation of an improved
design configuration for the system. The success of this approach is
necessarily dependent upon the ability of the analyst to develop an adequate
approximation to the function at the current design point. This capability
will be discussed later.

From the outset, thirteen factors were viewed as too many factors for

consideration. Using the preliminary simulation results, six factors were
dropped from consideration. The number of tickets (or factors) associated
with stations 1, 4, 5, and 7 were eliminated because the initialization has

already assigned a minimal number of tickets to these stations, while the
utilization statistics for these factors generated from the simulations do not

justify major changes in their assigned values. Both the station 12 card and
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the ALL card are issued at the staging station Therefore the station 12

card which has already been assigned a minimal value is somewhat
redundant. The station 11 card (or shipping) is not really needed as there

are no subsequent processes. Finally, the remaining seven factors form an

Ideal number for employing fractional factorial design to specify

configurations to be simulated.

The initial assignment of factors to the cards at a specific workstation
is given in Table 4. Also given for each selected factor are a high

value x* , and a low value, x , which are symmetrically placed about the

0
initial setting, x^ . The techniques of experimental factorial design will

be employed to define the simulation runs (see Box, Hunter, and Hunter [1] or

Law and Kelton [2]). Using the responses from these simulation runs,

estimates of the main effects for each factor, denoted by <i> for 1=1,... 7,
can be made. Letting y denote the desired response to be approximated, the

is the vector of initial setting of the factors Xj is the normalized factor

main effect <i> represents a statistical evaluation of 2
3x

i
x
0 where

which assumes values on an interval [-1,1] when Xj assumes values on the

interval [x^.x*] or

X
A

= [ Xj - (xj + x~)/2] / [(x+ - x~)/2] (1=1,. ..,7). (1)

A linear approximation to the response y can then be generated as

- 7
<i>

y (X ...,X
7 ) = y + Z ^f- X (2)

1=1

where y Is the computed average response over all simulation runs.

The quality of this approximation depends upon both the size of the higher
order effects and the size of the experimental grid for defining the
simulations. Of particular interest are the two-factor effects, <ij> for

1,3*1,... ,7 and i*j , which statistically evaluate 2 ^ ^
effects represent the anticipated changes in the response derived from
modifying two factors simultaneously. Three- and higher-factor effects
can also be computed.

To estimate all potential effects, 2^ (=128) simulation runs would be

required. This number of runs is too large considering the rather coarse grid
pattern with which the initial design was specified. Therefore, a fractional
factorial design was chosen [1]. Specifically, a 2^~** design was generated by
using the design generators 1=124=135=236=1237. In Table 5, the factor
settings for each simulation run are given. A "+" indicates that Xj would be

set to x* , while "-" indicates setting Xj to x. . Also included in the table

are the measured averages for both the TIS and TOF responses on each
associated simulation run.

x
0 . These
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STATIONS

( i 1V i )

1 2 3 4 5 6 7 8 9

KO )

10 11 12

/ 7 \w

;

ALL

0
X
i

3 4 4 2 3 4 1 10 7 7 7 3 25

+
X
i

5 5 5 12 9 9 28

3 3 3 8 5 5 22

Table 4—Factorial Specifications for Iteration One

12 13 23 123 TIS TOF
RUN 1 2 3 4 5 6 7 (hrs) (hrs)

1 + + + 62.5 30.4
2 + + + 43.1 34.2
3 + + + 47.4 34.3
4 + + + 69.0 31.0
5 + + + 45.9 34.7
6 + + + 64.5 31.3
7 + + + 54.5 29.5
8 + + + + + + + 39.4 32.6

Table 5—Simulated Configurations and Computed Responses for
Iteration One

From the collected data, the behavior of both responses appears
complicated. Attempts at defining an appropriate linear approximation were
made, but the associated errors were too large to allow substantial reliance
upon the gradients derived from the approximation. This approximation was
certainly compromised by the fact that each main effect was confounded with
two factor effects. Eight additional simulation runs would be required to
remove this confounding of main effects with two factor effects. Thus, the

gradient could not be employed to determine the base point for the next
experimental design. Rather, the configuration associated with simulation run

7 yielded desirable reductions of both the TIS and TOF responses. Therefore,
this configuration will be subjected to additional investigation during

subsequent iterations.

ITERATION TWO

On iteration one, fractional factorial design was employed to generate

approximate Information pertaining to all effects using a small number of

simulation runs. On iteration two, the factorial design will be abandoned to

better illustrate the behavior of the main effects for the responses.
Specifically, using the initial factor settings arising from run seven on

iteration one given in Table 6, three sets of simulation runs were made. On

the first and second set of runs, each of the factors was increased
individually by one and two, respectively. On the third set of simulation
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runs, each factor was decreased by one. Thus, a total of twenty simulation
runs were made. (The simulation run increasing factor seven by two was not

made .)

FACTORS (1) (2) (3) (4) (5) (6) (7)

STATIONS 1 2 3 4 5 6 7 8 9 10 11 12 ALL

0
X
i

1 3 5 2 3 5 1 8 5 9 7 3 22

Table 6 —Initial Factorial Setting for Iteration Two

The results of the simulation runs are given in Table 7. The results
truly depict the complexity of the responses. For example, if factor two is

increased by one, the average TIS drops from 54.5 to 44.6 hours, while
increasing by another additional unit increases the average TIS to 46.5
hours. On the other hand, decreasing factor two by one unit again decreases
the average TIS from 54.5 to 46.8 hours. Thus a relative maximum and minimum
for the TIS response are demonstrated for factor two over an interval of three
units. Since only discrete values for factor two are relevant, developing an
approximation with respect to this factor appears impossible.

TIS (hrs) TOF (hrs)
FACTOR
(RUN) +1 +2 -1 +1 +2 -1

1 52.0 44.2 57.9 29.6 28.5 30.5
2 44.6 46.5 46.8 29.5 30.3 30.0

3 54.5 54.5 48.5 29.5 29.5 29.9
4 54.5 54.5 54.5 29.5 29.5 29.5

5 53.0 48.6 52.9 29.7 28.6 30.6
6 54.5 54.5 54.5 29.5 29.5 29.5
7 61.5 79.7 32.1 30.4

Table 7—Simulation Results for Iteration Two

Factor three also demonstrates an interesting behavior in that Increasing
factor three causes no changes to either the TIS or TOF response. Decreasing
factor three, however, causes the average TIS to decrease while the average
TOF Increases. Apparently, the number of cards at station 6 are Initially
Imposing no constraint upon the system. Thus, adding extra cards does not
change system response. However, when the number of cards is decreased, the
system response Is affected. Looking at the responses for factor three, it is

also important to note that compromise among the responses may be required for
all factors, not just factor seven which was the case in iteration one.

On iteration one, <4> appeared to be the second most significant.
However, on iteration two, it appears that within the investigated range of
values, factor four displays no effect upon either response. Two
possibilities emerge: either the estimate for <4> on Iteration one is
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significantly in error or the significant factors can change depending on the
current values assigned to the other factors. The latter case appears to be
more likely. Factor six also appears to exhibit no influence upon the

responses

.

For factor seven, apparently a relative minimum has been located. This
is especially important since factor seven controls the total number of orders
allowed in the system at any time. Finally, factor one gives the most useful

changes in both responses. Increasing or decreasing factor one by one unit
results in changes to the average TIS response, which indicates a consistent
decrease in the TIS with an increase in factor one. In fact, this was the

observation that initiated the simulating of the +2 cases. When factor one
was increased by two units, significant reductions occurred in both the TIS
and TOF responses. As noted above, increasing factor two by one also gave
desirable reductions. To test if the effects could be superimposed, a

simulation run was made where factors one and two were increased by two and

one, respectively. It resulted in an average TIS of 54.7 hours and an average
TOF of 28.9 hours. Clearly, increasing only factor one by two yielded
superior results.

Increasing factor five by two also resulted in desirable reductions to

both responses. However, increasing both factor one and five by two units
each gave an average TIS of 54.4 hours and average TOF of 30.0 hours.
Therefore, increasing factor one by 2 yielded the best results on iteration
two

.

ITERATION THREE

The initial point for iteration three is given in Table 8. As shown in

the table, three factors were dropped from further consideration, leaving only
four. Iteration two showed that factors four and six were insignificant to

the responses. For factor seven, a local minimum was located at the value of
22. On this iteration, a 2 fractional factorial analysis was performed,
requiring eight simulation runs. The configurations for the simulation runs
are given in Table 9 with the associated results for the responses. In the

table, a "+" implies increasing the factor by one while a "-" implies
decreasing the factor by one. In every case, the measured responses are
greater than the average TIS of 44.2 hours and average TOF of 28.5
hours corresponding to the initial point of the search. At this point, the

initial point given in Table 8 will be treated as a local optima.

As a point of interest, the estimates of the average and main effects
were made using the responses listed in Table 9. These estimates given in

Table 10 are free of any confounding with two factor effects. It is first

noted that estimated averages significantly overestimate the simulated average
responses of 44.2 and 28.5 hours, respectively, at the base point for the

experimental design. Again this is consistent with the base point being a

local minimum. For the TOF response the main effects appear to be minimal.
This fact is also true for the effects <3> and <4> on the TIS response. The

effects <1> and <2> do appear significant. These effects would predict that

reduction in TIS response could be made by decreasing either factor 1 or 2.

Since both these situations have been simulated and resulted in an increase of

the TIS response, the accuracy of the estimates is certainly questionable.
These observations are especially Important because we can not make estimates
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of the compromise among the responses. Thus, a crucial consideration in

multicri teria decision-making must be neglected. Due to the discrete nature
of the factors better estimates of the effects appear impossible.
Nevertheless, the final reductions given do appear to be significant,
reflecting a 33% = (66. l-44.2)/66. 1 reduction in the TIS response and a 57% =

(66.1-28.5)/66.1 reduction in the TOF response.

NEW FACTOR (1) (2) (3) (4)

OLD FACTOR (1) (2) (3) (4) (5)(6) (7)

STATION 1 2 3 4 5 6 7 8 9 10 11 12 ALL

3 5 5 2 3 5 1 8 5 9 7 3 22

Table 8—Initial Factorial Settings for Iteration Three

EFFECTS
123= TIS TOF

RUN 1 2 3 4 (hr) (hr)

1 47.9 29.5

2 + + 49.9 30.1

3 + + 48.4 29.9

4 + + 53.0 29.8

5 + + 46.8 29.6

6 + + 46.5 29.6
7 + + 51.5 29.7

8 + + + + 55.3 29.7

Table 9—Factor Specification and Simulation Results
for Iteration 3

COMPUTED FOR TIS FOR TOF
EFFECTS (HRS) (HRS)

AVERAGE 49.90 29.70

<1> .63 .03

<2> 1.07 .01

<3> .05 -.04

<4> .09 .04

Table 10—Estimated Main Effects for Iteration 3
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CONCLUSION

The optimal solution obtained in the previous section does not represent an
optimal configuration for the overall system. First, global optimality of the
ascertained configuration, even with respect to the seven investigated factors,
cannot be demonstrated. On the other hand, the improvements gained through the
optimization procedure are self-evident. Second, system response with respect
to the previously eliminated factors should be investigated. Here it is

suggested that the approach of iteration two, perturbing each factor singularly,
be adopted. If an improved configuration is defined in this process, then
subsequent fine tuning of the seven analyzed factors may be required.

Finally, in the presented optimization, the structural configuration and
assignment of servers to each station were taken as a given. An overall
optimization of the system would also investigate the validity of this
assumption. Particularly, the assignment of servers to each station as well as
the number of transporters should be investigated. Fortunately, the
simulations' outputs already provide substantial Information pertaining to both
server and transporter utilization. This information can be employed in

determining an improved assignment which would be subsequently further
optimi zed

.

Although the above optimization tasks still remain, it is believed that

several conclusions can be drawn from the presented results. First the
conceptual basis for the Kanban approach is applicable to manufacturing systems
which are not pure flow shops with balanced production times at each station.
That is, the Kanban approach can be applied in a role of active production
control beyond its typically implied function of system stabilization. Second,
the optimization of a stochastic response on a discrete decision space has been
explored. The complexity of binding and non-binding constraints, as well as the
the changing configuration of critical factors, has been demonstrated. Finally,
the necessity of compromise among conflicting system responses has been
discussed. These, it has been shown that optimizing a manufacturing system is

complex and usually not straightforward. Intuitions and current methodologies
are not always relevant.

The optimization presented in this paper is, of course, off-line. The
author believes that this off-line optimization is a crucial initial step toward
an effective on-line real-time optimization. As stated in the introduction,
initially an on-line control law was sought to govern when and which available
orders were released to the shop floor. Although this study adopted the

optimization of a Kanban configuration, this approach does not preclude the

later inclusion of a optimization of which order should be released. Indeed,
working within the Kanban system, considerable latitude still remains on when
the order can be released. The adopted Kanban configuration, on the otherhand,
provides the system with an improved response before such an optimal control law
is sought. At a minimum the system has been stabilized. Current research will
seek to the additional benefits that can be gained by the addition of real time
optimization for the release of orders. It will also attempt to discover any

sacrifices derived from the inclusion of the Kanban configuration over
configuring the system will a real-time optimization only. In this manner, the

interplay between off-line and real-time optimization can be investigated.
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1 .0 Introduction

Face milling of a part involves moving the cutter relative to the part
in such a manner that the entire surface is machined. More often than not,

face milling involves making multiple parallel passes on each face to be
machined so that the entire face is covered as shown in Figure 1. This type
of milling is frequently referred to as staircase milling. A face may also
be machined by starting along the periphery of the face and progressively
moving inward in a spiral-like fashion until the entire face is covered.
This method, called window-frame milling is illustrated in Figure 2.

In either case, the cutter path needs to be specified in terms of
absolute or incremental dimensions of each path segment for it to be executed
on a numerically controlled (NC) machine. The method of representing the
part geometry significantly influences the determination of the cutter
path. The Initial Graphics Exchange Specification (IGES) is becoming
increasingly popular as a standard that assures communication compatibility
between different CAD/CAM systems [TE1CH85] . IGES uses a hierarchical
structure where each geometric entity is specified by geometric entities of

one less order (e.g., a solid is specified by its faces, a face by its edges
and an edge by its end-point vertices). While such a representation
provides explicitly all geometric features of the part, it is quite
cumbersome to use, as is, in the determination of the cutter path. For
each face to be machined it is first necessary to determine the "width" of

the face (Figure 3) and divide it into the number of passes. It is, then,

necessary to determine the edges between which each pass lies. This
exercise requires that a number of sets of simultaneous equations be solved.

The computational effort can be considerably alleviated by employing
linear programming (LP) to represent the part if the part is a convex
polyhedron. A nonconvex polyhedron can be represented as a union of convex

-439-



polyhedra. The LP representation of a convex polyhedron and its ramifica-
tions in NC face milling are discussed in subsequent sections.

2.0 A Linear Programming Model of a Polyhedron

It is a well-known result in linear programming that the feasible
region of a linear program is a convex polyhedron [TAHA76]. We restrict
ourselves to three-dimensional (3-D) space with a Cartesian coordinate
system consisting of x, y and z axes. We shall now develop a set of

constraints such that the feasible region represents the polyhedron.

Any plane in 3-D divides the entire space into two "half-spaces". If

a plane A^x + B^y + C^z = D^ is . constructed so as to contain face i of the

polyhedron, the convexity assumption about the polyhedron helps us conclude
that the polyhedron lies entirely in one of the half-spaces created by the

plane. Denoting the half-space containing the polyhedron and created by a

plane containing face i by S-^, the polyhedron is completely defined by the

intersection of half-spaces for all faces i. Thus, without loss of

generality, we can conclude that the following set of inequalities
completely defines the polyhedron:

A^x + Bj^y + C^z £ T>i

A2x + B2y + C2z j< D2

Amx + Bjjjy + CjjZ _< D.m

(1)

The constants A-^, B-^, and D^ can be determined by obtaining any three

non-colinear points Pii(xli ,yli ,z li ) , P2 i(x2i ,y2 i ,

z

2i ) and P3i(x3 i ,y3 i ,z 3i )

in each plane i and a point Pin (xin»yin> z in) lying strictly inside the
polyhedron. The equation of the plane containing face i can be written as:

xli_x2i yii-y2i z li_z2i

x2i"x3i y2i
_
y3i z2i"z3i

Comparing the equations (1) and (2), we get

yn-y2i

y2i~y3i

xn
xli"x2i

x2i"x3i

yn

yii
_
y2i

y2i
_
y3i

z li" z2i

z2i-z 3i

Ai
=

z li"z2i

z2i_z3i

Bi
=

C i
-

xli_x2i

x2i"x3i

yn-y2i

y2i-y3i

Di
-

zli" z2i xli"x2i

z2i-z3i x2i_x3i

i

xli yn z li

z li" z2i xli"x2i zu- z2i

z2i-z3i x2i-x3i z 2i
- z 3i

(2)

(4)
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Also,

AjX + Biy + CiZ < (or >) D± (5)

according as

AiXin + Biyin + CiZin < (or » DA

Non-colinearity of Pii> P2i and P3^ is essential for the identification
of A^, B^, and and the non-coplanarity of ?i± y ?2i» **3i an<* ^in *- s

essential for the determination of the inequality sign in (5). The non-
colinearity and non-coplanarity requirements can be tested using the follow-
ing conditions:

and

i

X
li"

X
2i

j

yli"y2i

k

Z
li"

Z
2i

-»

* 0 (6)

X
2i"

X
3i y2i"y3i

z
2i"

Z
3i

xli"xin yn-yin z li" zin

xli"x2i yn-y2i z li_z2i t 0 (7)

x2i-x3i y2i
_
y3i z 2i_z3i

Face i of the polyhedron can be obtained by setting inequality i to an
equation.

As an example, orthogonal views of an octahedron are presented in
Figure 4. The LP representation of the octahedron would be:

-6x

-6y

6x

6y

-6x

-6y

6x

6y

+4z < 1

+4z < 7

+4z < 55

+4z < 49

-4z < -31

-4z < -25

-4z < 23

-4z < 17
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As would be seen later, it helps to normalize all constraints so that
+ + c^2 = i for an ±. Such normalization of the constraints

representing the octahedron results in:

- .832x + • 555z < .139

- .832y + .555z < .910

.832x + .55z < 7.145

.832y + .555z < 6.368

- .832x .555z < -4.029

- .832y .555z < -3.249

.832x .555z < 2.989

.832y .555z < 2.209

3.0 Machining Pass Generation

3.1.1 LP Representation of Machining Parallel Passes

As was mentioned earlier, machining passes in most situations represent
a set of parallel lines scribed on the face to be machined. In a linear
algebra context, the passes can be visualized as intersections of a set of

parallel planes with the plane of the face. Alternatively, they can also be

visualized as the intersection of contours of an objective function with the

plane of the face, as the value of the objective function changes from its

minimum to its maximum or vice versa (Figure 5)

.

Since we are interested solely in the lines scribed on the face of
interest, we have a wide variety of objective functions which can generate
the same set of lines. As seen in Figure 6, planes 1 and 2 intersect with
the face plane on the same line. However, computational considerations
favor the use of objective functions with certain properties. These are

discussed in subsequent paragraphs.

A parameter of interest in the determination of machining passes is the

spacing between adjacent passes. We shall now develop a formula for inter-

pass spacing and use it in the choice of an objective function.

Suppose the face plane is represented by the equation Ax + By + Cz = D

and let the objective function used be f = ax + by + cz. Consider two

contours of the objective function, f^ and f2« The situation is depicted
in Figure 7. The distance between the contours, de, is given by [SILVER69]:
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l
frf

2 l

de = *
(9)

/a
2
+b

2
+c

2

The spacing between passes is the distance df which can be expressed as:

df = de'cosecS, where 0 is the angle between the objective function plane
and the face plane.

From basic analytic geometry, we have:

aA+bB+cC aA+bB+cC
COS0 =

Hence,

/a
2
+b

2
+c

2
/A

2
+B

2
+C

2
/(a

2
+b

2
+c

2
)

cosec9 = 1 - 1
(10)

yi 2 o j-i
(aA+bB+cC)

2

/1-cos 9 /l - —=—=

—

7T—
(a +b +c )

Substituting (10) in (9),

AC l

zl~z2l
at =

(11)

/a
2
+b

2^ 2
/i - <«y»»**>

2

(a
Z
+b

Z
-h: )

l
frf

2 l

/(a
2
+b

2
+c

2
) - (aA+bB+cC)

2

We can have df = | f

i

—f2 I

^

a2+b2+c2 =1 (12)

and

aA+bB+cC =0 (13)

An objective function of the desired form can also be identified
directly from the LP tableau of the polyhedron. We shall use an example to
illustrate the procedure.
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Let us analyze the face of the octahedron corresponding to the second
inequality in (8) . We set the inequality to an equation and find a basic
feasible solution to the linear program by using Phase I of the Simplex
method [HADLEY75] . The linear program (sans an objective function) has a

slack/surplus variable associated with all but one constraint. Thus, if the

polyhedron has m faces, we have in all (m-1) slack/ surplus variables and 3

original variables totalling to m+2 variables. The number of constraints
equals the number of faces, m. The basic feasible tableau, thus, has m
basic variables and two nonbasic variables. In general, the nonbasic
variables will be of the slack/surplus type. The basic feasible tableau for

the octahedron is shown in Figure 8, where variables S2 and S5 are nonbasic
variables. If we pick the coefficients of these nonbasic variables in the
rows corresponding to x, y and z, we get the negatives of the direction
vectors of the two possible movements from the basic solution. In the

example of Figure 7, the direction obtained from S2 is (1/6,0,0) and that
obtained from S5 is (1/12,-1/12,-1/8). Thus, the above directions are two

directions in the face plane, and so is any linear combination of the two.

If we represent the directions by (d^,d2,d3) and (d^
'
,d2 1 ,d3 ' ) , then any

objective function of the form:

f = ax+by+cz where (14)

Xd
1
+(1-X)d

1

'

a = -

3
2

/ Z [Xd.+(1-X)d/]
. , 1 i
i=l

Xd9+(1-X)d

/ I [Xd +(1-X)d »]
2

i=l

Xd
3
+(1-X)d

3
'

/ Z [Xd +(1-X)d ']
2

1=1

satisfies (12) and (13) and spans machining passes in all directions for
0 < X < 1.
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3.1.2 Location of Parallel Machining Passes

Having chosen a direction for machining passes (i.e., an objective
function for the LP), it is necessary to estimate the number of passes

required to cover the entire face. At this juncture, it is also necessary

to take into account the overlap between adjacent passes, called "cutter

overhang". Let us denote the minimum overhang by e and the diameter of the

tool by <|».

We, first, need to determine the expanse of the face perpendicular to

the direction of the passes. We obtain this quantity, which we may call the

"width" (W) of the face by choosing an objective function of the form (14)

and minimizing and maximizing it subject to the constraints representing the

face. If the minimum and maximum so found are denoted by fmin anc^ ^max

w = fmax " fmin < 15 >

The width, W, now needs to be divided into a number of strips,
representing passes. As shown in Figure 9, the extreme passes have to be

located a distance no more than % - e from the extremities of the face.

Thus, if n is the number of passes required, the minimum overhang can be

ensured by the following inequality:

W-2(| - e)

< <}>-£

i.e.

,

i.e,

n-1 >S±3£
<j>-e

Having so determined the number of passes, we segment the face into strips
by appending contours of the function (14) in the form of constraints. The
contour corresponding to pass j has the form:

ax+by+cz = f . m f + [i - e + (j-1)
W~f~2e ](f -f ) (17)J

j min l 2 J n-1 J max min

The segment of the face between passes j and j+1 is obtained by appending to

the original LP the following constraints:

f
j _< ax+by+cz _< f

j+1 (18)

The tool path can now be determined using the algorithm in Figure 10.
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The algorithm generates a sequence of points in the same order in which
they need to be traversed. The points can be joined by straight lines to

obtain a tool path that spans the entire face.

3.1.3 An Improved Procedure

The algorithm in Figure 10 generates a tool path such as the one shown
in Figure 11. As can be easily seen, the tool path does not cover the

entire area of the face and some segments near the border of the face remain
unmachined. One way of remedying this shortcoming is to allow the tool to

move beyond the borders of the face. Such extra movement of the tool can be

achieved by applying Algorithm 1 to an enlarged polyhedron wherein all faces

except the face being machined are moved outwards (with respect to the

polyhedron) by predetermined amounts.

Let us, first, determine the extent to which the tool needs to move
beyond the edge in question. As shown in Figure 12, it is adequate to let

the tool extend beyond the edge by an amount 6^ such that the diameter of

the tool normal to the pass direction completely clears the face. If ij; is

the angle between the edge and the pass direction, the extra movement, 6]_,

is given by:

« 4>
cot\J> (19)

The edge can be considered moved "outward" for the purpose of applying
Algorithm 1 by an amount §2» where

62 -
<$i

sinij;

= cos\J> (20)

Suppose face i intersects with the face being machined at the edge in
question. Denoting the inequality corresponding to the face being machined
by

Ax + By + Cz < D

the direction of the edge is given by the vector

E -

i k

C

(BC^~B^C )i + (CAi-C i
A)j + (ABi-AiB)k (21)
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The angle between E and a^ + bj + (the vector normal to the pass
direction) is the complement or ty. Thus,

a(BC
i
-B

i
C)+b(CA

i
-C

i
A)+c(AB

i
-A

i
B)

j - = cos [ ]

/a
2
+b

2
+c

2
/(BC

i
-B

1
C)

2
+(CA

1
-C

1
A)

2
+(AB

i
-A

i
B)

2

, a(BC.-B,C)+b(CA.-C,A)+c(AB.-A.B)
* = sin

L
[

11 11
] (22)

/(BC. -B . C)
2
+(CA.-C . A)

2
+(AB . -A. B)

2

11 li ii

The desired displacement of the intersecting face can now be determined.
The relationship between the displacement of the edge, 62, and the dis-
placement of the face, 63, is brought out in Figure 13 as:

63 = 62 sin a (23)

where a is the angle of intersection between the two faces and is given by

_, AA.+BB.+CC.
a = cos [ —

J

9 9 9 9 9 9
/ (A +B +G ) /(A

= cos"
1
(AAJ +BB.+CC J ) (24)

i 1 i

An outward displacement of the intersecting face to an extent 63 can be
obtained by replacing the right hand side constant, D^, by the constant,

1

, where

D. ' = D. + 6, /A.
2
+B 4

2
+C

2

1 1 3 1 i i

= D. +6 0 (25)
1 3

Thus, each constraint i (except the constraint corresponding to the face
being machined) needs to be replaced by:

AiX+Bjy+CjZ _< Dj+63 (26)

where
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[a(BC -B C)+b(CA -C A)+c(AB -A B)]
2

6 = y / [1
_(AA +BB +CC , ) ]

{1 ±—±—
} (27)

( BC . -B . C) +( CA , -C , A) +(AB -A . B

)

ii ii ii

3.2.0 Window Frame Milling

In window frame milling, the tool path may be represented by a series of
reduced polygons scribed on the surface and may be viewed as moving the tool
from one vertex of polygon to another in a fixed direction (Figure 14).
This may be visualized as moving from one basic feasible solution, which
corresponds to an extreme point of the feasible region, to an adjacent one,

when the face is represented by LP representation. When a face of a

polyhedron is selected (the corresponding inequality is set to equality), the
basic feasible solution would always have two non-basic variables. If one

of the two non-basic variables are selected as the entering variable, a

simplex pivot would move the current solution from one vertex to an adjacent
solution on the face. A judicious choice of the entering variable at each
pivot can move the solution completely around the periphery of the polygon.

When the tool completes machining along the outermost polygon, it has
to move onto the next inner polygon. This can be done by moving the planes
an equal distance inward except the face to be milled. This is done by

subtracting some amount 63 from the right hand side, or

Ajx + Bty + Cjz <= D± - 63 (28)

63 = d.sin(a)

= d {1 - (A Ai + B Bi + C Ci) 2
}
1 / 2 (29)

where d: distance to be moved.

d = 0.1 (tool diameter) for outermost polygon, and

d = 0.6 (tool diameter) for the rest of reduced polygons.

As the polygon is being reduced repetitively, the feasible region of

the milling face is reduced gradually, and finally disappears. When this

happens, the LP problem becomes infeasible, indicating that the entire face

has been covered or the uncovered face area is too small for a complete pass

but a last pass is needed. The non-existence of a feasible region may be

detected in Phase I of Simplex Algorithm when a positive artificial variable
exists in the basis.

The above procedure is illustrated in Figure 14, and may be summarized
in the following:
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1. Move planes equally inward by (D/2 - e) to insure the minimum
overhang.

2. Find the basic feasible solution by using Phase I of the Two Phase
Simplex Algorithm. If a positive artificial variable exists in the

basis, the feasible region does not exist. Go to step 6. Other-
wise, a feasible starting basis is found. Record the extreme point
and go to next step.

3. Apply Phase II of Two Phase Algorithm to the new tableau. Pick,

the entering variable from the two non-basic variables (the
variable which just left the basis cannot be entering variable
in the next pivoting)

.

4. Record the new extreme point. If this point is not the starting
point go back to step 3. Otherwise, continue to next step.

5. Move the planes inward by the amount of (D - e) except the face to
be milled using Equations (28) and (29). Go back to step 2.

6. Move the planes outward by the amount of (D/2 - e) except the face
to be milled using Equations (28) and (29).

7. Apply Phase I as in step 2. If a positive artificial variable
exists in the basis, problem is infeasible. Go to step 9.

8. Repeat step 3 and 4.

9. Machining path generation is completed, stop.

4.0 Conclusions

This paper presented a procedure to represent a polyhedron by a linear
program to facilitate the machining of its faces. LP representation helps
eliminate in the redundancy of information as is typical with an IGES-type
model and paves the way for research in the area of tool path optimization.
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Figure 1: Machining Passes on a Face
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Figure 2: The "Window-Cutting" Techniq
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Figure 3: Determination of the Number of Passes

-452-



Plan

Figure 4: Orthogonal Views of an Octahedron
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Figure 6: Multiplicity in the Choice of an Objective Function
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Objective Function Contours

Figure 7: Determination of Inter-Pass Spacing
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Figure 8: A Basic Feasible Tableau
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Figure 10: Algorithm to Generate Tool Path
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Figure 11: Tool Path Generated by the Algorithm
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Figure 12: Displacement of Face Boundaries
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Figure 14 Algorithm to Generate Window Cutting Tool Path
(Minimum tool overhang is 0.4 tool diameter)
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Figure 15: Tool Path Generated by the Window Cutting Algorithm
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SYSTEM BUFFERS REQUIRED WHEN FMS ARE USED IN

FABRICATION & ASSEMBLY OPERATIONS

DR. William P. Darrow, Department Of Management,
Towson State University, Towson, MD 21204

INTRODUCTION

The purpose of this paper is to review sources of uncertainty and strategies
for using system buffers to stabilize the materials management system in a

fabrication and assembly shop using conventional machining technology. The
buffers needed to take advantage of FMS technology will then be examined.
Finally a conceptual framework for integrating the two technologies will be

presented.

Fabrication and Assembly Operations

Fabrication operations refer to the production of discrete component (single
piece) parts from raw materials. Assembly operations consist of both the
subassembly and the final assembly operations needed to produce the end
product. A large number of industrial organizations include both types of
operations in the same plant. These companies produce a wide range of products
for industrial, consumer, and defense applications. This industrial sector is

of interest because it was the first to embrace Material Requirements Planning
(MRP), and is currently introducing Flexible Manufacturing Systems (FMS)
technology. Therefore, fabrication and assembly operations will provide the
setting for the observations and analysis that follows.

Terminology

The term "MRP" will be used to represent both the original concept of Material
Requirements Planning systems, and the expanded concept of Manufacturing
Resource Planning systems (sometimes referred to as MRP II). The broader
concept includes all of the subsystems of the overall materials management
system. The meaning of the term in any given instance will be clear from the
context.

Buffering in Materials Management Systems

The term "buffer" was first used by materials managers in the context of
safety stock. Safety stock provides a buffer, or a means of absorbing the
shock of unforeseen customer demand. This buffer protects the system against
the uncertainty of customer demand by providing goods to be used to satisfy
unexpected demand, without creating a stock out. A stock out can be thought of
as an instability in the inventory system. Stock outs trigger an expedited
replenishment order, which must be processed more quickly than would be
allowed by the normal lead time. Instabilities such as this are undesirable,
as they consume managememt's attention, and often result in added costs.
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UNCERTAINTY IN MRP SYSTEMS

The problem of uncertainty in MRP systems will be discussed by identifying the
many sources of uncertainty. A useful classification scheme will then be

presented to gain further insight, along with some related research results.

Sources of Uncertainty in MRP Systems

The concept of buffering mechanisms was greatly extended in response to
problems encountered by the users of Material Requirements Planning systems.
Eichert (4) identified a number of sources of uncertainty affecting MRP
systems. He suggested that many of these sources of uncertainty could be
handled by the system. Eichert recommended combining a number of the sources
of uncertainty as a single independent demand source, and then including the

resulting demand in the Master Production Schedule. Steele (11), and later
Mather (9), related sources of uncertainty to the problem of MRP system
sensitivity. They suggested strategies to minimize the disruptive effects of
uncertainty, which will be discussed below. The sources of uncertainty
identified by these three writers is summarized below in Table 1.

TABLE 1. Sources Of Uncertainty In MRP Systems

Source of Uncertainty Eichert Steele Mather

MPS Changes XXX
Service Parts X X
Field Failures X
Vendor Shortages X X

QC Rejects X X

Process Scrap X X
Pull Ins X X
Eng. Changes X X

R&D Demand X

Record Keeping Errors X XX
Parameter Changes X X

Mach. Breakdowns X

Categories of Uncertainty in MRP Systems

Whybark and Williams (15) provide an interesting perspective on uncertainties
in materials management systems. They recognized two basic types of uncertain-
ty, one for timing and one for quantity. They further recognized that each

type of uncertainty could be further classified as to whether the source of

the uncertainty related to supply or demand. Taken together, this defines
four categories of uncertainties in MRP systems. These categories are shown
below in Table 2, with illustrative examples for each.

Whybark and Williams developed a simulation model to evaluate the use of

safety stock and safety lead time in MRP systems. They concluded that the use
of safety lead time is most appropriate for situations involving uncertainty
in timing, and that safety stock is the most appropriate buffer for system
uncertainties relating to quantity. This research raises some interesting
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questions regarding safety stock for order point inventory systems. Indepen-

dent demand items are readily modeled in MRP systems by using the Time Phased

Order Point technique. Following this line of reason, the classical order

point inventory system can be thought of as a special case of MRP. This
suggests that the results of Whybark and Williams study might apply to order

point systems.

TABLE 2. Categories Of Uncertainty In MRP Systems

\SOURCE
TYPE\

TIMING

SUPPLY

Changes in Lead Time by the
Vendor or Shop

DEMAND

Customer Changing Due Dates,
Changes in MPS, Early Order

Release to Level Work Load

QUANTITY Process Yield, Quality
Control Rejects, Eng. Changes,
Inventory Record Accuracy

Errors in Customer Forecast,
Changes in Production Plan or
MPS, Changes in Parameters

NERVOUSNESS IN MRP SYSTEMS

"Nervousness" in MRP systems occurs when the MRP system logic amplifies an
otherwise minor change in the system. The result is an inordinately large
volume of action and/or exception messages. This in turn places a great burden
on the schedulers, planners, and operating personnel who are needed to make
the system work. The result is a decrease in shop performance. If left
unchecked, an unacceptable level of systems sensitivity can eventually lead to
the abandonment of the formal system itself. Adequate system buffers can
reduce this problem to a manageable level. "Nervousness" in MRP systems was
first defined by Steele (11), who identified a number of causal factors, and
recommended several strategies to overcome the problem. Later, Mather (9)
added several other strategies to minimize instabilities in MRP systems.

The materials planner can use a number of strategies to insulate himself from
sources of instability. Steele recommends: 1) minimizing changes to the MPS,

2) controlling parameter changes, 3) using Pegging and the Firm Planned Order
to circumvent lot sizing logic, and 4) relating the lot sizing strategy to the
product structure (to be discussed below). Mather adds to this list of

strategies by recommending : 1) minimizing record keeping errors, 2) avoiding
the use of dynamic lot sizing rules, 3) freezing the near term portion of the
MPS with a Time Fence, 4) using safety stock, 5) forecasting requirements for
service parts, 6) using quality assurance techniques to minimize yield and
quality losses, 7) stressing delivery performance in vendor evaluation,
8) treating vendors as external work centers 9) using preventative mainte-
nance, and 10) using a Block Change policy to introduce engineering changes.
These strategies will be discussed in the sections below, along with more
recent contributions to the problem's resolution.
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Stabilizing the MPS

The Master Production Schedule provides the framework for all manufacturing
operations in fabrication and assembly plants. Stabilizing the MPS can exert a

great influence on stabilizing the entire system.

The Master Production Schedule drives the MRP system . Changes in the Master
Production Schedule can occur either in response to changes in the overall
production plan, or as the MPS is fine tuned to reflect adjustments in the
timing and quantities for specific end items. The design of the larger system
is such that any change in the MPS will be passed down to the MRP system, then
to Capacity Requirements Planning, and ultimately to the shop floor's Produc-
tion Activity Control system. Therefore, stopping an unnecessary change at the
level of the MPS eliminates many "downstream" changes in subsequent systems.

Time Fences are one technique for managing changes to the MPS. The Time
Fence "freezes" changes for the periods within the fence, at the near end of
the planning horizon. This is actually a policy that limits the system in

making automatic changes to the MPS in the near term, where they are most
likely to disrupt the execution systems. Depending on the system, automatic
changes may be restricted in terms of both quantity and timing, or be limited
to changes in timing only. It is also possible to use two Time Fences, one

fence for fixed quantities, and another for restrictions on both timing and
quantity. Inside the Time Fence(s), the restricted changes can be overridden
manually, with the mutual consent of both operations and materials management.

Lot Sizing

Lot sizing policies are responsible for creating many of the sensitivity
problems in MRP systems. Lot sizing can cause changes in quantity and timing
to pass from level to level in the product structure. Dynamic lot size

policies can create instabilities on any given level in the product structure.
In this section strategies for minimizing these problems will be discussed.

Lot sizing is one of the main causes of nervousness in MRP systems . This is

because a number of different sources of uncertainty can trigger a lot sizing
recalculations. When lot sizing policies are applied to assemblies or

subassemblies, a change at any level, higher than the component level, can
cascade down to lower levels. For example, if quality control rejects a

subassembly, the resulting lot sizing logic may generate a gross requirement
far in excess of what is actually needed. MRP logic then proceeds to compound
the error by generating requirements for all of the related lower level
items. This process continues to cascade downward until the lowest levels in
the product's structure are reached.

Dynamic lot sizing policies such as Least Total Cost, Part Period Balancing,
or Period Order Quantity can also cause system instabilities by triggering a

series of lot sizing recalculations along the planning horizon. Recalculations
can be triggered by any, otherwise minor, change the system that effects
either the quantity or the timing of the net requirements. Something as simple

as a minor adjustment to an inventory record, a service part requirement, or a

change in planned lead time could trigger a chain reaction with dynamic lot

sizing. This source of instability is different from the cascading effect
described above, and can occur at the component level. If dynamic lot sizing
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is used at other than the lowest (component) levels in the product structure,

chaos can result, as the effects of dynamic rescheduling and the cascading
effect are combined. Dynamic lot sizing logic can produce unanticipated

results. Steele (11) and Mather (9) have each given an example of a decrease

in the Master Production Schedule leading to a severe increase in requirements

at lower levels.

The Firm Planned Order and Pegging can be used to override lot sizing logic.

Pegging is the capability to trace parent/child logical relations between
material requirements at various levels in the product structure. The Firm
Planned Order is a technique that overrides the computers automatic reschedul-
ing of Planned Orders. The timing and the quantity of a Firm Planned Order is

fixed by the planner, and will not be changed by the computer. The combination
of these two techniques can defeat automatic rescheduling, and can prevent
the problem of "cascading", where lot sizing multiplies requirements as they
are passed down from level to level in the product structure.

Tailoring lot sizing strategy to the level in the product structure can help
reduce nervousness in the system. Theisen (12) first recognized the relation-
ship relating lot size to product structure. He recommended fixed quantity
policies be used for the MPS level, and Lot-For-Lot policies for subassemblies
at the intermediate levels in the product structure. For component parts,
which do not exhibit the cascading effect and have relatively high setup
costs, Theisen recommends use Least Total Cost. Steele (11) suggests a similar
strategy where fixed quantity policies are used for the top level items, fixed
quantity or Lot-For-Lot policies for intermediate level items,, and Period
Order Quantity for component parts.

Parameter changes and record keeping errors can interact with lot sizing logic
to trigger a chain reaction of system action messages. Changing the lead time

or the level of safety sock required can trigger a chain reaction of require-
ments. Record keeping errors in stock levels, or in the bill of material
structure can lead to unexpected shortages.

Current research in lot sizing and system sensitivity has attempted to deal
explicitly with the cost of MRP system nervousness. Kropp, Carlson, and Jucker
address system instabilities by developing a modification of the Wagner-
Whitin (13) dynamic lot sizing model to include the costs of changing setups
in response to system instability (2, and 7). Their original model has been
refined by Kropp and Carlson (8) to include a penalty cost for cancelling a

previously scheduled setup. As pointed out by Collier (3), there are two
obvious problems with this approach. First, as with many of the parameters in
mathematical inventory models, it is very difficult for accurate cost esti-
mates to be developed. Consider the problems faced by a cost accountant or an
industrial engineer asked to determine the cost of cancelling a previously
scheduled setup. Second, the extended Wagner-Whitin model has an even greater
computational burden than the original. Since the original model has not met
with acceptance by the practitioner, according to a recent survey of MRP
system design by Wemmerlov (14), it is unlikely that the more complex
extensions will meet with acceptance by practitioners.

Other Issues in MRP System Sensitivity

There are a number of sensitivity issues that are unrelated to lot sizing. In
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this section they are identified, and system design approaches for minimizing
their impact are given.

Engineering Change Notices can lead to numerous action messages and create
problems with system stability. Mather (9) suggests that fabrication and
assembly operations adopt the "Block Change" policy used by the automobile
industry. Under this policy, engineering changes are batched (or "blocked")
and released to operations at regular predetermined intervals.

Service parts and field failures can create unexpected demand in MRP systems.
Service parts are best treated as independent demand items, using the Time
Phased Order Point technique. Field failures are the infrequent breakdowns of
key production equipment that have severe economic consequences for the
customer. The best way to anticipate this is by maintaining a spare parts
inventory of critical service parts.

Vendor shortages can be controlled in a number of ways. Vendor delivery
performance should be a primary consideration in vendor evaluation. It should
be ranked right along side of price and quality in the vendor selection
process. Quality problems can be detected as soon as they occur by working
with the vendor to develop source inspection procedures. Critical vendors
should be provided with as much forward visibility as possible by being
apprised of the production plan well in advance of the actual purchase order
release. Blanket purchase orders can also be used to "reserve" capacity in the
vendor's plant.

Machine breakdowns can stir "up a lot of action, both on the plant floor and in
the planning department. Strategies to minimize this source of uncertainty
include preventive maintenance and maintaining an inventory of critical
(long lead time) spare parts. No matter how well you plan to prevent break-
downs, and maintain critical spares, there will be machine outages. When the
unexpected happens, and it always does happen in manufacturing, it is useful
to have up-to-date information on vendors who can provide a backup for the
plant's manufacturing processes.

Lead times directly effect system sensitivity in several ways. The lead time
for the end item is the sum of the lead times along a critical path in the
bill of materials structure. A change in the lead time of any item along the
critical path can change the lead times for the end item, all of its subassem-
blies, and all of its component parts. Thus any changes in lead time can
trigger a chain reaction of rescheduling. Lead times explicitly, or implicit-
ly, include an allowance for queue times at each work center. Lead times can
be represented by a linear function of the queue allowance multiplied by the
number of operations, plus setup and run times. Since the sum of the setup and
run times are constant for a given lot size, lead times are directly related
to the allowance for work center queues. These queues of work in process serve
as the principal buffer the Production Activity Control system.

Another link to system sensitivity is provided by Kanet (6), who points out
that keeping lead times short reduces the item's exposure to potential changes
in timing and quantity, and the subsequent need to reschedule.

Safety lead time gives the planner an alternative to safety stock. This may be

a useful trade-off for purchased items, as Whybark and Williams have suggested
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that safety lead time may be more effective than safety stock when faced with

uncertainty in timing (15). However, because of the relationship between lead

time and queue time, safety lead time will lead to inflated levels of work in

process when applied to shop orders. Safety lead time also undermines the

shop's priority control system.

Yield allowances are necessary to guard against variations in process losses.

Their purpose is to assure that an adequate supply of component parts will be

available to produce the finished goods required by the MPS. Yield allowances
should not be designed to provide protection against serious quality problems,
which may lead to the rejection of the entire lot. Safety stock is the
appropriate technique to provide protection against the latter problem.

Safety stock is a common buffering technique used in independent demand
systems. Orlicky (10) does not recommend safety stock for dependent demand
items. Under a policy of zero safety stock for components and subassemblies,
some inventory will be available as a result of variations in quality and
process yield. When quantities are greater than expected, the excess will be

placed in stock. When quantities are less than expected, the result will be a
shortage in final assembly. The work already in process for the order that is

shorted will be completed and placed in stock. However, the stock generated
as a result of yield allowances will not provide much protection against a
serious quality problem. Under a zero safety stock policy, any excess stock
will be applied to the next order, and will not be allowed to accumulate. In
any event, the lack of planned safety stock at component and intermediate
levels will not affect customer service levels if a safety stock of finished
goods is maintained.

Queues in MRP systems are a natural product of the functional shop layout,
where machines are grouped together by function. Queues of work are necessary
to assure adequate machine and labor utilization. This layout is markedly
different from a flow line, or process layout, where the machines are laid out

to follow the order of the product's process steps. In a process layout,
machine output is balanced. As a result, minimal queues are needed to maintain
high labor and machine utilization. In a functional layout variations in
processing create a haphazard, nearly random, flow of material through the
shop. Processing times are not synchronized between work centers. The schedul-
ing and coordination problems would be impossible to deal with if queues were
not used. With queues of work at each work center providing a buffer, the work
centers can be treated independently for scheduling purposes. Queue management
policies determine labor and machine utilization, manufacturing lead time, and
priority control.

The relationship between sensitivity in MRP & CRP systems is a logical
concern. Planned Orders, which are the output of MRP, serve as the primary
input to CRP. This raises the issue of transferring instabilities from one
system to the other. The heart of CRP is converting the time phased material
requirements output from MRP into time phased labor and/or machine require-
ments. The capacity requirements are then loaded into weekly "buckets", or

planning periods, for each work center. This total represents a number of
different orders. As changes in individual orders occur, they tend to cancel
one another out in terms of the weekly workload for any given work center. As
a result, CRP sensitivity has never been considered a significant issue.
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Recent simulation studies by Askin and Raghavan (1) have shown that the
choice of a lot sizing strategy can effect the variability of the workload.
They found that a fixed quantity policy, Economic Order Quantity (EOQ), caused
the least disruption. A dynamic policy, Period Order Quantity, provided the
greatest workload variability. They further observed that large batch sizes
created greater variability than smaller batch sizes. The authors suggest that
where the cost of changing production levels is significant, work center
variability may be an issue. Their research raise another concern about the
use of dynamic lot sizing rules.

FMS FOR FABRICATION & ASSEMBLY OPERATIONS

Most FMS implementations to date have been in fabrication and assembly
operations. Furthermore, the FMS does not entirely replace the functional
shop. The systems design problem of making effective use of FMS technology is
twofold. First, there is the problem of trying to design the sequencing and
buffering policies within the system. Second, there is the problem of develop-
ing policies to integrate the FMS into the larger plant operation. These
issues will be discussed in this section.

A definition of FMS is given below, based upon that given in the Flexible
Manufacturing Systems Handbook (5). An FMS is defined by three physical
attributes

:

1. A set (of more than one) numerically controlled (general purpose)
machine tools.

2. Automatic material handling equipment linking the machine tools in the
system together.

3. An overall computer control system that coordinates the machine tool

operations and the material flow through the system.

There are a number of other system features that may be found in specific FMS
implementations. For example, automatic tool changing (ATC), the use of
robotics, adaptive control, and Automatic Storage and Retrieval Systems (ASRS)

are frequently used in FMS systems.

Material flow in the FMS is highly flexible. The flow may be serial,
parallel, or random, representing flow shop, parallel machine, and job shop
structures. The logical view is determined by the control system's software.
Material travels through the system on specially designed pallets. In the case
of prismatic parts, the pallets act as fixtures for the work piece. For
rotational parts, the pallet serves to position parts that ^will be placed
in the chuck by a robot. Parts start as raw material in the form of a casting
or bar stock. Prismatic parts make two passes through the system. The work
piece is turned over and refixtured for the second pass to allow metal working
on all faces. The distribution of operations between machines is largely a
function of tooling requirements. A work piece may enter the system and be

processed on a single machine, or be processed in a "random" sequence by
several machines tools.

Work in process in the FMS consists mainly of a queue in the pallet setup
area, at the gateway to the system. A second queue accumulates in the pallet
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tear down area during unmanned operation. There is at least one pallet per

machine tool, which provides the work piece currently being machined. Each

machine tool may have room for an additional pallet on its pallet exchange

mechanism. Some of the earlier implementations provided for a small queue of

pallets at the individual machine tool. This was done by having a short spur

for each machine when conveyor systems were used. In systems where vehicles

were used for materials handling, a small carrousel for each machine served

the same purpose. Queuing capability is needed at the individual work center

when the materials handling system can not support unmanned operations with a

common queue. As will be explained below, the level of work in process needed
to support the FMS is approximately one tenth of that needed for conventional
job shop operations.

FMS Design & System Buffers

The structure of the FMS is significantly different from that of the job shop,

which is used in conventional machining. As a consequence, the approach to

using buffers in the system design differs substantially. FMS functional
design and the role of buffers in the system are discussed in this section.

Queues in the FMS are not needed, as they are in the job shop, to allow the
machine tools to operate independently. There is a reduced need for coordina-
tion as a result of the machine tool's flexibility. For example, several
operations, which would each require a separate routing step with conventional
manufacturing, may be combined on a single machine tool. The coordination
tasks that remain to be performed in the FMS are more manageable than they
would be in the job shop, because the host computer is available. Queues
function as a buffer in FMS only in the sense that they isolate the manual
operations of pallet setup and tear down from the highly automated processes
within the system. Queues of work in process are not needed as buffers for

each machine in the system. The system's flexibility makes it possible to

maintain a high utilization by flowing work from the setup area to the

machines. The primary role of queues in the FMS is to allow unmanned operation
for an eight or sixteen hour period.

Lead times using FMS technology are much less than those needed in conven-
tional manufacturing systems. Material flow through the FMS is much faster
than that through the job shop. Setup times are nearly eliminated as a result
of palletized fixturing, the reduced number of machine tools needed to
fabricate the part, and automatic tool changing. Travel time is rapid, using
automatic conveyors, or automatic guided vehicles. Wait time for transit is
near zero. Queue time within the system is much less than that of a job shop,
with the greatest queue being in the pallet setup area. Total queue time in a

FMS system is between 16 and 24 hours. In the job shop there is typically an
allowance of two days per operation (machine tool). Since more machine tools
are needed in a job shop, the total queue time planned for a part having five
process steps would be 10 days. The result is nearly a ten fold decrease in
both lead time and work in process.

Safety lead time is one of the buffering techniques used in MRP systems that
is not needed in FMS systems. Uncertainty in timing is greatly reduced, in
proportion to the reduction in lead times. This reduction occurs largely as a
result of the decreased "window of vulnerability", or the more limited
exposure to system uncertainties.
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Tool management is always a factor in economical machining. However tool
scheduling is not a critical factor in job shop operations. The velocity of
the parts through the job shop is slow, and there are many opportunities for
common setups. With the high velocity of parts through the FMS, tool schedul-
ing is of much greater importance. The correct tool must be in the right place
at the right time or processing will be suspended. The high capital investment
in the FMS, and the greater part volumes processed, make downtime on a FMS
much more expensive and disruptive than downtime on a conventional machine
tool. Tool scheduling on an FMS must deal with more frequent changes in
tooling, as a result of the flexibility required. The increase in tool wear
brought about by the more intensive metal cutting also increases the frequency
of tool changes. This problem becomes manageable by having an automatic tool
changing capability. ATC designs typically have a capacity of 60 or more tools
at a single machine. The FMS design problem, in terms of tool management,
involves choosing the correct mix of tools to populate the tool magazine at
each machine, and monitoring tool wear so as to make a timely replacements of
worn tools.

Buffering in tool management is reflected in the capacity of the tool maga-
zines for machine tools, and the degree of redundancy in each magazine. The
tool buffering decision is part of the more fundamental FMS design decision of
allocating cutting tools to the machine tools. Adequate tool buffering is
essential to achieving the high machine utilization potential of FMS
technology.

Materials handling is an integral part of FMS operations. The materials
handling system's primary function is to move the product between the work
stations in the FMS, including the machine tools, setup and tear down areas,
washing, and inspection stations. There may also be a requirement to replace
worn tools. Vehicle routing and scheduling presents a nontrivial problem.
Provisions for vehicle safety, breakdown, and servicing must be included in
the many systems that rely on AGVs, carts, or other vehicles. An acceptable
solution must be found to the vehicle scheduling problem if the system is
going to perform as expected.

The need for vehicles is a function of the number of work stations and the
cycle times for the parts. The larger the number of work stations, and the
shorter the cycle times the more vehicles needed. The demand for vehicle
services also depends upon the product mix and lot sizing, the cutting tool
allocation and life cycle, and vehicle maintenance needs such as battery
charging, lubrication, inspection, and repair. The proper number of vehicles
should be determined by simulation studies. Demands for vehicle service are
stochastic in nature. It follows that the frequency and severity of delays
waiting for vehicle service is a function of the number of vehicles in the
system. Having an additional vehicle, to maintain high levels of vehicle
service during vehicle breakdowns, is a "buffering" decision for the materials
handling system.

Robot management involves managing robotic operations that transfer parts,
tooling, and fixtures between the transportation system and the machine
tool. Robots may also have to select the correct set of grippers for a given
operation, and may play a critical role in automated inspection. Robots have
their own controllers, which govern the detailed sequence of motions needed
to fulfill their function. The host computer control system must coordinate
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the robot by issuing the appropriate commands. Buffering decisions in the
context of robot management relate to having spare units and spare parts.

Fixture management is pallet management in prismatic systems. In robotic
systems it involves changing chucks and robot grippers. Pallets serve the dual

role of positioning the part for materials handling, and positioning the part

for machining. Therefore pallet positioning is done to close tolerances. The
pallet transfer mechanism, used to exchange the pallet between the transpor-
tation system and the machine tool, must also hold close tolerances. Fixturing
is done manually at the gateway to the system. General purpose pallets are
designed to accommodate any fixtures needed for the part families processed on
the FMS. The use of pallets in FMS has the effect of taking the fixturing part

of the machine setup off-line.

The number of pallets and fixtures determine the capacity of the system to
have work in process, or queuing, at the system gateway. This decision is
related more to the period of time that the system is to be operated unmanned,
than it is to buffering considerations.

Yield allowances in FMS , in terms of piece count, are minimal, if not alto-
gether unnecessary. The precision in part fixturing, probing, and adaptive
control capabilities of modern machine tools makes setup loss a thing of the
past. Compensation is made for casting dimensions and positioning errors
before machining begins. Modern machining practices minimize the chances of
making a part out of tolerance. In-line inspection with coordinate measuring
machines, provides feedback to the host computer, which in turn can make
adjustments in the machine tools. The state of the art for adaptive control
compensates for tool wear, thermal expansion of the part and the machine tool,

and any dimensional irregularities of the machine tool itself. This new
technology maintains close dimensional control during machining. While all
modern machine tools do not have state of the art adaptive control, most have
tool wear compensation and probing.

The computer and communications hardware for FMS contain a great deal of

buffering in terms of redundancy, and spare parts. The host computer is
usually in a duplex configuration, using an identical computer as a backup. A
further discussion of the design of the computer and communications hardware
is beyond the scope of this paper.

Integrating FMS And MRP

Conventional machining technology and FMS technology are as different as the
job shop and the flow shop. This raises the question of how to manage the two
technologies under the same roof. MRP has widely been accepted as the frame-
work for managing conventional machining operations for part fabrication. Can
the MRP system be modified to accommodate FMS technology ? If so, then what
modifications are necessary ? The strategy offered in this paper is to treat
the FMS as a single work center. A conceptual framework for integrating FMS
technology into the existing MRP system will be presented in the sections that

follow. The modifications necessary to implement this strategy will be

briefly discussed.

Materials planning systems not effected by FMS technology will be those that
are used to manage the end item. These systems include forecasting, aggregate
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production planning, and the MPS.

The inventory system is essentially unchanged. As part of the FMS design
process, component parts will be classified on the basis of processing
similarities, using group technology concepts. If such information is not
already in the item master, it should be appended. Various parameters in the
Item master may also change. For example, yield losses will be virtually
nonexistent, lead times will be greatly reduced, and minimum quantities will
be one. Manufacturing cost for the item should be significantly reduced. If

the same part is to be processed using both conventional machining and FMS
technology it may be necessary to use separate part numbers

The bill of materials file will remain structurally the same. As with the
inventory records, lead times will have to be adjusted.

MRP logic does not have to be changed to accommodate FMS. The main parameters
that change are the lot sizing policies. With a zero setup cost, a lot for lot
policy makes the most sense. Lead times should be no more than one week.

Product routings will need major revisions needed to accommodate FMS
technology. Many of the routing steps used in conventional machining can be
combined in the FMS. Many of the other processing parameter relating to setup
time, run time, labor requirements, and yield will have to be changed as
well

.

Work center records will have to be appended to include a record for the FMS.

This is the key to integrating the FMS into the existing materials management
system.

Capacity planning and control will treat the FMS as it would any other work
center. Resource requirements planning, if used, will include the FMS as a

resource. In this way, FMS technology will indirectly affect the production
plan. Input/output reports will be the same as in the existing system.

Priority control will function as in the conventional system in guiding the
job to the FMS, and will help guide it downstream upon the completion of FMS
operations

.

Scheduling within the FMS will be handled independently by the FMS host. In
concert with the MRP frame work, operation schedule dates will be a dominant
factor in determining scheduling priority.

Activity reporting within the FMS system will be separate. It will be

necessary to have a shop floor terminal in the pallet setup and tear down

areas to report the general status of FMS operations to the MRP system. The
host computer will track and log virtually every activity that occurs within
the FMS. A separate management reporting system will be provided by the FMS
host computer, or from files transferred to the main business computer.
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CONCLUSIONS

1. The degree of coordination required in FMS is much greater than that
required in conventional machining. The high velocity of jobs through the FMS

requires close synchronization required between job, machine tool, cutting

tool, pallet/fixture, and materials handling in order to realize high levels
of machine performance. The large queues of work in process found in conven-

tional machining systems reduces the need for close coordination in the job

shop.

2. Adequate system buffers for FMS systems are essential in achieving the

system design objectives. This follows directly from the first conclusion.

3. FMS technology drastically changes the role of queues of work in process.

In an FMS system queues are needed to sustain unmanned operations, not serve
as buffers for the individual machine tools. This fundamental change in the

system structure makes it possible to reduce work in process inventories, and
manufacturing lead times by an order of magnitude.

4. Safety lead time is not required for FMS products. This follows as a result
of the reduction in the magnitude of lead time, and the corresponding reduc-
tion in the magnitude of lead time variability.

5. Safety lead time is inappropriate for component parts to be fabricated in
house. It inflates lead time, and thus work in process. Safety lead time also
undermines the formal system by diluting priorities.

6. Yield allowances, in terms of piece counts, are not needed for FMS
machining. Set up scrap is eliminated as a result of the precision in fixtur-
ing, probing, tool wear compensation, and a reduction in the number of set ups
needed. The dimensional control capabilities in FMS technology make process
scrap, in terms of out-of-tolerance parts, a thing of the past.

7. A safety stock of component parts is not needed for FMS applications.
The variability in timing and quantity for component production is minimal.
Quality rejects for out-of-Tolerance work are minimal, eliminating a major
source of unforeseen demand. In addition, there is a minimal set up cost
and the ability to quickly respond to other sources of unforeseen demand.

8. Service parts, and spare parts for field failures, do not have to be
inventoried for FMS applications. This follows directly from the argument
given for the elimination of safety stock.

9. Lot-For-Lot is the appropriate lot sizing policy for FMS applications.
The minimal setup costs make a lot size of one economically feasible. In an
MRP setting, lot for lot will satisfy MRP requirements with a minimum work in
process inventory.

10. Integrating FMS and MRP technologies can be accomplished with a minimal
disruption by treating the FMS as a single work center. The major change
needed to integrate the two systems is to revise the routing and item master
records for those parts to be manufactured using FMS technology.
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Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collectively

constitute the Federal Information Processing Standards Register. The Register serves as the official source of

information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property

and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented
by Executive Order 1 1717 (38 FR 12315, dated May 1 1, 1973) and Part 6 of Title 15 CFR (Code of Federal

Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS
for outside sponsors (both government and non-government). In general, initial distribution is handled by the

sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper
copy or microfiche form.
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