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he National Bureau of Standards' was established by an act of Congress on March 3, 1901. TheT# he

M Bureau's overall goal is to strengthen and advance the nation's science and technology and facilitate

their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a

basis for the nation's physical measurement system, (2) scientific and technological services for industry and
government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety.

The Bureau's technical work is performed by the National Measurement Laboratory, the National

Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Institute for Materials

Science and Engineering

.

The National Measurement Laboratory

Provides the national system of physical and chemical measurement;

coordinates the system with measurement systems of other nations and
furnishes essential services leading to accurate and uniform physical and

chemical measurement throughout the Nation's scientific community, in-

dustry, and commerce; provides advisory and research services to other

Government agencies; conducts physical and chemical research; develops,

produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

• Basic Standards^
• Radiation Research
• Chemical Physics
• Analytical Chemistry

The National Engineering Laboratory

Provides technology and technical services to the public and private sectors to

address national needs and to solve national problems; conducts research in

engineering and applied science in support of these efforts; builds and main-

tains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement

capabilities; provides engineering measurement traceability services; develops

test methods and proposes engineering standards and code changes; develops

and proposes new engineering practices; and develops and improves

mechanisms to transfer results of its research to the ultimate user. TTie

Laboratory consists of the following centers:

Applied Mathematics
Electronics and Electrical

Engineering'

Manufacturing Engineering

Building Technology
Fire Research

Chemical Engineering^

The Institute for Computer Sciences and Technology

Conducts research and provides scientific and technical services to aid

Federal agencies in the selection, acquisition, application, and use of com-
puter technology to improve effectiveness and economy in Government
operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant

Executive Orders, and other directives; carries out this mission by managing
the Federal Information Processing Standards Program, developing Federal

ADP standards guidelines, and managing Federal participation in ADP
voluntary standardization activities; provides scientific and technological ad-

visory services and assistance to Federal agencies; and provides the technical

foundation for computer-related policies of the Federal Government. The In-

stitute consists of the following centers:

Programming Science and
Technology

Computer Systems

Engineering

77?^ Institute for Materials Science and Engineering

Conducts research and provides measurements, data, standards, reference

materials, quantitative understanding and other technical information funda-

mental to the processing, structure, properties and performance of materials;

addresses the scientific basis for new advanced materials technologies; plans

research around cross-country scientific themes such as nondestructive

evaluation and phase diagram development; oversees Bureau-wide technical

programs in nuclear reactor radiation research and nondestructive evalua-

tion; and broadly disseminates generic technical information resulting from
its programs. The Institute consists of the following Divisions:

Ceramics
Fracture and Deformation ^

Polymers

Metallurgy

Reactor Radiation

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address

Gaithersburg, MD 20899.

'Some di' isions within the center are located at Boulder, CO 80303.

'Located at Boulder, CO, with some elements at Gaithersburg, MD.
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FOREWORD •s.

When the National Bureau of Standards was established more than 80

years ago, it was given the specific mission of aiding manufacturing
and commerce. Today, NBS remains the only Federal laboratory with this
explicit goal of serving U.S. industry and science. Our mission takes
on special significance now as the country is responding to serious
challenges to its industry and manufacturing— challenges which call for
government to pool its scientific and technical resources with industry
and universities.

The links between NBS staff members and our industrial colleagues
have always been strong. Publication of this new Industrial
Measurement Series, aimed at those responsible for measurement in

industry, represents a strengthening of these ties.

The concept for the series stems from the joint efforts of the

National Conference of Standards Laboratories and NBS. Each volume
will be prepared jointly by a practical specialist and a member of the

NBS staff. Each volume will be written within a framework of

industrial relevance and need.

This publication is an addition to what we anticipate will be a

long series of collaborative ventures that will aid both industry and

NBS.

Ernest Ambler, Director

f
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INTRODUCTION

This paper was published originally as a chapter in the book
entitled "Quality Assurance Practices for Health Laboratories".* It is

for that reason that the examples used as illustrations are taken from
health-related fields of research. However, the statistical concepts
and methods presented here are entirely general and therefore also
applicable to measurements originating in physics, chemistry,
engineering, and other technical disciplines. The reader should have
no difficulty in applying the material of this paper to the systems of

measurement in his particular field of activity.

J. Mandel
January, 1986

* J. Mandel and L.F. Nanni, Measurement Evaluation Quality Assurance
Practices for Health Laboratories. Washington: American Public
Health Association; 1 978: 209-272.124^1 p.
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Measurement

Evaluation

J. Mandel (principal author), and L. F. Nanni.

Basic Statistical Concepts

Random variables

This chapter is concerned with the evaluation of measurements by
means of statistical methods. This qualification is important, for the total

evaluation of measurements involves many different points of view. What
differentiates the statistical viewpoint from all others is that each measure-
ment is considered as only one realization of a hypothetical infinite popu-
lation of similar measurements. Although, in general, all members of this

population refer to the measurements of the same property on the same
sample (e.g., the glucose content of a given sample of serum), they are not

expected to be identical. The differences among them are attributable to

chance effects, due to unavoidable fluctuations in many of the conditions sur-

rounding the measuring process. Alternatively, the members of the popu-

lation of measurements may refer to different samples, or different individ-

uals. Thus, one may consider the glucose content of serum of all healthy indi-

viduals in a certain age range. In such cases, the observed differences among
the measured values include what is referred to as sampling error, meaning
the differences in the measured property among the members of the popu-

lation of samples or individuals. A variable whose value is associated with a

statistical population is called a random variable or variate.

Frequency distribution and iiistograms

A mathematical representation can be made of a statistical population,

such as the hypothetical infinite population of measurements just mentioned.

To obtain this representation, called ^frequency distribution , one divides all

the measurements in the population into group intervals and counts the num-
ber of measurements in each interval. Each interval is defined in terms of its

lower and upper limit, in the scale in which the measurement is expressed.

Since in practice one is always limited to a statistical sample, i.e., a finite

number of measurements, one can at best only approximate the frequency

distribution. Such an approximation is called a histogram. Figure 4.1 contains

a histogram of glucose values in serum measurements on a sample of 2,197

individuals. It is worth noting that the frequency tends to be greatest in the

vicinity of the mean and diminishes gradually as the distance from the mean

1
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Fig. 4.1. Histogram of glucose serum values on a sample of 2,197 individuals, with a

range of 47.5-157.5 mg/dl and a mean of 100.4 mg/dl.

increases. The grouped data on which the histogram is based are given in

Table 4.1.

Population parameters and sample estimates

Random samples

The sample of individuals underlying the histogram in Table 4. 1 is rather

large. A large size, in itself, does not necessarily ensure that the histogram's

characteristics will faithfully represent those of the entire population. An ad-

ditional requirement is that the sample be obtained by a random selection

from the entire population. A random selection is designed to ensure that

each element of the population has an equal chance of being included in the

sample. A sample obtained from a random selection is called a random
sample, although, strictly speaking, it is not the sample but the method of

obtaining it that is random. Using the concept of a random sample, it is pos-

sible to envisage the population as the limit of a random sample of ever-in-

creasing size. When the sample sizeN becomes larger and larger, the charac-

teristics of the sample approach those of the entire population. If the random
sample is as large as the sample used in this illustration, we may feel con-

fident that its characteristics are quite similar to those of the population.

2



Table 4.1. Grouped Data for Glucose in Serum

Glucose Number of Glucose Number of
(mg/dl) individuals (mg/dl) individuals

47 S 1
1 c\n clU/.J 313

L 111 c112.5 220
S7 S L 11/.^ 111132

Di. J -IJ 122.5 50
D / . J 1

T

12 /.5 26

/Z. J 20 132.5 8

77.5 52 137.5 6

82.5 118 142.5 4

87.5 204 147.5 1

92.5 281 152.5 0

97.5 351 157.5 1

102.5 390

Total number of individuals: 2,197

Thus, upon inspection of Table 4.1, we may feel confident that the mean se-

rum glucose for the entire population is not far from 100.4 mg/dl. We also

may feel confident in stating that relatively very few individuals, say about 1

percent of the entire population, will have serum glucose values of less than

70 mg/dl. Our confidence in such conclusions (which, incidentally, can be

made more quantitative), however, would have been much less had all of the

available data consisted of a small sample, say on the order of five to 50 indi-

viduals. Two such sets of data are shown in Table 4.2. Each represents the

serum glucose of ten individuals from the population represented in Table

4.1. The mean glucose contents of these samples are 107.57 and 96.37 mg/dl,

respectively. If either one of these samples was all the information available

Table 4.2. Two Small Samples of Glucose in Serum

Sample I Sample II

Individual Glucose (mg/dl) Individual Glucose (mg/dl)

1 134.2 1 88.2

2 119.6 2 82.0

3 91.9 3 96.0

4 96.6 4 94.1

5 118.8 5 96.3

6 105.2 6 108.8

7 103.4 7 106.3

8 112.1 8 101.1

9 97.0 9 89.4

10 96.9 10 101.7

Average 107.57 Average 96.37

Variance 179.44 Variance 70.48

Standard deviation 13.40 Standard deviation 8.40

3



to us, what could we have concluded about the mean serum glucose of the

entire population? And, in that case, what could we have stated concerning

the percentage of the population having a serum glucose of less than 70

mg/dl?

Population parameters—general considerations

The answer to these and similar questions requires that we first define

some basic characteristics of a statistical sample and relate them to the char-

acteristics of the population. Fortunately, most populations can be charac-

terized in terms of very few quantities, called parameters . In many cases,

only two parameters are required, in the sense that these two parameters

contain practically all the pertinent information that is required for answer-

ing all useful questions about the population. In cases where more than two
parameters are needed, it is often possible to perform a mathematical opera-

tion, called a transformation of scale, on the measured values, which will

reduce the required number of parameters to two. The two parameters in

question are the mean and the standard deviation, measuring, respectively,

the location of the center of the population and its spread.

Sample estimates

Let JCi, JC2, . . . , Xs represent a sample of measurements belonging to

a single population. The sample mean is generally denoted by x and defined

by

^ Xi + X2 + . . . + Xn _ XXj

N ~ N ^^-^^

The sample variance is denoted by si and defined by

(4.2)N -
1

The sample standard deviation is denoted by Sj. and defined by

Sx^\/sf (4.3)

Table 4.2 contains, for each of the samples, the numerical values of x, si,

and Sj..

Population parameters as limiting values of sample estimates

The quantities defined by Equations 4.1, 4.2, and 4.3 are not the popu-

lation parameters themselves but rather are sample estimates of these pa-

rameters. This distinction becomes apparent by the fact that they differ from

sample to sample, as seen in Table 4.2. However, it is plausible to assume
that as the sample size N becomes very large, the sample estimates become
more and more stable and eventually approach the coiTesponding population

parameters. We thus define three new quantities: the population mean, de-

noted by the symbol /x; the population variance, denoted by the symbol a'i

or by the symbol Var(.r); and the population standard deviation, denoted by

(Tr. Thus:



o-^ = Vo-l = VVarU) (4.4)

It is customary to denote population parameters by Greek letters (e.g., /x, a)
and sample estimates by Latin letters (e.g., s). Another often used conven-
tion is to represent sample estimates by Greek letters topped by a caret C);
thus s and & both denote a sample estimate of a. It is apparent from the
above definitions that the variance and the standard deviation are not two
independent parameters, the former being the square of the latter. In prac-
tice, the standard deviation is the more useful quantity, since it is expressed
in the same units as the measured quantities themselves (mg/dl in our ex-
ample). The variance, on the other hand, has certain characteristics that

make it theoretically desirable as a measure of spread. Thus, the two basic
parameters of a population used in laboratory measurement are: (a) its

mean, and (b) either its variance or its standard deviation.

Sums of squares, degrees of freedom, and mean squares

Equation 4.2 presents the sample variance as a ratio of the quantities

X{Xi - and (N - 1). More generally, we have the relation:

MS =^ (4.5)

where MS stands for mean square, SS for sum of squares, and DF for de-

grees offreedom. The term "sum of squares" is short for "sum of squares of

deviations from the mean," which is, of course, a literal description of the

expression X(Xi - x)^, but it is also used to describe a more general concept,

which will not be discussed at this point. Thus, Equation 4.2 is a special case

of the more general Equation 4.5.

The reason for making the divisor N - 1 rather than the more obvious

N can be understood by noting that the N quantities

Xi X, X2 X, . . . , Xf^ X

are not completely independent of each other. Indeed, by summing them we
obtain:

^ (Xi - i) = Xxj - Sjc = Ixi - Nx (4.6)

Substituting for x the value given by its definition (Equation 4. 1), we obtain:

X {x< -x) = lx^-N^ =0 (4.7)

This relation implies that if any {N - 1) of the N quantities {Xi - x) are giv-

en, the remaining one can be calculated without ambiguity. It follows that

while there areN independent measurements, there are only N - 1 indepen-

dent deviations from the mean. We express this fact by stating that the

sample variance is based on - 1 degrees offreedom. This explanation pro-

vides at least an intuitive justification for using N - 1 as a divisor for the

calculation of s^. WhenN is very large, the distinction betweenN and N - 1

becomes unimportant, but for reasons of consistency, we always define the

5



sample variance and the sample standard deviation by Equations 4.2 and
4.3.

Grouped data

When the data in a sample are given in grouped form, such as in Table

4. 1 ,
Equations 4. 1 and 4.2 cannot be used for the calculation of the mean and

the variance. Instead, one must use diflFerent formulas that involve the mid-

points of the intervals (first column of Table 4.1) and the corresponding fre-

quencies (second column of Table 4.1).

Formulas for grouped data are given below.

To differentiate the regular average (Equation 4.1) of a set of jc; values

from their "weighted average'' (Equation 4.8), we use the symbol x (x tilde)

for the latter.

5. ^v^r (4.10)

where / (the "frequency") represents the number of individuals in the zth

interval, and x, is the interval midpoint. The calculation of a sum of squares

can be simplified by "coding" the data prior to calculations. The coding con-

sists of two operations:

1) Find an approximate central value Xo (e.g., 102.5 for our illustration) and
subtract it from each Xj.

2) Divide each difference Xj - x^by a. convenient value r, which is generally

the width of the intervals (in our case, c = 5.0).

Let the mean

— (4.11)
c

The weighted average u is equal to (i - Xo)/c. Operation (1) alters neither the

variance nor the standard deviation. Operation (2) divides the variance by

and the standard deviation by c. Thus, "uncoding" is accomplished by multi-

plying the variance of // by and the standard deviation of // by c. The for-

mulas in Equations 4.8, 4.9, and 4. 10 are illustrated in Table 4.3 with the data

from Table 4.1.

We now can better appreciate the difference between population param-

eters and sample estimates. Table 4.4 contains a summary of the values of

the mean, the variance, and the standard deviation for the population (in this

case, the very large sample TV = 2,197 is assumed to be identical with the

population) and for the two samples of size 10.

6



Table 4.3. Calculations for Grouped Data

X u f X 1

1

Li f

47.5 -11 1 107.5 1 313
52.5 -10 2 112.5 2 220
57.5 -9 2 117.5 3 132
62.5 -8 3 122.5 4 50
67.5 -7 12 127.5 5 26
72.5 1 n ?liZ.j 6 8

77.5 -5 52 137.5 7 6
82.5 -4 118 142.5 8 4
87.5 --3 204 147.5 9 1

92.5 -2 281 152.5 10 0
97.5 -1 351 157.5 U 1

102.5 0 390

u —

si -

Su =

-0.4156

5.9078

2.4306

X = 102.5

si = 254

+ 5ii = 100.42

= 147.70

12.15

We first deal with the question: "How rehable is a sample mean as an
estimate of the population mean?" The answer requires the introduction of

two important concepts—the standard error of the mean and the method of

confidence intervals. Before introducing the latter, however, it is necessary

to discuss normal distribution.

Standard error of the mean

The widely held, intuitive notion that the average of several measure-
ments is "better" than a single measurement can be given a precise meaning
by elementary statistical theory.

Let Xi, a:2, . . . , Xv represent a sample of size N taken from a population
of mean /X and standard deviation cr.

Let jCi represent the average of the N measurements. We can visualize a

repetition of the entire process of obtaining the N results, yielding a new av-

erage X2. Continued repetition would thus yield a series of averages jCj,

. . . . (Two such averages are given by the sets shown in Table 4.2). These
averages generate, in turn, a nev/ population. It is intuitively clear, and can
readily be proved, that the mean of the population of averages is the same as

that of the population of single measurements, i.e., fx. On the other hand, the

Table 4.4. Population Parameter and Sample Estimates (Data of Tables 4. 1 and 4.2)

Source Mean (mg/dl) Variance (mg/dl)^ Standard Deviation (mg/dl)

Population^ 100.42 147.70 12.15

Sample I 107.57 179.55 13.40

Sample II %.37 70.56 8.40

^We consider the sample of Table 4.1 as identical to the population.

7



variance of the population of averages can be shown to be smaller than that

of the population of single values, and, in fact, it can be proved mathemati-
cally that the following relation holds:

VarW
VarU) =--j^— (4.12)

From Equation 4.12 it follows that

cr.

(4.13)

This relation is known as the law of the standard error of the mean, an ex-

pression simply denoting the quantity cr^. The term standard error refers to

the variability of derived quantities (in contrast to original measurements).

Examples are: the mean of individual measurements and the intercept or

the slope of a fitted line (see section on straight line fitting). In each case, the

derived quantity is considered a random variable with a definite distribution

function. The standard error is simply the standard deviation of this distribu-

tion.

Improving precision tlirough replication

Equation 4. 13 justifies the above-mentioned, intuitive concept that aver-

ages are "better" than single values. More rigorously, the equation shows
that the precision of experimental results can be improved, in the sense that

the spread of values is reduced, by taking the average of a number of repli-

cate measurements. It should be noted that the improvement of precision

through averaging is a rather inefficient process; thus, the reduction in the

standard deviation obtained by averaging ten measurements is only VTo, or

about 3, and it takes 16 measurements to obtain a reduction in the standard

deviation to one-fourth of its value for single measurements.

Systematic errors

A second observation concerns the important assumption of random-
ness required for the validity of the law of the standard error of the mean.
The N values must represent sl random sample from the original population.

If, for example, systematic errors arise when going from one set ofN meas-

urements to the next, these errors are not reduced by the averaging process.

An important example of this is found in the evaluation of results from difi'er-

ent laboratories. If each laboratory makes N measurements, and if the within-

laboratory replication error has a standard deviation of a, the standard

deviation between the averages of the various laboratories will generally be

larger than cr/VN, because additional variability is generally found between
laboratories.

The normal distribution

Symmetry and skewness

The mean and standard deviation of a population provide, in general, a

great deal of information about the population, by giving its central location

8



and its spread. They fail to inform us, however, as to the exact way in which
the values are distributed around the mean. In particular, they do not tell us

whether the frequency or occurrence of values smaller than the mean is the

same as that of values larger than the mean, which would be the case for a

symmetrical distribution. A nonsymmetrical distribution is said to be skew,

and it is possible to define a parameter of skewness for any population. As in

the case of the mean and the variance, we can calculate a sample estimate of

the population parameter of skewness. We will not discuss this matter fur-

ther at this point, except to state that even the set of three parameters, mean,
variance, and skewness, is not always sufficient to completely describe a

population of measurements.

The central limit theorem

Among the infinite variety of frequency distributions, there is one class

of distributions that is of particular importance, particularly for measure-

ment data. This is the class of normal, also known as Gaussian, distribu-

tions. All normal distributions are symmetrical, and furthermore they can be

reduced by means of a simple algebraic transformation to a single distribu-

tion, known as the reduced normal distribution . The practical importance of

the class of normal distributions is related to two circumstances: (a) many
sets of data conform fairly closely to the normal distribution; and (b) there

exists a mathematical theorem, known as the central limit theorem, which
asserts that under certain very general conditions the process of averaging

data leads to normal distributions (or very closely so), regardless of the

shape of the original distribution, provided that the values that are averaged

are independent random drawings from the same population.

The reduced form of a distribution

Any normal distribution is completely specified by two parameters, its

mean and its variance (or, alternatively, its mean and its standard deviation).

Let a: be the result of some measuring process. Unlimited repetition of

the process would generate a population of values Xi, X21 -^31 • • • • If the fre-

quency distribution of this population of values has a mean fi and a standard

deviation of cr, then the change of scale efiTected by the formula

z =^^^^ ' (4.14)
cr

will result in a new frequency distribution of a mean value of zero and a

standard deviation of unity. The z distribution is called the reduced form of

the original x distribution.

If, in particular, x is normal, then z will be normal too, and is referred to

as the reduced normal distribution.

To understand the meaning of Equation 4.14, suppose that a particular

measurement x lies at a point situated at k standard deviations above the

mean. Thus:

x = fJL + ka

9



Then, the corresponding z value will be given by

cr

Thus the z value simply expresses the distance from the mean, in units of

standard deviations.

Some numerical facts about the normal distribution

The following facts about normal distributions are noteworthy and
should be memorized for easy appraisal of numerical data:

1) In any normal distribution, the fraction of values whose distance from the

mean (in either direction) is more than one standard deviation is approxi-

mately one-third (one in three).

2) In any normal distribution, the fraction of values whose distance from the

mean is more than two standard deviations, is approximately 5 percent

(one in twenty).

3) In any normal distribution, the fraction of values whose distance from the

mean is more than three standard deviations is approximately 0.3 percent

(three in one thousand).

These facts can be expressed more concisely by using the reduced form
of the normal distribution:

1) Probability that |z| > 1 is approximately equal to 0.33.

2) Probability that |z| > 2 is approximately equal to 0.05.

3) Probability that |z| > 3 is equal to 0.003.

The concept of coverage

If we define the coverage of an interval from A to 5 to be the fraction of

values of the population falling inside this interval, the three facts (1), (2),

and (3) can be expressed as follows (where "sigma" denotes standard devia-

tion):

1) A plus-minus one-sigma interval around the mean has a coverage of about

2/3 (67 percent).

2) A plus-minus rwo-sigma interval around the mean has a coverage of about

95 percent.

3) A plus-minus three-sigma. interval around the mean has a coverage of 99.7

percent.

The coverage corresponding to a ±z-sigma interval around the mean has

been tabulated for the normal distribution for values of z extending from 0 to

4 in steps of 0.01, and higher in larger steps. Tabulations of the reduced nor-

mal distribution, also known as the "normal curve," or "error curve," can

be found in most handbooks of physics and chemistry,^ and in most text-

books of statistics. ^"^ Since the coverage corresponding to z = 3.88 is 99.99

percent, it is hardly ever necessary to consider values ofz larger than four.

Confidence intervals

A confidence interval aims at bracketing the true value of a population
parameter, such as its mean or its standard deviation, by taking into account
the uncertainty of the sample estimate of the parameter.

10



Let Xi, X2, . . . , represent a sample of size N from a population of

mean /jl and standard deviation a. In general fx and a are unknown, but can

be estimated from the sample in terms of i and s, respectively.

Confidence intervals for ttie mean

A confidence interval for the mean /x is an interval, AB, such that we
can state, with a prechosen degree of confidence, that the interval AB brack-

ets the population mean (jl.

For example, we see in Table 4.3 that the mean of either of the two sam-

ples of size 10 is appreciably different from the (true) population mean
(100.42 mg/dl). But suppose that the first of the two small samples is all

the information we possess. We then would wish to find two values, A and

B, derived completely from the sample, such that the interval is likely to

include the true value (100.42). By making this interval long enough we can

always easily fulfill this requirement, depending on what we mean by 'iike-

ly." Therefore, we first express this qualification in a quantitative way by

stipulating the value of a confidence coefficient . Thus we may require that

the interval shall bracket the population mean "with 95 percent con-

fidence." Such an interval is then called a "95 percent confidence interval."

The case of known cr.—We proceed as follows, assuming for the mo-
ment that although is unknown, the population standard deviation cr is

known. We will subsequently drop this restriction.

We have already seen that the population of averages, x, has mean ^t

and standard deviation a/\/N. The reduced variate corresponding to x is

therefore:

z=^~ ^ (4.15)

a/ \/ N

By virtue of the central limit theorem, the variable x generally may be

considered to be normally distributed. The variable z then obeys the reduced

normal distribution. We can therefore assert, for example, that the probabili-

ty that

-1.96 < z < 1.96 (4.16)

is 95 percent. Equation 4.16 can be written

-1.96 <-,^ ~ ^ < 1.96

a/ VN

or

i-1.96-^ <M<i+1.96 (4.17)

The probability that this double inequality will be fulfilled is 95 percent.

Consequently, Equation 4.17 provides a confidence interval for the mean.

The lower limit A of the confidence interval is i - 1 .96 a/\^\ its upper lim-

it B isx + 1.96 a/\/N. Because of the particular choice of the quantity 1.96,

the probability associated with this confidence interval is, in this case, 95
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percent. Such a confidence interval is said to be a "95 percent confidence

interval," or to have a confidence coefficient of 0.95. By changing 1.96 to

3.00 in Equation 4.17, we would obtain a 99.7 percent confidence interval.

General formula for the case of known a.—More generally, from the

table of the reduced normal distribution, we can obtain the proper critical

value Z(. (to replace 1.96 in Equation 4.17) for any desired confidence

coefficient. The general formula becomes

X - — < IX < X + z,.
—~ (4.18)

\/n Vn
Values of z^. for a number of confidence coefficients are listed in tables of

the normal distribution.

The length L of the confidence interval given by Equation 4.18 is

L = ix + z,- ]-{x-Zc- )-2z,- (4.19)

The larger the confidence coefficient, the larger will be z^. and also L. It

is also apparent that L increases with cr, but decreases as N becomes larger.

This decrease, however, is slow, as it is proportional to only the square root

of N. By far the best way to obtain short confidence intervals for an un-

known parameter is to choose a measuring process for which the dispersion

cr is small—in other words, to choose a measuring process of high precision.

The case ofunknown cr. Student's t distribution.—A basic difficulty as-

sociated with the use of Equation 4. 18 is that cr is generally unknown. How-
ever, the sample ofN values provides us with an estimate s of a. This esti-

mate has N - 1 degrees of freedom. Substitution of s for a in Equation 4. 18

is not permissible, since the use of the reduced normal variate z in Equation
4.15 is predicated on a knowledge of cr.

It has been shown, however, that if x and s are the sample estimates

obtained from a sample of size N, from a normal population of mean /jl and

standard deviation cr, the quantity, analogous to Equation 4.15, given by

/ - (4.20)

s/ V N
has a well-defined distribution, depending only on the degrees of freedom,
A/ - 1, with which s has been estimated. This distribution is known as Stu-

dent's / distribution with N - 1 degrees of freedom.

For a unknown, it is still possible, therefore, to calculate confidence in-

tervals for the mean by substituting in Equation 4.18 5 for cr, and tr for z^.

The confidence interval is now given by

X - t,
^- < IX < X + tc -— (4.21)

Vn V n
The critical value tc, for any desired confidence coefficient, is obtained

from a tabulation of Student's / distribution. Tables of Student's t values can
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be found in several references. xhe length of the confidence interval
based on Student's t distribution is

L = It, —^ (4.22)
Vn

For any given confidence coefficient, t, will be larger than z^, so that the
length of the interval given by Equation 4.22 is larger than that given by
Equation 4. 19. This difference is to be expected, since the interval now must
take into account the uncertainty of the estimate s in addition to that of x.

Applying Equation 4.21 to the two samples shown in Table 4.2, and
choosing a 95 percent confidence coefficient (which, for 9 degrees of free-

dom, gives tc = 2.26), we obtain:

1) For the first sample:

107.57 - 2.26 < 107.57 + 2.26

VlO VlO

or

98.0 < /A < 117.2

The length of this interval is

117.2 - 98.0 = 19.2

2) For the second sample:

96.37 - 2.26 -^4?: < /a < 96.37 + 2.26
^'^^

VTo VTo

or

90.4 < /Lt < 102.4

The length of this interval is

102.4 - 90.4 = 12.0

Remembering that the population mean is 100.4, we see that the confidence
intervals, though very different in length from each other, both bracket the

population mean. We also may conclude that the lengths of the intervals,

which depend on the sample size, show that a sample of size 10 is quite un-

satisfactory when the purpose is to obtain a good estimate of the population

mean, unless the measurement process is one of high precision.

Confidence intervals for tlie standard deviation

The chi-square distribution.—In many statistical investigations, the

standard deviation of a population is of as much interest, if not more, than

the mean. It is important, therefore, to possess a formula that provides a con-

fidence interval for the unknown population standard deviation cr, given a

sample estimate s

.
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If the number of degrees of freedom with which 5 is estimated is denoted
by V, a confidence interval for a is given by the formula:

<fji<s /-^ (4.23)

In this formula, the quantities X f and Xl are the appropriate upper and low-

er percentage points of a statistical distribution known as chi-square, for the

chosen confidence coefficient. These percentage points are found in several

references.
'^"^

This formula can be illustrated by means of the two samples in Table

4.2. To calculate 95 percent confidence intervals for a (the population stand-

ard deviation), we locate the limits at points corresponding to the upper and

lower 2.5 percentage points (or the 97.5 percentile and the 2.5 percentile) of

chi-square. From the chi-square table we see that, for 9 degrees of freedom,

the 97.5 percentile is 19.02, and the 2.5 percentile is 2.70. The 95 percent

confidence interval in question is therefore:

1) For the first sample:

13.40 < a < 13.40
2.70

or

9.2 < o- < 24.5

2) For the second sample:

or

8.40 / ^ < o- < 8.40 /

V 19.02 V 2.70

5.8 < o- < 15.3

Here again, both intervals bracket the population standard deviation 12.15,

but again the lengths of the intervals reflect the inadequacy of samples of

size 10 for a satisfactory estimation of the population standard deviation.

Tolerance intervals

In introducing the data of Table 4.1, we observed that it was possible to

infer that about 1 percent of the population has serum glucose values of less

than 70 mg/dl. This inference was reliable because of the large size of our
sample (N = 2,197). Can similar inferences be made from small samples,

such as those shown in Table 4.2? Before answering this question, let us first

see how the inference from a very large sample (such as that of Table 4.1)

can be made quantitatively precise.

The reduced variate for our data is

14



^ X - fx _ X - 100.42
' '

<

^ ~ a ~ 12.15

Making x = 70 mg/dl, we obtain for the corresponding reduced variate:

70 - 100.42

12.15

If we now assume that the serum glucose data are normally distributed (i.e.,

follow a Gaussian distribution), we read from the table of the normal distribu-

tion that the fraction of the population for which z is less than -2.50 is

0.0062, or 0.62 percent. This is a more precise value than the 1 percent esti-

mate we obtained from a superficial examination of the data.

It is clear that if we attempted to use the same technique for the samples
of size 10 shown in Table 4.2, by substituting x for /x and s for cr, we may
obtain highly unreliable values. Thus, the first sample gives a z value equal

to (70 - 107.57)/13.40 or -2.80, which corresponds to a fraction of the popu-

lation equal to 0.25 percent, and the second sample gives z = (70 - 96.37)/

8.40 = -3.14, which corresponds to a fraction of the population equal to

0.08 percent. It is obvious that this approach cannot be used for small sam-
ples. It is possible, however, to solve related problems, even for small sam-

ples. The statistical procedure used for solving these problems is called the

method of tolerance intervals

.

Tolerance intervals for average coverages

Generally speaking, the method of tolerance intervals is concerned with

the estimation of coverages or, conversely, with the determination of inter-

vals that will yield a certain coverage. Let us consider an interval extending

from X - ks to x + ks, where k is any given value. The coverage correspond-

ing to this interval will be a random variable, since the end points of the inter-

val are themselves random variables. However, we can find a A: value such

that, on the average, the coverage for the interval will be equal to any pre-

assigned value, such as, for example, 0.98. These k values, for normal distri-

butions, have been tabulated for various sample sizes and desired average

coverages. As an illustration, we consider the first sample of size 10 given

in Table 4.2, where

X - 107.57, s = 13.40

For a coverage of 98 percent and 9 degrees of freedom, the tabulated value is

k = 3.053

Hence the tolerance interval that, on the average, will include 98 percent of

the population is

107.57 - (3.053)(13.40) to 107.57 + (3.053)(13.40)

or

66.7 to 148.5
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We can compare this interval to the one derived from the population itself

(for all practical purposes, the large sample of 2,197 individuals may be con-

sidered as the population). Using the normal table, we obtain for a 98 per-

cent coverage

100.42 - (2.326)(12.15) to 100.42 + (2.326)(12. 15)

or

72.2 to 128.7

The fact that the small sample gives an appreciably wider interval is due to

the uncertainties associated with the estimates i and s.

For a more detailed discussion of tolerance intervals, see Proschan.^ Ta-

bles of coefficients for the calculation of tolerance intervals can be found in

Snedecor and Cochran^ and Proschan.^

Non-parametric tolerance intervals—order statistics

The tabulations of the coefficients needed for the computation of toler-

ance intervals are based on the assumption that the measurements from
which the tolerance intervals are calculated follow a normal distribution; the

table is inapplicable if this condition is grossly violated. Fortunately, one can

solve a number of problems related to tolerance intervals for data from any
distribution, by using a technique known as non-parametric or distribution-

free. The method always involves an ordering of the data. First one rewrites

the observational, jcg, • • • , jcv in increasing order of magnitude. We will de-

note the values thus obtained by

For example. Sample I in Table 4,2 is rewritten as:

-^(1)
~ 91.9 -^(6)

~
105.2

•^(2)
~ 96.6 ^(7)

~ 112.1

•^(3)
~ 96.9 -^(8)

~ 118.8

-^(4)
~ 97.0 ^(9)

~ 119.6

-^(5)
~ 103.4 -^(10)

~
134.2

The values x^), x,2), . . x^!^^ are denoted as the first, second, . . . , A'^th order

statistic. The order statistics can now be used in a number of ways, depend-

ing on the problem of interest. Of particular usefulness is the following gener-

al theorem.

A genera! theorem about order statistics.—On the average, the fraction

of the population contained between any two successive order statistics

from a sample of size N is equal to ^ ^ ^

. The theorem applies to any con-

tinuous distribution (not only the Gaussian distribution) and to any sample

size N

.

Tolerance intervals based on order statistics.—It follows immediately

from the above theorem that, on the average, the fraction of the population

contained between the first and the last order statistics (the smallest and the

largest values in the sample) is ^ ^ |
. For example, on the average, the frac-
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tion of the population contained between the smallest and the largest value

of a sample of size 10 is ^
J

= ~~
. The meaning of the qualification "on

the average" should be properly understood. For any particular sample of

size 10, the actual fraction of the population contained in the interval
N — 1

-^(iV)
~ -^(1) Will generally not be equal to ^ ^ ^

. But if the average of those

fractions is taken for many samples of size N, it will be close to
+ \

Tolerance intervals involving confidence coefficients

One can formulate more specific questions related to coverages by in-

troducing, in addition to the coverage, the confidence of the statement about

the coverage. For example, one can propose to find two order statistics such
that the confidence is at least 90 percent that the fraction of the population

contained between them (the coverage) is 95 percent. For a sample of size

200, these turn out to be the third order statistic from the bottom and the

third order statistic from the top (see Table A30 in Natrella^). For further

discussion of this topic, several references are recommended. ^-^'^

Non-normal distributions and tests of normality

Reasons for the central role of the normal distribution in statistical theo-

ry and practice have been given in the section on the normal distribution.

Many situations are encountered in data analysis for which the normal distri-

bution does not apply. Sometimes non-normality is evident from the nature

of the problem. Thus, in situations in which it is desired to determine wheth-

er a product conforms to a given standard, one often deals with a simple di-

chotomy: the fraction of the lot that meets the requirements of the standard,

and the fraction of the lot that does not meet these requirements. The statisti-

cal distribution pertinent to such a problem is the binomial (see section on

the binomial distribution).

In other situations, there is no a priori reason for non-normality, but the

data themselves give indications of a non-normal underlying distribution.

Thus, a problem of some importance is to "test for normality."

Tests of normality

Tests of normality should never be performed on small samples, be-

cause small samples are inherendy incapable of revealing the nature of the

underlying distribution. In some situations, a suflficient amount of evidence

is gradually built up to detect non-normality and to reveal the general nature

of the distribution. In other cases, it is sometimes possible to obtain a truly

large sample (such as that shown in Table 4.1) for which normality can be

tested by "fitting a normal distribution" to the data and then testing the

"goodness of the fit."^

Probability plots.—A graphical procedure for testing for normality can

be performed using the order statistics of the sample. This test is facilitated

through the use of "normal probability paper," a type of graph paper on

which the vertical scale is an ordinary arithmetic scale and the horizontal
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scale is labeled in terms of coverages (from 0 to 100 percent), but graduated

in terms of the reduced z-values corresponding to these coverages (see sec-

tion on the normal distribution). More specifically, suppose we divide the

abscissa of a plot of the normal curve into N + 1 segments such that the area

under the curve between any two successive division points is ^^77. The

division points will bezj, 7.2, • • , Zn, the values of which can be determined

from the normal curve. Table 4.5 lists the values 777^, 2 ' • • '

^ ^ J

, in percent, in column 1, and the corresponding normal z values in

column 2, for N = 10. According to the general theorem about order statis-

tics, the order statistics of a sample of size N= \0 "attempt" to accomplish

just such a division of the area into N + 1 equal parts. Consequently, the

order statistics tend to be linearly related to the z values. The order statistics

for the first sample of Table 4.2 are listed in column 3 of Table 4.5. A plot of

column 3 versus column 2 will constitute a "test for normality": if the data

are normally distributed, the plot will approximate a straight line. Further-

more, the intercept of this line (see the section on straight line fitting) will be

an estimate of the mean, and the slope of the line will be an estimate of the

standard deviation.^ For non-normal data, systematic departures from a

straight line should be noted. The use of normal probability paper obviates

the calculations involved in obtaining column 2 of Table 4.5, since the hori-

zontal axis is graduated according to z but labeled according to the values

7777, expressed as percent. Thus, in using the probability paper, the ten

order statistics are plotted versus the numbers

'«» Ti •
'«« ^ '«» 11

or 9.09, 18.18, . . . ,90.91 percent. It is only for illustrative purposes that we
have presented the procedure by means of a sample of size 10. One would

generally not attempt to use this method for samples of less than 30. Even
then, subjective judgment is required to determine whether the points fall

along a straight line.

In a subsequent section, we will discuss transformations of scale as a

means of achieving normality.

The binomial distribution

Referring to Table 4.1, we may be interested in the fraction of the popu-

lation for which the serum glucose is greater than, say, 1 10 mg/dl. A problem
of this type involves partitioning the range of values of a continuous variable

(serum glucose in our illustration) into two groups, namely: (a) the group of

individuals having serum glucose less than 110 mg/dl; and (b) the group of

individuals having serum glucose greater than 1 10 mg/dl. (Those having se-

rum glucose exactly equal to 110 mg/dl can be attached to one or the other

group, or their number divided equally among them.)
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Table 4.5. Test of Normality Using Order Statistics^

Expected cumulative Reduced normal Order statistics

drcaS in pcrccni variate of sample

9.09 -1.335 91.9

18.18 -0.908 96.6

27.27 - - -0.604 96.9

36.36 -0.348 97.0

45.45 -0.114 103.4

54.54 0.114 105.2

63.64 0.348 112.1

72.73 0.604 118.8

81.82 0.908 119.6

90.91 1.335 134.2

Straight Line Fit of column 3 versus column 2:

Intercept = 107.6 = ft

Slope = 5.5 = &

^The example is merely illustrative of the method. In practice one would never test normality on a sample

of size 10.

"values of 100 .,
, , , where N = 10.N + 1

Suppose now that we have a random sample of only 100 individuals

from the entire population. What fraction of the 100 individuals will be found
in either group? It is seen that the binomial distribution has shifted the em-
phasis from the continuous variable (serum glucose) to the number ofindivid-
uals (or the corresponding /rafr/<9«, or percentage) in each of the two
groups. There are cases in which no continuous variable was ever involved:

for example, in determining the number of times a six appears in throwing a

die. However, the theory of the binomial applies equally to both types of

situations.

The binomial parameter and its estimation

Let P represent the fraction (i.e., a number between zero and one) of

individuals in one of the two groups (e.g., serum glucose greater than 110

mg/dl) in the population. It is customary to represent the fraction for the oth-

er group by Q. Then it is obvious that Q ^ 1 - Z'. (If the fractions are ex-

pressed as percentages, we have percent Q ^ 100 - percent P.) For the

data in Table 4.1 and the dividing value 110 mg/dl, we can calculate P by

using the normal distribution:

The reduced value corresponding to 110 mg/dl is

110 - 100.42 ^^^^
12.15

.

From the table of the normal distribution, we then obtain for P:

P = 0.215

Hence Q = \ - 0.215 = 0.785
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Let p represent the fraction of individuals having the stated character-

istic (serum glucose greater than 1 10 mg/dl) in the sample of size N\ and let

^ = 1 - /?. It is clear that for a relatively small, or even a moderately large

TV, p will generally differ from P . In fact, p is a random variable with a well-

defined distribution function, namely the binomial.

The mean of the binomial (with parameter P) can be shown to be equal

to P. Thus

E{p) = P (4.24)

where the symbol E{p) represents the "expected value" of p, another name
for the population mean. Thus the population mean of the distribution ofp is

equal to the parameter f*. Ifp is taken as an estimate forP, i\\\s estimate will

therefore be unbiased.

Furthermore:

Var(p) = (4.25)

Hence

1^^ (4.26)

The normal approximation for the binomial distribution

It is a remarkable fact that for a large A^, the distribution of p can be

approximated by the normal distribution of the same mean and standard de-

viation. This enables us to easily solve practical problems that arise in con-

nection with the binomial. For example, returning to our sample of 100 indi-

viduals from the population given in Table 4.1, we have:

E(p) = 0.215

cr„ = (0.215)(0.785) = 0 0411
100

From these values, one may infer that in a sample of N = 100 from the

population in question, the chance of obtaining p values of less than 0.13

(two standard deviations below the mean) or of more than 0.30 (two standard

deviations above the mean) is about 5 percent. In other words, the chances

are approximately 95 percent that in a sample of 100 from the population in

question the number of individuals found to have serum glucose of more
than 110 mg/dl will be more than 13 and less than 30.

Since, in practice, the value of P is generally unknown, all inferences

must then be drawn from the sample itself. Thus, if in a sample of 100 one

finds a p value of, say, 0.18 (i.e., 18 individuals with glucose serum greater

than 110 mg/dl), one will consider this value as an estimate forP, and con-

sequently one will take the value
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/ (0.18)(1 - 0.18) ^ 0 038

V 100

as an estimate for cr^. This would lead to the following approximate 95 per-

cent confidence interval forP:

0.18 - (1.96)(.038) < P < 0.18 + (1.96)(.038)

or

0.10 < P < 0.25

The above discussion gives a general idea about the uses and usefulness

of the binomial distribution. More detailed discussions will be found in two
general references.

Precision and accuracy

The concept of control

In some ways, a measuring process is analogous to a manufacturing
process. The analogue to the raw product entering the manufacturing proc-

ess is the system or sample to be measured. The outgoing final product of the

manufacturing process corresponds to the numerical result produced by the

measuring process. The concept of control also applies to both types of proc-

esses. In the manufacturing process, control must be exercised to reduce to

the minimum any random fluctuations in the conditions of the manufacturing

equipment. Similarly, in a measuring process, one aims at reducing to a mini-

mum any random fluctuations in the measuring apparatus and in the environ-

mental conditions. In a manufacturing process, control leads to greater uni-

formity of outgoing product. In a measuring process, control results in high-

er precision, i.e., in less random scatter in repeated measurements of the

same quantity.

Mass production of manufactured goods has led to the necessity of inter-

changeability of manufactured parts, even when they originate from diflFer-

ent plants. Similarly, the need to obtain the same numerical result for a par-

ticular measurement, regardless of where and when the measurement was
made, implies that /oca/ control of a measuring process is not enough. Users

also require interlaboratory control, aimed at assuring a high degree of "in-

terchangeability" of results, even when results are obtained at different

times or in different laboratories.

Methods of monitoring a measuring process for the purpose of achiev-

ing "local" (i.e., within-laboratory) control will be discussed in the section

on quality control of this chapter. In the following sections, we will be con-

cerned with a different problem: estimating the precision and accuracy of a

method of measurement.

Within- and between-laboratory variability

Consider the data in Table 4.6, taken from a study of the hexokinase

method for determining serum glucose. For simplicity of exposition, Table
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Table 4.6. Determination of Serum Glucose

Serum sample

Laboratory A B C D

JI 76 0 i _7 / . O ?06 ^

42.3 78.6 137.4 208.5

42.3 77.5 138.5 204.9

40.5 77.8 138.5 210.3

2 43.4 78.6 135.2 211.6

43.8 76.0 131.3 201.2

43.1 76.8 146.7 201.2

42.3 75.7 133.4 208.7

3 41.3 75.0 134.5 205.1

40.2 76.1 134.8 200.3

40.6 76.4 131.5 206.9

42.0 76.4 133.4 199.9

"All results are expressed in mg glucose/dl.

4.6 contains only a portion of the entire set of data obtained in this study.

Each of three laboratories made four replicate determinations on each of

four serum, samples. It can be observed that, for each sample, the results

obtained by different laboratories tend to show greater differences than re-

sults obtained through replication in the same laboratory. This observation

can be made quantitative by calculating, for each sample, two standard de-

viations: the standard deviation ''within" laboratories and the standard de-

viation "between" laboratories. Within-laboratory precision is often re-

ferred to as repeatability , and between-laboratory precision as reproduc-

ibility.' We will illustrate the method for serum sample A.

The data for serum A can first be summarized as follows:

Laboratory Average Standard Deviation

1 41.50 0.938

2 43.15 0.635

3 41.02 0.793

The three standard deviations could be averaged to obtain an "average

within-laboratory"standard deviation. However, if one can assume that

these three standard deviations are estimates of one and the same population

standard deviation, a better way is to "pool" the variances,^ and take the

square root of the pooled variance. Using this procedure, we obtain for the

best estimate of the within-laboratory standard deviation 5 „,:

s,. = ^ (0-938 )2 + (0 635)2 + (0.793) 2 ^ ^^^^

Let us now calculate the standard deviation among the three average values

41.50, 43. 15, and 41.02. Denoting this standard deviation by Sj., we obtain:
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5j. = 1.117

If the laboratories displayed no systematic differences, this standard devia-

tion, being calculated from averages of four individual results, should be
equal to 5u/\ 4 = 0.798/v^= 0.399. The fact that the calculated value,

1.117, is appreciably larger than 0.399 can be explained only through the

presence of an additional, between-laboratory component of variability.

This component, expressed as a standard deviation and denoted by Si^

(where L stands for "laboratories"), is calculated by subtracting the ''antici-

pated" variance, (0.399)^ from the "observed" variance, (1.117)-, and tak-

ing the square root:

St = V (1.117)2 - (0.399)2 = 1.04

The calculations for all four serum samples are summarized in Table 4.7. in

which standard deviations are rounded to two decimal places.

It may be inferred from Table 4.7 that Sy. tends to increase with the glu-

cose content of the sample. The between-laboratory component. Si. shows
no such trend. However, the data are insufiicient to establish these facts

with reasonable confidence. Since our purpose is to discuss general prin-

ciples, and the use of these data is only illustrative, we will ignore these

shortcomings in the discussion that follows.

Accuracy—comparison with reference values

The two components, Su- and s^, define the precision of the method. To
estimate its accuracy, one requires reference values for all samples. Let us

assume that such values have been established and are as follows:

Serum Sample Reference Value

A 40.8

B 76.0

C- 133.4

D 204.1

The values given here as "reference values" are actually only tentative. We
will assume, however, in our present discussion, that they can be considered

to be free of systematic errors. Our task is to decide whether the values ob-

tained in our study are, within random experimental error, equal to these

reference values. The grand average value for sample A, 41.89 mg/dl, which

Table 4.7. Summary of Analysis for Serum Glucose Data

Serum sample Average (mg/dl)

Standard deviation

5^. (mg/dl) 5;, (mg/dl)

A 41.89 0.80 1.04

B 76.74 1.05 0.54

C 136.08 4.08 1.07

D 205.41 3.91 1.08
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we denote by the symbol .v, involves 12 individual determinations and four

laboratories. Its variance, therefore, can be estimated by the formula:

. / (0.W (1.04)2 ^ ^

\ 12 4

Now, X differs from the reference value by the amount:

41.89 - 40.8 = 1.09

Corresponding values for all four samples are shown in Table 4.8.

It can be seen that, on the one hand, all four grand averages are larger

than the corresponding reference values but, on the other hand, the diflFer-

ences D are of the order of only one or two standard errors s^. One would
tentatively conclude that the method shows a positive systematic error (bias)

but, as has been pointed out above, the data are insufficient to arrive at defi-

nite conclusions.

Straight line fitting

The fitting of straight lines to experimental data is a subject of great im-

portance, particularly in analytical laboratories. Many analytical and clinical

methods make extensive use of linear calibration curves for the purpose of

converting a measured quantity, such as an optical absorbance or a ratio of

peaks-heights on a mass-spectrometer scan, into a concentration value for

an unknown constituent. Calibration curves are established by subjecting

samples of known concentrations to the measuring process and fitting lines

to the resulting data. Let.v be the known concentration, and>' the measure-

ment (e.g., optical absorbance). The data will consist of a set of paired val-

ues, as shown for an illustrative example in the columns labeled x and >' in

Table 4.9.

Inspection of the table shows that there is a "blank": for zero concen-

tration, one finds a nonzero absorbance value. If one "corrected" the sub-

sequent two values for the blank, one would obtain 0.189 - 0.050 = 0.139,

and 0.326 - 0.050 = 0.276. If the "corrected" absorbance were proportion-

al to concentration (as required by Beer's law), these two corrected absor-

bances should be proportional to 50 and 100, i.e., in a ratio of 1 to 2. Ac-

tually, 0.139 is slightly larger than (0.276/2). We will assume that this is due

Table 4.8. Study of Accuracy of Glucose Determination

Serum sample Reference value Grand average D Si

(R) (.f) (.? - R)

A 40.8 41.89 1.09 0.57

B 76.0 76.74 0.74 0.41

C 133.4 136.08 2.68 1.29

D 204.1 205.41 1.31 1.25
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Table 4.9. Calibration Curve for Glucose in Serum

X y y d

0 0.050 0.0516 -0.0016

50 0.189 0.1895 -0.0005

'J . J Z / J —0 noM
150 0.467 0.4652 0.0015

200 0.605 0.6030 0.0020

400 1.156 1.1545 0.0015

600 1.704 1.7059 -0.0019

214.29 0.6425 0.6425 0

y = 0.0516 + 0. 0027571.

r

s, = 0.0019

X - concentration of glucose, in mg/dl

y = absorbance

y = "fitted value"

d = residual

solely to experimental error in the measured absorbance values, thus assum-

ing that any errors in the concentration values are negligibly small.

A general model

If a represents the true value of the "blank" and ft the absorbance per

unit concentration, we have, according to Beer's law:

E{y) - I3x (4.27)

where Eiy) is the expected value for absorbance, i.e., the absorbance value

freed of experimental error. Now the actual absorbance, y, is affected by an

experimental error, which we will denote by e. Hence:

y = Eiy) + e (4.28)

Combining Equations 4.27 and 4.28 we obtain the "model" equation

y = a + + e (4.29)

This equation should hold for all x-values, i.e., Xi,X2, . . . ,XAr, with the same

values of a and (3. Hence

yi = a + /3jc, + (4.30)

where i — 1 to N.
The errors should, on the average, be zero, but each one departs from zero

by a random amount. We will assume that these random departures from

zero do not increase with the absorbance (in some cases, this assumption is

not valid) and that their distribution is Gaussian with standard deviation o-p.

The object of the analysis is to estimate: (a) a and /3, as well as the uncer-

tainties (standard errors) of these estimates; and (b) the standard deviation

of e; i.e., o-g.
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Formulas for linear regression

The fitting process is known in the statistical literature as the "linear

regression of>' onx." We will denote the estimates of a, /3, and o-^ by a, ^,
and Se, respectively. The formulas involve the following three quantities:

U = SU, - xf (4.31)

W = X{y^ - yf (4.32)

P = liXi - x){yi - y) (4.33)

In terms of these three quantities, we have the formulas:

a = y- ^x (4.34)

,4.35,

VU V TV

x' (4.36)

For the data of Table 4.9, the calculations result in the following values:

a = 0.0516, 55 = 0.0010, /8 = 0.0027571, 5^ = 0.0000036, 5^ = 0.0019.

Since a and ^ are now available, we can calculate, for each x, a "calcu-

lated" (or "fitted") value, y, given by the equation y = a + ^x. This is, of

course, simply the ordinate of the point on the fitted line for the chosen value

of X.

The diflferences between the observed value v and the calculated value v

is called a "residual." Table 4.9 also contains the values of _v and the resid-

uals, denoted by the symbol "t/."

It is important to observe that the quantity (W - P^/U), occurring in

Equation 4.35, is simply equal to Xd^i. Thus:

Id'

N
(4.37)

This formula, though mathematically equivalent to Equation 4.35, should be

used in preference to Equation 4.35, unless all calculations are carried out

with many significant figures. The reason for this is that the quantities di are

less affected by rounding errors than the quantity (W - P'^/U).

Examination of residuals—weighting

The residuals should behave like a set of random observations with a

mean of zero and a standard deviation o-p. It follows that the algebraic signs

should exhibit a random pattern similar to the occurrence of heads and tails

in the flipping of a coin. In our example, the succession of signs raises some
suspicion of nonrandomness, but the series is too short to decide on this mat-

ter one way or the other. In any case, the errors are quite small, and the

calibration curve is quite satisfactory for the intended purpose.

26



J

The assumptions underlying this procedure of fitting a straight Hne are

not always fulfilled. The assumption of homoscedasticity (i.e., alle, have the

same standard deviation), in particular, is often violated. If the standard de-

viation of the error is nonconstant and depends on x,, the fitting of the

straight line requires the application of "weighted regression analysis."

Briefly, assuming a diflferent value of o-p for each /, one defines a "weight"
Wi equal to the reciprocal of the square of o-p.. Thbs:

Wi = l/o-l. (4.38)

The weights w, are then used in the regression calculations, leading to for-

mulas that are somewhat dififerent from those given in this section. For fur-

ther details, two references can be consulted. ^-^

Propagation of errors

It is often necessary to evaluate the uncertainty of a quantity that is not

directly measured but is derived, by means of a mathematical formula, from
other quantities that are directly measured.

An example

As an example, consider the determination of glucose in serum, using

an enzymatic reaction sequence. The sequence generates a product, the opti-

cal absorbance of which is measured on a spectrophotometer. The proce-

dure consists of three steps: (a) apply the enzyme reaction sequence to a set

of glucose solutions of known concentrations, and establish in this way a cal-

ibration curve of "absorbance" versus "glucose concentration," (b) by use

of the same reaction sequences, measure the absorbance for the "un-

known," and (c) using the calibration curve, convert the absorbance for the

unknown into a glucose concentration.

It turns out that the calibration curve, for this sequence of reactions, is

linear. Thus, if>' represents absorbance, and concentration, the calibration

curve is represented by the equation:

y = a + I3x (4.39)

The calibration curve is established by measuring j for a set of known x val-

ues. We will again use the data of Table 4.9 for illustration. Fitting a straight

line to these data, we obtain:

y = 0.0516 + 0.0027571a: (4.40)

Let us now suppose that an unknown sample of serum is analyzed m times

(for example, m = 4), and that the average absorbance found is yu = 0.3672

(where y^ stands for absorbance for the unknown). Using the calibration

line, we convert the value yu into a concentration value, Xu, by solving the

calibration equation for jc:

yu- 0.3672 - 0.0516 ^ .

How reliable is this estimate?
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Let us assume, at this point, that the uncertainty of the calibration Hne
is negligible. Then the only quantity affected by error isy,,, and it is readily

seen from Equation 4.41 that the error ofi,, is equal to that ofyu, divided by
/3. If we assume that the standard deviation of a single measured y-value is

0.0019 absorbance units, then the standard error of the average of four

determinations, is

0.0019/ \/4 = 0.00095

Hence the standard deviation of x,, is

0.00095/^8 = 0.00095/0.0027571 = 0.34 mg/dl

A more rigorous treatment would also take account of the uncertainty of the

calibration line.

The general case

More generally, a calculated quantity z can be a function of several

measured quantities Xi, X2, .V3, . . . , each of which is affected by experimen-

tal error. The problem to be solved is the calculation of the standard devia-

tion of the error of z as a function of the standard deviations of the errors of

Xi, X2, X3, ....
We will only deal with the case of independent errors in the quantities

A i, .^2, JC3, . . . ; i.e., we assume that the error of any one of the jc's is totally

unaffected by the errors in the otherx's. For independent errors in the meas-

ured values Xi, X2, JC3, . . . , some simple rules can be applied. They are all

derived from the application of a general formula known as "the law of prop-

agation of errors," which is valid under very general conditions. The reader

is referred to MandeF for a general discussion of this formula.

Linear relations.—For

= fliXi + 02X2 + a^Xs + . . . (4.42)

the law states:

VarCy) = a? VarUi) + a| VarUs) + a| VarUs) + . . . (4.43)

As an example, suppose that the weight of a sample for chemical analysis

has been obtained as the difference between two weights: the weight of an

empty crucible, Wj, and the weight of the crucible containing the sample,

W2. Thus the sample weight S is equal to

S = W2 - (4.44)

This is in accordance with Equation 4.42 by writing:

S = {\)W, + (-1)^2

Hence, according to Equation 4.43,

Var(5) = (l)2Var(Wi) + (- l)2Var(V^2)

Var(5) = Var(Wi) + Var(\y2)
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Hence

0-5= Vo-^H', + o-V. (4.45)

Note that in spite of the negative sign occurring in Equation 4.44, the vari-

ances of Wi and W2 in Equation 4.45 are added (not subtracted from each
other).

It is also of great importance to emphasize that Equation 4.43 is vahd
only if the errors in the measurements x^, .Vg, X3, . . . , are independent of

each other. Thus, if a particular element in chemical analysis was deter-

mined as the diflference between 100 percent and the sum of the concentra-

tions found for all other elements, the error in the concentrations for that

element would not be independent of the errors of the other elements, and
Equation 4.43 could not be used for any linear combination of the type of

Equation 4.42 involving the element in question and the other elements. But

in that case. Equations 4.42 and 4.43 could be used to evaluate the error vari-

ance for the element in question by considering it as the dependent variable

y. Thus, in the case of three other elements Xi, X2, and x^, we would have:

y = 100 - {x, + + xs)

where the errors of Xi, JC2, and x^ are independent. Hence:

VarCv) = Var(jci) + Var(jC2) + Var(jC3)

since the constant, 100, has zero-variance.

Products and ratios.—For products and ratios, the law of propagation

of errors states that the squares of the coefficients of variation are additive.

Here again, independence of the errors is a necessary requirement for the

validity of this statement. Thus, for

y = Xi X2 (4.46)

with independent errors for Xi and X2, we have:

100
-^J

= |l00
J
+ |lOO ^ J

(4.47)

We can, of course, divide both sides of Equation 4.47 by 100^, obtaining:

+ • (4.48)
y J \ I \ X2

Equation 4.48 states that for products of independent errors, the squares of

the relative errors are additive.

The same law applies for ratios of quantities with independent errors.

Thus, when Xi and X2 have independent errors, and

X2
(4.49)

we have

+ ^ (4.50)
X2
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As an illustration, suppose that in a gravimetric analysis, the sample weight
is 5, the weight of the precipitate is W, and the "conversion factor" is F.
Then:

W
y = mF^

The constants 100 and F are known without error. Hence, for this example,

> 2 N 2 \ 2

w +

If, for example, the coefficient of variation for 5 is 0.1 percent, and that for

W is 0.5 percent, we have:

cr^ = V (0.005)2 + (0.001)2 = 0.0051

It is seen that in this case, the error of the sample weight S has a negligible

effect on the error of the "unknown" y.

Logarithmic functions.—When the calculated quantity y is the natural

logarithm of the measured quantity x (we assumed that x > 0):

y = Inx (4.51)

the law of propagation of error states

^y=~ (4.52)

For logarithms to the base 10, a multiplier must be used: for

y = logio X (4.53)

the law of propagation of error states:

Sample sizes and compliance with standards

Once the repeatability and reproducibility of a method of measurement
are known, it is a relatively simple matter to estimate the size of a statistical

sample that will be required to detect a desired effect, or to determine wheth-
er a given specification has been met.

An example

As an illustration, suppose that a standard requires that the mercury
content of natural water should not exceed 2/xg/l. Suppose, furthermore,

that the standard deviation of reproducibility of the test method (see section

on precision and accuracy, and MandeF), at the level of 2^tg/l, is 0.88/xg/l. If

subsamples of the water sample are sent to a number of laboratories and
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each laboratory performs a single determination, we may wish to determine

the number of laboratories that should perform this test to ensure that we
can detect noncompliance with the standard. Formulated in this way, the

problem has no definite solution. In the first place, it is impossible to guaran-

tee unqualifiedly the detection of any noncompliance. After all, the decision

will be made on the basis of measurements, and measurements are subject to

experimental error. Even assuming, as we do, that the method is unbiased,

we still have to contend with random errors. Second, we have, so far, failed

to give precise meanings to the terms "compliance" and "noncompliance";
while the measurement in one laboratory might give a value less than 2/u,g/l

of mercury, a second laboratory might report a value greater than 2;ag/l.

General procedure—acceptance, rejection, risks

To remove all ambiguities regarding sample size, we might proceed in

the following manner. We consider two situations, one definitely acceptable

and the other definitely unacceptable. For example, the "acceptable" situa-

tion might correspond to a true mercury content of 1.5/u,g/l, and the "unac-

ceptable" situation to a mercury content of 2.5fxg/\ (see Fig. 4.2).

Because of experimental errors, we must consider two risks: that of re-

jecting (as noncomplying) a "good" sample (1.5 /u,g/l); and that of accepting

(as complying) a "bad" sample (2.5/u-g/l). Suppose that both risks are set at 5

percent.

Let us now denote by N the number of laboratories required for the test.

The average of the N measurements, which we denote by x, will follow a

normal distribution whose mean will be the true value of the mercury^ con-

tent of the sample and whose standard deviation will be cr/V/V, or

0.88/\/n. For the "acceptable" situation the mean is 1.5/u,g/l, and for the

"unacceptable" situation it is 2.5/xg/l. We now stipulate that we wiW accept

CALCULATION OF SAMPLE SIZE

FOR PREDETERMINED RISKS

ACCEPTABLE UNACCEPTABLE

1.0 1.5 2.0 2.5 3.0

CONCENTRATION OF MERCURY
(yug/l)

Fig. 4.2. Distribution of measurements of mercury in subsamples of a water sample

sent to N laboratories.
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the sample, as complying, whenever x is less than 2.0, and reject it, as non-

complying, whenever x is greater than 2.0. As a result of setting our risks at

5 percent, this implies that the areas A and J5 are each equal to 5 percent (see

Fig. 4.2). From the table of the normal distribution, we read that for a 5 per-

cent one-tailed area, the value of the reduced variate is 1.64. Hence:

2.0^
0.88/Va^

(We could also state the requirement that (2.0 - 2.5)/(0.88/V/V) = -1.64,

which is algebraically equivalent to the one above.) Solving forN, we find:

We conclude that nine laboratories are required to satisfy our requirements.

The general formula, for equal risks of accepting a noncomplying sample and
rejecting a complying one, is:

N = i^^\ (4.56)

where a is the appropriate standard deviation, z^. is the value of the reduced
normal variate corresponding to the risk probability (5 percent in the above
example), and d is the departure (from the specified value) to which the cho-

sen risk probability applies.

Inclusion of between-laboratory variability

If the decision as to whether the sample size meets the requirements of a

standard must be made in a single laboratory, we must make our calculations

in terms of a different standard deviation. The proper standard deviation, for

an average ofN determinations in a single laboratory, would then be given

by:

cr (4.57)

The term al must be included, since the laboratory mean may differ

from the true value by a quantity whose standard deviation is a^. Since the

between-laboratory component al is not divided by N, a cannot be less

than (Ti no matter how many determinations are made in the single laborato-

ry. Therefore, the risks of false acceptance or false rejection of the sample

cannot be chosen at will. If in our case, for example, we had a^, = 0.75/u-g/l

and o-/^ = 0.46/Ltg/l, the total cr cannot be less than 0.46. Considering the fa-

vorable case, (x = 1.5/u,g/l, the reduced variate (see Fig. 4.2) is:

0.46

This corresponds to a risk of 13.8 percent of rejecting (as noncomplying) a

sample that is actually complying. This is also the risk probability of accept-
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ing (as complying) a sample that is actually noncomplying. The conclusion to

be drawn from the above argument is that, in some cases, testing error will

make it impossible to keep the double risk of accepting a noncomplying prod-

uct and rejecting a complying product below a certain probability value. If,

as in our illustration, the purpose of the standard is to protect health, the

proper course of action is to set the specified value at such a level that, even
allowing for the between-laboratory component of test error, the risk of de-

claring a product as complying, when it is actually noncomplying, is low. If,

in our illustration, a level of 2.5/xg/l is such that the risk of false acceptance

of it (as complying) should be kept to 5 percent (and cr^ = 0.46)Ltg/l), then the

specification limit should be set at a value x such that:

= 1.64
0.46

which, solved forx, yields 1.75 /xg/1

Transformation of scale

Some common transformations

Non-normal populations are often skew (nonsymmetrical), in the sense

that one tail of the distribution is longer than the other, Skewness can often

be eliminated by a transformation ofscale. Consider, for example, the three

numbers 1, 10, and 100. The distance between the second and the third is

appreciably larger than that between the first and the second, causing a se-

vere asymmetry. If, however, we convert these numbers to logarithms (base

10), we obtain 0, 1, and 2, which constitute a symmetrical set. Thus, if a dis-

tribution is positively skewed (long-tail on the right), a logarithmic transfor-

mation will reduce the skewness. (The simple logarithmic transformation is

possible only when all measured values are positive). A transformation of

the logarithmic type is not confined to the function y = log x. More gener-

ally, one can consider a transformation of the type:

y = K\og{A + Bx) (4.58)

or even

y = C + K\og{A + Bx) (4.59)

where C, K, A, and B are properly chosen constants. It is necessary to

choose A and B such that A + Bx 'is positive for all x values. Other common
types of transformations are:

y = V7 (4.60)

and

y = arcsin V x (4.61)

Robustness

The reason given above for making a transformation of scale is the pres-

ence of skewness. Another reason is that certain statistical procedures are
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valid only when the data are at least approximately normal. The procedures

may become grossly invalid when the data have a severely non-normal distri-

bution.

A statistical procedure that is relatively insensitive to non-normality in

the original data (or, more generally, to any set of specific assumptions) is

called "robust." Confidence intervals for the mean, for example, are quite

robust because, as a result of the central limit theorem, the distribution of

the sample mean x will generally be close to normality. On the other hand,

tolerance intervals are likely to be seriously affected by non-normality. We
have seen that nonparametric techniques are available to circumvent this dif-

ficulty.

Suppose that, for a particular type of measurement, tests of normality

on many sets of data always show evidence of non-normality. Since many
statistical techniques are based on the assumption of normality, it would be

advantageous to transform these data into new sets that are more nearly nor-

mal.

Fortunately, the transformations that reduce skewness also tend, in gen-

eral, to achieve closer compliance with the requirement of normality. There-

fore, transformations of the logarithmic type, as well as the square root and
arcsine transformations, are especially useful whenever a nonrobust analy-

sis is to be performed on a set of data that is known to be seriously non-

normal. The reader is referred to MandeP for further details regarding trans-

formations of scale.

Transformations and error structure

It is important to realize that any nonlinear transformation changes the

error structure of the data, and transformations are, in fact, often used for

the purpose of making the experimental error more uniform over the entire

range of the measurements. Transformations used for this purpose are called

"variance-stabilizing" transformations. To understand the principle in-

volved, consider the data in Table 4.10, consisting of five replicate absor-

bance values at two different concentrations, obtained in the calibration of

Table 4. 10. Error Structure in a Logarithmic Transformation of Scale

Original data Transformed data

(Absorbance) (log,o Absorbance)

Set A^ SetB" Set A SetB

0.2071 1.6162 -0.6838 0.2085

0.2079 1.5973 -0.6821 0.2034

0.1978 1.6091 -0.7038 0.2066

0.1771 1.7818 -0.7518 0.2509

0.2036 1.6131 -0.6912 0.2077

Average 0.1987 1.6435 -0.7025 0.2154

Standard deviation 0.0127 0.0776 0.0288 0.0199

^Absorbance values for a solution of concentration of 50 mg/dl of glucose.

•"Absorbance values for a solution of concentration of 600 mg/dl of glucose.
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spectrophotometers for the determination of serum glucose. At the higher

concentration level, the absorbance values are of course higher, but so is the

standard deviation of the replicate absorbance values. The ratio of the aver-

age absorbance values is 1.6435/0. 1987 = 8.27. The ratio of the standard de-

viations is 0.0776/0.0127 - 6. 1 1. Thus the standard deviation between repli-

cates tends to increase roughly in proportion to the level of the measure-

ment. We have here an example of "heterogeneity of variance." Let us now
examine the two sets of values listed in Table 4. 10 under the heading "trans-

formed data." These are simply the logarithms to the base 10 of the original

absorbance values. This time, the standard deviations for the two levels are in

the proportion 0.0199/0.0288 = 0.69. Thus, the logarithmic transformation

essentially has eliminated the heterogeneity of variance. It has, in fact, "sta-

bilized" the variance. The usefulness of variance stabilizing transformations

is twofold: (a) a single number will express the standard deviation of error,

regardless of the "level" of the measurement; and (b) statistical manipula-

tions whose validity is contingent upon a uniform error variance (homo-
scedasticity) and which are therefore inapplicable to the original data, can be

applied validly to the transformed data.

Presentation of data and significant figures

The law of propagation of errors (see that section) enables one to calcu-

late the number of significant figures in a calculated value. A useful rule of

thumb is to report any standard deviation or standard error with two signifi-

cant figures, and to report a calculated value with as many significant figures

as are required to reach the decimal position of the second significant digit of

its standard error.

An example

Consider the volumetric determination of manganese in manganous cy-

clohexanebutyrate by means of a standard solution of sodium arsenite. The

formula leading to the desired value of percent Mn is

where w is the weight of the sample, v the volume of reagent, and / the titer

of the reagent, and the factor 200/15 is derived from taking an aliquot of 15

ml from a total volume of 200 ml.

For a particular titration, the values and their standard errors are found

to be:

w(mg)

V - 23.67

/ = 0.41122

200

15

w = 939.77

cr

w

0.0040

0.000015

0.0040

0.0040

0.0060
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The values are reported as they are read on the balance or on the burettes

and pipettes; their standard errors are estimated on the basis of previous ex-

perience. The calculation gives:

Percent Mn = 13.809872

The law of propagation of errors gives:

13 8099 //
^^"^^ f + / M*^^^ f + /

0^0040^\2 / 0i)040^\2 / 0.0060
^

23.67 j I 0.41122 ] [ 200 j [' 15 j
^

I 939.77 j

= 0.0044

On the basis of this standard deviation, we would report this result as:

Percent Mn = 13.8099; o-^n = 0.0044

It should be well understood that this calculation is based merely on weigh-

ing errors, volume reading errors, and the error of the titer of the reagent. In

repeating the determination in different laboratories or even in the same labo-

ratory, uncertainties may arise from sources other than just these errors.

They would be reflected in the standard deviation calculated from such re-

peated measurements. In general, this standard deviation will be larger, and

often considerably larger, than that calculated from the propagation of

weighing and volume reading errors. If such a standard deviation from re-

peated measurements has been calculated, it may serve as a basis to redeter-

mine the precision with which the reported value should be recorded.

In the example of the manganese determination above, the value given

is just the first of a series of repeated determinations. The complete set of

data is given in Table 4.1 1. The average of 20 determinations is 13.8380. The

Table 4.11. Manganese Content of Manganous Cyclohexanebutyrate

Determination Result Determination Result

number (Percent Mn) number (Percent Mn)

1 13.81 11 13.92

2 13.76 12 13.83

3 13.80 13 13.73

4 13.79 14 13.99

5 13.94 15 13.89

6 13.76 16 13.76

7 13.88 17 13.88

8 13.81 18 13.82

9 13.84 19 13.87

10 13.79 20 13.89

Average = v = 13.838

= 0.068

Si = 0.068/ V20 - 0.015
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standard deviation of the replicate values is 0.068; therefore, the standard

error of the mean is 0.068/V20 = 0.015. The final value reported for this

analysis would therefore be:

Percent Mn ^ x = 13.838; = 0.015

This example provides a good illustration of the danger of basing an esti-

mate of the precision of a value solely on the reading errors of the quantities

from which it is calculated. These errors generally represent only a small por-

tion of the total error. In this example, the average of 20 values has a true

standard error that is still more than three times larger than the reading error

of a single determination

.

General recommendations

It is good practice to retain, for individual measurements, more signifi-

cant figures than would result from calculations based on error propagation,

and to use this law only for reporting the final value. This practice enables

any interested person to perform whatever statistical calculations he desires

on the individually reported measurements. Indeed, the results of statistical

manipulations of data, when properly interpreted, are never affected by un-

necessary significant figures in the data, but they may be seriously impaired

by too much rounding.

The practice of reporting a measured value with a ± symbol followed

by its standard error should be avoided at all costs, unless the meaning of

the ± symbol is specifically and precisely stated. Some use the ± symbol to

indicate a standard error of the value preceding the symbol, others to in-

dicate a 95 percent confidence interval for the mean, others for the standard

deviation of a single measurement, and still others use it for an uncertainty

interval including an estimate of bias added to the 95 percent confidence in-

terval. These alternatives are by no means exhaustive, and so far no stand-

ard practice has been adopted. It is of the utmost importance, therefore, to

define the symbol whenever and wherever it is used.

It should also be borne in mind that the same measurement can have,

and generally does have, more than one precision index, depending on the

framework (statistical population) to which it is referred. For certain pur-

poses, this population is the totality of (hypothetical) measurements that

would be generated by repeating the measuring process over and over again

on the same sample in the same laboratory. For other purposes, it would be

the totality of results obtained by having the sample analyzed in a large num-
ber of laboratories. The reader is referred to the discussion in the section on

precision and accuracy.

Tests of significance

General considerations

A considerable part of the published statistical literature deals with sig-

nificance testing. Actually, the usefulness of the body of techniques classi-

fied under this title is far smaller than would be inferred from its prominence
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in the literature. Moreover, there are numerous instances, both pubHshed
and unpubhshed, of serious misinterpretations of these techniques. In many
applications of significance testing, a "null-hypothesis" is formulated that

consists of a statement that the observed experimental result—for example,
the improvement resulting from the use of a drug compared to a placebo—is

not "real," but simply the effect of chance. This null-hypothesis is then sub-

jected to a statistical test and, if rejected, leads to the conclusion that the

beneficial effect of the drug is "real," i.e., not due to chance. A closer exami-
nation of the nature of the null-hypothesis, however, raises some serious

questions about the validity of the logical argument. In the drug-placebo

comparison, the null-hypothesis is a statement of equality of the means of
two populations , one referring to results obtained with the drug and the oth-

er with the placebo. All one infers from the significance test is a probability

statement regarding the observed (sample) difference, on the hypothesis that

the true difference between the population means is zero. The real question,

of course, is related not to the means of hypothetical populations but rather

to the benefit that any particular subject, selected at random from the rele-

vant population of patients, may be expected to derive from the drug.

Viewed from this angle, the usefulness of the significance test is heavily de-

pendent on the size of the sample, i.e. , on the number of subjects included in

the experiment. This size will determine how large the difference between
the two populations must be, as compared to the spread of both popu-
lations, before the statistical procedure will pick it up with a reasonable prob-

ability. Such calculations are known as the determination of the "power" of

the statistical test of significance. Without indication of power, a test of sig-

nificance may be very misleading.

Alternative hypotheses and sample size—the concept of power

An example of the use of "power" in statistical thinking is provided by
our discussion in the section on sample sizes. Upon rereading this section,

the reader will note that two situations were considered and that a probabili-

ty value was associated with each of the two situations, namely, the probabil-

ity of accepting or rejecting the lot. In order to satisfy these probability re-

quirements, it was necessary to stipulate a value of the sample size.

Smaller values of N would not have achieved the objectives expressed by
the stipulated probabilities.

In testing a drug versus a placebo, one can similarly define two situa-

tions: (a) a situation in which the drug is hardly superior to the placebo; and
(b) a situation in which the drug is definitely superior to the placebo. More
specifically, consider a very large, hypothetical experiment in which sub-

jects are paired at random, one subject of each pair receiving the placebo

and the other the drug. Situation (a) might then be defined as that in which
only 55 percent of all pairs shows better results with the drug than with the

placebo; situation (b) might be defined as that in which 90 percent of the

pairs shows greater effectiveness of the drug.

If we now perform an actual experiment, similar in nature but of moder-
ate size, we must allow for random fluctuations in the percentage of pairs
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that show better results with the drug as compared to the placebo. There-

fore, our acceptance of the greater effectiveness of the drug on the basis of

the data will involve risks of error. If the true situation is (a), we may wish to

have only a small probability of declaring the drug superior, say, a probabili-

ty of 10 percent. On the other hand, if the true situation is (b), we would
want this probability to be perhaps as high as 90 percent. These two probabil-

ities then allow us to calculate the required sample size for our experiment.

Using this sample size, we will have assurance that the power of our experi-

ment is sufficient to realize the stipulated probability requirements.

An example

An illustration of this class of problems is shown in Table 4. 12. The data

result from the comparison of two drugs, S (standard) and E (experimental),

for the treatment of a severe pulmonary disease. The data represent the re-

duction in blood pressure in the heart after administration of the drug. The
test most commonly used for such a comparison is Student's t test.^"^ In the

present case, the value found for t is 3.78, for DF = 142 (DF = number of

degrees of freedom). The probability of obtaining a value of 3.78 or larger by
pure chance (i.e. , for equal efficacy of the two drugs) is less than 0.0002. The
smallness of this probability is of course a strong indication that the hypothe-

sis of equal efficacy of the two drugs is unacceptable. It is then generally

concluded that the experiment has demonstrated the superior efficacy of E
as compared to S. For example, the conclusion might take the form that "the

odds favoring the effectiveness of E over S are better than M to 1 " where M
is a large number (greater than 100 in the present case). However, both the

test and the conclusion are of little value for the solution of the real problem

underlying this situation, as the following treatment shows. If we assume, as

a first approximation, that the standard deviation 3.85 is the "population pa-

rameter" cr, and that the means, 0.10 for S and 2.53 for E, are also popu-

lation parameters, then the probability of a single patient being better off

Table 4. 12. Treatment of Pulmonary Embolism—Comparison of Two Drugs

Decrease in Right Ventricular Diastolic Blood Pressure (mm Hg)

Standard treatment (S) Experimental treatment (E)

Number of patients

Average

Standard deviation

Standard error of average

True mean

68

0.10

3.15

0.38

76

2.53

4.28

0.50

t test for Ho: /x, = /X2, (Ho = null hypothesis)

Spooled = 3.85 DF = 67 + 75 = 142, (DF = degrees of freedom)

. ^ 1,53 - 0.10 = 3.78 (P < 0.0002)
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with E than with S is a function of the quantity Q defined by

Q = {1^2 ~ At,i)/cr. In the present case:

Q = 2.53 - 0.10

3.85
= 0.63

This can be readily understood by looking at Figure 4.3, in which the means
of two populations, S and E, are less than one standard deviation apart, so

that the curves show a great deal of overlap. There is no question that the

two populations are distinct, and this is really all the t test shows. But due to

the overlap, the probability is far from overwhelming that treatment E will

be superior to treatment S for a randomly selected pair of individuals. It can
be shown that this probability is that of a random normal deviate exceeding

the value!— or, in our case (- - -0.45. This probability is

0.67, or about 2/3. Thus, in a large population of patients, two-thirds would
derive more benefit from S than from E. Viewed from this perspective, the

significance test, with its low "P value" (of 0.0002 in our case) is seen to be
thoroughly misleading.

The proper treatment of a problem of this type is to raise the question of

interest within a logical framework, derived from the nature of the problem,

rather than perform standard tests of significance, which often merely pro-

vide correct answers to trivial questions.

Evaluation of diagnostic tests

The concepts of precision and accuracy are appropriate in the evalua-

tion of tests that result in a quantitative measure, such as the glucose level of

serum or the fluoride content of water. For medical purposes, different types

of tests denoted as "diagnostic tests" are also of great importance. They dif-

Fig. 4.3. Comparison of two drugs for the treatment of pulmonary disease, as meas-
ured by the reduction in right ventricular diastolic blood pressure (mm Hg).

COMPARISON OF TWO DRUGS

0 5 10

Decrease in Ventricular Diastolic Blood Pressure

(mnn Hg

)
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fer from quantitative types of tests in that their outcome is characterized by
a simple dichotomy into positive or negative cases.

As an example, consider Table 4.13, representing data on the alpha-feto-

protein (AFP) test for the diagnosis of hepatocellular carcinoma.^ What do
these data tell us about the value of the AFP test for the diagnosis of this

disease?

Sensitivity and specificity

The statistical aspects of this type of problem are best understood by
introducing a number of concepts that have been specifically developed for

these problems.^

Sensitivity is the proportion of positive results among the subjects af-

fected by the disease. Table 4.13 provides as an estimate of sensitivity:

90
Sensitivity ='j^= 0.8411 = 84.11%

Specificity is the proportion of negative results among the subjects who
are free of the disease. From Table 4.13:

2079
Specificity =^~~ = 0.9816 = 98.16%

2 1 lo

The concepts of sensitivity and specificity are useful descriptions of the

nature of a diagnostic test, but they are not, in themselves, sufficient for pro-

viding the physician with the information required for a rational medical deci-

sion.

For example, suppose that a particular subject has a positive AFP test.

What is the probability that this subject has hepatocarcinoma? From Table

4.13 we infer that among all subjects for whom the test is positive a propor-

tion of 90/129, or 69.77 percent, are aflfected by the disease. This proportion

is called the predictive value of a positive test, or PV+.

Predictive values—the concept of prevalence

Predictive value of a positive test.—(PV + ) is defined as the proportion

of subjects affected by the disease among those showing a positive test. The
(PV + ) value cannot be derived merely from the sensitivity and the specifici-

ty of the test. To demonstrate this, consider Table 4.14, which is fictitious

and was derived from Table 4.13 by multiplying the values in the "Present"

Table 4. 13. Results of Alpha-Fetoprotein Tests for Diagnosis of Hepatocellular
Carcinoma

Test result

Hepatocarcinoma

Present - Absent Total

+ 90 39 129

17 2,079 2,096

Total 107 2,118 2,225
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Table 4.14. Values for Alpha-Fetoprotein Tests Derived from Table 4.13

Test Result

Hepatocarcinoma

Present Absent Total

+ 900 39 939

170 2,079 2,249

Total 1,070 2,118 3,118

column by 10, and by leaving the values in the "Absent" column un-

changed. Table 4.14 leads to the same sensitivity and specificity values as

Table 4.13. However, the (PV + ) value is now 900/939 = 95.85 percent.

It is seen that the (PV + ) value depends not only on the sensitivity and

the specificity but also on the prevalence of the disease in the total popu-

lation. In Table 4.13, this prevalence is 107/2225 = 4.809 percent, whereas

in Table 4.14 it is 1070/3118 = 34.32 percent.

A logical counterpart of the (PV+ ) value is the predictive value ofa neg-

ative test, or PV-.
Predictive value ofa negative test.—(PV — ) is defined as the proportion

of subjects free of the disease among those showing a negative test. For the

data of Table 4.13, the (PV-) value is 2079/2096 = 99.19 percent, whereas
for Table 4.14, (PV-) = 2079/2249 = 92.44 percent. As is the case for

(PV + ), the (PV-) value depends on the prevalence of the disease.

The following formulas relate (PV+ ) and (PV-) to sensitivity, specifici-

ty, and prevalence of the disease. We denote sensitivity by the symbol SE,
specificity by SP, and prevalence by P; then:

(PV + )
= ^ (4.62)

^ {I - SP) {I - P)
1 +

SE • P

(PV-) = ^ „ (4.63)

1 +
(1 - SE) P
SP{\ - P)

As an illustration, the data in Table 4.13 yield:

=
(1 - 0.9816) (1 - 0.04809) = = '' '''''

1 +
(0.8411) (0.04809)

(PV-) = ^ = 0.9919 = 99.19%
^ '

(1 - 0.8411) (0.04809)
1 +

(0.9816) (1 - 0.04809)

Apart from rounding errors, these values agree with those found by direct

inspection of the table.

Interpretation of multiple tests

The practical usefulness of (PV + ) and (PV-) is now readily apparent.

Suppose that a patient's result by the AFP test is positive and the prevalence
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of the disease is 4.809 percent. Then the probabiHty that the patient suffers

from hepatocarcinoma is about 70 percent. On the basis of this result, the

patient now belongs to a. subgroup of the total population in which the preva-

lence of the disease is 70 percent rather than the 4.8 percent applying to the

total population. Let us assume that a second test is available for the diag-

nosis of hepatocarcinoma, and that this second test is independent of the

AFP test. The concept of independence of two diagnostic tests is crucial for

the correct statistical treatment of this type of problem, but it seems to have

received little attention in the literature. Essentially, it means that in the

class of patients affected by the disease, the proportion of patients showing a

positive result for test B is the same, whether test A was positive or nega-

tive. A similar situation must hold for the class of patients free of the dis-

ease.

In making inferences from this second test for the patient in question,

we can start with a value ofprevalence of the disease (P) of 70 percent, rath-

er than 4.8 percent, since we know from the result of the AFP test that the

patient belongs to the subgroup with this higher prevalence rate. As an illus-

tration, let us assume that the second test has a sensitivity of 65 percent and

a specificity of 90 percent and that the second test also is positive for this

patient. Then the new (PV+) value is equal to

^
(0.65) (0.70)

If, on the other hand, the second test turned out to be negative, then the

probability that the patient is free of disease would be:

^
(0.90) (1 - 0.70)

In that case, the two tests essentially would have contradicted each other,

and no firm diagnosis could be made without further investigations.

A general formula for multiple Independent tests

It can easily be shown that the order in which the independent tests are

carried out has no effect on the final (PV + ) or (PV-) value. In fact, the fol-

lowing general formula can be derived that covers any number of indepen-

dent tests and their possible outcomes.

Denote by {SE)i and {SP)i the sensitivity and the specificity of the

ith = test, where / = 1, 2, 3, . . . , N. Furthermore, define the symbols

and Bi as follows:

Ai =_ \ {SE)i when the result of test / is +

[ 1 - {SE)i when the result of test / is

D ^ [ 1 - {SP)i when the result of test / is +
' {SP)i when the result of test / is

-
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IfP is the prevalence rate of the disease before administration of any of

the tests, and P' is the probability that the subject has the disease after ad-

ministration of the tests, then:

{A, A^. . . A,)P

It is important to keep in mind that Equation 4.64 is valid only if all tests

are mutually independent in the sense defined above.

Quality Control

The remainder of this chapter deals with the fundamental principles of a

quality control and quality assurance program for monitoring and assessing

the precision and accuracy of the data being processed within a laboratory.

The definitions of Quality, Quality Assurance, and Quality Control by
the American Society for Quality Control (ASQC)'' apply to either a product

or a service, and they are quoted here in their entirety.

1) Quality.—''The totality of features and characteristics of a product or

service that bear on its ability to satisfy a given need."

2) Quality assurance.—"A system of activities whose purpose is to provide

assurance that the overall quality-control job is in fact being done effec-

tively. The system involves a continuing evaluation of the adequacy and

effectiveness of the overall quality-control program with a view of having

corrective measures initiated where necessary. For a specific product or

service, this involves verifications, audits, and the evaluation of the quali-

ty factors that affect the specification, production, inspection, and use of

the product or service."

3) Quality control.—"The overall system of activities whose purpose is to

provide a quality of product or service that meets the needs of users; al-

so, the use of such a system.

"The aim of quality control is to provide quality that is satisfactory,

adequate, dependable, and economic. The overall system involves inte-

grating the quality aspects of several related steps, including the proper

specification of what is wanted; production to meet the full intent of the

specification; inspection to determine whether the resulting product or

service is in accordance with the specification; and review of usage to

provide for revision of specification.

"The term quality control is often applied to specific phases in the

overall system of activities, as, for example, pwcv^^ quality control.''

The Control Chart

According to the ASQC,^ the control chart is "a graphical chart with

control limits and plotted values of some statistical measure for a series of

samples or subgroups. A central line is commonly shown."
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The results of a laboratory test are plotted on the vertical axis, in units

of the test results, versus time, in hours, days, etc., plotted on the horizontal

axis. Since each laboratory test should be checked at least once a day, the

horizontal scale should be wide enough to cover a minimum of one month of

data. The control chart should be considered as a tool to provide a "real-

time" analysis and feedback for appropriate action. Thus, it should cover a

sufficient period of time to provide sufficient data to study trends, "runs"
above and below the central line, and any other manifestation of lack of ran-

domness (see section on detection of lack of randomness).

Statistical basis for the control chart

General considerations

W. A. Shewhart, in his pioneering work in 1939,^^ developed the prin-

ciples of the control chart. They can be summarized, as was done by E. I.

Grant, as follows: "The measured quantity of a manufactured product is

always subject to a certain amount of variation as a result of chance. Some
stable 'System of Chance Causes' is inherent in any particular scheme of pro-

duction and inspection. Variation within this stable pattern is inevitable. The
reasons for variation outside this stable pattern may be discovered and cor-

rected." If the words "manufactured product" are changed to "laboratory

test," the above statement is directly applicable to the content of this

section.

We can think of the "measured quantity" as the concentration of a par-

ticular constituent in a patient's sample (for example, the glucose content of

a patient's serum). Under the "system of chance causes," this concentra-

tion, when measured many times under the same conditions, will fluctuate in

such a way as to generate a statistical distribution that can be represented by

a mathematical expression. This expression could be the normal distribu-

tion, for those continuous variables that are symmetrically distributed about

the mean value, or it could be some other suitable mathematical function ap-

plicable to asymmetrically or discretely distributed variables (see section on

non-normal distributions). Then, applying the known principles of probabili-

ty, one can find lower and upper limits, known as control limits, that will

define the limits of variation within "this stable pattern" for a given accept-

able tolerance probability. Values outside these control limits will be consid-

ered "unusual," and an investigation may be initiated to ascertain the rea-

sons for this occurrence.

Control limits

According to the ASQC,^ the control limits are the "limits on a control

chart that are used as criteria for action or forjudging whether a set of data

does or does not indicate lack of control."

Probability limits.—If the distribution of the measured quantity is

known, then lower and upper limits can be found so that, on the average, a

predetermined percentage of the values (e.g., 95 percent, 99 percent) will fall

within these limits if the process is under control. The limits will depend on

the nature of the probability distribution. They will diflfer, depending on

45



whether the distribution of the measured quantity is symmetric, asymmetric

to the left or to the right, unimodal or bimodal, discrete or continuous, etc.

The obvious difficulty of finding the correct distribution function for

each measured quantity, and of determining the control limits for this distri-

bution, necessitates the use of procedures that are not overly sensitive to the

nature of the distribution function.

Three-sigma limits.—The three-sigma limits, most commonly used in in-

dustrial practice, are based on the following expression:

Control limits = Average of the measured quantity ± three standard

deviations of the measured quantity

The ''measured quantity" could be the mean of two or three replicate

determinations for a particular chemical test, the range of a set of replicate

tests, a proportion defective, a radioactive count, etc.

The range of three standard deviations around the mean, that is, a width

of six standard deviations, usually covers a large percentage of the distribu-

tion. For normally distributed variables, this range covers 99.7 percent of

the distribution (see section on the normal distribution). For non-normally

distributed variables, an indication of the percentage coverage can be ob-

tained by the use of two well-known inequalities:

1) Tchehychejf s Inequality. For any distribution, (discrete or continuous,

symmetric or asymmetric, unimodal or bimodal, etc.) with a finite stand-

ard deviation, the interval mean ± Ka covers a proportion of the popu-

lation of at least ' " ^ . Thus for = 3, the coverage will be at least
1 8

1 - ^ = ^, or roughly 90 percent of the distribution.

2) Camp-Meidel Inequality. If the distribution is unimodal, the interval

mean ± Ka will cover a proportion of at least i
'— of the popula-

tion. Thus, for = 3, the coverage will be at least i - or roughly

95 percent of the population.

From the above discussion, it follows that the three-sigma limits cover a

proportion of the population that is at least equal to 90 percent for non-nor-

mal distributions and is equal to exactly 99.7 percent when the distribution is

normal.

Most control charts are based on the mean of several determinations of

the same measured equality. By the Central Limit Theorem, (see section on
the normal distribution), the larger the sample size, the closer to normality

will be the mean of this measured quantity. However, since most clinical

tests are based on single or, at best, duplicate determinations, caution

should be used in interpreting the amount of coverage given by the control

limits for those distributions that are suspected to be skewed, bimodal, etc.

Warning limits.—The warning limits commonly used in practice are de-

fined as:

Warning limits = Average of the measured quantity ± two standard

deviations of the measured quantity.

For interpretation of points falling outside the warning and control lim-

its, see the section on the control chart as a management tool.
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Variability between and within subgroups

The hypothesis = 0

In control charts for variables, the variability is partitioned into two
components: within and between subgroups. To this eflfect, the sequence of

measurements is divided into subgroups of n consecutive values each. The
variability within subgroups is estimated by first computing the average of

the ranges of all subgroups and dividing this average by a factor that depends
on n, which can be found in standard statistical tables. As an example, con-

sider the sequence: 10.2, 10.4, 10.1, 10.7, 10.3, 10.3, 10.5, 10.4, 10.0, 9.8,

10.4, 10.9. When divided into subgroups of four, we obtain the arrangement:

Subgroup Average Range

10.2,10.4,10.1,10.7 10.350 0.6

10.3, 10.3, 10.5, 10.4 10.375 0.2

10.0,9.8,10.4,10.9 10.275 1.1

Average 10.333 0.63

In this case n = 4, and the average range is ^ = 0.63.

Generally, n is a small number, often between 2 and 5. Its choice is

sometimes arbitrary, dictated only by statistical convenience. More often,

and preferably, the choice of n is dictated by the way in which the data were
obtained. In the example above, the data may actually consist of three sam-

ples, each measured four times. In this case, "within groups" means "with-

in samples," and "between groups" means "between samples."

Another possibility is that there were actually 12 samples, but that the

measuring technique requires that they be tested in groups of four. If that is

the situation, the relation of between-group to within-group variability de-

pends not only on the sample-to-sample variability but also on the stability

of the measuring instrument or technique from one group of four to another

group of four. The location of the control limit and the interpretation of the

control chart will depend on the nature and the choice of the subgroup.

If the standard deviation within subgroups is denoted by aw, and the

standard deviation between subgroups by o-g, a control chart is sometimes,

but by no means always, a test as to whether ctb exists (is different from ze-

ro). If o-fi
= 0, then the variation between Xht averages of subgroups can be

predicted from ctw (or, approximately, from R). The hypothesis 0-5 = 0 can

be tested by observing whether the subgroup averages stay within the con-

trol limits calculated on the basis of within-subgroup variability. Failure of

this event to occur indicates the presence of causes of variability between

subgroups. The nature of these causes depends on the criteria used in the

selection of the subgroups.

The case o-g 9^ 0. Baseline data

In many applications, the hypothesis 0-^ = 0 is not justified by the physi-

cal reality underlying the data. It may, for example, already be known that

the subgroups vary from each other by more than can be accounted for by

within-subgroup variability. Thus, each subgroup may represent a different
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day of testing, and there may be more variability between days than within

days. The initial set of data (baseline data) is then used primarily to estimate

both the within- and the between-components of variability, and control lim-

its are calculated on the basis of both these components (see section on com-
putation of control limits). Data that are obtained subsequent to the baseline

period are then evaluated in terms of these control lines. From time to time,

the control lines are recalculated using all the data obtained up to that time,

eliminating, however, those data for which abnormal causes of variability

were found.

Types of control charts

Depending on the characteristics of the measured quantity, control

charts can be classified into three main groups:

1) Control charts for variables (the X, R Chart). These are used for variables

such as clinical chemical determinations, some hematological parame-
ters, etc.

2) Control charts for attributes (the P-Chart). These are used for proportion

defective, proportion of occurrence of given disease, etc.

3) Control charts for number of defects per unit (the C-Chart). These may be
used for counts, such as the number of cells observed in a given area,

radioactive counts, etc.

Preparing a control chart

Objective and choice of variable

The general objectives of a control chart are: (a) to obtain initial esti-

mates for the key parameters, particularly means and standard deviations.

These are used to compute the central lines and the control lines for the con-

trol charts; (b) to ascertain when these parameters have undergone a radical

change, either for worse or for better. In the former case, modifications in

the control process are indicated; and (c) to determine when to look for as-

signable causes of unusual variations so as to take the necessary steps to

correct them or, alternatively, to establish when the process should be left

alone.

A daily review of the control chart should indicate whether the result-

ing product or service is in accordance with specifications. For example, in

clinical chemistry, if a control chart based on standard samples shows statis-

tical control for the measurement of a given constituent, then one can pro-

ceed with confidence with the determination of this constituent in patient

samples. If the chart shows lack of control, an investigation should be start-

ed immediately to ascertain the reasons for this irregularity.

No general recommendations can be made here about the types of vari-

ables to use for quality control purposes, since they will obviously vary ac-

cording to the various disciplines of the laboratory. Considerations of this

type will be found in the respective specialty chapters of this book. The
same statements apply to the types of stable pools or reagents that should be



used, and to the methods of handling these materials in normal laboratory

practice.

Selecting a rational subgroup

The generally recommended approach for the selection of a subgroup of

data for control purposes (using a single pool of homogeneous material) is

that conditions within subgroups should be as uniform as possible (same in-

strument, same reagents, etc.), so if some assignable causes of error are pres-

ent, they will show up between subgroups (see Duncan, p. 347, and
Grant, Ch. 6, for further discussions).

When tests on patient samples are performed at regular intervals using

standard laboratory equipment, the subgroup becomes automatically de-

fined, since control samples are, or should be, included in each run. Other-

wise, tests on control samples should be run at regular intervals during the

day in order to detect possible changes in environmental conditions, re-

agents, calibrations, technicians, etc.

Size and frequency of control sample analyses

A minimum of two replicates should be obtained in each run of the con-

trol sample. To account for the possible effects of carryover from other sam-

ples, and to have a better indication of the capability of an instrument to re-

produce itself under normal conditions within a run, the replicate samples

should not be tested back-to-back, but should be separated by patient sam-

ples.

As indicated before, the frequency of the runs on control materials is

generally tied to the frequency of the tests on patient samples. One general

rule is to test the control samples as frequently as possible at the beginning

of a control procedure, and to reduce this frequency to a minimum of two or

three per day when the results of the control chart show a satisfactory state

of control.

Maintaining uniform conditions in laboratory practice

A properly prepared control chart will tend to reflect any change in the

precision and accuracy of the results obtained. To avoid wasting time in

hunting for unnecessary sources of trouble, care should be taken to maintain

laboratory conditions and practices as uniform as possible. These include

sampling procedures, dilution techniques, aliquoting methods, storage meth-

ods, instrumental techniques, calculating procedures, etc.

Initiating a control chart

When meaningful historical data are not available (as is often the case

when a quality control procedure is to be initiated), a plan should be set up to

collect a minimum amount of data for each variable to be controlled during

an initial baseline period.

For a control chart for variables, with a minimum of two replicates for

each run, data should be collected for a baseline period of at least one month

in order to allow sufficient time for the estimation of day-to-day variability.
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Means and ranges should be computed for each run and plotted on separate

charts. Records should be accurately kept, using standard quality control

(QC) forms that are readily available. Any value that appears to be the result

of a blunder should be eliminated, and the source of the blunder carefully

noted. It is recommended that the number of runs or subgroups be at least 25

for the baseline period.

The same considerations apply to control charts of proportions and
counts, except that the number of observations for each subgroup is gener-

ally larger than the corresponding number used in a control chart of vari-

ables. Statistical procedures for determining the sample size, n, for the P-

chart or the C-chart can be found in the literature (see Duncan, pp. 345 and

361). In general, n should be large enough to provide a good chance of find-

ing one or more defectives in the sample.

Determining trial control limits

Based on the initial set of data collected during the baseline period, trial

control limits can be determined using the procedure outlined in the section

on random samples. After plotting these limits in the initial control chart (see

section on the case otb 0), points that are outside or very near the limits

should be carefully examined, and if some valid reasons are found for their

erratic behavior, they should be eliminated and new control limits should be

computed. In general, it is better to start with control limits that are relative-

ly narrow in order to better detect future trends, shifts in mean values, and
some other types of irregularities. A common experience is that some initial

subgroups of data will not be under control but, in general, after some knowl-

edge is gained in the use of the control chart, the process will tend to reach a

state of statistical equilibrium. After this time period, one generally has an

adequate amount of data to produce realistic estimates of the mean and
standard deviations.

Computing control limits

Two variable control charts should be kept, one for the average value,

and the other for the range of individual determinations in each subgroup. In

all cases in which a non-zero component for between-subgroups is known to

exist, the control limits for the chart of averages will be based on the "total"

standard deviation for subgroup averages.

If the subgroups are of size n, and if 6- pi and 6-| represent the estimated

components of variance within subgroups and between subgroups, respec-

tively, then the "total standard deviation" for the averages of subgroups is

This quantity can also be obtained by directly calculating the standard devia-

tion of the subgroup averages in the baseline period.

The control chart of the ranges will be used to ascertain whether the

variability among individual readings within subgroups is consistent from

(4.65)
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subgroup to subgroup. The limits for this chart will be based on the within-

subgroup standard deviation.

Calculating the standard deviation

Using the available data for k subgroups, each of size n , we will have the

layout shown in Table 4. 15. The standard deviation within subgroups can be
estimated from

Sw^-^ (4.66)

where

(4.67)

and the value of d2 can be obtained from standard control chart tables (see

Duncan/2 p. 927). Values of d2 for typical sample sizes are given in the fol-

lowing table:

n ^2

2 1.128

3 1.693

4 2.059

5 2.326

The value of can be accurately determined by pooling the variances

from each subgroup (see section on precision and accuracy). However, the

above estimate, based on the average range, is sufficiently accurate if the

number of subgroups is large enough (say, 25 or more).

The standard deviation of the k sample averages is:

S,= MrzM. (4.68)
k - 1

The between-subgroups standard deviation is given by

(4.69)

Table 4. 15. Layout ¥OkX, R Control Charts

Subgroup Determinations Mean Range

I . ,X,n

2 A'2i,A'22, • • • y^in ^2 R2

3 X3\,X32t • i^3n
• • • •

• • • •

k • fXicn Rk

X R
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and the total standard deviation for individual determinations is:

St^ = Vsf+Sf (4.70)

The total standard deviation for averages of n daily determinations is:

St=Is-^+^'^ (4.71)

Note that St^'is identically equal to Sj-.

Control limits for the chart of averages

The control limits for the chart of averages are given by:

UCLj, =1 + 3Sj. (4.72)

and

LCLj. =X - 3Sj. (4.73)

where UCL = upper control limit; LCL = lower control limit.

The warning limits are:

UWLj,= X + 2Sj. (4.74)

and

LWLj,= X - 2Sjr (4.75)

where UWL = upper warning limit; LWL = lower warning limit.

Control limits for the chart of ranges

Based on the three-sigma limits concept (see section on control limits),

the control limits for the chart of ranges are given by ^ ± 3aii. Using stand-

ard control chart notation, these limits are:

fyCLft= D,R (4.76)

and

LCLn = D^R {4.77)

where

D,= I + 3^ (4.78)

and

D,= \- 3'^' (4.79)
d

and the values of dz, d-^, Dg, and are given in Natrella"' and Duncan.''^ For

n = 2, those values are = 3.267, and = 0.
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The warning limits for « =2 are:

UWLfi^ 2.5\2R

LWLji= 0

The numerical value 2.512 is obtained as follows:

2.512=1 + 24 =1 + 2^^
d2 1.128

Examples of average and range (X and R) charts

Initial data

The data in Table 4.16 represent 25 daily, duplicate determinations of a

cholesterol control, run on a single-channel Autoanalyzer I, 40 per hour. It

may appear strange that all 50 values are even. This is due to a stipulation in

the protocol that the measured values be read to the nearest even number.
The data cover a period of two months, with the analyzer run at a frequency

Table 4.16. Example of X, R Chart: Cholesterol Control Run

Dim 1Kun 1
Dun 0 jvicdn Range

Day Xn X i2 Xi Ri

1

1 iy\) iyZ 1Q1 Z

2 392 388 390 4

3 392 388 390 4

4 388 388 388 0

5 378 396 387 18

6 392 392 392 0

7 392 390 391 2

8 398 402 400 4

9 404 406 405 2

10 400 400 400 0

11 402 402 402 0

12 392 406 399 14

13 398 396 397 2

14 380 400 390 20

15 398 402 400 4

16 388 386 387 2

17 402 392 397 10

18 386 390 388 4

19 386 382 384 4

20 390 386 388 4

21 396 390 393 6

22 396 394 395 2

23 384 388 386 4

24 388 382 385 6

25 386 384 385 2

S = 9,810 120
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of three days per week. The two daily determinations were randomly located

within patient samples. The control consisted of 0.5 ml of sample extracted

with 9.5 ml of 99 percent reagent-grade isopropyl alcohol.

Computing trial control limits

From the data in Table 4.16:

X = 9810/25 = 392.4

R - 120/25 = 4.8

5| = - {XXi)Vn]/{n - 1) = [3850320 - (981 0)^/25 ]/24 = 36.5

= VieJ = 6.04

The control limits forX can be computed:

UCLjr = 392.4 + 3(6.04) = 410.5

LCLjr = 392.4 - 3(6.04) = 374.3

The warning limits for A" are:

UWLj, = 392.4 + 2(6.04) = 404.5

LWLjr = 392.4 - 2(6.04) = 380.3

The control limits for/? are:

UCL,i = (3.367) (4.8) = 15.7

LCLr = 0

The warning limits ofR are:

UWLf, = (2.512) (4.8) = 12.1

Analysis of data

In Figures 4.4 and 4.5, a graphical representation is shown of the control

charts for the mean and range of the daily runs, together with their appropri-

ate control limits.

The means of the daily runs appear to be under control. Only one point,

day 9, is above the warning limit, and all points appear to be randomly lo-

cated around the central line.

The control chart of the range shows two points out of control, days 5

and 14, and one point, day 12, on the upper warning limit.

Let us assume, for the purpose of illustration, that a satisfactory reason

was found for those two points to be out of control in the range chart, and
that it was decided to recompute new limits for both the X and the R charts

based on only 23 days of data.

The new values are: A' = 392.7,^ = 3.57, 5' j. = 6. 17, and a? = 23.

UCLj, = 392.7 + 3(6.17) = 4\\.2; UWL-^ = 405.0
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CHOLESTEROL
CONTROL CHART FOR THE MEAN

(Two determinations per day)

2 4 6 8 10 12 14 16 18 20 22 24 26

DAYS

Fig. 4.4. Control chart for the mean, based on 25 daily duplicate determinations of a

cholesterol control.

LCLi = 392.7 - 3(6.17) - 374.2; LWLjr = 380.4

The new limits for the X chart are practically the same as the previous

limits.

UCLn = (3.267)(3.57) = \\.1;UWLr = 9.0

LCL« = 0 LWLn =0

These values establish the final limits, based on the baseline period.

CHOLESTEROL
CONTROL CHART FOR THE RANGE

20

16

12

8

4

8 10 12 14 16 18 20 22 24 26

DAYS
Fig. 4.5. Control chart for the range, based on 25 daily duplicate determinations of a

cholesterol control.
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Additional data

Nineteen additional points were obtained for days 26 to 44, running

through a period of about one-and-a-half months. The values are shown in

Table 4.17.

Figures 4.6 and 4.7 show the results of the 19 additional data points

plotted against the (corrected) control limits based on the baseline period.

The A'-chart shows two points, days 38 and 39, out of control, about 40

percent of the points near the warning limits, and a definite trend toward

large values ofX after day 30. There is a run of seven points above the cen-

tral line after day 37 and, in fact, if one considers day 37 to be "above" the

central line (the mean of day 37 is 392), the run of points above the central

line is of length 12. As indicated in the section on control limits, these consid-

erations are indications of a process out of control.

The /?-chart shows one point out of control and two points above the

upper warning limit; although the value ofR based on the 19 additional val-

ues, 4.32, is larger than the previous value, R = 3.57, the difference is not

significant.

The new set of points taken by itself produced the following values:

X = 396.5, R = 4.32, and 5j. = 12.17, where n = 19.

Future control limits

It is generally desirable to have a well-established baseline set so future

points can be evaluated with confidence in terms of the baseline central line

Table 4. 17. Additional Values for Cholesterol Control Run

Run 1 Run 2 Mean Range

Day Xn Xi2 Xi Ri

26 392 392 395 6

27 376 376 376 0

28 390 386 388 4

29 394 384 389 10

30 382 378 380 4

31 384 382 381 2

32 384 388 386 4

33 402 392 397 10

34 390 398 394 8

35 402 402 402 0

36 398 394 396 4

37 390 394 392 4

38 426 428 427 2

39 414 428 421 14

40 402 398 400 4

41 402 400 401 2

42 402 404 403 2

43 400 402 401 2

44 404 404 404 0

S = 7,533 82
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CHOLESTEROL
CONTROL CHART FOR THE MEAN,

USING CORRECTED LIMITS
(Additional Data)

- UCL= 411.2

•• UWL= 405.0

- X = 392.7

• LWL= 380.4

-• LCL= 374.2

DAYS
Fig. 4.6. Control chart for the mean, based on 19 additional data points, plotted

against the corrected control limits.

and control limits. If, in the example under discussion, the additional set

(days 26 to 44) was found to be satisfactorily consistent with the baseline

data, then it would be proper to extend the baseline period by this set, i.e., a

total of 25 + 19 = 44 points. However, we have already observed a number
of shortcomings in the additional set, and the proper action is to search for

the causes of these disturbances, i.e., "to bring the process under control."

This is of course not a statistical problem.

For the purpose of our discussion, we will assume that an examination

of the testing process has revealed faulty procedure starting with day 37.

Therefore, we will consider a shortened additional set, of days 26 through

36. The following table gives a comparison of the baseline set (corrected to

23 points as discussed previously) and the shortened additional set (11

points).

Baseline Set Additional Set

Number of points, TV 23 11

Average, Z 392.7 389.5

Average Range, 7? 3.57 4.73

Standard deviation, 5 J - 6.17 8.15

By using the F test,
^"^

it is easily verified that the diflference between

the two standard deviations is well within the sampling variability that may
be expected from estimates derived from samples of 23 and 1 1 points, respec-
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R

CHOLESTEROL
CONTROL CHART FOR THE RANGE

USING CORRECTED LIMITS

(Additional Data)

34 36

DAYS
Fig. 4.7. Control chart for the range, based on 19 additional data points, plotted

against the corrected control limits.

tively. The difiference between the averages, X, is 392.7 - 389.5 = 3.2. A
rough test can be made to see whether this difference indicates a real shift

between the two sets. The standard error of the difiference is approximately

[(6.17)723 + (8.15)711]^ = 2.77. Thus the difference, 3.2, is equal to -j~

= 1.15 standard errors, and this is well within sampling errors.

It is therefore not unreasonable in this case to combine the 34 points of

both sets to construct a new baseline. This results in the following parame-
ters: N = 34, 1 = 391.7, R = 3.95, and Sj^ = 6.93.

The new control limits are:

ForX: UCL
LCL

For/?: UCL
LCL

412.5

370.9

12.9

0

UWL
LWL
UWL
LWL

405.6

377.8

9.9

0

Using these new parameters, it can be noted that the points correspond-

ing to days 37 through 44 may indicate a potential source of trouble in the

measuring process.

Control chart for individual determinations

It is possible, although not recommended, to construct charts for indi-

vidual readings. Extreme caution should be used in the interpretation of

points out of control for this type of chart, since individual variations may
not follow a normal distribution. When a distribution is fairly skewed, then a

transformation (see section on transformation of scale) would be applied be-

fore the chart is constructed.
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The steps to follow are:

1) Use a moving range of two successive determinations;

2) Compute R =

3) Determine the controllimits for

^±34
"2

For /7 = 2, ^2 = 1.128, and hence the control limits are:

X ± 2.66 R

4) The upper control limit fori? is D4R = 3.267 R. The lower control limit is

equal to zero.

Other types of control charts

Control charts can also be constructed based on the average standard

deviation, a, of several subgroups of sample data, or on "standard" values

of cr, called a' in the quality control literature (See Duncan, Chap. 20).

Control chart for attributes—the P-chart

The fraction defective chart is generally used for quality characteristics

that are considered attributes and are not necessarily quantitative in nature.

To use this chart, it is only necessary to count the number of entities that

have a well-defined property, such as being defective, have a certain type of

disease, or have a glucose content greater than a given value, and translate

this number into a proportion. The data used in this chart are easy to handle,

and the cost of collection is normally not very high. In some instances, the

P-chart can do the job of several average and range charts, since the classifi-

cation of a "defective" element may depend on several quantitative charac-

teristics, each of which would require an individual set of average and range

charts for analysis.

The sample size for each subgroup will depend on the value of the pro-

portion P being estimated. A small value of P will require a fairly large

sample size in order to have a reasonable probability of finding one or more
"defectives" in the sample (See Duncan^^). In general, a value of n between
25 and 30 is considered adequate for the calculation of a sample proportion.

Control limits and warning limits

Since the standard deviation of a proportion is directly related to the

value of the proportion, an estimate;? ofP is all that is needed for the calcula-

tion of the central line and of the control limits.

The central line is located at the value p. The three-sigma control limits

are:

UCL^ = p + 3 (4.80)
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LCLp = p - 3 (4.81)

where q ^ \ - p. The estimate p is obtained as follows:

Let the data be represented by the table:

Number of Elements
Sample Having a Certain
Number Size Characteristic ProportionIn X, p,
2 n X2 P2
3 n Z3

n Xn Pk

Total XXi Xpi

n

Average proportion:

where pt

k
(4.82)

The warning limits are:

(4.83)

LWL, = p-2 (4-84)

When the sample size does not remain constant from subgroup to sub-

group, the recommended procedure is to compute control limits using the

average sample size. However, when a point falls near the control limits thus

calculated, then the actual limits for this point, using its own sample size,

should be estimated before a conclusion is reached about its state of control.

Control charts for number of defects per unit—tfie C-cfiart

In some instances, it is more convenient to maintain control charts for

the number of defects per unit, where the unit may be a single article or a

subgroup of a given size. The "number of defects" may be, for instance, the

number of tumor cells in an area of a specified size, the number of radio-

active counts in a specified period of time, etc. In all these instances, the

probability of occurrence of a single event (e.g., an individual defect) is very

60



small, but the unit is large enough to make the average number of occur-

rences (number of defects) a measurable number.

The Poisson distribution

It can be shown that, when the probability P of an event is very small

but the sample size n is large, then the distribution of the number of occur-

rences c of this event tends to follow a Poisson distribution with parameter
nP = c' . The mean and standard deviation of c are:

E{c) = c' (4.85)

o-c =y/c^ (4.86)

The random variable c represents the number of defects per unit, the

number of radioactive counts in a given period of time, the number of bacteria
in a specified volume of liquid, etc.

Control limits.—The upper and lower limits are given by:

UCLc = c + 3 (4.87)

LCL^ = c - 3 V c (4.88)

Here c is the average number of defects, or counts, obtained using a suffi-

ciently large number, k, of units, c is a sample estimate of the unknown, or

theoretical valuer'.

The warning limits are:

UWL, = c + 2 \/~d~ (4.89)

LWL, = c - 2 VV (4.90)

Detecting lack of randomness

If a process is in a state of statistical control, the observations plotted in

the control chart should randomly fall above and below the central line, with

most of them falling within the control limits. However, even if all the points

fall within the upper and lower control limits, there might still exist patterns

of nonrandomness that require action, lest they lead eventually to points

outside the control limits. Procedures for detecting such patterns will be dis-

cussed.

Ruies based on the theory of runs

The most frequent test used to detect a lack of randomness is based on
the theory of runs. A run may be defined as a succession of observations of

the same type. The length of a run is the number of observations in a given

run. For example, if the observations are classified as a or b, depending on
whether they fall above or below the mean, then one set of observations may
look like:

aaababbbaab
Here we have six runs, of length 3, 1, 1, 3, 2, 1, respectively.
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Another criterion for the definition of a run would be the property of

increase or decrease of successive observations. Such runs are called ''runs

up and down/' For example, the sequence 2, 1.7, 2.2, 2.5, 2.8, 2.0, 1.8, 2.6,

2.5, has three runs down and two runs up. In order of occurrence, the

lengths of the runs are 1, 3, 2, 1, 1.

Returning to runs above and below the central value, it is possible

through use of the theory of probability, and assuming that the probability is

one-half that an observation will fall above the central line (and, con-

sequently, one-half that it will fall below the central line), to determine the

probability distribution of the lengths of runs. Tables are available for sever-

al of these distributions (See Duncan, Chap. 6), Some rules of thumb based
on the theory of runs that are very useful in pointing out some lack of ran-

domness are:

1) A run of length 7 or more. This run may be up or down, above or below
the central line in the control chart. (For runs above or below the median,

the probability of a run of length 7 is 0.015.)

2) A run of two or three points outside the warning limits.

3) Ten out of 1 1 successive points on the same side of the central line.

Distribution of points around the central line

When a sufficient number of observations is available, the pattern of

distribution of points around the central line should be carefully examined.

In particular, if the points tend to cluster near the warning or control limits,

or if they show characteristics of bimodality, or if they show a pronounced
skewness either to the left or the right, then the assumption of normality will

not be satisfied and some transformation of scale may be necessary.

Interpreting patterns of variation in a control chart

Indication of lack of control

A process is out of control when one or more points falls outside the

control limits of either the x or the R-chart, for control of variables, or out-

side the limits of the P-chart, for control of attributes.

Points outside the control limits of the R-chart tend to indicate an in-

crease in magnitude of the within-group standard deviation. An increase in

variability may be an indication of a faulty instrument which eventually may
cause a point to be out of control in the x-chart.

When two or more points are in the vicinity of the warning limits, more
tests should be performed on the control samples to detect any possible rea-

sons for out-of-control conditions.

Various rules are available in the literature about the procedures to fol-

low when control values are outside the limits (see, for example, Haven^^).

Patterns of variation

By examining the x and R-charts over a sufficient period of time, it may
be possible to characterize some patterns that will be worth investigating in

order to eliminate sources of future troubles.

Some of these patterns are shown in Figure 4.8.
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Fig. 4.8. Four patterns of variation in an A'-chart.

The control chart as a management tool

As indicated in the ASQC definition of quality assurance, . . The sys-

tem involves a continuing evaluation of the adequacy and efifectiveness of

the overall quality-control program with a view of having corrective meas-
ures initiated where necessary . .

."'^

The key words, "continuing evaluation" and ''having corrective meas-
ure initiated," indicate the essence of a quality control program. It is impor-

tant that the results of the control chart be subjected to a daily analysis in

order to detect not only the out-of-control points but also any other manifes-

tation of lack of randomness as shown by a time sequence of daily observa-

tions. It is always better and more economical to prevent a disaster than to

take drastic measures to cure one. Since each test method should be sub-

jected to quality control, the control charts should be prominently displayed

at the location where the test is performed, not only to facilitate the logging

of results as soon as they are obtained but also to give the technician respon-

sible for the test an easy graphical representation of the time sequence of

events. In addition, preprinted forms containing the relevant classification

should be available for easy recording of information such as names, dates,

time of day, reagent lot number, etc.

When all the pertinent data provided by the control charts are available,

the supervisor, or section manager, should have all the meaningful informa-

tion required to take corrective measures as soon as a source of trouble has

been detected. Monthly or periodic review of the results, as performed by a

central organization with the aid of existing computer programs, is impor-

tant to provide the laboratory director with an important management tool,

since the output of these programs may include such items as costs, inter-

and intra-laboratory averages, historical trends, etc. However, as pointed

out by Walter Shewhart^*' and other practitioners of quality control, the most
important use of the control chart occurs where the worker is, and it should

be continuously evaluated at that location as soon as a new point is dis-

played on the chart.
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