
PUBLICATIONS

^ ° F c
°.

oWW
CO

Q
NBS SPECIAL PUBLICATION 667

U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards

DATAPLOT

Introduction

and
Overview

1934
C A

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress on March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in

trade, and (4) technical services to promote public safety. The Bureau's technical work is per-

formed by the National Measurement Laboratory, the National Engineering Laboratory, and

the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of

physical and chemical and materials measurement; coordinates the system with measurement

systems of other nations and furnishes essential services leading to accurate and uniform

physical and chemical measurement throughout the Nation's scientific community, industry,

and commerce; conducts materials research leading to improved methods of measurement,

standards, and data on the properties of materials needed by industry, commerce, educational

institutions, and Government; provides advisory and research services to other Government

agencies; develops, produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities 2 — Radiation Research — Chemical Physics —
Analytical Chemistry — Materials Science

THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser-

vices to the public and private sectors to address national needs and to solve national

problems; conducts research in engineering and applied science in support of these efforts;

builds and maintains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement capabilities;

provides engineering measurement traceability services; develops test methods and proposes

engineering standards and code changes; develops and proposes new engineering practices;

and develops and improves mechanisms to transfer results of its research to the ultimate user.

The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering 2 — Manufacturing

Engineering — Building Technology — Fire Research — Chemical Engineering2

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts

research and provides scientific and technical services to aid Federal agencies in the selection,

acquisition, application, and use of computer technology to improve effectiveness and

economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759),

relevant Executive Orders, and other directives; carries out this mission by managing the

Federal Information Processing Standards Program, developing Federal ADP standards

guidelines, and managing Federal participation in ADP voluntary standardization activities;

provides scientific and technological advisory services and assistance to Federal agencies; and

provides the technical foundation for computer-related policies of the Federal Government.

The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted;

mailing address Washington, DC 20234.
2Some divisions within the center are located at Boulder, CO 80303.

C I r C

DATAPLOT — Introduction and Overview

James J. Filliben

Center for Applied Mathematics

National Engineering Laboratory

National Bureau of Standards

Washington, DC 20234

c> *

Q

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Issued June 1984

Library of Congress Catalog Card Number: 83-600598

National Bureau of Standards Special Publication 667

Natl. Bur. Stand. (U.S.), Spec. Publ. 667, 112 pages (June 1984)

CODEN: XNBSAV

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1984

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402

iii

Preface

The DATAPLOT language was designed and developed
in 1976 in response to data analysis problems
encountered in the scientific/research environment
at the National Bureau of Standards . At such time
it became increasingly evident that the 3 highest
priority computing activities of the
scientist/engineer were

1. graphics (especially continuous);
2. fitting (especially non-linear

)

;

3. operations with functions

.

Up to that time, the generation of such continuous
graphics, the carrying out of such non-linear
fits, and the application of such function
operations was typically done in a
subroutine-dependent, batch-oriented fashion which
was time-consuming and non-conducive to the
continuity of thought which is so important in
scientific investigations . The need was seen,
therefore , for the development of a

high-level

,

English-syntax,
interactive

language which inducted single-command capabilities for

continuous graphics

;

non-linear fitting;
function evaluation/transformations

.

The realization of this goal occurred in early
1977 with the NBS implementation of the DATAPLOT
language with its 3 kernel commands—

PLOT (for graphics);
FIT (for fitting);
LET (for function operations) .

These 3 commands were from the beginning the core
of the DATAPLOT language and their central role as
such has become a distinctive mark of the
1 an gua ge

.

In addition to the above core activities , however,
the language has extensive capabilities in

1) graphics (continuous or discrete);
2) fitting (non-linear or linear);
3) general data analysis;
4) mathematics.

DATAPLOT commands are high-level , English-syntax, and
self-descriptive , such as

PLOT Y X
PLOT EXP(-X**2) FOR X = -3 .1 3

FIT Y = A+B*EXP(-ALPHA*X)
BOX PLOT Y X
ANOVA Y XI X2 X3
LET FUNCTION F = DERIVATIVE EXP(-X**2) / (A ;B*X) WRT X

Although DATAPLOT may be used in a batch
environment, the language was designed for
(and is most effectively used in) an

interactive environment . DATAPLOT has proven to

be a valuable time-saving tool (from the
early stages of an analysis through to the
final presentation graphics) for the scientist

,

engineer, data analyst, and general researcher
alike. No programming experience is assumed in

using DATAPLOT; it is used by both the novice
programmer and by the veteran analyst.

This book should serve as a comprehensive
reference for all DATAPLOT programmers . It is
the author's intention that the layout of this

book will

o facilitate the learning of the DATAPLOT
language

;

o encourage the use of the many features

of the language;

o result in more thorough and insightful

analyses ; and

o result in significant savings of the

analyst 's time.

Indeed, the use of the DATAPLOT language as

a computing tool in solving the variety of

problems which arise daily in a research

environment will allow the scientist to "think

science" as opposed to "think computing"

.

The National Technical Information Service (NTIS)

has been distributing the NBS-DATAPLOT tape

since March of 1982. There have been 3 major
releases—

March 1982—ANSI FORTRAN 66, General Version

July 1982—ANSI FORTRAN 77, General Version

June 1983—ANSI FORTRAN 77, Vax-Specific Version

The language defined in this book is consistent
with the source code released from NBS to NTIS for
distribution as of September 1983. Prior versions
may differ slightly from specifications outlined
in this manual. In particular , the LOOP command,

the IF command, the VALU() sub-command , the bar
plot patterns/spacing , and the symbolic
differentiation do not apply for earlier versions

.

The NBS source code tape which NTIS distributes is

portable—out of the 600 ANSI FORTRAN subroutines
(= 200,000 lines of FORTRAN code), only a

few (less than 10) of the subroutines need be

changed in going from one computer to the

next. Known implementations exist on Univac,
Vax, Honeywell, and Prime computers; other

implementations are in progress . For distribution
information, contact

i V

National Technical Information Service
United States Department of Commerce
Springfield , Virginia 22161
703-487-4805

This book has had the benefit of constructive and
insightful comments from a number of different
individuals—both inside and outside of NBS.
Particular thanks are extended to my NBS
colleagues Stefan Leigh and Roland DeWit whose
excellent reviewing and editing served to
substantially improve earlier versions of this

manual. Additionally, the comments of my
colleagues in the Center for Applied Mathematics
at NBS have been extremely valuable in regard to

both this manual and the DATAPLOT language. In

spite of the above, however, there no doubt still
remain discrepancies

, errors, omissions, and

other technical ambiguities in this manual. In

such case, the author welcomes the opportunity
of receiving feedback from readers, and will

be glad to make corrections and
clarifications . Please direct such questions and
comments to

James J. Filliben
Statistical Engineering Division
Center for Applied Mathematics
Administration Building , Room A-337
National Bureau of Standards
Washington , D. C. 20234
301-921-3651

James J. Filliben

May 1984

V

Disclaimer

The purpose of the manual is to give the analyst
a broad overview of the structure

,
capabilities

,

and features of the DATAPLOT language

.

Certain commercial brand names (e.g., Tektronix,
Calcomp, Texas Instruments, etc.) are mentioned in
this document. This does not constitute an
endorsement of such products by either the
author or the United States Government.

The features and capabilities described in this
primer are for version 84/7 of DATAPLOT . Most

(but not all) descriptions also hold for prior
versions

.

Neither the author nor any branch of the United
States Government may be held liable for errors
arising from the use of the DATAPLOT language or
the implemented DATAPLOT system.

Suggestions and comments are welcome. Please
forward them to

James J. Filliben
National Bureau of Standards
Administration Building, Room A-340
Washington, D.C. 20234
301-921-3651

vi

Changes from Previous Versions

The National Technical Information Service (NTIS)

has distributed 3 prior versions of DATAPLOT—

Version 82/3
Version 82/7
Version 83/5

FORTRAN 66 (General)
FORTRAN 77 (General)
FORTRAN 77 (Vax

)

Version 84/7 will be released from NTIS shortly

(July 1984), and will be primarily
distinguished from earlier versions in that it

will have the benefit of code updates (for certain
uncovered bugs) and capability enhancements (for

added analysis power).

The features and capabilities described in this

manual are for version 84/7 of DATAPLOT. Most
(but not all) descriptions also hold for the

prior released versions (82/3 and 82/7).

Commands available in 84/7
versions include--

but not in earlier

The analytic differentiation sub-capability under
the LET FUNCTION command has been reinstated for
version 84/7, but was omitted from earlier
versions

.

New data analysis capabilities
added to the 84/7 version are

which have been

1) The BOX PLOT command has been
generalized (via the FENCE command)
so that values beyond the inner and outer
fences may be indicated

.

2) Robust (3RSR) smoothing and Hamming
smoothing have been added.

3) Stem and Leaf diagrams have been added.

4) The CONTROL CHART command has been
generalized to cover the unequal-sample
size case.

READ PARAMETER

READ FUNCTION

for reading parameters
from a file;

for reading functions
from a file;

James J. Filliben
May 1984

LOOP

IF

for looping;

for conditional execution
of a block of statements

;

LIST for listing a subprogram
on a file.

The MACRO ON, MACRO OFF, and MACRO EXECUTE
commands of previous versions are described in

this manual as the CREATE ON, CREATE OFF, and CALL
commands . The MACRO commands will still work in
84/7 , but the preferable commands are CREATE and
CALL.

The ANGLE UNITS command of previous versions is

described in this manual as the TRIG UNITS
command—either will work in 84/7 .

The COMMENT command in previous versions (to write
out descriptive text) is described in this manual
as a sub-capability under the WRITE command, so
that

COMMENT CALIBRATION ANALYSIS

and

WRITE "CALIBRATION ANALYSIS"

both have the same effect in 83/10.

Vll

Table of Contents

General

What is DATAPLOT? 1-1

Capabilities 1-1

Getting Into and Out of DATAPLOT 1-2

Getting Started with DATAPLOT 1-3

4 Typical Problems 1-5

4 DATAPLOT Solutions 1-7

Programming with DATAPLOT 1-11

English-Syntax Language 1-12

Free-Format Language 1-12

Declaration-Free Language 1-13

Structured Language 1-13

Punctuation 1-14

Language Components 1-14

Command Categories

Commands 2-1

Graphics Commands 2-2

Analysis Commands 2-3

Diagrammatic Graphics Commands 2-4

Plot Control Commands 2-5

Support Commands 2-6

Output Device Commands 2-18

Keywords 2—9

viii

Parameters, Variables, and Functions

Arithmetic Operations 3-1

Relational Operations 3-1

Numbers 3-2

Parameters 3-3

LET

Variables 3-4

LET, READ, and SERIAL READ

Functions 3-5

LET FUNCTION

Evaluating Functions 3-5

LET

Sub-commands Under the LET Command 3-6

Statistics, Mathematics, Random Numbers, Manipulation
LET

Built-in Library Functions 3-12
LET, LET FUNCTION, PLOT, 3D-PLOT, FIT, and PRE-FIT

Creating Parameters , Variables , and Functions 3-15
LET, LET FUNCTION, READ, and SERIAL READ

Copying Parameters , Variables , and Functions 3-15
LET

Deleting Parameters , Variables , and Functions 3-16
DELETE

Assigning Multiple Names to a Variable 3-18
NAME

Creating Data Internally
LET, READ, and SERIALLY READ

3-19

ix

Input/Output

Files and Subfiles 4-1

Input/Output 4-3

Reading in Columns of Data 4-4
READ

Reading Data in Sequentially 4-7
SERIAL READ

Reading in Parameters 4-8
READ PARAMETER

Reading in Functions 4-9
READ FUNCTION

Writing Out Parameters , Variables , and Functions 4-10
WRITE

Skipping Over Lines in a Read 4-11
SKIP

Restricting a Read to Certain Rows 4-11
ROW LIMITS

Restricting a Read to Certain Columns 4-12
COLUMN LIMITS

Terminating a Read 4-12
END OF DATA

LOOP

Conditional Statements
SUBSET, EXCEPT, FOR, and IF

Calling Subprograms
CALL

Creating Subprograms
CREATE

Listing Subprograms
LIST

Program Control

Looping 5-1

X

Mi see 1 1 aneous

Restricting Plots and Analyses to Subsets

SUBSET, EXCEPT, and FOR

In-line Text Sub-commands
TITLE, ...LABEL, LEGEND, and TEXT

Defaults, Restrictions, and Settings

Dumping Status Information
STATUS

Dumping On-Line Documentation
HELP

Redimensioning Internal Storage
DIMENSION

Specifying the Terminal
TERMINAL

Specifying the Host

HOST

Specifying the
COMMUNICATIONS

Specifying Trigonometric Units
TRIGONOMETRIC UNITS

Echoing Commands
ECHO

Suppressing Printed Output
FEEDBACK and PRINTING

6-15

6-17

6-18

6-18

6-20

6-21

6-22

Communications Link 6-19

LINK and BAUD RATE

Diverting Graphics Output to Offline Devices 6-23
PENPLOTTER, ZETA, CALCOMP , and VERSATEC

Redefining I/O Units and Saving DATAPLOT Output 6-25
SET

Controlling The Terminal—Erasing, Hardcopying , etc. 6-26
PRE-ERASE, HARDCOPY, ERASE, and COPY

Activating Local Settings
IMPLEMENT

6-28

xi

Entering Comment Lines
COMMENT and .

Recommended Programming Practices

Interrupting ,
Saving, and Resuming A Run

SAVE and RESTORE

Starting Over
RESET

Communicating with the Host Operator
OPERATOR

Communicating with DATAPLOT Service Group
MESSAGE, NEWS, MAIL, and BUGS

DATAPLOT File Information for Implementation

Default Output Device Settings

Color Graphics
TERMINAL, COLOR, and PICTURE POINTS

Multiple Commands Per Line
TERMINATOR CHARACTOR

Specifying Post-Plot Cursor Position and Size
CURSOR SIZE

i

1-1

What is DATAPLOT? Capab i 1 i t ies

DATAPLOT is an interactive high-level (free-format
English-like syntax) language with extensive
capabilities in

1) Graphics (continuous or discrete);

2) Fitting (non-linear or linear);
3) General Data Analysis

;

4) Mathematics

.

DATAPLOT was developed originally in 1977 in

response to data analysis problems encountered at

the National Bureau of Standards . DATAPLOT may be
run either in batch mode or interactively

,

although it was primarily designed for (and is

most effectively used in) an interactive
environment . DATAPLOT graphics may appear on many
different types of output devices.

DATAPLOT has a broad scope of capabilities—

1) raw graphics (2-D, 3-D, color, single/
multiple plots per page, etc.);

2) analysis graphics (plotting data, plotting
functions)

;

3) presentation graphics (special fonts,
Greek, math symbols, word charts, etc.);

4) diagrammatic graphics (diagrams

,

schematics, etc.);

5) graphical data analysis (box plots, prob-
ability plots, histograms , control charts,
lag plots, EDA, residual analysis, etc.);

6) time series plots (autocorrelation plots,
spectral plots, demodulation plots, etc.);

7) fitting (non-linear, multi-linear, poly-
nomial, spline, etc.);

8) general data analysis (ANOVA, median
polish, robust smoothing, ANOP , etc.);

9) statistical/probability capabilities (. 20

statistics , cdf's, ppf's, random numbers,
etc.);

10} mathematics (roots, differentiation,
integration, convolution, etc.);

11) subset analyses (as easy as full-set
analyses)

;

12) extensive built-in Fortran-like library

of math and probability functions

.

»

1-2

Getting Into and

Out of DATAPLOT

The procedure for accessing DATAPLOT varies from
one computer to the next. For example, on a

Univac computer, one enters

@DATAPLOT

On a Vax computer, one enters

DATAPLOT

Check with the local DATAPLOT service group to

determine the local convention for accessing
DATAPLOT. Upon entry into DATAPLOT, the DATAPLOT
banner will appear, along with a version number,
and dimension message about the current
configuration , as in—

**

* DATAPLOT *

* INTERACTIVE GRAPHICAL DATA ANALYSIS LANGUAGE *

**

VERSION 83/1

INTERNAL DATA STORAGE CAPACITY = 10,000 OBSERVATIONS
(1000 OBSERVATIONS PER VARIABLE X 10 VARIABLES)

To exit from a DATAPLOT program, one enters any of
the following—

EXIT
END
STOP
HALT
BYE

Getting Started with DATAPLOT

Suppose the analyst has the following

observations on the variables X and Y—

X Y

I 1

2 3

3 15

4 18

5 30

Enter a DATAPLOT program to carry out the

following 4 operations—

1) Compute the mean of the Y data;

2) Plot Y versus X with titles and labels;

3) Carry out a least squares fit of Y on X

with a linear model;

4) Generate a plot with the fitted values

from the linear fit on top of the raw data.

To do so, one first invokes DATAPLOT (e.g., by

entering @DATAPLOT on UNIVAC computers, and

whatever is appropriate on other computers) . Upon

invoking DATAPLOT, a DATAPLOT banner and a few

lines of messages will appear on the screen.

One is now ready to enter the DATAPLOT program. A

program to carry out the above 4 operations is as

follows—

. STEP 0—READ IN THE DATA

READ X Y

1 1

2 3

3 15
4 18

5 30

END OF DATA

. STEP 1—COMPUTE THE MEAN

LET M = MEAN Y

. STEP 2—PLOT THE DATA

TITLE CALIBRATION ANALYSIS
YLABEL RESPONSE
XLABEL FORCE
PLOT Y X

. STEP 3—FIT THE DATA

FIT Y=A+B*X

. STEP 4—GENERATE A SUPERIMPOSED PLOT AFTER THE

CHARACTERS X BLANK

P LINES BLANK SOLID
PLOT Y PRED VERSUS X

EXIT

All lines beginning with . (period) are
non-executing comment lines and so DATAPLOT will

ignore them; they are included here for clarity.
There are 15 such lines in the above program.
Ignore them or enter them at your discretion. The

existence of such comment lines is more common in

a DATAPLOT program to be stored in a file (and

run later in toto) than in a DATAPLOT program to
be entered line by line and run interactively

.

The READ statement will read data into variables X
and Y. the read is format-free and so spacing
between data values on a line is unimportant (but
at least one space between data values must
exist— 3 15 could not be writted as 315). Since
there are only 5 data pairs, they are entered
directly from the terminal (as opposed to reading
the data from a file). The read terminates when
an END of DATA line is entered.

LET M = MEAN Y computes the mean of the data in
the variable Y, prints out the value, and stores
this value in the internal DATAPLOT parameter M.

DATAPLOT has over 20 summary statistics (MEAN,
MEDIAN, STANDARD DEVIATION, CORRELATION, etc.)
which may be similarly invoked via the LET
command.

TITLE CALIBRATION ANALYSIS defines the title to

appear above subsequent plots; YLABEL RESPONSE
defines the vertical axis label to appear on
subsequent plots; XLABEL FORCE defines the
horizontal axis label to appear on subsequent
plots. PLOT Y X actually generates the plot— Y

will be plotted vertically and X horizontally . The
plot will have a solid line (the default)
connecting the data points. The pre-defined
titles and labels will be automatically written
out on the plot. The plot limits will be
automatic and neat.

FIT Y = A+B*X+C*X**2 carries out a least squares
linear fit of Y on X. The coefficients and
other results from the fit are be printed out.
Predicted (= fitted) values from the fit are
automatically placed in a variable PRED, and
residuals from the fit are automatically placed in
the var iable RES. The above model (linear) is

simple—DATAPLOT may carry out least squares fits
for not only such polynomial and multi-linear
models, but also for general non-linear models.

CHARACTERS X BLANK specifies that the first trace
on subsequent plots should have X's as the plot
character and the second trace should have blank
(= no) plot character. LINES BLANK SOLID
specifies that the first trace on subsequent plots
should have a blank (= no) connecting line, and
the second trace should have a solid connecting
line. PLOT Y PRED VERSUS X generates the

superimposed plot of the raw data Y and predicted
values PRED as a function of X. Due to the prior
CHARACTERS and LINES commands, the first trace (Y

versus X) has X's as characters and no connecting
line ; the second trace (PRED VERSUS X) has no
plot characters but solid connecting lines.

EXIT terminates the DATAPLOT run.

1-4

The output from the above DATAPLOT program is as

follows—

THE MEAN OF THE 5 OBSERVATIONS

THE COMPUTED VALUE OF THE PARAMETER M

. 1 3486800+382

.13489088+002

If the analyst were running on an alphanumeric
terminal (e.g., Texas Instrument Silent 700) then

the code should be preceded by a DISCRETE command
which instructs DATAPLOT that the terminal is

essentially non-continuous (has no ability to

draw a continuous straight line from any point on

the screen to any other point on the screen] and
therefore the plots should be suitably modified.

Also, the BLANK in

CHARACTERS X BLANK

I I I I

CALIBRATION ANALYSIS

2 3 A S

-f l I I I

[
I I I I

| I I I 1 j-30

LEAST SQUARES NON-LINEAR FIT
SAMPLE SIZE N = S
MODEL—Y=A+B*X
NO REPLICATION CASE

ITERATION
NUMBER

CONVERGENCE
MEASURE

I
—
2—

. 10088-001

. 50000-002

RESIDUAL *
STANDARD *
DEVIATION *

*-
1 7000+002 *
38714+001 *

PARAMETER
ESTIMATES

. 10808+881

.84844+881
. 10888+081
.729S1+00I

FINAL PARAMETER ESTIMATES
1 A -8.50881
2 B 7.30800

RESIDUAL
RESIDUAL

STANDARD DEVIATION
DEGREES OF FREEDOM

(APPROX. ST. DEV.)

1 3.221)

(.9713)

3.0713732S41
3

should be replaced by some non-blank character, as i-

CHARACTERS X P

The 2 plots will thus appear as—

CALIBRATION ANALYSIS
.
r 1 J.

. 3300000 +002
. 28S5000+002
.2710000+002
. 2565000+002
.2420000+002
.2275000+002
.21 30000+002
. 1 985000+002
. 1840000+002
. 1695000+002
. 1550000+002
. 1 40S080+002
. 1260000+002
.111 5000+002
.9700000+001
.8250080+001
.6800000+001
.5350003+001
. 3900000+001
.2450080+001
. 1000000+001

-I-
1000+001 .2000+001

! 1 1

.3088+081 .4088+081 .5888+08
FORCE

CALIBRATION ANALYSIS

2 3 4

.3800088+002

.2844000+002

. 2688000+002

.2S32000+002

.2376000+002

.2220800+002

. 2064000+002

. 1908000+002

. 1 752000+002

. 1 596000+002

. 1 440000+002

. 1284000+002

. 1 128800+002

.9719998+001

.8159997+001

.6599997+001

.5039997+001

.34 79997+001

. 1919997+801

. 3599966+080
-. 1200004+001

CALIBRATION ANALYSIS
.! j ! 1

I 1
—

.1000+001 .2088+801
j j j

.3080+001 .4080+081 .5008+081
FORCE

l-.c

4 Typical Problems

A computer language is a tool—a means of
generating solutions to problems. Before delving
into the details of the DATAPLOT language, let us

first consider the types of problems that the

scientist/engineer/ research scientist typical ly
encounters. This will provide motivation for how
the computer language (as a tool) was developed.
All computer languages have their own areas of
strength . The choice of problems below serve as a

frame of reference for both reader and developer
alike as to the type of problems that DATAPLOT
considers "important* and for which it has been
designed to be strong in.

1) A Graphics Problem—
An analyst has a data set consisting of
(x,y) pairs. Plot the data. "Blow up"

any intersting sub-regions of the plot.

2) A Non-Linear Fitting Problem—
An analyst has a data set consisting of
(x,y) pairs. Read the data into the
computer. Plot them. Carry out a

non-linear fit for the model

y = exp(-alpha'x) / (a+b*x

)

Generate a superimposed plot of
raw data and predicted values from the
fit. Generate a plot of residuals
versus x. Generate a normal probability
plot of the residuals .

3) A Data Analysis Problem—
An analyst has data consisting of a

response variable and 3 independent
variables (factors). Determine if the
factors affect the response . Determine
if there is interaction between the

factors. Carry out an analysis of
variance . Carry out a graphical
analysis of variance

.

4) A Mathematics Problem—
An analyst wishes to examine the

function x*exp(-x) + sin(x**2) over the
interval 0 to 3. Plot the function
over the interval . Determine any
roots in the interval . Determine
its definite integral over the interval

.

Several points are noteworthy—

1) Graphics as a Core Activity.
Note the graphics component that
exists in all of the above problems—
graphics is a key activity in
both data analysis and mathematics.

2) Time.

These problems should all be solvable
with less than 10 lines of code.

3) Number of Lines of Code.
These problems should all take less
than 10 minutes to solve.

4) Interactive Analysis.
These problems should be solvable
interactively so that in case some
interesting tangent arises in the course
of the solution, the analyst may
immediately pursue it.

5) Graphics Quality.
Ideally, the graphics should be all
continuous and of manuscript-quality if
so desired.

6) Variety of Graphics Devices.
On the other hand, if the analyst is
working at a discrete terminal or in
batch, neither the logic of the analysis
nor the entered plot commands should be
any different

.

7) Subset Analyses.
The analyst should not need to worry
about whether the graphics, fitting, or
data analysis is being carried out over
the full data set or over any
complicated subsets of the data.
Carrying out analyses over subsets
should not result in irrelevant (as far
as the scientist is concerned)
preliminary data extraction and
manipulation. It should be as easy to
carry out any (and all) graphics and
analysis operations over a subset as it
is to carry it out over the full set.

8) Sample Size.
The analyst should not need to worry
about whether the data set consists of 7
data points or 700 data points—the
number of data points is a nuisance
parameter that the analyst should not need
to concern himself with.

9) Data Format.
The analyst should not need to worry
about how the data is formatted upon
input—this also is an unimporant
nuisance item.

10) Predicted Values and Residuals

.

The analyst should not need to worry
about predicted values and residuals
from the fit— they should be
automatically available for further
analysis and plotting

.

11) Scope of Capabilities

.

The analyst should be able to

fluidly glide from graphics to fitting
to data analysis to mathematics
activities with no interruption and
within the context of the language.

12) Ease of Use.

The ultimate objective of the
analyst is not in learning a computer
language— it is in gaining insight into
the problem at hand; thus the computer
language should be natural , easy to

learn, and easy to use. The language
that the analyst uses should preserve
the continuity of thought that is so

important in scientific research.

13) English-Syntax.
Ideally, the language should correspond
as close as possible to the English-
language and mathematical representation
of the solution. This will allow
the analyst to "think science" as
opposed to "think computing" and
will eliminate an unnecessary mapping
from conceptual solution to computer-
language solution.

1-7

4 DATAPLOT Solutions

1. The Graphics Problem—
An analyst has a data set consisting of
(x,y) pairs. Plot the data. "Blow up"
any intersting sub-regions of the plot.

The DATAPLOT program and output is as follows-

READ FILE1 . X Y

PLOT Y X
PLOT Y X SUBSET X 400 TO 600

1000

0. 370

-0.372

0. 374

-0. 3/6

-0.378

-0. 380

-0. 370

-0. 372

1.374

-0.376

-e.378

-0.380

200 400 600 800 1000

400 450 500

-0-370 j—|

1—[

—

|

—4—t—i—1—I—|—

I

). 372-

-0.374—

).376

-0.378-

•0. 380

550 600

—I—I
1—I—I—1- "0. 370

u u u y

i i i i

I

459

-0.372

- -0. 374

-0.376

-0.378

-0.380

500 550 600

1-8

2. The Non-Linear Fitting Problem—
An analyst has a data set consisting of
(x,y) pairs. Read the data into the

computer. Plot them. Carry out a

non- linear fit for the model

y = exp(' -alpha*x) / (a+b*x

)

Generate a superimposed plot of
raw data and predicted values from the

fit. Generate a plot of residuals
versus x. Generate a normal probability
plot of the residuals

.

The DATAPLOT program and output is as follows—

2 3 4 5 s

READ FILE2.

PLOT Y X
X Y

I I

H4
I

I

I I M
I

I [I I

I

I I i I

I

I I I I

I

I I I I

20

LET A=0
LET B = 1

LET ALPHA=.l
FIT Y = EXP (-ALPHA *X) / (A+B*X

)

CHARACTERS X BLANK
LINES BLANK SOLID
PLOT Y PRED VERSUS X
PLOT RES X
NORMAL PROBABILITY PLOT RES

l aa4-H M
I

I I I I

I

I I I I

I

I I I I

I

I I I I

I

I I I I 1 l

0 I 2 3 4 5 e

M I I

I

M I I

I

I I I I

I

I M I

I

M I I

I

I I I I I 28

20-

I I I
|

I I I I
|

I I I I

|

I I I I

|

I I I I
|

I I I I

I

B

x
^xx x

x *x

x
x

X X

m\ nil f>i ^
X x

I I M
|

I I I I
|

I M |

|

| | | |

|

| [| |

|

| | | |
-28

;r SOUAPES NONLINEAR FIT
5«'Lt Sl/F N - 214
"OiX.l -Y-t/Pi -ALPHA»X >/< A*B»X

I

'•I 1>1 I CAT ION CASE
m plication standard deviation
W.PLICAT10N DEGREES OF FREEDOM
NjMBER Oi DISTINCT SUBSETS

.3281 762680+88 I

102
22

ITIRAT.'ON CONVERGENCE
NUMBtR MEASURE

RES 1 DJAL * PARAMETER
STANDARD * ESTIMATES
DEVIATION *

3-
4 -

S--

. leeae-aei

.58800-002

.25088-082

. 12500 -082

.62500-003

.42568*002

.13287*002

.42340*001

.33646*001

.33617*001

19888+388
13103+888
.16576*800
18896*080
10852+888

.28057-882

.46103-882

.68624-902

.61357-082

f-INAL PARAMETER ESTIMATES (APPROX. ST. DEV.)

1 ALPHA .108403 (.2288-881)
2 A .613287-882 (.3402-003)
3 B .185268-081 (.8827-883)

RESIDUAL STANDARD DEVIATION «

RESIDUAL DEGREES OF FREEDOM
REPLICATION STANDARD DEVIATION -

REPLICATION DEGREES OF FREEDOM »

LAC< Of- KIT F RATIO = 1.5474
F DISTRIBUTION WITH 10 AND

. 18888-881

.12365-881

. 11 885-88

1

. 18578-801
, 18521-081

THE

3.3616723128
211
3.2817626804
102

02. 6461 X POINT OF THE

3-2-1 0 1 2 3

H I I

|

I I I I

1
I I I I

|

I I I I

|
I I I I

|
I I I I

I 20

102 DEGREES OF FREEDOM

XXX

-2B
I

I I I I

1
M I I

|
I I I I

j
| | | |

|
| | | |

|
| | | |-3-2-10

| 2 3

1-9

3. The Data Analysis Problem—
An analyst has data consisting of a

response variable and 3 independent

variables (factors) . Determine if the

factors affect the response . Determine

if there is interaction between the

factors. Carry out an analysis of

variance . Carry out a graphical

analysis of variance

.

The DATAPLOT program and output is as follows—

READ FILE3 . Y XI X2 X3
ANOVA Y XI X2 X3

LET TAG = X2+2*(X3-1)
CHARACTERS 112 2

LINES SOLID DOTTED SOLID DOTTED
PLOT Y XI TAG

** 3-WAY ANALYSIS OF VARIANCE «*
*«•****«»»*»*»*»**«****»******«»**

-2.000 -1.200

I I I 1 I I

-0.400 0.400 1.200

I I I I I I 1 I

NUMBER OF OBSERVATIONS
NUMBER OF FACTORS
NUMBER OF LEVELS FOR FACTOR 1

NUMBER OF LEVELS FOR FACTOR 2
NUMBER OF LEVELS FOR FACTOR 3
RESIDUAL STANDARD DEVIATION
RESIDUAL DEGREES OF FREEDOM
NC REPLICATION CASE
NUMBER OF DISTINCT CELLS

* ESTIMATION *
«««**«*****««*

B
3
2
2
2

.65348454 1 02'002
4

300

GRAND MEAN . 1 8487588808*003
GRAND STANDARD DEVIATION .90256431588*082

LEVEL -ID Nl MEAN EFFECT StXEFFEC

(ACTOR 1
— -i .00000 4. 107.75080 -77. 12588 23. 10134

i .00000 4. 262.00388 77. 12588 23.18134

FACTOR 2— - 1 . 00008 4. 160.25080 -15.62580 23. 10134
1 .00060 4. 200.50980 15.62589 23. 10134

FACTOR 3— - 1 . 00000 4. 167.75000 -17. I2S08 23. 10134
i . 00000 4. 202.00880 17. I2S88 23. 18134 •1.200 -0.400 0.400 I .200 2.000

MODEL RESIDUAL STANDARD DEVIATION

C0NSTAN T

CONSTANT
CONSTANT
CONSTANT
CONSTANT

ONLY-
FACTOR I ONLY-
FACTOR 2 ONLY-
FACTOR 3 ONLY-
ALL 3 FACTORS --

80. 25643 15796
50.6801258618
105.6801385880
105.3697853088
65.3484541016

* TESTING *

NUM. LEVELS F STAT. F CDF

FACTOR I-- 2 11.14502280925 07.1131
FACTOR 2— 2 .45747328177 46.4I0X
FACTOR 3— 2 .54052422520 50.8331

RESIDUAL STANDARD DEVIATION - 65.34045410156
RESIDUAL DEGREES OF FREEDOM = 4

1-10

4. The Mathematics Problem—
An analyst wishes to examine the

function x*exp(-x) + sin(x**2) over the

interval 0 to 3. Plot the function

over the interval. Determine any

roots in the interval. Determine

its definite integral over the interval.

The DATAPLOT program and output is as follows—

LET FUNCTION F = X*EXP(-X) +SIN (
X* * 2

)

PLOT F FOR X = 0 .1 3

LET R = ROOTS F WRT X FOR X = 0 TO 3

LET INT = INTEGRAL F WRT X FOR X = 0 TO 3

1.5 2.0 2.5 3.0

1.0- Mi ll ++

IN rr.ORAL EVALUATION
L"1>NCT;0N--(X*EXP< -X)+SIN(X**2> >

SPECIFIED LOWER LIMIT OF INTEGRAL *

SPECIFIED UPPER LIMIT OF INTEGRAL =

NUMBER OF VARIABLES OF INTEGRATION «
3.0000000000

1

NUMBER OF
PARTI riONS

VALUE OF
INTEGRAL

1574414+001
1574414+001

INTEGRAL VALUE = .1574414+001

THE COMPUTED VALUE OF THE CONSTANT INT . 1574414*001

-0.5

-1 .0

0.0 0.5 1.0 1.5 2.5 3.1

ROOTS CF AN EQUATION
FUNC I0N--C X*EXP(-XJ+SINI X**2) i

ROOT VARIABLE
SPECrFIED LOWER LIMIT OF INTERVAL
SPECIFIED UPPER LIMIT OF INTERVAL

NUMBER OF ROOTS FOUND IN INTERVAL

ROOT
ROOT
ROOT

1 =

2 =

3 =

.0000000

. 18S3707+001

.2464136+001

.0000000000
3.0000000000

THE NUMBER OF VALUES GENERATED FOR THE VARIABLE R

THE FIRST
THE LAST (3TH)

COMPUTED VALUE OF R
COMPUTED VALUE OF R

THE CURRENT COLUMN FOR THE VARIABLE R
THE CURRENT LENGTH OF THE VARIABLE R

.2464136*081

1

3

(ROW
(ROW

I)

3)

THE COMPUTED VALUE OF THE CONSTANT NROOTS = .3000800*001

1-11

Programming with DATAPLOT

DATAPLOT programs proceed sequentially from the
beginning of the code to the end. The language is

structured . There are no "Go-to" -type statements
and no statement labels.

Like BASIC, FORTRAN, etc., DATAPLOT has a series
of low-level commands which specify to the
computer that certain elementary operations (such
as reading, writing, looping, etc.) should be

carried out.

In addition, however, DATAPLOT goes beyond BASIC
and FORTRAN in that it allows the analyst to also
make use of a set of high-level commands (such as
PLOT, FIT, HISTOGRAM, etc.) which permit the
analyst to carry out a wide variety of graphics
(continuous or discrete), non-linear fitting, data
analysis, and mathematical operations directly.

Like BASIC, DATAPLOT is an interpretive language.
Although the language may be used in a

semi-interactive mode (running pre-stored programs

s
at a terminal), and a batch mode (running

9! pre-stored programs with remote output on the
I batch high-speed printer), it was primarily
designed for (and is most effectively used in) an
interactive environment

.

Because of the existence of commonly-used
I high-level graphical and analytical capabilities,

the typical DATAPLOT program is short (e.g., 5 to
. 20 lines). Usually there is only a main
program with no need of subprograms. If
subprograms are desired, they are accessed via the
CALL command.

Input and output in DATAPLOT is format-free . The
READ and SERIAL READ command enter data into
DATAPLOT, the WRITE (with PRINT as a synonym)
command allows the writing of data (back to the
terminal screen or out to a file/subfile)

.

The DATAPLOT command vocabulary consists of
over 100 commands . The analyst may use any

1 command at any time. A given program for a

I
given application typically makes use of a small

subset of DATAPLOT commands (10 to 15 commands).
The 3 most important DATAPLOT commands are PLOT,
FIT, and LET. Other commonly-used commands are

CHARACTERS, LINES, TITLE, ...LABEL (as in YLABEL

,

XLABEL
,
X2LABEL, and X3LABEL), FONT, TEXT, ECHO,

HARDCOPY, READ, WRITE, and STATUS.

The universal separator between words on a

DATAPLOT command line is a blank (1 or more
blanks). The comma is never used in any DATAPLOT
command syntax; when in doubt, use a blank rather
than a comma , as in

WRITE ABC
ft
' rather than

WRITE A,B,C

1-12

English-Syntax Language

DATAPLOT is an English-syntax language . Many of
the command statements are identical to their
English- language counterparts , for example,

PLOT
FIT
HISTOGRAM
NORMAL PROBABILITY PLOT
ANOVA
SMOOTH
BOX PLOT

Thus to generate a plot of the function sin(x)/x
for the values starting with x = .1, at increments
of .1, and ending with x = 12, one would enter

PLOT SIN(X)/X FOR X = .1 .1 12

And if the analyst has data in variables Y and X
and wishes to carry out a least squares fit of Y
on X with the model y = a+b*exp{ -c*x) , one would
enter

FIT Y = A+B*EXP(-C*X)

And if the analyst has data in the variable X and
wishes to form a new variable Y defined as the
natural logarithm of X, one enters

LET Y = LOG(X)

The net result is that DATAPLOT programs are easy
to write, easy to understand , and easy to update.
This is particularly important for the analyst
with no prior programming experience

.

Free-Format Language

Command statements appear free-format in columns 1

to 80 of a program line.

The usual separator between components of a

command line is a blank (one or more blanks). Thus
to generate a plot of X**2 over the interval of x
values starting with x = -3, at increments of .1,

and ending with x = +3, the following is
incorrect—

PLOTX * *2FORX=-3 . 1

3

while the following is correct—

PLOT X**2 FOR X = -3 .1 3

Note the spacing between PLOT, X**2, FOR, X, -3,

.1, AND 3. The spacing here is 1 blank, but
optionally could have been any number of blanks.
The PLOT statement as given here starts in column
1, but optionally could have been any column.

Packing of characters is permitted only in
defining and using functions . Thus

PLOT 3-h2*EXP(-X) FOR X = 0 .16

is correct, as is

PLOT 3 + 2 * EXP(-X) FOR X = 0 .16

and other variations

.

If command statements are longer than 80

characters , then they may be extended onto the[

next line by appending at the end of the

first line, as in

PRE-FIT Y = A + B*EXP(-C*X) FOR A
FOR B = 1 .12 FOR C - .5 .01 .6

10 1 20

Command statements longer than 2 full lines (16C

characters) are not permitted

.

i

Declaration-Free Language Structured Language

The elements of the DATAPLOT language which the
analyst may create, redefine , and operate on are

parameters = named constants
variables = named vectors
functions = named character strings

Names used for parameters/variables/functions may
be up to 8 characters , must start with an
alphabetic character , and may thereafter be any
combination of the 26 alphabetic characters and
the 10 numeric characters . Names which are
longer than 8 characters may be used but
only the first 8 characters are scanned and
internally stored.

DATAPLOT is a declaration- free language--one need
not pre-define parameter, variable , and function
names in a separate section unto itself (as with
ALGOL and PASCAL); in fact, one does not
pre-define such elements at all—one simply
introduces these elements along the way as needed
by the program and as dictated by the analysis

.

Once a name is defined (as a parameter, a
variable, or a function) , it remains that type

1

throughout the DATAPLOT run (thus, for example, if
X is used as a variable, it will remain a variable

j

for the entire run). If the analyst chooses to
change the use of a name (for example, to change a

variable X to a function X) in the middle of a

run, then the analyst must first delete the name
i (via the DELETE command, as in DELETE X), and then
reuse the name in the desired fashion.

Program execution—whether in the main routine or
within a subprogram

)

—always flows from top to

bottom, and so DATAPLOT is by design a

structured language. DATAPLOT does not have
statement labels and therefore is a

"GO-TO-less" language. In practice , because of

the existence of higher-level graphics/analysis
commands, and because of the DATAPLOT feature of

being able to append subset and conditionality
qualifiers at the end of any high-level graphics

and analysis command, the need for such branching

has been virtually eliminated . The net result is

a structured ,
top-to-bottom language structure

which greatly facilitates the writing and updating

of programs

.

Branching within a (sub)program is not permitted;

branching between subprograms may be done via the

CALL command, as in

CALL ANALYSIS.

where ANALYSIS. is the name of the

(analyst-created) file where the subprogram

resides (the period at the end of the file name

tells DATAPLOT that ANALYSIS is the name of a mass

storage file name as opposed to, for example, the

name of a parameter, variable, or function)

.

1-14

Punctuation Language Components

The universal separator for components in a

DATAPLOT command line is the space (= blank). A
blank between the words of a command line are
important because DATAPLOT uses such spaces as a

separator Spaces around relational operators
(e.g., =, <, >=, etc.), arithmetic operators (+ ,

-, *, /, and **
) , and within arithmetic

expressions ;e.g., B**2-4*A*C) may be included or
excluded at the preference of the analyst.
Readability considerations suggest that spaces be
included around such operators and in such
expressions

.

Commas serve no purpose in DATAPLOT and may at
times be the cause of syntax errors. There are no
commands which call for the use of commas in
DATAPLOT; when in doubt, leave a space rather
than a comma. Blanks and spaces within
mathematical and functional expressions are solely
for visual convenience— they may be included or
excluded at the discretion of the analyst; as in

LET Y = A+B*EXP(-ALPHA+BETA*X

)

LET Y = A + B*EXP(-ALPHA + BETA*X

)

Command statements appear free-format in columns 1

to 80 of a program line. If a statement is longer
than this, it may be continued onto the next line
by appending a ... at the end of the first line.
Statements longer than 2 full lines (160
characters) are not permitted.

DATAPLOT also expects no punctuation in data files
which are read via the READ and SERIAL READ
commands . Adjacent numbers on a line image may be
free-format but should be separated by at least
one blank. Commas between numbers will usually be

ignored by DATAPLOT, but if error messages are
generated because of them on a READ, the commas
should be replaced by a blank via the local
editor. Alphabetic information up at the
beginning of a data file may be skipped over via

the SKIP command, as in

SKIP 5

which will cause subsequent READ and SERIAL READ
commands to skip over all information on line

images 1 to 5 of the file. The ROW LIMITS command
allows the analyst to focus only on specified line
iamges of a file, as in

ROW LIMITS 6 100

The DATAPLOT language consists of the following
components—

1) commands

;

2) arithmetic operators

;

3) relational operators

;

4) numbers;

5) parameters;
6) variables

;

7) functions

;

8) sub-commands under the LET command;

9) keywords

;

10) in-line text sub-commands

;

11) file and subfile references.

The COLUMN LIMITS command allows the analyst to

focus only on certain column limits in reading a

file, as in

COLUMN LIMITS 1 50

which would be a way of omitting non-numeric (or

numeric) information beyond column 50.

Commands

2-1

There are 6 DATAPLOT command categories--

Graphics commands;
Analysis commands;
Diagrammatic Graphics commands;

Plot Control commands

;

Support commands;
Output Device Commands

.

The first 3 categories are of primary interest

.

The commands in these categories are all active in

the sense that they all "do something" --a plot is
generated, an analysis (e.g., an ASOVA or a least
squares fit) is carried out, or a geometric figure
(e.g., a box or circle) is drawn out on the
screen. The commands in these categories could
very well constitute an end in itself for the

experimental objectives of the analyst.

On the other hand, the commands, in the last 3

categories are of secondary importance—they are
rarely end objectives of an analysis ; rather these
commands typically play some intermediate role in
assuring that the analyst carries out precisely
the analysis as desired. Typical examples of such
secondary commands are

1) reading data in from a file (reading data
in is never the end objective—it is
only the first step in an analysis)

;

2) specifying that calculations should be
carried out in degrees rather than
radians for trigonometric calculations

;

3) specifying the title and labels for
succeeding plots;

4) specifying line types (e.g., dotted) for
succeeding plots;

5) specifying the desired graphics output
device (e.g., the Zeta plotter).

Clearly such commands are not ultimate objectives
in an analysis ; on the other hand, the absence of
such commands would severely handcuff the analyst
in carrying out the desired analysis

.

2-2

Graphics Commands

All commands in this category generate a plot.
This category provides for the analyst a set of
graphical analysis tools for plotting data and
functions. the most important (and most
heavily-used) command in this category is PLOT.
Other frequently-used commands are HISTOGRAM and

PROBABILITY PLOT (especially NORMAL
PROBABILITY PLOT).

Graphics Commands

Command Description Default Example

PLOT Generate plot of var t/or tunc N/A PLOT T X
3-D PLOT Generate 3-dimensional plot of var S/or func H/A 3-D PLOT Z Y X

... HISTOGRAM Generate histogram—cum, rel, or cum rel N/A HISTOGRAM T

... FREQUENCY PLOT Generate frequency plot—cum, rel, or cum rel N/A FREQUENCY PLOT J

PIE CHART Generate pie chart N/A PIE CHART Y
PERCENT POINT PLOT Generate percent point plot N/A PERCENT POINT PLOT T

. . . PROBABILITY PLOT Generate probability plot (24 distributions) N/A NORMAL PROBABILITY PLOT T

... PPCC PLOT Generate prob plot corr coef plot (9 families

)

N/A WETBULL PPCC PLOT
... NORMALITY PLOT Generate normality plot (Box-Cox family only) N/A BOX-COX NORMALITY PLOT Y

RUN SEOUBNCE PLOT Generate run sequence plot N/A RON SEQUENCE PLOT T

LAC ... PLOT Generate lag plot for a given lag number N/A LAG 1 PLOT T

. . . CORRELATION PLOT Generate auto- or cross-correlation plot N/A AUTOCORRELATION PLOT T

. . . SPECTRAL PLOT Generate auto-, cross-, etc spectral plot N/A SPECTRAL PLOT Y

. . . PERIODOGRAM Generate auto- or cross-periodogram N/A PERIODOGRAM Y
COMPLEX DEMODULATION .

.

. PLOT Generate complex demodulation amp or phase plot N/A COMPLEX DEMODULATION PHASE

BOX PLOT
I PLOT
. . . CONTROL CHART

Generate box plot
Generate I plot
Generate mean, ad, or range control chart

N/A
N/A
N/A

BOX PLOT T X
I PLOT Y X
MEAN CONTROL CHART Y X

2-3

Analysis Commands

All commands in this category generate printed
output. This category provides the analyst with a
set of quantitative/statistical/mathematical tools
which serve as an analytic complement to the
graphical techniques of the prior category . The
most important commands in this category are FIT
and LET.

Analysis Commands

Command Description Default Example

LET

LET FUNCTION

Define var s param; calc stat; roots/diff/int N/A

Define & operate on tunc; differentiate func N/A
LBT Y=X**LAMBDA*EXP(-A*X'*2)

LET FUNCTION F1=A0/ (1*B1*X"2)

SUMMARY Compute summary statistics N/A SUMMARY Y

... FIT

... PRB-FIT
EXACT ... RATIONAL FIT

Perform least squares linear or non-linear fit N/A
Perform pre-fit analysis for starting values
Perform exact rational function fit

N/A
N/A

PIT Y=A+B'EXP(-C'X)
PRE-FIT X"A FOR A = 1 .12
EXACT 1/2 RATIONAL FIT Y2 X2 Y X

... SPLINE FIT

... SMOOTH
Perform spline fit
Perform smoothing of equi-spaced data

N/A
N/A

CUBIC SPLINE FIT Y X
CUBIC SMOOTB Y

ANOVA
MEDIAN POLISH

Perform analysis of variance
Perform analysis of variance

N/A
N/A

ANOVA Y XI X2
ANOVA Y XI X2

2-4

Diagramnat ic Graphics Commands

The commands in this category are used for the

superposition of text on any output, and for the

construction of diagrams, schematics , and

specialized charts. The most important commands

in this category are FONT, HW, JUSTIFICATION,

ERASE, MOVE, TEXT, and COPY.

Diagrammatic Graphics Commands

Command Description Default Example

FONT Specify script font N/A FONT TRIPLEX ITALIC
HEIGHT Specify height of letters N/A HEIGHT 10

WIDTH Specify width of letters N/A WIDTH 7

HW Specify height and width of letters N/A HW 10 7

JUSTIFICATION Specify Justification (left/center/right

)

N/A JUSTIFICATION CENTER
CASE Specify script case (upper vs. lower) N/A CASE LOWER

BRASS Erase current screen N/A ERASE
COPY Copy the current screen onto local hardcopy N/A COPY
RING BELL Ring bell N/A RING BELL 10

CROSS-HAIR (or CB) Activate cross-hair N/A CROSS-HAIR A B

TEXT Write out script text N/A TEXT GRAPHICS

HOVE Move to given coordinates on the screen N/A MOVE 50 50
DRAW Draw from present location to specified coor.) N/A DRAW 50 50 60 60

POINT Draw a point N/A POINT 50 50
ARROW Draw an arrow N/A ARROW 50 50 60 60
TRIANGLE Draw a triangle N/A TRIANGLE 50 50 60 50 55 60

BOX Draw a box N/A BOX 50 50 60 60
HEXAGON Draw a hexagon N/A HEXAGON 50 50 60 50
CIRCLE Draw a circle N/A CIRCLE 50 50 60 50

SEMI-CIRCLE Draw a semi-circle N/A SEMI-CIRCLE 50 50 60 50

ARC . . Draw an arc N/A ARC 50 50 60 50 70 40

ELLIPSE Draw an ellipse N/A ELLIPSE 50 50 60 45 70 50
OVAL Draw an oval N/A OVAL 50 50 60 45 70 50

DIAMOND Draw a diamond N/A DIAMOND 50 50 60 45 70 50

AMPLIFIER Draw an amplifier N/A AMPLIFIER 50 SO 60 50
CAPACITOR Draw a capacitor N/A CAPACITOR 50 SO 60 SO
GROUND Darw a ground N/A GROUND 50 50 60 SO
INDUCTOR Draw an Inductor N/A INDUCTOR SO 50 60 SO
RESISTOR Draw a resistor N/A RESISTOR 50 SO 60 SO

AND Draw an and box N/A AND SO SO 60 50
OR Draw an or box N/A OR SO SO 60 SO
HAND Draw a nand box N/A NAND 50 50 60 SO

HOP Draw a nor box H/A NOR SO SO 60 SO

2-5

Plot Control Commands

The commands in this category allow the analyst to
specify the details of plots which are generated
in the Graphics command category. The most
important commands in this category are
CHARACTERS, LINES, TITLE, and ...LABEL (especially
YLABEL and XLABEL) .

Command Description Default Example

CHARACTERS Specify plot character types all blank CHARACTERS A B CIRCLE STAR
CHARACTER SIZES Specify size (height) for characters on plots red CHARACTERS SIZES 3 3 5 7

LINES Specify plot line types all solid T TNF^ ^OTTD DOT DA^H HASH?Ij.L (V /_<_i ^/^LjJ.LJ iSU I LJt^ —111 Ut\JIl£

TITLE Specify title at top of plot no title TITLE SPECTROMETRIC ANALYSIS
TITLE SIZE Spec i fy plot title size (height) a utoma tic TITLE SIZE 4

. . .LABEL Spec i fy no labels YLABEL RESPONSE

. . .LABEL SIZE Specify size (height) for labels on plots red X3LABEL COLOR BLUE

. . . MINIMUM Spec i fy minima for plot axes a utomatic YMINIMUM 250

. . . MAXIMUM Spec i fy maxima fot plot axes automatic YMAXIMUM 300

. . .LIMITS Specify limits (min and max) for plot axes automatic YLIMITS 250 300

BELL Spec 2. fy ^) lit" nm^t f- 7 r- n 7 Dt~ h& 7 7 (DM /Ci T?T?) OFF = no bell BELL ON
PRESORT Specify a utoma tic pre—plot sort (ON/OFF

)

ON = pre-sorted PRESORT OFF
SEQUENCE Speci fy auto seq numbering for plots (ON/OFF

)

OFF = no seg numb SEQUENCE ON
. . .GRID Specify plot grid lines (ON/OFF) OFF = no grid lines GRID OFF
. . .LOG Specify axis scale as logari thmic (ON/OFF

)

OFF = linear scale YLOG ON

. . . FRAME Specify plot frames (ON/OFF) ON = frame FRAME OFF
FRAME CORNER COORDINATES Spec i fy plot frame location and shape 15 20 90 90 CORNER COORDINATES 20 20 75 90

LEGEND . .

.

Specify plot legends no legends LEGEND 1 NO CATALYST
LEGEND . . . COORDINATES Specif

y

plot legend positioning 20 85 LEGEND 1 COORDINATES 75 85

LEGEND . . . SIZE Specify size (height) for legends on plots red LEGEND 1 COLOR BLUE

ARROW . . . COORDINATES Spec 1fy location of arrows on plots no default ARROW 2 COORDINATES 29 80 50 50
BOX . . . CORNER COORDINATES Spec j. fy 7 or f- i /-i t~i r~i~F hifi yo c nn n ?of"C no default BOX CQi^ER COORDINATES 5 5 9 9

SEGMENT . . . COORDINATES •JpcL. J. L y 7 rii*"a t~ i t~M~i of ? ino coiTinon /~ c rtri n ?ot"CXUCOt. iVJJ ^J-L J. -LUC -3 Cry/Z/tTJ I L, O LJi 1 jJJ-{JL.Z3 no default SEGMENT 4 30 80 50 50

. . . TIC MARK Specif

y

tic marks on plots (ON/OFF

)

ON = tic marks TIC MARK OFF
. . . TIC MARK COORDINATES Spec i fy plot tic mark pos it ioni ng a utomatic TIC MARK COORDINATES 1500 2500
. . . TIC MARK POSITION Spec l fy plot tic mark pos i t ionm

g

through the frame TIC MARK POSITION INSIDE
. . . TIC MARK SIZE Specify plot tic mark size automatic TIC MARK SIZE 2

. . . TIC MARK LABEL Specify pioz zic iiiarK laoei 1mg i uiw/urc j automatic X1TIC MARK LABEL MALE FEMALE

. . . TIC MARK LABEL SIZE Specif

y

plot tic mark labelling size (height

)

automatic X1TIC MARK LABEL SIZE 2

EYE COORDINATES ^ n&r* 7 F 1

1

J j. L eye iocation ror j dimensional plot max + 5*range EYE COORDINATES 20 20 50
ORIGIN COORDINATES 5pec i fy reference origin for 3~~dimensional plot (xmin

,
ymin, zmin) ORIGIN COORDINATES 50 200 200

PEDESTAL Speci fy 3-d plot with pedestal (ON/OFF) OFF = no pedestal PEDESTAL ON
PEDESTAL SIZE Specify size for pedestal on plots red PEDESTAL SIZE 2000
VISIBLE Specify 3-d bkgrd lines visibility (ON/OFF) ON = visible VISIBLE OFF

CHARACTER COLORS Specify colors for characters on plots red CHARACTER COLORS RED BLUE GREEN
LINE COLORS Specify colors for lines on plots red LINE COLORS RED BLUE GREEN YELLOW
TITLE COLOR Specify color for title on plots red TITLE COLOR ORANGE
. . .LABEL COLOR Specify colors for labels on plots red XLABEL COLOR GREEN
. . . FRAME COLOR Specify colors for frame on plots red FRAME COLOR RED
. . . TIC MARK COLOR Specify color of tic marks on plots red TIC MARK COLOR BLUE
. . . TIC MARK LABEL COLOR Specify color for tic mark labelling on plots red XlTIC MARK LABEL COLOR RED
BACKGROUND COLOR Specify color of background on plots blue BACKGROUND COLOR GREEN
MARGIN COLOR Specify color of margin on plots blue MARGIN COLOR GREEN
LEGEND . . . COLOR Specify color for legends on plots all red LEGEND 1 COLOR BROWN
ARROW . . , COLOR Specify colors for arrows on plots red ARROW 2 COLOR BLUE
SEGMENT . . . COLOR Specify colors for line segments on plots red SEGMENT 4 COLOR BLACK
BOX . . . COLOR Specify colors for box frame on plots red BOX 3 COLOR GREEN
PEDESTAL COLOR Specify color of pedestal on 3d-plots red PEDESTAL COLOR GREEN

2-6

Support Commands

The commands in this category allow the analyst to
carry out important secondary operations (such as
input/output) , and to specify a variety of
settings which will allow an analysis to be
tailored precisely to one's specifications . The
most important commands in this category are READ,
END OF DATA, WRITE, ECHO, EXIT, STATUS, and HELP.

Support Commands

Command Description Default Example

READ
SERIAL READ
WRITE
SKIP
ROW UMTS
COLUMN LIMITS
BND OP DATA

Read variables
Read variables serially
Write (terminal /mass storage] var, param, func
Specify number of header lines to skip for READ
Specify row limts for READ and SERIAL READ
Specify column limts for READ and SERIAL READ
Define end of data for READ and SERIAL READ

Read from terminal
Read from terminal
Write to terminal
0 » no lines
rows 1 to infinity
columns 1 to 132
N/A

READ CALIB . T X
SERIAL READ CALIB
WRITB CALIB2. Y X
SKIP 5

ROW LIMITS SO 100
COLUMN LIMITS 10 40

BND OF DATA

Y X
LAB PRED RES

ECHO
FEEDBACK
PRINTING

Specify auto echo of command lines (ON/OFT) OFT
Allow/suppress all feedback printing (ON/OFF) ON •

Allow/suppress all analysis printing ION/OFF) ON c

« no echo ECHO ON
allow messages FEEDBACK OFF
printing PRINTING OFF

RESET
SAVE
RESTORE
EXIT

'Zero-out' all var, param, func, etc N/A
Dump all var/param/func to mass storage H/A
Restore all saved var/param/func from mass stg N/A
Exit from DATAPLOT N/A

RESET
SAVE SCRATCB4

.

RESTORE SCRATCB4.
EXIT

STATUS

DIMENSION

Print status of all lines, char, var, param

Specify dimensions of Internal data storage

N/A

10 var x 1000 obs

STATUS

DIMENSION 20 VARIABLES

DELETE
RETAIN
NAME

Delete variables or elements of a variable N/A
Retain variables or elements of a variable N/A
Assign (equate) additional names to variables N/A

DELETE Y(S) X(5) LABIS)

RETAIN Y X MAT SUBSET LAB 4

NAME Y 1 X 2 LAB 3

COMMENT Insert a comment line in code
Insert a comment line in code

N/A
N/A

COMMENT DILUTION ANALYSIS
. CARRY OUT ANALYSIS ON LAB 4

IMPLEMENT

PRE-BRASB

Activate local change to DTPLT . implementation As initialized

Specify auto pre-erase for plots (ON/OFF) ON pre-erase

IMPLEMENT 3

PRE-BRASB ON

CREATE
BND OF CREATE
CALL

Create a subprogram N/A
End Creation of a subprogram N/A
Execute a DATAPLOT subprgm from mass stg N/A

CREATE PR0G3.
BND OF CREATE
CALL PROG3.

LOOP
END OF LOOP

Initiate a loop
Terminate a loop

N/A
N/A

LOOP FOR A - 2 .1 5

END OF LOOP

IF
BND OF IF

Define start of conditionally-executed code
Define end of cond tionally-executed code

N/A
N/A

IF FOR A > 5

BHD OF IF

TRIGONOMETRIC UNITS
RADIANS
DEGREES
GRADS

Specify trigonometric units radians
Specify radians for trig calculations (ON/OFF) ON = radians
Specify degrees for trig calculations ION/OFF) OFF = radians
Specify grads for trig calculations (ON/OFF) OFF - radians

TRIGONOMETRIC UNITS DEGREES
RADIANS ON
DEGREES ON
GRADS ON

CLASS ...LOWER
CLASS ...UPPER
CLASS . . . WIDTH

Spec, first class lover 11m for HISTOGRAM, etc xbar - 6*s
Spec, last class upper lim for HISTOGRAM, etc xbar * 6*s
Specify class width for HISTOGRAM, etc 0.3*s

CLASS LOWER -ISO
CLASS UPPER ISO
CLASS VIDTH 10

DEMODULATION FREQUENCY
FILTER WIDTH

Specify frequency for complex demodulation
Specify filter width for SMOOTH

no default
3

DEMODULATION FREQUENCY
FILTER WIDTH 7

FIT CONSTRAINTS
FIT ITERATIONS
FIT POWER
FIT STANDARD DEVIATION

Specify constraints for FIT S PRB-FIT
Specify upper bound on Iterations for FIT
Specify fit criterion power for PRE-FIT i FIT
Specify lower bound on res ad for FIT

OFF - no constraint FIT CONSTRAINTS A .OB'S
SO FIT ITERATIONS 30

2 least squares FIT POWER 1

.0OO00S FIT STANDARD DEVIATION .0001

KNOTS
HEIGHTS

Specify knots variable for SPLINE
Specify weights variable for FIT, PRB-FIT, etc

OFF « no knots KNOTS 10 20 40 80

OFF equl-weighted WEIGHTS W

2-7

COMMUNICATIONS LINK
BAUD RATE
BOST

CURSOR COORDINATES
CURSOR SIZE

ERASE DELAY
HARDCOPY DELAY

HELP
SEWS
MAIL
BUGS
OPBRATCH
MESSAGE
TIME

PROBE
SET

Specify link (phone, network , etc.) to host
Specify baud rate
Specify host computer

Specify cursor coordinates after a command
Specify cursor size after a plot

Specify delay factor for erase
Specify delay factor for hardcopy

the • local' link
9600
the "local' host

Next line
1.5

1

1

Print short documentation for a given command List 7 categories
Print general news from DATAPLOT service org no default
Print message from DATAPLOT service org to user no default
List known bugs no default
Send a message to the host console operator N/A
Write message to DATAPLOT service organization no default
Display (wall clock) time and elapsed run time H/A

Dump contents of underlying FORTRAN parameter
Set contents of underlying FORTRAN parameter

N/A
N/A

COMMUNINCATIONS LINK NETWORK
BAUD RATE 9600
BOST VAX 11/780

CURSOR COORDINATES 5 5

CURSOR SIZE 3

ERASE DELAY 3

HARDCOPY DELAY 3

HELP PLOT
NEWS
MAIL SMITH
BUGS
OPERATOR WHEN SCHEDULED REBOOT?
MESSAGE CALL J. SMITH (EXT. 3862

TIME

PROBE NUMCOL
SET NUMCOL

TERMINATOR CHARACTER Specify character to terminate commands TERMINATOR CHARACTER 0

2-8

Output Device Commands

The commands in this category deal with the

specification of output devices. As with the

previous category, the commands in this category

are secondary in nature. The most important

commands in this category are HARDCOPY, DISCRETE,

BATCH, and TERMINAL.

Output Device Commands

Command Description Default Example

TERMINAL Specify terminal model or power (ON/OFT) TEKTRONIX 4014 TERMINAL TEKTRONIX 402~>

CONTINUOUS Specify continuity (ON/OFF) for terminal ON CONTINUOUS ON
PICTURE POINTS Specify number of picture points for terminal 4096 BY 3024 PICTURE POINTS 72 24

COLOR Specify color (ON/OFF) for terminal OFF COLOR ON

DISCRETE Specify primary output—discr nw term (ON/OFF] OFF - contln term DISCRETE NARROW-WIDTH ON

DISCRETE NARROW-WIDTH Specify primary output—discr nw term (ON/OFF] OFF » contin term DISCRETE NARROW-WIDTH ON

BATCH Specify primary output—batch (ON/OFF) OFF contin term BATCH ON
DISCRETE WIDE-CARRIAGE Specify primary output-—discr wc term (ON/OFF) OFF « contin term DISCRETE WIDE-CARRIAGE ON

HARDCOPY Specify secondary output—local hdcpy (ON/OFF) OFF no hdcpy outp HARDCOPY ON
PBNPLOTTBR Specify secondary output—penplotter (ON/OFF) OFF no penpl outp PBNPLOTTBR ON
CALCOHP Specify secondary output—Calcomp (ON/OFF) OFF •= no Calcp outp CALCOMP ON
VERSATBC Specify secondary output— Versatec (ON/OFF) OFF * no Vers outp VERSATBC ON
ZETA Specify secondary output—Zeta (ON/OFF) OFF » no Zeta outp ZETA ON

DEVICE ... POWER Specify power (ON/OFF) for m device ON for dev 1 (only) DBVICB 2 POWER ON
DEVICE ... MANUFACTURER Specify manufacturer for a device ON for dev 1 (only) DEVICE 2 MANUFACTURER FR-80
DEVICE . .

.

CONTINUOUS Specify continuous (ON/OFF) for a device ON for dev 1 (onl y

)

DEVICE 3 CONTINUOUS ON
DEVICE . .

.

PICTURE POINTS Specify number of picture points for a device 4096 by 3124 DEVICE 1 PICTURE POINTS 4096

DEVICE ... COLOR Specify color (ON/OFF) for a device ON for dev 1 (only) DEVICE 1 COLOR ON

0|

I

2-9

Keywords

Keywords are reserved words which are not commands
in themselves , £>ut rather are special words which
may appear at various points within a command
line. Some keywords are built-in parameter names
(such as PI, INFINITY, RESSD, etc.); some keywords
are built-in variable names (such as PRED and
RES); some keywords are components in other
commands (such as VERSUS and AND for PLOT); some
keywords are optional and powerful extensions to a
variety of commands (such as SUBSET, EXCEPT, and
FOR). The most important keywords are AND,
VERSUS, SUBSET, EXCEPT, FOR, PRED, RES, and =.

Keywords

Description Default Exampl

e

Used with PLOT, etc for multi-trace plots
Used with PLOT, etc for multi-trace plots

Qualifier denoting suhset of Interest
Qualifier denoting excepted subset
Qualifier denoting elts or var of interest
Var denoting dummy index; used in FOR
Specify interval of values within a variable

Parameter with value 3.1415926
Param with value 'infinity'

Var with predicted values from FIT, etc
Var with residuals from FIT, ANOVA, etc

N/A
N/A

N/A
N/A
N/A
N/A
N/A

3.1415926
largest real value

N/A
N/A

Param with res sd from FIT, ANOVA, etc N/A
Param with res deg of freedom from FIT etc N/A
Param with replication sd from FIT, ANOVA, etc N/A
Param with rep deg of freedom from FIT etc N/A
Param with lack of fit cdf value from FIT, etc N/A

PLOT Y X AND
PLOT Yl Y2 Y3 VERSUS X

PLOT Y X SUBSET LAB 4

FIT Y*A+X"B EXCEPT LAB 9

PLOT SIN(X) FOR X - 0 .1 6.3
LET Yd) - X(I*20) FOR I « 1 1 20
PLOT Y X SUBSET LAB 4 TO 9

LET Y - SIN(2'PI'F'T)
DELETE Y X FOR Y - 50 TO IN

PLOT Y PRED VERSUS X
PLOT RES X

PRINT RESSD
PRINT RBSDF
PRINT REPSD
PRINT REPDF
PRINT LOFCDF

•With respect to' ; used with LET for roots, etc N/A LET FUNCTION ^DERIVATIVE F WRT X

COBF
COBFSD

DBMODF

ON
OFF
AUTOMATIC
DEFAULT

VERTICALLY

Var where FIT, ANOVA, etc coef stored N/A
Var where FIT, ANOVA, etc coef sd stored N/A

Param with updated complex demodulation freq N/A

Set a switch to 'on' position N/A
Set a switch to 'off position N/A
Set a switch to 'automatic' position N/A
Set a switch to 'default' position N/A

Rotate contents (but not frame) of plot N/A

PRINT COBF
PRINT COBFSD

PRINT DBMODF

CALCOHP ON
CALCOMP OFF
LIMITS AUTOMATIC
EYE COORDINATES DEFAULT

PLOT VERTICALLY X"2 FOX X*0 1 10

<>
<

>

V

•Equal'i used in FIT, PRB-FIT, FOR, etc
'Not equal to'

'Less than'
'Ijess than or equal to*
'Greater than"
'Greater than or equal to'

Terminator character for a command
Continue any statement onto next line

N/A
N/A
N/A
N/A
N/A
N/A

N/A
N/A

FIT Y - A*B'LOG(-C*X)
LET Y - 1/X SUBSET X <> 0

FIT Y - U*SXP(-A*X) SUBSET X t 2

FIT r » U*SXP(-A*X) SUBSET X t- J
DELETE Y X LAB SUBSET Y > 100

DELETE Y X LAB SUBSET T >- ICO

PLOT Y PRED VS X; PLOT RES X
FIT Y m AO * Al/X * A2/...
X"2 * A3/X"3

i

3-1

Arithmetic Operations

As with FORTRAN, the DATAPLOT language uses the
following symbols for arithmetic operations—

+ addition
subtraction

* multiplication

/ division
** exponentiation

Also, operations are performed left to right with
priorities defined in a fashion identical to
FORTRAN—

1) exponentiation
2) multiplication and division
3) addition and subtraction

Also as in FORTRAN, the order of operations may be

altered by use of parentheses—with operations in
parentheses being performed first.

The 3 most important DATAPLOT commands are

PLOT
FIT
LET

'These 3 commands also have the most common
occurrence of arithmentic operations , as in

PLOT 10+X**2 FOR X = 1 1 10

which would generate a plot of 10 + X**2 for the
values X = 1, at increments of 1, up to 10 (that
is, X = 1, 2, ... 10).

FIT Y = A+B*L0G(C+X**2

)

would carry out a non-linear fit of Y on X with
'.the model A + B*LOG(C + X**2)

LET A = X*Y+Z**2

would compute the parameter or variable A from the
parameters or variables X, Y, and Z. If X, Y, and
2 were all parameters , then A would become a
parameter. If any of the X, Y, or Z were
variables , then A would become a variable.

It is also possible to use arithmetic operators in
the definition of functions , as in,

LET FUNCTION F = X**2
LET FUNCTION G = 10 *Y
LET FUNCTION H = A+F/G

which would result in the creation of the
functions P, G, and H where F - X**2, G = 10*Y,
and H = A+(X**2)/(10*Y) . Note that DATAPLOT
would automatically provide the needed parentheses
in the definition of H.

Relational Operations

DATAPLOT has 6 relational operators—

= equality

<> inequality

< less than
<= or =< less than or equal to

> greater than
>= or => greater than or equal to

The spacing within such operators is important—
using > = instead of >= will lead to a syntax
error or possible erroneous results. Thus to

generate a plot of Y versus X but with the plot
restricted to those X and Y values for which the

LAB variable is 7 or greater, the proper entry is

PLOT Y X SUBSET LAB >= 7

while

PLOT Y X SUBSET LAB > = 7

is incorrect.

Spacing around such relational operators is

optional and at the analyst's discretion. The

following are equivalent—

PLOT Y X SUBSET LAB >= 7

PLOT Y X SUBSET LAB>=7

FIT Y = A+B/X
FIT Y=A+B/X

LET Y = (X**LAMBDA) / (LAMBDA+1

)

LET Y=(X* *LAMBDA)/ (LAMBDA+1

)

Good programming practice and readability , however,

suggest that relational operators be surrounded by

a blank, as in

PLOT Y X SUBSET X < 100

rather than

PLOT Y X SUBSET X<100

3-2

Numbers

Numbers are unnamed scalars. They may appear in a

variety of different kinds of commands ; note the
20 and 50 in

BOX 20 20 50 50

note the 0, .1 and 10 in

PLOT SIN(X) FOR X = 0 .1 10

note the 2,5 in

LET Y = X+2.5

note the 2 in

FIT Y = A+B*X+C*X**2

With the exception of the FIT and PRE-FIT
commands , the general rule in DATAPLOT is that
anywhere a number appears in a command line, it
could equally well have been replaced by a

parameter , as in the following analogues to the
above—

LET XI = 20

LET Yl = 20
LET X2 = 50

LET Y2 = 50

BOX XI Yl X2 Y2

LET START = 0

LET INC = .1

LET STOP =10
PLOT SIN(X) FOR X = START INC STOP

LET A = 2.5
LET Y = X+A

The FIT and PRE-FIT commands are an exception
because the command lines

LET D = 2

FIT Y = A+B*X+C*X**D

then the decimal point and trailing decimal digits
should of course be included . However, if the

number happens to be an integer, then the
analyst has the choice of including or excluding
the trailing decimal point, and including or
excluding any trailing zeros— thus the following
are all equivalent—

LET Y = X**2
LET Y = X**2.

LET Y = X**2.0
LET Y = X**2.00

All such expressions will be stored and processed
internally by DATAPLOT in an identical fashion—
the analyst gains nothing by including the
trailing decimal point and zeros. Simplicity
dictates that the first form be used, but if the
analyst prefers to use other forms, the results
will be identical

.

To define numbers with large exponents (for
example, 7.4 raised to the 15th power), the

analyst should use the ** (exponentiation)
operator directly , as in

LET A = 7.4**15

The E format (as occurs in FORTRAN) is not

permitted ; thus

LET A = 7.4E15

is not a valid DATAPLOT command.

Negative exponents are handled in a similar
fashion, as in

LET B = 7.4**(-15)

ij

will not be treated in the same manner as

FIT Y = A+B*X+C*X**2

In the first case, DATAPLOT will realize that
D is a parameter and so (like all parameters
appearing in a fit) will determine the least
squares estimate for the parameter D along with
the other parameters A, B, and C. However, in
the second case (FIT Y = A+B*X+C*X**2)

,

DATAPLOT will note the scalar number 2 and
fit for the parameters A, B, and C only. Be aware
of this distinction in carrying out fits and
pre-fits .

All numbers are stored internally in DATAPLOT as
single precision floating point. If the analyst
wishes to specify a decimal number, as in

LET Y = X**2.378

3-3

Parame ters
LET

1 parameter is a named scalar and may be defined

ria the LET command, as in

LET A = 17.26
LET B = 3.97

LET C = -5.38
LET D = 2.4*10**(-8)

LET E = B**2-4*A*C
LET F = MEAN X

"wo internally-provided parameters which the

malyst may use are

PI
INFINITY

|?I has the value 3.14159265; INFINITY has the

-alue of the largest floating point number which

the user 's computer may store (that is,

INFINITY = machine infinity). PI and INFINITY may
pe used at any time and like any other user-
'lefined parameter, for example,

il PLOT (1/SQRT(2*PI)) *EXP(-0 . 5*X**2) FOR X = -3 .1 3

FIT Y = A+B*X**C EXCEPT X 100 TO INFINITY

lie wary of the use of PI in FIT and PRE-FIT
Expressions ; like all parameters , DATAPLOT will

ittempt to determine least squares estimates for

It. Thus rather than use

FIT Y = AMP * SIN(2*PI*F*X)

me should explicitly use

FIT Y = AMP * SIN(2*3.14159265*F*X

)

?ith the exception of the above-mentioned FIT and
\>RE-FIT exclusion, parameters may be substituted
"'nywhere in which numbers appear. For example,
'.uppose the analyst wished to override the usual
>lot frame coordinates and specify that all

ucceeding plots have lower left corner at (20,50)
\.nd for the plot to be 30 units wide and 30 units
:igh (that is, have the upper right corner at

50,80). This may be done explicitly by

FRAME CORNER COORDINATES 20 50 50 80

It alternatively

LET XI = 20

LET Yl = 50

LET X2 = 50

LET Y2 = 80
FRAME CORNER COORDINATES XI Yl X2 Y2

This capability of substituting parameters for
numbers is especially convenient for diagram-
construction on terminals which have built-in
hardware for inputting screen coordinates via

cross-hair, light-pen, or equivalent. Suppose
it is desired to draw a line between 2 points on
the screen which the analyst will interactively
specify via the cross-hair . One way is to

1) raise the cross-hair (via CROSS-HAIR)

;

2) position it to the first point (via the
thumbwheels)

;

3) input and print the coordinates (via
hitting any key (on Tektronix terminals)

,

or by hitting some predesignated key (on

other terminls);

4) raise the cross-hair (via CROSS-HAIR)

;

5) position it to the second point (via the
thumbwheels)

;

6) print the coordinates (via hitting any
key) ;

7) draw the line (via, for example,
DRAW 20.4 35.3 78.4 80.5).

An easier way which avoids the handling of
absolute numbers and replaces it with the handling
of symbolic parameter names is

1) raise the cross-hair (via CROSS-HAIR XI Yl);

2) position it to the first point (via the
thumbwheels)

;

3) copy the coordinates into XI and Yl (via

hitting any key);

4) raise the cross-hair (via CROSS-HAIR X2 Y2)

;

5) position it to the second point (via

thumbwheels)

;

6) copy the coordinates into X2 and Y2 (via

hitting any key);

7) draw the line (via DRAW XI Yl X2 Y2).

LET XI = 20
LET Yl = 50
LET X2 = Xl+30
LET Y2 - Yl+30
FRAME CORNER COORDINATES XI Yl X2 Y2

3-4

Var i ab 1 es

LET , READ, and SERIAL READ

A variable is a named vector (a named
single-dimension array), and may be defined via

the LET, READ, and SERIAL READ commands, as in

LET Y = SEQUENCE 1 1 10
LET Z = PATTERN 12 3 FOR 1=119
LET U = NORMAL RANDOM NUMBERS FOR 1=1 1 100

LET X2 = X**2-LOG(Y

)

LET Y2 = SQRT(X+Y**3

)

or

READ X Y
1 1

2 4

3 9

4 16

5 25

END OF DATA

or

SERIAL READ X Y
1124394 16 5 25

END OF DATA

Variables are the most commonly-handled component
in DATAPLOT, as in

PLOT Y X
FIT Y = A+B*LOG(X+C)
LET X2 = LOG(X)

Names for variables ,
parameters , and functions may

be of any length, but since only the first 8

characters are scanned and internally stored, no 2

names should be identical for the first 8

characters. Names must start with an alphabetic
character, but may be any combination of
alphabetic and numeric characters thereafter. It

is the author's personal practice (which

shows up throughout this manual) to

follow the usual mathematical custom of using
characters toward the end of the alphabet

(X's, Y's, Z's, etc.) to represent variables, of
using characters toward the beginning of the
alphabet (A's, B's, C's, etc.) to represent
parameters , and of using characters in the

vicinity of F (e.g., F's, G's, H's, etc.) to
represent functions . Note, however, that this is

personal preference and not a DATAPLOT
requirement

.

3-5

Functions Evaluating Functions

LET FUNCTION LET

A function is a named character string, and may be
defined via the LET FUNCTION command, as in

LET FUNCTION F = EXP(-0

.

5 *X**2

)

LET FUNCTION G = SIN(2*PI*W*T

)

LET FUNCTION H = F+LOG(G)
LET FUNCTION F2 = DERIVATIVE F WRT X

Functions may be concatenated and built-up
piece-by-piece , as in

LET FUNCTION NUH = EXP (-ALPHA*X

)

LET FUNCTION DENOH = A+B*X
LET FUNCTION RATIO = NUH/DENOH

which is equivalent to

LET FUNCTION RATIO = EXP (-ALPHA *X)/ (A+B*X

)

Functions may be defined before (or after) the
parameters and variables contained in them are
'created, as in the following example involving a

variable transformation—

LET FUNCTION F = X**2

SERIAL READ X
12 3

END OF DATA

LET Y = F

This last statement (LET Y = F) is equivalent to

LET Y = X**2

and will (upon execution) result in the Y variable
having the values 1, 4, and 9.

A more common example of functions being defined
prior to use is in fitting—

LET FUNCTION Fl = A1+B1*SQRT(X

)

LET FUNCTION F2 = A2+B2*LOG(X)

READ X Y
1 1

2 1.5

3 2

4 2.3
5 2.5
END OF DATA

FIT Y = PI
FIT Y = F2

The LET FUNCTION command and the LET command carry
out 2 distinctly different operations-- the LET
FUNCTION command allows the analyst to create
functions ; the LET command allows the analyst to
carry out function evaluations

.

For example, suppose it is desired to evaluate the
function sqrt(1-0 . 3*x**2) over the region x = 0

(.01) 1. This may be done in a number of ways;
the most direct way is

LET X = SEQUENCE 0 .01 1

LET Y = SQRT(1-0 ,3*X**2

)

WRITE X Y

PLOT Y X

The first LET command makes use of the SEQUENCE
sub-capability of the LET command to create the
variable X with a sequence of 101 values in it—
.00, .01, .02,. .03, .99, 1.00. The second
LET command creates a variable Y (also with 101
elements) which has the desired function evalution
values in it. The WRITE command generates a list
of X and Y values. The PLOT command will generate
a plot of Y (vertically) versus X (horizontally)

.

A second way to evaluate the function would be

LET X = SEQUENCE 0 .01 1

LET FUNCTION F = SQRT(1-0.3 *X**2

)

LET Y = F
WRITE X Y

PLOT Y X

As before, the first LET statement would create
the variable X with the specified sequence of 101

values. The LET FUNCTION command would then
create the function F consisting of the following
16 characters—SQRT(1-0 . 3*X**2) . Note that the

LET FUNCTION does not carry out a function
evaluation—it merely creates a function. The LET
Y = F command would then recognize F as a

pre-defined function, replace the name F with the
specified 16-character string, and carry out the
function evaluation . As before, the WRITE command
prints out the results of the function evaluation
and the PLOT command plots out the results of the

function evaluation.

Note that if our ultimate objective is to simply
plot the function (rather than creating variables
containing evaluated values of the function) , then
the above code could be shortened directly to

PLOT SQRT(1-0 ,3*X**2) FOR X = 0 .01 1

or

LET FUNCTION F = SQRT(1-0 . 3*X**2

)

PLOT F FOR X = 0 .01 1

3-6

Sub-commands Under the LET Command

Statistics, Mathematics, Random Number s ,
Manipulation

LET

The LET command is the single most powerful
command in DATAPLOT . The most important
capability of the LET command is carrying out
function evaluations and variable transformations

.

Such evaluations/transformations are general—any
Fortran-like expression may be used.

In addition , the LET command may also be used by
the analyst to carry out a broad spectrum of
statistical, mathematical, and manipulative
operations . These operations are specified by
inclusion of sub-commands under the LET command.
These sub-commands fall into 4 general
categories—

1. Computing Statistics
2. Performing Mathematical Operations
3. Generating Random Numbers
4. Miscellaneous

3-7

SUB-COMMANDS UNDER THE LET COMMAND

Computing Statistics on a Variable
(Input is a variable; output is a parameter

)

Description Sub-Command Bxamv I e

Compute sample size (number of observations

)

SIZE (or NUMBER) LET A = SIZE Y

Compute sample mean MEAN LET A MEAN Y

Compute sample median MEDIAN LET A MEDIAN
Compute sample mi drange MIDRANGE LET A MIDRANGE Y

Compute sample midmean MIDMEAN LET A MIDMEAN Y

Compute sample range RANGE LET A RANGE Y

Compute sample standard deviation STANDARD DEVIATION LET A STANDARD DEVIATION Y
Compute sample variance VARIANCE LET A VARIANCE Y
Compute sample relative standard deviation RELATIVE STANDARD DEVIATION LET A RELATIVE STANDARD DEVIATION Y

Compu te standard deviation of the mean STANDARD DEVIATION OF THE MEAN LET A STANDARD DEVIATION OP THE MEAN

Compute sample third central moment THIRD CENTRAL MOMENT LET A THIRD CENTRAL MOMENT
Compute sample skewness (stand. 3rd cent, mom > SKEWNESS LET A SKEWNESS Y

Compute sample fourth central moment FOURTH CENTRAL MOMENT LET A FOURTH CENTRAL MOMENT Y

Compute sample kurtosis (stand. 4th cent, mom) KURTOSIS LET A KURTOSIS Y

Compute sample minimum MINIMUM LET A MINIMUM Y
Compute sample maximum MAXIMUM LET A MAXIMUM Y

Compute sample lower quartile LOWER QUARTILE LET A LOWER QUARTILE Y

Compute sample upper quartile UPPER QUARTILE LET S UPPER QUARTILE Y

Compute sample lower hinge LOWER HINGE LET A LOWER HINGE Y

Compute sample upper hinge UPPER BINGE LET A UPPER HINGE Y

Compute sample autocovariance AUTOCOVARIANCE LET A AUTOCOVARIANCE Y
Compute sample autocorrelation AUTOCORRELATION LET A AUTOCORRELATION Y

Compute sample covariance COVARIANCE LET A COVARIANCE Y X
Compute sample correlation CORRELATION LET A CORRELATION Y X
Compute sample rank covariance RANK COVARIANCE LET A RANK COVARIANCE Y X
Compute sample rank correlation RANK CORRELATION LET A RANK CORRELATION Y X

3-8

Performing Mathematical Operations on a Variable
(Part 1—Input is a variable; output is a parameter)

Description Sub-Comaand Bxample

Compute sum of elements in a variable SUM
Compute product of elements in a variable PRODUCT
Compute integral of elements in a variable INTEGRAL

LET A = SUM Y

LET A = PRODUCT Y

LET A = INTEGRAL Y X

Performing Mathematical Operations on a Variable
(Part 2—Input is a variable; output is a variable)

Desc ription Sub-Command Bxample

Compute cumulative sums of elts in a var

Compute cumulative products of elts in a var
Compute emulative integrals of elts in a var

CUMULATIVE SUM
CUMULATIVE PRODUCT
CUMULATIVE INTEGRAL

LET Y2 = CUMULATIVE SUM Y

LET Y2 = CUMULATIVE PRODUCT Y
LET Y2 = CUMULATIVE INTBGRAL Y X

Compute sequential differences of elts in a var SEQUENTIAL DIFFERENCE LET Y2 = SEQUENTIAL DIFFERENCE Y

Sort the elements in a variable
Rank the elements in a variable
Code the elements in a variable

SORT
RANK
CODE

LET Y2

LET Y2

LET Y2

SORT Y

RANK Y

CODE Y

Compute convolution of elts in 2 var CONVOLUTION LET Y2 = CONVOLUTION Y X

Performing Mathematical Operations on a Function

Description Sub-Command Bxample

Compute roots of a function
Compute derivative of a function
Compute definite integral of a function

ROOTS
DERIVATIVE
INTEGRAL

LET Y2 = ROOTS EXPl -X)-SIN(X) WRT X FOR X=0 TO
LET A = DERIVATIVE SQRTl EXP(-X*'2) WRT X FOR X=

LET A - INTEGRAL EXP(-X**2) WRT X FOR X = -3 TC

3-9

Generating Random numbers

Description Sub-Command Example

Generate normal N(0,1) random numbers NORMAL RANDOM NUMBERS LET Y - NORMAL RANDOM NUMBERS FOR I = 1 1 50

Generate uniform (0,1) random numbers UNIFORM RANDOM NUMBERS LET Y = UNIFORM RANDOM NUMBERS FOR I «= 1 1 50

Generate logistic random numbers LOGISTIC RANDOM NUMBERS LET Y LOGISTIC RANDOM NUMBERS FOR I = 1 1 50

Genera te double exponential rand numb DOUBLE EXPONENTIAL RANDOM NUMBERS LET Y _ DOUBLE EXPONENTIAL RANDOM NUMBERS FOR I =

Generate Cauchy random numbers CAUCHY RANDOM NUMBERS LET Y = CAUCHY RANDOM NUMBERS FOR I = 1 1 50

Generate Tukey lambda random numbers TUKEY LAMBDA RANDOM NUMBERS LET Y lUKEi LAMBDA RANDOM NUMBbRS FUR I — 1 1 !>i

Generate semi-circular random numbers jCni ~C IH^ULm^LK KANLAJn NUnDCiKS LET Y SEMI-CIRCULAR RANDOM NUMBERS FOR 1=11.
Generate triangular random numbers TRIANGULAR RANDOM NUMBERS LET Y TRIANGULAR RANDOM NUMBERS FOR I = 1 1 50

Generate lognormal random numbers LOGNORMAL RANDOM NUMBERS LET Y LOGNORMAL RANDOM NUMBERS FOR I = 1 1 SO
Generate halfnormal random numbers HALFNORMAL RANDOM NUHBERS LET Y BALFNORMAL RANDOM NUMBERS FOR I = 1 1 50

Generate t random numbers T RANDOM NUMBERS LET Y T RANDOM NUMBERS FOR I = 1 1 50

Generate chi-sguared random numbers CHI-SQUARED RANDOM NUMBERS LET Y CHI-SQUARED RANDOM NUMBERS FOR I = 1 1 50

Generate F random numbers F RANDOM NUMBERS LET Y F RANDOM NUMBERS FOR I = 1 1 50

Generate exponential random numbers EXPONENTIAL RANDOM NUMBERS LET Y EXPONENTIAL RANDOM NUMBERS FOR I = 1 1 50

Generate gamma random numbers GAMMA RANDOM NUMBERS LET Y GAMMA RANDOM NUMBERS FOR I = i 1 50
Generate beta random numbers BETA RANDOM NUMBERS LET Y BETA RANDOM NUMBERS FOR 1=1 1 50

Generate Ueibull random numbers WEIBULL RANDOM NUHBERS LET Y WEIBULL RANDOM NUMBERS FOR I = 1 1 50

Generate extr value type 1 rand numb EXTREME VALUE TYPE 1 RANDOM NUMBERS LET Y EXTREME VALUE TYPE 1 RANDOM NUMBERS FOR I

Generate extr value type 2 rand numb EXTREME VALUE TYPE 2 RANDOM NUMBERS LET Y EXTREME VALUE TYPE 2 RANDOM NUMBERS FOR I

Generate Pareto random numbers PARETO RANDOM NUMBERS LET Y PARETO RANDOM NUMBERS FOR I = 1 1 50

Generate binomial random numbers BINOMIAL RANDOM NUMBERS LET Y BINOMIAL RANDOM NUMBERS FOR I = 1 1 50

Generate geometric random numbers GEOMETRIC RANDOM NUMBERS LET Y GEOMETRIC RANDOM NUMBERS FOR I = 1 1 50

Generate Poisson random numbers POISSON RANDOM NUMBERS LET Y POISSON RANDOM NUMBERS FOR I = 1 1 50

Generate negative binomial random numb NEGATIVE BINOMIAL RANDOM NUMBERS LET Y NEGATIVE BINOMIAL RANDOM NUMBERS FOR I =

Generate a random permutation RANDOM PBRMUTATION LET Y RANDOM PERMUTATION FOR 1=1 1 50

Miscellaneous

Description Sub-Command Example

Generate a seguence within a var
Generate a patterned seg within a var
Extract distinct elements from a var

SBQUENCB
PATTERN
DISTINCT

LET Y = SEQUBNCB 1 .1 10

LET Y = PATTERN 12 3 4 5 FOR I * 1 1 60

LET Y = DISTINCT X

3-10

For category 1 (Computing Statistics) , the input
is always a variable and the output is always a

parameter . For example, if Y is a variable, then

LET A MEAN Y

computes the mean of the data in the variable Y
and places the result into the parameter A.

For category 2 (Mathematical Operations) , there
are 3 sub-categories—

For category 3 (Computing Random Numbers) , the FOR
qualification at the end of the command statement
tells DATAPLOT not only how many random numbers toi

generate but also where (into what elements of the

variable) to place the random numbers. Thus

LET Y = NORMAL RANDOM NUMBERS FOR I = 1 1 50

generates 50 normal N(0,1) random numbers, and

places these 50 numbers into the first 50 elements
of the variable Y.

2.1} input
output

2.2) input
output

2.3) input
output

variable

;

parameter

;

variable

;

variable

;

function ;

parameter or variable

;

An example of sub-category 2.1 is the SUM
operation ; if Y is a variable, then

LET A = SUM Y

computes the sum of all the elements in the
variable Y, and places that sum into the parameter

An example of sub-category 2.2 is the CUMULATIVE
SUM operation ; if Y is a variable, then

LET Y2 = CUMULATIVE SUM Y

computes the cumulative sum (= partial sum) of the
elements in the variable Y, and places the
resulting cumulative sums into corresponding
elements of the variable Y2; thus

Y2(l) = Y(l)
Y2(2) = Y(l)

Y2(3) = Yd)
etc.

Y(2)

Y(2) + Y(3)

An example of sub-category 2.3 is
operation ; if F is a function, then

the ROOTS

LET Y = ROOTS F WRT X FOR X = 0 TO 10

determines all of the roots of the function X in
the interval 0 to 10 and places those roots (if
any found) into the elements of Y. If no roots
are found, then Y3 will not be formed; if 1 root
is found, then Y3 will be a parameter; if 2 or
more roots are found, then Y3 will be a variable.

If the analyst enters

LET Y = NORMAL RANDOM NUMBERS FOR I = 101 1

then this instructs DATAPLOT to generate enougl

random numbers so as to fill

element 101

at increments of 1

up to element 200

of the variable Y (that is, elements 101, 102,
103, 104, 198, 199, 200 of the variable Y);
total of 100 random numbers are generated

.

If the analyst enters

LET Y = NORMAL RANDOM NUMBERS FOR I = 101 2

r

then this instructs DATAPLOT to generate enoug
random numbers so as to fill

element 101

at increments of 10

up to element 200

of the variable Y (that is, elements 101, 111,

121, 131, 181, 191, of the variable Y);

total of 10 random numbers are generated.

Random numbers may be generated for
distributions and distributional families. No\

the distinction between a distribution and I

distributional family. A distribution has only
prototype shape for the probability densi

function ; this probability density function may
displaced or may be squeezed/expanded due
different location/scale parameters, b\

nevertheless , there is only one prototype sha,

for this function. Examples of distributions ar\

Normal (= Gaussian)
Uniform
Logistic
Double Exponential (= LaPlace)
Cauchy
Semi-Circular
Triangular

Lognormal
Halfnormal

Exponential
Extreme Value Type 1

3-11

On the other hand, a distributional family
represents not just 1 distribution, but rather a

set of distributions . Each different distribution
has its own prototype probability density function
which changes depending on the value of the

shape/tail length parameter for the family.
Examples of distributional families are

Tukey lambda

t (= Student 's t)

Chi-squared
F

Gamma
Beta
Weibull
Extreme Value Type 2

Pareto

The shape/tail length parameters which need to be
defined for the various distributions are

Tukey lambda LAMBDA

t (= Student 's t)

Chi-squared
F

NU
NU
NU1 AND NU2

Gamma
Beta

Weibull
Extreme Value Type 2

Pareto

GAMMA
ALPHA AND BETA
GAMMA
GAMMA
GAMMA

Binomial
Geometr ic
Poisson
Negative Binomial

N AND P
P

LAMBDA
K AND P

Binomial
Geometric
Poisson
Negative Binomial

When generating random numbers from a

distribution , such as

LET Y = NORMAL RANDOM NUMBERS FOR I = 1 1 50

then the one command line is sufficient . On the
other hand, when generating random numbers from a

member of a distributional family, then an

additional command line is needed so as to specify
what member of the family the random numbers are
being drawn from. For example, to generate random
^numbers from the t distribution , the entry

J LET Y = T RANDOM NUMBERS FOR 1=1 1 50

Ijwould be incomplete because we have not specified
which member of the t family is desired. To
rectify this, we precede the above statement with
:an additional statement which defines the desired
NU value, as in

As an aside, note that DATAPLOT allows probability
plots to be generated for the same extensive set

of distributions and distributional families as

enumerated above for random numbers. For
distributions ,

only a single command is needed, as

in

NORMAL PROBABILITY PLOT Y

which generates a normal probability plot of the

data in the variable Y; but for distributional

families, an additional command is needed to

specify the desired member of the family, as in

LET NU = 20

T PROBABILITY PLOT Y

which generates a t probability plot (with NU =

20) of the data in Y.

For category 4 (Miscellaneous) , the input

depends on the operation , but the output is a

variable. For example,

LET Y = SEQUENCE 70 .1 80

LET NU = 5

LET Y = T RANDOM NUMBERS FOR I 1 1 50

LET NU = 20

LET Y = T RANDOM NUMBERS FOR I = 1 1 50

generates a sequence of numbers

starting with 70

at increments of .1

and stopping with 80.

A total of 101 numbers are generated— 70, 70.1,

70.2, 70.3, 79.8, 79.9, 80. These 101 values

are placed in the first 101 elements of the

variable Y.

I

3-12

Built-in Library Functions

LET, LET FUNCTION, PLOT, 3D-PLOT ,
FIT, and PRE-FIT

General FORTRAN-like expressions are allowable in

the LET, LET FUNCTION, PLOT, 3D-PLOT, FIT, and
PRE-FIT commands . These expressions may
include any general FORTRAN-like combination
of +, *, /, and ** operations , as well
as any mixture of the following built-in
library functions . In all of the following
expressions, the X, Y, etc. in the arguments may
be DATAPLOT parameters, variables , or functions

.

Examples of usage of such functions are

LET Y = EXP(-X)/(2+6*X)

which if X is a variable (parameter) will form a

corresponding variable (parameter) as given by the
function expression.

LET FUNCTION F = LOG(2*X) / (EXP(SQRT(X))

)

defines a function F as given by the expression

.

PLOT SQRT(1-0 .5*X**2) FOR X = 0 .1 1

The trigonometric functions are much more
extensive than the usual FORTRAN library. The
DATAPLOT library includes all circular functions

,

all inverse circular functions , all hyperbolic
functions , and all inverse hyperbolic functions

.

The probability functions include cumulative
distribution functions , probability density
functions, and percent point functions (= inverse
cumulative distribution functions) for 4 common
distributions/distributional families , namely—

Normal
t

Chi-squared
F

Such functions are useful for hypothesis testing.

generates a plot of the function at the points 0,

at increments of .1, and stopping at 1 (that is,

at the points 0, .1, .2, . .., .8, .9, 1).

3D-PL0T EXP(-X**2-Y**2) FOR X = -2 .2 2 FOR Y = -2 .2 2

generates a 3-dimensional plot of the bivariate
surface as given by the function and evaluated at
the X points -2, at increments of .2, and stopping
at 2; and at the Y points -2, at increments of .2,

and stopping at 2. The plot will be a

cross-hatched surface. The analyst should have
previously entered (via the EYE COORDINATES
command) the position of the analyst's eye in
viewing the surface, as in EYE COORDINATES 10 11 5.

FIT Y = EXP (-ALPHA *X)/ (A+B*X)

carries out a non-linear fit according to the
function.

PRE-FIT Y = LOG(A+B*X) FOR A = 1 1 10 FOR B = 1 .12

carries out a pre-fit according to the function,
with the pre-fit carried out over the lattice of
points specified by A = 1, 2, 3, 9, 10 and B
= 2, 1.2, 1.2, 1.8, 2.9, 2.

The built-in library functions include

1) General Functions;
2) Trigonometric Functions;

3) Probability Functions.

The general mathematical functions include various
FORTRAN-library entries, plus Chebychev, Bessel,
octal-decimal conversions , etc.

3-13

General Functions—

ascription Function Example

bsolute value ABS(X) LET Z = A + B*EXP(ABS(X) + C)
quare root SQRT(X) LET z = A + B*EXP(SQRT(X) * C)
xponential EXP(X) LET z = A + B*EXP(EXP(X) + C)
ogarithm (natural) LN(X) LET z = A •f B*EXP(LN(X) + C)
ogarithm (natural

)

LOG(X) LET z = A + B*EXP(LOG(X) + C)
ogarithm (base 10) LOGIO(X) LET z = A B*EXP(LOG10(X) * C)
ogarithm (base 2) LOG2(X) LET z = A + B*EXP(L002(X) + C)

ign SIGN(X) LET z = A + B*EXP(5IGN(X) + C)
nteger portion INT(X) LET z = A + B*EXP(INT(X) + C)
ractional portion FRACT(X) LET z A + B *EXP (FRACT (X) + C)

lodulo MOD(X,Y) LET z = A B*EXP(MOD(X,Y) + C)
inimum HIN(X,Y) LET z = A + B*EXP(MIN(X ,Y) + C)
'^aximum MAX(X,Y) LET z A + B*EXP(MAX(X,Y) + C)
iositive difference— x-min(x,y

)

DIM(X,Y) LET z A B*EXP(DIM(X,Y) + C)

ctal to decimal conversion OCTDEC(X) LET z A + B*EXP(OCTDEC(X) + C
ecimal to octal conversion DECOCT(X) LET z A + B*EXP(DECOCT(X) + C

irror function ERF(X) LET z A + B*EXP(ERF(X) + C)
omplementary error function ERFC(X) LET z A + B*EXP(ERFC(X) + C)

amma function GAMMA (X) LET Z A + B*EXP(GAMMA!X) + C)
og (to the base e) Gamma function LOGGAMMA(X) LET z A B*EXP(LOGGAMMA (X) +

hebychev polynomial of the first kind and order 0 CHEBO(X) LET z A * B*EXP(CBEBO(X) + C)
hebychev polynomial of the first kind and order 1 CHEBl(X) LET z A + B*EXP(CBEB1(X) + C)
[hebychev polynomial of the first kind and order 2 CHEB2(X) LET z A + B*EXP(CHEB2(X) + C)
[hebychev polynomial of the first kind and order 3 CBEB3(X) LET z A + B*BXP(CHEB3(X) + C)
hebychev polynomial of the first kind and order 4 CBEB4(X) LET z A + B*EXP(CBEB4(X) * C)
hebychev polynomial of the first kind and order 5 CBEB5(X) LET z A + B*EXP(CHEB5(X) * C)
hebychev polynomial of the first kind and order 6 CBEB6(X) LET z A * B*EXP(CHEB6(X) + C)
hebychev polynomial of the first kind and order 7 CHEB7(X) LET z A + B*EXP(CBEB7(X) * C)
hebychev polynomial of the first kind and order 8 CBEB8(X) LET z A + B*EXP(CBEB8(X) + C)
hebychev polynomial of the first kind and order 9 CBEB9(X) LET z A + B*EXP(CBEB9(X) * C)
hebychev polynomial of the first kind and order 10 CHEBIO(X) LET z A + B*EXP(CEEB10(X) + C

\essel function of the first kind and order 0 BESSO(X) LET z A + B*EXP(BESSO(X) + C)
essel function of the first kind and order 1 BESSl(X) LET z A + B*EXP(BES51(X) + C)

3-14

Trigonometric Functions—

Descripti on Function Example

Sine SIN(X) LET Z = A +

Cosi ne COS(X) LET z = A +

Tangent TAN(X) LET z = A
Cotangent COT(X) LET z = A

Secant SEC(X) LET z = A

Cosecan

t

CSC(X) LET z = A

Arcsine ARCSIN(X) LET z = A +

Arccosine ARCCOS(X) LET z = A +

Arctangent ARCTAN(X) LET z = A +

Arccotangent ARCCOT(X) LET z = A
Arcsecant ARCSEC(X) LET z = A *

Arccosecant ARCCSC(X) LET z = A *

Hyperbolic Sine SINH(X) LET z = A
Hyperbolic Cosine COSH(X) LET z = A +

Hyperbolic Tangent TANH(X) LET z = A
Hyperbolic Cotangent COTB(X) LET z = A
Hyperbolic Secant SECH(X) LET z = A
Hyperbolic Cosecant CSCH(X) LET z = A +

Hyperbolic Arcsine ARCSINH(X) LET z = A +

Hyperbolic Arccosine ARCCOSH(X) LET z = A
Hyperbolic Arctangent ARCTANH(X) LET z = A +

Hyperbolic Arccotangent ARCCOTH(X) LET z = A
Hyperbolic Arcsecant ARCSECH(X) LET z = A +

Hyperbolic Arccosecant ARCCSCH(X) LET z = A +

B*EXP(SIN(X) + C)
B*EXP(COS(X) + C)
B*EXP(TAN(X) + C)
B*EXP(COT(X) * C)
B*EXP(SEC(X) * C)

B*EXP(CSC(X) * C)

B*EXP(ARCSIN(X) + C)
B*EXP(ARCCOS(X) + C)
B*EXP(ARCTAN(X) + C)
B*EXP(ARCCOT(X) + C)
B*EXP(ARCSEC(X) + C)
B*EXP(ARCCSC(X) * C)

B*EXP(SINH(X) + C)
B*EXP(COSH(X) + C)
B*EXP(TANH(X) + C)

B*EXP(COTH(X) * C)
B*EXP(SECH(X) + C)

B*EXP(CSCH(X) + C)

B*EXP(ARCSINH(X) + C,

B*EXP(ARCCOSH(X) + C,

B *EXP(ARCTANHfX) + C,

B*EXP(ARCCOTH(X) + C,

B*EXP(ARCSECH(X) + C.

B*EXP(ARCCSCH(X) + C.

Probability Functions—

Description

Normal N(0,1) cumulative distribution function

t cumulative distribution function
Chi-squared cumulative distribution function

F cumulative distribution function

Normal N(0,1) probability density function

t probability density function
Chi-squared probability density function

F probability density function

Normal N(0,1) percent point function
t percent point function
Chi-squared percent point function
F percent point function

Function

NORCDF(X)
TCDF{X,NV)
CHSCDF(X,NV)
FCDF(X,NV1,NV2

)

NORPDF(X)
TPDF(X,NV)
CHSPDF(X,NU)
FPDF(X,NV1,NV2)

NORPPF(X)
TPPF(X,NU)
CHSPPF(X,NV)
FPPF(X,NV1,NV2)

Example

LET Z = A * B*EXP(NORCDF(X) + C;

LET Z = A + B*EXP(TCDF(X) + C)
LET Z = A + B*EXP(CHSCDF(X) + C

LET Z = A * B*EXP(FCDF(X) + C)

LET Z = A + B*EXP(NORPDF(X) * C

LET Z = A * B*EXP(TPDF(X) + C)

LET Z = A * B*EXP(CBSPDF(X) + C

LET Z = A + B*EXP(FPDF(X) * C)

LET Z = A * B*EXP(NORPPF(X) * C

LET Z = A + B*EXP(TPPP(X) * C)

LET Z = A + B*EXP(CHSPPF(X) * C

LET Z = A + B*EXP(FPPF(X) * C)

3 -15

Creating Parameters, Copying Parameters,

Variables, and Functions Variables, and Functions

LET, LET FUNCTION, LET

READ, and SERIAL READ

A parameter is a named scalar and may be defined

via the LET command, as in

LET A = 17.26

LET B = 3.97

LET C = -5.38

LET D = 2 .4*10**(-8

)

LET E = B**2-4*A*C
LET F = MEAN X

A variable is a named vector (a named

single-dimension array), and may be defined via

the LET, READ, and SERIAL READ commands, as in

LET Y = SEQUENCE 1 1 10

LET Z = PATTERN 12 3 FOR 1=119
LET U = NORMAL RANDOM NUMBERS FOR I = 1 1 100

LET X2 = X**2-LOG(Y

)

LET Y2 = SQRT(X+Y**3

)

or

READ X Y

1 1

2 4

3 9

4

5

16

25

END OF DATA

SERIAL READ X Y
1124394 16 5 25

END OF DATA

Copying parameters, variables, and functions is
just a special case of more general operations
involving the creation of parameters, variables,
and functions.

Parameters
in

may be copied via the LET command, as

LET B = A

LET C = A

If A in the above examples is a parameter , then B

and C will become parameters with the same value
as A.

Variables may be copied with the LET command, as
in

LET Y = X
LET Z = X

If X in the above examples is a variable, then Y

and Z will become variables with the same values
as X.

Functions may be copied via the LET FUNCTION
command, as in

LET FUNCTION G = F
LET FUNCTION H = F

If F in the above examples is a function, then G

and H will become functions with the same

character string as F.

A function is a named character string, and may be
defined via the LET FUNCTION command, as in

LET FUNCTION F = EXP(-0 .
5 *X**2

)

LET FUNCTION G = SIN (2*PI*W*T

)

LET FUNCTION H = F+LOG(G)
LET FUNCTION F2 = DERIVATIVE F WRT X

Functions may be concatenated and built-up
piece-by- piece, as in

w,

LET FUNCTION NUM = EXP I -ALPHA *X

)

LET FUNCTION DENOM = A+B*X
LET FUNCTION RATIO = NUM/DENOM

hich is equivalent to

LET FUNCTION RATIO = EXP(-ALPHA*X)/ (A+B*X

)

I

3-16

Deleting Parameters, Variables, and Functions

DELETE

The DELETE command will cause parameters

,

variables , and functions to be deleted. The form
for the delete command is

DELETE list of parameters, variables,
and/or function names

Thus, to delete parameters A and B, variables X

and Y, and functions F and G, one could enter

DELETE A

DELETE B
DELETE X

DELETE Y

DELETE F
DELETE G

or simply

DELETE A B X Y F G

Note that the DELETE command may be used in
conjunction with SUBSET/EXCEPT/FOR qualifications
to accomplish a partial or selected delete of
elements within variables (partial deleting of
parameters and functions may not be done).
Whenever a partial delete of a variable is done,
then the undeleted elements in the variable are
automatically "packed" into the first available
elements of the variable. For example,

DELETE X Y SUBSET LAB 4

would delete all elements in X and Y corresponding
to LAB 4 (and pack all remaining elements of X and
Y). Note that X and Y would end up with the same
number of elements , but the LAB variable would be
unchanged and so would be longer and "out of
alignment" with the new X and Y. To circumvent
this, one could have entered

Immediately after the deletion is done, the
remaining elements in the variable are packed. To
delete successive elements in the same variable,
the analyst should delete the higher elements
first and then proceed to the lower elements

.

Thus to delete elements 2, 7, and 15 of variable
X, one should enter

DELETE X(15) X(7j X(2

)

which is equivalent to

DELETE X(15)
DELETE X(7

)

DELETE X(2)

rather than

DELETE X(2) X(7) X(15

)

which is equivalent to

DELETE X(2

)

DELETE X(7)
DELETE X(15)

Because of the successive packing after each
deletion , the latter code would not yield the

desired results— the former code should be used
(Note that one need not heed this caution when one
uses the SUBSET/EXCEPT/FOR qualification for
deleting elements).

A practical example of when the deletion of

specific elements would be useful is when the
analyst has a variable Y, and suspects (perhaps
via a lag-1 plot) that the i-th element of Y was

related to the (i-l)st element of Y, in such
fashion that a first-order autoregressive model
would be appropriate . To carry this out one could
enter

DELETE X Y LAB SUBSET LAB 4

which would carry out the delete, and result in
the variables X, Y, and LAB all having the same
(shortened) length. The DELETE may be used with
any general SUBSET/EXCEPT/FOR qualification. In
particular

,

DELETE X Y FOR I = 1 1 20

would delete elements 1 through 20 of variables X
and Y. The net result is that element 21 would
shift up and become element 1, element 22 would
become element 2, etc.

Specific elements of a variable may be deleted by
explicit referencing of the element; for example,

DELETE X(4) Y(10) Z(30)

which would delete the 4-th element of X, the
10-th element of Y, and the 30-th element of Z.

LET Yl = Y

LET N = NUMBER Y
DELETE Yl(l)
DELETE Y(N)
FIT Y = AO-hAl*Yl

The above code would

1) Copy Y into Yl

(the elements of Y remain unaffected);

2) Determine the number of elements in Y

(place this into the parameter N);

3) Delete the first element of Yl
(and shift all remaining elements up 1);

note that Yl now has N-l elements;

4) Delete the last element of Y

(so that Y also has N-l elements);

5) Carry out a least squares linear fit of
Y on Yl; thus yielding a first-
order autoregressive fit.

Partial deletion of variables may also be done via
the RETAIN command. The form is the same, but the
RETAIN command will retain only those elements
specified , and delete all others. As with the
DELETE command, the remaining elements are
'packed* into the first available elements after
the deletion is done. Thus

RETAIN X Y FOR I = 10 1 20

would delete all elements in X and Y except those
from 10 to 20. These 11 elements would then be
shifted up to become elements 1 to 11 of the new,
shortened variables X and Y. The new length of X
and Y would be 11.

3-18

Assigning Multiple Names to a Variable

NAME

The NAME command allows the analyst to attach more
than 1 name to a variable. For example, suppose a

variable X existed, to attach an additional name
(X2, say) to X, one would enter

NAME X2 X

The net effect is that the name X2 would be
attached to the name X, and either of the 2 names
could be used at any time after that to refer to
the same variable . Note that

NAME X2 X

is different than

LET X2 = X

The latter would in fact create a second variable
X2 and fill it with values of the variable X.

This second variable X2 is distinct from X (and
takes up additional space in the internal DATAPLOT
data storage area).

One may use the NAME command to attach as many
different names as desired to an existing
variable. To check what names are currently
attached to a variable, the analyst should enter
the STATUS command.

Renaming variables is not commonly done but does
have application when used in conjunction with
subprograms. Suppose, for example, that one has
constructed a general subprogram that is residing
in a file ANALYSIS , and which is written in
general terms so as to operate on variables Y and
X, such as

PLOT Y X
SUMMARY Y
FIT Y = A+B*X
CHARACTER X BLANK
LINES BLANK SOLID
PLOT Y PRED VERSUS X
PLOT RES X

How can one use this subprogram if the variables
in the main program are called something other
than X and Y? This is done via the NAME command,
for example,

READ DAYl. PRES1 VOLl
NAME X PRES1

NAME Y VOLl

TITLE CALIBRATION 1

CALL ANALYSIS.

READ DAY2. PRES2 V0L2
NAME X PRES2
NAME Y V0L2
TITLE CALIBRATION 2

CALL ANALYSIS.

READ DAY3. PRES3 V0L3
NAME X PRES3
NAME Y V0L3
TITLE CALIBRATION 3

CALL ANALYSIS.

The above code would

1) read data from file DAYl
into the variables PRES1 and VOLl;

2) assign the additional name X to PRES1;

3) assign the additional name Y to VOLl;

4) specify the title (of future plots) to be
CALIBRATION 1

5) invoke the subprogram residing in file
ANALYSIS so as to carry out an analysis

;

6) read data from file DAY2
into the variables PRES2 and V0L2

;

7) assign the additional name X to PRES2

;

8) assign the additional name Y to V0L2;

9) specify the title (of future plots) to be

CALIBRATION 2

10) invoke the subprogram residing in file
ANALYSIS so as to carry out an analysis

;

11) read data from file DAY

3

into the variables PRES3 and V0L3;

12) assign the additional name X to PRES3;

13) assign the additional name Y to V0L3;

14) specify the title (of future plots) to 2><

CALIBRATION 3

15) invoke the subprogram residing in file
ANALYSIS so as to carry out an analysis

.

3-19

Creating Data Internally
LET, READ, and SERIAL READ

'he most common way to create data in DATAPLOT is

o simply read it in via the READ and SERIAL READ
ommands. Such data is usually read from an
xternal mass storage file. Occasions arise,

owever , where it is convenient to create data
nternal to a DATAPLOT program. For example, in

arrying out a spline fit, it is required to

pecify a variable containing the knot positions

.

'he LET command may be used directly to create
laments of a variable . For example,

LET X(l) = 20

LET X(2) = 55

LET X(3) = 23.66

ill result in the first element of the variable X
eing set to the value 20, the second element of
he variable X being set to 55, and the third
lement of the variable X being set to 23.66.
ther related forms for this use of the LET
ommand are shown in the following program--

LET A = 23

LET X(4) = A
LET X(5) = X(2)
LET X(6) = A+SQRT(2.4)
LET J = 7

LET K = 3

LET X(J) = Y(K)

'he above code will

1) define a parameter A with the value 23;

2) set the fourth element of the variable X
equal to A (which currently has value
23);

3) set the fifth element of the variable X
to the same value as the second element
of the variable X;

4) set the sixth element of the variable X
equal to A+SQRT(2.4)—note that A has the
value 23;

5) set the parameter J = 7;

6) set the parameter K - 3;

7) set the J-th element of the variable X to
the same value as the K-th element of the
variable Y— note that J and K currently
have the values 7 and 3, respectively

.

3te that if an element appears on the right side
the assignment statement, it must not be

rt of an arithmentic expression; thus

LET A = X(2

)

LET B = X(5)
LET X(10) = A + B**2

are legal , but

LET X(10) = X(2) + X(5)**2

will result in an error message.

The SEQUENCE sub-form of the LET command allows

the analyst to create a variable consisting of a

sequence of numbers. The general form is

LET variable =

name
SEQUENCE start

value
increment stop

value

LET X = SEQUENCE 1 1 10

which would result in the creation of a variable X
with the 10 values— 1, 2, 9, 10. The command

LET Y = SEQUENCE 0 .1 20

creates the variable Y with 201 values— 0, .1, .2,

19.9, 20.

LET Z = SEQUENCE 10 - . 1 -10

creates the variable Z with 201 values—10, 9.9,

9.8, -9.9, -10.

LET START = 1

LET INC = .01

LET STOP = 2

LET U = SEQUENCE START INC STOP

creates the parameters START, INC, and STOP, and

then creates the variable U with 101 values— 1,

1.01, 1.02, 1.99, 2.

The PATTERN sub-form of the LET command allows the
analyst to create a variable consisting of a

pattern of numbers. The general form is

LET variable =

name

as m

PATTERN sequence of values

LET X = PATTERN 123456789 10

which would result in the creation of a variable X

with the 10 values—1, 2, 9, 10. The command

LET Y = PATTERN 12 3

creates the variable Y with 3 values— 1, 2, and 3.

LET Z = PATTERN 111222333

3-20

creates the variable Z with 9 values— 1, 1, 1, 2,

2, 2, 3, 3, and 3. To repeat patterns , one simply
augments the PATTERN sub-form with a FOR
qualification ; for example,

LET X = PATTERN 12 3 FOR 1=1 1 12

creates a variable X with 12 values— 1, 2, 3, 1,

2, 3, 1, 2, 3, 1, 2, 3.

LET Z = PATTERN 111222333 FOR I = 1 1 18

creates a variable Z with 18 values— 1, 1, 1, 2,

2, 2, 3, 3, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3. The use
of the PATTERN command arises in connection with
forming a variable (if not already available) for
defining individual traces in a multi-trace plot,
and in defining a variable for carrying out ANOVA
and graphical ANOVA.

To generate random numbers internally , the analyst
uses the RANDOM NUMBERS subform of the LET
command. The general form is

The final 2 ways to create data internally in a

DATAPLOT program involve the use of READ and

SERIAL READ commands. If one excludes the

specification of a mass storage file/subfile, then

the data may be specified immediately in the

program as in

READ X

20

55

23.66
END OF DATA

SERIAL READ X
20 55 23.66
END OF DATA

Both of the above will create a variable X with

the 3 values—20, 55, and 23.66.

LET variable = distribution RANDOM NUMBERS FOR I = start increment stop

name name value value

The distribution name identifies the distribution
from which random numbers are to be drawn. The
FOR qualification at the end of the command tells
DATAPLOT into which elements of the variable the
random numbers are to be placed. Thus

LET X = NORMAL RANDOM NUMBERS FOR 1=1 1 100

will generate 100 normal random numbers and place
them into elements 1 to 100 of variable X.

LET X = NORMAL RANDOM NUMBERS FOR I = 1 2 50
LET X = CAUCHY RANDOM NUMBERS FOR I = 2 2 50

will generate 25 normal random numbers and place
them into elements 1, 3, 5, 49 of variable X,

and then generate 25 Cauchy random numbers and
place them into elements 2, 4, 6, 48, 50 of
variable X. To specify particular members of a

distributional family, specify the distributional
parameter value prior to use of the RANDOM NUMBER
sub-form, as in

LET NU = 5

LET X = T RANDOM NUMBERS FOR I = 1 1 30

which will generate 30 random numbers from the t

distribution with nu = 5 degrees of freedom.

LET GAMMA =2.57
LET X = WEIBULL RANDOM NUMBERS FOR 1=11 200

will generate 200 random numbers from the Weibull
distribution with gamma = 2.57.

4-1

Fi les and Subf i les

The DATAPLOT commands which
file/subfile specifications are—

may contain

READ read data from a file;
SERIAL READ read sequential data from a file;
WRITE write data out to a file;
CREATE dynamically create a subprogram;
CALL execute a subprogram;
SAVE save all internal DATAPLOT settings;
RESTORE restore all internal DATAPLOT settings,

The DATAPLOT convention in designating files and
subfiles is as follows—

1) qualifier ;

2) qualifier-file separator (an asterisk)

;

3) file name;
4) file name-subfile name separator (a period);
5) subfile name.

\The qualifier is typically a user identifier , a

project identifier , or simply an extended file
name. The qualifier allows the computer to
distinguish between 2 files which nominally have
'the same name. For example, if analyst SMITH has
a file called DATA, and analyst JONES has a file
called DATA, then to distinguish between these 2

files called DATA, the analyst may be required to
enter SMITH*DATA or JONES*DATA , respectively , as

READ SMITH*DATA. X Y

The file name is up to 12 characters . The period
at the end of the file name tells DATAPLOT that
the file name is finished and the subfile name (if
existent) is starting. The period must be
appended to all file names in all relevant
DATAPLOT commands regardless of whether the system
allows subfiles or not. The period is important
because it tells DATAPLOT that the entry is a file
name as opposed to a variable name. For example,
in the READ command, if DATAPLOT encounters

READ A. B C

then it expects to read from file A and to read
the first 2 numbers on each line image of file A
into variables B and C. On the other hand, if
DATAPLOT encounters

READ ABC

then the absence of a file name is a signal to

DATAPLOT that the data will be read in from the
terminal where the first 3 numbers on each line
image will be placed into the variables A, B, and
C, as in

READ ABC
111
2 4 8

3 9 27
4 16 64
END OF DATA

READ JONES*DATA. X Y

Qualifier names may be up to 12 characters . On
some computer systems, the qualifier name is
optional; on others, it is required. If optional,
and if omitted, then the computer system usually
substitutes a default qualifier name that was
defined by the user at the time of log-on. For
example, on some computers, analyst SMITH may be
able to enter

READ DATA. X Y

s a shorter form of

READ SMITH*DATA. X Y

The qualifier separator tells DATAPLOT that the
qualifier name is finished , and the file name is
starting. The separator is typically 1 character
•in length. At NBS, the separator character is *

(an asterisk) . Other computers juy choose to some
other separator besides *. For example, on VAX
systems, the separator is usually 1.

Even though such ambiguity does not exist in other
commands , such as

SAVE DATA.

(which will allow all internal DATAPLOT switch
settings to be saved to the file DATA because the
DATAPLOT run has to be interrupted for some

reason) the DATAPLOT convention (for consistency '

s

sake) is to have all file names appended with a

period in all commands ; thus

SAVE DATA,

is correct, while

SAVE DATA

is incorrect.

Some computer systems allow subfile
structure— that is, allow files to be logically
subdivided into smaller units which may be treated
as logical entities unto themself . For example,
UNIVAC systems allow such subfiles , while some
computers may not allow subfiles . If the computer
system allows subfile structure , then DATAPLOT
allows such names to be up to 12 characters , as in

4-2

READ DATA.CALIBRATION? X Y

which would instruct DATAPLOT to read from subfile
CALIBRATION? of file DATA, and to read the first 2

values on each line image into variables X and Y.

The above allowances (12 characters for
qualifiers , 12 characters for file names, and 12

characters for subfile names) are DATAPLOT
allowances ; these limits may be overridden by

restrictions on name length imposed by the
computer system itself (for example, some
may allow only 8 characters for names). The user
should check with local system personnel to

determine if such restrictions exist.

4-3

Input/Output

DATAPLOT input/output is carried out via the
following 3 commands—

READ
SERIAL READ
WRITE

All reading and writing is format-free . There are
no format statements in DATAPLOT.

The READ and SERIAL READ have 4 auxiliary commands
which may at times be of use to the analyst
in reading data into DATAPLOT—

SKIP
ROW LIMITS
COLUMN LIMITS
END OF DATA

I

4-4

Reading in Columns of Data

READ

The most common method of inputting data into
DATAPLOT is via the READ command. The general
form for the READ command is

READ file name, (optional

)

list of variable
names

In the following examples, data will be read from
the terminal (as part of the program)—

READ X
READ X Y

READ X Y Z

READ Yl Y2 Y3 Y4 Y5 Y6 X
READ RESPONSE TEMP VOLUME PRESSURE LAB

In the following examples , data will be read from
file A. (the period at the end of the file name
(A. as opposed to A) is important—it tells
DATAPLOT that A is a file and not a variable)

.

The period at the end of the file name is used in
the NBS implementation—other implementations may
have other punctuation to indicate a file (for
example, a slash /). Some punctuation must be
used, however, in order for DATAPLOT to
distinguish file names from variable names.
Check the local DATAPLOT service organization for
file indicators at your installation.

READ X Y

1 1

4

9

16

25

END OF DATA

Note that in this case, the read will continue
until a line image is encountered which has the
END OF DATA command.

If that same data set were to be read from a

A., then the command would be
file

READ A. X Y

where the file A.
6 line images—

would consist of the following

1

4

9

16

25

END OF DATA

or equivalently the following 5 lines--

READ A. X 11
READ A. X Y 2 4

READ A. X Y Z 3 9

READ A. Yl Y2 Y3 Y4 Y5 Y6 X 4 16

READ A. RESPONSE TEMP VOLUME PRESSURE LAB 5 25

The input data file must be an editable file. In
particular , such a file may not be a binary file
that would (for example) result from a FORTRAN
program which uses a formatless write, as in

WRITE (7) (X (I) ,Y(I) ,1=1,1000)

Such a FORTRAN write statement results in a

packed, binary output file which is efficiently
generated , but nevertheless uneditable . Such a

file may not serve as input into DATAPLOT

.

Some computers allow subfile structures. Thus in
the following examples , data will be read from
subfile B of file A—

READ A.B X
READ A.B X Y
READ A.B X Y Z

READ A.B Yl Y2 Y3 Y4 Y5 Y6 X
READ A.B RESPONSE TEMP VOLUME PRESSURE LAB

A specific example of reading data in from the
terminal itself (or the program itself) is as
follows—

The reason that the above 2 file structures are
equivalent is the DATAPLOT convention that the

read from a file (or subfile) will continue until

1) an END OF DATA line image is encountered;
2) an end of file is encountered ;

(whichever comes first). The 6-lin
representation of the data in the file A. i

actually redundant (the END OF DATA line image is

superfluous) but no harm was done and the result

of the read will be the same in both cases.
DATAPLOT input is format-free. Numbers on a lin
should be separated by at least one space.

Missing values on a data file should be convertec
(e.g., by a local editor) into some numeric valut

(e.g., -9999) which may subsequently be easili
'weeded out" (via SUBSET and EXCEPT qualifications
after being read into DATAPLOT, as in

READ A.B X Y

DELETE X Y SUBSET X < -9000
DELETE X Y SUBSET Y < 9000
FIT Y = A+B*EXP(-C*X)
PLOT Y PRED VERSUS X
PLOT RES X

4-5

If there are more variables specified in the READ
statement than there are data values on the line

j

image, as in

READ X Y Z U
111
2 4 8

3 9 27

END OF DATA

then an error message will be generated . If there
are fewer variables specified than there are data

values, as in

READ X Y

111
2 4 8

3 9 27

END OF DATA

then only as many data values per line image will
be read as there are variables specified (2 in
this case), and remaining data values on each line
image will be ignored. Thus in thr example, the

variable X will end up with values 1 2, and 3;

and the variable Y will end up with the values 1,

4, and 9. The values 1, 8, and 27 will be

i gnored

.

Data may be in usual floating point

representation, as in

1.234
-23.6489
26.00054

or exponential format, as in

1.234+4

1.234E+4

Note that the E format is permitted for data

on a file/subfile (because such a file is commonly
the output from a previously-run FORTRAN
program)

.

(On the other hand, it is recalled that E format
is not permitted in any form of the LET command;
thus LET A = 1.234E+4 is illegal).

The READ command will generate a feedback message
indicating the first line image that was read, the
last line image that was read, the number of line
images read, and the number of variables read.

Reading from multiple data files may be
out. Suppose file A. consisted of
images—

11

12
13

14

15

and file B. consisted of 3 line images—

carried
5 line

21

22
23

then what will be the effect of the following 2

statements—

READ A. X
READ B. X

The first READ will fill the first 5 locations of
X with 11 to 15. The second READ will fill the

with 21 to 23. The net
that the variable X

5 observations—
first 3 locations of X
effect after both reads is
will contain the following

21

22

23

14

15

The rule is that all READs always start at the top
of a variable unless otherwise directed . This
allows variables to be partially overwritten which
may (at times) be what the analyst intended

.

However, the more usual case is that the analyst
would like to have data from various files
concatenated one behind the other. This may be

done by use of SUBSET/EXCEPT/FOR qualifications
attached onto the end of the READ statment. For

example,

Trailing zeros and the decimal point in integers
may be omitted, as in

1.0
1.

1

Note the following features of reading data into

DATAPLOT—

1) data on succeeding line images do not have

to be neatly lined up one under the other—
the read is free-format

;

2) the analyst does not need to be concerned
with pre-specifying the number of line

images— the READ will continue until

an END OF DATA statement is encountered or
until an end of file is encountered.

READ A. X
READ B. X FOR 1=618

will have what effect? The first READ will (as
before) fill the first 5 locations of X with 11

through 15. The second READ tells DATAPLOT to
read from file B., but to place the read values
internally in the variable X starting with

location 6, at increments of 1, up to location 8—
thus the 3 data values will be read into locations

6, 7, and 8 of variable X. After both reads, the

variable X will contain the following 8

observations—

4-6

11

12

13

14

15
21

22
23

With the FOR qualification, we can direct data

anywhere we like within a variable (or variables)

.

It is a valuable tool for data entry.

The SUBSET/EXCEPT qualifications on the end of the

READ statement behave similarly . They work with

variables that have already been defined (via

READ, LET, etc.). For example, suppose the
analyst already had a variable called LAB which
has 15 values (say)—

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

What would be the effect of the following
statement?

READ A. X SUBSET LAB 1

The effect is that the 5 data values (11 through
15) of file A. would be read in, but these data
values would not be placed into the first 5

locations of variable X, rather, they would be
placed in the first available locations as defined
in the SUBSET qualification (SUBSET LAB 1). Since
the internal variable LAB has value 1 for
locations 1, 3, 5, 7, 9, 11, 13, and 15, then the
net effect is that the 5 data values that were
read in would be placed in locations 1, 3, 5, 7,

and 9 of variable X. What would be in locations
2, 4, 6, etc.? These locations will remain
unaffected by the READ, and so they will contain
whatever values they had before the READ. (Note
that all values in DATAPLOT's internal data area
have a default sign-on value of negative machine
infinity .) Much more complicated SUBSET/EXCEPT/FOR
constructs may be formed, although in practice
these complicated constructs are rarely
needed—especially for input.

4-7

Reading Data in Sequentially
SERIAL READ

All of the comments and conventions for the READ
command also hold for the SERIAL READ command
except for the following important difference—
whereas the READ command only reads a fixed number
of data values per line image, the SERIAL READ
allows the analyst to read all the data values on

a line image. The motivation for this is that

some analysts prefer to place data on a

file/subfile in a serial fashion (multiple values

of a variable on each line image), as opposed to

the more common parallel fashion (only 1 value of
each variable on each line image). To amplify the
difference between READ and SERIAL READ, consider
the following—

Suppose the file A. consisted of the following 4

I

line images—

11 12 13 14 15 16

21 22 23 24

31 32

41 42

I The command

READ A. X

would result in X having 4 values—11, 21, 31, and

Si 41. The command

SERIAL READ A. X

would result in X having 14 values—11, 12, 13,

14, 15, 16, 21, 22, 23, 24, 31, 32, 41, and 42.

Further, if instead of reading 1 variable we had
read 2 variables , as in

READ A. X Y

then X would have 4 values—11, 21, 31, and 41;

j
and Y would have 4 values—12, 22, 32, and 42;
but the command

w
SERIAL READ A. X Y

would result in X having 7 values—11, 13, 15, 21,

23, 31, and 41; and Y having 7 values—12, 14,

!
16, 22, 24, 32, and 42.

j

And if instead, we had read in 3 variables , as in

READ A. X Y Z

then this would have resulted in an error message
because lines 3 and 4 contains no Z value;
whereas , the command

SERIAL READ A. X Y Z

j

would result in variable X having 5 values— 11,

14, 21, 24, and 41; variable Y having 5

values—12, 15, 22, 31, and 42; and variable Z

having 4 values—13, 16, 23, and 32.

i

4-8

Reading in Parameters

READ PARAMETER

The READ PARAMETER command allows the analyst to
read in one or more parameters. The READ
PARAMETER command will cause exactly one line
image to be read and scanned. Thus

READ PARAMETER ZZZ. A B C

will cause the next line image of the file ZZZ to
be read and scanned, and the first 3 numbers on

this line image will be placed into the DATAPLOT
parameters A, B, and C. If more than 3 numbers
exist on the line, then the remaining numbers will

be ignored. If less than 3 numbers exist on the
line, then as many parameters as numbers will be
formed and the remaining parameters will be
i gnored.

If no file name is entered, as in

READ PARAMETER ABC

then the next line image from the terminal (or
program) will be used, and so

READ PARAMETER ABC
11 12 13

will result in creating 3 internal parameters A,
B, C, and assigning the value 11 to parameter A,

the value 12 to parameter B, and the value 13 to
parameter C.

Note that only the next single line is scanned for
parameters. This convention was imposed for
simplicity , and is no constraint in practice
because the analyst may enter multiple READ
PARAMETER statements if multiple lines of
parameters exist . Thus

READ PARAMETER ZZZ. ABC
READ PARAMETER ZZZ. D E F G H

with the next 2 lines of file ZZZ. consisting of

23.6 -55 212
3400 26.97 85.88 0.0056 10

will result in the prescribed 8 parameters being
properly defined.

4-9

Reading in Functions

READ FUNCTION

The READ FUNCTION command allows the analyst to

read in a function. The READ FUNCTION command
will cause exactly one line image to be read
and scanned. Thus

READ FUNCTION ZZZ. F

will cause the next line image of the file ZZZ to

be read and scanned, and the text on that line to
be placed into the DATAPLOT function F. Leading
and internal blanks are preserved , but trailing
blanks are ignored.

If no file name is entered, as in

READ FUNCTION F

then the next line image from the terminal (or

program) will be used, and so

READ FUNCTION F

EXP(-X**2)

will result in the internal function F being
created which has the 10-character contents
,EXP(-X**2)

.

Note that only 1 function may be read at a time,

i and only 1 line is scanned for such a function

.

Such conventions were imposed for simplicity , and
they hardly serve as any constraint on the analyst
since functions may be freely concatenated inside
DATAPLOT via the LET FUNCTION command. Thus

READ FUNCTION ZZZ. F

READ FUNCTION ZZZ. G
LET FUNCTION H = F+G

with the next 2 lines of file ZZZ. consisting of

EXP(-X**2)
SIN(X)/SQRT(LOG(X)

)

will result in function F being defined as

EXP(-X**2)

the function G being defined as

SIN(X)/SQRT(LOG(X)

)

and the function H being defined as

EXP(-X**2)+SIN(X)/SQRT(LOG(X)

)

4-10

Writing Out Parameters, Variables, and Functions
WRITE

The WRITE command may be used to write out
parameters , variables , or functions . The general
form for the WRITE command is

which would

WRITE file/subfile name (optional

)

To write information back to the terminal, one
omits the file/subfile name and just enters the

list of parameter/variable/function names to be
printed, as in

WRITE X
WRITE A B

WRITE ABC
WRITE X Y Z U

WRITE Y X G PRED RES REPSD REPDF

The list of names may be in arbitrary
order—parameter names, variable names, and
function names may be mixed at will. To write to

a file, one enters the file name immediately after
WRITE, as in

WRITE A. X
WRITE A. A B
WRITE A. A B C
WRITE A. X Y Z U

WRITE A. Y X G PRED RES REPSD REPDF

which would write out the designated
parameter/variable/function names to file A. The
period following the file name A. is

important— it is that punctuation which tells
DATAPLOT that A. is a file name as opposed to a

parameter/variable/function name. The period at
the end of the file name is the convention used
with the NBS implementation—check locally for
what the punctuation is that defines the end of a

file name at your implementation. The WRITE
command may also be used to write out strings,
comments, and headings. The general form for this
purpose is

WRITE "string to be written out"

1) read in data;

2) erase the screen;
list of names 3) print out the line STRONTIUM ANALYSIS

4) carry out a non-linear fit;

5) copy the screen contents to hardcopy.

The WRITE command may be used with a

SUBSET/EXCEPT/FOR qualification to write out

interesting subsets of the data. For example, if X

and Y were variables

,

WRITE X Y

would write out all values of X and Y; but

WRITE X Y FOR I = 11 1 20

would write out only elements 11 to 20 of

variables X and Y; while

WRITE X Y SUBSET LAB 4

would write out only those elements of X and Y foi

which the LAB variable has the value 4; and

WRITE X Y SUBSBT Y > 100

would write out all values of X and Y for which

> 100 (which is useful for listing those dat,

lines corresponding to outliers) . Any genera

complicated SUBSET/EXCEPT/FOR qualification may h
appended to the WRITE statement.

as m

WRITE "LABORATORY 4 ANALYSIS"

which would print the line

LABORATORY 4 ANALYSIS

on the next available line. This is useful for
headings as in

READ A. X Y

ERASE
WRITE "STRONTIUM ANALYSIS"
FIT Y = A+B/(C+X)
COPY

4-11

Skipping Over

Lines in a Read
SKIP

Restricting a Read
to Certain Rows

ROW LIMITS

The SKIP command sets an internal switch which

indicates how many lines should be skipped in a

file/subfile before the reading of data. The
default setting is 0 (= no lines to be skipped).

To change the setting, enter

SKIP number

where the number indicates the desired number of
lines at the beginning of the file which are to be

skipped over (= ignored) for any subsequent reads
i (via READ, SERIAL READ, or READ FUNCTION). This
command is usually used to skip over heading and
other non-numeric information at the beginning of
a data file. Thus if the file A. consisted of
the following 6 lines—

CALIBRATION STUDY
LABORATORY A

11

21

31

END OF DATA

[and if one entered

SKIP 1

READ A. X

.,then an error message would result (because no
^numeric information is on line 2. If one entered

SKIP 2

READ A. X

then the variable X would end up with the 3 values
•11 , 21 , and 31 . If one entered

SKIP 3

READ A. X

then the variable X would end up with only 2

values— 21 and 31.

Vote that as with
settings , once the

all underlying DATAPLOT
SKIP setting is made, it

remains in effect for the duration of the run, or
until overridden by another SKIP command.

The SKIP command allows one to skip over lines at

the beginning of a file. The ROW LIMITS command

is similar but it gives the analyst the ability to

ignore lines at both the beginning and the end of

a file. The general form for the command is

ROM LIMITS number number

where the first number is the first line number of

the data file to be read, and the second number is

the last number of the data file to be read. The

default values for the row limits switch are 1 and

infinity. Thus if the file A. consisted of

11

21

31

41

51

and if one entered

ROW LIMITS 2 4

READ A. X

then the variable X would end up with

21, 31, and 41.

values—

The ROW LIMITS command adds a third rule to

the list of those governing when a READ will stop;

the 3 rules are

1) if an END OF DATA line is encountered;

2) if an end of file is encountered;

3) if the row limits maximum is encountered.

4-12

Restricting a Read
to Certain Columns

COLUMN LIMITS

Terminating a Read

END OF DATA

The COLUMN LIMITS command allows the analyst to

focus on a certain region within a line image.

The general form for the command is

COLUMN LIMITS number number

where the column numbers indicate the start and

stop columns for the data image scan. Thus if the

data file consists of the following 3 lines

The usual termination for a READ, SERIAL READ, or
READ FUNCTION command is when a line image is
encountered which has

END OF DATA

or

END DATA

11 12 13

21 22 23

31 32 33

where the first number on each line starts in

column 1, the next number on each line starts in

column 11, and the third number on each line

starts in column 21, then

COLUMN LIMITS 10 15

READ X

would result in the variable X having 3 values—
12, 22, and 32.

on it. This is true regardless of whether or not
the END OF DATA line image is in the data file
(which is the usual practice) or is in the program
itself, as in

READ X
11

21

31

END OF DATA

If the analyst is reading from a data
file/subfile, then the usual procedure is for the
analyst to append an extra line image to the
file/subfile consisting of

END OF DATA

via the local editor.

In addition to an END OF DATA line image being
encountered , there are 2 other ways in which a

read may be terminated—

1) when the end of the file or subfile being
read is encountered ;

2) when the pre-specified row limits maximum
has been attained

.

These last 2 procedures may be used without using
an END OF DATA statement.

The general rule of thumb is, therefore , that a

READ or SERIAL READ will continue processing data
from a file until one of the following 3

conditions is met—

1) an END OF DATA line image is encountered

;

2) an end of file or subfile is reached;

3) a row limits maximum is attained.

The read will terminate as soon as any one of

these 3 conditions is satisfied

.

5-1

Loop ing

LOOP

Most DATAPLOT programs do not need loops. In
.FORTRAN [for example) the use of loops is commonly

j
used for intermediate calculations en route to the
final output. In DATAPLOT, however, the existence
of numerous high-level graphics and analysis
commands frequently obviates the need for such
intermediate looping.

To initiate a loop in DATAPLOT, use the LOOP
command. The general syntax is

Note that

LOOP FOR parameter
name

start
value

increment

The loop parameter will be a parameter in the
usual DATAPLOT sense. As the loop is being
executed , the parameter value will be successively
changed (depending on start, increment, and stop
values). The

END OF LOOP

END LOOP

commands will terminate the loop. This parameter
value is global and may be used by any calculation
or specification within the loop. Thus

LOOP FOR I = 1 1 10
i WRITE I

END OF LOOP

will result in the sequence 1, 2, 3, 9, 10
-.being printed out.

LOOP FOR L = 1 1 5

^ PLOT Y X SUBSET LAB L

END OF LOOP

fowill result in 5 distinct plots being generated—

1) a plot of Y versus X but restricted to
those values for which the LAB variable = 1;

2) a plot of Y versus X but restricted to
those values for which the LAB variable = 2;

3) a plot of Y versus X but restricted to
those values for which the LAB variable =3;

4) a plot of Y versus X but restricted to

those values for which the LAB variable = 4;

5) a plot of Y versus X but restricted to
those values for which the LAB variable = 5.

LOOP FOR D = 1 1 10

FIT Y = A+B*X SUBSET DAY D
LET A2(D) = A

LET B2(D) = fl

LET S(D) = RESSD
END OF LOOP

Stop
value

will carry out 10 linear fits of Y on X—each fit

being restr icted to values of the DAY variable =

to 1, then 2, then 3, etc. Further, for each fit,

the value of the fit parameter A will be copied
into the D-th element of variable A2 , the value of

the fit parameter B will be copied into the D-th
element of the variable B2 , and the value of the

fit residual standard deviation parameter RESSD
(automatically provided by DATAPLOT) will be

copied into the D-th element of the variable S.

FEEDBACK OFF
ERASE
LOOP FOR 1X1 = 10 10 80

LET IY1=1X1
LET 1X2=1X1+10
LET IY2=IX2
BOX 1X1 IY1 1X2 IY2
END OF LOOP

will generate a sequence of boxes along the lower

left to upper right diagonal of the screen.

As is usual, the start value, increment, and stop

value may be either numbers or parameters . Thus

LOOP FOR L = 1 1 5

PLOT Y X SUBSET LAB L

END OF LOOP

and

LET A = 1

LET B = 1

LET C = 5

LOOP FOR L = A B C
PLOT Y X SUBSET LAB L
END OF LOOP

are equivalent.

If one does use parameters for specifying the

loop, then these parameters may be altered

within the loop— this capability is at

times used in conjunction with the IF

qualification of the LET command so as to

prematurely terminate a loop when a certain

condition is arrived at. For example,

5-2

LET ALPHAMAX = 10
LOOP FOR ALPHA = .1 .1 ALPHAMAX
LET INT = INTEGRAL X**ALPHA WRT X FOR X
LET ALPHAMAX = -INFINITY IF INT < .05

END OF LOOP

0 TO 1

will terminate itself as soon as a value of ALPHA
is arrived at in which the integral of X**ALPHA
(over the domain 0 to 1) is less than .05.

The checking of the loop parameters is done at the
begin*>2r.? the loop. It is possible for a loop
not to be executed at all (if the increment is

positive and the stop value is smaller than the
start value; or if the increment is negative and
the stop value is larger than the start value);
thus

LET STOP = -1

LOOP FOR A = I 1 STOP
PRINT A
END OF LOOP

would result in the loop not being executed

.

Loops may be nested 7 deep. Thus to generate
plots of Y versus X for each combination of
variables OP (with 3 levels), LAB (with 5 levels),
and DAY (5 levels), one could enter

LOOP FOR 0=113
LOOP FOR L = 1 1 4

LOOP FOR D = 1 1 5

PLOT Y X SUBSET OP 0 SUBSET LAB L SUBSET DAY D
END OF LOOP
END OF LOOP
END OF LOOP

HARDCOPY
SEQUENCE
LOOP FOR 0

LOOP FOR L

LOOP FOR D
XLABEL OPERATOR = VALU()0

X2LABEL LAB = VALUf)L

X3LABEL DAY = VALUf)D

PLOT Y X SUBSET OP 0 SUBSET LAB L SU3SET DAY

END OF LOOP
END OF LOOP
END OF LOOP

Any valid DATAPLOT command can be executed within

the context of a loop. A particularly important

command is the CALL command which allows a

subprogram to be referenced . Thus for more

complicated applications , it may be of interest to

set up a loop in the main program and then specify

a desired set of operations in a subprogram , as in

LOOP FOR 0 =

LOOP FOR L =

LOOP FOR D =

CALL A.

END OF LOOP

END OF LOOP

END OF LOOP

where subprogram A might consist of

XLABEL OPERATOR = VALUf)0

X2LABEL LAB = VALUf)L

X3LABEL DAY = VALUf)D

PLOT Y X SUBSET OP 0 SUBSET LAB L SUBSET DA'

To have the 60 plots automatically hardcopied as
they are being generated , and to have them
automatically numbered (1 to 60), one could enter

HARDCOPY
SEQUENCE
LOOP FOR 0 =

LOOP FOR L =

LOOP FOR D = 1 1 5

PLOT Y X SUBSET OP
END OF LOOP
END OF LOOP
END OF LOOP

0 SUBSET LAB L SUBSET DAY D

To have them hardcopied , sequenced, and also to

have them properly labeled with the current
operator, lab, and day value, one could use the

VALUf) sub-command in conjunction with the
...LABEL command, as follows—

5-3

Conditionally Executing Statements

SUBSET, EXCEPT, FOR, and IF

Conditional execution of statements is handled in

2 different ways in DATAPLOT—

1) the augmentation of SUBSET/EXCEPT/FOR
qualifications at the end of
any graphics or analysis command
(this is used when the the conditionality
is based on values within variables)

;

2) the use of the IF command
in conjunction with the END OF IF
(or END IF) command
(this is used when the conditionality
is based on values of parameters).

Method 1 is the most popular and is the most
straightforward way of conditionally executing
commands . It is a DATAPLOT feature that any
graphics command or any analysis command may be
[conditionally executed (that is, have its
execution restricted to a certain subset of data,

or have its execution contingent on the value of
certain variables) by simply appending the
qualification to the end of the command line. As
Yfar as the analyst is concerned , the primary
general objective is to generate a plot, carry out
la fit, carry out an analysis of variance, etc.,
whereas the restriction of such an activity to a

specific subset is, in a sense, an afterthought

.

\This being the case, the DATAPLOT structure is to

have the DATAPLOT command (PLOT, FIT, ANOVA, etc.)
appear first and foremost on the line, and then
to simply append the qualification to the end of
\the line. Thus it is easy and natural to extend

I PLOT Y X
FIT Y = A+B*LOG(X)
ANOVA Y XI X2 X3

to

PLOT Y X SUBSET LAB 4

FIT Y = A+B*LOG(X) SUBSET X .

ANOVA Y XI X2 FOR I = 1 1 40

50 EXCEPT X = 140

pile specified subset is extracted before the
command is executed . If the subset is empty, then
the command will not be executed

.

Method 2 is a much less popular way of
conditionally executing statements , but does have
occasional application. To conditionally execute
a "chunk' of DATAPLOT code, one may use the IF
command in combination with the END OF IF (or END
IF) command. The general form for the IF command
lis

IF parameter or
number

relative
operator

parameter or
number

equality
inequali ty

less than
< less than or equal to

greater than
=> greater than or equal to

The conditionality specification is done in terms

of parameter values (as opposed to variable values

in the SUBSET/EXCEPT qualification) . For example,

suppose a variable X has 100 values in it and it

is desired to determine the maximum value in X.

The easiest way to do this in DATAPLOT is to

simply enter

LET MAX = MAXIMUM X

However, for purposes of illustration of the use

of the IF command, one could achieve the same

result via the following statements—

LET MAX = -INFINITY

LOOP FOR 1=11 100

LET XI=X(I)
IF XI > MAX
LET MAX = X(I)
END OF IF
END OF LOOP

It is clear that the second method is an extremely

inefficient method for computing the parameter

MAX.

As a second example, suppose it is desired tc

determine that combination of A and B (over a

specified lattice of values) for which the Ll fit

of A+LOG(B+X) is achieved. The easiest way to

carry this out in DATAPLOT is

FIT POWER 1

PRE-FIT A+LOG(B+X) FOR A = 1 1 10 FOR B = 100 10 200

At the end of the PRE-FIT, the optimal values will

reside in the parameters A and B. An alternate

(and much longer) way of doing the same is

vhere the relational operators are

LET MIN = INFINITY
LOOP FOR A = 1 1 10

LOOP FOR B = 100 10 200

LET PRED = A+LOG(B+X)
LET RES = Y-PRED
LET RES2 = ABS(RES)
LET SUMA1 = SUM RES2

IF SUMAD < MIN
LET A2 - A
LET B2 = B

END OF IF

END OF LOOP
END OF LOOP

At the end of execution of this code, the optimal

values of A and B will reside in the parameters A2
and B2.

IF statements may be nested up to 7 deep, as in

IF A > 10

IF B = 7

IF C < = 100
WRITE ABC
END OF IF
END OF IF
END OF IF

The parameters A, B, and C will be scanned; only
if the 3 specified conditions are satisfied will
the WRITE occur.

Any valid DATAPLOT statment may occur within the

context of the IF set of statements. A
particularly powerful entry is the CALL statement
which allows subprograms to be executed

.

Thus, for example, to conditionally execute
(only if the residuals standard deviation RESSD
from some fit is less than .1) a subprogram XYZ

,

one could enter

IF RESSD < .1

CALL XYZ.
END OF IF

The END OF IF may optionally be written as END IF,

thus the above code may also be written as

IF RESSD C .1

CALL XYZ.
END IF

The IF capability in DATAPLOT is a low-level
capability (no one does IF as an end objective in

itself). Conditionally executing a chunk of code
is an elementary capability of any computer
language. In DATAPLOT, due to the existence of
high-level capabilities, and due to the

SUBSET/EXCEPT/FOR qualification capability, the IF
capability is only lightly used.

5-5

Calling Subprograms
CALL

The typical DATAPLOT program consists only of a

\main program. The existence of higher-level
capabilities (e.g., PLOT, FIT, LET, etc.) often

i
precludes complicated nesting of subprograms.
However, subprograms may be included in DATAPLOT
las needed.

'^Subprograms are completely independent programs in
their own right and must be placed in separate
mass storage files (or subfiles) . Such
subprograms are accessed via the CALL command and
tare identified by the name of the mass storage
file (or subfile) in which the subprogram resides,
as in

CALL XYZ.

(which would execute the subprogram residing in
file XYZ), or

CALL XYZ.ABC

(which would execute the subprogram residing in
the subfile ABC of the file XYZ). As with all
DATAPLOT commands which involve file/subfile
usage, the trailing period after the file name is
important—it tells DATAPLOT that the name is a

file name. Further, for those computer systems
which allow logical subfiles within files, the
period also serves as a separator between file
name and subfile name.

When the last line of the subprogram in the file
is executed , it returns to the main program to the
statement immediately following the CALL
statement. The name of the subprogram is taken to

be the name of the file where the subprogram
resides. Modularity is strictly adhered to in
that only 1 subprogram may exist in any given
file/subfile. There is no necessity for internal
identification of the subprogram (e.g., there
lis (as would be the case in FORTRAN, BASIC,

and ALGOL) no need for a SUBPROGRAM, SUBROUTINE,
'or PROCEDURE statement as the first line of the
subprogram) . Nor is there any need to

terminate the various subprograms with a

terminator statement (e.g., RETURN). In fact,
the existence of EXIT (or END, STOP, HALT, or BYE)
will cause the DATAPLOT run to be terminated—thus
EXIT (and its synonyms) is usually reserved
(for the last line of the main program. All
.parameter

, variable, and function names are
global—names defined in the main program may

\\be used and modified in subprograms (and vice
versa). Subprograms may in turn call other
subprograms. The maximum number of nested
subprograms is 7 (including the main program) .

! Subprograms may not be recursive— that is, a

. subprogram may not call itself.

IThe 4 most important ways in which subprogram
jsage arises is as follows—

1) Unconditional calls
2) Conditional calls
3) Unconditional loops
4) Conditional loops

For example—

1) Unconditional calls
In this case, a subprogram is called

once and only once. For example,

CALL SIGMA.

would cause subprogram SIGMA

to be unconditionally called once
and only once.

2) Conditional calls
This calls a subprogram exactly once and
only under certain conditions . For example,

IF A > 4

CALL SIGMA.
END OF IF

would cause subprogram SIGMA
to be called only if the current value

of the parameter A exceeds 4, but not

to call SIGMA otherwise

.

3) Unconditional loops
In this case, a subprogram is called

multiple times. For example,

LOOP FOR B = 1 1 10

CALL SIGMA.

END OF LOOP

would cause subprogram SIGMA
to be unconditionally called 10 times
(for B = 1, 2, 9, 10).

4) Conditional loops
In this case, a subprogram is called

for a number of times that depends

on calculations that occur within the

subprogram being called. For example,

LOOP FOR B = 1 1 C
CALL SIGMA.
END OF LOOP

(where the parameter C is pre-defined
but may also be redefined within the

subprogram being called)
would cause subprogram SIGMA

to be called a variable number of times

depending on how C is redefined within
the loop.

As one would expect, execution of a pre-stored

main program may be initiated in an identical

fashion as one would execute a subprogram, namely

via the CALL command. Thus, for example, if the

analyst has signed onto DATAPLOT, and if a

pre-stored main program resides in a file called

A, then execution of the main program could start

with the entry of the statement

CALL A.

b-6

Creating Subprograms Listing Subprograms

CREATE LIST

The most common and most efficient method for
creating DATAPLOT subprograms is via the local

editor. That is, before the analyst enters
DATAPLOT, he/she enters into a file/subfile with
the local editor and creates a DATAPLOT program
and any needed DATAPLOT subprograms . There is no
substitute for an excellent local editor— the
analyst is encouraged to use such an editor for

creating DATAPLOT programs and subprograms

.

One the other hand, it is at times convenient to

be able to create a DATAPLOT subprogram "on the
fly" while one is executing a DATAPLOT program. A
prime example of this is in the construction of
diagrammatic graphics in which one makes an
interactive pass at forming the diagram, stores
the commands that were used en route, and then
executes these commands as a block in a

semi -interactive mode.

If one is running DATAPLOT interactively , one may
automatically store the entered interactive
command lines into a file by use of the

CREATE

command. For example, to instruct DATAPLOT that
all subsequently keyed-in commands should be
in a file XYZ as they are being entered, the
analyst would enter

CREATE XYZ.

To terminate the creation of the file XYZ, the
analyst enters

END OF CREATE

or

END CREATE

To execute the contents of XYZ, one would enter

The LIST command may be used to list the contents

of any file or subfile. Usually such a capability

is taken advantage of when the file/subfile

contains a subprogram , but it may also be used

when the file contains data. The usual convention

about periods following the file name is followed.

Thus to list the contents of the file XYZ, one

enters

LIST XYZ.

If the local computer system may have subfiles of

files, then to list subfile ABC of file XYZ, one

enters

LIST XYZ.ABC

The LIST command only lists files/subfiles—it

does not execute the contents of such

files/subfiles

.

CALL XYZ.

6-1

Restricting Plots and Analyses to Subsets

SUBSET , EXCEPT, and FOR

The DATAPLOT keywords

SUBSET
EXCEPT
FOR

may be appended to the end of any DATAPLOT
graphics or analysis command. They allow the

analyst to specify precisely the desired subset
(any subset) which the plot/analysis should be

restricted to. The rules for using
SUBSET/EXCEPT/FOR are straightforward ; we mention
them briefly here and then demonstrate them by

example. When the SUBSET qualification is used,

it is always followed by a variable name. Any
variable whatsoever may be used to define the

subset—one which is used in the plot/analysis
statement, such as

PLOT Y X SUBSET X 100 TO 200

PLOT Y X SUBSET Y 10 TO 30

or one not explicitly involved in the

plot/analysis statement, as in

PLOT Y X SUBSET LAB 4 TO 6

PLOT Y X SUBSET OPERATOR 3

After the variable specification , one may have one
of the following 4 syntaxes—

Da single number;

2) a series of numbers

3) a number followed by TO followed by another
number

;

4) a relational operator (= , o. <=, <, >=, or >)

followed by a single number.

A single number indicates that the subset is
restricted to that specific value and no others,
as in

PLOT Y X SUBSET LAB 4

which will restrict the plot to values in Y and X
corresponding to values in the LAB variable which
equal 4.

inclusively , as in

PLOT Y X SUBSET LAB 4 TO 9

which will restrict the plot to values of Y and X
corresponding to all LAB values between 4 and 9,
incl usi vely

.

A relational operator followed by a single number
indicates that the subset is restricted to that
specific interval , as in

PLOT Y X SUBSET LAB >= 3

which will restrict the plot to values in Y and X
corresponding to values in the LAB variable
greater than or equal to 3.

PLOT Y X SUBSET LAB = 3

will restrict the plot to values in Y and X
corresponding to values in the LAB variable equal
to 3 (and so will have the same effect as PLOT Y X
SUBSET LAB 3 as discussed earlier).

PLOT Y X SUBSET LAB < > 3

will restrict the
corresponding to

equal to 3.

plot to values in Y and X
values in the LAB variable not

SUBSET qualifications may be strung together in a

more complicated fashion. Each individual SUBSET
specification may have any of the above 4 valid
syntaxes . The final subset will be the
intersection of the individual subsets. Thus

PLOT Y X SUBSET LAB 4 SUBSET OPERATOR 7

will restrict the plot to values in Y and X
corresponding to values in the LAB variable equal
to 4 and (simultaneously) values in the OPERATOR
variable equal to 7. The use of many SUBSET
specifications strung together allows the analyst
to easily focus on any particular subset desied.
Thus

PLOT Y X SUBSET LAB 4 5 9 SUBSET OPERATOR 7 TO 14 SUBSET Y < 1000

A series of numbers indicates that the subset is

restricted to those specific values and no others,
as in

PLOT Y X SUBSET LAB 4 5 9

which will restrict the plot to values of Y and X
corresponding to LAB values of 4, 5, and 9.

A number followed by TO followed by another number
indicates that the subset is restricted to all

values in the interval specified by the 2 numbers,

will restrict the plot to values in Y and X
corresponding to values in the LAB variable equal
to 4, 5, or 9, and (simultaneously) values in the
OPERATOR variable equal to 7 to 14, and
(simultaneously) values in the Y variable less
than 1000.

6-2

In addition to direct subset specification via
SUBSET, there is also a need at times for the
subset to be defined via negation . DATAPLOT
handles such a need via the EXCEPT
qualification . For simplicity and consistency

,

the rules for using EXCEPT are identical to the

rules for using SUBSET; thus

PLOT Y X EXCEPT LAB 3

will restrict the plot to values in Y and X
corresponding to values in the LAB variable not
equal to 3.

To plot Y versus X for elements 10, 20, 30,

490, 500, one enters

PLOT Y X FOR I = 10 10 500

In the above example, we have used the dummy index
I; this is the most common choice for the FOR
qualification, although any name could have been
entered. The effect of using I is that this name
will become a DATAPLOT parameter . At the end of
the execution of the statement

PLOT Y X FOR I = 10 10 500

PLOT Y X EXCEPT LAB 3 4 7 EXCEPT OPERATOR 10 TO 15 EXCEPT Y > 1000

will restrict the plot to values in Y and X
corresponding to values in the LAB variable not
equal to 3 , 4 , or 7 , and (simultaneously) values
in the OPERATOR variable not equal to 10 to 15,
and (simultaneously) values in the Y variable not
greater than 1000.

At times the analyst may need to define subsets by
a combination of specifying what is in the subset
and what is not in the subset. DATAPLOT handles
this by allowing the analyst to freely mix SUBSET
and EXCEPT qualifications ; thus

PLOT Y X SUBSET LAB 3 TO 20 EXCEPT LAB 4

will restrict the plot to values in Y and X
corresponding to values in the LAB variable from 3

to 20 with the exception of LAB 4.

PLOT Y X SUBSET LAB 3 4 7 EXCEPT OPERATOR 10 TO

will restrict the plot to values in Y and X
corresponding to values in the LAB variable equal

to 3, 4, or 7, and (simultaneously) values in the
OPERATOR variable not equal to 10 to 15, and
(simultaneously) values in the Y variable not
greater than 1000.

At times the analyst finds it convenient to

specify a subset based not on the magnitudes and
values of numbers in variables but rather on
the element position in the variable. For

example, suppose the analyst wishes to PLOT Y
versus X but to do so for only every other element
in the variables Y and X. How may this be
done? DATAPLOT accounts for this case via
the use of the FOR qualification. The FOR

qualification (which may be appended to any

DATAPLOT graphics/analysis command) has the
general form

FOR dummy index = start increment stop

And so to plot Y versus X for elements 1, 3, 5,

499, one enters

the parameter I will have the value 500 in it. One

may not string successive FOR qualifications

together at the end of a statement—only one FOR

qualification is permitted . One may not mix FOR

qualifications together with SUBSET and EXCEPT

qualifications

.

Note that in the above description of SUBSET,

EXCEPT, and FOR, we referred in many places to the

use of numbers, for example one form for the

SUBSET qualification is to have a number followed

by TO followed by another number, and the form for

the FOR qualification is to have a start number,

an increment number, and a stop number. Note that

all statements involving numbers are equally valid

for DATAPLOT parameters; that is, any

SUBSET/EXCEPT/FOR qualification having numbers in

it may equally well have pre-defined parameters in

EXCEPT Y > 1000

it. Although this feature is only rarely used, it

does give the analyst additional generality if

needed. For example,

LET A = 3

LET B = 7

PLOT Y X SUBSET X A B

is exactly equivalent to

PLOT Y X SUBSET X 3 7

and

LET START = 5

LET INCREMENT = 5

LET STOP =300
PLOT Y X FOR I = START INCREMENT STOP

is exactly equivalent to

PLOT Y X FOR 1=55 300

PLOT Y X FOR 1=12 500

6-3

As mentioned earlier, one may use any variable as
the subset variable ; occasions arise in which it
makes good sense to use one of the variables in
the plot (e.g., X or Y) as a subset variable, thus

PLOT Y X SUBSET X > 100

will restrict the plot to values in Y and X
corresponding to values in the X variable greater
than 100; while

PLOT Y X SUBSET Y < 1000

! will restrict the plot to values in Y and X
corresponding to values in the Y variable less
than 1000 (which, for example, may be of use in
regenerating a plot with outliers removed).

In addition to the variables that the analyst has
created, the subset specification variable may
also be the automatically-generated variables PRED
(= predicted values) and RES (= residuals) which
result from any DATAPLOT fitting, spline fitting,
smoothing, Anova, Median polish, etc. operation

.

Note how the use of the RES variable as the subset
variable may be a valuable tool for the data
analyst in carrying out residual analysis. For
example, suppose that the analyst has carried out

, a fit , say, via

FIT Y = A+B*EXP(-C*X)

,
and suppose the analyst has generated

'

t

the usual superimposed plot of raw data and
. predicted values via

CHARACTERS X BLANK
LINES BLANK SOLID
PLOT Y PRED VERSUS X

and suppose further that the analyst has generated
I the usual residual plot via

PLOT RES X

Now suppose that the analyst is
interested in generating a listing of X, Y, PRED,
and RES values for all the data; this is easily
done via

PRINT X Y PRED RES

Now finally suppose that the analyst noted on the
residual plot that there was a patch of residuals
which were larger than others (this was the region
of poorest fit) and suppose the analyst was
interested in printing out those X, Y, PRED, and
RES values only for this region of poor fit. Such
a listing would be of use in exactly specifying

|

the X values which had the poorest fit. For sake
of definiteness

,
suppose the analyst was

I

interested in such a printing for all values
corresponding to residuals in excess of 10 units.
Bow may such a printing be generated? Very
easily, namely by entering

PRINT X Y PRED RES SUBSET RES > 10

A final note to this section reinforces the fact
that SUBSET/EXCEPT/FOR qualifications may be used
with any graphics/analysis command. Of particular
importance are the various forms of the PLOT
command. We have already seen how

PLOT Y X

may be restricted to become

PLOT Y X SUBSET LAB 4 TO 8

Note also that the powerful 3-argument form

PLOT Y X TAG

(which plots Y versus X but generates an
individual trace for each distinct value of the
TAG variable) may be also be restricted as in

PLOT Y X TAG SUBSET LAB 4 TO 8

Further, the same is true for the VERSUS form—

PLOT Yl Y2 Y3 Y4 Y5 Y6 VERSUS X

(which is handy for generating multi-trace plots)
may be similarly restricted , as in

PLOT Yl Y2 Y3 Y4 Y5 Y6 VERSUS X SUBSET LAB 4 TO 8

The DATAPLOT convention for subset extraction is a

flexible, powerful , time-saving tool for the
scientist/researcher . Its use allows the analyst
to easily probe into interesting subsets of the
data—so as to detect anomalous behavior in such
subsets and so as to determine if conclusions and

models which hold for the full set are equally
valid for the individual subsets.

In-line Text

TITLE, ...LABEL,

Sub-commands
LEGEND, and TEXT

The entries in this section are not commands in

themselves ; rather, they are sub-commands which

may appear in-line in the text-oriented DATAPLOT
commands—TITLE, ...LABEL, LEGEND, and TEXT. The
sub-commands are "flagged" for DATAPLOT by

the existence of open and closed parentheses
following each sub-command , as in

TEXT ALPHf JBETA ()GAMM(

)

which would write out the Greek characters alpha,

beta, and gamma. The most important of these
sub-commands are LC , UC

,
SUB, SUP, INTE, VALU

,

and the Greek alphabet

.

The sub-commands in this section are not
applicable for the Tektronix font, but are
applicable for all of the 7 "fancy script" fonts.
Thus before use of any of the in-line text
sub-commands , the analyst should inform DATAPLOT
(via the FONT command) that the default Tektronix
font is being overridden and another font is being
used, as in

FONT TRIPLEX
TEXT ALPH()BETA ()GAMM(

)

The VALU sub-command is especially important. It

allows the analyst to substitute parameter values
in titles, labels, legends, and text strings. For
example,

LET LAB = 7

TEXT ANALYSIS FOR LABORATORY VALU ()LAB

would result in the following line appearing--

ANALYSIS FOR LABORATORY 7

The VALU() sub-command will print out the value of
the parameter which immediately follows the () of
VALU(). In the example above, this parameter was
LAB; this parameter had a value of 7.

6-5

General Operations

Sub-command Description Exampl

e

UC

CAP
CAPS
LC

upper case
upper case
upper case
lower case

TEXT UC()ABC

TEXT CAP ()ABC
TEXT CAPS ()ABC
TEXT LC()ABC

SUB
UNSB
SUP
UNSP

subscript
un-subscript
superscript
un-superscript

TEXT ABCSUBf)DEF
TEXT ABCSUBf)DEFUNSB()GHI
TEXT ABCSUPf JDEF
TEXT ABCSUPf)DEFUNSP()GHI

VALU substitute value of parameter TEXT VALU()A

Greek Characters

Sub-command Description Example

ALPH alpha TEXT ALPH(

)

BETA beta TEXT BETA(

j

GAMM gamma TEXT GAMMf

)

DELT del ta TEXT DELT(

)

EPSI epsilon TEXT EPSI(

)

ZETA zeta TEXT ZETAf

)

ETA eta TEXT ETA(

)

THET theta TEXT THET(

)

IOTA iota TEXT IOTA(

)

KAPP kappa TEXT KAPP (

J

LAMB lambda TEXT LAMB (

J

MU mu TEXT MU(

)

NU nu TEXT NU(

)

XI xi TEXT XI(

)

OMIC omicon TEXT OMIC(

)

PI Pi TEXT PI(

)

RHO rho TEXT RHO(

)

SIGH sigma TEXT SIGM(

)

TAU tau TEXT TAU(

)

UPSI upsilon TEXT UPSK)

PHI phi TEXT PHI(

)

CHI chi TEXT CHI(

)

PSI psi TEXT PSI(

)

OMEG omega TEXT OMEG (

J

Mathematical Symbols

Sub-command Description Example

PART partial derivative TEXT PART(

)

INTE integral TEXT INTE(

)

CINT circular integral TEXT CINT(

)

SUMM summation TEXT SUMM(

)

PROD product TEXT PROD(

)

INFI infinity TEXT INFI(

)

+ - + or - TEXT >-()
-+ - or + TEXT -+()

TIME times TEXT TIME(

)

DOTP dot product TEXT DOTP(

)

DEL vector product TEXT DEL(

)

DIVI division TEXT DIVI(

)

LT less than TEXT LT(

)

GT greater than TEXT GT(

)

LTEQ less than or equal to TEXT LTEQ(

)

GTEQ greater than or equal to TEXT GTEQi)

NOT= not equal TEXT NOT=(

)

APPR approximately equal to TEXT APPR(

)

EQVI equivalence TEXT EQUI(

)

VARI varies TEXT VARI(

)

TILD tilde TEXT TILD(

)

CARA carat TEXT CARA(

)

PRIM prime TEXT PRIM(

)

RADI radical TEXT RADIf

)

LRAD large radiacal TEXT LRADf

)

SUBS subset TEXT SUBS(

)

SUPE superset TEXT SUPEf

)

UNIO union TEXT UNIO(

)

INTR intersection TEXT INTR(

)

ELEM is an element of TEXT ELEM(

)

THEX there exists TEXT THEX(

)

THFO therefore TEXT THFO(

)

6-7

Miscellaneous Symbols

d 1 1 h— r~, /r̂ imm 3 n Descr ipti on Exampl

e

SPAC opace 1 dA 1 -D LriK^ I /

SP Space TFXT)

LAPO left apostrophe TEXT LAPO(

)

RAPO right apostrophe TEXT RAPO(

)

LBRA -L C L l_. UZ. d OAC L* TFXT T.BPAf)

RBRA t* 7 n hi t~ hi t~ .p c]ce*h TFXT PRRAf)

7 A ^"t- /"»])T* T 11 —l /— y-J
i. fcrX C Cuiiy OLdCKGL.

right curly bracfcet i dA 1 t\K*Bi\ [/

LELB 1 Pft" how TFXT T,FT.R()

RELB X X yi J l_ CrX UkJYi 1 dA 1 t\CitjD\ J

r i rth\ +- a n /-x X y/ J L aOCc/i C 1 CtA 1 [J

LACC 1 (*fi~ accent' TEXT LACC(

)

BREV TEXT BREVf

)

RQUO right. guote TEXT RQUO(

)

xtri l y uulc TFXT TJlllOf)

/j<3 sp rppyir A72CD^)

IASP inverted nasp I tX 1 IAjPI I

RARR right arrow TEXT RARR(

)

LARR left arrow TEXT LARRf

)

UARR up arrow TEXT UARRf

)

DARR down arrow TEXT DARR(

)

PARA para graph TEXT PARA(

)

DAGG da gger TEXT DAGG (

)

DDAG double dagger TEXT DDAG(

)

VBAR vertical bar TEXT VBARl

)

DVBA double vertical bar TEXT DVBA(

)

LVBA long vertical bar TEXT LVBA(

)

HBAR horizontal bar TEXT HBAR(

)

LHBA long horizontal bar TEXT LHBA(

)

BAR bar TEXT BAR(

)

6-8

Defaults, Restrictions, and Settings

Plot Control—

Operation

Automatic pre-erase (before plots)
Automatic bell (before plots)
Automatic hardcopy (after plots)
Automatic sequence numbers on plots

Default

on

on
off
off

Command

PRB-BRASB
BELL
HARDCOPY
SEQUENCE

Plot characters
Line types
Title and labels
Maximum number of characters in title
Maximum number of characters (each label)

all blank
all solid
all blank
100
100

CHARACTERS
LIXBS
TITLE and . .LABEL

Plot scale
Grid lines
Axis limits

linear ...LOG
off . . .GRID
neat—float with data ...LIMITS

Frame lines
Frame corner coordinates
Tic marks
Tic mark labels
Tic mark position

all 4 appear
(15,20) and (85,85)
on all 4 frames
on all 4 frames
through frame

. . .FRAME
FRAME CORNER COORDINATES
. . .TICS
...TIC LABELS
...TIC POSITION

Legends
Maximum number of legends
Maximum number of characters (all legends)

all blank
100
500

LEGEND

Arrows
Maximum number of arrows
Line segments
Maximum number of line segments
Boxes
Maximum number of boxes

all off
100
all off
100
all off
100

ARROW . .

.

SEGMENT ...

BOX ...

Font (for all titles, labels, legends, etc.) Tektronix FONT

Size for plot characters
Size for plot lines
Size for plot tics
Size for plot titles
Size for plot lables
Size for plot legends

3X screen height)
3X screen height)
3X screen height)
3X screen height)
3% screen height)
3% screen height)

CHARACTER SIZE
LINE SIZE
TIC SIZE
TITLE SIZE
. . .LABEL SIZE
LEGEND ... SIZE

Color for plot characters
Color for plot lines
Color for plot frames
Color for plot tics
Color for plot tic labels
Color for plot titles
Color for plot lables
Color for plot legends
Color for plot arrows
Color for plot segments
Color for plot boxes
Color for background f« inside frame line)
Color for margin (* outside frame line)

red
red
red
red
red
red
red
red
red
red
red
blue
blue

CHARACTER COLOR
LINE COLOR
FRAME COLOR
TIC COLOR
TIC LABEL COLOR
TITLE COLOR
...LABEL COLOR
LEGEND ... COLOR
ARROW . . . COLOR
SEGMENT ... COLOR
BOX ... COLOR
BACKGROUND COLOR
MARGIN COLOR

3d origin
where xO

yO
zO

3d frame lines
3d eye coordinates

where xe
ye
re

3d pedestal
color for 3d pedestal

min
mln
min

max
max

data
data
data

3*(max x
3*(max y
3*(max z

- min x)
- min y)
- mln x)

(xO,yO,eO)

on
(xe,ye,ze)

off
red

ORIGIN COORDINATES

FRAME
EYE COORDINATES

PEDESTAL
PEDESTAL COLOR

Maximum number of plot points per plot
Maximum number of superimposed plots

1000
no limit

(,-')

Diagrammatic Graphics—

Operation

Font
Case
Justification
Height
Width
Color of Background
Color of text and figures

Default Command

Tektronix
upper case
left- justified
3 (= 3% screen height)
2 (= 2% screen width)
bl ue
red

PONT
CASE
JUSTIFICATION
HEIGHT
WIDTH
BACKGROUND COLOR
LINE COLOR

Output Devices—

Operation Default Command

Terminal
Horizontal picture points
Vertical Picture points
Output device # 1

Terminal color status
Terminal continuity status
Maximum number of output devices
Status of device 1

Status of devices 2 to 5

Status of penplotter
Status of hardcopy unit

Tektronix 4014
1024
781

terminal
off (= non-color

)

on
5

on
off
off
off

TERMINAL MANUFACTURER
PICTURE POINTS
PICTURE POINTS

COLOR
CONTINUOUS

ZETA, CALCOMP, VERSATEC
PENPLOTTER
HARDCOPY

Operation Default Command

Maximum number of variables
Maximum number of observations per variable
Maximum total internal data storage
Automatically-provided variables
Automatically provided parameters
Maximum number of variable/parameter/function names (total)
Maximum number of characters (total for all functions

)

Maximum number of characters in FIT model
Maximum number of parameter names in FIT model
Maximum number indpendent variables in FIT

10

1000

10000
PRED and RES
PI and INFINITY
200
1000
200
100

DIMENSION
DIMENSION

Support—

Operation Default Command

Trigonmetric units
Baud rate
Text angle
Echo
Bell (at time of plot)
Host
Cut-off standard deviation for FIT
Cut-off number of iterations for FIT
Default fit criterion power for PRB-FIT
Degree of internal calculations
Feedback messages from commands
Print output from analysis commands
Number of lines to be skipped on READ/SERIAL READ
Row limits for READ/SERIAL READ
Column limits for READ/SERIAL READ
Command terminator charactor

radi ans
1200
0 degrees (= horiz .

)

off
on
Univac 1100 Bxec 8

0.000005
50
2 f= least squares)
single precision
on
on
0

1 to Infinity
1 to 132

; or corriage return

ANGLE UNITS
BAUD RATE
ANGLE
ECHO
BELL
HOST
FIT STANDARD DEVIATION
FIT ITERATIONS
FIT POWER

FEEDBACK
PRINTING
SKIP
ROW LIMITS
COLUMN LIMITS
TERMINATOR CHARACTER

6-10

General—

Operation

Maximum number of characters per terminal line
Maximum number of lines per command
Continuation indicator (at end of line)
Command terminator indicator

80

2

or carriage return

Command

TERMINATOR CHARACTER

Machine Constants (Bxample 1—Univac 1100/82)—

Operation Default

Standard input unit
Standard output unit

Number of bits per character
Number of characters per word
Number of bits per word
Machine infinity

5

6

9

4

36
0.1701412*

SET
SET

39

Machine Constants (Example 2— Vax 11/780)-

Operation

Standard input unit

Standard output unit
Number of bits per character
Number of characters per word
Number of bits per word
Machine infinity

5

6

8

4

32

XXX

SET
SET

File/Subfile Nomenclature—

Operation

Qualifier-file separator (Example 1—Univac 1100/82)
File-subfile separator (Example 1—Univac 1100/82)
Qualifier-file separator (Example 2— Vax 11/780)
File-subfile separator (Example 2— Vax 11/780)

File/Subfile Structure—

Default Command

Purpose

Message
News
Mail
Help
Bug
Query
Log

Read
Write
Macro
Save

Scratch
Data
Plot
Plot 2

Unit Number

21

22

23

24

25

2f

27

31

32
33

34

41

42

43

44

Name

DPMESF
DPNEWF
DPMAIF
DPHELF
DPBUGF
DPQUEF
DPLOGF

user-defined
user-defined
user-defined
user-defined

DPSCRF
DPDATE
DPPLI

F

DPPL2F

File or Subfile

file only
file only
file only
file only
file only
file only
off

file or subfile
file or subfile
file or subfile
file or subfile

file only
file only
file only
file only

Command

MESSAGE
NEWS
MAIL
HELP
BUG
QUERY

READ and SERIAL READ
WRITE
CREATE and CALL
SAVE and RESTORE

6-11

Dumping Status Information

STATUS

The status of the most important internal DATAPLOT
settings may be printed out via the STATUS
command. This command has no arguments , one simply
enters

STATUS

The following is an example of the type of output
which would result from entering the STATUS
command—

6-12

* STORAGE INFORMATION *

**

* NUMBER OF ... * USED * UNUSED * MAXIMUM *

**
* VARIABLES (COLUMNS) * 6 * 4 * 10 *

* OBS PER VARIABLE * 98 * 902 * 1000 It

* OBS (TOTAL) * 6000 * 4000 * 10000 *

* FUNC CHAR (TOTAL) * 13 * 987 * 1000 *

* VAR/PAR/FUNC NAMES 23 * 177 * 200 *

**

SET PLOT PLOT PLOT PLOT PLOT
INDEX LINE LINE CHARACTER CHARACTER CHARACTE

TYPE COLOR TYPE COLOR SIZE

1 BLAN RED X RED 1.000
2 SOLI RED BLAN RED 1.000
3 SOLI RED X RED 1.000
4 SOLI RED X RED 1.000
5 SOLI RED X RED 1.000
6 SOLI RED X RED 1.000
7 SOLI RED X RED 1.000
8 SOLI RED X RED 1.000
9 SOLI RED X RED 1.000

10 SOLI RED X RED 1.000

X--AXIS PLOT MINIMUM = -.17014118+039
X--AXIS PLOT MAXIMUM = .17014118+039
Y -AXIS PLOT MINIMUM - -.17014118+039
Y -AXIS PLOT MAXIMUM = .17014118+039

VARIABLE 1 (WITH 98 ELEMENTS) HAS THE FOLLOWING NAMES: TIME X

VARIABLE 2 (WITH 98 ELEMENTS) HAS THE FOLLOWING NAMES: STRAIN Y

VARIABLE 3 (WITH 98 ELEMENTS) HAS THE FOLLOWING NAMES: STRESS

VARIABLE 4 (WITH 3 ELEMENTS) HAS THE FOLLOWING NAMES: STRESS

2

VARIABLE 5 (WITH 1 ELEMENTS) HAS THE FOLLOWING NAMES: S2
VARIABLE 6 (WITH 1 ELEMENTS) HAS THE FOLLOWING NAMES: C2

PARAMETER PI HAS THE FOLLOWING VALUE. .3141593+001

PARAMETER INFINITY HAS THE FOLLOWING VALUE. .1701412+039
PARAMETER NSTRESS2 HAS THE FOLLOWING VALUE. .3000000+001
PARAMETER K HAS THE FOLLOWING VALUE. .1000000+001
PARAMETER ST HAS THE FOLLOWING VALUE .3000000+003
PARAMETER A HAS THE FOLLOWING VALUE .1591170+000
PARAMETER B HAS THE FOLLOWING VALUE -.6243119-001
PARAMETER C HAS THE FOLLOWING VALUE. .1450866-002
PARAMETER REPSD HAS THE FOLLOWING VALUE .0000000
PARAMETER REPDF HAS THE FOLLOWING VALUE .0000000
PARAMETER RESSD HAS THE FOLLOWING VALUE .2687022-002
PARAMETER RESDF HAS THE FOLLOWING VALUE .3400000+002

FUNCTION G —A+B*EXP(-C*X)

6-13

The STATUS output has 3 sections—

1) storage;
2) plot control;
3) parameter/variable/function .

The storage section prints out information
concerning the internal DATAPLOT arrays which have
been used by the analyst. For the above
example, the storage section indicates the
following—

1) The maximum number of variables allowed
is 10 (else use the DIMENSION command);

6 variables have been defined (TIME,
STRAIN, STRESS, STRESS2, S2, and C2) , and
10-6 = 4 variables remain to be defined;

4) 12 parameter names (INFINITY

,

PI, NSTRESS2, K, ST, A, B, C,

REPSD, REPDF, RESSD , RESDF) ; of
these 12 parameter names,
PI and INFINITY are pre-defined
by DATAPLOT and contain the
value of the mathematical
constant pi and the machine
single-precision maximum. The 4

parameters REPSD, REPDF, RESSD,
and RESDF are also
internally-computed by DATAPLOT
whenever any PRE-FIT, FIT, EXACT
RATIONAL FIT, SPLINE FIT,

SMOOTH, ANOVA, OR MEDIAN POLISH
is done— they contain the
values

2) The maximum number of observations per
variable allowable is 1000 (else use the

DIMENSION command); The longest (out of
the 6 variables) has 98 observations

;

1000-98 = 902 observations remain to be
defined

.

3) The total internal storage capacity is
10000 observations . The used storage is

6 variables x 1000 observations per
variable = 6000 observations ; the

available storage available is 10000-6000
= 4000 observations.

4) The sum of the number of all characters
in all DATAPLOT functions may not exceed
1000. For this run, 13 characters have
been used (in the function G below);

hence 1000-13 = 987 are available for
further use by other functions

.

5) The sum of the number of parameter names
+ variable names + function names may not

exceed 200. For this run, 23 names have
been defined—

1) 6 user-defined variable names
(TIME, STRAIN, STRESS, STRESS2

,

S2, and C2)

;

2) 2 additional variable names (X

and Y) that have been equated to

TIME and STRAIN, respectively by
use of the NAME command;

3) 2 DATAPLOT-provided variables
PRED (for predicted values) and
RES (for residuals) ; these

variables are not listed in the

STATUS output because their

storage is separate from that of

the 10 variables and 10000 total

observation limit of the
analyst. PRED and RES are used

anytime a PRE-FIT, FIT, EXACT
RATIONAL FIT, SPLINE FIT,

SMOOTH, ANOVA, or MEDIAN POLISH

command is executed

.

1) REPSD = replication

standard deviation

;

2) REPDF = replication
degrees of freedom;

3) RESSD = residual
standard deviation

;

4) RESDF = residual

degrees of freedom;

The remaining parameters
(NSTRESS2, K, ST, A, B, and C)
are user-defined parameters.

5) 1 function name (G).

The plot control section indicates information
relevant to the generation of plots. For the
example above, the STATUS output indicates—

1) The line types are all solid, except for the
first line type which is blank (that is, no line);

2) All line colors are red (this is relevant
only if one has a color terminal);

3) The character types are all X's, except for the
second character which is blank (that is, no
character)

;

4) All character colors are red (this is
relevant only if one has a color terminal);

5) All character sizes are 1

of total screen height);
.0 (that is, 1%

6) the x-axis minimum is set at -infinity and
the x-axis maximum is set at ^infinity ;

these infinity values instruct DATAPLOT to have

the plotted horizontal axis limits be neat and
float with the data;

7) the y-axis minimum is set at -infinity and

the y-axis maximum is set at ^infinity

;

these infinity values instruct DATAPLOT to have

the plotted vertical axis limits be neat and

float with the data;

6-14

The parameter/variable/ function section provides
details about used parameters , variables , and
functions . For the example above--

1) variable 1 has 98 observations and may be
referred to by either the name TIME or X;

2) variable 2 has 98 observations and may be

referred to by either the name STRAIN or Y;

3) variable 3 has 98 observations and has the

name STRESS;

4) variable 4 has 3 observations and has the
name STRESS2;

5) variable 5 has 1 observation and has the
name S2

;

6) variable 6 has 1 observation and has the
name C2

;

7) parameter PI has the value 3 .141593

;

8) parameter INFINITY has the value .1701412**39;

9) parameter NSTRESS2 has the value 3;

10) parameter K has the value 1;

11) parameter ST has the value 3;

12) parameter A has the value .1591170;

13) parameter B has the value -0 .06243119;

14) parameter C has the value 0.001450866

;

15) parameter RESSD has the value 0;

16) parameter RESDF has the value 0;

17) parameter REPSD has the value 0 .002687022

;

thus the residual standard deviation from
the last fit-type operation was 0.002687022

;

18) parameter REPDF has the value 34;

thus the residual degrees of freedom from
the last fit-type operation was 34;

19) function G has the character string A+B*EXP(-C*X

)

6-15

Dumping On-Line Documentation
HELP

To print on-line documentation from within a

DATAPLOT run, one uses the HELP command. The
DATAPLOT HELP command may be followed by any one
of the following 3 types of entries—

1) no entry at all, as in
HELP

2) a DATAPLOT Command Category entry, as in
HELP GRAPHICS

3) A DATAPLOT command name, as in
HELP PLOT

These 3 cases will now be discussed individually

.

If the analyst enters the HELP command alone with
no trailing entry, as in

HELP

then the following will be printed at the
terminal—

DATAPLOT IS AN INTERACTIVE GRAPHICS LANGUAGE.
THERE ARE 7 DATAPLOT COMMAND CATEGORIES-

HELP GRAPHICS

then the following output will appear at the

termi nal—

THE DATAPLOT GRAPHICS COMMAND CATEGORY
CONSISTS OF THE FOLLOWING 18 COMMANDS—

BOX PLOT
COMPLEX DEMODULATION . . . PLOT
. . . CONTROL CHART
. . . CORRELATION PLOT
.

.

. FREQUENCY PLOT
. . . HISTOGRAM
. . . HOMOSCEDASTICITY PLOT
LAG . . . PLOT
.

.

. NORMALITY PLOT
PERCENT POINT PLOT
. . . PERIODOGRAM
PIE CHART
PLOT

. . . PPCC PLOT

. . . PROBABILITY PLOT
RUN SEQUENCE PLOT
. . . SPECTRAL PLOT
3-D PLOT

GRAPHICS
ANALYSIS
DIAGRAMMATIC GRAPHICS

PLOT CONTROL
SUPPORT
OUTPUT DEVICE

KEYWORDS

FOR A LISTING OF COMMANDS WITHIN A CATEGORY,
ENTER HELP FOLLOWED BY THE CATEGORY NAME,
AS IN—HELP GRAPHICS

HELP ANALYSIS
HELP PLOT CONTROL

The above is the list of the 7 general DATAPLOT
command categories—

1) Graphics
2) Analysis
3) Diagrammatic Graphics
4) Plot Control
5) Output Device
6) Support

7) Keywords

If one enters HELP followed by any of the 7

command category names, as in

HELP GRAPHICS
HELP ANALYSIS
HELP DIAGRAMMATIC GRAPHICS

then a list of all DATAPLOT command names within
that category will be printed. For example, if
one enters

FOR ADDITIONAL INFORMATION ABOUT A
PARTICULAR COMMAND,
ENTER HELP FOLLOWED BY THE COMMAND NAME,

AS IN—HELP BOX PLOT
HELP COMPLEX DEMODULATION . . . PLOT

HELP . . . PROBABILITY PLOT

If one enters HELP followed by a command name, as

in

HELP PLOT
HELP FIT
HELP LET

then summary, usage, default, and examples

information will be printed out about that

particular command. For example, if one entered

HELP PLOT

then the following output would result—

PLOT

PURPOSE—GENERATE A PLOT

EFFECT —A PLOT IS GENERATED

VISIBLE EFFECT—A PLOT IS GENERATED
DEFAULT —NOT APPLY

EXAMPLES —PLOT Y X
PLOT SIN(X) FOR X = 0 .1 5

PLOT Y PRED VERSUS X

Such on-line documentation is a useful feature

which saves the analyst from a time-consuming

look-up in a hardcopy manual. The HELP output

6-16

is not meant to be all-inclusive and
comprehensive ; rather, it is meant to summarize
salient points pertaining to commands.

At times it is convenient to divert the output
from the HELP command so that it does not come
back to the terminal, but rather is directed out

to some user-defined mass-storage file. For
example, suppose the analyst wanted the HELP
output for the following commands—

PLOT
TITLE
LABEL
CHARACTERS
LINES
FONT
HARDCOPY

to be printed out to a file (pre-existing) which
has a numeric designation of, say, 12. This may be
done by use of the HELP and SET commands in the

following fashion—

SET IPR 12
HELP PLOT
HELP TITLE
HELP LABEL
HELP CHARACTERS
HELP LINES
HELP FONT
HELP HARDCOPY
SET IPR 6

The SET IPR 12 command redefines the standard
output unit from default (usually 6) to 12. All

subsequent output will thus be diverted to the
file with numeric designation 12—no output will
appear at unit 6 (the terminal) . The HELP PLOT
command will produce output to unit 12, as will
the succeeding HELP commands. The last command
(SET IPR 6) will redefine the standard output
unit to be 6 again, and so control will return to
the terminal. The net result is that the file
with numeric designation 12 will contain all of
the line images which DATAPLOT would normally
send to the terminal. After exiting out of
DATAPLOT, the analyst may then peruse this file
at will and/or send it off to the printer via a

local system print/list utility command.

6-17

Redimens ioning Internal

DIMENSION

Storage

Upon signing onto DATAPLOT , a message will be
generated which states the limits (for your
particular computer) of internal data storage in
DATAPLOT. The usual limits are

1) maximum number of variables - 10

2) maximum number of observations
per variable = 1,000

3) maximum total internal data storage =

10 x 1,000 = 10,000

The maximum total internal data storage size is

typically fixed (here = 10,000) and unchangeable;
however, the analyst does have some flexibility in
terms of changing the number of variables (from 10
to something larger than 10) and in terms of

: changing the maximum number of observations per
variable (from 1,000 to something smaller than
1,000). In any event, if the analyst changes
either the number of variables , or the maximum
number of observations per variable, the

!
overriding constraint will exist that their
product will = the total internal data storage
size (= 10,000).

The DIMENSION command allows the analyst to change
the number of variables , or the maximum number of

observations per variable, (or both). To change
the upper limit on the number of variables from 10
to, say, 200, enter

DIMENSION 200 VARIABLES

or (equivalently

)

DIMENSION 200 COLUMNS

A message will result stating that the

1) maximum number of variables = 200

2) maximum number of observations
per variable = 50

3) maximum total internal data storage =

200 x 50 = 10,000

Note that in addition to the number of variables
being changed from 10 to 200, the maximum number
of observations per variable has also been
automatically changed from 1,000 to 10,000/200 =

50.

Similarly , to change the maximum number of
observations per variable from 1000 to, say, 250,
enter

DIMENSION 250 OBSERVATIONS

or (equivalently

)

DIMENSION 250 ROWS

A message will result stating that the

1) maximum number of variables = 40

2) maximum number of observations
per variable = 250

3) maximum total internal data storage =

40 x 250 = 10,000

Note that in addition to the maximum number of

observations per variable being changed from 1,000

to 250, the number of variables has also been
automatically changed from 10 to 10,000/250 = 40.

Current (1/83) configurations of DATAPLOT do not

permit the DIMENSION statement to change the

number of variables to more than 200, nor to

change the maximum number of observations per
variable to more than 1,000. However, with
hardware advances in memory sizes occurring so

rapidly, it is clear that future versions of
DATAPLOT will have both of these limits raised
considerably

.

6-18

Specifying the Terminal

TERMINAL

The TERMINAL command allows the analyst to specify
the particular terminal being used. The default
terminal is a Tektronix 4014 or equivalent. The
TERMINAL command should specify both the
manufacturer and the model number, as in

TERMINAL TEKTRONIX 4027

TERMINAL TEKTRONIX 4010

TERMINAL RAMTEK 6011

When the TERMINAL command is processed by

DATAPLOT, it will automatically adjust internal
settings relating to

1) whether or not the terminal is

continuous or discrete ;

2) whether or not the terminal is

color or non-color

;

3) the number of screen picture points
(horizontal and vertical) for the

terminal

.

Specifying the Host

HOST

The HOST command is seldom used. This command

specifies the current host. Usually such a

host-specification is automatic upon signing onto

DATAPLOT, hence its rare usage. The form for the

HOST command includes both the computer

manufacturer and model number, as in

HOST VAX 11/780

HOST UNIVAC 1100/82

HOST IBM 4341

HOST IBM PC

Thus the use of the TERMINAL command obviates the

need for the CONTINUOUS/DISCRETE command, the
COLOR command, and the PICTURE POINTS command.

6-19

Specifying the Communications Link

COMMUNICATIONS LINK and BAUD RATE

The commands in this section are rarely used. The
motivation for their inclusion stems more from
completeness and the ability to address potential
future problems than actual past problems

.

When multiple terminals are running DATAPLOT from
|

a common host, the terminals may be running over
communication links that have differing baud

j
rates. This can at times lead to timing and
buffering problems in the terminal hardware as it
interacts with the underlying continuous graphics

|
software . Typical indications that such problems
are occuring are that graphs will be
generated which are clipped (incomplete)—parts

|

of the plot which should be drawn (usually frame
lines) remain undrawn.

A common local cause of this is that plot
directives are being processed by the terminal
while a screen erasure is still in progress. It

takes a typical display terminal about 1 full
second to erase the screen. In that second, the
terminal should be buffering commands and/or the
graphics software should be sending null character
strings. In order for the proper number of nulls
to be sent, it is necessary that the underlying
graphics software be correctly informed of the
communication baud rate. If the actual baud rate
is faster than the default baud rate, then an

insufficient number of nulls will be generated in
order for the screen erasure to be completed . In
such case, the terminal hardware buffering must
take over. If the terminal hardware has such
buffering , then the plot will be properly formed;
however, if the terminal hardware does not have
buffering, then the plot will be clipped.

The default internal DATAPLOT baud rate setting is

1200. Usually this baud rate does not have to be
reset (well over 95% of all DATAPLOT runs at the

|

NBS implementation are done under the default baud
rate—even though the terminals are running
anywhere from 300 baud to 19200 baud). However,
if such clipping problems do arise, then the baud
rate setting may be the problem. To change this

j

rate, use the BAUD RATE command, as in

never receives them. The net effect is missing
parts on the graph, glitches on the graph, or
improperly-formed components on the graph.

If the analyst is having problems in the formation
of continuous graphs, and if the problem is
traceable to the communications link, then it will
be necessary to inform DATAPLOT of the type of
communications link so that local systems
personnel may adjust the internal code depending
on the type of link. The default link is the
standard phone lines (as would be used, e.g., with
an acoustic coupler). To change the link
specification, use the COMMUNICATIONS LINK
command, as in

COMMUNICATIONS LINK NETWORK
COMMUNICATIONS LINK ARPANET
COMMUNICATIONS LINK ETHERNET

Specifying the baud rate is done occasionally ;

specifying the communications link is done even
less frequently

.

BAUD RATE 9600

III

The type of communication link may also affect the

(continuous) graphics information being
transmitted . For example, the phone line rarely
"eats' or "adds" control characters to a

transmission, but some specialized communication
networks do "eat/add" certain character sequences.

|j
It is common for graphics software directives to
involve 'escape" sequences ; it is also common for
some intelligent communication networks to have

i command directives which themselves involve
\

> "escape* sequences. Thus when the graphics

|
software sends such sequences, the network itself

i intercepts (and acts on) them, and the terminal

i

6-20

Specifying Trigonometric Units

TRIGONOMETRIC UNITS

DATAPLOT has an extensive set of trigonometric and
inverse trigonometric library functions

.

Trigonometric calculations may be carried out in

radians, degrees, or grads (as is common in
Europe). The default unit is radians. If it is
desired to have trigonometric calculations in

degrees , then enter

TRIGONOMETRIC UNITS DEGREES

or simply

DEGREES

All subsequent trig calculations will thus be

carried out in degrees. To change the angle units
to grads, enter

TRIGONOMETRIC UNITS GRADS

or

GRADS

To change the angle units back to radians, enter

TRIGONOMETRIC UNITS RADIANS

or

RADIANS

Another instance in which the angle units comes

into play is in the scribing of text strings on a

plot or diagram at an angle other than horizontal

.

For example, to write the text string abc starting
in the middle of the screen in triplex font, one
would enter

but an alternative valid way is

TRIGONOMETRIC UNITS RADIANS

LET A = PI/

4

ANGLE A
FONT TRIPLEX
MOVE 50 50

TEXT ABC

ANGLE UNITS GRADS
ANGLE 50

FONT TRIPLEX
MOVE 50 50

TEXT ABC

Note that all of DATAPLOT 's fonts may be written

at any angle (except the Tektronix font—which is

a terminal-hardware-generated font that may only

be written in the usual horizontal (angle = 0)

fashion)

.

A synonym command for the TRIGONOMETRIC

command is the ANGLE UNITS command, thus

TRIGONOMETRIC UNITS DEGREES

and

ANGLE UNITS DEGREES

have the same effect

.

UNITS

FONT TRIPLEX
MOVE 50 50

TEXT ABC

How would one write the same text string at a 45
degree angle? To do so, one uses both the

TRIGONOMETRIC UNITS and the ANGLE command. The
TRIGONOMETRIC UNITS command specifies the desired
units (radians

, degrees, or grads); the ANGLE
command specifies the desired angle of the text

string (in whatever angle units that were chosen).
For example, to write out the text string abc in
triplex font at an angle of 45 degrees, the
easiest way is

TRIGONOMETRIC UNITS DEGREES
ANGLE 45

FONT TRIPLEX
MOVE 50 50

TEXT ABC

6-21

Echoing Commands

ECHO

When running pre-stored DATAPLOT programs , it is
at times convenient to have the commands echoed
back as they are being executed . To do this, one
enters

ECHO

or

ECHO ON

somewhere up near the beginning of the code.

The echoed commands will appear in an
easily-noticeable box as they are being executed

,

The output from the execution of each command

will appear immediately below the box. Thus the
effect of

LINES SOLID DOT DASH
CHARACTERS ABC

is the usual

LINE 1 HAS JUST BEEN SET TO SOLI
LINE 2 HAS JUST BEEN SET TO DOT
LINE 3 HAS JUST BEEN SET TO DASH

1 HAS JUST BEEN SET TO A

2 HAS JUST BEEN SET TO B
3 HAS JUST BEEN SET TO C

;

whereas the effect of

ECHO ON
LINES SOLID DOT DASH
CHARACTERS ABC

** LINES SOLID DOT DASH **

LINE 1 HAS JUST BEEN SET TO SOLI
LINE 2 HAS JUST BEEN SET TO DOT
LINE 3 HAS JUST BEEN SET TO DASH

** CHARACTERS ABC **

When operating in a high baud rate environment in

which information comes back to the terminal at a

very fast rate, the use of the ECHO command will

allow the analyst not only to see the output from
DATAPLOT commands, but also the specific
command line which generated the output. The net

effect is that the analyst will more easily follow
the execution of the pre-stored DATAPLOT code.

This is convenient in monitoring the analysis

and making sure that the analysis is proceeding
as expected

.

CHARACTER
CHARACTER
CHARACTER

CHARACTER
CHARACTER
CHARACTER

1 HAS JUST BEEN SET TO A

2 HAS JUST BEEN SET TO B

3 HAS JUST BEEN SET TO C

6-2?

Suppressing Printed Output

FEEDBACK and PRINTING

All of DATAPLOT's commands result in some form of
printed output. A broad partitioning of all

DATAPLOT commands could consist of

1) Graphics commands;
2) Analysis commands ;

3) All other commands (= secondary commands).

The commands in the GRAPHICS category (PLOT,

HISTOGRAM, SPECTRUM, 3D-PLOT, NORMAL PROBABILITY
PLOT, etc.) all result in immediate graphics
output which is typically important in terms of

carrying out the analysis. Such output is usually

not suppressed

.

The commands in the Analysis category (FIT, SPLINE
FIT, ANOVA, SMOOTH, SUMMARY, LET, etc.) all have
immediately-printed output which is of interest in

terms of carrying out the goals of an analysis

.

With the possible exception of output from the LET
command, the suppression of such output is rarely
done

.

The remainder of DATAPLOT's commands (such as

CHARACTERS, LINES, READ, DIMENSION, DELETE,

LEGEND, TITLE, LABEL, etc.) are not really end
objectives in an analysis , but rather are
necessary intermediate steps in carrying out an
analysis precisely to one's specifications . These
secondary commands also generate printed feedback
information which assures the analyst that the

command that the host received was identical to
the command that was entered through the keyboard

.

This feedback information is comforting and
reassuring to the analyst in that the specified
commands are resulting in the desired action.
Such feedback rarely "gets in the way" and is the
default when one signs onto DATAPLOT . Occasions
do arise, however, when it would be desirable to

be able to suppress such feedback. To do so,

enter

FEEDBACK OFF

When the FEEDBACK OFF command has been received,

all feedback information from all secondary
commands , (and all usual output from the LET
command), will be suppressed . The most common
occurrence of this is in the generation of
diagrammatic graphics (diagrams, schematics, word
charts, etc.) where one wishes to suppress
feedback messages so that they will not clutter up
the screen as the diagram is being formed. For
example, the execution of the following pre-stored
DATAPLOT program

FONT TRIPLEX ITALIC
HEIGHT 5

WIDTH 3

JUSTIFICATION CENTER

ERASE
MOVE 50 80

TEST GRAPHICS
HEIGHT 2

WIDTH 1

MOVE 50 70

TEXT ANALYSIS GRAPHICS
MOVE 50 60

TEXT PRESENTATION GRAPHICS
COPY

will (upon execution) result in the desired word
chart being formed, but will also have the word
chart "ruined" because the automatic feedback
information from the

HEIGHT 2

WIDTH 1

commands will also appear superimposed on the word
chart

.

To circumvent this problem, the above code should
be amended to

FONT TRIPLEX ITALIC
HEIGHT 5

WIDTH 3

JUSTIFICATION CENTER

FEEDBACK OFF
ERASE
MOVE 50 80
TEST GRAPHICS
HEIGHT 2

WIDTH 1

MOVE 50 70

TEXT ANALYSIS GRAPHICS
MOVE 50 60
TEXT PRESENTATION GRAPHICS
COPY

The desired word chart—uncluttered by feedback
information—will be formed.

To counteract the FEEDBACK OFF command, enter

FEEDBACK ON

FEEDBACK

We have seen how the FEEDBACK OFF command will
suppress output from all secondary commands and
from the LET command. Is there any way to
suppress output from any of the Analysis category
commands other than LET (e.g., FIT, SPLINE FIT,
ANOVA, SMOOTH, SUMMARY, etc.)? Although such
suppression is rarely done, it may be carried out
by entering

PRINTING OFF

To counteract this command, the analyst enters

PRINTING ON

or

PRINTING

6-23

Diverting Graphics Output to Offline Devices

PENPLOTTER, ZETA, CALCOMP , and VERSATEC

When generating graphics on a terminal, it is at
times convenient to have such graphics not only
appear on the screen, but also to route them to
alternate graphics device. If the analyst enters
the

PENPLOTTER

PENPLOTTER ON

command, then all subsequent plots will also
appear on the local penplotter (e.g., Tektronix
4662). This penplotter must be connected in serial
between the host and the terminal. When using a

penplotter, the analyst must have the proper baud
rate (typically quite slow due to the mechanical
nature of the penplotter), and also must have the
proper communication switch settings on the
penplotter (which depends on the nature of the
communications link and the host).

The name of the plot file which DATAPLOT writes
such information out to is DPPL1F . DATAPLOT
automatically creates this file when these
alternate plot devices are specified . The FORTRAN
unit number that DATAPLOT assigns to this file is
43. The file is temporary (it will remain after
the analyst signs off of DATAPLOT, but will
disappear when the analyst logs off the computer).
When the analyst signs off of DATAPLOT , a message
will be generated which reminds the analyst what
file name (DPPL1F) and file number (43) were
given to the plot file, and will also give the
analyst instructions on how to post-process the
file so that the Tektronix characters may be
converted to Zeta, Calcomp, Versatec , etc. plots.

To consider a specific example, note the following
program—

ZETA
PLOT X**2 FOR X
EXIT

= 1 1 10

To turn the penplotter off, the analyst enters

PENPLOTTER OFF

For other offline devices (such as the Zeta,
Calcomp, and Versatec plotters) , the analyst
should enter the commands

ZETA
CALCOMP
VERSATEC

When the

ZETA

command is encountered, the following feedback
message will appear—

DEVICE 2 INFORMATION
POWER —ON
MANUFACTURER —ZETA
CONTINUITY —ON
COLOR —OFF
PICTURE POINTS— 1000 1000

ZETA ON
CALCOMP ON
VERSATEC ON

Note that "device 2" is any alternate graphics
output device, while "device 1" is the terminal

itself.

When the

respectively . The net effect of any of these
commands is the same in DATAPLOT, namely, to
capture whatever graphics information is going to
the screen, allow it to proceed to the screen, but
also write that same information out to a plot
file. The net result is that when the DATAPLOT
session is finished , the analyst will have in this
plot file a full record of all the character
strings that (when sent to chc Tektronix terminal

)

would cause the plots to reform. In fact, such
plots could be reformed by simply going into the
\Plot file with the local editor and printing out
some number of lines with an editor print. If the

terminal being used is a Tektronix, then the plot
will reform; if the terminal being used is a

Tektronix-incompatible or an alphanumeric
(non-graphics) terminal, then lines of
unintelligible gibberish will appear.

PLOT X**2 FOR X = 1 1 .10

is encountered , the screen will erase, and the

quadratic plot will appear. While this is

happening , the same character strings which caused

the plot to form on the screen are being copied
into file DPPL1F (= file 43).

When the analyst enters

EXIT

DATAPLOT will remind the analyst that an alternate
plotting device has been specified , and will

provide the following feedback messages—

6-24

NOTE—THE ALTERNATE PLOT FILE
IS CLOSED.
THE NAME OF THE FILE IS DPPLlF

.

TO EXAMINE THE FILE, USE ANY EDITOR,

(§EDM, @ED, @CTS, ETC.), AS IN
§EDM,Q DPPLlF.
P *

TO SEND THE FILE TO THE ZETA , ENTER

@NBS*PLIB$.AUNIPLOT,I DPPLlF.
, ,ZETA , FMT/TEK

WHERE THE I OPTION ALLOWS UP TO 3 LINES OF
OPERATOR DIRECTIVES (PEN, POINT, COLOR, PAPER)

THIS IS AN EXIT FROM DATAPLOT

.

Note that the contents of the exit message are
clearly site-dependent. The above message was

captured from output generated on the NBS Univac
1100/82. @EDM, §ED, §CTS are local Univac
editors; and

§NBS *PLIB$.AUNIPLOT , I DPPLlF. , ,ZETA, FMT/TEK

is a local Univac post-processor (completely
independent and separate from DATAPLOT) which
allows any file (in particular, file DPPLlF)

containing Tektronix graphics strings to be
converted and send to the NBS Zeta plotter.

Under current (1/83) configurations , DATAPLOT will

not write directly to the Zeta, Calcomp, or
Versatec) ; rather, DATAPLOT writes a Tektronix
graphics string file (the same file regardless of
whether the ultimate device is the Zeta, Calcomp,
Versatec , or some other device), and then the

analyst must apply a locally-provided

,

system-dependent post-processor to this file to
send its contents to its ultimate destination.

DATAPLOT does not provide the Tektronix-to- . .

.

post-processor ; it must be locally provided . In

this regard, 2 items are noted—

1) future versions of DATAPLOT will have
direct writing to alternate graphics
devices;

As many plots as desired may be written out to the
alternate plot file. Caution should be exercised
in multiple opening and closing of the alternate
plot file during the same DATAPLOT session— this
should not be done because subsequent openings of
the file will overwrite the existing plots on the

file. For example, consider the following 10-line
DATAPLOT program—

ZETA ON

PLOT X FOR X = 1 1 10
PLOT X**2 FOR X = 1 1 10

ZETA OFF

ZETA ON
PLOT X**3 FOR X = 1 1 10

PLOT X**4 FOR X = 1 1 10
ZETA OFF

I

The net effect is that the linear and quadratic
plot residing on file DPPLlF will be overwritten

by the cubic and quartic plots. If all 4 plots
were desired to be on the file, then the program
should be amended to

ZETA ON
PLOT X FOR X = 1 1 10

PLOT X**2 FOR X - 1 1 10
PLOT X**3 FOR X = 1 1 10
PLOT X**4 FOR X = 1 1 10

ZETA OFF

I,

2) it has been reported (though not yet
substantiated) that commercially-available
post-processors are being developed
for a variety of computers and a variety of
output devices.

Note that if the analyst enters

ZETA OFF
CALCOMP OFF
VERSATEC OFF

then DATAPLOT will also close the alternate plot
file, and will provide the same feedback messages

.

As in the example above, if the analyst chooses to

leave the file open, then upon exit from DATAPLOT

,

it will automatically be closed.

I

Redefining I/O Units and Saving DATAPLOT Output
SET

For most computers

,

1) the default numeric designation
for the input unit is 5;

2) the default numeric designation
for the input unit is 6.

i

The underlying code in which DATAPLOT is written
is FORTRAN (ANSI 77). The underlying FORTRAN
variable names which specify the above 2

default I/O unit numbers are

1) IRD for the input unit;

2) IPR for the output unit.

Whenever DATAPLOT is reading commands from the
terminal, it is reading from unit 5; whenever
DATAPLOT is sending information back to the

terminal (both non-graphics and graphics
i| information) , it is writing to unit 6.

We have seen in other sections how the use of the
ZETA, CALCOMP, and VERSATEC commands allows us to
capture graphics information and copy it out to a

file (file DPPLlF = file 43). This leads us to
the question of how one might capture all

information (graphical and non-graphical) and
place it in a file (perhaps for future perusal, or
perhaps to increase execution speed). Although
this is rarely done, it is nevertheless
possible—via the SET command. The SET command
allows us to change a variety of underlying
FORTRAN settings ; we focus here on altering the

' settings of the IRD and IPR variables . The form
for the SET command is

SET FORTRAN variable name Desired setting

Thus to change the standard input unit from 5 to

11, one could enter

SET IRD 11

and to change the standard output unit from 6 to
21, one could enter

SET IPR 21

Note that if the analyst changes the standard
output unit from the terminal to some file, then
all output will go to that file (and no output
will go to the terminal). Such a file may, of
course, be subsequently perused and edited. In
practice, the 'average' analyst will rarely (if

ever) find the need to change IRD and IPR

,
settings.

6-26

Controlling The Terminal—Eras ing ,
Hardcopy ing , etc.

PRE-ERASE, HARDCOPY, ERASE, and COPY

The following 4 commands are useful to control
elementary erasing and copying operations at the

terminal—

PRE-ERASE
HARDCOPY

ERASE

COPY

The PRE-ERASE command, as in

PRE-ERASE ON

or simply

PRE-ERASE

instructs DATAPLOT that every subsequent plot

command (that is, every command from the Graphics

category—PLOT, BOX PLOT, 3D-PL0T, CONTROL CHART,

LAG ... PLOT, HISTOGRAM, SPECTRUM, etc.) should
automatically erase its screen prior to the

plotting operation . Since graphics is a core

DATAPLOT operation, this automatic pre-erasure is

reserved for all of the commands in the DATAPLOT

Graphics category . Only commands in this

category have this automatic pre-erasure option.
Note that the default setting for plot pre-erasure

is ON, and so the analyst only rarely needs to

explicitly enter the PRE-ERASE command. To turn

the pre-erasure off, the analyst enters

PRE-ERASE OFF

This capability is only occasionally used. Its

main use arises in the superposition of plots atop
one another, as in

XLIMITS 10 20
YLIMITS 100 150

PRE-ERASE OFF
ERASE
PLOT Yl X

PLOT Y2 X
PLOT Y3 X
etc.

This program will

1) Set the x-axis limits to 10 and 20 for

all subsequent plots (so that all

superimposed plots have the identical
scale)

;

2) Set the y-axis limits to 100 and 150 for
all subsequent plots (for the same

reason)

;

3) Turn off the automatic plot pre-erasure

(so that the second, third, etc. plots
do not erase the screen when they are
being superimposed)

;

4) Manually erase the screen prior to the
first plot;

5) Generate one plot;

6) Superimpose a second plot;

7) Superimpose a third plot;

8) etc.

The superposition of plots in this fashion allows
us to generate plots with an indefinitely large
number of plot points— thus circumventing any
DATAPLOT restrictions that might exist as to

maximum number of points per plot.

The automatic , "hands-off copying of all
generated plots to the local hardcopy units is a

convenient feature. To activate this feature, the

analyst enters

HARDCOPY ON

or simply

HARDCOPY

Every plot command subsequently entered will

result in not only the plot being generated on the

terminal screen, but also the plot beinc
automatically copied to the local hardcopy unit at\

soon as the plot finishes constructing itself oi

the screen

.

To specify multiple hardcopies per plot, th<

analyst appends the desired number to the end o.

the command, as in

HARDCOPY ON 3

or

HARDCOPY 3

which will make 3 local hardcopies of every plo
which appears on the screen.

To terminate the automatic copying of plots, th
analyst enters

HARDCOPY OFF

The default setting of the plot hardcopy switch i

off.

The PRE-ERASE and HARDCOPY commands are passiv
commands— they set internal switches which az

later scanned when plot commands are entered. Tt

last 2 commands (ERASE and COPY) are activl

commands in the sense that when these commands aim
encountered , something happens immediately—tl I

terminal erases its screen, or the terminal make\

a local hardcopy of the current contents of tit,

screen

.

6-27

To erase the screen under program control , use the
ERASE command. To copy the contents of the screen
under program control, use the COPY command.
Anytime DATAPLOT encounters the ERASE and COPY
commands , the screen will be immediately erased
and copied, respectively . In addition , if the

analyst is running interactively from a terminal,

the terminal itself usually has erase and copy
keys which may be manually depressed. The ERASE
and COPY commands are, however, more convenient to
use because they may be entered in pre-stored
DATAPLOT programs. A typical example of when the

ERASE and COPY commands are useful is

ERASE

FIT Y = some model
COPY

This program will

1) erase the screen;

2) generate the usual FIT output;

3) copy the FIT output to the hardcopy unit.

Another example is in diagrammatic graphics, as in

FONT TRIPLEX ITALIC
JUSTIFICATION CENTER

ERASE
MOVE 50 50

TEXT ABC
COPY

This program will

1) Set the font style to triplex italic;

2) Set the justification to center justified

;

3) erase the screen;

4) move to the middle of the screen;

5) write out the text string ABC ;

6) copy the screen to the hardcopy unit.

6-28

Activating Local Settings

IMPLEMENT

The IMPLEMENT command allows the analyst to

automatically activate local settings,
conventions, and preferences. The form of the
command is

IMPLEMENT number

as in

IMPLEMENT 1

AND

IMPLEMENT 2

Different installations have different features—
depending on local preferences . For example, at

NBS, we have only 2 local settings which may be
accessed via the IMPLEMENT command. If the
analyst here enters

IMPLEMENT 1

then this would be equivalent to the following 5

lines of code—

X2TIC MARKS OFF
X2TIC MARK LABELS OFF
Y2TIC MARKS OFF
Y2TIC MARK LABELS OFF
Y2LABEL

and so the IMPLEMENT 1 command would have the net
effect of causing all subsequent plots to be
produced with neither tic marks nor tic mark
labels on the upper and right frame lines, and
with no vertical label on the right side of the

frame. If the NBS analyst entered

IMPLEMENT 2

then this would be equivalent to entering

FRAME CORNER COORDINATES 15 20 75 85

that is, this would cause all subsequent plots to

have a square shape rather than the default
rectangular shape. Such a square shape is, for
example, useful in Youden plots (an

interlaboratory graphical data analysis
technique) . The IMPLEMENT 1 and IMPLEMENT 2

commands at other installations will typically

cause these same 2 features to be activated

.

In addition , the local DATAPLOT service group
may have added other convenient features
which could be accessed via IMPLEMENT 3,
IMPLEMENT 4, etc. Check the local DATAPLOT
service group for such augmentations.

6-29

Entering Comment Lines

COMMENT and .

It is good programming practice to enter
non-executable comments in stored DATAPLOT
programs. There are 2 wags to enter a comment
line—

1) via the COMMENT command;
2) via the . command.

The latter is easier to read because it has been
separated into functionally-modularized "chunks"
of code. The programs would execute identically

.

Note that the COMMENT command (and the . command
in particular) must be followed by at least 1

space so as to separate it from any remaining
text on the line; thus

The 2 commands (COMMENT and .) are equivalent.
Any DATAPLOT statement that starts with COMMENT or

will become a null (or "no-op") statement—such
statements are non-executable. The following
programs are identical—

COMMENT CALIBRATION ANALYSIS
COMMENT JANUARY 1983
READ XYZ. X Y

TITLE CALIBRATION
PLOT Y X
LET A = 10

LET B = 5

LET C = .5

FIT Y = A+B*EXP(-C*X)
CHARACTERS X BLANK
LINES BLANK SOLID
PLOT Y PRED VERSUS X
PLOT RES X

i

and

. CALIBRATION ANALYSIS

. JANUARY 1983
READ XYZ. X Y

TITLE CALIBRATION
PLOT Y X
LET A = 10
LET B = 5

LET C = .5

FIT Y = A+B*EXP(-C*X)
CHARACTERS X BLANK
LINES BLANK SOLID
PLOT Y PRED VERSUS X
PLOT RES X

Note that the . command is often useful for

|
visually segregating chunks of DATAPLOT code.
Note the difference between the above code and

. CALIBRATION ANALYSIS

. JANUARY 1983

READ XYZ. X Y

TITLE CALIBRATION
PLOT Y X

LET A = 10
LET B = 5

LET C = .5

FIT Y = A+B*EXP(-C*X)

CHARACTERS X BLANK
LINES BLANK SOLID
PLOT Y PRED VERSUS X
PLOT RES X

. CALIBRATION ANALYSIS

is correct, but

.CALIBRATION ANALYSIS

is incorrect .

If COMMENT or . is not followed by any text, then

the trailing space is, of course, not
needed--COMMENT and . may be succeeded immediately
by a carriage return.

The . command is also a convenient way of
"commenting out" code (in stored DATAPLOT
programs) that we have already executed in

previous runs, that we no longer wish to execute,
but still wish to retain in the code as a memory

aid. For example, suppose we executed the above
code which fitted the model Y = A+B*EXP(-C*X) , but
now wish to execute the same code with the model Y

= A+B*X**C. We could delete (via the local

editor) the original FIT statement from the stored
code, but alternatively we may wish to simply

"comment out" the original FIT statement as a

reminder of models that were already tried; as in

. CALIBRATION ANALYSIS

. JANUARY 1983

READ XYZ. X Y

TITLE CALIBRATION
PLOT Y X

LET A = 10

LET B = 5

LET C = .5

. FIT Y = A+B*EXP(-C*X)
FIT Y = A+B*X**C

CHARACTERS X BIANK
LINES BLANK SOLID
PLOT Y PRED VERSUS X
PLOT RES X

6-30

Recommended Programming Practices

When constructing (via the editor) DATAPLOT
programs (that are to be stored in a file/subfile)
for later execution, it is recommended that
liberal use of comments (especially at the
beginning of the code) be used. The COMMENT
command and the . command assist in this regard.
Liberal use of the . command to visually separate
chunks of DATAPLOT code also make for easier
reading and understanding of the code
after-the-fact . Contrast, for example, the
following 2 DATAPLOT programs—both of which are
identical in execution—

READ XYZ. X Y
TITLE CALIBRATION ANALYSIS
YLABEL PRESSURE
XLABEL TIME
PLOT Y X
LET A = 1

LET B = 10
LET C = .5

FIT Y = A+B*SQRT(C+X

)

CHARACTERS LINES BLANK
LINES BLANK SOLID
PLOT Y PRED VERSUS X
YLABEL RESIDUALS
PLOT RES X

and

. CALIBRATION ANALYSIS

. SPECIMEN 247

. JANAURY 1983

READ XYZ. X Y

TITLE CALIBRATION ANALYSIS
YLABEL PRESSURE
XLABEL TIME
PLOT Y X

LET A = 1

LET B = 10
LET C = .5

FIT Y = A+B*SQRT(C+X)

CHARACTERS LINES BLANK
LINES BLANK SOLID
PLOT Y PRED VERSUS X

YLABEL RESIDUALS
PLOT RES X

A common set of commands which often appears at
the beginning of many DATAPLOT runs (whether
running interactively , or running stored DATAPLOT
programs) is

The ECHO ON command tells DATAPLOT to echo back
all entered commands (in a noticeable box) as the
commands are being executed . If one is running a

stored DATAPLOT program in a rapid-fire fashion,

then the echoing helps to keep track of exactly
what command is being executed—because one sees
not only the produced output (which may "fly by"

and fill the screen quickly) , but also one sees
the specific input command that produced the
output. This is useful for monitoring the
execution of "canned" programs.

The HARDCOPY ON command causes every plot which

appears on the terminal screen to be automatically
copied to the local hardcopy unit. This "hands
off feature is very helpful in producing a record

of how the analysis proceeded

.

The SEQUENCE ON command causes an

automatically- incremented sequence number to

appear (inconspicuously) in the upper right corner
of plots as they are being generated . When used in

conjunction with the HARDCOPY ON command, it gives

the analyst an ordered set of graphics output
which provides a valuable record of how a data:

analysis proceeded.

For doing analysis graphics (= graphics foi

extracting structure from data), the analyst

should use the default Tektronix font for th(

titles, labels, legends, etc. This font i|

not as "pretty" as the fancier-script fonts

but is quite adequate, very readable , and i|

quickly generated . For such graphical dat.

analysis , the default Tektronix is more tha

adequate and will not slow down the
analysis . One should wait until the end of th

analysis—when structure has been extracted an

when conclusions have been formulated—befor
one uses the fancier fonts. As the analysi^

graphics stage is being finished, and th

presentation graphics (= graphics fc

communicating conclusions via journals, seminars

etc.) stage is being started, then the analyt,

should consider using the "fancier" fonts. l\

switch to such fonts is a one-command operatic

in DATAPLOT, namely the FONT command, as in

TITLE LINE STANDARDS ANALYSIS
YLABEL WIDTH
XLABEL POSITION
FIT Y = A+B*X
CHARACTERS X BLANK
LINES BLANK SOLID
PLOT Y PRED VERSUS X

FONT TRIPLEX ITALIC
PLOT Y PRED VERSUS X

ECHO ON
HARDCOPY ON
SEQUENCE ON

6-31

The titles and labels from the first plot will be
default Tektronix font— they will be generated
very fast; the titles and labels from the second
plot will be in triplex italic font— they will
take more time to generate , but will be of much
higher quality.

Of all the plot control commands available in
DATAPLOT, the 2 commands which the analyst will
find him/herself using most heavily are the
CHARACTERS and LINES commands. The CHARACTERS
command specifies the desired plot characters to
appear at the plot points of a trace; the LINES
command specifies the desired line type which

connects the various plot points of the trace.
The default character type is blank, and the
default line type is solid. These defaults allow
for the rapid continuous-trace plotting of data
sets and functions . Display terminals typically
take longer to generate traces which have
non-blank plot characters than those with blank
plot characters—such terminals draw solid traces

\

very rapidly, but draw individual characters much
more slowly. If the trace has 100 points or so,

then the time difference will be neglible ; if the
trace has 1000 points, then the time difference
will be noticeable . As the electronics of display
terminals improve, this time-of-plot consideration
should disappear

.

A particular case of the CHARACTERS and LINES
command which arises time and time again whenever

a fitting operation has been carried out is

4) plot the raw data (Y) versus X and
superimpose the predicted values (PRED)
from the fit versus X. Note that the Y
versus X trace will have X's as plot
characters and no connecting lines, and
the PRED versus X trace will have blank
plot characters and a solid connecting
line. The usual form for the
superimposed plot of raw data and
predicted values is to have the raw data
appear as discrete X's and the predicted
values to appear as a solid trace. The
above CHARACTERS and LINES commands in

conjunction with the PLOT Y PRED VERSUS X
command allow the analyst to do this
easi 1 y

.

5) plot the residuals (RES) from the fit
versus X. Note that since only 1 trace

is being outputted here, then the plot
will follow the first specification of
the above CHARACTERS and LINES commands,
namely to have X's as plot characters,
and to liave no connecting lines.

CHARACTERS X BLANK
LINES BLANK SOLID

The usual context in which this appears is

FIT Y = some model
CHARACTERS X BLANK

LINES BLANK SOLID
PLOT Y PRED VERSUS X
PLOT RES X

The above code will
i|

1) carry out a fit according to some model,
and automatically store the resulting
predicted values (in a variable named

PRED) and residuals (in a variable named
RES) .

2) specify that the characters on succeeding
plots have X's for the first trace, and
blanks for the second trace (if there is

a second trace);

3) specify that the lines on succeeding

plots have no connecting lines for the

first trace, and solid connecting lines
for the second trace (if there is a

second trace);

Interrupting, Saving, Starting Over
and Resuming A Run RESET
SAVE and RESTORE

Suppose one is in the middle of an interactive
session with DATAPLOT, and one is forced to
interrupt a run (to go to a seminar, say). In

such case it would be extremely convenient to be

able to save all of DATAPLOT ' s internal
settings so as to be able to continue the run at

some later time. To do so, one uses the SAVE
and RESTORE commands. The form for the SAVE
command is

SAVE XYZ.

where XYZ is a pre-existing user file to which all

of the internal DATAPLOT settings will be dumped.
Upon signing onto DATAPLOT at a later time, the

analyst would enter

RESTORE XYZ.

and then proceed with the analysis at precisely
the point of interruption. As with all DATAPLOT
commands which involve file/subfile usage, the
file name should be followed by a period in the
command statement; thus

SAVE XYZ.

is correct, but

SAVE XYZ

is incorrect.

Note that the RESTORE command requires the save
file to pre-exist. For many computers, such a

requirement may be circumvented by local operating
system directives. For example, on UNIVAC
computers , if file XYZ does not exist and yet is
needed in the middle of a DATAPLOT run, then the
analyst may enter

@@ASG,UP XYZ.

and that will create a file XYZ while still
leaving the analyst in DATAPLOT. For other
computers , the analyst should check locally to see
if a similar system capability exists.

It is at times convenient to simply reset all of

DATAPLOT 's internal settings to their sign-on

initial values. One way to do this is, of course,

to simply exit out of DATAPLOT (via EXIT) and then

sign back onto DATAPLOT (via the local sign-on

procedure). An alternate way to do the same is to

use the RESET command, as in

RESET

This will reinitialize all internal data settings

(including, of course, all variable, parameter

,

and function settings) . A synonym for RESET is

CLEAR

.

Communicat ing

6-33

with the Host Operator

OPERATOR

The OPERATOR command allows the analyst to send a

message (while in the middle of a DATAPLOT run) to

the host operator . The form of the command is

OPERATOR message

Check locally with the DATAPLOT Service Group to

determine if this feature has been implemented

,

and to determine if there are any restrictions on
this feature (for example, the NBS Univac 1100/82
restricts the number of characters per line for a

given message to be 40 at most). If it is

necessary to send a multi-line message, then each
line should start with the OPERATOR command, as in

OPERATOR Please set Zeta plotter with
OPERATOR wet ink HI pen (red) and 30 inch paper.
OPERATOR Please send output to room 707.

6-34

Communicating with DATAPLOT Service Group

MESSAGE , NEWS , MAIL, and BUGS

The user may communicate with the DATAPLOT Service
Group via the MESSAGE command. The form for the
MESSAGE command is

The BUGS command is a fourth way of communicating

with the user-community. The form of the BUGS

command is

MESSAGE message

If a message takes more than one line, then each
successive line should start with the same MESSAGE
command, as in

BUGS

This will print out a list of known bugs (if any)

of the local implementation, and suggested code

corrections to circumvent such bugs.

MESSAGE What is the easiest way to do
MESSAGE dynamic, color, 3d rotation?
MESSAGE Bill Martingale , extension 3365

Note that the message should contain the name of

the user, along with other contact information
such as phone and room number. This message will
be inserted into a message file which the DATAPLOT
Service Group will peruse on a regular basis, and
respond accordingly.

There are 4 ways in which the DATAPLOT Service
Group can communicate with a user—

1) via the sign-on message;
2) via the NEWS command;
3) via the MAIL command;

4) via the BUGS command.

There is 1 way in which the user can communicate
to the Dataplot Service Group—

5) via the MESSAGE command.

The sign-on message appears whenever any user
signs onto DATAPLOT. It contains important
current information, and is usually short and to

the point.

Details regarding current DATAPLOT developments
may be evoked by the analyst entering the NEWS
command, as in

NEWS

This will print out more detailed information
regarding topics of current interest .

The DATAPLOT Service Group communicates directly
to an individual user by use of the MAIL command.
For example, suppose the Service Group wished to

inform user John Smith that the chunk of code that
he desired has been written. This is done by
using the sign-on message to inform John Smith
that he has mail, and then allowing John Smith to

enter the MAIL command, as in

MAIL SMITH

which will in turn print out the detailed mail

message that the DATAPLOT Service Group had
constructed

.

i

6-35

DATAPLOT File Information for Implementation

The following information is of interest only to
the local DATAPLOT Service Group and may be
skipped over by the general reader.

The file which contains the desired sign-on
message is named DPMESF and has unit number 21

attached to it. The first line image of the file
consists of a floating point number which is the
number of lines actually contained by the message.
Such lines follow immediately after the first
line. For example, DPMESF might consist of the
following 3 lines—

2.

New developments—Looping, Conditionality , and
Variable Printing . Use NEWS command for details

If no message is to be printed out, then the file
DPMESF should have the first line consisting of
merely a 0. on it.

The file which contains the desired news is named
DPNEWF and has the unit number 22 attached to it.

The structure cf this file is the same as the
message file— namely, a first line consisting of
a floating point number defining the number of
lines of the news, and succeeding lines which
actually consist of the news, for example,

4.

The general form of the LOOP command is
LOOP FOR parameter name = start increment stop

To terminate the loop, use the
END OF LOOP command.

The file which contains the desired bug
information is named DPBUGF amd has the unit
number 25 attached to it. The structure is as

before—a leading line image with the number of
lines of bug information, and successive line
images containing the actual bug information, as

jjiin

2.

TIC COORDINATES command not working.
DOUBLE PRECISION command not working.

The file which contains the desired mail
information is named DPMAIF and has unit number 23
attached to it. Since mail can exist for several

users simultaneously in the file, a different
structure has been used— to enter the mail for
Carter, say, the DATAPLOT Service Group enters

(via the local editor) a line image in the file
which consists only of the 6 characters CARTER.
The following line images consist of the mail

message. The message is terminated whenever a

line image is encountered which consists of at
least 5 hyphens in a row. Such a line image is

, deliberately entered into the file in order to

I terminate a mail message and to separate such a

mail message from the mail message to another

user. For example,

MAIL CARTER
3/3/83
The desired code is

CHARACTERS X BLANK

LINES BLANK SOLID

PLOT Y PRED VERSUS X
PLOT RES X

NORMAL PROBABILITY PLOT RES

If the mail file has multiple pieces of mail for
the same user, then only the first mail message is
accessed . Thus the analyst should add new mail

to the beginning of the file and may thus have a

permanent record of all mail since old mail
messages will be shunted off toward the back (end)

of the file.

The MESSAGE file is named DPQUEF and has unit

designation 26. Every entry which the analyst

enters via the MESSAGE command gets copied
character by character out to this file. Most

recent entries are placed at the beginning of the

file.

6-36

A summary of the DATAPLOT file/subfile structure
is as follows—

Purpose Unit Number Name File or Subfile Command

Message
News
Mail
Help
Bug
Query
Log

21

22

23
24

25

26

27

DPMESF
DPNEWF
DPMAIF
DPHELF
DPBUGF
DPQUEF
DPLOGF

file only
file only
file only
file only
file only
file only
off

MESSAGE
NEWS
MAIL
HELP
BUG
QUERY

Read
Write
Macro
Save

31 user-defined
32 user-defined
33, 35-40 user-defined
34 user-defined

file or subfile
file or subfile
file or subfile
file or subfile

READ and SERIAL READ
WRITE
CREATE and CALL
SAVE and RESTORE

Scratch
Data
Plot
Plot 2

41

4 2

43

44

DPSCRF
DPDATF
DPPL1F
DPPL2F

file only
file only
file only
file only

Default Output Color Graphics
Device Settings TERMINAL

, COLOR,
and PICTURE POINTS

Only the primary output device (the terminal) is
on. All 4 secondary output devices are off. The
primary output device is a Tektronix 4014 (or
equivalent). The primary output device is
continuous, non-color, and has 1024 horizontal
picture points and 781 vertical picture points.
The penplotter is turned off. The automatic local
hardcopy is off. The Zeta , Calcomp, and Versatec
are off.

The default color status for DATAPLOT is off—
that is, DATAPLOT believes it is communicating
with a non-color terminal for its graphics. If

one wishes to generate color graphics, then the
default device is the Tektronix 4027. To inform
DATAPLOT of this, the analyst must use the

TERMINAL command, as in

TERMINAL TEKTRONIX 4027

The message will come back that the primary output
device has been changed to the Tektronix 4027, the

color status has been changed to on, and the
picture points have been changed to 640
(horizontally) by 480 (vertically)

.

A second color terminal which DATAPLOT supports is
the RAMTEK 6211. To inform DATAPLOT that one is

running on such a terminal, one enters the

following—

TERMINAL RAMTEK 6211

6-38

Multiple Commands Per Line Specifying Post-Plot
TERMINATER CHARACTOR Cursor Position and Size

CURSOR SIZE

The vast majority of DATAPLOT programs have only
one command statement per line image. Such a

style is conducive to readability . On occasions

,

however, the analyst may wish to have multiple
command statements per line. This is permitted by

use of the terminator character (= a semicolon).
Anytime that DATAPLOT encounters a semicolon (or a

carriage return) in a line image, it assumes that

one command statement has terminated and the next
command statement is beginning

.

Although the default terminator character is the
semicolon, other terminator characters are
possible. The TERMINATOR CHARACTER command
specifies such a character , as in

TERMINATOR CHARACTOR !

which would replace the ; with a ! as a

terminator character

.

The semicolon was chosen as the default terminator
character because its use otherwise in the usual
assortment of DATAPLOT command statements is rare.
The only place where its inadvertent use might
arise is in the TITLE and ...LABEL statements—
one should be careful about the use of the
semicolon in such cases. If one wants a semicolon
as part of a title or label, then one should first
change the terminator character to something else,
otherwise the title or label will be
clipped and a syntax error will result.

Given that the semicolon is the terminator
character , then the following 2 programs are
identical—

This section refers to the size of the cursor (and
the size of the characters) when the terminal is

not generating graphics , but rather is simply
receiving commands from the keyboard or is simply
printing out results from various non-graphics

DATAPLOT commands (such as FIT, ANOVA , SMOOTH,

LET, etc.) In such case, it is at times convenient
to be able to control the size of the characters

being printed. It is also convenient to have the

cursor/character size at one setting for the

non-graphics , and perhaps at other settings for

the graphics. Thus after a plot is formed
(regardless of the size of the characters used in

the plot), it is preferable for the cursor/

characters to return to the non-graphics size.

In DATAPLOT this is controlled via the CURSOR SIZE
command. The default cursor/character size is 3

(= 3% of total screen height). To set the cursor
size to 1.5, say, the analyst enters

CURSOR SIZE 1.5

The above comments apply only for those terminals
which have multiple cursor sizes. For those
terminals with only 1 size (e.g., Tektronix 4010,

and Tektronix 4025), that 1 size will, of course,
appear regardless of the cursor size setting.

READ ABC. X Y

PLOT Y X
FIT Y = A+B*X+C*X**2
CHARACTERS X BLANK

LINES BLANK SOLID
PLOT Y PRED VERSUS X
PLOT RES X

NORMAL PROBABILITY PLOT RES

and

READ ABC. X Y ; PLOT Y X ; FIT Y = A+B*X+C*X* * 2

;

CHARACTERS X BLANK; LINES BLANK SOLID; PLOT Y PRED VERSUS X ;

PLOT RES X; NORMAL PROBABILITY PLOT RES

The terminator character may be either included or
excluded when it is the last character of a line
image. In lines 1 and 2 above, it was included

;

in line 3 above, it was omitted.

1 . Genera 1

2. Command Categories

3. Parameters, Variables, and Functions

4. Input/Output

5. Program Control

6 . Mi see 1 1 aneous

NBS-114A (rev. 2-8Q

U.S. DEPT. OF COMM. 1. PUBLICATION OR 2. Performing Organ. Report No. 3. Publication Date

BIBLIOGRAPHIC DATA
RF PORT NO

SHEET (See instructions) NBS SP 667 June 1984

4. TITLE AND SUBTITLE

DATAPLOT— Introduction and Overview

5. AUTHOR(S)

James J. Filliben

6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

8. Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State, ZIP)

Same as in item 6 above.

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 83-600598

7 Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant

bibliography or literature survey, mention it here)

This manual provides DATAPLOT code solution to a variety of commonly occurring
graphical problems. A line-by-line explanation of code is given, along with
illustrations and general discussion.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

computer software; data analysis; DATAPLOT; fitting; graphics; interactive fitting;

interactive graphics; interactive language; language; mathematics; non-linear fitting;

software; statistical methods.

13. AVAILABILITY

fxl Unlimited

[""J For Official Distribution.

[Y] Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.

20402.

Do Not Release to NTIS

7J Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

112

15. Price

USCOMM-DC 6043-PSO

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the

National Bureau of Standards reports NBS research and develop-

ment in those disciplines of the physical and engineering sciences in

which the Bureau is active. These include physics, chemistry,

engineering, mathematics, and computer sciences. Papers cover a

broad range of subjects, with major emphasis on measurement
methodology and the basic technology underlying standardization.

Also included from time to time are survey articles on topics

closely related to the Bureau's technical and scientific programs.

As a special service to subscribers each issue contains complete

citations to all recent Bureau publications in both NBS and non-

NBS media. Issued six times a year. Annual subscription: domestic

$18: foreign $22.50. Single copy, $5.50 domestic; $6.90 foreign.

NONPERIODICALS

Monographs— Major contributions to the technical literature on
various subjects related to the Bureau's scientific and technical ac-

tivities.

Handbooks—Recommended codes of engineering and industrial

practice (including safety codes) developed in cooperation with in-

terested industries, professional organizations, and regulatory

bodies

Special Publications— Include proceedings of conferences spon-

sored by NBS, NBS annual reports, and other special publications

appropriate to this grouping such as wall charts, pocket cards, and
bibliographies.

Applied Mathematics Series— Mathematical tables, manuals, and
studies of special interest to physicists, engineers, chemists,

biologists, mathematicians, computer programmers, and others

engaged in scientific and technical work.

National Standard Reference Data Series— Provides quantitative

data on the physical and chemical properties of materials, com-
piled from the world's literature and critically evaluated.

Developed under a worldwide program coordinated by NBS under

the authoritv of the National Standard Data Act (Public Law
90-396).

NOTE: The principal publication outlet for the foregoing data is

the Journal of Physical and Chemical Reference Data (JPCRD)
published quarterly for NBS by the American Chemical Society

(ACS) and the American Institute of Physics (A1P). Subscriptions,

reprints, and supplements available from ACS, 1 155 Sixteenth St.,

NW, Washington, DC 20056.

Building Science Series— Disseminates technical ir formation

developed at the Bureau on building materials, components,

systems, and whole structures. The series presents research results,

test methods, and performance criteria related to the structural and
environmental functions and the durability and safety charac-

teristics of building elements and systems.

Technical Notes— Studies or reports which are complete in them-

selves but restrictive in their treatment of a subject. Analogous to

monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final

reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards— Developed under procedures

published by the Department of Commerce in Part 10. Title 15, of

the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all

concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a

supplement to the activities of the private sector standardizing

organizations.

Consumer Information Series— Practical information, based on

N BS research and experience, covering areas of interest to the con-

sumer. Easily understandable language and illustrations provide

useful background knowledge for shopping in today's tech-

nological marketplace.

Order the above NBS publications from: Superintendent of Docu-

ments, Government Printing Office. Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR's—from
the National Technical Information Service , Springfield, VA 22161

.

Federal Information Processing Standards Publications (FIPS

PUB)— Publications in this series collectively constitute the

Federal Information Processing Standards Register. The Register

serves as the official source of information in the Federal Govern-

ment regarding standards issued by NBS pursuant to the Federal

Property and Administrative Services Act of 1949 as amended.

Public Law 89-306 (79 Stat. 1127), and as implemented by Ex-

ecutive Order 11717(38 FR 12315, dated May II, 1973) and Part 6

of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or

final reports on work performed by NBS for outside sponsors

(both government and non-government). In general, initial dis-

tribution is handled by the sponsor; public distribution is by the

National Technical Information Service , Springfield, VA 22161.

in paper copy or microfiche form.

N.

U.S. Department of Commerce
National Bureau of Standards

Washington, D C. 20234
Official Business

Penalty for Private Use S300

