Ozone Reactions in Aqueous Solutions -- A Bibliography
The National Bureau of Standards' was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory, and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers:

- Absolute Physical Quantities² — Radiation Research — Chemical Physics — Analytical Chemistry — Materials Science

THE NATIONAL ENGINEERING LABORATORY provides technology and technical services to the public and private sectors to address national needs and to solve national problems; conducts research in engineering and applied science in support of these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers:

- Applied Mathematics — Electronics and Electrical Engineering² — Manufacturing Engineering — Building Technology — Fire Research — Chemical Engineering²

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following centers:

- Programming Science and Technology — Computer Systems Engineering.

¹Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address Washington, DC 20234.
²Some divisions within the center are located at Boulder, CO 80303.
Ozone Reactions in Aqueous Solutions -- A Bibliography

Francis Westley
Center for Chemical Physics
National Measurement Laboratory
National Bureau of Standards
Washington, DC 20234

Sponsored by
Office of Standard Reference Data
National Measurement Laboratory
National Bureau of Standards
Washington, DC 20234

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary
NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director
Issued August 1983
OZONE REACTIONS IN AQUEOUS SOLUTIONS

-- A BIBLIOGRAPHY

Francis Westley
Center for Chemical Physics
National Measurement Laboratory
National Bureau of Standards
Washington, DC 20234

A reaction oriented list of references is provided for published papers and reports containing rate data or information on mechanism for reactions of ozone with various substrates in aqueous solutions. Catalyzed, as well as uncatalyzed, reactions are included. One hundred and sixty-four papers are listed. The period covered extends from 1913 to 1981.

Key words: aqueous solution; bibliography; chemical kinetics; decomposition; mechanism; oxidation; ozone; rate constant; reaction.

This bibliography lists papers and reports on the reactions of ozone with various substrates in aqueous solutions. Catalyzed reactions, as well as uncatalyzed reactions, are included.

The first study of ozone reactions in aqueous solutions was performed in 1913 by V. Rothmund and A. Burgstaller, who studied the rate of decomposition of ozone in water. In 1917 the same authors studied the reaction between ozone and hydrogen peroxide. The study of ozone decomposition in water was continued by F. Kawamura (1932), K. Sennewald (1933), F. Weiss (1935), W. C. Bray (1938), and H. Taube and W. C. Bray (1940). H. Taube examined the reactions of ozone with formic acid (1941), with bromide ion (1942) and chloride ion (1949). Ozone decomposition was studied again by M. C. Alder and G. R. Hill (1950), W. Stumm (1954), E. Abel (1955), and Kilpatrick et al. (1956), while E. Abel studied also the reaction of ozone with hydrogen peroxide. Since 1970 there has been a large increase in the number of papers published in this subject area. The present bibliography includes 164 papers and reports dealing with such reactions. The period covered extends from 1913 to 1981.
ARRANGEMENT OF THE REPORT

This bibliography is in two parts:

Part I. Guide to data contained in references. Each entry consists of a reference code and a property code. These are discussed below.

Part II. References

Ordering of Entries

In both parts of this report, entries are ordered chronologically beginning with the earliest papers and within each year alphabetically by author's name.

Reference Code

Each paper or report included in Part I is indicated by a brief reference code consisting of a string of characters showing:

1) Year of publication (last two digits)
2) Author or first two authors, using the first three letters of each last name (patronymic). When two names are present they are separated by a slash.
3) If necessary, a digit is added to distinguish among papers that would have the same code according to rules (1) and (2).

Examples:

42 TAU
70 SHA/KOZ
72 IVA/NIK
72 IVA/NIK2

The total length of the string, including the digit, may be no longer than 11 characters. A code without added digit has, implicitly, the digit 1 associated with it.

Property Code

The property code follows the reference code for each entry in Part I. The code consists of abbreviations which are used for data flagging. In this publication only the following listed four abbreviations are used for data flagging:

Dec (Decomposition)
Mec (Mechanism)
RR (Reaction Rate Data as: Rate constant, relaxation time, etc.)
Rxn with: (Reaction with other compounds)

references

Part II includes the same reference codes (or "short references") as Part I, in the same order, followed by the complete reference which gives: the name of author(s), the full title of the paper, and the name of the journal followed by the volume number, page, and year of publication. The full reference format is demonstrated below:

Part I. Guide to Data Contained in References.
For explanation of reference codes and property codes used see Guidelines for the User.

<table>
<thead>
<tr>
<th>Ref Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 ROT/BUR</td>
<td>Dec, RR</td>
</tr>
<tr>
<td>17 ROT/BUR</td>
<td>Rxn with: H_2O_2; RR</td>
</tr>
<tr>
<td>32 KAW</td>
<td>Dec, RR</td>
</tr>
<tr>
<td>33 SEN</td>
<td>Dec, RR</td>
</tr>
<tr>
<td>34 KAW</td>
<td>Dec, RR</td>
</tr>
<tr>
<td>35 WEI</td>
<td>Dec, Rxn with: H_2O_2; RR</td>
</tr>
<tr>
<td>37 VAS/KAS</td>
<td>Rxn with: $\text{SO}_2 + \text{H}_2\text{O}$; Mec, RR</td>
</tr>
<tr>
<td>38 BRA</td>
<td>Rxn with: H_2O_2; RR</td>
</tr>
<tr>
<td>40 TAU/BRA</td>
<td>Rxn with: H_2O_2; Mec, RR</td>
</tr>
<tr>
<td>41 TAU</td>
<td>Rxn with: HCOOH; Mec, RR</td>
</tr>
<tr>
<td>42 TAU</td>
<td>Rxn with: Br$^-$, Mec, RR</td>
</tr>
<tr>
<td>48 HIL</td>
<td>Rxn with: CO^{2+}; Mec, RR</td>
</tr>
<tr>
<td>49 YEA/TAU</td>
<td>Rxn with: Cl$^-$; RR</td>
</tr>
<tr>
<td>50 ALD/HIL</td>
<td>Dec, Mec, RR</td>
</tr>
<tr>
<td>54 STU</td>
<td>Dec, RR</td>
</tr>
<tr>
<td>55 ABE</td>
<td>Dec, Mec</td>
</tr>
<tr>
<td>55 ABE2</td>
<td>Rxn with: H_2O_2; Mec, RR</td>
</tr>
<tr>
<td>56 KIL/HER</td>
<td>Dec, RR</td>
</tr>
<tr>
<td>58 KLE/NAL</td>
<td>Rxn with: $\text{C}_3\text{H}_7\text{OOH}$; RR</td>
</tr>
<tr>
<td>59 KHA/BAR</td>
<td>Rxn with: CN$^-$; RR</td>
</tr>
<tr>
<td>61 SON/DOD</td>
<td>Rxn with: CN$^-$; Mec</td>
</tr>
<tr>
<td>62 HAU/SII</td>
<td>Dec, RR</td>
</tr>
<tr>
<td>65 CON/HAM</td>
<td>Rxn with: Fe$^{2+}$; RR</td>
</tr>
<tr>
<td>67 LUN/KUS</td>
<td>Rxn with: NO_2^-, SeO$_3^{2-}$, AsO$_3^{3-}$, PO$_3^{3-}$, Ag$^+$, Mn$^{2+}$; Mec</td>
</tr>
<tr>
<td>67 WAG/ECK</td>
<td>Rxn with: Cu$^{2+}$</td>
</tr>
<tr>
<td>68 CZA/SAM</td>
<td>Dec, RR</td>
</tr>
<tr>
<td>68 EIS</td>
<td>Rxn with: C$_6$H$_5$-OH; Mec</td>
</tr>
<tr>
<td>68 GRI/SHA</td>
<td>Rxn with: N$_2$H$_5$+ salts; Mec</td>
</tr>
<tr>
<td>68 ILN/KHE</td>
<td>Rxn with: Pyrenes and Anthracenes</td>
</tr>
<tr>
<td>68 SEN/IKE</td>
<td>Rxn with: Mn$^{2+}$</td>
</tr>
<tr>
<td>70 LUN/FRA</td>
<td>Rxn with: NO_2^-, HPO$_3^{2-}$, SeO$_3^{2-}$; Mec</td>
</tr>
</tbody>
</table>
70 KAN/MOK Rxn with: cy-C₆H₁₂; Mec
70 ROG Dec, RR
70 SHA/KOZ Rxn with Np(VI); RR
71 EIS Rxn with: C₆H₂OH; Mec
71 NEW/DAV Dec, RR
71 HER/LOV Dec, RR
71 ROG Rxn with: (CH₃)₂NH
71 SHE/MAR Rxn with: Phosphnamide
71 VYA/DAV Rxn with: Pu(IV)
72 BAL/SEL Rxn with: CH⁻; RR
72 DON/ENR Rxn with: Carbon black; Mec
72 GOU Rxn with: C₆H₂OH; RR, Mec
72 IVA/NIK Dec, RR, Mec
72 IVA/NIK2 Rxn with: Ce³⁺, Ag⁺; RR, Mec
72 KRI/MUR Rxn with: [Re(en)₂O₂]⁺; RR
72 PEN Rxn with: SO₂, NO₂, H₂S; RR
72 RAZ/GLO Rxn with: C₆H₂OH; RR
72 VYA/DAV Rxn with: Pu(IV); RR
73 DUD Rxn with: Br⁻
73 GOR/BAS Rxn with: CH₃COCH₃
73 GOR/GOR Rxn with: CH₃COCH₃; Mec
73 GOR/KOZ Dec, RR, Mec
73 GOR/KOZ2 Dec, RR, Mec
73 GOR/VOD Dec, Rxn with: RH, ROH, RCHO, R₂CO, etc.
73 KAN/MOK Rxn with: cy-C₅H₁₀
73 SHA/VYA Rxn with: Ce³⁺; RR, Mec
73 SHE Rxn with: I⁻
73 TAK/OKU Rxn with: Na₂S₂O₃; Mec
74 GER/KUR Rxn with: CH₃CH₂COCH₃; RR
74 GIL Rxn with: mono-, and poly-Chlorophenols
74 GOR/BAS Rxn with: Ag⁺; RR, Mec
74 GOR/KOZ Dec, RR, Mec
74 KON/GER Rxn with: CH₃CH₂COCH₃; RR, Mec
<table>
<thead>
<tr>
<th>Code</th>
<th>Reaction with:</th>
</tr>
</thead>
<tbody>
<tr>
<td>74 PAK/KRA</td>
<td>$\text{CH}_3\text{OH, CH}_3\text{CH}_2\text{OH, C}_6\text{H}_9\text{OH, C}6\text{H}{17}\text{OH}$</td>
</tr>
<tr>
<td>74 SHU/NIK</td>
<td>Ru(III), Ru(IV)</td>
</tr>
<tr>
<td>74 ZAM/KUN</td>
<td>$\text{C}_6\text{H}_5\text{OH}$</td>
</tr>
<tr>
<td>75 CHT/AKO</td>
<td>$\text{W, }\text{W}_2\text{S}_2$</td>
</tr>
<tr>
<td>75 CHU/KOK</td>
<td>$\text{Pb(NO}_3\text{)_2}$</td>
</tr>
<tr>
<td>75 GOR</td>
<td>Dec</td>
</tr>
<tr>
<td>75 KOC/MEJ</td>
<td>$\text{Sulfonates and Sulfates}$</td>
</tr>
<tr>
<td>75 KUR/SAK</td>
<td>Tryptophan</td>
</tr>
<tr>
<td>75 LYS/ATY</td>
<td>$\text{(CH}_3\text{)_2NNH}_2, \text{Mec}$</td>
</tr>
<tr>
<td>75 MAT/FUJ</td>
<td>CN^-, RR</td>
</tr>
<tr>
<td>75 NIK/IVA</td>
<td>$\text{Np}^{4+}, \text{Pu}^{4+}, \text{RR, Mec}$</td>
</tr>
<tr>
<td>75 TAR/MAR</td>
<td>$\alpha-\text{Naphthol}$</td>
</tr>
<tr>
<td>75 TYU/YAK</td>
<td>$\text{Sulfates, Pyridines, Pyrazoles, Nicotinic Acid; RR, Mec}$</td>
</tr>
<tr>
<td>75 VEB/GAE</td>
<td>Acrylonitrile</td>
</tr>
<tr>
<td>76 CHU</td>
<td>Sn^{2+}</td>
</tr>
<tr>
<td>76 CHU/MAS</td>
<td>NCS^-</td>
</tr>
<tr>
<td>76 HOI/BAD</td>
<td>$\text{Benzene, o-Xylene, Styrene, Aniline, Phenols, Alcohols; RR}$</td>
</tr>
<tr>
<td>76 JOY</td>
<td>$\text{Arylsulfonic acids}$</td>
</tr>
<tr>
<td>76 KHE/DUD</td>
<td>Br^-</td>
</tr>
<tr>
<td>76 PEL</td>
<td>Dec</td>
</tr>
<tr>
<td>76 TOZ/NIS</td>
<td>As(III)</td>
</tr>
<tr>
<td>77 CHE/LEB</td>
<td>Ce(III), Bk(III)</td>
</tr>
<tr>
<td>77 ERI/YAT</td>
<td>$\text{SO}_2; \text{RR, Mec}$</td>
</tr>
<tr>
<td>77 GAL/GAL</td>
<td>$1-(p-\text{Nitrophenyl})-2-\text{acetylamino}-1,3-\text{propanediol}$</td>
</tr>
<tr>
<td>77 GLI</td>
<td>$\text{Maleic acid, Fumaric acid, Glyoxylic acid, Formic acid, Oxalic acid}$</td>
</tr>
<tr>
<td>77 GLA/TOM</td>
<td>$\text{aromatic amines, sulfanilic acid}$</td>
</tr>
<tr>
<td>77 GOB/CHU</td>
<td>$\text{Br}^-, I^-, \text{RR, Mec}$</td>
</tr>
<tr>
<td>77 GOR/SIM</td>
<td>$\text{CH}_3\text{CH}_2\text{COCH}_3, \text{Mec}$</td>
</tr>
<tr>
<td>77 KOV/YAV</td>
<td>$\text{Na}_2\text{S; RR}$</td>
</tr>
<tr>
<td>77 KUO/LI</td>
<td>Dec, RR</td>
</tr>
<tr>
<td>77 PRE/MAU</td>
<td>$\text{C}_6\text{Cl}_9\text{OH, C}_6\text{H}_4\text{Cl}_2, C_4\text{H}_5\text{Cl}_2, \text{CHCl}_3, \text{Chlorinated biphenyls}$</td>
</tr>
<tr>
<td>77 RIZ/AUG</td>
<td>$\text{C}_6\text{H}_5\text{OH; RR}$</td>
</tr>
<tr>
<td>77 SHA/YAK</td>
<td>Cumene</td>
</tr>
</tbody>
</table>
77 TAR/MAR Rxn with: S-ethyl-N,N-di-n-propylthiocarbamate
77 TAR/MAR2 Rxn with: Zinc dimethylthiocarbamate and tetramethylthiuram disulfide
77 T/YU Rxn with: Alkylpyridines
77 T/YU/YAK Rxn with: Alkylpyridines and Alkylpyrazoles; Mec
77 YOC Rxn with: Styrene
78 A/U2/RIZ Rxn with: C6H5OH; RR
78 A/U2/RIZ2 Rxn with: C6H5OH; RR, Mec
78 CHU Rxn with: Pd2+, Pt2+
78 GIL Rxn with: Aliphatic and aromatic acids, cresols, glyoxal
78 H0I/BAD Rxn with: NH3; RR
78 I/S/DOB Rxn with: Alcohols, Phenols, Cyanohydrins, Amines, Aromatic amines, Benzothiazole
78 J/OY/GIL Rxn with: Alkylbenzenesulfonic acids
78 K/AS/MAT Rxn with: CN⁻; RR
78 L/R/HOR Rxn with: SO2; RR, Mec
78 M/OR/IK Rxn with: Organic compounds (Review)
78 ONA Rxn with: Azo Dyes; RR, Mec
78 PRA Rxn with: Br⁻
78 P/R/E/HAV Rxn with: Pesticides (Malathion, Baygon, Vapam, DDT)
78 S/HA/KOL Rxn with: Caffeine
78 S/KU Rxn with: Sodium Alkylbenzenesulfonates
78 S/KU2 Rxn with: Sodium Alkynaphthalenesulfonates
78 S/zu/IIZ Rxn with: Polyacrylamide
78 YAK/DNE Rxn with: I⁻, Mn²⁺; RR
78 YOC Rxn with: Styrene, Bromobenzenesulfonic acid
79 B/E/L Rxn with: CH₃COCH₃
79 D/G/BRAS Rxn with: C₂H₅OH; RR, Mec
79 H/AR/BO Rxn with: Ethylenediamine
79 N/AK/NAK Dec, RR
79 R/AZ/DOE Rxn with: OH⁻; RR, Mec
79 S/TE/BEN Rxn with: Water-soluble organic substances, Nitroaniline
79 SUL/ROT Rxn with: Water-soluble polymers; RR
79 SUZ/TAU Rxn with: C₆H₅OH, Hydroquinone, Na 1-anthraquinone, Na Benzenesulfonate, Phthalic acid, Bromobenzenesulfonic acid
79 YAK Rxn with: C₆H₅OH, Hydroquinone, Na 1-anthraquinone, Na Benzenesulfonate, Phthalic acid, Bromobenzenesulfonic acid
80 DUG/JAU Rxn with: Glycine; RR
80 GIL Rxn with: trans-trans Muconic acid; RR, Mec
80 HUA Rxn with: 2,2',4,4',6,6'-Hexachlorobiphenyl; RR, Mec
80 JOY/GIL Rxn with: p-Toluenesulfonic acid; Mec
80 KER/TAR Rxn with: Azobenzene
80 KIR/LIT Rxn with: Ethyl mercaptan
80 LIB/BOS Rxn with: I⁻
80 RUT/SZK Rxn with: HCHO
80 SUL Rxn with: Dec, RR
80 SUL/ROT Rxn with: Dec, RR
80 SUZ/MIY Rxn with: Poly(oxyethylene); RR
80 TYU Rxn with: Benzimidazole, benzotriazole, benzopyrazole; RR
80 TUU/BER Rxn with: Alkylpyridines; RR
80 TUU/YAK Rxn with: Mn²⁺, Mn³⁺; RR, Mec
80 ZEE/VIS Rxn with: CN⁻; RR, Mec
81 GUR Rxn with: C₆H₅OH; RR, Mec
81 HAR/TAK Rxn with: Br⁻; RR, Mec
81 LEG/LAN Rxn with: C₆H₅OH, Hydroquinone, Phenoxyacetic acid, Aniline
81 MAR/DAM Rxn with: SO₂
81 MAT/TAK Rxn with: NCO⁻; RR, Mec
81 MBA/MAN Rxn with: Lignin
81 PAN/CHE Rxn with: Methyl β-D-glucopyranoside; RR
81 REU/OVE Rxn with: C₆H₅OH; RR
81 SIE/COW Rxn with: NH₂NH₂, CH₃NHNH₂, (CH₃)₂NNH₂
81 TAK/KAT Rxn with: Dec, RR
81 TER/SUG Rxn with: CN⁻; RR
81 TYU Rxn with: Fe²⁺; RR, Mec
81 TYU/DNE Rxn with: Fe²⁺; RR, Mec
81 YAK Rxn with: CH₃OH, HCHO, HCOOH; Mec
Part II. References

1913

1917

1932

1933

1934

1935

1937

1938

1940

1941
1942

42 TAU Taube, H., "Reactions in Solutions Containing O$_3$, H$_2$O$_2$, H$^+$ and Br$^-$. The Specific Rate of the Reaction O$_3 +$ Br$^-\rightarrow$," J. Am. Chem. Soc. 64, 2468 (1942)

1948

1949

1950

1954

1955

1956

1958

1959

1961

1962

1965

1967

1968

1970

1971

1972

1975

75 KUR/SAK Kuroda, M., Sakiyama, F., and Narita, K., "Oxidation of Tryptophan In Lysozyme by Ozone in Aqueous Solution," J. Biochem. 78, 641 (1975) (Toyko)

1977

77 ERI/YAT Erickson, R. E., Yates, L. M., Clark, R. L., and McEwen, D., "The Reaction of Sulfur Dioxide with Ozone in Water and Its Possible Atmospheric Significance," Atmos. Environ. 11, 813 (1977)

1978

1979

79 COR/BAS

79 HEA

79 LI/KUO

79 MAR/OBO

79 NAK/NAK

79 RAZ/OVE

79 STE/BEN

79 SUL/ROT

79 SUZ/TAU

79 YAK

1980

80 DUG/JAU

80 GIL

80 HUA

80 JOY/GIL

80 KER/TAR

80 KIR/LIT
Kirchner, K., and Litzenburger, W., "Oxidation of Mercaptan with Ozone in Water and Aqueous Solutions; Significance for Air and Water Purification," DEHEMA—Monogr. 86, 87 (1930) (Ger); Chem. Abstr. 93:172767y (1980)
1980

1981

Ozone Reactions in Aqueous Solutions--A Bibliography

Title and Subtitle

A reaction oriented list of references is provided for published papers and reports containing rate data or information on mechanism for reactions of ozone with various substrates in aqueous solutions. Catalyzed, as well as uncatalyzed, reactions are included. One hundred and sixty-four papers are listed. The period covered extends from 1913 to 1981.

Key Words

- aqueous solution
- bibliography
- chemical kinetics
- decomposition
- mechanism
- oxidation
- ozone
- rate constant
- reaction

Availability

- Unlimited
- For Official Distribution. Do Not Release to NTIS

Additional Information

- Library of Congress Catalog Card Number: 83-600538
- Document describes a computer program; SF-185, FIPS Software Summary, is attached.
NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs. As a special service to subscribers each issue contains complete citations to all recent Bureau publications in both NBS and non-NBS media. Issued six times a year. Annual subscription: domestic $18; foreign $22.50. Single copy, $5.50 domestic; $6.90 foreign.

NONPERIODICALS

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, compiled from the world’s literature and critically evaluated. Developed under a worldwide program coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).

NOTE: The principal publication outlet for the foregoing data is the Journal of Physical and Chemical Reference Data (JPCRD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements available from ACS, 1155 Sixteenth St., NW, Washington, DC 20036.

Building Science Series—Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easilly understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

Order the following NBS publications—FIPS and NBSIR's—from the National Technical Information Service, Springfield, VA 22161.

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper copy or microfiche form.